

The Myths of Security
What the Computer Security Industry
Doesn’t Want You to Know

The Myths of Security
What the Computer Security Industry
Doesn’t Want You to Know

John Viega

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

The Myths of Security: What the Computer Security
Industry Doesn’t Want You to Know
by John Viega

Copyright © 2009 John Viega. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (my.safaribooksonline.com).
For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor:

Rachel Monaghan
Copyeditor: Amy Thomson
Proofreader: Rachel Monaghan

Indexer: Angela Howard
Cover Designer: Mark Paglietti
Interior Designer: Ron Bilodeau
Illustrator: Robert Romano

Printing History:

June 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Myths of Security, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN: 978-0-596-52302-2
[M]

http://safari.oreilly.com

Contents

Foreword . ix
Preface . xiii

Chapter 1
The Security Industry Is Broken . 1

Chapter 2
Security: Nobody Cares! . 5

Chapter 3
It’s Easier to Get “0wned” Than You Think 9

Chapter 4
It’s Good to Be Bad . 19

Chapter 5
Test of a Good Security Product: Would I Use It? 25

Chapter 6
Why Microsoft’s Free AV Won’t Matter 29

Chapter 7
Google Is Evil . 33

Chapter 8
Why Most AV Doesn’t Work (Well) . 41

Chapter 9
Why AV Is Often Slow . 49

Chapter 10
Four Minutes to Infection? . 55

Chapter 11
Personal Firewall Problems . 59

Chapter 12
Call It “Antivirus” . 65

Chapter 13
Why Most People Shouldn’t Run Intrusion Prevention

Systems . 71

Chapter 14
Problems with Host Intrusion Prevention 75

Contentsvi

Chapter 15
Plenty of Phish in the Sea . 79

Chapter 16
The Cult of Schneier . 87

Chapter 17
Helping Others Stay Safe on the Internet 91

Chapter 18
Snake Oil: Legitimate Vendors Sell It, Too 95

Chapter 19
Living in Fear? . 99

Chapter 20
Is Apple Really More Secure? . 105

Chapter 21
OK, Your Mobile Phone Is Insecure;

Should You Care? . 109

Chapter 22
Do AV Vendors Write Their Own Viruses? 113

Chapter 23
One Simple Fix for the AV Industry . 115

Chapter 24
Open Source Security: A Red Herring 119

Chapter 25
Why SiteAdvisor Was Such a Good Idea 127

Chapter 26
Is There Anything We Can Do About Identity Theft? . 129

Chapter 27
Virtualization: Host Security’s Silver Bullet? 135

Chapter 28
When Will We Get Rid of All the

Security Vulnerabilities? . 139

Chapter 29
Application Security on a Budget . 145

Chapter 30
“Responsible Disclosure” Isn’t Responsible 153

Chapter 31
Are Man-in-the-Middle Attacks a Myth? 163

Chapter 32
An Attack on PKI . 167

Contents vii

Chapter 33
HTTPS Sucks; Let’s Kill It! . 171

Chapter 34
CrAP-TCHA and the Usability/Security Tradeoff 175

Chapter 35
No Death for the Password . 181

Chapter 36
Spam Is Dead . 187

Chapter 37
Improving Authentication . 191

Chapter 38
Cloud Insecurity? . 197

Chapter 39
What AV Companies Should Be Doing (AV 2.0) 203

Chapter 40
VPNs Usually Decrease Security . 213

Chapter 41
Usability and Security . 215

Chapter 42
Privacy . 217

Chapter 43
Anonymity . 219

Chapter 44
Improving Patch Management . 221

Chapter 45
An Open Security Industry . 223

Chapter 46
Academics . 225

Chapter 47
Locksmithing . 227

Chapter 48
Critical Infrastructure . 229

Epilogue . 231

Index . 233

Foreword

Everybody with a computer should worry a little about whether
hackers might break in and steal personal data. After all, software
is complex and has lots of flaws—and people can be tricked by a
good ruse. People are in over their heads in trying to figure out
this difficult problem, and they need a good security product that
works, is easy to use, and doesn’t impact the performance of their
machines.

The security industry should be coming to the rescue. But in this
book, John Viega shows why many people are at risk when they
shouldn’t be. While the security industry points the finger at the
bad guys, or even computer users, John rightfully points the finger
at the security industry. There’s lots of biting criticism here that
hopefully will make the industry examine itself, and lead to some
positive change. It would be great to see a world where security
vendors aren’t feeding hackers all the ammo they need to break in
to machines (which is not condoned at McAfee), and where the
industry is more cooperative in general and tries to solve the
problem, not just cover up its symptoms.

This book makes me feel proud, because it shows that we did our
job staying ahead of the industry during my tenure as McAfee’s
CTO. When John complains about problems with antivirus sys-
tems, he is talking about problems that other people have, but that

Forewordx

McAfee has been working to solve, with industry-leading technol-
ogies such as Artemis (http://www.mcafee.com/us/enterprise/
products/artemis_technology/index.html). And while McAfee has
changed the game with Artemis, I can say it is cooking up even
better technologies that will go even beyond the vision of anti-
virus nirvana that John describes in this book. I am excited to
see these technologies come to life, not just because they were
incubated under my watch, but because they fundamentally
change the playing field in the good guys’ favor.

Even though I recently retired from McAfee, I still believe it is
doing far better than the rest of the security industry for a few
core reasons. First, it is a dedicated security company. As prac-
tice, it doesn’t spread the brainpower around on other technolo-
gies, such as storage. Second, it cares about everybody who needs
protection, from the consumer to the enterprise, and spends a lot
of time listening closely to customers, with frequent customer
councils. Third, McAfee hires the best and the brightest people in
the industry. But it’s not just about collecting technical talent. Yes,
it has a deep bench of experts. But McAfee actually listens to
them. When you spend a lot of time listening to both the experts
and the people you’re trying to protect, it’s amazing how smart
you can become, and how good of a job you can do. And creating
real solutions to real problems is something that I love, not just
solving symptoms.

McAfee is lucky to have such a deep bench of talent, like John
Viega. John has done a phenomenal job at McAfee, helping lead
the charge into many emerging areas, such as web protection, data
loss prevention, and Software-as-a-Service. He has also been
instrumental in pushing forward the core technologies and prac-
tices, providing McAfee with even better antivirus and even better
product security than it had before he first arrived.

My philosophy is to constantly strive to be better and to always
try to delight the customer. By working closely with customers,
not only can one understand their pain points, but one can also
create a relationship with them that not only allows, but encour-
ages, their feedback into the development cycle. Products are not
developed in a vacuum. Many other vendors just rely on their
smart guys and don’t talk much to customers, which creates more
problems than it solves. For some companies, decision points are

http://www.mcafee.com/us/enterprise/products/artemis_technology/index.html
http://www.mcafee.com/us/enterprise/products/artemis_technology/index.html

Foreword xi

squarely based on dollars and company benefit. Not for me, and
not for John. John always wants to do the right thing for the com-
pany and the customer.

For both John and myself, the customer comes first. We have
always tried to do as much as we can to make the world a better
place. For instance, we have pushed McAfee to distribute soft-
ware at no cost, such as SiteAdvisor and our Stinger malware
cleanup tool. Whereas some vendors profit while putting people at
risk by making software vulnerabilities public, John and I have
always pushed to do the right thing for every software user. While
I was at McAfee, if an employee found a bug in someone else’s
code, the policy was to inform the vendor, instead of the world.
(We also advised vendors not to announce the issue, though often
they did.) And if something did go public, we provided free infor-
mation to help people figure out if they might be at risk.

John’s philosophy of doing right by the customer is spot on. I wish
the entire security industry felt the same way. Maybe this book
will be the kick in the pants that the rest of the industry needs.

John’s leadership has left his fingerprints on all aspects of
McAfee’s products, in ways that provide invaluable benefit to cus-
tomers. He is not afraid to do the right thing, even if it’s not the
popular thing. And he’s not afraid to issue a “call to action” for
the computer security field in general, which is what he’s done
with The Myths of Security. I just hope that the rest of the field
sees this book in the same light I have, and uses it as constructive
criticism to build better security for everyone. Given my extensive
experience in this field over the past 15 years, there are few books
that I would put into this category. When I talk with people about
the computer security field, I will certainly be advising them to
read this book.

—Christopher Bolin
Former CTO and Executive

Vice President of McAfee

Preface

The Myths of Security is for anyone interested in computer secu-
rity, whether it’s a hobby, a profession, or just something you
worry about. By reading this book, you’ll get some insight into
what the bad guys do, as well as what the good guys (and gals)
do. You’ll find that good guys often do bad things—things that
put everybody at risk. You’ll learn about what’s traditionally been
wrong with the industry, and how it’s slowly starting to change.

If you’ve picked up this book, odds are that you care about com-
puter security a lot more than the average person. When people
outside the computer industry ask me what I do, I get one of three
reactions:

• They give me a disinterested look with some explanation of
why they don’t care. Like, “I own a Mac,” or “I let my kids
worry about that for me.”

• They ask something like, “What should I be doing to keep
myself safe?”, and when I give them the answer, they change
the subject, because they have gotten all the information they
ever wanted to know about Internet security.

• They relate some “horror show” about their computer mal-
functions and ask if I can do anything to help.

Many people are smart and computer savvy but still don’t care
about security, unless there’s some kind of problem that might
affect them. They’re willing to pay a little bit so that there are no

Prefacexiv

problems on their computers. But those problems shouldn’t cause
more problems. For example, if antivirus (AV) slows down com-
puters too much, some people will stop using it altogether.

When you get into the IT world, a lot more people seem to be
interested in security. It’s like an incredibly challenging game. The
bad guys are clever, and find lots of ways (often incredibly cre-
ative ways) to get around all the defenses others have erected. We
need to try to build better defenses so the bad guys will be less
successful.

It’s not a game we’ll ever win.

Imagine you’re trying to protect the entire Internet, which has at
least 1.6 billion users. Let’s pretend that those users are all run-
ning security mechanisms that are 99.9% effective, and everybody
gets attacked at least once a year. That’s still over 1.6 million
people infected a year.

On the good side, people aren’t under constant attack. On the bad
side, it doesn’t take a failure in your security to get you in trouble.
When there’s money involved, there will always be successful
criminals. And, even if there are no overt security problems with
an IT system, the bad guys will just lie, cheat, and steal if that’s
what it takes to achieve their goals. Remember, the bad guys were
successful before there were computers involved, and they will
examine all their options and take the easiest path.

If all you really care to know is what you can do to protect your-
self, I do cover that in Chapter 17. But, if you don’t want to read
that far, you’ll be probably be OK if you follow these three steps:

1. Run current AV (don’t ignore it when your subscription to
updates runs out).

2. Always install operating system and program updates for the
programs you use, as soon as you can.

3. Make sure that you are dealing with legitimate people before
you do anything on the Internet, whether it be shopping
online, opening a document that you received in your email,
or running a program you downloaded off the Internet.

These days, you probably won’t notice if you’re infected unless your
AV tells you, in which case it can probably clean up the infection.
But if your computer seems messed up (e.g., odd crashes, running

Preface xv

slow, too many pop-up ads), you may or may not be infected. Either
way, the right thing to do is to find someone you trust who can deal
with the problem for you. Maybe it’s your kid, or maybe it’s the Best
Buy Geek Squad. In the worst-case scenario, your computer might
need to be rebuilt from scratch, so it’s also a good idea to keep all
your data backed up (as if it wasn’t a good idea anyway).

If your primary concern is keeping yourself safe, you’ve now
learned everything you need to know, and it probably wasn’t any-
thing revolutionary. However, I hope you’ll be curious enough to
read a little further and learn more about the computer security
industry. There’s a reason why so many people in IT find it inter-
esting, and if you keep reading, maybe you’ll see it.

The security industry is large enough to rake in well over 10 bil-
lion dollars every year. There are hundreds of companies and
thousands of products. Most people that use computers need to
care about security. So do most companies. There’s a huge por-
tion of the IT security market that is focused on selling solutions
to companies. As the companies get larger, they tend to hire
someone with a bit of security knowledge who is responsible for
choosing security technologies for the company. In this book, I’m
not going to pay much attention to this kind of customer, one
who actually has a good reason to care about IT security (keeping
a job). There are plenty of myths for me to debunk in the corpo-
rate realm, but I’m typically more interested in the more mundane
problems that ordinary people have.

Plus, most normal people aren’t going to care about things like
Sarbanes-Oxley compliance, or whether management consoles
from different security vendors are able to share data.

Why Myths of Security?
It’s natural that myths proliferate in a discipline as tangled and
murky as computer security. In this book, I’ll clear up a lot of
those myths.

Most people have heard—and probably believe—some of the
myths that have grown up around computer security. For
instance, I’ve had plenty of nontechnical people ask me, “Is it true
that McAfee creates the viruses they detect?” (No.) Many people
have probably heard that Macs are more secure than Windows

Prefacexvi

PCs, but it’s far more complicated than that. And, people assume
their antivirus software is protecting them, but it’s worth being
skeptical about that.

People in the industry have their misconceptions, too. Everybody
seems to think that the vulnerability research community is
helping improve security. But it’s not; it’s feeding the bad guys.

I’ll also discuss some of my solutions to these problems. We’ve
come to think that many of these problems are intractable. As I’ve
said, the bad guys have an intrinsic advantage—but that doesn’t
mean there aren’t solutions.

Acknowledgments
As an incentive to get my mom to read this book (she is smart, but
probably thinks she can ignore security because she uses a Mac),
I’d like to dedicate this book to her. I’ve been lucky enough to
have lots of great people in my life who have encouraged me and
believed in me, but she’s been at it the longest. And I know she
does it the best, because there’s nothing as strong as a parent’s
love for a child.

I should know, because no matter how much my daughters, Emily
and Molly, insist that they love me more than I love them, I know
it’s just not possible. Thanks, kids, for being so awesome. You
make me happier than you will ever know…unless you have your
own kids someday. And, if you do, I hope you have kids that are
just like you. Normally when parents say that, it’s because the
kids are making them suffer, and they want the kid to learn what
it was like to be them. That’s not true here. You kids have never
made me suffer; it’s always been easy being your dad. I only suffer
a little, and it’s because I wish we could spend even more time
together than we do.

There are never enough hours in the day to get everything done.
Writing a book is no exception. The time one spends writing has
to come from somewhere. For me, it meant I spent less time
working, and I’d like to thank Blake Watts for picking up the
slack at work, for reviewing a lot of these chapters early on, and
for being so positive. Oh, and for doing a great job.

Similarly, I’d like to thank my amazing girlfriend, Debbie
Moynihan, for putting up with me, no matter what. I clearly

Preface xvii

haven’t been the best boyfriend, working too hard at my job and
on this book. But she never complained about it. Instead, she
reviewed the entire manuscript. I’m a really lucky guy.

Thanks also to my good friend Leigh Caldwell, who reviewed the
entire book as well. He didn’t ask, but since he so generous with
his time, I feel obliged to say that I love reading his economics
blog: http://www.knowingandmaking.com/.

And, of course, I’d like to think other people who reviewed parts
of this book: Christopher Hoff, George Reese, Andy Jaquith,
David Coffey, Steve Mancini, and Dave at subverted.org.

Writing this book has been a blast. Every other book I’ve done has
been really technical and required a lot of elbow grease. In this
book, I’ve just had to share my (strong and often controversial)
opinions. That’s been fun, but the team I’ve worked with at
O’Reilly has made the job even more enjoyable. My editor, Mike
Loukides, has always had inspiring ideas and great feedback.
When I’m behind, he’s able to crack the whip in a nice way that
doesn’t demotivate me. Plus, he’s always up for grabbing a pizza
and beer. My copyeditor, Amy Thomson, was not only thorough,
but she kept me laughing with all her witty comments in the mar-
gins. And, I also need to thank Mike Hendrickson (who also is
good fun over a pint) for convincing me to take all my pent-up opin-
ions and write a book, when I was going to just blog a few things.

Matt Messier, David Coffey, Leigh Caldwell, and Zach Girouard,
my best friends, also deserve lots of credit for influencing my
thinking (they’re all at least in the software industry) and for
keeping me sane while writing the book and working on a startup.

Hundreds of other people have helped influence the thinking that
went into this book. It’s way too many to call them all out—
almost everyone I’m connected to on LinkedIn, Facebook, and
Twitter is on that list. My non-techie friends deserve just as much
thanks for helping shape my opinions on the world at large, and
helping me relax when necessary.

When I first got into security, I was really focused on how to help
developers keep security bugs out of the software they write. I
branched out in a few directions on my own, but it was Christopher
Bolin who believed in me enough to give me strategic responsibili-
ties across McAfee’s vast security portfolio. Because of him (and

http://www.knowingandmaking.com/

Prefacexviii

Jeff Green, who expanded my responsibilities further still), I was
in a great position to develop an even deeper understanding of
both the security industry and of business in general. Most of the
people I’ve worked with at McAfee have been incredibly sharp
and incredibly giving. Thanks to everyone who continues to make
McAfee an enjoyable place to work.

Though lots of people have contributed to my thinking on secu-
rity, nobody is to blame for my opinions other than me. I am
happy to disagree with people respectfully, and logic and facts can
change my mind. If you’d like to debate anything with me respect-
fully, I will do my best to make time to respond. Either send me an
email (viega@list.org), or, preferably, find me on Twitter (@viega).

How to Contact Us
Please address comments and questions concerning this book to
the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list examples and
any plans for future editions. You can access this information at:

http://www.oreilly.com/catalog/9780596523022/

You can also send messages electronically. To be put on the
mailing list or request a catalog, send an email to:

info@oreilly.com

To comment on the book, send an email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource
Centers, and the O’Reilly Network, see our website at:

http://www.oreilly.com

mailto:viega@list.org
http://www.oreilly.com/catalog/9780596523022/
mailto:info@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface xix

Safari® Books Online
When you see a Safari® Books Online icon on the
cover of your favorite technology book, that
means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut
and paste code examples, download chapters, and find quick
answers when you need the most accurate, current information.
Try it for free at http://my.safaribooksonline.com.

http://my.safaribooksonline.com?portal=oreilly

Chapter 1 C H A P T E R 1

The Security Industry Is
Broken

When I was in college, I worked on the Alice project, run by
Randy Pausch of “Last Lecture” fame. Alice was a system for vir-
tual reality and 3D graphics—working on it got me the few cool
points I had in college. However, the primary goal of Randy’s
project had nothing to do with virtual reality or being cool. It was
all about making computer programming easy. Randy wanted
high school kids to be able to write their own computer games
without having to be computer programmers. The goal was to get
them programming without noticing they were doing it.

After I got over the cool factor of fighting droids with a real light
saber in a virtual reality environment (you held a flashlight in your
hand, but it looked like a light saber in virtual reality), I found I
wasn’t actually all that passionate about computer graphics. But
Randy had definitely gotten me excited about making things easy
for average people.

My first introduction to Randy came when I took his Usability
Engineering class, which was about making software products
that are easy to use. I was struggling with whether I wanted to go
into the computer field at all. I knew I was good at it, but the pre-
vious coursework I’d taken had almost scared me off because it
kept me dozing off…classes like Fortran and Discrete Math.

But on the first day of class, Randy showed us a VCR and talked
about how difficult it was to do simple things, like set the time.
He talked about how the buttons were all clumped together in

Chapter 12

ways that made it difficult to distinguish what was what. He got
everyone sharing their frustrations with their VCRs, and with
plenty of other common things, such as light switches that don’t
turn off the light you think they should, or doors that you think
you should push but actually require you to pull.

Then Randy put on goggles, pulled out a sledgehammer, and beat
the crap out of the VCR. Then he proceeded to destroy other
donated devices with shoddy user interfaces.

That inspired me. It made me realize that the entire consumer elec-
tronics industry and the computer software industry were funda-
mentally broken, because they weren’t really providing people
with good experiences, just passable ones. It seemed that every-
where I looked, people making products were assuming they knew
their users, without spending enough time actually talking to
them. Nearly 15 years later, very little has changed; the average
user is still an afterthought. I’ve met many product managers who
are supposed to figure out what to build, and only a few of them
spent any significant time with their users. Most work on projects
that in the grand scheme of things should be less important than
embracing the customer, like helping support sales efforts or
building marketing material.

Once I got out of college, I switched immediately into the security
field, where I’ve been for about 10 years now. This field was easy
to get passionate about because bad security was clearly having a
negative impact on the world. Almost everyone I knew who ran
Windows had some horror story about a virus deleting their files,
crashing their machines, or otherwise doing something to sap pro-
ductivity. In college, I’d already seen the impact of software flaws
on machines connected to the Internet, having seen hackers delete
content and render machines unusable, all because of some incred-
ibly subtle problem in code written by a third party.

Very quickly, I got up to speed on the field, then started doing
my best to have an impact. Along with Gary McGraw, I wrote
my first book on how to keep security bugs out of software,
Building Secure Software (Addison-Wesley; we are finally
looking at doing a long-overdue revision), and a few others—
I’m particularly proud of the Secure Programming Cookbook
(O’Reilly; http://oreilly.com/catalog/9780596003944/). Then I

http://oreilly.com/catalog/9780596003944/

The Security Industry Is Broken 3

started a company called Secure Software, which built tools to
automatically find security problems in programs by looking at
the code that developers write (that company was acquired by
Fortify, and I am now on the Fortify advisory board). I then took
a job as Vice President, Chief Security Architect at McAfee, which
would like you to know it’s the world’s largest dedicated IT Secu-
rity company (Symantec is several times larger, but it does a few
things that aren’t security, allowing McAfee to make the claim
with a straight face). After a couple of years of doing a lot of
merger and acquisitions work, plus managing the engineering of
most of the core technologies that are shared across McAfee’s
products, such as the antivirus (AV) engine, I left to do another
startup, and was back at McAfee within a year, this time as CTO
of the Software-as-a-Service business unit.

Ten years later, the security world doesn’t seem too much better
for my efforts. In fact, in many ways, things have gotten worse.
Sure, in part this is because lots more people are on the Internet,
and computer security is an incredibly difficult thing to get right.

Still, everywhere I turn in the security world, I see, as my friend
Mark Curphey likes to say, “security bullshit.” This industry is
not focused on providing users a good experience with its prod-
ucts. But even worse, it is not really focused on providing the
more secure experience that is implicitly promised.

For instance, look at the bedrock of the computer security
industry, the piece that more or less everybody feels they need to
have: AV. Most normal people think that AV solutions don’t
work very well. And, for the most part, that’s right (even though
AV vendors are continually trying to improve their products).
These solutions are often 15 years old, and address the problems
of that time, not this one. Most of the major players could have
been doing a much better job for a long time, but inertia has kept
everyone running crapware that takes up too much of your
system’s resources to stop probably less than half of all potential
infections.

Like Randy Pausch smashing a VCR, I’d like to help people realize
what is wrong with the industry, and I am hoping to inspire at
least a couple of people to put customers first in their business
pursuits in the security world.

Chapter 14

In this book, I’m going to spend a lot of time sharing my perspec-
tive on the industry. As much as I can, I’ll try not only to identify
the glaring problems that I see, but also to show what the industry
can do differently.

For the most part, my criticisms will apply to most companies, but
not all. For instance, I have been very happy with McAfee’s techno-
logical progress over the past few years. In general, it has listened
to me and to a lot of other smart people, including its customers.
I’ll try not to promote McAfee too much, but in many cases, you
can bet that the problems I discuss have been considered there,
and we’ve either addressed them or we plan to address them.

I don’t believe that there is a “silver bullet” for security, but I do
think that end users should be getting a lot more for their money,
including a better experience (like AV that doesn’t slow down
their computers) and better security (like AV that is more than one
step above “worthless”). A lot of little things are just fundamen-
tally wrong, and the industry as a whole is broken.

Chapter 2 C H A P T E R 2

Security: Nobody Cares!

Why don’t the masses think too highly of the IT (information
technology) security market? It wasn’t too long ago that every
major news source reported about computer security problems on
a regular basis. In 2001, the entire world heard about Code Red,
Nimda, and Code Red II. But the level of coverage surrounding
computer security issues has dropped steadily in the 7+ years
since. Since Zotob in early 2005 (which was a minor story in com-
parison to the stories of 2001), nothing’s really come close to the
level of coverage, even though the Storm Worm has been far more
widespread a problem.

Actually, that was true when I started writing this book, but as I
finish it, the Conficker worm has been saturating technology pub-
lications for the last six months. Everybody in the security field
has heard about it, and many information technologists have as
well. I’ve been polling friends and family about it, and I have
found that people who do a good job of keeping up with news
don’t know about it, which means if they did see an article about
Conficker, they probably skipped it. Even my technical friends
seem blasé about it, and many of the ones who would care have
long since switched to the Mac.

Today, the tech world might hear a lot about security issues, but
the world at large rarely does. That’s not because of a lack of
security problems. Certainly, the amount of malware has been on

Chapter 26

an exponential growth curve for a few years, as there is a lot of
money to be made in malware. With this big malware economy,
why isn’t this a common mainstream topic? Well, the press
doesn’t report on it because people don’t care anymore, and the
less the press reports, the less people care, creating a nice down-
ward spiral into ignorance. That said, there are plenty of other
factors keeping people from caring about the topic:

Malware likes to stay hidden
For a while, if you were infected, you would probably end up
with an incredibly slow computer and tons of ads popping up
all over the place. It didn’t take long for malware writers to
figure out that they weren’t going to make as much money off
a user if the infection was obvious and the user paid to get the
thing cleaned. So these days, Malware typically tries to do its
thing without being obvious. Even when malware delivers
ads, it usually isn’t going to overwhelm you with them. You
might get occasional pop ups, but not a sea of them. Or you
might have legitimate ads silently replaced with the ones that
the malware would like to deliver. As a result, people don’t
notice many infections, so the consumer perception is that
either their security software is doing its job or there just isn’t
much of a problem.

Security products aren’t top of mind
Let’s assume that desktop security solutions actually work
well (even though this isn’t a very good assumption). With
traditional AV, it could be that the product is working well,
proactively stopping bad stuff from executing on your com-
puter. The typical consumer will never see the AV software
working, and won’t give it any credit.

The consequences haven’t been too bad
A lot of consumers expected an Internet apocalypse, where
some large chunk of the people they knew would have their
bank accounts drained and their identities stolen. For a while,
people were afraid of doing commerce on the Net. The peo-
ple who were most afraid just refused to buy things online.
Everyone else has been somewhat consoled because credit card
companies will carry the bulk of liability. Plus, not only have
things like card theft not taken off, but when someone’s identity
is stolen, it isn’t always clear that it was done on a computer.

Security: Nobody Cares! 7

For instance, if you’re in the U.S. and someone steals your
credit card number, it is more likely that the theft occurred in
a restaurant, where someone wrote down your card informa-
tion when he or she took it to the back to swipe it.

The story is boring
To the average person, Code Red, Nimda, and the like were
all approximately the same story. Computer security issues
don’t make good headlines because too much sounds the same
as the last incident. Yes, there might be minor variations in
who is affected, what the malware is doing, and how fast it is
spreading, but particularly when you (as an average person)
assume you’re not at specific risk, eventually you’re just going
to stop reading these stories, and so reporters are going to
stop writing them—reporting is a business and the money
comes from following the stories people want to read.

The security industry isn’t too credible
People aren’t going to pay attention in a world where every-
one seems to “know” that, for example, AV solutions “mostly
don’t work” and that they “slow your computer to a crawl.”
Whether or not there is truth to such things (there is), the
security industry doesn’t have much credibility (I can’t tell you
how many times people have asked me in all honesty whether
McAfee writes viruses so it can have something to detect). So
if a story is vendor-focused, it’s not going to be too believable.

Let’s face it: computer security is a great big yawner to the world at
large. Whether or not there is a big problem (there is), it just doesn’t
seem to matter to people. This means the general public is largely
uninformed, and this has some consequences for the industry:

• Consumers can’t tell the difference between security products.
They typically expect one product that does everything.

• Consumers aren’t willing to pay much for security products.
Even though they do expect to buy one product that does
everything, they feel like they’re getting ripped off by being
forced into buying full suites, where they don’t know what the
real difference is between the entry-level functionality and the
premium functionality. The perceived value is low and people
expect that they’re getting a lot of functionality they don’t use.

Chapter 28

• It does seem like people generally feel that AV is a “must
have” (particularly on Windows), but do not have much con-
fidence in its ability to protect them.

One interesting consequence is that many people out there don’t
pay attention to whether they actually have working AV or not.
Lots of people get their AV from a major manufacturer as an
OEM (original equipment manufacturer) preinstall (meaning it
came with the PC they bought from Dell, HP, Gateway, or whom-
ever). They assume that they get it for free, for life. However,
most of these preinstalls are for a limited time, usually no more
than a year. When users get to the end of the free period, they
often do not renew. There are many reasons for this, but com-
monly people ignore the nagging pop-up balloons in the Taskbar,
and then either don’t notice when protection expires or forget
about it.

There aren’t really any easy solutions for improving public percep-
tion. I think consumer protection is rapidly plummeting in per-
ceived value, particularly with reasonable traction from free AV
solutions, like AVG, Avira, and Avast (sorry, open source world,
ClamAV doesn’t register). Even though the free AV vendors have
poor brands, they have enough users that it shows that people are
starting to shift away from brand-based decisions and toward
price-based decisions. That’s not to say that I think better brands
necessarily produce better products, it’s just that going with a big
brand is a shortcut to doing the research. Consumers assume a big
brand will be competent enough, or else it wouldn’t be successful.

No, I think the road is going to be long and hard. There are a lot
of problems, many of which I’m going to explore in later chapters.

Chapter 3 C H A P T E R 3

It’s Easier to Get “0wned”
Than You Think

I know a lot of arrogant geeks. They think they’re never going to
get hit by malware because they are so technically savvy, and they
will never let themselves be in harm’s way. They are wrong.

Similarly, I know a lot of arrogant computer users, geeks or not.
They include the legions of Apple users who think that the com-
pany’s OS X operating system is magically better than the major
alternative. They include the people who have bought into similar
marketing from Microsoft about Vista being the most secure oper-
ating system ever.

Such people believe what the bad guys would have them believe!

Let’s look at common ways to get “0wned,” and we’ll see that in
some cases, it’s a lot easier than most people would expect.

First, getting “0wned” can generally mean one of several things. It
might mean you end up with bad software (malware—short for
“malicious software”) installed on your computer. Or, it might
mean that your online banking details go out the door to a stranger,
whether or not you end up with malware on your machine.

Let’s start with infections (installs of malicious software). One
particularly common way to get infected with malware is to install
it yourself. You might click on a link in an email message,
thinking it’s a legitimate URL when it isn’t. Or you might down-
load an application off the Internet that you think is legitimate,
when in fact it is malware.

Chapter 310

There are lots of deception techniques to try to make people
download bad stuff. You can try to make people think they’re
downloading something they actually want to download. For
instance, imagine 18-year-old males searching the Web for the
celebrity sex tape of the day. They find one site through Google
that claims to have it for free, but it requires a plug-in for Win-
dows Media Player that they don’t have. When they “click here”
to get the plug-in (Figure 3-1), they end up installing malware.
This is even more effective if the download installs both the mal-
ware and a legitimate plug-in, then plays the video!

There are lots of popular download categories that tend to bundle
malware, such as screensavers. The big screensaver sites all have
some screensavers that bundle adware or spyware. And, if you
search for the coolest new pop culture icon of the day, anything exe-
cutable you might download (like a game) is immediately suspect.

OK, if you’re an übergeek, you might think that you are better
than that. You don’t download stuff unless it comes from a repu-
table vendor and you can see plainly that lots of other people have
downloaded it. Score a point for yourself. Nevertheless, there are
plenty of situations where you could think you’re downloading

Figure 3-1. Malware can masquerade as a legitimate download, such as
Windows Media Player

It’s Easier to Get “0wned” Than You Think 11

one application but you’re really downloading another, like when
there’s a bad guy on your local network launching a man-in-the-
middle attack or performing a DNS cache poisoning attack on you
(don’t worry if you don’t know what these things are; it isn’t impor-
tant for this discussion). Fortunately, those are rare occurrences.

Another way people get “0wned” regularly is by having a bad guy
take advantage of security problems on their systems, especially in
software that is Internet-capable, such as web browsers. Web
browsers are massive pieces of code and they’re bound to have
security problems, no matter how hard people look (a topic I’ll
cover in great detail later in this book).

But there are websites out there that might try to break in to your
computer by using a security problem in the browser. If you
browse the wrong website with a vulnerable browser and oper-
ating system configuration, you’ll likely end up with malware
installed (a “drive-by download”).

Browsers aren’t the only programs that can be vulnerable. There
have been problems in desktop applications, such as Microsoft
Word, in which opening a malicious data file will also install mal-
ware. There have also been prominent security holes in Microsoft
services (programs that run even when the user isn’t in front of the
computer; usually, they allow programs on other machines to con-
nect and talk to the machine on which they run) and other impor-
tant third-party software where the service is sitting on your
machine waiting for other people to connect to it. The bad guys
just have to be in a position to talk to that service, then they can
break in to your machine with no intervention required from you.

A couple of technologies (such as firewalls) keep random Joes on
the Internet from being able to see vulnerable services, but there
are plenty of other cases where there’s risk. For example, if your
computer is sitting on a corporate network, often all the machines
on the corporate network can talk to one another with no
problem. If a bad guy has control of any of the machines on that
network that can see you, and you have a vulnerable service run-
ning on your machine, you are at risk. However, these days, few
services are visible by default, other than general networking ser-
vices (and on Windows, these have certainly had big problems in
the past).

Chapter 312

Even if you’re not running a vulnerable browser or in a position
where some other software can be exposed, it’s easy to be tricked
by things that look legitimate but aren’t. For instance, if you
happen to type in a bad domain name or otherwise navigate to the
wrong link, you might get a fake error claiming that malware is
keeping you from loading a link, and a dialog box that looks like
it is coming from Windows will try to install AV or antispyware
software that really isn’t (Figures 3-2 and 3-3).

Figure 3-2. Some malware distributors trick users into downloading fake
AV software with legitimate-looking dialog boxes like this one

Figure 3-3. This dialog box claims to provide links to antispyware, while
it actually contains a link to malware

It’s Easier to Get “0wned” Than You Think 13

Or you might get another fake pop up that looks like it’s coming
from Windows, enticing you to install something, which you may
install because you think Microsoft is suggesting it (Figure 3-4).

Sometimes these fake messages from Microsoft offer you a range
of options in an attempt to look more reputable (Figure 3-5).

Most of the arrogant geeks I know still wouldn’t be bothered by
the status quo. They would claim that they don’t browse to any
risky sites, they either don’t need security software or only run
software from reputable vendors, and they run “personal fire-
walls” that are designed to make sure their machines don’t accept
unsolicited traffic, even if the software services they’re running are
infected.

They also don’t expect that they would fall for phishing scams.
These kinds of people have trained themselves to ignore email
messages from eBay unless their user ID is explicitly called out in
it (when bad guys are spamming lots of people with fake eBay
messages, they usually don’t call out individual eBay usernames,
because they don’t know them). Similarly, they don’t download
“postcards from a friend!” unless the friend’s name is clearly
spelled out. But I still know a few previously arrogant geeks who
have been taken in by phishing scams.

Figure 3-4. This fake pop-up error looks like a Windows message

Chapter 314

Phishers tend to use techniques that work, but they occasionally
shift gears. For example, a few weeks before I wrote this, phishers
started sending messages claiming that the receiver had a UPS
package that couldn’t be delivered. The message looked like it
came from UPS and asked the receiver to provide correct personal
details so the package could be delivered. Since it was a new tech-
nique, a few pretty savvy people fell victim.

But the bad guys have a few more tricks up their sleeves. One
technique is called spearphishing, which is basically customizing
phishing attempts to individual companies or even individual
people. You might get an email message that seems to come from
your corporate IT people, asking you to log in to a web portal to
change your password because it’s about to expire. Of course, if
the mail comes from a bad guy, the site will be fake and the pur-
pose will be to capture your current password, not to change it.

Spearphishing can easily be used to target individuals and net-
works of friends. For instance, let’s say that you’d like to send me
a targeted phishing attempt. First, you can easily get a few of my
email addresses just by having my name. Similarly, if you happen
to be a bad guy who has my email address because you bought it
off some list, you can easily find my name with a little bit of web
searching (which can be automated).

Figure 3-5. Another fake message to dupe users into downloading
malware

It’s Easier to Get “0wned” Than You Think 15

Let’s say you’d like to trick me into downloading some malware,
and you think it might be good to disguise it as a postcard from
one of my friends. We can easily use Facebook for this. First, let’s
search for my name (Figure 3-6).

That’s great; there’s only one result. Let’s view my friends
(Figure 3-7). To do this, I created a temporary account with no
friends that I deleted after this experiment.

Great, now you’ve got a couple hundred names you could claim
the postcard might be from. If you claim to live in Boston, MA,

Figure 3-6. Step 1 of our experimental scam: use Facebook to gather
information about a potential victim

Figure 3-7. Step 2 of our experimental scam: view potential victim’s
friends on Facebook

Chapter 316

you can now suddenly see my entire profile and pick up all sorts
of personal tidbits to figure out how to target me, from my status
messages to my work history. Figure 3-8 shows an example of my
profile, as seen by an anonymous user with no friends, claiming to
live in Boston.

These are all default Facebook settings. You can hide your friend
list from strangers, but you have to go out of your way to do it,
and few people do.

Bad guys can easily scrape this kind of information automatically.
While legitimate sites like Facebook try to detect people who are
pulling off too much information, bad guys can grab little bits of

Figure 3-8. Step 3 of our experimental scam: access potential victim’s
Facebook profile to gather information

It’s Easier to Get “0wned” Than You Think 17

information at a time without getting caught, and can then send
far fewer targeted email messages that will have a much higher
chance of success than a blanket mass-email campaign.

Maybe some of my more arrogant geek acquaintances would tell me
they wouldn’t open up a postcard even if it came from their mothers
or girlfriends (who you’re dating usually shows up to people in the
same city). They may feel immune to everything they’ve read so far.
No amount of social engineering is going to fool them!

And as we’ve said, they would never browse to risky sites. But
would they browse to MLB.com (the home of Major League Base-
ball) or the Economist, or geek sites like Slashdot?

All of those sites are established and well respected, yet they could
be the places where you end up getting infected. Bad guys buy
legitimate ads on major sites, then occasionally sneak in some evil
stuff, like an ad for a fake AV product that turns out to be spy-
ware. Or, it may be an ad that looks legitimate but tries to exploit
your browser. And this could happen on any site that serves ads
from a major network, like CNN.com. Sure, advertising networks
try to keep this kind of stuff out, but it can often be difficult, par-
ticularly when you realize that ads are often composed of code,
not just static pictures. Many ads are developed in ActionScript, a
programming language by Adobe.

If you don’t think you’re vulnerable to an ad on your favorite
website running a browser exploit, then you’re a very arrogant
geek. I suspect you fall into one of these two categories:

• You think you could never get tricked, and you go out of your
way to make sure you’re always running the most recent ver-
sions of your browser.

• You think you’re safe because you’re using Apple or a Linux
system, or maybe an odd-duck browser like Opera, or you
think you’re doing something else unusual enough to keep
you safe.

If you fall into the first category and you really are diligent about
it, your only real worry is when a bad guy starts using a “zero
day” exploit against your browser, meaning (more or less) that the
browser vendor hadn’t fixed the problem before the exploit
started going wild. Thankfully, that doesn’t happen too much.

Chapter 318

If you fall into the second category, just realize that you’re relying
on being an economically unattractive target to bad guys, meaning
it’s far cheaper for them to find victims elsewhere. That might not
always be true. Apple users in particular should be worried, as I’ll
soon discuss.

Chapter 4 C H A P T E R 4

It’s Good to Be Bad

In this chapter we’ll look at what motivates bad guys to break in
to computers, and what’s going on inside their heads. It used to be
that people created viruses and worms for silly reasons: perhaps
just to prove to themselves or their friends that they are clever, or
perhaps because they want to cause misery. There aren’t too many
people like that in the world.

No, most people on the dark side of the force are there for one
reason: easy money!

Let’s say you’re a bad guy and you get some bad software onto
somebody’s machine. What kinds of things could you do to make
money? Here’s a short list that is by no means exhaustive:

• You could collect credit card numbers and the data associ-
ated with it (such as the CVV validation code). You could col-
lect the data as users enter it into e-commerce shopping sites,
then sell it off to other bad guys. Eventually someone might
use the credit card information for a day or maybe just for the
occasional single transaction, in hopes the credit card holder
will never notice the fraud.

• You could wait until people use their online banking sites,
then sniff important account information (such as username,
password, account number, and so on), or even take over the
connection when the machine goes idle so that you can move
money around.

Chapter 420

• You could collect any kind of account information. If you col-
lect valid credentials to large corporate networks, for instance,
you might suspect that there’s a black market for that kind of
thing. Even for regular old PCs, you could sell the account
information to people who want to run some of these other
scams.

• You could wait for people to buy stuff from an online mer-
chant, like Amazon.com, and trick the online merchant into
thinking that you referred the user to Amazon to buy a partic-
ular item, when in reality, the user went there by himself. This
attack doesn’t harm the user at all, just the merchant, since it
ends up paying out a commission to someone who doesn’t
deserve it.

• You could send spam from an infected computer. You might
wonder why somebody would do this. If bad guys only spam
from a few places, it’s easy to find and stop the sources, but if
spam is sent through millions of PCs, many of them doing
mostly legitimate stuff, it’s a much tougher nut to crack.

• You could deliver ads to users that they wouldn’t otherwise
have gotten. This is the model of many adware companies.
They often sell cheap ads to legitimate businesses. The legiti-
mate businesses don’t know how the companies get users to
click on ads, they just care that the clicks occur.

• You could fraudulently generate “clicks” for ads in order to
generate revenue for your own site, which does nothing but
serve up a ton of ads. You put up your big web page of ads, you
have infected computers click the ads on those pages (the
infected user doesn’t even have to see the pages), and the ad net-
work will pay you the referral fee for the click. Or, if your busi-
ness has a competitor, you could click on all your competitors’
links to eat up their advertising budget, taking away their “real”
traffic (most ad campaigns stop when the budget is used up).

• Similarly, you could replace all the ads that were supposed to
be delivered to a user with ads that are served up from your
home page. This closely mimics “real” traffic, making it even
tougher for ad networks like Google to detect the fraud.

It’s Good to Be Bad 21

• If the user’s PC is connected to an active modem, you could
dial a premium 1-900 number (like a psychic hotline), and
cause the modem to dial it. You could then take advantage of
the phone call time, but the call would be billed to the user.
Or, if you own the 1-900 number, you would get all the
money. Generally, you would want to keep calls short and
few, so that people won’t notice or won’t complain if they do
notice.

• If you’ve got a large number of infected computers under your
control, you could take money from other people to try to
“take down” popular websites using a so-called distributed
denial-of-service (DDOS) attack. There’s probably not a big
market for this, but this kind of denial-of-service (DOS)
attack does happen occasionally. It’s probably most often
caused by bad guys with political agendas, or just people
looking to make mischief.

• You could use an infected computer to attack another com-
puter. You could break in to other computers on your net-
work and use any of the aforementioned techniques to make
money on those new computers you’ve infected.

• You could hold important data for ransom (such as personal
photos, locally stored email messages, music files, and video).
This is usually done by encrypting files on the computer so
that the victim can’t access them until he gets the decryption
key.

The more computers a bad guy has, the better off he is in terms of
making money. Having more computers makes it easier to get
spam through, and to keep generating fraudulent clicks if the
work across is distributed as many machines as possible so that no
single machine is doing too much work.

A lot of bad guys end up installing general-purpose software that
they can control remotely to do whatever they want. The industry
calls such software botnet software (bot is a short form of
“robot,” indicating that the infected computer will probably run
automated software to do the bad guy’s nefarious bidding).

Chapter 422

Clearly, it’s in the bad guy’s economic best interests if the victim
doesn’t know his or her computer has been taken over. There’s a
lot the bad guy can do to use a victim’s computer to make money,
without the victim having to know that the bad guy’s on there.
The less intrusive a bad guy is, the better off he is. So, in this day
and age, when a computer is infected, it’s probably the case that
the bad guy only wants to slowly and unnoticeably drain money
from the machine’s owner, because he doesn’t want to get kicked
off the machine! If the bad guy does something extreme like hold
files hostage (so-called ransomware), he may never get the money,
and if he does give the files back, the machine will probably be
cleaned up afterward, making it difficult to further monetize the
machine. Therefore, ransomware isn’t too popular.

I’d expect this to be the kind of thing bad guys would try to do as
a last resort—if their primary malware is detected and removed,
some secondary ransomware can hold the machine’s data hostage
as a last resort.

All in all, being a bad guy on the Internet pays! It’s a lot easier
than traditional crime, for a couple of major reasons:

• The bad guys don’t have to be physically near their victims to
commit crimes against them. In fact, a lot of computer crime
is launched from countries like Russia and China, where both
computer crime laws and enforcement of those laws are weak.
If crime crosses jurisdictional boundaries, it becomes a lot
harder to find and punish the bad guys.

• It’s a lot easier to leave no real evidence behind. While com-
puters do have addresses that can be used to track them to a
certain degree, there are a lot of things a bad guy can do to
cover his tracks. For instance, some systems allow people to
do things over the Internet anonymously.

At the end of the day, computer crime is a lot cheaper for the bad
guy than other kinds of crime, if the bad guy has the technical
skills to pull it off. And there are plenty of ways to make lots of
money without stealing it directly from end users (such as click

It’s Good to Be Bad 23

fraud, where you end up stealing from corporations in small
amounts). Plus, not too many people get caught. No wonder it is a
reasonably popular and attractive profession in countries whose
economies don’t offer many high-paying career opportunities.

Chapter 5 C H A P T E R 5

Test of a Good Security
Product: Would I Use It?

There are way too many security products and companies, and
there are far too few good ones. If I see a good product, I will
actually run it.

Here are some of the IT security solutions I have used in the past
five years:

• SSH, the ubiquitous remote login utility, which allows me to
run commands on remote machines via a text interface.

• SMTPS and S-IMAP, protocol extensions for SMTP (Simple
Mail Transfer Protocol) and IMAP (Internet Message Access
Protocol), to allow my mail client to talk to my email server
with authentication and data security.

• Plenty of RSA tokens and HID badges (RSA and HID are
companies that have lots of products for proving your iden-
tity to help you access whatever resource, be it a computer
system or a door).

• Some antispam stuff (including SpamAssassin); none of it has
solved my spam problem. For some of my accounts, I get so
much spam that I still have to sort through hundreds of mes-
sages a day. For all other addresses, I get basically no spam,
and the antispam tools just mark a few things that I probably
wanted to see, and hide them for me in a junk folder.

Chapter 526

• SiteAdvisor, for when I want to download some software
from a site whose reputation I’m unsure of. I would have the
plug-in installed, but there’s no public plug-in available for
my browser/platform combo (though SiteAdvisor for Safari
on OS X will come out shortly after this book goes to print).
So I go to siteadvisor.com and look up site reports manually.
Don’t try to switch me to Firefox; I try it every year or so, and
still don’t like it.

• I’ve been forced to run god-awful VPN (virtual private net-
work) software at work (usually the crappy Cisco client). This
allows me to access my company’s resources even when I’m
not actually in the office.

Here are some prominent things that I don’t run:

• Firewalls. Firewalls can block Internet traffic, usually based
on where it’s going to or coming from. I’d consider firewalls
important in many enterprise contexts, because people typi-
cally leave lots of vulnerable services on machines that are
directly accessible to a lot of people. But in my home environ-
ment, my cable modem and wireless router both are capable
of network address translation (NAT), meaning my comput-
ers are not directly accessible. The only things people on the
outside can see are the things they would see anyway, because
my machines are initiating the connections. On my personal
server, I just don’t expose ports I don’t want hit. When I used
to run my own firewall, I tried a number of things, but prima-
rily used OpenBSD’s PF (packet filter).

• Antivirus (AV). Even though I used to run development for
McAfee’s core AV technology, I did not use the product. I do
not use the technology on a day-to-day basis. Part of this was
because I use a Mac. Still, even when I run Windows, I’m just
careful in what I do, and don’t run AV. These aren’t the right
decisions for everybody. I’ll explore the AV and the Mac issue
later.

• Personal firewalls. These are like regular firewalls, but they
live on your machine and give you control over which net-
work connections to allow or to deny. Like most people, I
find personal firewalls to be way too spammy to be useful.

Test of a Good Security Product: Would I Use It? 27

• Virtualization. There are a bunch of products that try to make
it look like each application runs on its own machine, so if a
bad guy takes over one application, it doesn’t affect every-
thing else (e.g., GreenBorder and Returnil). Maybe someday
these tools will be good, but right now, this stuff causes me
too much effort (moving crap between virtual containers) to
be worth the benefit.

• Any other consumer security product.

I’m largely ignoring the question of what I’d run if I
owned enterprise IT. I only detailed enterprise things
that got pushed down on me as an end user.

If I made technology decisions for a big company, I’d probably
want to try to enforce AV and require my users to encrypt all the
data on their laptops to minimize risks to the company when a
laptop gets lost or stolen. There are lots of decisions that would
make sense for a corporation but not for a consumer.

Let’s look in a bit more detail at the “whys” for all of these tech-
nology decisions. A lot of the technology I use is authentication
technology, which solves a critical need (people knowing who
they’re dealing with or what machines they’re logged into). And,
except for some setup and some password typing, all of these
things work seamlessly. Heck, particularly with applications that
remember my passwords for me, it’s seamless enough that I forget
that I, of course, use password security on pretty much any app
that hits the network, like instant messaging, Twitter, Facebook,
and so on. And, when there’s authentication, encryption should be
free and totally transparent, whether offered via SSL (Secure
Sockets Layer, which is how Internet connections commonly get
encrypted) or through some other cryptographic protocol.

I don’t like stuff that gets in the way of my doing what I want to do.
That sounds like I’m going against my own best interests, but a per-
sonal firewall that gives me pop ups every five minutes actually
makes me less secure: after the first 20 times it is wrong, I stop
reading, and start clicking “yes” to everything. But I still would feel
like I was secure. Instead, I live with a reasonable sense of paranoia.

Chapter 528

I want to use host-based security technologies (meaning stuff that
runs on your computer instead of somewhere on your network—
stuff like AV), because I do realize that even with me being highly
vigilant, there are plenty of ways I can get hosed, including
exploits and malware bundled with legitimate software. But I
haven’t been able to bring myself to run commercial AV products.
The conventional wisdom there is right—they don’t catch very
much and they tend to slow down machines. Some AV products do
work better than others for both accuracy and performance, but I
have yet to find a good solution for my Mac.

The average nontechnical user should probably be running AV
because it is pretty unobtrusive, it does catch some things, and
nontechnical users don’t have a good sense of what the real risks
are. However, many technical people are like me—we’re only
going to adopt security technology if it’s easy to use and works
pretty well, unless forced to do so by our bosses.

Chapter 6 C H A P T E R 6

Why Microsoft’s Free AV
Won’t Matter

Microsoft recently announced that it’s going to stop selling its
consumer security product OneCare; instead, it’s going to give the
product away.

I’ve had several people ask me questions including, “Why would
Microsoft do that?” and, “Do you think McAfee and Symantec
are scared?” I recently read an article (http://news.cnet.com/8301-
10789_3-10102154-57.html) that said:

With traditional antivirus protection perhaps becoming obso-
lete, maybe it’s time that Symantec and McAfee start offering
free versions of their own antivirus products—something that
I’ve said for years.

That’s absurd.

AV vendors certainly were worried stiff when Microsoft first
entered the AV market. They assumed that Microsoft would do
the same thing it does in every other market—dominate it and
drive everyone else out.

The big vendors started focusing on how they could make up for
the revenue loss that they considered inevitable. They felt that
while Microsoft could trounce their consumer business, they
would not be in a good position to meet enterprise needs any time
soon (and there is some truth to that).

http://news.cnet.com/8301-10789_3-10102154-57.html
http://news.cnet.com/8301-10789_3-10102154-57.html

Chapter 630

Starting with the Veritas acquisition, Symantec began acquiring its
way into adjacent markets to diversify its revenue and beef up its
enterprise business. While McAfee already had a strong enterprise
offering, it focused on protecting its consumer market share by
striking big OEM preinstall deals with major PC manufacturers
like Dell. McAfee paid a lot of money up front for this posi-
tioning in the hopes of retaining market share and recouping the
money on the back end.

Yes, the AV industry was running scared for a long time. But
what happened? Quite simply, Microsoft’s entry into the AV
market fizzled.

It’s not for lack of trying on Microsoft’s part. When it started out
not doing well in competitive testing, it spent an awful lot of
money beefing up its signature writing capabilities by hiring the
best and the brightest. It hired key people from major competi-
tors. It spent tons of money on marketing.

And at the end of the day, the threat never materialized. While I
haven’t seen recent market share data, as of January 2007,
Microsoft was struggling to claim just 1% of the market (.08%
according to analyst firm Piper Jaffray). I see no evidence that
Microsoft has made any strides since then—the business has been
a resounding failure.

Microsoft spent the money, and in relatively short order had a
product that was just as good as any of its competitors’ (not sig-
nificantly better or revolutionary, just competitive). It built a large
team. It spent a lot on marketing. But the people never came.

What went wrong?

First, the world has long held the perception that Microsoft is bad
at security. Microsoft has been trying hard for most of this decade
to change that perception, investing billions in product security.
I’m sure it hoped that if it could field a competitive AV product, it
would improve that perception. It certainly didn’t make the heavy
investment in AV for the money; it was a small market opportu-
nity by Microsoft standards, not enough to be worth the large
investment just for a business that would have taken at least a
decade to grow to be even 1% of its (current) revenue. Yes, the $6
billion AV market is tiny when you compare it to, say, the video
game market.

Why Microsoft’s Free AV Won’t Matter 31

I expect the primary reason why Microsoft would want to keep a
scaled-down business and give away a free version is for commu-
nity goodwill, to slowly and steadily continue to build the percep-
tion that it is at least competent at security, and not actively bad
at it.

But, let’s assume for a moment that end users stop thinking
Microsoft actively sucks at security. They still won’t positively
associate Microsoft with security. Most people won’t ever know
that Microsoft’s AV is on par with most of the big players, and
even better than some.

That will always be true, because Microsoft isn’t a security
vendor. People (particularly consumers) tend to think that dedi-
cated security vendors are going to do a better job than a com-
pany whose primary function isn’t security. Vendors who do lots
of different things are rarely the best at anything, and people gen-
erally know this.

Even when Microsoft came in at low prices, people still thought
that security was important enough that they should go with a
more trusted name. People who were really concerned by price
started moving to other cheap options, but ones offered by dedi-
cated security companies, like AVG.

It’s not that people don’t trust Microsoft specifically to do a good
job at security, it’s that they don’t trust anybody to do security
well unless it is their primary business. Even if Microsoft goes out
and buys a bunch of small security companies with good tech-
nology, perceptions won’t change, and few people will use
Microsoft’s technology.

Microsoft never had a chance. I think the core objection will hold
true when its free product comes out. I certainly wouldn’t be
quaking in my boots if I were McAfee or Symantec. People who
want free AV already have free options, such as Avira and AVG.

The suggestion that big guys like McAfee and Symantec will have
to give up on consumer revenue and give away their consumer
AVs for free is absurd. If I were those companies, would I want to
jump off a cliff by volunteering to cut 40+% of revenue by giving
away something that plenty of people will always be happy to pay
for? Absolutely not.

Chapter 632

Yes, some price-sensitive people who can get over putting their
faith in an untrusted brand (or at least, one that’s unknown to
them) will take their business to free vendors. And free AV might
start to see enough growth that consumer revenue will shrink for
the big companies. I don’t see that day being close, however. The
growth rate of new PCs is far outpacing the growth of free AV
converts, which means the paid consumer market is still growing.

If I were a big vendor, I’d even be worried about giving away a
free, “lite” version of my product. I think people would assume
that since a well-known security vendor produces the product, it
must provide them with the core protection they need and that
everything in the paid version is just bells and whistles. Until the
free AV market poses some kind of significant threat, vendors
shouldn’t risk giving away money. Instead, they should continue
to do exactly what they’ve been doing since Microsoft’s original
wake-up call—invest in moving into adjacent growth areas.

Chapter 7 C H A P T E R 7

Google Is Evil

To most engineers, Google is this wonderful playground where
you get to go work on cool projects that people might actually
use, and work on whatever project tickles your fancy one day a
week (they call this “20% time”). Meanwhile, Google gives you
free food and drink, has massages available in the office, provides
lots of games, and generally encourages creativity and fun.

If you search for the phrase, “I love Google,” (in quotes) you will
get about 123,000 results (searching through Google, of course). I
think that’s pretty impressive—searching for “I love Microsoft”
turns up only about 63,000 results, “I love Zac Efron” (star of the
High School Musical franchise) turns up a mere 33,500, and “I
love John Viega” returns no hits whatsoever.

Google may not love me, but I do love Google, and use its offer-
ings extensively. Still, I often find myself agreeing with the
approximately 43,200 web pages that state, “Google is evil,”
despite Google’s corporate motto, “Don’t be evil.”

I don’t think any particular individuals working for the company
are evil (although there are probably a few). But if you look at
what Google does, the net result isn’t always good for the end
user. It may be good for Google’s shareholders, and thus the right
thing for the company to do, but it’s not the right thing for the
rest of the world. While there are lots of things that make Google

Chapter 734

evil, I’m going to focus on why Google is actively making the
world a less safe place.

And before I begin, yes, I know that Google cares a lot about
security. I have some friends who have been working on security
stuff there for a long time. I know Google bought Postini (a com-
pany that does spam filtering), and has done good things with it
(though it has done nothing with its acquisition of consumer secu-
rity company Green Border—it didn’t even put it into the Google
Pack, a collection of free software that doesn’t do a particularly
good job with security). I know Google has pretty good internal
development practices, at least compared to most companies.
Again, I do like Google (I use it extensively for searching), and it
does many good things, but it also has evil inside it—one partic-
ular evil that is making the world a less reasonable place.

The previous chapter talked a little bit about click fraud, where a
bad guy generates false clicks on ads that he hosts in order to get
the commission from people clicking on the ads. Since Google
provides the largest ad network in the world, it is the biggest
target out there for this type of fraud. While Google does take
some measures against this kind of thing (which I’ll discuss
shortly), my theory is that Google clearly avoids approaches that
would be far better for the public, because they are not in the
company’s financial interests.

Let’s look a bit more closely at click fraud. We’ll start with
Google’s model. Companies with products to advertise will pay
Google to place their ads. They pay Google each time their ads
actually get clicked. Google can show ads in search results, or it
can also show the ads through other websites. Other websites
agree to show Google ads, because Google will pay for each click
on an ad that comes from a site. Advertisers buy ads through the
Google AdWords program. People with websites rent out space
for ads through the AdSense program.

The possibilities for fraud here are many. For example, you may
have seen websites displaying Google ads, where the website
owner says something like, “help support this site by clicking on
our ads!” That’s a form of fraud, because the owner is asking
people to click without any intention of buying. And it happens to
be against the Google terms of service, so don’t do it!

Google Is Evil 35

But the typical fraud goes something like this: a bad guy sets up a
website with a bit of real content on a topic for which related
AdSense keywords will pay out pretty well, at least a dollar per
click. Then, she1 finds a community of people doing the same
thing, and they all visit one another’s sites, occasionally clicking
on ads.

The bad guy can’t just visit her own site, because Google will
determine pretty quickly that all the clicks are coming from one
place and are clearly fraudulent.

If the group of con artists (sometimes called a click farm) isn’t big
enough, it probably isn’t too hard for Google to catch on. But
many international organized crime rings try to recruit large num-
bers of people in third-world countries to do the clicking, having
them spend about two hours a day clicking at reasonable rates to
give the illusion that sites are real sites serving real content.

Google will try to analyze trends that seem abnormal. For
instance, if the bad guy clicks on too many ads compared to the
number she is served, she can expect Google to catch on. And if
she starts clicking on location-specific ads from all over the world,
Google will probably get suspicious. One goal of the bad guys,
then, is to make the traffic look as legitimate as possible without
having to figure out how to get the actual traffic. Incidentally, this
is also why the bad guy has to have some legitimate content—she
has to expect that Google is monitoring the pages to see if she’s
trying one of these scams.

But if the bad guy happens to run a small botnet, she can cer-
tainly use it to generate some false clicks. She doesn’t even need a
very popular site. For instance, she can advertise on a keyword
that has an extraordinarily high price. One popular piece of mal-
ware made false clicks on a website the bad guys had set up, with
ads targeting the keyword “mesothelioma,” which is a rare form
of cancer caused by prolonged exposure to asbestos. Lawyers are
happy to pay a lot of money for clicks, because lawsuits in this
area can pay out big bucks. So, one fraudulent click could easily

1 OK, this “bad guy” is apparently a bad girl. My editor is changing some of my
references from “he” to “she” to make things more gender neutral. Yes, it’s true
that women can be criminals, but let’s be honest...most of the time, only guys are
stupid enough!

Chapter 736

be worth from $5 to well north of $10. Let’s say that the bad guy
wants to stay under the radar but still make a decent amount of
money. And let’s say she’s got about 10,000 computers on her
botnet at any given time (this is about average for a botnet). She
could have a few thousand of those computers visit her own
“cancer blog” on a regular basis (varying it daily or monthly, to
give the illusion of real traffic). She’d probably make sure to only
have sites hit the blog where the endpoint machine is in a country
where people speak English well. With each page hit, Google will
serve up ads. Then, a mere 20 times a day (on average), she actu-
ally has one of the bots in the network click on an ad at random
and navigate around the site a little bit to make it look like a real
person is doing the navigating.

At just 20 ad clicks a day getting 10 dollars per ad, she could
make $73,000 a year. That’s a princely sum for somebody living
in Russia, where the average income is still less than $10,000
annually, and it requires very little work.

A really clever bad guy will keep a legitimate cancer blog and
invest some time in marketing it so that she gets a small reader-
ship. Then, if her botnet is ever discovered, she can claim that
someone was trying to get her knocked off AdSense due to some
personal grudge, maybe for some controversial views in the blog.

Google does try hard to find fraudsters. It analyzes the requests
for ads and the clicks that arise. It looks for anomalies using all
the data it can collect, including the Internet address for the com-
puter requesting ads. It is quick to shut down AdSense accounts
for which it can conclusively demonstrate fraud. And when
Google finds fraudulent clicks, it refunds money to the people
who bought the advertising.

When you consider all that Google does, how can I say that it is
evil? Because it is not doing everything that it could reasonably be
doing to address the problem.

First, it’s important to point out that Google has an inherent con-
flict of interest. It takes money from people placing ads, and then
pays money out to people willing to serve ads. But, for a single click,
Google will clearly charge more to place the ad than it will give out
to the person serving up the same ad, and the more clicks on an
ad, the more Google can charge for the search term in question.

Google Is Evil 37

Therefore, in the short term, at least, Google makes more money
if there is click fraud.

In the long term, if other ad networks can provide advertisers a
better return on the money they spend, it would end up hurting
Google. But, right now, Google has a huge stranglehold on the
market because it pays more money to legitimate website owners
than the alternatives.

Next, if we look at the click fraud Google claims to find versus the
click fraud that independent third parties claim is out there, it’s
clear that there’s probably more click fraud going on than Google
is actually finding.

Particularly, while Google won’t give specific numbers, it claims
that “less than 10%” of clicks are fraudulent, and that it consis-
tently catches 98.8% of these clicks before anybody gets charged.

On the other hand, independent evaluators consistently put the
number of fraudulent clicks that users pay for well above 10%.
For instance, in a study done at the end of 2007, ClickForensics
concluded that 28.1% of ad clicks in provider networks were
fraudulent and that 16.2% of clicks that people paid for were
fraudulent (meaning that Google and similar networks didn’t
credit the advertiser for that many). To hear ClickForensics tell it,
the problem is a heck of a lot bigger than when you hear Google
tell it. Google makes it sound like it has the problem under con-
trol, but ClickForensics and other companies make it sound like
Google is half-assing it.

You can debate the relative merits of how Google and Click-
Forensics measure fraud. ClickForensics only studies a sampling of
traffic, but it sees broader web usage than Google, which focuses
on data it gathers itself.

The truth undoubtedly lies somewhere in the middle, but my own
experience in seeing malware perpetrating click fraud leads me to
believe ClickForensics is a lot more accurate than Google.

Google has gone out of its way to avoid going into any great
depth about click fraud numbers. In one case, instead of letting a
class-action lawsuit go to court—where it’s widely believed that
there would have been plenty of evidence to show big fraud prob-
lems—Google quickly moved to settle, paying $90 million instead
of fighting it.

Chapter 738

No matter what the scope of the problem, as long as Google pays
out on a per-click basis, it is inviting fraud.

To be fair, there are worse ways to handle advertising. Instead of
paying per click, advertisers can pay per “impression,” meaning
they pay for each ad that is shown. Clearly, the bad guy doesn’t
even have to worry much about the clicking in this case (except
that without some clicking, the fraud will be pretty obvious).

On the other hand, there is a way to handle advertising even more
fairly. Instead of paying sites for displaying ads that are clicked,
Google could instead pay the sites for ads that actually lead to a
sale. In such a model, Google and the site would take some com-
mission on the sale.

This would be a far more efficient market for advertisers because
it virtually eliminates fraud. But, since fraud may constitute a sig-
nificant part of Google’s revenues, especially when you consider
how it drives up the cost the company charges for ads, it would
probably make far less money in a pay-per-sale model.

Plus, the administrative costs would be higher for Google. It
would need to have some confidence that the advertiser is cor-
rectly reporting the number and dollar amount of sales. Google
could do this by partnering with credit card processing mer-
chants, but then it would have to give up some revenue. Perhaps
this is one reason why Google set up its own PayPal-like mer-
chant service, Google Checkout. Even though this service hasn’t
been a success, Google might eventually come up with an adver-
tising model where pay-per-sale is an option, as long as you use
Google Checkout to handle the commerce.

Of course, even though click fraud artificially drives up ad prices,
it doesn’t totally kill the advertiser, otherwise Google would do
more about it. It does help Google drain the advertiser for as
much money as feasible.

To some degree, advertisers can adjust for fraud in their planning.
They can project how much business they’re going to get, as long
as there’s consistent conversion. If they’re not getting a good
enough return from their ad campaigns, they just won’t advertise
anymore.

Google Is Evil 39

After all of this, though, who cares about the advertisers? Didn’t I
say the whole Internet is worse off because of Google, not just
people with something to sell?

The consequence of pay-per-click and pay-per-impression models
is that the bad guys have far more incentive to break in to
machines than they otherwise would. The fewer reasons bad guys
have to break in to machines, the less money would be involved,
and the less the bad guys would be willing to spend to break in to
machines. There would most likely be fewer infections as a result.

There are certainly other reasons for bad guys to infect machines,
like those we examined in the previous chapter. And those same
reasons would definitely still lead to infections, but if there were
no click fraud, the total pot of money for computer crime would
be a lot smaller. If the same number of criminals kept trying to
make money, nobody would make as much, so plenty of people
would move on to other pastures. The costs to break in to a single
machine would at least stay the same, and might even go up a bit,
because there would probably be fewer people focusing on this
kind of thing. Therefore, it’s reasonable to believe that there
would be fewer infections.

Whether this turns out to be the case or not, Google certainly isn’t
the only company culpable. Most other ad networks are in the
same boat, though Google is certainly the big gorilla in the online
advertising space.

There are other companies you can point fingers at when it comes
to bad guys infecting machines. Particularly, you can point at
banks, because a lot of the rest of the fraud revolves around them.

Banks don’t have any significant incentive to see fraud perpe-
trated. They tend to bear the cost when fraud does happen, so
they care quite a bit about the problem. They are willing to spend
to keep malware off machines.

However, they aren’t doing the most altruistic thing in terms of
keeping PCs free of infections, which would be to group together
and disallow e-commerce altogether (or at least require people to
call in personal details). Consumers wouldn’t stand for this. They
would rather take the risk of being infected for the convenience of
being able to buy things and do their banking online.

Chapter 740

Banks still try to do as much as possible to fight this problem.
They tend to be active in encouraging people to run antimalware
products. They even arrange for people to get good discounts on
major players’ products. They try to put other safeguards in place
that add more protection, like offering little hardware devices for
logging in, sending unique passcodes, and so on. They do lots of
monitoring to try to pick out fraudulent uses of credit cards and
bank accounts, and tend to freeze them if there is any doubt at all.
They try to make it easy for the consumer who cares about secu-
rity to be secure. But at the same time, they realize that most
people want the convenience of less security, so they try not to force
security measures down people’s throats; if something is intrusive,
they know their customers will take their business elsewhere.

That’s not to say that banks aren’t culpable. To me, they just seem
less evil. But whenever the desire for bigger profit margins works
against the best economic interests of the consumer (especially
from a security point of view), there’s a bit of evil in this world by
my reckoning. That makes banks evil, and it sure makes Google evil.

Really, this tradeoff is an inherent tension in capitalism. If the evil
outweighs the massive good of capitalism, it’s the job of govern-
ments to step in and regulate things in the best interests of their
people.

Now, perhaps there should be some regulation in the online
advertising world. At the very least, there should be some trans-
parency to make sure companies that are brokering online ads
aren’t knowingly allowing fraud. Even if companies like Google
can’t be an open book (because it would give the bad guys a
roadmap for further fraud), they could at least be subject to some
very stringent government-led auditing.

I’m sure if click fraud becomes enough of a problem that adver-
tisers complain, they’ll either spend a lot less on advertising online
or governments will eventually step in. That’s the great thing
about economics: these things will eventually sort themselves out.

So even though Google is evil in the sense that it’s looking out for
its own financial interests on this matter, it is doing pretty much
exactly what I’d be doing if I were Google, and it’s doing what its
shareholders want it to do. Go, Google! Do your evil!

Chapter 8 C H A P T E R 8

Why Most AV Doesn’t
Work (Well)

In this chapter, we are going to take a closer look at the bedrock
of the industry—antivirus (AV). I’ll focus on why it has a reputa-
tion for not working well and why that reputation is well
deserved. In the next chapter, we’ll look at why AV is slow. Note
that many companies have been trying to fix these problems, but
for most vendors, the going is slow. I’ll talk about the timeline for
improvement near the end of this book.

Almost everybody runs AV, or at least they think they do. On
Windows, over 90% of all people are running AV, and the
number of people who think they are is even higher. It’s far more
pervasive than any other end user technology, and is far more
common in people’s lives than the only other security technology
with fairly widespread ubiquity—the firewall.

It amazes a lot of people that AV technology is so ubiquitous,
because it is so widely reviled. Technical people will often claim
that AV doesn’t work, and that it causes stability problems. And
almost everyone will claim that it slows your machine down.

I can’t argue. When I was first at McAfee (I was away from
McAfee for a brief period and have since returned), I was respon-
sible for the core AV engine development (not the products that
consumed the engine). I inherited it. I learned all about it and I
studied all the competitors. There were lots of brilliant people in
many AV companies around the globe. Yet, I can say pretty
unabashedly that most AV products live up to their bad reputation.

Chapter 842

Even McAfee’s AV wasn’t great when I inherited the technology,
although it is improving rapidly to this day. For instance, a recent
independent comparative test listed McAfee at the top of the pack
for malware detection, which is very believable.

First, let’s look at what AV is and how the typical technology
works, then we’ll look at the huge pit of suck and why those prob-
lems are there. I’ll defer talking about the way I think things
“should” be done until Chapter 39.

You might expect me to first define the word virus as a key to
understanding AV. But AV technologies typically go beyond
viruses, also trying to detect worms, botnet software, trojans, and
even spyware, adware, and attack tools—even though it can be a
touchy subject as to whether most things in the last three catego-
ries are bad. For instance, McAfee (and others) have always
detected the program nmap as bad, since it can be used as an
attack tool, even though many, many good guys use the tool (it
simply helps map out which services are visible on a network—the
name comes from “network map”). The logic is basically that
the average AV user shouldn’t have it on his machine, and
having the AV software complain about it isn’t going to stop the
legitimate practitioner from using the tool. There’s merit to both
sides here, and in many cases things get marked bad where the
decision is quite clearly a gray area.

Anyway, all these terms are irrelevant for the moment. Suffice it to
say, there is a ton of bad software that you probably wouldn’t want
on your machine. The industry often refers to generic malicious
software as malware, and we’ll use that term. Spyware and
adware are sometimes in a gray area where they aren’t intention-
ally malicious and may not be called malware, but you should get
the basic idea. AV software is software that tries to identify mal-
ware and either prevent you from installing or running it in the
first place, or remove it if it’s already installed.

There are two ways in which AV software tends to run: on-access
scanning and on-demand scanning. On-access scanning means that
some program is about to run, or some other file is about to get
used, and the AV checks it first to see if might be bad. On-demand
scanning means that files are being checked even if they’re not being
used. This generally occurs when you’re doing a full system scan,
which many AV products do when you boot the machine.

Why Most AV Doesn’t Work (Well) 43

Typically, when a file is scanned and found to be bad, the user is
notified and some appropriate action is taken, such as removing
the file or (particularly in some enterprises) putting it in a quaran-
tine area where it will not run but somebody can go look at it
later.

The AV product running on the desktop usually doesn’t intrinsi-
cally know too much about what’s malware and what isn’t. That’s
the job of what the industry calls DATs (data files) or signature
files. The AV product contains an engine that knows how to take
a file that you want to scan, then query one or more of these sig-
nature files to figure out whether something might be bad. The
signature files often also encode information about how to reverse
infections, if necessary.

Typically, the AV product goes and grabs new signature files once
a day (if you are continually online). Some products check twice a
day or even hourly (and McAfee now has real-time updates).

AV engines are typically incredibly generic beasts. They’re tuned
to do pattern matching on arbitrary file types. They need to
understand any file type that might potentially be problematic,
which is a huge challenge to do well, especially if you’re going to
try to detect arbitrary data files, such as pictures that could attack
your machine if loaded into the wrong photo viewer.

As an example of how generic AV engines tend to be, the McAfee
AV engine basically implements multiple programming languages.
The signature files contain lots of little programs that the AV
engine runs every time it looks at a file to determine whether or
not that file is bad. One programming language McAfee uses is
tuned for quickly identifying patterns in binaries, and the other is
tuned for complicated issues that the other language is too simple
to deal with, such as repairs. The first language is explicitly
designed so that people writing an individual program in it won’t
accidentally cause your machine to hang. The other should be
used sparingly and tested thoroughly before it is deployed to users.

There’s usually an extensive operation behind any AV tech-
nology. The vendor needs to know enough to be able to say,
“Hey, this file is malware,” so it either has to have some secret
sauce that allows it to determine malware using an algorithm, or it
needs to look at individual programs and make a determination.

Chapter 844

What typically happens is that vendors look at malware and try to
spot patterns, then write signatures that are generic enough to
catch as much malware as makes sense, without flagging some-
thing as bad that is clearly good.

Vendor employees then analyze files using some automation, but
typically also involving manual effort. There has to be a work-
flow for tracking submissions and communicating with people
who submit malware. Once the vendor analyzes the files, it writes
a signature, if appropriate. A signature might be generic enough to
detect and repair a whole class of bad stuff, or it might just detect
a single piece of malware, perhaps without repairing the actual
infection.

Once it writes the signatures, the vendor typically needs to test
them extensively to ensure that they’re not going to cause prob-
lems when deployed. The biggest worry is that the signature will
declare something as malware that isn’t, in which case the signa-
ture is said to have given a false positive, or to have falsed.

The vendor doesn’t like false positives, particularly because this
stops people from running software they might want to run,
potentially even deleting the software. There have been several
prominent false positives in the media, but probably the worst
incident occurred in March 2006, when McAfee released a signa-
ture update that detected Microsoft Excel (among other things) as
a virus and deleted it from machines. Every major vendor has sim-
ilar tales, and most vendors have more recent tales. In the case of
McAfee, that incident really helped speed up the company’s efforts
for a dramatic improvement in its technology.

AV companies spend a lot of resources trying to prevent false pos-
itives. They tend to do extensive testing for signatures, including
running them over massive databases of known good programs to
make sure that none of those programs get flagged. And in most
companies, multiple people review each signature to make sure it
won’t have a negative impact. Yet false positives still happen, and
pretty frequently (though usually on applications that aren’t com-
monly used).

After testing, the AV company can publish the signatures. The
publishing process can be complicated, but it’s often the case that
signatures are published at approximately the same time every day.

Why Most AV Doesn’t Work (Well) 45

The desktop AV client tries to download those signatures when it
thinks they might be published, and keeps trying fairly frequently
if something is wrong (for instance, the computer might not be
online or the signatures might be late in being published).

The AV industry has been working more or less this way for the
past 20 years or so. Technologies haven’t really improved very
much, and they aren’t as effective as they should be. Let’s look at
the problems.

The most obvious problem is scalability. Thousands of new pieces
of malware come out every day. These days, most of them are
showing up on a fairly small number of computers (say, dozens)
before they are automatically “mutated” into slightly different
programs that do the same thing. AV companies tend to have up
to 100 people working full time on the problem, but each one of
those people isn’t likely to be able to handle more than a few
pieces of malware a day.

Getting lots of people with the right skills to understand and
detect malware is extremely challenging, particularly because of
the vast technical expertise necessary to figure out what things the
clever bad guys have done to thwart the security industry from
doing its job.

Not having enough people to handle the flood of malware is a pri-
mary reason why detection rates for AV technology are so low
(some people say as low as 30% in practice). The industry tries to
deal with this by writing signatures for individual pieces of mal-
ware, then trying to write signatures that are generic enough to
detect as much malware as possible. But the bad guys have gotten
pretty good at making this more difficult.

In practice, the better detection tends to come in waves, as the
good guys at an AV company work hard to analyze trends over a
large number of pieces of malware and write code to generically
detect as much as it can. Unfortunately, it doesn’t come fast
enough, and tends to leave people unprotected from individual
threats for long periods of time.

There are a lot of other reasons why there is a long delay in detec-
tion (a big window of vulnerability). One reason is that AV ven-
dors typically don’t get to see enough bad stuff. They use a few
methods to get their malware:

Chapter 846

• Many vendors swap malware with one another on a daily
basis.

• Many vendors have their own systems to crawl around the
dark corners of the Internet looking for malware, and leave
vulnerable systems around hoping people will break in and
leave malware.

• For the largest vendors, the biggest source of malware comes
from the customer base. Customers send the vendor malware
that the product didn’t detect. These are often large corporate
customers, not individuals, and in fact, you can bet the large
companies get more attention to their problems than the little
guys do.

This may all sound well and good, but while this strategy worked
well a decade ago (when a single piece of malware tended to infect
thousands of users), it doesn’t work well now that there are tons
more pieces of malware, infecting only a few dozen users at a
time.

Another reason for there being a big window of vulnerability is
that AV vendors don’t want to mess up by having their tech-
nology give false positives, like the Microsoft Excel problem we
discussed earlier.

But, as I’ve said, false positives are easy to create. Since AV signa-
ture files are code, and it’s easy to add errors to code, it stands to
reason that it is easy to end up with false positives. To combat
that problem, AV companies have to do testing, which takes time.
When you combine that with delivering signatures on a daily
basis, it’s reasonable to expect a 24- to 48-hour lag time between
when a piece of malware starts to spread and when an AV
product detects it.

In reality, though, it is more like one to three weeks, on average.
For example, in 2007, the Yankee Group published a report that
discussed a virus known as the Hearse rootkit. A company called
Prevx found this rootkit and offered protection more or less
immediately. It took McAfee 10 more days to get out a signature,
and it took Symantec 13 days.

A lot of people think that a problem with AV technology is that it
is a simple pattern-matching utility dressed up to look like some-
thing more powerful. That might have been true in some cases at

Why Most AV Doesn’t Work (Well) 47

some points, but that’s certainly not the case today. Since AV
engines tend to have real programming languages in them, they
can do arbitrary things.

Just because signature writers can do almost anything doesn’t
mean they do. Usually, brand-new approaches that could make a
major difference aren’t easy to build using the technology that
already exists in AV products, and new technologies could easily
have a significant impact to end users because there would inevi-
tably be lots of bugs and performance issues.

So, as a result, AV companies tend to do four things in their signa-
ture files (and often some of this gets pushed into the “engine”):

• Simple pattern matching for individual applications. This often
amounts to, “If the file is identical to this piece of malware we
saw before, then it is bad.” There are some technical tricks to
this, but it is effectively looking for an exact match without
having to include the entire file for each piece of malware.

• Simple pattern matching for a group of similar applications.
This is known as “generic” detection, the hope being that the
pattern uniquely identifies a class of malware, and not any
legitimate software. With luck, it will help prevent AV compa-
nies from having to write lots of individual signatures for
other pieces of malware in the family. In some cases, this
detection type may hit only one file, but that’s rarely the
intent these days, since simple signatures do the same thing
and don’t risk accidentally flagging a good file as bad.

• Look at outside factors (such as possibly suspect behaviors
when the software runs) to guess whether it is malware. This
is called heuristic detection, meaning that the code is taking a
best guess, even though the AV company probably hasn’t seen
that particular program before. This is an area where the big-
gest AV companies tread very carefully, because if they mess
up, they will end up upsetting customers with false positives.

• Attempt to repair the system from an infection.

None of these types of signature content go far enough in
addressing the underlying scale problem, though. Addressing the
scaling issues would require a significantly different approach.
Certainly, AV companies have been trying new things to do better,
but it’s a slow, experimental process.

Chapter 848

Another fundamental problem with AV accuracy is that the bad
guys can run AV products, too. Let’s say Evil Bill writes a bad
piece of software. AV products might detect it out of the gate, but
Bill will learn that right away just by running them. He can keep
tweaking his malware until the programs stop complaining, then
unleash it on the world and be guaranteed some time before any-
body stops it (as we’ve seen, it can easily be weeks).

Making it worse, if Evil Bill does manage to get his malware on your
machine, it is hard to recover from it. Bill’s software will almost cer-
tainly disable your AV software, rendering it inoperable.

These problems seem insurmountable, but some technologies actu-
ally hold some promise for addressing most of these issues cost-
effectively. The question is, why aren’t we already using better
technologies?

Most existing AV technologies are about 20 years old. They
worked well enough for most of that time to achieve and main-
tain almost 100% market penetration. So, in a sense, as long as
the money keeps flowing in, there isn’t a huge economic incentive
for big companies that already invested a lot in building their tech-
nology to invest a lot more to reinvent it.

Instead, money for new development tends to go to new product
lines that can potentially earn more money. For the big guys, it
can easily make more economic sense to let someone else (say, a
startup) go off and build better technology, and then to acquire it
when it becomes necessary.

In the long run, there are technologies that show a lot of promise
(such as collective intelligence technology, which I will discuss in
Chapter 39). These technologies could make the AV company’s
job a lot easier, but it takes a big investment of time and money to
get there. I see the industry starting to move in that direction, but
it’s still going to be a while before we get there.

Chapter 9 C H A P T E R 9

Why AV Is Often Slow

OK, so AV typically doesn’t do a good job of finding stuff. Now
we understand a bit of why that is. But even a bad AV technology
can be valuable, because protection against, say, 30% of all threats
is still a lot better than protection against 0% of all threats. How-
ever, besides the lousy protection, there’s still plenty not to like
about old-school AV technology.

The average person may not know whether AV software really
protects her or not, but she generally knows that it is slow. This is
certainly the most common complaint I hear about the tech-
nology from average consumers.

So why is most AV so slow? Let’s start by looking at the time
people notice it most—when their computers are starting up. Yes,
any software that’s going to protect you proactively needs to load
up when the computer starts, and that could take a bit of time. But
AV products seem to feel the need to check the files on your com-
puter for signs of bad stuff, and that is often what takes up the time.

The idea behind scanning your computer for bad stuff on bootup
is that there might be things on your machine that have been
newly determined as bad. So, maybe there’s a screensaver you
downloaded a week ago, but your AV company just decided today
that it is bad. Or, in some cases, you might have gotten bad stuff
on the computer when the AV software wasn’t running. For
instance, you might have a dual-boot machine, meaning you have
a second operating system on the machine that can write to the

Chapter 950

same disk drive. Maybe you run Windows and Linux, and down-
loaded some Windows virus while running Linux (where you’re
unlikely to be running AV).

The typical thing for AV software to do is to look at each file on
your filesystem, determining whether or not it’s bad. With most AV
software, that process of judging a single file is stupidly inefficient.

For instance, many vendors rely heavily on a technique called
cryptographic signature matching, but do so in an unintelligent
way. First, let’s look at what cryptographic signature matching is.
AV vendors would like to do exact matching and say, “This file
we’re looking at is an exact digital copy of this bad file we saw
yesterday.” However, they don’t want to have to put every piece
of malware ever seen on customers’ computers—that would take
up too much space and would put even more ammunition in the
hands of the bad guys.

Instead, they use some cryptography that takes the file as an input
and spits out a number that is a fixed size. The interesting thing is
that the number that comes out appears to be purely random, but
every time they enter the same input, the same output pops out. The
numbers that pop out of this algorithm are big numbers—so big that
they won’t ever see two different inputs that give the same output.

This algorithm lets AV vendors say, “If a file’s cryptographic signa-
ture is 267,947,292,070,674,700,781,823,225,417,604,638,969, it
is bad.” Now, they just have to store this number, not the whole
file. The bad guy might like to try to produce bad software that
gives the same results as popular good software. For instance, he
might try to produce software giving the same cryptographic sig-
nature as some version of Microsoft Word, hoping that it will
make it harder for vendors to come up with a signature, because a
cryptographic signature would give lots of false positives. But the
cryptography is the special sauce making this impossible. The
number that pops out really is about as good as random, so the
most plausible thing a bad guy could do here is write lots of new
malware until one finally gives the same result as some legitimate
file. And, as you might guess, it would take too many tries to be
practical, even if all of the bad guys in the world got together to
work on the problem.

Now that we understand cryptographic signatures, let’s look at
how AV vendors can apply them to this problem. What they’d like

Why AV Is Often Slow 51

to do when looking at a file is determine its cryptographic signa-
ture, then look up the signature in a database to see if it’s bad.
And hopefully a database lookup will be blazingly fast. In fact,
there are well-known algorithms where this kind of lookup should
indeed be essentially instantaneous. The lookup should be a heck
of a lot faster than calculating the cryptographic signature.

Let’s assume for the moment that that’s what actually happens
(often it is not). How long does it take to calculate a crypto-
graphic signature? Well, the cost is dominated by the amount of
time it takes to read the file off your hard drive. Everything else
that happens is almost irrelevant.

The fastest hard drives today can read about 125 megabytes per
second. If your AV software is going to scan, say, 40 gigabytes of
files, you are going to spend at least 5 minutes of physical time
waiting while the disk is busy feeding data to the AV system, in an
absolutely ideal world. In the meantime, when other programs try
to access the disk, everything slows down. Your other applica-
tions wait for a pause in the AV workload, and then there’s a per-
formance hit when the disk has to move around for the various
applications. If you’re doing a whole system scan where you have
to do a cryptographic signature of every file, the net result is that
you can expect things to go very slowly.

But, for some AV systems, the story is much worse because there’s
a lot of additional work for every single file that gets scanned.
Instead of just being able to ask, “Now that I processed this file, is
its signature in the database?” and get an immediate answer, what
typically happens is something more like this:

I just processed a file.

Its signature is
267,947,292,070,674,700,781,823,225,417,604,638,969.

Let's call that signature S.

Is S equal to 221,813,778,319,841,458,802,559,260,686,979,204,948?

If so, the file is malware.

Is S equal to 251,101,867,517,644,804,202,829,601,749,226,265,414?

If so, the file is malware.

Is S equal to 311,677,264,076,308,212,862,459,632,720,079,837,243?

If so, the file is malware.

Chapter 952

...

Is S equal to 11,701,885,383,227,023,807,765,753,397,431,618,256?

If so, the file is malware.

In one of these bad systems, the question is asked once for every
piece of malware that has a cryptographic signature. This
approach doesn’t scale very well to today’s malware problem.
Let’s see why.

There are about 10,000 new pieces of malware created each day
(most of them are automatically generated from other pieces of
malware, to avoid detection). Let’s assume that an AV company
can catch them all. Let’s also assume that the company has been
adding 10,000 signatures a day for only a year. That’s 3,650,000
signatures. If it takes a millionth of a second to process one signa-
ture (and it probably will take a few millionths), it would take 3.65
seconds to process all those signatures.

In reality, AV companies have other techniques they prefer to use
if they don’t have to use cryptographic signatures. They’d like to
be able to capture as many pieces of malware as they can with a
single signature, and since they generally won’t see all of the
10,000 new pieces of malware a day, they’re going to focus their
signature writing on the “most important” pieces of malware. As
you’d expect, big companies generally prioritize what their big
corporate customers are sending them over stuff they get from
smaller companies, and individuals are very likely to be ignored—
even the biggest companies have only a few dozen analysts dealing
with these kinds of issues at any given time.

With so much malware, cryptographic checksums are a really
important technique. It is easy to write one (automated systems in
the backend can easily write signatures), and those signatures are
easy to eliminate if they turn out to be wrong.

Certainly, if designed properly,1 cryptographic signatures can
improve efficiency. The stupid way in which they tend to be
handled is an artifact of the way signatures have been done for-
ever, this notion of one rule following another, following another.

1 For technical people, one should clearly use hash table lookups or a similarly effi-
cient data structure. But many AV systems still use tree-based algorithms, or even
linear scans!

Why AV Is Often Slow 53

It worked well when there were only tens of thousands of pieces
of malware in total, but it doesn’t anymore.

AV vendors are starting to shift to smarter ways of dealing with
cryptographic signatures. But even when they do, they still have
all the noncryptographic signatures. Again, with a traditional AV
engine, vendors hope their regular signatures will capture most of
the bad stuff. So, as there’s more bad stuff that avoids AV engines,
they’d like to get signatures that will detect lots of pieces of mal-
ware, hopefully even stuff that hasn’t been created yet.

As long as there’s a big focus on traditional signatures for protec-
tion, there are going to be many signatures that can take a lot of
time to run, even when vendors do a better job with crypto-
graphic signatures.

Another reason why signatures proliferate and performance
decreases as malware grows is because AV vendors generally can’t
easily remove old signatures. Vendors typically don’t keep enough
data to determine whether old signatures are unnecessary because
of new signatures. Nor do they collect enough information to
know when a signature can be removed because the malware it
caught doesn’t circulate anymore. That might sound risky, but
there is malware that wouldn’t even work if you did manage to
get it on your machine, just because of the way systems have
evolved since the good old days of the DOS operating system.

Now that we know a bit more about why AV is a dog, the issue
becomes what the end user can do about it. You can choose your
AV product based on raw performance numbers, but perfor-
mance isn’t everything. And most products perform well enough
when only doing on-access scans.

It’s on-demand scans that people notice most, and I recommend
that people turn this feature off. There’s generally no compelling
reason to do a scan of your entire system, particularly if it’s going
to degrade performance. You might worry that you aren’t being
protected at all, but AV software is most effective running on-
access scans, meaning that the AV engine scans files right before
you go to use them. Malware can’t hurt your system if you don’t
run it, so who cares if it is lying dormant on your disk?

The only significant benefit of a full system scan is that you can
find bad stuff before you accidentally give it to someone else.

Chapter 954

However, almost no malware spreads that way these days, and
even if it did, one would hope that the person you gave it to was
also running some sort of effective host protection. All in all, I
don’t think this case is worth slowing down your machine more
than necessary.

Also, note that these full system scans usually occur at least once a
day—whenever the AV system downloads new signatures.
Though, for most people who leave their computer on all day, this
may not have an impact, because it tends to be in the middle of
the night.

Anyway, a lot of these problems stem from the fact that most AV
technologies were not built for scale. Scaling host security is a
tough problem, one we’ll look at in Chapter 39.

Chapter 10 C H A P T E R 1 0

Four Minutes to Infection?

In July 2008, a report went around claiming that if you connect
an unpatched and unprotected Windows XP machine to the
Internet and did nothing else, it would be infected in four min-
utes, on average. The typical recommendation for preventing this
kind of problem is to run a firewall on your network and to install
all the latest updates as quickly as possible.

This all sounds scary, but don’t worry, that report is total rub-
bish. It’s just garbage used to spread fear, a marketing tool for the
organization producing these numbers (in this case, it’s SANS, a
company that sells security training and certification and puts on
security conferences; this kind of press might bolster its reputa-
tion and get people to buy its services).

It’s true that there are plenty of automated programs randomly
scanning the Internet, looking for vulnerable systems to infect. It’s
not true that you’re likely to be infected.

The primary reason why this is utter hogwash is that Windows XP
(as of Service Pack 2) already has a firewall that is protecting you.
If you install something older than Windows XP SP2 (which came
out in late 2004), you would have to worry about whether there
was something on the network protecting you. Though, in many
cases, there would be, whether you knew it or not.

Chapter 1056

Your ISP (Internet service provider) might prevent unwanted
Internet traffic from getting to your machine. Your wireless router
or cable/DSL modem might have a firewall enabled by default.
And your router/modem will probably have NAT (network
address translation) enabled by default. NAT will protect you
from outside threats even if you’re running the oldest version of
Windows XP, or even Windows 95.

These technologies are protecting you because they keep traffic
from the outside world from reaching the software running on
your machine. That’s software that is potentially vulnerable. A
firewall works by acting as sort of a gatekeeper. It selectively
chooses which traffic to let through and which not to let through.
A firewall sitting in your wireless router or cable/DSL modem will
probably have a policy that boils down to this:

If a new connection request comes from the outside world, deny
it. If a new connection request comes from inside the firewall,
allow it, along with any traffic in the follow-on conversation.

This means you can make a connection to a web server from your
browser, but if your machine happens to have a web server run-
ning on it, nobody from the outside world will be able to connect
to it.

NAT acts differently, but has the same basic result. Instead of
being a filter per se, it allows lots of computers to share a single IP
address (which is generally all your ISP is going to give you). That
address usually doesn’t allow any inbound connections. It can, but
you would have to configure them manually. Instead, everyone
inside the network gets an address that doesn’t work on the
Internet, only on a local network. The NAT device takes out-
bound connection requests, makes it look like it’s coming from the
IP address your ISP provides, then takes the data that comes back,
and forwards it to whichever machine initiated the connection.

Four Minutes to Infection? 57

These technologies make it extremely difficult for someone from
the outside world to break in to your machine without you doing
anything. You generally have to do something that results in your
infection. It could be that you go to a website that takes advan-
tage of a security flaw in your web browser or tricks you into
downloading something bad. It could be that you get an email
message that takes advantage of a security flaw in your email
reader, or simply tricks you into installing it. Either way, you are
responsible for initiating the outbound connection in the first
place (even if your email reader is periodically making that con-
nection on your behalf).

The Windows firewall performs a similar role as a network fire-
wall, but resides on your individual machine instead of on a cable
modem or DSL router. That’s particularly useful on a large corpo-
rate network, where someone else might have gotten infected, and
that infected machine might otherwise have access to some vulner-
able software service running on your computer. But there’s more
of a risk from infection on the local network because people tend
to be more liberal in what is allowed on the local network. Auto-
matic communication, file sharing, and printer sharing tools are
common, and firewalls usually do not block such things by
default.

Clearly, there are a lot of prevention mechanisms that keep your
computer safe. Even if it’s just on your computer, you’re probably
in good shape. So why would SANS be saying things that don’t
seem to be true?

First, SANS is indeed measuring something. It publishes daily
numbers (though as of this writing, the data stops at November
16, 2008). The number fluctuates. For example, on November 16,
2008, SANS claimed a Windows machine would last a little under
100 minutes before infection unless some network protection
device was used.

Chapter 1058

SANS does not publish its methodology. My best guess is that it is
running a version of Windows XP that predates the 2004 Service
Pack 2 release. It wouldn’t surprise me that a machine running
that software would be in trouble if you put it naked on the
Internet.

But while people might offer you sound advice (yes, might as well
have a firewall, and yes, keep your software up to date, especially
the things you use, like your web browser), when they make scary
claims, don’t believe the hype without hard evidence.

Chapter 11 C H A P T E R 1 1

Personal Firewall Problems

In the previous chapter, I argued that the Windows firewall helps
keep people pretty safe from Internet threats, especially when the
user doesn’t do anything risky. In this chapter, I’m going to com-
plain about firewalls—but not just any kind of firewall. I’m going
to complain about personal firewalls, which are subtly different
from the firewall that comes with Windows and the firewall you
might run on a network.

What is a personal firewall? Well, a firewall is supposed to mon-
itor traffic entering or leaving either a network (if the firewall lives
on a network) or a machine (if it lives on your machine). It allows
or blocks traffic based on a policy.

Typically, operating systems have a built-in firewall that is pretty
effective. They stop all traffic coming onto the machine, unless it
is in response to something the user did (though you can allow
exceptions, for instance, if you want to run your own web server
on your machine).

But if network traffic is initiated from your machine, the OS fire-
wall generally won’t do anything.

Let’s say you’ve accidentally downloaded a banking trojan, which
will monitor all your online banking activity and then secretly
send your account information to bad guys on the other side of the
world. Since you’re infected, your AV already failed to detect the
bad software, which will go ahead and collect your information.

Chapter 1160

But even if your personal data is collected, what if you could keep
that data from being sent off to the bad guys? Built-in firewalls
like the Windows firewall can’t really do that (see “The Limita-
tions of Traditional Firewalls” on page 62 for an explanation).

If you want a firewall to stop bad outbound traffic, you need to
give it information about which applications are trying to talk,
which is the basic idea behind the personal firewall (sometimes
called an application firewall).

This could allow you to say, “Only Internet Explorer can talk to
things on port 80,” or, “Let Skype talk to anything it likes.”

Policy management is a huge pain in the neck, though. If you want
to stop the rogue trojans doing bad things, you need to start out
with a policy that denies everything unless you specifically allow
it. Enumerating the applications you use is a lot of work, and it’s
awful to have to remember to configure your personal firewall
every time you install new software that might use the Internet.

The way personal firewalls deal with this problem is to give you
pop-up windows that force you to make policy decisions. For
example, when you install Skype, you may get a pop up that says,
“Do you wish skype.exe to access the Internet?” And you will
generally tell the firewall to “remember your decision” so you
don’t get the obnoxious prompt again.

Most users hate lots of prompts. It’s made worse by the fact that
lots of applications have multiple programs that will be treated
separately. For instance, most applications have a main execut-
able that, when it comes time to check for software updates, will
run a second program. You need to give that one access separately.

Some applications install lots of separate executables. For example,
Apple’s iTunes installs dozens of different executables with lots of
different functions. If you actually used all the features that come
bundled, you might end up getting prompted tons of times.

These prompts are the only way to make a personal firewall work
reasonably well, but I’d say they’re not reasonable enough. It’s not
just that dialog boxes are obnoxious. It’s that they try to get users
to make decisions they’re not equipped to make.

What tends to happen is that people will eventually see a program
they don’t recognize. For instance, you might see a prompt that

Personal Firewall Problems 61

says, “GCONSYNC.EXE would like to use the Internet. Do you
wish to allow it?” You might say to yourself, “What the heck is
GCONSYNC.EXE?!?” and you might choose to disallow it, just
in case it is something bad. Well, if you do that, you’ll be blocking
one of the many iTunes components.

Once you block something you recognize and a program breaks, if
you’re like most people, you’ll assume that every program you don’t
recognize has a valid purpose, and just start allowing everything.

Sure, some people might hunt down information on each executable
they allow, but this would take too much time for the average user.

I just turn my personal firewall off. If I’m going to have to click to
allow everything it shows me, why bother with the annoying pop
ups? If I did leave it on, I’d probably just feel safer than I really am.

I do think it is possible to have a personal firewall that leaves you
alone except in very rare circumstances. Take, for instance,
GCONSYNC.EXE. This program is signed by Apple, meaning we
can be confident that it’s legitimate. Apple is a reputable vendor, so
why should anyone ever prompt? Just let the thing through.

Certainly, not every program is digitally signed—lots of them
aren’t. We won’t worry about the technical details here, but we
should expect security vendors to be able to build a big list of
good software, using all sorts of techniques. Then only warn us
about stuff that might be bad, which should be a very short list.

That might sound like a hopeless task, cataloging all software in
the world, but vendors are starting to do it quite successfully. It is
now possible to have a personal firewall that doesn’t suck,
because you almost never have to see it.

If done right, you would just get a notification that a program is get-
ting blocked because it is probably bad. You wouldn’t have to do
anything unless the system was wrong and you needed to override it.

When that day comes, the technology will be so unobtrusive that
it will just be a part of your AV. There will be no need to even
think about it as a personal firewall. That’s good, because most
consumers don’t know or don’t care what a firewall is, anyway.

Even when that day comes, don’t expect the personal firewall to
die. AV vendors will keep providing personal firewalls because
many of their customers expect to see them.

Chapter 1162

The Limitations of Traditional Firewalls

When data is sent between two computers on the Internet, the under-
lying Internet infrastructure needs to know how to get that data back
and forth. At the simplest level, this is the same problem that the post
office has when routing regular mail. The post office solves its prob-
lem by giving you an address. On the Internet, machines have
addresses, too. Unlike postal addresses, Internet addresses only make
sense to machines (they’re just sequences of numbers, for example,
157.166.224.25, which is one address that will get you to cnn.com).

Let’s say you want to run an email server and a web server on one
computer. When someone else connects, you then need a way to dis-
tinguish which service that person wants to access. You do this by
adding a port number, which is kind of like a post office box (there can
be a lot of them, all at the same address). Typically, applications have
“standard” ports. For instance, web servers often go on port 80 (port
443 if they are talking securely). But that’s just convention—you can
put your web server on any port you like, and people can still find it.

A traditional firewall allows you to set policy based on network
information, primarily address information (though there are other
low-level things you can filter on).

A firewall can easily say, “Don’t allow new incoming connections to
any port on this machine.” That’s a simple and effective policy,
unless you want to run your own services. If you have to run a web
server that’s visible to the Internet, you can make an exception for
that. You can also configure the firewall to allow access to the web
server, but only from machines that are local to you.

While firewalls make it easy to protect yourself from the outside
world, you can also use them to block connections that you make,
when those connections might be made by malicious software.

For instance, if you know that bad guys store their data on one partic-
ular computer (and you know its network address), you can tell your
firewall not to allow data to go out to that computer’s address. Or if
you know that one family of malware sends data to lots of different
computers, but always uses port 3l337, you can disallow all traffic that
is destined for port 31337, no matter which address it was destined for.

Or, more realistically, you might decide that you’ll only ever use the
Web and email, and that everything else you might ever want to use
should be blocked. If that were the case, you could just have your fire-
wall block everything that is not commonly used by email or the Web.

Personal Firewall Problems 63

Lots of businesses have configured their firewalls this way, but it
turns out not to work very well.

The problem here is that bad guys don’t want their stuff to be
blocked. What they’ll do to keep from being blocked is talk over port
80, so that their traffic looks like web traffic to the firewall.

Even legitimate programs like Skype and online games will often
decide to send all their traffic over port 80 so that firewalls don’t
block them.

This is a sensible strategy for them, because it makes their users’ lives
easier. Often, users have no way to change the firewall policy (espe-
cially at work), and they’ll be mad at the software manufacturers, not
their employers.

Since bad guys can easily send outbound traffic over web ports that
looks just like legitimate web traffic, traditional firewalls are not
good for stopping outbound traffic—they’re only good at keeping
stuff from coming in.

Chapter 12 C H A P T E R 1 2

Call It “Antivirus”

When the average user needs to get new security for her com-
puter, she doesn’t ask for an “Internet security suite”—she asks
for an “antivirus product.”

This causes people in the security industry so much indigestion that
there aren’t enough Tums in the world to ease all the suffering.

But this will never change.

When typical consumers think about security protection for their
computers, they might think about lots of different things,
depending on their degree of technical sophistication. For
example:

• Protection from malicious software (including spyware and
adware), whether they downloaded it or it attacked them.

• Filtering out spam (though they also expect their email client
to do this).

• Protection against phishing (they may also expect this from
their browsers).

• Identity protection—they don’t have any particular technol-
ogy in mind, they just think that their security product should
be addressing this.

• Parental controls, to help keep their kids from browsing sites
with inappropriate content.

Chapter 1266

• Website ratings, showing which sites might harm their com-
puters as they browse.

• Personal firewalls, inflicting havoc by blocking outbound traffic.

• Host intrusion prevention, which tries to watch the behavior
of programs as they run, hopefully blocking bad stuff just in
the nick of time when AV fails.

This technology-driven approach is one way to look at things, but
the average consumer doesn’t care about technologies. In fact,
most of these technologies are a big “WTF”1 for the average
person (and for good reason).

No, consumers care about their problems, not about the shiny
technological toys (with apologies to those of us in the industry
who are rightfully proud of their cool technologies).

What problems do consumers see?

1. People stealing their personal information. People sure care
about their finances, their identities, and so on.

2. Bad people destroying their stuff. Maybe they’re afraid of los-
ing their personal files, or they might be worried about bad
stuff rendering their computers unusable (this used to be a
much bigger problem than it is currently, now that bad stuff
tries so hard not to be noticed). People typically see backup
solutions as an answer to this problem (though they hope
their AV will prevent them from getting to the point of need-
ing this in the first place). This is reasonable, particularly since
backup also solves the different problem of the hard drive fail-
ing (destructive, but not malicious).

3. Spam, spam, spam. It seems to me most consumers will take
anything they get for free here, and are probably willing to
live with whatever antispam comes with their mail filter.

People would prefer to buy as few products as possible. Ideally,
they wouldn’t have to buy any, and some people don’t (for
example, when Apple has convinced them that they don’t need to
do so).

1 Finally, I found an acronym my copyeditor won’t make me spell out on first use!

Call It “Antivirus” 67

In a problem-specific view of the world, people will put labels on
solutions to problems, which is why Marketing calls them solu-
tions instead of technologies.

For problem #1 (and to some degree, #2), people identify with
AV. This is because the masses were educated about the risks of
being online over a decade ago, when the risks were called viruses.
Now we have dozens of confusing terms for the risks that are out
there, including:

• Viruses

• Worms

• Trojans

• Spyware

• Adware

• Rootkits

• Exploits

• Vulnerabilities

• Malware

• Bots/botnets

For about two minutes, the security industry thought that anti-
spyware would be a big thing, mainly because the industry saw
some technical differences in new bad stuff and released separate
products that sold for a little while.

And some people in the corporate world understood the technical
difference and wanted to be protected. A few consumers thought,
“better safe than sorry,” but most people just want to be pro-
tected from their problems without having to care anything about
the technology. They would get irate with their vendors if there
were some threat that their vendor could have protected them
from and didn’t. And who would want to buy one of each of the
following: AV, anti-spyware, anti-trojan, anti-adware, anti-
rootkit, anti-exploit, and anti-bot? Even if they all clocked in at
the same ultimate price as an all-in-one product, nobody really
wants to deal with that complexity.

Chapter 1268

What people want is to put their trust in one vendor to protect
them, and buy, at most, one product to solve what they see as the
problem. All of those technical types of bad stuff—who cares?
There’s just one real problem there; let one product address it.

In any case, if there are companies trying to market multiple prod-
ucts when some other company of similar reputation is trying to
sell one product to do the same thing, what’s going through the
customer’s mind? Here’s what I would be thinking:

Clearly, the two companies I trust are likely to be equally on top
of things. If one is selling me multiple products, it is probably a
moneygrubber, and maybe I should go with the other guy
instead.

In effect, consumers expect all protection against bad stuff to be
bundled when they buy “antivirus” protection. The term kills
people in the industry, especially geeks, because there’s a lot more
than “antivirus” protection in the products, even though the name
makes it sound otherwise. But everyone in the consumer world got
used to the notion that “antivirus” is the thing that protects them,
without caring about the technical answer to the question, “What
is a virus?” And, as you know, the customer is always right.
Therefore, to my mind, the answer to, “What is a virus?” is, most
properly, “Anything malicious that runs on your computer,”
because that is the definition 99% of the world has in their heads.

The marketing people don’t like this truth, either. They all try to
brand their protection suites as “Internet security suites.” If you
look closely, the core idea behind an Internet security suite is,
“This protects you better than just AV.” Usually, that’s because
the vendor threw in all the bells that the user might not need or
want, like antispam, child protection controls, and so on. The pro-
tection should be about the same.

Not all consumers assume it’s the same. Consumers tend to fall
into two camps:

• Those who assume the only “good enough” protection is the
most expensive version.

• Those who assume the basic version is “good enough” or else
it wouldn’t be an offering, and everything else is just bells and
whistles.

Call It “Antivirus” 69

Very rarely do people actually dig down into the details to see what
they’re buying. It’s all “antivirus” to them, not Internet security.
As a result, even when companies offer four different suites at four
different price points, almost every single customer will go for
either the cheapest one or the most expensive one.

People do get what you mean if you say “Internet security,” but
they see that as a more generic term that can apply to the whole
industry and any product that comes out of it. They do realize
there might be more products. They’ve maybe heard about fire-
walls. They know about antispam. And so on. But when it comes
time to look for software to keep crap off their computers, they
will be thinking, “What antivirus should I get?”

This is the category, no matter what the technology is under the
hood. Every few years, someone will claim that “AV is dead” and
that their new technology is the future. Wrong.

Get in the product mindset, not the technology mindset. Security
goobers think, “That old technology sucks,” and they consider
“antivirus” the old technology. That’s not the way the consumers
think of it, though. They don’t understand the technology, so it
must therefore all be AV. It’s just that—like in many, many other
fields—technologies are improving as time goes on.

If you tried to rebrand the electric car to some totally new name,
people would shrug and call it a car, or else they would be con-
fused as to why they would want or need this new thing when
they already have a car.

Listen up, all you marketers (and all you venture capitalists) who
think your security technology is so awesome: in order to change
the name, you have to argue why the technology solves a problem
that AV wasn’t solving. If it just solves the same problem better,
you will never get people to understand why your new term is rel-
evant to them, and therefore it will fail. You are far better off
positioning yourselves as “better AV,” and then clearly saying
why you are better.

For instance, when my last startup was absorbed back up into
McAfee, we were about to go to market with a consumer security
offering. We were calling it AV, and it was better because:

Chapter 1270

• Our paid AV product came with an infection-free guarantee—
we would clean your computer for free if you did end up
infected.

• Our AV protected against new threats—on average, 30 days
faster than anybody else.

• Our AV was fast and didn’t slow down your machine in the
way most other AV solutions are notorious for doing.

• Our AV was cheaper than the major vendors.

This is all well and good. If you think about it, you can assume
from this that our technology must be a lot better than “tradi-
tional” AV. But what if we decided to invent a new term for it, like
a Community Intrusion Prevention System (a term used by another
small vendor)? What goes on in the minds of the consumers?

First, they’d be saying, “What the heck is it, and why the heck do
I need it?” The answer is, “We’re like AV, but better.” Now, a
company in this position will have to spend a lot of time edu-
cating people on why it’s not AV, whether or not it’s replacing AV
(or whether they should have both). It will create confusion, and
people don’t try too hard to get past that confusion if there’s not
widespread adoption. They figure that if they need to buy your
product, and they don’t understand it, they’ll just wait until it’s
proven itself.

“But wait!” the marketing person might say. “Our solution is
better!” If you can get people through the confusion of a com-
pany positioning against AV without claiming to solve any new
problems (only claiming to solve the old problem better), there
will probably still be plenty of skepticism. “Can it really replace
AV? I’ll bet it can’t. Either it’s too new to work well, or it doesn’t
do the job; otherwise, why wouldn’t everyone be using it?”

Even if you claim to have “next generation AV,” you still have to
convince people of the benefits of your solution. But at least you
don’t start out by confusing customers.

In short, the security industry should do itself a favor and stop
quibbling about terminology. Embrace the term “antivirus.” Who
cares if it’s technically accurate? The customer is always right.

Chapter 13 C H A P T E R 1 3

Why Most People
Shouldn’t Run Intrusion

Prevention Systems

The IT security industry is filled with plenty of technologies that
work, but don’t do enough—technologies that sell, even if they’re
not particularly cost-effective. One of the most pervasive security
technologies that typically isn’t cost-effective is the intrusion
detection/prevention system. Some vendors might have you believe
every company needs this kind of technology, but I’m not so sure.
Particularly, I think small companies should be careful to think
about whether it is really going to be a cost-effective solution.

The idea behind network-based intrusion detection and intrusion
prevention systems (NIDS and NIPS, respectively) sounds pretty
appealing. Stick a box on your network that will look at all
traffic. The box will do some analysis and tell you when you’re
being attacked (in the case of a NIDS) or even drop attacker
traffic automatically (in the case of a NIPS).

It sounds like a good thing to have all that insight into what’s hap-
pening on your network, because it’s insight that you didn’t have
before. But turn on your typical intrusion detection system for the
first time, and you will get spammed. Intrusion detection systems
regularly give off over 10,000 alerts a day.

Clearly, not all of those alerts map to real intrusions, but it’s clear
that to get value out of an intrusion detection system, you need to
be able to separate some of the good alerts from the many irrele-
vant ones.

Chapter 1372

Why are intrusion detection devices so spammy? People love to
talk about false positives, and certainly there are plenty. How-
ever, it’s not nearly the whole problem, the way some people
think.

What tends to happen is that bad guys are continually crawling
the Internet, trying to find issues they can leverage. Yes, the entire
Internet is continually under attack. For instance, anybody who
runs a server with password authentication enabled will notice a
sea of login attempts.1

Bad guys really do manage to break in to machines by guessing
passwords, so it’s certainly not a false positive for an intrusion
detection device to report it, but most of these attack attempts are
going to fail. Some of them can easily succeed, though, if you’ve
got people with very poor (or blank) passwords. So it doesn’t nec-
essarily make sense to ignore everything.

Just because NIDS and NIPS technologies have lots of noise that is
not due to false positives, that doesn’t mean false positives aren’t a
problem. They certainly are—common reports are that many
devices can be good for thousands of false positives a day. But the
point is that even if you can get rid of all the false positives, you
don’t get rid of the high management costs. Lowering the number
of alerts takes a lot of work. You have to understand each class of
problem, which takes time.

The whole “tuning” process is this very expensive upfront cost. And,
even after tuning, there can be a significant ongoing cost to look at
data on alerts that you might want to review. For instance, some
people might want to try to correlate failed SSH logins to other net-
work traffic that might indicate a successful intrusion (whether man-
ually or with a security event management product). The upfront
costs alone are large enough that it doesn’t make much sense for
most small and medium businesses to do this kind of thing.

Let’s say you’re managing a network of 40 users on a corporate
DSL line. And let’s say you get your NIDS/NIPS and somehow
manage to eat the upfront costs, and you tune the system to the
point where it is down to just 30 messages a day that you see and

1 My personal SSH server doesn’t allow password authentication—this keeps most
such attempts away, and yet, yesterday I still got almost 600 attempts.

Why Most People Shouldn’t Run Intrusion Prevention Systems 73

need to take action on. Let’s say that each message takes only 5
minutes to investigate. If your team is spending 2.5 hours a day on
the problem, that’s going to cost potentially 30K a year in oppor-
tunity cost (time where your IT staff could be more productive).
Does your team really spend an average of 2.5 hours a week
cleaning up infections? And even if it does, is the NIDS/NIPS
system actually going to stop you from incurring the cleanup costs
or just bring them to the surface faster??

In short, the economics don’t look that great for small and even
medium businesses. But they do typically make sense in the enter-
prise. There’s more tolerance for the upfront costs, and even the
ongoing cost, since having even a half-dozen people spending their
days mining intrusion prevention system data could make more
sense for monitoring a network of 40,000 users than it does to
spend the money for one person to monitor 40 users.

The only way that there’s any hope of NIDS/NIPS being cost-effec-
tive for small businesses is if they can somehow benefit from scale.
This is the entire idea surrounding Managed Security Services (MSS),
as offered by such companies as Symantec (through its Riptech
acquisition), BT Counterpane, and VeriSign (through its Guardant
acquisition). If those guys monitor and analyze data for 40,000+
users, as if they were one big company, they can do the job pretty
cheaply. If they had 400 companies with 100 users each, the total
cost would be a lot larger because those companies would have no
economy of scale. Instead, the one big company could offer the
service to the 100-person companies at a lower cost than what
they could do it for themselves. They wouldn’t have to go through
the trouble to get people trained, and they wouldn’t have to cover
equipment costs, or deal with machines breaking.

But even a managed service costs enough money that it probably
isn’t right for all companies. If you have your own network
servers that are Internet accessible, it might be worth the cost. But
if you let someone else host your website and you have no IT
other than the desktop machines your employees use, it may not
be worth it even to outsource your intrusion detection to a man-
aged service provider.

Instead, you can stick your users behind a NATing router, and
then the outside world won’t be able to get at your machines unless
someone on the network does something to infect your network.

Chapter 1374

Nobody on the outside can get into the network unless they’re
invited in. And traditional AV should be at least as good at
catching early threats as an intrusion detection device. Sure, you
can still do intrusion monitoring, but since there’s nothing the bad
guy can see (until your users connect to the bad guys or open some
attachment from one of them), it’s generally more cost-effective to
go spend your security budget on other things.

Having run small businesses, I would be very wary of spending
anything on intrusion monitoring products or services before I see
a real cost benefit—I would need to be spending enough in dealing
with intrusions that demonstrably could have been prevented to
make the expense worthwhile.

If you do have the need for services that usually are met through
dedicated server IT (such as mail servers and websites), you can
always control those costs by pushing them off to someone else to
manage. Why pay for running and administering your own web
servers (it’s much cheaper to secure a cluster of machines dedicated
to offering only a single service, by the way) when you can just host
your content and let someone else deal with the security problem?

If the answer is that you have lots of backend application stuff,
then instead of hosting content in the cloud, why not host your
applications in the cloud? Let Amazon or Google handle the secu-
rity. Of course, you have to trust them to do a good job here, but
the big guys can generally show their methods and their success at
protecting the infrastructure they manage.

For small and medium businesses, this tends to be an excellent
solution, because cloud-based computing has all the scale advan-
tages that make it cheap for the small guy. There does come a
point where you have enough scale that it’s worth doing yourself,
but that doesn’t apply to too many people.

In summary, NIDS/NIPS is good for the big guys, but tends to be
way too noisy to be cost-effective for everybody else. Managed
services can help make it cost-effective for medium-size shops, but
effective NIPS, even if managed, requires not just the infrastruc-
ture, but also an ongoing investment of money and time—two
things that small guys usually lack.

And they have better alternatives, like the cloud, or simply going
without, incurring cost on an as-needed basis.

Chapter 14 C H A P T E R 1 4

Problems with
Host Intrusion Prevention

The basic idea behind HIPS (host intrusion prevention system)
technology is that it tries to protect you where traditional signature-
based AV fails, primarily by watching the behavior of programs
that your AV allows to run. If it sees a program behaving badly,
the HIPS will stop it (hopefully before it does anything too bad).

I previously argued that in the consumer’s mind, it’s all AV; this is
just some other arcane thing that’s trying to keep the bad stuff off.
Who cares what it does?

If you do care, the distinction HIPS vendors used to make was
that AV is all signature matching—that people write signatures,
and those get sent down to end users. HIPS, they would say, is
proactive, not reactive. It detects based on bad behavior and will
hopefully detect new things, where the AV products don’t have
signatures.

Bah, humbug!

AV products, almost without exception, have HIPS technology in
them. It might be called “heuristic detection” or something innoc-
uous like that, but it’s in there!

Now, standalone HIPS products generally do more proactive
detection than the typical AV product, but that’s because the
typical HIPS product will give way too many false positives.

Chapter 1476

People don’t like to be annoyed by pop ups, especially from soft-
ware they bought that’s supposed to make their lives better.

HIPS technology that doesn’t generate false positives a lot goes into
AV products. Any other HIPS technology should never run in an
environment where people might install lots of different kinds of
software.

Plus, HIPS turned out not to be very proactive after all. Looking
at behavior doesn’t solve any of AV’s biggest problems. Particu-
larly, HIPS vendors might imply that they solve what I’ll call “the
testing problem,” but they absolutely do not.

What’s the testing problem? If a bad guy wants to infect people
with malware without being caught by the major vendors, he buys
all their products and keeps testing and tweaking his malware
until nobody detects it anymore. If a bad guy can do this, he has
probably bought himself at least a month before all the major AV
vendors are detecting him, and potentially a lot longer than that.

That same testing works against behavior blocking technologies.

You might think, “Can’t the HIPS technology just specify all pos-
sible bad behaviors?”

Unfortunately, the answer is (for all practical purposes), “No, not
without false positives” (blocking programs people may legiti-
mately want to run). For example, you might have a behavioral
rule that says, “If a program is capturing keystrokes that are
intended for some other program, block it.” This rule will stop
keyloggers (programs that read and record key strokes) that are
trying to grab your credit card data. It will also stop legitimate
programs that want to give their expert users the capability to do
things in their applications without bringing up the window.

What programs might want to do that?! Skype, for one. I was sur-
prised when I learned this, but Skype seems to have some worth-
while reason for doing this, and it’s not the only legitimate vendor
that does this kind of thing.

Here’s a slightly more complicated example. Let’s say there’s a
program (IsItBad.exe) that has the following behaviors:

1. It writes a lot of crap out to disk, including images, data files,
and one or more executables.

2. Those executables start decrypting themselves when they run.

Problems with Host Intrusion Prevention 77

Someone in the security industry might think, “That’s probably a
‘dropper’ installing malware.” And, statistically, there would be a
very good chance that was right, and you could have a HIPS rule
to block based on this behavior.

However, IsItBad.exe might also be a game that installs a bunch
of crap, and that crap is encrypted because the game designers
don’t want people to have an easy time getting at their intellectual
property.

Of course, we should be able to define behaviors that no legiti-
mate software should ever use. We have to be careful, though,
because we can easily be surprised by what legitimate programs
can do (again, think of the Skype example).

The problem is that as we build more behavioral-based rules, bad
stuff will try to look as much like legitimate software as possible.
There are always going to be behavioral gray areas where it can’t
be clear to a security technology running on a single machine
whether or not a program is bad. It will require some sort of
human insight to make that judgment.

In fact, some things that security researchers might label spyware
can easily fall into a gray area where reasonable people can dis-
agree on whether it is bad.

For example, if you didn’t read the fine print of the EULA (end
user license agreement) of some software you were installing, and
the software is serving you up ads that you didn’t expect (even
though it was explicitly mentioned in the EULA), is that bad?
Some people might say it is outright adware. Everyone would
think it’s bad if it spams you with hundreds of ads. But the less
intrusive the ads are, the less clear it is that something is truly bad.

We can’t expect a piece of security software to always get the
“right” answer when there sometimes isn’t a right answer.

Another thing HIPS is supposed to do that traditional AV didn’t is
to provide protection when legitimate applications have security
flaws the bad guys can attack. Some AV products include those
features of HIPS to the degree that it makes sense. (Besides false
positive risks here, which are far larger than just trying to sepa-
rate good programs from bad, this kind of technology tends to
have a significantly negative impact on performance.)

Chapter 1478

As I’ve said, the HIPS technology that works without false posi-
tives just got moved into AV products because it’s addressing the
same problems and fundamentally overlaps “traditional” AV.
That is, the technologies do protect against a lot of the same
things, but they each have value that the other doesn’t (even if that
value is all technical, in the realm of stuff that few people should
even want to care about).

But there are places where people may not care as much about the
false positives. For example, large companies might consider run-
ning HIPS on their servers if the software on those servers doesn’t
often change.

The theory goes that you can run the HIPS product in monitoring
mode for a few months on your production servers to see what
kinds of false positives might crop up. You then tell the HIPS
product to never show you any of those alerts again. Then you set
it to block anytime some future alert pops up.

This can work, but there are challenges that companies should be
prepared to face. One challenge is that this “training” phase can
be too expensive, and it needs to be done every time you install a
new version of the software (for instance, to a more secure or
more feature-rich version). Plus, some technologies may still have
a high risk of false positives, even after a few months of operation.

Chapter 15 C H A P T E R 1 5

Plenty of Phish in the Sea

Phishing (attempting to steal passwords or other sensitive infor-
mation by posing as a trustworthy website) is one of the biggest
concerns in the security industry today. It’s a problem that many
security technologies are trying to solve, and it’s getting a lot of
press by banks, particularly ones that are frequent targets of these
attacks. Frankly, that’s most banks these days.

Certainly, the impression we’re supposed to get is that phishing is
easy money and people are getting rich. But an interesting report1

came out recently that argues why that isn’t the case.

The authors of that report cleverly compare phishing to tradi-
tional fishing (yes, with an “f” instead of a “ph”). As you get
more fishermen, there are fewer fish to catch, and the fishermen
have to work harder to catch the same number of fish (usually
they go farther out to sea and work longer).

In the phishing world, it’s the same, except there’s only one kind
of phish to catch (let’s call the breed “suckerphish”). The pool of
potential phishing victims doesn’t grow very fast. And, once
people have been phished, not too many of them get thrown back
into the pond (meaning that people who have been phished before
are generally more wary and less likely to be phished again).

1 http://research.microsoft.com/en-us/um/people/cormac/papers/phishingastragedy.
pdf

http://research.microsoft.com/en-us/um/people/cormac/papers/phishingastragedy.pdf
http://research.microsoft.com/en-us/um/people/cormac/papers/phishingastragedy.pdf

Chapter 1580

If there are lots of bad guys phishing, it’s problematic for all the
bad guys. They have to try harder to find victims, meaning far
more phishing attempts, and the bad guys are each going to make
less money (on average).

It’s not too surprising that the bad guys are in this situation,
because it is exceptionally easy to phish. It doesn’t take much
technical skill to make an email message or a website that looks
legitimate.

The good guys, in the meantime, are particularly worried about
the problem because there are so many phishing attempts made.
The good guys believe there’s a big problem and that the losses are
huge. So, they’ve tried all sorts of things in hopes that you’ll be
able to tell when you’re being phished and when you aren’t.

For instance:

• Most email messages from people who legitimately have your
financial information (banks, PayPal, etc.) will include things
that a bad guy isn’t likely to have, like the last four digits of
your account number.

• When you go to legitimate websites, most of them will have
some sort of in-browser mechanism to try to help build your
confidence in the site. For instance, Bank of America is known
for its SiteKey technology, which requires you to recognize a
picture when you are logging in to the website. This is not
foolproof, however.

• Some financial sites have optional physical authentication
mechanisms, usually for their most paranoid customers. For
instance, E*Trade users (and others) can get a physical device
that generates one-time numbers. The user has to put in the
same number that’s showing on the device at that moment. In
a slightly different scheme, Bank of America (and other banks)
will let you enroll in a system where you have to type in a
one-time password each time, which they send as a text mes-
sage to your phone.

These technologies aren’t perfect, often because they rely on the
end user being savvy. However, they do raise the bar, making it
even harder on the phishers.

Plenty of Phish in the Sea 81

Taking the economics to their conclusion, the average phish-
erman probably makes very little. The study mentioned earlier
argued that the average phisherman is making less than he could
be making with other career opportunities that are available to
him. However, I’m not certain that’s true. Many people who get
into phishing live in areas that are severely depressed. There may
be few other jobs locally available, and they would pay whatever
the local economy would bear. If people can phish money from
Americans, even if they are making well below the U.S. minimum
wage, they could easily be making far more than they could make
at an unskilled job (if they could get one).

Whatever the case, as time goes on, phishers should expect to
make less and less money. Those who make a good living at it will
be those who are able to come up with new phishing techniques
that trick people who are otherwise hardened to phishing
attempts.

For instance, despite having great security practices and a great
security team, Amazon.com is, for the moment, a pretty juicy
target for phishers, for the following reasons:

• Most Amazon.com customers get a lot of ad email messages
from the site.

• The email recipients have no obvious way to authenticate that
the email message came from Amazon.com (see Figure 15-1).
The email message is sent in HTML (meaning it’s a web page,
and most mail readers will show it like a web page). To verify
the site’s authenticity, you basically need to examine the links
and make sure they lead to the right places. Usually you can
hover the mouse over the link to see the destination, but few
people do this.

• Nobody is used to getting Amazon.com phishing email mes-
sages (because phishers aren’t targeting it much, if at all).

• Nobody expects that it would be a valuable phishing target,
because you can’t directly get financial information.

• Amazon.com does force you to type your password a lot, so a
phishing email message that leads you to a site that looks
exactly like Amazon.com and asks for your password isn’t
going to be too suspicious.

Chapter 1582

What value is a phished Amazon.com account? If I were the bad
guy, I’d do the following:

1. Get a domain name or two that won’t arouse too much suspi-
cion. That means it should have “amazon” in it—maybe
www1-amazon.com or revalidation-amazon.com.

2. Send out email messages that look like they legitimately come
from Amazon.com, advertising something new that people
could actually buy there. The email message should just be an
ad, and not indicate “something is wrong,” like most phish-
ing email messages do. “Something is wrong” + no specific
account info = obvious phishing attempt.

Figure 15-1. Amazon frequently sends ads to its customers, such as this one

Plenty of Phish in the Sea 83

3. When the victim clicks on a link in the email message, send
her to a page that is exactly like the Amazon.com login page,
with the email address filled in, but with the password left
blank (as a bad guy, you definitely don’t know it).

4. Once the user types in the password and clicks the button, try
to log her into Amazon.com. If the password she enters is
wrong, show her the same screen Amazon.com would have
shown if she was logging in directly.

5. Send her whatever pages Amazon.com sends you. Sit in the
middle of their conversation, but let the user do whatever she
wants on Amazon.com. That is, she sends the information to
you, then you forward it to Amazon, and then show her
whatever web pages Amazon wants her to see.

6. Log everything in case the user happens to enter credit card
information.

7. After a few days, I’d start logging into Amazon.com accounts
for which I’ve got the login info (this would all be auto-
mated). I’d start looking for recently placed orders that aren’t
going to ship for a day or two (so Amazon.com won’t be
sending legitimate email messages for a little while).

8. I’d then send an email message that looks exactly like the mes-
sage Amazon.com sends when your credit card didn’t work
and you need to fill in new info (see Figure 15-2).

9. When the user clicks the link, she goes to the bad guy site
again. This time it’s a bit more tricky, but basically I would
make it look like I was Amazon.com, capturing her new credit
card info for the order in question, but otherwise showing her
what she’d be seeing if she was on the real Amazon.com.

Recently, my bank changed out my check card because it had had
a big breach, so something I ordered on Amazon.com didn’t go
through. Amazon.com sent me the email message you see in
Figure 15-2.

The message was all text, but a bad guy would have to make it
HTML so that the links would look like they point to Amazon.com,
when they actually point to the attacker’s site.

Chapter 1584

In the grand scheme of things, making all of this happen with a
minimum of human involvement isn’t a huge investment of time.
Someone with enough technical skill could easily knock it all out
in a week. A more professional criminal would probably take
more time with it to make sure it all works right and to tie it into
a botnet infrastructure to make it harder for the good guys to take
down the attack once they realize what’s going on (in this case,
the bad guy would move the bad web server around from hacked
machine to hacked machine).

Figure 15-2. A legitimate message from Amazon.com indicating that a
credit card payment did not go through

Plenty of Phish in the Sea 85

This doesn’t say anything bad about Amazon. As I said previ-
ously, I do know that it has a great security program. I only use it
as an example because I’m a loyal customer and know it very well.
The real lesson is that there are going to be many non-obvious
ways for bad guys to make money from phishing, and so the pool
of potential “phish” is nowhere near exhausted.

Right now, there’s basically a huge lake full of phish to catch, and
nobody else is phishing there. So, somebody can make a lot of
money, but it will be easy to overphish.

Once people are hit by our example phishing attack, awareness
will start going up, especially as the number of attempts on
Amazon.com goes up. Amazon.com will likely implement some
measure to try to make it clear that its email messages are legiti-
mate (like an obvious header that contains your real name, which
you hopefully will notice if it’s ever missing). As a result, this
attack will eventually stop working well. People will get very sus-
picious about Amazon.com email messages and will only browse
directly to Amazon.com instead of clicking on links in the email
messages. Or, so we should hope.

But it’s not right to say that there’s no money to be made in
phishing (or fishing, for that matter). There are still plenty of
opportunities like this, where technologically innovative bad guys
can make some money.

Chapter 16 C H A P T E R 1 6

The Cult of Schneier

There’s no doubt that the world’s leading IT security expert is
Bruce Schneier. Sure, Bruce Schneier may not be a household
name, but he’s certainly far better known than anyone else in the
field.

Bruce definitely deserves the recognition. He’s been, by far, the
most prolific security pundit out there since he started his Crypto-
Gram mailing list in 1998, which he has since supplemented with
a very popular blog. He’s written some great books on the secu-
rity industry that are accessible to a mass market (meaning normal
people can easily read them), such as Secrets and Lies (John Wiley
& Sons). He comments on most things that happen in the IT secu-
rity field, and he’s usually spot on—over the years, there have only
been a few issues on which I’ve personally disagreed with his
stance.

Bruce has had rock star status among geeks ever since he wrote
Applied Cryptography (John Wiley & Sons), which is still one of
the best-selling IT books out there. Undoubtedly, it is the #1 IT
security book of all time. Even though the second edition of the
book came out in 1996 and it hasn’t been updated since, it is still
in print, and still a strong seller.

Personally, I’m quite grateful to Bruce. I believe the foreword he
wrote for my first book in early 2001 (Building Secure Software,
coauthored with Gary McGraw; Addison-Wesley) helped bring a
lot of attention to us, the book, and maybe even the fledgling

Chapter 1688

software security space (which really was only the bugtraq
mailing list at the time).

Because Bruce is the most quoted expert in the space and has been
so right so often, and because lots of geeks thought Applied Cryp-
tography was so cool (many call it the “crypto bible”), geeks usu-
ally treat him with reverence. If Bruce issues an opinion, you’d
think that Moses had brought down another commandment off
Mt. Sinai.

Though I’d like to see more people thinking for themselves, I sup-
pose there’s not much wrong with joining the Cult of Schneier,
putting the guy on a pedestal, and assuming all of his opinions on
security matters are valid. Like I said, he’s earned his reputation as
IT security’s top pundit.

However, like any good religion based on written texts, there are
differences in interpreting the holy word.

After many years of evaluating the security of software systems, I
can firmly state that I’m against people using the book that made
Bruce famous when they’re designing the cryptographic aspects of
a system. In fact, I can safely say that even though that book is the
primary source people use for crypto design, I have never seen a
secure system come out the other end. And I don’t mean that
people forget about the buffer overflows. I mean the crypto is
crappy.

My rule for software development teams is simple: don’t use
Applied Cryptography in your system design. It’s fine and fun to
read it, just don’t build from it.

Orthodox members of the Cult of Schneier take this rule as
heresy. By orthodox, I mean the generally accepted, most popular
belief. But in the introduction to Bruce Schneier’s book Practical
Cryptography, he himself says that the world is filled with broken
systems built from his earlier book. In fact, he wrote Practical
Cryptography in hopes of rectifying the problem.

So, even though I’m in the minority of Schneierists, I think my
position is well supported by scripture.

I’m sure there are many brainwashed orthodox cult members out
there who are wondering how this could be possible.

The Cult of Schneier 89

Giving Bruce’s book to a developer is like giving an average adult
a huge toolbox with a large variety of tools, along with an instruc-
tion manual for everything in the tool box, and then having him
build a house. He gets many varieties of hammers, screwdrivers,
and so on. He gets lots of different types of nails and screws. He
gets detailed information about how to use all the pieces. But
there’s no overall guidance on homebuilding. How do you make a
roof that doesn’t leak? How do you put in windows and doors
and do all the insulation? The toolbox and manual are probably
enough so that a person could actually build something that
resembles a house, but it is almost certainly not going to be of
high enough quality to keep out the rain and elements in the way
we would typically expect.

In a similar vein, Schneier’s book talks about the fundamental
building blocks of cryptography, but there is no guidance on put-
ting together all the pieces to create a secure, authenticated con-
nection between two parties.

Plus, in the nearly 13 years since the book was last revised, our
understanding of cryptography has changed greatly. There are
things in the book that were thought to be true at the time that
later turned out to be false. For instance (pardon me while I slip
into techno-babble; the terms aren’t important to the point), MD5
was considered very strong at the time, but is now known to be
insecure for many uses. Also, the book recommends that, for mes-
sage integrity, you use CBC (cipher-block chaining) mode and use
a noncryptographic checksum over the plain text as the last block
of plain text. Even though it was presumed secure at the time, this
is now known to be insecure.

Because of that 13-year gap, there are also lots of things that a
developer should know about that weren’t mentioned back then.
For instance, there is nothing on the SSL/TLS (Transport Layer
Security) protocol or the HTTPS (HTTP over SSL) protocol. Any
good book covering how to build a practical secure system easily
should cover how to use these things correctly (hint: it’s not as
easy as it sounds).

For those who are interested in crypto gobbledygook, what set me
off on this rant was seeing yet another system that encrypts
without message authentication. The system authors were proud

Chapter 1690

that they were using the CBC encryption mode instead of ECB
(electronic codebook) mode, because there would have been easy
attacks against ECB mode. However, there are easy attacks
against CBC mode, too, when (as is almost always the case) you
care about your message staying intact. Applied Cryptography
predates work on encryption modes that offer both confidenti-
ality and message authentication by several years, and predates
NIST (National Institute for Standards in Technology) standards
for CCM (CBC+CTR mode) and GCM (Galois-Counter Mode) by
about a decade. And even if a developer does pick one of these
superior modes, it’s very easy to use them incorrectly.

I’d like to make a plea for Schneierists to not accept every word
Bruce Schneier has written as utterly factual (even though he does
totally rock). Maybe, once in a very long while, the guy can be
expressing an opinion! Or maybe he might even be wrong every
decade or so. And, most importantly, if he’s right today, it doesn’t
always make him right tomorrow.

Chapter 17 C H A P T E R 1 7

Helping Others Stay Safe
on the Internet

My nontechnical acquaintances often ask me how to stay safe on
the Internet. If you’re reading this, you probably have developed a
pretty good intuitive sense of what you should or shouldn’t do.
But what about your friends and family, who aren’t as well
informed and technical as you?

Here’s some advice you can give them:

• When your computer wants to install updates for the operat-
ing system, for your web browser, or for anything else that
you use to connect to random sites on the Internet, do it as
soon as possible! This is important because bad guys can use
software flaws to take over your computer without you
knowing it, using flaws in the software you run.

• Don’t use software you download from a file sharing applica-
tion (e.g., Limewire, Kazaa, Bearshare, or any other program
that allows you to download music or programs off the Inter-
net). Often, such software has malware.

• Don’t click on ads unless you are already very familiar with
the company or product. “Fun” looking ads, or ads that seem
too good to be true (e.g., win a free iPod), are almost always
scams, and very occasionally will automatically download bad
stuff to your computer.

• Try to avoid giving out your personal information unless
you’re sure the vendor is legitimate. A good free tool to help
you figure out which sites are legitimate is SiteAdvisor

Chapter 1792

(www.siteadvisor.com). It shows you red, yellow, and green
for each site as you browse.

• Don’t open email attachments from people you don’t know.

• Only open email attachments if you’re sure they were intention-
ally sent to you (viruses will sometimes email themselves out).

• Run AV and make sure your subscription doesn’t expire.

• Lots of websites that distribute software bundle bad stuff with
their downloads. Also, some software that appears legitimate
turns out to be bad. Only install software if:

— A reputable source determines that it is spyware-free. Spe-
cifically, if you find it on download.com, you should see
“tested spyware free.”

— A thorough web search turns up no ties to bad stuff. For
example, if you’re searching for FrobozCo WidgetWare,
search for “FrobozCo malware,” “FrobozCo spyware,”
“FrobozCo adware,” “WidgetWare malware,” “Widget-
Ware spyware,” and “WidgetWare adware.”

• Make sure your computer is behind the right kind of device so
that bad guys can’t easily take advantage of the problems in
it. You can actually do this from your computer on Windows:

1. Access the Start menu, then select All Programs ➝ Acces-
sories ➝ Command Prompt.

2. In the window that appears, type ipconfig and press Enter.

3. If you are connected via wireless, look for the Ethernet
Adaptor Wireless Network Connection section. If you are
connected by a physical wire, look for the Ethernet Adap-
tor Local Area Connection section. In the appropriate sec-
tion, look at the line that starts “IP Address”. If the number
on that line starts with 10, 192.168, or 172, where 172 is
followed by any number from 16 to 31, you are fine.

4. If you’re not fine, you really need a geek in your life. Tell
her you need to be behind NAT.

• Try to make sure you only connect to wireless systems that
require passwords. Do not stay connected if a wireless net-
work switches from requiring a password to not requiring
one. Also, try to avoid public wireless access points.

http://www.siteadvisor.com

Helping Others Stay Safe on the Internet 93

Here are the safety rules I give my children (the explanations are
very necessary, I’ve found):

• Don’t give your passwords to anybody except your parents,
not even your real-life friends.

• Don’t download or install any programs without my permis-
sion. Bad stuff often gets packaged with good stuff. If it’s safe,
I will let you download it.

• Don’t click on any ads without my permission, even if it looks
like fun or like you’re going to get something for free.

• Don’t open email attachments without my permission. If it’s
from someone you don’t know, there’s a very good chance it’s
bad, and if it’s from someone you do know, it could still be a
virus.

• Don’t give any personal information about yourself to people
that you don’t actually know in real life (particularly, last
name, address, or phone number) without my permission.

• Lots of ads try not to look like ads to trick you into clicking.
If you see that “someone has a crush on you!”, don’t click on
it.

• Only go to green websites (this assumes you have SiteAdvisor
installed). If you somehow find yourself on a red site, close
the window immediately.

• If you have any doubt whatsoever, ask me.

Chapter 18 C H A P T E R 1 8

Snake Oil: Legitimate
Vendors Sell It, Too

Traditionally, when security experts talk about snake oil products
(i.e., security products that don’t actually offer any security), they
are usually only brave enough to call out products from dubious
companies that make claims that are obviously false—almost
always around cryptography. Few people call out venture-backed
companies with well-known people on the management team.

This is partially because with most products, it’s not so clear-cut
whether they are crapware. That is, the company’s marketing
department can always find someone happy with the product, so
it turns into a battle of credibility and opinion. The technical
merits become secondary. A more common issue is that products
do something to help, but they’re not as awesome as their ven-
dors would have you believe.

At the end of the day, if we say snake oil products are ones that
don’t do what the marketing leads customers to believe they do,
many reputable security companies peddle snake oil.

For example, consider the company Trusteer. It’s backed by the
firm U.S. Venture Partners. It has some seasoned veterans on its
team, and some smart people. Plus, it has one big customer, ING
Direct, who I’ll assume is happy with them.

Trusteer’s product is snake oil.

Chapter 1896

Its marketing claims that its product, Rapport, “…protects login
credentials and transactions, from desktop to Website, even if a
computer is infected with malware.” When I first heard this claim,
I heard it directly from the company president’s mouth when he
was explaining to me what the company does (incidentally, I
thought he was a good guy who genuinely believed in the mar-
keting). I asked, “Is this even going to work when malware writers
start targeting your software?” He said, “Yes,” and that the com-
pany’s technique will protect your personal info, no matter what
infection is on your machine.

While there are a few ways you could make claims like that and
have it be defensible, the solution he explained to me didn’t sound
like it would do that job. Basically, Trusteer puts its code on your
machine, and that code obfuscates stuff. A determined attacker
should eventually be able to figure out what that code is doing
and undo it or disable it.

The only way I can imagine Trusteer defending its technical claims
is for it to say, “Well, we sit in the kernel, and malware can’t
touch us if it’s running with regular user privileges.” But in reality,
there is plenty of malware that gets inside the kernel. Often, the
bad guy just tricks the user into installing something with adminis-
trative privileges.

A few days ago, a friend sent me a link with a video that shows
custom malware that has no problem defeating Trusteer’s protec-
tion.1 The product does not do what the company claims.

If I were part of Trusteer, I’d counter this claim of snake oil by
saying, “Well, we never expected people to think it works all the
time, just that it works most of the time.” I wonder if ING Direct
knew that when it started offering its product. Because now, ING
Direct is going to its banking customers with a product that makes
people feel like they don’t have to worry about whether they’re
infected anymore. Why pay for AV when the only thing you’re
worried about is identity theft?

Even if Trusteer’s marketing claims reflected the reality of its tech-
nology, I think it promotes a false sense of security. In short, trusting
this product to do the job it claims to do only puts you at risk,

1 http://epifail.narod.ru/rapport.html

http://epifail.narod.ru/rapport.html

Snake Oil: Legitimate Vendors Sell It, Too 97

particularly because it’s not a huge stretch to think that if you’re
going to get infected, it could easily be by something that can dis-
able Trusteer’s product. In fact, if enough people are using
Trusteer’s product, that kind of malware would certainly get
pretty common.

But I suppose that if you do understand the risks, this product is
better than nothing. Certainly, if you think you have a good
chance of being infected, you shouldn’t do online banking at all,
you should worry about the infection. But if you don’t think you
are, then this product could actually help some of the time, when
it turns out you actually were infected.

As you can see, the line between snake oil and a legitimate
product is often all in the marketing. As a general rule of thumb,
security companies want to make you think you’re as secure as
possible. Many of them are happy to lead you to believe that
you’re more secure than you actually are, which could end up put-
ting you in a bad situation.

Therefore, it’s generally worth doing your homework on security
products you buy, to make sure you have at least a high-level
understanding of the technical merits and the drawbacks.

Chapter 19 C H A P T E R 1 9

Living in Fear?

I am a bit ashamed to admit that I watch the TV show 24. While I
enjoy the bubblegum plot and the action, what I really like most
about it is something else entirely.

24 is a show about homeland security. It paints a picture of a
world where we just barely survive all kinds of terrorist activities,
more by luck than anything else. It portrays a world where Home-
land Security is not effective whatsoever, mainly because good
people are choked by bureaucracy, and only people who are
willing to bend the rules will get good results.

In the world of 24, they talk a lot about computer security. Bad
guys hack government machines. Good guys hack government
machines. What I love, though, is to laugh at their absurd security
and technology discussions.

For instance, in the world of 24, the entire government is pro-
tected by one big firewall. When the bad guys control the fire-
wall, they’re instantly capable of doing anything they want on any
computer in the U.S. government. In one recent episode, the bad
guys used their access to take over the FAA flight systems.

There’s a lot wrong with that scenario. First, if you can bypass a
firewall, it doesn’t automatically give you full access to the
machines behind it—it just allows you to see those machines in the
first place. You still have to find a way onto the machines.

Chapter 19100

And then, does anyone really expect the FAA to connect the air
traffic control systems to systems that can access the public
Internet? Sure, there may be some way onto that network because
of people doing things that are against policy, meaning it’s prob-
ably possible to hack the FAA from the Internet at large, but it
would be extraordinarily difficult to leverage such a mistake. How
do bad guys know which computers have access to the FAA? Are
they going to break in to every machine they can in the U.S. and
try to check? Bad guys would be a lot better off strong-arming an
FAA employee to let them use a system. And even then, I will bet
there are systems in place to help prevent misuse, even from legiti-
mate users.

Now, good guys do indeed try to break in to bad guys’ machines.
I know people who do work on behalf of the U.S. government,
finding security problems in software that the government can
strategically exploit (hopefully, they don’t use this kind of stuff on
their own citizens). But doing things on the scale shown on a show
like 24 is extremely difficult, especially without people on the
inside.

Another example that I love is when they take a crappy photo or
video (say, for instance, from a surveillance camera) and then
“enhance” things to get all sorts of detail. While it’s possible to
make minor enhancements to pictures, the way it is portrayed on
24 could only be real if magic were real.

I think 24 is pandering to post-9/11 fears, attempting to give
people the impression that the world is a far less safe place than it
actually is. Are terrorists going to try to blow up all of the nuclear
power plants in the U.S., like they did a few seasons ago on 24?
Probably not—that’s unrealistic for a terrorist group of any size.
For a small group, there would need to be a single point of failure.
On the show, there was some magic device that gave access to all
nuclear power plant generators. That’s pure fantasy!

The problem with a big terrorist group trying to launch a large coor-
dinated attack is that the more people involved, the more risk there
is of someone identifying key players in the terrorist network and
shutting it down (even if the individual bad guys don’t know about
their targets until the last minute, as was the case with 9/11).
Blowing up even 20 power plants is overambitious and likely to fail.

Living in Fear? 101

If I were a terrorist,1 I’d be happy with blowing up one or two, and
telling the world we could, at more or less any time, do the same to
dozens of other plants. That is, the terrorists would be at their most
effective if their attacks work and spread fear.

Even in 9/11, the bad guys only tried to take a handful of planes
and ram them into a small number of monuments. That was
enough to inspire mass fear. If they had gone after 40 planes, they
would have had all sorts of complications, including difficulties
finding enough trained pilots in the U.S. who were willing to go
on suicide missions for that cause.

If the terrorists were really in a good position to run a guerrilla
war on our turf, they wouldn’t go to the effort to hit high-value
targets on a very infrequent basis. It’s just too much work!

Instead, the terrorists would make lives miserable with a bit of
guerrilla warfare, with all the bad guys acting on their own or in
independent small groups. They would blow up lots of bridges on
interstates to make it difficult for people to get where they want to
go. They would blow up train tracks to derail trains. They would
detonate bombs in low-security areas of cities with lots of people
(e.g., Times Square during a summer day). This kind of a war
would cause lots of fear, particularly in urban areas. And it would
cause our society to spend lots of money, both in undoing the
damage and in adding security measures to prevent future attacks.

But the bad guys don’t do these kinds of things. I believe there just
aren’t enough people like that who have made it to America. It’s
pretty tough to get a visa if you’re from a country with vastly dif-
ferent ideologies from ours. The overwhelming majority of the
people who do get visas have jobs or family waiting for them.
Those people are usually more interested in their own lives than
giving it all up for politics, especially when they interact with
people and learn that while our cultures are different, there are
plenty of good people here (just like in every other part of the
world). Sure, border security will never be perfect, and there
always will be a few people who get through, but it would be
tough for true malcontents to build a big enough anti-American

1 My copyeditor said I would “make a great terrorist!!” I guess that means I’m mak-
ing her job too difficult!

Chapter 19102

population to really cause consistent chaos for a long time. So, it
just doesn’t happen.

The world is becoming a safer and safer place, all things consid-
ered. Violent crime rates have been dropping for a long time now.
We do have more security measures, yet we are far more worried
about security issues. We don’t let kids out of our sight until
they’re 16. For instance, when I was 8, I used to ride my bike all
around the town I grew up in, without any parental supervision
(just be home by supper!). Today, that’s child endangerment.
Heck, I’ve seen a group of parents yelling at another parent for
leaving an 8-year-old kid to wait by himself outside a restaurant in
an amusement park, while the parent was inside using the bathroom.

I think this culture of paranoia has developed because we are
bombarded by bad stuff. It dominates the news and shows like 24.
Even if people tell us the statistics and we know we’re safer, we
don’t feel safer, because of that overexposure through TV, maga-
zines, the Internet, and so on.

In my argument so far, I’ve basically implied that national secu-
rity is largely ineffective. I think that’s a true statement, but it’s
not a full picture. Yes, it’s ineffective, because bad guys will
always have easy targets, like bridges and crowds, but there are a
couple of important questions related to this:

• Are we better off because of the security we do have?

• Would it be worth the cost to have better security?

• Could we better spend our existing dollars on security to get
us better protection?

For the first question, a lot of people would argue that most of
our security is just “theater.” Consider airline security—it looks
impressive, but it clearly doesn’t work as well as it should. Mul-
tiple times I’ve seen news stories about people successfully
sneaking loaded guns through security checkpoints (usually to test
how effective the security screeners are). Bad guys will often forgo
the checkpoint completely, and just leverage delivery people or
other workers with access to the tarmac.

Living in Fear? 103

I personally think that this perspective is a bit too cynical. No, air-
port security does not work too well. However, it can detect some
kinds of things with good enough odds that bad guys would prob-
ably not want to risk trying to walk through a checkpoint with
loaded pistols in their bags. Even though there are many holes, the
system we do have makes the bad guys work a lot harder and
spend a lot more in order to reduce their risks and increase their
odds of getting through.

In the extreme example, if we got rid of air travel security alto-
gether, it would be pretty easy for terrorists to go on suicide mis-
sions or hijackings. It seems likely that the number of incidents
would go up. Remember the days when hijackings were pretty
common occurrences? I remember it happening a lot when I was a
kid. Funny, those flights tended not to originate in the U.S. where
there was security screening, but in countries with no screening.
Now basic screening is universal.

Some people might agree with me but still ask why we have to take
off our shoes, unpack our laptops, and check most of our liquids.
That kind of screening doesn’t seem to be cost-effective. It isn’t
clear how big the real threat would be, but it’s probably pretty
small. Yet, it greatly inconveniences everybody.

I think that’s probably true. Some security experts call this kind of
stuff “security theater.” The TSA puts on a great show at the
checkpoints, but you’re really not appreciably more secure when
flying than you were before 9/11.

But there’s some hidden value here—it makes people feel safer.
Whether it works well or poorly, it is better than nothing and it
makes people feel better.

As for the question of whether the U.S. could be spending money
on homeland security more effectively, that’s a much more diffi-
cult question to answer. In theory, there should be tons of ways to
make cost-effective improvements. In practice, government
bureaucracy and the realities of running a large organization make
it extremely difficult.

Chapter 20 C H A P T E R 2 0

Is Apple Really More
Secure?

This is a pretty fun topic because people get so emotional about it,
on both sides.

Before I register my opinion, I need to be clear that I’ve been oper-
ating almost exclusively on a Mac since OS X came out in early
2001. I grew up in Unix, and never liked the lack of usability in
Windows, so it was a good fit. However, I don’t have any partic-
ular interest in making Apple look better than it really is, particu-
larly when it comes to security. So, I don’t really consider myself a
“fan boy,” but I do know plenty of people over in Apple, and I
have some insight into what its product security team looks like.

Apple and its fan boys will talk about how its platform is more
secure because there is so little malware for it.

Security people will talk about how there are plenty of vulnerabili-
ties published for OS X, and that it is certainly not inherently
more secure than other operating systems.

Both sides are correct! Yes, there are plenty of vulnerabilities in
OS X. I wouldn’t necessarily say it’s an undue number—we all
know secure software is difficult to write, and there are going to
be problems. And in anything as large as an operating system,
there are always going to be more security holes to find. I think
what’s important is that Apple seems to take things seriously and
get patches out in a timely manner when things go public (disclo-
sure tends to be when the malware starts coming out).

Chapter 20106

At the same time, it’s true that, from what I’ve seen, there are only
about half a dozen truly unique pieces of malware out there
(including the Leap Worm, the RSPlug Trojan, and the OSX_
LAMZEV backdoor). No matter how many vulnerabilities there
have been in the OS, almost none of them has been leveraged by
real malware. It’s clear that it’s far less risky (at the moment) to be
an OS X user than a Windows user, even though OS X users
probably aren’t running AV, and even though Microsoft has spent
billions improving the security of its offerings.

What gives??!! Why don’t bad guys seem to be too interested in
OS X? This is the really interesting question. It seems like OS X
should be a huge target, since the market share is now so high—
apparently, over 20% of new machines sold in the U.S. are Macs
(though Gartner claims its market share is 6%). No matter who is
right on the market share issue, I’ll hazard a guess and say that
about 7–10% of computers actually in use at any given moment
are Apples (at least in the U.S.). Even if it’s only 3%, that seems
like a huge base of PCs that should be an appealing target to bad
guys looking to build a legion of infected hosts to use in spam
campaigns, ad delivery, and so on—particularly considering that
most people running Macs don’t run AV (and that includes me!).

If you look at reported sales figures, Apple sold about 6 million
laptops and 4 million desktops in 2007. Also, I’d venture to guess
that most Mac owners are like me—they have a laptop as their
primary machine, but they still have a desktop or two sitting
around, maybe to have the bigger drive for all their photos, music,
and movies, or as a dedicated media editing workstation. But they
don’t really install a lot of software from the Internet on those
machines or spend too much time browsing the Web. I’ve got two
Apple desktops that are almost exclusively media PCs (when kids are
around, they occasionally end up browsing to sites like Disney.com
or webkinz.com while supervised). And I’ve got a couple that are
test machines and are usually turned off.

Is Apple Really More Secure? 107

Those desktops typically aren’t doing anything too risky, because
they are secondary machines for most people. It’s the laptops that
we use to surf the shady side of the Internet. The laptops are the
bulk of the Macs that get day-to-day Internet use (I’d guess north
of 80%).

If I were a bad guy, I’d be far less interested in “owning” a
machine that changes location a lot and is frequently closed. It’s a
lot harder to count on those resources, contact them, and leverage
them. Since there are so few desktops in use, I’d posit that Apple
has a much smaller market share in terms of machines that are
useful to attackers.

Plus, it costs more to produce malware for OS X because the tools
that lower the cost aren’t available. I have not yet seen anything
for OS X akin to the Pinch malware creation tool. Therefore, if
you’re a bad guy, you need to come up with Apple development
skills, whereas before, you didn’t need to have any particular skills
at all.

Eventually, Apples might be the lowest-hanging fruit, but there
seem to be plenty of Windows PCs that are still ready to be
owned. And for most people, it is far less costly to own those PCs.
Therefore, simple malware economics is doing a good job of pro-
tecting Mac users—no AV necessary.

I’m sure it will eventually become more cost-effective for bad guys
to target Macs, and it may end up getting harder for bad guys to
find Windows PCs that aren’t already owned. When that day
comes and there are real threats out there for OS X, that’s when it
will be important to have some malware protection on your Mac.
Until then, that’s one less thing I have to buy!

Chapter 21 C H A P T E R 2 1

OK, Your Mobile Phone Is
Insecure; Should You

Care?

Security vendors have long been predicting that bad guys are soon
going to be targeting mobile phones. There’s a “boy who cried
wolf” effect here. People have heard the prediction so many times
that they have stopped listening.

As far as I can tell, this prediction first emerged in 2000. AV ven-
dors have had mobile phone products out there since 2003, maybe
earlier (Airscanner seems to be the oldest mobile phone security
product I can find, and it was clearly out no later than 2003).
Every year brings new predictions and new products. Yet, there is
almost no true malware for mobile phones. There really is no
good reason to be listening to the doom and gloom.

The big question here is why the bad guys haven’t gone after
mobile platforms. After all, there were almost as many smart-
phones sold last year as there were laptop computers (both in the
120–125 million range).

And, despite what some people believe, there is money to be made
from hacking phones. A bad guy could still use malware on a
phone to do things like send spam. But there are other things a
bad guy can do. For example, in Europe, there’s a widely adopted
technology called pay-by-SMS, where you can pay for things just
by sending a text message. You can pay for online things this way,
but you can also buy sodas from soda machines, and things like
that. A bad guy could break in to a phone in Germany and use it
to buy himself a soda in Finland using pay-by-SMS technology.

Chapter 21110

There has been real malware for the Symbian smartphone oper-
ating system (currently the most popular smartphone OS, found
on many Nokia and Sony Ericsson phones) that can do that kind
of thing.

Still, there’s no mobile malware epidemic, only a few dozen pieces
of bad software. What gives?

Well, there are lots of little things that make life difficult for the
bad guy:

• Mobile providers have pretty good network security for their
phones. Bad guys can’t find a particular phone by network
address—the phone has to be actively communicating with
them. And many smartphones (for example, the iPhone) make
it tough for applications to stay in constant communication. If
a bad guy has a botnet with lots of mobile phones, she may
have a hard time addressing a lot of her bots in a timely man-
ner. But then again, if there’s enough scale, it’s not clear
whether this is a big deal. Plus, even the iPhone is being
dragged kicking and screaming into supporting push technol-
ogy, where applications don’t have to be actively running to
receive messages from the servers they deal with frequently.

• Mobile phones traditionally haven’t had awesome processing
power, which means that if malware is running, people are
highly likely to notice that their user experience sucks. These
days, malware is all about trying to be stealthy! Of course,
mobile processing power keeps getting more and more power-
ful, and already this isn’t too much of a concern on the new-
est platforms.

• On most mobile phone platforms, it is very challenging to
install and run a mobile application without the user noticing
that something fishy is happening. On the iPhone, for
instance, there’s no real way to install apps that don’t come
from the iPhone store, unless there is a wider security prob-
lem on the phone (a flaw in the underlying software). So bad
guys either need to find these flaws or build their apps so that
end users are happy to install them.

OK, Your Mobile Phone Is Insecure; Should You Care? 111

• Because of phone providers’ network security, it’s almost
impossible to install malware on the phone without the user
taking some action. Not only does a bad guy need to social-
engineer people, but most smartphone users don’t actually use
the Internet too much (in the U.S., a lot of them don’t even
know how to use text messaging).

• Having a foothold on one phone doesn’t significantly improve
a bad guy’s ability to attack other phones. It’s not like corpo-
rate worlds where a bad guy can break in to one machine,
then snoop passwords on the same subnet and scan for vulnera-
ble services on other machines behind the corporate firewall.

• Mobile phone operating systems often make it very difficult to
mess with another application. For instance, if a bad guy can
get a user to install a bad program, it may still be impossible
to see the passwords typed into the mobile web browser.

When you look at all of these factors, it’s clear that it’s generally
tough to get malware onto a mobile phone and have it run. This is
partially because there are so few users, partially because of
usability issues, and partially because of technical challenges.

Sure, there will always be the occasional virus for smartphones,
but I don’t see an epidemic emerging. At the end of the day, there
is still lower-hanging fruit for the bad guys. It is still far easier for
them to make money attacking traditional PCs and laptops then
going after mobile phones. That may eventually change, but I’m
not going to hold my breath.

Chapter 22 C H A P T E R 2 2

Do AV Vendors Write Their
Own Viruses?

One frequent (and typically serious) question I get is whether
McAfee has people writing and spreading viruses to increase the
need for its own product.

I’ve seen other people I know who work for a big AV company
get asked that question, and the answer is often an indignant, “Of
course not,” primarily because that would be illegal. In most
people’s minds, that’s defensive, and might be taken as guilt.

Personally, I think I’m ethical, and if McAfee were doing some-
thing that explicitly illegal, I’d very much feel the obligation to
blow the whistle. Certainly, I wouldn’t have gone back to the
company for a second tour of duty.

The short answer is, of course, no; at least at McAfee (and hope-
fully everywhere else), that does not happen. But a more accurate
answer would be that even though the business doesn’t condone
it, there might be some very slim chance that somewhere some-
body in the organization is a maverick producing malware.

If that were to happen, it seems highly unlikely that the incentive
would be to improve company performance. It’s such an indirect
way to benefit the company for a smart engineer who is good
enough to write malware, and he or she would know it’s uneth-
ical. If the employee were that unethical, I suspect he’d be more
inclined to do it to benefit himself, and the fact that he was at a
big company would be incidental.

Chapter 22114

I’m sure that this kind of thing has happened in the lifetime of our
industry, but as far as I’m aware, there’s never been a major AV
player that would condone that kind of thing (though I have heard
rumors that some of the small companies have done it to give
themselves the publicity of doing better than the big guys. I gener-
ally don’t find these rumors too credible).

In fact, McAfee went quite far in its attempts to ensure that no
malware accidentally spread from within the company if it could
be avoided. All malware samples were supposed to be analyzed in
air-gapped labs (meaning no network connection to the outside
world and tight control over what people can bring in and out). If
samples were not in an air-gapped lab, they weren’t supposed to
be in a format in which they might be able to execute. Generally,
this meant storing them in password-protected ZIP files. Even
though the password was always the same and well known, this
practice kept people from accidentally running infected files.

No, there was never any need for any security vendor to build its
own malware. It’s clearly quite profitable for other people to write
malware (it’s tough to even hazard a guess at the market size, but
most educated estimates do seem to agree on it being a multibillion-
dollar business). Plus, it is incredibly easy to create sophisticated
malware that can disable AV products and capture passwords. It’s
so simple, you don’t need to know how to program. Anyone who
wants to write malware badly enough can do it. The trick is all in
spreading the resulting software—making it likely that other
people will get it installed without having it trace back to you.

The barrier to entry is basically zero, particularly for a competent
social engineer. Malware is going to go where the money is, par-
ticularly since the levels of risk are so low. There are plenty of
countries where you can perform nefarious deeds without wor-
rying too much about the government coming after you. You can
launch malware campaigns or spam campaigns from the safety of
public Internet terminals.

Chapter 23 C H A P T E R 2 3

One Simple Fix for the
AV Industry

What if I told you that the AV industry as a whole could reduce
its operating costs on malware research, while providing cus-
tomers with vastly better protection? Sounds like a pipe dream,
but I say it isn’t: all the AV industry has to do is organize itself to
solve “the packer problem.”

First, let me say that I think most of the AV industry is headed
into the hurt locker. Today, research labs get thousands of unique
malware samples a day (about two to six thousand, if you look at
unique executables). And while a lot of the samples can be
detected automatically, a lot of them can’t. Most vendors can’t
keep up, even the ones with dozens of people doing AV research.
Detection rates are way down and operational costs have to go up
in order to keep up, at least while we wait for AV technology to
improve.

Let’s get to the packer problem, which is probably the single big-
gest problem in the AV space. The bad guys use packing software
and encryption software to obfuscate their malware. I’ll give you a
high-level overview of the problem (which is responsible for most
accuracy problems in AV software), and then I’ll talk about the
impact and what the AV industry should be doing about it.

Packing software basically encodes a binary, supposedly to make it
smaller. The result is a binary that unpacks itself before the original
binary runs. The packed binary will mostly look like gibberish.

Chapter 23116

An AV vendor that’s just looking at a static version of the soft-
ware can tell that there’s some sort of encoding on the binary, but
it may have big problems getting more information than that.

It might be possible to tell what’s going on by looking at the
unpack routine in the executable, and then the vendor can unpack
it and analyze the binary (it might be packed multiple times, of
course). Once the AV vendor can analyze the binary, its job is gen-
erally much, much easier.

The game here is for the bad guys to make it as challenging as
possible for the good guys to unpack (or unencrypt) their mal-
ware. It’s much easier for the bad guy to use one basic piece of
malware and keep repackaging it over and over again. That way,
if a vendor identifies one particular executable as bad, it probably
isn’t going to catch a repacked version of that executable. Bad
guys are getting really sophisticated, changing the packing for a
piece of software regularly (say, every hour, every 100 down-
loads, or even on the fly).

This is the point where a lot of techies say, “That’s absurd! Surely,
legitimate vendors don’t need to do the same kinds of things. The
AV vendors should be able to just see if something looks packed
and deny it!” Unfortunately, the world is more complicated than
that. Many legitimate software vendors like to keep their competi-
tors from prying out their trade secrets, so they will use the same
tools and techniques to obfuscate their code (let’s be realistic,
saving disk space for the stored binary is not much of a concern—
in practice, the in-memory size is much more important to
resource constraints).

The good guys are going to want to use the same tools the bad
guys are, because they both really want to do everything possible
to keep people out. So even when one can differentiate the tool
that was used, the AV vendor can’t just categorically block every-
thing produced with that tool. The vendor also needs to go ahead
and unpack the software and see if it is actually bad. That sucks
because it is pretty easy for the bad guys to create a new packer/
encryptor that will thwart existing automated attempts to unpack/
decrypt. And on the flip side, it’s basically impossible to write
something generic that unpacks/decrypts.

One Simple Fix for the AV Industry 117

One approach that AV vendors use is to try to take packed sam-
ples and see what they do. There are a number of variations on
this approach. Here are some degrees of freedom:

• They can run malware samples for real (on real hardware or on
a virtual machine), or they can run them on a custom emulator.

• They can try to determine when the sample is fully unpacked
and then analyze the static image in memory. Or they can just
forget about that and try to watch for signs of bad behavior.

• They can try to do all this in the company’s backend or they
can do it on their customer’s PCs.

Most companies mix and match, deploying several combinations of
the aforementioned ideas. For instance, the desktop AV product
may contain an emulation engine that tries to unpack things and
then analyze the results. Companies may also have backend virtual
systems that process malware samples to analyze their behaviors.

That all sounds well and good, but it turns out that these systems
don’t have the success rate one might like. For instance, if an AV
company is running an emulator on the end user’s machine, what’s
to stop a bad guy from reverse-engineering it, or at least testing
against it, until the malware no longer triggers anything? Generally,
that’s a good way to avoid detection, at least until a future content
update. And there are lots of tricks a bad guy could use to prevent
backend analysis from triggering; simple stuff like, “don’t show mal-
ware behaviors if running on a virtual machine” or, “don’t misbe-
have except in this 10-minute window on the first Friday of the
month,” tends to work pretty well, depending on the system.

As a result, there’s an ongoing arms race here, and the bad guys
are in a much stronger position.

The AV industry can collectively solve its problem if the companies
all stand together. I propose they start a Consortium for Interopera-
bility with Security Technology (it’s a CIST, not a tumor). Put a date
in the sand. Perhaps after 2010, all packed/encrypted software,
as well as abnormally self-modifying software, will be flagged
automatically as malware, unless one of the following is true:

• The application is signed by a vendor and signing credentials
are registered with CIST.

• The application was independently registered with CIST.

Chapter 23118

Most applications won’t need a digital signature or any sort of
registering, because they won’t be encrypted or packed. Compa-
nies that feel the need to protect their IPs will be willing to dish
out the pittance for code signing credentials and registration of
those credentials. Additionally, registered companies should be able
to, one time only, provide CIST with a set of legacy applications
that they’d like to ensure are not accidentally flagged as malware.

There certainly are some minor technical issues here, such as
whether all code needs to be signed, how one specifies what is
being signed, and so on. I’d personally want to see one manifest
per executable enumerating the shared libraries it uses, and a sig-
nature over all those elements. But these are minor issues that can
certainly be addressed.

Of course, CIST needs to be able to revoke people’s certificates if
it finds people who are actually peddling malware. If registration
is done properly, this system would introduce some real account-
ability, so when someone did try to game the system, it would be
easier to hunt him down and kick the crap out of him.

The AV industry needs to do this for its own sake. There needs to
be a central registry for packed/encrypted applications, for the
good of all mankind. This problem is not only expensive; it is
starting to hurt reputations of AV vendors due to bad detection.
Wouldn’t it be nice if we could go back to the days when we only
saw a few truly unique pieces of malware a day (things not easily
identifiable as slight variants of other pieces of malware)? If we
could remove the packer problem, that’s more or less where we
would be.

Chapter 24 C H A P T E R 2 4

Open Source Security:
A Red Herring

If you’re reading this book, there’s a good chance you’re at least
familiar with the open source software movement. Lots of people,
from students to professionals working part-time, write free soft-
ware that anybody else can take and modify, if they so desire. A
surprising number of large companies make major contributions
to open source software, including giant IBM. Many important
pieces of software are open source, including Apache, which is the
number-one web server platform (about half the websites on the
Internet use Apache).

About a decade ago, a guy named Eric S. Raymond started evan-
gelizing open source outside the world of the super geeks, into the
corporate world, governments, and so on. One of the claims he
made was that open source software was more secure than closed
source software because of the “many eyeballs” theory. He
believed that, because the source is freely available, lots of people
will look for security flaws in it in a way that isn’t going to
happen in the commercial world.

That argument is BS, and I have said so pretty loudly throughout
the past decade.

Don’t get me wrong—I love open source software! But, typically,
when I write an article on this topic, people will say something
like, “Clearly you don’t know anything about open source,
because if you did, you would realize it is just so much better than
commercial software!” Then I mention that I’ve written a lot of

Chapter 24120

open source software, including Mailman, the leading mailing list
manager, which has maintained its popularity over the last 12 years.

The case for open source being more secure isn’t too well defined.
The “many eyeballs” effect was the cornerstone of the original
argument.

But lots of things in the security world aren’t well defined. What
does it mean for one program to be more secure than another?
You could have two programs, A and B. Program A could have
1,000 security vulnerabilities and program B could have only 1. If
the bad guys never find the 1,000 in program A, but they do find
the one in program B, which is more secure? I think that’s all a
matter of definition. To my mind, program A has more security
vulnerabilities, and program B puts users more at risk.

The issue of open source security, then, actually consists of two
different questions:

• Do open source programs tend to have more or fewer vulner-
abilities than closed source programs? The question here is
really about the bug rate, because there is clearly a lot more
commercial software out there.

• Are open source users more or less likely to suffer from a
security problem?

I’ll try to address both of these, but I think the second is far more
important. For instance, I once owned a software service that,
when I inherited it, required over 200 servers to handle the load,
because the code was all written in Java. Now, even though the
user base is larger (because it was rewritten for performance in the
C programming language), the entire system runs quite comfort-
ably on eight machines (and could run on far fewer). The new
system costs a lot less to operate. The total cost savings for all the
machines that I don’t have to run dwarfs the expected additional
cost of dealing with security vulnerabilities. In fact, because the
system is closed and only runs within a single company (it is soft-
ware as a service, not something that goes on an end user’s desktop),
and because we did invest in secure development practices, the
future cost of dealing with vulnerabilities might even be zero, even if
there are big security vulnerabilities waiting to be found.

Let’s look at some of the major factors that contribute to both of
our questions about how secure programs will be:

Open Source Security: A Red Herring 121

The security knowledge of the people who design and write the code
The more you understand about security problems, the more
likely you are to avoid the kinds of problems you know about.
This impacts both open source and proprietary software. There
are high school kids working on prominent open source projects
who are uneducated about security issues, but then again, most
open source people are passionate about programming and
know something about security (or at least, think they know
something). In the commercial world, there are a lot of develop-
ers who don’t enjoy their jobs; they only enjoy cashing the pay-
check. On the other hand, many open source developers, being
self-trained, actually don’t have a well-rounded education of
software security. They know about a few things, but there’s a
lot they typically haven’t been exposed to. However, most
medium and large development organizations offer training for
their development teams to teach them about security issues.

I have seen some evidence from people measuring the effec-
tiveness of training that suggests that software security train-
ing doesn’t work very well. It seems that, even for highly rated
teachers, most developers forget much of what they learn
within six months of the training. Based on everything I’ve
seen, I believe that passionate people are going to retain train-
ing better. However, I think that it is important to be passion-
ate about security. Even in the open source world, people who
are passionate about their individual products couldn’t care
less about security, and won’t really learn.

The level of performance from the people building code
By this, I mean that even people who understand security
problems are not immune to them. As a developer, if you’re
focused on a feature you’re having problems with, it may be
very easy to let a security issue slip by. I think that commer-
cial development environments often encourage better disci-
pline here. In my experience, commercial environments are
vastly more likely to schedule in explicit time for developers to
do security tasks, or to put tools in place to enforce good cod-
ing practices. For instance, many commercial organizations
have tools that prevent individuals from adding code that
match some definition of “risky.” That’s a very uncommon
practice in the open source world.

Chapter 24122

The technology choices the development team makes
For instance, some people will write in the C programming
language because they need its performance for their applica-
tions. Commercial environments are far more likely to pay to
use tools that help produce more secure software; even though
there are some free tools that everyone can use, commercial
companies are a whole lot more willing, on average, to spend
money on the problem. And, because there is money to be
spent, the commercial tools are usually a lot more useful than
the free tools.

The ease with which people could find security problems
If the person looking for security vulnerabilities has the source
code and the ability to run the program, that’s a best-case sce-
nario. If you take away the source code, the job generally gets
much harder. Yes, there are often issues that can be found
pretty easily without looking at the source code (through fuzz
testing, for example), but anyone can do those things. And
once all the low-hanging fruit is gone, you’ve got to start
looking at the actual code of the program. The source code
shows a high-level, easy-to-understand representation of the
code that the computer actually runs. If you don’t have that,
you have to look at something far more low-level. It’s still
possible, but far fewer people have the skill set (reverse-
engineering), and even for the people who do, the level of
effort increases tremendously.

Even if you’re more of a target because you’re creating com-
mercial software, increasing the cost of finding bugs means
that the people looking for them will generally have to choose
either to spend more or find fewer bugs. Since the skill set is
so technical and there isn’t a big supply of people possessing
it, it’s obvious that researchers are finding far fewer bugs than
they would if they had the source code.

Plus, in a Software-as-a-Service model, the world at large
doesn’t even get the benefit of having a program to reverse-
engineer.

The actions that people take when they find bugs
There are plenty of security researchers finding security bugs
and publishing them to the world. That puts people at risk.

Open Source Security: A Red Herring 123

Then there are a few people looking for security bugs in order
to use them for their own nefarious purposes. When a com-
pany does its own auditing or pays for someone else to do
auditing, it generally isn’t going to tell the world about the
problems—it’s just going to fix them silently. If nobody else
knows about the problem, people are generally safer, espe-
cially since they don’t typically upgrade very often, even if
there are security issues.

How quickly users upgrade
If users upgrade quickly, they’ll be less at risk, assuming soft-
ware gets safer with each new release. Sometimes that’s not
true, because new code can add new bugs. If bad guys find
out about bugs in a new version, the old version might still be
safe. Generally, it is probably smart to always upgrade
quickly, if all you care about is risk reduction (there may be
other reasons not to upgrade, like cost, more bugs in the new
version, and so on).

The number and skills of the people looking for security problems
Most people who have access to open source code don’t look
at it, or don’t put in the effort required to understand much of
it, if they do give it a casual look. Most of the people who
really dig in do so only to fix a bug or add a feature they
wanted. There is a community of people who are trying to
find bugs in programs, but they are generally trying to boost
their reputations (some do look for flaws in order to use them
maliciously). But the bad guys mainly just use the flaws that
security researchers find (the security researchers hope they
are actually making software more safe by helping get rid of
the problems). Security researchers might use their time to
look at the top pieces of open source, but then again, if the
“many eyeballs” theory is correct, most of the things have
been picked over pretty well (and are probably pretty secure).
But for the many open source programs that have some users
but wouldn’t be prestigious (meaning they’re not important
enough to be resume-building for a vulnerability finder), are
they going to get the eyeballs looking for security problems?
Or are the good security auditors going to take their skills to
high-profile commercial targets? There are tons more promi-
nent programs from closed vendors than there are from open

Chapter 24124

source vendors, and large software companies tend to have
hundreds of products. If you can find a product from a major
vendor that doesn’t have a big budget (because it doesn’t have
many users), that might be a great place to go looking for
security bugs, because there’s a good chance the security prac-
tices won’t be up to par for the rest of the company. And,
unlike in the open source world, it doesn’t matter that there
aren’t many users; you will get credit from your peers because
you found a problem in software from a major vendor.

Yes, it can be a whole lot tougher to find bugs when you don’t
have the source code, but it’s not impossible. Sometimes it’s
downright easy, if you build the right kind of simple testing tools.
In fact, doing the harder work makes you more awesome in the
eyes of your peers. Plus, there may actually be more bugs waiting
to be found in commercial software. Since commercial software
projects tend to be a lot bigger than open source projects, even if a
commercial program is likely to have a lower defect rate than an
open source project (not a given, of course), there may very well
be far more security bugs in the program, because there are far
more lines of code.

At the end of the day, I’d say there are probably only a couple
thousand full-time equivalents looking for security problems in
software. The important stuff in the open source world is picked
over pretty well, but the average large corporation probably hasn’t
gotten too much attention, particularly because the workload is
likely to be higher to find bugs.

Plus, companies are more willing to spend money on finding secu-
rity problems, either directly by hiring people to take a look, or
indirectly by having staff spend time on the problem (though com-
panies will often spend money for tools to help in the process). A
big driver here is the U.S. government, which is generally afraid
of open source (though, thankfully, that is slowly changing).
However, I have seen the government require commercial vendors
to get an external security audit before it will buy. I have even
seen it invest in doing the audit itself.

All in all, I don’t think it necessarily follows that open source is
getting more eyeballs. Probably the top programs are, but when
you look at the average commercial product from a major vendor,
I think there’s a good chance that it has received more attention.

Open Source Security: A Red Herring 125

For the most part, I think the issue of whether source is open or
proprietary is a red herring. Pure software-as-a-service/web-based
delivery is an exception. I think there is clearly an advantage to
keeping the source closed in that case.

Why a red herring? As geeks like to say, “Correlation is not causa-
tion.” It’s not really whether something is open or closed that
leads to better software. A better indicator is how much money
was spent on securing the software.

Here, the most popular software is generally best off. The most
popular open source software gets reviewed more. The most pop-
ular commercial software typically has a large investment in
training, tools, auditing, and so on.

Sure, there might be some pros to open source (maybe open
source authors do tend to introduce fewer bugs, because there’s a
lot less code), and some advantages to closed source (the diffi-
culty of finding the bugs that are there, for example).

However, there is no real evidence that any of these advantages of
either model has a significant impact, whereas money and effort
clearly do.

Getting a bit more specific, to answer the question, “Is open
source or closed source more likely to yield more security bugs?”,
I would say, “There’s no sure data, but whether or not the source
is open is probably not a relevant factor if it’s a popular product.”
There are, of course, relevant factors.

For example, money spent on avoiding bugs during design goes a
lot further than money spent fixing a bad design. Email systems
like Postfix and qmail probably have less of an investment in their
security than Sendmail does, but all of Sendmail’s investment
came after it became clear that its design was poor and there were
tons of bugs. On the other hand, the designers of Postfix and
qmail were incredibly defensive when they were building the
software.

Now, let’s get back to the question, “Are users of the commercial
version or the open source version more or less likely to be
affected?”

Frankly, you’re probably safest running all open source on a
Linux box. But that’s only because so few people use Linux

Chapter 24126

machines that the bad guys don’t invest their money here. If 80%
of the world ran Linux, you’d probably be much safer running
Windows! And if you ran all commercial software on the Linux
box, except for the core OS itself, you’d probably be safer still.

In practice, most people want to run pretty mainstream environ-
ments, so this question only really matters when there’s both open
and closed alternatives that work on the same platform.

Here again, I see it boiling down to the popularity of the pack-
ages and other factors such as how the money was spent. And, of
course, there’s the matter of how many bugs there are in the pro-
gram and how many of them have been found.

For instance, maybe Microsoft’s Exchange server now has more
security flaws left in it than Sendmail, but if bad guys find yet
another new Sendmail bug, the Exchange users are going to be
safer. Historically, you’ve been safer as an Exchange user (but
safest as a qmail user).

All in all, you can argue the open versus closed issue forever, but
there isn’t strong evidence to suggest that that’s the right question
to be asking in the first place.

Chapter 25 C H A P T E R 2 5

Why SiteAdvisor Was Such
a Good Idea

One of the first things I worked on at McAfee was the SiteAdvisor
acquisition. For those who don’t know, SiteAdvisor basically tells
you which sites are good and which sites are bad. The end user
sees a green check or a red “x” annotating web search results. If
you browse to a web page, there’s also an indicator of whether the
site is good or bad.

The way SiteAdvisor does this is incredibly impressive. It basically
tests the entire Web. It’s tough to reach that kind of scale, but this
tiny little startup did a great job of solving the major technical
issues. Frankly, before seeing what the SiteAdvisor team did, I
would have thought the approach was probably unworkable. It’s
no surprise at all that those guys were the first (by far) to come up
with a credible product, because it was incredibly complex and
seemed insane.

Plenty of people have had criticisms of the approach. For instance,
before its acquisition by AVG, Exploit Prevention Labs (XPL)
would criticize SiteAdvisor publicly for not doing real-time testing.
SiteAdvisor does its testing offline and then periodically updates
its master database, which clients then query. The theory was that
it would catch more exploits because the result was based on right
now, not when a third party tested. This was pretty self-serving of
XPL, because it was peddling browser-based exploit detection that
runs as you browse.

Chapter 25128

XPL’s technology was fine, but even though it billed itself as com-
petitive with SiteAdvisor, I considered XPL irrelevant because it
did not provide much customer value. First, exploit detection is
almost irrelevant to the web browsing experience. Well under half
a percent of websites have an active exploit on it, and the sites
that do are often not going to be found by browsing. The odds of
someone browsing his way into an exploit are basically miniscule.
This is particularly the case since most web traffic goes to a small
number of sites, and those sites get enough traffic that they tend to
have better security and are a lot less likely to be hosting some
kind of exploit. While SiteAdvisor protects against this kind of
thing, it wasn’t a big threat to consumers in the first place.

SiteAdvisor’s primary value is in telling people what else is wrong
with a site. SiteAdvisor signs up for mailing lists and then looks to
see if those mailing lists are going to spam you, and whether you
will be able to unsubscribe from those lists. It tells you if you’re
going to be flooded with pop ups. It tells you whether a site you
go to has downloads with spyware in it. These are things that are
far more common on the Web and will actually have a big impact
on people’s daily browsing experiences.

For instance, right now, when I search for “screensavers” on
Google, I can see that most links, including all the top ones, are
likely to distribute adware. That’s not something most people
would think about without something like SiteAdvisor. And all
this, despite the fact that Google has, for quite a long time, been
trying to flag “bad” sites in its search results. Google also sticks to
exploits instead of trying to make judgment calls about adware
and so on.

With traditional host security solutions such as AV, the end con-
sumer doesn’t really get to see AV working, particularly when
nothing bad is happening. Only people who download malware
see anything working. Out of sight, out of mind! It’s no surprise
that consumers see less value than they used to in host security,
and that their willingness to pay is plummeting. With SiteAdvisor,
McAfee gets to show all its consumer users the company’s value
on a daily basis as they browse the Web, and does so in a non-
intrusive way. That’s the value I saw the second I walked through
the door, and nobody I’ve seen has been able to come close to
matching it in the three years since.

Chapter 26 C H A P T E R 2 6

Is There Anything We Can
Do About Identity Theft?

One of the biggest drivers for IT security spending today is the
threat of identity theft. The laws and regulations vary by region
and by business, but many companies face liability if they are
responsible for negligent data loss.

In reality, lots of data gets lost or stolen. According to the Privacy
Rights Clearinghouse, in the United States alone, there have been
over 215 million electronic data records lost since the beginning of
2005. Now, most of the time, those records aren’t used in identity
theft, because they are lost, not stolen. For example, McAfee once
had an auditor leave a CD with employee data in a airplane seat
pocket. The data almost certainly went out with the trash. But, it
happens often enough that there is real risk to consumers.

Plus, there are traditional methods of stealing personal informa-
tion that aren’t counted, such as copying down credit card infor-
mation at a restaurant, going through someone’s garbage, and so
on. The risk to the average consumer is high enough, particularly
considering it can take weeks of phone calls to clear up the damage
done, when it is possible at all. Some people are left with massive
credit problems.

There are several ways to make small amounts of progress on the
problem. For example, many companies have made significant
investments in data encryption for laptops. That way, if an
employee with personal data on his laptop actually loses the
laptop, a potential thief won’t be able to get data off of it.

Chapter 26130

Another technique that has a big practical impact for consumers
is ensuring that the consumer’s credit card never has to leave her
sight in a transaction. In restaurants, instead of giving the waiter
a credit card and having him disappear into the back, where he is
free to copy everything down—including the verification number
(CCV)—the waiter instead brings a portable card reader and
allows you to swipe the card and watch the whole transaction at
your table. This system is already widespread in many parts of
the world, but the first major deployment of this technology in
the U.S. only happened in 2007, with the Legal Seafood restau-
rant chain.

Still, these patchwork solutions don’t eliminate enough risk, par-
ticularly in the U.S., where there is one huge point of failure—the
Social Security number. Americans are compelled to use their
Social Security numbers as a single identifier for most financial-
related things. Basically, any time someone needs to run a credit
check on you, he will require your Social Security number, and
you will most likely give it to him. You have to give it to your
credit card companies, mortgage brokers, and even the guy in
your local cell phone store when he runs a credit check on you for
your new phone.

If any one of the organizations to whom you gave the number
loses it, or if someone steals your wallet with your Social Secu-
rity card in it, then, with just a bit more personal information
that is easy to get, a bad guy can open up a line of credit in your
name that you probably wouldn’t know about until it was too
late.

Some people address this through credit monitoring services, but
such services require a fairly expensive annual subscription, and
even if the credit industry were to give them away for free (a very
expensive proposition), there would be problems when people
move, change their contact information, or are not financially
sophisticated consumers.

Is There Anything We Can Do About Identity Theft? 131

Instead, it would be better if we could have identifiers that are as
functional as the Social Security number but more secure, so that
if someone steals it, she can’t actually do anything to harm the
victim’s credit.

Technically, with modern cryptography, this is not too chal-
lenging a problem. Imagine a system in which you give each com-
pany that needs to track you financially a separate Social Security
number that is still unique to you. The number could be com-
puted by some piece of software running on your phone or a tiny
smart card that you keep in your wallet. The number could be tied
just to that vendor, too. For example, let’s say that you apply for a
loan at Fred’s Bank. Fred’s Bank would want an identifier for you
that it could use for your credit check. It would give you its own
identifier, which you would enter into your phone or whatever
device generates your one-time identifiers. You could certainly
specify what you wanted the vendor to be able to do with the
identifier, such as allowing it only to run a single credit check, or,
in the case of a mortgage company, you might allow multiple
credit checks over a 30-day period.

With this kind of system in place, if you walked into a cell phone
store and had a credit check run on you with this kind of identi-
fier, employees of the store would not be able to take that identi-
fier and use it to open up a checking account, because the bank
would know that the number was not intended for them. If
someone tried to check your credit with Equifax using a stolen
number, Equifax would be able to see who you originally gave the
number to, how long it was supposed to be valid, and what you
were allowing that vendor to use it for. If some other organiza-
tion tried to run a credit check with that number, Equifax would
not allow it.

In this scenario, the one-time Social Security numbers could all
start with a public prefix that is unique to you, much like your
existing Social Security number. But the rest of the number would
be specific to the use, and would be critical for a vendor to actu-
ally do anything with it.

Chapter 26132

Everything surrounding this scheme could be automated pretty
easily with software. Let’s say you were in a cellular store, which
wanted to run a credit check. And let’s say you had a little smart-
card with the one-time Social Security number generator on it.
You could stick the card in the store’s reader, then enter a per-
sonal PIN to authorize generation of the one-time number (adding
another layer of security, to protect against the card itself being
stolen and used by another individual). Your card would then
store a record of what it generated, which you could upload to
your computer at home. The number would be uploaded automat-
ically to the store, so nobody would have to bother writing it
down (which is a good thing, because it would end up quite a bit
longer than a traditional Social Security number). The whole
scheme could also be implemented on a phone, using Bluetooth,
or with a little reader using RFID.

Technologically, it would be no great challenge to design a highly
secure scheme in line with what is described here. But just because
it’s technically feasible doesn’t mean it would necessarily be able
to happen. There are huge practical barriers for this scheme to be
adopted.

The first big barrier is the standardization that would be neces-
sary. The technical details need to be very precisely specified,
because thousands of companies are going to need to implement
parts of the system. Not all vendors will be building card readers,
but many vendors will at least need to make modifications to their
internal applications to handle the new numbers, which requires
precise specification. The standardization process for an impor-
tant piece of technology, even if it is a simple piece of technology,
usually takes a minimum of three years, and can often take a lot
longer than that. Plus, there will be many companies sitting at the
standards table with conflicting agendas. For instance, the Blue-
tooth manufacturers might want to see the technology deployed
through phones, whereas other vendors may prefer to see some-
thing cheaper based on smart cards. People will naturally tend to
look for compromise solutions that will be all things to all ven-
dors, even though they risk killing the technology by making it too
confusing, difficult to use, or expensive.

Is There Anything We Can Do About Identity Theft? 133

And everything would have to be designed and implemented in a
way that supports backward compatibility with existing Social
Security numbers. This requires careful consideration to ensure
that the cost of implementation and transition isn’t higher than
necessary.

Once a standard is far enough along that companies can feel com-
fortable starting to implement it, they need to actually do the work
and test it, which can be time-consuming. Plus, the industry needs a
financial incentive to support this new technique, which probably
isn’t going to be pushed from consumers. Instead, it’s probably
going to need to come from government regulation (which will take
some time, though it could easily just refer to a standard).

The biggest challenge with a scheme like this is the cost, which is a
large practical barrier to adoption. There are research and develop-
ment costs to get new software and hardware developed, tested, and
deployed. Then, individual vendors need to get and deploy their
hardware and software, which will generally be a nontrivial task.

Then, software, and possibly smart card hardware, needs to make
it into the hands of the end consumer. There’s going to be a cost
associated with the Social Security Administration validating
people before giving them hardware, and then there is the actual
cost of the hardware itself. How does that bill get covered?
Undoubtedly, some subsidies will be necessary in order to get it
into everybody’s hands. However, there is no need for everybody
to have this technology at first, only those people who are particu-
larly worried about identity theft and who can afford to cover the
cost. In all likelihood, even with mass-produced tokens instead of
software, the overall cost to an end user should be well under $25,
even for early adopters carrying the cost of the entire supply
chain. Over time, the cost should go down, allowing the govern-
ment to more easily subsidize it for low-income families.

Identity theft is certainly a significant problem that the industry
needs to address, but even though the costs would be high and the
lead time would be long, the world is better off taking a long-term
approach and trying to solve the crux of the problem once, instead
of continually plugging small holes in a dam that is about to burst.

Chapter 26134

In a practical sense, I strongly urge the U.S. government to task
NIST (the National Institute of Standards and Technology) to lead
development of a national standard for a Social Security number
replacement, and then mandate its deployment on a long-term
roll-out schedule. If such an effort were to begin in 2009, it would
be quite feasible to see a real solution for those who are willing to
pay a modest fee for it by 2020.

Chapter 27 C H A P T E R 2 7

Virtualization:
Host Security’s Silver

Bullet?

The biggest problem with host-based security has always been
what happens when your protection fails. And yes, all traditional
host-based protections will have the potential for failure, espe-
cially when you consider that it’s generally easy to trick users into
installing bad stuff.

But when your protection fails, and the bad guy has a foothold on
your machine, you’re in a very bad spot. The bad guy generally
can, if he puts in the effort, disable any security product you are
running on your machine. So even if your product of choice even-
tually does protect against a threat, it could be too late for you.

Often, when bad guys disable things, they don’t disable all secu-
rity products. If you’re using a good product that isn’t as popular,
that can leave you better off than running something with a brand
name that every bad guy in the world will want to target.

The security industry hasn’t been able to overcome this problem in
the past 15 years. I expect to see that change because there is a rel-
atively easy solution to this problem—virtualization technology.

With virtualization, you can run one operating system on another.
I don’t mean that you have to be running two graphical user inter-
faces on top of each other, such as running Windows on Mac OS
X. Instead, you could have a very small operating system that the
user typically doesn’t see. Just for the sake of discussion, let’s call
it SecureOS. This operating system would have your desktop

Chapter 27136

operating system of choice running in it (for discussion, let’s
assume you’re running Windows). In an ideal world, your secu-
rity software could run inside SecureOS and be able to protect
Windows. If Windows got infected, only Windows would suffer.
That’s because, from the Windows point of view, it is running on
some machine and doesn’t see that it’s really at the mercy of
SecureOS.

If a bad guy breaks into your machine without being detected by
your AV or other host security software, he has still only broken
into Windows, and not SecureOS. The AV software can still make
a network connection from within SecureOS to get updates that
would allow it to clean up your infected Windows installation
after the fact. Right now, once Windows is infected, the only sure-
fire way to make sure your AV (or other host security product) is
doing its job is to download a boot-time scanner on a known safe
machine, and then run it when rebooting the potentially infected
computer. Even rebooting is too much of a PITA (pain in the
[neck]) for users. With virtualization, the user doesn’t have to do
anything—it can all happen automatically in the background.

This scheme is technically feasible, though it is complicated to
build. Particularly, moving all of your host security out of Win-
dows would require a lot of work, because host security products
generally rely on parts of Windows to run well, even if it’s just the
filesystem. However, there is a middle ground where some secu-
rity code can run inside the OS if necessary, talking to the
SecureOS. The SecureOS would monitor the integrity of the secu-
rity code within Windows so that it could detect when the bad
guys are tampering with it. Plus, the communications and update
channel would always want to live outside of Windows.

Additionally, there’s the issue of what happens when SecureOS is
itself not so secure. That is, if the virtualization platform has a
security problem, it could be possible for a bad guy to break in to
it if he breaks in to Windows. However, there’s far less of an
attack surface here. That means there are far fewer doors and win-
dows to secure than normal, which generally would make it less
risky for you.

Virtualization: Host Security’s Silver Bullet? 137

The same kind of virtualization technology can provide great pro-
tection for your personal data. Your personal data (particularly
credit card numbers, Social Security numbers, and things like your
mother’s maiden name) need never leave SecureOS unless it is
explicitly encrypted for the company you want to do business with.
Your Windows machine would just be relaying some encrypted
data, and wouldn’t be able to see your personal information.
Clearly, there has to be a way to enter and change your personal
data in such a way that the user won’t be confused as to whether
or not it is secure. At the end of the day, that’s a big usability
problem, but there is no real underlying technological issue.

One of the key requirements for a system like this is having true
boundaries between operating systems, with limited communica-
tion interfaces (i.e., a small attack service). There are solutions
where things run semi-virtualized, meaning inside the operating
system, but with a lot of trickery to try to make programs unable
to see other programs running). Such solutions have some
usability problems that will make it extremely difficult for these
solutions to be any kind of silver bullet, and they also have a
much bigger attack surface, since they really are running inside the
operating system.

However, you could do this kind of thing at the hardware or BIOS
level. Hardware-level support for virtualization helps bring this
kind of technology closer to reality. And if Apple wants a real leg
up over Microsoft, it should put this kind of technology into the
Open Firmware, which it controls (in contrast, Microsoft does not
control the firmware for the machines on which it runs, which
makes its virtualization efforts even more important).

The major issue with this application of virtualization technology
is the cost. Host security vendors would have to do a lot of engi-
neering work to retool their technologies. Then they would have
to get customers to consent to the virtualization. On new hard-
ware with direct virtualization support, there wouldn’t necessarily
be much or any performance impact, but legacy computers
would certainly have a big issue. Plus, even for existing hard-
ware that does support virtualization technology, vendors would
have to wrestle with people migrating their nonvirtualized OSs to
a virtualized setup.

Chapter 27138

Nonetheless, I think virtualization is the long-term future of host
security. Your main OS will eventually be virtualized as a “guest”
operating system. Security services will start migrating into the
“host” OS, which, I hope, will be a small, dedicated piece of
technology.

If we can make it that far, the advantage in the never-ending war
between security vendors and the bad guys will, for the first time,
shift to the security vendors. Vendors will be able to make pretty
reasonable security guarantees under reasonable assumptions. No
longer will they have to cross their fingers and hope the bad guys
don’t get administrative privileges or find a way to break in to
SecureOS, something that, as a specific and constrained piece of
technology, will be fundamentally easier to secure than an entire
operating system.

Chapter 28 C H A P T E R 2 8

When Will We Get Rid of
All the Security
Vulnerabilities?

There are two common ways for malware to get onto a machine:

• The victim puts it on there himself. This is usually uninten-
tional, as in the case of downloading something like a screen-
saver that really has malware bundled with it.

• The user does nothing wrong, but the malware shows up
anyway. This occurs because of security flaws in the software.

There are tons of security vulnerabilities in software. They’re
swarming all over the place. From 2005 until today, an average of
over 7,000 vulnerabilities each year have been publicly disclosed
in popular software. There are many, many more vulnerabilities
than are publicly disclosed. Some are found and fixed, but there
will always be many security vulnerabilities that are never found.

In some sense, we can try to make it as easy as possible for users
not to screw themselves, but some people will always fall prey to
legitimate-looking scams, so there will always be a problem. But
my data suggests that more than half of all malware shows up
when the user does nothing wrong. Then there are all the security
problems in web applications that can put your data, if not your
machine, at risk.

It seems like we should be able to do something about this problem.
After all, can’t the developers writing all the software fix it?

Chapter 28140

Frankly, I don’t see software ever being free of vulnerabilities.
Let’s assume for the moment that we already know everything
about how software might fail and be used for evil purposes (even
though we don’t). We still have a lot of problems:

• It isn’t worth it financially to try to train everyone to be an
expert.

• It really isn’t possible to turn most people into secure pro-
gramming experts anyway.

• There are no incentives for developers to spend time on security.

• There are no incentives for companies to invest enough in the
problem.

• Even experts make mistakes and miss things, so we would
have a hard time getting rid of all the problems.

There’s a lot that can go wrong in software that a bad guy can
exploit. Becoming an expert in everything that might possibly go
wrong basically requires studying security and working only in
security for a long time. For example, when you get into areas
like cryptography, the technical complexities take a long time to
master. To really understand that field, instead of just fol-
lowing some rules that a master of the field gives you, you need a
deep, graduate school–level of understanding of lots of obscure
mathematics.

Most of the people who are “secure programming” experts don’t
even have a deep understanding of cryptography. The guidance on
cryptography in many secure programming books is flat-out
wrong and will lead to the creation of programs a bad guy can
attack. Heck, there are several cryptography books where that’s
the case.

The point is, it’s never going to be cost-effective to fill people’s
heads with all the knowledge they need to avoid security prob-
lems. Even if computer science classes devoted one class per
semester for the full four years of college to the problem, it
wouldn’t be enough.

Yes, there’s a lot of material to master and it’s hard to absorb all
of it. But more than that, there are plenty of people who will never
absorb any of it. In the late 1990s I did a lot of security con-
sulting and spent plenty of time in large development organiza-
tions in a variety of industries. There were always one or two

When Will We Get Rid of All the Security Vulnerabilities? 141

people who were enthusiastic about security, but didn’t have time
to learn. But approximately 3/4 of the people I’d meet had no pas-
sion whatsoever for technology. They would generally leave work
at 5:00 p.m. and do the minimum (but little more), because they
saw their jobs as a paycheck, not something they enjoyed. People
like that are unlikely under any circumstances to have the passion
necessary to master the depth of security problems.

But even the people who could learn all the material and might
actually enjoy it have no real incentive to become security experts
because their companies don’t reward security expertise. This is
partially because it’s tough to measure that kind of expertise, and
partially because many companies have little incentive to care
about security, since their customers don’t demand it.

In a typical development organization, developers are measured
on schedule accuracy—whether they get stuff done on time. When
you look at the typical schedule, the focus is on the features that
customers want. In some organizations, security tasks might actu-
ally make it into the schedule, but they’re usually not the top pri-
ority—if something else is slipping, security tasks might get cut.

And if the task is, “review the code to try to find security bugs,”
how do you measure success, and how do you measure quality of
effort? If the developer comes back and says, “I didn’t find any
security bugs,” there may not be any, or there may be dozens,
even hundreds. Either way, it’s difficult to tell whether the devel-
oper did a poor job or a good job. Even if there are dozens of
bugs, maybe they’re all extremely obscure and require a level of
expertise the developer doesn’t have.

One way you might think to address the problem is with tools
that try to find problems automatically. Some tools like this exist,
but there are entire classes of security problems that such tools
aren’t ever going to be able to find by themselves—it will always
take a human to find them.

Even when trying to get developers to do preventive things, it’s
often tough to measure whether they’re actually doing them. And,
if they don’t do them, they’re more likely to be rewarded with
bonuses because they’re more likely to meet their schedules.

And what happens if someone finds a security vulnerability in the
product later on? The organization deals with the problem, but

Chapter 28142

I’ve yet to see anyone get in trouble for it. Perhaps the company
will try to do better on a shoestring budget, but even if it fails,
nobody takes any blame.

The philosophy is generally that the developers aren’t security
experts. Even if they’ve spent a lot of time in training and are
making best efforts, they are probably not immune from acciden-
tally leaving behind security problems.

I think that philosophy is right. Even well-respected security
experts have accidentally left security holes in their software. It’s
too much to expect the average 9-to-5 guy to be anywhere near
that good, especially when there’s so much he’d have to master to
make a real difference.

It’s pretty rare that companies have to deal with security issues,
relative to the number of problems that are likely lurking in their
code. Let’s say there is about 1 security vulnerability per 10,000
lines of code. I’ve done this study a few times over the years.
There are a lot of variables, and the number can get a lot better (if
you’re Dan Bernstein), or a lot worse (if you’re the average C
developer), but this is a good enough guess for our purposes. Let’s
say there are only 10 billion lines of code in the world in produc-
tion (there are probably a lot more than that, as many commer-
cial applications have a few million lines of code).

That would lead us to believe there are at least a million security
vulnerabilities out there waiting to be found. Last year, however,
the public only heard about 7,000 of them. Over the lifetime of
the Internet, we are unlikely to have found more than 2% of the
security vulnerabilities out there.

If you’ve got security problems, but nobody on the outside world
is going to find most of them, then it generally doesn’t make much
sense to spend money trying to eliminate vulnerabilities. For most
small businesses, it probably doesn’t make any sense at all, because
people on the outside world aren’t likely to target their software.

If you’re Microsoft or Oracle, you’re going to be a big target, and
if people find enough vulnerabilities, you might get a bad reputa-
tion for security (as happened to both those companies), which
not only impacts your brand, but can ultimately lead people to
your competitors. There, you might care.

When Will We Get Rid of All the Security Vulnerabilities? 143

What about in the middle? Well, let’s look at a well-known soft-
ware company that we won’t name. For about 10 million unique
lines of code, it has had about 40 vulnerabilities found over the
lifetime of all its products (many of them not even serious, so only
a handful that really could impact its users). Since most of its
applications are written in C or C++, I would expect it to have
more like one vulnerability per every 2,000 lines of code. If we
assume these guys are following all the best practices, they might
be able to get down to one vulnerability per 5,000 lines of code.
Well, it should have at least 2,000 vulnerabilities in its software. If
that’s the case, the outside world has found 2% of the vulnerabili-
ties we would expect to be there.

To get its good security reputation (relative to most companies),
this company spends less than $1 million a year on making its
products more secure. Remember, this is a company with prac-
tices I’d consider to be above the industry norm. If this company
were to have any hope at all of finding all the bugs in its soft-
ware, it would have to spend a lot of cash.

Look at Microsoft, which has spent billions on this problem, done
a great job of tackling it, and hasn’t come close to keeping all the
security problems out of the software it releases. The security
company Secunia released 71 advisories in Microsoft products in
the first 10 months of 2008. In all of 2007, they released only 69.
Advisories often refer to multiple similar bugs found at the same
time, so in each of the past three years, Microsoft has had over
100 vulnerabilities in its vast software portfolio exposed to the
public. Microsoft really started spending a lot of money on the
problem in 2002, so six years and a couple billion dollars later, it
hasn’t come close to eliminating the problem.

In fact, a massive amount of the development effort for Vista was
in securing it. Microsoft went around and touted Vista as the most
secure operating system ever. Yet, in 2007, the first full year Vista
was out, there were still 36 public vulnerabilities announced, just
specific to Vista. Granted, that’s better than the first 12 months
that Windows XP was out, when there were 119 announced (and
not all of them were fixed in that year). But Windows XP didn’t
benefit from the security spend. Vista benefited from about $1
billion in spending, and only saw a 70% reduction in first-year
vulnerabilities.

Chapter 28144

This seems like a losing battle. Let’s say that Microsoft had done
no work on the problem, and the year-one bug count was twice
XP’s. Instead of spending $1 billion on overall improvements, it
could have budgeted $1 million for each of the 238 expected vul-
nerabilities, with the money going to fixing each problem as
quickly as possible and getting the fixes out. Most of the cost
manifests itself in schedule slip, and probably just would have
been absorbed without spending. But let’s say Microsoft would
have spent that $1 million anyway. That’s still less than 1/4 of the
amount it actually spent.

Again, I do think it made sense for Microsoft to spend all that
money, because it had a very real brand problem due to the bad
security of XP. But, if you’re any other company (well, except for
maybe a big financial company or a government agency), the cost
of “doing it right” is far higher than the cost of only responding
when someone does find a problem, and other companies are
unlikely to be risking brand damage.

Look at Apple. People often find security vulnerabilities in the
products, often dozens at a time. And while the security industry
knows this, the world sees Apple as a more secure platform.

Security problems in software have come to be expected. Cus-
tomers don’t even blink any more. You have to be large, or a secu-
rity vendor, to face any risk of brand damage.

It’s reasonable to expect the industry to do better, but only if there
are cost-effective approaches to the problem, with an easy way to
measure success and compliance. That’s a future that’s very far
off, and even if we get there, you can still expect plenty of secu-
rity problems to plague software.

Chapter 29 C H A P T E R 2 9

Application Security on a
Budget

This chapter was coauthored with David Coffey, Director of
SiteAdvisor and Product Security at McAfee.

A few big companies like Microsoft and Oracle have had enough
security problems in their products that they’ve made massive
investments in application security. For instance, the two of us fre-
quently hear that Microsoft has invested at least $2 billion on the
problem since about 2001.

Most companies aren’t so lucky (or, should we say, unlucky?). It’s
tough to argue for budget, because, in most cases, it’s difficult to
determine the value of product security activities. Here are the
most important factors that will get people to spend time and
resources on security:

Compliance
Some standards, like PCI (the payment card industry stan-
dard maintained by Visa), do require some product security
activities in order to be compliant. Similarly, some customers,
particularly parts of the U.S. government, may have require-
ments that software security work be done, such as external
audits.

Brand
Frankly, software users are desensitized to security flaws.
Most companies can handle a lot of security flaws without

Chapter 29146

any real consequences for the public. Microsoft, Oracle, and
big security companies are the exceptions, not the rule.

Customer demand
Sometimes customers do expect some security, particularly
security features. For example, customers may occasionally
ask for SSL support in an application.

Feature parity
If another product has a feature like SSL, competing products
will often scramble to achieve parity. This is generally feature-
driven, but if some product made lots of marketing hay out of
external audits, their competitors probably might invest in
them as well.

Assumptions about cost savings
We have seen some organizations with a track record of prob-
lems make investments in activities on the assumption that there
will be a positive return on investment. For instance, we have
seen development organizations spend money on training, just
because they suspect there might be problems in their own code.

It’s not too often that development organizations invest in secure
development just because they want to make the customers safer.
The general philosophy is, if there’s no demand, why do it? There
are more cost-effective things to do with time, particularly giving
the customer things they actually want.

When there is a bar set by a customer or through some compli-
ance mechanism, you can also bet that most organizations will be
looking to meet the bar, not worrying about exceeding it—unless
you can prove that it’s cheaper to do a better job (which it can be
if you invest in security early in a project, instead of after the code
is developed).

In our experience, development companies will actually spend
money on product security as a matter of course, driven by one or
more of the reasons just described. Maybe it’s that someone found
a bug in the product and the company needs to respond, or it
could be that all the competitive products out there use SSL, and
there’s a need for parity.

Our belief is that if a company is spending money on this
problem, it is worth trying to make sure it gets the biggest bang

Application Security on a Budget 147

for its buck. Often, if a vendor puts effort into a program, it will
get better security for less money than it will if it deals with hot
potatoes as it catches them.

We often hear from people from software development organiza-
tions who have problems, and are doing a little bit here and there
but want to be doing something better, to be ahead of the curve.
They ask us, “If I have little to no money to spend, what can I do?”

Our answer is that it depends on whether they are starting a new
product or (as is usually the case) trying to make a positive change
in an existing product.

Let’s start with existing (legacy) products. Here’s what we recom-
mend for those of you with the same question:

Try to figure out what you’re already spending
The basic idea is that if you know what the organization
spends, you can argue for more budget by saying, “We can
make our software more secure by spending less money.” We
like to go around to all appropriate teams with a short ques-
tionnaire that tries to estimate how many hours a year are
spent on security issues. This questionnaire should be done
either in person or over the phone, otherwise you will never
get people to respond. Also, it has to be short. We also think
it’s best if you use an outside firm to do this work, if possible,
as that makes the analysis more objective. If done right, this
exercise usually takes one to two hours per development
team, plus a bit of extra time to tabulate data.

To try to prevent public vulnerabilities from coming out, steal the
low-hanging fruit from the bad guys

Since most software is closed source, the bad guys looking for
vulnerabilities typically won’t go further than using blackbox
testing tools (this means they run the software and try to send
bad data to it in hopes of getting it to behave badly; the pri-
mary alternative, reverse-engineering, is a heck of a lot more
expensive). Bad guys typically use two techniques. First, they
run web vulnerability scanners, which are commercially avail-
able and cheap. You can run these yourself and fix the prob-
lems they identify. The second thing the bad guys do is fuzz
testing, which involves substituting random (but structured)
data where real data would normally go into an application.

Chapter 29148

The cost of doing this yourself is usually easy to absorb,
because development teams already have a QA budget (for
our purposes, we will factor in the time developers spend fix-
ing the critical issues found by QA), and these organizations
are measured on bug counts and severity, not bug classifica-
tion (e.g., security versus nonsecurity). The first time a QA
organization checks these things, the bug count usually shoots
up with extremely severe bugs. Plus, these kinds of tests are
easy to automate. In the scope of a single project, we have
found it’s relatively easy to absorb applying 1/5 of your QA
resources to security. In the long term (after sufficient automa-
tion and after the whoppers are fixed), the right ratio is 1/10.
Again, if you can afford to get an outside organization to do
this work, it should be more cost-effective than cultivating the
expertise yourself.

When outsiders find vulnerabilities, handle them efficiently
When outsiders report vulnerabilities, they usually expect to
go public with the information. Internal responses can be cha-
otic without a good process (an owner who “cracks the whip”
over people to make sure they keep response a priority). In
organizations without this capability, it’s very common for
researchers to go public before a vulnerability is fixed, just
because someone at the vendor dropped the ball. This often
ends up costing a lot more, because you still have to do all the
same things to fix the problem, plus you may very well have
to spend a lot more time dealing with customers who want to
understand their level of risk and your company’s response.
We have found that small to medium organizations without
processes generally spend at least $20,000 of people’s time in
the development organization. That’s before any of the sup-
port costs. In our experience, the overall costs go down by
about half when you take a structured approach (more of a
savings in support than development, but still some hours
saved). Remember, this is a cost you’ll end up incurring no mat-
ter what—the issue is how effectively you manage that cost.

Cultivate security advocates
Few people on a development staff will ever care about secu-
rity. For those who show any sort of passion (but no more

Application Security on a Budget 149

than about one person per product, and one QA person for
every four products), we think it is worth having that person
take the lead in doing research and making recommenda-
tions when it comes to security features. If you pick good
self-starters and give them responsibility, you may get a bunch
of extra work out of them.

Hook up tools that enforce security style in development
organizations

You can easily make sure that new code doesn’t contain
“risky constructs” by hooking up your version control system
to a tool such as RATS (http://www.fortify.com/security-
resources/rats.jsp) or Flawfinder (http://www.dwheeler.com/
flawfinder/). This requires only a day or two of development
work. We recommend disallowing changes, as opposed to
auditing them. Developers will quickly absorb costs because
they will fix these issues as they come up, just like any other
warning their programming environment puts out. And, they
will quickly learn how to change their habits to make the
tools you use shut up!

For greenfield (from scratch) development, there really is no need
to do an organizational analysis. Instead, the single most impor-
tant thing for this kind of development is to do an architectural
risk analysis. If you can ensure your program is designed with
security in mind, the long-term cost of security is very likely to be
much lower. Some well-trained third-party organizations will do
this kind of audit for you in a couple weeks for only about
$20,000. If this process can help you design away even one bug
that bad guys otherwise would have found, then this pays for
itself. And, most commercial products will end up with easy-to-
find flaws in the cryptography if they don’t go through a process
like this, even if they use SSL!

For the remaining items in our list, we recommend doing the same
things for greenfield development.

For both types of development (greenfield and legacy), if you find
you have a bit of support from your higher-ups and can get some
cash freed up, we also recommend doing the following:

http://www.fortify.com/security-resources/rats.jsp
http://www.fortify.com/security-resources/rats.jsp
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/

Chapter 29150

Measure your progress
If you know how much you have been spending, it’s particu-
larly useful to show whether you really are saving money.
And you should always be able to report on the progress you
are making. How much did it cost you to respond to an out-
sider’s security bug this time versus last time? How many
security bugs are you finding per dollar spent? When you’re
getting started, you want to see how well you’re doing by
comparing this to representative outside organizations. When
the number starts jumping way up, it could very well be time
to stop spending money on finding bugs.

Train security advocates
These people are generally eager to learn and will find ways to
apply their knowledge, even while continuing to complete
their existing responsibilities.

There are a couple of things other people might recommend that
we don’t think should be a top priority:

Code auditing
In our opinion, this is not a very cost-effective way to find
bugs, even when you’re paying for tools. Not only is it expen-
sive, but also the bugs you do find with code auditing often
won’t be the same ones the bad guys will find. As a result,
even if you’re finding lots of bugs, it’s tough to show the value
of an audit because you might not have gotten the stuff that
the bad guys will find most easily. And again, it does tend to
be expensive. Commercial vendors can charge $.50 per line of
code or more.

For in-house development, even if you have highly skilled peo-
ple (which are extremely hard to get, whether you hire them
or grow them), it’s tough to do a good job and spend much
less than $.10 per line of code. We would expect a phenome-
nal junior auditor making about $60,000 a year to be able to
review about 400,000 lines of code per quarter with assis-
tance from third-party tools. Typically, this process generates
a large number of bugs, and then it is costly to prioritize
them, figure out which ones to fix, and then go do all that
work.

Application Security on a Budget 151

Note that unless you want to spend even more money, it’s
generally tough to tell whether you’re finding bugs that bad
guys could exploit, or just regular old bugs. Most companies
are going to find it vastly more cost-effective to do QA testing
and then fix other bugs as the outside world tells you about
them.

Development team training
When you consider the direct cost and lost productivity, it
typically costs about $1,000 a day to train a developer. It’s
well established that classroom retention rates (without lab
work) are generally around 50%, even immediately after the
class. We have found that most developers don’t care much
about security and consider even basic software security stuff
“very complex” (which it can be). Therefore, retention rates
are probably even lower than that. We’ve seen some data indi-
cating that developers, on average, will have forgotten over
90% of secure programming training after six months. We
think these numbers are about right. It’s not worth it. Just
train the ones who are excited about learning—they’re the
only ones likely to do a good job for you, anyway!

There are other activities you might consider, especially when you
start getting down into the development weeds. Some of these
additional activities could be important, depending on context.
For instance, development teams may choose to use particular
security technologies, and there is a cost to choosing, learning, and
using those technologies.

Note that while code auditing and training are at the bottom of
our list, we still think they can be valuable, and there is enough
budget to get them done (and done well) at McAfee. We just think
everything else provides far more bang for the buck. But if your
primary driver is selling to the government and it needs you to get
a code audit done, then code auditing will obviously jump to the
top of your list. Our list is just based on what tends to be most
cost-effective.

One question we often get is, “How much should an organization
spend on product security?” We think that it’s definitely possible
to do on a tight budget. We’ve seen that medium- and large-size

Chapter 29152

software development houses (say, companies with hundreds of
millions in revenue) tend to be doing a good job if they’re bud-
geting as little as .25% of their annual engineering budget on
product security (people doing bad jobs often budget nothing at
all). Software shops in financial institutions and the government
probably want to go higher than that. Small companies that actu-
ally care about the problem typically budget about 5–10%.

At a very small company (i.e., one that has little revenue or has
just started to make money) resources are at a huge premium. So,
if you’re going to spend at all, we recommend a small, fixed-cost
investment for some third-party architectural help if it’s greenfield
development. Otherwise, just deal with stuff as it comes in.

We think the industry needs to make it easier for development
shops to justify spending. It’s incredibly difficult to prove the
value of preventive labor. It should really be possible to compare
your spending and your results against your peers.

We think that governments such as the U.S. government (or other
organizations that own compliance regulations) should insist that
companies that want the government’s endorsement (selling into the
government or PCI certification) provide them with data on their
secure coding practices, for the sake of aggregating and publishing
for free. No single company’s data would be put on display, but
companies would have a yardstick to measure their own activities.

Especially when data crosses the whole industry, it will be far
easier to see how to regulate various industries for the sake of
compliance. This suggestion is far less invasive than mandating
code audits from third parties, and ultimately far more valuable to
the world.

Chapter 30 C H A P T E R 3 0

“Responsible Disclosure”
Isn’t Responsible

I was pretty amused recently when two people I respect went at
each other over vulnerability disclosure, quickly devolving into
name-calling. It’s always fun to watch a flame war (nobody got
compared to Hitler, but one person did get compared to senile old
Grandpa Simpson, walking around with his pants down).

But, to some degree, the two guys seemed to be talking past each
other. One was arguing that full disclosure (meaning that vulnera-
bilities in other people’s software will be made public eventually, no
matter what) puts end users at risk, and the other was arguing that
finding and fixing bugs is an important part of keeping code secure.

I happen to agree with both of them. Yes, if we didn’t have good
guys finding and fixing problems in code, there would be all the
more problems for bad guys to find and leverage in their quest to
take over the world. This is particularly the case because many
development organizations don’t invest in fixing problems, since
there aren’t good incentives (plus, there isn’t much of a talent pool
for this kind of work).

But, most of the problems in software that bad guys leverage are
problems that the good guys have found and publicized.

If we hold to these two arguments, it seems that we can either live
in a world where we hide our security problems but are at risk
from bad guys easily finding lots of them, or we can live in a
world where the good guys hand the bad guys a roadmap for how
to be bad on a silver platter.

Chapter 30154

In the “keep it secret” model, how are people protected? First, we
can hope that it is difficult for bad guys to find security problems
without source code. Second, we can hope that the software ven-
dors try to keep the security problems out of their code in the first
place. Finally, we can hope that when the bad guys are leveraging
problems in the real world, it will quickly get back to the vendor
and the vendor will want to protect people.

In the “let it all hang out” model, security flaws in software are
made public. Usually, the vendor gets a few months of advance
notice, so hopefully people are protected with a patch that we
have to hope they will install in a timely manner.

In the real world, both of these models have their advantages, but
still pretty much suck because they leave people vulnerable.

Also in the “let it all hang out” model, the bad guys will prey on
the fact that most people don’t keep their software up to date.
They will then take the flaws that the good guys find and use them
to attack systems that aren’t patched. This puts the burden of
security on the end user. And, because there are thousands of
security problems disclosed every year (often in important soft-
ware), people are constantly at risk. Bad guys try to leverage flaws
quickly before people patch, and they assume that, soon enough,
there will be more flaws they can exploit, thanks to the good guys.

In the “keep it secret” model, vendors often won’t find out about
flaws when they’re being used in targeted attacks. And, because
people don’t hear about specific security problems, it’s a lot
harder to put pressure on vendors to spend money to fix them. In
this world, there are a lot more security problems out there (not as
much investment in finding and fixing), yet the bad guys have to
do a lot more technical work to find the problems they can
exploit, so they are unlikely to be as profitable in leveraging secu-
rity problems. They will either need to spend a lot more money to
find software flaws they can exploit, or they will hold on to the
flaws they have and only use them in targeted attacks.

You might say the first scenario looks better because we should
rely on people to keep their systems up to date. However, we know
that even people who are well educated on the issues often don’t
patch in a timely manner. That’s just a reality we have to deal
with. And it’s a rational thing—there are some good reasons for it:

“Responsible Disclosure” Isn’t Responsible 155

• Users might want to make sure updates are stable before they
install them. Nobody likes it when an important program
stops functioning properly.

• A user might not be entitled to the update, because he or she
is using a version that is so old the vendor doesn’t support it
anymore, and that person doesn’t want to pay for something
newer.

• It may not be clear that there are security implications for the
update. Certainly, some geeks assume that any update
removes security problems (though, if new updates have lots
of new code, maybe there are actually more security problems
rather than fewer). Most people don’t have the “always
patch” mindset.

• The risk is perceived to be low. Even I will admit to going for
days without installing Apple’s OS X security updates because
I feel that I’m not engaging in any risky behavior, and because
my machine is protected by other measures (e.g., NAT). Of
course, I realize there is still some risk (e.g., a malicious ad,
which is why I tend to update my browser immediately when
it has security problems). Whether wrongly or rightly, people
feel pretty safe on the Internet in general (if that weren’t the
case, there would be much more demand for more and better
security).

The fallacy in comparing and contrasting these two “sides” is in
assuming they constitute the only options. In fact, they don’t. The
“keep it secret” model is the world we lived in 10–15 years ago.
The “let it all hang out” model is the world we live in today. But I
envision a better world.

To figure out what we should be doing better, you’ll find it
instructive to look at the history of vulnerability disclosure (at a
very high level), and see where it’s failed.

Back in the early 1990s, not too many people cared about their
software having security flaws, mainly because few people were
on the Internet. There were some people on local Windows net-
works in the workplace, but few people worried about the insider
threat coming electronically because there were more direct ways
to compromise a network.

Chapter 30156

Yet, researchers were starting to figure out that software could
have security flaws, and that those flaws could have disastrous
consequences, particularly that bad guys could, if circumstances
were right, take over a machine from the other side of the world,
remotely running whatever code they liked.

At that time, researchers were generally pretty altruistic, meaning
there weren’t too many economic incentives keeping them from
following their own interests over the greater good. They didn’t
want bad guys to use these flaws, so they tended to contact the
software vendors to tell them about the problems they found and
how to fix them.

Most companies just ignored people reporting these security flaws,
or dragged their feet indefinitely, promising fixes where none were
forthcoming. Companies typically aren’t altruistic. Sure, they
wanted their customers to be safe, but they didn’t want to incur
the cost of understanding and fixing the problem (many security
researchers vastly underestimate the impact on development
costs). From the point of view of the company, customers weren’t
demanding security. And they didn’t see too much risk, because
the good guys were the only ones who knew about the problems.
Sure, the bad guys might find out about a problem, but until there
was evidence that they had, it seemed reasonable to do nothing.
Many people assumed the bad guys would never go looking, or
that if they did go looking, they probably wouldn’t find the same
particular problems (which is an interesting issue I won’t discuss
further right now).

The good guys didn’t like leaving people at risk, so by the end of
1993, some people decided that they’d try to force vendors to do
the right thing by threatening to disclose their problems to the
world if they didn’t fix those issues.

This approach actually worked. Disclosure helped build awareness.
In particular, disclosure of flaws in Microsoft products caught the
attention of some tech reporters, who not only put pressure on
Microsoft to fix its bugs, but also eventually gave Microsoft a bad
reputation for security due to the sheer volume of problems.

“Responsible Disclosure” Isn’t Responsible 157

This doesn’t mean everything has gone smoothly. Some vendors
have felt blackmailed, believing that disclosure put their cus-
tomers at risk. This is particularly the case when vulnerabilities
are disclosed before the vendor gets a chance to fix the problem
and get the fix into the customers’ hands.

As a result, most people in the vulnerability research community
eventually decided “full disclosure” was probably not the right
thing. They shifted toward “responsible disclosure.” This term
might mean slightly different things to different people, but in gen-
eral it implies that vendors will get advance notice of a problem,
and two to three months to fix the problem and get the fix to their
customers.

That sounds a lot more reasonable, but there are still a few
problems:

• While 60 or 90 days might seem like a lot to a vulnerability
researcher or even to some developers, for those on the busi-
ness side, who look at all the things that need to happen to get
software to consumers, it can often be too little time.

• Even if the vendor can move in 90 days, it’s unreasonable to
think that customers will upgrade in that timeframe.

• If the vendor actually fixes the problem, why the heck should
the world be told about it anyway?

Let’s look at that last point in more detail. The people on the dis-
closure side would say that if problems are not disclosed, fewer
people will patch because they won’t know they’re at risk, but the
bad guys may look at what’s changed to figure out what vulnera-
bilities the patches address. On the other side of the argument, dis-
closure increases the likelihood of exploit for people who do
patch, because the bad guys are told for sure that the patch fixes
the problem, and are even given a good idea of what the problem
actually was. When problems are silently fixed, with those fixes
rolled into a regular release along with lots of nonsecurity-related
code updates, the bad guy doesn’t get much of an idea of whether
there was anything wrong.

Chapter 30158

Plus, even if there is disclosure, it’s very rare that the average con-
sumer will notice the security risk (it basically needs to be reported
in the press or similar media). And, people who are well versed in
IT should already assume that every patch might potentially con-
tain security fixes.

At the end of the day, this question boils down to, “How much
does disclosure help the bad guys?” The answer is, “A ton!” In its
most recent Global Internet Threat Report, Symantec reported
that it had detected 15 zero-day vulnerabilities in 2007, meaning it
found 15 vulnerabilities being exploited in the wild before the vul-
nerabilities were disclosed to the public. But, according to the
Computer Emergency Response Team, there were at least 7,236
vulnerabilities disclosed in 2007.

I haven’t seen any explicit numbers published, but the vast
majority of malware that leverages security flaws (easily above
95%) uses vulnerabilities that are public information.

Of course, that doesn’t mean that no one sits on undisclosed secu-
rity flaws. I know plenty of people who do, including the U.S.
government. But bad guys tend to use such security flaws very
cautiously in hopes of keeping their weapons effective for as long
as possible.

At the end of the day, if we stopped disclosing problems once ven-
dors fixed the issues, the bad guys would find more vulnerabilities
themselves, yes, but we’d be making it far more expensive to be
bad.

All evidence I’ve seen indicates that if a vendor is going to fix a
problem, disclosure is a bad thing for the average software user.
So, why does it still happen?

The short answer is that the vulnerability researchers want the
fame, fortune, and glory. The economic interests of this commu-
nity are no longer aligned with the interests of the end user. Indi-
vidual researchers want to get their names out there so they can
make more money. They can also sell vulnerabilities. Legitimate
companies, like TippingPoint, will buy the vulnerabilities. Then,
such companies will disclose those vulnerabilities to the world.
Doing so gets them attention from the security community, so this
is effectively a marketing strategy. Plus, by purchasing vulnerabili-
ties, they can provide their customers with protection before they

“Responsible Disclosure” Isn’t Responsible 159

release the vulnerability, whereas other vendors will usually need
to wait until the vulnerability is disclosed before they can protect
their customers. The vendor that bought the vulnerability can then
argue that it protects people against more stuff faster, because it
can find problems and protect its customers before public disclo-
sure. So, companies like this are making people far less safe in
order to market themselves.

Wasn’t the purpose of disclosure to make people safer by forcing
vendors to fix problems in their software? Microsoft fixes prob-
lems as soon as it can, and yet people insist on giving the bad guys
the keys to the kingdom. As an industry, we’ve certainly lost sight
of what’s important.

I think the industry should move to the following disclosure prac-
tices, which I will call “smart disclosure”:

1. When a good guy finds a security vulnerability in a product,
he contacts the vendor through standard means (generally, by
mailing security@domainname.com).

2. The finder gives the vendor 30 business days to confirm the
problem and produce a schedule for future action. The finder
will provide any support needed to confirm the problem.

3. The agreed-upon schedule should, at the very least, have dates
for when a fix will be implemented, when a fix will be fully
tested, and when a fix will be made available to customers.
Unless the vendor can reasonably justify its workload and pri-
orities, the fix and the testing should each be scheduled to
take no longer than 90 days.

4. The parties should report progress on a weekly basis for the
first month, and then at least monthly thereafter.

5. If the next scheduled product release is 4–12 months out from
the day of confirmation, the vendor should be allowed to roll
the fix into that scheduled product release.

6. If the next scheduled product release is fewer than 4 months
out, the vendor should be allowed to roll the fix into the sub-
sequent product release, as long as it is no more than 10
months after the impending scheduled release.

7. If there is no scheduled product release, the vendor should
have six months to make a release.

Chapter 30160

8. If the vendor does not provide a schedule (within the speci-
fied time constraints) within the 30 days, the finder should
give two weeks’ notice, and if the vendor still does not pro-
vide a reasonable schedule, the finder is free to disclose.

9. If the vendor is not dealing in good faith, and if any part of
the schedule slips 60 days, the finder should give two weeks’
notice for the vendor to complete any past due milestones. If
the milestones are not completed in those two weeks, the
finder is free to disclose.

10. If a problem is being exploited in the wild, the vendor must
acknowledge the problem and provide its schedule to the public.

11. For the first 18 months, the vendor’s wishes on disclosure
should be respected. If it wishes to allow disclosure in con-
junction with the patch, it may. If it wishes for the bug to not
be disclosed, it may. If the vendor does agree to disclosure, it
must acknowledge the finder’s role upon disclosure.

12. Eighteen months after the fix is made generally available, the
finder may publicly disclose the problem. The vendor must
acknowledge the finder’s role at this time. Typically, this is
done when publishing guidance about the security flaw to the
customer base.

The bulk of these guidelines revolve around scheduling and com-
munication. I have found that most vulnerability researchers do
not understand the ways in which large software development
shops tend to operate, and have unreasonable expectations on
when and how fixes can happen. I’ve also found that most soft-
ware vendors don’t know anything about the security side, and
don’t know how to keep the finder happy, so the finder should be
able to point to “smart disclosure” and the software vendor can
then see what is expected.

The last two items are, by far, the most critical. I put the last item
in there because I realize that the vulnerability finders are doing a
good thing, even though the primary reason they do it is for the
publicity. We still need to keep the marketing as an economic
incentive in there, but we want it to be far enough out that people
who are reasonable about updating will be protected. We should
then encourage software vendors to give security warnings when
people are running software that is more than a year behind in
updates.

“Responsible Disclosure” Isn’t Responsible 161

For people who are fervent proponents of “responsible disclosure,”
there are a few more objections they might have to my logic:

Many companies such as Microsoft are supportive of responsible
disclosure

The security industry today, as a culture, has already taken
for granted the notion that “responsible disclosure” is good. A
few people have argued this notion, but on the whole, people
seem to assume that since it’s better than the nondisclosure
days, it is right. But when you get outside of the security com-
munity, do you really think that product managers are happy
about disclosure? It hurts the reputation of the product and
company, while putting the product’s users at risk. They might
not complain too loudly, for fear of looking bad if they get
called out by the press for “not caring about security.” I think
it is mostly irrelevant what companies think anyhow….

Shouldn’t companies be required to let their users know when
there is a problem, at least when the patch is issued?

As an industry, we have learned to take it as a given that soft-
ware has security problems. Even if you’ve removed all the
ones people have been able to find, there are probably more
waiting to be found. As long as a problem isn’t in the hands
of a bad guy, it seems to be in the user’s best interest to not
know about the specific problem, because if he doesn’t know,
the bad guy is less likely to find out.

But won’t the bad guys just reverse-engineer your patch and find
the security issues?

If security fixes are rolled into an actual release, where there
are tons of other changes, generally not. Note that the soft-
ware industry does this all the time with security bugs that are
found by internal audit. They silently fix the problems they
know about, and it is very rare to see disclosure of such vul-
nerabilities (though it does occasionally happen—I’d say from
experience that it’s far fewer than 1 in 100 fixed security prob-
lems, and it is almost always the case that the bugs are dis-
closed years after the patch). Now, if the release is explicitly a
security-enhancing release, the bad guy will reverse-engineer it
and find the problems. They won’t be masked by thousands
of innocuous code changes. That means if Microsoft keeps up
its “Patch Tuesday” tradition (they release security fixes for

Chapter 30162

their software one day a month, on a Tuesday), it absolutely
should keep disclosing.

What if we disclose the problem at a high level, but not in enough
detail to reconstruct the problem?

If you tell people there is a problem and give them a general
sense of where to look, you’ve cut their costs tremendously.
Look at what happened when Dan Kaminsky found a major
bug in DNS last year. Once Daminsky acknowledged there
was a bug, trying to get people to patch in advance of the dis-
closure, a small segment of the vulnerability research commu-
nity went off and rediscovered it and published it to a blog.
The bad guys went off and did the same.

While I do think smart disclosure is the right way to go, I also
think the culture we have today is pretty ingrained and will be dif-
ficult to change. Particularly, I don’t expect that Microsoft would
stop Patch Tuesday. First, it’s not in the economic interests of the
vulnerability community to delay taking credit for finding vulnera-
bilities, so even though it’s hurting end users, it is unlikely to be
supportive of any improvements. Since the vulnerability commu-
nity will be evangelizing to the security community and beyond,
there is a good chance that if Microsoft tries to move from a
monthly patch model to practices based around smart disclosure,
there will be a backlash. The vulnerability researchers will try to
paint Microsoft as not caring about security, even though it’s
doing the best thing for its customers. Heck, I’m sure that there
would even be plenty of people within Microsoft who are so
indoctrinated in today’s security culture that they’d also disap-
prove of a move away from Patch Tuesday.

Therefore, I don’t really expect anything to change. I hope it does,
and I’d like to see governments legislate disclosure practices that
are in the best interests of their people, or something like that.
However, I do want to emphasize to those of you who aren’t
caught up in the culture of today’s security industry that the
industry is doing you a huge disservice. Particularly, the many
companies that find vulnerabilities as a way to market their own
security products (a list that even includes big names such as IBM)
are giving tons of ammo to the bad guys and making the world a
less secure place for the rest of us.

Chapter 31 C H A P T E R 3 1

Are Man-in-the-Middle
Attacks a Myth?

About seven years ago, someone I know proved to me that you
could get pretty much any software you wanted for free, if it was
sold through PayPal. All a bad guy had to do was copy the web
page that sold the software and change the price on it. Then, when
the bad guy clicked on his own malicious copy, it would go back
to PayPal. If the vendor didn’t use a special PayPal system (where
PayPal connected to the merchant over SSL to confirm the trans-
action), then PayPal just trusted that the price was real.

I don’t know about now, but back then nobody really used this
system. And if they had, it wouldn’t have made much difference,
because unless you were a big cryptography geek, you’d be using
the PayPal sample code. And, I noticed that PayPal’s code didn’t
show how to secure the SSL connection properly. If you followed
PayPal’s lead, it would end up being easy to perform a man-in-the-
middle attack on the connection (I’ll give a brief explanation later
for those who don’t know the term). I pointed all this out to Max
Levchin, founder and (at the time) CTO of PayPal. He didn’t seem
to believe it was a real issue, and certainly didn’t think it was
important, because none of his merchants seemed to care about
security. Citing merchant apathy is a fair response, actually.

And then the original guy who contacted me decided to get the story
some press coverage, and a Wired reporter was soon calling me for
comment. I told him what I knew, and he wrote an article about it.

Chapter 31164

Levchin was also quoted in the article, and in it he claimed that
being able to perform a man-in-the-middle attack against PayPal’s
underlying payment protocol was “highly improbable,” reiterating
his belief that such an attack wasn’t practical. This from a guy who
the article claims is an “expert in cryptography.” I can’t consider
someone an expert if he’s totally unrealistic about how practical a
man-in-the-middle attack is.

Very briefly, what is a man-in-the-middle attack? Let’s say you’d
like to connect from your computer to some server using cryptog-
raphy. If both sides aren’t careful about checking each other’s
identities, they might end up talking to each other but not directly.
An attacker could be sitting in the middle, relaying (possibly
changing, or even dropping) messages. Everyone still talks using
cryptography, it’s just that the legitimate participants assume they’re
talking only to each other, but they don’t check to make sure.

Levchin seemed to believe that man-in-the-middle attacks were
only theoretical because an attacker would have to go upstream to
your ISP or some major router between you and your destination
in order to get in the middle. Levchin believed that ISPs tended to
keep their routers pretty secure, by limiting who could access them
administratively. Routers have a ton of traffic going through, but
Levchin thought only the administrative traffic put end users at
risk. Despite the fact that the Cisco router operating system IOS
has had plenty of security issues (and many were known even
back then), I do agree on that point. Attackers aren’t generally
going to want to break in to routers, because it is very tough to do
without causing a noticeable impact on performance. If you’re an
attacker, even with a zero-day IOS exploit, I’d guess that there are
much more cost-effective things to go off and do with your time. I
think most people see this, and I’ve met a lot of people who take
this conventional wisdom and conclude that man-in-the-middle
attacks are essentially a myth, that they’re not really something to
worry about in practice.

Wrong! As it turns out, man-in-the-middle attacks are really easy
to launch, using a technique called ARP poisoning. I’ll spare
you the technical details, but in a nutshell, a bad guy can use
ARP poisoning to trick machines on a local network into
thinking his machine is the local gateway, meaning all users send
their traffic through the bad guy’s machine to get to the Internet.

Are Man-in-the-Middle Attacks a Myth? 165

There are plenty of tools out there that can help launch these
attacks pretty easily, such as DSniff, ettercap, and Cain & Abel.

All a bad guy needs is a foothold on somebody’s LAN. If the guy in
the office next to you has been infected and is a botnet node, you
are probably on the same network, so some bad guy could launch
man-in-the-middle attacks against you, no problem. Home users on
cable in the same neighborhood tend to be on the same LAN. So, if
you are running an eBay business from your house and you’re using
PayPal’s IPN code direct from its website, it would be easy for a
bad guy to leverage a neighbor’s machine and attack you.

Your code, taken from PayPal, would try to connect to PayPal’s
servers, but the attacker would intercept it and return a “Yes”
response, no matter what the transaction. The bad guy could then
claim he’d paid you, but the money wouldn’t be in the account.

I don’t know for sure if people have really targeted merchants
using PayPal. It’s certainly possible. But, I do know that bad guys
will launch man-in-the-middle attacks in the real world and use
them to snoop plain-text passwords going to email servers, IM
servers, and the like. They will sometimes even attack SSL ses-
sions and scrape out passwords and credit card info from the
transmission. These things can happen and can put you at risk,
even when your computer doesn’t have any infections.

ARP poisoning attacks can be detected, and high-end hardware
from Cisco and others has been doing detection for a couple of
years now. That’s something an ISP might be able to use effec-
tively right now, but the feature needs to trickle down into low-
end equipment. And even then, it will be a long time before a large
percentage of the world swaps out its equipment. Please, network
vendors, bring this feature to all hardware, ASAP!

Once that happens, ARP poisoning attacks may become more or
less extinct. But even if we can get rid of them, there’s actually a
much worse class of man-in-the-middle problem. Wireless devices
are often susceptible to man-in-the-middle attacks—for example,
when you go into a coffee shop and connect your computer to the
wireless hotspot. Let’s say you go there every day and connect to
the hotspot, which is called, conveniently, “CoffeeShop.” How do
you know when you get online that you’re really talking to the
coffee shop instead of some bad guy? It turns out that, if the bad

Chapter 31166

guy can produce a much stronger signal than the official signal,
you’ll see his network, not the original.

Similarly, if a bad guy wants to eavesdrop on an encrypted home
network, he could just set up an unencrypted network with the
same name, and the user probably won’t notice the difference. And,
believe it or not, similar attacks are possible with most cellular
phones (though cellular attacks do require expensive equipment).

Yikes! What can you do to protect your wireless connections?
For cellular calls, there really isn’t much that’s worth doing. It’s
too expensive to launch this attack for most people to care (since
the average person is highly unlikely to be at risk). But for con-
necting to wireless routers, you should do something: make sure
that, when you’re connected to a wireless router, none of your
sensitive data leaves your computer unencrypted.

Unfortunately, that can be challenging. Here are some things to
keep in mind:

• If you’re going to enter personal data onto a website, make
sure the padlock is on, and make sure there were no error
windows that popped up. In addition, click on the padlock to
make sure the certificate is for the site you expect (bad guys in
the middle can send you to their own fake site instead).

• If you’re logging in to your home network (or a network you
use all the time), make sure there is a password on your net-
work. And, every time you connect, make sure you are con-
nected with encryption. If you are, you’re probably fine
(generally, your computer stores the wireless password).

• If you’re on any other network, don’t use applications unless
you know they’re securely authenticating a server. For instance,
the way many people have their email set up, it is susceptible to
this kind of attack (and the bad guy might even be able to get
their email password). Similarly, several popular instant messag-
ing clients are susceptible to this kind of problem.

For now, bad guys can launch a man-in-the-middle attack on a
machine that they’ve infected and collect useful passwords, all
from the safety of an Internet café on the other side of the globe.

Chapter 32 C H A P T E R 3 2

An Attack on PKI

About three years ago, I was having breakfast with a friend of
mine who was talking about a particular appliance product that
claimed to be capable of transparently/silently intercepting all SSL/
TLS traffic so that it could be inspected. He was asking me how
this might be done.

In the SSL/TLS protocol, the client is supposed to validate the
server. The server presents a certificate that is digitally signed, pos-
sibly with multiple signatures. The client is supposed to look at all
the signatures and try to trace the lineage back to a trusted source
so it knows all the endorsements on the certificate have been vali-
dated. To this day, many applications don’t do this check at all,
and just ignore the server certificate. Or they do insufficient vali-
dation of the certificate (for instance, looking to see that VeriSign
has endorsed it, but not looking to see if it is the expected
vendor’s certificate).

Well, you can certainly do it if all the clients are set up to use SSL/
TLS through a proxy server. Or, you could install a root certifi-
cate on all your clients and lie to them about who they’re talking
to. Or, you could just replace the valid certificate with one of your
own, and most applications won’t notice (though web browsers
will generally prompt users with a security warning the first time
they see the certificate). The appliance in question was probably
taking one of these approaches. But it struck me that there was
another, more devious way.

Chapter 32168

The trick is for a bad guy to start a certification authority (CA)
that is tied in to the main hierarchy—the CAs that are already
firmly rooted at the top of the PKI (public key infrastructure) trust
hierarchy. CAs are trusted authorities who sign certificates for
websites so that your browser can easily and securely validate that
the data in the certificate is not fraudulent.

To start her own CA, a bad guy could go to other CAs and pay a
lot of money for her own signing certificates. The certificates she
signs would be endorsed by her. She wouldn’t be known directly
to all the client apps out there, but her credentials would be
endorsed by another CA, perhaps one client applications do know
about (and if not, somewhere up the line will be one that client
applications do know about). This establishes trust with the client
in the certificates she endorses.

What can a bad guy do if she starts up her own CA and gets it
hooked into the main trust hierarchy like this? Let’s look at what
can happen if a client wants to browse to www.citibank.com, for
example, and an attacker is in the middle. The attacker can gen-
erate her own certificate for www.citibank.com and endorse the
certificate with her own CA, then present it to you. Your browser
will validate it, and everything will look good, even though it is not
the legitimate Citibank certificate. You won’t get any warnings.

It’s not all that hard to start your own CA, if you have the money
for it. If a bad guy is going to do this, accountability is the big
issue. She doesn’t want to get caught. To start a CA, a bad guy
will need to go through a validation process from one of a few
small CAs that have the ability to bless a new CA, which (in an
ideal world) means that the bad guy has to have a legitimate front.
And she will probably have to meet people in person.

That’s not an insurmountable obstacle by any means. Let’s pre-
tend I’m some nefarious foreign government, intent on spying on
U.S. interests in this manner, or the NSA, intent on spying on
nefarious foreign governments; take your pick. I would just get an
intermediary to fund someone else to set up a legitimate CA, but
keep enough access to the operation so I could get a copy of the
signing credentials. I would set up some unsuspecting stooges to
take the fall if something ever went wrong. Conversely, there are a

www.citibank.com
www.citibank.com

An Attack on PKI 169

few countries where I could register a corporation where the direc-
tors are anonymous. I could run a legitimate ISP in that country
for a small while, then go through the CA process.

All told, it would cost maybe $150,000 to launch this attack.
That’s not a lot for a government or a computer mafia. And this
all assumes that CAs that have the ability to bless other CAs are
going to be doing their jobs when it comes to validation. In
reality, there is a good chance things will be even easier to game.

Can anything be done to prevent this type of attack? You could
hardcode the certificates you’re going to accept or the CAs you’re
going to trust. Or, you could point out every change in a certifi-
cate. That is, if you’ve seen citibank.com before and you notice
the change in CA, you could complain about it. But, frankly, if
nothing else looks wrong, people are probably just going to click
through any warning you give them. The bigger the potential user
base, the more likely it is that there will be avenues for people to
game the system. I’d rather see a lot of smaller, more definitive
registries that have even more stringent audit requirements, like a
registry of big financial institutions, and then local registries for
smaller players, and similar structures for other industries. Or,
even better (though probably less usable), people and businesses
could establish direct trust relationships with each other. But
that’s just a pipe dream—any major changes to the way we estab-
lish trust are probably too big to actually happen.

That leaves the Internet fundamentally broken.

Chapter 33 C H A P T E R 3 3

HTTPS Sucks; Let’s Kill It!

It’s almost impossible to deploy SSL (and its successor, TLS) in a
way that leaves everybody actually secure. SSL is great at pro-
viding a false sense of security, and not too much else. But, HTTPS
(which is a variation of the HTTP protocol that enforces the use of
SSL) is even worse, because it is impossible to protect everybody
with it.

First, let’s look at applications built using SSL. With most APIs,
you can connect easily, with very little code, but the connection
isn’t validated. You just connect, and you have no idea who
you’re talking to. The server has even less idea. Usually you do
some sort of login jig after that, but there’s no guarantee that
someone isn’t sitting in the middle.

Well, maybe you’re a smarter developer than that, and you do cer-
tificate checking. It’s rare, but it does happen. Or maybe you’re
using an API that does some certificate checking. There are still a
million ways to get shot in the foot. Many apps check to see that a
server certificate is actually signed, but don’t validate anything else
about the certificate. Many apps check all the data in the certifi-
cate but allow self-signed certificates—hey, the bad guy can self-
sign a certificate. Many apps give you the option to trust or even
revert to no encryption if something fails, and people never expect
that the worst will happen to them.

Chapter 33172

The makers of HTTPS were smarter than that. The HTTPS pro-
tocol specifies the validation that has to happen, and it is all the right
stuff. Sounds great! Except there’s a big problem: what happens
when the certificate isn’t valid? You get a lovely pop-up box that
looks something like Figure 33-1.

Imagine your mother reading this. My mother is a smart lady with
a Master’s degree, and she would think it is gobbledygook. Most
people aren’t going to click No, especially if this dialog box keeps
coming up every time they try a site. People don’t want to be kept
from their goals, and they generally aren’t going to be too para-
noid, especially when they get lots of dialog boxes they don’t
understand that seem menacing but end up amounting to nothing.

They might click View Certificate, but do they really know what
they’re looking for? If a bad guy was trying to attack Citibank, he
could just self-sign a certificate with all the same data as Citi-
bank’s certificate, but make it look like Citibank is its own CA.

Figure 33-1. A standard security pop up shown when the system finds a
certificate that isn’t valid

HTTPS Sucks; Let’s Kill It! 173

People will look at the data in the certificate, it will not seem
fishy to any but the most seasoned of people, and most people will
eventually click through.

This is particularly the case because most of the time you get a
pop up like this, there is no attack in progress. It could be that an
online web app you use has stupidly used a self-signed certificate.
It could be that your bank didn’t have its operations team on the
ball, so its certificate expired (this absolutely happens). It could be
that your employer needs to decrypt all your SSL connections for
audit purposes, and then reencrypts, but they’re all perfectly legit.
The more sophisticated a user is, the more likely he is to have seen
this dialog box in perfectly legitimate circumstances.

I’d love to run a study in which I could give some normal, middle-
American mom and pop users a task, nominally to test the
usability of the task in their actual bank accounts, and then serve
up an invalid certificate. I’d like to see how many people actually
clicked through the warning and logged in. I’d put down good
money that the number would be well over 70%.

This is an utter, abject failure of the HTTPS protocol. The failure
method ends up being “rely on the user.” If I had designed the
protocol, I would have designed it to never allow the connection if
not everything in the certificate validated. The website is just inac-
cessible, period. If a bank forgets and lets its credentials expire,
that bank should be down to the entire world.

This isn’t a problem we can put back in the box. Let’s say Firefox
decided to report that “the site is down” whenever an HTTPS
connection didn’t validate. What would happen? Easy: people
would try other browsers, and inevitably some people would
switch to the other browsers due to the inconvenience. So there’s
no way Firefox would ever want to do anything like this.

Frankly, even if we spec’d out a version of HTTPS2 that was
basically the same thing but failed properly, it wouldn’t matter.
There wouldn’t be too much incentive for people to migrate.

Chapter 33174

For instance, if you ran a bank, unless it were regulated that the
bank must switch, you would only be increasing the risk of your
website going down eventually.

I think HTTPS could possibly be killed to make the world a better
place, but it would need extra incentive, perhaps real phishing
protection (which wouldn’t be too hard to add). Maybe someday
HTTPS will go away, but I’m not going to hold my breath, either.

Chapter 34 C H A P T E R 3 4

CrAP-TCHA and the
Usability/Security

Tradeoff

Over the past few years, most online signups have involved
CAPTCHAs, perhaps the security technology with the worst
acronym: Completely Automated Public Turing test to tell
Computers and Humans Apart.

It’s understandable that Google might want to see if it’s a human
signing up for that account or some automated program—bad
guys would love to have lots of Gmail accounts to be able to send
spam through.

Similarly, I can understand why ticket agencies like Ticketmaster
might require you to confirm that you’re a human before every
purchase. Who wants ticket scalpers writing programs to auto-
mate buying tickets (well, besides the ticket brokers)?

But come on, don’t these things make life horrible? I signed up for
a Gmail account, which I use to look at my daughter’s blog and
post comments. Every single time I want to post a comment, I
click Submit, and I get a pop up with a CAPTCHA, like the one
shown in Figure 34-1.

Why the heck do I have to click two buttons (one to submit the
comment and another to submit the word verification)??!! And it
is a pain in the neck to type. I usually just don’t bother com-
menting on a blog if I have to see one of these (though I do make
an exception for my daughter).

Chapter 34176

The idea behind a CAPTCHA in this situation is to prevent bad
guys from spamming blog comments. But is that benefit worth the
annoyance?

At least Google’s CAPTCHA is easy to read. Ticketmaster (which
uses the popular reCAPTCHA package) can be a little harder to
read (Figure 34-2).

Is that WQIV or WQLV? I’m not 100% sure. And, before the
FM, is that a dash, a dot, or something I should leave out? At least
there’s a “Try another” button, because some bad CAPTCHAs
just make you guess wrong first.

Figure 34-3 shows a particularly bad example (documented on
zachfine.com) of a CAPTCHA found when trying to sign up for
the Gizmo VOIP (voice over IP) network.

Figure 34-1. A CAPTCHA pop up

Figure 34-2. The Ticketmaster CAPTCHA can be difficult to read

CrAP-TCHA and the Usability/Security Tradeoff 177

Thankfully, Gizmo doesn’t seem to use this any more. But still,
there are lots of CAPTCHAs with cramped letters that are hard to
read.

The reason for the cramping and distortion is to try to keep pro-
grams from automatically detecting the letters. That’s a real
problem for CAPTCHAs. Lots of real systems, including one
Yahoo! used, have been “broken” so that it doesn’t take a human
to get the right answer, at least most of the time. Heck, bad guys
generally don’t care too much, even if the automation only works
1 in 10 times. That’s still a lot of comment spam.

Let’s say that researchers managed to come up with a CAPTCHA
scheme that a computer couldn’t break. It doesn’t matter. Bad
guys can just pay to have low-cost workers to fill in CAPTCHAs
in real time. For example, look at the website shown in
Figure 34-4.

Figure 34-3. Gizmo’s almost illegible CAPTCHA

Figure 34-4. The DeCaptcher.com website offers services for getting
around CAPTCHA by paying other people to fill them out for you

Chapter 34178

OK, so the website is really hard to read, and to request
CAPTCHA-breaking services requires using one of the most awful
CAPTCHAs ever. However, you can pay someone a mere $2 to
break 1,000 CAPTCHAs. That’s a lot of tickets if you’re a ticket
broker and want to buy a bunch of crap using your automation. All
the CAPTCHAs will get entered in as quickly as possible by people
in cheap-labor markets like India. The ticket broker doesn’t have to
do anything once his automation is set up.

If it’s this easy to get around a CAPTCHA, they basically don’t
work, right? Why, then, are we subjected to a nightmare of
usability for no good reason?

From the fact that people still implement CAPTCHAs, it’s clear
that this minimal bar is better than no bar at all. Big players like
Google seem to believe that the bad guys would try to send a lot
more spam if the CAPTCHAs weren’t there. From a cost perspec-
tive, that might be true, if the fraction of a penny per CAPTCHA
was near in cost to the average return on investment from posting
the spam in the first place.

Plus, cost doesn’t have to be the limitation. It could be that there
aren’t enough resources available to meet demand for CAPTCHA
breaking. It could be that the spammers would make enough
money that they would pay the price, and if there were 100 times
as many people doing the breaking, there would be 100 times as
many CAPTCHAs broken. If so, the supply would go up until the
demand was met, and CAPTCHAs would become less effective
still. Whenever there’s a financial incentive to break one, expect it
will be broken.

Still, the bar is not zero. CAPTCHAs do add some cost to the bad
guy, which means that some bad guys won’t find it cost-effective,
where they might have otherwise.

CAPTCHAs do have some value in preventing bad stuff, but the
problem for me is they are such an annoyance to the mass of legit-
imate users. Do we have to deal with a less usable experience to
help offset the problem?

Or are there perhaps better alternatives that would make it so we
don’t have to see CAPTCHAs?

CrAP-TCHA and the Usability/Security Tradeoff 179

Well, it’s possible to do some network analysis that tries to detect
automation. It’s usually easy to detect automation when lots of
connections are coming from a small set of addresses, but it could
potentially be tough to detect automation coming from a large
botnet.

To have a hope, one has to look at what connections actually do.
For example, Google would have to do spam detection on com-
ments. Generally, that kind of detection can be very expensive
(though Google does search blog comments for spam anyway).

That kind of scheme is expensive. It certainly would work better,
but I suspect the economics aren’t too attractive.

I’m fine with that, but what I’m not fine with is the way vendors
ignore usability. Like I said, Google making me fill in a
CAPTCHA every time I comment on my daughter’s blog, when
I’m posting as myself (i.e., not anonymously), makes me not want
to use Google blogs. I hope other people feel the same way.

Couldn’t Google at least just require the CAPTCHAs for account
creation and then throttle me if I start posting too many com-
ments? It seems like it would be better for Google to make its cus-
tomers’ lives less miserable.

I’d like to see the CAPTCHA mostly go away, which would be
possible if we added more accountability to the Internet. One type
of accountability is an identity service. For example, VeriSign sells
credentials for websites that show up in your browser as a certifi-
cate when you’re doing SSL. What if VeriSign gave away personal
identities (actually, it already gives away email certificates), and if
you allowed it to hold verified personal information about you
and a credit card that was occasionally checked for validity, you
wouldn’t ever have to see another CAPTCHA. If your account
was used to spam or was found to be cheating when buying
tickets, your agreement would be that VeriSign could come after
you for damages. In my mind, VeriSign shouldn’t necessarily be
allowed to charge to a credit card. It just must be possible for it to
identify you and sue you.

Chapter 34180

This system would also be a good single sign-on mechanism. I
wouldn’t have to create new accounts on every new website if they
were all tied into this system.

If we had a system like this, most of us would be able to go about
our lives without having to see another crappy CAPTCHA. Or, if
you don’t care about the usability but you prefer your privacy, you
can skip identifying yourself and just go with the CAPTCHAs.
Either way, at least there would be a choice.

Chapter 35 C H A P T E R 3 5

No Death for the Password

Passwords suck. There are all sorts of problems with them:

• Simple passwords may be easy to remember, but they’re also
easy for automated systems to guess.

• Lots of people use one or two passwords for all their
accounts, or have similar bad password practices that increase
their risks.

• If you try to do the right thing and use different passwords
everywhere, it’s easy to forget important passwords, particu-
larly the ones you don’t use often.

• If you use a program to remember your passwords, you now
have one very important password. When you need to log in
from a friend’s machine, you might be in trouble. And you
can be in a horrible position if you don’t keep backups and
your computer dies.

• If you use a program to remember passwords and you leave
your computer unattended, people may be able to just sit
down and access your accounts.

• In many cases, your passwords can be snooped when you use
them. It could be malware running on your computer and log-
ging your password, or it could be malware on your
coworker’s computer, looking for passwords on its way to the
Internet.

Chapter 35182

• Passwords make it risky to use other people’s machines to
access the Internet, because who knows what kind of key-
logging malware is installed? For instance, when I go to a
conference or into the Apple Store, they often have machines
for accessing email, but I refuse to use any password.

• Password recovery systems often increase risk. It’s not tough
to find out my mother’s maiden name or to find the name of
Paris Hilton’s dog.

• It’s easy to socially engineer people out of their passwords.
For example, if a bad guy claims that he’s from Harvard and
is doing a study on computer security (particularly, on how
good people’s passwords are), a lot of people will give up the
password in the name of science, without calling Harvard to
find out if the study is real.

• It’s tough for systems developers to build a system that elimi-
nates unnecessary risk. I won’t go into any technical depth,
but one important point is that there are a bunch of places
where usability and security trade off. For example, eBay
doesn’t want a bad guy trying a few million times to guess
somebody’s password, so it might set a limit of 100 login
attempts per day. But then, it becomes easy for a bad guy to
lock people out maliciously.

With all that said, it’s difficult to see anything killing the pass-
word. First, there aren’t lots of great alternatives. Sure, there are
things like proximity badges and fingerprint scanners, but those
things are expensive and don’t always work as well as they
should.

Second, it’s much better to improve security by combining authen-
tication techniques. By that, I mean you have to jump multiple
hurdles before a system will accept who you are. This is called
multifactor authentication. A simple and common example is get-
ting cash out of an ATM. There are two authentication factors
there. First, there is a pretty weak password (your PIN). Second,
you need to have the ATM card that matches the account from
which you want money. Bad guys can’t try to attack bank
accounts just by saying whose account they want and then trying
some PINs.

That’s not to say we can’t make password systems more secure.
There are lots of things we could do.

No Death for the Password 183

First, systems that need to use passwords would be far more
secure if they used something called a zero-knowledge password
protocol. In traditional password protocols, bad guys can do
tricks to guess a lot of passwords quickly. Zero-knowledge pass-
word protocols remove every avenue for the bad guy to learn
more about a password than through random guessing. When
equipped with this protocol, systems need to protect only against
excessive guessing. Zero-knowledge password systems aren’t often
used, however, because of a patent minefield that has been a big
impediment to standardization. Thankfully, important patents
start expiring in 2010.

Second, instead of (or in addition to) traditional passwords, we
can use one-time passwords. One-time passwords are a pretty old
idea, and lots of corporations use them. The technology most
people are used to seeing is the RSA SecurID, which is a physical
device people typically hang on their keychains. The device shows
a new six-digit number once a minute. While SecurID devices are
expensive, it’s trivial to make a good one-time password system
that is totally free.

For example, I’ve built a system called OPUS that works like this:

1. On the web page or program you’re logging into, type in your
username and click Send Passcode (Figure 35-1).

2. A randomly generated password is sent via text message to the
phone of the person who has that username (Figure 35-2).

3. You enter the passcode in the web form (Figure 35-3).

Figure 35-1. Logging into the OPUS security system

Chapter 35184

For more security, you could have a private four-digit PIN, which
you also need to enter alongside the password.

Figure 35-2. A random passcode is sent to your phone

Figure 35-3. Entering the passcode

No Death for the Password 185

There are lots of technical details under the hood to help make a
system like this secure. But, for people who are interested, I’ve
made the OPUS system freely available at www.zork.org/opus/.

The great thing about this system is that you don’t have to
remember passwords anymore. You just have to keep possession
of your phone, just like you would with your ATM card.

That’s all well and good, but even though the computer industry
can do better than it does today with password security, you can
bet passwords will continue to be an important part of security
systems.

Yes, it’s important to protect yourself from people guessing your
password. You should assume that it’s not just people who know
you who might be trying to guess it; anyone might be trying to.
Assume the system you’re using is weak, and it’s up to you to have
a strong password.

For instance, let’s say I have an online account with the Old York
Daily Times. You may not think there’s any real value to getting a
password from an online newspaper site, but I still used a moder-
ately difficult password. But what if its system is poor, and a bad
guy tries 10,000,000 guesses on my username before getting my
password? The bad guy can then try that username and password
combination on tons of other sites, like maybe Gmail or my bank.

So, please assume that you are at risk, and take a bit of responsi-
bility to protect yourself by making sure your passwords are as
safe as reasonable. Here are my recommendations for dealing with
a world that is full of passwords:

• Make sure that, at the very least, important accounts have their
own passwords. Even if you insist on one throwaway pass-
word for accounts you don’t care about (such as newspapers),
make your online banking password as strong as possible.

• A reasonable way to use one password across multiple sites is
to vary your password for each site in a way that is consistent
enough for you to remember. For instance, if your base pass-
word is “something”, your Yahoo! password might be
“something5Yo” (because Yahoo has five letters, starting
with “Y” and ending with “o”) and your Google password
might be “something6Ge”. This isn’t a perfect scheme, but it’s
a lot better than using the same password for each site.

http://www.zork.org/opus/

Chapter 35186

• If you don’t want to have to remember more than one pass-
word and you keep your computer backed up, you can use a
password storage application. Some of them will create very
strong passwords automatically and fill them in for you, so
you don’t even have to know your own passwords. For exam-
ple, if you use Firefox, there’s a great plug-in called sxipper
(www.sxipper.com). The only password you need to know is
your password for logging onto your computer. If you use a
system like this and you think you might need to use another
computer, you can look at the passwords and copy them
down or save the password database to a flash drive.

• Use passwords that are hard to guess, even if you have to
write them down. Some security experts say not to write
down your passwords because bad guys can find them under
your keyboard. Well, just keep them in your wallet or purse,
then. Or maybe on your phone. But you’re better off with a
strong password than a weak password, even if you have to
write it down to remember it.

• If you’re having a hard time coming up with a good pass-
word that you can actually remember, think of a favorite song
lyric that is at least eight words long, then take the first letter
of each word, along with any punctuation. And don’t be
afraid to make clever substitutions. For example, you could
take the Pink Floyd lyric, “Money, so they say, is the root of
all evil today!” and turn that into the password: $sts,itroaet!

• Another option that results in much stronger passwords (but
might require you to write them down) is to use a program to
generate them. For instance, you can go to password-generating
websites like http://www.goodpassword.com/.

http://www.sxipper.com
http://www.goodpassword.com/

Chapter 36 C H A P T E R 3 6

Spam Is Dead

In 2004, Bill Gates boldly proclaimed that Microsoft would solve
the spam problem by the beginning of 2006. That was wrong, but
maybe not as far off as some people might think.

True, most people are still seeing ads for Viagra and love letters
from horny Russian girls, and getting business opportunities from
Nigerian princes on a regular basis, but not too many of them.
Most decent antispam technologies out there work about 98% of
the time, but if you’re getting 15,000 spams a day before your
antispam filter has its go at it (this is the level of spam I person-
ally receive each day), that’s still about 300 spams showing up in
your inbox. That’s probably great for the average Gmail user,
who only would have gotten about 100 spams in a day, and only
gets 1 or 2 in his inbox.

Another problem with a lot of spam filters is that they will tag
legitimate email messages as spam. When you’re getting a lot of
spam, you’re not going to want to try to search it periodically to
figure out what your spam filter got wrong. This problem is worst
with the spam filters built into most email systems. If you use an
email security service or a big security vendor, this still happens,
but they tend to be a lot better about it.

Even though 15,000 pieces of spam show up to my personal email
addresses on a daily basis, I use a spam filter that lets through less
than one piece of spam per day. Here’s what my system does (it is
not unique to me, even though I wrote my own code):

Chapter 36188

• If I’ve ever gotten an email message from you (that isn’t in my
junk folder), you are on my whitelist and you can send me
email messages.

• If I’ve never gotten an email message from you, an automatic
system sends you a response, saying, “I haven’t gotten the
message yet.” If you follow the instructions (replying to the
mail or clicking a web link), I get your email message. Other-
wise, it gets deleted automatically a few days later without me
seeing it.

• If you’ve ever spammed me, you go on my blacklist, and I will
never see mail from you under any circumstances. This is
where my editor’s email address lives. (I added this to see if he
was paying attention!)

• When I have to give someone an email address on a website, I
can make up a new email address on the fly, and once I make
it up, all email to that address gets automatically whitelisted
so that I can get important automated responses, like order
confirmations. If I get too much junk to that email address, I
can just turn it off.

• I do a lot of technical crap to try to determine when people
are sending from fake email addresses. For instance, lots of
spammers try to make mail look like it is coming from legiti-
mate email addresses at PayPal. This technical crap only mat-
ters if a spammer happens to forge mail, as if it comes from an
address that is actually on my whitelist. For example, if spam-
mers tried to forge email from Amazon, Amazon is on my
whitelist, so I’d want to detect the forgery when possible.

With this system, I get, on average, one piece of spam a day. And
by that, I really mean one piece of junk mail. It’s usually an ad
from some online store that I actually gave a customized email
address to.

Junk mail from vendors you’ve legitimately done business with is
a much bigger problem for many people than unsolicited spam.
One easy way to address that problem is to give sites you do busi-
ness with a temporary email address. You could open a Gmail
account just to do business with those people, then close it after-
ward. Or you could use Mailinator (www.mailinator.com), which
lets you make up any email address ending in @mailinator.com you
want, and then lets you check the mail that email address receives.

http://www.mailinator.com

Spam Is Dead 189

Email is only kept for 15 minutes, so this is not ideal if you might
want to get a shipping notification or something like that. It’s
great if you want to sign up for a web bulletin board and want to
make sure the site never contacts you.

Once every few weeks, an actual spammer responds to my auto-
matic “Haven’t gotten your message yet” email. Of course, he has
wasted his time, and I get some smug satisfaction from that (if the
day comes when lots of people do this, I will make them send a
text message to some phone number that automatically handles
the result, so that they have to pay physical money to get me to
see their message).

Some email services are starting to take similar approaches. I think
it’s a decent strategy. The big challenge is prepopulating the list of
good senders, which can be automated if you’ve got an archive of
your email or an up-to-date address book. Some companies can
even build a whitelist like this from the mail being stored in
folders on an Exchange server.

But few people use a strategy like this. Fortunately, a lot of people
don’t get thousands of spams a day, either. Most people seem to
get much less, maybe a handful to several dozen for an old email
address that has been sold a few times.

For these people, cloud-based spam services should work really
well. These are services in which spam processing happens
remotely (in the cloud) instead of on your desktop. This can
include smart webmail providers, like Gmail.

Gmail is a phenomenal example, actually. It sees lots of mail
going to lots of people, and it can analyze trends across this base
of customers. It can see the same basic content being delivered to
thousands of people at a time (a good indicator that something is
probably spam). It can see when a targeted mailing is sent to a
user’s junk box, and will then send the same message to the junk
boxes of other users who received it. Similarly, when it identifies
spam sources, it can block them.

This kind of cloud approach gets detections up while keeping false
positives down. The false positives that do happen tend to be mass
mailings that some people consider spam, but really are not. For
instance, when you buy stuff online, you often end up agreeing
to subscribe to an email list for ads, whether you notice or not.

Chapter 36190

If you don’t want those ads, you might mark them as spam, as
may many other people. A good vendor has to watch out for this
kind of tricky situation.

Your solution doesn’t have to be having your email hosted on
Gmail, though. You can get the benefits of the cloud on a desktop
client. That is, if your client is good enough. Many desktop cli-
ents use a set of rules that is only updated when you update the
software. But some desktop clients can download new rules in real
time, and that’s a lot more useful. Companies with that kind of
system usually collect a whole lot of spam in the back end (prima-
rily by taking over defunct Internet domains and seeing what
comes in).

The best of both worlds is being able to do sophisticated cloud
analysis and seeing user feedback for spam. Companies that do
both (as most big vendors tend to do) regularly end up detecting
over 99% of all spam. For instance, when I hook my spammy
inbox up to Gmail, it does very well. In a typical six-hour period,
it let 10 spams through in about 980 messages, giving it nearly a
99% detection rate. The average user would probably only see
one or two spam messages a day, if that.

The lesson here is that if your desktop spam filter isn’t doing a
good enough job, use an antispam service. For example, if you
own your own domain, there are specialized services, such as
MXLogic (www.mxlogic.com/), that will take care of things for
you. Or, if you’ve already bought a security suite from a major
AV vendor, you are probably already paying for access to an anti-
spam service, and you should use it!

It may still be the case that 99% of the email messages sent to you
are spam, but you should never need to see them. The worst
problem is that you might miss an important email message
because it lands in your spam folder. The spam problem is mostly
solved, but this hurdle may never be addressed.

But, actually, I don’t really want the spam problem solved. It’s
solved enough. If it were solved all the way, I’d lose one of my
most useful excuses, “I’m sorry, I didn’t mean to ignore you; your
email ended up in my spam folder.”

I’m happy to say, that excuse isn’t going away anytime soon.

http://www.mxlogic.com/

Chapter 37 C H A P T E R 3 7

Improving Authentication

Bank of America is the largest financial institution in the world.
Lots of consumers, myself included, use it for online banking. It
also cares a lot about security, and has been progressive in
adopting technologies. But even though it has all sorts of great
things going on security-wise, I don’t like authenticating to its site.

One technology Bank of America adopted long ago is SiteKey,
which I think is pretty close to valueless. The basic idea is that
when you register for an account, you choose from a large library
of images (Figure 37-1). The image you choose is your SiteKey.

Figure 37-1. Choosing a SiteKey image

Chapter 37192

Then, when you go to log in later, here’s what happens:

1. You type in your username.

2. Bank of America shows the SiteKey image you selected before.

3. If you agree it’s your SiteKey image, you type in your password.

What’s the point of the extra step? Bank of America wants you to
recognize phishing sites, because it hopes phishing sites won’t
know your SiteKey. I suppose it hopes that the bad guy will pick a
picture at random, and you’ll know when you see the wrong one.

Maybe most people would notice and care if the bad guy selected
the wrong image to show you, but, so what? There are two big
problems here.

First, the bad guy can show you a phishing site that doesn’t have a
SiteKey at all. Most people probably won’t notice, particularly
because most sites don’t use SiteKey.

Second, if the bad guy has broken into a computer on the net-
work local to the user, he can quite possibly perform a man-in-
the-middle attack, where you’re actually talking to the bank, but
the bad guy sees everything, including your username and pass-
word. In this scenario, SiteKey could show you the right thing, but
you would still be talking directly to the bad guy.

Of course, if the bad guy has broken into the endpoint computer
that the user is on, authentication mechanisms are moot, and the
bad guy can do anything. One trick that bad guys are employing is
to let you deal with the legitimate website, but inject new form
fields onto the web page, asking you to type in your Social Secu-
rity number for extra verification, for instance.

I don’t see what SiteKey does, other than providing a false sense of
security by making people think they’re protected. True, the very
few people who would notice the missing SiteKey probably won’t
be phished. In that sense, there’s some small value here. But I
don’t think this extra protection mechanism is worth the extra
login step. One sign that it’s not an effective mechanism is that so
few banks have adopted it. If it were any good, everybody would
want to use it.

On one hand, the extra step isn’t all that obnoxious. And at least
Bank of America is trying, even if the security benefits are, at best,

Improving Authentication 193

marginal. On the other hand, I am against it giving its customers
an illusion of better security than it really has.

At the end of the day, I’m sure Bank of America won’t get rid of
SiteKey anytime soon. If it yanks SiteKey, it might receive criti-
cism for taking away security measures.

Bank of America’s online banking does offer a much more effective
security mechanism it calls SafePass. The basic idea is that when you
go to log in, it will send you a text message with a one-time pass-
word (Figure 37-2), which you then enter in to your computer
(Figure 37-3). When I first saw this, I thought, “Now this is a great
alternative to SiteKey!” I thought I’d be able to tell that I was talking
to the real Bank of America, because a random phisher (hopefully)
wouldn’t know my mobile number, but the bank would.

Unfortunately, Bank of America really made the experience so
intolerable that I turned SafePass off for logins. When I had it on,
here was my login process:

Figure 37-2. SafePass sends a one-time code...

Figure 37-3. ...which you then enter in

Chapter 37194

1. Type in my username.

2. Validate my SiteKey.

3. Type in my passcode.

4. Wait for the SafePass widget to load (which can take any-
where from 2 to 10 seconds).

5. Click the button to send the text message.

6. Wait for the text message to show up.

7. Type in the code that showed up in the text message.

8. Click OK.

9. Wait a little more while the system finishes the authentication
process.

I lived like this for a few weeks, but decided it was just too many
steps, and too slow. Now I have SafePass configured only to take the
place of security questions if I want to log in from a new device.

I have to think that if they could get me to use SafePass for every
login, they’d be less susceptible to me being phished. And while I
think I’m far more likely to notice a missing SafePass step than a
missing image, that’s not even the reason. If I’m successfully phished
for a password, and I don’t use SafePass, the attacker is far better
off than if he also needs to get a hold of my mobile phone!

True, if the bad guy wants to log in to my account from a dif-
ferent machine and I don’t use SafePass, he does need to know one
of the answers to my challenge questions. Let’s look at some of
my 30 options for questions:

• What’s your maternal grandmother’s first name?

• What’s your father’s middle name?

• In what city were you living at age 16?

• What is the name of your first niece/nephew?

• In what city were you born?

• In what year did you graduate from high school?

• How old were you at your wedding?

• What was your high school mascot?

• What was the name of your first pet?

• What is the name of your best man/maid of honor at your
wedding?

Improving Authentication 195

Almost all of the 30 options for questions are things that are
public record. The rest of them are things people could typically
find out without attracting much attention, if they had the right
personal relationships. To counter that, you could always make
up fake answers to all of these questions. The problem is then
remembering the fake information, and also remembering which
companies have the real information and which have the fake
information. I just write all that stuff down.

Currently, Bank of America is effectively discouraging me from
using SafePass by making the login process so complicated to use.
Instead, it should be doing everything in its power to get me to
switch to it.1

If I owned Bank of America, here are the changes I’d make:

• I’d encourage people to use SafePass by giving them value in
return for using it. For instance, no fees, higher interest rates,
or a nickel per check card transaction. It should be easy for
me to figure something out that is valuable to users but costs
less than the expected loss from not using it.

• If users are using SafePass, get rid of SiteKey.

• If users are using SafePass, don’t make them type in their
passwords.

• When the SafePass text message comes, Bank of America
should do more work to prove that the one-time password is
really coming from Bank of America, to assure me I’m not
getting phished by someone who happens to know my phone
number (this is particularly important if I get some notifica-
tion to log in to my account via SMS). Bank of America could
do this by sending a secret string to users to help identify it as
the sender. This is basically a text-based “SiteKey” or a pass-
word in reverse (Bank of America sends you a password to
prove who it is, instead of you sending one to it).

1 By the way, I don’t mean to pick on Bank of America too much. It really does seem
to have the best security of any bank. It does plenty of effective things lots of banks
don’t do, such as authenticate the devices you log in from, and offer real-time
server-side attack detection. I am only picking on Bank of America because I like
it enough to use it as my bank. I have also talked to the team there that owns its
consumer security initiatives, and they assure me that they’re working on lots of
improvements, and that includes making SafePass fast.

Chapter 37196

If I know to always expect Bank of America to send me a text
message with a secret string, I’ll never get phished. But the bad
guy could still be doing a man-in-the-middle attack. If he does,
however, at least he won’t get a password that he can use to log in
again, since he doesn’t have my phone. Most people reuse pass-
words across sites, so that’s another thing he won’t be getting.

For extra security, you can always add a second password, one
that the user types in. Then, a bad guy would need the phone and
the password.

I would like to see phones used for authentication like this more
often. I can imagine no longer having to carry around my SecurID
because I have my phone with me (which would save the com-
pany money, by the way). I would like to see a day when I can go
to a website and specify the blocks of time when I want my house
sitter to have access to the house. The house sitter’s phone could
use Bluetooth and an application to prove he’s there and ready to
come in (hit the button to open the door). Or maybe the door lock
has a small keypad, and the house sitter could text my door, and
my door would text back a four-digit code to punch in to the
keypad.

In short, it’s possible to have systems that are easy, cheap, and
pretty safe. Let’s hope to see them someday.

Chapter 38 C H A P T E R 3 8

Cloud Insecurity?

One of the biggest buzzwords in technology these days is “cloud
computing.” The basic idea behind the cloud is that stuff that
could be done on the client side gets moved to some unseen cluster
of resources on the Internet.

There are three major categories of cloud systems today:

Software-as-a-Service (SaaS)
In SaaS, you buy a subscription to some software product, but
some or all of the data and code lives remotely. For instance,
Google Docs is an alternative to Microsoft Office that stores
your documents on Google’s servers, and you don’t keep any
code on your machine. As it turns out, though, some of the
code may run on your machine. For instance, Google Docs
relies on JavaScript that runs in your web browser. The appli-
cation is not hosted on the server side.

Platform-as-a-Service (PaaS)
From the consumer’s point of view, the software is probably
SaaS, but instead of the software developer building the pro-
gram to run on her own web infrastructure, she builds it to
run on someone else’s platform. For example, Google offers a
service called Google App Engine, which allows development
organizations to write programs to run specifically on Goo-
gle’s infrastructure.

Chapter 38198

Infrastructure-as-a-Service (IaaS)
This is very similar to PaaS, except that the development orga-
nization gets to define its own software environment. It basi-
cally provides virtual machine images to the IaaS provider,
instead of programs, and the machines can contain whatever
the developers want them to contain. The provider can auto-
matically grow or shrink the number of virtual machines run-
ning at any given time so that programs can more easily scale
to high workloads, and to save money when resources aren’t
needed.

From the end user’s point of view, there’s usually not much of a
difference between these three models. The security of the system
is dependent on things that are mostly out of the user’s control,
such as:

The security of the IT environment from outside attackers
For example, can the bad guys break in to the backend sys-
tems and get at data?

The security from within the environment
Can someone use a flaw in an application to see data for
other users, or mess with other applications hosted in the
same environment?

The authentication and encryption methods used
Plain-text protocols with passwords put everybody at risk.

In this case, the IT environment isn’t something the software
developer has much control over, either. The cloud provider needs
to be upfront about its policies, and application developers need
to do what they can. For instance, when using infrastructure-as-a-
service, it’s best practice to create a virtual machine image that has
no unneeded functionality running, and to have instances use
encryption to talk to each other, just in case another customer of
the cloud provider might be able to intercept at the network level.

One significant advantage of all types of cloud systems is that if
the system is well designed, all the interesting code that a bad guy
might want to exploit will live on the server side (instead of being
downloaded to the browser). If the bad guy can’t get hold of the
code, he can still attack it, but he has to leverage the flaws obvious

Cloud Insecurity? 199

from the user interface or use brute-force testing techniques to
find the problems. Those techniques are easy for the good guys to
do, too, which makes the application easier to defend; you can
find the flaws before the bad guys do.

Compare that situation to a typical architecture in which you can
buy a copy of the server-side application to host in your own net-
work environment. Anyone can buy the application, including bad
guys. And, while the vendor typically won’t ship source code, the
bad guys will at least have access to the binary code, which they
can read (though not as easily as if they had the source code). In a
SaaS model, access to the binary code for server-side components
should be extremely limited.

It’s still possible for developers to put important things on the
client side that should be on the server side. The developer has to
assume that bad guys will have complete access to everything on
the client, no matter what kind of obfuscation he does. For
example, if the client is responsible for constructing and vali-
dating database queries and the server executes them blindly, the
bad guy will always be able to modify the client-side code to do
whatever he has permission to do with the backend database. Usu-
ally, that means he can read, change, or delete data at will.

Because the attacker has so much less information, I think it’s
quite justifiable to get away with an incredibly modest applica-
tion security program. The exact scope really is dependent on the
software developer’s specific requirements, but for many organiza-
tions the cost-effective reality is, “Hire someone to do fairly cheap
security testing,” invest some modest resources in the authentication/
encryption stuff everyone obviously should be doing, and quite
possibly nothing else. You can most likely skip stuff like training
and code review altogether if nobody is making you do them.

Whenever I get up and suggest caution about spending on applica-
tion security, there are often people who are shocked because I’ve
coauthored so many books on that topic, including the first,
Building Secure Software (with Gary McGraw; Addison-Wesley Pro-
fessional). I’ve been getting that reaction from people when talking
about application security in the cloud.

Chapter 38200

And yes, this approach is demonstrably not going to lead you to the
most secure solution possible, but business is about maximizing
profit, not security. This is the right place to set the dial on the
risk knob for most companies doing business in the cloud.

Of course, there are several use cases for which this advice may
not apply. For instance, if your company deploys its solution in
the cloud but sells the same code base on-premises, the bad guy
has access to your code again.

Beyond the generic concerns of the cloud approach, each of the
three cloud computing models has its own security concerns:

• With SaaS, users need to rely heavily on their cloud providers
for security. The provider is the one who needs to do the
work to keep multiple companies or users from seeing one
another’s data without permission. The provider needs to pro-
tect the underlying infrastructure from break-ins. In addition,
it is generally responsible for all of the authentication and
encryption. It’s tough for the customer to get details to help
provide assurance that the right things are being done. Simi-
larly, it’s tough to get assurance that the application will be
available enough.

• With PaaS, the provider may give some control to the people
building applications on top of its platform. For instance,
developers might be able to do their own authentication sys-
tems and data encryption, but any security below the applica-
tion level (such as host or network intrusion prevention) is
still going to be completely in the hands of the provider. Usu-
ally, the provider will offer little or no visibility into its prac-
tices here.

• With IaaS, the developer has much better control over the
security environment, primarily because applications run on
virtual machines that are separate from other virtual machines
running on the same physical machine (as long as there is no
gaping security hole in the virtual machine manager). This
control makes it easier to ensure that security and compliance
concerns are properly addressed. However, the downside is
that it can be a lot more expensive and time-consuming to
build the application.

Cloud Insecurity? 201

One more important concern is backing up data. Some providers
do their own backups for you. However, lots of things can go
wrong. Maybe they jack up their prices and make it tough to get
data off their network. Sometimes companies suddenly go into
Chapter 7 bankruptcy. Lots of things can happen.

In all cases, if you’re using a cloud-based solution, it’s best if you
can keep your own backups of your data in addition to the
backups from your cloud provider. This is generally far easier
with IaaS.

The cloud obviously has a lot of advantages, such as cost sharing
across companies (hopefully making it more cost-effective than
having your own infrastructure), and helping to handle situations
in which an application becomes popular and needs to scale
quickly. But to many people, the cloud may feel more risky
because their applications and data might live in some shared
space alongside other applications and data.

Most of the time, however, bad guys have no access to the source
code, and providers often do work hard to provide clean,
unbreakable barriers between customers. Of course, security can
differ greatly from application to application, from platform to
platform, from provider to provider. But on the whole, the cloud
holds a lot of promise for better security.

That’s the good news. On the flip side, lots of people now have
data and code on the same few sites—making those sites bigger
targets.

The people who own these sites have to worry about all the same
classes of problems that other development organizations have to
worry about—but the consequences could be much worse because
there could be a lot of people or companies with their data at risk.

People writing SaaS applications need to be worried about the
application flaws that might show one customer’s data to another,
or expose data from multiple customers. Infrastructure-as-a-Service
providers have to worry about making sure their customers are
protected from one another; if one of them has a security breach,
the other customers shouldn’t be at any greater risk than they
were before.

Chapter 38202

Cloud providers need to care about getting security right. They are
the ones who are going to have to shoulder the responsibility
when something goes wrong.

Let’s hope they get it together.

Chapter 39 C H A P T E R 3 9

What AV Companies
Should Be Doing (AV 2.0)

I’ve talked a lot about what’s wrong with traditional AV systems
that makes them work so poorly. Now I’m going to share my
vision of what security vendors should be doing, which we’ll call
AV 2.0 (even though we’re all sick of Whatever 2.0). I’ve been
working toward this vision for a bit under three years now, prima-
rily at McAfee. While no AV vendor is all the way there yet, the
big ones are starting to move in the right direction.

AV vendors traditionally have kept a big blacklist of bad pro-
grams. Instead, AV vendors should keep a master list of programs,
and for each one, keep track of whether it’s good, bad, or undeter-
mined (the vendor doesn’t have enough information to say).

There’s not much reason to have big signature files on machines,
or even to check traditional signatures. Instead, right before the
computer runs a program, the AV software can ask the AV
vendor, “Is this program safe to run?”

Now the AV vendors have to become a lot better at detection. To
that end, the endpoint AV software should collect information about
the programs people put on their machines, such as things like:

• Where are files installed?

• Which software vendor “signed” it?

• What registry keys and other resources do programs use?

• What other programs do programs install?

Chapter 39204

• What things do programs delete?

• Do programs do anything suspicious, such as keylogging?

This kind of information doesn’t need to be sent for every pro-
gram. Generally, it should be sent just for programs that the
vendor doesn’t know about.

The AV vendor can then use the information collected about a
program to perform a central analysis across the entire user base
to determine whether the program should be trusted or not. When
you have lots of data about programs across a user base, it’s
pretty easy and cost-effective to figure out which programs are
good or bad:

Ubiquity
If lots of people have a program installed and the program
never behaves poorly, it is probably good (though it is a good
idea to recheck this assumption occasionally). If almost nobody
across the user base has the program, it might be suspect.

Digital signatures
Programs digitally signed by a trusted vendor with a good
reputation are probably good, and programs digitally signed
by a vendor who peddles spyware probably shouldn’t be run.

Lineage
If an installer is highly trusted (perhaps due to a digital signa-
ture), it’s generally worth trusting everything it installs
directly (things packaged in a separate installer are possibly
partner bundles, and should not necessarily be trusted). Simi-
larly, anything a bad program installs, and anything that
installs a bad program, should be suspect. Also, if we got a
program from a risky site, we might not want to allow it to
run until we are sure it is OK.

Behavior
There are lots of behaviors that are potentially an issue, such
as keylogging, inspecting network traffic, and so on. It can be
tough to tell on a single machine if behavior is bad or not, but
if you look across an entire user base, things can become far
clearer. For example, you might be able to detect patterns that
indicate botnet activity. Or, you might look and see that lots
and lots of people use that program, even though it has some
keylogging functionality. (Yes, I’m talking to you, Skype!!)

What AV Companies Should Be Doing (AV 2.0) 205

To see how all this helps, let’s think back to what the bad guys are
doing today to make the lives of AV vendors difficult. Then we’ll
see how this new model can make things better.

Bad guys know that if they use custom-made encryption (or
packing) solutions, they can automatically create lots of different
pieces of malware from one original piece of malware (usually
they randomize the filenames and all sorts of stuff to make corre-
lation difficult). They create tons of work for the vendor by using
automation to spread lots of malware instead of just a single
piece. If the bad guy’s automation is really effective, the good guys
will be overwhelmed by the number of incoming samples and will
have an incredibly challenging time writing a signature that
applies to every possible version. That’s definitely typical in
today’s world.

Let’s say my vendor is collecting intelligence across its entire user
base, and my computer’s AV reports that someprog.exe has
started up. Via cryptography, the AV software computes a unique
identifier for someprog.exe that does not care about the filename.
This identifier is sent back to the vendor. If the vendor has never
seen this program or has seen it only a couple of times, it asks for
some more information before it renders a decision. Our software
might report some other useful information, such as the fact that
it’s not digitally signed and is encrypted (it’s easy to tell if a pro-
gram is packed or encrypted—it can be really hard to recover the
original program, though).

Based on what we’ve seen so far, the vendor would say, “Don’t
run this.” Why? If a program is packed or encrypted and nobody
has seen it before, it is incredibly suspect, and almost always bad.

Vendors like Microsoft, and even vendors with small followings,
like Dropbox, will never have to worry about their programs
being falsely accused, because their installers are signed, and any
good AV vendor will end up whitelisting the vendor. Or, for soft-
ware vendors that don’t sign their stuff but distribute off their
websites, the AV vendor will see that the software is distributed
from a highly trusted website, and will let the software run.

With just a rule like this, very little legitimate software would ever
be stopped, but bad software would be stopped pretty readily.
What kinds of things will the bad guys do to try to get around the
system?

Chapter 39206

Bad guys may start digitally signing their applications (using legiti-
mately obtained code signing certificates)

This will make bad guys more accountable, because they will
have to provide some verifiable information to get one of
these certificates, and the certificates cost some money. While
a bad guy can easily generate thousands of programs, it’s
unlikely that he will be able to get and use massive numbers
of code signing certificates. Some spyware vendors that live in
a gray area of legitimacy already do sign the applications they
produce. I don’t think the economics will work out for the
typical bad guy, though.

Bad guys may stop packing their programs
Traditionally, the value of packing was in creating more work
for the good guys by creating lots of programs. This worked
well because the good guys had no real way of figuring out
how to prioritize their workloads. Which programs are popu-
lar? Which ones aren’t? Well, now the good guys will easily
be able to disregard most packed programs, since most of the
time bad guys repack programs over and over again with
slight, automatic variations so that they’re spreading bazil-
lions of programs that all do the same thing. Bad guys will
probably need make their programs appear more normal by
not packing them and by not creating tons of variants
(because the same kind of filtering can work well even if the
bad guys don’t pack or encrypt). The end result will be that
the programs the bad guys can get through the AV filters will
be far more susceptible to analysis than today’s malware.
Keeping malware off people’s machines will be a far easier
task.

Bad guys will be even more intent on disabling the AV, so bad
behaviors won’t be reported

But the good news is that before malware runs, the AV ven-
dor will already have information about it, where it came
from, and what happened when it was installed. This audit
trail will help identify the risky software automatically and
quickly.

What AV Companies Should Be Doing (AV 2.0) 207

Bad guys may try to game the system
For instance, a bad guy might try to get her software marked
as “good” by having tons of already-infected computers
report information that makes the program look like it’s
good. For instance, this approach may make it look like a
program is spreading at a “natural” rate for a while, then the
bad guy can go for the “sudden explosion” that would be
expected when a program gets some publicity and spikes in
popularity.

The last two techniques are tougher to deal with, and could create
a bit of an ongoing arms race with the bad guys. But we’re already
in a big arms race, where the good guys are losing. This approach
will put the advantage on the side of the good guys. For example:

• If the good guys move the security outside the operating sys-
tem, it won’t generally be possible to disable the AV.

• Even if the AV is disabled, the system can automatically
respond to protect uninfected machines, based on data that
was collected prior to infection. This means having a good
solution to automatically clean up an infected machine by
rebooting and putting in a special cleanup CD/DVD. This is
easy to do automatically, because it’s easy to figure out what
the bad stuff did to the filesystem and undo it (at boot time,
the bad stuff generally doesn’t get to run).

• We can do a lot to automatically detect when people are try-
ing to game the system. Because all the logic lives in the cloud
instead of in a binary on the desktop, it will generally be very
hard for the bad guys to figure out what all the rules are.
With traditional AV, bad guys test and test offline until they
figure out what they can get through. But now, the AV sys-
tem will automatically change based on what’s happening
across a large number of machines.

Even when a bad guy does manage to game the system, the
industry will still be in far better shape than it is today. It will be
far easier for the good guys to keep up with issues, respond to
them, and get customers protected.

Chapter 39208

There are some questions about this approach I’d like to address:

Aren’t false positives still an issue?
Yes, it will still be possible to block something that’s legiti-
mate. But popular stuff from major vendors won’t have this
problem at all. The false positives that people have to deal
with will be for stuff that isn’t very popular, and in those
cases, instead of saying, “This software is bad,” the AV pro-
vider can just say, “This software is suspect. We’ll let you
know when we confirm that it’s safe to run” (see Figure 39-1
for an example). This approach will work well as long as
most of the software that people actually use is being graded
in a timely manner (and in a company with a large user base,
there’s no reason why it wouldn’t be).

What happens when a computer is offline and can’t query the AV
company’s server?

The computer’s AV software will certainly remember which
programs were good and which were bad. The only issue
arises when running something unknown or installing some-
thing from disk while offline. In this case, the AV company
can just cache a bunch of the most popular program signa-
tures (this cache can be updated daily, just like signature files
generally are today). For things not in that cache, they can
just say, “You have to be online to ensure that this program is
safe to run.” Let the user override at his own peril.

Figure 39-1. An example message about potentially suspect software

What AV Companies Should Be Doing (AV 2.0) 209

Can’t the bad guys make good programs do evil things by using
exploits, and wouldn’t that get around detection?

Yes. However, there are things we can do to address this
problem. For example, we can look for behavioral anomalies
on popular good programs that indicate they’re being
exploited. And once we know something is being exploited,
we can certainly lock it down.

Doesn’t this system raise a huge privacy issue?
Well, it’s true that a lot of data about programs will be col-
lected, but nothing that I’m proposing would send back your
actual personal data. In fact, there’s no reason why users
would have to send back any personally identifiable informa-
tion. And if this turns into a huge concern, the vendors could
use an anonymization layer (which is quite feasible from a
technical perspective). Plus, people should be able to opt out
of data collection. Frankly, most people don’t care about ven-
dors knowing which programs they run or which websites
they visit (and vendors will throw away this info, anyway), as
long as a) there’s nothing sensitive, like a Social Security num-
ber; b) the vendor is using the data for the greater good; and
c) the vendor vows that it will never use the data for any other
purposes. Heck, I think a lot of people really only care about
the first point.

OK, but what about privacy for enterprises?
Some enterprises will care, but many will not. Those that do
can stick with the traditional model and deal with far worse
security. More likely, what will happen is that AV vendors
will sell enterprises a big box that allows them to do their
own data aggregation and analysis. They will still use data
from their AV vendor, but they will have control over what
they share. They will probably pay for that privilege.

Doesn’t this increase network traffic?
Quite the opposite. Clients will generally only communicate
with the server for programs they haven’t seen before, and
then, the data sent will be small in both directions. Today,
every client gets massive downloads on a daily basis, many
thousands of times larger than the data that this new system
would send in an ordinary day.

Chapter 39210

There will be plenty of interesting directions in which the industry
can go once systems like this are common.

For instance, this big database of all programs can have catego-
ries besides good, bad, and unknown. There could be subcatego-
ries for good, such as “exploitable” and “has known exploits,”
which can make patch management much easier. Imagine AV that
tells you when you need to upgrade a piece of software because
there are actual exploits for that software. Or imagine that your
AV software could be extra cautious about allowing you to do
risky things with exploitable software, such as opening attach-
ments you found on the Internet.

We could classify programs in all sorts of ways. Certainly, we can
have spyware or adware, but how about “crapware”? What if,
when you tried to install a program, your AV software could tell
you that most people end up uninstalling the program and that the
program will slow down your machine (Figure 39-2)? What if it
could make Amazon-like recommendations for programs before
you run them or before you even download them?

Figure 39-2. An example “crapware” warning

What AV Companies Should Be Doing (AV 2.0) 211

There are plenty of other useful business opportunities to be built
on top of a platform like this. But that’s the future. When’s the
future coming?

Most of these ideas have been built, at least in a prototype form,
but seeing them in production across millions of users will take a
few years. The industry is moving with baby steps toward this
vision, and it will continue to make baby steps because nobody
wants there to be a disaster if some vendor goes out with some-
thing half-baked and causes problems. Vendors will make sure to
build the right things. For example, the big vendors will need to
make sure their solutions scale up to millions of users.

We’re already many steps down the road. McAfee has been deliv-
ering some real-time signatures since mid-2008. And several ven-
dors are tracking enough information about program ubiquity
that they can at least start prioritizing their resources better. The
major vendors and a few of the minor ones are typically doing
some automatic reasoning about programs in the backend.

It will still probably take at least five years until most of this
vision is reached. Even that might not be long enough for the
industry to properly defend itself from bad guys disabling AV soft-
ware when they do successfully infect a machine (that requires a
virtualization approach, where the migration path is tricky).

But even when we get to this world we’re envisioning, it’s impor-
tant to note that these systems are only going to make the problem
manageable; they’re not going to eliminate it. There will still be
infections. There will still be all the things that lead to infection
and data loss, such as social engineering and software exploits.
There will still be network-level attacks to worry about.

But the world will be a much safer place, particularly for those
people running AV 2.0.

Chapter 40 C H A P T E R 4 0

VPNs Usually Decrease
Security

The basic idea of a VPN (virtual private network) is that people with
the right credentials can get access to resources over the Internet that
normal people can’t see at all. What generally happens is that a
machine connects to a VPN server and authenticates. That machine
can then see both the Internet and the private network.

For example, many companies allow their employees to check
work email from outside the office, but only if they VPN in. If an
employee VPNs in, and that employee is infected, the bad guy on
that machine suddenly can see a bunch of machines that just weren’t
visible before. Heck, maybe the bad guy will even commission some
malware targeted to his victim’s firm and its specific environment.

People get themselves infected. Why put your corporate network
at unnecessary risk, just to give people access to email? Just out-
source your email to a SaaS provider. Or run your own mail infra-
structure, but lock it down really tightly in case there is a security
flaw in the software.

VPNs made a lot of sense when most of the services people
wanted to use didn’t use strong authentication and all of a com-
pany’s services ran on one network and had access to one another.
But the world’s not like this anymore. Most of the services corpo-
rate citizens use have strong authentication available, and you can
either have that stuff hosted or otherwise segregate things far
better than you could even five years ago.

Plus, VPNing is generally pretty damn inconvenient!

Chapter 41 C H A P T E R 4 1

Usability and Security

I’ve talked about this topic a few times in this book. Often, there’s
a tension between usability and security, where stronger security
generally results in a less usable system, and a more usable system
is often less secure.

I think this is a false dichotomy. It’s certainly possible to have sys-
tems that are both easy to use and secure. For example, in
Chapter 35 we talked about improving the security of password
systems by applying a technology called zero-knowledge password
protocols. Done right, implementing this type of system would
also improve usability, because it would make traditional pass-
words far more secure than they are today.

There are plenty of other examples where security and usability go
hand-in-hand. If you give users the ability to choose between a
secure connection built on the strongest encryption that has prov-
ably strong properties, and something legacy that everybody’s
heard of (but might have security problems), plenty of people will
choose the system they’ve heard of. Heck, if you give people the
option to turn it off, some of them will. It’s far better to have no
options, and eliminating options also leads to the simplest user
interface. Just give people a secure connection.

When it seems like security and usability trade off, there’s a good
chance that there’s a much better solution that got ignored.
Maybe the designer didn’t take the time to look for it or maybe he
didn’t take the time to fight for it. Either way, everybody loses.

Chapter 42 C H A P T E R 4 2

Privacy

By now, people should have a reasonable expectation that there’s
no privacy on the Internet. If you want privacy, you have to read
the fine print carefully to find out exactly what privacy has been
promised and under what conditions. Most people don’t think
about it, and if they do, they don’t care very much.

Many geeks, on the other hand, care a whole lot. Few of them
know they’re a tiny minority, though.

I think I’m pretty typical. I would love to have my privacy, but
once you get past my personal finances and such (read: I don’t
want my money/identity stolen), I really only object at a moral,
theoretical level. It’s not a major driver for me, and I’m often
willing to sacrifice some privacy for more functionality. I gener-
ally would not go out of my way to get more privacy unless I
explicitly had something to hide. I almost never have anything to
hide.

Most other people seem to feel the same way about it: privacy is
nice in theory, but if you don’t have anything to hide, what’s the
big deal? Maybe that’s a shame, but it’s the way the world is.

Chapter 43 C H A P T E R 4 3

Anonymity

Like privacy, anonymity sounds great in theory, but nobody cares
in practice. A company called Zero Knowledge learned this the
hard way when it offered a cool paid service that allowed people
to use the Web anonymously. It worked pretty well, but nobody
cared.

There are also significant problems with anonymity, such as the
lack of accountability. For example, the night before I wrote this
chapter, a coworker of mine had to spend a couple of hours
dealing with police because someone out there used a VOIP phone
to call 911, claiming to be my coworker.

Anonymity is a great ideal, but it’s disappearing all over the place.
You haven’t been able to fly without an ID for a long time, but
now it appears I can’t even take Amtrak without having to show a
government-issued ID. In one sense, that worries the hell out of
me, but on the other hand, I do think accountability is important.

Oh, and I’ve got nothing to hide anyway….

Chapter 44 C H A P T E R 4 4

Improving Patch
Management

Software has security flaws, as we well know, and we’ve seen a lot
about why it can take time to get software fixed. But most of the
time, fixes come out when a vulnerability is announced, and then
the bad guys have a field day. Usually, they have at least a month
in which they will have little problem finding people who haven’t
patched.

But why can’t we get everybody to patch in a timely manner?
After all, don’t most programs these days include auto-updaters so
we don’t have to remember to go check for new software?

There are a couple of problems. In corporate environments,
people like to make sure that patches are stable before allowing
them to be deployed so as not to impact productivity. A security
flaw that isn’t being actively exploited, or one that presents a low
risk (perhaps because users are mainly behind the firewall, or per-
haps users are just expected not to open random documents from
around the Net) may not be as risky as installing an unstable
patch that causes the program to crash a lot, thereby destroying
productivity across an enterprise.

The patching problem isn’t just an enterprise problem. Normal
people don’t patch, either. I see my parents and friends go for
months or even years ignoring their computers’ cries for updates.

Heck, I don’t patch often enough myself. I don’t let things sit for
years, but maybe a week or two.

Chapter 44222

The reason? Even if it’s mostly automatic, patching is usually a big
productivity hit. If I patch my web browser, I have to restart it,
but at any given time, I may have 40 pages open, 5–10 of which I
might still want to read. I need to go through and process that
state before I’m happy to close the browser, something I only do
about once every week or two. For me, it’s the same thing with
Microsoft office. I can go a long time without updating the OS for
much the same reason.

I’m happy to install patches for things like my todo manager or
news reader, both of which always basically show me the same
state on startup that I saw on shutdown. The big difference is that
if I install the update, my productivity isn’t really affected.

My rule of patching is that software vendors should have minimal
to no impact on productivity. For instance, don’t make me wait,
unable to use the application, while I download the updates.
Download them in the background, and then only let me know
when they’re ready to install.

And don’t require me to reboot my computer. That should be an
absolute last resort. In fact, most operating systems have bent over
backward to make sure most programs won’t have a legitimate
need to do that. Unfortunately, security software is one of those
areas where there may still sometimes be a legitimate need.

Of course, it would be great if applications could patch them-
selves while they’re still running, but that’s not actually reason-
able. However, most software vendors should be able to do a
good enough job saving your state that they can shut down, install
the updates, then relaunch, restoring your state as if nothing ever
happened. All you lose is the minute from when you click “install
update” to when you’re back up and running.

If productivity impact were minimal, I’d be happy to have most
things automatically install updates when I’m idle. For most pro-
grams, I don’t have the same problem that enterprises have—I
don’t mind a bit of instability occasionally, as long as the fix is
coming soon (or I can easily revert if not).

Either way, people will always be slow to patch, with plenty of
people not upgrading their AV (or renewing their expired AV)
until they get their next computer. The best thing the industry can
do is give people fewer excuses by making sure updates never have
a big impact on productivity.

Chapter 45 C H A P T E R 4 5

An Open Security Industry

At first blush, it may look like the security industry is pretty open.
For example, plenty of companies provide AV by running a ton of
AV programs in the cloud and then claiming a program is bad if
some number of other AV programs agree that it’s bad. Person-
ally, I’m surprised no companies have been sued over such AV
“voting” schemes. And while the industry might tolerate this kind
of situation, it generally doesn’t encourage openness.

There is a tremendous amount of duplication of effort in malware
fighting/signature writing across the major vendors. All the com-
panies have dozens of people writing signatures for the same
thing. And most of the signatures just amount to simple pattern
matching; there’s not much intellectual property that’s any sort of
rocket science. In the meantime, the amount of malware out there is
exploding, and no single vendor can grow fast enough to keep up.

While I’ve argued for a better way of doing things, it is also true
that the world would be better off with a standard signature defi-
nition language and shared signatures so we’re not duplicating
effort. This is not as far-fetched as it seems, either. All the major
AV vendors already share malware samples with one another on a
daily basis. We all get the malware the other guys find. Why
duplicate the drudgework?

Chapter 45224

Instead, let’s have the industry compete on the merits of how the
players actually do security, and the end user experience. Let’s not
put unnecessary barriers in the way of becoming as secure as we
could possibly be with today’s technologies.

Yes, security companies live to make money, but they are also in it
to provide the best possible protection to people. Security compa-
nies, open your APIs and let everybody integrate. Differentiate
yourselves with a product people want to use.

Chapter 46 C H A P T E R 4 6

Academics

When I first got into security, I was an academic, writing confer-
ence papers, grant proposals, and crap like that. Even in my time
consulting and in product development, I have tried to do some
things that were both academically interesting and practical.

Having been on both sides of the divide, I’d say that for the most
part there is not much practical work coming out of academia that
is making a big impact in the real world. There are certainly a few
exceptions, most of them in the world of cryptography (that sub-
field is a lot better with practical applications in general, though
there are still a lot of people working on stuff that will never be
interesting for real-world systems).

There are lots of reasons for this, an important one being that
industry and academia don’t share very much. For instance, my first
startup built cool security tools for finding bugs, way ahead of what
academia was doing. Years later, there are still new papers rein-
venting things that we did a long time ago but never shared with
anybody because we thought we were better off not sharing.

I see the same thing in AV and intrusion detection. Lots of aca-
demics are reinventing what industry has been doing for years. Or
they’re proposing systems that look like they might be viable until
someone tries to apply the technique to the real world on a large
scale and identifies all the problems (many academic papers on
detecting “bad stuff” look good to the authors, but would have
serious accuracy problems in the real world).

Chapter 46226

Academics don’t just suffer because they don’t know what industry
has done. They suffer from not understanding the problems well.
Academics don’t spend enough time with customers or with compa-
nies in the industry to figure out the true problems that need to be
solved. Part of this is because academics tend to be more focused on
publishable results than on which problems need a better solution.

Academic peer review is a great thing, but in the security field, the
fact that publications usually have to meet a high “novelty” bar is
a bad thing. The real world would benefit if industry could say,
“Here’s a proposed system. It’s a combination of a lot of ideas,
but it’s a new, novel system.” Right now, academics don’t get any
credit toward tenure for breaking stuff (though they still might do
it for the publicity). But it would be great if academics could get
publication credit by publicly analyzing those systems. I think they
should get credit for contributing in a practical way to industry—
the world would get better systems, after all.

In general, there isn’t enough collaboration or communication
between academia and industry. Few academics come to the big
industry conferences, like RSA (the exceptions are cryptographers).
And few people who are building products or are in industry buying
security solutions are going to the academic conferences, like IEEE
Security and Privacy and USENIX Security. USENIX Security is
even supposed to be practically oriented, but when I skim the pro-
ceedings, I rarely see anything that really excites me. I can’t
remember the last time I thought, “That’s going to save the world,”
or even, “Wow, that would save someone some money.” On the
other hand, I often learn about useful or more cost-effective solu-
tions when talking to people who work in the corporate world.

I don’t know how to fix the problem. This is a downward spiral: the
less relevant academia is, the less effort industry will put into the
relationship, which will leave academia less able to provide value to
industry.

Again, even though I think there’s a disturbing trend, there are many
exceptions. I have a lot of respect for people who are bridging the
gap, many of whom I’m proud to call friends (people like Gene Spaf-
ford, Avi Rubin, Ed Felten, Tadayoshi Kohno, and David Wagner).

But I’d love to see us do a whole lot better. It pains me to think
there are so many smart people out there working hard on secu-
rity, having so little impact.

Chapter 47 C H A P T E R 4 7

Locksmithing

Many offices these days have electronic locks that open with a
proximity card. I desperately want these locks for my house, but
it’s tough to find a regular locksmith who even knows what you’re
talking about, much less how to install them. Everyone with a clue
about this stuff is probably focused on installing it in offices.

Someday this technology will make it to the masses. I hope to have
one card for all my locks everywhere. Even better, I’d love to skip
the card and use my phone. Plus, let me use some sort of computer-
based home-automation system to choose who can use which lock,
and when. For example, the kids can get into the liquor cabinet,
but only when they turn 40, and only on Christmas Eve.

The lack of locksmiths with technology skills is a big issue today,
but it’s an issue that time will fix naturally. The biggest problem
with the industry is that even the best, most awesome electronic
locks need physical keys as backup locks.

It’s a fire code thing. What happens if the power goes out in a
building and you have to get through a locked door, but the lock
is electronic? Either it needs to unlock when the power is out
(which is a huge security hole) or you need to have a backup that
doesn’t require electricity.

Chapter 47228

Physical locks tend to be really easy to pick unless you go for
extremely expensive ones. If it weren’t for this pesky power
problem, it wouldn’t be cost-effective to have a physical lock any-
where we’re willing to pay for an electronic lock.

Maybe there’s a solution to this conundrum. I think that elec-
tronic door locks should all come with a backup power source.
Maybe you have to stick an AAA battery into the door and then
wave your proximity card. Or maybe the doorknob doubles as a
handcrank, and you crank it until there’s enough electricity. Cer-
tainly, the law should regulate what’s acceptable and what’s not in
order to avoid preventable catastrophes. Nonetheless, we should
be able to kill the traditional key-based lock if we really want to
do so (though it would take a long time before electronic locks
would be anywhere near as cost-effective as physical locks).

Note that many electronic locks use a network to hook into an
authentication database. When the power’s out, the lock will need
either a cached copy of the database or some less regularly
updated authentication info in there.

That’s not a big deal, though.

Chapter 48 C H A P T E R 4 8

Critical Infrastructure

About once a year, there’s a big commotion in the security press
about attacks on utilities like the power grid. So far, I’ve never
seen any evidence that there have been any significant issues. But
that doesn’t mean it couldn’t happen.

First, it’s important to note that the people who design critical
infrastructure IT control systems, usually called SCADA systems
(Supervisory Control and Data Acquisition), care about these
kinds of issues and take them into account when designing. For
instance, such systems generally are not ever directly connected to
the Internet.

However, there have been several studies showing weaknesses in
critical infrastructure systems. I know of several instances in
which systems were indirectly accessible from the Internet, despite
the intentions of the system designers. For instance, if one com-
puter has two networks, one cable leading to the SCADA system
and another to the Internet, anyone on the Internet who breaks in
to that machine can see the SCADA system. I have no doubt that
there have been many instances in which bad guys have infected a
machine that had another foot on a SCADA network, but nobody
ever noticed.

What I wonder is how many people are actually looking to target
nuclear power plants, the way they do on 24? Or shut down the
Internet (which I’ve studied for a government project once…it’s a
heck of a lot harder than you might think)?

Chapter 48230

Anyway, I am not panicking. I think things are mostly OK. Crit-
ical infrastructure has always been most at risk from regular old
insider attacks and physical attacks, and I think that’s the way it’s
going to stay, at least until we start hearing about this issue every
day for months at a time.

Epilogue

Many people in the security industry like to preach gloom and
doom. It makes them money and people usually end up believing
what they’re selling.

I guess I’ve been doing the same in this book, preaching gloom
and doom. But instead of preaching that the customer is hosed,
I’m preaching that the security industry is hosed—I don’t think
customers are hosed at all. Security issues are, right now, an
inconvenience (and in the enterprise, maybe an expensive inconve-
nience). They aren’t a ruinous problem.

When I started working on this book in mid-2008, I’d recently left
McAfee to work on a startup. Now, in the last few days of
working on this book, I’ve been brought back into McAfee.

Lots of people have asked me some variation of the question, “Do
you feel dirty being back at a big company?” The obvious implica-
tion is that they think McAfee sucks (typically, that all big compa-
nies suck).

Actually, I like McAfee, and am proud of where it is. In the time
from when I first started until now, it has essentially gone from
middle-of-the-road to best in terms of the quality of its AV solution.
Almost all of its security technologies are world-class compared to
its competitors. And it’s well on its way down the path to imple-
menting some of the grander visions I talk about in this book,
such as the move to security in the cloud.

McAfee is phenomenal for meeting enterprise needs, an area that
I’ve tried to avoid as much as possible in this book, but one that is
incredibly important to the market.

Epilogue232

That is not to say I’m just a McAfee cheerleader. It is a big com-
pany and there are occasionally things that I don’t like. But, I
think the leadership is strong, the technology is strong, and the
vision is strong, or else I wouldn’t be there.

And if I look around the industry, most big companies have posi-
tives and negatives. But there is still a massive amount of dysfunc-
tion in the industry. Security geeks care about security. They don’t
worry about usability and they don’t worry about cost. The busi-
ness guys just worry about selling and marketing themselves to
make it easier to sell, even if they arm the bad guys in the process.

Customers may think they need security, but they usually don’t
want it. And, when they have it, the experience often sucks. It’s
not always clear that they’re better off paying for security.

On the whole, I’m disappointed in where we are, even though I
understand why we’re here. I think it wouldn’t be hard to do
better. In some cases, industry is on the path, just not moving
quickly at all.

Real, timely improvement is possible, but it requires people to care
a lot more than they do. I’m not sure that’s going to happen any-
time soon. But I hope it does.

Index

A
academia, interaction with security

industry, 225
account information, stealing, 19

(see also banks; identity theft)
ads

avoiding, 91
click fraud using, 20, 34–38
payment model of, 38

adware
business model of, 20
distributed with other

software, 10, 128
legitimacy of, defining, 77
(see also malware)

Alice project, 1
Amazon.com, as phishing

target, 81–85
anonymity, 219
antispam software, 25
antivirus (AV) software, 42, 47

cost of, importance to users, 8,
32, 68

cryptographic signature
matching used by, 50

effectiveness of, 3
false positives by, 44
heuristic detection used by, 47
HIPS technology in, 75

improving, 48, 203–211
Microsoft’s, reasons for failure

of, 29–32
not being renewed, reasons

for, 8
packing software and, 115–118
percentage of people using, 41
scalability problem

with, 45–47, 54
scanning used by, types of, 42
signature files for, 43, 47
slowness of, reasons for, 49–54
as solution to all security

problems, 65–70
success of, not noticed, 6
vendors of, sources of malware

for, 45
vendors of, writing

viruses, 113–114
when to use, 26, 27
window of vulnerability

with, 45
Apple OS X, 105–107
application firewall (see personal

firewall)
applications (see software)
Applied Cryptography

(Schneier), 87
ARP poisoning, 164

Index234

attackers
difficulty catching, reasons

for, 22
indetectability of, 22
motivations of, 19

attacks
ARP poisoning, 164
distributed denial-of-service

(DDOS) attack, 21
DNS cache poisoning

attack, 11
man-in-the-middle attacks, 11,

163–166, 192
on PKI, 168–169
phishing scams, 13
on wireless connections, 165
(see also identity theft;

malware)
authentication

improving, 191–196
multifactor authentication, 182
reasons to use, 27
SiteKey technology for, 80, 191
(see also passwords)

AV software (see antivirus
software)

B
Bank of America, authentication

used by, 80, 191–196
banks

certificates used by, 172
fraud involving, 19, 39, 79
Rapport software used by, 96
security measures taken by, 80,

191–196
Bolin, Christopher (former CTO

and Executive VP of
McAfee), ix–xi, xvii

books and publications
Applied Cryptography

(Schneier), 87
Building Secure Software

(Viega; McGraw), 2, 87
Practical Cryptography

(Schneier), 88
Secrets and Lies (Schneier), 87
Secure Programming Cookbook

(Viega; Messier), 2
botnet software, 21

browsers (see web browsers)
Building Secure Software (Viega;

McGraw), 2, 87
businesses (see enterprise; security

industry; small
businesses)

C
cable modems, 56
CAPTCHA (Completely

Automated Public Turing
test to tell Computers and
Humans Apart), 175–180

cell phones, 109–111, 166
certificates, 167–169

as alternative
identification, 179

for malware, 206
problems with, 171–174

children, security guidelines for, 93
CIST (Consortium for

Interoperability with
Security Technology), 117

click farm, 35
click fraud, 20, 34–38
cloud systems, 189, 197–202
code auditing, 150
Coffey, David (coauthor), 145
collective intelligence

technology, 48
commissions, collecting

fraudulently, 20
Completely Automated Public

Turing test to tell
Computers and Humans
Apart
(CAPTCHA), 175–180

compliance with security
standards, 145, 146, 152

Consortium for Interoperability
with Security Technology
(CIST), 117

consumers (see users)
costs (see money)
credit card information,

stealing, 19
(see also identity theft)

cryptographic signature
matching, 50

cryptography, 87–90

Index 235

D
data, stealing (see identity theft)
DATs (data files) used by AV

software (see signature
files)

DDOS (distributed
denial-of-service)
attack, 21

developers
security knowledge of, 121, 140
training in security issues, 151

distributed denial-of-service
(DDOS) attack, 21

DNS cache poisoning attack, 11
DSL modems, 56

E
email

attachments, whether to
open, 92

man-in-the-middle attacks
using, 166

protocols for, 25
enterprise

AV software for, 29
firewalls for, 26
NIDS/NIPS solutions for, 73
patching problems of, 221
privacy issues with AV

software, 209
Exploit Prevention Labs

(XPL), 127

F
fear, culture of, 99–103
file sharing applications, 91
firewalls, 56

in modems, 56
personal, 26, 59–63
in router, 56
in 24 television show,

inaccuracies of, 99
when to use, 26
in Windows XP, 55, 57

Flawfinder tool, 149

G
getting “0wned” (see attacks;

identity theft; malware)
Gmail, spam filtering by, 189
Google Checkout, 38
Google, click fraud prevention

efforts by, 36–38, 40

H
heuristic detection, 47
HID badges, 25
HIPS (host intrusion prevention

systems), 66, 75–78
homeland security, 99–103
host intrusion prevention systems

(HIPS), 66, 75–78
host-based security

author’s use of, 28
consequences of failure of, 135
virtualization as solution

to, 135–138
(see also antivirus software)

HTTPS protocol, 171–174
humans, identifying, 175–180

I
IaaS (Infrastructure-as-a-

Service), 198, 200
identity theft, 129

alternative identification
numbers for, 131–134

privacy and, 217
Rapport software for, 96–97
Social Security number as point

of failure, 130
source of, doubt regarding, 6

infections (see malware)
infrastructure, critical, 229
Infrastructure-as-a-Service

(IaaS), 198, 200
intrusion detection systems (see

HIPS; NIDS; NIPS)

L
Levchin, Max (founder of

PayPal), 163
locksmithing, 227

Index236

M
Mac (see OS X)
Mailinator tool, 188
malware

ability to stay hidden, 6
botnet software, 21
causes of, 9–17, 139
detecting (see antivirus

software)
from file sharing

applications, 91
making money with, 19
for mobile phones, 110
ransomware, 21, 22
sources of, to AV software

vendors, 45
speed of infection by, 55
(see also antivirus software;

attacks)
Managed Security Services

(MSS), 73
man-in-the-middle attacks, 11,

163–166, 192
McAfee, x, 3, 29, 113, 211
McGraw, Gary (Building Secure

Software), 2, 87
Messier, Matt (Secure

Programming
Cookbook), 2

Microsoft’s antivirus
software, 29–32

mobile phones, 109–111, 166
modems, 56
money

cost of AV software, 8, 32, 68
cost of securing

software, 145–152
ways to make money with

malware, 19
MSS (Managed Security

Services), 73
multifactor authentication, 182
MXLogic service, 190

N
NAT (network address

translation), 56
NIDS (network-based intrusion

detection systems), 71–74

9/11, exploiting fears resulting
from, 100

NIPS (network-based intrusion
prevention
systems), 71–74

O
on-access scanning, 42
on-demand scanning, 42
open source software, 119–126
operating system

OS X, 105–107
updating, importance of, 91
Windows Vista, 143
Windows XP, 55, 57

OPUS system, 185
OS X, 105–107
“0wned” (see attacks; identity

theft; malware)

P
PaaS (Platform-as-a-Service), 197,

200
packing software, 115–118, 205,

206
passwords

challenge questions for, 194
combining with other

techniques, 182
generating, 186
guidelines for, 185
one-time passwords, 183
problems with, 181

patch management, 221
Pausch, Randy (Alice project), 1
pay-by-SMS technology, 109
PayPal, 163
personal firewall, 26, 59–63
phishing scams, 13, 79–85
physical security

critical infrastructure, 229
locksmithing, 227

PKI (public key
infrastructure), 168–169

Platform-as-a-Service (PaaS), 197,
200

Practical Cryptography
(Schneier), 88

prices (see money)

Index 237

privacy, 217
(see also identity theft)

programmers (see developers)
programs (see software)
protecting yourself, guidelines

for, xiv, 91–93, 185
public (see users)
public key infrastructure

(PKI), 168–169

R
ransomware, 21, 22
Rapport software, 96–97
RATS tool, 149
Raymond, Eric S. (open source

promoter), 119
remote logins, 25
reporting of security issues, 5, 7
resources (see books and

publications; website
resources)

routers, 56
RSA SecurID device, 183
RSA tokens, 25

S
SaaS (Software-as-a-Service), 197,

200
SafePass technology, 193–196
Schneier, Bruce (IT security

expert), 87–90
Secrets and Lies (Schneier), 87
Secure Programming Cookbook

(Viega; Messier), 2
SecurID device, 183
security

cost of securing software, 143,
145–152

guidelines for protecting
yourself, xiv, 91–93, 185

measuring, 120–126
public attitude toward, 5–8
usability and, 215
(see also attacks; identity theft;

malware)
security industry

credibility of, 7
interaction with academia, 225
openness of, 223
problems in, 3

security vulnerabilities
ability to eliminate, 139–144
disclosure of, 153–162
number of, 139, 142

signature files, 43, 47
S-IMAP protocol, 25
SiteAdvisor website, 26, 91, 127
SiteKey technology, 80, 191
small businesses

NIDS/NIPS solutions for, 73
spending on security

vulnerabilities, 142
smartphones, 110
SMTPS protocol, 25
Social Security number

alternatives to, 131–134
as point of failure, 130

software
botnet software, 21
code auditing for, 150
cost of securing, 143, 145–152
credibility of, 7
identity theft protection, 96–97
legitimacy of, checking, 92, 203
measuring security of, 120–126
not used by author, 26
open source software, 119–126
packing software, 115–118,

205, 206
patch management for, 221
security problems in, 11
updates, importance of, 91, 123
updates, improving

management of, 221
updates, reasons users don’t

install, 154
usability of, 1, 215
used by author, 25
(see also antivirus software)

Software-as-a-Service (SaaS), 197,
200

spam
antispam software, effectiveness

of, 25
eliminating, 187–190
from intrusion detection

systems, 71
sending from infected

computers, 20
SpamAssassin software, 25
spearphishing, 14

Index238

spyware, 42, 77
certificates for, 206
checking software downloads

for, 92, 128
distributed with other

software, 10
(see also malware)

SSH utility, 25
SSL/TLS protocol, 167
standards for security, 145, 146,

152
sxipper plug-in for Firefox, 186
Symantec, 3, 29

T
Trusteer company, 95–97
24 (television show), 99

U
updates

importance of, 91, 123
improving management of, 221
reasons users don’t install, 154

usability, 1, 215
users

cost of AV software,
importance to, 8, 32, 68

demand for security by, 146
fears of, exploiting, 99–103
not renewing AV software,

reasons for, 8
perception of AV

software, 65–70
perception of importance of

security, 7
perception of Microsoft, 30
perception of security

industry, 7
problems perceived by, 66
success of AV software, not

noticed by, 6

V
VeriSign (see certificates)
Viega, John (author)

Building Secure Software, 2, 87
contact information for, xviii
Secure Programming

Cookbook, 2
virtual private network (VPN), 26,

213
virtualization software

potential solution
using, 135–138

reasons not to use, 27
Vista, Windows, 143
VPN (virtual private network), 26,

213
vulnerabilities (see security

vulnerabilities)

W
web browsers

security problems in, 11
updating, importance of, 91

website resources
Flawfinder tool, 149
for this book, xviii
password generators, 186
RATS tool, 149
SiteAdvisor, 26, 91, 127

websites, legitimacy of, 26, 91, 127
Windows Vista, 143
Windows XP, 55, 57
wireless connections, attacks

on, 165

X
XPL (Exploit Prevention

Labs), 127

Z
zero-knowledge password

protocol, 183, 215

About the Author

John Viega is CTO of the Software-as-a-Service Business Unit at
McAfee, and was previously Vice President, Chief Security Architect
at McAfee. He is an active advisor to several security companies,
including Fortify and Bit9. He is the author of a number of secu-
rity books, including Network Security with OpenSSL (O’Reilly)
and Building Secure Software (Addison-Wesley), and is co-editor
of O’Reilly’s Beautiful Security.

John is responsible for numerous software security tools and is the
original author of Mailman, the popular mailing list manager. He
has done extensive standards work in the IEEE and IETF, and co-
invented GCM, a cryptographic algorithm that NIST (U.S.
Department of Commerce) has standardized. He holds a B.A. and
M.S. from the University of Virginia.

Colophon

The cover image is a stock photo from Jupiter Images. The cover
fonts are BentonSans and Sabon. The text font is Sabon; the
heading font is BentonSans.

	Oreilly - The Myths of Security (06-2009) (ATTiCA)
	Foreword
	Preface
	Why Myths of Security?
	Acknowledgments
	How to Contact Us
	Safari® Books Online

	The Security Industry Is Broken
	Security: Nobody Cares!
	It’s Easier to Get “0wned” Than You Think
	It’s Good to Be Bad
	Test of a Good Security Product: Would I Use It?
	Why Microsoft’s Free AV Won’t Matter
	Google Is Evil
	Why Most AV Doesn’t Work (Well)
	Why AV Is Often Slow
	Four Minutes to Infection?
	Personal Firewall Problems
	Call It “Antivirus”
	Why Most People Shouldn’t Run Intrusion Prevention Systems
	Problems with Host Intrusion Prevention
	Plenty of Phish in the Sea
	The Cult of Schneier
	Helping Others Stay Safe on the Internet
	Snake Oil: Legitimate Vendors Sell It, Too
	Living in Fear?
	Is Apple Really More Secure?
	OK, Your Mobile Phone Is Insecure; Should You Care?
	Do AV Vendors Write Their Own Viruses?
	One Simple Fix for the AV Industry
	Open Source Security: A Red Herring
	Why SiteAdvisor Was Such a Good Idea
	Is There Anything We Can Do About Identity Theft?
	Virtualization: Host Security’s Silver Bullet?
	When Will We Get Rid of All the Security Vulnerabilities?
	Application Security on a Budget
	“Responsible Disclosure” Isn’t Responsible
	Are Man-in-the-Middle Attacks a Myth?
	An Attack on PKI
	HTTPS Sucks; Let’s Kill It!
	CrAP-TCHA and the Usability/Security Tradeoff
	No Death for the Password
	Spam Is Dead
	Improving Authentication
	Cloud Insecurity?
	What AV Companies Should Be Doing (AV 2.0)
	VPNs Usually Decrease Security
	Usability and Security
	Privacy
	Anonymity
	Improving Patch Management
	An Open Security Industry
	Academics
	Locksmithing
	Critical Infrastructure
	Epilogue
	Index

