

TLS Mastery

Michael W Lucas

Copyright Information

TLS Mastery
Copyright 2020 by Michael W Lucas (https://mwl.io).

All rights reserved.

Author: Michael W Lucas
Copyeditor: Amanda Robinson
Cover art: Eddie Sharam

ISBN (Beastie edition): 978-1-64235-052-4
ISBN (Tux edition): 978-1-64235-053-1
ISBN (hardcover): 978-1-64235-051-7

All rights reserved. No part of this work may be reproduced or transmitted in

any form or by any means, electronic or mechanical, including but not limited to
photocopying, recording, miracles (rotten or not), or by any information storage or
retrieval system, without the prior written permission of the copyright holder and
the publisher. For information on book distribution, translations, or other rights,
please contact Tilted Windmill Press (accounts@tiltedwindmillpress.com).

The information in this book is provided on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor Tilted Windmill Press shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in it.

Tilted Windmill Press
https://www.tiltedwindmillpress.com

TLS Mastery

Michael W Lucas

More Tech Books from Michael W Lucas
Absolute BSD
Absolute OpenBSD (1% and 2™ edition)
Cisco Routers for the Desperate (1% and 2™ edition)
PGP and GPG
Absolute FreeBSD (2" and 3" edition)
Network Flow Analysis

the IT Mastery Series
SSH Mastery (1% and 2™ edition)
DNSSEC Mastery
Sudo Mastery (1% and 2™ edition)
FreeBSD Mastery: Storage Essentials
Networking for Systems Administrators
Tarsnap Mastery
FreeBSD Mastery: ZFS
FreeBSD Mastery: Specialty Filesystems
FreeBSD Mastery: Advanced ZFS
PAM Mastery
Relayd and Httpd Mastery
Ed Mastery
FreeBSD Mastery: Jails
SNMP Mastery
TLS Mastery

The Networknomicon

Other Nonfiction
Cash Flow For Creators

Only Footnotes

Books and Novels (as Michael Warren Lucas)
Immortal Clay
Kipuka Blues
Butterfly Stomp Waltz
Terrapin Sky Tango
Forever Falls
Hydrogen Sleets
Drinking Heavy Water
Aidan Redding Against the Universes
git commit murder

git sync murder

See your local bookstore for more!

Brief Contents

Acknowledgementsccerceuriniccrniniceeceece e 10
Chapter 0: INtroduction.........ccceuveveeueiriccrnninccenecceseceeeeseeeenns 12
Chapter 1: TLS Cryptography........ccccceveeceuririneecernenecrrneceerseneenenns 26
Chapter 2: TLS CONnections..........cccceureeueurireneeereinecrersenesceessesesesenns 52
Chapter 3: Certificatescooecueurreerririrccrnininceeeneeeesecseeeeseesenns 62
Chapter 4: Revocation and Invalidation.........c.cccceeeeccurnencecrnencncnnes 95
Chapter 5: TLS Negotiationccccceeuveveueureneceeuninecreinenecseeneneeenens 105
Chapter 6: Certificate Signing Requests and Commercial CAs....117
Chapter 7: Automated Certificate Management Environment141
Chapter 8: HSTS and CAA.......ccoeicereccrrcceeceeneeeaes 175
Chapter 9: TLS Testing and Certificate Analysis.......ccccocccuvureeuceee. 181
Chapter 10: Becoming a CA........ccocceeurreceeininirceininecieineecneeneeeenns 187
AFEIWOTd .. 217
SPONSOLS ..ttt 219

2 18 00) 001/ & TP R S RRRRRRR 221

Complete Contents

Acknowledgementscceureeeurininecininiceecee e 15
Chapter 0: INtroduction...........cceuveveereineccrninincceecesneceeeeseeaenns 17
Who Should Read This BOOK?cccviuiriniininiiciiicicccciccens 18
TLS, SSL, ANd VeISIONS .ueeeteeeeeeeeeeeeeeeeeeee e et eeeeeeeeeeeseeeeesseeseeseneseeseesseenns 19
AL s 20
USING OPENSSI(1).ceuvuviinieiieciriecieieieieicisecieecie et eaese e neae 21
The OpenSSL Manualccceeunecrniciniieineereceeieeseeees s sesesene 23
The United States and FIPScccccocviiviniiiininiccisicncccces 24
Applications and TLSc.cocereircrniencicece e seeseseeenes 25
TLS versus DTLS ... 26
Encryption and This BOOKcccccvcuricriieiniciricrceinceeceeeceeevenene 27
What's in This BOOKcccccviiiiiiiiiiiiiicccccccccecaes 28
Chapter 1: TLS Cryptography........ccccceuveeccuririneecernenccrnneceeereneenenns 31
Hashes and Cryptographic Hashes.........ccccoceuveeuncrnncenccinecenceneennee 31
Symmetric ENCryption ...
Public Key ENCIYPHON c....cucuveceiiecieeciricieicieieetnecsecseeesee s seseneee
Message Authentication Codes..........cocueucueurecrrecrrincueeneeenecereeeeeeeennene
Digital SIGNAtUIES....c.veeveeciriceeieeeireeereecieecee sttt eesese s seee
Key LeNGRS «..couvuiiiiieiciiciectciccrectec et seee
Breaking AIGOrithms ..o
CIPRET SUILES.....ceeieiieciiectriceeieie ettt seee
Cipher SUite NAMIES.....c.ovuvueuierreerieeeieiiieeeeineiene et sese s sesessesecsene
Alternate Cipher NamIEsc.ccccueveecurivrereireineerreeeeetseiseessessesessessesessessesessessesenne
Included Cipher SUIES.......cvuveeuiereciierreeineieereeeeeiseee s sseaeene
Cipher Lists and Cipher Ordering
When HIGH ISt ENOUGh.cucvivriciiieicireircineecrtireeeiecensesese e seaenne
Trust Models and Certificate Authorities.........cccooeuvcuvivivcncininiccininnanes 50
Private Key Protection...........cccocoviiiiiiniiiininiiniccccccccen 51
TLS ReSUMPLION ... 52
TLS Secure Renegotiation...........cccccueueuiuieiiiiiiinciinrreeeseeeeeeenenens 53
Perfect FOrward SECTeCY.......ocvueuicunicuriieeinectnecrseeieeeieeeeesseseseeeseseee 54

Server Name INAICAION .oovvveeeeeveeeeieeeeeeeeeeeeeee ettt eere st et et et e e eneseeeens 55

Chapter 2: TLS CONNECHIONS......c.ccvvrerereriririieeceeieieieieieieeieseesesesesens 57

Connecting to POIts.......oovvviiiiiiiiiiiiiicccccee 58
Connecting versus Debugging..........coewcueuereuneuemerneeererneemensesesnessesenesseseene 58
Line Feeds, Carriage Returns, and Newlinesccccooceveveeenerneernernecnnernenenne 58
TLS-Dedicated TCP POILS ..o sisssssssnseens 59
OPpPOrtunistic TLS....oiceieieieirrrrreeccciereietstrreeceeierere e eseeseeesesenenenes

Connection Commands

Silencing §_ClIENtc.cccuvcueirceeiicirceee e
SPecific TLS VErSIONSccocueueueiririecieieirieeeieieis ettt seees
Cho08ING CIPRETSoueuiieciiiiciiiciciec e seee
Chapter 3: CertifiCatescoeeeueururerirririririrereeeeeeeeieieeeeeeesesesesees 67
Certificate Standardsccvveeeeerrniieeee e 68
TIUSE ANICROTS ettt 69
Making Your Own Trust Bundle ... 71
The OpenSSL Trust Bundle........c.coecureeieinicinncenericenceereeieneeeeeneienes 72
Certificate COMPONENES.......c.vueuiureeeriririneieieireseeaeieieestseeeieteestseeseseseseeeaens 72
Extensions and CONSIAINES..........ceeureriieeieirireieieieirteeeee e seeenens 73
Validation Levels........coieurrriiieieierceieiee et 74
Trust and Your Certificatecocevvreieieirennceeesirccceeeeseee e 75
The Chain of Trust
Intermediate CAS......ccooveveurereeernennns
The TrEe Of TIUST...cucuvriuceeireceeirieieireet ettt sttt eaeneen
Certificate Validationcccoveeeeueurniniceieieeecie et 80
ENCOAING ...ttt seee 82
Distinguished Encoding Rules (DER)c.cccuvureveuniunircrnernecrnerneernenneennennenenne 83
Privacy-Enhanced Mail (PEM)ccccvivmcunireerneeneinienenneeenennesesenesensessesenne 84
Converting Between ENcodingscoceecueeeeemeeecineeeeerneeenerneesenneenessesenne 84
OpenSSL Without INput FIles.......coveueueirieurinccinineencieineeiesecieeseeieeieiseenes 85
PERCS H12 ettt e 86
Creating a PKCS #12 File....c.ouveiecniecreeeeecneeeeeeensesese e sesseseene 86
Viewing @ PKCS #12 FIlec.oucuiurivciriricireirecineireeneiseesneisesessessesessesseseseseesenne 87
Exporting From PKCS#12 Files......couevveururecrnirrecininienenecnneiseesneneenesseaenne 88
Certificate CONENTS......cocueueeririeeeetrirerccieiei ettt eeaens
Certificate EXENSIONSccueureueuruiucieireeeieieietsieieieeeietseeietsesesesseses et sesesseeans
Certificate Transparency.
Digital SIgnature..........cceeuveeevrerreeerrerreenrerrenennes
Incomprehensible Certificate Informationc.ccovcevencerneccienencenneenenenes 94
Skip Keys and SIGRatures.........ccevcueeererniueeeremeeenneeenessesesensesessessesessesseseene 95
Multi-Name Certificatescooueuerreriieeieirerireeieeietreeee et 95
Wildcard Certificates........oceerreriieririririieieieereeeeeeeeeee e 96

Viewing Remote Certificates.........coeienieunicreineeeinierricrniceneennecneeenes 97

Cho0oSING @ CA ...ttt seae 98

Chapter 4: Revocation and Invalidation........c.cccceeeeeeeurcininnenene. 101
Revoking Certificatesceeeuernecrnencieiieiniciriereeeenseeesesesesesensenens
Certificate ReVOCAtION LiStS......coviviivveriereeiieetieeieeieeeeeeeereeeeeeereseeeeseereseeeesenenes
Online Certificate Status Protocol
OCSP StAPIING....cvevuiieercireieicireieietreieee et seeaeene
RevOocation Failtiresc.covoivveeieeeeieieieiecreceeeeeereeee e veve e nenas
Browsers Versus ReVOCAtiON..........cceeeeeeeveeeeeniecieceeete et
Validation SOIULIONSc.ccvevivveeierieierirerieteseeeeereereeeree et

Chapter 5: TLS Negotiationccccceeveeceeureneceeuneneererneecreeneneeenns
Certificate Validationcccoceveeiniciniceiniciniciriceceeceeceeeeeneeens
Protocol SEtHNGSc.vueuiicieicieiieiecce et seans
Session and ReSUMPLIONc.cvevveiueueieirieeeeirreeee e

TLS 1.2 Session and Resumption
TLS 1.3 Session and Resumption

TLS Failure EXamples........covevieeurirniicieinriceseseseceieeseseeeie e
Chapter 6: Certificate Signing Requests and Commercial CAs.....123
Reusing CSRS.......ooiiiiiniiiiiciccc e 123
Why Go Commercial?..........cccureeeinieinicneeieeeeieeneessesesenesenne 124
Gathering INformation.........ccceveeunicuninceiicinicinceeeeeeeeeeeneaens 125
Public Key AlGOrithm........ccevcueiieiniciricciicncirceeccceneeneaes 126
CommoOn NaMES ..o 127
OpenSSL Configuration Filesc..ccoeeicnicinincenecnicncecenenens 128
Creating CSRS.......cciiiiiiiicc e

Creating ECDSA CSRs
Main req SECHION.....cueuiirieiieiiciirccct et
Password Management
req_distinguished_name
EXEENSIONS..o.viiitiictectct s
Elliptic Curve Parameters Files
Requesting ECDSA Certificatescocvueeeuerrecerernereenerneennerneensessesensessesenne

Generating RSA CSRS ...
RSA CSR Configuration File.........c.oeveuniereeinerrencineinecineneeeineennensesensenneeenne
Requesting RSA CertifiCatescveeuriererernereecenernereenerneenesneensessesessesseaenne
Client CSRS.....cviciiiiiecc s
Certificates Without Subjects........cocvvcuneuvevcrnernecrnennee
CSRs Without Configuration Files

VIEWINg CSRS ...cviiiiiiiiiiccecct e

Using the CSR and Certificate..........ccoveuevieunicrrinceeinienicnicieceenenens

Reconnecting Files and Finding Reused Keyscccccevvcuvvcrvuncecnnnnce 146

Chapter 7: Automated Certificate Management Environment147
HOW ACME WOTKS......ceeuiiiiiiciiciicieicietciecteese e sesesessesenseseseeens
ACME Registration
ACME PIOCESSuvviiiiiiiicici s
ACME Challenges...........cceuveueurecunieueinieeiniersieieeenseeseeesessesessssesesesenns
HTTP-01..cooiiiiiccccrereinineene

TLS-ALPN-01 c.ciiiiiiiciiiciiiciietieieseiesee et sssenens
Which Challenge Should T USe?ccocureererneernernieeeineeenneeeeenreeenennenenes 152
Testing ACMEc.coieeiicecece ettt 153
ACME CHENLS ...t
Dehydrated ..ottt eans
Dehydrated HOOKS.........cocuiueieureeeeeiriiereineeeeeineeeeetsesenessesenessesensessesesessesense
Certificate Directory and User
Core Dehydrated Configuration..........cvceecureerecuneenercenernecrnerneennenseensenseenne 157
Changing CAS. ..ottt ssesesseseeseens 158
Additional SELHINGScuevueveeererreeeierreieetreee ettt ssesensessese e ssesenaes 159
Domain LiSt.....coiiiiiieiiiici e 160
Dehydrated with HTTP-01.....c.coveuieirieiiciniciriceceecreecreneseneeens 161
WED SEIVET SELUP....eviutiiucirieieirteiet sttt ettt been
Apache Configuration
HTTP-01 HOOK SCIIPL .oeueiiiecieiiicirieieisecieisecie ettt seaenees
Running Dehydrated...........ccocvecinricinincnieicnenecneneeneiseenensesensessesenne
The Dehydrated Directorycoccvcvevceiniemnicrneereieeneeneecseneeensenens
The Certificate DIFeCtOIYcocuiuevrerreeeeerreeererreeeeerreseeessesesessesensessesesessesenses
Archiving Certificatesoeeureeererreeenerrieeieireenetreseeessesesessesessessesesessesenses
Certificate Deployment.........cccvceunecuricreiicnniciniereeeseeseeeseneeeseeens
DNS-01 Challengesccccceveuemreernicrnineieiieinecirieseeessesesensesenesessesens
DNS-01 Test Environment...........ccccccevueeeneee
Configuring a Dynamic Child Zone
DINS ALASES....ouvvniviiviiiiiiiiie st

DINS-01 HOOK SCIIPE c.uetireiriceeirieieiricieiseeeetseae ettt ssesesessesenees
Running Dehydrated with DNS-01
DNS-01 COILSIONS...uvrrvrmrieerrcrrirererrereneereeenessesenessesensessesensessesessessesessesseserse
Per-Domain Configurations..........cecceevcueeicunecrrenereeneeenseerseesensesennenns
ACME RENEWALSuvurimiiiiiciiciciccieicieee et eaese s
Chapter 8: HSTS and CAA.....cccouoirreeeeeeeeeeeeeeeteeeesees 181
HTTP Strict Transport SECUTILYovceceverrereierereerriicereereieciereneeeaeees 181
HST'S DIawbacks......cucvcuieeieireieicineeecineieeeeieeeeeisesesseisesesessesesessesessescsenne 182
Deploying HST'Socoieieeireeeireeeetneee et sessesessessesessessesensessesessessesenaes 183
HST'S Preload.......ccueecineecineiecineeecineieeeeiseseeeisesessessesesessesessessesessesseseens 184

Certification Authority Authorization..........coeccvecenicniccenivcnncennence 185

Chapter 9: TLS Testing and Certificate Analysis.......ccccocecueureeuceees 187
Server Configuration TeSting.........cceeeurecurirerrineeinecrnicrerneeeeenseenenaes 187
Private TeSting.......ccovrieererriniieereircererereee ettt seeeasees 189
Certificate TransSparenCy.......cccecrrineueiniernicrreereeesseeseseseeesensesens 190

Finding Bogus Certiflcates........ccocmurercureurererrernecenerneennerneensersesensessesesessesenne 190
Certificate Transparency in Certificateseoererereurerrecrrernercunerrecererneenne 191
What Failure Looks LiKe......ccccouccuriiueiniciniciniceiicnecreceeesecsenennne 192

Chapter 10: Becoming a CA......c.ccocceeurveeerrnecreineneceenneeenenneeeenens
Private Trust ANCROLSccooveueiieinicinicetcec et
CA SOEWATE ..o
OPENSSL CAS...viiiiiieettrrtee ettt ettt ettt
Building an OpenSSL CAcccoeicniritcncireeeeseeseneseneseneaens
Root CA Organization and Defaults.........ccccoveeeecunenencnencncnencnencnenenn.
Configuring CA POLICIESccuevercriericireireeirereecireiseessessesesessesenesseseseseesenne
Configuring REQUESES........c.cvcueueecrriericireireceieecieiseesseseese e sesseseseseesenne
Creating the Root Certificate......c.ccocvevcurerrevcrnerrecnnenneee
Configuring the Intermediate CAccccocoveververrecrnennee.
Creating the Intermediate CA Certificate
Certificate Databases.........cccviirinininiiini s
Chain File ..t seeaeane
Preparing the OCSP Responder
Web Site Certificates. ...
RevOKINg CertifiCatesceucureurercureureerreireerrereeeereeneessessesessessesesessesessessesenne
Generating CRLS ..o
Client Certificates
Private OCSP Responder
Name Constraint CASccoeevvviiiiiiin s
Becoming a Global ROOL......c.cccciemiciniciciicinicirccccecceceneaes

ATEETWOTA .ottt e e eae e eete s e eeaeeeneseennees 223

SPONSOTS. ..ttt 225
Print SPONSOIS ...cvoveviiriiieiiirierceirertteetete ettt seeae e 225

2 18 C0) 001/ €T 227

Acknowledgements

TLS is perhaps the most complicated topic I've ever written about.
Writing this book would have been impossible without outside help.

This book would not exist if the Internet Security Research Group
hadn’t deployed ACME and organized Let’s Encrypt. TLS certificates
are not only free for most people, their maintenance and renewal is
highly automatable. They’ve changed the whole Internet, and deserve
our thanks for that.

It doesn’t matter how many RFCs I study and how many technical
mailing list archives I read: I lack the expertise and context to
best illuminate an arcane topic like TLS. The folks who read this
manuscript’s early stages and pointed out my innumerable errors
deserve special thanks. James Allen, Xavier Belanger, Trix Farrar,
Loganaden Velvindron, Jan-Piet Mens, Mike O’Connor, Fred
Schlechter, Grant Taylor, Gordon Tetlow, and Fraser Tweedale, here’s
to you.

Lilith Saintcrow convinced me that The Princess Bride could be a
useful motif for a serious technology book. This book was written
during the 2020 pandemic, so I must also thank The Princess Bride for
providing me a desperately needed sense of hope.

Dan Langille gracefully submitted to the pillaging of his blog for
useful hints and guidance. I am grateful that JP Mens, Evan Hunt, and
John-Mark Gurney provoked him into updating that blog and saving
me a bunch of work.

I am unsure if I should profusely thank Bob Beck for his time and
patience in revealing the innards of TLS, or profoundly curse him
and his spawn unto the seventh generation. I must acknowledge the
usefulness of “Happy Bob's Test CA,” however, so I'll raise a glass to
that while waffling over whether or not the bottle of fair-to-middlin’
wine I owe him should be laced with iocane powder.

For Liz.

Chapter 0: Introduction

Of the innumerable things I detest about information technology, first
prize goes to the word “security.” Not the concepts behind it, the actual
word. The definition of “security” wobbles drunkenly all about the
dictionary depending on who' speaking, who's listening, the context,
and the distance to the nearest brute squad. It’s a transcendental

state where everyone is perfectly safe from everyone, but it’s not
inconvenient or intimidating or incomprehensible in the slightest.
Security is Happy Fun Land, where everybody eats hot fudge sundaes
all day every day without developing diabetes or gaining so much as a
gram.

The only way to make this word even slightly meaningtul is to tightly
define the context.

That’s one advantage Transport Layer Security (TLS) has. What it
secures is right in the name. And even then, it's misunderstood. It
doesn’t make web servers secure. That little shield icon in the web
browser’s address bar doesn’t mean your credit card information won't
end up being used to purchase llama pornography. TLS encrypts a
network connection during transit. That’s it. It doesn’t protect the
client or the server from attackers. It doesn’t keep scammers from
tricking you out of your personal data. It doesn’t even totally guarantee
that you're at the site you think you're at. Protecting data in transit is
vital. While it’s best known for web sites, a TLS-aware application can
apply TLS to any TCP or UDP network connection.

TLS is also poorly understood. Most sysadmins know that they get
a certificate, slap it into place, and Magic Happens. Those certificates
used to be expensive. Over the last twenty years the price dropped,
and today you can get them for free. There are still times you want one
of the expensive certificates, but most of us have no idea when or why

that expense is warranted.
19

Chapter 0: Introduction

Even with free certificates, I'm still not fond of TLS. This certainly
isn’t one of those books where the author is so besotted by the
technology that you wonder if it's going to turn into a kissing book.
But TLS is pervasive, frustrating, and complex. Understanding is our

only way to cope with it.
Who Should Read This Book?

TLS Mastery is written for Unix system administrators who manage
applications built with TLS, and anyone who uses the OpenSSL
command on any platform. I assume you’re comfortable with the
command line, scripting, privilege management, and other standard
Unix features.

My reference platforms are FreeBSD, OpenBSD, Debian, and
CentOS. The closer your Unix resembles one of these, the easier time
you'll have. If you run a less common Unix, presumably you're familiar
with its idiosyncrasies. In particular, MacOS ships a stripped-down
OpenSSL client lacking many of the functions discussed here. For real
work on MacOS you probably need an add-on alternate OpenSSL.

Among the many ACME implementations, this book uses
dehydrated (https://dehydrated.io). The principles demonstrated
with dehydrated should apply to any other client. I use Apache 2.4 to
show how certain dehydrated components work, but other web servers
work just as well. For DNS-related examples I use BIND 9.16, but
any name server that supports dynamic updates (RFC 2136) will also
work.

My reference TLS toolkit is OpenSSL, version 1.1.1. I also use
LibreSSL, OpenBSD’s meticulously audited OpenSSL fork, but it
retains compatibility with the OpenSSL command line. Anything
referring to OpenSSL also applies to LibreSSL unless stated otherwise.
The principles discussed are also applicable to other TLS toolkits like
GnuTLS, but I don’'t demonstrate them. If you can build a functional
OpenSSL or LibreSSL on your platform, it should work.

20

Chapter 0: Introduction

OpenSSL is not only for TLS; it is a general-purpose encryption suite.
Its command line is convoluted and complex in part because encryption
is convoluted and complex. It’s also complex because it originated in
1995 and attempts to retain backwards compatibility. I can’t make you
comfortable with the OpenSSL command line, but I might be able to
reduce the amount of vertigo you experience when interacting with it.

Might.

TLS, SSL, and Versions

You hear about SSL connections and certificates, and TLS connections
and certificates. What's the difference?

A digital certificate is a collection of carefully formatted information that
identifies an entity, digitally signed by a Certificate Authority. A certificate
signed by itself is called a self-signed certificate, and is the Internet
equivalent of the handsome prince that smiles and says, “Trust me.”
Maybe you can trust him, or maybe you've already been betrayed. Servers,
services, and users can have certificates. We go into certificates in depth in
Chapter 3. Certificates are a key component of both SSL and TLS.

Secure Sockets Layer, or SSL, was an early transport layer security
protocol. The Netscape Corporation wanted the ability to encrypt
traffic between web servers and their spifty new graphical browser,
so in 1994 they created the primordial SSL and let a small group of
people test it. It sort of worked and it let the testers experiment with
ecommerce, but as with any protocol designed by a single institution it
had numerous flaws. In 1995, Netscape hurriedly released the slightly
more robust SSL version 2, followed by version 3 in 1996. Despite
this quick succession of versions, SSUs core cryptographic design was
intrinsically and irreparably flawed.

The IETF released version 1 of Transport Layer Security, or TLS,
in 1999. It’s a direct descendant of SSL version 3, but the name was
changed for political reasons. TLS 1.1 escaped in 2006, 1.2 in 2008,
and 1.3 in 2018.

21

Chapter 0: Introduction

SSL version 2 was completely obsoleted in 2011, and version 3 in
2015. No version of SSL should be used on today’s Internet. Similarly,
TLS 1.0 and 1.1 were increasingly discouraged starting around 2010,
and nearly complete deprecation occurred in 2018. These protocol
versions are actively dangerous and must not be used, as discussed in
Chapter 1.

As of 2020, all Internet sites should use prefer TLS versions 1.3,
falling back to 1.2 only if necessary. In early 2021, the NSA and the
security bodies of several other governments strongly recommended
abandoning TLS 1.2 as well.

If SSL is no longer a live protocol, and hasn’t been in use for years,
why do we keep hearing about it? Language moves more slowly than
technology. Even sysadmins who only run TLS keep calling it SSL.
Users have picked up that acronym, and once a user thinks they
understand something they detest updating their knowledge. Those
who point out that it'’s TLS, not SSL, get dismissed as pedants and lose
friends. Plus, the most widely used TLS software toolkit includes SSL
in the name. We're stuck with those letters, if not the technology.

I will not mention SSL again unless I'm specifically referring to the

ancient, forbidden protocol.

Why TLS?

The Internet has a whole market square of secure transport protocols.
IPSec. Wireguard. OpenVPN. Some have been abandoned.! Protocols
have had mergers, devolved into factions, and darn near fought with
swords. What makes TLS special, and why has it survived?

TLS is a generic protocol for wrapping individual TCP/IP
connections. Where solutions like IPSec can tunnel and encrypt
all traffic between two IP addresses, TLS encrypts only a single

connection.

1 I'm sorry, SKIP. The Internet has declared we shall not have a Happily Ever
After.

22

Chapter 0: Introduction

TLS can be added to existing protocols comparatively simply.
Netscape wanted existing web sites to be able to migrate to
confidential and tamper-proof transport without reworking the HTTP
protocol. They made SSL as unobtrusive as possible, and TLS still
prioritizes that feature.

Finally, developers can manage TLS entirely inside their applications.
There’s no need to negotiate with the host’s IPSec or OpenVPN
features. Developers don’t have to play games with routing or
networking or any of that scary stuff. If you're porting software from
Unix to Linux, or Windows, or MacOS, or whatever, transport security
is not the hardest part of that effort.

Finally, TLS is somewhat opportunistic. A client can check a service
for TLS, and use it if it’s available. The client requires no special setup,
unless you're using more complicated features like client certificate
authentication.

Using openssl(1)

Unix traditionally consists of a bunch of small programs, each of
which handles a single simple task. OpenSSL (and forks like LibreSSL)
take a different approach with openssl(1). The openssl(1) command is
a general purpose tool for all things cryptographic and many things
tangential. It can create keypairs, digitally sign files, parse ASN.1 and
X.509, generate randomish numbers, and verify TLS certificates.

Cryptography is notoriously confusing, for the same reason that
operator algebra, multivariable differential equations, and cosmology
are notoriously confusing. Cryptography is legitimately difficult,
and as a rule most sysadmins don’t understand it.> Worse, many
claim that they do. Mastering cryptography demands a lifetime. It’s
a comparatively inexpensive hobby that will stretch your brain, and
takes up a lot less room than building model rockets every weekend.

2 Whenever I hear a group of sysadmins arguing cryptography, my first
reaction is that they’re like a group of paramedics debating the best methods for per-
forming engineered-virus-assisted telemicroneurosurgery.

23

Chapter 0: Introduction

Aside from any design decisions on the part of the developers,
OpenSSL inherits cryptography’s complexity.
An openssl command takes the form:

$ openssl subcommand flags

The subcommand (often just called a command) defines which
cryptographic functions you're working with. The subcommand
genrsa creates RSA keys, while x509 copes with X.509 certificates.
Perusing the openssl(1) manual pages makes understanding all these
operations seem like climbing the Cliffs of Insanity, but we’ll make it as
painless as possible.

Many subcommands share common flags for similar functions.
You'll see -in and -out flags for input and output, -text for textual
format, and so on. Where most Unix commands use single-character
flags and allow stacking them right up against each other, such as
tar -czvf, OpenSSL requires you enter each flag separately. I don’t
know that replacing -in and -out with, say, -i and -o would do
much to improve the legibility of these commands. Cryptographic
operations are inherently complex, and the added legibility is arguably
a net win.

To see which version of OpenSSL you have, run

openssl version.

$ openssl version
OpenSSL 1.1.1c FIPS 28 May 2019

To get much more detail about how your Unix packages and
configures OpenSSL, use openssl version -a.

Many OpenSSL commands are designed to feed into one another,
like so.

$ openssl s_client -showcerts -connect www.mwl.i0:443 \
</dev/null | openssl x509 -text -noout

The openssl s client command serves as a TLS-aware netcat,

negotiating a TLS connection with the host and port you specify.

24

Chapter 0: Introduction

This command normally waits for input, but we feed it /dev/nu11 so
that it doesn’t wait. The -~showcerts option displays the certificate
information, and -connect lets you choose your target. We pipe this
into openssl x509, the X.509 parser, specify that we want human-
friendly output with -text, and skip showing the encoded certificate
with -noout.

This combination grabs a web site’s TLS certificate and displays the
contents. It's the Unix equivalent of clicking on the lock icon in the
browser’s address bar and navigating a few layers of menu to find
“Show Certificate”

The OpenSSL Manual

OpenSSL is a giant. The manual is correspondingly gigantic. Older
versions of OpenSSL put all the documentation for the command in

a single giant manual page, openssl(1). Newer versions of OpenSSL
split the manual into a few dozen smaller manual pages, one for each
command. The documentation for openssl version appears in
openssl-version(1), openssl pkeyparam is documented in openssl-
pkeyparam(1), and so on. Many times, these smaller man pages are
indexed by subcommand as well as the full name; you could type

man pkeyparam instead of man openssl-pkeyparam. (Some
Linux systems do not provide the openssl-prefixed version of the man
pages; they’re only available as man x509, man pkeyparam, and so
on.)

Which does your system use? Run man openssl-version and
see if the page exists.

Which is a better system? I have my bias, but any choice for
arranging this much documentation will annoy someone. The ideal
solution is to get promoted so you can delegate all TLS problems to
someone else.

This book follows the newer OpenSSL standard of separate manual
pages for each subcommand.

25

Chapter 0: Introduction

The United States and FIPS

Many organizations in Canada and the United States must comply
with the US Federal Information Processing Standards (FIPS), a set

of cryptography requirements. The current standard is FIPS 140-3,
but many organizations are still back on 140-2. It’s often called “FIPS
140 FIPS dictates which cryptographic algorithms organizations may
use, how data must be handled, how software is tested, and which
implementations may be used.

Organizations bound by FIPS suffer severe penalties for violating
that standard. If you work for such an organization, FIPS compliance
overrides any of my advice. If you are the reason your employer loses
all its government contracts, expect to be unceremoniously dragged
before the Board of Directors.

The phrase “FIPS compliance” inspires vendors and organizations
to new heights of weasel words. They might claim that their solution
is FIPS compliant when they mean their developers read the standard
and implemented those algorithms. The solution might look like
FIPS, it might interoperate with FIPS, but it has not been audited and
verified and approved. You can find a list of approved cryptographic
engines online at https://csrc.nist.gov/projects/
cryptographic-module-validation-program/validated-
modules/search/all.

OpenSSL can be built to FIPS standards. Each individual software
build must be tested for compliance. The operating system also
requires specific FIPS configuration, but a FIPS-compliant software
build clears one of the big hurdles. Red Hat ships a FIPS-approved
OpenSSL, as well as a GnuTLS and kernel cryptographic engine.

FIPS restricts the algorithms your TLS-protected services can use.
Yes, cryptography advances faster than government standards, and
you might find yourself choosing between sub-optimal algorithms.
Maybe the IETF or OpenSSL or whoever rolls out a snazzy new set of

26

Chapter 0: Introduction

algorithms, but if it’s not on FIPS” approved list you cannot use it.

FIPS-compliant sites can choose to not use all permitted algorithms.
As I write this, SHA-1 is on FIPS’ permitted list. SHA-1 has been
considered a dangerously feeble digital signature algorithm for years,
and recent events have added it to the List of Things Sysadmins Need
To Repeatedly Stab And Bury In A Ditch As Soon As Possible. (It’s
okay for certain uses, but if you are unsure which those are, drop it.)
Disabling SHA-1 in your TLS configurations will not violate FIPS.
Enabling stronger but unapproved algorithms will.

Always check with your organization’s Cryptography Officer (the US
government’s mandated title for the FIPS compliance officer) before
touching anything. They can provide you with their organization’s
configuration standards. Follow them. You're dealing with the
FIPS standard, your interpretation of it, the cryptography officer’s
interpretation, and—worse—the auditor’ interpretation. These are not
the same. Make the best argument you can, but remember that you're
not the one who must face the auditors.’ In such environments, FIPS
compliance is more important than system or connection integrity.

The NIST’s document “Guidelines for the Selection, Configuration,
and Use of Transport Layer Security (TLS) Implementations” is a
useful and readable (for government standards) guide.

If you are not in the United States, don’t dance away thinking you're
free. Other countries have their own standards. Some are based on
FIPS. Others, like GOST in Russia, are entirely different. The one thing
they all have in common is that the governments involved take them
very seriously.

Applications and TLS

Every application server configures TLS differently. Any application I
chose for a reference would be irrelevant to more than ninety percent

3 How do you know if you've pushed your argument too far? FIPS compli-
ance officers always grow louder when they’re about to feed on human flesh.

27

Chapter 0: Introduction

of my readers. I provide very few application-specific examples, except
as necessary to demonstrate core functions.

What I will do is provide the roles various components play in
TLS. If your Certificate Authority provides a certificate and an
intermediate certificate bundle, you will understand how these items
play into the whole TLS process. This lets you check your application
documentation and see how to configure these components. You'll
learn which versions of TLS you should support; your application
manual will tell you how to disable the rest.

TLS versus DTLS

The two primary transport protocols underlying the Internet are
Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP). I should explain—no, there is too much. Let me sum up.

In TCP, the host’s network stack is aware of the connection’s
condition. It knows what packets have been sent and received, and
requests or resends any missing data. This is why we call TCP a
connected protocol. Applications that run over TCP include HTTP and
HTTPS, SMTP, SSH, and FTP.

With UDP, the host’s network stack flings packets across the Internet
willy-nilly. Do they arrive? Do they disappear en route? Who cares?
The application takes care of all that. Applications that at least partially
rely on UDP include SNMP, DHCP, DNS, and file sharing. Many
VPNs only use UDP. If you need more detail, check out a book on
networking like my Networking for Systems Administrators (Tilted
Windmill Press, 2015).

TLS expects the network to handle packet delivery, including coping
with any retransmissions and reordering and so on. This means it runs
only on TCP.

Many UDP applications also need transport protection, though.
Rather than invent a whole new protocol, people took TLS and added
a state tracking system to handle all the network accounting. The

28

Chapter 0: Introduction

result is the Datagram Transport Layer Security (DTLS) protocol.

DTLS was deliberately designed to work exactly like TLS. The code
is different, and the packet structure is different, but to a sysadmin it’s
the same. A TLS certificate works just fine in DTLS. All of your TLS
knowledge is fully applicable to DTLS. You still can’t telnet to a DTLS-
protected service. Even the protocol version numbers were deliberately
synchronized: DTLS 1.3 uses the same mechanics as TLS 1.3.

Today, DTLS is mostly used for VPN products. We won't discuss it
much, but don't let the acronym distress you.

Encryption and This Book

TLS is built out of encryption. Encryption is built on top of math.
Really complicated math developed by brilliant people, and
continually inspected, validated, and attacked by folks who are merely
terribly smart.

I am not any of these folks.

Chances are you're not, either.*

For us, cryptography can feel like magic. How can a 1024-bit ECDSA
key be harder to break than a 1024-bit RSA key? Surely computing
hash collisions isn’t that hard? How is public key cryptography even a
thing?

If you're seriously interested in the innards of cryptography, this
book will not satisfy you. I'll show you how to configure and use TLS,
but we both need to accept that cryptography’s magic math works.
Many people find the study of cryptography a challenging brain-
stretching hobby, and if you're that interested I encourage you to dive
into any number of books and web sites on the topic. The rest of us
must accept that cryptography works, just as we accept that CPUs,
memory, and network cards work even though we have zero true
comprehension of what goes on inside them.

4 If you claim you’re one of these brainy folks, ’'m not going to argue with
you. I won't believe you, but I'm not going to argue with you.

29

Chapter 0: Introduction

What’s in This Book

TLS has been around for nearly thirty years, and has gotten itself
wedged into many corners of the Internet ecosystem. This book will
not teach you everything there is to know about TLS. No single book
can.

What this book will do is give you a solid foundation of what every
sysadmin must know about TLS. You'll get in-depth treatment of the
Automated Certificate Management Environment (ACME). You’'ll
learn how to use the OpenSSL command line to perform typical TLS
operations. More importantly, you'll learn when to use TLS and when
it doesn’t matter. This knowledge will equip you to safely traverse
whatever TLS ledge you’re standing on.

So what will we cover?

The first half of this book is about the principles of TLS. We'll discuss
cryptography and certificates, protocols like STARTTLS, the Tree of
Trust and TLS resumption. The second half takes us more deeply into
dealing with Certificate Authorities and the Automated Certificate
Management Environment.

Chapter 0 is this Introduction.

Chapter 1, TLS Cryptography, discusses how TLS uses cryptography,
including specifics of the TLS protocols like Server Name Indication
and the various sorts of resumption and renegotiation.

Chapter 2, TLS Connections, teaches you how to use OpenSSL to
connect to TLS-protected services.

Chapter 3, Certificates, covers the X.509 certificates that form TLS’
trust infrastructure. We'll delve into certificate components, encoding,
transformations, and all the different sorts of certificates.

Chapter 4, Revocation and Invalidation, discusses when you should
stop trusting your certificates, what you should do about it, and what
you can do about it.

Chapter 5, TLS Negotiation, takes you through the mechanics of

30

Chapter 0: Introduction

typical TLS 1.2 and 1.3 connections. You can’t know where something
has gone wrong until you learn to recognize normality.

Chapter 6, Certificate Signing Requests, covers the various ways to
generate modern certificate requests. Those tutorials you read on the
Internet? Most of them have been wrong for at least two decades.
You'll learn to get a certificate that fits your needs.

Chapter 7, Automated Certificate Management Environment,
discusses the emerging ACME standard and how to automate
maintenance of your certificates.

Chapter 8, HSTS and CAA, helps bring your TLS environment up to
current standards.

Chapter 9, TLS Testing and Certificate Analysis, covers different ways
to audit your SSL configuration. Many TLS misconfigurations are
invisible without specific testing.

Finally Chapter 10, Becoming a CA, discusses building an internal
CA and takes you through building a CA for educational purposes.
We'll also touch on special-purpose name constraint certificates, and
what it means to become a trusted public CA.

Then there’s an Afterword and credits and index and stuff.

First, let’s talk about codes and ciphers.

31

Chapter 1: TLS Cryptography

Cryptography is a vast subject, but fortunately you only need
understand a few select parts to properly manage TLS. You don’t need
to master the mathematics, only the cryptographic system components
and how data flows between encrypted and unencrypted states. We'll
go through these basics. Cryptography in general has three goals:
integrity, confidentiality, and non-repudiation.

Integrity proves that the message has not been modified, either
accidentally or deliberately.

Confidentiality makes the message unreadable by anyone except the
intended recipient.

Non-repudiation proves that the message came from the declared
sender; the sender cannot credibly declare that they didn't send the
message.

Different cryptography tools support different aspects of these goals.

Hashes and Cryptographic Hashes

A hash or checksum is a computation that computes a fixed-length
string from any chunk of data. Different hashing algorithms produce
hashes of different length, but the length of any hash produced by the
algorithm never changes. A SHA256 hash is always 256 bits long, or
64 hexadecimal characters. Hashes can be cryptographic or not. The
difference is that a cryptographic hash is irreversible in practical terms,
as we'll see here. Hashing is an integrity verification tool.

A non-cryptographic hash is useful when you expect corruption
rather than deliberate tampering. I could create a simple integrity-
checking hash for this book by counting the number of words in the
body of the text, and prepending zeroes to make it a fixed number

33

Chapter 1: TLS Cryptography

of digits. You could count the number of words in your copy and
compare it to my count to see if it matched. TCP uses a similar sort of
math to verify packets haven’t been damaged in transit. These are valid
hashes, but most hashing algorithms are far more complicated. They
are also easily forged. You could replace two critical words from this
book and the checksum would still match.

With a cryptographic hash, any change in a file changes the
hash generated from that file. Suppose a text file contains the
text The wedding is at 10AM. The SHA256 hash of this text is
bdf34d7f51fbe672325a29b0afd7b871513591a0c6dc2c96cb529f6cb877-
6070. If someone alters the message and changes the zero to a
one, so that it claims that the wedding is at 11AM. With this
one-character change, the SHA256 hash of the file becomes
6¢717735c4d360d2ae5503f765a6a153c0317720ad17e2869888 e87b52f-
25bf0. Human beings are terrible at noticing tiny details, so even
someone familiar with the original message might skim over the
tampered version and declare it correct. The shallowest examination of
the hashes shows that they differ wildly, however.

Given infinite possible files, eventually two of them will have the
same hash. This is called a hash collision. Resistance to computing such
collisions is what makes a hash cryptographic.

Consider the hash of “how many words are in this book.” Finding
a document with the same hash is trivial. It wouldn’t even notice the
tampering in our wedding message. This algorithm has zero resistance
to deliberate attack. Similarly, TCP checksums can be forged. These
hashes are decidedly non-cryptographic.

If youre using a modern, robust cryptographic hash, finding a
file that has a hash collision with your target file will take decades
on an industrial-scale farm of high-end servers. You won’t be
mechanically computing such a file, either; rather, you'll try
random files until you find a match. Finding a hash collision

34

Chapter 1: TLS Cryptography

is inevitable given infinite time, infinite computing power, and
infinite budget. I might know that a message has a hash value of
bdf34d7{51fbe672325a29b0afd7b871513591a0c6dc2c96cb529{6cb877-
6070, but I have no realistic way to create a file with that same hash.

When the software finds a hash collision, the data would almost
certainly bear no resemblance to the original message. A human being
might not notice the wedding’s changed hour in the message, but
theyd certainly notice a message that contained only binary gibberish.
Computing a file that has a matching hash, that’s similar enough to the
original to be useful, while still containing your alterations? This is not
going to happen with current technology.

What makes a cryptographic hash successful? By the time a useful
collision is found, the wedding is long past and everybody has already
lived happily ever after.

Symmetric Encryption

The common definition of “encryption” means scrambling a message
so its contents can only be understood by the intended recipient. A
villainous lackey encrypts a message so that only his prince can read it.
A cryptographic algorithm is a method of encryption.

Symmetric algorithms use the same key to encrypt and decrypt
text. If you have the key and know the algorithm, you can encrypt
and decrypt messages. Symmetric algorithms rely on keeping the key
secret. Most encryption algorithms used in the last ten thousand years
are symmetric. People outside computing and cryptography might
call a symmetric algorithm a code, but that’s a heavily overused word
in our profession so please avoid further burdening it. (“Encoding”
is something entirely different, as Chapter 3 discusses.) The word
“cipher” is often used outside computing to mean a symmetric
algorithm, but in systems administration a cipher is most often
shorthand for a cipher suite as discussed later this chapter.

35

Chapter 1: TLS Cryptography

A well-designed symmetric algorithm retains message
confidentiality even if the algorithm is known. Consider the first code
every kid learns: A=1, B=2, and so on. This algorithm is poor, because
if you know the algorithm you can decrypt the message. You can
slightly improve this algorithm by adding a secret key, a number to
be added to each value. A key of 13, meaning A=14 and B=15 might
look harder to crack, but an experienced cryptographer can decrypt
a message with very little effort. Modern symmetric algorithms like
CHACHA and AES retain confidentiality even when everyone knows
how they function.

Computers have raised the standards for symmetric algorithms.
Modern algorithms are complex, with long and cumbersome keys.
Once two entities can exchange the secret key, they can communicate
quickly and easily. The problem is getting the secret key from one to
the other. That’s where public key encryption comes in.

Public Key Encryption

You've probably seen one of those old movies where a coin has been
cut in a complicated jigsaw pattern. Two spies or criminals or other
secretive sorts who have never met are each given half of the coin.
When they do meet, each produces their half of the coin. If the halves
fit together perfectly, each can be assured that the other person is
who they’re supposed to talk to. The split treasure map, medieval tally
sticks, the two-sided coin that leads Indiana Jones to the Ark of the
Covenant—our culture uses this idea over and over again.

That’s sort of like public key encryption , also called asymmetric
encryption.

The standard for public key encryption is the Rivest, Shamir, and
Adelman (RSA) algorithm, named after its inventors. The Elliptic
Curve Digital Signature Algorithm (ECDSA) is a newer method that
works differently, but the sysadmin-level practice of using it is nearly
identical.

36

Chapter 1: TLS Cryptography

You'll hear the phrase “public key encryption” tied with
authentication, digital signatures, HMAC and hashes, key exchange,
and all sorts of other terms. These systems are built with public key
encryption, but they aren’t public key encryption. Don't let sloppy
language confuse you. Public key encryption encrypts. That’s all it
does. The way it encrypts and decrypts lets us build all this cool stuft.
Understand how public key encryption works before even trying any
of the other things.

Public key encryption is like using the two parts of that jigsaw coin
as encryption keys. Each piece of coin can encrypt a message that
can only be decrypted by the other piece of coin. If I have one of the
halves, I can encrypt a message that can only the possessor of the other
coin piece can read. My coin piece can’t even decrypt a message that it
encrypted; only the other piece of that same coin can decrypt it. (This
is a major difference between public key encryption and symmetric
encryption.) These two pieces of coin are paired; anyone who has one
of the pieces can encrypt and decrypt messages.

Hang on to your piece of coin. You'll need it later.

Public key encryption is like that cut-up coin, but with numbers
so big that working with them realistically requires computers. Such
numbers behave weirdly when multiplied together.” You can easily and
cheaply generate two related keys, called a key pair, that behave exactly
like those two pieces of coin. You can encrypt a message with one key,
and only the other key of the pair can decrypt it. This is the entire
function of public key encryption.

Numbers differ from our coin pieces in a couple ways. If you have
half of a jigsaw-split Canadian loonie, you can cut another coin to fit

5 One April night in 1977 Ron Rivest drank a “disproportionate” amount of
wine and created the first one-way function for public key cryptography. People who
understand the math assure me that, while the function certainly works, it is best
studied while in a similar state.

37

Chapter 1: TLS Cryptography

it. Trying the same thing with half of a public key pair and a bunch of
computers will take longer than our Sun’s remaining lifetime. Having
one key of the pair doesn’t help an attacker figure out the other key.

Duplicating your half of a public key is trivial; you copy the file.

Let’s say I create a public key pair. I keep one key of the pair. The
other key I give to my chief goon, Vizzini, before I dispatch him out
into the world. Nobody else has either of these keys. My goon and I
can use these keys to exchange messages that can be read only with
the other key in the pair. I use my half to encrypt my messages to my
goon. Hopefully I remember what I said, because once the message
is encrypted, my key cannot decrypt my message. Fortunately, “Start
a war and frame Guilder for it” is short enough that even I can
remember it. Only the other key in the pair can decrypt that message.
I mail my message. Anyone who snoops on that message sees only
indecipherable gibberish.

When my message reaches my goons, they use their key to decrypt
it. They can then use their key to encrypt a response, like “How about
we kidnap the princess?” and send the encrypted message back to me.
Only my half of the key can decrypt this message.

So far, so good.

Where public key encryption gets wild is that we can give one
key of a pair away. To the whole world. Put it on your web site. Or a
billboard. Get a doomsday laser and engrave it on the near side of the
Moon, large enough to be read by anyone. We call this key of the pair
the public key.

The other key of the pair you keep utterly confidential. It is locked
down to the best of your ability. It never leaves your control. We call
this the private key. (The secret keys used in symmetric encryptions
might also be called “private keys.” Don’t let that confuse you.)

When I encrypt a message with my private key, anyone can
grab the public key and decrypt it. That doesn’t exactly make my

38

Chapter 1: TLS Cryptography

messages confidential . But anyone in the world can use that key to
encrypt a message that only I can read it. Anyone can confidentially
communicate with me.

If you publish one of your keys, I can use that key to confidentially
communicate with you.

If I am the only person in the world with my private key, anyone
who receives a message encrypted with my private key can be pretty
sure that the message came from me. I cannot credibly claim that I
didn’t send the message. We use this to meet cryptography’s goal of
non-repudiation.

To send a secret message to my goon, I encrypt it with my goon’s
public key. Only my goon can read it. My goon replies by encrypting
his message with my public key.

Public key cryptography relies on each of us keeping our private
keys truly private. If I am sloppy with my private key and it gets stolen,
anyone in the world can pretend to be me. I can repudiate a message
only by admitting to gross incompetence.

This technology underlies most of the Internet’s encryption,
including TLS. Any time you see the phrase “public key encryption,’
immediately consider who has which keys. If you become responsible
for an unfamiliar system that uses public key encryption, your first
and immediate responsibility is verify that the private keys are utterly
locked down.

If public key encryption has these nifty features, why bother with
symmetric encryption?

Public key cryptography takes thousands of times more computing
power to encrypt, decrypt, and validate than symmetric algorithms. It
is slow, expensive, and raises everyone’s electric bill.

TLS, and most other applications that leverage public key
cryptography, combine the two types of algorithms. We use slow and
expensive public key algorithms to authenticate everyone, agree on

39

Chapter 1: TLS Cryptography

a symmetric algorithm, and exchange a random secret key for that
algorithm. All further communications take place using the faster and
cheaper symmetric algorithm.

Using public key cryptography is complicated. Public key
cryptography users must agree on a whole series of algorithms,
methods of distributing trust, and more. A collection of these is a
public key infrastructure (PKI). If you've browsed the Internet, you're
using the TLS PKI. Microsoft’s Active Directory includes its own PKI,
for use only within the domain. Enterprises can establish their own
PKI. OpenPGP has yet another PKI. We'll spend most of our energy
discussing the PKI used for globally valid TLS. Chapter 10 discusses
building your own CA, a private PKI, for learning purposes.

Message Authentication Codes

Hashes are great, so long as you take care to distribute the hash and
the message over different channels. If I can intercept your message
and change both the message and the accompanying hash, the hash is
useless. That’s where we need a Message Authentication Code, or MAC.
A MAC is a hash encrypted with a symmetric encryption key known
only to the sender and the recipient.

A Hashed Message Authentication Code, or HMAG, is specific
method of using a particular cryptographic hash to create a MAC.
You'll see HMAC names like HMAC-MD5 and HMAC-SHA256,
built on those hash methods. An HMAC provides both integrity and
authentication. Only someone with the symmetric key can encrypt or
decrypt the hash.

The MACs used in TLS are generally HMACs.

Digital Signatures

Cryptographically, a digital signature ensures that a message comes
from the entity that claims to have signed it, and that nobody else

40

Chapter 1: TLS Cryptography

tampered with the message.® A digitally signed message is considered
authentic. It has integrity, authentication, and non-repudiation.

Software digitally signs a message by generating a HMAC of the
message, encrypting that hash with a private key, and attaching the
encrypted file to the message. Anyone with the public key (that is,
everyone) can decrypt the HMAC, independently compute the hash
of the message, and compare the two. If the transmitted hash and the
computed hash match, the message came unaltered from the private
key holder.

Digital signatures are another reason you must protect your private
keys. If someone has your private key, they can send messages you
cannot repudiate. Losing exclusive access to your private keys is like
handing the neighbor’s teenage children your credit cards. You can
clean up the mess, but it's going to hurt a whole bunch.

If the recipient calculates the message hash and it differs from
the one in the digital signature, the digital signature is invalid. The
message was altered. Do not trust it.

Key Lengths

A key’s length is the number of bits in the private key. A key length of
2048 means that the key contains 2048 random zeroes and ones. Both
symmetric and public key encryption use key lengths.

If someone wants to forcibly decrypt your message, they could try
every possible random key one after the other. This brute force attack
eats a whole bunch of computing power, but can easily be divided
between multiple machines. Each additional bit of length doubles
the number of potential keys. If you want a key that’s twice as hard
to guess as a 2048-bit key, it's not a 4096-bit key. It’s a 2049-bit key. A
4096-bit key has 22°*-1 times as many possible keys as a 2048-bit key.
That’s a key space about 3.2x10%¢ times larger.

6 We are not discussing programs that let you “digitally sign” mortgages, em-
ployment contracts, or murder confessions. Such software is far less robust.

41

Chapter 1: TLS Cryptography

Symmetric and hashing algorithms usually have a fixed key length.
Some symmetric algorithms let you choose between multiple key
lengths. AES128 uses 128-bit keys, while the keys of AES256 are
twice as long. The algorithm’s strength is most often exponentially
proportional to the key length.

Public key encryption algorithms let the software or the sysadmin
choose a key length. Most software provides a default, which you
can probably override. I recommend not doing so unless specifically
instructed to do so by a reliable source. Reliable sources do not include
emphatic forum posts, no matter how tightly they conform to your
biases.

If a longer key is harder to decrypt, shouldn’t you always use the
longest possible key? Absolutely not. The computations for public key
cryptography take a bunch of processor time, and longer keys demand
more computing power. Your server doesn't exist for computing keys;
it exists to serve web pages or email or some other minimally viable
product, and the key computations are a necessary but incidental
part of that. If your server spends all its time computing keys, it has
nothing left for performing its function. The long key protects against
a specific sort of attack while interfering with actual work.

If a longer key length is unwise, would you ever use a shorter key?
Not in the real world.

Key length is not the only factor in how difficult it is to break a
message. The algorithm also affects it. A message encrypted with 2048-
bit RSA keys is about as difficult to break as one encrypted with a 224-
bit ECDSA key, for reasons involving lots of horrible math. A longer key
length does necessarily mean “harder to break” The algorithm matters.

If your organization’s standards differ, follow those standards.
Financial institutions and suchlike often use longer keys because
they’re high value targets. They also have money to spend on the
hardware for these calculations.

42

Chapter 1: TLS Cryptography

If you're stuck using older software, you might need to increase
default key lengths to comply with current standards. While 1024-
bit RSA keys were perfectly suitable for the first twenty years of the
commercial Internet, it became clear several years ago that brute forcing
these keys would soon become practical. Experts advised creating
all new keys with 2048-bit keys. Software defaults lagged behind
the recommendation, sometimes for performance reasons on older
hardware, so I had to override the defaults until everyone caught up.

Yes, one day we’ll need 4096-bit RSA keys. Barring dramatic
breakthroughs in mathematics or computing hardware, this will be
well after the career of anyone reading this book. If you're looking
at the future, the web site https://www.keylength.com/ extracts key
length recommendations from several standards.

Eventually, everything ages out.

Breaking Algorithms

What does “breaking” an algorithm mean? For public key encryption,
it means you can compute a private key from a public key and an
encrypted file. For hashes, it means you can computationally create a
file with any given hash. Breaking the algorithm happens in one of two
ways. Someone might figure out a flaw in the algorithm that allows
one to shortcut decrypting a file or computing a collision. Alternately,
an algorithm is considered broken when a single entity such as a
government or corporation can amass enough processing capacity to
break the algorithm by brute force. Faster computers make both easier.
While cryptography is an ancient craft with a long and glorious
tradition, computer-based cryptography is only a few decades old.
Before the Internet went commercial, processor time was so expensive
each department got billed for its CPU usage. Unix still includes
features to keep track of how much computation a user consumes, so
finance departments can demand payment. Computers made practical

many algorithms unworkable on pen and paper.

43

Chapter 1: TLS Cryptography

Testing and breaking these algorithms demanded a
disproportionately larger amount of computing time. Consider the
typewriter-sized Enigma machines, and Bletchley Park’s massive
but far more complex Enigma-breaking hardware. What one person
could encrypt required entire teams to forcibly decrypt. This dynamic
persisted throughout the early days of the commercial Internet.

The early computerized cryptographic algorithms, many of which
were included in SSL and TLS, were rushed, insufficiently tested,
and provided many opportunities to learn how computing-based
cryptography really worked. Many of these algorithms cracked upon
exposure to reality. We discarded them and learned from our mistakes.

As one example, MD5 and SHA-1 were the standard hashes in early
versions of SSL. Computing an MD5 hash collision required buildings
tull of computers and would have still taken centuries. SHA-1 hashes
took more computing power to calculate, so they were less frequently
used even though they were harder to break.

Computing advanced. We learned more about cryptography.
Breaking algorithms became a way to earn prestige. In a few years,
computing an MD5 collision became a realistic possibility. MD5 was
declared obsolete, and everyone was encouraged to stop using it. SHA-
1 wasn't so much a deliberate mitigation of MD5’s obsolescence so
much as the last algorithm standing. It held up well through a decade
or two of the same abuse, but today you can compute a SHA-1 hash
collision with a few thousand bucks at a cloud provider. It’s not yet
trivial, but it’s sure not impossibly expensive.

Newer algorithms, like ECDSA and the SHA-2 family, build on
experience. These algorithms are expected to survive beyond the
career of anyone reading this book. We need more algorithms that
work differently, so when someone gets clever and breaks these we
have replacements ready.

When cryptographers create new algorithms, they and their

44

Chapter 1: TLS Cryptography

colleagues attack them. They also calculate a pretty good estimate

for how much computing power will be needed to brute-force it.

Only cryptographic hash algorithms that are expected to remain
unreversible for centuries, despite advancing hardware, reach broad
acceptance. The cryptography community must broadly agree that the
new algorithm is suitable and deploy it in applications that get rolled
out to users. Development and deployment takes years.

A broken algorithm no longer guarantees confidentiality or integrity.
Hopefully all your software has been updated to offer other algorithms
by then. Design your applications so that algorithms can easily be
added and removed.

Many Internet protocols operate by Jon Postel’s robustness principle:
“be conservative in what you do, be liberal in what you accept from
others” Your applications transmit the best data they can, and
compensate for other people’s inadequacies. We're all on this Internet
together. The fact that everyone can communicate is a miracle, and we
all know what happens when you rush miracles.

Not only does this rule not apply to TLS, following it imperils both
your server and your clients. Each TLS version specifies acceptable
algorithms. Older versions of TLS use fragile or flat-out broken
algorithms. Any application that supports TLS 1.1, TLS 1.0, or any
version of SSL puts data at risk of destruction, alteration, and deletion.
You must disable obsolete versions of TLS, or you're flinging your
whole organization into the Pit of Despair.

Cryptographers constantly test algorithms. Finding flaws in
cryptographic algorithms makes cryptographers happy. They get most
happy when they discover a way to break a previously trusted algorithm.
Even if you use only current TLS versions, you might need to disable
certain otherwise-permitted algorithms. Historically, any TLS version
outlasts some of the algorithms it supports. Assuming the current crop
of algorithms is unbreakable is a great way to have a bad day.

45

Chapter 1: TLS Cryptography

Cipher Suites

In TLS terms, a cipher suite is a specific combination of a particular

symmetric, checksum, and public key algorithms, plus other

details needed so that each party can encrypt and decrypt messages

comprehensible to the other party. It's often referred to as a cipher.
Cipher suites are used between the TLS client and server. They have

no impact on, and are not constrained by, the signature algorithm

used on any certificates.

Cipher Suite Names

Each cipher suite has an official name defined by the Internet Assigned
Number Authority (IANA),

in their document “Transport Layer Security (TLS) Parameters” The
ciphers have names like TLS_ECDHE_ECDSA_WITH_AES_256_
GCM_SHA384 and TLS_ECDHE_ECDSA_WITH_CHACHA20_
POLY1305_SHA256. You do not need to know the innards of each
cipher suite or understand the underlying algorithms, but you must
notice mismatches. If one side of a TLS connection demands TLS_
AES_128 CCM_SHA256 and the other insists on TLS_AES_128_
CCM_8_SHA256, that extra _8_ buried in the middle will give you
grief.

TLS 1.2 and 1.3 use different syntaxes for naming ciphers. TLS 1.2
cipher names can include up to six pieces of information.

Protocol_Kx_Au_WITH_Enc_MAC

The protocol is TLS.

Kx is the key exchange method, one of ECDHE, DHE, ECDH, DH,
or RSA.

Au is the authentication method, either ECDSA or RSA. If both key
exchange and authentication use the same method, such as RSA, it
only appears once.

Enc gives the symmetric encryption plus the mode of operation, one
of CBC, CCM, CCM_8, or GCM.

46

Chapter 1: TLS Cryptography

The MAC, or Message Authentication Code, is one of SHA, SHA256,
or SHA384.

TLS 1.3 removed key exchange and authentication methods from the
cipher name. The cipher suite no longer dictates them. It also dropped
the WITH separator. The names are much shorter.

Protocol_Enc_ MAC

The presence or absence of _WITH_ helps identify TLS 1.3 and 1.2
ciphers. Also, the TLS 1.3 standard includes only five ciphers. No TLS

1.2 ciphers survived.
TLS_CHACHA20_POLY1305_SHA256
TLS_AES_128_GCM_SHA256
TLS_AES_256_GCM_SHA384

TLS_AES_128_CCM_SHA256
TLS_AES_128_CCM_8_SHA256

When you're studying debugging data, the cipher names instantly
identify which version of TLS you're using.

While cipher suites set a whole bunch of algorithms, they have some
flexibility. For example, the cipher TLS_AES_128_GCM_SHA256
doesn’t mention the public key algorithm, so the client and server can
negotiate that.

Never hand-pick ciphers. This month’s best cipher is next month’s
nightmare. We'll see how to use the best available ciphers in “Cipher
Lists” later this chapter.

Alternate Cipher Names

TLS software developers keep falling victim to classic programmer
blunders—the best known of which is thinking, “I can write
something better than this widely used schlock,” but almost as well
known is “renaming things that already have a standard name.” If

you understand the algorithms well enough to write useful code for
them, and understand how the cipher will be deployed, the impulse to
simplify TLS_RSA_WITH_AES_256_CBC_SHA to a shorter but still
unique identifier like AES256-SHA is understandable.

47

Chapter 1: TLS Cryptography

OpenSSL gave ciphers their own names up through TLS 1.2. They
were not alone in this. The TLS 1.2 cipher officially known as TLS_
ECDHE_ECDSA_WITH_AES_128 GCM_SHA256 is called ECDHE-
ECDSA-AES128-GCM-SHA256 in OpenSSL land, while GnuTLS
calls it TLS_ECDHE_ECDSA_AES_128 GCM_SHA256. I readily
concede that hyphens are easier to type than underscores. In many
cipher names the word _WITH_ doesn't clarify anything, but in others
it's a vital separator. When an algorithm mismatch causes mayhem,
however, using different names for the same cipher suite leads to
inevitable bewilderment.

I find https://ciphersuite.info highly useful for translating between
the different names and identifying the components of the algorithm. These
sites also provide hints about the algorithm’s current strength.

Included Cipher Suites

Use openssl ciphers to view the cipher suites your OpenSSL
build is aware of, listing both the standard and OpenSSL names. Use
-v to list each cipher on its own line, with details. Add -s to include
only supported ciphers. The —stdname flag displays the standard
name. The table’s too wide to show comfortably in any version of
this book, so I'll use awk(1) to print only the columns showing

the standard and OpenSSL names for TLS 1.2. I find column -t
invaluable for shaping such output.

$ openssl ciphers -v -stdname -s | awk ‘{print $1, $3}’ | column -t
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 ECDHE-ECDSA-AES256-GCM-SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ECDHE-RSA-AES256-GCM-SHA384

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 ECDHE-ECDSA-CHACHA20-POLY1305

Alternately, you could use -V instead of -v and get the cipher suite’s
hex values and the official name at the beginning of the table, but that
alters your awk(1) command.

To get more detail on the cipher in a terminal of modest width, don’t
use -stdname. You'll get six columns. Use column -t to get more
legible output.

48

Chapter 1: TLS Cryptography

$ openss1 ciphers -v -s | column -t
TLS_AES_256_GCM_SHA384 TLSv1.3 Kx=any Au=any Enc=AESGCM(256) Mac=AEAD
TLS_AES_128_GCM_SHA256 TLSv1.3 Kx=any Au=any Enc=AESGCM(128) Mac=AEAD

AES256-GCM-SHA384 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-CCM TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM(256) Mac=AEAD
AES256-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256

The first column gives the OpenSSL name for this cipher.

The second column shows the TLS version that introduced this
cipher. You’'ll see ciphers that appear to support obsolete versions
of TLS, or even SSL. While SSLv3 is obsolete, ciphers introduced in
that version are still in use in TLS 1.2. You can add the -t1s1 2 or
-t1s1 3 flags to list only the ciphers used by a specific version of TLS.

The Kx column shows the cipher’s key exchange algorithm. The first
two ciphers listed could use any key exchange algorithm, the third
must use RSA, and the fourth ECDH.

The Au column gives the key’s authentication algorithm. While the
first two can, again, use any authentication algorithm, the third uses
RSA and the fourth ECDSA.

TLS 1.3 changed how key exchange and authentication work. They’re
no longer part of the cipher suite. The any shown for these ciphers is
legacy formatting.

Under Enc, we see the symmetric encryption algorithm. Most
modern ciphers use some variant of AES.

The Mac, or Message Authentication Code, gives the algorithm
used to authenticate symmetric data. Many of these show AEAD,
or Authenticated Encryption with Associated Data. The MAC is
incorporated into the encryption method. GCM is the most widely
deployed AEAD algorithm, and it uses fixed MAC algorithms. AES_128_
GCM always uses a SHA256 MAC, while AES_256_GCM uses SHA384.
Our last example is a non-AEAD cipher, and it uses SHA256.

49

Chapter 1: TLS Cryptography

Cipher Lists and Cipher Ordering

OpenSSL supports cipher lists, letting you select exactly which ciphers
you will permit an application to use. It includes a variety of built-in
cipher lists with names like HIGH, MEDIUM, RSA, ECDHE, and

so on. The ciphers(1) or openssl(1) man page contains a list of the
built-in lists. Perhaps best known is the HIGH list, which contains the
strongest cipher suites.

A cipher list restricts what ciphers a command can use. Many
applications accept cipher lists somewhere in their configuration. If an
application is negotiating a TLS connection and should use only RSA
ciphers, setting the cipher list RSA in the application accomplishes
that.

You can view the cipher suites in a list by giving the list name as the
final argument in an openssl ciphers command. This restricts the
command to only ciphers in that list.

$ openssl ciphers -v -s HIGH

Suppose you have a customer whose IT staff insists that the
application you use to exchange data only offer ciphers that use AES
in Galois Counter Mode . Such policies are doomed to obsolescence,
exactly like FIPS, but they’re giving you money so you provision a
dedicated virtual machine for them and roll with it. Checking the
manual page reveals the AESGCM cipher list. Use it to show the
algorithms your customer will find acceptable.

$ openssl ciphers -v -s AESGCM

If you wander around the Internet’s fiery swamp of HOWTOs,
you'll see recommendations to use only ciphers in the HIGH cipher
list. This list was vital in the early days of SSL, when constantly
escalating computing power in the hands of avid algorithm-breaking
cryptographers meant sysadmins needed to constantly update their
cipher lists. Decades ago, HIGH was a convenient shortcut that

50

Chapter 1: TLS Cryptography

updated algorithms every time the sysadmin updated OpenSSL,
without the sysadmin needing to know the details of which algorithms
had been broken this week.

Today’s HIGH list contains all TLS 1.2 and 1.3 ciphers. If you only
run modern TLS versions, you might think you don’t need to set a
cipher list in your application. New ciphers will appear, though. And
some clever cryptographer might break an algorithm we think reliable.
OpenSSL updates its cipher lists when that happens. Using the HIGH
cipher list in your configurations makes no difference at this moment,
but at each OpenSSL upgrade automatically propagates changes
through your application stack. Specifying HIGH is a proactive
defense.

If a tutorial recommends altering the cipher list, check the date. It’s
probably far obsolete.

The list of permitted algorithms isn’'t the only factor, though. Even
in the HIGH cipher list, some algorithms are better than others.
OpenSSLs cipher order ranks algorithms by strength. TLS protocol
negotiation includes agreeing on a cipher. The client declares every
algorithm it supports. The server picks the one it likes best. If the
server only supports algorithms it considers strong, it could allow the
client to pick the algorithm. This makes sense when clients might have
a hardware cryptographic accelerator. If the server supports a variety
of strong and weak algorithms, the server should use the strongest
algorithm possible.

Unless you have reason to do otherwise, configure your applications
to support both the HIGH cipher list and cipher ordering.

When HIGH Isn’t Enough

Some people think that the HIGH cipher list isn't enough. Perhaps
your application is a special delicate flower and you must restrict your
cipher list to only the very best algorithms. My first question would be:
are you going to schedule time to monitor the state of cryptographic

51

Chapter 1: TLS Cryptography

algorithms? When the job gets busy and you’re coping with outages
and managers and customers, will you drop everything to investigate
the current state of different algorithms? Can you easily test changes
and push them out to all of your servers? Are you willing to deal with
problems caused by old clients trying to access a tightly restricted
cipher list?

Now that you've said yes: are you sure? Really super sure?

If so, Mozilla provides configuration guidelines for many popular
application servers at https://ssl-config.mozilla.org/ that
include only very strong ciphers. Weekly checks for changes in
these configurations provides good guidance on the current state of
cryptographic algorithms.

Long term, I have never seen an organization successfully manage
tightly restricted cipher lists like this. I am perfectly okay if you prove
me wrong. Personally, I'm sticking with HIGH.

Trust Models and Certificate Authorities

The big problem of public key encryption is determining an
authoritative source of trustworthy public keys. You'll find two general
models for trusting public keys, the Web of Trust and Certificate
Authorities. They differ by who performs the labor of deciding who to
trust.

The Web of Trust model popularized by OpenPGP requires the user
to make the initial trust decisions, and then assesses the world with
transitive trust. It boils down to “I chose to trust key A, and key A trusts
key B who trusts C who trusts D, so I will trust D.” It's wholly unsuitable
for end users who merely want to purchase a custom-fitted six-fingered
glove without a packet sniffer stealing their credit card details.

The Certificate Authority (CA) model escapes making the user do
any trust work by choosing to trust organizations that have badgered,
bribed, belabored, or blackmailed their way into being considered
trustworthy. These broadly trusted Certificate Authorities can sign

52

Chapter 1: TLS Cryptography

certificates for the rest of us, and are subject to audits to ensure they
only sign valid certificate requests. They are the root of the public PKI.

Both models have problems. The Web of Trust is confusing, difficult
to use, and easily gamed. Any system that relies on every individual
user’s ability to make good decisions is inherently flawed, as any
democracy demonstrates. The authoritarian CA model was expensive
until recently, and relied upon CAs perfectly verifying all information.
Any system that relies on elites to make the important decisions is also
inherently flawed, as any technocracy proves. The only sensible thing
to do is to pretend safety exists and take refuge in comforting 1980s
fantasy flicks.

SSL and TLS were designed to separate people from their money;,
and “user ease” is the deciding factor in such protocols. User ease
requires trust. The Certificate Authority model became the standard in
SSLv2.

Even under the CA model, not all devices and applications trust the
same Certificate Authorities. We discuss trust bundles in Chapter 3.

The advent of the Automated Certificate Management Environment
(ACME) meant routine X.509 certificates can be obtained for free.

Private Key Protection

Anyone who can read the private key of a pair can use that key’s
certificate to masquerade as the key owner. If have a TLS certificate
authoritatively identifying my web site as https://mwl.io, anyone
who gets the private key can set up a rogue web server pretending to
be my site. (Anyone who can convince a CA to sign a certificate for
that domain can also do so, but that’s a different attack.) Certificate
files must be readable only by root and the application using the
certificate. They should not be writable by anyone except root.

If anyone does connive access to the private key, the entire certificate
is compromised and can no longer be trusted. You must revoke the
certificate and generate a new one.

53

Chapter 1: TLS Cryptography

By default, private key files are encrypted with a passphrase. The
key cannot be used unless a human being types the passphrase, which
makes the private key file useless to intruders who don’t have the
passphrase. The downside is, the key won’t activate until a human
being types the passphrase. Server reboot? TLS services are down until
a human being types the passphrase. Does your server have operators
standing by all day and night? Do you have staff ready all hours of
the day? Do you trust those staffers with the passphrase? Most small
companies with limited staff (and many large companies) decide that
passphrases are not viable.

If your environment truly needs to protect its private key, consider
putting the private key on a hardware security module (HSM).
Accessing the private key means having the physical device, which can
fail. As an intermediary step between an expensive HSM and basic
Unix, you might use applications and operating systems that support
extensive privilege separation, like OpenBSD.

Encrypting your private key is not irreversible (unless you lose the
passphrase). If you try to work with an encrypted private key and
discover that your organization can't handle it, create an unencrypted
private key file as seen in Chapter 3 or install an HSM.

TLS Resumption

Cryptography is not only complicated, the math is tedious, odious,
and expensive. The initial public key computations at the start of every
connection burn CPU cycles. Itd sure be nice if we could reuse that
initial certificate validation and protocol negotiation when the client
clicks on the next link of the web page or new mail check.

Resumption allows a TLS client to pick up where it left off. The first
time you click on a web site, the client and server perform the full
TLS validation and negotiation. The second click, though, the client
resumes the previous TLS session and saves a round of network
requests and public key computations. Resumption improves how

54

Chapter 1: TLS Cryptography

quickly TLS-wrapped protocols respond to subsequent requests,
especially useful for interactive applications where one “session”
involves many connections, like the web.

TLS 1.2 and earlier based resumption on client-side session tickets
and server-side session caches. Both had similar problems. A TLS 1.2
session ticket is a blob of data that uniquely identifies a particular
client. The ticket contained enough information about the cipher’s
pre-shared key (PSK) to identify the session, derive the key, and start
a new connection with the same settings. This form of resumption
turned out to be easily broken, and should not be used.

TLS 1.3 discarded the earlier resumption method in favor of a pre-
shared key (PSK) system. It still uses session tickets, but in a more
restricted manner. It remains unbroken, so far.

No matter the TLS version, resumption poses privacy risks to the
client. Servers can uniquely identify and track browsers by their
tickets and PSKs. This isn't a concern for server operators; we use
TLS certificates precisely so clients can uniquely identify us! Privacy-
sensitive users might want to disable TLS resumption in their client,
however. Load balancers and other network devices further complicate

resumption. It might or might not work in any given environment.
TLS Secure Renegotiation

In TLS 1.2 and earlier, the server and client could change the terms
of the session through Secure Renegotiation. A web site might require
medium-strength encryption for most of the site, but require strong
encryption on login pages. In the earlier days of the public Internet,
when SSL sessions were so compute-heavy that many operators added
hardware SSL accelerators to cope with the load, this flexibility was
important.

Like resumption, it turned out Secure Renegotiation was not
so secure. It got broken, patched, hacked again, repatched, and
eventually put out with the trash. If your application supports Secure

55

Chapter 1: TLS Cryptography

Renegotiation, a properly placed malefactor might be able to snoop on
your traffic.

TLS 1.3 does not allow renegotiation of a TLS session; once everyone
agrees on the connection’s terms, those terms remain unless you create
a new TLS session. Combined with today’s much faster and more

parallel processing, cryptographic load is less of a concern.

Perfect Forward Secrecy

When all of your data is encrypted with your private key, anyone who
has the key can capture and decrypt your data. That’s a TLS nightmare.
But what if the intruder captures and saves your data in transit, then
steals your private key? It’s happened.

Many TLS 1.2 and earlier ciphers used the certificate’s RSA key for
authentication in both key exchange and authentication. If you had
the private key and a saved packet capture, you could easily decrypt
the session. Popular packet sniffers include a “point me at your private
key” file for exactly such purposes.

The Diffie-Hellman Ephemeral Key Exchange (DHE) algorithm let
us avoid using the certificate’s key. Elliptic curve (ECDHE) versions
followed. These ciphers do not use the certificate’s RSA key to agree
upon a symmetric key. A captured packet trace cannot be decrypted.
This is called Perfect Forward Secrecy or PFS. Despite the name, Perfect
Forward Secrecy is not perfect. No cryptographic solution ever is.

In all TLS 1.3 ciphers and some TLS 1.2 ones, the key exchange now
uses an ephemeral key exchange algorithm like ECDHE or DHE.

You can decrypt TLS 1.3 sessions live if you already have access to
the client or the server and can configure a temporary key log file to
capture the master key. TLS is not intended to protect against such

debugging.

56

Chapter 1: TLS Cryptography

Server Name Indication

One IP address can host many web sites. When a client connects to a
TLS-wrapped web site, the web server needs to know which site the
client is trying to connect to. The HTTP 1.1 protocol gives the site
name after the connection is established. How do you tell the web
server which certificate to use to encrypt the connection when the
target site hasn't been identified yet?

The answer is Server Name Indication, or SNI. The client includes the
destination site in the initial TLS negotiation. The server uses the hint
from SNI to establish the connection, and then lets HTTP make its
separate request. Servers that don’t support SNI can support only one
TLS site per IP address.

Even in TLS 1.3, SNI is one of the few parts of the connection still
sent in cleartext. Eavesdroppers can tell which site you're accessing.
People are working on an encrypted SNI, ESNI, but nothing is yet
finalized.

With this foundation, let’s use TLS across the network.

57

Chapter 2: TLS Connections

In the early days of the Internet, we were happy to get data across

the network at all. We didn’t have the resources to encrypt it, and we
weren't daft enough to think that anyone should trust the network
with vital data. Then we let the rest of you on the Internet (for some
reason that still escapes me), and transport encryption became vital.
SSL, the predecessor to TLS, got wedged into existing network services
in whatever manner seemed most sensible at the time.” TLS inherited
these methods, and you must be able to cope with them.

One key tool for debugging network daemons is eliminating the
user-friendly client and connecting to the daemon interactively, using
a tool like netcat(1). If I want to know if a SSH or SMTP daemon is
reachable, I might use netcat to connect to port 22 or 25. Do I get a
protocol banner back? Or does something accept the connection but

not answer?

$ nc mail.mwl.io 25

220 mail.mwl.io ESMTP Sendmail 8.15.2/8.15.2; Fri, 28
Aug 2020 14:23:09 -0400 (EDT)

AC

I'm talking to a mail server. The network works. If 'm conversant
with the modern SMTP protocol, I can even chat with the server. You
can do the same for any text-based protocol.

TLS complicates this debugging. If I use netcat to connect to a TLS-
wrapped port, I'll get binary TLS in my text-only client. This would
not make me happy. I need my client to handle TLS for me. OpenSSL
includes the s client subcommand for creating and debugging
TLS-wrapped network connections. We'll demonstrate connecting to
daemons using s client so you can manually interrogate your own
daemons.

7 Trying all these different approaches taught us a great deal, mostly about
what not to do.

59

Chapter 2: TLS Connections

Many netcat variants support TLS, and even have TLS debugging
features. Every netcat fork has picked different features and unique
arguments, however, so I can't document them here. For that reason,
the examples all use s_client to build your understanding. Once
you know how a TLS connection works and what “normal” looks like,
use whatever tool you prefer.

Connecting to Ports

Clients connect to network ports via direct TLS connections, TLS
connections with CR/LF handling, STARTTLS, or methods like DTLS.

Connecting versus Debugging

The s_client command was written for debugging TLS connections.
When it discovers invalid certificates, it defaults to accepting them and
continuing on. If you're relying on OpenSSL to expose TLS problems,
add the -verify return errorflagtoallof yours client
commands. If you're investigating a daemon or application protocol
problem within the TLS wrapping, you could skip this flag.

The s _client command includes a variety of specific debugging
options, as well as flags for exotic edge cases and truly bizarre
situations. If you have a problem that seems not only strange but
downright perverse, read the manual page to see if anything there
seems appropriate.

Line Feeds, Carriage Returns, and Newlines

Anyone reading this book has tripped over the way different operating
systems treat the “go to the next line” characters. Unix treats a line feed
(LF) as a new line. Microsoft operating systems treat a carriage return
with a line feed (CRLF) as a new line. Early MacOS used a carriage
return (CR) as a newline, and who knows what other operating
systems use? FTP’s binary and ASCII modes exist to cope with newline
handling.

60

Chapter 2: TLS Connections

This difference extends into plain text network protocols. Some
protocols, like HTTP, expect to be able to send a carriage return
without getting a new line. OpenSSL needs to cope with both.

Modern OpenSSL uses either the -connect or the -cr1f options
to connect to network ports. The —~connect command treats ENTER
as a carriage return with a line feed, while -cr1f treats ENTER as a
carriage return.

With LibreSSL and older OpenSSLs, you must always specify the
target host and port with ~connect. Add -cr1f if you need its
newline handling.

Also, some Unixes ship modified OpenSSLs that behave differently.
If —-connect or —crl1f doesn’'t work well, try the other one.

TLS-Dedicated TCP Ports

Common network services like web, email, and FTP attach to
dedicated TCP/IP ports. The simplest way to wrap a daemon’s
connections in TLS is to assign a different port for the TLS-protected
version. That's why HTTP runs on TCP port 80, while HTTPS uses
port 443. The application developers had to do comparatively minor
changes to their applications, and didn’t have to worry too much about
TLS’s innards.

Here my mail client is annoying me and I'm not sure if it’s the
network or my client or me, so [use s_client to talk directly to the
TCP port dedicated to TLS-wrapped POP3. The -connect argument
tells s client to create a TLS tunnel to the given host and port. I'm
adding -verify return error because if it’s a TLS error I want to
know about it.
$ openssl s_client -verify_return_error \

-connect imap.gmail.com:995

I'll see a whole spew of TLS information, dissected in Chapter 5. A
double dashed line appears, declaring that s _client has finished its
work, and the daemon responds to the connection.

61

Chapter 2: TLS Connections

+0K Gpop ready for requests from
2001:db8::bad:cOde:cafe g12mb780908504jaq

I can use the raw POP3 protocol to see if the server is working
correctly.

USER notmyrealaccount

+0K send PASS

PASS notmyrealpassword

-ERR [AUTH] Application-specific password required:
https://support.google.com/accounts/answer/185833

The results transform my question to: why didn’t my mail client
report this error?

Web traffic is a little different. My web sites all redirect traffic from
HTTP to HTTPS, and from the www version of the hostname to the
bare domain—that is, http: //www.mwl. io redirects to https://
mwl.io. This enables a variety of attacks, but my site is neither
confidential nor important. (I also enabled HSTS, discussed in
Chapter 8.) After I reconfigure the server, I want to verify that those
redirects are still functioning. Browsers cache all sorts of detritus, so
I don’t trust them. Instead, I want to interrogate the server directly.
HTTP separates CR and LF, so I must use the -cr1f option to

s _client.

$ openss1 s_client -verify_return_error -cr1f www.mwl.i0:443

If youre running an older OpenSSL or LibreTLS, use both -cr1f
and -connect.
$ openssl s_client -crl1f -verify_return_error \

-connect www.mwl.io0:443

I get all the TLS information, and at the end there’s a double dashed
line.

Web servers do not offer protocol banners upon connection. I enter
my HTTP commands.

GET / HTTP/1.1
Host: www.mwl.io

62

Chapter 2: TLS Connections

I hit ENTER once between the lines. HTTP requests end with two
ENTERs, so when I've finished my commands I hit ENTER ENTER. It
responds.

HTTP/1.1 301 Moved Permanently
Date: Wed, 09 Sep 2020 16:12:18 GMT
Location: https://mwl.io/

My redirect is intact.

The s client command takes the SNI server name from the name
of the host you connect to. If you must specify a different SNI server
name, use the -~servername option. Here, I want to be sure that my
installation of my web site on a new server works, even though it's on a
temporary hostname.
$ openssl s_client -servername www.mwl.io \

-cr1f newwww.mwl.io:443

Using separate port numbers for TLS versions of services works,
but while network ports are numerous they are not infinite. Plus, the
technique increases network traffic and slows down services. We need
better.

Opportunistic TLS

In some protocols, a client can request that a server use TLS and
servers can request clients upgrade to TLS. The idea is to use TLS
when it’s available, but permit continuing if TLS isn’t available. This
opportunistic TLS was ideal for universal protocols like email, where
everyone had a server and they couldn’t all simultaneously upgrade.
The expectation was that eventually, all applications would support
TLS. Opportunistic TLS is often called STARTTLS after email’s in-
protocol command to request TLS, but not all opportunistic TLS
implementations use the literal command STARTTLS.
“Opportunistic” sounds flexible, but a server using opportunistic
TLS can inflexibly require TLS. When a client connects, the server

63

Chapter 2: TLS Connections

might request TLS. If the client refuses, the server can declare “Sorry,
TLS or nothing” and disconnect.

Every protocol looks different, so each must implement
opportunistic TLS differently. They’re similar, but the SMTP protocol
used for email doesn’t resemble LDAP or XMPP or anything else.
Before trying to use a server’s opportunistic TLS with s client,
check the -starttls option in the man page to see if your
implementation supports that protocol. Note the name s client
uses for your protocol.

We'll use email as an example. ® The history of email and TLS has
been complicated by email’s evolution, the rapid development of
desktop mail clients, web-based email, and decades of workarounds
and lingering migration paths from carrier pigeon, UUCP, and worse.
Email has selfishly claimed TCP ports 25, 465, and 587, and shows no
willingness to surrender any of them. Here I use s _client to connect
to a mail server on port 25, using STARTTLS.
$ openssl s_client -connect mail.mwl.io:25 \

-starttls smtp

We use the familiar openssl s client command, and the same
-connect keyword with a host and port. The new bit is at the end.
The -starttls optiontells s client toimmediately negotiate a
TLS session. We then give the protocol name, smtp in this case.

You'll get the usual spew of TLS information, followed by:

220 mail.mwl.io if you must
I can now engage in my usual SMTP-by-hand shenanigans.

EHLO mail.mwl.qio

250 mail.mwl.io Hello vermin.isp
[2001:db8::bad:c0de:cafe], pleased to meet you

MAIL FROM: mwlucas@michaelwlucas.com

550 5.7.1 Mail from 2001:db8::bad:cOde:cafe refused -
see http://www.spamhaus.org/zen/

8 Email is a great example of a terrible example.

64

Chapter 2: TLS Connections

My RBL subscription works? That’s good. Unfortunately, I was
testing my RBL override for my home address.

While desktop mail applications care very much about the validity
of server certificates, TLS connections between mail servers are
perfectly content with self-signed certificates. In server-to-server
mail, there’s no human being involved to decide if the warning should
be overridden or not, and email specifically doesn’t care about the
sending host’s identity. That’s okay. Server-to-server SMTP exists
mostly to prevent large scale email capture by systems like the United
States government’s Carnivore. SMTP’s TLS accepts self-signed and
expired certificates on servers, because self-signed certificates suffice
to prevent passive snooping on the wire. An attacker could still inflict
a man-in-the-middle attack, which is much more challenging at scale.

Privacy-hostile networks, which include the entire Internet of
certain countries, often block STARTTLS. They also block dedicated
TLS ports, however.

Connection Commands

The s_client session remains open until you terminate it. While
CTRL~-C is the time-honored method of breaking a connection, you do
have other options.

Entering a 0 cleanly closes the TLS connection.

The tricky ones are the commands that alter a live TLS session.
Entering a k sends a TLS 1.3 key update, while a K both sends an
update and requests one in return. If this connection uses an older
TLS version, it will break the connection. Entering an R renegotiates a
TLS 1.2 session.

Most people won’t need these, but their mere existence can cause
problems. What if the protocol you're using has commands that
begin with these letters? I don’t know of a protocol with a command
that starts with 0, but every time you try to debug it with s client
OpenSSL will hang up on you.

65

Chapter 2: TLS Connections

The -ign_eof flagis intended to keep a TLS connection alive
even after the end of any input. It has the side effect of disabling these
commands.

Ifyouuse s client ands server to fling files around the
network netcat-style, the -ign_eof flag is pretty much mandatory.

DTLS

Testing DTLS by hand resembles using other UDP-based protocols
with netcat. It demands extensive knowledge of the underlying
protocol. It’s not something you do casually. SCTP is actively hostile to
this sort of interactive use. If you're interested in playing with TLS over
UDP or SCTP, many folks have written simple responders for them.

Also take a look at OpenSSLs s _server subcommand, which lets
you create the equivalent of a netcat listener wrapped in DTLS. Most
netcat variants have similar functions.

Silencing s_client

Perhaps you know that the TLS is working and you just want to poke
the daemon underneath. All of this low-level TLS information is only
a distraction. Add the -quiet flag to silence everything except a
summary of the certificate chain.

$ openssl s_client -quiet -verify_return_error \
-cr1f www.mwl.io0:443

depth=2 0 = Digital Signature Trust Co.,
CN = DST Root CA X3

verify return:1

depth=1 C = US, 0 = Let’s Encrypt,
CN = Let’s Encrypt Authority X3

verify return:1

depth=0 CN = mwl.1io0

verify return:1

GET / HTTP/1.1

To see a summary of the negotiated TLS characteristics, use -brief
instead.

66

Chapter 2: TLS Connections

$ openssl s_client -brief -verify_return_error \
-crlf www.mwl.i0:443

CONNECTION ESTABLISHED

Protocol version: TLSv1l.2

Ciphersuite: ECDHE-RSA-AES256-GCM-SHA384

Peer certificate: CN = blather.michaelwlucas.com

Hash used: SHA256

Signature type: RSA-PSS

Verification: OK

Supported Elliptic Curve Point Formats: uncompressed:
ansiX962_compressed_prime:ansiX962_compressed_char?2

Server Temp Key: X25519, 253 bits

GET / HTTP/1.1

I can now enter my HTTP commands and be told that this site has
moved, without wading through all of the TLS detail.

Specific TLS Versions

When a TLS client like s client first connects to a server, the client
lists the TLS versions it supports. The server picks the highest version
it supports. For debugging you might need to force use of a particular
TLS version, or disallow certain TLS versions for this connection.
OpenSSL has command-line options for both. The -t1s1 3 flag
means to only accept TLS 1.3, while -t1s1 2 forces TLS 1.2. If you're
checking obsolete versions of TLS, there’s also -t1s1 1, -t1lsl,and
-ssl3.

Suppose I configured my web server to only accept TLS 1.2 and 1.3.
Web servers are complex. It’s entirely possible that I missed something.
I must verify my work.

$ openssl s_client -brief -ss13 -cr1f www.mwl.i0:443
$ openssl s_client -brief -tlsl -cr1f www.mwl.i0:443
$ openssl s_client -brief -tlsl_1 -cr1f www.mwl.io0:443

If all of these return errors, the connections were unsuccessful. These
TLS versions don’t work on my server. I should probably verify that
TLS 1.2 and 1.3 work as well, however.

$ openssl s_client -brief -tl1sl_2 -crlf www.mwl.io0:443
$ openssl s_client -brief -t1sl_3 -crlf www.mwl.io0:443

67

Chapter 2: TLS Connections

These flags also come on “no” versions that forbid a particular
protocol. By adding -no_ss13, -no tlsl,-no tlsl 1,
-no_tlsl 2,or-no tlsl 3,youcanforbid s client from using
SSLv3, or TLS 1, 1.1, 1.2, and 1.3 respectively. Checking to see if a web
site supports TLS versions other than 1.2 and 1.3 could be run in a
single command, like so.
$ openssl s_client -brief -no_t1sl_3 -no_t1sl1_2 \

-cr1f www.mwl.i0:443

If this server supports any TLS version other than 1.3 and 1.2,
s _client will find it.

Don't mix -t1s and -no_t1s flags. Either declare a protocol
version, or ban protocol versions.

The s client subcommand has many other options. Get the full
list with the ~help argument, or read the manual page.

Choosing Ciphers

Maybe you're looking to emulate a specific client, or want to test

if certain ciphers are available on a server. If you check your web
browser’s TLS connection details, or the log of the client program,
you'll see the cipher name along with the TLS version. That cipher
name might be the cipher’s OpenSSL name, the IANA name, the
GnuTLS name, or some other name. Use https://ciphersuite.
info to find the OpenSSL cipher name, so you can specity that cipher
inyour s client command. The -cipher option lets you specify
TLS 1.2 options, while -ciphersuite lets you specify TLS 1.3
ciphers.

Setting a cipher list for a particular TLS version does not mean that
s_client automatically uses that TLS version, however. It might. It
might not. If you're testing a particular cipher, specify the TLS version
as well.

Now let’s consider certificates themselves.

68

Chapter 3: Certificates

TLS is built on digital certificates. A digital certificate is a collection

of carefully formatted information that identifies an entity, digitally
signed by a Certificate Authority. Servers, services, and users can have
certificates.

A server certificate is intended for an application server, and is used
to authoritatively identify the server. This is the kind of certificate
youd install in your web server. Most sysadmins focus on server
certificates.

A client certificate or user certificate identifies someone or something
that authenticates to a server. A person might use a client certificate
to authenticate themselves to a VPN, mail, or web server, using the
certificate’s passphrase much like a password. An internal mail server
might have a client certificate that authenticates it to its public-facing
outbound mail server—the internal mail server is a client of the
outbound server.

A trust anchor, sometimes called a root certificate, is ultimately
trusted to sign other certificates, as discussed later this chapter. Trust
anchors might be globally trusted public CAs, or they might be private
certificates like those used in Active Directory.

Issuing certificates can sign other certificates. An issuing certificate
might be issued by a certificate authority, or they might be part of a
private CA. Chapter 10 discusses name constrained issuing certificates.

Most of the examples in this book use server certificates. We'll also
discuss client certificates, but most everything applicable to server
certificates applies to user certificates. Chapter 10 covers creating CA
certificates, issuing certificates, and more. If you encounter something
special, like an OCSP validation certificate, either the tools you use to

scrutinize server certificates work perfectly well on them or you'll be

69

Chapter 3: Certificates

able to leverage your knowledge to find the right command to crack it
open. After all, all these certificates are built on the same standards.

Certificate Standards

TLS does a decent job of concealing the standards that certificates
are rooted in, but occasionally these roots poke up through the forest
floor. If you don’t recognize them, eventually they’ll trip you.

TLS certificate information is organized as per X.509, the
International Telecommunications Union’s (ITU) standard for digital
certificates. X.509 is used in many applications that demand precise
formatting of data. It defines how certificates will be arranged, which
features are used, how they’re validated and revoked, and more.

X.509, in turn, is built on Abstract Syntax Notation One (ASN.1),
another ITU standard. ASN.1 is a method for defining cross-platform
data structures and providing information in a globally recognized
manner. You'll see ASN.1 in protocols like LDAP and SNMP. TLS tools
like OpenSSL automatically convert those numbers to human-friendly
words. Fortunately, you don’t need to understand the innards of
ASN.1. Accept that they have been unfavorably compared to the Cliffs
of Insanity by more than one developer and move on.

ASN.1 is built by arranging objects into a tree. Each branch and leaf
on the tree is identified by a numerical Object Identifier, or OID. X.509
shares a tree with protocols like SNMP, but is on a different branch.
New objects are slowly but constantly added to TLS certificates.

Each CA has its own chunk of the object tree. Your software might
not have all of the OIDs in a certificate. If a command produces
output like 1.3.6.1.4.1.44947.1.1.1 followed by a lump of indigestible
gibberish, you should think “Aha! This is a raw OID that my tools
don’t know how to process!” Check for software updates. CAs can also
use private OIDs, such as those from 1.3.9900 to 1.3.9999. Much like
192.168.0.0/16 IP addresses, these aren’t supposed to be visible beyond

the organization, but occasionally escape.

70

Chapter 3: Certificates

If this wasn't enough, X.509 also pillages the X.500 directory
standard. X.500 defines one- or two-letter labels for different types of
information, such as OU =,0 =, and CN =. O gives the Organization
name, such as a company or other entity, while OU represents
Organizational Unit, a division of that entity.

The CN gives the Common Name, which was historically a hostname
in TLS. Using CN to store hostnames has been deprecated since 2000,
as CN cannot support hostnames longer than 63 characters. The
replacement for hostnames in CN is called Server Alternative Names
(SAN), discussed later this chapter. Many CAs transparently copy
hostnames from the CN to SANs. You'll occasionally see other labels
that the CA felt obliged to stick in there.

The Common Name might be a uid, email address, first and last
name, or some combination thereof. It could even be a serial number,
identifying a device.

Each directory item has an OID. If you poke around, you'll see that
the omnipresent CN is 2.5.4.3. You don't need to know the numbers,
but don’t be puzzled when they appear.

Trust Anchors

A trust anchor, often called a root certificate is included on a list of
ultimately trusted certificates. There’s nothing special about any of
these certificates. Your system or application has been told to trust
them, so it does. Yes, it’s highly arbitrary.

Many trust anchors are self-signed certificates from big
organizations in the business of signing certificates. Some also bear
signatures from other trust anchors, as discussed later this chapter.
The only difference between a trust anchor and any other self-signed
certificate is that applications have been told to trust it. Many trust
anchors also have very long lifetimes, decades or more.

Every operating system or application platform provides a
trust bundle, a collection of self-signed certificates trusted to

71

Chapter 3: Certificates

sign other certificates. It might be called a trust anchor bundle,

root certificate bundle, or sometimes even certificate bundle or plan
bundle. Vendors like Microsoft, Apple, and Google maintain their
own bundles. The Mozilla Foundation maintains the bundle used in
Firefox, but most versions of Unix also use the Mozilla bundle or a
derivative thereof. Oracle and Adobe also have major trust bundles.

Not all of these organizations trust the same trust anchors, however.
Different CAs have applied to different bundles, and not all CAs
qualify to be in all roots. Projects like the Trust Stores Observatory
monitor which trust anchors are in which bundles.

An organization can run its own internal certificate authority, as
discussed in Chapter 10. Such CAs are trusted within the organization,
but not by the outside world. It’s easy to start and annoying to
maintain. For many organizations it’s a sensible solution, however.

Many experts, and a whole bunch of amateurs, object to the
inclusion of specific entities in these trust anchor bundles.
Governments and giant corporations need us to automatically trust
them, but do we need to extend that trust? These root certificate
bundles are used globally. Should a US citizen trust a CA run by
the government of Hong Kong? Perhaps folks in the Netherlands
should trust their government, but should they trust the United
States government? If you trust them today, should you trust them
tomorrow? Who the heck is HARICA or the Shanghai Electronic
Certification Authority? You can find out. You can curate your own
bundle of trust anchors that you consider trustworthy. More than one
person maintains a “trust anchor bundle for the commoners,” but
how do you decide to trust the curator? What will you do when an
application breaks because it can’t validate a certificate? Will you deal
with the political or technical fallout of not trusting that certificate,
or would you re-add the trust anchor to your bundle and go back to
watching right-handed swordsmen fight left-handed?

72

Chapter 3: Certificates

This problem underlies all discussions of certificate authorities. I
won't belabor it any further. Make your decisions and live with them.

Making Your Own Trust Bundle

Many huge enterprises maintain their own trust bundle. The business
has made a decision that they don't trust specific governments or
organizations, and/or they do want to trust their internal-only
certificate authority. The trick is where they deploy that bundle.

Maintaining your own trust anchor bundle for web browsers is a
vexing hobby. You have no way of knowing which CAs your external
partners use, let alone random web sites out in the wider Internet.
Outside entities have no obligation to warn you when they change
CAs. Operating system updates can overwrite your carefully selected
bundle. A curated browser trust anchor bundle is an exercise in
frustration.

Other applications can absolutely use a curated trust anchor bundle,
however.

Suppose your organization made an internal decision to only
get certificates from “Miracle Max’s CA” Max signs your web site
certificates, but also your mail and LDAP servers, as well as any
other TLS applications. Rather than having those clients read the
web browser’s trust bundle, configure them to use a trust bundle that
contains only Miracle Max’s CA certificates. This makes it much more
difficult for an intruder to hijack your internal services. Perhaps the
intruder can fool Guilder into issuing a bogus certificate for your
domain—but if your applications don’t trust Guilder, certificate errors
will warn your users that something is wrong.

Or perhaps you build an embedded device that you install in all of
your offices. This device should only communicate with your own
infrastructure. Its trust bundle should include your private CA, but no
other certificates.

73

Chapter 3: Certificates

The OpenSSL Trust Bundle

OpenSSL must have a trust bundle to validate certificates. Most
OpenSSL installs use the Mozilla trust bundle, distributed as a single
file containing all the CA certificates, but each breed of Unix has
chosen their own way to manage these certificates.

Most software expects to find certificates in /etc/ss1/certs.
OpenSSL expects to find them in a certs subdirectory of the system
OpenSSL directory (available by running openssl version -a).
Some Unixes break Mozilla’s big file into individual certificates. Others
don’t. Every Unix resolves these conflicts by applying symlinks until
the complaints stop.

Each Unix also has their own way to manage these
certificates. Maybe it'’s certctl, or add-trusted-cert, or
update-ca-certificates, or a tangle of OpenSSL commands. If
you need to add or remove certificates from the OpenSSL trust store,
check your operating system documentation for the correct way to
do so. Don'’t just fling files into what looks like the correct directory; a
system update might well overwrite them.

If you want to use a specific CA certificate in an OpenSSL
command—say, for testing a private CA—you can use the -casiie
option to point at the certificate file.

Certificate Components

A certificate contains two primary pieces: the information about the
entity being certified, and a digital signature of that information.

The information about the entity being certified is created by the
entity requesting the certificate. That entity might be a sysadmin, or
it could be an automated process like ACME. It might include details
about host names, physical location, and the responsible organization.
It might be only a hostname. The certificate also includes a public
key. This organization information and the public key is gathered
together into an X.509-formatted file called a certificate signing request

74

Chapter 3: Certificates

or CSR. You submit the certificate signing request to your Certificate
Authority. You hide the private key like the treasure it is.

The CA verifies the information in the certificate signing request,
as discussed in Certificate Types later this chapter. Some CAs offer
extensive verification, ensuring that the request comes from the
right organization and that it was submitted through approved
channels. Others, like free ACME CAs, verify only that the entity that
submitted the request controls the host and/or its domain. Once the
CA is satisfied of the request’s legitimacy it attaches any delegated
permissions and digitally signs the whole thing. That’s the certificate.

Certificates have validity dates, or at least an expiration date. Clients
may reject expired certificates. Manually managed CAs generally offer
one-year certificates, while ACME CAs most often use three months
to encourage automation. Certificate safety is inversely proportional
to certificate lifetime. I've seen multiple financial institutions use
certificates that expire in twenty-four hours. Generally, use the fastest
expiring certificates you can reliably renew. Additionally, the latest
browsers reject certificates older than 398 days.

Using a certificate requires the certificate file returned from the CA,
plus the private key created when you made the certificate signing
request. The certificate is useless without both components.

Extensions and Constraints

While the certificate’s X.509 format rigidly defines data fields, it is also
extensible. A certificate issuer can add their own rigidly defined data
fields to certificates. Most of these extensions are used as constraints or
policy statements.

A constraint dictates how the certificate can be used. One common
constraint is a name constraint, where the certificate can sign other
certificates within a certain domain. I might spend a bunch of cash
on my own intermediate CA that could sign certificates, but only
for my domain mwl. io. We discuss these certificates in Chapter

75

Chapter 3: Certificates

10. Some certificates might have constraints that they can only sign
client certificates, or certificate revocation lists, or must use certain
cryptographic algorithms.

A policy most often applies to aspects of the TLS connection. Most
policies are built with X.509 extensions. A certificate could have a
policy that it is valid only on certain domain names, or that it can only
be used for client authentication.

Certificates mark each extension as either critical or non-critical.
The client must process and validate all critical extensions. If it cannot
validate a critical extension, the connection fails. Clients are expected
to respect non-critical extensions, but if the client software doesn’t
recognize the extension, they have permission to skip them. That’s no
guarantee that the connection will work, however. Server Alternative
Names (SAN) are non-critical, but any client that wants to operate on
the modern Internet handles them.

Suppose a certificate has a constraint that it can only be used to
sign certificates in the mwl . io domain. Name constraints are always
critical extensions. I use it to sign a certificate for microsoft.com. The
certificate violates the critical constraint. If the client does not know
how to interpret that constraint, it will reject the certificate. If the
client does know how to interpret the constraint, it will realize that the
certificate violates the constraint and reject it. Either way, my limited
signing certificate can’t create a usable certificate outside my domain.

Validation Levels

For most folks, the entire purpose of a certificate is to shut up a
program’s warnings about an unsafe application. Certificates give
you the little lock or shield in your browser. Certain environments
might require server certificates with greater level of trust than usual,
however, as expressed by how well the owner is validated.

A domain validated (DV) certificate means that the CA verified that
the requesting entity owns and controls the domain the certificate

76

Chapter 3: Certificates

is for. If want a DV certificate for my domain mwl. io, I need to
demonstrate that I own and control the host that the name mw1.io
points at, or that I can add entries to the DNS. All free ACME and
most inexpensive certs are DV.

An organization validated (OV) certificate includes everything
in a DV certificate, but also checks that the requesting organization
exists and is at the address claimed. Most commercial CAs offer OV
certificates.

An extended validated (EV) certificate digs into the entity requesting
the certificate. It verifies the organization’s business registration and
jurisdiction. This sort of certificate includes everything you need to
track down the organization. These certificates can run thousands of
dollars.

Each certificate type contains the information validated. A DV
certificate contains only the domain name. An OV certificate includes
basic organizational information, while an EV certificate gives you all
sorts of data.

Most of us, in most cases, want our applications to quit complaining.
A DV certificate suffices. Financial institutions often use certificates
with OV validation. An application that receives an EV certificate
might flag the user somehow; some browsers turn the address bar
green on sites using an EV cert. In the real world, users almost never
notice this—and when they do, they get alarmed. EV certificates
are entirely about regulatory compliance, as they offer no technical
benefits.

Trust and Your Certificate

The whole point of a certificate is for an entity to prove its identity.
When a server or a client receives a certificate from the other side

of the connection, it must validate that certificate. Historically,
certificates were validated using a Chain of Trust. Today, it's more like
a Tree of Trust.

77

Chapter 3: Certificates

Our examples assume that a TLS client, like a web browser or email
client, is validating a server’s certificate. Client certificates work the

same way.
The Chain of Trust

Back in the day, a sysadmin issued a Certificate Signing Request
containing their organization and server information. A Certificate
Signing Request was basically a certificate without the digital
signature. The sysadmin sent the request to a Certificate Authority,
along with a wad of cash. The CA signed the Certificate Signing
Request, creating a complete certificate, and returned it to the
sysadmin, who installed the certificate file on their server.

In those years, the Chain of Trust looked something like this.

Guilder Root

Your
Certificate

Figure 1: a primordial Chain of Trust

A single link. Easily validated. Very simple.

When a client visited the web site, they would first validate the
certificate. The certificate claimed to be signed by a particular root CA.
The client trusts that root CA. The client would validate that signature
and proceed—or reject the signature and stop.

Intermediate CAs

Root CAs operate under very strict requirements. The private key
is often kept tightly locked up and can only be accessed by select
corporate officers. Select corporate officers dislike interrupting

78

Chapter 3: Certificates

their pleasures to carry out their corporate responsibilities, when
they should rightfully delegate all the routine labor. That's where
intermediate CAs come in.

An intermediate CA has a certificate signed by a trusted CA, so
clients will trust it in turn. It has a shorter lifetime than the trust
anchor—if nothing else, you don’t want the trusted CA certificate to
expire while the intermediate CA or any certificates signed by it are
still in use. The intermediate CA certificate has been delegated the
privilege of signing further certificates. You now have a Chain of Trust
with multiple links, like a real chain.

Florin Root
CA

Intermediate
CA

Your
Certificate

Figure 2: Chain of Trust with an intermediate CA

Clients visiting your web site validate your certificate by evaluating
the signature on your certificate, and then the signature on the
certificate used to sign your cert, then the CA's certificate. If everything
matched, your certificate was valid.

Intermediate certificates can have additional constraints put on
them. Humperdinck Unlimited might buy their own intermediate CA
certificate that can sign any certificates in their domain. They might
create further intermediate CAs for, say, the North American, European,
and Asian subdomains, and delegate signing authority to them.

79

Chapter 3: Certificates

One complication with Chains of Trust is that the client only has
the trust anchor. It does not have the intermediate certificates, nor
any way of collecting them. Without those, validation fails. The server
must offer the client the certificate chain. A chain file, sometimes
called a CA bundle, includes any and all intermediate certificates.
They sometimes include the trust anchor, although that’s unnecessary.
A full chain file also includes the end host’s certificate. CAs that use
intermediate certificates offer chain files.

If your CA has an intermediate certificate and your server does not
offer clients a chain file, clients cannot validate your certificate. Period.

In those good old days, clients might have to validate a Chain of
Trust seven or eight links long. It’s not so easy now.

The Tree of Trust

The thing about trust? Not everybody has it.

While most of users are content to trust whatever root CAs ship with
their software, some organizations distrust certain CAs. A government
entity might refuse to trust certain CAs from other nations. Some
companies might distrust their competitor’s CA.’

After years or decades, trust anchors expire. A trust anchor included
with SSL 1.0, using algorithms considered unbreakable in 1995,
should certainly not be trusted today. Software that receives regular
updates will get newer certificates, but that’s not always realistic.

Even sysadmins fiercely adamant that all user software must be
updated often bear responsibility for decrepit mission-critical systems
accessible only via Internet Exploder 6.

But what happens if a trust anchor is compromised? A trust anchor
cannot be revoked, as we’ll discuss later. That certificate would be
removed from the list of trusted certificates, however. After updating,
clients would stop trusting that certificate.

9 Windows repeatedly asks if I'll always trust software from Oracle. I laugh
derisively. Every. Single. Time.

80

Chapter 3: Certificates

Cross-signing permits certificates to carry more than one signature.
So long as the client can find one chain of valid signatures leading to
a trusted root, the client trusts the certificate. Cross-signing creates
something like Figure 3.

Guilder Root
CA

Florin Root
CA

Intermediate
CA #2

Intermediate
CA #1

Your
Certificate

Figure 3: cross-signed Tree of Trust

The whole goal of this is to make sure that your certificate is valid,
no matter what happens further up the tree. If Guilder’s trust anchor
gets ripped from the list of trusted certificates, the client can validate
the certificate against Florin’s trust anchor. If an intermediate CA’s
certificate is revoked, the other CA provides valid links to a root CA.
You could lose all but one trusted entity on each level and still validate
the certificate.

This is a very simple cross-signed certificate setup. Several roots
might sign any of a combination of intermediate CAs, which in
turn all sign your certificate. You might have countless layers and
innumerable roots all funneling incredible torrents of trust down to
your hapless certificate. You might discover an intermediary certificate
in your trust bundle, but the certificate it was signed with has expired.
The Tree of Trust has so many bizarre twists and cross-connections
it could more reasonably be called the Twisted Tangle of Trust, but

81

Chapter 3: Certificates

that would reduce confidence in the protocol underlying all modern
industry and commerce so we won't do that.

While a Tree of Trust is cryptographically reliable, not all TLS clients
can successfully validate one. Many developers only paid full attention
to the first Chain of Trust found, neglecting the whole rest of the Tree.
These applications fared badly as the Tree of Trust grew ever more
complex. Once trust anchors widely used in cross-signed certificates
began expiring in the late 2010s, application developers hurried to
catch up. Intermediate certificates became trusted trust anchors, but
validation software expected the root to be at the top of the tree, not in
the middle. When the original trust anchor expired, certificates signed
by the new root failed validation. Many of the necessary software
improvements are still in progress, but the Tree of Trust constantly
evolves towards a Tangle of Terror.

This race will never end.

Even if the client software can validate a complex Tree of Trust,
it will not have the intermediate certificates. Your application must
provide complete chains. Most servers can accept a complete chain file
as the certificate.

If your software tells you that the Chain of Trust isn't trusted, but
examination of the certificate shows multiple intermediaries and roots,
your software needs an update or perhaps flat-out repairing. If your
vendor has no update, you need a new vendor.

Certificate Validation

Clients must validate server certificates. The full certificate validation
process is baroque and cumbersome, with a whole bunch of exceptions
and loops and dead ends. If you require details, RFC 5280 contains
enough of them to destroy any hope that true love exists. We'll cover
the common case.

This discussion assumes that an application server such as a web
site or mail host provides the certificate, and a client like a browser or

82

Chapter 3: Certificates

desktop mail program must validate it. Some applications require the
client provide a certificate to the server. Perhaps both the client and
the server offer certificates. While the protocol internals differ, both
sides follow highly similar procedures. We discuss the “TLS client”
and “TLS server” separately from the application client and server.

Any time a TLS connection fails, the client presents the user with
an error message describing why. In most applications, the user can
choose to accept the certificate anyway and proceed. You've seen these
messages in your web browser, along with cryptic notices that declare
you still have much to learn about TLS. Your users might override the
error and continue, or call the helpdesk and complain that the Internet
is broken.

Upon making the TLS connection, the server presents its certificate
and any intermediate certificates to the client. The client inspects
those certificates, checking both the validity dates and the digital
signatures. If the signatures do not validate, the certificate was either
tampered with or damaged in transit. If the certificate isn’t yet valid, or
has expired, it’s invalid. Either way, the TLS connection fails.

If the certificate is intact and has good dates, the client attempts
to find a path between the server’s certificate and the client’s trust
anchors. If the client can’t find a path, as discussed in “Trust and Your
Certificate,” the certificate is rejected and the TLS connection fails.

The client then checks to see if the certificate has been revoked. We
discuss revocation and all its variants, like OCSP, in Chapter 4.

If the certificate looks good so far, the client then checks the
constraints and extensions within the certificate. The critical
extensions must validate, or the client rejects the certificate.

All of this looks straightforward enough. And it is, so long
as everything works. What does your particular client do if the
Certificate Revocation List (as discussed in Chapter 4) is unavailable,
either from an outage or because the CA screwed up or because

83

Chapter 3: Certificates

the CA didn't bother to update the list this week? Each application
developer made choices on how to handle failure. If a web site throws
a confusing error message in the usual browser, but another browser
shows it just fine, the user won't care that the real problem is that the
OCSP staple is stale and that the web site is untrustworthy. They only
care that their old browser is a complete failure and that their new
favorite browser works.

Encoding

While certificates all use the X.509 format, a system can encode and
store those certificates in many ways. Some software accepts only one
specific encoding. You must be able to identify different encodings and
convert between them as needed.

An encoding is a method of arranging data. It has nothing to do
with encryption, ciphers, or secret codes and everything to do with
serializing objects for transmission and storage. ASCII is an encoding.
Microsoft Word files have an encoding. Both the paper and electronic
versions of this book are encoded. Very few of us can read binary
or base64' encoding by eye, but to software all of the encodings
it understands are interchangeable. You don’t have a PEM TLS
certificate, you have a TLS certificate encoded in PEM format. If the
encoding doesn't fit your needs, change the encoding.

While Unix doesn't consider filename extensions meaningful,
suffixes are useful for the human beings managing the systems. You'll
see extensions like . pem, .der, . crt, and more. Unfortunately, TLS
seems to be the area where sysadmins treat such extensions with
even more disdain than usual. More than once I have been asked to
troubleshoot servers where the sysadmin gave all TLS-related files
names ending in . crt, regardless of the file’s contents or the encoding
used. You must be able to differentiate between encodings using more
than just the filename extension.

10 Remember, base64 is not a password hashing method.

84

Chapter 3: Certificates

Distinguished Encoding Rules (DER)

The Distinguished Encoding Rules (DER) is one of the oldest
methods of encoding X.509 certificates. DER is a subset of the
Basic Encoding Rules for ASN.1, or BER. DER gives a unique and
unambiguous encoding of any ASN.1 object. Every system that
supports DER will interpret this data in precisely the same way.

DER is a binary format. Everything is encoded with a tag, a length,
and then the data. A purist might note that everything in a computer
is zeroes and ones, but DER plunges to that level faster than most.
Commands like file(1) often identify DER-encoded files as “data”
You can't copy and paste a DER certificate or send it in the body of an
email. To treat a certificate as text, you must convert it to PEM.

A filename ending in . der hints that the contents should be
DER-encoded. The only way to be sure is to use OpenSSLs x509
subcommand to view the certificate.

$ openssl x509 -in file.der -inform der -text -noout

The -1in option lets you specify a file to be read. Here we're reading
file.der.

The -inform option doesn’t sent your subversive activity to the
authorities. It’s short for “incoming format.” Software often can’t easily
identify pure data formats like DER, so you must tell OpenSSL how to
interpret it.

The -text flag tells OpenSSL to provide the output in human-
readable text form. Readability does not imply comprehension.

Finally, -noout prevents display of the encoded certificate.

DER-encoded files are small, and are often used in space-sensitive
applications like distributing Certificate Revocation Lists (Chapter 10).

85

Chapter 3: Certificates

Privacy-Enhanced Mail (PEM)

The IETF created a standard for sending encrypted email, Privacy-
Enhanced Mail (PEM), back in 1993. PGP defeated PEM in the Email
Cryptography Swordfight, but PEM encoding proved suitable for keys
and certificates and survived.

PEM is mostly base64-encoded DER, plus headers and footers to
make it more human-friendly. You've probably seen certificates or keys
encoded in PEM format; they start with a line of dashes and the words
BEGIN CERTIFICATE or BEGIN RSA PRIVATE KEY. You then have
a screen full of characters and symbols, followed by a line declaring
END CERTIFICATE or KEY. PEM encoding permits including
multiple items in a single file. I'm biased towards PEM over DER, if
only because I can eyeball the contents and catch egregious mistakes,
like trying to use a key as a certificate.

Files containing PEM-encoded items often end in . pem, but you’ll
also see . crt for files containing a certificate, or . key for public or
private keys. The nice thing about PEM encoding is that you can read
the headers and see what’s in it.

View a PEM-encoded certificate with openssl x5009.

$ openssl x509 -in file.crt -noout -text

The -1in option lets us specify the file to read. The -noout flags
blocks displaying the certificate, while -text says to produce human-
readable text output. OpenSSL defaults to PEM, so there’s no need to
manually set -inform.

Key files are mostly random data. If you try to read a PEM-encoded
key with openssl %509, OpenSSL will tell you it’s not a certificate.

Converting Between Encodings

Some software only accepts one encoding, and some CAs only provide
certificates in the wrong format. You must be able to convert between
encodings.

86

Chapter 3: Certificates

Re-encoding uses the —-in option we used to view certificates. It also
needs —out to give a destination filename. We'll also use -inform
and -outform to tell OpenSSL how to read DER files and what
encodings to use.

Here I convert the DER-encoded certificate www. der to PEM-
encoded www.pem The —inform flag tells openssl x509 that the
source file is in DER format. The -outform flag lets us choose PEM

for our output.

$ openssl x509 -in www.der -inform der -outform pem \
-out www.pem

Converting PEM certificates to DER is slightly simpler. OpenSSL
can automatically identify incoming PEM-encoded certificates, so we
don’t need the ~inform option. We still need -outform der to give

a target encoding.
$ openssl x509 -in www.crt -outform der -out www.der

You can now feed your narrowminded software whatever encoding

it requires.
OpenSSL Without Input Files

If you don’t specify an input source with —in or |, OpenSSL takes
input from standard input. You can run a command and paste input
into it.

Suppose I want to convert a PEM certificate into DER format. I
could run OpenSSL like so.

$ openssl x509 -outform der -out cert.der

The command would hang, awaiting input.

I then go to another terminal and copy my PEM certificate,
including the ---BEGIN CERTIFICATE—header and the footer. I
paste that into my command window and hit ENTER. The command
takes that input and produces my DER file.

87

Chapter 3: Certificates

PKCS #12

The Public Key Cryptography Standards (PKCS) from RSA
Laboratories defines methods for storing, arranging, and using
cryptographic information. These standards were first created in
the early 1990s, and most of them relate to the inner workings of
public key encryption and key exchange. Many of them were later
republished as other standards: PKCS #10 defines CSRs, and is also
available as RFC 2986. PKCS #12, however, defines how to store
multiple related encryption files in a single archive file. This archive
can be encrypted and digitally signed. It's most commonly used
to store a certificate chain and its private key. Each file goes in a
separate container in the archive, called a SafeBag. You might use
PKCS #12 to email a private key and its certificate to a colleague in
your organization. So long as you use a good password and send that
password out of band", it’s fairly safe.

Java uses PKCS #12 heavily. It’s the default key storage format as
of Java 8, which has added several features that make it not entirely
compatible with other PKCS software. If you need a program to
interoperate with Java, carefully test all operations.

PKCS #12 archive files usually have a file sufhx of .p12 or,
sometimes, prx. (The PFX file format was a precursor to PKCS #12.)

You need to be able to stuff assorted files in a PKCS #12 archive, view
the contents, and extract those same files. Use openssl pkcs12 for
all these functions.

Creating a PKCS #12 File

I want to store the private key privkey.pem, the certificate cert.pem,
and the chain file chain.penin a single encrypted PKCS #12 archive.
Use openssl pkcsl2 -export to accomplish this. The -out flag

11 “Out of band” means “pick up the phone and call them.” Yes, the world
contains worse things than OpenSSL.

88

Chapter 3: Certificates

lets you set the name of the PKCS #12 archive file. Use -inkey to
give the private key, —in for the certificate file, and -certfile for any
additional certificates.

$ openssl pkcsl2 -export -out site.pl2 \
-inkey privkey.pem -in cert.pem -certfile chain.pem

The file needs a password. You must enter it twice, for verification.
Viewing a PKCS #12 File

Before shipping the encrypted PKCS #12 file to your colleague,
double-check that it contains your key. The -info argument displays
the contents on your screen.
$ openssl pkcsl2 -info -in site.pl2
Enter Import Password:

Enter the password, and you’ll see information about each SafeBag
and its contents.

Bag Attributes
TocalKeyID: 79 OD 40 5E AO CC 45 DD DO OE 03 C4 05 DC
F9 FF 11 9E 4B 03

subject=CN = mwl.qio0

issuer=C = US, O = Let’s Encrypt, CN = R3
MIIGwzCCBaugAwIBAgISBNkUzXsbmLOfPbh9m63mEqG6MAOG. . .

This archive contains multiple certificates. Each went in its own
SafeBag. You'll see metadata for each SafeBag, then the certificate in
the bag.

When a PKCS file contains a private key, OpenSSL defaults to
showing that key in encrypted form. You’ll be asked to enter a private
key encryption key before displaying the key. If you want to see the
key unencrypted, add the -nodes flag to your command line.

89

Chapter 3: Certificates

Exporting From PKCS#12 Files

As you might expect from all the other OpenSSL commands we've
used, exporting to a file works much like viewing on the screen. Give
the archive file name with -in, and the output filename with -out.
You'll need the PKCS password to open the archive. As with viewing
the file, openssl pkcs will ask you for a passphrase to encrypt the
private key. Add -nodes to leave the private key unencrypted.

$ openssl pkcsl2 -in site.pl2 -out all.crt -nodes

The file a11. crt contains the extracted version of everything in the
PKCS archive.

Realistically, you don’t want the certificate and the key in a single
file. You probably want the certificate in one file and the private key in
another. This file will contain the SafeBag metadata for each certificate.
You'll probably need to remove those lines before deploying the

certificate.
$ openssl pkcsl2 -in site.pl2 -out certs.crt -nokeys

Use —nocerts to extract only the private key, or -nokeys to
extract only the certificates. Again, add -nodes to leave the private
key unencrypted.
$ openssl pkcsl2 -in site.pl2 -nodes \

-out private.key -nocerts

Looking at the exported key, you’'ll see identifying information much

like an exported certificate. But there’s another, more subtle difference.

Bag Attributes
TocalKeyID: 79 OD 40 5E AO CC 45 DD DO OE 03 C4 05 DC
F9 FF 11 9E 4B 03
Key Attributes: <No Attributes>
————— BEGIN PRIVATE KEY-----
MIIJQQIBADANBgkghkiGI9wOBAQEFAASCCSswggknAgEAAOICAQDW...

This looks perfectly fine at first glance. You chop off the bag details
and have a key file.

90

Chapter 3: Certificates

This PEM-encoded certificate starts with BEGIN PRIVATE KEY.
This is technically known as the PKCS #8 format. Most private keys
use the PKCS #1 format, where the PEM-encoded file begins with
a line that identifies the encryption algorithm, such as BEGIN RSA
PRIVATE KEY. The example above happens to be an RSA key, but
software that explicitly checks for “RSA” or “ECDSA” in the header will
choke. You can transform the key format during export by piping it
through openssl rsa (for RSA keys) or openssl ec (for ECDSA
keys). Use the —~out argument to give a filename.
$ openssl pkcsl2 -in site.pl2 -nodes -nocerts \

| openss1 rsa -out rsakey.pem

OpenSSL supports several other rarely-used PKCS options. Check
the man page for details.

Certificate Contents

Using openssl x5009 to view a certificate is easy, but what’s all the
crud in the certificate? Grab a certificate file and view it with the -in
flag, like I do here with the PEM certificate www.crt. Add -text

to show the output in text, and -noout to not show the encoded
certificate.

$ openssl x509 -in file.crt -text -noout

This spills out the certificate contents. The first line always says
Certificate: and the second Data.

Certificate:
Data:

The meaningful stuff comes next.

Version: 3 (0x2)

Serial Number:
03:c9:0d:76:bc:el:a5:da:a4:70:3a:7d:ab:39:70:11:48:e0

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = US, O = Let’s Encrypt, CN = Let’s Encrypt

Authority X3

91

Chapter 3: Certificates

Version gives the X.509 certificate versions of this certificate. Version
3 is the most common for TLS certificates, because it supports
extensions that many Internet applications rely on. The rarely used
version 2 is for “attribute certificates” and irrelevant to TLS. If a
certificate does not have a Version field, it’s a version 1 certificate.
Version 1 mostly gets used in non-TLS applications.

The serial number uniquely identifies this certificate among all
certificates signed by this CA. You could purchase multiple certificates
for the same host, but they will have different serial numbers if they all
come from the same CA. If you need to revoke a certificate, you might
need this number.

Signature Algorithm tells how the CA signed this certificate. Each
legitimate combination of hashing and encryption algorithms has its
own code, but they’re mostly self-evident. This certificate was signed
using sha256 WithRSAEncryption, or SHA256 hashing protected with
RSA encryption.

The Issuer identifies the CA. The information given here is in X.509
format. C gives the country, O the organization. The CN label gives
the Common Name for this entity. This certificate was signed by the
US-based company Let’s Encrypt, running the CA “Let’s Encrypt
Authority X3”

Validity
Not Before: Jun 7 03:41:14 2020 GMT
Not After : Sep 5 03:41:14 2020 GMT
Subject: CN=mwl.dio
Subject PubTlic Key Info:
Public Key Algorithm: rsaEncryption
RSA PubTlic-Key: (2048 bit)

Modulus:
00:c8:88:be:30:04:f1l:ad:3f:c3:5d:2e:fc:3b:c3:

Exponent: 65537 (0x10001)
Validity gives timestamps for when this certificate becomes valid and
when it expires. This certificate is good for 90 days. When something

92

Chapter 3: Certificates

or someone reports a problem with certificate validity, check the
clocks of everyone involved.

The Subject is the primary identity of the entity being certified. It is
often called the Distinguished Name. OV and EV certificates include
country, city, and organizational information as well as the CN, while
DV certificates offer only CN. This certificate still offers the hostname
in CN, to support older client software. This certificate is for my web
site, mwl.io. Remember, a certificate does not necessarily need a
hostname in its CN; it could be for a UID, email address, or something
else.

The Subject Public Key Info provides the details of my host’s public
key. This is not the CA’s key, but the public key generated on my host
when I requested a certificate. Public Key Algorithm identifies the
algorithm used and the bit size. The modulus and the exponent are the
public key’s numerical components.

Certificate Extensions

A certificate’s X509v3 extensions lists all of the extensions included
in the certificate. We discussed extensions in “Extensions and
Constraints” earlier this chapter. Extensions not explicitly declared
critical are non-critical. Remember, software must comply with critical
extensions or it rejects the connection. Programs are expected to
comply with all non-critical extensions they understand, but if they
don’t understand a non-critical extension they can try to continue.
Not all certificates offer all extensions, and not all certificates will
have all of the extensions shown in this example.
X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Au-
thentication

X509v3 Basic Constraints: critical
CA:FALSE

93

Chapter 3: Certificates

We discussed extensions in “Extensions and Constraints” earlier this
chapter. The X509v3 extensions section lists these extensions.

The X509v3 Key Usage extension declares how this certificate can be
used for low-level TLS and encryption options. This certificate can be
used to create digital signatures and exchange short-lived encryption
keys, both critical components of TLS.

The X509v3 Extended Key Usage extension gives a higher-level view
of how the certificate can be used. The server can use this certificate
to identify itself as either a client or a server. While the description
declares it to be for web servers alone, this certificate would work for
SMTP or IMAP or any other TCP/IP service you might wrap in TLS.
Note that this isn’t marked critical, so applications are free to ignore it
if they wish.

The x509v3 Basic Constraints extension identifies if this certificate is
a Certificate Authority root certificate. If CA is FALSE, this certificate
can’t sign other certificates. If it's TRUE, it’s a CA certificate. CA
certificates also have a pathlen parameter, which shows the number
of CA certificates signed by this cert that could appear beneath this
one in a chain. Certificate Authorities use pathlen to create their
intermediate CAs. This extension is critical, and must be obeyed.
X509v3 Subject Key Identifier:

A2:37:C8:8D:78:75...
X509v3 Authority Key Identifier:
keyid:A8:4A:6A:63..

The X509v3 key identifiers are public keys. The X509v3 Subject Key
Identifier is the public key on this particular certificate. The X509v3
Authority Key Identifier is the signer’s public key. While these are non-
critical extensions, they’re vital in finding a path to a trust anchor.
Authority Information Access:

OCSP - URI:http://ocsp.int-x3.letsencrypt.org
CA Issuers - URI:http://cert.int-x3.Tetsencrypt.org/

94

Chapter 3: Certificates

The Authority Information extension declares how the CA offers
turther information about this certificate. This Certificate Authority
offers OCSP (Chapter 4). The CA Issuers field points to a collection of
all the CA’s issuing certificates.

X509v3 Subject Alternative Name:
DNS:cdn.mwl.io, DNS:mwl.io, DNS:www.mwl.io
A certificate can be valid for multiple hosts. The
X509v3 Subject Alternative Name field lists all valid host names. This
is the modern standard way to get the certificate’s names, replacing
the Common Name. Note that this extension is not flagged as critical;
clients can ignore it if they wish. This certificate represents three host

names: cdn.mwl.io, mwl.io, and www.mwl. io.

X509v3 Certificate Policies:
Policy: 2.23.140.1.2.1
Policy: 1.3.6.1.4.1.44947.1.1.1
CPS: http://cps.letsencrypt.org
The X509v3 Certificate Policies extension describes the CA’s
organization, operational controls, and procedures. You can get more
information at the Certification Practice Statement (CPS) site shown.
If you're interested in a particular extension, you can extract it from
a certificate using the —ext option to openssl x509. You must

provide the extensions of interest in a comma-delimited list.

$ openssl x509 -in mwlio.cer -noout \
-ext keyUsage, extendedKeyUsage

Get the complete list of extensions from x509v3_config(5).

Certificate Transparency

Certificates are public information. Thanks to certificate transparency
(Chapter 9), you can look up all the certificates issued for a domain.
The Signed Certificate Timestamp (SCT) provides cryptographic proof
that the certificate was submitted to a certificate log.

95

Chapter 3: Certificates

CT Precertificate SCTs:
Signed Certificate Timestamp:

Version : vl (0x0)
Log ID : 07:B7:5C:1B:E5:7D:68:FF:F1:BO..
Timestamp : Aug 6 04:41:10.980 2020 GMT
Extensions: none
Signature : ecdsa-with-SHA256
30:44:02:20:5C:B4:6C:B9:1B:0E:77:80:12:D8:..

The timestamp tells you when the log signed and returned the
certificate to the CA. This is your guarantee that the CA offers
certificate transparency.

Eventually, TLS clients will reject certificates that were not submitted
to a public log.

Digital Signature
At the very end of the certificate, you'll see the digital signature.

Signature Algorithm: sha256WithRSAEncryption
05:al:e2:2b:49:44:af..

This certificate was signed using the SHA-256 algorithm and
encrypted with RSA.

Incomprehensible Certificate Information

If you poke at enough certificates, you’ll eventually see something like
this amidst a certificate.

1.3.6.1.4.1.11129.2.4.2:
...... V....Y....@.-/....K..G..

The 1.3.6.1.4.1.11129.2.4.2 is a raw ASN.1 Object Identifier. It’s
followed by its value. Your OpenSSL tool doesn’t know how to
interpret this OID or its value. It’s probably a new X.509v3 extension,
or a private one the CA will never explain to you.

Ideally, updating your OpenSSL software will get you an
interpretation of this OID. If you can’t update, or if no update is
available yet, or if your software hasn't yet added this OID, you can

96

Chapter 3: Certificates

perform an Internet search on this OID to, perhaps, unearth what it

represents.
Skip Keys and Signatures

Many times you want details from a certificate, but you have no need
to examine the public key or the digital signature. There’s no need to
display them.

The -certopt option lets you specify how to display a certificate.
Here I tell openssl x509 to skip the public key and the digital
signature when showing the certificate.
$ openssl x509 -1in mwlio.cer -text -noout \

-certopt no_pubkey,no_sigdump

The x509 man page lists additional ways to tailor the output with
-certopt. Is it easier to type those extra characters, or scroll up past
the signatures? That’s up to you.

Multi-Name Certificates

Many sites use multiple host names. My own site is at mwl. io, but if
someone makes the perfectly understandable decision to put a www in
front of that, I want them to reach my site without getting any scary
TLS errors. My certificate claims to be legitimate for both mwl.io and
www.mwl . io. This is not at all uncommon, as you'll see if you examine
the details of certificates used at big web sites.

A modern TLS certificate uses Subject Alternative Names or SANs
to identify all of the hostnames the certificate is good for. SANs are
certificate extensions, just like constraints and policies.

To view all of the SANSs in a certificate, use the -ext flag
$ openssl x509 -in mwlio.cer -noout -ext subjectAltName
X509v3 Subject Alternative Name:

DNS:cdn.mwl.io, DNS:mwl.io, DNS:www.mwl.io

For complete details on extensions, and everything you can do with

SANS, read x509v3_config(5).

97

Chapter 3: Certificates

Include all SANs in the initial certificate signing request (Chapter 6)
unless your CA declares otherwise.

Wildcard Certificates

Not only can you have multiple hostnames in a certificate, you can
have one of those hostnames be a wildcard. For my domain mwl.io, I
could get a certificate that includes* .mwl.io as a Subject Alternative
Name. I could install this certificate and its private key on every host
in my domain, and the certificate would work.

At first glance, this seems great. Why wouldn't I do this everywhere?

It is great—when everything works. If one of my hosts is
compromised and the private key stolen, however, my whole
organization is at risk. The intruder could masquerade as any of them.
If the intruder wanted to be especially sneaky, they would set up a new
machine with a hostname that doesn’t exist on my network. None of
my customers would be even vaguely surprised to see www2 .mwl. io,
but that’s not a real site.

If you use commercial certificates and have many hosts, you might
consider using wildcard certificates to save money. Many huge
enterprises do. Be aware of the risks before doing so, however. I see
many companies restricting wildcards to select parts of their network.
They might not have a *. company . com certificate, but instead use
* . api.company.comand *.images.company.com to cope with the
fluxes of dynamic host provisioning.

Wildcard certificates are headed towards obsolescence. ACME
provides a standard interface for issuing and renewing individual
certificates on public-facing hosts. Private CAs can use the same
techniques for their hosts. Some organizations have built substantial
automation around their wildcard certificates, however, and would
rather not rip it all out.

98

Chapter 3: Certificates

Viewing Remote Certificates

All our examinations has been run against certificates in local files,
but sometimes you want to view the certificate being offered on a
remote server that you might or might not control. Suppose your users
complain that their browsers are spitting warnings when they visit
my web site, and you decide to take a look. You could open your Web
browser and burrow through menus until you find “View Certificate,”
but why do that when you have a convenient command prompt?

Start with OpenSSLs s _client subcommand, discussed at length
in Chapter 2. Here I run openssl s client to grab the certificate,
and pipe that certificate into openss1 x5009 to interpret it.

$ openssl s_client -connect www.mwl.io0:443 < /dev/null \
| openss1l x509 -text -noout \
-certopt no_pubkey,no_sigdump

This spills the certificate information across your screen. Hit
CTRL-C to interrupt the network connection.

If you want to write the certificate information to a file, add the
-out option and the filename." You’ll see a bit of TLS debugging on
the screen, and will still need to CTRL-C out of the connection. You
can now study the certificate as much as you want.

To view all of the certificates in the Chain of Trust, use the
-showcerts option of s client. The x509 subcommand won’t
parse all of these certificates simultaneously, so you’ll need to save this
to a file and analyze them separately.

$ openssl s_client -showcerts -connect mwl.i0:443 \
> mwl.chain

Cut the certificates into separate PEM-encoded files and you can

view them.

12 Yes, this means you need both -out and -noout. Float away on wings of
paradox.

99

Chapter 3: Certificates

Choosing a CA

For certificates facing the public, you must use a CA included in
the major trust bundles. Many companies offer certificate authority
services, both free and commercially. Which should you use?

Do you need to purchase a certificate, or will a free one suffice? If
you're buying one, do you need an increased validation level or are
you buying merely because the company doesn't trust free stuft? I've
worked for organizations that sincerely believed a thousand-dollar OV
certificate was superior to a functionally identical hundred-dollar OV
certificate, specifically because it cost more."

Make a list of candidate CAs that provide the type of certificates you
want. Once you eliminate wholly unsuitable companies, a bewildering
variety of marginally suitable ones remain. Go through and ask
questions to rule them out.

If you want ECDSA certificates or wildcard certificates, verify that
the candidate CAs support them.

Consider location. CAs are bound by the laws of their home nation,
as well as any treaties. If you're setting up an ecommerce site for your
wine shop, you probably don't care. I know people doing sensitive work
that can’t trust any organization in a specific country, or any country
that’s signed certain treaties. They want to get even their free certificates
from outside those countries. Who does your organization trust?

How many certificates must you manage? If you need one certificate,
you can put up with a clunky web interface. An organization that
needs hundreds of certificates must have a CA that supports fully
automatic certificate management. Managing many certificates when
the CA demands you manually paste certificate signing requests into a
browser window is a full-time career, and nobody qualified to manage
certificates is willing to take such a tedious job.

13 Telling your boss that you’ll buy the thousand-dollar certificate, purchasing
the hundred-dollar cert, and using the difference to sponsor the sysadmin team’s
Wine Friday, makes you a Bad Person with everyone but your teammates. Sorry.

100

Chapter 3: Certificates

Your CA should support Certificate Revocation Lists (CRLs) and
Online Certificate Status Protocol (OCSP) as discussed in Chapter 4.
In theory all CAs have CRLs, but some provide only empty lists. The
CRL is available on a web site, available in any certificate signed by
that CA. Check that it exists. While you hope to never need revocation
lists, if you need them they will be vital.

I recommend choosing a certificate authority that’s been in business
for a long time and considers X.509 certificates a major component of
its business. These companies are less likely to evaporate before your
certificate expires.

A good CA will also support Certification Authority Authorization
(CAA) records, discussed in Chapter 8.

Finally, your certificate authority must address its own security
issues. Any organization that declares that it has never had an issue is
either hiding their incidents, or unaware of them. Both are bad. You
want an organization that admits its incidents, swiftly and thoroughly
addresses them, and changes its processes to prevent similar incidents.

When you have a short list of candidates, talk to your fellow sysadmins.
If some of the CAs have been difficult to work with, cross them oft your
list. The CAs that work when everything is okay are fine, but the really
interesting ones are those that helped your peers when things went
wrong. Effective customer support that can resolve real-world problems
is the most important factor in choosing any commercial vendor."*

Once you have chosen a CA, but before you have told your
coworkers that you have made a choice, carefully read the CAs
procedures carefully. CAs are inflexible on procedures, and some CAs
have special CSR requirements. If the procedures and requirements
are unacceptable, pick another CA.

You now know enough to understand how TLS goes wrong. Which
it does. Regularly. Next up, we'll cope with that.

14 Sysadmin Rule #60 states, “Blame the vendor. Not because it is easy, but
because RFC 873 declares it proper.”

101

Chapter 4: Revocation and Invalidation

The whole point of certificates is to indicate trust. “I have a certificate,
therefore I am trustworthy.” The thing about trust is that it can be lost.

The certificate’s integrity rests upon the private key remaining
confidential. Suppose an intruder breaks into your servers and
copies your private key files. The intruder can now stand up servers
that authoritatively declare they are the penetrated server, as well as
anything else listed in the certificate’s Common Name or SANS. If the
intruder steals the CEO’s user certificate, the intruder can send email
as the boss. Applications and users alike will believe the intruder. This
certificate is no longer trustworthy.

Further suppose that you notice the intrusion. You must
communicate to clients that the certificate is no longer trustworthy.

The application can't tell clients to not trust the certificate. An
intruder setting up a fake version of your server certainly won't pass
that information along to clients! That information must come from
turther up the validation chain. Informing the CA that a certificate is
compromised is called certificate revocation.

Revocation is troublesome. Even when everyone involved acts in
good faith, it doesn’'t always work. Some applications deliberately
ignore revocation information, or implement their own revocation
system that ignores global standards. Understanding exactly how
our applications misbehave is a huge part of a career in computing,
however, and that requires first understanding how they should
behave.

103

Chapter 4: Revocation and Invalidation

Revoking Certificates

Revoking a certificate instructs the CA to inform clients that

the certificate is no longer trustworthy. The exact mechanism of
revocation depends on how you got your certificate. If you have a
handful of certificates that you acquired through the CA’s web site,
you probably have a web interface that allows you to revoke that same
certificate. Automated systems like ACME, as well as proprietary CA
APIs, have revocation tools and interfaces.

You generally request a replacement certificate when revoking the
old one. The replacement certificate must have a brand-new private
key. Before generating the replacement CSR, be sure the intruder
is locked out. Figure out how they broke in and plug the hole. This
probably means reinstalling the system. Otherwise, the intruder
will kidnap your new private key and gleefully carry on. Note that
the replacement certificate costs the same amount as the original
certificate, unless the CA offered revocation insurance against this
possibility.

The biggest problem I encounter with revocation is that sysadmins
loathe admitting their gear got hacked. They take it as a personal
failing, rather than a routine possibility. The most careful driver in
the world occasionally gets in a wreck. The greatest swordsman in the
world occasionally gets beaten. Sometimes you do everything correctly
and still lose. If they’re using free certificates, they might just blow
away the existing certificate and start over, not caring that the old
certificate is out there ready to stab them.

Even worse, some organizations don’t gather the data necessary to
prove an intrusion occurred, or lack the expertise to assess that data.
The sysadmin might not be certain that a breach happened. Every
sysadmin occasionally gets that weird itchy feeling that something is
happening, and maybe it was an intrusion, but we’re not certain? It’s
difficult to go to your manager and say “Hey, there’s a couple weird

104

Chapter 4: Revocation and Invalidation

things that might be a hack” It’s even harder to add “...so you need to
pay for all new certificates.”

If your organization needs expensive, highly-validated EV or OV
certificates, an intrusion might also trigger reports to regulatory
agencies. No sysadmin wants that responsibility, especially when a
government will receive a report that includes “because Inigo had
a funny feeling that a Hacker in Black was lurking around the web
server.

If you can inexpensively replace revoked certificates, test the
revocation process by deliberately revoking your own certificate.
Can your CA rapidly process certificate revocation and replacement?
Maybe they can. Maybe they can’t. You must know either way.
Similarly, you need to test your own ability to deploy updated
certificates and private keys.

Certificate revocation itself is simple. The trick comes in how the
CA communicates revocation information with the client. Several
protocols have been developed to cope with this issue, including
Certificate Revocation Lists, Online Certificate Status Protocol, and
OCSP Stapling. Today’s clients might use any or all of these.

Certificate Revocation Lists

The traditional way for a CA to offer a list of unexpired but revoked
certificates is the Certificate Revocation List or CRL. The root certificate
of such CAs contain a “CRL Endpoint” with a link to download the
latest CRL. The first time a client contacts a TLS-protected network
service, it downloads the current CRL and checks the certificate’s serial
number against it. If the certificate is on the list, the client rejects it.

CRLs were created in the 1990s when certificates were expensive,
CAs were few, and very few web sites needed encrypted connections.
It was an age when a reporter writing about the Internet bought
mcdonalds. com, because he could. Like so many early Internet
protocols, CRLs did not scale.

105

Chapter 4: Revocation and Invalidation

Consider the certificate invalidation process. Hard numbers about
how many certificates are revoked are difficult to find and unreliable,
but let’s make some working assumptions. When you suspect you
might have an intrusion, you should revoke your certificate. Let’s say
one percent of all certificates get revoked—it should be higher, because
if you don’t suspect an intrusion at least once every few years you
aren’t paying attention, but most of us aren’t paying attention so let’s go
with one percent.

Over one billion X.509 certificates get issued each year. Every CA’s
CRL would combine to ten million entries. Some CAs have more,
some fewer. A 2015 study showed that CRL sizes from different
CAs varied from 51 KB to 76 MB. If you're sitting behind a gigabit
connection that 76 MB might not seem like much, but if youre
dialing in from a less advanced country it’s a nightmare. On the CA’s
end, distributing that CRL to millions of clients demands substantial
network capacity.

Fortunately, the client doesn’t need to download the entire CRL on
every click. CRLs can define a caching time for their CRL lookups.
Most CRLs can be cached for twenty-four hours, but not all CAs
follow that practice. Doubling the cache time halves the bandwidth
and equipment necessary to support CRL downloads.

The CRL is also updated irregularly. Many CAs update their CRL
every three hours. Others... do not.

Put together, even if a CA updates their CRL promptly and sets
a standard caching time, your clients might be vulnerable for up to
twenty-seven hours after you revoke the certificate.

OpenSSL can decode CRLs. Grab the root certificate your CA uses
to sign your certificates and find the CRL Endpoint. Download your
CA’s CRL from that URL and crack it open with openssl crl.

$ openssl crl -text -inform DER -noout -in myCA.crl

106

Chapter 4: Revocation and Invalidation

Most CAs distribute their CRLs in DER format to reduce bandwidth
needs, but you might find PEM-encoded ones.

As TLS grew more common and CRLs bloated, we tried to improve
the protocol. Some CAs have abandoned CRLs in favor of OCSP.

Online Certificate Status Protocol

The Online Certificate Status Protocol, or OCSP, sought to
unobtrusively improve the performance of revocation checks by
allowing clients to query the status of single certificates against the CA
over an HT TP interface, rather than downloading the entire list. The
CA’s OCSP responder answers with either good, revoked, or unknown,
as well as how long the client can cache this answer. OCSP responders
use HTTP. OCSP responses are signed by the CA or an intermediary;,
so they don’t need to be wrapped in TLS.

If you're trying to diagnose validation issues and suspect network
connectivity, you can extract the OCSP responder URI from the full
certificate chain with openssl x509 and the -ocsp _uri argument.
You must examine the full certificate chain, not just the end certificate.
Here I check a local file generated by dehydrated (Chapter 7).

$ openssl x509 -noout -ocsp_uri -in fullchain.pem
http://r3.0.Tlencr.org

You can query remote servers with s client -showcerts,and
feed that into x5009.

$ openssl s_client -showcerts -connect mwl.io:443 \
| openss1l x509 -noout -ocsp_uri

You can use OpenSSLs ocsp subcommand to test a certificate’s
validity. You might do this during troubleshooting, when you want to
remove any outside applications from the validation process. Give the
chain file with the -issuer option and the certificate with -cert.
The -text flag says to provide human-readable output. Finally, give
the URI of the OCSP server with —url. Here I test the validity of one
of my certificates.

107

Chapter 4: Revocation and Invalidation

$ openssl ocsp -issuer chain.pem -cert cert.pem \
-text -url http://r3.o.lencr.org

OCSP Request Data:
Version: 1 (0x0)

The OCSP request includes all sorts of validation hashes and serial
numbers and nonces to prevent spoofing. The part we care about is
further down.

OCSP Response Data:
OCSP Response Status: successful (0x0)
Response Type: Basic OCSP Response

The query was successful, hurrah! After more hashing, certificate,
and protocol details, we finally get the answer we're interested in.

Cert Status: good
This Update: Jan 22 18:00:00 2021 GMT
Next Update: Jan 29 18:00:00 2021 GMT

This certificate is still good. We then get the time the response was
given, and the response’s expiration date.

OCSP uses substantially less bandwidth than downloading the entire
CRL. The CA must invest more in processing power to respond to
queries, but given today’s computers that’s a fair trade. OCSP leaks
client information to the CA, however. Where the CA once knew
that a client was accessing a certificate signed by the CA, the CA now
knows that the client is accessing this particular web site. Additionally,
the client must query the CA more frequently. The CA is still a
validation bottleneck, and bottlenecks exist to be removed.

OCSP Stapling

When an OCSP client checks a certificate’s validity, the CA returns a
bunch of information that the client can use to validate this certificate
not just now but in the future. The “next update” information we
received in our manual OCSP query above is the expiration date of the

108

Chapter 4: Revocation and Invalidation

current query. A server can make an OCSP query, capture the response,
and digitally staple it to TLS sessions. Incoming clients receive a digitally
signed statement from the CA that a certificate has not yet been revoked
as part of the TLS negotiations. The staple is only good for a week or so.
Every few days, the server must reach out to the CA and renew its staple.
This offloads the work of checking for revocation from the client to the
server. Rather than one revocation check for each client whenever they
contact the server, the server makes one revocation check per week.

Clients that can validate both the certificate and the staple do not
contact the CA for verification. Not all clients, and not all applications,
support stapling. All major web browsers do.

Stapling is more efficient than raw OCSP or CRLs, but must be
configured on the application server. Many applications have built-
in support for fetching and renewing OCSP stapling. If you enable
stapling in Apache, it contacts the CA and renews the staple without
any outside intervention. Other applications require you download the
staple to a file and poke the application to read the file.

Many applications, including OpenSSL, can download the OCSP
staple to a file. Most ACME clients can download an OCSP staple
file, even if they don’t manage the related certificate. The OpenSSL
command is horribly tangled, and I recommend using anything else."

If you ask, a CA can flag a certificate as “must include staple, or
it's invalid” You must ask the CA to set this Must-Staple flag when
you request the certificate. This effectively gives the certificate an
expiration date the same as the staple. If the staple is not renewed,
the client will not accept the certificate. I consider Must-Staple an
advantage, but people who have experienced stapling failures on their
servers vehemently disagree. Consider your failure modes before
enabling it.

15 Since the invention of OpenSSL, there have been five cryptographic com-
mands that were rated the most complex, the most brain-melting. This one leaves
them all behind.

109

Chapter 4: Revocation and Invalidation

Revocation Failures

Revocation checks don’t always work, for reasons varying from
application support, CA support, and developer choices.

Which applications support which revocation methods? That
depends on the underlying TLS library and the application’s technical
debt. I've worked with some mission-critical applications that haven’t
been fundamentally updated since CRLs were standard.

Not all CAs support all revocation methods. Some CAs provide only
empty CRLs, expecting that their clients have no technical debt and
rely on OCSP. A few CAs offer OCSP but not staples. The combination
of obsolete applications and irregular CA offerings leave gaps in
revocation validation.

The more interesting revocation check failures come from choices
made by application developers. Suppose the application cannot
reach the CA to perform an OCSP check, but the certificate validates
otherwise? Should your web browser show errors when the biggest
OCSP responders are unreachable? Strictly speaking, yes. In reality,
users will complain. If people are paying you for your application,
answers like “dear customer, your Internet connection is rubbish” will
not go over well. Many applications declare this a “soft failure,” shrug,
and permit the connection.

As a sysadmin, you must test how the applications react to being
unable to check for revocation. Most of the time, a hosts file entry
pointing the OCSP responder’s IP address to a bogus address like
127.0.0.2 suffices. Truly confidential systems might need to fail hard
when they cannot verify certificate revocation status. Check the
documentation. When you discover the behavior cannot be changed,
complain to the developer.

110

Chapter 4: Revocation and Invalidation

Browsers Versus Revocation

TLS exists in many applications, and we've discussed the standard
revocation methods they use. The most visible TLS applications,
however, are web browsers. Developers of Firefox, Chrome, and
Safari have fallen back to CRLs that they distribute as part of browser
updates. They do not use a common method, either. Chrome uses
CRLSets, Firefox uses OneCRL, and Safari doesn't give their method a
name.

Safari and Chrome do not check OCSP or OCSP stapling by default.
You can enable these checks.

You should be aware of Chrome’s revoked certificate handling.
Where Firefox and Safari try to provide complete revocation lists,
Chrome provides a curated list. Chrome’s CRLSets contain only sites
the Chrome team considers “important.” The curation process is not
transparent, but people have written tools to extract the list. When I
revoke my web sites certificate, I expect that Chrome users will never
become aware of it.'® Chrome also does not support OCSP Must-
Staple, and at this time it’s clear they have no intention of doing so
despite the Chromium FAQ saying such support is a better solution
than pure OCSP.

Nothing prompts an application to change its behavior as effectively
as me writing a book about it. Many organizations provide deliberately
revoked web pages that you can use to test your organization’s
browsers. Call up a site like https://revoked-rsa-dv.ssl.com/ in
Firefox, Chrome, and Safari and compare the results.

16 The way CRLSets encourage further centralization of the Internet is a detail
that I'm certain completely escaped Google.

111

Chapter 4: Revocation and Invalidation

Validation Solutions

If everything browsers deploy is awful, what are the solutions? Two
incomplete real-world solutions exist.

If you work at a huge organization, short-lived certificates reduce
risk. Many financial institutions, even ones as small as my credit
union, use certificates that expire in one day. Deploying short-lived
certificates demands automation. Some cloud companies can provide
these certificates as part of their global load balancing service.

This solution is expensive. OCSP Must-Staple emulates short-lived
certificates, but Google Chrome has explicitly chosen to not support
Must-Staple and passes that refusal down to its derivatives.

The other method is DNS-based Authentication of Named Entities,
or DANE. DANE provides X.509 certificate fingerprints in DNS.
Ensuring those fingerprints are valid requires DNSSEC, however, and
many organizations are unwilling to protect their DNS records. DANE
validation is mostly implemented in email servers, but most browsers
support DANE validation plugins. My book DNSSEC Mastery
discusses DANE.

Now let’s have fun storming the server, and inspect some TLS

connections.

112

Chapter 5: TLS Negotiation

TLS is a complicated protocol, designed to evolve and to cope

with hosts independently deploying advancements. If all hosts on

the Internet supported the exact same encryption algorithms and
deployed patches in lockstep TLS could be much simpler. In the real
world, TLS servers and clients must negotiate with one another at
every connection. Which algorithms can each side use? Which TLS
versions? Each side can request or demand specific protocol options.
Server and client offer their best algorithms, present their requests and
demands, and try to reach agreement.

You need the ability to look at a connection and see what happens.
What TLS features are enabled and disabled? If a connection fails
because of a specific protocol detail, can you enable that feature on one
side or the other? Or is that failure desirable, because one side or the
other accepts only primordial SSL? We'll examine TLS connections
through s _client connections. Once you're familiar with how the
process works, you can use any tool you prefer.

Whether you're using TLS 1.2 or 1.3, you'll see three main parts
of the connection: certificate validation, protocol settings, and
resumption. We'll examine connections to my web server using TLS
1.2, and to Gmail’s servers using TLS 1.3, using commands like those
in Chapter 2.

$ openssl s_client -cr1f -tlsl_2 -connect www.mwl.io0:443
$ openssl s_client -connect imap.gmail.com:995

Let’s compare and contrast the two versions.

113

Chapter 5: TLS Negotiation

Certificate Validation

Every TLS negotiation begins by validating all the certificates involved.
Your certificate might be anchored to a trusted root certificate by a
broad Tree of Trust, but the TLS client only needs to find one valid
path between the trust anchor and the host certificate. The OpenSSL
suite stops at the first valid path it discovers, and presents that path.

No matter if you're using TLS 1.2 or 1.3, the validation process looks
identical, so we’ll use my web server as an example.
depth=2 0 = Digital Signature Trust Co.,

CN = DST Root CA X3
verify return:1l
depth=1 C = US, O = Let’s Encrypt,
CN = Let’s Encrypt Authority X3
verify return:1l
depth=0 CN = mwl.io0
verify return:1l

First, s_client validates all of the certificates in the chain.

“Depth” here refers to how many links up the certificate chain each
certificate is. At depth=2 we have the root CA. O is X.500 shorthand
for Organization: “Digital Signature Trust Co” in this case. CN, the
Common Name, is “DST Root CA X3 If this certificate is not a trusted
root certificate, the validation fails right here. Note that each of these
certificates has a different style of Distinguished Name. That’s fine.

The verify return:1 statement means that OpenSSL performed
this operation normally. It refers to the OpenSSL code, not the
certificate.

At depth=1, we have the organization “Let’s Encrypt,” with the
Common Name “Let’s Encrypt Authority X3

The site’s certificate is always at Depth 0. This certificate contains
only one piece of information, the host’s hostname. The hostname
comes from the Server Alternative Name part of the certificate, which
includes the host mwl.io among others. TLS validates the hostname

against any name constraints.

114

Chapter 5: TLS Negotiation

Certificate chain
0 s:CN = mwl.io0
i:C = US, 0 = Let’s Encrypt, CN = Let’s Encrypt Authority X3
1 s:C=US, O = Let’s Encrypt, CN = Let’s Encrypt Authority X3
i:0 = Digital Signature Trust Co., CN = DST Root CA X3

Server certificate
————— BEGIN CERTIFICATE-----
MIIFXDCCBESgAWIBAgISA6GN7sL7taoAbCDwb8hL8aKGMAOGCSqGSIb3DQ

subject=CN = mwl.i0
issuer=C = US, 0 = Let’s Encrypt, CN = Let’s Encrypt Authority X3

We see a Chain of Trust again, this time ordered from the host
up to the CA. The s in front of the certificate indicates a X.509
certificate subject, while the i is the issuer—the entity that signed the
certificate. Certificate 0 has a subject with the CN of mw1. io, and this
certificate was issued by Let’s Encrypt. Certificate 1 has Let’s Encrypt’s
Distinguished Name, and the certificate was issued by Digital
Signature Trust Co.

We then have the actual server certificate. After the certificate we get
a statement of the certificate’s CN, and who issued the certificate. Yes,
s_client repeats the same information in different places.

Next we have basic information about the session as it stands so far.

No client certificate CA names sent
Peer signing digest: SHA256

Peer signature type: RSA-PSS

Server Temp Key: X25519, 253 bits

The “no client certificate CA names sent” message tells us that the
client has not sent a client certificate—or, if it did, the certificate is not
recognized. The server is using SHA256 and RSA with Probabilistic
Signature Scheme (RSA-PSS).

115

Chapter 5: TLS Negotiation

The Server Temp Key is used for Perfect Forward Secrecy (Chapter
1). X25519 is a curve type and algorithm for Elliptic Curve Diffie-
Hellman Ephemeral (ECDHE) key agreement. When the client sees
this, it will generate its own X25519 keypair and send its public key
back. They use these ECDHE keys to agree upon a symmetric key that
will be used to protect data in transit.

SSL handshake has read 3230 bytes and written 314 bytes
Verification: OK

We have verified all certificates, and can proceed to the protocol.

Protocol Settings

Next we have the mutually agreed-upon settings for this TLS session.

New, TLSv1l.2, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Server public key is 2048 bit

Secure Renegotiation IS NOT supported

Compression: NONE

Expansion: NONE

We're using TLS 1.2, with the cipher ECDHE-RSA-AES256-GCM-
SHA384. This cipher uses 256-bit ECDH for key agreement, 256-bit
AES with Galois/Counter Mode (GCM) for encryption, and SHA384
for MACs. This is a standard TLS 1.2 cipher, presented with OpenSSLs
naming system, and every TLS 1.2 host should support it.

TLS 1.2 supports Secure Renegotiation. We discuss Secure
Renegotiation and why it’s bad in Chapter 1.

Just about every protocol and application supports compression.
SSL experimented with compression, and early versions of TLS
inherited that support. Compressing data in TLS risks confidentiality
and integrity, and was removed in TLS 1.3. You can manually enable
compression in s_client with the -comp argument.

Expansion refers to AEAD cipher suites. AEAD keys can be
expanded beyond normal limits, up to a limit set by TLS.

116

Chapter 5: TLS Negotiation

Application Layer Protocol Negotiation (ALPN) is a TLS add-on
that allows applications to integrate TLS setup into the rest of their
protocol setup. It's most broadly used in HTTP/2. Enable ALPN in
s_client with the -alpn flag. See s_client(1) for a description of
how to use —alpn.

If you're using TLS 1.3, you'll get a couple more fields here.

Early data was not sent
Verify return code: 0 (ok)

Early Data lets you bundle application requests into resumed TLS
connections. You'll also see this described as 0-RTT data. You can send
early data with s client by adding the ~early data option with
an argument of a file containing the data to be sent early.

The Verify return code refers us back to the certificate verification. A
return code of 0 means that OpenSSL could verify it. As discussed in
Chapter 3, OpenSSL failing to validate a certificate doesn’t necessarily
mean that the certificate is invalid. OpenSSL is continually updated to
keep up with changes in the trust ecosystem. Every few years, someone
finds a bug where OpenSSL cannot validate a legitimate certificate and
everyone needs to update their software.

Session and Resumption

TLS session and resumption details vary just enough between TLS 1.2
and 1.3 that we must consider each separately.

TLS 1.2 Session and Resumption

Here’s what you'll see with a TLS 1.2 session.

117

Chapter 5: TLS Negotiation

SSL-Session:
Protocol : TLSv1l.2
Cipher : ECDHE-RSA-AES256-GCM-SHA384
Session-ID: E22E5B9717BED0047COE9C896D6107CB-
1C8EA11C7E29B43621B3B3762CEA88B9
Session-ID-ctx:
Master-Key: 8320F39FF558B5567874761A1769F85D6B2AE-
96C1BF604C818A14AFE590FCA8OABE...
PSK didentity: None
PSK identity hint: None
SRP username: None

The session information starts with the TLS version and the cipher.

The Session-ID identifies a particular TLS session. Each session exists
within a particular session context, or Session-ID-ctx. By setting the
context, a server can make declarations like “This session is usable
for the web server, but not the database” Context is most often
implemented for network load balancing.

The Master-Key is the result of the key agreement.

The PSK identity and PSK identity hint are used for TLS via pre-
shared keys, or TLS-PSK. This TLS variant is a standard, but is almost
never used. This is not the same pre-shared key used in TLS 1.3
resumption.

The Secure Remote Password protocol integrates usernames and
passwords into TLS. Any username associated with this session gets
stuffed into the SRP username field.

Next we see session tickets. A TLS 1.2 session ticket contains the
information needed for session resumption.

TLS session ticket lifetime hint: 86400 (seconds)

TLS session ticket:
0000 - 6d 83 a5 67 31 b5 bb 0a-e0 c3 72 6¢c b8 62...

Start Time: 1603377596
Timeout : 7200 (sec)
Verify return code: 0 (ok)
Extended master secret: yes

118

Chapter 5: TLS Negotiation

The TLS session ticket lifetime hint tells the client how long it should
cache this ticket.

At TLS session ticket we have several lines of data, comprising the
actual ticket.

The Start Time is the epochal time when the TLS connection was
negotiated. The way to convert epochal time to a date and time varies
not only between operating systems, but between releases, so you’ll
need to look that up for your system. It’s present for the Timeout,
which shows how long the session ticket would be good for.

The Extended master secret declares if the ticket included an
additional integrity MAC, or not.

At this point, you have a functional TLS connection and your

application takes over.
TLS 1.3 Session and Resumption

TLS 1.3 session and resumption information looks an awful lot like
that of TLS 1.2. It even includes fields for deprecated components, like
parts of the session ticket resumption data. This surplus is a response
to network security device vendors.

Many enterprises deployed interception hardware, proxies, or
other tools that performed something they called “deep inspection,”
validating that all TLS traffic was legitimately TLS and not some other
traffic. Predictably, some of this inspection was slipshod and poorly
written. Some vendors didn’t keep up with the emerging standards.
Even if a vendor offered TLS 1.3 support the moment the protocol was
released, not all organizations apply updates in a timely manner.

An organization that used such a device could not access
applications that used TLS 1.3. Rather than making sites that upgraded
to TLS 1.3 become unavailable behind poorly engineered middleware
devices, the standards bodies allowed TLS 1.3 to wear a mask and
disguise itself as TLS 1.2."7 Certain TLS 1.3 features are defined as TLS

17 This perfectly illustrates how and why such middleware boxes are pointless.

119

Chapter 5: TLS Negotiation

1.2 extensions. If you inspect a TLS 1.3 conversation you’ll see obsolete
TLS 1.2 fields that help maintain the masquerade.
Here we have the start of TLS 1.3’ session and resumption information.
Post-Handshake New Session Ticket arrived:
SSL-Session:
Protocol : TLSvl1.3

Cipher : TLS_AES_256_GCM_SHA384
Session-ID: 314E771488008EBF29001D48AC6173D7A4D2695A

gession—ID—ctx:
Resumption PSK: OAB8007A67DB78EA27688BBBEE438C7

PSK identity: None

PSK identity hint: None

SRP username: None

TLS session ticket lifetime hint: 172800 (seconds)
TLS session ticket:

0000 - 01 fc d2 64 5f 16 46 43-83 18 8b 7b 71

Start Time: 1598635979
Timeout : 7200 (sec)
Verify return code: 0 (ok)
Extended master secret: no
Max Early Data: O

The ticket starts with the TLS version and cipher.

The session ID and session ID context are provided for passing as
TLS 1.2. TLS 1.3 does not use them.

The Resumption PSK is not the private key to the previous TLS
session, but rather a key that proves it had a session. The server uses
this, and other information in the session ticket, to compute the
previous pre-shared key.

The PSK identity, PSK identity hint, and SRP username are identical
to TLS 1.2, but still used only rarely.

The TLS session ticket lifetime hint says how long in seconds this
information is good for. It’s set by the server. The client could choose

to discard it earlier, but rarely does.

120

Chapter 5: TLS Negotiation

The TLS session ticket is the actual ticket used for TLS 1.3. A TLS 1.3
session ticket is good for only one use, which eliminates most of the
problems with session tickets in TLS 1.2.

The Start Time is the epochal time when this information was issued.
The way to convert epochal time varies not only between operating
system, but between OS releases, so you'll need to look this up
yourself.

All of this data validates, as per the Verify Return Code of zero.

The Extended Master Secret used by TLS 1.2 is obsolete, but is
provided for masquerading. It is always no in TLS 1.3.

A small request, like an HTTP GET, might fit in a single packet
along with a TLS resumption request. The Max Early Data field shows
how much early data can be included in a resumed TLS session. A zero

indicates early data is disabled.

TLS Failure Examples

The main reasons a modern TLS connection fails is either because
the TLS client won't accept a certificate, or the client and server
cannot find a mutually agreeable set of TLS options, algorithms, and
protocols. Output from s_client and browser error messages can
provide guidance on where these negotiations failed. If you've made
the mistake of hand-winnowing the cipher suites your server offers,
start there.

Often those errors result from misconfigured servers. A client is
absolutely correct to reject expired, self-signed, revoked, and otherwise
invalid certificates. As a user you might override those warnings, but
that’s on you. Some errors are more insidious. An Internet search
recently dropped me on a “security expert’s” web site that supported
a maximum of TLS 1.1. Any security blog still offering nothing better

than TLS 1.1 serves best as a bad example.

121

Chapter 5: TLS Negotiation

If you want bad examples, the best place to look is BadSSL. The site
https://badssl.com links to a whole bunch of subdomains that have
known-good and deliberately broken TLS configurations. Many of the
misconfigured sites are certificates that will not validate. Others have
validating certificates, but only speak obsolete TLS versions. Some of
the good sites push acceptable standards as far as they go. If you want
to see what particular failures look like, run s_client on some of
those domains. Be sure to include -verify return error so that
s_client will process and capture TLS-level errors.

One common error sites make is not offering a certificate chain file.
Here, I poke at the BadSSL site incomplete-chain.badssl.com.

$ openssl s_client -verify_return_error -crif \
incomplete-chain.badss1.com:443

CONNECTED(00000003)
depth=0 C = US, ST = California, L = Walnut Creek,
0 = Lucas Garron Torres, CN = *.badss1.com

verify error:num=20:unable to get Tocal issuer
certificate

We immediately see the error: “unable to get local issuer certificate”
It’s right up front. Dropping the -verify return-error and
allowing the TLS to continue despite the invalid certificate gets us
additional details.

$ openssl s_client -crl1f incomplete-chain.badss1.com:443

CONNECTED(00000003)

depth=0 C = US, ST = California, L = Walnut Creek,
0 = Lucas Garron Torres, CN = *.badss1.com

verify error:num=20:unable to get local issuer
certificate

verify return:1

depth=0 C = US, ST = California, L = Walnut Creek,
0 = Lucas Garron Torres, CN = *.badss1.com

verify error:num=21l:unable to verify the first
certificate

verify return:1

122

Chapter 5: TLS Negotiation

Certificate chain
0 s:C = US, ST = California, L = Walnut Creek, O =
Lucas Garron Torres, CN = *.badss1.com
i:C = US, 0 = DigiCert Inc, CN = DigiCert SHA2 Se-
cure Server CA

Server certificate

MIIGgDCCBZCgAwIBAgIQCvBs2jemC2QTQvChex1Z/TANBgkghkiGow

Even if you don't know what the error “unable to get local issuer
certificate means,” you can see that the certificate chain has only one
certificate in it. Not even a trust anchor can work this way: those
certificates lack SANs and CNs that would match the server. It’s
pointing right at the problem.

Admittedly, TLS is complicated. X.509 extensions are numerous. A
skill at copying error messages into search engines is invaluable, once
you have the understanding to place the answers in context. I copied
“unable to get local issuer certificate” into four major search engines,
and in all of them the correct solution was the first hit. Not all errors
are that accessible, admittedly, but they’re a place to start.

Next, we'll get our own certificates.

123

Chapter 6: Certificate Signing Requests and
Commercial CAs

Getting a certificate is theoretically easy. A sysadmin or an automated
process generates a Certificate Signing Request or CSR. The CSR
contains all the information that the CA verifies, and perhaps more.
You can think of a CSR as an unsigned certificate, although that’s

not quite correct. No matter how you get your certificates, you create
CSRs. When something goes wrong, you need the ability to scrutinize
them. RFC 2986 documents CSRs.

One year, as currently offered by commercial CAs, is a perfect length
of time to forget everything you've ever known about generating CSRs.
If an intruder steals your private key, you must immediately generate
a new CSR and private key. Document the CSR creation process and
any configuration files you need so you can easily repeat it on demand.
Write a script or, better still, entirely automate the request process.

If you're using ACME, you'll configure your certificate signing
requests once and then let the automation handle them. This means
you'll ignore them until something breaks catastrophically, at which
point you'll have to re-learn CSRs all over again.

Most sysadmins deal with CSRs primarily when purchasing
commercial certificates. We'll look at CSRs from that perspective, but
everything applies to ACME certificate signing requests as well.

Reusing CSRs

While you can reuse CSRs to renew a certificate, it’s terrible practice.
Each CSR is tied to a public key pair. While you can’t prove a negative,
“prove that your private key hasn't been stolen” is especially difficult.
Intruders vastly prefer people reuse private keys. It lets them use your
brand-new certificate with the key they stole last year to masquerade
as your systems. Even if your key is never stolen, after a few reuses that
key will be weaker than recommended.

125

Chapter 6: Certificate Signing Requests

Any time you renew a certificate, create a new private key and a new
CSR using that key. Generating a new private key is fast, inexpensive,
and easy. It’s even part of the CSR generation command.

Many tutorials recommend reusing private keys, but that’s like
driving over the speed limit while not wearing a seat belt so you can
more easily grab a fresh can of beer from the back seat. You’'ll get away
with it, perhaps for quite a while, but it will eventually hurt you.

Why Go Commercial?

For decades, the only way to get an X.509 certificate was to purchase
one from a commercial certificate authority. Today, DV certificates
can be free. If you can get free certificates via ACME, why use a
commercial CA?

Some organizations require high validation levels (Chapter 3), but
most free and inexpensive CAs offer only domain validated (DV)
certificates. Regulatory, legal, or military standards might require your
organization to use OV or even EV certificates. Many organizations
that specialize in money institutionally distrust free services. If your
organizations leaders declare “You must use a commercial certificate
authority” or even “you must use this particular CA,” the decision is
made regardless of your heartfelt and technologically sound opinions
on the matter.

You might also use a commercial CA if you want a special-purpose
certificate, such as for running your own CA. We discuss these in
Chapter 10.

When using a commercial certificate authority, be sure to allocate
money for replacement certificates in case you must revoke the
certificate. Some CAs offer insurance for revocations. Buy it, and use it
any time you feel even faintly suspicious of an intrusion.

The CSR is the key to dealing with a commercial certificate authority.
The certificate signing request contains all the information that the CA
will verify. For Domain Validated (DV) requests this might be only

126

Chapter 6: Certificate Signing Requests

the domain name of the server that will use the certificate. OV and EV
certificates need much more information, and it all must be correct.

We'll discuss some considerations for gathering information, the
certificate’s public key algorithm and how to request and receive a
certificate.

Gathering Information

A certificate that’s more than domain validated requires more
information. Do yourself a favor and gather all information before
running any commands. Certificate authorities are fairly competent
at rejecting certificate signing requests that don’t match official
documents.

The country name, shown as C in X.509, uses a two-letter code
for your country, as defined in ISO 3166. If youre unsure of your
country’s ISO code, check before filing the certificate.

The ST X.509 code represents your state or province. Do not
abbreviate the name of your state. Spell it out.

Locality, or L, is a fancy way to say “city.” What city is your
organization truly in? Perhaps everyone says that your office is in
one city, but the formal business address is in the next town over. I've
worked in offices that claimed to be in one city, but were just barely
over the border of a less prestigious city. The owners claimed they
were in the more upper-class city, because they could see it from the
windows of the executive suite. Certificate authorities don’t care about
such political games; use the official city name.

The Organization, or O, is where most people screw up. What is your
organization’s legal name? Maybe you call your workplace The Pit, but
any CA validating your organization needs the complete formal name,
“The Pit of Despair, LLC”

Gather and document these facts. Write them down. Consult
the documentation whenever you create a new Certificate Signing
Request.

127

Chapter 6: Certificate Signing Requests

Public Key Algorithm

TLS certificates can use two public key authentication algorithms, RSA
and ECDSA. The person creating the certificate request chooses the
algorithm.

The Rivest-Shamir-Adleman (RSA) algorithm has been the premier
public key encryption method since 1977. It’s the standard technique
underlying almost every encryption method. While increasing
computing capacity has required RSA keys to get longer, the algorithm
itself has withstood many years of focused investigation from
cryptographers.

In 2005 the National Institute for Science and Technology (NIST)
released the Elliptic Curve Digital Signature Algorithm, or ECDSA.
This newer algorithm promises the same level of confidentiality
as RSA but with less number-crunching, which makes it attractive
for devices with less computing power and environments where
performance is paramount. ECDSA was released by a US government
agency, however, which means some people automatically distrust it.
Cryptographers have pummeled ECDSA for less than two decades,
and while it’s endured so far, it lacks RSA’s long history.

Which should you use? Everybody supports RSA. If you're targeting
mobile platforms, or want to reduce computation overhead, consider
ECDSA.

Common wisdom declares that if you want an ECDSA certificate,
you need a CA that has an ECDSA root certificate. This isn't true. A
CA that only has an RSA certificate can sign your ECDSA certificate.
If you've chosen to use an ECDSA certificate because you want your
application to work on smaller systems that struggle with RSA, having
an ECDSA certificate signed by an RSA CA certificate forces the client
to perform both RSA and ECDSA calculations. The client does less
work than a pure RSA certificate chain, but more work than a purely

128

Chapter 6: Certificate Signing Requests

ECDSA chain. You're better oft choosing a CA that can provide an
RSA-free certificate.

Many applications can support both RSA and ECDSA certificates by
letting you set one as preferred and the other as the backup. Buying
two certificates and installing both is a viable option.

Common Names

If you've previously dealt with X.509 certificates or read any
documentation on getting them, you've probably encountered tutorials
telling you to run a command and walk through a set of spifty prompts
to set certificate information. Unfortunately, that’s utterly obsolete—
except when it’s not.

Way back at the murky dawn of SSL, certificates officially stored
the hostname under Common Name (CN). In 2000 the Subject
Alternative Name extension for storing hostnames and other subjects
was approved, and storing this information in the Common Name
became a mere fallback for obsolete software. This fallback was
removed from the standard in 2011. It's been obsolete for four times
as long as it was used, so it should be a historical footnote like UUCP
over Filling Jon’s Van With Backup Tapes And Driving To The Campus
Across Town. Right?

It just so happens that storing hostnames in CN is only mostly dead.

Thanks to decades of obsolete and incorrect tutorials, some of them
written last week, many sysadmins and programmers don’t know that
putting a hostname in CN is deprecated. Even some CAs still expect
to find a CN in the certificate request. Other CAs accept that users
follow those bad tutorials. They use the information in CN to populate
the SAN field, and their web form has spaces for adding additional
SANs. Other CAs expect you to populate both CN and SAN in your
certificate request.

129

Chapter 6: Certificate Signing Requests

CNs cannot handle modern Internet hostnames. The maximum
length of a CN is 63 characters. I own the web site www . YouKeepUsing
ThatWordIDoNotThinkItMeansWhatYouThinkItMeans.com. If]
attempt to request a TLS certificate for my web site using my perfectly
legitimate site name, it will fail.'® I must order a certificate for a shorter
site, and add the legitimate name that I'm truly interested in as a SAN.

Also, CNs are not checked for name constraints. A few clients do
check name constraints against CN, but this can make the client reject
valid certificates.

Lingering support for hostnames in CN in all sorts of software
encumbers further improvements in TLS and other protocols. People
are actively working to remove it from the TLS ecosystem. It will go
away. Check your infrastructure for dependencies on hostnames in
CN and remove them.

We're going to skip all the confusion and future-proof your
certificate requests by skipping the prompt-based method and
including both CNs and SANSs in your requests. This requires
understanding OpenSSL configuration files.

OpenSSL Configuration Files

Your host has a default OpenSSL configuration file, telling the various
OpenSSL commands how to behave and what commands to use. It’s
in your system’s OpenSSL directory. The default OpenSSL directory is
/usr/local/openssl, but almost no operating system puts it there. The
simplest way to find the directory is to ask OpenSSL.

$ openssl version -a | grep -i openssldir
OPENSSLDIR: "/etc/pki/tl1s™

This CentOS system puts its OpenSSL configuration in
/etc/pki/t1s. Wherever your operating system puts it, go to this
directory and look for openssi.cnf.

18 It’s like OpenSSL doesn't even realize that my job is on the line.
130

Chapter 6: Certificate Signing Requests

The configuration is broken up into sections named after the
command they affect, labeled in brackets. For openssl req
configurations, look for sections with names beginning in req.

[req]
default_bits = 2048
= sha256

default_md

OpenSSL configuration consists of variables, equals signs, and values
for the variables. Hash marks (#) indicate comments. You don’t need
to quote variable values, but you can use quote marks to preserve
leading and trailing white space. If a value must wrap around to the
next line, use the traditional backslash (\) to do so.

The variables in a section only apply to that section. Anything under

[req] affects the openssl reqcommand alone. A configuration
could have a different section for a different command that also had
adefault bits variable, but TLS and cryptography are already
sufficiently confusing and the OpenSSL developers feel no need to
make it gratuitously worse.

To make OpenSSL more exciting, configuration settings can change
the configuration file format. Study the manual before changing
anything, and keep meticulous backups.

Editing this file might be fine. It might ruin everything. It depends
on your Unix variant, the installed software, and the distance to
the nearest pirate ship at this exact moment. Leave the system-
wide defaults alone. Most functions, like certificate creation and
management, allow you to create a standalone configuration file
containing only the options needed for that operation. Entries in this
local config file override the defaults.

We'll use configuration files to create CSRs.

131

Chapter 6: Certificate Signing Requests

Creating CSRs

A certificate signing request contains information for the CA to
validate, a digital signature of that information, and a code for the
signature algorithm. Per best practices, we'll also generate a new
keypair. You can create a CSR either with a configuration file or a
lengthy command line. Both use the openssl reqcommand. We'll
use server certificates for most of our examples, but also demonstrate
client certificates.

Creating a renewal CSR with a new private key requires running the
same command used to create the first CSR. Whichever method you
use, keep a record of exactly what you did. If you used a configuration
file, keep that file. If you used a command line, script it. In either case,
give the file a clear name that will let you easily identify it both next
year and in ten years. You won’'t remember any of these commands
next week, let alone next year, so comment it well.

Certificate requests create files. Before requesting your first
certificate, consider how you’re going to keep track of those files. If you
need several certificates, naming all your private key files private. key
will drop you headfirst into the Fire Swamp. A certificate’s filenames
should include the certificate’s primary host. I give my keys file names
like mw1.io-private.key for the web server’s private key, mw1.io.csr
for the certificate signing request, and mw1. io. crt for the complete
certificate. If you have many certificates add the date as a suffix, in
YYYY-MM-DD format. Don't rely on directories to keep files straight;
use filenames. If copying a file to the wrong directory destroys your
filing system, you've named your files incorrectly.

We will start with the configuration file method. Once you
understand that, you'll have all the context needed for pure command
line.

132

Chapter 6: Certificate Signing Requests

Creating ECDSA CSRs

As we create CSRs with the openss1 reqcommand, the
configuration file options must go in a req section. Here are some
examples from the default openssi.cns, and the openssl-req(1) man
page lists many more options. We'll look at five components: the main
req section, private key password management, the Distinguished
Name, and Extensions, and put those together to request the

certificate.
Main req Section

The reqg section contains settings for the openssl reqcommand. I
create the configuration file mwi.io.cont.

#create an ECDSA certificate for mwl.io

#

[req]

prompt = no

default_keyfile mwl.io-private.key
distinguished_name reg_distinguished_name
reg_extensions = v3_req

The very first line of this configuration file is a comment. It gives
explicit details on what this configuration is used for. When the time
comes to renew the certificate, I need only look at the comment to
proceed.

The prompt option controls the interactive dialog shown in so
many OpenSSL tutorials. By setting it to no, we tell OpenSSL that this
configuration file is for non-interactive use.

In a generic OpenSSL configuration file like /etc/openssi.cnf, the
default keyfile variable sets a location for private key files created
on the command line. Here, I use default keyfile to save the
key in a domain-specific file. Remember that the private key is both
confidential, and a vital part of the certificate. Protect it as discussed in
Chapter 1.

133

Chapter 6: Certificate Signing Requests

The distinguished name illustrates how openssi.cnf
can pull part of a configuration out into separate sections. The
distinguished name settings are broken out into the section
req distinguished name.

Modern certificates store SANs in X.509v3 extensions, so I add the

req extensions statement and refer it to v3 regq.
Password Management

OpenSSL defaults to encrypting private key files with a password. (We
discuss the advantages and disadvantages of this approach in Chapter
1.) Create a new private key every time you create a new CSR. You can
either leave the private key file unencrypted, put the password in the
configuration file, or enter the password on the command line when
creating the CSR.

To not encrypt the private key, add the encrypt key option to
the req section and set it to no. You could also do this by adding
the -nodes option to your command line, but part of the goal of a
configuration file is to simplify the command line. The option -nodes
means “no DES” DES was replaced long ago, but the command line
option remains unchanged for compatibility.

encrypt_key = no

To include the password in the configuration file, add the
output password option to the reqg section. Set it to the private key

password.
output_password = haxorsKnowThisPassword

If you set neither option, OpenSSL prompts you for a password

when creating the private key.
req_distinguished_name

The default openssi.cnr has a whole bunch of sample entries under
req distinguished name. Theyre designed for CN-centered

134

Chapter 6: Certificate Signing Requests

certificates. If you're creating your certificate from a configuration file,
the format changes. (Technically, it’s setting prompt to no that changes
the configuration file format, but that’s the purpose of that setting.)
Under the req_distinguished name section, list all of the
components of the Distinguished Name. For an EV or OV certificate,
that includes the country, state, city, organization, and Common
Name.
[reg_distinguished_name]
Cc=2uUS
ST = Michigan
L = Detroit
0 = Inconceivable Incorporated
Ou = IT
CN = mwl.q0
I'm creating a DV certificate, so I need only the Common Name. Yes,
storing the hostname in CN is deprecated. We're going to do it anyway.
[reqg_distinguished_name]
CN = mwl.q0

The CN is present only for legacy compatibility—but wow, is there a
bunch of legacy stuff out there.

Extensions

Version 3 of X.509 has all sorts of extensions. There’s extensions to
define how a certificate can be used, extensions to set constraints,
extensions to define the CRL location and to tell you where to find CA
policies. It’s easy to look at this stuftf and bog down in trying to figure
out which should apply to your Certificate Signing Request.

Don't do any that.

Extensions can be applied at the signing stage. Your CA will add its own
information. They’ll put restrictions in place, like “this certificate cannot
be used to sign more certificates” and “only suited for web applications.”
Request extensions only for things your application documentation
explicitly declares that it needs, and make the CA refuse you.

135

Chapter 6: Certificate Signing Requests

The go-to use for extensions is Subject Alternative Names, or SANSs.
This is the standard location for identifying the hosts a certificate is
valid for. Identify the names your certificate needs in the v3 req
section. SANSs go in the subjectAltName field. List multiple SANs in
this field, separated by commas. Each SAN declaration has two parts,
the type of SAN and the value, separated by colons.

[v3_req]
subjectAltName = DNS:mwl.i0o,DNS:www.mwl.i0,DNS:cdn.mwl.qi0

This CSR has three SANSs: mwl.io, www.mwl.io, and cdn.mwl. io.

Note I include the Common Name as a SAN. SAN is the standard
way to get valid names. Support it.

A CSR can include many SANs. The standard defining Subject
Alternative Names (RFC 5280) does not set a maximum number of
SAN s that a certificate can support. Certificate authorities can and do
set limits, however. 100 is a common limit, but a few CAs do support
thousands—for a modest fee per name, of course.

While you can technically put thousands of entries on a single line
in a configuration file, in practical terms that’s as daft as going against
a Sicilian when death is on the line. If you want to have each hostname
on its own line, create an openss1.cnf array and make your SANs
entries in that array.

[v3_req 1]
subjectAltName = @alt_names

[alt_names]

Under the v3 reg section, the subjectAltName is set to
@alt names. That tells OpenSSL to look for another section, called
alt names, which we define next. Each entry under alt names has
this format.

type.number = hostname

136

Chapter 6: Certificate Signing Requests

All of our SANSs are of type DNS. Other types are discussed in
x509v3_config(5), but only DNS is applicable for most of us. (The SAN
IP address type looks to be of interest, but no publicly trusted CA will
accept a certificate with one.) The number is an increasing integer that
assigns the value a place in the array. You can skip numbers, but don't
duplicate them; putting multiple values into one space in an array

doesn’t work. Last, give the hostname you want to appear in the SAN.
[aTt_names]

DNS.1 = mwl.i0

DNS.2 = www.mwl.i0

DNS.3 = mwlucas.org

DNS.4 = tiltedwindmillpress.org
DNS.5 = michaelwarrenlucas.com

In large organizations, array support eases CSR automation. You can
write a script to pull the hostnames from a database and create the
configuration file. While SANs appear in the CSR in array order, the
order does not affect validation and has no impact on TLS.

We discuss wildcard certificates, and their numerous disadvantages,
in Chapter 3. If you persist in creating one, list the wildcard as a SAN.
[aTt_names]

DNS.1 = mwl.io0
DNS.2 = www.mwl.io0

DNS.3 *.api.mwl.io
DNS.4 = *.cdn.mwl.io

This creates a certificate that’s good for select hostnames in mwl. io,

plus wildcards for two subdomains. This certificate can be installed
on my web server, as well as any host in api .mwl.io and cdn.mwl.
io. I must also install the private key on each of these machines, so a
compromise of one compromises the network. Wildcard certificates
add risk to not just hosts, but your entire ecosystem.

Put together, the complete configuration file for a certificate with an
ECDSA key looks like this.

137

Chapter 6: Certificate Signing Requests

[req]

prompt
default_keyfile
distinguished_name
req_extensions

no
mwl.io-private.key
req_distinguished_name
v3_req

[reqg_distinguished_name]
CN = mwl.do0

[v3_req 1]
subjectAltName = @alt_names

[alt_names]

DNS.1 = mwl.1qo0

DNS.2 = www.mwl.i0
DNS.3 = *.api.mwl.io
DNS.4 = *.cdn.mwl.io0

Once you have a complete configuration file, make sure you have a

parameters file.
Elliptic Curve Parameters Files

Elliptic curve cryptography is different than RSA. From the sysadmin
perspective they seem the same: you protect the private key and give
away the public key. You submit CSRs to the CA and get certificates
back. You lose the private key passphrase and have to buy a new
certificate. It’s all good.

ECDSA is defined by elliptic curves. An elliptic curve is a
mathematical construction. An ECDSA certificate uses one of
a set of well-known elliptic curves. Each of these well-known
curves has a name. The most widely supported curves are P-256,
P-384, and P-251 as defined by NIST. You might see these curves
erroneously described as lengths, but curves are not bit lengths. (If
you need a complete list of elliptic curves your system supports, run
openssl ecparam -list curves.) If you know nothing about
elliptic curves except that ECDSA certificates are better for small

devices, use the curve P-256.

138

Chapter 6: Certificate Signing Requests

Before you can generate an ECDSA CSR, you need a parameters
file for the chosen curve. Curve parameters describe a curve. The
parameters file is not a key, nor is it confidential. It's kind of like
the /etc/protocols file, but mathy. Everybody knows what’s in it.
OpenSSLs genpkey command, normally used for generating private
keys, also writes out parameter files.

$ openssl genpkey -genparam -out filename.pem \
-algorithm ec -pkeyopt ec_paramgen_curve:curvename
You have only two decisions to make: the name of the created
file, as given in —out, and which curve to use. Here I create a P-256
parameters file, ec256-params.pem.
$ openss1 genpkey -genparam -algorithm ec \
-out ec256-params.pem -pkeyopt ec_paramgen_curve:P-256
If you poke around you’ll see that DHE uses similar parameter
files. If the need ever arises, you can generate those files with

openssl genpkey as well.
Requesting ECDSA Certificates

We have a configuration file and a parameters file. We can now create
an ECDSA certificate signing request, using the openssl req

command.

$ openssl req -newkey ec:parameters.pem \
-config filename.conf -out filename.csr
The -newkey option creates a new key, using the parameters in
the parameters file. I give the configuration file with —config and the
destination file with -out.
Here I use the ECDSA configuration file and the parameters file we
just created to create an ECDSA CSR for my domain mwl. io.

139

Chapter 6: Certificate Signing Requests

$ openssl req -newkey ec:ec256-params.pem \
-config mwl.1io.conf -out mwl.ijo.csr

Generating an EC private key

writing new private key to ‘mwl.io-private.key’

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

The file mwi.i0.csr now contains an ECDSA CSR.
Some tutorials suggest creating a new key and then using that key to
create the CSR. That’s valid, but leads to more typing.

Generating RSA CSRs

Create an RSA CSR by writing a configuration file and running a

command.
RSA CSR Configuration File

The configuration file for an RSA CSR is almost identical to the
ECDSA version, with one exception. You must set the length of your
RSA key with the default bits option. If you want a non-default
hash algorithm, specify that with default md.

In this configuration I set a default RSA key length of 2048 bits and
hard-code SHA256 hashing. The rest is exactly like the ECDSA key.

[req]

prompt no
default_bits 2048
default_md sha256

default_keyfile
distinguished_name
req_extensions

mwl.io-private.key
req_distinguished_name
v3_req

[reqg_distinguished_name]
CN = mwl.do0

[v3_req 1]
subjectAltName = @alt_names

[alt_names]
DNS.1 = mwl.1io0
DNS.2 = www.mwl.i0

140

Chapter 6: Certificate Signing Requests

I have not specified any provisions for password management, so the
CSR creation command will prompt me for a password. With this file,
I can generate an RSA CSR.

Requesting RSA Certificates

Use the openssl regcommand a configuration file to generate an
RSA certificate request. Unlike ECDSA, you don't need a parameters
file.

$ openssl req -newkey rsa -config filename.conf \
-out filename.csr

The -newkey argument tells req to create a new private key.
We give it one argument, rsa, to create an RSA key. The -config
argument sets the configuration file, while -out lets you give the
filename for the completed CSR.

Here I generate a certificate signing request for my domain mwl. io,
using the configuration file mwi.io.conf.

$ openssl req -newkey rsa -config mwl.io.conf \
-out mwl.io.csr

Generating a RSA private key

writing new private key to ‘mwl.io-private.key’
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

I enter my pass phrase twice, and am rewarded with the file
mwl.io.csr containing my RSA CSR.

Client CSRs

The process and algorithms for a client certificate are identical to that
of a server certificate, but the information in the certificate is slightly
different. Unlike server certificates, there is no defined standard for
the information that must appear in a client certificate. Different

141

Chapter 6: Certificate Signing Requests

applications might require different details. 'm describing a common
usage, but double-check your documentation for any special needs.

Many applications include their own CA for signing client
certificates. You don’t want your VPN device to accept all client
certificates signed by any public CA. Such a device should only accept
certificates that it has signed. Such systems might have their own
system for generating CSRs.

Here is a configuration file for a client certificate that authenticates
a user to a corporate VPN. The certificate needs the user’s name as
the Common Name, and the certificate must include the user’s email
address. Back when CN contained a hostname, the Distinguished
Name could include the user’s email address as the emailAddress
attribute. That’s now obsolete, but it persists much the way hostnames
in CNs do. The proper way to give an email address is with an
rfc822Name value as a Subject Alternate Name, much as we do
with hostnames. I'll use both in the configuration file, but if your
application lets you drop emailAddress from the Distinguished Name,
please do so.

The configuration resembles one for a server certificate request. I
could add organization information in the Distinguished Name, but

it's most often unnecessary.

[req]
prompt = ho
default_bits = 2048

default_keyfile client-private.key
distinguished_name = reg_distinguished_name

[reqg_distinguished_name]
CN = Michael W Lucas
emailAddress = mwl@mwl.io

[v3_req]
subjectATltName = email:mwl@mwT.i0

142

Chapter 6: Certificate Signing Requests

OpenSSL doesn’t care if a certificate request is for a client or a server.
CSR creation is exactly the same.

$ openssl req -newkey rsa -config client.conf \
-out client.csr

The file c1ient.csr contains my Certificate Signing Request.

Client certificates used by people must have a passphrase. The
purpose of a client certificate is to authenticate a user. This certificate
will always be used by a human being, and are most often used on
mobile devices like laptops. An unencrypted private key can be
used by anyone who steals the laptop. If one of the lords of your
organization whines that they can’t seamlessly double-click on the
VPN application without having to type their passphrase, ask them
why they want to risk the company’s integrity on their ability to avoid
muggers.

Client certificates used by applications don’t need to have a
passphrase. Maybe your mail server must relay outbound email
through your service provider’s mail server, and must use the
certificate to authenticate to that relay. Protecting the certificate’s
private key the same way you would protect any other private key on
the server is sufficient.

Certificates Without Subjects

If CN is obsoleted in favor of SANs, do you need them in your
certificates at all? Nope. You can create certificates without Subjects or
Distinguished Names.

While the Distinguished Name is important for highly validated
certificates, you can skip it entirely for DV certificate requests. Older
clients might have trouble with the certificate, but they should upgrade
anyway. Here's a configuration file for a client certificate without a
Distinguished Name.

143

Chapter 6: Certificate Signing Requests

[req]
default_bits
default_keyfile
distinguished_name
req_extensions

2048
mwlucas-private.key
req_distinguished_name
v3_req

[reqg_distinguished_name]

[v3_req 1]
subjectAltName = email:mwl@mwT.i0

The main annoyance with these is that you can’t set prompt to no.
That triggers an OpenSSL safety check. Instead, you can use -subj on
the command line to set the Distinguished Name to /. This is just the
leading slash of the DN, with nothing behind it. The command line is
otherwise identical.
$ openssl req -newkey rsa -config client.conf \

-out client.csr -subj /

If you examine the CSR, you'll see that it has the email address in the
Subject Alternative Name but there isn’t even a Subject field.

Try it sometime. See how much of your software breaks. Yell at the

developers.
CSRs Without Configuration Files

The configuration file isn't difficult, but sometimes you need to create
a CSR entirely on the command line. This command isn’t pretty.
Creating a temporary configuration file is much less onerous and
increases your ability to double-check your work before creating the
CSR. But if you have an automated process to create CSRs, you'll need
that process to assemble and run the command line. This only works
with OpenSSL 1.1.1 and newer.

The command line looks like this.

144

Chapter 6: Certificate Signing Requests

$ openss1 req -newkey algo:Tength -keyout privatekey.pem \
-out request.csr \
-subj /C=country/ST=state/L=city/0O=organization/CN=hostname \
-addext "subjectAltName=DNS: hostname,DNS: hostname"

The -newkey argument needs two colon-separated arguments, the
algorithm and the key length or parameter file.

The -keyout argument sets the name of the file to write the private
key to. If you don’t want to encrypt the private key, add the -nodes
flag.

The -subj argument lets you set the Distinguished Name. If
you have a subject, put a slash before each directory entry. Use the
-subj / trick to create a certificate with no subject and rely on SANs
instead.

If you're creating an EV or OV certificate, you must set the C, ST, L,
and O values. C represents Country, and must be the ISO 3166 two-
letter code. ST represents State or Province, and should be the full
name. L is for Locality, or city where the organization is legally located.
O is for Organization, or complete, legal business name. OU represents
the Organizational Unit, or department within the organization.

You will also see these as countryName, stateOrProvinceName,
organizationName, and organizationalUnitName. The labels can be
used interchangeably.

The -addext flag lets you add X.509v3 extensions to your CSR.
SANs use the SubjectAltName extension. Specify them exactly as you
would on a single line in the configuration file. If you have dozens of
SANsS, either type very carefully or use a configuration file.

Here I create an RSA certificate for mwl. io, adding SANs for mwl.io
and www.mwl. io as well as a wildcard for the subdomain cdn.mwl.io.
I must escape spaces in the organization and location information.

145

Chapter 6: Certificate Signing Requests

$ openssl req -newkey rsa:2048 -keyout www-private.pem \
-out www-request.csr \
-subj /C=FL/ST=Humperdinck/L=Florin\ City/\
O=Inconceivable\ Incorporated/CN=mwl.io \
-addext \
"subjectAltName=DNS:mw1.i0,DNS:www.mwl.i0,DNS:*.cdn.mwl.io"
Again, if you're using DV certificates, you can skip all of the

organization information and provide only the CN.

$ openssl req -newkey rsa:2048 -keyout www-private.pem \
-out www-request.csr -subj /CN=mwl.1io \
-addext \
"subjectAltName=DNS:mw1.io,DNS:www.mwl.i0,DNS:*.cdn.mwl.io"

I strongly recommend putting these commands in well-named,
well-commented shell scripts, so you or your successors can trivially
generate new CSRs every year for the rest of your organization’s
existence.

Before sending any CSR to any CA, double-check your work by

examining the contents.
Viewing CSRs

You meticulously entered all of the correct data into a fiendish
OpenSSL command and generated a file that supposedly contains
your CSR. The file contains a bunch of gibberish, surrounded by
markers that declare BEGIN CERTIFICATE REQUEST and END
CERTIFICATE REQUEST. How can you check your CSR to be sure it’s
correct?

Like other OpenSSL commands, openssl req can read files
and transform them to other formats. Use -1in to give the filename
containing the CSR and -text to produce textual output. You can add
-noout to skip printing the certificate signing request in the output.
All of these should look familiar from our other OpenSSL commands.
Here I double-check a CSR for my domain mwl. io.

146

Chapter 6: Certificate Signing Requests

$ openssl req -in mwl.jio.csr -noout -text
Certificate Request:
Data:
Version: 1 (0x0)
Subject: CN = www.mwl.io0
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey

The Subject field shows the organizational data included in your
CSR, such as the company name and the hostname. Below that
you have the public key information, including the key algorithms,
followed by SANs and other extensions.

Using the CSR and Certificate

You now get the CSR to your Certificate Authority. If you're using
ACME, this happens automatically—just like creating the CSR. If
you’re using a commercial CA, you must follow the CA’s CSR-signing
procedure. In exchange, you get a shiny new X.509 certificate!

Look at the certificate before installing it. The CA might add its own
extensions, or remove some of those you requested. Verify that the
certificate includes everything you need.

Now install the certificate in your application. This book can’t help
with specific applications, but here’s some general advice. Name your
files after the fully qualified domain name in the certificate’s common
name. In production, my mwl . io certificate is called mw1.io0.crt and
the private key is mw1.i0.xkey. Protect the key files, preferably in a
directory readable only by the application and root.

On a Unix system, you might put all of your certificates in a
directory like /etc/certs. This way, any application can access the
certificate for this host. Private keys could go into /etc/certs/keys.
Make that directory owned by root, but create a group that can read
the directory and the files therein. Add application users to that group.

Back up your certificate. Double check the backups. Hire a giant to
protect the backups.

147

Chapter 6: Certificate Signing Requests

Reconnecting Files and Finding Reused Keys

Reusing private keys is bad practice. But how can you be sure that
some flunky didn’t follow one of those obsolete Internet tutorials and
reuse a private key instead of generating a new one? If your CSR filing
system turns out to be inadequate and you have to sort out which
certificate belongs with which private key, how do you sort them out?

These are separate problems with the same solution.

A keypair’s modulus is one of its unique numerical characteristics.
You don't need to know the math, only that it'’s unique. You can
extract the modulus from a file with OpenSSLs -modulus option.
The modulus is a very long number, but you can easily check it using
openssl md5. (While MD5 is no longer cryptographically secure, it’s
perfectly usable as a non-cryptographic hash.) Here I extract the key
modulus from a certificate, a private key, and a CSR.

$ openss1 x509 -noout -modulus -1in server.crt | openssl md5
d261c8136ff4154881814df84cc0829a
$ openss1 rsa -noout -modulus -in server.key | openss1l md5
d261c8136ff4154881814df84cc0829a
$ openss1 req -noout -modulus -in server.csr | openssl md5
2606bbdc0f7b099117342eefd049d5b0

The hash of the certificate and key begin with d. The hash of the CSR
begins with 2. We can stop looking; this CSR was not used to create
this certificate.

Every organization has unique procedures for creating keys, so I
can't tell you where to implement such checks to ensure private keys
are not reused. Worst case, you could put them in your network
management system. A certificate modulus that hasn’t changed for
over a year indicates it reused the previous private key. It would be best
to catch these before deployment, though.

Speaking of automation, let’s get some certificates automatically.

148

Chapter 7: Automated Certificate Management
Environment

For a protocol that gets used everywhere, TLS has a whole bunch

of disadvantages. Any process that an organization uses annually,
like renewing certificates, suffers neglect and inevitably either gets
forgotten until it’s too late or, after a few failures, attracts intrusive
high-level supervision. You install the new cert, and three days later
a zero-day exploit roots your web server. Certificate revocation is
troublesome and not wholly effective. Your organization gets bought
out and all the certs need re-purchasing. You automate certificate
management using your CAs API, and three months later someone
from the Board of Directors is at a party where a smarmy prince who
can’t be trusted to clean up after a puppy mentions that your CA
disrespected his ignorance and so you have to change CAs.

What TLS needs is a standard protocol for automating certificate
management. A protocol implemented in a bunch of different
tools, letting you choose software exactly as you choose which web
server you want to run. You could point this tool at any CA and get
certificates automatically renewed, revoked, or edited. This would
let you turn certificate requests from an infrequent annoyance to a
forgettable steady state.

The Internet Security Research Group (ISRG) created exactly this,
with the Automated Certificate Management Environment (ACME).
ACME is a client-server protocol for client-CA interactions, and has
dozens of implementations. Unlike the various APIs developed by

149

Chapter 7: ACME

separate CAs, ACME has gone through the standards process and is
officially RFC 8555. Initially tested and deployed by ISRG’s Certificate
Authority, Let’s Encrypt, ACME is now being deployed by a variety of
free and commercial CAs. Other organizations are also trialing ACME
for non-server certificates, such as the S/MIME certificates available at

https://acme.castle.cloud.

How ACME Works

ACME combines a standard client-server application with the addition
of DNS-based verification challenges. Remember, Domain Validation
is specifically about the Domain Name Service. A CA can legitimately
use DNS to verify control of a site.

A CAs ACME server is available at a URL, usually a HTTPS web site.
Any host that can reach the API can create an account, submit CSRs,
and request a signature.

ACME Registration

When you first use an ACME client, it creates its own key pair to
uniquely identify the client. The first time the client contacts a server,
it must accept the CA’s terms and then register an account tied to
that public key. ACME clients have specific single-use flags for these
operations. All further interaction between that client and the server
are signed with that key. When you're using a free CA, that process is
automatic and only takes a few seconds. With an account, the client
can submit certificate signing, revocation, and renewal requests.

The client’s public key serves as a unique identifier, so you can use
ACME with commercial CAs. The CA would validate an organization’s
identity and provide you with a nifty web portal where you can update
your credit card number and list your ACME client keys. As ACME is
now a standard protocol, many CAs are plunging full speed into their
deployments.

150

Chapter 7: ACME

ACME Process

Once the client is registered, it may then submit orders to the server.
An order declares, “Here are the hosts and/or domains I control and
want to get certificates for”

The server must validate that the client controls those domains, so
it sends a list of supported challenge methods. The challenge method
describes ways the ACME server can reach back to the server and
validate that the client really does control it. The client picks its
preferred challenge method from the list. Each hostname the client
wants to get a certificate for gets its own challenge.

Once the client picks a challenge for each domain, the server sends
details on how to perform the challenges. The client performs the
challenge and tells the server to verify its work. The server validates
that the challenge is successful, or not. If the client fails the challenge,
the order fails. If the client succeeds, it may finalize the order and
submit CSRs to the server. The server signs the requests and returns
certificates to the client. The client is responsible for boring sysadmin
tasks like copying the certificate into place and restarting any servers.

ACME Challenges

An ACME challenge includes a token and a key authorization.

The token is a location. The client is responsible for creating and
placing the token.

The key authorization is a combination of the token and a digest of
the account key. The key authorization is used as the contents of the
token.

The ACME server checks the token location and, if it finds the key
authorization, agrees that the client controls that server.

ACME currently supports three different challenge methods: HT TP-
01, DNS-01, and TLS-ALPN-01."

19 An SNI-01 challenge method once existed, but it was thrown to the Dread
Pirate Roberts—and rightfully so.

151

Chapter 7: ACME

HTTP-01

In the HTTP-01 method, the ACME server tells the client to make the
challenge token available at a specific URL at the host the certificate is
for, under the directory /. well-known/acme-challenge/.

Suppose I use HTTP-01 to validate I control https://mwl. io.
When my client files an order and selects the HTTP-01 challenge,
the server will say “Here is your challenge token and your key
authorization” My client must create a file named after the token and
make it available in the directory https://mwl.io/.well-known/
acme-challenge. This file must contain the key authorization.

A few seconds later, the ACME server checks to see if the file exists
and if it contains the key authorization. If the check succeeds, the
ACME server informs the client that it may send its CSRs.

This challenge only runs on port 80, but you can redirect it
to HT'TPS on port 443. You cannot use other ports or other
protocols. It’s perhaps the easiest way to use ACME. Configure
a web server to offer a directory owned by your ACME client at
/.well-known/acme-challenge.

HTTP-01 is meant for simple configurations. If you have multiple
web servers behind a load balancer, your ACME client can either
quickly copy the challenge file everywhere and clean them up
afterwards, or tell the load balancer to direct the query to a specific
server. The way you copy these files around varies depending on your
environment, so few ACME clients support such functions.

Let’s Encrypt policy will not allow the use of HT'TP-01 to create
wildcard certificates, understandably. Other CAs might choose
different policies.

152

Chapter 7: ACME

DNS-01

Where the HTTP-01 challenge indicates that the ACME client has
access to a host, the DNS-01 challenge declares that the agent has
access to alter the domain’s DNS records. This is the same principle
that Google Site Verification uses. The key authorization must go in a
TXT record in the target domain, under _acme-challenge.domainname.
DNS validation requires greater integration between the ACME client
and the network.

When my ACME client selects the DNS challenge to validate
mwl.io, the ACME server responds with something like “Put this
key authorization as a TXT under _acme_challenge.mwl.io.” The
ACME client inserts the record and tells the server to check. The
ACME server checks the domain’s DNS for the challenge entry. If the
challenge exists, the server tells the client to submit its CSR.

Use DNS-01 when your web servers are not publicly accessible,
when you use an alternate port for HTTP, or when you want a
wildcard certificate. You can also use it when you need to run the
ACME client on a host other than the destination server.

TLS-ALPN-01

The TLS-ALPN-01 challenge method takes place entirely within
TLS. ALPN, or Application Layer Protocol Negotiation , is a way

for applications to request different services on a single port. Each
protocol is assigned a unique protocol ID, much like a TCP/IP port.
It’s yet another way to multiplex protocols, this time on a single
encrypted port.?

The ALPN challenge works much like the HTTP challenge. The
destination server must run a TLS-speaking server on port 443.
This server does not necessarily need to be a web server, but it must
respond to ALPN requests for ACME.

20 If you want a picture of the future of IT, imagine blocking TCP/IP ports
and reinventing them. Forever.

153

Chapter 7: ACME

The data flow for TLS-ALPN-01 is slightly different. The client has
all the information it needs to deploy this challenge before it chooses
the challenge, so the client sets up the challenge and tells the server “I
choose TLS-ALPN-01, and the challenge is ready for you.” The server
checks immediately. If the challenge is successful, the server tells the
client to send the CSR.

ALPN is nice in that it runs purely in TLS. It’s not nice in that the
application server must support both ALPN and the ACME ALPN
protocol. The earliest solutions involved pure ACME challenge
responders. The ACME client would shut down the web server, start
an ACME responder on port 443, renew the certificate, shut down the
ACME challenge responder, and reactivate the web server. This was
less than ideal, but allowed testing of the protocol. If your application
doesn’t support ACME over ALPN, and you can handle a few
moments of downtime, you might investigate responders such as the
one included in dehydrated.

Applications are adding native support for ALPN. Apache’s mod_md
serves as both ACME client and an ALPN responder. Nginx uses a
proxy configuration to divert ACME requests from HTTPS ones.
People are rapidly developing and improving ALPN solutions.

Consider TLS-ALPN-01 when you have proxies or load balancers
in front of your web servers, and you want those proxies to divert
ACME TLS requests to a responder. ALPN is not suitable for wildcard
certificates, and the destination host must be on the public Internet.

Which Challenge Should | Use?

Use the simplest challenge method that meets your needs. If you need
wildcard certificates with current free CAs, you must use DNS-01.
Otherwise, choose between TLS-ALPN-01 and HTTP-01.

Certificate operations are not confidential. Everything in a CSR is
public information; the only secret data is the private key. You can
safely run ACME over unencrypted HTTP. I have a bias to err on the

154

Chapter 7: ACME

side of confidentiality, however. If your application has an integrated,
stable, and reliable TLS-ALPN-01 implementation, I'd recommend
trying it. Similarly, if you have a complicated environment involving
words like “cluster;” see if your infrastructure gear supports TLS-
ALPN-01.

If your environment is simple, HTTP-01 is perfectly reasonable.
Most ACME clients use HTTP-01.

While ACME lets you choose between multiple challenge methods, I
would encourage you to pick one and stick with it. Multiple challenge
possibilities create multiple paths to failure. Instead, start trying to
renew your certificates about two-thirds of the way through their
lifetime. Certificates from free ACME CAs expire in ninety days, so
that gives you thirty days to renew the certificate. When a transitory
issue prevents you from renewing a certificate on the first attempt,
you have plenty of time to try again. Or to discover how your host is
misconfigured.

Testing ACME

Each ACME challenge presents system administration challenges.
When you're first configuring an ACME client and it’s refusing to
function properly, you might edit a configuration file and rerun a
command a dozen times in two minutes. That’s a normal part of
testing a new tool or protocol.

Any free resource will be abused. If a CA offers free certificates,
some selfish jerk who understands neither certificates nor the meaning
of “shared resources” is going to create new certificates for all his sites
every hour on the hour.

Free CAs impose strict per-account resource limits. If you hit one
of those rate limits, the CA will refuse all further requests until the
limit expires. Those rate limits are generally hit only by large server
farms, ACME client developers, and sysadmins struggling with their
first ACME deployment. Even when you get one challenge method

155

Chapter 7: ACME

working reliably, adding a second method might push you up against
those limits again.

That's why CAs like Let’s Encrypt and Buypass offer staging or test
environments. Each staging environment has a test CA. Certificates
signed by staging environments are not globally trusted, but you can
download a root certificate for your client. Staging environments let
you test your setup without running into production resource limits.

A staging ACME server has a different URL than the production
server. Changing from staging to production means changing that
URL in your ACME client.

When you're first using ACME, or especially when you're trying a
different challenge method, check if your chosen CA has a staging
environment. You don’t want your tests to hit a limit and interfere with
production.

ACME clients

As with any open protocol, you're free to choose the ACME client that
best suits your needs. Some operating systems or application stacks
include their own ACME client. OpenBSD has acme-client(1), which
is my favorite for HTTP-01 challenges but is sadly not neatly packaged
on other operating systems. Apache has mod_md for managing
ACME directly from the web server. As I write this mod_md is not
quite ready, but many people are invested in it. Docker has a container
that integrates Let’s Encrypt directly into your system without having
to worry about any of the messy ACME or TLS details.” You should
consider using clients that are tightly integrated into your application
or operating system.

Certbot (https://certbot.eff.org/) was the first ACME client,
developed by the Electronic Frontier Foundation and Let’s Encrypt so
people could test the protocol. While it was the first, it's not the Official
Standard. It’s in Python, which is included in many operating systems

21 Until something goes horribly wrong.
156

Chapter 7: ACME

but an add-on on others. At this time, certbot lacks TLS-ALPN-01
support.

We'll use dehydrated (https://dehydrated.io/) as our reference
implementation. It’s written in shell. It is widely used and well-
supported by a community as well as commercial sponsors. Its only
dependencies are the trivially available bash and curl, plus core system
programs like sed and grep. A tiny machine like an older Raspberry Pi
can easily run dehydrated. Dehydrated’s major advantage are its hooks,
which allow easy extension to support a variety of challenges.

Dehydrated

All of our reference Unixes include a dehydrated package. It’s part of
CentOS’ EPEL repository, like all the other useful software. If your
Unix doesn’t have a dehydrated package, grab it from https://
dehydrated.io and decompress it. It contains only documentation,
shell scripts, and example configurations; you don’t need to compile
anything.

Dehydrated has only a few components. The main script,
dehydrated, provides the core functionality. This is the
command you’ll run to perform all ACME tasks. Dehydrated
needs a configuration file, just called config. (It can run without a
configuration file by specifying everything on the command line,
but for long term use a configuration file is more manageable.) The
script checks for /usr/1ocal/etc/denydrated as used on BSDs, and
/etc/dehydrated/config as most Linux flavors use, then falls back
to choices like your current working directory and the directory
dehydrated was run from. Don't rely on the latter two. If your
package doesn’t provide the directory, create one and put everything
there. We'll use /etc/denydrated for our examples. Copy config. sample
to this directory as a reference, then copy that to conrig.

157

Chapter 7: ACME

Dehydrated Hooks

Dehydrated supports no challenge methods. Instead, external hook
scripts provide all challenge functionality. When another challenge
method is developed, you need only add a new hook to support it.
Dehydrated includes a hook script for simple HTTP-01 validation on a
single host, hook. sh. If you're not using load balancers and don’t need
DNS validation, hook. sh should meet your needs.

Every load balancer and DNS server has its own management
interface, and dehydrated can’t provide hooks for them all. The
dehydrated web site has a collection of hooks written by contributors.
There are any number of hooks for third party DNS providers,
including registrars, and hooks for nameservers that support nsupdate.
There are hook scripts for HTTP-01 validation on popular load
balancers. Check the dehydrated wiki for a selection. If you don't find
a hook for your setup on the wiki, search the Internet at large.

Dehydrated automatically searches for a script called hook. sh in
the configuration directory. (Some Unixes override this default.) Any
script you place there gets run as the hook script. If you use a script
other than the provided hook. sh, I recommend giving it a different
name and setting that name in the configuration file.

If I reference hook. sh, I mean the HTTP-01 verification script
included with dehydrated. “Hooks” or “hook” refers generically to any
hook script.

Certificate Directory and User

Dehydrated generates certificates. It needs a place to stash those
certificates. You want those certificates to be accessible only to the
dehydrated program and root. This means you need a user for
dehydrated. If your operating system package creates this user and the
home directory, use them.

Debian and CentOS expect to run dehydrated as root and
provide working directories owned by root. No ACME client needs

158

Chapter 7: ACME

access to create filesystems. I strongly recommend creating a new,
unprivileged user and directory.

Rather than creating a dehydrated user, make a more generic one
named acme. If you decide to change software, you can reuse this
account for whatever ACME client you try next. As the managed
certificates are changing information, they belong in /var. Here I create
the acme user, with the home directory of /var/acme. This user has the
UID and GID of 443, but you can use any free UID on your system.

You'll need to run commands as the acme user. Protecting this
account varies depending on your Unix. If you can disable the account
and still run commands as that user, do so. Otherwise, give the user
a lengthy, unpleasant, random password to keep other people from
easily accessing it.

mkdir /var/acme

pw groupadd -n acme -g 443

pw useradd -n acme -u 443 -g 443 -d /var/acme/ \
-W nho -s /nonexistent

chown -R acme:acme /var/acme/

Dehydrated can manage certificates and related files here.

For the rest of this book, I'll assume you're using the user acme.

If you prefer another username, substitute it as needed. Now that
you have a directory for dehydrated to play in, we can configure
dehydrated.

Core Dehydrated Configuration

The main dehydrated configuration file is available in
/etc/dehydrated/config. It’s a series of variable assignments in
the grand Unix tradition. Hash marks indicate comments. Every
dehydrated install requires a few common settings, no matter which
challenge method you use.

The BASEDIR variable defines the directory where dehydrated
will keep all certificates, keys, and working documents. This must be
owned by acme.

159

Chapter 7: ACME

BASEDIR=/var/acme
Tell dehydrated which user and group it should run as.

DEHYDRATED_USER=acme
DEHYDRATED_GROUP=acme

Every account at a CA needs a contact email address. The CA will
notify this address of impending certificate expirations, as well as
major changes such as a new API address.

CONTACT_EMAIL=mwl@mw]1.i0

Every dehydrated install needs a list of domains to get certificates
for, normally stored in the file domains. txt. The default location is the
working directory. If there’s a problem, dehydrated could trash the list.
Put your list of domains somewhere that dehydrated can’t touch, like
the configuration directory.

DOMAINS_TXT= "/etc/dehydrated/domains.txt"

The default challenge type is HTTP-01. Tell dehydrated if you're
using a different one.

CHALLENGETYPE= "dns-01"

Each challenge method has its own configuration options that you'll
add to config as needed.

Changing CAs

Dehydrated’s default CA is Let’s Encrypt, but dehydrated 0.7.0 and
newer has built-in configurations for the most popular free certificate
authorities. At this time I'm writing this, it has Let’s Encrypt staging
and production (letsencrypt-test, letsencrypt), Buypass staging and
production (buypass-test, buypass), and ZeroSSL (zerossl). Set these
with the CA variable. Here I point dehydrated at Let's Encrypt’s staging
environment.

CA="Tletsencrypt-test"

160

Chapter 7: ACME

When using an older version of dehydrated, or you want to use a CA
that dehydrated doesn’t know about, set CA to the certificate authority’s
API URL. Every ACME CA provides this in its documentation.

CA="https://api.dreadpirateroberts.ca/directory"

When you change CAs and run dehydrated, it automatically registers
an account at the new CA and fetches new certificates. It retains all
account information for the old CA in a directory restricted to the
acme user, so if you switch back it can use the old account.

Additional Settings

Dehydrated has a variety of other settings and configurations you
might need in weird circumstances.

Rather than making changes to the main configuration file, you can
read in additional configuration files that override the default settings.
Set a directory for override files with CONFIG D, as Debian does by
default.

CONFIG_D=/etc/dehydrated/conf.d

Dehydrated reads each file with a name ending in . s and adds
it to the configuration. The files are read in alphanumerical order,
and entries in later files override earlier ones. Minimize how many
override files you have. I find this most useful for per-challenge or per-
hook configuration files, where hooks have unique variable names.

If you need special curl(1) options to reach the CA, such as using a
proxy server, specify them in CURL_OPTS.

CURL_OPTS="-x snoop.mwl.io"

We'll explore other settings as needed.

161

Chapter 7: ACME

Domain List

The file domains. txt contains a list of all the domains you want to get
and maintain certificates for. Each certificate has its own line, like so.

mwlucas.org www.mwlucas.org
mwl.io www.mwl.io

Every name on the list is a Server Alternative Name on the
certificate. The first entry is assigned to the Common Name, and is
also used as the name of the directory where the cert information will
be kept. Here the version of each site without the leading www is the
Common Name, and the others become SANS.

Common Names can only be a maximum of 64 characters, including
the top-level domain. If you have a domain longer than sixty-four
characters, such as my youkeepusingthatwordIdonotthinkit-
meanswhatyouthinkitmeans.com, you must use it as a SAN and not
a Common Name.

mwlucas.org www.mwlucas.org youkeepusingthatwordIdo...

Even if your line is extremely long, you cannot split it with
backslashes.

You can create a dehydrated alias for a group of related SANs that
you don’t want to tie to a particular name in your configuration files.
For example, I rented domain names for some of my fiction series,
and want to wrap the web redirects for them in TLS. I am easily
bewildered. Referring to the certificate for immortalclay.com in the
configuration file for montagueportal.com will confuse me. It's much
better if such certificates get a more useful, general name. Put such
aliases at the end of the domains. txt line, preceded by a greater than
symbol (>).

immortalclay.com montagueportal.com > fiction

The certificate for these two domains now uses the directory fiction,
as discussed in “The Dehydrated Directory” later this chapter.

162

Chapter 7: ACME

Aliases are especially useful for wildcard certificates. Consider this

domains.txt entry.
*.mwl.io0

This requests a wildcard certificate for all hosts under the mwl .io
domain (but not mwl. io itself), and puts it in the directory *.mw1.io.1
encourage everyone to start a directory name with an asterisk once, as a
learning exercise. Once you understand that, you’ll appreciate the alias.

*.mwl.io > wildcard

You could use the actual hostname as the Common Name and the

directory, but that’s not always desirable.
mwl.io *.mwl.io

With this, we can grab our first certificate via ACME.
Dehydrated with HTTP-01

Start your ACME experiments using a single web server available to
the public Internet, using a free CA such as Let’s Encrypt. This is the
simplest possible configuration. We'll use this host to set up ACME
with the HT'TP-01 challenge. You must configure a directory on the
web server, set up a hook script to add and remove challenges, and
write a deployment script.

Start with the web server.

Web Server Setup

When dehydrated sends its challenge to the server, the ACME server
will send back a file name and a string to put in that file. Dehydrated
(or whatever client you choose) puts that file in a directory. When
the server completes the challenge, dehydrated removes the file. It’s
simplest if you create a single filesystem directory for your ACME
challenges across all your sites, and tell the web server to map that
directory into that URL. As all my web sites are under /var/www, I

create /var/www/acme and change its ownership to acme:acme.

163

Chapter 7: ACME

This directory must be available on every site I want a certificate for
as the subdirectory /. wel1-known/acme-challenge. The CA challenge
requests a specific file in that directory, so the directory does not need
to be indexed, browsable, or linked from anywhere. This directory
must be available on every site you want to get a certificate for. If I
want a certificate that covers both https://mwl.io and https://
www.mwl . io, the server must offer both https://mwl.io/.well-
known/acme-challenge/ and https://www.mwl.io/.well-known/
acme-challenge/.

While 'm avoiding most application-specific instructions, here’s a
sample configuration for Apache.

Apache Configuration

Every web site on this host will eventually get a certificate via ACME,
and I'll be reusing the ACME configuration many times. This shrieks,
“Include file!”
Most Apache configurations have an rnciudes directory, where
every file ending in . conf gets sucked into the server configuration.
It’s designed for virtual hosts, where each domain gets its own
configuration file. We're not creating a global configuration, but a
snippet of Apache that can be included in multiple sites. This means
it must not automatically get sucked in. The ACME configuration file
can end in anything except . cont.
Here’s a file acme. config containing the following.
Alias /.well-known/acme-challenge/ /var/www/acme/
<Directory “/var/www/acme/”>

Options None

Require all granted

AllowOverride None

ForceType text/plain
</Directory>

Each virtual host that needs ACME access needs only one
configuration statement.

164

Chapter 7: ACME

Include /usr/Tocal/etc/apache24/Includes/acme.config

This lets you more easily manage this directory that has absolutely
nothing to do with anything else on each site.

Reload the web server and call up the challenge directory in your
browser. It should forbid you to browse the contents. If you create a
test file in /var/www/acme, though, it should be available.

Your web server now supports ACME challenges.

HTTP-01 Hook Script

Dehydrated includes a hook script for the HTTP-01 challenge
method, called hook. sh. Your package might have already installed
it somewhere. If you copy this script to the configuration directory
as /etc/dehydrated/hook.sh, dehydrated finds it automatically. If
you put the script somewhere else, inform dehydrated with the HOOK

variable in config.
HOOK=/usr/Tocal/scripts/hook.sh

You must tell hook. sh where to find the filesystem that maps to
your web site’s .well-known/acme-challenges directory with the
WELLKNOWN config file option. All of my web sites have mapped
/var/www/acme tO . /well-known/acme-challenges.

WELLKNOWN="/var/www/acme"

You are now ready to attempt HTTP-01 validation. This will get you
certificates, but you must edit hook. sh to activate them.

Running Dehydrated

Run all dehydrated commands as the user acme. You could
configure sudo(1) for this, but we’ll use su(1). Test it by checking your
dehydrated version.

165

Chapter 7: ACME

su -m acme -c 'dehydrated -v'

INFO: Using main config file /etc/dehydrated/config
Dehydrated by Lukas Schauer

https://dehydrated.io

Dehydrated version: 0.6.5

This demonstrates you can run commands as acme. First, register this
ACME client and accept the terms.

su -m acme -c 'dehydrated --register --accept-terms'
INFO: Using main config file /etc/dehydrated/config
+ Generating account key...

+ Registering account key with ACME server...

+ Fetching account ID...

+ Done!

If you forget this step, dehydrated reminds you whenever you try to
do anything.

Now run dehydrated with the -c flag. (If you're biased towards
long options, use -—cron.) This tells dehydrated to check the
expiration dates on all existing certificates, renew everything that’s
going to expire within 30 days, and request any certificates that don’t
yet exist. You'll eventually schedule dehydrated -c to run weekly.

su -m acme -c 'dehydrated -c'

INFO: Using main config file /etc/dehydrated/config

Processing www.mwlucas.org with alternative names: mwlucas.org
Dehydrated starts by telling you which domains it's working on. This

certificate doesn’t yet exist, so it proceeds to create new CSRs.

Signing domains...

Generating private key...

Generating signing request...

+
+
+
+ Requesting new certificate order from CA...

Once dehydrated sends the list of domains to the ACME server, the
server sends back a filename for each domain and the contents of that
filename. Below, dehydrated creates the files.

166

Chapter 7: ACME

Received 2 authorizations URLs from the CA
Handling authorization for mwlucas.org
Handling authorization for www.mwlucas.org
2 pending challenge(s)

Deploying challenge tokens...

+ 4+ + + +

Now that the challenge files exist, dehydrated tells the server to go
ahead and perform the challenges.

Responding to challenge for mwlucas.org authorization...
Challenge is valid!

Responding to challenge for www.mwlucas.org authorization...
Challenge is valid!

+ + + +

Note that the output says nothing about the type of challenge. All
dehydrated cares about is that it fed the hook script the challenge
information, and the hook script met the challenge.

If every challenge is met, dehydrated has demonstrated that it
controls these domains. It has achieved Domain Validation. It can
clean up after itself.

Cleaning challenge tokens...
Requesting certificate...
Checking certificate...
Done!

Creating fullchain.pem...
Done!

+ 4+ + + + +

You now have certificates. Somewhere.

The Dehydrated Directory

All certificate-related material winds up in a subdirectory of
dehydrated’s base directory, as set by BASEDIR in config. Mine is
/var/acme, in one of four directories.

The accounts directory contains this dehydrated install’s account
information. Each CA has its own subdirectory. The actual account
information and dehydrated’s key pair are stored in JSON files in that
subdirectory.

167

Chapter 7: ACME

The archive directory contains expired certificates, keys, and
CSRs. While ACME should transparently and seamlessly auto-renew
certificates, having the old certificate on hand reassures me. See
“Archiving Certificates” for details.

Under chains you'll find cached certificate chain files. Dehydrated
caches root and intermediate certificate chain files to speed building
complete chain files.

The Certificate Directory

Dehydrated stores certificates, CSR, keys, and assembled chain files in
the cert directory. Each domain has its own directory, named after the
certificate’s Common Name, the first entry on the line in domains. txt.
You'll see five types of files in the domain’s directory: private keys,
CSRes, certificates, chain files, and full chain files. All of the certificate
material is stored in files named after the epochal time the certificate
was created. Dehydrated also creates symlinks to the most recent files,
so that outside programs can easily access them. Take a look at these
freshly created files for the brand-new certificate for mwl. io.
cert-1608225253.csr
cert-1608225253.pem
cert.csr
cert.pem
chain-1608225253.pem
chain.pem
fullchain-1608225253.pem
fullchain.pem
privkey-1608225

The file cert-1608225253. pem is the signed certificate. If you want
to know when the certificate was created, use date(1) to convert
1608225253 to a human-readable date. Nobody wants to update their
server configurations when the certificate gets renewed, though, so
dehydrated symlinks cert.pem to the current certificate.

Similarly, the file cert.csr points at the latest CSR, chain.pem points
at the chain file containing the CA certificate and any intermediary

168

Chapter 7: ACME

certificates needed to validate the certificate, while fullchain.pem
includes every certificate from root to host. privkey.pemlinks to the
current private key file.

Putting this all together, I would tell my server to find the certificates
for mwl.ioin /var/acme/certs/mwl.io/cert.pemand the private key
in /var/acme/certs/mwl.io/privkey.pem. Thanks to the symlinks, the
application is blissfully unaware of certificate renewals.

Archiving Certificates

After a few renewals, the certificate directory gets crowded. You might
want to keep the last certificate or two around just in case, but they
sure clutter up your workspace. Dehydrated has an archive feature
that moves obsolete certificates, CSR, chains, and private keys to the
archive directory.

Running dehydrated --cleanup or dehydrated -gc tells
dehydrated to move unused stuff to a folder under archive named
after the certificate’s Common Name. You might have some excess
CSRs or key files from earlier attempts to answer a challenge. Clean
them up like so.

su -m acme -c 'dehydrated -gc'

INFO: Using main config file /etc/dehydrated/config

Moving unused file to archive directory:
mwl/cert-1608149972.csr

Moving unused file to archive directory:
mwl/cert-1608150103.csr

Decide how long you want to keep expired certificates, and schedule
both an archive process and a find -delete job to clean up anything
older.

169

Chapter 7: ACME

Certificate Deployment

Most applications only read certificate files on startup. Renewing

the certificate and changing the certificate file doesn't change the
certificate served by the application. You have to tell the application
to reread the certificate. While scheduling apachectl reload
every day at 3AM would work, editing the hook script gives you more
elegance.

The sample hook. sh includes a function, deploy cert, that gets
called after certs are renewed. It’s there specifically so you can add
commands. The example shows copying new certs to where the web
server expects to find them, but it’s simpler to tell the web server to
look where dehydrated puts them. The deployment stage is the place
to issue that kill -HUP or reload or restart, whatever you need
to make your server read its new certificates.

The acme user might need additional privileges to run the
deployment commands. If you have trouble with something like sudo
but the deployment command is a soft reload or something equally
unobtrusive, you might schedule a deployment a few minutes after
dehydrated.

With a deployment command in place, you should have everything
you need to fully automate certificate renewal with HTTP-01
validation. Once you've achieved that, you can investigate DNS-01.

DNS-01 Challenges

While the HTTP-01 challenge demonstrates that the ACME client

has the ability to create arbitrary files on the web server, the DNS-01
challenge demonstrates that the ACME client can create arbitrary DNS
entries in the target host’s zone. It also demands integrating the ACME
client more deeply into the network, which might be impossible in
some organizations. It’s the only way to get wildcard certificates,
however, and the most straightforward way to get certificates for hosts
that are not publicly available.

170

Chapter 7: ACME

If you must separate your ACME client from your web server, or if
you need a certificate for an application other than a web server, DNS-
01 might satisfy your requirements. Moving the certificate from the
ACME client to your application server is entirely your problem. This
can be as easy as cp(1) or rsync(1). An automation system like Ansible
or Puppet can also handle distribution, or you can deploy an ACME-
specific certificate system like Anvil (https://github.com/dlangille/anvil).

The DNS-01 challenge can only be implemented by people with
a working knowledge of the Domain Name Service. If you haven't
worked with DNS, or if words like ddns-confgen(1) and nsupdate(1)
set you running for the safety of your castle, stick with HT'TP-01 or
immediately involve your DNS administrator.

Fortunately, the DNS-01 challenge only requires limited access to
the DNS zone. Unfortunately, not all DNS servers can implement that
restricted access. Many DNS servers either permit write access to the
entire zone, or block it. We'll demonstrate with BIND, which can be
snugly but not completely restricted.

The DNS-01 challenge requires creating a TXT record for each SAN
in the certificate, under the _acme-challenge subdomain. If I wanted a
certificate for mwl . io, the ACME client would create a TXT record for
_acme-challenge.mwl.io. If I also have a SAN of www.mwl.io, the
challenge must create an identical record for _acme-challenge.www.
mwl.io. Twenty certificates and two hundred SANs means creating
and deleting two hundred TXT records.

You can use CNAME:s (aliases) to point these all at a single TXT
record. If youre challenging several domains at once, they might
interfere with one another. It depends on your ACME client.

You have a choice. You can give your ACME client permission to
create and delete those TXT records in each and every domain, or you
can create a CNAME for each and every name and give the ACME
client access to update a single record. What is easier with your current

171

Chapter 7: ACME

workflow? Which is less intrusive in your environment? Are you truly
going to configure all those access controls, or all those CNAMEs?
Can your DNS server tightly restrict access, or does it provide only
“this program may change records in this zone” access control? If you
have no fine-grained access control, you might consider deploying a
single “burner” domain that the ACME client can alter, and pointing
all the CNAME:s to that domain.

Both methods require about the same time and energy to initially
configure, so which should you use?

If you want to renew multiple domains in a single dehydrated run,
give dehydrated access to update each domain separately. Most of us
only need DNS-01 for special cases, though, and can use HTTP-01
for routine certificates. Otherwise, decide based on the amount of
effort creating brand new certificates will require. If gaining access to
modify DNS entries requires extensive change control meetings or
dealing with recalcitrant vendors, but you can easily add CNAMEs
to zones, use the CNAME-based method. If your environment’s
authoritative DNS service is clunky or lacks fine-grained access
control, use CNAMEs and a burner domain. If you have to update
multiple domains with DNS-01, you might give each of them their
own subdomain in your burner domain. If you can easily create
subdomains and restrict access control, maybe you should set up each
domain individually.

DNS-01 Test Environment

Many of my domains are static, each containing only one or two
long-lived IP addresses. Each new SAN means either creating a new
CNAME, or creating a new access control statement and enabling
dynamic DNS in each. I find creating CNAME:s easier, and it can even
be done in an include file.”> Here I set up a challenge for mw1 . io with
DNS-01 challenge.

22 Include files make me happy. They evenly distribute my errors.
172

Chapter 7: ACME

When dehydrated runs, the hook creates a TXT record in the child
zone _acme-challenge.mwl.io. All of the DNS-01 challenges
get directed there by the permanent aliases in each zone. Once the
challenges are satisfied, the hook removes the TXT record.

We'll demonstrate this in BIND by setting up a child zone with
dynamic DNS, configuring and testing access control for that child
zone, setting up CNAMEs, and configuring an nsupdate-based DNS-
01 hook script from the dehydrated site.

Configuring a Dynamic Child Zone

I don’t want any ACME client to have full access to any of my domains,
so I'm configuring _acme-challenge.mwl.io as a child zone of mwl.
io. This child zone should not be in the zone file for mwl.io; rather,
that domain must delegate those entries to the child zone. I can
customize the subdomain’s access controls while leaving mwl . io aloof
and untouchable.

Start with your organization’s standard zone file, empty any entries
except the SOA records and the nameservers. All other zone contents
will be provided dynamically. Put it in BIND’s working directory,
probably /etc/namedb/working. The nameserver user owns this
directory and all files in it. I named this file acme.mw1. io.

This subdomain now needs a named. conf entry. The hard part of
that entry will be the dynamic DNS keys, but BIND includes ddns-
confgen(8) to create the keys and tell you where to put them. Here we
use it to generate a key called “acme” for the zone _acme-challenge.

mwl.io.

173

Chapter 7: ACME

cd /etc/namedb
ddns-confgen -k acme
To activate this key, place the following in
named.conf, and in a separate keyfile on the system
or systems from which nsupdate
will be run:
key “acmekey” {
algorithm hmac-sha256;
secret "m6kKT108Q1lPjalo6ikv00eHv8mRKQ6WV]...";
¥
Copy the key into a separate file, acme. key. All of your ACME clients
need a copy of this file. Either copy this key into named. cont or suck it
in with an include file. The rest of the output doesn’t matter; we’ll be
implementing something far stricter than what it suggests.
Now that named knows about the key, we can tell it about our new
zone and assign access permissions.
zone “_acme-challenge.mwl.io” {
type primary;
file “/etc/namedb/working/acme.mwl.io0”;
update-policy {
grant acmekey name _acme-challenge.mwl.io TXT;
3
3
The update-policy statement permits dynamic DNS updates,
and restricts it to the key named acme, the zone named _acme-
challenge.mwl.io, and TXT records.
Verify your nameserver configuration with named-checkconf -z.
If you haven’t scrambled everything, reload your nameserver and
verify that it recognizes the new domain.

$ dig _acme-challenge.mwl.io @localhost soa +short

If this returns anything but the SOA record, check your error log. If
you have a working zone, use nsupdate to add a TXT record as DNS-
01 requires. Use -k to load the zone’s authorization key.

$ nsupdate -k acme.key
> server localhost
> update add _acme-challenge.mwl.io 300 TXT toThePain

174

Chapter 7: ACME

This should create the entry, but if you're uncertain or haven't
previously used dynamic DNS updates, double-check your work with
show.
> show
Outgoing update query:

;; ->>HEADER<<- opcode: UPDATE, status: NOERROR, id: O
;; flags:; ZONE: O, PREREQ: O, UPDATE: O, ADDITIONAL: O

;3 UPDATE SECTION:
_acme-challenge.mwl.io. 300 1IN TXT "toThePain"

This looks like an actual zone file entry. Commit it.

> send
> quit

Verity it’s in the zone.

$ dig _acme-challenge.mwl.io @localhost txt +short
“toThePain”

The key works. Now delete it, using the same process but
substituting a delete command for the add. Always remove your
ACME challenges when you're finished with them.

> update delete _acme-challenge.mwl.io TXT
> send

Repeat this test on the host that will run your ACME client. If it
doesn’t work, check the ACME client’s access to the authoritative DNS
server on UDP port 53. Once everything works, set up your aliases.

DNS Aliases

Each host that needs a certificate must have a DNS alias pointing their
_acme-challenge alias to the challenge domain, _acme-challenge.
mwl.io. To geta certificate for example.com and www.example.com, I
must create CNAME:s for each like so.

_acme-challenge.example.com. 600 CNAME _acme-challenge.mwl.1i0.
_acme-challenge.www.example.com. 600 CNAME _acme-challenge.mwl.qio.

175

Chapter 7: ACME

The CNAMEs must expire quickly, within five or ten minutes. You
do not want old ACME challenge values drifting around the Internet,
as they interfere with validating future ACME challenges.

My challenge domain must not have a CNAME for _acme-
challenge.mwl.io, as thats the real entry the dehydrated hook
modifies. It does need a CNAME for _acme-challenge.www.mwl.io,
however.

DNS-01 Hook Script

The hook script must deploy challenge tokens, remove challenge
tokens, and trigger anything needed to activate renewed certificates.
Dehydrated’s wiki includes a sample hook script that uses nsupdate(1)
to add and remove challenge tokens from a zone.

Dehydrated calls its hook scripts with arguments. The hook can
use those arguments to build a command line that updates your
zone. That’s the technically correct method, but I want you to spend
your brain cells understanding what the script does rather than
decoding printf(1) statements. The dns-hook. sh script presented
here is a simplified® variant of that script on the dehydrated page,
and is also available at https://cdn.mwl.io/. Don’t use this simple
demonstration script in production: see what it does and how it

works, and go grab a production-grade script from the many on the
dehydrated wiki.

23 Simplified because this book is not called printf Mastery.
176

Chapter 7: ACME
#!/bin/sh

case “$1” 1in
“deploy_challenge”)
printf 'server mail.mwl.io\nupdate add \
_acme-challenge.mwl.io 300 TXT \”%s\”\nsend\n' \
"${43}" | nsupdate -k /etc/dehydrated/acme.key

“clean_challenge”)
printf 'server mail.mwl.io\nupdate \
delete _acme-challenge.mwl.io 300 TXT \”%s\”\n \
send\n' "{4}" | \

nsupdate -k /etc/dehydrated/acme.key

“deploy_cert”)
/usr/Tocal/sbin/apachect] reload

“unchanged_cert”)
do nothing for now

“startup_hook”)
do nothing for now

“exit_hook™)
do nothing for now

esac

exit O

The first argument to a hook script is the challenge step. At the
deploy challenge stage, the hook script needs to set up the
challenge tokens. At clean challenge, the hook script removes
those tokens. When certificates are renewed, dehydrated calls
deploy cert. The hook is also called for when certificates are
unchanged, plus when dehydrated is started and exits, but those are

rarely used.

177

Chapter 7: ACME

The second argument is the domain name being challenged. The
third argument is a filename, useful for HTTP-01 but unnecessary for
DNS-01. The fourth argument is the ASCII string that must go into
either the file or the DNS TXT record. This is the only component we
need for this demonstration script.

The deploy challenge stage uses printf to build a dynamic DNS
update command, and feeds that to nsupdate(1).

The clean challenge stage starts by waiting. Your ACME client
can run much more quickly than a Certificate Authority. Without
a wait, you might clean up your challenge tokens before all of your
challenges finish. After the wait, the script removes the challenge
tokens.

In deploy cert, we do a soft reload of the web server. If you have
a complicated deployment process, you might want to move those
commands into a separate script. You might need to use sudo to give
the acme user permission to run that script, or schedule a deployment
as another user.

This script is a fine example of fault-oblivious computing, and is for
demonstration only. If youre using BIND, go grab an nsupdate-based
script from the dehydrated site. If you're using another DNS server or
a domain registrar’s service, there’s probably a script for that too.

Running Dehydrated with DNS-01

Now that you have all the pieces, run dehydrated. As dehydrated
manages all the details for you, the command is unchanged.

178

Chapter 7: ACME

su acme -c 'dehydrated -c'
INFO: Using main config file /etc/dehydrated/config
Processing mwl.io with alternative names: www.mwl.io0
cdn.mwl.qio
+ Signing domains...
Generating private key...
Generating signing request...
Requesting new certificate order from CA...
Received 3 authorizations URLs from the CA
Handling authorization for cdn.mwl.io
Found valid authorization for cdn.mwl.io
Handling authorization for mwl.1io
Found valid authorization for mwl.io
Handling authorization for www.mwl.io
Found valid authorization for www.mwl.io
0 pending challenge(s)
Requesting certificate...
Checking certificate...
Done!
Creating fullchain.pem...

+ 4+ttt A+ +

You now have certificates. Or error messages. Both are useful,
although the former is more convenient.

DNS-01 Collisions

The hook script removes all existing DNS-01 challenge tokens and
puts in its own tokens. If you run dehydrated on several servers
simultaneously, they’ll fight over control of your dynamic zone.

The easiest way around this problem is to not run dehydrated
simultaneously on multiple servers. If you have numerous domains on
each server, and each takes a while to run, schedule them carefully or
create a separate update zone for each server.

Per-Domain Configurations

Every organization has that one annoying domain, with its oh-so-
special requirements and its petulant insistence on being special.
Maybe most of your domains work perfectly with HTTP-01
challenges, but this one annoying domain needs a wildcard certificate

179

Chapter 7: ACME

and so must use DNS-01. Dehydrated lets you set a directory for per-
domain configuration files with the DOMAINS D option in config.

DOMAINS_D=/etc/dehydrated/domains.d/

The per-domain configuration file allows setting most but not all
options. You can't use a different CA; that requires a whole different
dehydrated configuration directory. But you can set different challenge
types, hooks, key algorithms, and per-certificate details. Only set the
options that differ from your common settings. Name the per-domain
configuration file after the certificates Common Name.

The domain mwl.io needs the DNS-01 challenge, while everything
else needs HTTP-01. I create /etc/dehydrated/domains.d/mwl.ioand
set the challenge and hook script.

CHALLENGETYPE="dns-01"
HOOK=/etc/dehydrated/dns01-hook.sh

When I run dehydrated normally, it picks up the per-domain
configuration file.

+ Using certificate specific config file!
+ CHALLENGETYPE = dns-01
+ HOOK = /etc/dehydrated/dns0l1-hook.sh
+ Signing domains...

I can now get one wildcard certificate without forcing all of my
domains to use cumbersome DNS-01 validation.

Dehydrated has many more features. If your application can’t
maintain its own OCSP staples, it can download them for you. You can
force use of IPv4 or IPv6, revoke certificates, choose algorithms, and
more. Check the documentation for the full details, but this should get
you started.

180

Chapter 7: ACME

ACME Renewals

The real magic of ACME comes at renewal time. Free ACME
certificates expire in ninety days. Most free CAs will renew certificates
within thirty days of expiration. Each time your ACME client runs, it
checks the expiration date of each of its certificates. If the certificate
expires within thirty days, it automatically renews the certificate using
the exact same process it used to request that certificate.

Once you have a working client, renewing your certificate means
scheduling it to run automatically. A certificate check once a week
gives the client four attempts to renew the certificate before it expires.
This should be more than sufficient, unless you hit transient issues
every week at exactly that moment.

Now that you have automatic certificates, let’s discuss some ways to
turther lock down TLS.

181

Chapter 8: HSTS and CAA

Once upon a time, web sites that needed TLS and an X.509 certificate
were special. In theory, users noticed that lock icon in the address bar
and said “Aha! This is a high-class, trustworthy establishment and I
can confide my credit card with them?” A certificate meant class.

The advent of ACME and free CAs put certificates everywhere. That
lock icon is available to everyone, without a budget or even an excuse.
Even us minor authors use TLS on our web sites. Web browsers
are starting to flag sites without TLS as “non-secure,” whatever that
means. The little lock icon is once again meaningless and can be safely
ignored.

Omnipresent TLS certificates still leave gaps for attackers to weasel
through, however. Two tools to address these gaps are HT TP Strict
Transport Security and Certification Authority Authorization records.
Neither of these operate within TLS, but leverage other protocols to
shore up TLS.

HTTP Strict Transport Security

A downgrade attack is when an attacker forces a client’s TLS
connection to use broken algorithms, broken TLS versions, or fall back
to unencrypted communications. The best-known downgrade attack is
the man-in-the-middle, where an attacker directs victims to a non-TLS
version of the web site run by the attacker and proxies user requests to
the real site, capturing all data in the process. The user probably won't
even notice that the site is no longer using TLS, and most of those

who notice its absence will shrug it off. Even if your server redirects all
HTTP connections to HTTPS, someone who can man-in-the-middle

your clients can replace your redirection.

183

Chapter 8: HSTS and CAA

HTTP Strict Transport Security (HSTS) is designed to resist these
downgrade attacks by informing clients that a non-TLS version of
the site does not exist. When a web server sends the HSTS response
header to the client, it’s telling the client that this site can only be
accessed over TLS. The client automatically rewrites any non-TLS
requests to be TLS-only. If someone tries to use that client to access
the HTTP version of the web site, the client refuses. When an intruder
sets up their non-TLS version of your site and steers your victim there,
the browser rejects it. Hopefully the email from an annoyed user will
alert you that someone is attacking you.

The client caches this header for a number of days, along with other
per-site data like cookies and images and so on. If the client flushes its
cache, it also loses the HSTS setting.

HSTS Drawbacks

Once you enable HSTS, youre committed. Clients that cache that
header will only connect to your site with TLS. If you have a problem
with your certificate, tough. You can set your site to vanilla HTTP
while you work on the issue, but clients that previously visited your
site and have a cached HSTS header will refuse to connect. You must
fix your TLS problem before anything else. You'll probably have to
flush your browser cache to debug the issue.

Clients apply HSTS to every web site on the host, not just the
main web site. If 'm running https://mwl. io, but I also have the
unencrypted site http: //mwl.io:8080, turning on HSTS will break
my unencrypted site. The client puts an https:// in front of its requests
even if the user hand-types http://. Some applications use private web
servers to provide management interfaces on high-numbered ports.
If those web servers can’'t speak TLS and don't accept certificates, your
client can’t use them. You can use an alternate host name for the same

IP address to access those ports, however.

184

Chapter 8: HSTS and CAA

If you've enabled the includeSubDomains header on your main
site, HSTS applies to everything in the domain, on any host, on any
port. Enabling HSTS with includeSubDomains on https://mwl.io
tells the browser to only use HTTPS on www.mwl.io, unencrypted.
mwl.io, and every other subdomain of mwl. io.

Deploying HSTS

Configuring HSTS on popular web servers like Apache and nginx is
straightforward. The HTTP response header Strict-Transport-
Security establishes HSTS. It has three sub-values. The first two,
max-age and includeSubDomains, are most critical. The max-age
value tells the client how many seconds to cache the header for. Once the
header expires, the client may again attempt unencrypted connections.
The includeSubDomains value tells the client that the header applies
to all subdomains. If mwl.io sends HSTS, the includeSubDomains
value tells the client HSTS applies to www.mwl.io and hackersite.
mwl.io as well. Use these two values to deploy HSTS.

If youre deploying a new web site, HSTS it immediately and fix any
problems during testing. Set max-age to 31536000 seconds (one year)
and set includeSubDomains. Here’s an example for Apache.
Header always set Strict-Transport-Security

"max-age=31536000; includeSubDomains"

Enabling HSTS on an existing web site is trickier. Jumping on
the HSTS train and pushing the throttle all the way forward feels
tempting. Your web site already runs TLS, why wouldn’t you want
to always use it? Caching connection information client-side is like
climbing a rope up an insanely high cliff. Everything goes great until
you're halfway up and someone cuts the rope.

I strongly encourage you to assume that your existing web site is
just as bad as everything else on the Internet, and that deploying
HSTS will expose previously unknown problems. What happens if
your organization’s web site is down for five minutes? An hour? A

185

Chapter 8: HSTS and CAA

day? When you first deploy HSTS on an existing site, set max-age
to something survivable. Also set includeSubDomains. If HSTS
on a subdomain is going to break your web site, you want to know
immediately. Run with that under actual load for at least twice
max-age. If nothing shows, increase it to a day, a week, a month.

The last value, preload tells the client that this site is on the
Chrome preload list. We discuss that in the next section. Never enable

preload before you're ready to submit your site to that list!
HSTS Preload

One problem with HSTS is that it doesn’t take effect until the first time
the client contacts the web site. Someone reaching out to my web site
for the first time could suffer a man-in-the-middle attack, and HSTS
won't stop it because the client hasn’t cached that header list.

Chrome contains a list of web sites that always use HSTS. It’s called
the preload list, because it’s preloaded into the browser. Hosts on
the preload list have a minimum max-age of one year. Many other
browsers use the Chrome list; it's become a de facto standard.*
Browsers that use the preload list don't ever try to access the HTTP
version of a site; they always and only connect to the TLS site.

You can get your site added to this list. There’s a web form. Once
you’re on the list, though, you're on it forever. Yes, Chrome has a form
to remove you from the list. Chrome respects that list, but removals
will not reach Chrome users for months and might never reach users
of other browsers. Consider the preload list a one-way trip. My web
sites have been TLS-only for years now, and I have not submitted most
of them to the preload list.

Once you ask Chrome to add your site to the preload list, add the
preload header to your HSTS configuration.

24 Yes, it’s bad for one vendor to maintain the standard preload list. It’s also
bad for each vendor to maintain its own list, as with root certificates. Everything is

bad.
186

Chapter 8: HSTS and CAA

Certification Authority Authorization

Intruders might try to get X.509 certificates for a host in your
domain. Ignorant or indifferent employees might try to get certificates
from a CA that does not meet your regulatory compliance. The
Certification Authority Authorization (CAA) DNS record is a public
statement of which CAs may issue certificates for a domain.

When a CA receives a certificate request, it checks the domain for a
CAA record. If the CAA record exists and names that CA, it can issue
the certificate. If the CAA record names a different CA, however, the
certificate request is rejected. Today, absence of a CAA record allows
the CA to issue a certificate. The record is intended to eventually
become mandatory, so I encourage you to deploy them now before
some malicious git takes advantage of their absence. If your Certificate
Authority respects CAA records, they provide documentation on how
to format records that let you use their service and no others.

A CAA record has this format.

mwl.io. IN CAA 0 keyword value

The primary keywords for TLS are issue and issuewild. For both, the
value is the official name of a Certificate Authority.

The issue keyword indicates that the named CA is permitted to issue
certificates for this domain. If you use multiple CAs, the zone needs
multiple issue records.

The issuewild keyword means that the named CA may issue wildcard
certificates for this domain. If you use wildcard certificates as well as
standard certificates, you need both the issue and issuewild statements.

To prevent anyone from issuing a certificate matching that keyword,
use a semicolon.

The value must precisely match the CA. The easiest way to figure it
out is to check your CA’s web site.

Here are CAA records for mwl.io. I allow one CA, Let’s Encrypt, to
issue certificates. I explicitly forbid issuing wildcard certificates.

187

Chapter 8: HSTS and CAA

mwl.io. 3600 IN CAA O issue "letsencrypt.org"
mwl.io. 3600 IN CAA O issuewild ";"

Here, Let’s Encrypt may issue standard certificates but not wildcard
certificates. Only Miracle Max may issue wildcard certificates.

mwl.io. 3600 IN CAA O issue "letsencrypt.org"
mwl.io. 3600 IN CAA O issuewild "miracle.max"
Hostnames inherit the domain’s record, unless explicitly overridden
by additional CAA records.
A CAA record can help you implement organization policies,
and might prevent an intruder from gaining a deeper hold on your
network. They work best if you protect your records with DNSSEC.
Now let’s see how to investigate TLS issues.

188

Chapter 9: TLS Testing and Certificate Analysis

Your web server is configured perfectly, with rock-solid TLS? Prove it.
The difference between “works” and “works well” is tricky. It's easy
to see if clients can access a web site or download email. Maybe your
application provides a handy lock icon or flashes a notice that says,
“connecting securely;” whatever that means.” Public-spirited folks
have offered a variety of online tools to investigate and diagnose TLS
connections. Most of them focus on web servers, although some apply
purely to X.509 certificates. I'll discuss the three most vital services.

Server Configuration Testing

SSL Labs is a free service that lets you audit and test your server’s TLS
configuration. They also let you test your browser’s confidentiality,
integrity, and non-repudiation features, and they provide an
assessment of world-wide TLS configuration. Their service is so useful,
I'm inclined to even forgive their use of the word “SSL”

To evaluate your server visit https://www.ssllabs.com, select
“Server Test” and enter your site’s URL. Their server makes many
requests to your site in a short time, analyzes the results, and provides
a report that includes a letter grade from A to E

The first time you run this scan, the results might well horrify you.
Most web servers have default configurations that focus on making
sites available to the widest variety of clients, rather than providing
modern robust TLS. Default configurations open you up to a variety

25 Nothing. It means nothing.
189

Chapter 9: TLS Testing

of attacks, and SSL Labs details your vulnerability to many of them.
In painful detail. Fortunately, fixing everything on the report is
straightforward with minor configuration changes. Modern web
servers all have options to disable obsolete TLS and SSL versions,
use only high-quality algorithms, and enforce cipher ordering.
Accomplishing these drags your grade up to A.

Maybe your management has decided that the organization’s
ecommerce site must support the Netscape browser and SSL version
1. They don’t work on the modern Internet, and most web sites
don’t render properly, but you've had to lug the carcass of these
obsolete clients around in the hope that a miracle will happen and
they’ll generate revenue. Supporting these clients doesn’t only mean
supporting dangerous and obsolete SSL, but also allowing a variety of
exploits against your server. Once you've cleaned up everything you
can, present a report explaining that support for these ancient clients
puts all of your customers at risk. It might not change their mind,
but when the inevitable headline hack happens and the organization
tries to blame you, you’ll have documentation that you warned
management. It might not save your job, but at least you’ll be able to
explain to the press I told them so.

Encryption standards evolve. A configuration that earned an A+
in 2016 is unacceptable today. If you change nothing, the grade
will slowly drop. When you do update your server or change its
configuration, you might inadvertently reduce its TLS quality without
realizing it. Test your site after every upgrade and every time you
reconfigure the server.

Clumsy intruders who probe your network for weaknesses send
many queries using different TLS versions and ciphers in a very short
time, exactly like SSL Labs. If you have an intrusion detection system
that automatically blocks such probes, it might also block these tests.

190

Chapter 9: TLS Testing

Private Testing

While it’s great that SSL Labs offers a public testing service, you also
need the ability to test servers that aren’t on the public Internet and
non-web servers. In most environments I prefer testssl (https://
testssl.sh). The testssl. sh program performs checks much like
SSL Labs’ scanner. It requires only Bash and standard Unix utilities,
and most operating systems have packages for it. Running a complete
scan against your site is as simple as:

$ testssl.sh https://mwl.qio

It evaluates the TLS and SSL versions available on the site, which
ciphers are available, session tickets, and vulnerabilities. At the end,
it simulates connections from a variety of operating systems and
browsers back to Android 4.4 and Windows XP with Internet Explorer
6.

It also lets you probe non-HTTP applications. The --starttls
or -t flag lets you interrogate applications that use STARTTLS, like
POP3, MySQL, and LDAP. Give the protocol as an argument.

§ testssl.sh -t imap mail.mwl.i0:993

Testssl can produce JSON or HTML output, take a list of targets
from a file, and far more. I could fill an entire chapter with tweaking
and tuning testssl. Those who need to perform regular scans, especially
of an entire network, should investigate testssl.

If you prefer a web-based internal system, cryptcheck (https://
cryptcheck. fr) provides similar services as testssl and SSL Labs.
CryptchecK’s front end is written in Rails, while SSL Labs uses Go, so
you can choose the implementation you loathe the least.

191

Chapter 9: TLS Testing

Certificate Transparency

Certificate authorities are imperfect. Certificate authorities can be
fooled, hacked, and abused. Certificate authorities have incorrectly
issued certificates, allowing malicious actors to masquerade as
organizations like Google and Microsoft.

While nothing can prevent all possible fraud,

Certificate Transparency reduces it. All reputable public CAs record the
certificates they sign and make these certificate logs public. Auditors
can go through the records and verify that each CA is providing
certificates correctly.

Transparency also shows if a certificate has been revoked. If you're
writing a vital application and you need faster revocation checking
than that provided by CRLs, OCSP stapling, and proprietary browser
systems, you might finagle API access to a certificate transparency
server and get near-real-time revocation information.

Eventually, TLS clients will reject certificates that were not submitted

to a transparency server.
Finding Bogus Certificates

For us lowly sysadmin types, certificate transparency allows us to see
the certificates issued for our domains. You can verify that they’re all
legitimate. The easiest way to perform this search is through a site
like https://crt.sh or the Google Transparency Project. A search
on certificate transparency logs brings up many candidates. Go to

the site and enter a domain name to see all the certificates issued to
that name and the issuer. It should contain only certificates issued by
your usual CAs. If in amidst them you discover a certificate signed by
“Malevolent Six-Fingered Lackey’s Certificate Authority,” someone’s
scammed a certificate for your organization out of that CA.

192

Chapter 9: TLS Testing

Like many TLS monitoring sites, https://crt.sh is provided as a
public service. It’s trivial to write a script that checks your domain and
compares it to a list of known certificates. Nobody needs to check the
list every five minutes, or even every day. It does provide an ATOM
feed for searches, however.

If you want to perform serious analysis on the certificate
transparency logs, the http://crt. sh source code is available. Build
your own log server.

Certificate Transparency in Certificates

Your certificate contains proof that it was submitted to a Certificate
Transparency log. This information could also be contained in a
stapled OCSP certificate or in a TLS extension, but I see it most often
in the certificate itself.

When a CA decides to sign your certificate request, but before
it sends you the certificate, it submits a preliminary certificate to
a Certificate Transparency Log. The log returns the preliminary
certificate with its own digital signature, the Signed Certificate
Timestamp (SCT). The CA copies the SCT into the real certificate
and signs it. Anyone who examines the certificate can see that it
was properly logged. Chapter 3 has an example. Certificates can be
submitted to multiple logs, and might have multiple SCTs.

TLS clients increasingly look for SCTs in certificates. Eventually,
they will reject certificates without them. A client that encounters a
certificate from a well-known trust anchor that seems otherwise valid
but lacks SCTs should be suspicious. Browsers will soon notify CAs of
such certificates.

193

Chapter 9: TLS Testing

What Failure Looks Like

All well designed applications behave similarly, but poorly designed
ones all fall apart in their own way. Everyone eventually finds
themselves pushing the limits of applications or deciding how things
should fail. What you need is a whole bunch of bad examples, edge
cases, and stuff that’s technically legal but not truly supported.

That’s where https://badssl.com comes in. The main site is
innocuous, but it contains links to a whole bunch of deliberately
misconfigured sites. Technically, you can have a certificate with ten
thousand alternative names, but will a real browser support that? The
badSSL site lets you easily test it. You can fire up every browser and see
how they react to current and previous TLS standards.*

If this isn't enough annoyance for you, you can consider running

your own CA.

26 I considered testing Chrome, Firefox, and Safari against a variety of TLS
errors and including the results in this book, but the mere existence of such docu-
mentation would compel each browser to change.

194

Chapter 10: Becoming a CA

Certificate Authorities are run by people. No, not people like you
and I. Running a CA requires both discipline and meticulous attention
to detail, qualities most of us only think we have. When given a choice
between using an external Certificate Authority and running your
own, you should almost certainly use an outside one for public facing
systems.

Sometimes you have no choice but to run your own, however.

Many applications and devices, such as VPNs and wireless access
points, use client certificates for authentication. They ship with a CA
for generating those certificates. These CAs are designed to get you up
and running quickly, which is nice. They rarely document long-term
operation, however, which is not nice. Some of these quick-start CAs
include scripts that sabotage long-term operation. If you're using one,
understanding how it works and how to operate a CA in the long term
is invaluable. Most of these “included” CAs are built on OpenSSL.

In a small organization or home lab, you might run a private CA
and deploy your root certificate to your systems. Larger organizations
might find it worthwhile to deploy a full certificate authority software
suite and pay a commercial CA for a name-constrained signing
certificate. A few of you might want to get in on the racket and build
your own commercial Certificate Authority.

We'll discuss each of these in turn.

195

Chapter 10: Becoming a CA

Private Trust Anchors

Private trust anchor CAs create their own self-signed certificates,
and use them to sign other certificates. Clients do not trust these
certificates until you install the private root certificate on them. An
automation system like Ansible or Active Directory can configure
clients for you. If you have only a couple clients, you could run around
and manually install the certificate everywhere.

Running a certificate authority is an amount of work directly
proportional to the number of clients, servers, and applications
that need certificates. Global firms that run private CAs have staft
dedicated to that work. You should not begin that work lightly. If
installing and running a private CA is a lot of work, ripping out that
CA in favor of self-signed certificates everywhere can be even more
work.

The first vital question is, where will you run your CA? If this is your
test lab and you're building a CA for your own edification, a virtual
machine is fine. A real CA, used by a real organization, should be
more tightly protected. If you were building a public CA and wanted
to offer certificate signing to the world, the system holding the root
certificate would probably be disconnected from the Internet and
locked in a vault. Scale requirements to protect your CA with your
environment.

Building and operating your own lab-scale CA will teach you a
bunch about how X.509 and TLS work, however. I recommend it in
exactly the same spirit that I recommend everyone build their own
firewall at least once. It nails that knowledge into your bones.

CA Software

Migrating between certificate authority software suites is challenging.
Choose something that will suit your needs for the long term. If your
organization is larger than a handful of people, consider a tool like

easy-rsa, XCA, or Dogtag to act as a full-on internal CA and support

196

Chapter 10: Becoming a CA

CRLs and an OCSP responder. Large orgs might consider FreeIPA or
EJBCA. Any of these would fill a book this size so we won't go into
detail, but using any of them requires everything in this book.

Tiny organizations can build their own private CAs with pure
OpenSSL commands. We'll look at doing that for your test lab. Before
using such a CA in production, however, look at the CAs already
deployed in your organization. Do you have Active Directory, or an
open source tool like FreeNAS or Puppet? Are you using Hashicorp
Vault to store certificates? All of these, and far more, can sign web
server certificates. Cloud services often offer their internal CA or
CA toolKkits to their customers. Java includes a CA. You have many
choices.

If your organization is large enough that managing certificates would
require effort, consider deploying ACME internally. Let’s Encrypt’s
ACME server, Boulder, is open source. Boulder submits to Certificate
Transparency logs, however, which leak information about your
servers to the public. CA software like step-ca also support ACME. You
can use an intermediate certificate in your ACME server, granting you
the flexibility to issue certificates either via ACME or your other tools.

OpenSSL CAs

You can build your own CA using OpenSSL. There’s even a command
for it, openssl-ca(1). That manual page says, “The ca utility was
originally meant as an example of how to do things in a CA. It was
not supposed to be used as a full-blown CA itself: nevertheless

some people are using it for this purpose.” A perusal of the BUGS
and RESTRICTIONS section further illuminates that OpenSSLs
built-in CA tools are fine for your test lab, but it’s not fine for a large
organization. In particular, openssl-ca is not intended for multiuser
use. The CA databases have no locking. CSR signing cannot filter
X.509 extensions. Building a CA with OpenSSL will teach you how a
CA works, however.

197

Chapter 10: Becoming a CA

TLS evolved rapidly over the last quarter-century. The journey to
our current protocol might look like a straight line, but it went down
innumerable dead ends and doubled back. OpenSSL has lingering
support for many of these dead ends. OpenSSL is so widely deployed
that changing configuration syntax and defaults, just like changing the
command line, would adversely impact many people. This means your
configuration is going to include statements that seem like they should
be defaults. You’ll have options that must be set to a certain value in
the 2020s, because they linger from the 1990s. I'm not going to explain
the historical trivia of why a particular value was standardized in 2003.
The manual exists for folks who want to support 1990s PKI.

OpenSSL includes an OCSP responder, openssl-ocsp(1). Don't
expose it to the Internet. OpenSSL has undergone fairly heavy code
audits in the last few years, but writing Internet-facing servers is not
their priority. If this constraint clashes with your needs, leverage a tool
intended to act as a CA.

When your OpenSSL CA starts getting complicated, don’t write
lengthy scripts to automate it. I know many sysadmins who have
done so, and every one of them?® regrets it. (Occasional scripts for
simple common commands are fine.) Switch to a CA toolkit like
easy-rsa, dogtag, or step-ca. If you must debug one of these, however,
knowledge of the way a CA works and the underlying OpenSSL
operations will greatly aid you.

Additionally, OpenSSL evolves. Bugs get fixed. Features are added,
removed, and tweaked. When you update OpenSSL, your CA might
break. Any tutorial on how to run a CA is going to break for certain
users. You need to be perfectly fine with debugging, searching for
answers, and studying the fine print in man pages.

After all this, if you're determined to run a minimal CA with
OpenSSL, here’s one way to do it.

27 I don’t count that maniac who thinks ed(1) is the only editor a real sysad-
min needs.

198

Chapter 10: Becoming a CA

Building an OpenSSL CA

A true Certificate Authority has several mandatory components. You
might not need them all for your test lab, but if you're skipping key
components you might as well forget the whole thing and accept self-
signed certificates everywhere.

Your CA files should only be accessible to root. Given most Unix
systems today, placing a learning CA in /root/ca is not unreasonable.
You must have a strict organization for your certificates and keys.
We'll enforce this partially in openss1.cnf and partly through the
power of our astounding discipline, although you could use a shell

script instead.

A modern CA has both a root certificate and an intermediate
certificate. Vendors include the root certificate in their trust bundles.
The intermediate certificate is used in day-to-day operations for
issuing certificates.

Policies and control of X.509 extensions is what separates a CA
certificate from a random self-signed certificate. You'll set both in
openssl.cnf. The root certificate and the intermediate certificate
require slightly different policies, and different sorts of certificates
need different extensions. We'll build them piecemeal throughout this
section, but complete examples are available at https://cdn.mwl. io.

Every signing certificate, whether root or intermediate, maintains
databases of issued and revoked certificates. We'll use openssl ca
for this, even though it lacks locking.

Each signing certificate also needs a Certificate Revocation List.
You'll need to make the CRL available on a web server somewhere. As
this is a private CA, that web server should probably be just as private.

Similarly, you’ll need an OCSP responder, which needs access
to the certificate databases. For a test lab you can run it on the CA
machine itself. In a real environment, you wouldn’t let the key signing
infrastructure anywhere near the public responder.

199

Chapter 10: Becoming a CA

Root CA Organization and Defaults

The settings used for a random OpenSSL client do not apply to a root
CA. Additionally, the policy used by an intermediate certificate differs
subtly from the root policy. Give the root certificate its own private
openssl.cnf. As the root certificate is going in /root/ca/root, put this
in /root/ca/root/openssl.cnf. My sample files can be downloaded
from https://cdn.mwl.io.

Configuration sections that apply to openssl ca appear in the
[ca] section.
[ca]
default_ca = CA_default

The default ca option tells OpenSSL where to look for
information on the default CA. Yes, you could have multiple CAs in a
single openss1.cnr file, but that’s the sort of thing that sets your fellow
sysadmins on multi-year quests for vengeance. Don't do it. Here we
tell openssl ca that the default CA is defined in a section called
CA default.
[CA_default]

Directory and file Tocations.
dir = /root/CA/root

The first critical part of the CA configuration is where you put the
CA. Once you define dir, you can assign other options using that
variable. Here’s a few vital directories.

$dir/certs
$dir/cri
$dir/newcerts

certs
crl_dir
new_certs_dir

The certs option sets the directory where this CA stores critical
certificates, such as the root certificate. This is set to $dir/certs, Or

/root/CA/root/certs.

200

Chapter 10: Becoming a CA

The new certs dir option tells OpenSSL where to put new
certificates. We've set that to /root/ca/root/newcerts.

Your CA needs a directory to store its Certificate Revocation List. Set
this with cr1 dir. Here, it’s sdir/cri.

All of these directories must exist before you create certificates.

$dir/index.txt
$dir/serial

database
serial

The database and serial options set where OpenSSL stores the
database of signed certificates and the list of certificate serial numbers.

$dir/private/ca.key.pem
$dir/certs/ca.cert.pem

private_key
certificate

Using certificate and private key to set the location of the
signing certificate and its private key will save you a bunch of typing.
The private directory must exist before running any commands, but
make it accessible only to root.

crlnumber = $dir/crlnumber

crl = $dir/crl/ca.crl.pem
crl_extensions = cril_ext
default_crl_days = 30

Hopefully your root certificate won’t need to revoke any intermediate
certificates, but always prepare for the worst. Each new CRL is
assigned an incrementing number. The value cr1number points to
a file containing the next CRL number to be used. The current PEM-
encoded CRL is stored in cr1. CRLs use particular X.509 extensions,
and the section crl ext will enumerate the ones we need. Finally, the
default crl days option says how many days a CRL is good for.
You must generate and issue a new CRL before the old one expires.

201

Chapter 10: Becoming a CA

hame_opt = ca_default
cert_opt = ca_default
default_days = 375

preserve = no

policy = policy_strict

The name opt and cert opt options control how OpenSSL
displays information in the signing command. Setting these to
ca_default tells openssl to use modern settings. Leaving them
unset triggers obsolete, undesirable behavior.

The default days option gives the standard expiration date of a
certificate. Here, certificates we sign will be good for 375 days.

The preserve option copes with bugs in certain long-obsolete
systems. Set it to no.

The policy is where things get interesting. A CA policy dictates
what sorts of certificates the CA may sign. The big differences between
a root certificate and an intermediate certificate appear in the policy.
Our root CA gets its policy from a section called policy strict.

Configuring CA Policies

A policy tells OpenSSL which certificates it should sign. It does so by
comparing variables in the signing certificate and the CSR. The root
certificate included in trusted bundles should only sign intermediate
certificates. This means that the certificates it signs must belong to the
same organization as the root certificate. We need a fairly strict policy.

[policy_strict]
countryName = match

stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

A setting of match means that the setting in the CSR must be
identical to that in the signing certificate. In my organization, the

202

Chapter 10: Becoming a CA

countryName is set to US. If I try to use this certificate to sign
something from Florin or Guilder, OpenSSL will reject it.

A setting of optional means that the value is not necessary. If a CSR
contains an email address or a department, the policy doesn’t care.

If it’s set to supplied, the policy requires that the value be present in
the CSR. It accepts any value, so long as it’s present.

Configuring Requests

A private CA root must generate at least one CSR, its own. We'll want
to set a few basic values, like hash algorithms. The configuration needs

a reqg section.

[req]

default_bits = 4096
distinguished_name = reqg_distinguished_name
string_mask = utf8only

default_md = sha256

x509_extensions = v3_ca

prompt = no

The default bits,distinguished name,and default md
settings should be familiar from our discussions of CSRs in Chapter 6.
Setting string mask to utf8only restricts what type of characters can
appear in variables. UTF-8 has been the standard since 2003. Finally,
the x509 extensions setting points us to the v3 ca section, which
contains those extensions that make sense for a CA.

If you set a default private key location with default keyfile,
don’t point it at the file containing the CA’s private key. An incomplete
command might overwrite your CA's private key. This would be bad.

The req _distinguished name section comes straight from
requesting a CSR.

203

Chapter 10: Becoming a CA

req_distinguished_name]

us

= Michigan

Detroit

Inconce1vab1e Incorporated

[
C =
ST
L
0
ou
CN

My CA Root Certificate

The main addition is the list of extensions for a CA, in the v3 ca
section. These extensions are applied to certificates requested using
this configuration. The x509v3_config(5) man page includes many
more options, but these are the ones most common for a CA.

[v3_ca]

Extensions for a typical CA ("man x509v3_config’).
subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer
basicConstraints = critical, CA:true

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

The Subject Key Identifier contains a unique code identifying
particular certificates. Setting subjectKeyIdentifier to hash has
been standard since 2002.

The Authority Key Identifier helps identity the public key used to
create these certificates. It’s useful when someone is migrating from
one key pair to another. Setting authorityKeyIdentifier to
keyid:always option tells OpenSSL to not only add this information
to the certificate, but to fail if it can’t comply. Adding issuer copies
identifying information from the signing certificate to this certificate,
to further help disambiguate the proper keys, but it’s not set to always
so OpenSSL can continue if it can’t figure out the issuer.

The basic constraints dictate if created certificates can sign further
certificates—that is, if it’s a signing certificate. This is flagged as
a critical extension, so the client must respect it. Further basic
constraints are set as a variable, a colon, and a value. Here, we use
basicConstraints to set CA to true. This configuration creates CA

certificates.

204

Chapter 10: Becoming a CA

With the keyUsage setting, we dictate what certificates created
under this policy can do. You can create certificates with very narrow
purposes, such as ones that can only encrypt and others that can
only decrypt, or certificates that provide only non-repudiation.

The important values for a CA are digitalSignature, cRLSign,

and keyCertSign. This grants the CA the right to sign certificates

and its own CRL. Many clients fail to validate keyUsage. The
extendedKeyUsage option contains additional uses, as we'll see in
“User Certificates” later this chapter.

An intermediate certificate should be able to sign certificates, but
the certificates it signs should not be able to sign further certificates.
This requires setting the X.509 basic extension pathlen to zero. The
only way to set this additional constraint is to create a new extensions
list and tell the req section to use it. We have to create this in the root
CA’s openss1.cnf, because the root CA imposes this restriction on the
intermediate CA.

[v3_intermediate_ca]

subjectKeyIdentifier = hash

authorityKeylIdentifier = keyid:always,issuer

basicConstraints = critical, CA:true, pathlen:0

keyUsage = critical, digitalSignature, cRLSign, keyCertSign
The v3 intermediate ca extensions listis identical to

thatin [v3 cal, except for adding pathlen:0 to the end of

basicConstraints.
Creating the Root Certificate

You've defined the directory structure in openss1.cnf. Make sure that
all those directories exist before proceeding. In addition to the certs,
crl, newcerts, and private directories, also create a csr directory for
storing CSRs. Be very disciplined in how you store everything, or in

a few months you’ll lose yourself wandering in a swamp of similar-
looking files.

205

Chapter 10: Becoming a CA

Additionally, a signing certificate assigns consecutive hexadecimal
serial numbers to each certificate. The serial number file must exist
before starting, and it needs an initial seed value. For a real CA youd
use a random number, but for ease in reading I'm starting with 1000.
Similarly, you need a CRL serial number. You also need an empty
certificate index file, which will become the database of signed

certificates.

cd /root/CA/root
echo 1000 > serial
echo 1000 > crlnumber
touch 1index.txt

With this, your CA’s supporting files are ready. You can create your
root certificate with openssl req. Go to /root/ca/root. All of our
root CA operations use the -config flag to pull in the CA’s private
openssl.cnf. The -newkey and -keyout options tell OpenSSL to
create a new key and where to put it, while —out tells it where to put
the finished certificate. The -x509 instructs OpenSSL to create a
self-signed certificate. We want this certificate to be valid for 7300 days,
or twenty years, and to use the X.509v3 extensions we described in the

v3_ca section.

openss1 req -config openssl.cnf -newkey rsa \
-keyout private/ca.key.pem -x509 -days 7300 \
-extensions v3_ca -out certs/ca.cert.pem

You'll be prompted for a passphrase. A root certificate needs a
passphrase. If this was a large commercial CA and not something for
testing, you could leverage a hardware security module to store the
private key instead.

Take a look at the certificate with openssl x5009.

$ openssl x509 -in certs/ca.cert.pem -noout -text

Verify that it’s a X.509 version 3 certificate, that the issuer and
subject are correct, and that it contains the extensions set up in

206

Chapter 10: Becoming a CA

openss1.cnf. If you somehow created an X.509 version 1 certificate,

stop and figure out why before trying to create an intermediate CA.
The file ca. cert.pemis your private root certificate. Distribute it to

your clients and have them install it in their trusted certificate store.

Configuring the Intermediate CA

Now that we have a root CA we can create a subordinate, intermediate
CA. Putitin /root/ca/intermediate, and duplicate all the
subdirectories we needed for our root certificate.

mkdir intermediate

cd intermediate

mkdir certs crl csr newcerts private
touch 1index.txt

echo 1000 > serial

echo 1000 > crlnumber

FH o oW H H R

Rather than create a brand new openss1.cnf, we'll copy the one for
the root certificate.

cp ../root/openssl.cnf .

Edit openssi.cnf as needed for an intermediate CA. First,
change file and directory locations. The directories and paths are
all configured according to the variable dir. Changing dir to
/root/CA/intermediate gives everything in the intermediate CA its
own location.

[CA_default]

dir = /root/CA/intermediate
certs $dir/certs

Certificates signed by your intermediate CA should have a one-year
expiration, just like a real intermediate CA. I'm going to add a few
extra days, just in case I need to storm a castle or something. I also
need to set a default algorithm.

207

Chapter 10: Becoming a CA

default_md sha256
default_days = 375

Further down in CA_default, the certificate and key files should

have their own names, as well as the CRL.

$dir/private/intermediate.key.pem
$dir/certs/intermediate.cert.pem

private_key
certificate

Er] $dir/crl/intermediate.crl1.pem

One point that demonstrates how OpenSSLs ca subcommand was
not intended for real-world use is in how it handles X.509 extensions
requested by a client. One would expect to be able to filter which
extensions a client was allowed to request. Instead, OpenSSL has the
copy extensions option. If set to copy, any extensions set in the
CSR but not by the CA are copied. If set to copyall, the settings in the
CSR override the CA’s defaults. Setting copy extensions to copy
is the only way an OpenSSL CA can support certificates for multiple
hostnames. If you're trying to use OpenSSL as a CA, you must

meticulously examine the extensions on all incoming CSRs.

copy_extensions = copy

Last in the CA_default section, set a policy. The intermediate
certificate needs to be able to sign a wider variety of certificates than
the root certificate.

policy = policy_Tloose
Now describe that loose policy.

[policy_loose]
countryName = optional

stateOrProvinceName = optional
TocalityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

This policy demands nothing but a Common Name. It’s not so much
“loose” as “indifferent.” Feel free to tighten it to reflect your needs.

208

Chapter 10: Becoming a CA

Finally, change the Distinguished Name. The organization
information should remain unchanged, but the Common
Name should reflect that this isn’t a root certificate. I call this
Intermediate Certificate 1 because I might need a second or a third
later.
[reqg_distinguished_name]
Cc=2uUS
ST = Michigan
L = Detroit
0 = Inconceivable Incorporated
Ou = IT
CN = My CA Intermediate Certificate 1

The root CA has a policy that requires most of these fields match
what it claims, so keep everything but the Common Name identical to
the root.

We'll add extension lists to the intermediate CA configuration
for each of the different types of certificate we want to sign, but this

suffices to create the intermediate CA certificate.
Creating the Intermediate CA Certificate

Double-check that all of the necessary directories and files exist in
your intermediate CA directory before proceeding. The intermediate
CA will sign most of your certificates, so it requires even more file
storage discipline than the root CA.

Go into /root/cA/intermediate to create your CSR. The command
looks almost exactly like that for creating the root certificate CSR.

Only the names of the created files change.

openss1 req -config openssl.cnf -newkey rsa \
-keyout private/intermediate.key.pem \
-out csr/intermediate.cert.csr

Enter the passphrase when prompted. It should differ from that used
for your root certificate.

209

Chapter 10: Becoming a CA

Now use the root certificate to sign the intermediate CA’'s CSR. You'll
need to refer to files under both root and intermediate, so it’s simplest
to do this directly under /root/ca. We'll use the openssl ca
command. Many of the options should be familiar from creating
the root certificate. The -batch option skips the various “hit yes to
continue” prompts. We use -days to make the intermediate certificate
good for only 10 years, rather than the 20 years of the root certificate.
Replacing an intermediate certificate is much simpler than getting a
new certificate in vendor trust bundles.

openss1l ca -batch -config root/openssl.cnf \
-extensions v3_intermediate_ca -days 3600 -notext \
-in 1intermediate/csr/intermediate.cert.csr \

-out 1intermediate/certs/intermediate.cert.pem

Using configuration from root/openssl.cnf
Enter pass phrase for /root/CA/root/private/ca.key.pem:

You must use the root certificate’s private key passphrase to continue.

Check that the request matches the signature
Signature ok
Certificate Details:
Serial Number: 4096 (0x1000)
Validity
Not Before: Jan 20 15:57:55 2021 GMT
Not After : Nov 29 15:57:55 2030 GMT

This is the first certificate signed by our CA, so it gets a nice even
serial number. Following this we have the certificate details. Verify
everything looks the way you want, or live with it for ten years. Finally,
down at the end, we have database information.

Write out database with 1 new entries
Data Base Updated

What is this “database” anyway?

210

Chapter 10: Becoming a CA

Certificate Databases

The critical CA databases are the serial number and the index. The
archive is also useful.

The serial file contains the serial number of the next certificate the
CA issues. Once that number is assigned to a certificate, the serial
file is moved to serial.oldand a new serial file with the next
serial number is created. While I used 1000 to make it easier to read,
remember that these are hex numbers.

The index. txt file describes every certificate issued by the CA. The
OCSP responder uses this database to validate requests. It has six
fields, although one is most often empty. Let’s look at ours.

V 3011291557557 1000 unknown /C=US/ST=Michigan/
O=Inconceivable Incorporated/OU=IT/
CN=My CA Intermediate Certificate 1

The first field is a single letter giving this certificate’s status. V means
Valid, R means Revoked, and E means Expired. Our root certificate is
still valid.

The second field is the certificate’s expiration date, in
YYMMDDHHMMSS format. The trailing Z*® indicates this timestamp
is in UTC. This certificate expires on 29 November 2030, just before 4
PM.

The third field is for the certificate’s revocation date. It’s blank in our
database. We'll see that when we revoke a certificate.

The certificate’s serial number is in the fourth field.

The fifth field is the filename containing the certificate. For our CA it
will always be unknown.

Finally, the sixth field is the certificate’s Distinguished Name.

28 The Z is historically “Zulu Time” The name comes from the phonetic
alphabet for Z, meaning “meridian zero,” and has nothing to do with magnificent
beadwork or speaking isiZulu.

211

Chapter 10: Becoming a CA

Any time you use the openssl ca command to sign a certificate,
it updates the databases. It also saves a copy of the certificate in the
newcerts directory, named after the serial number.

Whenever you sign a certificate, back up the database files. Text
databases are easily corrupted, and corrupt database files are difficult
to repair. Restoring backups is much easier. Real CA software replaces
text files with actual databases. The OpenSSL folks do not want to add
sqlite as a dependency (reasonably enough), so we get text files and

copious warnings.
Chain File

Just as with any trusted CA that uses an intermediate signing
certificate, our CA will need a chain file. This is a single file
containing any intermediate certificates. Yes, you might have multiple
intermediaries. It could also contain the root certificate, but that’s

unnecessary.
cat intermediate/certs/intermediate.cert.pem > chain.pem

We'll use this to complete individual certificate full chain files.
Preparing the OCSP Responder

Your OCSP responder needs a certificate, so that clients can validate
its legitimacy. The intermediate CA will sign it and add the proper
X.509v3 extensions. You'll regenerate this certificate every year, so
create a configuration file for it. This certificate is integral to the CA’s
operation and will be created by the intermediate CA operator, so it’s
okay to store the OCSP configuration with the rest of the intermediate
CA files.

Here’s a sample OpenSSL configuration file for a OCSP certificate,

ocsp.conf.

212

Chapter 10: Becoming a CA

[req]

prompt =no

default_bits = 4096
distinguished_name = req_distinguished_name
default_md = sha256

default_keyfile ocsp.privkey.pem

[reqg_distinguished_name]

C =US

ST = Michigan

L = Detroit

0 = Inconceivable Incorporated
OU = OCSP

CN = OCSP Responder
openss1 req -config ocsp.conf -newkey rsa \
-out ocsp.cert.csr
Note the last line of the configuration. I only use this file once a year,
so I put the command to create the new CSR in the file as a comment.

Run that command.
$ openssl req -config ocsp.conf -newkey rsa -out ocsp.cert.csr

Give it a passphrase and you’ll have your OCSP CSR. Drag it into the
intermediate CA’s csr directory.
An OCSP certificate needs specific X.509 extensions. Define those

extensions in the intermediate CA’s openssi.cnf. Here’s an ocsp
policy.

[ocsp]
basicConstraints = CA:FALSE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer
keyUsage = critical, digitalSignature
extendedKeyUsage = critical, OCSPSigning

We've seen these basicConstraints, subjectKeyIdentifier,
authorityKeyIdentifier, and keyUsage settings before. The
last line, extendedKeyUsage, is for additional roles. While the
acceptable values for key usage are set in the standard, extended key

usages can include any valid OID. If you can define a role in ASN.1

213

Chapter 10: Becoming a CA

and assign it an OID, it can be tied to a certificate. You'll see many
standard extended key usage values, including this one for signing
OCSP certificates. This extension is marked critical. A client that
doesn’t understand the extension must reject the whole certificate.
With the policy and the CSR, we can sign the OCSP certificate. 'm

running this from the intermediate directory.

openss1l ca -batch -config openssl.cnf -extensions ocsp \
-notext -in csr/ocsp.cert.csr -out certs/ocsp.cert.pem
You'll be prompted for the intermediate CA’s passphrase, then
shown the certificate. The CA saves the certificate in the file you name
after —out, but also keeps a copy in its master repository under the
newcerts directory.
You must make one final decision for your OCSP responder:
where it should listen to the network. If you're building a CA as an
educational exercise, confine your responder to 1ocalhost. If your
environment does not permit incoming Internet connections, you
can allow it to listen to your local network. If you are on the public
Internet you can use this certificate and have the responder publicly
available, but don’t use the OpenSSL responder. Use a third-party
responder designed for Internet exposure, and attach it to CA software
that uses real databases. OCSP responders normally listen on port 80.
I'm using the hostname ocsp.mwl.io for my OCSP responder. It
points to a test IP, 203.0.113.207. By using that hostname in future
certificates, I can move the IP as needed.
Once we have revoked certificates for the responder to gripe about,
we'll configure it.

Web Site Certificates

A CA is expected to apply reasonable extensions to certificates it signs.
This requires a policy in the intermediate CA’s openss1.cnf. Here’s a

policy suitable for typical web sites, called server cert.

214

Chapter 10: Becoming a CA

[server_cert]

basicConstraints = CA:FALSE

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer:always

keyUsage = critical, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth

authorityInfoAccess = OCSP;URI:http://ocsp.mwl.io0:80
crlDistributionPoints = URI:http://crl.mwl.io/intermediate.crl

The basicConstraints, subjectKeyIdentifier, and
keyUsage should all be familiar by now, so we'll look at the new
fields.

The authorityKeyIdentifier has the usual keyid and issuer
keywords, but this time issuer is set to always. If OpenSSL can't figure
out how to set issuer, the operation fails. Our CA is issuing this
certificate, it better know what it is.

The extendedKeyUsage of serverAuth is a standard OID meaning
that this certificate is intended only for servers. If you put such a
certificate into a web or email server, it will identify the server. You
can't use it for, say, your OCSP server.

Certificates can contain information about their certificate authority
with the authorityInfoAccess keyword. Here, the CA adds the
location of its OCSP responder to every server certificate it signs.
Similarly, cr1DistributionPoints puts the intermediate CA’
CRL in the certificate.

Now go to your server and create a CSR for a server, exactly as
discussed in Chapter 6. The CA doesn’t need your server’s private key
information, only the CSR. If you're creating certificates in your test
lab you might be using the same host for creation as hosting your CA,
but at least create a new directory and keep them from cluttering your
root and intermediate CAs.

Here's a configuration for a typical server certificate that my CA

might be asked to sign.

215

Chapter 10: Becoming a CA

[req]

prompt = no
default_bits = 2048
default_md = sha256

default_keyfile server-private.key
distinguished_name req_distinguished_name
reg_extensions = v3_req

[reqg_distinguished_name]
CN = blackhelicopters.org

[v3_req 1]
subjectAltName

@alt_names

[aTt_names]

DNS.1 = bTackhelicopters.org

DNS.?2 = www.blackhelicopters.org
DNS.3 = freebsd.bTackhelicopters.org
DNS.4 = centos.blackhelicopters.org
DNS.0 = debian.blackhelicopters.org

Note that this isn’t for the CA's domain, mwl.io. I'm issuing
certificates for a completely different domain. This is where a normal
CA would be expected to verify the requester’s identity, but I control
both domains so I'll skip that step. Create your CSR and copy it into
your intermediate CA’s csr directory, go to the intermediate directory,
and sign the certificate.

openss1l ca -batch -config openssl.cnf \

-extensions server_cert -notext -in csr/server.csr
Using configuration from openssl.cnf
Enter pass phrase for /root/CA/intermediate/private/in-
termediate.key.pem:
Check that the request matches the signature
Signature ok

Certificate Details:
Serial Number: 4097 (0x1001)

You might notice that I didn’t tell OpenSSL where to put the created
certificate. It’s not lost. OpenSSLs ca subcommand keeps a copy of all
signed certificates under newcerts, by serial number. This is certificate

216

Chapter 10: Becoming a CA

1001, so it’s newcerts/1001.pem. If you examine the certificate, you'll
see the server extensions.

Return that file to your client. If you're kind, you’ll combine it with
your existing chain file and send a full chain file.

$ cat chain.pem intermediate/newcerts/1001.pem \
>> server.fullchain.pem

You now have a real server certificate.
Revoking Certificates

No learning experience is complete unless it covers failure. Configure
a certificate like this.

[req]

prompt = no

default_bits 2048

default_keyfile revoked-private.key
distinguished_name req_distinguished_name
reg_extensions = v3_req

[req_distinguished_name]
CN = microsoft.com

[v3_req]

subjectATltName @aTt_names

[aTt_names]

DNS.1 = microsoft.com
DNS.2 = google.com
DNS.3 = whitehouse.gov

Yes, yes, you're a naughty sysadmin and the CA should reject it. But
pretend they miss it. Go ahead and sign it like you would a certificate
for any other web site. You can now set up a web server for Microsoft,
Google, and the White House and any host that trusts your certificate
will believe you. You'll need a hosts entry, but it’s worth doing once to
drive the lesson home.

This certificate needs revoking.

217

Chapter 10: Becoming a CA

OpenSSLs ca subcommand has a revoke feature. It needs only one
argument, the certificate to be revoked. This particular certificate has
serial number 1003. I'll use the copy in the intermediate CA’s archive
to revoke it.

openss1l ca -config openssl.cnf \
-revoke newcerts/1003.pem
Using configuration from openssl.cnf
Enter pass phrase for
/root/CA/intermediate/private/intermediate.key.pem:
Revoking Certificate 1003.
Data Base Updated

The database now lists this certificate as revoked. Note that the third
field is now populated.

R 2201311621487 2101221329237 1003 unknown
/CN=microsoft.com

OpenSSLs OCSP responder uses this entry to inform clients that the

certificate is revoked.

Generating CRLs

While the OCSP responder reads the certificate database, the
Certificate Revocation List is a document that clients download.
Regenerate the CRL regularly, either on a schedule or whenever you
revoke a certificate.

A CRL is a list of items, signed and encoded by a CA. It’s essentially
a special-purpose certificate, much like that for our OCSP responder.
It needs particular X.509 extensions. When we set up our CA’s
openssl.cnf, we pointed the CRL extensions at the section crl ext.
It’s time to define that section.
[cril_ext]
authorityKeyIdentifier=keyid:always

A CRL requires only the Authority Key Identifier extension. The
keyword always tells us that if the key ID is not present, the CRL
cannot be signed.

218

Chapter 10: Becoming a CA

You can now create the CRL.

openss1l ca -config openssl.cnf -gencrl \
-out cr1/2020-01-22.crl.pem

OpenSSL reads the index and spits out the CRL. Name your
CRLs after the date (and perhaps time) they were created.
While you must copy this file to the URL given in your CA’s
crlDistributionPoint, knowing when a file was created will be
invaluable in troubleshooting.

View the contents of your new CRL with openssl crl.

$ openssl crl -text -noout -in crl1/2020-01-22.cr1.pem
Certificate Revocation List (CRL):

Version 2 (0x1)

Signature Algorithm: sha256WithRSAEncryption

You'll see information about the issuer and the included X.509

extensions before getting down to a list of revoked certificates.

Revoked Certificates:
Serial Number: 1003
Revocation Date: Jan 22 13:29:23 2021 GMT

Clients can compare certificate serial numbers to the CRL and act
accordingly.

Setting up a web server to provide the CRL to clients is left as an
exercise for the sysadmin.

Client Certificates

While the command for signing a client certificate closely resembles
that for signing a server certificate, a client certificate requires different
X.509 extensions. Here’s the intermediate CA’s client configuration

from openssl.cnf.

219

Chapter 10: Becoming a CA

[user_cert]

basicConstraints = CA:FALSE

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer

keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth, emailProtection

authorityInfoAccess = OCSP;URI:http://ocsp.mwl.io0:2560

criDistributionPoints = URI:http://crl.mwl.io/intermediate.crl

The difference between this policy and one for a server certificate
is the value of extendedKeyUsage. This certificate can be used for
client authentication and email protection.” Apply this policy to the
certificate as you sign it.
$ openssl ca -batch -config openssl.cnf \

-extensions user_cert -notext -in csr/client.csr

Using configuration from openssl.cnf

Enter pass phrase for
/root/CA/intermediate/private/intermediate.key.pem:

Enter the passphrase, and you’ll get a certificate.

Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 4101 (0x1005)

This is certificate 0x1005. Return newcerts/1005.pem to the client.
Private OCSP Responder

Again, don’t run OpenSSLs OCSP responder on the open Internet. It’s
meant for education, not for production. Only play with it in a private
lab or, better still, on 1ocalnhost. If your CA must provide revocation
notices for hosts on the Internet, and you don’t want to run larger CA
software, skip OCSP and only provide CRLs.

Run the OCSP responder with the openssl ocsp command. The
-port flag lets you set the port it binds to. The -text flag tells the
command to print its responses in plain text, so you can check the

29 I have no idea what your specific application thinks “email protection”
means, but you get it. Congratulations.

220

Chapter 10: Becoming a CA

terminal where it's running and see what happened. Use —indexfile
to give the location of the index file and -CA to point to your private
CA’s chain file. Finally, use -rkey to point to your OCSP responder
certificate’s private key file and -rsigner to give the actual OCSP
certificate. (If you're running LibreTLS, you can specify niceties like
the checksum algorithm and an IP as well as a port.)
openssl ocsp -port port -text -index indexfile \
-CA chain.pem -rkey private-key -rsigner cert.pem

Here I've copied all the needed certificates, chain files, and keys from
my intermediate CA into one directory and run the OCSP responder
on port 80.

openss1l ocsp -port 80 -text -index ../index.txt \
-CA chain.pem -rkey ocsp.privkey.pem \
-rsigner ocsp.cert.pem

Enter pass phrase for ocsp.privkey.pem:

Give the OCSP key’s passphrase and the responder will be ready.
ocsp: waiting for OCSP client connections...

Running is a start, but it’s no replacement for working. Let'’s make an
OCSP query as per Chapter 4. Open another terminal and pick one
of your freshly issued certificates to verify. We'll start with the client
certificate.

$ openssl ocsp -issuer chain.pem -cert client.cert.pem \
-text -url http://localhost

Both the responder and the client spew the response. Wade through
all the stuff about hashes and nonces and you’ll find this delight.

Cert Status: good

Validating something thats supposed to validate is great, but double-
check that OCSP can also reject certificates. We revoked a certificate
earlier this chapter. Let’s check it.

221

Chapter 10: Becoming a CA

$ openssl ocsp -issuer ../chain.pem \
-cert revoked.cert.pem -text -url http://localhost

Cert Status: revoked

It works.

You now have a functional test CA. Feel free to play with it,
experiment with certificates, and dig into the innards of X.509, public
key encryption, and TLS. Remember that an OpenSSL CA is only
intended for testing and education, not for heavy-duty use.*

Name Constraint CAs

Certificate revocation is dubious, as discussed in Chapter 4. Some
industries must be able to effectively remove trust in a certificate.
Browsers that contact the CA's OCSP responder will probably assume
the certificate is okay. OCSP staples effectively create certificates that
expire in seven days, but a week is plenty of time to carry out a bank
account heist on a selected target.

Given how TLS functions, the best way us lowly end users can
improve the protocol’s robustness is to shorten certificate life. If your
public certificates are real, and must be validated by a CA widely
recognized by the public, and you want to reduce certificate life, you
might consider a signing certificate with a name constraint.

A name-constrained signing certificate allows an organization to
sign certificates within a limited list of DNS names in the Subject
Alternative Name. This is a ANSName Constrained certificate. You can
also get issuing certificates with name constraints on the Distinguished
Name, IP addresses, email addresses, and other certificate identifiers.
If I purchased a name constrained certificate for my domain mwl. io, I
could sign certificates for that domain and any host in that domain.

30 You're going to ignore me and roll this delicate flower into production,
aren't you? Don't give me that innocent look, I know better. This entire section of this
book is a disservice to humanity.

222

Chapter 10: Becoming a CA

I can issue those certificates with any conditions and usages I like. If
I want my server certificates to expire in twenty-four hours, I can do
that. The automation to deploy and enable those certificates is left as
an exercise for the sysadmin, as is scheduling the replacements with
time to resolve any problems before the certificates expire.

Name constrained certificates are for organizations with staff and
funding. Everything that applies to running a private trust anchor
applies to managing a name constrained certificate. Anyone who gets
your organization’s private key can create certificates for any host in
your network.

A certificate that allows you to sign certificates for any host or client
within your domain name might be tens of thousands of dollars.
Much as the cost of DV server certificates has plunged, however, many
people expect the price of name constrained signing certificates to
drop. For organizations with real risks, and particularly organizations
that have been burned by TLS failures in the past, the expense might
be considered worthwhile.

Using such a certificate requires real PKI software, not the clumsy
OpenSSL CA demonstrated in the previous section. If you lack the
staffing to properly deploy and manage something like Dogtag, a name
constrained certificate is not for you.

This is such an edge case that I'm not going to cover it in any depth.
A few of you will have need of this in your careers, though, and being
aware it exists will make you a hero. Or responsible for the implosion

of your employer. One of those.

Becoming a Global Root

You didn’t learn from running the test CA earlier this chapter, and
you think you might like to build a globally recognized Certificate
Authority. Technologically, this is a well understood problem. You
build servers. You protect your private key on some sort of Hardware
Security Module (HSM). You find an existing root CA and pay them

223

Chapter 10: Becoming a CA

a pile of money to cross-sign your certificates while you complete the
requirements to get your root certificate accepted in all major trust
bundles.

That’s your first problem: all major trust bundles.

At this time that’s Microsoft, Mozilla, Google, Apple, Oracle, and
Adobe.

Each vendor has a process for evaluating, accepting, and including
an organization’s root certificate in their collection. They each
have their own standards. In general, prospective root certificate
organizations are required to pass several different audits and agree to
submit to regular future audits. Gathering and maintaining that sort
of data requires a lot of time, attention to detail, and reams of double-
checking.

To get rid of the nagging urge to become a public CA, dig up the
current version of the CA/Browser Forum’s document “Baseline
Requirements for the Issuance and Management of Publicly-Trusted
Certificates” This will cure most readers. If reading this document
sends a warm thrill through your soul, though, you just might be one
of nature’s CA operators.

Becoming a globally recognized root CA might sound nifty, but it’s
a fancy way of declaring that you're tired of being a sysadmin and that
your true love is complicated, nitpicky paperwork.*" Success means
that people all across the world will try to scam you, rip you oft, and
fake being someone else.

Sysadmin doesn’t look so bad now, does it?

And with some TLS understanding, you can make your systems
behave better. Or worse. As you wish.

31 While I often recommend that my readers investigate fulfilling and glamor-
ous careers such as sewage tank scuba diving, if you're given a choice between “run-
ning a globally recognized CA” or “being a sysadmin” I'd have to tell you to flee for
your life. There will be no survivors.

224

Afterword

It’s a bad sign when a book starts talking to me. But when I sent this
pile of words off to copyedit, it whispered, “I've just sucked one year
of your life away. Tell me, how do you feel? And remember, this is for
posterity, so be honest.”

Truth is, I'm feeling pretty okay.

TLS is a huge topic. Rather than presenting you with a complete
compendium of its most intimate workings, I've tried to orient you
to its nature. Numerous TLS encyclopedias, standards, and RFCs will
gleefully illuminate you as to the exact specifics of this algorithm in
that environment with those clients. You wouldn’t be a sysadmin if you
didn’t know how to fill in all the tiny holes, but I've tried to provide a
map of the territory.

Our industry collaboratively dragged SSL, then TLS, into the
modern era. It’s not perfect. It's obtuse, complex, frightening,
infuriating, and useful all at once. I should know. Here are some
documents I trudged through in researching this book: RFC 5246
(TLS 1.2), RFC 6066 (SNI, OCSP stapling, and other extensions), RFC
8446 (TLS 1.3), RFC 6347 (DTLS 1.2), REC 5280 (X.509v3 Certificates
and CRLs), RFC 6960 (OCSP), RFC 6962 (Certificate Transparency),
RFC 2986 (CSRs), RFC 8555 (ACME), RFC 7633 (especially the
OCSP Must-Staple tidbits but also other TLS extensions), RFC 6125
(handling Common Names and wildcards), RFC 5480 (ECC Subject
Public Key Info), RFC 7301 (ALPN), RFC 8737 (the ACME tls-
alpn-01 challenge), RFC 6797 (HSTS), and RFC 8659 (DNS CAA
Resource Record).”” More than any other book I've written, while I

32 FT was kind enough to compile the list for me, so I'm handing
it off to you.

225

read the standards documents, my technical reviewers made it clear
I did not understand the reasoning, context, and intent behind them.
My thanks go to all of those fine folks once again.

The future of TLS is in the hands of three of the IETF’s working
groups: tls, lamps, and trans. Dig up their papers if you want a glimpse
at our future.

I hope that this book leaves you less bewildered. If you're still
confused, go watch The Princess Bride and try again.

226

Sponsors

The following fine people not only paid for this book before it
was done, they overpaid just to get their name in the book. As I
plummeted through incomprehensible standards documents, these
fine folks kept my lights on and fed the pet rats.

Thank you all.

Print Sponsors

Russell Folk
William Allaire

Trix Farrar

Carsten Strotmann
Bob Eager

Chris Dunbar
Xavier Belanger

Eric LeBlanc

Rogier Krieger
Christopher Kennedy
Lucas Raab

Jan-Piet Mens
Florian Obser
Mischa Peters
Marcus Neuendorf
Dan Parriott

Bob Beck

tanamar corporation
Ariel Sanchez

Trond Endrestel

Bernd Kohler
Andrew Vieyra
Niall Navin
Roger Winans
Bruce Cantrall
Lex Onderwater
Andrew Dekker
Stefan Johnson
Nicholas Brenckle
Adam Kalisz
Maurice Kaag
Dave Cottlehuber
Maciej Grochowski
Shaun Addison
Niclas Zeising
David Hansen
Phi Network Systems
Eden Berger

Niall Navin

Julio Morales
John Hixson

John W. O’Brien
Herwart Vargens
Craig Maloney
Brad Sliger

JR Aquino

Patronizers

Make a living as a writer? Inconceivable!

But patronizing the arts is a prestigious way to live, with a long and
glorious tradition. My Patronizers (https://patronizeMWL.com) make
this lunatic career far more comfortable.

A few folks send me money by the wheelbarrow. The least I can do
is list these noble folks—Kate Ebneter, Stefan Johnson, Jeff Marraccini,
Eirik @verby, and Phillip Vuchetich—in the ebook and print versions
of everything.

Never miss a new Lucas release!
Sign up for Michael W Lucas’ mailing list
https://mwl.io

Symbols
0-RTT data 115
/etc/protocols 137
-i 22,128
-0 22
openssl
-no_tlsl 66
-no_tlsl_1 66
-no_tlsl_2 66
-no_tlsl_3 66

A
Abstract Syntax Notation One. See. ASN.1; See
ASN.1
ACME 15, 18, 28,29, 51, 72, 73, 75, 96, 102, 107,
123, 124, 145, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 159, 161, 162, 163,
164, 166, 168, 169, 171, 172, 173, 174, 176,
179, 181, 195, 223
API 159
challenge 149, 150, 151, 152, 153, 154, 156, 157,
158, 159, 161, 162, 163, 165, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176, 177,
178,223
challenge methods 149, 153, 156
DNS-01 149, 151, 152, 168, 169, 170, 171, 172,
174,176, 177,178
HTTP-01 149, 150, 151, 152, 153, 154, 156, 158,
161, 163, 168, 169, 170, 176, 177, 178
key 149
limits 153
process 149
registration 148
server 195
TLS-ALPN-01 149, 151, 152, 153, 155
token 149, 150
Active Directory 38, 67, 194, 195
Adelman 34
Adobe 70,222
AEAD 47,114
Agent Extensibility Protocol. See AgentX
algorithm 24, 25, 31, 32, 33, 34, 37, 38, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 54, 74, 78, 89,
90,91, 94, 111, 114, 119, 125, 126, 130,
138, 139, 143, 145, 172, 178, 181, 188, 201,
205, 219, 223
breaking 41, 42, 48, 63
ALPN 115, 149, 151, 152, 153, 155, 223
Android 189
Ansible 169, 194
Anvil 169
Apache 18,107, 152, 154, 162, 183
Apple 70,222
Application Layer Protocol Negotiation. See
ALPN; See ALPN

ASN.1 21, 68, 83, 94, 211

As you wish 222

Authenticated Encryption with Associated Data.
See AEAD; See AEAD

authentication 21, 35, 38, 39, 44, 45, 47, 54, 74,
126, 193, 218

authoritarian 51

Authority Information 92, 93

Authority Key Identifier 202, 216

Automated Certificate Management Environment.
See ACME; See ACME

awk 46

B

badssl.com 120, 121, 192
base64 82, 84

bash 155

basic constraints 202
beadwork, magnificent 209
BEGIN CERTIFICATE 84
BEGIN RSA PRIVATE KEY 84, 89
BIND 18,169, 171, 176
Boulder 195

Buypass 154, 158

C
C 50,57, 64, 87, 89,90, 112, 113, 120, 121, 125,
133, 143, 144, 202, 207, 209, 211
CAA 29,99, 181, 185, 186, 223
CA/Browser Forum 222
Carnivore 63
carrier pigeon 62
CentOS 18, 128, 155, 156
certbot 154, 155
certificate
client 21, 67, 74, 101, 113, 130, 139, 140, 141,
193,217,219
components 72
contents 89
replaceing revoked 102
root. See trust anchor; See trust anchor
serial number 90
server 67, 113,139, 140, 213, 215,217, 218
signature algorithm 90
S/MIME 148
validation 52, 80, 111, 112
viewing remote 97
wildcard 96, 98, 135, 143, 150, 151, 152, 161,
168,177,178, 185, 186
Certificate Authority 19, 26, 28, 50, 51, 67, 73, 76,
92,93, 125, 134, 145, 148, 176, 185, 190,
193, 197, 221
building 193, 194, 195, 196, 197, 201, 202, 204,
207, 209, 210, 212, 214, 216, 217, 218, 219,
220, 221,222
database 209

index 29, 199, 204, 205, 209, 217, 219
internal 29, 70, 194, 195
revoking 215, 216
software 194, 195, 221
trust problem 70
Certificate Authority trust model 50
certificate logs 190
Certificate Revocation List. See CRL; See CRL
Certificate Signing Request. See CSR; See CSR
Certificate Transparency 93, 94, 190, 191, 195, 223
Certification Authority Authorization. See CAA;
See CAA; See CAA; See CAA
Certification Practice Statement. See CPS; See
CPS
chain file 78, 80, 86, 105, 120, 166, 210, 215, 219
Chain of Trust 75, 76,77, 78, 80, 97, 113
challenge 148, 149, 153, 154, 155, 161, 163, 165,
171,173,174, 176, 177
checksum. See hash; See hash
Chrome 109, 110, 184, 192
cipher 33, 44, 45, 46, 47, 48, 49, 50, 53, 66, 114,
116,118,119, 188
alternate names 45
cipher list 48, 49, 50, 66
cipher suite 33, 44, 45, 46, 47
client certificate. See certificate:client; See certifi-
cate:client
Cliffs of Insanity 22, 68
CN 64, 65, 69, 87, 89, 90, 91, 93, 101, 112, 113,
120, 121, 127, 128, 132, 133, 134, 136, 138,
140, 141, 143, 144, 145, 160, 161, 166, 167,
178, 202, 206, 207, 209, 211, 214, 215, 216
deprecated 69, 117, 127, 133
CNAME 169, 170, 171, 173, 174
code 27, 33, 34, 45,90, 112, 115, 116, 118, 125,
130, 138, 143, 191, 196, 202
column 46, 47
commoners 70
Common Name. See CN; See CN
compression 114
confidential. See confidentiality; See confidenti-
ality
confidentiality 21, 31, 34, 36, 37, 43, 60, 101, 108,
114, 126, 131, 137, 152, 153, 187
confidentially. See confidentiality; See confiden-
tiality
constraint 29, 73,74, 77, 81, 95, 112, 128, 133, 196,
202, 203, 220
cosmology 21
cp 169,205
CPS 93
CR 58, 60
CRL 81, 83,99, 103, 104, 105, 106, 107, 108, 109,
133, 190, 195, 197, 199, 203, 204, 206, 213,
216,217, 218, 223
decode 104

empty 108
endpoint 103, 104
update 104
CRLF 58
CRLSets 109
Cross-signing 79
crt.sh 190, 191
cryptcheck 189
cryptographer 34, 49
cryptographic algorithm. See algorithm; See
algorithm
cryptography 21, 24, 25, 27, 28, 31, 33, 35, 37, 38,
40, 41, 42, 43, 129, 136
Cryptography 21, 25, 28, 31, 52, 84, 86
CSR 29, 73,76, 86, 99, 102, 123, 124, 125, 129, 130,
131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 148, 149,
150, 151, 152, 164, 166, 167, 195, 200, 201,
203, 206, 207, 208, 211, 212, 213, 214, 223
CTRL-C 63,97
curl 155,159

D
daft 57,134
DANE 110
Datagram Transport Layer Security. See DTLS;
See DTLS
ddns-confgen 169, 171, 172
Debian 18, 156, 159
deep inspection 117
dehydrated 18, 105, 152, 155, 156, 157, 158, 159,
160, 161, 163, 164, 165, 166, 167, 168, 170,
171,174,175, 176,177,178
archive 167
directory 165
per-domain configuration 177
democracy 51
deploy_cert 168,175,176
Depth 112
DER 83, 84, 85, 104, 105
detritus 60
DHCP 26
DHE 44, 54, 137
dig 172, 173, 220
digital certificate 19, 67
digital signature 25, 38, 39, 72, 76, 94, 95, 130, 191
disservice to humanity 220
Distinguished Name 91, 112, 113, 131, 133, 140,
141, 142, 143, 207, 209, 220
DNS 18, 26, 75, 93, 95, 110, 134, 135, 136, 138,
143, 144, 148, 151, 156, 170, 171, 172, 173,
176, 185, 214, 215, 220, 223
DNS-based Authentication of Named Entities. See
DANE; See DANE
dns-hook.sh 174
dNSName Constrained 220

DNSSEC 110, 186

DNSSEC Mastery 110

docker 154

Dogtag 194, 221

domains.txt 158, 160, 161, 166

domain validated. See DV; See DV

downgrade attack 181

DTLS 26, 27, 58, 64, 223

DV 74,75,91, 124, 133, 141, 144, 148, 165, 221

E
Early Data 115
easy-rsa 194
ECDHE 44, 46, 47, 48, 54, 65, 114, 116
ECDSA 27, 34, 40, 42, 44, 46, 47, 89, 98, 126, 127,
131, 135, 136, 137, 138, 139
EJBCA 195
elliptic curve 54, 136
parameters 136, 137, 138, 139
Elliptic Curve Digital Signature Algorithm 126.
See ECDSA; See ECDSA
encoding 28, 82, 83, 84, 85
convert 84
Encoding 33, 82, 83
encryption 19, 27, 33, 34, 35, 36, 37, 38, 39, 40, 41,
44, 47, 50, 53, 57, 82, 86, 87, 89, 90, 92,
111, 114, 126, 220
END CERTIFICATE 84
EPEL 155
ESNI 55
EV 75,91, 103, 124, 125, 133, 143
Expansion 114
expiration date 63,73, 79, 80, 81, 106, 107, 119,
166, 167, 179, 200, 209
exponent 91
Extended master secret 117
extended validated. See EV; See EV
extension 73, 74, 81, 82, 90, 91, 92, 93, 94, 95, 118,
121, 127,131, 132, 133, 134, 136, 138, 142,
143, 145, 155, 191, 195, 197, 199, 201, 202,
203, 204, 206, 207, 208, 210, 211, 212, 214,
215, 216, 217, 218, 223
critical 74
non-critical 74

F

fault-oblivious computing 176

Federal Information Processing Standards. See
FIPS; See FIPS

file(1) 83

file sharing 26

FIPS 22,24, 25,48

FIPS compliance officer 25

Firefox 70, 109, 192

Florin 79, 144, 201

FreeBSD 18

FreelPA 195
FreeNAS 195
FTP 26, 58,59

G

Galois Counter Mode. See GCM; See GCM
GCM 44, 46, 47, 48, 65, 114, 116

gibberish 33, 36, 68, 94, 144

GnuTLS 18, 24, 46, 66

Google 70, 109, 110, 151, 190, 215, 222
Google Transparency Project 190

GOST 25

grep 128,155

Guilder 36, 71, 79, 201

H

Happy Fun Land 17

hardware security module. See HSM; See HSM

HARICA 70

hash 27, 31, 32, 33, 38, 39, 41, 42, 43, 44, 138, 146,
201, 202, 203, 211, 213, 218, 219

non-cryptographic 31, 32

Hashed Message Authentication Code. See
HMACG; See HMAC

Hashicorp Vault 195

HIGH 48, 49, 50

HMAC 35, 38, 39

hook 155, 156, 159, 161, 163, 165, 168, 171, 174,
175,177,178

hook.sh 156, 163, 168, 174, 178

hot fudge sundaes 17

HSM 52,204, 221

HSTS 29, 60, 181, 182, 183, 184, 223

HTTP 21, 26, 55, 59, 60, 61, 64, 65, 105, 115, 119,
150, 151, 152, 181, 182, 183, 184, 189

HTTPS 26, 59, 60, 148, 150, 152, 181, 183

HTTP Strict Transport Security. See HSTS; See
HSTS

Humperdinck 77, 144

|

TIANA 44, 66

ideal solution 23

IETF 19, 24, 84, 224

includeSubDomains 183, 184

integrity 25, 31, 38, 39, 43, 101, 114, 117, 141, 187

intermediate CA 73, 77, 79, 92, 203, 205, 207, 208,
210,211,212, 213, 214, 216, 217, 219

intermediate certificate 26, 78, 80, 81, 166, 195,
197, 198, 199, 200, 203, 206, 208, 210

International Telecommunications Union’s. See
ITU; See ITU

Internet Assigned Number Authority. See JANA;
See TANA

Internet Exploder 6 78

Internet Security Research Group 15, 147

intrusion detection 188

Invalidation. See revocation; See revocation

iocane powder 15

IPSec 20,21

isiZulu 209

ISRG. See Internet Security Research Group; See
Internet Security Research Group

issuing certificate 67

itchy feeling 102

ITU 68

I've just sucked one year of your life away 223

J
Java 86, 195
Jon Postel 43

K
key 19, 27, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45,
47,50, 51, 52, 53, 54, 57, 63, 72, 73, 76, 84,
86, 87, 88, 89, 91, 92, 95, 96, 101, 102, 114,
116, 118, 123, 124, 125, 126, 130, 131, 132,
135, 136, 137, 138, 139, 140, 141, 142, 143,
145, 146, 148, 149, 150, 151, 152, 164, 165,
167,171, 172,173,175, 177,178, 197, 199,
201, 202, 204, 206, 207, 208, 211, 213, 214,
215, 216, 218, 219, 220, 221
length 39
short 40
key length 39, 40, 41, 138, 143
key pair 35, 36, 123, 148, 165, 202
key update 63

L

L 120, 121, 125, 133, 143, 144, 202, 207, 211

LDAP 62, 68,71, 189

Let’s Encrypt 15, 90, 112, 113, 148, 150, 154, 158,
161, 185, 186, 195

LF 58, 60

LibreSSL 18, 21, 59

LibreTLS 60, 219

Lilith Saintcrow 15

line feed 58, 59

Linux 21, 23, 155

load balancer 150, 156

M

MAC 38, 44, 45,47, 117

MacOS 18,21, 58

Magic 17

man-in-the-middle 63, 181, 184

Master-Key 116

max-age 183,184

MEDIUM 48

meridian zero 209

Message Authentication Code. See MAC; See
MAC

Microsoft 38, 58, 70, 82, 190, 215, 222
middleware 117

model rockets 21

mod_md 152, 154

modulus 91, 146

Mozilla Foundation 70

multivariable differential equations 21
Must-Staple 107, 109, 110, 223
MySQL 189

N

name constraint signing certificate 29, 74, 193, 220
named-checkconf 172

narcissism 26

netcat 22, 57, 58, 64

Netscape 19, 21, 188

newline 58, 59

nginx 152

NIST 25, 126, 136

non-repudiation 31, 37, 39, 187, 203

NSA 20

nsupdate 156, 169, 171, 172, 174, 175, 176

(o]
O 15,64, 69, 87, 89,90, 112, 113, 120, 121, 125,
133, 143, 144, 202, 207, 209, 211
Object Identifier. See OID; See OID; See OID
OCSP 67, 81, 82,92, 93, 99, 103, 105, 106, 107,
108, 109, 110, 178, 190, 191, 195, 196, 197,
209, 210, 211, 212, 213, 216, 218, 219,
220, 223
privacy 106
responder 105, 108, 195, 196, 197, 209, 210, 212,
213, 216, 218, 219, 220
staple 82,107, 108, 109, 178, 190, 220, 223
stapling 103, 106
OCSP Response Data 106
OID 68, 69, 94, 211, 213
OneCRL 109
Online Certificate Status Protocol. See OCSP; See
OCSP
OpenBSD 18, 52, 154
openssl 21,22, 23, 46, 47, 48, 59, 60, 61, 62, 64, 65,
66, 72, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97,
104, 105, 106, 111, 120, 128, 129, 130, 131,
132,134, 136, 137, 138, 139, 141, 142, 143,
144, 145, 146, 195, 196, 197, 198, 200, 203,
204, 205, 207, 208, 210, 211, 212, 214, 216,
217,218, 219, 220
-algorithm 137
-batch 208, 212,214, 218
-brief 64, 65, 66
ca 72,159,195, 196, 197, 198, 199, 200, 201,
202, 203, 204, 205, 206, 208, 210, 212, 214,
216,217,218
-CA 219

-cert 105, 106, 219, 220

-certfile 87

-certopt 95, 97

ciphers 46, 47, 48

—conﬁg 137, 138, 139, 141, 142, 204, 207, 208,
211,212,214, 216,217,218

-connect 22, 23, 59, 60, 62, 97, 105, 111

crl 104, 198, 199, 203, 205, 206, 213, 216, 217,
218

-days 204, 208

-early_data 115

ec 89

-export 86, 87

-ext 93,95

-genparam 137

genpkey 137

-ign_eof 64

-in 22, 83, 84, 85, 87, 88, 89, 93, 95, 104, 105,
144, 145, 146, 204, 208, 212, 214, 217, 218

-indexfile 219

-info 87

-inform 83, 84, 85, 104

-inkey 87

-issuer 105, 106, 219, 220

md5 146

-modulus 146

-newkey 137, 138, 139, 141, 142, 143, 144, 204,
207,211

-nodes 87, 88, 89, 132, 143

-noout 22,23, 83, 84, 89, 93, 95, 97, 104, 105,
144, 145, 146, 204, 217

no_pubkey 95, 97

no_sigdump 95, 97

-no_ssl3 66

ocsp 92, 105, 106, 196, 210, 211, 212, 213, 218,
219, 220

-ocsp_uri 105

-out 22, 85, 86, 87, 88, 89, 97, 137, 138, 139, 141,
142, 143, 144, 204, 207, 208, 211, 212, 217

-outform 85

pkes12 86, 87, 88, 89

pkeyparam 23

-port 218,219

-quiet 64

req 129, 130, 131, 132, 133, 134, 136, 137, 138,
139, 140, 141, 142, 143, 144, 145, 146, 201,
202, 203, 204, 207, 211, 214, 215

-rkey 219

rsa 89, 109, 139, 141, 142, 144, 146, 196, 204,
207,211

-rsigner 219

-s 46,47,48, 157

s_client 22,57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
97,105,111, 112, 113, 114, 115, 119, 120

-servername 61

-showcerts 22, 23,97, 105

-ssl3 65

-stdname 46

subcommand 22, 23, 57, 64, 66, 83, 97, 105, 206,
214,216

subjectAltName 95, 134, 136, 138, 140, 142, 143,
144, 214, 215

-text 22,23, 83, 84, 89, 95, 97, 104, 105, 106,
144, 145, 204, 217, 218, 219, 220

-tls1 47, 65,111

-tls1_1 65

-tls1_2 47,65,111

-tls1_3 47,65

-url 105, 106, 219, 220

-v 46,47, 48, 164

-V 46

-verify_return_error 58, 59, 60, 64, 65, 120

version 72

x509 22,23, 83, 84, 85, 89, 93, 95, 97, 105, 146,
201, 204

OpenSSL 18, 19, 21, 22, 23, 24, 28, 46, 47, 48, 49,

57,58, 59, 60, 63, 64, 65, 66, 68, 72, 83, 84,
85, 86, 87, 88, 89, 94, 97, 104, 105, 107,
112, 114, 115, 128, 129, 131, 132, 134, 137,
141, 142, 144, 146, 193, 195, 196, 197, 198,
199, 200, 201, 202, 204, 206, 210, 212, 213,
214, 216, 217, 218, 220, 221

directory 72,128

manual 22, 23, 48, 58, 66, 106, 129, 195, 196

version 22, 23,47, 128

OpenVPN 20, 21

operator algebra 21

Oracle 70, 78, 222, 666

organization validated. See OV; See OV
OU 69, 133, 143, 202, 207, 209, 211

OV 75,91, 98, 103, 124, 125, 133, 143

P

P-
P-
P-

251 136
256 136, 137
384 136

paradox 97
paramedics 21
passphrase 52, 67, 88, 136, 141, 204, 207, 208, 211,

212,218,219

pathlen 92,203

PEM 82, 83, 84, 85, 89, 97, 105, 138, 139, 199
Perfect Forward Secrecy. See PFS; See PFS
PES 54

PFX 86

PGP 84

Pit of Despair 43, 125

pkes 88

PKCS #1 89

PKCS #8 89

PKCS #10 86

PKCS #12 86, 87

policy 73, 74, 150, 172, 198, 200, 201, 203, 206,
207,211, 212,218
POP3 59, 60, 189
prince 19, 33, 147
Privacy-Enhanced Mail. See PEM; See PEM
private key 36, 37, 39, 41, 51, 52, 54, 73, 86, 87, 88,
101, 102, 123, 124, 130, 131, 132, 136, 141,
143, 146, 199, 201
protection 51
reuse 124
Protocol Data Unit. See PDU
PSK 53,116,118
PSK identity 116
PSK identity hint 116
public key 27, 34, 35, 36, 37, 38, 39, 40, 41, 72, 91,
92,114, 136, 148
public key encryption 34, 35, 37
public log 94
Puppet 169, 195

R

Raspberry Pi 155

RBL 63

Red Hat 24

revocation 28, 51, 74, 81, 83, 90, 99, 101, 102, 103,
104, 105, 107, 108, 109, 124, 147, 148, 178,
190, 197, 199, 209, 215, 216, 217, 218, 220

failures 108

revocation insurance 102

RFC 873 99

RFC 2986 86, 123, 223

RFC 5246 223

RFC 5280 80, 134, 223

RFC 5480 223

RFC 6066 223

RFC 6125 223

RFC 6347 223

RFC 6797 223

RFC 6960 223

RFC 6962 223

RFC 7301 223

RFC 7633 223

RFC 8446 223

RFC 8555 148,223

RFC 8659 223

RFC 8737 223

Rivest 34, 35, 126

robustness principle 43

rsync 169

Russia 25

S

Safari 109, 192

SafeBag 86, 87, 88

SAN 69, 74, 95, 96, 101, 121, 127, 128, 132, 134,
135, 141, 142, 143, 145, 160, 169, 170, 220

SCT 93,191

Secure Remote Password 116

Secure Renegotiation 53, 114

Secure Sockets Layer. See SSL; See SSL

security issues 99

sed 155

selfish jerk 153

self-signed certificate 19, 69, 197, 204

serial number 69, 103, 204, 208, 209, 210, 214, 216

Server Alternative Names. See SAN; See SAN

server certificate. See certificate:server; See certif-
icate:server

Server Name Indication. See SNI; See SNI

session cache 53

Session-ID 116

session ticket 53,116, 119, 189

sewage tank scuba diving 222

SHA-1 25,42

SHA256 31, 32, 38, 44, 45, 46, 47, 65, 90, 94, 113,
138

SHA384 44, 45, 46, 47, 65, 114, 116, 118

Shamir 34, 126

Shanghai Electronic Certification Authority 70

Signed Certificate Timestamp. See SCT; See SCT

SKIP 20

SMTP 26, 57, 62,92

server-to-server 63

SNI 28, 55, 61, 149, 223

SNMP 26, 68

SRP username 116

SSH 26, 57

SSL 19, 20, 21, 29, 42, 43, 47, 48, 51, 53, 57, 78,
111, 114, 116, 118, 127, 187, 188, 189, 223

version 19, 20, 47, 189

SSL accelerator 53

SSLLabs 187, 188, 189

ST 120, 121, 125, 133, 143, 144, 202, 207, 209, 211

staging 154, 158

Start Time 117, 119

STARTTLS 28, 58, 61, 62, 63, 189

stderr. See standard error output

stdin. See standard input

stdout. See standard output

Strict-Transport-Security 183

su 163, 164, 167, 177

Subject. See Distinguished Name; See Distin-
guished Name

Subject Alternative Names. See SAN; See SAN

Subject Key Identifier 92,202

Subject Public Key Info 90, 91, 145, 223

sudo 163,168, 176

Swordfight 84

Symmetric. See symmetric encryption;

symmetric encryption 33, 35, 37

T
tar 22
TCP 17,20, 26, 32, 59, 62,92, 151
technocracy 51
telemicroneurosurgery 21
testssl 189
testssl.sh 189
The Princess Bride 15, 224
There will be no survivors 222
TLS 15,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29,31, 37, 38,42, 43, 44, 45, 46, 47, 48, 49,
51, 52,53, 54, 55, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 71, 74, 76, 80, 81, 82,
90, 91, 92, 94, 95, 97, 99, 103, 105, 107,
108, 109, 110, 111, 112, 114, 115, 116, 117,
118, 119, 120, 121, 126, 128, 129, 135, 147,
151, 152, 154, 160, 179, 181, 182, 183, 184,
185, 186, 187, 188, 190, 191, 192, 194, 196,
220, 221,222,223, 224
failure 119
negotiation 28, 49, 52, 55, 111, 112
opportunistic 61, 62
resumption 28, 52, 53,111, 115, 116, 117, 118,
119
version 19, 20, 26, 27, 43, 45, 47, 49, 53, 63, 65,
66,111,114, 116, 118, 120, 181, 182, 188,
189
TLS-PSK 116
TLS session ticket 117, 119
TLS session ticket lifetime hint 117, 118
Tree of Trust 28, 75, 78, 79, 80, 112
true love 80, 222
trust anchor 67, 69, 70,71, 77,78, 79, 80, 81, 92,
112,121, 191, 221
private 194
trust bundle 26, 69, 70, 71, 72, 79
internal 71
Trust Models 50
Trust Stores Observatory 70
TXT 151,169, 171,172,173, 175, 176

V)

ucd-snmp. See net-snmp

UDP 17, 26, 64, 173

Unix 18, 21, 22, 23, 41, 52, 58, 70, 72, 82, 129, 145,
155, 157, 189, 197

user certificate. See client certificate; See client
certificate

UUCP 62, 127

\'

validation levels 74, 98
validity 90

validity date 73, 81
verify return 112

Verify Return Code 115, 119

vertigo reduction 19

View-Based Access Control. See VACM
VPN 26, 27, 67, 140, 141, 193

w

Web of Trust 50, 51
White House 215
willy-nilly 26
Windows 21, 78, 189
wine shop 98
Wireguard 20

X

X.500 69, 112

X.509 21, 22, 23, 28, 51, 68, 69, 72, 73, 74, 82, 83,
90, 99, 104, 110, 113, 121, 124, 125, 127,
133, 145, 181, 185, 187, 194, 195, 197, 199,
203, 204, 206, 211, 216, 217, 220

version 90

X509v3 Authority Key Identifier 92

x509v3 Basic Constraints 92

X509v3 Certificate Policies 93

X509v3 Extended Key Usage 91, 92

X509v3 Key Usage 91, 92

X509v3 Subject Alternative Name 93, 95

X509v3 Subject Key Identifier 92

X25519 65,113,114

XCA 194

Z

zero-day 147
ZeroSSL 158
Zulu Time 209

	Acknowledgements
	Chapter 0: Introduction
	Who Should Read This Book?
	TLS, SSL, and Versions
	Why TLS?
	Using openssl(1)
	The OpenSSL Manual
	The United States and FIPS
	Applications and TLS
	TLS versus DTLS
	Encryption and This Book
	What’s in This Book

	Chapter 1: TLS Cryptography
	Hashes and Cryptographic Hashes
	Symmetric Encryption
	Public Key Encryption
	Message Authentication Codes
	Digital Signatures
	Key Lengths
	Breaking Algorithms
	Cipher Suites
	Cipher Suite Names
	Alternate Cipher Names
	Included Cipher Suites
	Cipher Lists and Cipher Ordering
	When HIGH Isn’t Enough

	Trust Models and Certificate Authorities
	Private Key Protection
	TLS Resumption
	TLS Secure Renegotiation
	Perfect Forward Secrecy
	Server Name Indication

	Chapter 2: TLS Connections
	Connecting to Ports
	Connecting versus Debugging
	Line Feeds, Carriage Returns, and Newlines
	TLS-Dedicated TCP Ports
	Opportunistic TLS
	Connection Commands
	DTLS

	Silencing s_client
	Specific TLS Versions
	Choosing Ciphers

	Chapter 3: Certificates
	Certificate Standards
	Trust Anchors
	Making Your Own Trust Bundle
	The OpenSSL Trust Bundle

	Certificate Components
	Extensions and Constraints
	Validation Levels
	Trust and Your Certificate
	The Chain of Trust
	Intermediate CAs
	The Tree of Trust

	Certificate Validation
	Encoding
	Distinguished Encoding Rules (DER)
	Privacy-Enhanced Mail (PEM)
	Converting Between Encodings
	OpenSSL Without Input Files

	PKCS #12
	Creating a PKCS #12 File
	Viewing a PKCS #12 File
	Exporting From PKCS#12 Files

	Certificate Contents
	Certificate Extensions
	Certificate Transparency
	Digital Signature
	Incomprehensible Certificate Information
	Skip Keys and Signatures

	Multi-Name Certificates
	Wildcard Certificates
	Viewing Remote Certificates
	Choosing a CA

	Chapter 4: Revocation and Invalidation
	Revoking Certificates
	Certificate Revocation Lists
	Online Certificate Status Protocol
	OCSP Stapling

	Revocation Failures
	Browsers Versus Revocation
	Validation Solutions

	Chapter 5: TLS Negotiation
	Certificate Validation
	Protocol Settings
	Session and Resumption
	TLS 1.2 Session and Resumption
	TLS 1.3 Session and Resumption

	TLS Failure Examples

	Chapter 6: Certificate Signing Requests and Commercial CAs
	Reusing CSRs
	Why Go Commercial?
	Gathering Information
	Public Key Algorithm
	Common Names
	OpenSSL Configuration Files
	Creating CSRs
	Creating ECDSA CSRs
	Main req Section
	Password Management
	req_distinguished_name
	Extensions
	Elliptic Curve Parameters Files
	Requesting ECDSA Certificates

	Generating RSA CSRs
	RSA CSR Configuration File
	Requesting RSA Certificates
	Client CSRs
	Certificates Without Subjects
	CSRs Without Configuration Files

	Viewing CSRs
	Using the CSR and Certificate
	Reconnecting Files and Finding Reused Keys

	Chapter 7: Automated Certificate Management Environment
	How ACME Works
	ACME Registration
	ACME Process

	ACME Challenges
	HTTP-01
	DNS-01
	TLS-ALPN-01
	Which Challenge Should I Use?

	Testing ACME
	ACME clients
	Dehydrated
	Dehydrated Hooks
	Certificate Directory and User
	Core Dehydrated Configuration
	Changing CAs
	Additional Settings

	Domain List
	Dehydrated with HTTP-01
	Web Server Setup
	Apache Configuration
	HTTP-01 Hook Script
	Running Dehydrated

	The Dehydrated Directory
	The Certificate Directory
	Archiving Certificates

	Certificate Deployment
	DNS-01 Challenges
	DNS-01 Test Environment
	Configuring a Dynamic Child Zone
	DNS Aliases
	DNS-01 Hook Script
	Running Dehydrated with DNS-01
	DNS-01 Collisions

	Per-Domain Configurations
	ACME Renewals

	Chapter 8: HSTS and CAA
	HTTP Strict Transport Security
	HSTS Drawbacks
	Deploying HSTS
	HSTS Preload

	Certification Authority Authorization

	Chapter 9: TLS Testing and Certificate Analysis
	Server Configuration Testing
	Private Testing
	Certificate Transparency
	Finding Bogus Certificates
	Certificate Transparency in Certificates

	What Failure Looks Like

	Chapter 10: Becoming a CA
	Private Trust Anchors
	CA Software
	OpenSSL CAs

	Building an OpenSSL CA
	Root CA Organization and Defaults
	Configuring CA Policies
	Configuring Requests
	Creating the Root Certificate
	Configuring the Intermediate CA
	Creating the Intermediate CA Certificate
	Certificate Databases
	Chain File
	Preparing the OCSP Responder
	Web Site Certificates
	Revoking Certificates
	Generating CRLs
	Client Certificates
	Private OCSP Responder

	Name Constraint CAs
	Becoming a Global Root

	Afterword
	Sponsors
	Print Sponsors

	Patronizers

