ARTECH HOUSE

INFORMATION SECURITY AND PRIVACY SERIES

ool and TLS

Theory and Practice

- — O —

ROLF OPPLIGER

SSL and TLS

Theory and Practice

SSL and TLS

Theory and Practice

Rolf Oppliger

ARTECH

HOUSE

BOSTON | LONDON
artechhouse.com

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

ISBN-13 978-1-59693-447-4

Cover design by Igor Valdman

© 2009 ARTECH HOUSE
685 Canton Street
Norwood, MA 02062

Printed and bound in the United States of America. No part of this book may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, record-
ing, or by any information storage and retrieval system, without permission in writing from the
publisher. All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Artech House cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

10987654321

SSL and TLS: Theory and Practice

Rolf Oppliger, Ph.D.

eSECURITY Technologies
Beethovenstrasse 10
CH-3073 Gumligen
Switzerland

August 11, 2009

To my parents

Contents

Foreword
Preface

Acknowledgments

Chapter 1 Introduction

1.1 OSI Security Architecture

1.1.1
1.1.2

Security Services
Security Mechanisms

1.2 Security Definition
1.3 Final Remarks
References

Chapter 2 Cryptography Primer
2.1 Introduction

211
2.1.2
2.13
214
2.15
2.16

Preliminary Remarks
Cryptographic Systems

Classes of Cryptographic Systems
Secure Cryptosystems

Historical Background Information
Legal Situation

2.2 Cryptosystems Overview

221
2.2.2
2.2.3

Unkeyed Cryptosystems
Secret Key Cryptosystems
Public Key Cryptosystems

2.3 Final Remarks
References

Chapter 3 Transport Layer Security
3.1 Introduction

Vii

viii

3.2
3.3

SSL and TLS: Theory and Practice

Protocol Evolution
Final Remarks
References

Chapter 4 SSL Protocol

4.1
4.2

4.3
4.4
4.5

Introduction

Protocols

4.2.1 SSL Record Protocol
4.2.2 SSL Handshake Protocol

4.2.3 SSL Change Cipher Spec Protocol

4.2.4 SSL Alert Protocol

4.2.5 SSL Application Data Protocol
Traffic Analysis of an SSL Session

Security Analysis
Final Remarks
References

Chapter 5 TLS Protocol

51

5.2

53

54

55
5.6

Introduction
5.1.1 TLSPRF

5.1.2 Generation of Keying Material

TLS 1.0

5.2.1 Cipher Suites

5.2.2 Certificate Management
5.2.3 Alert Messages

5.2.4 Other Differences

TLS 1.1

5.3.1 Preliminary Remarks
5.3.2 Cipher Suites

5.3.3 Certificate Management
5.3.4 Alert Messages

5.3.5 Other Differences

TLS 1.2

5.4.1 TLS Extensions

5.4.2 Cipher Suites

5.4.3 Certificate Management
5.4.4 Alert Messages

5.4.5 Other Differences
Traffic Analysis of a TLS Session
Security Analysis

68
73
73

75
75
87
87
94
117
118
120
121
125
129
130

133
133
136
139
141
141
144
145
146
147
147
149
150
151
151
152
153
168
173
173
174
174
178

Contents

5.7 Final Remarks
References

Chapter 6 DTLS Protocol

6.1 Introduction

6.2 DTLS1.0
6.2.1 Record Protocol
6.2.2 Handshake Protocol

6.3 DTLS 1.2

6.4 Security Analysis

6.5 Final Remarks
References

Chapter 7 Firewall Traversal
7.1 Introduction
7.2 SSL/TLS Tunneling
7.3 SSL/TLS Proxying
7.4 Final Remarks
References

Chapter 8 Public Key Certificates and PKls
8.1 Introduction
8.1.1 PGP Certificates
8.1.2 X.509 Certificates
8.2 Server Certificates
8.2.1 Wildcard Certificates
8.2.2 International Step-Up and SGC Certificates
8.2.3 Extended Validation Certificates
8.3 Client Certificates
8.4 Final Remarks
References

Chapter 9 Conclusions and Outlook

9.1 Deployment

9.2 Research Challenges
9.2.1 Performance Optimization
9.2.2 Protection Against MITM Attacks
9.2.3 Trust Management

9.3 Future Developments
References

178
179

183
183
186
187
190
194
195
195
196

199
199
202
205
206
207

209
209
213
215
218
220
220
221
222
223
224

227
227
230
230
232
235
235
236

SSL and TLS: Theory and Practice

Appendix Standardized TLS Cipher Suites
Abbreviations and Acronyms
About the Author

Index

239

243

249

251

Foreword

Over the last 15 years, the shift in the world economy and transaction activity to the
online medium has perhaps been the fastest big shift in the society ever. It is quite
common today for multiple people from several countries to electronically “talk”
about participating in an online game. Imagine what that conversation would have
been like just a short 20 years ago.

Since the early days of the Web, we have realized that commercial applications
start to grow and become popular, and that securing traffic on the open Internet is a
key requirement. It goes hand in hand with the requirement that end users do not have
to perform any task in order for the secure connection to be established. Today, the
success of SSL as an Internet and e-commerce security standard is perhaps the most
visible achievement of the information security industry. There are many lessons to
be learned from this experience.

The technology was developed by a world-class team in security and network-
ing, but not within a security company. The fact that the protocol was embedded in
the browsers from their first incarnations made SSL part of a new infrastructure that
the Web accepted. When the first e-commerce applications were being considered,
it was clear that the most vulnerable area was that everyone could have access to any
information on the Internet—after all the Internet was designed to be an open net-
work to provide information and serve as a collaboration medium for all concerned.
SSL was designed from the beginning to prevent unauthorized access to secured
data on the open wire. SSL has withstood the test of more than a billion users over
15 years, and has been the underpinning of the Web security for all e-commerce
applications.

| joined Netscape as a chief scientist in early 1995, after the first version of
SSL had been released. When it became apparent that SSL may in fact become the
defacto standard for e-commerce, it was recognized that a redesign is necessary to
make sure that transactions are safe. | had the opportunity to put together a great
team of the best designers. Paul Kocher was contacted to be the security specialist
for the team, Alan Freier was the networking specialist, and Phil Karlton was the
overall architect. The team worked over a couple of months to put together a design
that can support all the requirements, not the least of which is the overall security

Xi

Xii SSL and TLS: Theory and Practice

level of the protocol. It is noteworthy here to mention that Netscape recognized early
on that security was one of the cornerstones of the success of the Web as a medium
for conducting commerce and the company invested a lot in the security space. Jim
Clark had contacted RSA Security at the very beginning of the company, when it
was still called Mosaic Communications to make sure that he had the right security
components in place. This was quite different from what most other companies did;
security had always been an after the fact issue, but here security was in the middle
of everything.

After the completion of the first incarnations of what was later called SSL 3.0,
we thought that we needed the security industry to “bless” the protocol. So we did
something that was quite new in the Internet industry: we contacted many security
experts from other organizations, both academic and industrial and invited them
to sessions at Netscape to work through the new protocol. These sessions proved
to be very beneficial, not just because of the expertise level in that room, but also
because this was the key for us to promote the protocol as an industry standard. The
expertteam soon became part of the Netscape team and SSL 3.0 became the industry
standard for Web security.

There were two other important factors to making SSL succeed:

e The first factor was protecting the intellectual property. Often, companies
file patents to protect their intellectual property against others who may be
working on the same space. Netscape decided to file for patents to protect
SSL in order to prevent others from moving into the same space, not to get
others to obtain licenses. The patents were in fact awarded in 1997 and soon
after given away to the community for everyone to use for free.

e The second factor was to get the standards communities to adopt and own
the follow on work for SSL. We chose the Internet Engineering Task Force
(IETF) for this task because of their involvement in other Internet and security
standard work. The IETF did in fact adopt SSL 3.0 as the initial Web security
standard and called it Transport Layer Security (TLS). It was perhaps the
proper name for the protocol, versus Secure Sockets Layer (SSL), as sockets
are not actually a layer in the Internet network stack and the protocol did
actually apply at the transport layer.

The final, and perhaps most difficult, step to get SSL to be tlkeb ¥écurity
standard was to get competitors to adopt it. At the time, Microsoft was the primary
competitor in the space, with independent effort in the same area. The effort to
“give” the protocol to the IETF served also as the catalyst to bring Microsoft to
the same table to adopt SSL as the one standard. Today, we use SSL for basically all
e-commerce and other transactions on the Web, thanks to efforts from the Netscape

Foreword Xiii

team, the security experts we brought in, and the IETF for adopting SSL 3.0 as the
first and basis protocol. The book you have in hand bears witness to the tremendous
success of SSL and TLS.

Taher Elgamal
Axway and independent security expert
Redwood City, California
September 2009

Preface

Terms like electronic commerce-commerce), electronic businesshusiness and
electronic governmentefgovernmentare omnipresent today. When people use
these terms, they often refer to stringent security requirements that must be met.
If they want to show that they are tech-savvy, they bring in acronyms like SSL or
TLS. Since SSL stands faecuresockets layer and TLS stands for transport layer
security people think that adding SSL or TLS to applications makes them inherently
secure and magically solves all security-related problems. This is arguably not the
case and largely overestimates the role SSL/TLS can play in the security arena.
Nevertheless, SSL/TLS is still the most widely used and most important technology
to secure e- applications or certain aspects thereof. This is certainly true for
applications for the World Wide Web (WWW) based on the Hypertext Transfer
Protocol (HTTP), but it is also true for many other Internet applications, such
as e-mail, instant messaging, file transfer, terminal access, or any other form of
collaboration. As mentioned by Taher Elgamal in the foreword, it is even true for
online games. Many of these applications are nowadays layered on top of SSL/TLS
to provide basic security services.

Considering the large deployment of SSL/TLS, it is important to teagh e-
application designers and developers the fundamental principles and the rationale
behind the design of the SSL/TLS protocols. Simply invoking secure libraries and
function calls is not enough to design and develop secure applications. In fact, it
is fairly common today to invoke such libraries and function calls from exploitable
code. The resulting application is not going to be secure—whether SSL/TLS is in
place or not. Against this background, secure programming techniques are important
to build secure applications. Also, a thorough understanding of a security technology
is required to correctly apply it and to properly complement it with other security
technologies. This rule of thumb also applies to SSL/TLS; it is necessary to fully
understand what the SSL/TLS protocols can do and what they cannot do in order to
properly apply them.

The SSL/TLS protocols are not a panacea. They enable applications to be only
as secure as the underlying infrastructural components, both in terms of computer
networks and hosts (i.e., clients and servers). In the case of SSL/TLS, things are even

XV

XVi SSL and TLS: Theory and Practice

more involved than they could be due to the fact that the protocol specifications use
a terminology and notation of their own. This makes it unnecessarily difficult for
nonsecurity-minded readers to get in touch with the specifications (and specifics) of
the SSL/TLS protocols. This is unfortunate (to say the least).

When | started to compile a teaching module on SSL/TLS some time ago,
| was surprised to learn that the few books that were available either addressed
the technology only superficially o—maybe worse—were out of date. This was
particularly true for the two reference books used in the field [1, 2]. They both
appeared in 2000—which, at the time of this writing, is almost 10 years ago. Against
this background, | decided to take my lecture notes and compile a new book that
would not only address the fundamental principles of the SSL/TLS protocols, but
would also try to explain the rationale behind their current design. The resulting
book is intended for anyone who wants to get a deep understanding of the SSL/TLS
protocols and their proper use—be it a theorist or practitioner. The major focus of
the book is SSL/TLS, but it also addresses related topics, such as TLS extensions,
datagram TLS (DTLS), firewall traversal, as well as public key certificates and
public key infrastructures (PKIs). Its claim is to provide a comprehensive overview
and discussion of the SSL/TLS protocols, and to put them into perspective.

Implementation issues are intentionally not addressed (or only addressed in a
very superficial way). There are so many implementations of the SSL/TLS protocols,
both freely and commercially available, that it literally makes no sense to address
them in a book like the one you have in hand. If you want to practically use the
SSL/TLS protocols (e.g., to secure anx epplication), then you have to delve
into the documentation and technical specification of the development environment
you are using anyway. This book is only aimed at providing the basic knowledge
to understand these documents—you still have to capture and read them. In the
case of OpenSSL, you may use [3] as a reference book. In the case of another
library or development environment, you may be be confined to use the original
documentation. Apart from implementation issues, | hope that the book is reasonably
complete. If | have missed important topics, then | am the one to blame and | hope
to have the opportunity to improve the book in the future.

This book assumes basic familiarity with the TCP/IP protocols and their
working principles. This assumption is reasonable, because anybody not familar
with TCP/IP is well advised to first get in touch and try to comprehend TCP/IP
networking, before he or she moves on to the SSL/TLS protocols. Only trying to
understand SSL/TLS is not likely to be fruitful. Readers who are unfamilar with
TCP/IP networking can consult one of the many books describing TCP/IP. Among
these books, | particularly recommend the classic books of Richard Stevens [4]
and Douglas Comer [5], but there are many other (or rather complementary) books
available in the shelves of the bookstores.

Preface Xxvii

To properly understand the contents of this book, it is also necessary to have
a working knowledge of the Internet standardization process. Again, this process is
likely to be explained in a book on TCP/IP networking. It is also explained in RFC
2026 [6] and Section 2.3 of [7]. For each protocol specified in an RFC document,
we are going to say whether it is submitted to the Internet Standards Track or
specified for experimental or informational purposes. This distinction is important
and relevant in practice.

When we discuss the practical use of the SSL/TLS protocols, it is highly rec-
ommended to visualize things with a network protocol analyzer, sudtir@shark
(http://mvww.wireshark.org) or another software tool that provides similar function-
alities. Wireshark is a freely available open source software tool released under the
GNU General Public License. With regard to SSL/TLS, it is sufficiently complete,
meaning that it can be used to analyze SSL/TLS-based data exchanges. We don't
reproduce screenshots in this book, mainly because the graphical user interfaces
(GUIs) of tools like Wireshark are highly nonlinear and the corresponding screen-
shots are difficult to read and interpret. When we use Wireshark output, we provide
it in textual form. This is visually less stimulating, but more useful in practice.

Because the SSL/TLS protocols are cryptographic in nature, properly under-
standing them requires at least some basic familiarity with cryptography. | try to
introduce and overview the basic principles of cryptography in a short primer in
Chapter 2, but | am well aware of the fact that—due to space limitations—the treat-
ment is fairly superficial and incomplete. Anyone who wants to get a more complete
picture is advised to additionally consult a book on cryptography. | certainly rec-
ommend my own book entitle@ontemporary Cryptographg], but there are many
other books that can be used instead (many of them are referenced in [8] and Chapter
2 of this book).

SSL/TLS: Theory and Practids organized and structured in the following
nine chapters:

e Chapter 1|ntroduction provides some fundamentals and basic principles that
are necessary for a serious and deep treatment of network security protocols,
such as the SSL/TLS protocols.

e Chapter 2 Cryptography Primerprovides a cryptography primer, meaning
that it introduces, overviews, and puts into perspective the basic principles of
cryptography as far as they are relevant for the SSL/TLS protocols.

e Chapter 3Transport Layer Securityriefly overviews, explains, and puts into
perspective the various technologies and protocols that can be used to provide
basic security services at the transport layer of the TCP/IP protocol stack.

Xviii SSL and TLS: Theory and Practice

e Chapter 4,SSL Protocql introduces, overviews, puts into perspective, and
thoroughly discusses the first main transport layer security protocol (i.e., the
SSL protocol).

e Chapter 5TLS Protocal does the same with the second main transport layer
security protocol (i.e., the TLS protocol). Unlike Chapter 4, it does not start
from scratch, but focuses on the main differences between the SSL and TLS
protocols.

e Chapter 6 DTLS Protocal elaborates on the DTLS protocol, which is basi-
cally a UDP version of the TLS protocol. Again, the chapter mainly focuses
on the differences between the SSL/TLS protocols and the DTLS protocol.

e Chapter 7Firewall Traversa) addresses the practically relevant and nontrivial
problem of how the SSL/TLS protocols can (securely) traverse a firewall. This
is a relevant topic for the practical deployment of the SSL/TLS protocols.

e Chapter 8Public Key Certificates and PKlslaborates on the management of
public key certificates used for the SSL/TLS protocols, for example, as part of
a PKI. Again, this chapter is kept as short as possible and only addresses the
issues that are relevant for the understanding of the SSL/TLS protocols and
their proper use.

e Chapter 9,Conclusions and Outloglalso introduces and discusses a few
research challenges for the future.

Last but not least, the book also includes an appendix summarizing the
standardized TLS cipher suites, a list of abbreviations and acronyms, a page about
me (as an author), and an index.

| hope thatSSL/TLS: Theory and Practicserves your needs. Also, | would
like to take the opportunity to invite you as a reader to let me know your opinions
and thoughts. If you have something to correct or add, please let me know. If | have
not expressed myself clearly, please let me know, too. | appreciate and sincerely
welcome any comment or suggestion in order to update the book in future editions
and turn it into a reference book that can be used for educational purposes. The best
way to reach me is to send a message to rolf.oppliger@esecurity.ch. You can also
visit the book’s home page at http://books.esecurity.ch/ssltls.html. | use this page to
periodically post errata lists, additional information, and complementary material. |
am looking forward to hearing from you.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Preface Xix

References

Rescorla, E.SSL and TLS: Designing and Building Secure Systems. Addison-Wesley, Reading,
MA, 2000.

Thomas, S.A.SSL and TLS Essentials: Securing the Wethn Wiley & Sons, New York, NY,
2000.

Viega, J., Messier, M., and P. ChandiNetwork Security with OpenSSO’Reilly, Sebastopol,
CA, 2002.

Stevens, W.R.TCP/IP lllustrated, Volume 1: The Protocol&addison-Wesley Professional, New
York, NY, 1994.

Comer, D.E. Internetworking with TCP/IP Volume 1: Principles, Protocols, and Architecture
4th edition. Prentice Hall, Upper Saddle River, NJ, 2000.

Bradner, S., “The Internet Standards Process—Revision 3,” Request for Comments 2026 (BCP
9), October 1996.

Oppliger, R.,Internet and Intranet Security2nd edition. Artech House Publishers, Norwood,
MA, 2002.

Oppliger, R.,Contemporary CryptographyArtech House Publishers, Norwood, MA, 2005.

Acknowledgments

Many people have contributed to the writing and publication of this book. First of
all, I thank the designers and developers of the SSL/TLS protocols. With their work,
they have provided the basis for many network security solutions in use today. More
specifically related to this book, | thank my brother, Hans Oppliger, and Ruedi Rytz
for answering specific questions, reading parts of the manuscript, and discussing
some interesting issues with me; David M. Piscitello for reviewing the entire
manuscript and providing valuable feedback; and Taher Elgamal for contributing
the foreword. Once again, the staff at Artech House has been enormously helpful in
producing and promoting the book. Among these people, | am particularly grateful
to Wayne Yuhasz, Penelope Comans, Rebecca Allendorf, and Erin Donahue. Last
but not least, | am indebted to my family—my wife, Isabelle, and our beloved
children, Lara and Marc. They have supported the book project, and without their
encouragement, patience, and love, this book would not have come into existence.
The book is dedicated to my parents. They raised me and formed my way of thinking
in a very gentle, supporting, and exemplary way. It is my challenge to pass on this
spirit and achieve something similar with our children.

XXi

Chapter 1

| ntroduction

In this introductory chapter, we start slowly and gradually work towards the topic
of the book. More specifically, we provide the fundamentals and basic principles
that are necessary for a serious and deep treatment of network security protocols in
general, and the SSL/TLS protocols in particular. We start with a generic network
security architecture or terminology framework known as the OSI security architec-
ture in Section 1.1, introduce a security definition and elaborate on how the SSL/TLS
protocols attempt to meet this definition in Section 1.2, and conclude with some final
remarks in Section 1.3.

1.1 OSI SECURITY ARCHITECTURE

According to the IETF Internet Security Glossary published in RFC 2828 [1], a
security architectureefers to “a plan and set of principles that describe (a) the
security services that a system is required to provide to meet the needs of its
users, (b) the system elements required to implement the services, and (c) the
performance levels required in the elements to deal with the threat environment.” As
such, a security architecture is always the result of applying principles of systems
engineering and addresses issues related to physical security, computer security,
communication security, organizational security (e.g., administrative and personnel
security), and legal security. This integral approach to security is important; too
many systems and applications are built and deployed without having an appropriate
security architecture in mind.

Following the line of argumentation introduced in [2], it is worthwhile to have
a look at the real world to illustrate the importance of having (implemented) an
appropriate security architecture. If, for example, we want to build a house, then
the first—and often most important—person to talk to is the architect. We hardly

2 SSL and TLS: Theory and Practice

know anything about architecture and the art or science of designing and building
a house, so we feel comfortable having a professional deal with these issues on our
behalves. One of the first things an architect does—either explicitly or implicitly—is
athreat and risk analysis. For example, given the fact that most burglars enter a house
through the front door, he or she makes sure that the house has a front door with a
lock, and that entering the house always requires breaking either the door’s lock or
a windowpane. In general, the architect does not design the house with unbreakable
windowpanes; unbreakable windowpanes are simply too expensive and impractical
for normal houses. If, however, the house were to host a branch bank, then broken
windows would be more likely to occur, and the architect would probably suggest
to install unbreakable windowpanes (or no windows at all). Also, he or she would
consult a security specialist to get a burglar alarm system and a vault. The bottom
line is that the threat and risk analysis leads to an architecture that is reasonably
secure for a given environment. This type of analysis is omnipresent in daily life;
often we don't even realize that it is going on in the back of our heads.

Contrary to the real world, the importance of doing a threat and risk analysis
and coming up with an appropriate security architecture is less common and hardly
understood in the digital world. Too many companies and organizations try to
avoid security architectures and directly go to ad hoc testing (also known as ethical
hacking). They hire external forces that attack and try to break into their systems,
networks, or applications. If the forces do not suceed, then the customers assume (or
rather hope) that they are secure. If, however, the forces suceed, then the customers
assume (or rather know) that they are insecure. In this case, they patch the found
vulnerabilities and security holes, and then they hope that they are done, meaning
that they have found and eliminated all relevant vulnerabilities and security holes.
Against this background, the decision whether a customer is secure or not looks
arbitrary and mainly depends on the capabilities of the external forces and the tools
they are aware of and have at hand.

An interesting point to note is that the real-world analogy of an “ethical
hacker” would be an “ethical burglar,” and that we don’t see this profession in the
real world. In fact, ex-burglars are seldom hired to break windowpanes or rob houses
simply to show that the initiator is vulnerable. We know that we are vulnerable, and
hence there is no market for ex-burglars to ethically break into houses. In the real
world, we neither trust them nor do we believe in the value of such investigations
(if this statement were wrong, then there would be a market for such services in the
first place). Why should the digital world be different? In fact, it does not seem to be
different, and breaking into computer systems and networks is always possible—it

1 One commonly cited difference between an ethical hacker and an adversary is that the former
operates with the knowledge, authorization, and consent obtained in advance, whereas the latter
operates without these features.

Introduction 3

is just a question of time, talent, and expenditure. Another point to keep in mind
and consider with care when it comes to ethical hacking is that such investigations
mainly address threats from the outside. This is not particularly useful, as most
statistics reveal the fact that many IT systems and networks are routinely attacked
from the inside. This means that insiders should also be considered to be part of the
threats model.

In the digital world, we need a clear understanding of what we are going
to design and implement, what adversaries we should keep in mind and protect
against, what resources (in terms of time and computational power) these adversaries
typically have, what attack strategies are most likely to occur, what the implications
are if an adversary succeeds, what reactions are planned, and so on. All of these
considerations should be made in a comprehensive threat and risk analysis that is
backed with a security audit. Based on this analysis and audit, a comprehensive
security architecture must be defined and documented. Keep in mind that the security
architecture is specific and situational, and that there is no such thing as a universally
applicable security architecture.

In an attempt to extend the field of application of the Open Systems Inter-
connection (OSI) basic reference model, the Joint Technical Committee 1 (JTC1)
of the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) appended a security architecture as part two of
ISO/IEC 7498 in 1989 [3]. Since its publication, the OSI security architecture has
turned out to be a primary reference for network security professionals working in
the field. In 1991, the Telecommunication Standardization Sector of the International
Telecommunication Union (ITU), also known as ITU-T, adopted the OSI security
architecture in recommendation X.800 [4]. Also in the early 1990s, the Privacy and
Security Research Group (PSRG) of the Internet Research Task Force&) IR&F
liminarly adapted the OSI security architecture in a corresponding Internet security
architecture published as an Internet-Dfafh essence, ISO/IEC 7498-2, ITU-T
X.800, and the Internet security architecture draft all describe the same security
architecture, and in this book we use the téD®I security architecturéo refer to
all of them. Contrary to the OSI basic reference model, the OSI security architecture
is in widespread use today—at least for referential purposes.

In essence, the OSI security architecture provides a general description of
security services and related security mechanisms and discusses their interrelation-
ships. It also shows how the security services map onto a given network architecture

2 The IRTF is a sister group to the Internet Engineering Task Force (IETF). Its stated mission is
“To promote research of importance to the evolution of the future Internet by creating focused,
long-term and small Research Groups working on topics related to Internet protocols, applications,
architecture and technology.”

3 This work has been abandoned.

4 SSL and TLS: Theory and Practice

and briefly discusses their appropriate placement within the OSI reference model.
Having the definition of a security architecture according to [1] in mind, it is quite
obvious that the OSI security architecture as specified in [3] and [4] does not con-
form to it. In fact, the OSI security architecture rather refers to a terminological
framework and a general description of security services and related security mech-
anisms than a full-fledged security architecture. For convenience, we still use the
term OSI security architecture in this book. But keep in mind that aapplication
usually requires a security architecture that is more comprehensive and situational.
It may use the OSI security architecture as a starting point, but it normally has to go
beyond it and be more specific.

Table 1.1
Classes of OSI Security Services

1 Peer entity authentication service
Data origin authentication service

2 Access control service

3 Connection confidentiality service
Connectionless confidentiality service
Selected field confidentiality service
Traffic flow confidentiality service

4 Connection integrity service with recovery
Connection integrity service without recovery
Selected field connection integrity service
Connectionless integrity service
Selected field connectionless integrity service

5 Nonrepudiation with proof of origin
Nonrepudiation with proof of delivery

1.1.1 Security Services

As shown in Table 1.1, the OSI security architecture distinguishes between five
classes of security services (i.e., authentication, access control, data confidentiality,
data integrity, and nonrepudiatibservices). Just as layers define functionality in the
OsSl reference model, so do services in the OSI security architecture. These services
may be placed at appropriate layers in the OSI reference model.

4 There is some controversy in the community regarding the correct spelling of the term “nonrepu-
diation.” In fact, the OSI security architecture uses “non-repudiation” instead of “nonrepudiation,”
and there are many people still using this spelling. In this book, however, we use the more modern
spelling of the term without a hyphen.

Introduction 5

1.1.1.1 Authentication Services

As its name suggests, anthentication servicis to provide for the authentication of
a communicating peer entity or data origin. The corresponding services are slightly
different:

e A peer entity authentication servipeovides each entity in an association with
the ability to verify that the peer entity is what it claims to be. In particular,
a peer entity authentication service provides assurance that an entity is not
attempting to masquerade or performing an unauthorized replay. Peer entity
authentication is typically performed either during a connection establishment
phase or, occasionally, during a data transfer phase.

e A data origin authentication servicallows the source of data received to
be verified to be as claimed. A data origin authentication service is typically
provided during a data transfer phase. It cannot provide protection against
the duplication or modification of data units. To achieve this, the data origin
authentication service must be complemented with a data integrity service.

Authentication services are important and a prerequisite for the provision
of authorization, access control, and accountability services. Authorization refers
to the process of granting rights, which includes the granting of access based on
access rights. Access control refers to the process of enforcing access rights, and
accountability refers to the property that actions of an entity can be traced uniquely
to this particular entity.

1.1.1.2 Access Control Services

Access control servicesre to protect system resources against unauthorized use.
The use of a system resource is unauthorized, if the entity that seeks to use the
resource does not have the privileges or permissions necessary to do so. As such,
access control services are typically the most commonly thought of services in
computer and network security. But as mentioned above, access control services
are closely tied to authentication services: a user or process acting on the user’s
behalf must usually be authenticated before an access control service can be invoked.
Authentication and access control services therefore usually go hand in hand—this is
why people sometimes use the teaithentication and authorization infrastructure
(AAI) to refer to an infrastructure that provides support for both authentication and
authorization in terms of access control.

6 SSL and TLS: Theory and Practice

1.1.1.3 Data Confidentiality Services

In general parlance, data confidentiality refers to the property that data is not made
available or disclosed to unauthorized individuals, entities, or processes, and hence
data confidentiality servicegrotect data from unauthorized disclosure. There are
several forms of such services:

e A connection confidentiality serviggovides confidentiality for all data trans-
ferred over a connection.

e A connectionless confidentiality servipevides confidentiality for individual
data units.

e A selective field confidentiality servigaovides confidentiality for certain
fields within individual data units or data transmitted in a connection.

o A traffic flow confidentiality servicprovides confidentiality for traffic flows,
meaning that it attempts to protect all data that is associated with and com-
municated in a traffic flow from further analysis. Traffic analysis, in turn, can
be defined as the “inference of information from observable characteristics of
data flow(s), even when the data is encrypted or otherwise not directly avail-
able. Such characteristics include the identities and locations of the source(s)
and destination(s), and the presence, amount, frequency, and duration of oc-
currence” [1].

The first three confidentiality services can be implemented in a simple and
straightforward way by using standard cryptographic techniques. This is not neces-
sarily the case for traffic flow confidentiality services. In fact, the provision of traffic
flow confidentiality services is inherently more involved; it is certainly beyond the
scope of SSL/TLS.

1.1.1.4 Data Integrity Services

Data integrity refers to the property that data is not altered or destroyed in some
unauthorized way, and hendata integrity servicesre to protect data from unau-
thorized modification. Again, there are several forms of such services:

e A connection integrity service with recovepyovides integrity for all data
transmitted in a connection. If possible, the loss of integrity is recovered.

e A connection integrity service without recovesysimilar to a connection in-
tegrity service with recovery, except that the loss of integrity is not recovered.

Introduction 7

o A selected field connection integrity servipeovides integrity for specific
fields within the data transmitted in a connection.

e A connectionless integrity serviggovides integrity for indiviual data units.

o A selected field connectionless integrity senpeevides integrity for specific
fields within indiviual data units.

The use of a peer entity authentication service at the start of a connection
and a connection integrity service during the connection can jointly provide for
the corroboration of the source of all data units transferred on the connection,
the integrity of those data units, and may additionally detect data units that are
duplicated.

1.1.1.5 Nonrepudiation Services

Nonrepudiation servicesre implemented to prevent an entity involved in a commu-
nication from later denying having participated in all or part of the communication.

In a messaging environment, for example, such services protect against an originator
denying that he or she has originated the message, or a recipient denying that he or
she has received the message. Consequently, there are at least two nonrepudiation
services that are relevant in practice:

e A nonrepudiation service with proof of origiprovides the recipient of a
message with a proof of origin.

e A nonrepudiation service with proof of deliveprovides the sender of a
message with a proof of delivery.

Nonrepudiation services are increasingly important for many Internet-based
e-commerce (e.g., [5]). Consider, for example, the situation in which an investor
communicates with his or her stockbroker over the Internet. If the investor decides
to sell a large number of stocks, then he or she sends a corresponding request to the
stockbroker. If the prices are about to change only moderately, then everything works
fine. But if the stock price raises sharply, then the investor may deny ever sending the
order to sell the stocks. Conversely, it is possible that under reverse circumstances
the stockbroker may deny receiving the order to sell the stocks. In situations like
these, the provision of nonrepudiation services ought to be mandatory.

8 SSL and TLS: Theory and Practice

1.1.2 Security Mechanisms

In addition to the security services mentioned above, the OSI security architecture
also itemizes security mechanisms that may be used to implement the services. A
distinction is made between specific security mechanisms and pervasive ones.

Table 1.2
OSI Specific Security Mechanisms

Encipherment

Digital signature mechanisms

Access control mechanisms

Data integrity mechanisms
Authentication exchange mechanisms
Traffic padding mechanisms

Routing control mechanisms
Notarization mechanisms

oO~NO A WNE

1.1.2.1 Specific Security Mechanisms

Specific security mechanisms may be incorporated into an appropriate layer to
provide some of the security services mentioned in Section 1.1.1. As shown in Table
1.2, the OSI security architecture enumerates eight specific security mechanisms that
can be characterized as follows:

1. Enciphermentcan be used to protect the confidentiality of data units or
to support or complement other security mechanisms. The cryptographic
techniques used for encipherment are introduced in Chapter 2.

2. Digital signature mechanisntan be used to provide an electronic analog of
handwritten signatures for electronic documents. Like handwritten signatures,
digital signatures must not be forgeable, a recipient must be able to verify it,
and the signatory must not be able to repudiate it later. But unlike handwritten
signatures, digital signatures incorporate the data (or a hash value of the data)
that is signed. Different data therefore results in different signatures even if
the signatory remains the same. Again, we postpone the discussion of digital
signature mechanisms to Chapter 2.

3. Access control mechanisman be used to control access to system resources.
Traditionally, a distinction is made between a discretionary access control
(DAC) and a mandatory access control (MAC) [6]. In either case, the access
control is described in terms of subjects, objects, and access rights:

Introduction 9

e A subject is an entity that attempts to access objects. This can be a host,
a user, or an application.

e An objectis a resource to which access needs to be controlled. This can
range from an individual data field in a file to a large program.

e Access rights specify the level of authority for a subject to access
an object, so access rights are defined for each subject-object-pair.
Examples of UNIX-style access rights are read, write, and execute.

More recently, people have introduced the notion of a role and have
developed role-based access controls (RBACs) to make the assignment of
access rights to subjects more dynamic and flexible (e.g., [7, 8]).

. Data integrity mechanismsan be used to protect the integrity of data—be it
individual data units or fields within them or sequences of data units or fields
within them. Note that data integrity mechanisms, in general, do not protect
against replay attacks that work by recording and replaying previously sent
valid messages. Also, protecting the integrity of a sequence of data units and
fields within these data units generally requires some form of explicit ordering,
such as sequence numbering, time-stamping, or cryptographic chaining.

. Authentication exchange mechanistas be used to verify the claimed iden-
tities of entities. It is common to use the testmongto refer to an authenti-
cation exchange mechanism that uses cryptographic techniques to protect the
messages that are exchanged, &rdkto refer to an authentication exchange
mechanism that does not do so. It goes without saying that weak authentica-
tion exchange mechanisms are vulnerable to passive wiretapping and replay
attacks.

. Traffic padding mechanisnt&n be used to protect against traffic analysis. It
works by having the data originator generate and transmit randomly composed
data hand in hand with the actual data. Only the data originator and intended
recipient(s) know how these data are transmitted; thus, an unauthorized party
who captures and attempts to replay the data cannot distinguish the randomly
generated data from meaningful data.

. Routing control mechanisnman be used to choose—either dynamically or
by prearrangement—specific routes for data transmission. Communicating
systems may, on detection of persistent passive or active attacks, wish to
instruct the network service provider to establish a connection via a different
route. Similarly, data carrying certain security labels may be forbidden by

10 SSL and TLS: Theory and Practice

policy to pass through certain networks or links. Routing control mechanisms
are not always available, but if they are they tend to be very effective.

8. Notarization mechanisntsan be used to assure certain properties of the data
communicated between two or more entities, such as its integrity, origin, time,
or destination. The assurance is provided by a trusted party—sometimes also
called trusted third party (TTP)—in a testifiable manner.

All specific security mechanisms except access control, traffic padding, and
routing control mechanisms are employed by the SSL/TLS protocols. Access control
mechanisms must be used above the transport layer (typically at the application
layer), whereas traffic padding and routing control mechanisms are best invoked
underneath the transport layer.

1.1.2.2 Pervasive Security Mechanisms

Contrary to specific security mechanisms, pervasive security mechanisms are gen-
erally not specific to a particular security service. Some of these mechanisms can
even be regarded as aspects of security management. As shown in Table 1.3, the
OSI security architecture enumerates the following five security mechanisms that
are pervasive in this sense:

Table 1.3
OSI Pervasive Security Mechanisms

Trusted functionality
Security labels
Event detection
Security audit trail
Security recovery

a b wnN e

1. As its name suggestsusted functionalityis about functionality that can be
trusted to perform as intended. From a security perspective, any functionality
(provided by a service and implemented by a mechanism) should be trusted,
and hence trusted functionality is a pervasive security mechanism that is
orthogonal to all specific security mechanisms itemized above.

2. System resources may haezurity labelsassociated with them, for example,
to indicate a sensitivity level. This allows the resources to be treated in an
appropriate way. For example, it allows data to be encrypted transparently
(i.e., without user invocation) for transmission. In general, a security label
may be additional data associated with the data or it may be implicit (e.g.,

Introduction 11

implied by the use of a specific key to encipher data or implied by the context
of the data such as the source address or route).

3. It is increasingly important to complement preventive security mechanisms
with detective and even corrective ones. This basically means that security-
related events must be detected in one way or another. This is whent
detectionas another pervasive security mechanism comes into play. Event
detection basically depends on heuristics.

4. A security audit refers to an independent review and examination of system
records and activities to test for adequacy of system controls, to ensure
compliance with established policy and operational procedures, to detect
breaches in security, and to recommend any indicated changes in control,
policy, and procedures. Consequentlysecurity audit trailrefers to data
collected and potentially used to facilitate a security audit. Needless to say
that this a very fundamental and important pervasive security mechanism.

5. As mentioned above, corrective security mechanisms are getting more and
more importantSecurity recoverys about implementing corrective security
mechanisms and putting them in appropriate places. Similar to event detec-
tion, security recovery largely depends on heuristics.

The SSL/TLS protocols do not prescribe any pervasive security mechanism.
Instead, it is up to a particular implementation to support one or several pervasive
security mechanisms. It goes without saying that SSL/TLS alert messages at least
provide a basis for event detection, security audit trail, and security recovery.

Last but not least, we recapitulate the fact that the OSI security architecture
has not been developed to solve a particular network security problem, but rather
to provide the network security community with a terminology that can be used
to consistently describe and discuss security-related problems and corresponding
solutions. In this book, we use the OSI security architecture exactly for this purpose.

1.2 SECURITY DEFINITION

With the profileration of the Internet and WWW forseapplications, security has
become a major issue. But the tesecurityhas many facets, and it not always clear
what people mean when they talk about security (sometimes it is not even clear that
they mean anything in the first place). Instead of properly analyzing the security
requirements of an e-application, people sometimes just bring in terms 8&.or

TLS Since the SSL/TLS protocols are not known to be insecure, people are expected
to get a good feeling about the security of the @pplication. It goes without saying

12 SSL and TLS: Theory and Practice

that the reduction of security to SSL/TLS is inappropriate and overly simplified,
and that a deeper security discussion is required most of the time. The statement
“SSL/TLS equals security” is wrong and sometimes even dangerous (because it
leads to an easygoing user behavior).

In order to make precise statements about the security of a system, such as
an ex application, one must understand the security requirements of the application
and how these are satisfied through deployment and administration. Unfortunately,
reality looks different, and the world is full of systems that claim to be secure
without providing an appropriate definition for security. This is unfortunate, because
anything can be claimed to be secure, unless its meaning is defined and precisely
nailed down. In general, a security definition must answer (at least) the following
two questions:

1. What are the capabilities of the adversary one has in miAd?answer to
this question must specifiy, for example, the adversary’s computing power,
available memory, available time, types of feasible attacks, and access to a
priori or side information. Properly answering this question culminates in a
threats model.

2. What is the task the adversary must solve in order to be successful (i.e., to
break the security of the systeni)fa typical setting, the adversary’s task is
to find (i.e., compute, guess, or otherwise determine) one or several pieces
of information he or she should not be able to know. For example, if the
adversary is able to determine a secret key used for encryption, then he or she
must certainly be considered to be successful. There are, however, also weaker
forms of attacks that may still be considered to be successful. For example,
the adversary may be able to determine only the first plaintext bit or byte of
a given ciphertext. This task may be simpler to solve, but being able to solve
it may still be devastating in a given situation. For example, if the adversary
knows that the plaintext message is either “Yes” or “No,” then being able to
determine the first plaintext byte reveals the entire plaintext message.

Strong security definitions are obtained when the adversary is assumed to be
as powerful as possible, whereas the task he or she must solve is assumed to be as
simple as possible. Let us consider a real-world analogy to illustrate this point: if we
play a soccer game, then we may consider two scenarios:

1. Ourteam s playing against the world’s best players and they are not even able
to make a single goal.

2. Ourteam is playing against a group of schoolboys and they are not able to win
the game.

Introduction 13

In this example, it is obvious that our team is better in the first case. The
adversary is stronger (i.e., the world’s best soccer players) and the task to solve is
simpler (i.e., make a single goal). Consequently, if this overly strong adversary is not
able to solve even this simple task, then we are really good. In computer security,
the situation is comparable. We assume a strong adversary who must solve a simple
task. If he or she does not succeed, then we can feel secure.

More generally, we capture the notion of a secure system in the following
Definition 1.1.

Definition 1.1 (Secure system)A system isecureif an adversary with specified
capabilities is not able to break it, meaning that he or she is not able to solve the
specified task.

Following the line of argumentation given above, there are different degrees
of security (depending on the adversary and the task to solve) that fulfill Definition
1.1. If we want to argue about the security of a particular system, then we must at
least answer the two questions itemized above. This applies in all cases, and hence
it also applies to the SSL/TLS protocols or any application that employs them.

With regard to the first question, it is reasonable to make standard crypto-
graphic assumptions, such as that the adversary is polynomially bounded in terms of
computational power and time, meaning that he or she cannot factorize large inte-
gers, compute discrete logarithms, and so on, and that the stdboland Yao model
[9] applies. In this model, the adversary is yet able to control the communications
network used to transmit messages, but he or she is not able to compromise the end
systems. This basically means that the adversary can mount all kinds of (passive and
active) attacks on the network. Roughly speaking, a passive attack “attempts to learn
or make use of information from the system but does not affect system resources,”
whereas an active attack “attempts to alter system resources or affect their operation”
[1]. Obviously, passive and active attacks can (and will) be combined to effectively
invade a computing or networking environment. For example, a passive wiretapping
attack can be used to eavesdrop on the authentication information that is transmitted
in the clear (e.g., username and password), and this information can then be used
to masquerade the user and to actively attack the system accordingly. The SSL/TLS
protocols have been designed to be secure in the Dolev-Yao model, but the model
has some limitations and shortcomings. For example, many contemporary attacks
are either based on malware or employ sophisticated techniques to spoof the user
interface of the client systen. These attacks are outside the scope of the Dolev-Yao
model, and hence the model needs to be extended. This is a current topic in network
security research.

With regard to the second question, things are even more involved. We already
mentioned the case in which the adversary is able to determine the first plaintext

14 SSL and TLS: Theory and Practice

bit or byte from a given ciphertext. Whether this poses a problem mainly depends
on the application context. Again, if we know, for example, that a given message
represents either “Yes” or “No,” then the decryption of the very first byte is sufficient
to reveal the entire plaintext message. Similar situations occur if only a few plaintext
messages are possible in the first place. To be as application-independent as possible,
one usually requires that even a very simple task is impossible or infeasible to solve
for the adversary one has in mind. For example, theorists often assume an ideal
system and require that an adversary cannot tell a real system apart form this ideal
system with a probability significantly greater than guessing. Note that telling two
systems apart is indeed the simplest task to solve for an adversary, because any
difference between the systems can be exploited. So if the real system cannot be
told apart from the ideal system, then the real system obviously behaves like the
ideal system, and hence, for all practical purposes, the real system implements the
ideal system. Using this line of argumentation, many cryptographic systems have
been shown to be secure in the past—at least in theory. Because people are looking
for tasks that are as simple to solve as possible, they usually get nervous when a
vulnerability is found in a real system. It may not be obvious how to exploit the
vulnerability, but its mere existence may still lead to corrective actions. For example,
as further addressed in Section 5.3, when some original block ciphers in CBC mode
were shown to leak information, the TLS protocol specification was immediately
modified to deal with the defect. This pattern frequently occurs and presses ahead
with research and development.

The bottom line is that properly defining security is not trivial, and that one has
to be very careful about the security definition one uses and refers to in a particular
environment. This obviously also applies to the SSL/TLS protocols and the e-
applications that employ them.

1.3 FINAL REMARKS

In this chapter, we provided the fundamentals and basic principles that are necessary
for a serious and deep treatment of cryptographic network security protocols, such
as the SSL/TLS protocols. More specifically, we introduced and overviewed the OSI
security architecture and possibilities to define security. We will use both topics in
this book: we use the OSI security architecture as a terminology framework and
we use the possibilities to define security whenever we claim that something is
secure. With regard to the second point, we want to be precise in this book. We avoid
striking statements about the security of the SSL/TLS protocols; instead, we want
to specifically say what security services the SSL/TLS protocols are able to provide
and what (specific and/or pervasive) security mechanisms are employed to actually

Introduction 15

provide the services. Also, when we elaborate on security-related modifications
of the SSL/TLS protocols, we want to be specific and explain the attacks the
modifications are intended to protect against. If there is no attack a modification
can protect against, then the modification is useless and can be discarded in the first
place. Or, alternatively speaking, if an attack is not relevant in a given application
context, then the modification need not be considered in the first place. These
considerations are important to put things into perspective.

References

[1] Shirey, R., “Internet Security Glossary,” Informational Request for Comments 2828 (FYI 36),
May 2000.

[2] Oppliger, R., “IT Security: In Search of the Holy GrailCommunications of the ACMol. 50,
No. 2, February 2007, pp. 96-98.

[3] ISO/IEC 7498-2, Information Processing Systems—Open Systems Interconnection Reference
Model—Part 2: Security Architecture, 1989.

[4] ITU X.800, Security Architecture for Open Systems Interconnection for CCITT Applica-
tions, 1991 (CCITT is the acronym of “Comité Consultatif International Téléphonique et
Télégraphique,” which is the former name of the ITU).

[5] Zhou, J.,Non-Repudiation in Electronic Commercgrtech House Publishers, Norwood, MA,
2001.

[6] Bishop, M.,Computer Security: Art and Scienckddison-Wesley, Reading, MA, 2002.

[7] Ferraiolo, D.F., Kuhn, D.R., and R. Chandramoufiple-Based Access ControBnd edition.
Artech House Publishers, Norwood, MA, 2007.

[8] Coyne, E.J., and J.M. DaviRRole Engineering for Enterprise Security Managemektech
House Publishers, Norwood, MA, 2008.

[9] Dolev, D., and A.C. Yao, “On the Security of Public Key ProtocoBrboceedings of the IEEE
22nd Annual Symposium on Foundations of Computer Sgié8éd, pp. 350-357.

16

SSL and TLS: Theory and Practice

Chapter 2

Cryptography Primer

Cryptography is an increasingly important and broad subject area that is covered in
many books (e.g., [1-20] itemized in alphabetical order with regard to their respec-
tive authors). In this chapter, we provide a short cryptography primer, meaning that
we introduce, overview, and put into perspective the basic principles of cryptography
as far as they are relevant for a proper understanding of the SSL/TLS protocols. In
Section 2.1, we introduce the topic, in Section 2.2, we overview and put into per-
spective the cryptosystems in use today, and in Section 2.3, we conclude with some
final remarks. As already mentioned in the Preface, more information is available,
for example, in [15].

2.1 INTRODUCTION

In this section, we introduce cryptography at a fairly high level of abstraction.
We start with some preliminary remarks mainly regarding terminology, introduce
cryptographic systems (cryptosystems), distinguish between three classes of cryp-
tosystems, elaborate on secure cryptosystems, provide some historical background
information, and briefly overview the legal situation.

2.1.1 Preliminary Remarks

The termcryptologyis derived from the Greek words “kryptbs,” standing for
“hidden,” and “l6gos,” standing for “word.” Consequently, the meaning of the term
cryptology is best paraphrased as “hidden word.” This paraphrase refers to the
original intent of cryptology, namely to hide the meaning of specific words and to
protect their confidentiality and secrecy accordingly. From today’s perspective, this

17

18 SSL and TLS: Theory and Practice

viewpoint is too narrow and the term cryptology is used for many other security-
related purposes and applications (this point should become clear in the remaining
part of this chapter).

Cryptology refers to the mathematical science and field of study that comprises
both cryptography and cryptanalysis.

e The termcryptographyis derived from the Greek words “krypt6s” (see
above) and “graphein,” standing for “write.” Consequently, the meaning of
the term cryptography is best paraphrased as “hidden writing.” According
to [21], cryptography refers to the “mathematical science that deals with
transforming data to render its meaning unintelligible (i.e., to hide its semantic
content), prevent its undetected alteration, or prevent its unauthorized use.
If the transformation is reversible, cryptography also deals with restoring
encrypted data to intelligible form.” Consequently, cryptography refers to the
process of protecting data in a very broad sense.

e The termcryptanalysiss derived from the Greek words “krypt6s” (see above)
and “analyein,” standing for “to loosen.” Consequently, the meaning of the
term cryptanalysis can be paraphrased as “to loosen the hidden word.” This
paraphrase refers to the process of destroying the cryptographic protection,
or—more generally—to study the security properties and possibilities to
break cryptographic techniques and systems. Again referring to [21], the term
cryptanalysis is used to refer to the “mathematical science that deals with
analysis of a cryptographic system in order to gain knowledge needed to break
or circumvent the protection that the system is designed to provide.” As such,
the cryptanalyst is the antagonist of the cryptographer, meaning that his or
her job is to break or at least circumvent the protection the cryptographer has
designed and implemented in the first place. Quite naturally, there is an arms
race going on between cryptographers and cryptanalysts.

Many other definitions for the terms cryptology, cryptography, and cryptanal-
ysis are available in the literature. For example, the term cryptography is some-
times said to refer to the study of mathematical techniques related to all aspects of
information security (e.g., [12]). These aspects include (but are not restricted to)
data confidentiality, data integrity, entity authentication, data origin authentication,
and/or nonrepudiation. Again, this definition is broad and comprises anything that is
directly or indirectly related to information security.

In some literature, the term cryptology is even said to include steganography
(in addition to cryptography and cryptanalysis).

e The termsteganographis derived from the Greek words “steganos,” standing
for “impenetrable,” and “graphein” (see above). Consequently, the meaning

Cryptography Primer 19

of the term steganography can be paraphrased as “impenetrable writing.” Ac-
cording to [21], the term steganography refers to “methods of hiding the ex-
istence of a message or other data. This is different than cryptography, which
hides the meaning of a message but does not hide the message itself.” Let
us consider an analogy to make this point more clear: if we have money to
protect or safeguard, then we can either hide its existence (by putting it, for
example, under a mattress), or we can put it in a safe that is assumed to be
burglarproof. In the first case, we are referring to steganographic methods,
whereas in the second case, we are referring to cryptographic methods. An
example of a formerly used steganographic method is invisible ink. Contem-
porary methods are more sophisticated and try to hide additional information
in electronic files. In general, this information is arbitrary. It may, however,
also be used to name the owner of a file or its recipient(s). In the first case,
one refers taligital watermarking whereas in the second case, one refers to
digital fingerprinting Digital watermarking and fingerprinting are currently
very active areas of research and development (e.qg., [22, 23]).

It goes without saying that cryptographic and steganographic techniques are
not mutually exclusive, and that they can be combined to complement each other. In
fact, there are increasingly many products that combine cryptographic and stegano-
graphic technigues in innovative and ingenious ways. We only refer to TrueCrypt's
hidden volumes that are to provide plausible deniability.

2.1.2 Cryptographic Systems

According to [21], the ternaryptographic systerfor cryptosystenn short) refers to

“a set of cryptographic algorithms together with the key management processes that
support use of the algorithms in some application context.” Again, this definition is
broad and comprises all kinds of cryptographic algorithms and protéddis.term
algorithm, in turn, is usually defined as a well-defined computational procedure that
takes a variable input and generates a corresponding output. It is sometimes also
required that an algorithm halts within a reasonable amount of time. Typically, one
distinguishes between deterministic and probabilistic algorithms.

1 In some literature, the terraryptographic schemés used to refer to a cryptographic system.
Unfortunately, it is seldom explained what the difference(s) between a (cryptographic) scheme and
a system really is (are). So for the purpose of this book, we don't make a distinction, and we use
the term cryptographic system to refer to either of them. We hope that this simplification is not
too confusing. In the realm of digital signatures, for example, people frequently talk about digital
signature schemes. In this book, however, we are consistantly talking about digital signature systems
and actually mean the same thing.

20 SSL and TLS: Theory and Practice

e An algorithm isdeterministidf its behavior is completely determined by the
input. Consequently, the algorithm always generates the same output for the
same input (if executed multiple times).

¢ An algorithm isprobabilistic(or randomizedlif its behavior is not completely
determined by the input, meaning that the algorithm internally uses and takes
advantage of randomly or pseudorandomly generated values. Consequently, a
probabilistic algorithm may generate a different output each time it is executed
with the same input.

If more than one entity takes part in the execution of an algorithm (or
the computational procedure it defines, respectively), then one is in the realm of
protocols Consequently, a protocol can be viewed as a distributed algorithm in
which two or more entities take part. Alternatively, one can also define a protocol as a
distributed algorithm in which a set of entities (instead of two or more entities) takes
part. In this case, it becomes immediately clear that an algorithm also represents a
protocol, namely one that is degenerated in a specific sense (i.e., the set consists
of only one entity). Hence, an algorithm can always be viewed as a special case
of a protocol. The major distinction between an algorithm and a protocol is that
only one entity is involved in the former, whereas typically two or more entities
are involved in the latter. This distinguishing fact is important and must be kept
in mind when one talks about algorithms and protocols (not only cryptographic
ones). For example, it becomes immediately clear that protocols are typically more
involved than algorithms. Similar to an algorithm, a protocol may be deterministic
or probabilistic—depending on whether the protocol internally uses random values.

In cryptography, one is typically interested ényptographic algorithmsand
cryptographic protocoléi.e., algorithms and protocols that employ and make use of
cryptographic techniques and mechanisms). Remember the definition for a crypto-
graphic system (or cryptosystem) given above. According to this definition, a cryp-
tosystem may comprise more than one algorithm, and the algorithms need not neces-
sarily be executed by the same entity (i.e., they may be executed by multiple entities
in a distributed way). Consequently, this notion of a cryptosystem comprises the
notion of a cryptographic protocol as suggested above. Hence, another way to look
at cryptographic algorithms and protocols is to say that a cryptographic algorithm
is a single-entity cryptosystem, whereas a cryptographic protocohisiltientity
or multiple entities cryptosysterithese terms, however, are not really used in the
literature.

It is important to note that cryptographic applications may consist of multiple
(sub)protocols, that these (sub)protocols and their concurrent executions may inter-
act in some subtle ways, and that these interactions and interdependencies may be
exploited by chosen-protocol attacks (see, for example, [24]). As of this writing, we

Cryptography Primer 21

are just at the beginning of properly understanding chosen-protocol attacks and how
they can be used in practice.

In the cryptographic literature, it is quite common to use human names to
refer to the entities that take part and participate in a cryptographic protocol. For
example, in a two-party protocol the participating entities are usually callied
andBob. This is a convenient way of making things unambiguous with relatively
few words, since the pronowhecan then be used for Alice, ame can be used for
Bob. The disadvantage of this naming scheme is that people assume that the names
are referring to people. This need not be the case, and Alice, Bob, and all other
entities may be computer systems, cryptographic devices, or anything else. In this
book, we don't follow the tradition of using Alice, Bob, and the rest of the gang.
Instead, we use single-letter characters, such as A, B,.Cto refer to the entities
that take part and participate in a cryptographic protocol. This is less fun (we guess),
but more appropriate (we hope). At least it gives us the opportunity to distinguish
between the devices that implement cryptographic techniques and mechanisms and
the human users of these devices.

2.1.3 Classes of Cryptographic Systems

Cryptographic systems may or may not use secret parameters (e.g., cryptographic
keys). If secret parameters are used, then they may or may not be shared between the
participating entities. Consequently, there are three classes of cryptographic systems
(see Definitions 2.1-2.3).

Definition 2.1 (Unkeyed cryptosystem)An unkeyed cryptosystem is a cryptographic
system that uses no secret parameter.

Representatives of unkeyed cryptosystems are one-way functions, crypto-
graphic hash functions, and random bit generators as outlined in Section 2.2.1.

Definition 2.2 (Secret key cryptosystem)A secret key cryptosystem is a crypto-
graphic system that uses secret parameters that are shared between the participating
entities.

Representatives of secret key cryptosystems are symmetric encryption sys-
tems, message authentication codes, and pseudorandom bit generators (PRBGS) as
outlined in Section 2.2.2.

Definition 2.3 (Public key cryptosystem) A public key cryptosystem is a crypto-
graphic system that uses secret parameters that are not shared between the partici-
pating entities.

22 SSL and TLS: Theory and Practice

Representatives of public key cryptosystems are asymmetric encryption sys-
tems, digital signature systems, and key agreement protocols as outlined in Section
2.2.3.

More concrete examples of unkeyed, secret key, and public key cryptosystems
are given in the sections referenced above. Let us now focus on the notion of a
“secure” cryptosystem.

2.1.4 Secure Cryptosystems

The goal of cryptography is to design, implement, deploy, and make use of crypto-
graphic systems that are secure in some meaningful way. In order to make precise
statements about the security of a cryptosystem, one must formally define the term
security. According to Section 1.2, one must answer at least two questions:

e What are the capabilities of the adversary?

e What is the task the adversary must solve in order to be successful (i.e., to
break the security of the system)?

Referring to Definition 1.1, a cryptographic systenmsecureif an adversary
with specified capabilities is not able to break it, meaning that he or she is not able to
solve the specified task. Consequently, there are several notions of security that can
be considered for a cryptographic system (one for every adversary and every possible
task to solve). Depending on the adversary’s capabilities, for example, there are two
notions of security usually distinguished in the literature.

Unconditional security: If the adversary is not able to solve the task even with
infinite computing power, then we talk abouconditionalor information-
theoretic securityThe mathematical theories behind this type of security are
probability theory and information theory.

Conditional security: If the adversary is theoretically able to solve the task, but it
is computationally infeasible for him or her (meaning that he or she is not able
to solve the task given his or her resources, capabilities, and access to a priori
or side information), then we talk aboatnditionalor computational secu-
rity. The mathematical theory behind this type of security is computational
complexity theory.

In some literatureprovable securityis mentioned as yet another notion of
security. The idea of provable security goes back to the early days of public key
cryptography, when Whitfield Diffie and Martin E. Hellman proposed a complexity-
based proof (for the security of a public key cryptosystem) [25]. The idea is

Cryptography Primer 23

to show that breaking a cryptosystem is computationally equivalent to solving a
hard mathematical problem. This means that one must prove the following two
statements:

¢ If the hard problem can be solved, then the cryptosystem can be broken.

o [f the cryptosystem can be broken, then the hard problem can be solved.

Diffie and Hellman proved only the first statement for their key exchange
protocol. This is unfortunate, because the second statement is also important for
the security of a system. If we can prove that an adversary who is able to break a
cryptosystem is also able to solve the hard problem, then we can argue that it is
very unlikely that such an adversary really exists and hence that the cryptosystem in
guestion is likely to be secure. The notion of provable security has fueled a lot of
research and there are many public key cryptosystems shown to be provably secure
in this sense. It is, however, also important to note that a complexity-based proof is
not absolute and that it is only relative to the assumed intractability of the underlying
mathematical problem(s).

Provable security is difficult to achieve for complex cryptographic systems,
such as security protocols. More recently, people have therefore come up with a
methodology to design systems that are not really provably secure, but for which
one can at least have a “good feeling” about their security properties [26]. The
basic idea is to design aideal systemthat employs one (or several) random
function(s)—also known as random oracle(s)—and to prove the security of this
system mathematically. The ideal system is then implementedeéalasystenby
replacing each random oracle with a “good” and “appropriately chosen” publicly
known pseudorandom function—typically a cryptographic hash function, such as
MD5 or SHA-1. This way, one obtains an implementation of the ideal system in
the real world (where random oracles do not exist). If the pseudorandom functions
in use have good properties, then one can hope that the security proof of the ideal
system is inherited to the real system. It is not a proof anymore, but it may still
provide evidence for the security of the real system. Due to the use of random
oracles, this design methodology is knowrraisdom oracle methodologit yields
cryptographic systems that are provably secure in the so-cedledom oracle
model Unfortunately, it has been shown that it is possible to craft cryptographic
systems that are provably secure in the random oracle model, but become totally
insecure whenever a cryptographic hash function is specified and nailed down [27].
This theoretical result is worrisome, and since its publication many researchers
have started to think controversially about the usefulness of the random oracle
methodology. In fact, most researchers prefer security proofs that do not require
random oracles.

24 SSL and TLS: Theory and Practice

Inthe past, we have seen many examples in which people have tried to improve
the security of a cryptographic system by keeping secret its design and internal
working principles. This approach is sometimes referred to as “security through
obscurity.” Many of these systems do not work and can be broken triidllyis
insight has a long tradition in cryptography, and there is a well-known cryptographic
principle—the Kerckhoffs’ principlé—that basically states that a cryptographic
system should be designed so as to be secure even when the adversary knows all
details of the system, except for the values explicitly declared to be secret, such
as cryptographic keys [28]. Kerckhoffs’ principle is certainly something to keep in
mind when one designs cryptographic systems.

Last but not least, it is important to note that a theoretically secure cryptosys-
tem may not remain secure when implemented in practice, and that there are usually
many possibilities to mount attacks against a concrete implementation of such a
system (e.g., [29]). For example, there are many attacks that take advantage of and
try to exploit side channel information an implementation may leak. Side channel
information, in turn, is information that can be retrieved from the execution of the
cryptosystem that is neither the specified input nor the specified output. In the case
of an encryption system, for example, the specified input refers to the plaintext mes-
sage and the key, whereas the specified output refers to the ciphertext. Hence, side
channelinformation is information an implementation of the encryption system may
leak except for the plaintext message, the key, or the ciphertext. This includes, for
example, timing information, power consumption, as well as radiation of all sorts.
Attacks that try to exploit side channel information are caliete channel attacks
Since about the middle of the 1990s, researchers have found and come up with
many possibilities to mount side channel attacks. Examples include timing attacks
[30], differential power analysis [31], and fault analysis [32, 33]. It is reasonable
to say that every computation done on a real computer system leads to physical
effects and phenomena that may be measured and exploited to reveal information
about the keying material in use. This problem is inherent and cannot be avoided by
cryptography—nbe it provably secure or not.

2.1.5 Historical Background Information

Cryptography has a long and thrilling history that is addressed in many books (e.g.,
[34-36]). Since the very beginning of the spoken and—even more important—
written word, people have tried to transform data “to render its meaning unintelligi-
ble (i.e., to hide its semantic content), prevent its undetected alteration, or prevent its

2 Note that “security through obscurity” may work well outside the realm of cryptography.
3 The principle is named after Auguste Kerckhoffs who lived from 1835 to 1903.

Cryptography Primer 25

unauthorized use” [21]. According to this definition, these people have always em-
ployed cryptography and cryptographic techniques. The mathematics behind these
early systems may not have been very advanced, but they still employed cryptog-
raphy and cryptographic techniques. For example, Gaius Julius Caesad an
encryption system in which every letter in the Latin alphabet was substituted with
the letter that is found three positions afterwards in the lexical order (i.e., "A’ is
substituted with “D,” “B” is substituted with “E,” and so on). This simple additive
cipher is known a€aesar cipherLater on, people employed encryption systems
that use more involved mathematical transformations. The encryption systems in
use today are very different.

Until World War 11, cryptography was considered to be an art (rather than
a science) that was primarily used in military and diplomacy. The following two
developments and scientific achievements turned cryptography from an art into a
science:

e During World War |1, Claude E. Shannddeveloped a mathematical theory of
communication [37] and a related communication theory of secrecy systems
[38] when he was working at AT&T Laboratori€gfter their publication, the
two theories started a new branch of research that is commonly referred to as
information theory

e As mentioned earlier, Diffie and Hellman developed and proposed the idea of
public key cryptography at Stanford University in the 1970heir vision
was to employ trapdoor functions to encrypt and digitally sign electronic
documents. Informally speaking, a trapdoor function is a function that is easy
to compute but hard to invert, unless one knows and has access to some
specific trapdoor information. This information represents the private key that
must be held by only one person. Diffie and Hellman’s work culminated in
a key agreement protocol that allows two parties that share no prior secret

Gaius Julius Caesar was a Roman emperor who lived from 102 BC to 44 BC.

Claude E. Shannon was a mathematician who lived from 1916 to 2001.

Similar studies were done by Norbert Wiener who lived from 1894 to 1964.

Similar ideas were pursued by Ralph C. Merkle at the University of California at Berkeley [39].
More recently, the British government announced that public key cryptography, including the
Diffie-Hellman key agreement protocol and the RSA public key cryptosystem, was invented at the
Government Communications Headquarters (GCHQ) in Cheltenham in the early 1970s by James
H. Ellis, Clifford Cocks, and Malcolm J. Williamson under the nanoa-secret encryptio(NSE).

You may refer to the note “The Story of Non-Secret Encryption” written by Ellis in 1997 (available
at http://citeseer.ist.psu.edu/ellis97story.html) to get the story. Being part of the world of secret
services and intelligence agencies, Ellis, Cocks, and Williamson were not allowed to openly talk
about their discovery.

~No o b

26 SSL and TLS: Theory and Practice

to exchange a few messages over a public channel and to establish a shared
(secret) key. This key can then be used as a session key.

After Diffie and Hellman published their discovery [25], a number of public
key cryptosystems were developed and proposed. Some of these systems are still
in use today, such as the RSA [40] and Elgahjall] public key cryptosystems.
Other systems, such as a number of public key cryptosystems based on the knapsack
problem, have been broken and are no longer in use.

Since around the early 1990s, we have seen a wide deployment and massive
commercialization of cryptography. Today, many companies develop, market, and
sell all kinds of cryptographic techniques, mechanisms, services, and products (im-
plemented in hardware or software) on a global scale. Furthermore, there are many
cryptography-related conferences and trade shows to learn more about particular
products.

2.1.6 Legal Situation

The legal situation regarding cryptography is involved and tricky. This is particularly
true on the international level. There are many regulations on the import, export,
and use of cryptography and cryptographic products, and these regulations differ
from country to country (see, for example, Bert-Jaap Koops’ Crypto Law Strvey
for a corresponding overview). In some countries, the use of cryptography is reg-
ulated and strictly controlled, whereas in other countries, it is encouraged or even
mandatory to use cryptography to secure specific applications, such as, for example,
applications in health care.

In many countries, the export of cryptographic products is regulated, whereas
the import and use is not. This applies, for example, to the United States. Until the
end of the 1990s, the United States had strong export controls on cryptographic prod-
ucts in place, and these controls were administered by the Department of Defense
(DoD). These controls made it prohibitively difficult or next to impossible for U.S.
companies to sell products that implement strong cryptography abroad. This led to
a situation in which U.S. companies had to sell domestic and international versions
of their cryptographic products, such as Web browsers. The domestic versions of
these browsers were able to support SSL cipher suites with encryption algorithms
of sufficiently long key lengths (e.g., 128 bits), whereas the international versions of
the same browsers could only employ 40-bit keys. Later on, the companies added

8 The Elgamal public key cryptosystem was developed and proposed by Taher Elgamal—the author
of this book’s foreword—in the 1980s.
9 http://rechten.uvt.nl/koops/cryptolaw.

Cryptography Primer 27

features to dynamically handle variable key lengths. For example, Netscape Com-
munications added a feature nameternational Step-Umand Microsoft added a
similar feature name8erver Gated Cryptographi{$GC). Both features allowed an
international browser to switch to strong cryptography, if and only if the Web server
was able to provide a specific certificate. So the browser-side use of cryptography
was effectively controlled by the server and the certificate(s) it was able to provide.
Because old browsers are still in use today, International Step-Up and SGC are still
with us.

In 1999, the Clinton administration announced a new framework for U.S. ex-
port controls on cryptographic products. This was in response to the changing global
market, advances in technology, and the need to give U.S. industry better access to
these markets, while continuing to provide essential protections for national security.
In January 2000, the administration published a regulation implementing this new
framework. Itincluded several items. For example, export controls were now admin-
istered by the Bureau of Industry and Security (BIS) of the Department of Commerce
(DoC) instead of the DoD. More specifically, rules governing exports and reexports
of cryptographic products were now found in the Export Administration Regulations
(EAR). If a U.S. company wanted to sell a cryptographic product abroad, then it
would still have to have export approval according to the EAR. These regulations,
however, enlarge the use of license exceptions, implement the changes agreed to at
the Wassenaar Arrangemé&hin export controls for conventional arms and dual-use
goods and technologies in December 1998, and eliminate the deemed export rule for
encryption technology. In addition, new license exception provisions were created
for certain types of encryption, such as source code and toolkits. Some countries
are exempted from the regulation (i.e., Cuba, Iran, Iraq, Libya, North Korea, Sudan,
and Syria). Overall, the legal situation for U.S. companies regarding export controls
are now comparable to their international competitors. Nevertheless, there are still a
couple of remains of the former U.S. export controls.

10 The Wassenaar Arrangement is a treaty originally negotiated in July 1996 and signed by 31 coun-
tries to restrict the export of dual-use goods and technologies to specific countries considered to be
dangerous. The countries that have signed the Wassenaar Arrangement include the former Coordi-
nating Committee for Multilateral Export Controls (COCOM) member and cooperating countries,
as well as some new countries such as Russia. The COCOM was an international munitions con-
trol organization that also restricted the export of cryptography as a dual-use technology. It was
formally dissolved in March 1994. More recently, the Wassenaar Arrangement was updated. The
participating countries of the Wassenaar Arrangement are Argentina, Australia, Austria, Belgium,
Bulgaria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Japan, Luxembourg, The Netherlands, New Zealand, Norway, Poland, Portugal, Republic of
Korea, Romania, Russian Federation, Slovakia, Spain, Sweden, Switzerland, Turkey, Ukraine, the
United Kingdom, and the United States. Further information on the Wassenaar Arrangement can be
found at http://www.wassenaar.org.

28 SSL and TLS: Theory and Practice

For the purpose of this book, we do not further address legal issues regarding
the import, export, or use of cryptographic products. It is a topic of its own, and
whenever you want to come in touch with cryptographic products you should
be careful and talk to a lawyer (or any other legally savvy person) first. This is
particularly true for the import and export of such products—there are many pitfalls
to avoid.

2.2 CRYPTOSYSTEMS OVERVIEW

In this section, we overview and put into perspective the most important cryptosys-
tems in use today. We follow the classification introduced above, meaning that we
distinguish between unkeyed, secret key, and public key cryptosystems.

2.2.1 Unkeyed Cryptosystems

According to Definition 2.1, unkeyed cryptosystems use no secret parameter. The
most important representatives of unkeyed cryptosystems are one-way functions,
cryptographic hash functions, and random bit generators.

2.2.1.1 One-Way Functions

The notion of a one-way function plays a central role in modern cryptography.
Informally speaking, a functiorf : X — Y is one way if it is easy to compute
but hard to invert. The termasymeans that the computation can be done efficiently,
whereas the terrhard means that the computation is not known to be feasible in an
efficient way (i.e., no efficient algorithm is known to exist). Consequently, one can
define aone-way functioras suggested in Definition 2.4 and illustrated in Figure
2.1.

X Y

Efficiently computable

Domain Range

Figure 2.1 A one-way function.

Cryptography Primer 29

Definition 2.4 (One-way function) A functionf : X — Y is one way iff (x) can
be computed efficiently for all € X, but f ~!(y) cannot be computed efficiently for
any randomly chosen € Y.

To be more precise, one must say that it may be possible to confiptite),
but that the entity that wants to do the computation does not know how to do it. Also,
Definition 2.4 is not mathematically precise, because we have not defined what an
efficient computation really is. To do so requires complexity-theoretic arguments.
We simplify things a little bit by saying that a computation is efficient, if the (ex-
pected) running time of the algorithm that does the computation is bounded by a
polynomial in the length of the input. The algorithm itself may be probabilistic.
Otherwise, for example, if the expected running time is not bounded by a polyno-
mial, then the algorithm requires super-polynomial (e.g., exponential) time and is
said to be inefficient.

A real-world example of a one-way function is a telephone book. Using
such a book, the function that assigns a telephone number to a name is easy to
compute (because the names are sorted alphabetically) but hard to invert (because
the telephone numbers are not sorted numerically). Also, many physical processes
are inherently one way. If, for example, we smash a bottle into pieces, then it is
prohibitively difficult to put the pieces together and reconstruct the bottle. Similarly,
if we drop a bottle from a bridge, it falls down. The reverse process does not
frequently occur in real life. Last but not least, time is one way, and it is (currently)
not known how to travel back in time. In fact, we continuously age and have no
possibility to make ourselves young again.

In contrast to the real world, the idealized world of mathematics is less rich
with one-way functions. In fact, there are only a few functions conjectured to be
one way. Examples include the discrete exponentiation function, the modular power
function, and the modular square function. These functions are frequently used in
public key cryptography. But note that none of these functions has been shown to
be one way, and that it is theoretically not even known whether one-way functions
really exist. These facts should be kept in mind when people discuss the use (and
usefulness) of one-way functions in contemporary cryptography.

Assuming the existence of one-way functions, there is a class of such functions
that can be inverted efficiently if and—as it is hoped—only if some extra information
is known. This brings us to the notion ofrapdoor (one-way) functioas suggested
in Definition 2.5.

Definition 2.5 (Trapdoor function) A one-way functiorf : X — Y is a trapdoor
function (or a trapdoor one-way function, respectively) if there exists some extra
information (i.e., thetrapdoo} with which f can be inverted efficiently, that is,
f~1(y) can be computed efficiently for any randomly chogenY".

30 SSL and TLS: Theory and Practice

The mechanical analog of a trapdoor (one-way) function is a padlock. It
can be closed by everybody (if it is in an unlocked state), but it can be opened
only by somebody who holds or has access to the proper key. In this analogy, a
padlock without a keyhole represents a one-way function without trapdoor. In the
real world, this is not a particularly useful construct, but in the digital world, there are
many interesting applications for it. Consequently, one-way functions and trapdoor
functionsyield all kinds of public key cryptosystems, such as asymmetric encryption
systems, digital sighature systems, or key agreement protocols.

2.2.1.2 Cryptographic Hash Functions

Hash functions are frequently used and have many applications in computer science.
Informally speaking, a hash function is an efficiently computable function that takes
an arbitrarily sized input (string) and generates an output (string) of fixed size. This
idea is captured in Defintion 2.6.

Definition 2.6 (Hash function) Let3};, be an input alphabetanyd,,; be an output
alphabet. Any function : ¥} — X7 . that can be computed efficiently is said to

out

be ahash functionlt generates hash values of length

In this definition, the domain of the hash function¥$,. This means that it
consists of all strings over the input alphabgt,. In theory, these strings can be
infinitely long. In practice, however, one usually has to assume a maximum string
lengthn,,... for technical reasons. In this case, a hash function can be formally
expressed as

hi Bpes — S,

Note that the hash function must be efficiently computable in complexity-theoretic
terminology. Also, note that the two alphabétg, andX,,; can be (and typically
are) the same. In this casg, is used to refer to either of them. In a typical
(cryptographic) settingy is the binary alphabet (i.e}, = {0,1}) andn is 128
or 160 bits. In such a setting, a hash functiogenerates binary strings of 128 or
160 bits.

In cryptography, we are interested in hash functions with the following prop-
erties:

¢ A hash functionh is one-wayor preimage resistanif it is computationally
infeasible to find an input wora € X, with h(z) = y for any given (and
randomly chosen) output worde X"

out*

Cryptography Primer 31

e A hash functiom: is second-preimage resistaat weak collision resistani
it is computationally infeasible to find a second input wafde X}, with
x' # x andh(z’) = h(x) for any given (and randomly chosen) input word
x € Xj,.

e A hash functionh is collision resistantor strong collision resistanif it is
computationally infeasible to find two input wordsz’ € ¥, with 2’ # «
andh(z') = h(z).

The third property is a stronger version of the second property. The first
property, however, is independent from the other two properties. Consequently, the
first property can be combined with either the second or the third property.

e A one-way hash functiois a hash function that is preimage resistant and
second-preimage resistant (or weak collision resistant);

e A collision resistant hash functids a hash function that is preimage resistant
and collision resistant (or strong collision resistant).

As suggested in Definition 2.7, either of these functions is cadiggbto-
graphicand can be used for cryptographic purposes (e.g., for data integrity pro-
tection, message authentication, and digital signatures).

Definition 2.7 (Cryptographic hash function) A hash functiorh : 3}, — X7 . is
cryptographic if it is one way or collision resistant.

A cryptographic hash function is typically used to hash arbitrarily long
messages to binary strings of fixed size. This is illustrated in Figure 2.2, where the
ASCIl-encoded message “This is a file that includes some important but long state-
ments. Consequently, we may need a short representation of this file.” is hashed to
OxE423AB7D1767D13EF6EAEA69805FF6EQ (in hexadecimal notation). The
resulting hash value representéiregerprint or digestthat is characteristic for the
message and—in some sense—uniquely identifies it. The collision resistance prop-
erty implies that it is difficult or computationally intractable to find another message
that hashes to the same fingerprint or digest.

Examples of cryptographic hash functions in widespread use are MD5 (as
used in Figure 2.2) and SHA-1. Both functions represent interated hash functions
that follow the Merkle-Damgard construction [42, 43]. This basically means that a
collision-resistant compression function is applied iteratively on subsequent mes-
sage blocks, and that the resulting hash function inherits the collision resistance-
property of the underlying compression function.

32 SSL and TLS: Theory and Practice

This is a file that includes some important but long statements.
Consequently, we may need a short representation of this file.

E4 23 AB 7D 17 67 D1 3E F6 EA EA 69 80 5F F6 EO

Figure 2.2 A cryptographic hash function.

MD5

MDS5 is a cryptographic hash function that was originally designed by Ron Rivest
in 1991. It is specified in RFC 1321 [44], and it generates hash values of 128 bits
(independent from the input message length).

Since its publication, many people have tried to find collisions for MD5. Some
of them have been successful for incomplete or simplified versions of MD5. With
regard to the full version of MD5, collisions were found in 2004 [45]. Since then, it
has been recommended to replace MD5 with stronger (i.e., more collision-resistant)
cryptographic hash functions. More recently, this recommendation has become more
severe, because a group of international researchers has been able to exploit MD5
collisions to generate a rogue CA certificate.

SHA

Soon after Rivest released the specification of MD5, the U.S. NIST proposed the
Secure Hash AlgorithitBHA) that is conceptually similar to MD5, but is a little bit
stronger and slower. Probably after discovering a never-published weakness in the

11 http://www.win.tue.nl/hashclash/rogue-ca.

Cryptography Primer 33

orginal SHA proposat? the NIST revised it and called the revised version SHA-

1. As such, SHA-1 was specified in the Federal Information Processing Standards
Publication (FIPS) PUB 180-1 [47} also known asSecure Hash Standa(@HS).

In 2002, FIPS PUB 180 was revised a second time and the resulting FIPS PUB
180-24 superseded FIPS PUB 180-1 beginning February 1, 2003. In addition to
superseding FIPS 180-1, FIPS 180-2 added three new algorithms that produce and
output larger hash values. The SHA-1 algorithm specified in FIPS 180-2 is the
same algorithm as specified in FIPS 180-1, although some of the notation has been
modified to be consistent with the notation used for SHA-256, SHA-384, and SHA-
512—collectively referred to as SHA-2. As summarized in Table 2.1, SHA-1, SHA-
256, SHA-384, and SHA-512 produce and output hash values of different sizes (160,
256, 384, and 512 bits), and their maximal message sizes, block sizes, and word sizes
also vary considerably.

In February 2004, the NIST published a change notice for FIPS 180-2 to
include SHA-224'5 SHA-224 is identical to SHA-256, but uses different initial
hash values and truncates the final hash value to the leftmost 224 bits. All SHA-
2 algorithms can be implemented efficiently. A long hash value does not necessarily
mean that the corresponding implementation is inefficient; it only means that the
resulting output is longer. This is advantageous from a collision resistance point of
view, but it is disadvantageous from a space requirements point of view.

Table 2.1
Secure Hash Algorithms as Specified in FIPS 180-2

Algorithm Message Size Block Size Word Size Hash Value Size

SHA-1 < 254 bits 512 bits 32 bits 160 bits
SHA-224 < 254 bits 512 bits 32 bits 224 bits
SHA-256 < 254 bits 512 bits 32 hits 256 bits
SHA-384 < 2128 pits 1,024 bits 64 bits 384 bits
SHA-512 < 2128 pits 1,024 bits 64 bits 512 bits

Like MD5, many people have tried to find collisions for SHA-1. It was not
until 2005 that Wang et al. found an attack that finds collisions for the full version
of SHA-1 requiring fewer tha@%® operations (note that a brute-force search would
require2®° operations). This result was later improve@$d [50], and it is currently
a research topic to lower this bound. The bottom line is that the collision resistance

12 At CRYPTO 98, Florent Chabaud and Antoine Joux published a weakness of SHA-0 [46]. This
weakness was fixed by SHA-1, so it is reasonable to assume that they found the original weakness.

13 SHA-1 s also specified in informational RFC 4634 [48].

14 http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.

15 SHA-224 is also specified in informational RFC 3874 [49].

34 SSL and TLS: Theory and Practice

of SHA-1 is in question (to say the least), and that people are looking for viable
alternatives. Certainly, SHA-2 provides such an alternative. But in addition to SHA-
2, people are also looking for alternative paradigms for the design of cryptographic
hash functions. The U.S. NIST holds a competiton to find a successor of SHA-2—
preliminarily termed SHA-3. The official release of SHA-3 is scheduled for 2012. It
is possible and likely that SHA-3 will be widely deployed in practice.

2.2.1.3 Random Bit Generators

Randomness is one of the most fundamental ingredients of and prerequisites for the
security of cryptographic systems. In fact, the generation of secret and unpredictable
random quantities (i.e., random bits or random numbers) is at the heart of most
practically relevant cryptographic systems. The frequency and volume of these
guantities vary from system to system. If, for example, we consider secret key
cryptography, then we must have random quantities that can be used as secret keys.
In the most extreme case, we must have a random bit for every bit that we want
to encrypt in a perfectly secure way. If we consider public key cryptography, then
we must have random quantities to generate public key pairs. In either case, a
cryptographic system may be probabilistic, meaning that random quantities must
be generated for every use of the system. The required quantities must then be
random in the sense that the probability of any particular value being selected
must be sufficiently small to preclude an adversary from gaining advantage through
optimizing a search strategy based on such probability. This is where the notion of
arandom bit generatoas introduced in Definition 2.8 and illustrated in Figure 2.3
comes into play.

Definition 2.8 (Random bit generator) A random bit generator is a device or
algorithm that outputs a sequence of statistically independent and unbiased bits.

Random

bit . ———0010111010011000010110
generator

Figure 2.3 A random bit generator.

Alternatively, a random bit generator is sometimes also defined as an idealized
model of a device that generates and outputs a sequence of statistically independent

Cryptography Primer 35

and unbiased bits. In either case, it is important to note that a random bit generator
has no input (i.e., it only generates an output), and that because the output of the
random bit generator is a sequence of statistically independent and unbiased bits,
the bits occur with the same probability (i.e.,[®r= Prl] = 1/2), o—more
generally—alR” differentk-tuples occur approximately equally often forfalE N.

There are many statistical tests that can be used to verify the (randomness) properties
of a given random bit generator.

There is no known deterministic (i.e., computational) realization or implemen-
tation of a random bit generator. There are, however, many nondeterministic realiza-
tions and implementations thereof. Many of these realizations and implementations
make use of physical events and phenomena. In fact, it is fair to say that a (true)
random bit generator requires a naturally occuring source of randomness. Designing
and implementing a device or algorithm that exploits this source of randomness to
generate binary sequences that are free of biases and correlations is a challenging
engineering task.

2.2.2 Secret Key Cryptosystems

According to Definition 2.2, secret key cryptosystems use secret parameters that
are shared between the participating entities. The most important representatives of
secret key cryptosystems are symmetric encryption systems, MACs, and PRBGs.

2.2.2.1 Symmetric Encryption Systems

If one talks about cryptography, then one often implicitly refers to confidentiality
protection using symmetric encryption (i.e., to encrypt and decrypt datajyption

is the process that turng@aintext messageor plaintextin short) into aciphertext
anddecryptionis the reverse process (i.e., the process that turns a ciphertext into a
plaintext message). As suggested in Definition 2.8ymmetric encryption system
consists of a set of possible plaintext messages (i.e., the plaintext message space), a
set of possible ciphertexts (i.e., the ciphertext space), and a set of possible keys (i.e.,
the key space), as well as two families of encryption and decryption functions (or
algorithms) that are inverse to each other.

Definition 2.9 (Symmetric encryption system)A symmetric encryption system or
cipher consists of the following five components:

e Aplaintext message spagd;
e A ciphertext spacé;
o Akey space;

36 SSL and TLS: Theory and Practice

e Afamily E = {Ey : k € K} of (deterministic or probabilisticgncryption
functionsE), : M — C;

e Afamily D = {Dy : k € K} of (deterministic)decryption functions
Dy :C— M.

For every keyt € K and every message € M, the functiond,, and E;, must be
inverse to each other, that if)y. (E,(m)) = m.

In most symmetric encryption systems, it does not matter whether one encrypts first
and then decrypts or decrypts first and then encrypts; that is,

Dy (Ey(m)) = Ex(Di(m)) = m.

Typically, M = C = {0,1}* (i.e., the set of binary strings of arbitrary but finite
length), andC = {0, 1}! for some fixed key length(e.g.,l = 128).

k k

m— E [~ D [—m

Figure 2.4 The working principle of a symmetric encryption system.

The working principle of a symmetric encryption system is illustrated in
Figure 2.4. On the left side, the sender encrypts the plaintext messageM
with his or her implementation of the encryption functibr(parametrized with the
secret key). The resulting ciphertext), (m) = ¢ € C is sent to the recipient over a
potentially unsecure channel (drawn as a dotted line in Figure 2.4). On the right side,
the recipient decrypts with his or her implementation of the decryption function
D (again, parametrized with the secret Kgy If the decryption is successful, then
the recipient is able to recover the plaintext messagdhe characteristic feature
of a symmetric encryption system is that theon the sender side and titeon
the recipient side are equal or trivially computable from each other, meaning that
represents a bilateraly known (encryption and decryption) key.

On a high level of abstraction, people sometimes distinguish between block
and stream ciphers.

Cryptography Primer 37

e A block cipheroperates on fixed-length groups of bits (i.e., blocks) with an
unvarying transformation (determined by the key).

e A stream cipheoperates on individual bits or bytes, and the actual transfor-
mation varies during the encryption process.

The distinction between block and stream ciphers is not as sharp as it may
look like, and there are modes of operation that effectively turn a block cipher into
a stream cipher. A block cipher can, for example, be operated in the electronic
code book (ECB) or—more preferrably—cipherblock chaining (CBC) mode. Al-
ternatively, a block cipher can also be turned into a stream cipher by operating it
in the cipher feedback (CFB) or output feedback (OFB) mode [51]. Alternatively,
the block cipher can also be operated in counter mode or one of the newer modes
that provide message authentication (in addition to data encryption). We will revisit
these modes when we address TLS 1.2 in Section 5.4.

Many examples of symmetric encryption systems are described in the lit-
erature. Some of these systems are relevant and used in practice, whereas others
are not (i.e., they are only theoretically or historically interesting, or they are used
only in small and typically closed environments). Thata Encryption Standard
(DES) andAdvanced Encryption StandafdES) are the two most widely deployed
block ciphers, whereaRC4is the most widely deployed stream cipher. Note that
all practically relevant symmetric encryption systems are “only” conditionally or
computationally secure. Unconditionally or information-theoretically secure sym-
metric encryption systems exist, but they require keys that are at least as long as
the plaintext messages that are encrypted, and hence their key management is pro-
hibitively expensive. Let us now have a brief look at DES, AES, RC4, and a few
other symmetric encryption systems relevant for the SSL/TLS protocols, such as
RC2, IDEA, Skipjack, and Camellia.

DES

The DES is a block cipher that was orginally designed at IBM (after an encryption
algorithm named Lucifer) and standardized in FIPS PUB 46. It was reaffirmed as an
official standard three times. The last reaffirmation took place in 1999 [52]. In some
literature, a distinction is made between DES as a standard and DES as an encryption
algorithm. In the latter case, the DES is also ternbeda Encryption Algorithm
(DEA). For the purpose of this book, however, we don’t make a distinction and we
use the terms DES and DEA synonymously and interchangeably.

Technically speaking, DES is a Feistel cipher that has a block size of 64 bits
and operates in 16 rounds. The key length is 64 bits, but the last bit in every byte of
the key represents a parity bit. Consequently, the effective key length is only 56 bits.

38 SSL and TLS: Theory and Practice

The overall security of DES seems to be good and the encryption algorithm
has turned out to be surprisingly resistant against the most powerful cryptanalytical
attacks (in particular, differential and linear crytanalysis). The major weakness and
vulnerability of DES is its restricted key length of 56 bits. This means that an
exhaustive key search can be done2ii operations in the worst case ageP
operations on the average. People have built DES cracking machines and designed
distributed algorithms to do an exhaustive search for DES keys. The bottom line
is that breaking DES is perfectly feasible today, and that the use of DES cannot
be recommended anymore. In many applications, DES is therefore replaced with a
multiple-iteration version of it. Double DES is not particularly useful, because it is
vulerable to the meet-in-the-middle attack. But Triple DES (3DES) is useful and has
a large acceptance rate in practice. The major disadvantage of 3DES is performance,
since a 3DES implementation is roughly three times slower than a normal DES
implementation.

AES

In the late 1990s, the U.S. NIST carried out a competition for a successor of DES.
The competition was won by a block cipher nanRiphdaelthat was originally de-
veloped by two Belgian cryptographers, Joan Daemen and Vincent Rijmen. Rijndael
was chosen to become the AES and was published in FIPS PUB 197 [53].

Table 2.2
The Three Official Versions of the AES

Block size Key length Number of rounds
AES-128 128 128 10
AES-192 128 192 12
AES-256 128 256 14

The AES is a block cipher with a fixed block size of 128 bits. As summarized
in Table 2.2, there are three official versions of the AES: AES-128 takes a 128-bit
key, AES-192 takes a 192-bit key, and AES-256 takes a 256-bit key. Like the key
length, the number of rounds also increases from version to version (i.e., 10, 12, and
14 rounds).

Unlike DES, the AES has a clean mathematical structure. This allows a mathe-
matical treatment of its security properties. Unfortunately, it also gives mathematical
structure to the adversary who may try to exploit it. The bottom line is that math-
ematical structure is a double-edged sword that may speak in favor or against the
security of a cipher. As of this writing, nobody has found a way to break the AES
that is significantly more efficient than an exhaustive key search. So people have a

Cryptography Primer 39

good feeling when they use AES today. This is amplified by the fact that the NSA
announced in June 2003 that the AES may be used for the encryption of classified
information. This even applies to TOP SECRET information for 192- or 256-bit
keys.

RC4

Most stream ciphers in use today are based on linear feedback shift registers
(LFSRs). LFSRs can be efficiently implemented in hardware, but they are rather
slow when implemented in software. Consequently, there is room for non-LFSR-
based stream ciphers that can be efficiently implemented in hardware and software.
The most widely deployed example is RC4 designed by Ron Rivest in 1987. While
it is officially termedRivest Cipher 4the RC acronym is alternatively understood

to stand for “Ron’s Code.” RC4 was initially a trade secret of RSA Security. But in
September 1994, a description was anonymously posted to the Cypherpunks mailing
list. The leaked code was confirmed to be genuine as its output was found to match
that of proprietary software using licensed RC4. Because the algorithm is known, it
is no longer a trade secret. But the name “RC4” is still trademarked, so it is often
referred to aARCFOURor ARC4 This name stands for “alleged RC4,” because
RSA Security has never officially released the algorithm (mainly to avoid possible
trademark problems).

RC4 is an additive stream cipher, meaning that it generates a stream of
pseudorandom bits (a keystream) that, for encryption, is combined with the plaintext
using the bitwise addition modulo 2 (i.e., XOR operaton). Decryption is performed
the same way. To generate the keystream, the cipher makes use of a variable-length
secret key. The ability to handle variable-length keys is one of the advantages of
RCA4. It was particularly important when U.S. companies had to implement and
support domestic and international versions of their software. The domestic versions
could use keys of arbitrary length, whereas the international versions could use keys
of up to 40 bits. This flexibility in key lengths is one of the major reasons for RC4’s
success.

In spite of the fact that RC4 is more than 20 years old, no serious vulnerability
has been found so far. The only known weakness is that the keystream generated
by RC4 is biased in varying degrees towards certain bit sequences. This weakness
was exploited in attacks against the way RC4 is used in the wired equivalent privacy
(WEP) encryption used with 802.11 wireless local area networks (WLANS). The
consequence is that the first 512 bytes of every keystream should be discarded. This
is best practice. If RC4 is used this way, then it may provide a reasonable level of
security.

40 SSL and TLS: Theory and Practice

RC2

RC2 is a block cipher also developed by Ron Rivest in 1987 for inclusion in Lotus
Notes. After the NSA suggested a couple of changes and Rivest incorporated these
changes, the cipher was approved for export in 1989. Along with RC4, RC2 with a
40-bit key size was treated favorably under the former U.S. export controls.

Initially, the details of RC2 were kept secret. But in January 1996, source code
for RC2 was anonymously posted to the Internet (similar to the disclosure of RC4).
It is unclear whether the poster had access to the specifications or whether it had
been reverse engineered. Unlike RC4, the correctness of the posting was offically
confirmed in 1998 [54, 55].

RC2 has a block length of 64 bits and can handle key lengths between 8 and
128 bits. The algorithm operates in 18 rounds. In 1997, RC2 was cryptanalyzed
using234 chosen plaintexts [56]. Consequently, the security of RC2 is known to be
weak and the symmetric encryption system should therefore not be used anymore
(at least not for any security-critical application).

IDEA

The International Data Encryption AlgorithnfIDEA) is a block cipher that was
originally designed by Xuejia Lai and James Massey as a replacement for the DES
[57]. In fact, IDEA is a minor revision of an earlier cipher, the Proposed Encryption
Standard (PES), and was originally called Improved PES (IPES). The cipher is
patented in Austria, France, Germany, ltaly, Japan, Netherlands, Spain, Sweden,
Switzerland, United Kingdom, and the United States, but most of these patents are
about to expire soon. Note, however, that the name “IDEA’ is also a trademark.
IDEA is best known for its use in former versions of fheetty Good PrivacyPGP)
software.

IDEA is a block cipher with a block length of 64 bits and a key length of
128 bits. To encrypt a block, a series of eight identical transformations and an
output transformation are performed. The processes for encryption and decryption
are similar. IDEA derives much of its security by interleaving operations from
different groups that are algebraically incompatible to some extent. The operations
are addition modul@'®, multiplication modul®'®+1, and bitwise addition modulo
2 (i.e., XOR).

The IDEA was designed to be resistant against differential cryptanalysis
and related attacks. Concerning this matter, IDEA has been very successful; no
successful linear or algebraic weaknesses have been reported so far. As of 2007,
the best attack that applies to all keys can break IDEA reduced to 6 rounds (the
full IDEA cipher uses 8 identical rounds and a different final round). In spite of

Cryptography Primer 41

its cryptanalytical strength, a successor of IDEA has been developed [58]. So far,
however, this successor has not been particularly successful.

Skipjack

Skipjack is a block cipher developed by the NSA. Initially classified, it was intended
for use in the controversial Clipper chip. The key escrow facility was achieved
through the use of a complementary mechanism known as the law enforcement
access field (LEAF). The Clipper chip was not successful, and it was later decided to
implement Skipjack also in FORTEZZA cards—in addition to a digital signature
system, SHA-1, and a key exchange algorithm (KEA)—known as FORTEZZA
KEA (see below). Probably to speed up the deployment rate of FORTEZZA cards,
Skipjack was declassified in June 1998. Its specification is now publicly available
and provides a unique insight into the cipher designs of a government intelligence
agency:’

Skipjack has a block cipher with a block length of 64 bits and a key length of
80 bits. It operates in 32 rounds. Cryptanalysts have been able to find attacks against
31-round versions of Skipjack, but they have not been able to find attacks against
the full version of Skipjack. In spite of its resistance against cryptanalytical attacks
(at least in its full version), Skipjack is avoided in practice and this is probably due
to its questionable role with regard to key escrow.

Camellia

Camellia is a block cipher that was jointly developed by Mitsubishi and NTT in
2000 [59, 60}L8 and that has been evaluated favorably by several organizations in
Europe and Japan. Similar to DES, Camellia represents a Feistel cipher. It has a
block size of 128 bits, and—similar to the AES—can use 128-bit, 192-bit, or 256-
bit keys. The number of rounds is 18 (for 128-bit keys) or 24 (for 192-bit or 256-bit
keys). Also, Camellia was designed to be suitable for both software and hardware
implementations and to cover all possible encryption applications, from low-cost
smart cards to high-speed network systems.

Camellia has been designed to be particularly resistant against known block
cipher attacks. Similar to the AES, it can be completely defined by minimal systems
of multivariate polynomials. But the number of free terms is approximately the same

16 FORTEZZA is derived from the Italian word for fortress or fort. It is a registered trademark of
the NSA, and it refers to a family of security products and devices (e.g., PCMCIA cards, serial
port devices, Ethernet cards, and modems) that were originally developed to create user-friendly,
low-cost security solutions for the Defense Message System (DMS) of the DoD.

17 http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf.

18 http://info.isl.ntt.co.jp/crypt/eng/camellia/.

42 SSL and TLS: Theory and Practice

number as for AES. Theoretically, such properties might make it possible to break
Camellia (and AES) using an algebraic attack, but as of this writing such an attack
is not feasible.

Although patented, Camellia is available under a royalty-free licéhFais
has allowed Camellia cipher to become part of the OpenSSL project in 2006. More
recently, Camellia has also become part of some TLS 1.2 cipher suites (see Section
5.4) that are supported by Mozilla Firefox 3 since June 2008. Camellia has also been
submitted to other standardization bodies, such as ISO and the IETF S/MIME Mail
Security (SMIME) WG2°

2.2.2.2 Message Authentication Codes

It is not always necessary to encrypt messages and to protect their confidentiality.
Sometimes, it is sufficient to protect their authenticity and integrity, meaning that it
must be possible for the recipient of a message to verify its authenticity and integrity
(note that message authenticity and integrity always go hand in hand). In this case,
one can add aauthentication tago a message and have the recipient verify the

tag before he or she accepts the message as being genuine. A message and a tag
computed from it (and appended to the message) are illustrated in Figure 2.5.

Message

Message Tag

Figure 2.5 A message and a tag computed from it.

One possibility to compute and verify an authentication tag is to use public
key cryptography and digital signatures. This is, however, neither necessary nor
always desired, and sometimes more lightweight mechanisms based on secret key
cryptography are preferred. This is where the notion of a MAC as suggested in
Definition 2.10 comes into pla}.

19 http://www.ntt.co.jp/news/news01e/0104/010417.html

20 http://www.ietf.org/html.charters/smime-charter.html

21 In some literature, the termessage integrity cod®IC) is used synonymously and interchange-
ably with MAC.

Cryptography Primer 43

Definition 2.10 (Message authentication codepA MAC is an authentication tag
that can be computed and verified with a secret parameter (e.g., secret cryptographic

key).

In the case of a message that is sent from one sender to a single recipient, the
secret parameter must be shared between the two entities. If, however, a message
is sent to multiple recipients, then the secret parameter must be shared between the
sender and all receiving entities. In this case, the distribution and management of
the secret parameter is a major issue (and probably one of the Achilles’ heels of the
entire system).

Similar to a symmetric encryption system, one can introduce and formally
define amessage authentication systemcompute and verify MACs. As captured
in Definition 2.11, such a system consists of a set of possible messages (i.e., the
message space), a set of possible authentication tags (i.e., the tag space), a set
of possible keys (i.e., the key space), as well as two families of related message
authentication and verification functions.

Definition 2.11 (Message authentication system\ message authentication sys-
tem consists of the following five components:

e Amessage spackt;

e Atag space;

e Akey space;

o AfamilyA = {A, : k € K} ofauthentication functiondy, : M — T;

o AfamilyV = {V, : K € K} of verification functionsV, : M x 7T —
{valid, invalid}. Vi, (m,t) must yieldvalid if ¢ is a valid authentication tag
for messagen and keyk (i.e.,t = Ax(m)).

For every keyt € K and every message € M, Vi(m, Ai(m)) must yieldvalid.

Typically, M = {0,1}*, T = {0,1}"es for some fixed tag lengtf,,,
and = {0, 1}!<v for some fixed key length.,. In a typical setting/;o, =
lkey = 128), meaning that tags and keys are both 128 bits long. There are many
message authentication systems developed and proposed in the literature. Some of
them are unconditionally (i.e., information-theoretically) secure, whereas others are
conditionally (i.e., computationally) secure. In fact, most message authentication
systems used in practice are conditionally secure and reuse a key to authenticate
multiple messages.

For all practical purposes, there is is a MAC construction, knowhaashed
MAC (HMAC), that is omnipresent in network security protocols [61]. The HMAC

44 SSL and TLS: Theory and Practice

construction works as follows:
HMACy(m) = h(k® opad || h(k & ipad || m))

In this constructionh denotes the cryptographic hash function in use (e.g., MD5,
SHA-1, ...),k the secret key (used for message authenticatiorthe message to

be authenticatedpad (standing for “inner pad”) the byt@x36 (i.e.,00110110)
repeated 64 timespad (standing for “outer pad”) the by@x5C (i.e.,01011100)
repeated 64 timesp the bit-wise addition modulo 2, anfil the concatenation
operation. Note that @ ipad andk & opad are intermediate values that can be
precomputed at the time of generation of the Keyor before its first use. This
precomputation allows the HMAC construction to be implemented very efficiently.
Also note the output of the HMAC construction may be truncated to a value that is
shorter than the output of the hash value in use, typically 80 or 96 bits. The truncated
HMAC construction is, for example, also supported by the most recent version of
the TLS protocol (see Section 5.4.1.5).

2.2.2.3 PRBGs

As mentioned above, random bit generators are important building blocks for many
cryptographic systems. There is no deterministic (computational) realization or
implementation of such a generator, but that there are nondeterministic realizations
and implementations making use of physical events and phenomena. Unfortunately,
these realizations and implementations are not always appropriate, and there are
situations in which one needs to deterministically generate binary sequences that
appear to be random (e.g., if one needs a random bit generator but none is available,
or if one must make statistical simulations or experiments that can be repeated as
needed). Also, one may have a short random bit sequence that must be stretched
into a long sequence. This is where the notion of a PRBG as illustrated in Figure
2.6 and introduced in Definition 2.12 comes into ptaygain, the definition is not
precise in a mathematically strong sense, because we have neither defined the notion
of an efficient algorithm nor have we specified what we really mean by saying that

a binary sequence “appears to be random.”

Definition 2.12 (Pseudorandom bit generator)A PRBG is an efficient determin-

istic algorithm that takes as input a random binary sequence of lehdite., the

seed) and generates as output another binary sequence (i.e., the pseudorandom bit
sequence) of length> k that appears to be random.

22 Note the subtle difference between Figures 2.3 and 2.6. Both generators output a binary sequence.
The random bit generator has no input, whereas the PRBG has a seed that serves as input.

Cryptography Primer 45

Seed—— PRBG |———0010111010011000010110

Figure 2.6 A PRBG.

Note that the pseudorandom bit sequence a PRBG outputs may be of infinite
length (i.e.,l = o0). Also note that in contrast to a random bit generator, a PRBG
represents a deterministic algorithm (i.e., an algorithm that can be implemented in
a deterministic way). This suggests that a PRBG is implemented as a finite state
machine and that the sequence of generated bits must be cyclic (with a potentially
very large cycle). This is why we cannot require that the bits in a pseudorandom
sequence be truly random, only that they appear to be so (for a computationally
bounded adversary). Again, statistical tests can be used to verify the randomness
properties of the output of a PRBG.

From a theoretical perspective, a PRB@Ifigptographically securé it is not
possible for an adversary to predict the next output bit with a success probability that
is significantly better than guessing. There are some constructions that employ a one-
way function with a hard-core predicate to come up with a cryptographically secure
PRBG. The most important example is tBBS generatooriginally developed by
Lenore and Manuel Blum as well as Michael Shub (e.g., [62]).

2.2.3 Public Key Cryptosystems

According to Definition 2.3, public key cryptosystems use secret parameters that
are not shared between the participating entities. Instead, each entity holds a set of
secret parameters (collectively referred tpasate keyk—!) and publishes another

set of parameters (collectively referred tqpablic keyk) that don’t have to be secret

and can be published at wiif. A necessary (but usually not sufficient) condition for

a public key cryptosystem to be secure is that it is computationally infeasible to
compute the private key from the public key. This means that the public key can be
published without running the risk of compromising the private key.

23 It depends on the cryptosystem, whether it matters which set of parameters is used to represent the
private key and which set of parameters is used to represent the public key.

46 SSL and TLS: Theory and Practice

Because public key cryptography is computationally less efficient than secret
key cryptography, public key cryptosystems are mainly used for authentication
and key management. The resulting cryptosystems combine secret and public key
cryptography and are often callégybrid. In fact, hybrid cryptosystems are very
frequently used in practice—including, for example, the SSL/TLS protocols.

The fact that public key cryptosystems use secret parameters that are not
shared between the participating entities implies that the corresponding algorithms
must be executed by different entities. Consequently, such cryptosystems are typ-
ically defined as sets of algorithms (that may be executed by different entities).
Examples include asymmetric encryption systems, digital signature systems, and
key agreement protocols.

2.2.3.1 Asymmetric Encryption Systems

Similar to a symmetric encryption system, an asymmetric encryption system can
be used to encrypt and decrypt plaintext messages. The major difference between a
symmetric and an asymmetric encryption system is that the former employs secret
key cryptography and corresponding techniques, whereas the latter employs public
key cryptography and corresponding techniques.

As already mentioned above, an asymmetric encryption system requires a
trapdoor functiorf? Each public key pair yields a public key that represents a one-
way function and a private key that represents the trapdoor or inverse of the function.
To send a secret message to a recipient, the sender must look up the recipient’s public
key, apply the corresponding one-way function to the plaintext message, and send
the resulting ciphertext to the recipient. The recipient, in turn, is the only person
who is supposed to know the trapdoor (information) necessary to invert the one-way
function. Consequently, he or she is the only person who is able to properly decrypt
the ciphertext and to recover the original (plaintext) message accordingly.

In the literature, the encryption (decryption) algorithm is often denotefl as
(D), and subscripts are used to refer to the entities that hold the appropriate keys.
For example E4 refers to the encryption algorithm fed with the public key of A
(i.e., k1), wheread 4 refers to the decryption algorithm fed with the private key of
A (i.e., k). Consequently, it is implicitly assumed that the public key is used for
encryption and the private key is used for decryption.

The working principle of an asymmetric encryption system is illustrated in
Figure 2.7. On the left side, the sender applies the recipient B’s one-way function
(implemented by the encryption algorithfhparametrized with B’s public keky)

24 More specifically, an asymmetric encryption system requires a family of trapdoor functions.

Cryptography Primer 47

1

Kg Ke

m E g - D F—m

Figure 2.7 The working principle of an asymmetric encryption system.

to the plaintext message, and sends the resulting ciphertext
¢ = Ep(m) = Egy(m)

to B. On the right side, B knows his or her private l¢~:1=,§y1 (representing the trapdoor
information) and can use this key to invert the one-way function and decrypt the
original plaintext message

m = Dg(c) = Dk;(c).

According to Definition 2.13, an asymmetric encryption system is a public key
cryptosystem that can be specified by a set of three algorithms.

Definition 2.13 (Asymmetric encryption system)An asymmetric encryption sys-
tem consists of the following three efficiently computable algorithms:

e Generate(1™) is a probabilistic key generation algorithm that takes as input
a security parametet™ and generates as output a public key pair (consisting
of a public keyk and a corresponding private key !).2°

e Encrypt(k,m) is a deterministic or probabilistic encryption algorithm that
takes as input a public keyand a plaintext message, and that generates
as output a ciphertext (i.e.,c = Encrypt(k, m)).

e Decrypt(k~1, c) is a deterministic decryption algorithm that takes as input a
private keyk—! and a ciphertext, and that generates as output a plaintext
messagen (i.e.,m = Decrypt(k~!, c)).

25 In most literature, the security parameter is denoted’bgi.e., k written in unary representation).
Because this notation may provide confusion betwieatanding for the security parameter and
standing for the public key, we don't use it. Instead, we 1is¢o refer to the security parameter.

48 SSL and TLS: Theory and Practice

For every public key paifk, k~1) and every plaintext message the algo-
rithms Encrypt(k, -) and Decrypt(k~—!,-) must be inverse to each other, meaning
that

Decrypt(k ™", Encrypt(k, m)) = m.

If £ andk~! do not correspond to each other, then the ciphertext must decrypt to
gibberish.

An asymmetric encryption system can be fully specified by a triple of algo-
rithms Generate, Encrypt, andDecrypt. Many such systems have been developed,
proposed, and published in the literature. Still the most important example is RSA
overviewed next.

RSA

The RSA public key cryptosystem was designed by Ron Rivest, Adi Shamir, and
Len Adleman in 1977 [40]. It was the first viable implementation of the ideas
developed by Diffie and Hellman in the preceding year. As such, the RSA public key
cryptosystem yields both an asymmetric encryption system and a digital signature
system. This means that the same set of algorithms can be used to encrypt and
decrypt messages, as well as to digitally sign messages and verify digital signatures.
The function provided depends on the cryptographic key in use:

o If the recipient’s public key is used to encrypt a plaintext message, then the
RSA public key cryptosystem yields an asymmetric encryption system. In this
case, the recipient’s private key is used to decrypt the ciphertext. Ideally, this
can only be done by the recipient of the message.

o Ifthe sender’s private key is used to encrypt a plaintext message (or hash value
thereof), then the RSA key cryptosystem yields a digital signature system. In
this case, the sender’s public key is used to verify the digital signature. This
can be done by anybody.

The RSA public key cryptosystem is based on modular exponentiation and the
RSA family of trapdoor functions (or permutations, respectively). Recognizing the
relevance of their work, Rivest, Shamir, and Adleman were granted the prestigious
ACM Turing Award in 2002.

Let us introduce the RSA asymmetric encryption system by elaborating on the
three algorithms mentioned above.

e The RSAGenerate algorithm first randomly selects two appropriately sized
prime numberg and ¢ and computes the RSA modulus = pq. It then

Cryptography Primer 49

randomly selects an integér < e < ¢(n) with ged(e, ¢p(n)) = 1 and
computes another integér< d < ¢(n) with de = 1 (mod ¢(n)) using, for
example, the extended Euclid algorithinthen represents the multiplicative
inverse ofe modulog(n). The output of the algorithm is a public key pair that
consists of a public keyn, ¢) and a corresponding private key

e The RSAEncrypt algorithm is deterministic. It takes as input a public key
(n,e) and a plaintext message € Z,, and it generates as output the
ciphertextc = m® (mod n).

e The RSADecrypt algorithm is deterministic, too. It takes as input a private
keyd and a ciphertext, and it generates as output the corresponding plaintext
messagen = c¢? (mod n).

Let us consider a toy example to illustrate the working principles of the
RSA asymmetric encryption system. The RGénerate algorithm randomly selects
p = 11 andg = 23, and computes = 11 - 23 = 253 and¢$(253) = 10 - 22 = 220.

It then selectg = 3 and uses the extended Euclid algorithm to complute 147
modulo 220. Note tha® - 147 = 441 = 1 (mod 220), and hence = 147 indeed

is the multiplicative inverse element ef= 3 modulo 220. Consequentl{253, 3)
represents the public key, and 147 represents the private key. If somebody wants
to encrypt the plaintext message = 26, then he or she computes= 263 =

17,576 (mod 253) = 119. This value represents the ciphertext transmitted to the
recipient(s). On the recipient side, the R®&crypt algorithm decrypts 119 and
recovers the original plaintext message= 11947 (mod 253) = 26.

The security of the RSA public key cryptosystem is based on the assumed
intractability of the integer factorization problem: it is not known how to efficiently
(i.e., in polynomial time) factorize large integers. If somebody found an efficient
integer factorization algorithm, then the RSA public key cryptosystem would be
broken. More worrisome, it may even be possible to break the RSA public key
cryptosystem without having to factorize integers, meaning that the computational
equivalence of breaking RSA and factorizing large integers has not been shown so
far.

2.2.3.2 Digital Signature Systems

Digital signatures can be used to protect the authenticity and integrity of data objects.
According to RFC 2828, digital signaturerefers to “a value computed with a
cryptographic algorithm and appended to a data object in such a way that any
recipient of the data can use the signature to verify the data’s origin and integrity”
[21]. This definition refers to the notion oftagital signature with appendjbecause

50 SSL and TLS: Theory and Practice

the signature is appended to the data object. There is also the notiodigitad
signature giving message recoveity which case the data unit is cryptographically
transformed in a way that it represents both the data unit (or message) that is signed
and the signature. This type of digital signatures is less common in practice, so we
can ignore them for the purpose of this book.

A digital signature system is used to digitally sign messages and verify digital
signatures. The entity that digitally signs a message is callgukeror signatory
whereas the entity that verifies the signature is calkxifier. With the proliferation
of the Internet in general, and Internet-based electronic commerce in particular,
digital signatures and the legislation thereof have become important and very timely
topics.

-1

Ka Ka

m— D [B
)

Figure 2.8 The working principle of a digital signature system.

The working principle of a digital signature system (with appendix) is illus-
trated in Figure 2.8. Having in mind the notion of a trapdoor function, it is simple
and straightforward to explain what is going on. On the left side, the signatory A
uses its private kek;ll—the trapdoor—to invert the one-way function for message
m and to compute the signatuse

s=Dy(m) = Dkzl(m)

The signatory then sends ands to the verifier. On the right side, the verifier must
use the signatory’s public key (i.€:4) to compute the one-way function fer The
result is compared with. If and only if the two values are equal is the signature
valid. In practice, the message can be very long, and it is therefore appropriate
to hash it with a cryptographic hash functiarbefore it is signed. In this case, the

Cryptography Primer 51

signatures is computed as
s = Da(h(m)) = Dy-r (h(m))

and this signature is valid if and onlydfsubjected to A's one-way function equals to
the hash value aofu. In either case, it is important to note that only A can compute
(because only A is assumed to knb@l), whereas everybody can verify(because
everybody has access#q). In fact, public verifiability is a basic property of most
digital signatures and corresponding digital signature systems in use today.

As outlined in Definition 2.14, a digital signature system can be defined as a
set of three efficiently computable algorithms.

Definition 2.14 (Digital signature system with appendix)A digital signature sys-
tem with appendix consists of the following three efficiently computable algorithms:

e Generate(1™) is a probabilistic key generation algorithm that takes as input
a security parametei™ and generates as output a signing key' and
a corresponding verification key. Both keys represent the public key pair
(k,k~1).

e Sign(k~!,m) is a deterministic or probabilistic signature generation algo-
rithm that takes as input a signing kky ! and a message: (i.e., the message
to be signed), and that generates as output a digital signatdioe m.2°

o Verify(k, m, s) is a deterministic signature verification algorithm that takes as
input a verification key:, a messagen, and a purported digital signature
for m, and that generates as output a binary decision (i.e., whether the digital
signature is valid). In factVerify(k, m, s) must yieldvalid if and only if s is
a valid digital signature for message and verification key:.

For every public key paifk, k—1) and message:, Verify(k, m, Sign(k~1,m))
must yieldvalid.

The definition of a digital signature system giving message recovery is similar
(the major difference is that théerify algorithm is replaced with ecover algo-
rithm). With regard to the SSL/TLS protocols, the relevant digital signature systems
are RSA and DSA.

RSA

As mentioned above, the RSA public key cryptosystem [40] also yields a digital
signature system. If—instead of the recipient’s public key—the signatory’s private

26 Optionally, the signing algorithm may also output a new (i.e., updated) signing key. Note, however,
that in a memoryless digital signature system, the signing key always remains the same.

52 SSL and TLS: Theory and Practice

key is used to encrypt a message (or its hash value), then an RSA signature is
generated for that particular message. The signature, in turn, can be verified with
the signatory’s public key.

More specifically, the RSAGenerate algorithm is the same as stated above
(see Section 2.2.3.1). The R$Agn algorithm takes as input a signing kéy, d)
and a message < Z,, and it generates as output the digital signature

s=m? (modn) or s=h(m)? (mod n)
The RSAVerify algorithm takes as input a verification key, e), a message:, and
a digital signatures, and it generates as output one bit saying whethisra valid

signature forn with respect tdn, e). It therefore computes
m’ = s° (mod n)

and compares it either witlw or 1(m). The signature is valid if and only if equality
holds (i.e.,n’ = m orm’ = h(m)).

Again, we use the toy example with = 11, ¢ = 23, n = 253, ¢(n) =
(p—1)(g—1) = 10-22 = 220, e = 3, andd = 147 (generated by the RSA
Generate algorithm). If the signatory wants to digitally sign the message= 26
(or h(m) = 26, respectively) then the RS8ign algorithm computes

d=m? (mod n) = 267 (mod 253) = 104

and this value represents the digital signature for 26. Similarly, the R&H&y
algorithm computes

m’ = RSAgs33(104) = 104® (mod 253) = 26

and returnsalid (becausen’ = 26 matches the message = 26 transmitted with
the signatura).

DSA

In 1985, Taher Elgamal turned the Diffie-Hellman key exchange protocol into a
public key cryptosystem that yields an asymmetric encryption system and a digital
signature system [41]. The system also employs modular exponentiation and a
large primep that serves as modulus. The Elgamal digital signature system has
the disadvantage that computation is doné&jnand that the digital signatures are
represented by two elements of this group. In the early 1990s, Claus-Peter Schnorr
proposed (and patented) a modification of the Elgamal digital signature system

Cryptography Primer 53

that can be used to optimize the signature generation and signature verification
algorithms considerably [63]. The idea is to do the modular arithmetic not in a
group of orderp — 1 (e.g.,Zy), but in a much smaller subgroup of prime order
with ¢ | p — 1. As a consequence, the computations can be done more efficiently
and the resulting digital signatures can be made much shorter (as compared to the
Elgamal digital signature system).

Based on the Elgamal digital signature system and the proposed modification
of Schnorr, the NIST developed tdgital signature algorithn{DSA) and specified
a correspondingligital signature standarih FIPS PUB 186 [64]. Since its publi-
cation in 1994, FIPS PUB 186 has been revised twicgince 1993, the DSA has
been covered by U.S. Patent 5,231,668 attributed to David W. Kravitz, a former NSA
employee. The patent was given to “The United States of America as represented by
the Secretary of Commerce, Washington, D.C.” and the NIST has made the patent
available worldwide without having to pay any royalty. Schnorr still claims that his
patent covers DSA, but this claim has been disputed ever since.

The acronym ECDSA refers to the elliptic curve analog of the DSA. This
basically means that, instead of working in a subgrougpfone works in a group
of points on an elliptic curve over a finite field. The mathematical formulae look
more involved, but the actual computations are simpler and can be done with shorter
keys (for the same level of security). Consequently, ECDSA is the preferred choice
im many constrained environments. It is also supported in the more recent versions
of the TLS protocol.

2.2.3.3 Key Agreement Protocols

If two or more entities want to employ and make use of secret key cryptography,
then they must share a secret parameter or cryptographic key. Consequently, in
a large system many secret keys must typically be generated, stored, managed,
and destroyed in a highly secure way. If, for examplegntities want to securely
communicate with each other, then there are

<g>n(?21) :nQ;n

secret keys that must be generated, stored, managed, and destroyed. This number
grows in the order of22, and hence the establishment of secret keys is a major
practical problem (and probably the Achilles’ heel) for the large-scale deployment

27 The first revision was made in December 1998 and led to the publication of FIPS PUB 186-1.
The second revision was made in January 2000 and led to the publication of FIPS PUB 186-2. It
is electronically available at http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-changel.pdf.
The third and latest revision was made in March 2006. The corresponding draft is FIPS PUB 186-3.

54 SSL and TLS: Theory and Practice

of secret key cryptography. For examplenif= 1,000 entities want to securely
communicate with each other, then there are

1000% — 1
(1,000> _ 1000 000 _ 199500

2 2

secret keys. Even for moderately langethe generation, storage, and management
of so many keys is prohibitively expensive, and the predistribution of the keys is
infeasible.

Things get even more involved when one considers that keys are often used in
dynamic environments, where new entities join and other entities leave at will, and
that it is usually impossible, impractical, or simply too expensive to transmit keys
over secure channels (e.g., by a trusted courier). Consequently, one typically faces
a key establishment problem in computer networks and distributed systems. There
are basically two approaches to address (and hopefully solve) the key establishment
problem in computer networks and distributed systems:

e The use of a key distribution center (KDC);

e The use of a key establishment protocol.

A prominent and widely deployed example of a KDC is the Kerberos authenti-
cation and key distribution system. Unfortunately, KDCs have many disadvantages.
The most important disadvantage is that each entity must unconditionally trust the
KDC and share a secret master key with it. There are situations in which this level
of trust is neither justified nor can be accepted by the communicating entities. Con-
sequently, the use of key establishment protocols (that typically make use of public
key cryptography in some way or another) provides a viable alternative in many
situations. For example, a simple and straightforward key establishment protocol
can be constructed by having one enitity (pseudo)randomly generate a session key,
asymmetricly encrypt this key with the public key of the other entity, and send
the encrypted key to this other entity. In this case, the RSA asymmetric encryption
system (or any other asymmetric encryption system) can be used. From a security
viewpoint, however, one may face the problem that the security of the session key
is bound by the quality and the security of the key generation process (which is
typically a PRBG). Consequently, it is advantageous to have a mechanismin place in
which two or more entities can establish and agree on a commonly shared secret key.
This is where the notion of a key agreement protocol comes into play (as opposed
to a key distribution protocol). The most important key agreement protocol for two
entities is introduced next.

Cryptography Primer 55

Diffie-Hellman Key Exchange

As its name suggests and was mentioned aboveDiffie-Hellman key exchange
protocolwas developed by Diffie and Hellman [25]. It can be used by two entities
that have no prior relationship to agree on a secret key by communicating over a
public but authentic channel. As such, the mere existence of the Diffie-Hellman key
exchange protocol sounds like a paradox.

Protocol 2.1 The Diffie-Hellman key exchange protocol usig.

A B
(p,9) (p,9)
Za €Er{0,...,p—2} zp €r {0,...,p— 2}
Ya = g® (mod p) yp = g (mod p)
Ya
Yb
Yo
Kap = y,* (mod p) Kpa = ya® (mod p)
(Kab) (Kpa)

The Diffie-Hellman key exchange protocol can be implemented in any cyclic
group G in which the discrete logarithm problem (i.e., given a generatof G
and an arbirary element € G, find x so thaty = ¢®) is intractable. The simplest
example of such a group is the multiplicative group of a finite fiéjd(i.e., Zy).
The Diffie-Hellman key exchange protocol using this group is illustrated in Protocol
2.1. Letp be a large prime and a generator ofZ,. A and B knowp andg, and
want to use the Diffie-Hellman key exchange protocol to agree on a shared secret
key K. A randomly selects a private exponent € {0,...,p — 2}, computes
the corresponding public exponemt = ¢“« (mod p), and sends, to B. B,
in turn, randomly selects a private exponept< {0,...,p — 2}, computes the
corresponding public exponept = ¢** (mod p), and sendgy, to A. A then
computes

TpTa

Kun=y,"=g (mod p)

and B computes

Laqlp

K=yt =g (mod p).

Because the exponents commuig,, is equal tok,,. It is the output of the Diffie-
Hellman key exchange protocol and can be used as a secrét key

56 SSL and TLS: Theory and Practice

Let us consider a toy example to illustrate the Diffie-Hellman key exchange
protocol. Letp = 17 andg = 3 (i.e.,g = 3 generateZ;,). A randomly selects
r, = 7, computeg, = 37 (mod 17) = 11, and sends the resulting valué to
B. B, in turn, randomly selects, = 4, computeg), = 3* (mod 17) = 13, and
sends the resulting value to A. A now computeg;* = 137 (mod 17) = 4, and
B computeg/?> = 114 (mod 17) = 4. ConsequentlyK = 4 is the shared secret
that can be used as a session key.

Note that an adversary eavesdropping on the communication channel between
A and B knowsp, g, y., andy, but does not know:, andx;,. The problem of
determiningK’ = ¢®=** (mod p) from y, andy;, (without knowingz, or x;) is
known as theDiffie-Hellman problemilt is known to be as difficult to solve as the
discrete logarithm problem (see above), but it is still an open question whether it is
always (i.e., in every group) necessary to compute a discrete logarithm to solve an
instance of the Diffie-Hellman problem.

Also note that the Diffie-Hellman key exchange protocol can be transformed
into a (probabilistic) asymmetric encryption system. For a plaintext messdtieat
represents an element of the cyclic group), A randomly selects,acomputes
the common key ,;, (using B’s public exponent and following the Diffie-Hellman
key exchange protocol), and combineswith K, to obtain the ciphertext. The
special case where= m K, refers to the Elgamal asymmetric encryption system
introduced in [41] and mentioned above.

Like any other protocol that employs public key cryptography, the Diffie-
Hellman key exchange protocol is vulnerable to tien-in-the-middle attack. Note
what happens if an adversary C is able to place himself or herself between A and B
and provide both with messages of his or her choice. In this case, C can provide A
and B with faked public exponents. More specifically, C can provide A wjttof
which he or she knows the private exponefitand B withy/, (of which he or she
knows the private exponent). In this case, A computes,,y = ;" (mod p) and
thinks that he or she shares this key with B, and B complfigs = y/** (mod p)
and thinks that he or she shares this key with A. In reality, they both don’t share
any key with each other, but they both share a key with C. If, for example, A
wanted to send a secret message to B, A would use the key he or she thinks is
being shared with B to encrypt the message, and send it to B accordingly. C would
be sitting in the line and grab the message. Equipped With, C would be able
to decrypt the message, eventually modify it, reencrypt it vith,, and forward
it to B. B, in turn, would successfully decrypt the message udiipg and think
that the message is authentically coming from A. The only way to protect the
communicating entities against this type of attack is to make sure that the public
exponents are authentic. So, in practice, the native Diffie-Hellman key exchange
protocol is usually combined with a mutual authentication protocol to come up

Cryptography Primer 57

with an authenticated key exchange protocol. In most of these protocols, the public
exponents used in the Diffie-Hellman key exchange are authenticated using RSA
signatures. Consequently, digital certificates and PKls must be used to securely
deploy authenticated key exchange protocols.

As mentioned earlier, the Diffie-Hellman key exchange protocol can be used
in any group (other tha#;) in which the discrete logarithm problem is intractable.
There are basically two reasons for using other groups.

e PerformanceThere may be groups in which the Diffie-Hellman key exchange
protocol (or the modular exponentiation function) can be implemented more
efficiently in hardware or software.

e Security:There may be groups in which the discrete logarithm problem is
more difficult to solve.

The two reasons are not independent from each other. If, for example, one
has a group in which the discrete logarithm problem is more difficult to solve, then
one can work with much smaller keys (for a similar level of security). This is the
major advantage of elliptic curve cryptography (ECC). The ECC-based version of
a Diffie-Hellman key exchange is intuitively called elliptic curve Diffie-Hellman
(ECDH) key exchange. Again, it works in a group of points on an elliptic curve
over a finite field, and again it is supported by some of the more recent versions of
the TLS protocol. Last but not least, we note that the acronym ECMQV stands for
elliptic curve Menezes-Qu-Vanstone, which is a version of ECDH that provides an
authenticated key exchange. Its original version was proposed by Alfred Menezes,
Minghua Qu, and Scott Vanstone in 1995 [65], but it has been updated several
times since then. Today, the security of ECMQV and its descendant is discussed
contraversionally, but the term ECMQV still appears frequently in the cryptographic
literature.

FORTEZZA KEA

As mentioned above, FORTEZZA cards implement a key exchange algorithm
known as FORTEZZA KEA. It was originally designed by NSA in 1994. Its design,
however, was kept secret until 1998 when it was declassified and became available
to the public. It is conceptually similar to a protocol proposed in 1997 [66] and its
security was throughly analyzed in 2006 [67].

The FORTEZZA KEA basically refers to a modified Diffie-Hellman key ex-
change protocol. In short, a long-term certificate-based Diffie-Hellman key exchange
is combined with an ephemeral Diffie-Hellman key exchange. Furthermore, the
block cipher Skipjack (see Section 2.2.2.1) is utilized to reduce the final values

58 SSL and TLS: Theory and Practice

to a key that is 80 bits long. The FORTEZZA KEA protocol requires a 1,024-bit
prime modulugp and a few related values that are generated according to the DSA
specification. More specifically, the FORTEZZA KEA requires a 160-bit prime di-
visor g of p — 1, a 1,024-bit basg for the exponentiation (referring to an element

of orderq in the multiplicative group modulp), a 160-bit private value 4 and a
1,024-bit public valu&’y = ¢4 (mod p) for user A. It is assumed that the public
values can be retrieved from a directory in some authenticated form. In addition, the
FORTEZZA KEA also requires an 80-bit padding vajuel and a 160-bit random
numberr.

Protocol 2.2 The FORTEZZA KEA.

A B
(r,4,9) (r,4,9)
z4 € (0,...,9) zp €r (0,...,9)
Y4 = ¢4 (mod p) Y = g*B (mod p)
Ya
Yp
B
TAGR(Oz"'zq) TBGR(O,,(])
Ra =g"4 (mod p) Rp = ¢"B (mod p)
Ra
Rp
2B
tap = (YB)TA (mod p) tpa = (RA)Q"B (mod p)
uap = (Rp)*A (mod p) upa = (Ya)"B (mod p)
w = (tap +uap) (mod p) w= (tpa +upa) (mod p)
(K) (K)

The FORTEZZA KEA is illustrated in Protocol 2.2. The input parametgrs
q, andg are common on either side. A randomly selects a 160-bit private value
x4, computes the corresponding 1,024-bit public valie = ¢*4 (mod p), and
sendsYs to B. B does the same thing witky andY. Next, A randomly selects a
160-bit private value 4, computes the corresponding 1024-bit public valte =
g™ (mod p), and sendsz4 to B. Again, B does the same thing withy andR .
Now, A and B check all values received. If everything is fine, then A and B compute
t = ¢"*®2 (mod p). More specifically, A computessp = (Yp)™ (mod p) and
B computesig4 = (R4)*2 (mod p). Both values refer ta. Similarly, A and
B computeu = ¢"4"5 (mod p) (A computesuap = (Rp)" (mod p) and B
computesupa = (Y4)"® (mod p)). Both parties can then computeand verify
thatw # 0. If this inequality holds, then A and B both extragt andv, from w
and form the session key from vy, v2, and thepad. These steps are not included

Cryptography Primer 59

79 0 1

Skipjack

79 0
K |

Figure 2.9 The formation of the TEKK according to the FORTEZZA KEA.

in Protocol 2.2, but they are illustrated in Figure 2.9. Note that the block cipher
Skipjack is used here. In the terminology of the FORTEZZA KEArepresents the
token encryption kefT EK).

2.3 FINAL REMARKS

In this chapter, we provided a cryptography primer, meaning that we introduced,
overviewed, and put into perspective the basic principles of cryptography as far
as they are relevant for a proper understandig of the SSL/TLS protocols. This
is particularly true for a few cryptographic hash functions, symmetric encryption
systems (also known as ciphers), and key exchange algorithms. The examples given
in the text are exactly the ones that we will see when we go through the SSL/TLS
protocols. If your thirst for knowledge is not yet satisfied, then you may refer to
[15] or any other books referenced at the beginning of this chapter to get more and
advanced information about the current state of the art in cryptography. But keep
in mind that cryptography is a very broad and conceptually rich (and hence very
involved) field of study. So one of the biggest dangers is not to see the forest for the
trees. We hope that this primer helps you still see the forest.

60

(1]
(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(23]
[14]

[15]
(16]

(17]

(18]

(19]

SSL and TLS: Theory and Practice

References

Buchmann, J.A.Introduction to Cryptography2nd edition. Springer-Verlag, New York, 2004.

Delfs, H., and H. Knebl|ntroduction to Cryptography: Principles and Applicatiqr&nd edition.
Springer-Verlag, New York, 2007.

Dent, A.W., and C.J. MitchellUser's Guide to Cryptography and Standardstech House
Publishers, Norwood, MA, 2004.

Ferguson, N., and B. Schneiétractical CryptographyJohn Wiley & Sons, New York, 2003.

Garrett, P.B.Making, Breaking Codes: Introduction to Cryptolodyrentice Hall PTR, Upper
Saddle River, NJ, 2001.

Goldreich, O.Foundations of Cryptography: Volume 1, Basic To@ambridge University Press,
Cambridge, UK, 2001.

Goldreich, O.,Foundations of Cryptography: Volume 2, Basic Applications. Cambridge Univer-
sity Press, Cambridge, UK, 2004.

Katz, J., and Y. Lindell An Introduction to Modern Cryptographfhapman & Hall/CRC, Boca
Raton, FL, 2007.

Koblitz, N.I., A Course in Number Theory and CryptograpBnd edition. Springer-Verlag, New
York, 1994.

Luby, M., Pseudorandomness and Cryptographic ApplicatioRsnceton Computer Science
Notes, Princeton, NJ, 1996.

Mao, W.,Modern Cryptography: Theory and PracticBrentice Hall PTR, Upper Saddle River,
NJ, 2003.

Menezes, A., P. van Oorschot, and S. Vanstétemdbook of Applied CryptographRC Press,
Boca Raton, FL, 1996.

Mollin, R.A., RSA and Public-Key Cryptographg@hapman & Hall/CRC, Boca Raton, FL, 2002.

Mollin, R.A., An Introduction to Cryptography2nd edition. Chapman & Hall/CRC, Boca Raton,
FL, 2006.

Oppliger, R..Contemporary CryptographyArtech House Publishers, Norwood, MA, 2005.

Schneier, B.Applied Cryptography: Protocols, Algorithms, and Source Code,i@r@ edition.
John Wiley & Sons, New York, 1996.

Smart, N.,Cryptography, An IntroductianMcGraw-Hill, Berkshire, UK, 2003, freely available
on the Internet (http://www.cs.bris.ac.ukdigel/Crypta Book/).

Stinson, D.Cryptography: Theory and Practic8rd edition. Chapman & Hall/CRC, Boca Raton,
FL, 2005.

van Tilborg, H.C.A. (Ed.)A Encyclopedia of Cryptography and Securipringer-Verlag, New
York, 2005.

(20]

(21]

(22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

Cryptography Primer 61

Vaudenay, S.A Classical Introduction to Cryptography: Applications for Communications
Security Springer-Verlag, New York, 2005.

Shirey, R., “Internet Security Glossary,” Informational Request for Comments 2828 (FYI 36),
May 2000.

Katzenbeisser, S., and F. Petitcolas (Edsfarmation Hiding Techniques for Steganography and
Digital Watermarking Artech House Publishers, Norwood, MA, 2000.

Arnold, M., Schmucker, M., and S.D. Wolthusddigital Watermarking and Content Protection:
Techniques and ApplicationArtech House Publishers, Norwood, MA, 2003.

Kelsey, J., B. Schneier, and D. Wagner, “Protocol Interactions and the Chosen Protocol Attack,”
Proceedings of the 5th International Workshop on Security ProtpSgenger-Verlag, 1997, pp.
91-104.

Diffie, W., and M.E. Hellman, “New Directions in Cryptography2EE Transactions on Infor-
mation TheoryIT-22(6), 1976, pp. 644—654.

Bellare, M., and P. Rogaway, “Random Oracles Are Practical: A Paradigm for Designing Efficient
Protocols,”Proceedings of First Annual Conference on Computer and Communications Security
ACM Press, New York, 1993, pp. 62—73.

Canetti, R., O. Goldreich, and S. Halevi, “The Random Oracles Methodology, Revisted,”
ceedings of 30th STQ@CM Press, New York, 1998, pp. 209-218.

Kerckhoffs, A., “La Cryptographie Militaire,Journal des Sciences Militaire$0l. IX, January
1883, pp. 5-38, February 1883, pp. 161-191.

Anderson, R., “Why Cryptosystems FaiCommunications of the ACMol. 37, No. 11, Novem-
ber 1994, pp. 32-40.

Kocher, P., “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and other
Systems,Proceedings of CRYPTO '96pringer-Verlag, LNCS 1109, 1996, pp. 104-113.

Kocher, P., J. Jaffe, and B. Jun, “Differential Power Analysidceedings of CRYPTO '99
Springer-Verlag, LNCS 1666, 1999, pp. 388-397.

Boneh, D., R. DeMillo, and R. Lipton, “On the Importance of Checking Cryptographic Protocols
for Faults,”Proceedings of EUROCRYPT '93pringer-Verlag, LNCS 1233, 1997, pp. 37-51.

Biham, E., and A. Shamir, “Differential Fault Analysis of Secret Key CryptosysteRreteed-
ings of CRYPTO '97Springer-Verlag, LNCS 1294, 1997, pp. 513-525.

Kahn, D.,The Codebreakers: The Comprehensive History of Secret Communication from Ancient
Times to the InterneScribner, New York, 1996.

Bauer, F.L.Decrypted Secrets: Methods and Maxims of Cryptal@gyl edition. Springer-Verlag,
New York, 2000.

Levy, S.,Crypto: How the Code Rebels Beat the Government—Saving Privacy in the Digital Age
Viking Penguin, New York, 2001.

Shannon, C.E., “A Mathematical Theory of Communicatidgll System Technical Journalol.
27, No. 3/4, July/October 1948, pp. 379-423/623—-656.

62 SSL and TLS: Theory and Practice

[38] Shannon, C.E., “Communication Theory of Secrecy SysteBsll' System Technical Journal
\ol. 28, No. 4, October 1949, pp. 656-715.

[39] Merkle, R.C., “Secure Communication over Insecure Chann€gihmunications of the ACM
21(4), April 1978 (submitted in 1975), pp. 294—299.

[40] Rivest, R.L., A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems,Communications of the ACN21(2), February 1978, pp. 120-126.

[41] Elgamal, T., “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm,”
IEEE Transactions on Information Theo-31(4), 1985, pp. 469-472.

[42] Merkle, R.C., “One Way Hash Functions and DE8joceedings of CRYPTO '8%pringer-
Verlag, LNCS 435, 1989, pp. 428-446.

[43] Damgard, I.B., “A Design Principle for Hash FunctionBfoceedings of CRYPTO '8Springer-
Verlag, LNCS 435, 1989, pp. 416-427.

[44] Rivest, R.L.,The MD5 Message-Digest Algorithm, Request for Comments 1321, April 1992.

[45] Wang, X., and H. Yu, “How to Break MD5 and Other Hash Functiofsgceedings of EURO-
CRYPT '05 Springer-Verlag, LNCS 3494, 2005, pp. 19-35.

[46] Chabaud, F., and A. Joux, “Differential Collisions in SHA-®toceedings of CRYPTO 98
Springer-Verlag, LNCS 1462, 1998, pp. 56-71.

[47] U.S. Department of Commerce, National Institute of Standards and Techn&egyre Hash
Standard FIPS PUB 180-1, April 1995.

[48] Eastlake 3rd, D., and T. HansddS Secure Hash Algorithms (SHA and HMAC-SHAjpbrma-
tional Request for Comments 4634, July 2006.

[49] Housley, R.A 224-Bit One-Way Hash Function: SHA-2Request for Comments 3874, Septem-
ber 2004.

[50] Wang, X., Yin, Y., and R. Chen, “Finding Collisions in the Full SHA-Pfoceedings of CRYPTO
2005 Springer-Verlag, LNCS, 2005.

[51] U.S. Department of Commerce, National Institute of Standards and TechnBlB§yModes of
Operation FIPS PUB 81, December 1980.

[52] U.S. Department of Commerce, National Institute of Standards and TechnblagyfEncryption
Standard (DES)FIPS PUB 46-3, October 1999.

[53] U.S. Department of Commerce, National Institute of Standards and TechnS8leegification for
the Advanced Encryption Standard (AESPS PUB 197, November 2001.

[54] Rivest, R.,A Description of the RC2(r) Encryption AlgorithnfRequest for Comments 2268,
March 1998.

[55] Knudsen, L.R., Rijmen, V., Rivest, R.L., and M.J.B. Robshaw, “On the Design and Security of
RC2,” Proceedings of the Fifth International Workshop on Fast Software Encrypipringer-
Verlag, LNCS 1372, 1998, pp. 206-221.

[56]

[57]

(58]

[59]

(60]

(61]

(62]

(63]

(64]

(65]

[66]

[67]

Cryptography Primer 63

Kelsey, J., Schneier, B., and D. Wagner, “Related-Key Cryptanalysis of 3-WAY, Biham-DES,
CAST, DES-X, NewDES, RC2, and TEARroceedings of the First International Conference on
Information and Communication Securitypringer-Verlag, LNCS 1334, 1997, pp. 233-246.

Lai, X., and J.L. Massey, “A Proposal for a New Block Encryption Standddjceedings of
EUROCRYPT '90Springer-Verlag, LNCS 473, 1991, pp. 389-404.

Junod, P., and S. Vaudenay, “FOX: A New Family of Block Ciphdpsgceedings of the Eleventh
Annual Workshop on Selected Areas in Cryptography (SAC 28pinger-Verlag, LNCS 3357,
2004, pp. 114-129.

Aoki, P., et al., “Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms—Design and
Analysis,”Proceedings of the Seventh Annual Workshop on Selected Areas in Cryptography (SAC
2000) Springer-Verlag, LNCS 2012, 2000, pp. 39-56.

Matsui, M., Nakajima, J., and S. Moriad, Description of the Camellia Encryption Algorithm,
Informational Request for Comments 3713, April 2004.

Krawczyk, H., Bellare, M., and R. Caneti{MAC: Keyed-Hashing for Message Authentication
Request for Comments 2104, February 1997.

Blum, L., M. Blum, and M. Shub, “A Simple Unpredictable Pseudo-Random Number Generator,”
SIAM Journal of Computingvol. 15, May 1986, pp. 364—383.

Schnorr, C.P., “Efficient Signature Generation by Smart Cardtsjinal of Cryptology Vol. 4,
1991, pp. 161-174.

U.S. National Institute of Standards and Technology (NI®igjtal Signature Standard (DSS)
FIPS PUB 186, May 1994.

Menezes, A., Qu, M., and S. Vanstone, “Some New Key Agreement Protocols Providing Mutual
Implicit Authentication,” Proceedings of the Workshop on Selected Areas in Cryptography (SAC
'95), Springer-Verlag, 1995, pp. 22-32.

Blake-Wilson, S., Johnson, D., and A. Menezes, “Key Agreement Protocols and their Security
Analysis,” Proceedings of the 6th IMA International Conference on Cryptography and Coding
Springer-Verlag, LNCS 1355, 1997, pp. 30—45.

Lauter, K., and A. Mityagin, “Security Analysis of KEA Authenticated Key Exchange Protocol,”
Proceedings of PKC 200&pringer-Verlag, LNCS 3958, 2006, pp. 378-394.

64

SSL and TLS: Theory and Practice

Chapter 3

Transport Layer Security

After having introduced the fundamentals and basic principles of cryptography, we
are now ready to approach the real topic of the book. To set the stage, we use this
chapter to overview and put into perspective the various technologies and protocols
that can be used to provide basic security services at the transport layer of the TCP/IP
protocol stack. More specifically, we give an introduction in Section 3.1, overview
the evolution of the transport layer security protocols in Section 3.2, and conclude
with some final remarks in Section 3.3.

3.1 INTRODUCTION

When the WWW started its triumphal procession in the first half of the 1990s, people
started to purchase items electronically. Among the electronic payment systems
available at this time, credit card transactions were the most widely deployed ones.
Because people had reservations about the transmission of credit card information
as part of Web transactions, many companies and researchers were looking into
possibilities to provide Web transaction security and corresponding services. The
greatest common denominator of all these possibilities was the use of cryptographic
techniques to provide some basic security services. Except for this fact, there was
hardly any consensus about what cryptographic techniques to use and at what layer
to apply them.

The bird’s-eye view reveals that there are many possibilities to invoke cryp-
tographic techniques at various layers of the TCP/IP protocol stack. In principle,
all Internet security protocols overviewed in [1] or Chapter 5 of [2] can be used to
secure Web transactions:

65

66

SSL and TLS: Theory and Practice

On the network access layer, IEEE 802.1AE elaborates on media access
control MAC security and specifies ways to provide data origin authentication,
connectionless confidentiality, and connectionless integrity services to MAC
frames. Also, there are several virtual private networking technologies and
protocols, such as the point-to-point tunneling protocol (PPTP) or the layer 2
tunneling protocol (L2TP) when combined with IPsec/IKE (see next bullet).
All of these network access layer security protocols can also be used to
securely transmit Web transactions (among other things).

On the Internet layer, there are the IP security (IPsec) and Internet Key
Exchange (IKE) protocols [3] that can be used to establish a secure connection
between two IP entities. Again, the secure connections can then be used to
securely transmit Web transactions. The nice thing about IPsec/IKE is that it
coresides with IP, and hence all Internet applications are layered on top of
them. This means that it can be used to secure all Internet applications. The
less nice thing about IPsec/IKE is that the protocols are overly complex; this
makes the deployment and operation of IPsec/IKE involved and tricky.

On the transport layer, the Transmission Control Protocol (TCP)—on which
HTTP is layered—can be enhanced to invoke cryptographic techniques and
to provide basic security services for Web transactions. This is basically the
approach of the SSL/TLS protocols.

On the application layer, either HTTP can be enhanced to invoke crypto-
graphic techniques and to provide Web transaction security, or an authen-
tication and key distribution system, such as Kerberos, can be employed to
basically achieve the same thing. In the second case, the use of a standardized
application programming interface (API) is an important requirement.

Last but not least, there is also the possibility to layer Web transaction security

above the application layer, meaning that the Web transactions are protected in a way
that is independent from the transmission technologies in use. This is conceptually
similar to secure messaging approaches, like PGP, OpenPGP, or Secure MIME
(S/MIME) [4].

The Internet security protocols and their placement in the TCP/IP protocol

stack is illustrated in Figure 3.1. All possibilities have advantages and disadvan-

tages. Roughly speaking, providing Web transaction security at a low layer has the
advantage that applications don’t have to care (and needn’t be modified accordingly),
whereas providing Web transaction security at a high layer has the advantage that it
has no impact on the networking infrastructure, and hence the infrastructure can be
left as it is.

Transport Layer Security 67

PGP / OpenPGP / SIMIME
applicationLaver | S-HTTP Kerberos
SRR B T
o -
PRI B PPTFEEET%%SSA&/IKE)

Figure 3.1 The Internet security protocols and their placement in the TCP/IP protocol stack.

There is a famougnd-to-end argumerih system design [5] that strongly
speaks in favor of providing security services at a high layer. The argument basically
says

e That any nontrivial communications system involves intermediaries, such as
network devices, relay stations, computer systems, and software modules that
are, in principle, unaware of the context of the communication being involved.

e That these intermediaries are incapable of ensuring that the data is processed
correctly.

The bottom line is that, whenever possible, communications protocol operations
should be defined to occur at the end points of a communications system, or as
close as possible to the resource being controlled. The end-to-end argument applies
generally (i.e., for any type of functionality). As pointed out in [6], it particularly
applies to the provision of network security services.

Following the end-to-end argument and design principle, the IETF chartered a
Web Transaction Security (WTS) WG in the early 1990%e goal of the WG was
to develop requirements and a specification for the provision of security services
to Web transaction (e.g., transactions using the HTTP). The outcome of the WG is
documented in [7-9]. A group of researchers at Enterprise Integration Technologies
(EIT) was particularly active. They developed and came up with a proposal to
enhance HTTP with a possibility to encrypt and/or digitally sign documents or
specific parts thereof. The proposal was naiSedure Hypertext Transfer Protocol
(S-HTTP or SHTTP), and it was later officially specified in an experimental RFC

1 http://www.ietf.org/html.charters/OLD/wts-charter.html.

68 SSL and TLS: Theory and Practice

[9]. S-HTTP is conceptually similar to today’s specifications of the World Wide
Web Consortium (W3C) related to eXtensible Markup Language (XML) encryption
and XML signatures. It was submitted to the Web transaction discussion in 1994,
and due to its strong initial support in the software industry it seemed to be only a
guestion of time until it would become the dominant key player in the field.

But things evolved differently. Independent from the end-to-end argument and
the S-HTTP proposal, the developers at Netscape Communications prosecuted the
claim that transport layer security provides an interesting compromise between low-
layer and high-layer security. In fact, they took the viewpoint of the application
developer and wanted to enable him or her to establish secure connections (instead
of “normal” connections) in a way that is as simple as possible. To achieve this goal,
they inserted an intermediate layer between the transport layer and the application
layer. This layer was hameslecure Sockets Layé8SL) and its job was to handle
security, meaning that it had to establish secure connections and to transmit data
over these secure connections. As such, its functionality is deeply interwinded with
the one of a transport layer protocol like TCP, and hence we technically assign the
SSL protocol to the transport layer. More specifically, the SSL protocol is layered
on top of connection-oriented and reliable transport layer protocol like TCP. The
connectionless best effort datagram delivery protocol that operates at the transport
layer protocol is named User Datagram Protocol (UBRhd it has only been
recently that the TLS protocol has been adapted to be used on top of UDP, as well.
This is the realm of the DTLS protocol further addressed in Chapter 6. The SSL
protocol was so successful that it became the starting point of a whole evolution of
similar but still slightly different transport layer security protocols. This evolution is
sketched next.

3.2 PROTOCOL EVOLUTION

Netscape Communications started to develop the SSL protocol soon after the Na-
tional Center for Supercomputing Applications (NCSA) released Mosaic 1.0—the
first popular Web browser—in 1993. Eight months later, in the middle of 1994,

2 Itis sometimes argued that TCP is connection-oriented and reliable, whereas UDP is connectionless
and unreliable. This characterization is imprecise, mainly because the term “unreliable” suggests
that UDP was intentionally designed to lose packets. This was clearly not the case. Instead, a best-
effort delivery protocol has no built-in functions to detect or correct for packet loss but relies on
underlying protocols to provide this service. Over a modern LAN, for example, loss is nearly zero,
and hence a best-effort delivery protocol is sufficient for many applications. A key benefit from
providing no loss detection is that the resulting protocol is efficient to process and introduces no
latency to the delivery. The bottom line is that it is more appropriate to say that UDP is a best-effort
datagram delivery protocol than an unreliable one.

Transport Layer Security 69

Netscape Communications already completed the design for SSL version 1 (SSL
1.0). This version circulated only internally (i.e., inside Netscape Communications),
since it had several shortcomings and flaws. For example, it didn't provide data
integrity protection. In combination with the use of the stream cipher RC4 for data
encryption, this allowed an adversary to make predictable changes to the plaintext
messages. Also, SSL 1.0 did not use sequence numbers, so it was vulnerable to
replay attacks. Later on, the designers of SSL 1.0 added sequence numbers and
checksums, but still used an overly simple cyclic redundancy check (CRC) instead
of a cryptographically strong hash function that is one-way and collision-resistant.

This and a few other problems had to be resolved, and at the end of 1994
Netscape Communications came up with SSL version 2 (SSL324@ong other
changes, the CRC was replaced with MD5 that was still assumed to be secure
at this time. Netscape Communications then released the Netscape Navigator that
implemented SSL 2.0 together with a few other products that also supported SSL
2.0. The official SSL 2.0 protocol specification was written by Kipp E.B. Hickman
from Netscape Communications, and it was submitted as an Internet-Draft entitled
“The SSL Protocol” in April 1995 In August 1995, Netscape Communications
also filed a patent application entitled “Secure Socket Layer Application Program
Apparatus and Method” that basically referred to the SSL protocol (hence the patent
is also called thesSL patent The SSL patent was granted in August 1997 (U.S.
Patent No. 5,657,390) and was assigned to Netscape Communications. Remember
from the foreword that Netscape Communications filed for patents to protect SSL in
order to prevent others from moving into the same space, and that the SSL patent
was given away to the community for everyone to use for free.

With the release of the Netscape Navigator (supporting the newly specified
SSL 2.0 protocol), the Internet and WWW started to take off. This made some
other companies nervous about the potential and the lost opportunities of not
getting involved. Most importantly, Microsoft decided to become active and came
up with the Internet Explorer in the second half of 1995. Microsoft also published a
protocol—namedPrivate Communication Technolo@iyCT)—that is conceptually
and technically very similar to SSL 2%n fact, the PCT protocol’s record format is
compatible with that of SSL. Servers implementing both protocols can distinguish
between PCT and SSL clients because the version number field occurs in the same
position in the first handshake message in both protocols, and in the case of PCT, the
most significant bit of the protocol version number is set to one (instead of zero as
with SSL). From today’s perspective, the PCT protocol is only historically relevant.
Some Microsoft products still support it, but outside the world of Microsoft products

3 http:/itools.ietf.org/html/draft-hickman-netscape-ssl-00.
4 draft-hickman-netscape-ssl-00.txt.
5 http://graphcomp.com/info/specs/ms/pct.htm.

70 SSL and TLS: Theory and Practice

the PCT protocol has never been supported and probably will never be supported.
So we can safely ignore it for the purpose of this book. All you need to know is the
acronym and what is actually stands for (roughly speaking, PCT is the Microsoft
version of SSL).

In addition to a few minor changes (mainly regarding the handshake phase),
the PCT protocol improved some weaknesses and vulnerabilities of SSL 2.0. The
ideas were also incorporated in SSL version 3 (SSL 3.0) that was released soon after
the publication of PCT (still before the end of 1995). The SSL 3.0 protocol was spec-
ified by Alan O. Freier and Philip Karlton from Netscape Communications with the
support of an independent consultant named Paul C. Kocher (Kocher later founded
Cryptography Researéh Also, around this time, Netscape Communications em-
ployed several security professionals, including, for example, Taher Elgamal—the
inventor of the Elgamal public key cryptosystem [10] and the provider of this book’s
foreword. These distinguished security professionals helped making SSL 3.0 more
robust and secure. The specification of SSL 3.0 was finally published as an Internet-
Draft entitled “The SSL Protocol Version 3.0” in November 199Bven today this
document serves as a primary reference for the SSL protocol.

From todays perspective, SSL 2.0 is known to have several shortcomings and
security problems that are corrected in SSL 3.0:

e SSL 2.0 permits the client and server to send only one public key certificate
each. Thus, this certificate has to be directly signed by a trusted root CA.
Contrary to that, SSL 3.0 allows clients and servers to have arbitrary-length
certificate chains.

e SSL 2.0 uses the same keys for message authentication and encryption, which
may lead to problems for certain ciphers. Also, if SSL 2.0 is used with RC4
in export mode, then the message authentication and encryption keys are both
based on 40 bits of secret data. This is in contrast to the fact that the message
authentication keys can be longer (export restrictions typically apply only to
encryption keys). In SSL 3.0, different keys are used, and hence even if weak
ciphers are used, mounting attacks against message authenticity and integrity
can still be made intractable (by using long keys for message authentication).

e SSL 2.0 exclusively uses the cryptographic hash function MD5 to generate
MACs. In SSL 3.0, MD5 is complemented with SHA-1, and the MAC
construction is more sophisticated.

Because of these shortcomings and security problems, it is generally recom-
mended to avoid the use of SSL 2.0, and to consistantly replace it with SSL 3.0.

6 http://www.cryptography.com
7 draft-freier-ssl-version3-02.txt.

Transport Layer Security 71

After the publication of SSL 3.0 and PCT, there was quite a lot of confusion in
the security community. On the one hand, there was Netscape Communications and
a large part of the Internet and Web security community pushing SSL 3.0. On the
other hand, there was Microsoft with its huge installed base pushing PCT (they also
had to support SSL for interoperability reasons). To make things worse, Microsoft
had even came up with yet another protocol proposal, n&eedre Transport Layer
Protocol (STLP), that was basically a modification of SSL 3.0, providing additionl
features which Microsoft considered to be critical, such as support for UDP, client
authentication based on shared secrets, and some performance optimizations (many
of these features are discussed today for inclusion in the TLS protocol). In this
situation, an IETF Transport Layer Security (TLS) Working Growas formed
in 1996 to resolve the issue and to standardize a unified TLS protocol. This task was
technically simple (because the protocols to begin with—SSL 3.0 and PCT/STLP—
were already technically very close), but still difficult for at least three reasons:

o First, the Internet standards process [11] requests that a statement be obtained
from a patent holder indicating that a license will be made available to
applicants under reasonable terms and conditions. This also applied to the
SSL patent (such a statement was not included in the original specification of
SSL 3.0).

e Second, at the April 1995 IETF meeting in Danvers, Massachusetts, the IESG
adopted theDanvers Doctrine, which basically said that the IETF should
design protocols that embodied good engineering principles, regardless of
exportability issues. This doctrine implied support for DES at a minimum and
over time it came to mean 3DES.

e Third, the IETF had a longstanding preference for unencumbered algorithms
when possible. So when the Merkle-Hellman patent (covering many public
key cryptosystems) expired in 1998, but RSA was still patented, the IESG
began pressuring working groups to adopt the use of unpatented public key
cryptosystems.

When the IETF TLS WG finished its work in late 1997, it sent the first
version of the TLS protocol specification off to the IESG. The IESG, in turn,
returned the specification with a few instructions to add other cryptosystems, namely
DSA for authentication, Diffie-Hellman for key exchange (note that the Merkle-
Hellman patent was about to expire), and 3DES for encryption, mainly to solve
the two last issues mentioned above (the first issue could be solved by adding
a corresponding statement in the TLS protocol specification). Much discussion

8 http://www.ietf.org/html.charters/tls-charter.html

72 SSL and TLS: Theory and Practice

on the mailing list ensued, with Netscape Communications in particular resisting
mandatory cryptographic systems in general and 3DES in particular. After some
heated discussions between the IESG and the IETF TLS WG, grudging consensus
was reached and the protocol specification was resubmitted with the appropriate
changes in place.

Unfortunately, in the meantime, another problem appeared: the IETF Public
Key Infrastructure (PKIX) WG had been tasked to standardize a profile for X.509
certificates in the Internet, and this WG was just winding up its work. For reasons
discussed later in this book, the TLS protocol depended on X.509 certificates and
hence on the outcome of the IETF PKIX WG. In the meantime, the rules of the
IETF forbid protocols advancing ahead of other protocols on which they depend.
PKIX finalization took rather longer than expected and added another delay. The
bottom line is that it took almost three years until the IETF TLS WG could officially
release its resulting security protocol of the same néindact, the first version of
the TLS protocol (i.e., TLS 1.0), was specified in RFC 2246 [12] and was released
in January 1999. The required patent statement was included in appendix G of this
document. Despite the change of names, TLS 1.0 is nothing more than a new version
of SSL 3.0. In fact, there are fewer differences between TLS 1.0 and SSL 3.0 than
there are differences between SSL 3.0 and SSL 2.0 (the latter is not addressed in this
book). TLS 1.0 is therefore sometimes also referred to as SSL 3.1. In addition to the
TLS 1.0 specification, the IETF TLS WG also completed a series of extensions to
the TLS protocol that are documented elsewhere.

After the 1999 release of TLS 1.0, work on the TLS protocol continued in the
IETF TLS WG. In April 2006, the TLS protocol version 1.1 (TLS 1.1) was specified
in Standards Track RFC 4346 [13], making RFC 2246 obsolete. As discussed later,
there were some cryptographic problems resolved in TLS 1.1. After another two-
years’ revision period, in August 2008, the TLS protocol version 1.2 (TLS 1.2) was
specified in Standards Track RFC 5246 [14]. This document not only made RFC
4346 obsolete, but also RFC 3268 (that specified the use of the AES in TLS) [15]
and RFC 4366 (that specified extensions for TLS) [16]. Furthermore, RFC 5246
also updated informational RFC 4492 [17] that elaborates on the use of ECC-based
cipher suites for TLS. Most of these extensions have been incorportaed in TLS
1.2. They represent the most substantial progress of TLS 1.2. The bottom line is
that the standardization of the TLS protocol and its extensions has become highly
involved and subtle. We will more thoroughly address the topic in Chapter 5. Also,
the TLS protocol has been adapted to be used to secure UDP-based applications.
The corresponding DTLS protocol is addressed in Chapter 6.

9 The name had to be changed from SSL to TLS to avoid the appearance of bias toward any particular
company.

Transport Layer Security 73

3.3 FINAL REMARKS

In this chapter, we overviewed and put into perspective the technologies and proto-
cols that can be used to provide basic security services on the transport layer of the
TCP/IP protocol stack. Most importantly, the SSL/TLS protocols represent transport
layer security protocols that are omnipresent and in widespread use. In fact, for the
last few years, support for SSL/TLS has been built into nearly every Web browser
and server software. This even applies to Microsoft (as mentioned above, Microsoft
originally came up with protocol proposals of its own acronymed PCT and STLP,
but these proposals very rapidly sank into oblivion).

There are two major advantages of transport layer security technologies and
protocols:

e On the one hand, they can be used to secure any application layer protocol
that is layered on top of them. This means that any TCP-based application
can potentially be secured with the SSL/TLS protocols. Also, there is the
possibility to secure any UDP-based application with the DTLS protocol.

e On the other hand, they can operate nearly transparently for users, meaning
that users need not be aware of the fact that the SSL/TLS protocols are in
placel® This simplifies the deployment of the protocols considerably.

All transport layer security protocols mentioned so far employ public key
cryptography and public key certificates. This is almost always true for the servers
that support the SSL/TLS protocols, but it is optionally also true for the clients. The
corresponding protocol specifications assume the existence of certificates, but they
do not address the proper management of these certificates. In fact, the management
of public key certificates is assumed to take place outside the scope of the SSL/TLS
protocols. We postpone the discussion of digital certificates and PKIs to Chapter 8.

References

[1] Oppliger, R.,Internet and Intranet Security?2nd edition. Artech House Publishers, Norwood,
MA, 2002.

[2] Oppliger, R.,Security Technologies for the World Wide \W2hd edition. Artech House Publish-
ers, Norwood, MA, 2003.

[3] Frankel, S.Demystifying the IPsec Puzzkertech House Publishers, Norwood, MA, 2001.

[4] Oppliger, R.,Secure Messaging with PGP and S/MIM&tech House Publishers, Norwood,
MA, 2001.

10 The only place where user involvement is ultimatively required is when the user must verify the
server certificate. This is actually also the Achilles’ heel of SSL/TLS.

74

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

SSL and TLS: Theory and Practice

Saltzer, J.H., Reed, D.P., and D.D. Clark, “End-to-End Arguments in System DesgM’
Transactions on Computer Systendsl. 2, No. 4, November 1984, pp. 277-288.

Voydock, V., and S.T. Kent, “Security Mechanisms in High-Level Network Protoc#\€M
Computing Survey$/l. 15, 1983, pp. 135-171.

Bossert, G., Cooper, S., and W. Drummond, “Considerations for Web Transaction Security,”
Informational Request for Comments 2084, January 1997.

Rescorla, E., and A. Schiffman, “Security Extensions For HTML,” Experimental Request for
Comments 2659, August 1999.

Rescorla, E., and A. Schiffman, “The Secure HyperText Transfer Protocol,” Experimental Re-
guest for Comments 2660, August 1999.

Elgamal, T., “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm,”
IEEE Transactions on Information Theo-31(4), 1985, pp. 469-472.

Bradner, S., “The Internet Standards Process—Revision 3,” Request for Comments 2026 (BCP
9), October 1996.

Dierks, T., and C. Allen, “The TLS Protocol Version 1.0,” Standards Track Request for Comments
2246, January 1999.

Dierks, T., and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.1,” Stan-
dards Track Request for Comments 4346, April 2006.

Dierks, T., and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” Stan-
dards Track Request for Comments 5246, August 2008.

Chown, P., “Transport Layer Security (TLS) Extensions,” Standards Track Request for Comments
3268, June 2002.

Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and T. Wright, “Advanced Encryp-
tion Standard (AES) Ciphersuites for Transport Layer Security (TLS),” Standards Track Request
for Comments 4366, April 2006.

Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B. Moeller, “Elliptic Curve Cryptography
(ECC) Cipher Suites for Transport Layer Security (TLS),” Informational Request for Comments
4492, May 2006.

Chapter 4

SSL Protocol

After having introduced the notion of a transport layer security, we nhow delve more
deeply into the SSL protocol. More specifically, we introduce the topic in Section
4.1, overview the protocols SSL consists of in Section 4.2, provide a traffic analysis
of an SSL session in Section 4.3, analyze the security of the SSL protocol in Section
4.4, and conclude with some final remarks in Section 4.5. This chapter represents
one of the main parts of the book; as such, it is a little bit more voluminous than
most other chapters.

4.1 INTRODUCTION

In Section 3.2, we looked back into the 1990s and explained why Netscape Com-
munications proposed SSL and how the SSL protocol evolved in three versions—
SSL 1.0, SSL 2.0, and SSL 3.0—to finally become the protocol we know as TLS

today. Referring to the terminology introduced in Section 1.1, the SSL protocol is

a client/server protocol that provides the following basic security services to the
communicating peers:

o Authentication (both peer entity and data origin authentication) services;
e Connection confidentiality services;
e Connection integrity services (without recovery).

In spite of the fact that the SSL protocol uses public key cryptography, it does
not provide nonrepudiation services—neither nonrepudiation with proof of origin
nor nonrepudiation with proof of delivery. This is in sharp contrast to S-HTTP and
XML signatures that are able (and have been specifically designed) to provide such
services. As its name suggests, the SSL protocol is sockets-oriented, meaning that

75

76 SSL and TLS: Theory and Practice

all or none of the data that is sent to or received from a socket are cryptographically
protected in exactly the same way (i.e., there is no way to digitally sign individual
pieces of the data).

The term SSL refers to a layer that is best viewed as an intermediate layer
between the transport and the application layer. Its scope of functions is twofold:

e On the one hand, it is to establish a secure (i.e., authentic and confidential)
connection between the communicating peers.

e On the other hand, it is to use this connection to securely transmit higher-
layer protocol data from the sender to the recipient. It therefore fragments the
data into manageable pieces (called fragments), and processes each fragment
individually. More specifically, each fragment is optionally compressed, au-
thenticated with a MAC, encrypted, prepended with a header, and transmitted
to the recipient. Each fragment that is treated and prepared this way is called
an SSL record On the recipient’s side, the SSL records must be decrypted,
verified (with regard to their MACs), decompressed, and reassembled, before
the data can be delivered to the respective higher-layer—typically the appli-
cation layer—protocol.

Application Layer Protocol

SSL SSL Change SSL Application
Handshake |Cipher Spec Alert Data
Protocol Protocol Protocol Protocol

SSL Record Protocol

Application Layer

.......

Transport Layer UDP TCP

Network Layer IP

Network Access Layer

Figure 4.1 The SSL with its (sub)layers and (sub)protocols.

1 To be precise, an SSL record consists of four fields: a type field, a version field, a length field, and
a fragment field. The fragment field, in turn, comprises the higher-layer protocol data.

SSL Protocol 7

The placement of the SSL layer is illustrated in Figure 4.1. It consists of two
sublayers and a few subprotocols:

e The lower layer is stacked on top of some connection-oriented and reliable
transport layer protocol, such as TCP in the case of the TCP/IP protocol
stack? This layer basically comprises tI®SL Record Protocdhat is used
for the first function mentioned above (i.e., the encapsulation of higher-layer
protocol data).

e The higher layer is stacked on top of the SSL Record Protocol and comprises
four protocols:

— The SSL Handshake Protoc@ the core protocol of SSL. It allows
the communicating peers to authenticate each other and to negotiate a
cipher suite and a compression method used for the communications. As
its name suggests, the cipher suite is used to cryptographically protect
data in terms of authenticity, integrity, and confidentiality, whereas the
compression method is to optionally compress data.

— TheSSL Change Cipher Spec Protoatibws the communicating peers
to signal a cipher spec change (i.e., a change in the ciphering strategy
and the way data is cryptographically protected). While the SSL Hand-
shake Protocol is used to negotiate security parameters, the SSL Change
Cipher Spec Protocol is used to put these parameters in place and make
them effective.

— The SSL Alert Protocodllows the communicating peers to signal indi-
cators of potential problems and to exchange corresponding alert mes-
sages.

— The SSL Application Data Protocdk used for the second function
mentioned above (i.e., the secure transmission of application data). This
protocol is the actual workhorse of SSL.: it takes higher-layer—typically
application layer—data and feeds it into the SSL Record Protocol for
cryptographic protection and secure transmission.

In spite of the fact that SSL consists of several subprotocols, we use the term
SSL protocoto refer to all of them. This may be oversimplified, but we think it is
more appropriate to carry the main messages and to make the points. When we refer
to a specific subprotocol, we usually employ its full name.

2 This is in contrast to the DTLS protocol that is stacked on top of UDP. The DTLS protocol is
addressed in Chapter 6.

78 SSL and TLS: Theory and Practice

Like most protocols based on TCP, the SSL protocol is self-delimiting, mean-
ing that it can autonomously determine the beginning and ending of an SSL message
inside an SSL record or TCP segment (i.e., without the assistance of TCP). The SSL
protocol therefore employs various length fields. In fact, each SSL record is tagged
with a length field that refers to the length of the entire record. In addition, each SSL
message carried inside an SSL record is also tagged with a respective length field.
As explained later, multiple SSL messages of the same type can in fact be carried
inside a single SSL record.

One major advantage of the SSL protocol s that it is application layer protocol
independent, meaning that any TCP-based application protocol can be layered on
top of SSL to provide the basic security services mentioned above. In order to
accomodate connections from clients that do not employ SSL, servers must typically
be prepared to accept both secure and nonsecure versions of a given application layer
protocol. There are usually two strategies to achieve this goal: separate ports and
upward negotiation.

e In aseparate port strategya different port number is assigned to the secure
version of the application layer protocol. This suggests that the server has to
listen both on the original port and the new (secure) port. For any connection
that arrives on the secure port, SSL is invoked automatically.

e In contrast, in arupward negotiation strategya single port is used for both
versions of the application layer protocol. This protocol, in turn, must be
extended to support a message indicating that one side would like to upgrade
to SSL. If the other side agrees, SSL is invoked and a secure channel is
established to be used by the application layer protocol.

Both strategies have advantages and disadvantages, and hence, in principle,
both strategies can be pursued. For example, in the case of HTTP, the upward
negotiation strategy is employed in the standards track RFC 28 £&jhigreas the
separate port strategy is employed in the informational RFC 2818 [2].

e RFC 2817 explains how to use the upgrade mechanism in HTTP/1.1 to initiate
SSL/TLS over an existing TCP connection. This mechanism can be invoked
by either the client or server, and upgrading can be optional or mandatory.
In either case, the HTTP/1.1 Upgrade header must be employed. This is a
hop-by-hop header, and hence care must be taken to upgrade across (possibly
multiple) proxy servers. The bottom line is that the upgrade mechanism in
HTTP/1.1 allows unsecured and secured HTTP traffic to share the same port
(typically 80). It also enables virtual hosting, so a single HTTPS server can

3 Note that this RFC is written for the TLS protocol, but the same mechanism also applies to the SSL
protocol.

SSL Protocol 79

Table 4.1
Port Numbers Reserved for Applicaton Protocols Layered over SSL/TLS

Protocol Description Port #
nsii ops IIOP Name Service over SSL/TLS 261
https HTTP over SSL/TLS 443
nnt ps NNTP over SSL/TLS 563
| daps LDAP over SSL/TLS 636
ftps-data FTP Data over SSL/TLS 989
ftps FTP Control over SSL/TLS 990
tel nets Telnet over SSL/TLS 992
i maps IMAP4 over SSL/TLS 993
ircs IRC over SSL/TLS 994
pop3s POP3 over SSL/TLS 995
tftps TFTP over SSL/TLS 3713

sip-tls SIP over SSL/TLS 5061

differentiate between traffic intended for several hostnames at a single IP
address.

e RFC 2818 elaborates on using a different server port for the secured HTTP
traffic. This is comparably simple and straightforward.

In general, it is up to the designer of the application layer protocol to make a
choice between the separate port and upward negotiation strategy. Historically, most
protocol designers have made a choice in favor of the separate port strategy. For
example, until the SSL 3.0 protocol specification was officially released in 1996, the
Internet Assigned Numbers Authority (IANA) had already reserved the port number
443 for use by HTTP over SSIh{ t ps), and was about to reserve the port numbers
465 for use by the Simple Mail Transfer Protocol (SMTP) over S&n{ p) and
563 for the Network News Transfer Protocol (NNTP) over SShr{t p). Later on,
the IANA decided to consistently append the letter “s” after the protocol name, so
snnt p effectively becamant ps. Today, there are several port numbers reserved
by the IANA for application layer protocols stacked on top of SSL/TLBhe
most important examples are summarized in Table 4.1. Among these examples,
| daps, ft ps (andft ps- dat a), i maps andpop3s are particularly important
and most widely used in practice. In contrast, there are only a few application
layer protocols that implement an upward negotiation strategy. We mentioned the
HTTP/1.1 upgrade mechanism above. But by far the most prominent example is
SMTP with its STARTTLS feature specified in RFC 2487 [3] that invokes SSL for

4 http:/lwww.iana.org/assignments/port-numbers.

80 SSL and TLS: Theory and Practice

the secure transmission of data between two mail servers. STARTTLS is based on
the SMTP extensions mechanism specified in RFC 1869 [4].

The separate port strategy has the disadvantage that it effectively halves the
number of available ports on the server side (because two ports must be reserved
for each application protocol and service). During an IETF meeting in 1997, the
Applications Area Directors and the IESG therefore affirmed that the upward nego-
tiation strategy would be the way to go, and that the separate port strategy should
therefore be deprecated. In reality, however, we see a distinct development: in spite
of the fact that RFC 2817 (specifying an upgrade mechansism for HTTP/1.1) has
been available for almost a decade and is even representing a standards track RFC,
there has hardly been any interest in implementing alternatives to port 443. This may
change for future application protocols. But for HTTP, implementing the separate
port strategy and using port 443 is still the most widely deployed option. This is not
likely to change in the foreseeable future.

The SSL protocol was designed with interoperability in mind. This means
that the protocol is intended to make the probability that two independent SSL
implementations interoperate as large as possible. As such, the design of the SSL
protocol is simpler and more straightforward than the design of many other security
protocols, including, for example, the IPsec/IKE protocols. But the simple and
straightforward design of the SSL protocol is also slightly stashed away by the
fact that the Internet-Draft that specifies SSL 3.0 as well as the RFC documents
that specify the various versions of the TLS protocol all use a specific presentation
language. For the purpose of this book, we neither introduce this language nor do
we actually use it. Instead, we use plain English text to describe the protocols with
as few bit-level details as necessary.

The SSL protocol and its successors are block-oriented with a block size
of one byte (i.e., eight bits). Against this background, multiple-byte values are
just concatenations of bytes. The concatenations are written from left to right
and from top to bottom, but keep in mind that the resulting strings are just byte
strings transmitted over the wire. The byte ordering—also knowenasanness-
for muliple-byte values is the usuaétwork byte ordeor big endianformat. So the
sequence of the hexadecimal bytes 0x01, 0x02, 0x03, and 0x04 is equivalent to the
decimal value

1-16°+2-16*+3-162+4-16° = 16,777,216+ 131,072+ 768 + 4
= 16,909, 060.
The aim of the SSL protocol is to securely transmit application data between
communicating peers. The SSL protocol therefore establishes and employs SSL

connections and SSL sessions. Both terms are required to properly understand the
functioning of SSL.

SSL Protocol 81

e An SSL connectiois used to actually transmit data between two communicat-
ing peers, typically a client and a server, in some cryptographically protected
and optionally compressed form. Hence, there are some cryptographic (and
other) parameters that must be put in place and applied to the data transmit-
ted over the SSL connection. One or several SSL connections may then be
associated with an SSL session.

e Similar to an IPsec/IKE security associatib@an SSL sessiomefers to an
association between two communicating peers that is created by the SSL
Handshake Protocol. The SSL session defines a set of cryptographic (and
other) parameters that are commonly used by the SSL connections associated
with the session to cryptographically protect and optionally compress the
data in transmission. Hence, an SSL session can be shared among multiple
SSL connections, and SSL sessions are primarily used to avoid the expensive
negotiation of new parameters for each SSL connection.

Between a pair of entities, there may be multiple SSL connections in place.
In theory, there may also coexist multiple simultaneous SSL sessions, but this
possibility is seldom used in the field.

SSL sessions and connections are stateful, meaning that the client and server
must keep some state information. It is in the responsibility of the SSL Handshake
Protocol to establish and coordinate (as well as possibly synchronize) this state on
the client and server side, thereby allowing the SSL protocol state machines on either
side to operate consistently. Logically, the state is represented twice, once as the
current stateand once as thgending stateAlso, separateecadandwrite states are
maintained. So there is a total of four states that need to be managed. The transition
from a pending to a current state occurs when-ss KGECIPHERSPEC message is
sent or received during an SSL handshake negotiaton (as further explained below).
The rules are as follows:

e If an entity (i.e., client or server) sends ai@NGECIPHERSPEC message,
then it copies the pending write state into the current write state. The read
states remain unchanged.

5 There are still a few conceptual and subtle differences between an IPsec/IKE security association
and an SSL session: (1) An IPsec/IKE security association is unidirectional, whereas an SSL session
is bidirectional. (2) An IPsec/IKE security association identifier—also knowseasrity parameter
index (SPI)—is intentionally kept as short as 32 bits (as it is being transmitted in each IP packet),
whereas the length of an SSL session identifier does not really matter and need not be minimized. (3)
IPsec/IKE do not really represent client/server protocols, mainly because clients and servers do not
really exist at the Internet layer (instead the teiniator andresponderare used in this context).

In contrast, the SSL protocol in general, and the SSL Handshake Protocol in particular represent
real client/server protocols.

82 SSL and TLS: Theory and Practice

o If an entity receives a EANGECIPHERSPEC message, then it copies the
pending read state into the current read state. In this case, the write states
remain unchanged.

When the SSL handshake negotiaton is complete, the client and server have
exchanged BANGECIPHERSPEC messages, and hence they can communicate us-
ing the newly agreed-upon cryptographic (and other) parameters. As discussed be-
low, the FNISHED message is the first SSL handshake message that is protected
according to these new parameters.

For each SSL session and connection, the SSL protocol state machine must
hold some information elements. The corresponding session state and connection
state elements are summarized in Tables 4.2 and 4.3. We revisit some of these
elements when we go through the SSL protocol in detail (later in this chapter).

Table 4.2
SSL Session State Elements

session identifier Arbitrary byte sequence chosen by the server to identify an active or
resumable session state (maximum length is 32 bytes)

peer certificate X.509v3 certificate of the peer (if available)

conpressi on nethod Data compression algorithm used (prior to encryption)

ci pher spec Data encryption and MAC algorithms used (together with crypto-
graphic parameters, such as the length of the hash values)

mast er secret 48-byte secret that is shared between the client and the server

is resumabl e Flag indicating whether the SSL session is resumable, meaning that it

can be used to initiate new connections

The SSL protocol is a cryptographic protocol, meaning that it employs cryp-
tography and cryptographic technques. More specifically, the SSL protocol employs
secret key cryptography for message authentication and bulk data encryption, and it
uses public key cryptography for peer entity authentication and key establishment.
Before secret key cryptographic techniques can be invoked, some keying material
must be established. There are basically three key exchange algorithms that can be
used to establish a 48-byte premaster secret, tepmednast er _secr et inthe
SSL protocol specification: RSA, Diffie-Hellman, and FORTEZZ8ome of these
algorithms combine a key exchange with peer entity authentication, and hence actu-
ally refer to authenticated key exchange algorithms. To make this distinction explicit,

a key exchange without peer entity authentication can also be called an anonymous

6 Remember from Section 2.2.2.1 that the Skipjack cipher and the FORTEZZA KEA were declassi-
fied in 1998. Because the SSL 3.0 specification was released in 1996, the details of the FORTEZZA
KEA could not be included. Instead, the FORTEZZA KEA was treated as a black box in the speci-
fication of SSL 3.0.

SSL Protocol 83

Table 4.3
SSL Connection State Elements

server and client random Byte sequences that are chosen by the server and client
for each connection

server wite MAC key Secret used in MAC operations on data written by the
server

client wite MAC key Secret used in MAC operations on data written by the
client

server wite key Key used for data encrypted by the server and decrypted
by the client

client wite key Key used for data encrypted by the client and decrypted
by the server

initialization vectors If a block cipher in CBC mode is used for data encryption,

then an IV must be maintained for each key. This field is
firstinitialized by the SSL Handshake Protocol.
Afterwards, the final ciphertext block from each SSL
record is preserved to serve as IV for the next record.
sequence nunbers SSL message authentication employs sequence numbers.
This basically means that the client and server must
maintain a sequence number for the messages that are
transmitted or received on a particular connection.
Each sequence number is 64 bits long and ranges from 0 to
264 _ 1. Itis set to zero whenever aHBNGECIPHERSPEC
message is sent or receved.

key exchange. To keep things simple, the SSL protocol specification only speaks
about key exchange algorithms and does not distinguish between authenticated and
anonymous ones. Let us now briefly explore the possibilities the SSL provides to
exchange cryptographic keys.

o If RSA is used for key exchange, then the client generates a premaster secret,
encrypts it under the server’s public key, and sends the resulting ciphertext
to the server. The server’s public key, in turn, can either be long-termed and
retrieved from a public key certificate, or short-termed and provided for a
particular key exchange. In either case, the server uses the corresponding
private key to decrypt the premaster secret.

o If Diffie-Hellman is used for key exchange, then a Diffie-Hellman key ex-
change is performed and the resulting Diffie-Hellman value (without leading
zero bytes) represents the premaster secret. The SSL protocol provides support
for three versions of the Diffie-Hellman key exchange:

84

SSL and TLS: Theory and Practice

— In afixed Diffie-Hellman key exchangebbreviated DH), some Diffie-
Hellman parameters are fixed and part of the respective public key
certificates. This applies to the server, but and it may also apply to
the client. This means that the client's Diffie-Hellman parameters can
either be fixed and part of the client certificate, if client authentication
is required, or they may be dynamically generated and provided in
corresponding SSL handshake messages.

— In an ephemeral Diffie-Hellman key exchan@bbreviated DHE), the
Diffie-Hellman parameters are not fixed and are not part of public key
certificates. Instead, a Diffie-Hellman key exchange is performed to gen-
erate an ephemeral key. The corresponding Diffie-Hellman parameters
are dynamically generated and must be authenticated in some way. Usu-
ally, the parameters are digitally signed with the sender’s private (RSA
or DSS) signing key. The recipient can then use the sender’s public key
to verify the signature. Authenticity of the public key is guaranteed, if it
is retrieved from a valid public key certificate.

— In ananonymous Diffie-Hellman key exchar{gbbreviated DHanon),
a Diffie-Hellman key exchange is performed, but the Diffie-Hellman
parameters that are exchanged are not authenticated. This means that
the resulting key exchange is susceptible to a man-in-the-middle attack.

The ephemeral Diffie-Hellman key exchange appears to be the most
secure version of the Diffie-Hellman key exchange, because it yields tem-
porary but authenticated keys. The fixed Diffie-Hellman key exchange has
the problem that the keying material generated is always the same for two
participating entities, and the anonymous Diffie-Hellman key exchange has
the problem that it is vulnerable to man-in-the-middle attacks. Anyway, if the
same Diffie-Hellman keypair is to be used for multiple handshakes, either
because the client or server has a certificate containing a fixed Diffie-Hellman
key or because the server is reusing keying material, care must be taken to pre-
vent small subgroup attacks. Such attacks are most easily avoided by using an
ephemeral key exchange and generating a fresh Diffie-Hellman key for each
handshake. This has the additional advantage that it provides perfect forward
secrecy (PFS). This basically means that the compromise of long-term keying
material does not necessarily compromise each and every session key.

In the case of FORTEZZA, the key exchange process yields a TEK that can
then be used to securely transmit a randomly chosen premaster secret together
with some additional keys and cryptographic parameters to the server. Note

SSL Protocol 85

that FORTEZZA encryption keys are generated by the token and not derived
from the premaster or master secret.

In the past, RSA has been the predominant SSL key exchange method. This
is in spite of the fact that the ephemeral Diffie-Hellman key exchange method has
some security advantages (mainly because both parties participate in the generation
of the keying material).

Once a premaster secret is established, it can be used to construct a master se-
cretthatis calledmast er _secr et inthe SSL protocol specification. According to
Table 4.2, the master secret represents an SSL session state element. It is constructed
as follows:

mast er _secret =
MD5(pre_naster _secret + SHA(' A" + pre_naster_secret
+ ClientHello.random + ServerHello.randon)) +
MD5(pre_naster_secret + SHA(' BB + pre_nmaster_secret
+ CientHello.random+ ServerHello.random) +
MD5(pre_naster_secret + SHA(' CCC + pre_master_secret
+ ClientHello.random + ServerHel |l o.randonj)

In this notation, SHA refers to SHA-I,A’, ' BB, and’ CCC refer to the
respective byte strings 0x41, 0x4242, and 0x434848.ent Hel | o. r andomand

Server Hel | o. r andomrefer to a pair of values that are randomly chosen by the
client and server and exchanged in SSL Handshake Protocol messages (see below),
and+ refers to the string concatenation operator. Interestingly, the construction does
not use either MD5 or SHA-1, but combines the two cryptographic hash functions
(probably to compensate any potential deficiency).

An MD5 hash value is 16 bytes long, so the total length of the master secret
is 3 - 16 = 48 bytes. Its construction is the same for the RSA, Diffie-Hellman, or
FORTEZZA key exchange algorithms (but in the case of FORTEZZA, the master
secret is not used to derive encryption keys). As illustrated in Table 4.2, the master
secret is part of the session state and is treated accordingly. It serves as a source of
entropy for the generation of the cryptographic parameters (e.g., cryptographic keys
and 1Vs) that are used to secure the communications. Note that the premaster secret
can be safely deleted from memory once the master secret has been constructed.

Equipped with the master secret, a handcrafted PRF can be employed to
generate an arbitrarily long key block, termkdy bl ock in the SSL protocol
specification. In this PRF construction, the master secret serves as a seed, and the
client and server random values represent salt values (to make cryptanalysis more
difficult). The key block is iteratively constructed in the following way:

key_bl ock =

86 SSL and TLS: Theory and Practice

MD5(master _secret + SHA(' A" + nmaster_secret +
Server Hel | o.random + CientHello.random) +

MD5(nmast er _secret + SHA(' BB’ + naster_secret +
Server Hel | o.random + CientHello.random) +

MD5(nast er _secret + SHA(' CCC + naster_secret +
ServerHel |l o.random + CientHello.random) +

[...]

Every iteration adds 16 bytes (i.e., the length of the MD5 hash value), and hence
the construction is continued until the key block is sufficiently long to form the
cryptographic SSL connection state elements of Table 4.3 that are still missing:

client_wite MAC secret
server_wite MAC secret
client_wite key
server_wite_key
client_wite_|V
server_wite_ |V

The first two values represent message authentication keys, the second two values
represent encryption keys, and the third two values represent IVs that are needed if
a block cipher in CBC mode is used (so these values are optional). Any additional
material in the key block is discarded. The construction equally applies to RSA and
Diffie-Hellman, as well as for the MAC key contruction of FORTEZZA. It does not
apply to the construction of encryption keys and IVs for FORTEZZA—these values
are generated inside the FORTEZZA token of the client and securely transmitted in
a corresponding key exchange message.

If the encryption algorithm in use is exportable, then some additional process-
ing is required to derive the final encryption keys and IVs:

final _client_ wite key =
MD5(client_wite key + ClientHello.random +
Server Hel | 0. randon) ;
final _server wite key =
MD5(server _wite key + ServerHello.random +
CientHello.random;
client_wite_ |V =
MD5(C i ent Hel | o. random + ServerHel | 0. random ;
server_ wite |V =
MD5(Server Hel | o. random + d i ent Hel | o. randon ;

The output of MD5 is always trimmed to the appropriate size by discarding the
least-significant bytes.

SSL Protocol 87

The SSL protocol partly conforms to standards. For example, RSA digital
signatures are always performed using public key cryptography standard (PKCS)
#1 block type T, whereas RSA public key encryption employs PKCS #1 block type
2. The PKCS #1 version that was relevant when the SSL protocol was specified in
1996 was 1.5 [5]. As discussed later in this chapter, PKCS #1 version 1.5 turned out
to be susceptible to adaptive chosen ciphertext attacks, and hence it was replaced
with a more secure version 2.0 in 1998 [6]. Later on, some subtle vulnerabilities led
to another revision of PKCS #1, so that the current version is 2.1 [7].

4.2 PROTOCOLS

As mentioned above, the SSL protocols comprise the SSL Record Protocol, the SSL
Handshake Protocol, the SSL Change Cipher Spec Protocol, the SSL Alert Protocol,
and the SSL Application Data Protocol. We overview and discuss these protocols in
this order.

4.2.1 SSL Record Protocol

We already said that the SSL Record Protocol is used for the encapsulation of higher-
layer protocol data, and that it therefore fragments the data into manageable pieces
(called fragments), and processes each fragment individually. More specifically,
each fragment is optionally compressed and cryptographically protected according
to the compression method and cipher spec of the SSL session state and the
cryptographic parameters of the SSL connection state. The result represents the
fragment of the SSL record sent to the recipient.

The SSL record processing is overviewed in Figure 4.2. Fragmentation,
compression, and cryptographic protection lead to data structures that are called
SSLPI ai nt ext , SSLConpr essed, andSSLCi pher t ext inthe SSL protocol
specification. Atthe end, an SSL record header is appended$sti@ phert ext
structure to form an SSL record. Each structure comprises four fields: a type field, a
version field, a length field, and a fragment field. The four steps are more thoroughly
addressed next.

7 There is another block type O specified in PKCS #1. This type, however, is not used in the SSL
protocol specification.

88 SSL and TLS: Theory and Practice

Fragmentation

<

SSLPlaintext

Compression !

1

-

SSLCompressed |MAC

Cryptographic
protection

-

SSLCiphertext

Append SSL record
header

<

Header] SSLCiphertext

Figure 4.2 The SSL record processing (overview).

4.2.1.1 Fragmentation

In the first step, the SSL Record Protocol fragments the higher-layer protocol data
into blocks of2'* bytes or less. Each block is packed intd38LPI ai nt ext struc-

ture. Client message boundaries are not preserved, meaning that multiple messages
of the same type may be coalesced into a siggePI ai nt ext structure.

4.2.1.2 Compression

In the second step, the SSL Record Protocol compresseSShEl ai nt ext
structure according to the compression method specified in the SSL session state.
This method is initially set to null, so compression is optional by default. In spite
of the fact that compression is seldom used in practice, providing the possibility
for compression before encryption is still an important feature. This is because data
cannot be significantly compressed anymore once it is encrypted (i.e., encrypted data

SSL Protocol 89

cannot be distinguished from random data, and hence there is hardly any redundancy
that can be removed with data compression).

The SSL specification mandates that the compression is lossless and that
it should not increase the length of the fragment by more than 1,024 bytes.
a practical matter, no compression method other than null compression has been
defined for SSL 3.0. Anyway, compression turns $8LPI ai nt ext structure
into an SSLConpr essed structure. If the compression method is null, then the
compression method is the identity operation, and henc8%h€l ai nt ext and
SSLConpr essed fragments are identical.

4.2.1.3 Cryptographic Protection

In the third step, the SSL Record Protocol protec&Sh Conpr essed structure
according to the cipher spec specified in the SSL session state. According to Table
4.2, acipher speaefers to a pair of algorithms that are used to cryptographically
protect data. It consists of a message authentication and a data encryption algorithm.
The cipher spec is complemented with a key exchange algorithm. A cipher spec
together with a key exchange algorithm formipher suite and the set of 31 cipher
suites defined for SSL is summarized in Appendix A and Appendix C of the SSL 3.0
protocol specification. They are also illustrated in Table 4.4. In this table, the first
column itemizes the names of the cipher suites. The suites written in italics used to
be exportable from the United States (this criterion was important until the end of the
1990s). They were exportable only if the length of the Diffie-Hellman keys was not
longer than 512 bits, and the key length of the block cipher was not longer than 40
bits. The other three columns decompose a cipher suite into its components in terms
of key exchange algorithm, cipher (i.e., symmetric encryption system), and crypto-
graphic hash function. For example, SBH_RSA WITH_3DESEDE CBC_SHA

refers to the cipher suite that comprises RSA for key exchange, 3DES in CBC mode
for encryption, and SHA-1 for message authentication. Each cipher suite is encoded
in two bytes: the first byte is 0x00 and the second byte is the hexadecimal repre-
sentation of the cipher suite number as they occur in Table 4.4 (starting with 0). All
cipher suites whose first byte is OxFF are considered private and can be used for
experimentation. Interoperability of such types is a local matter. If the RFC editor’s
office agrees, then additional cipher suites may be publishing in informational or
even standards track RFCs.

8 Of course, one hopes that compression shrinks rather than expands the fragment. However, for very
short fragments, it is possible, because of formatting conventions, that the compression method
actually provides output that is longer than the input.

90 SSL and TLS: Theory and Practice

Table 4.4
SSL Cipher Suites

CipherSuite Key Exchange Cipher Hash
SSLNULL-WITH.NULL-NULL NULL NULL NULL
SSLRSAWITH.NULL-MD5 RSA NULL MD5
SSLRSAWITH.NULL-SHA RSA NULL SHA
SSLRSAEXPORTWITH.RC440-MD5 RSA_EXPORT RC440 MD5
SSLRSAWITH-RC4128 MD5 RSA RC4128 MD5
SSLRSAWITH_.RC4.128 SHA RSA RC4.128 SHA
SSLRSAEXPORTWITH.RC2CBC40-MD5 RSA_EXPORT RC2CBC_40 MD5
SSL_.RSAWITH_IDEA_.CBC_SHA RSA IDEA_CBC SHA
SSLRSAEXPORTWITH.DES4QCBC.SHA RSA_EXPORT DES40CBC SHA
SSL_.RSAWITH_DES.CBC_SHA RSA DESCBC SHA
SSL_.RSAWITH_3DESEDE CBC_SHA RSA 3DESEDECBC SHA
SSLDH_DSSEXPORTWITH.DES4QCBC_.SHA DH_DSSEXPORT DES40CBC SHA
SSL_DH_.DSSWITH_DES.CBC_SHA DH_DSS DESCBC SHA
SSL_DH_.DSSWITH_3DESEDE.CBC_SHA DH_DSS 3DES.EDE.CBC SHA
SSLDH_-RSAEXPORTWITH.DES4QCBC_.SHA DH_RSA EXPORT DES40CBC SHA
SSL_.DH_RSAWITH_DES.CBC_SHA DH_RSA DESCBC SHA
SSL_.DH_RSAWITH_3DESEDE CBC_SHA DH_RSA 3DESEDECBC SHA
SSLDHE_DSSEXPORTWITH.DES40QCBC.SHA DHE_DSSEXPORT DES40CBC SHA
SSL_DHE_DSSWITH_DES.CBC_SHA DHE_DSS DESCBC SHA
SSL_.DHE_DSSWITH_3DESEDE CBC_SHA DHE_DSS 3DESEDECBC SHA
SSLDHE_.RSAEXPORTWITH.DES4QCBC_.SHA DHE_.RSA EXPORT DES40CBC SHA
SSL_.DHE_RSAWITH_DES.CBC_SHA DHE_RSA DESCBC SHA
SSL_DHE_RSAWITH_3DESEDE.CBC_SHA DHE_RSA 3DES.EDE.CBC SHA
SSLDH_anonEXPORTWITH.RC440.MD5 DH_anonEXPORT RC440 MD5
SSLDH_anonWITH_RC4.128 MD5 DH_anon RC4.128 MD5
SSLDH_anonEXPORTWITH.DES4QCBC.SHA DH_anon DES4QCBC SHA
SSL_DH_anonWITH_DES.CBC_SHA DH_anon DESCBC SHA
SSL_DH_anonWITH_3DESEDE.CBC_SHA DH_anon 3DES.EDE.CBC SHA
SSL_-FORTEZZAKEA_WITH_NULL _SHA FORTEZZAKEA NULL SHA
SSLFORTEZZAKEA_WITH_FORTEZZACBC_.SHA FORTEZZAKEA FORTEZZACBC SHA
SSL_.FORTEZZAKEA WITH_RC4.128 SHA FORTEZZAKEA RC4.128 SHA

There is always an active cipher suite, butitis initially setto $8UL L _WITH
_NULL _NULL, which does not provide any security service. In fact, this cipher suite
refers to the identity operation for encryption and a MAC size of zero.

Cryptographic protection includes message authentication and encryption. So
the first question that pops up is related to the order. In theory, there are three
possibilities:

1. Authenticate the message, encrypt the message and the MAC, and send
the resulting ciphertext (that now includes the MAC) to the recipient. This
possibility is calledauthenticate-then-encryfgabbreviated AtE), and it is
used, for example, by the SSL/TLS protocols.

SSL Protocol 91

2. Encrypt the message, authenticate the ciphertext, and send the ciphertext
along with the MAC to the recipient. This possibility is calledcrypt-then-
authenticate(abbreviated EtA), and it is used, for example, by the IPsec
protocol.

3. Encrypt the message, authenticate the message, and send the ciphertext
along with the MAC to the recipient. This possibility is calledcrypt-and-
authenticatdabbreviated E&A), and it is used, for example, by the SSH pro-
tocol.

It has been shown by Hugo Krawczyk and Ran Canetti [8, 9] that EtA is the
generically secure method of combining secure message authentication and secure
encryption, but that EtA is also secure if a block cipher in CBC mode or a stream
cipher is used for encryption. This is the underlying reason why all ciphers in Table
4.4 are either block ciphers in CBC mode or stream ciphers. Let us now have a closer
look at message authentication and encryption.

Message Authentication

First of all, we note that an SSL cipher suite specifies a cryptographic hash function
(not a MAC algorithm), and hence some additional information is required to
actually compute and verify a MAC. The algorithm used by SSL is a predecessor of
the HMAC construction frequently used today (see Section 2.2.2.2). In fact, the SSL
MAC algorithm is based on the original Internet-Draft for the HMAC construction,
which used the concatenation instead of the XOR operation. Hence, the SSL MAC
algorithm is conceptually similar and its security is assumed to be comparable to the
one of the HMAC construction. Remember that the HMAC construction is defined
as follows:

HMAC,(m) = h(k®opad| h(k @ipad | m))

In this constructionk denotes a cryptographic hash function (i.e., MD5 or SHA-1),
k the secret key (used for message authenticatiarthe message to be authenti-
cated;ipad (standing for “inner pad”) the byt@x36 (i.e.,00110110) repeated 64
times,opad (standing for “outer pad”) the by@x5C(i.e.,01011100) repeated 64
times,® the bit-wise addition modulo 2, arjdthe concatenation operation. Using a
similar notation, the SSL MAC construction can be represented as

SSL MACy(SSLCompressed) =
h(k || opad || h(k || ipad || seq-number || type || length || fragment))

SSLCompressed*

92 SSL and TLS: Theory and Practice

where SSLCompressed refers to the SSL structure that is authenticated (and
that comprisesype, version, length, and fragment fields), SSLCompressed*
represents the same structure withoutthesion field, h denotes a cryptographic
hash function, ané refers to the (server or client) MAC write key. The two values
ipad andopad are the same bytes repeated 48 times (for MD5) or 40 times (for SHA-
1)—compare this to the 64 times that are required in the HMAC construction. Last
but not least, the SSL MAC construction also takes into account a 64-bit sequence
numberseq_number for the message to be authenticated.

Encryption

After having appended a MAC to tt&SL Conpr essed structure, the SSL Record
Protocol encrypts th&SLConpr essed structure and the MAC to generate a
SSLCi phert ext structure. The situation is different in the case where a stream
cipher is used and the case where a block cipher is used.

o If a stream cipher is used, then no padding and IV are needed. But a stream
cipher is stateful, meaning that some cipher state must be maintained. In the
case of the SSL protocol, the cipher state from the end of the encryption of one
structure is used for the encryption of the next structure. According to Table
4.4, the SSL protocol envisions the use of the stream cipher RC4 with either a
40-bit or 128-bit key.

o Ifablock cipheris used, then things get more involved mainly for two reasons:

— First, padding is needed to force the length of the plaintext to be a
multiple of the cipher’s block size. If, for example, DES is used for
encryption, then the length of the plaintext must be a multiple of 64
bits or 8 bytes. The padding is in the form of a number of padding bytes
followed by a 1-byte indication of the byte-length of the padding. The
byte specifying the byte-length of the padding is then replicated for each
byte in the padding. In the SSL protocol, the padding is assumed to be
as short as possible (this is different in the TLS protocols).

— Second, an IV is needed in some encryption modes. In the case of the
CBC mode, for example, the SSL Handshake Protocol must provide
an |V that also represents an SSL connection state element (see Table
4.3). This IV is used to encrypt the first structure. Afterwards, the last

9 The sequence number is a count of the number of messages the parties have exchanged so far. Its
value is set to zero with eachHBNGECIPHERSPECmMessage, and it is incremented once for each
subsequent SSL record layer message in the session.

SSL Protocol 93

ciphertext block of each structure is used as IV for the encryption of the
next structure.

According to Table 4.4, the SSL protocol envisions the use of the block
ciphers RC2 (with a 40-bit key), DES (with a 40 or 56-bit key), 3DES, IDEA,
and Skipjack (hnamed FORTEZZA). It goes without saying that, in principle,
any other block cipher can also be used. Note, however, that the use of a block
cipher is nontrivial, and that there are many difficulties and pitfalls to avoid if
one uses a block cipher (some problems will be addressed in Sections 4.4 and
5.2).

Due to its simplicity, many SSL implementations prefer stream ciphers and
employ RC4 by default. Consequently, if you use a standard browser and do not
change your preferences or settings, then it is very likely that your browser employs
RC4 for encryption.

At the bottom line, the algorithms specified in the cipher suite transform
an SSLConpr essed structure into arSSLCi phert ext structure. Encryption
should notincrease the fragment length by more than another 1024 bytes, so the total
length of theSSLCi phert ext fragment (i.e., encrypted data and MAC) should
not excee@'* + 2048 bytes.

4.2.1.4 SSL Record Header

Last but not least, in the fourth step, the SSL Record Protocol appends an SSL
record header to th8SLCi phert ext structure. This turns 8SLCi phert ext
structure into an SSL record. In addition to the fragment (that is taken from the
fragment of theSSLGCi phert ext structure), the SSL record header comprises
three additional fields:

1. An 8-bit (contentjypefield that refers to the higher-layer SSL protocol. There
are four predefined values:
e 20 refersto the SSL Change Cipher Spec Protocaol;
e 21 refers to the SSL Alert Protocol;
e 22 refersto the SSL Handshake Protocol;
e 23refersto the SSL Application Data Protocol.

2. A (protocol)versionfield that refers to the version of the SSL protocol in use.
It is a two-byte value that consists of a major and a minor version number

94 SSL and TLS: Theory and Practice

separated with a comma. Hence, the value of the SSL protocol version the
original specification refers to is 36.

3. A 16-bitlengthfield that refers to the byte-length of the following higher-
layer protocol messages (that are transmitted in the fragment part of the SSL
record). Remember that multiple higher-layer protocol messages that belong
to the same type can be concatenated into a single SSL record, and that each
of these higher-layer protocol messages must be self-delimiting, for example,
by using an appropriate length field.

Encrypted

Type| Version | Length SSLCiphertext structure (optionally compressed) MAC

Major ; Minor
version } version

Figure 4.3 The outline of an SSL record.

The outline of an SSL record is illustrated in Figure 4.3. The fragment of the
SSL records comprises &L Ci pher t ext structure (optionally compressed) and
a MAC in possibly encrypted form. The entire SSL record is sent to the recipientin a
TCP segment. If multiple SSL records must be sent to the same recipient, then these
records may be sent together in a single TCP segment.

4.2.2 SSL Handshake Protocol

The SSL Handshake Protocol is layered on top of the SSL Record Protocol. It
allows a client and server to authenticate each other and to negotiate items like
cipher suites and compression methods. The protocol and its message flows are
illustrated in Figure 4.4. Messages that are written in square brackets are optional
or situation-dependent, meaning that they are not always sent. NoteHh&ItE-
CIPHERSPECIs not actually an SSL Handshake Protocol message but represents an
SSL protocol—and hence a content type—of its own. In Figure 4.4, theNGE-
CIPHERSPEC message is therefore illustrated but written in italics. Also note that
each SSL message is typed with a one-byte value (i.e., a decimal number between 0
and 255), and that these values are appended in brackets in the outline that follows
(the different messages are more thoroughly discussed after the outline).

10 Remember from Section 3.2 that the PCT protocol’s record format was compatible with that of the
SSL protocol, and that in the case of PCT the most significant bit of the protocol version field was
set to one.

SSL Protocol 95

- S
Client ClientHello erver

ServerHello
[Certificate]
[ServerKeyExchange]
[CertificateRequest]
ServerHelloDone

[Certificate]
ClientKeyExchange
[CertificateVerify]
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Application Data

< >

Figure 4.4 The SSL handshake protocol.

The SSL handshake protocol comprises four sets of messages—somtimes
also termedlights'*—that are exchanged between the client and server. Each set
is typically transmitted in a separate TCP segment. There may be even a fifth set
of messages that comprises alHOREQUESTmessage (type 0) that may be sent
from the server to the client to actually invoke an SSL handshake. This message,
however, is seldom used in practice and it is therefore ignored in the outline (but it
is explained later on). In either case, the messages are presented in the order they are
sent. Sending SSL handshake messages in unexpected order must result in a fatal
error.

e The first set of messages is sent from the client to the server. It only comprises
a CLIENTHELLO message (type 1).

e The second set of messages comprises 2—5 messages that are sent from the
server to the client:

11 The term is not used in this book. It was introduced in the datagram TLS (DTLS) protocol
specification addressed in Chapter 6.

96

SSL and TLS: Theory and Practice

. A SERVERHELLO message (type 2) is sent in response to thee QT -

HELLO message.

. Ifthe server is to authenticate itself (which is generally the case), it may

send a ERTIFICATE message (type 11) to the client.

. Under some circumstances (discussed below), the server may send a

SERVERKEYEXCHANGE message (type 12) to the client.

. If the server requires the client to authenticate itself with a certificate, it

may send a ERTIFICATEREQUESTmMessage (type 13) to the client.

. Finally, the server sends &8vERHELLODONE message (type 14) to

the client.

After having exchangedIGENTHELLO and SERVERHELLO messages,

the client and server have negotiated a protocol version, a session identifier
(ID), a cipher suite, and a compression method. Furthermore, two random
values (i.e.Cl i ent Hel | 0. randomandSer ver Hel | o. r andon), have

been generated and are now available for use.

e The third set of messages comprises 3—-5 messages that are again sent from
the client to the server:

. If the server has sent &BTIFICATEREQUESTMessage, then the client

sends a ERTIFICATE message (type 11) to the server.

. In the main step of the protocol, the client sendslaeQTKEYEX-

CHANGE message (type 16) to the server. The content of this message
depends on the key exchange algorithm in use.

. If the client has sent a certificate to the server, then it must also send a

CERTIFICATEVERIFY message (type 15) to the server. This message is
digitally signed with the private key that corresponds to the certificate’s
public key.

. The client sends aHANGECIPHERSPEC messag® to the server (using

the SSL Change Cipher Spec Protocol) and copies its pending write state
into the current write state.

12 The missing type indicates that theH&ANGECIPHERSPEC message is not an SSL Handshake

Protocol message. Instead, it is an SSL Change Cipher Spec Protocol message (identified with a
content type value of 20).

SSL Protocol 97

5. The client sends alRISHED message (type 20) to the server. As men-
tioned above, this is the first message that is cryptographically protected
under the new cipher spec.

o Finally, the fourth set of messages comprises two messages that are sent from
the server to the client:

1. The server sends anotheHANGECIPHERSPEC message to the client
and copies its pending write state into the current write state.

2. Finally, the server sends aNfSHED message (type 20) to the client.
Again, this message is cryptographically protected under the new cipher
spec.

At this point in time, the SSL handshake is complete and the client and
server may begin exchanging application layer protocol data units (using the SSL
Application Data Protocol).

Client ClientHello Server

Y

ServerHello
ChangeCipherSpec
Finished

A

ChangeCipherSpec
Finished

Y

Application Data

< >

Figure 4.5 The simplied SSL handshake protocol (to resume a session).

When the client and server are willing to resume a previously established
or duplicate an existing SSL session, then the SSL Handshake Protocol can be
simplified considerably. The resulting (simplified) protocol is illustrated in Figure
4.5. The client sends al@ENTHELLO message including the ID of the session to
be resumed. The server then checks its session cache for a match. If a match is
found and the server is willing to reestablish a connection under this session state,
then it sends back aERvERHELLO message with this particular session ID. The
clientand server can then directly move to thextiGECIPHERSPECand FNISHED
messages. If a session ID match is not found, then the server must generate a

98 SSL and TLS: Theory and Practice

new session ID and the client and server must go through a full SSL handshake
negotiation.

Type Version
22 3 0

Length

Type . Length

Handshake message 1

Type _ Length

Handshake message 2

Figure 4.6 The structure of an SSL handshake protocol message.

Let us now have a closer look at the various messages that are exchanged in
the course of an SSL handshake negotiation. Each message starts with aypdéyte
field that refers to the SSL handshake message and a 3ebgtixfield that refers to
the byte length of the message. Remember that multiple SSL handshake messages
can be sent in a single SSL record. The structure of such a message is illustrated
in Figure 4.6. The strongly framed part of a message refers to the SSL handshake
message(s), whereas the leading 5 bytes refer to the SSL record header. This header,
in turn, always comprises a 1-byte type value 22 (referring to the SSL Handshake
Protocol), a 2-byte version value 3,0 (standing for SSL 3.0), and a 2-byte length
value referring to the byte length of the remaining part of the SSL record. If a value
is fixed, then it is indicated below the respective field name.

4.2.2.1 HLLOREQUESTMessage

As mentioned above, theBlLOREQUESTmMessage allows a server to ask a client

to restart an SSL handshake negotiation. The message is not often used, but it gives
servers additional options. If, for example, an SSL connection has been in use for so
long that its security is put in question, then the server may serelaREQUEST
message to actually force the client to negotiate new session keys.

SSL Protocol 929

Type Version Length
22 3 0 0

Type
0

Length
0

Figure 4.7 An SSL HELLOREQUESTmMessage.

As illustrated in Figure 4.7, an SSLEdLOREQUEST message starts with
the usual 5-byte SSL record header. Afterwards, a type field value of zero refers
to a HELLOREQUESTmessage. Since the message body is empty, the three bytes
referring to the message length are also all setto zero. Becausethe REQUEST
message is 4 bytes long, this value is also included in the length field of the SSL
record header.

4.2.2.2 QIENTHELLO Message

The CQLIENTHELLO message is the first message that is sent from the client to the
server in an SSL handshake negotiation. In fact, it is normally the message an SSL
handshake negotiation begins with. As illustrated in Figure 4.8, an SSENC-
HELLO message starts with the usual 5-byte SSL record header, a type field value
of one (referring to a OENTHELLO message), and a 3-byte message length field
value. In addition, a CENTHELLO message comprises the following fields:

e The 2 bytes immediately following the message length field refer to the
highest SSL version supported by the client (typically 3,0). In the SSL
protocol specification, this field is called i ent _ver si on.

e The 32 bytes following the SSL version field comprise a client-generated
random value. In the SSL protocol specification, this field is calleddom
It basically consists of two parts:

— A 4-byte date and time (up to the second) string in standard UNIX
format that is defined as the number of seconds elapsed since midnight

100 SSL and TLS: Theory and Practice

Type Version Length
22 3 0
Ty1pe Length
Version
3 : 0
Random
Session ID
length
Session ID
Cipher suites length Cipher suite 1
Cipher:suite 2
Cipher suite n Compr. length| Compr. 1
Compr. 2 Compr. n

Figure 4.8 AnSSL QLIENTHELLO message.

Coordinated Universal Time (UT) of January 1, 1970, not counting
leap second$ according to the sender’s internal clotk;

— A 28-byte string that is randomly or pseudorandomly generated.

This value, together with a similar value created by the server, provides
input for several cryptographic computations. Consequently, it is required that

13 Note that, for historical reasons, the term used at this point is sometimes Greenwich Mean Time
(GMT), a predecessor of UTC.

14 A leap second is a one-second adjustment that keeps broadcast standards for time of day close to
mean solar time.

15 The SSL protocol specification does not require a particular level of accuracy for this value, as it
is not intended to provide an accurate time indication. Instead, the specification suggests using the
date and time string as a way to ensure that the client does not reuse particular values.

SSL Protocol 101

it is unpredictable to some extent, and hence that a cryptographically strong
random or pseudorandom bit generator is used to generate the second part.

The byte immediately following theandomvalue refers to the length of the
session ID. If this value is set to zero, then there is no SSL session to resume
or the client wants to generate new security parameters. In this case, the server
is going to select an appropriate ID for the session. Otherwise, for example,
if the session ID length is not equal to zero, then the client aims at resuming
(and reusing) the identified session. Because a session ID may have a variable
length, its value must be specified.

If the session ID length is greater than zero, then the corresponding number of
bytes following the session ID length represent the session ID. In the SSL
protocol specification, this value—together with the session ID length—is
calledsessi on_i d. The SSL protocol limits session IDs (including length
field) to 32 bytes or fewer, but it places no constraints on their content. Note
though, that since session IDs are transmitted iInEGTHELLO messages
before any encryption is put in place, implementations should not place any
information in the session ID that might, if revealed, compromise security.

The 2 bytes immediately following the session ID refer to the number of
cipher suites supported by the client. This number equals the length of the
following list of cipher suites. The list is ordered according to the client’s
preferences (i.e., the client’s first preference appears first).

For every cipher suite supported by the client, there is a 2-byte code re-
ferring to it. In fact, the first byte of the code is always set to zero,
whereas the second byte of the code refers to the index in Table 4.4.
For example, SSINULL WITH_NULL _NULL has a code 0,0, whereas
SSL_RSA WITH_3DESEDE CBC_SHA has a code 0,10. These codes are
appended in a variable-length cipher suites field, cadlegdher _sui t esin

the SSL protocol specification. If theessi on_i d field is not empty (im-
plying a session resumption request), then the value dfitipder _sui t es

field must at least include the cipher suites from the session that is going to be
resumed.

After the cipher suites, a similar scheme applies to the compression meth-
ods supported by the client. In fact, the 2 bytes immediately following the
ci pher _sui t es field refer to the number of compression methods sup-
ported by the client. This humber equals the length of the following list
of compression methods. The list itself is ordered according to the client’s

102 SSL and TLS: Theory and Practice

preferences (i.e., the client’s first preference appears first). For every com-
pression method, a unique code is appended. The resulting value is writ-
ten into theconpr essi on_net hods field (as it is called in the SSL
protocol specification). If thesessi on_i d field is not empty, then the
conpr essi on_net hods value must at least include the compression
methods from that session. Due to the fact that SSL 3.0 only defines the null
compression, all current implementations set the compression length to one
and the following byte to zero, referring to null compression.

In the interest of forward compatibility, it is permitted for a iIENTHELLO
message to include extra data after tloarpr essi on_met hods field. This data
must be included in the handshake hashes, but otherwise it must be ignored. This is
the only handshake message for which this is legal (i.e., for all other messages, the
amount of data in the message must match the description of the message precisely).

Type Version
o 3 Length
Tyzpe Length
Version
3 : 0
Random
Session ID
length
Session ID
Cipher suite Comopr.

Figure 4.9 An SSL SRVERHELLO message.

4.2.2.3 $RVERHELLO Message

After having received a QENTHELLO message, it is up to the server to process
and verify it, and to return aERVERHELLO message in the positive case. As Figure
4.9 illustrates, the SBRVERHELLO message closely resembles thelENTHELLO

SSL Protocol 103

message. The only significant differences are the value of the SSL handshake mes-
sage type (2 instead of 1) and the fact that the server specifies a single cipher suite
and a single compression method (instead of lists of cipher suites and compression
methods). Remember that the server must pick from among the choices proposed by
the client, and hence the values specified by the server refer to the ones that are then
used for the session.

More specifically, an SSL ERvVERHELLO message starts with the usual 5-
byte SSL record header, a type field value of two (referring teaV&RHELLO
message), and a 3-byte message length field. AfterwardRaERHELLO message
comprises the following fields:

e The 2 bytes immediately following the message length field refer to the SSL
version that is going to be used. In the SSL protocol specification, this field
is calledser ver _ver si on. It basically corresponds to the lower version
of that suggested by the client in the IENTHELLO message and the highest
version supported by the server. Typically, the server version is set to 3,0.

e The 32 bytes following the server version field comprise a 32-byte server-
generated random value, again callechdomin the SSL protocol specifica-
tion. The structure of the random value is identical to the one generated by the
client; its actual value, however, must be independent and different from the
client’s value.

e The byte following the server random value field specifies the length of the
session ID. Remember that the server may include, at its own discretion,
a session ID in the SRVERHELLO message. If it does, then it allows the
client to attempt to resume and reuse the session at some later point in time.
Servers that don’t wish to allow session resumption can omit a session ID by
specifying a length of zero.

o Ifthe session ID length is not equal to zero, then the corresponding number of
bytes after the length field represent the session ID. I§#®si on_i d field
of the QLIENTHELLO message was not empty, then the server is asked to look
in its session cache for a match. If a match is found and the server is willing
to establish a new connection using the old session state, then the server must
respond with the samgessi on_i d value as supplied by the client. This
indicates a resumed session and dictates that the parties must proceed to the
CHANGECIPHERSPEC and RNISHED messages. Otherwise, if no match is
found or the server is not willing to establish a new connection using the old
session state, then tiessi on_i d field must contain a new value, and this
new value is going to identify the new session.

104 SSL and TLS: Theory and Practice

e The 2 bytes immediately following the session ID field refer to the cipher
suite selected by the server. This field is calbépher _sui t e in the SSL
protocol specification (note the singular form in the field name). For resumed
sessions, the value for the cipher suite field must be copied from the resumed
session state.

o Finally, the last byte refers to the compression method selected by the server.
This field is callecconpr essi on_net hod in the SSL protocol specifica-
tion (note the singular form). Again, for resumed sessions, the value for the
compression method field must be copied from the resumed session state.

After the server has sent out an SSERSYERHELLO message, it is assumed
that the client and server have a common understanding about which SSL version
and session to use, meaning that they know which session to resume or which
algorithms to use to establish a new session.

Type Version
22 3 0
Type
"

Length

Length

Certificate chain length

Certificate 1 length

Certificate 1

Certificate n length

Certificate n

Figure 4.10 An SSL CERTIFICATE message.

SSL Protocol 105

4.2.2.4 &ERTIFICATE Message

Most key exchange methods are nonanonymous, meaning that the server must au-
thenticate itself to the client with a public key certificate (this applies to all key
exchange methods except Dithon). The server therefore sends BRCIFICATE
message to the client, immediately following BR¥ERHELLO message. The same
message type occurs later in the SSL handshake negotiation, when the server asks
the client for a certificate with a ERTIFICATEREQUEST message and the client
responds with anothereRTIFICATE message. In either case, the aim of therC
TIFICATE message is to transfer a public key certificate, or—more generally—a set
of public key certificates that form a certificate chain. In the SSL protocol specifica-
tion, the field that may comprise a certificate chainis caledt i fi cate_| i st;

it includes all certificates required to form the chain. Each chain is ordered with the
sender’s certificate first followed by a series of CA certificates proceeding sequen-
tially upward until a root CA is reached. Note that support for certificate chains is

a unique feature of SSL 3.0 that was not present in previous versions of the SSL
protocol. Anyway, the certificate types must be appropriate for the key exchange
algorithm in use. Typically, these are X.509 certificates (or some modified X.509
certificates as in the case of the FORTEZZA key exchange algorithm). All X.509
certificate profiles that are relevant in this context are specified by the IETF PKIX
WG and further addressed in Chapter 8.

As illustrated in Figure 4.10, an SSLERTIFICATE message starts with the
usual 5-byte SSL record header, a type field value of value 11 (referring to an SSL
CERTIFICATE message), and a 3-byte message length field. As mentioned above,
the body of the message then contains a certificate chain that begins with 3 bytes
that indicate the length of the entire chain (this value is always three less than the
message length) and a certificate chain of exactly this length. Each certificate in
the chain also begins with a 3-byte field referring to the length of this particular
certificate. Depending on the length of the chain, tlERQFICATE message may be
considerably long.

In Section 2.1.6, we already mentioned that—due to the U.S. export controls
that were in place until the end of the 1990s—Netscape Communications and Mi-
crosoft added features to their browsers that allowed them to use strong cryptogra-
phy if triggered with specifically crafted certificates (otherwise support for strong
cryptography was hidden from the server). These features were tatégdational
Step-Up(Netscape Communications) 8GC(Microsoft). In eiher case, the corre-
sponding certificates were issued by officially approved CAs (e.g., VeriSign) and
contained a special attribute in the extended key usageKeyUsage) field. In
fact, an International Step-Up certificate included the OID 2.16.840.1.113730.4.1,
whereas an SGC certificate included the OID 1.3.6.1.4.1.311.10.3.3. To keep things

106 SSL and TLS: Theory and Practice

as simple as possible, a single certificate was typically issued that included both
extended key usage objects (so the same certificate could be used to support Inter-
national Step-Up and SGC).

In order to invoke International Step-Up or SGC, a normal initial SSL hand-
shake took place. In the @ENTHELLO message, the client claimed to support
only export-strength cipher suites. So the server had no choice but to select a
corresponding cipher suite. In fact, at this point in time, the server did not even
know that the client supported strong cryptography in the first place. As soon as the
server provided its ERTIFICATE message, however, the client knew that the server
was capable of supporting strong cryptography. Depending on whether the client
supported International Step-Up or SGC it proceeded the following way;

¢ In the case of International Step-Up, the client completed the initial hand-
shake, but instead of beginning the exchange of application data, it started a
new handshake with anothe. @NTHELLO message. In this message, the
client proposed full-strength cipher suites, and the server was to select one.

¢ In the case of SGC, the client aborted the initial handshake and sent a new
CLIENTHELLO message to the server. This message proposed full-strength
cipher suites, allowing the server to select one.

The bottom line of either International Step-Up or SGC is that a second SSL
handshake takes place in which the server and client can negotiate the use of strong
cryptography.

The use of International Step-Up and/or SGC was a compromise between the
needs of the U.S. government to limit the use of full-strength cryptography abroad
and the desire of browser manufacturers to offer the strongest possible product
to the widest audience. Controlling the use of full-strength cryptography became
a matter of controlling the issuance of International Step-Up or certificates SGC.
Consequently, the U.S. government controlled which companies were allowed to
purchase those certificates (mainly financial institutions that operated on a global
scale).

Soon after International Step-Up and SGC were launched, a couple of local
proxy servers for SSL, such as C2Net SoftwafeegePassage Web Proxpopped
up and were brought to market. As further addressed and put into perspective in
Section 7.3, these proxies were able to transform export-grade cryptography into
strong cryptography, independent from the browser. Even more interestingly, a
tool namedFortify'® was distributed internationally. The aim of the tool was to
patch (or rather remove) the artificial barrier that precluded a browser from using
strong cryptography (independent from the server certificate in use). This tool made

16 http://www.fortify.net.

SSL Protocol 107

International Step-Up and SGC obsolete, and the two initiatives silently sank into
oblivion. They finally became obsolete when the U.S. government liberalized its
export controls. Nevertheless, commercial CAs still sell SGC certificates, mainly
because—as they argue—many elder export-version browsers that only employ
strong cryptography if triggered with an appropriate certificate are still in use.
These CAs can issue SGC certificates for all companies and organizations, not only

financial ones.

Type Version Length
22 3 0
T)qge Length
DH p length DHp
DH g length
DHg : DH Ys length
DHYs

Figure 4.11 The beginning of an SSLERVERK EYEXCHANGE message using Diffie-Hellman.

3 0
T):Ee Length

Type Version Length
22

RSA modulus length RSA modulus

RSA exponent length

'RSA exponent

Figure 4.12 The beginning of an SSLERVERKEYEXCHANGE message using RSA.

4.2.2.5 SRVERKEYEXCHANGE Message

If RSA is used for key exchange, then the client can retrieve the public key from the
server certificate and encrypt the premaster secret with this key. Similarly, if a fixed

108 SSL and TLS: Theory and Practice

Type Version
22 3 0

Type
12

Length

Length
0

128

FORTEZZArs

Figure 4.13 An SSL SERVERKEYEXCHANGE message using FORTEZZA.

Diffie-Hellman key exchange is used, then the client can retrieve the server’s Diffie-
Hellman parameters from the server certificate, employ these parameters to perform
a Diffie-Hellman key exchange, and use the result as the premaster secret. In all
of these cases, the serversRriFICATE message is sufficient and no additional
information is required for the client to securely communicate a premaster secret
to the server. In particular, NOERVERKEYEXCHANGE message is needed. In
some other cases, however, the client needs some additional information, and this
information must be delivered by the server inERSERKEYEXCHANGE message.

This applies, for example, for an ephemeral or anonymous Diffie-Hellman key
exchange and the FORTEZZA KEA.

A special case occurs if RSEXPORT is used for key exchange: in this case,
aformer U.S. export law may apply, according to which RSA keys larger than 512
bits could not directly be used for key exchange in software exported from the
United States. Instead, these RSA keys could be used (as signature-only keys) to
sign temporary shorter RSA keys for key exchange. Consequently, temporary 512-
bit RSA keys were used and these keys were signed with the larger RSA keys (found
in the certificate). Needless to say that this extra step is obsolete if the original RSA
keys are 512 bits long or shorter. The bottom line is that one has to distinguish
between two cases:

o If RSA_.EXPORT is used for key exchange and the public key in the server
certificate is longer than 512 bits, then the extra step must be taken and the
SERVERKEYEXCHANGE message (that includes a signed shorter RSA key)
must be sent.

o If, however, RSAEXPORT is used for key exchange and the public key in
the server certificate is 512 bits long or shorter, then the extra step need not be
taken and the SRVERKEYEXCHANGE message need not be sent.

SSL Protocol 109

As illustrated in Figures 4.11 to 4.13, an SSERYERKEYEXCHANGE mes-
sage always starts with the usual 5-byte SSL record header, a type field value of
value 22 (referring to a ERVERKEYEXCHANGE message), and a 3-byte message
length field. The rest of theERVERKEYEXCHANGE message mainly depends on
the key exchange algorithm in use (Diffie-Hellman, RSA, or FORTEZZA).

e If ephemeral or anonymous Diffie-Hellman is used, then the rest of the
SERVERKEYEXCHANGE message comprises the server’s Diffie-Hellman pa-
rameters, including a prime modulpsgeneratoy, and public exponeri,
as well as a digital signature for the parameters. The beginning of such a mes-
sage is illustrated in Figure 4.11 (without signature part). Note that the fields
for the Diffie-Hellman parameters have a variable length (consistently set to
three in Figure 4.11).

e If RSA is used but the server has a signature-only RSA key, then the client
cannot send a premaster secret encrypted with the server’s public key. In-
stead, the server must create a temporary RSA public key pair and use the
SERVERKEYEXCHANGE message to deliver the public key to the client. The
SERVERKEYEXCHANGE message then includes the two parameters that to-
gether define a temporary RSA public key: the modulus and the exponent.
Again, these parameters must come along with a digital signature. The begin-
ning of such a message is illustrated in Figure 4.12 (without signature part).
Note again that the fields for the RSA parameters have a variable length (con-
sistently set to three in Figure 4.12).

e If FORTEZZA is used, then theERVERKEYEXCHANGE message only car-
ries the server's, value that is required by the FORTEZZA KEA. Since this
value is always 128 bytes long, there is no need for a separate length parame-
ter. Also, there is no need for a digital signature. ARSERKEYEXCHANGE
message is illustrated in Figure 4.13.

In the first two cases, theERVERKEYEXCHANGE message may include a
signature part. If server authentication is not part of a particular SSL session, then
no signature part is required, and the”RSERK EYEXCHANGE message ends with
the Diffie-Hellman, RSA, or FORTEZZA parameters. If the server is not acting
anonymously and has sent é&RTIFICATE message, however, then the signed
parameters format depends on the signature algorithm indicated in the server’s
certificate (RSA or DSA):

o Ifthe server’s certificate is for RSA signing, then the signed parameters consist
of the concatenation of two hash values: an MD5 hash value and a SHA-1

110 SSL and TLS: Theory and Practice

hash value. Note that the two hash values are not individually signed, but one
signature is generated for the combined hashes.

o If the server’s certificate is for DSA signing, then the signed parameters
consist solely of a SHA-1 hash value.

In either case, the input to the hash functions is a string that consists of
ClientHell o.random(i.e., therandomvalue of the CIENTHELLO mes-
sage),Ser ver Hel | o. random(i.e., ther andomvalue of the & RVERHELLO
message), and the server key parameters mentioned above (all components are con-
catenated). The random values are included so old signatures and temporary keys
cannot be replayed. The server key parameters refer to either the Diffie-Hellman
parameters of Figure 4.11 or the RSA parameters of Figure 4.12. As mentioned
above, no signed parameters are included for FORTEZZA.

Type Version

o 3 0 Length
T):ge Length
CT length CT1 CT2
CTn CAs length
CA1 !ength
DN of CA1

Figure 4.14 An SSL GERTIFICATEREQUESTmMessage.

4.2.2.6 ERTIFICATEREQUESTMessage

A nonanonymous server can optionally authenticate the clidhtherefore sends a
CERTIFICATEREQUESTmMessage to the client. This message not only asks the client
to send a certificate (and to sign data using its corresponding private signing key
later on), but it also informs the client which certificates are acceptable to the server.

17 Note that an anonymous server must not request a certificate from the client. Otherwise a fatal alert
message (handshake failure) must be sent to the server.

SSL Protocol 111

Table 4.5
SSL Certificate Type Values

Value Name Description
1 rsasign RSA signing and key exchange
2 dsssign DSA signing only
3 rsafixed_dh RSA signing with fixed DH key exchange
4 dssfixed-dh DSA signing with fixed DH key exchange
5 rsaephemeradh RSA signing with ephemeral DH key exchange
6 dssephemerablh DSA signing with ephemeral DH key exchange

]
o

fortezzakea FORTEZZA signing and key exchange

As illustrated in Figure 4.14, an SSLERTIFICATEREQUESTmMessage starts
with the usual 5-byte SSL record header, a type field value of value 13 (referring
to a CERTIFICATEREQUESTmessage), and a 3-byte message length field. The re-
maining part of the ERTIFICATEREQUESTmMessage begins with a list of acceptable
certificate types (callederti fi cat e_t ypes in the SSL protocol specification
and acronymed CT in Figure 4.14). This type list has a length field of its own, and
consists of one or more single-byte values that identify specific certificate types. The
defined certificate type values and their meanings are summarized in Table 4.5. Note
that the last three types are no longer needed in the TLS protocol.

After the certificate types, theERTIFICATEREQUESTmessage also indicates
which CAs the server considers appropriate. In the SSL protocol specification,
this list is calledcerti fi cate_aut horiti es. It starts with a 2-byte length
field and then contains one or more distinguished names (DNs). Each CA (or DN,
respectively) has its own 2-byte length field that is put in front of the CA's DN. In
Figure 4.14, only one CA is included. Keep in mind that this list may be very long.

Type Version Length
22 3 0 0

Type
14

Length
4 0

0

Figure 4.15 An SSL SRVERHELLODONEmessage.

4.2.2.7 SRVERHELLODONE Message

The SERVERHELLODONE message is sent by the server to indicate the end of the
SERVERHELLO and associated messages. As illustrated in Figure 4.15, an SSL

112 SSL and TLS: Theory and Practice

SERVERHELLODONE message starts with the usual 5-byte SSL record header, a
type field value of value 14 (referring to &8vERHELLODONE message), and a
3-byte message length field. Since the body of tae\&RHELLODONE message is
empty, the three bytes referring to the message length are all set to zero. The entire
HELLOREQUESTmMessage is 4 bytes long, and hence this value is included in the
last byte of the length field of the SSL record header.

4.2.2.8 ERTIFICATE Message

After having received a ERVERHELLODONE message, it is up to the client to
verify the server certificate (if required) and check that the values provided in the
SERVERHELLO message are acceptable. If everything is fine, the client sends a
couple of messages to the server. If the server requested a certificate, then the
client would send a ERTIFICATE message to the server. This message would be
structurally the same as the message sent from the server to the client (see Section
4.2.2.4). If the Diffie-Hellman key exchange algorithm is used, then the client-side
Diffie-Hellman parameters must be compliant to the ones provided by the server,
meaning that the Diffie-Hellman group and generator encoded in the client certificate
must match the server’s values.

Type Version
22 3 0

Tﬁ)e ~ Length

Length

Encrypted premaster secret

Figure 4.16 An SSL Q.IENTKEYEXCHANGE message using RSA.

4.2.2.9 QIENTKEYEXCHANGE Message

One of the most important messages in an SSL handshake ig tB®KEYEX-
CHANGE message that is sent from the client to the server. It provides the server
with the client-side keying material that is later used to secure communications.
As illustrated in Figures 4.16 to 14.18, the format of theENTKEYEXCHANGE
message depends on the key exchange algorithm actually in use. In either case,
it starts with the usual 5-byte SSL record header, a type field value of value 16

SSL Protocol

Type Version
22 3 0
Type
16

Length

Length

FORTEZZA key material
(10 values)

Figure 4.17 An SSL QIENTKEYEXCHANGE message using FORTEZZA.

Type Version Lenath
22 3 0 g
T¥§e Length
DH Yc length
DH Yc value

Figure 4.18 An SSL Q.IENTKEYEXCHANGE message using Diffie-Hellman.

113

(referring to a CIENTKEYEXCHANGE message), and a 3-byte message length
field.!® The body of the message then depends on the key exchange algorithm in

use:

e If RSA or FORTEZZA is used, then the body of theLlIENTKEYEX-
CHANGE message comprises an encrypted 48-byte premaster secret (i.e.,
pre_mast er _secr et), thatis sent from the client to the server. To detect
version rollback attacks, the first 2 bytes from the 48 bytes refer to the lat-
est (newest) version supported by the client and offered in the corresponding
CLIENTHELLO message (note that this need not be the version that is actually

18 According to [10], some early SSL 3.0 implementations of Netscape Communications were buggy
in the sense that the length field was omitted (because the length can be unambiguously determined
anyway). This bug was mimicked by some early adopters and implementators of SSL 3.0. The
bottom line was that some SSL 3.0 implementations omitted the length field in spite of the fact
that it had been present in the protocol specification. Even today, it may happen that an SSL 3.0

implementation still omits the length field (for historical reasons).

114 SSL and TLS: Theory and Practice

in usé?®). Upon receiving the premaster secret, the server should check that
this value matches the value transmitted by the client in theCrHELLO
message.

— In the case of RSA, the premaster secret is encrypted under the public
RSA key from the server’s certificate or temporary RSA key from
the SERVERKEYEXCHANGE message. A coresponding SSILIENT-
KEYEXCHANGE message using RSA is illustrated in Figure 4.16. The
premaster secret is then used to generate a master secret, and the master
secret is used to generate the various session keys.

— In the case of FORTEZZA, the KEA is used to derive a TEK, and the
TEK is used to encrypt (and securely transmit) the premaster secret and
a few other cryptographic parameters to the server. A corresponding
SSL QLIENTKEYEXCHANGE message is illustrated in Figure 4.17. The
FORTEZZA key material actually consists of 10 values, summarized in
Table 4.6. Note that the clientB: value for the KEA calculation is
between 64 and 128 bytes long, and that it is emplgifis part of the
client certificate.

Table 4.6

FORTEZZA Key Material
Parameter Size
Length of Y 2 bytes
Client's Y value for the KEA calculation 0-128 bytes
Client's R¢ value for the KEA calculation 128 bytes
DSA signature for the client's KEA public key 40 bytes
Client's write key, wrapped by the TEK 12 bytes
Client's read key, wrapped by the TEK 12 bytes
1V for the client write key 24 bytes
IV for the server write key 24 bytes
IV for the TEK used to encrypt the premaster secret 24 bytes
Premaster secret, encrypted by the TEK 48 bytes

¢ |fephemeral or anonymous Diffie-Hellman is used, then thee €T KEYEX-
CHANGE message comprises the client’s public Diffie-Hellman paraméter
Such amessage is illustrated in Figure 4.18. If, however, fixed Diffie-Hellman
is used, then the client’s public Diffie-Hellman parameters were already sent

19 There are implementations that employ the version in use instead of the latest version supported by
the client. This is not a severe security problem, but there are some interoperability issues involved.

SSL Protocol 115

in a CERTIFICATE message, and hence alENTKEYEXCHANGE message is
not needed anymore.

If the server receives a lCENTKEYEXCHANGE message, then it uses its
private key to decrypt the premaster secret in the case of RSA or FORTEZZA, and
it uses a Diffie-Hellman parameter of its own to compute a shared secret in the case
of Diffie-Hellman.

4.2.2.10 ERTIFICATEVERIFY Message

If the client has provided a certificate with signing capabilfiés a SERVER-
HeELLODONE message, then it must still prove that it possesses the corresponding
private key (the certificate alone cannot authenticate the client). Therefore, the client
sends a ERTIFICATEVERIFY message to the server and this message basically
comprises a digital signature generated with the client’s private key.

Type Version
yp s o Length

TYSpe _ Length

Digital signature

Figure 4.19 An SSL GERTIFICATEV ERIFY message.

As illustrated in Figure 4.19, an SSLERTIFICATEVERIFY message starts
with the usual 5-byte SSL record header, a type field value of value 15 (referring
to a CERTIFICATEVERIFY message), and a 3-byte message length field. The body
of the CERTIFICATEV ERIFY message comprises a digital signature, where the exact
format of the signature depends on whether the client’s certificate is for RSA or
DSA.

e For RSA certificates, two separate hash values are combined and signed: an
MD5 hash value and a SHA-1 hash values. The signature covers both values
(there are not two separate signatures).

e For DSA certificates, only a SHA-1 hash value is signed.

20 This applies for all certificates except those containing fixed Diffie-Hellman parameters.

116 SSL and TLS: Theory and Practice

In either case, the information that serves as input to the hash functions (and
hence is the information that is digitally signed) is the sameaifdshake_messages
refers to the concatenation of all SSL handshake messages that have been exchanged
so far?! then the hash value is computed according to

h(k || opad || h(handshake_messages || k || ipad))

whereh is MD5 or SHA-1,k is the master secret, angld andopad are the values
introduced earlier in this chapter. Again, the two values are repeated 48 times for
MD5 and 40 times for SHA-1.

4.2.2.11 NISHED Message

A FINISHED message is always sent immediately after @ASGECIPHERSPEC
message (as part of the SSL Change Cipher Spec Protocol) to verify that the key
exchange and authentication processes have been successful. It is the first message
protected with the newly negotiated algorithms and keys. No acknowledgment is
required (i.e., parties may begin sending encrypted data immediately after sending
the ANISHED message).

Type Version Length
22 3 0
Type Length
56 / 60 20 0 H 0
36

MD5 hash value (16 bytes)

SHA-1 hash value (20 bytes)

MAC (16 or 20 bytes)

<«—— Encrypted —————>

Figure 4.20 An SSL ANISHED message.

21 Note that GIANGECIPHERSPECMessages are not SSL handshake messages, and hence they are
not included in the hash computations.

SSL Protocol 117

As illustrated in Figure 4.20, an SSUNHSHED message starts with the usual
5-byte SSL record header, and then continues with a body part that is cryptograph-
ically protected, meaning that it is encrypted most of the time (depending on the
cipher suite in use). The encrypted body part comprises a header fomtt®1ED
message, with a type field value of value 20 (referring toERGFICATEVERIFY
message) and a 3-byte message length field, a 16-byte MD5 hash value, a 20-byte
SHA-1 value, and a 16- or 20-byte MAC (the MAC length actually depends on
the hash function in use). Both hash calculations use the same information and are
computed according to

h(k || opad || h(handshake_messages || sender || k || ipad)),

where agairh is MD5 or SHA-1,k is the master secrapad andopad are the values
introduced earlier in this chaptdrandshake_messages is the concatenation of all
SSL handshake messages that have been exchanged so far (this value is different
from the value used for the ERTIFICATEV ERIFY message), angender refers to

the entity that sends out theNtSHED message. If the client sends out the message,
then this value i9x434C4E54. Otherwise, if the server sends out the message,
then this value i©9x53525652. Note the similarity between this calculation and
the hash calculation for the ERTIFICATEVERIFY message; the only differences
refer to the inclusion of the sender and the different base for the construction of
handshake_messages. The length of the WNISHED message body is 36 bytes,
whereas the length of theidiSHED message is 40 bytes. Depending on whether
MD5 or SHA-1 is used for message authentication, the length of the SSL record
fragment is 56 or 60 bytes. This value is included in the SSL record header’s length
field.

4.2.3 SSL Change Cipher Spec Protocol

As mentioned above, the SSL Change Cipher Spec Protocol is a protocol of its own
that allows the communicating peers to signal transitions in ciphering strategies.
The protocol itself is very simple. It consists of a single message (i.ed/aGE-
CIPHERSPEC message), that is compressed and encrypted according to the current
(not pending) cipher spec. The placement of thea€GGECIPHERSPEC messages
in a normal SSL handshake is illustrated in Figure 4.4. When resuming a previously
established SSL session, theiANGECIPHERSPEC message is just sent after the
hello messages (see Figure 4.5).

As illustrated in Figure 4.21, an SSLHANGECIPHERSPEC message starts
with a 5-byte SSL record header, this time referring to type 20 (standing for the
SSL Change Cipher Spec Protocol). The rest of the SSL record header remains
unchanged and includes a version and a length field. The length field value is actually

118 SSL and TLS: Theory and Practice

Type Version Length
20 3 0 0

Type
1

Figure 4.21 An SSL GHANGECIPHERSPECMeSsage.

set to one, because thei@NGECIPHERSPEC message only includes a single type
byte. This byte, in turn, is a placeholder that can currently only have a single value
of one.

The CHANGECIPHERSPEC message is unique in that it is not properly part of
the SSL handshake but rather has its own content type and hence represents an SSL
(sub-)protocol of its own. Because theiENGECIPHERSPEC message must not be
encrypted and thelINISHED message must be encrypted, they cannot be transmitted
in the same SSL record. Using separate content types is one way of achieving this.
But it is useful only if an implementation attempts to send multiple handshake
messages in a single SSL record. In fact, it is sometimes a performance improvement
to send multiple handshake messages in the same TCP segment, and sending them
in the same SSL record is one way of doing so. However, many implementations
instead opt to transmit multiple records in the same TCP segment, which has very
much the same effect (an example will be given in the following section). For
such implementations, the use of separate content types is an inconvenience that
unnecessarily complicates the state machine of the SSL Handshake Protocol. The
bottom line is that the use of a separate content type for tveNGECIPHERSPEC
message can be (and sometimes is) discussed controversially.

4.2.4 SSL Alert Protocol

As mentioned above, the SSL Alert Protocol allows the communicating peers to
exchange alert messages. Each alert message carries an alert level and an alert
description:

e Thealert levelcomprises 1 byte, where the value 1 stands for “warning” and
the value 2 stands for “fatal.” For all errors messages for which a particular
alert level is not explicitly specified, the sender may determine at its discretion
whether it is fatal or not. Similarly, if an alert with an alert level of warning
is received, the receiver may decide at its discretion whether to treat this as a
fatal error. Anyway, all messages that are transmitted with an alert level of fatal

SSL Protocol 119

Table 4.7
SSL Alert Messages

Alert

Code

Brief description

close_notify

unexpect ed_nessage

bad_r ecord_mac

deconpression_failure

handshake_fail ure

no_certificate

bad_certificate
unsupported_certificate
certificate_revoked
certificate_expired
certificate_unknown

illegal _paraneter

10

20

30

40

41

42

43

a4

45

46

47

The sender notifies the recipient that it will not send any more
messages on the connection. This alert is always a warning.

The sender notifies the recipient that an inappropriate message
was received. This alert is always fatal and should never be observed
in communication between proper implementations.

The sender notifies the recipient that a record with an incorrect
MAC was received. This alert is always fatal and should never be
observed in communication between proper implementations.

The sender notifies the recipient that the decompression function
received improper input, meaning that it could not decompress the
received data. This alert is always fatal and should never be
observed in communication between proper implementations.

The sender notifies the recipient that it was not able to negotiate
an acceptable set of security parameters given the options available.
This alert is always fatal.

The sender (which is always a client) notifies the recipient (which
is always a server) that it has no certificate that can satisfy the
server’s certificate request. Note that this alert is only used in

SSL (it is no longer used in any version of TLS).

The sender notifies the recipient that the certificate provided is
corrupt (e.g., its signature cannot be verified).

The sender notifies the recipient that the certificate provided is

not supported.

The sender notifies the recipient that the certificate provided has
been revoked by the issuing CA.

The sender notifies the recipient that the certificate provided has
expired and is no longer valid.

The sender notifies the recipient that some unspecified issue arose
in processing the certificate provided, rendering it unacceptable.
The sender notifies the recipient that a field in the SSL handshake
message was out of range or inconsistent with some other field. This
alert is always fatal.

must be treated accordingly, meaning that they must result in the immediate
termination of the connection.

e Thealert descriptionalso comprises 1 byte, where a numeric code refers to
a specific situation. The SSL alert messages are summarized in Table 4.7 (or
Appendix A.3 of the SSL 3.0 specification). For example, code 0 stands for the
closure alercl ose_not i f y that notifies the recipient that the sender will
not send any more messages. Note that the sender and the server must share
knowledge that a connection is ending in order to avoid a truncation attack,
and that either party may initiate a closure by sendiojase_not i f y alert
accordingly. Any data received after such an alert must be ignored. In addition
to the closure alert, there are a number of error alerts. In fact, all other SSL

120 SSL and TLS: Theory and Practice

alert messages refer to error alerts. When an error is detected, the detecting
party sends a message to the other party. Upon transmission or receipt of an
fatal alert message, both parties immediately close the connection and drop
any information related to it.

Type Version Length
21 3 0 0
Level Description
2 12

Figure 4.22 An SSL ALERT message.

As illustrated in Figure 4.22, an SSLLART message starts with a 5-byte SSL
record header, this time referring to type 21 (standing for the SSL Alert Protocol).
The rest of the SSL record header remains the same and includes a version and a
length field. The length is actually set to two, because therRX message includes
only two bytes (one byte referring to the alert level and the other byte referring to
the alert description code).

4.2.5 SSL Application Data Protocol

As mentioned earlier in this chapter, the SSL Application Data Protocol allows
the communicating peers to exchange data according to some application layer
protocol. More specifically, it takes application data and feeds it into the SSL
Record Protocol for fragmentation, compression, and cryptographic protection. The
resulting SSL records are then sent to the recipient, where they are decrypted,
verified, decompressed, and reassembled.

Figure 4.23 illustrates some application data encapsulated in an SSL record.
As usual, the SSL record starts with a 5-byte header, including a type field (this time
referring to 23 standing for the SSL Application Data Protocol), a version field, and
a length field. Everything after the SSL record header is encrypted and can only be
decrypted using the appropriate key. This applies to the actual application data, but
it also applies to the MAC (that is either 16 or 20 bytes long). As mentioned above,
things are slightly more involved if a block cipher is used. In this case, some message
padding must be appended to the SSL record, and the last byte in the record must
then refer to the padding length. The corresponding format of an SSL record for a
block cipher is illustrated in Figure 4.24.

SSL Protocol 121

Type Version
23 3 H

o Length

Application data

MAC (16 or 20 bytes)

— Encrypt-é.cr—>

Figure 4.23 Application data encapsulated in an SSL record (stream cipher).

4.3 TRAFFIC ANALYSIS OF AN SSL SESSION

To illustrate the functioning of the SSL protocol, we provide a traffic analysis of an
SSL session. We therefore consider a setting in which a client (i.e., a Web browser)
tries to access an SSL-enabled Web server, and we use a network protocol analyzer
(Wireshark) to capture the SSL records that are sent back and forth. The dissection
of these records is well suited to show what is going on behind the scenes (i.e., at the
protocol level). Before the SSL protocol can be invoked, the client must establish
a TCP connection to the server. We jump over this step and assume such a TCP
connection between the client and server already exists.

In our example, the client takes the initiative and sendsL&CTHELLO
message to the server. This message is encapsulated in an SSL record that looks
as follows (in hexadecimal notation):

16 03 00 00 41 01 00 0O 3d 03 00 48 b4 54 9e 00
6b Of 04 dd 1f b8 a0 52 a8 ff 62 23 27 c0 16 al
59 c0 a9 21 4a 4e 3e 61 58 ed 25 00 00 16 00 04
00 05 00 Oa 00 09 00 64 00 62 00 03 00 06 00 13
00 12 00 63 01 00

The SSL record starts with a type field that comprises the \@ué (representing
22 in decimal notation, and hence standing for the SSL Handshake Protocol), a

122 SSL and TLS: Theory and Practice

Type Version
23 3 H

0 Length

Application data

Encrypt-é.c;'—>

MAC (16 or 20 bytes)

Message padding

Padding

\4

Figure 4.24 Application data encapsulated in an SSL record (block cipher).

version field that comprises the val0g0300 (referring to SSL 3.0), and a length

field that comprises the val@x 0041 (representing 65 in decimal notation). This
basically means that the fragment of the SSL record is 65 bytes long, and that the
following 65 bytes thus represent the.lENTHELLO message. This message, in
turn, starts withOx01 standing for the SSL handshake message type 1 (referring
to a QLIENTHELLO message)Px00003d standing for a message length of 61
bytes, anddx0300 again representing SSL 3.0. The subsequent 32 bytes—from
0x48b4 to Oxed25—represent the random value chosen by the client (remember
that the first 4 bytes represent the date and time). Because there is no SSL session to
resume, the session ID length is set to z&no(Q0) and no session ID is appended.
Instead, the next valugx 0016 (representing 22 in decimal notation) indicates that
the subsequent 22 bytes refer to the 11 cipher suites that are supported by the client.
Each pair of bytes represents a cipher suite. The second-to-lasd byitelicates

that there is a single compression method supported by the client, and the last byte
0x00 refers to this compression method (which actually refers to no compression).

SSL Protocol 123

After having received the GENTHELLO message, the server is to respond
with a series of SSL handshake messages. If possible, then all messages are merged
into a single SSL record and transmitted in a single TCP segment to the client. In
our example, such an SSL record comprsiesE®V&RHELLO, a CERTIFICATE,
and a $RVERHELLODONE message. The corresponding SSL record starts with the
following byte sequence:

16 03 00 Oa 5f

Again,0x16 refers to the SSL Handshake Protod 0300 refers to SSL version

3.0, andOx0a5f refers to the length of the SSL record (which is actually 2655
bytes). The three above-mentioned messages are then encapsulated in the rest of the
SSL record.

e The SERVERHELLO message looks as follows:

02 00 00 46 03 00 48 b4 54 9e da 94 41 94 59 a9
64 bc d6 15 30 6¢ bO 08 30 8a b2 e0 6d ea 8f 7b
6b df d5 a7 3c d4 20 48 b4 54 9e 26 8b al 9d 26
59 1b 5e 31 4c fe d3 2b a7 96 26 99 55 55 41 7c
d8 e8 44 8a 3e f9 d5 00 05 00

The message starts wilx 02 standing for the SSL Handshake Protocol mes-
sage type 2 (referring to &8BVERHELLO message))x 000046 standing for

a message length of 70 bytes, @d0300 again standing for SSL 3.0. The
subsequent 32 bytes

48 b4 54 9e da 94 41 94 59 a9 64 bc d6 15 30 6¢
b0 08 30 8a b2 e0 6d ea 8f 7b 6b df d5 a7 3c d4

represent the random value chosen by the server (note again that the first 4
bytes represent the date and time). Afterwafd20 refers to a session ID
length of 32 bytes, and hence the subsequent 32 bytes

48 b4 54 9e 26 8b al 9d 26 59 1b 5e 31 4c fe d3
2b a7 96 26 99 55 55 41 7c d8 e8 44 8a 3e f9 d5

representthe session ID. Remember that this ID is going to be used if the client
wants to resume the SSL session at some later point in time (before the session
expires). Following the session IDx0005 refers to the selected cipher suite
(which is TLSRSA WITH_RC4 128 SHA in this example) an@x00 refers

to the selected compression method (which is the null compression).

¢ Next, the ERTIFICATE message comprises the server’s public key certificate.
It is quite comprehensive and begins with the followiung byte sequence:

124 SSL and TLS: Theory and Practice

Ob 00 Oa 0d 00 Oa Oa

In this byte sequenc@x0b stands for the SSL Handshake Protocol message
type 11 (referring to a ERTIFICATE message)Px000a0d stands for a
message length of 2573 bytes, @xl000a0a stands for the length of the
certificate chain. Note that the length of the certificate chain must equal the
message length minus 3 (the length of the length field). The remaining 2570
bytes of the message then comprise the certificate chain required to validate
the server’s public key certificate (these bytes are not illustrated above).

e Last but not least, the SSL record also compriseEaVERHELLODONE
message. This message is very simple and only consists of 4 bytes:

Oe 00 00 00

0x0e stands for the SSL Handshake Protocol message type 14 (referring to a
SERVERHELLODONE message) andx000000 stands for a message length
of zero bytes.

After having received the ERVERHELLODONE message, it is up to the client
to submit a series of messages to the server. In our example, this series comprises a
CLIENTKEYEXCHANGE, a CHANGECIPHERSPEC and a FNISHED message. Each
of these messages is transmitted in an SSL record of its own, but all three records
can be transmitted in a single TCP segment to the server.

e The QLIENTKEYEXCHANGE message is transmitted in the first SSL record.
In our example, this record looks as follows:

16 03 00 00 84 10 00 00 80 18 4a 74 7e 92 66 72
fa ee ac 4b f8 fb 7c c5 6f b2 55 61 47 4e le 4a
ad 5f 4b f5 70 fe dl1 b4 Ob ef 36 52 4f 7b 33 34
ad 23 67 f0O 60 ec 67 67 35 5a cf 50 f8 dO 3d 28
4e fb 01 88 56 06 86 3c c7 c3 85 8c 81 2c 0d d8
20 a6 1b 09 ee 86 c5 6¢ 37 e5 e8 56 96 cc 46 44
58 ee c¢cl1 9b 73 53 ff 88 ab 90 19 53 3d f2 23 5b
8f 57 d2 b0 74 2a bd 05 f9 9e dd 6a 50 69 50 4a
55 8a f1 5b 9b 6d ba 6f b0

In the SSL record heade®x16 stands for the SSL Handshake Protocol,
0x0300 refers to SSL version 3.0, arfik0084 represents the length of the
SSL record (132 bytes). After this header, the x4 0 stands for the SSL
Handshake Protocol message type 16 (referring tolaiCr KEYEXCHANGE
message), and the following three by@s000080 refer to the message
length (128 bytes or 1024 bits). Consequently, the remaining 128 bytes of

SSL Protocol 125

the message represent the premaster secret (as chosen by the client) encrypted
under the server’s public RSA key. The RSA encryption is line with PKCS #1.

e The CHANGECIPHERSPEC message is transmitted in the second SSL record.
This record is very simple and consists of only 6 bytes:

14 03 00 00 01 01

In the SSL record headefx14 (20 in decimal notation) stands for the
SSL Change Cipher Spec Protoddk0300 refers to SSL version 3.0, and
0x0001 represents the message length of one single byte. This byte (i.e.,
0x01), in turn, is the last byte in the record.

e The FNISHED message is the first message that is cryptographically protected
according to the newly negotiated cipher spec. Again, it is transmitted in an
SSL record of its own. This record looks as follows:

16 03 00 00 3c 38 9c 10 98 a9 d3 89 30 92 c2 41
52 59 e3 7f ¢7 b3 88 eb 5f 6f 33 08 59 84 20 65
55 ¢c2 82 cb e2 a6 1c 6f dc c1 13 4b 1a 45 30 8c
e5 f4 01 1a 71 08 06 eb 5c 54 be 35 66 52 21 35
f1

In the SSL record heade®x16 stands for the SSL Handshake Protocol,
0x0300 refers to SSL version 3.0, afik003c¢ represents the length of the
SSL record (60 bytes). These 60 bytes are encrypted and look like gibberish
to somebody not holding the appropriate decryption key.

After having received the EANGECIPHERSPECand ANISHED messages, the
server must respond with the same pair of messages (not illustrated in our example).
Afterwards, application data can be exchanged in SSL records. Such a record may
start as follows:

17 03 00 02 73

In the SSL record heade@x17 (23 in decimal notation) stands for the SSL
Application Data ProtocoDx0300 stands for SSL version 3.0, abat0273 (627)

stands for the length of the encrypted data fragment. It goes without saying that an
arbitrary number of SSL records can be exchanged between the client and the server.

4.4 SECURITY ANALYSIS

Many researchers have investigated the security of the SSL protocol. For example,
soon after Netscape Communications released its first browsers supporting the SSL

126 SSL and TLS: Theory and Practice

protocol in 1996, David Wagner and lan Goldberg showed that the method used to
seed the PRBG (to generate the premaster secrets) was cryptographicalkf weak.
In fact, the seeds were derived from a few predictable (or at least easily guessable)
guantitities, such as the time of day, the process ID, and the parent process ID. These
values do not provide enough entropy, and hence the premaster secrets generated
by the browsers were partially predictable. This result became a press headline
and casted a damning light on the security of the evolving SSL protocol. This was
unfortunate, because the real problem was not the SSL protocol, but the way it was
implemented by Netscape Communications. It goes without saying that the problem
could easily be remedied by strengthening the PRBGs in use. This was quickly done
by Netscape Communications, but the story still illustrated the well-known fact that
even a secure protocol can be implemented in an insecure way.

Later in 1996, David Wagner and Bruce Schneier were the first who did an
informal security analysis of the SSL protocol. They found a number of minor
flaws and new active attacks, but their overall assessment was still positive. They
concluded that “on the whole SSL 3.0 is a valuable contribution towards practical
communications security” [11]. In the aftermath of the Wagner-Schneier analysis, a
few other researchers tried to do more formal analyses by applying formal methods
for the security analysis of SSL 3.0 [12, 13]. Again, the results and key findings
were positive in the sense that no major vulnerability was found. This reaffirmed the
community that SSL 3.0 was indeed a reasonably secure protocol.

In addition to the general security analyses of SSL 3.0, some researchers
have cryptanalyzed specific implementations or parts thereof. For example, in 1998,
Daniel Bleichenbacher found an adaptive chosen ciphertext Attagkinst certain
cryptographic protocols that—like SSL 3.0—are based on PKCS #1 version 1.5 [14].
The attack is based on two well-known facts about RSA when used as asymmetric
encryption system:

e RSA encryption (in its native form) is susceptible to a chosen ciphertext attack
[15]: An adversary who wants to find the decryptionef= c¢? (mod n) of
a given ciphertext can choose a random integeand ask for the decryption
of the innocent-looking ciphertext = r°c (mod n). From the answer
m’ = ()¢ (mod n), the adversary can easily recover the plaintext original
message, because= m’s~! (mod n).

e The least significant bit (LSB) of an RSA encryption is as secure as the whole
message [16]. This fact—also known as bit security-property of RSA—can
be extended in the sense that all individual RSA bits are secure [17]. This

22 http://www.ddj.com/windows/184409807.
23 Inthe cryptographic literature, a chosen ciphertext attack is acronymed CCA and an adaptive chosen
ciphertext attack is acronymed CCA2.

SSL Protocol 127

basically means that there exists an algorithm that can decrypt a ciphertext if
there exists another algorithm that can predict the LSB or any other bit of a
message given only the corresponding ciphertext and the public key. Hence, it
is not necessary for an adversary to learn the complete decrypted message in
a chosen ciphertext attack; single bits per chosen ciphertext may be sufficient.

Bleichenbacher turned these theoretical results into a practical attack that
allows one private-key RSA operation to be performed if the adversary has access
to an oracle that, for any chosen ciphertext, returns one bit telling whether the
ciphertext corresponds to some unknown block of data encrypted using PKCS #1.

00|02 Padding 00 Data block

Figure 4.25 PKCS #1 block format for encryption (block type 2).

To make the point more clear, we say that a ciphertdRKi€S #1 conforming
if its decryption is formed according to PKCS #1 (block type 2). The PKCS
#1 block format is illustrated in Figure 4.25. Such a data block starts with a
zero byte, a byte referring to block type 2, a variable length padding string, a
zero byte, and the actual data block that is encrypted. The Bleichenbacher attack
exploits the fact that a PKCS #1 conforming block must always start with two
characteristic bytes (i.e., 0x00 and 0x02) and can be recognized accordingly. The
adversary can use the above-mentioned oracle to decrypt a given ciplditext
compute:? (mod n)). This ciphertext can, for example, be a previously transmitted
SSL QLIENTKEYEXCHANGE message. In this case, the adversary can retrieve the
corresponding premaster secret and derive the master secret and the SSL encryption
keys accordingly.

Theoretically, an adversary can use the algorithm given in the reduction proof
of [17] to find c. In [14], however, Bleichenbacher proposed a different algorithm
that tries to minimize the number of chosen ciphertexts. More specifically, if the
adversary wants to find» = c¢? (mod n) for a given ciphertext, he or she
can choose an integer < n, computec’ = r°c (mod n), and send”’ to the
oracle. If the oracle says that is PKCS #1 conforming, then—according to the
rationale given above—the adversary automatically knows that the first two bytes of
mr (mod n) refer to 0x00 and 0x02. This, in turn, implies that

2B < mr (mod n) < 3B

for B = 28(*=2) and k referring to the byte length of.. The adversary now
has an interval fornr (mod n) (and hence form), and he or she can iterate the

128 SSL and TLS: Theory and Practice

procedure to narrow down the interval. After sufficiently many steps, he or she
is able to determine the original plaintext messageTypically (and according

to the analysis given in [14])22°—which is slightly more than one million—
chosen ciphertexts will be sufficient, but this number may vary widely depending
on numerous implementation details.

Due to the fact that the Bleichenbacher attack requires a huge quantity of
oracle queries, it can usually be detected quite easily in an online setting. Also, a
feasible way to avoid vulnerability to this attack is to treat incorrectly formatted
blocks in a manner indistinguishable from correctly formatted blocks. Thus, when
the server receives an incorrectly formatted RSA block, it should generate a random
48-byte value and proceed using it as the premaster secret. The server then acts
identically whether the received RSA block is correctly encoded or not. This
easily defeats the Bleichenbacher attack. But in spite of its easy detection and
circumvention, the attack still demonstrated the feasibility and potential severity
of adaptive chosen ciphertext attacks, and as such, it has had (and continues to
have) a deep impact on cryptographic research. Before the attack, people had only
theoretically argued about the possibility of chosen ciphertext attacks, but it was not
generally perceived as a real threat. After its publication, there was strong concensus
that chosen ciphertext attacks indeed pose a threat, and that it makes a lot of sense
to use (asymmetric) encryption systems that protect against it. Consequently, PKCS
#1 was rapidly updated in version 2.0 [6], adapting a technique knovaptasal
asymmetric encryption paddif@AEP) [18]. Unlike ad-hoc schemes such as the
padding used in PKCS #1 version 1.5, OAEP had been proven secure against chosen
ciphertext attacks in the random oracle model. In addition to OAEP, the research
community has come up with other asymmetric encryption systems provably secure
against chosen ciphertext attacks—the most important system being proposed by
Ronald Cramer and Victor Shoup [19]. The Cramer-Shoup system was the first
asymmetric encryption system that was provably secure against chosen ciphertext
attacks in the standard model (i.e., without requiring random oracles).

In the aftermath of the Bleichenbacher attack, many researchers tried to extend
or optimize it, or to find similar attacks. For example (and in spite of the fact that
RSA-OAEP is theoretically secure against chosen ciphertext attacks in the random
oracle model), James Manger found possibilities to mount highly efficient chosen
ciphertext attacks against several implementations of PKCS #1 version 2.0 in 2001
[20]. Again, PKCS #1 had to be updated to reduce the likelihood of success for
the Manger attack. The resulting PKCS #1 version 2.1 [7] refers to the state-of-the-
art and is the version in use today. Similarly, three Czech cryptologists—VIlastimil
Klima, Ondrej Pokorny, and Tomas Rosa—came up with another extension of the
Bleichenbacher attack in 2003 [21].

SSL Protocol 129

Both extensions of the Bleichenbacher attack reaffirmed the well-known fact
that even a theoretically (or provably) secure cryptosystem can be vulnerable and
successfully attacked as soon as it gets implemented in practice. This fact is also
supported by the huge quantity of side-channel attacks that have been developed
and proposed in the last decade. There are even some side-channel attacks that can
be mounted remotely (i.e., against network servers), such as, for example, the timing
attacks demonstrated by Dan Boneh and David Brumley [22]. Due to this insight,
implementations that use RSA for key exchange should use RSA blinding or some
other technique that protects against timing attacks.

In addition to the Bleichenbacher attack and its extensions, some researchers
have found other (mostly subtle) security problems in the CBC padding scheme
used by the SSL protocol. In 2002, for example, Serge Vaudenay published a paper
in which he explained how CBC padding as used in SSL induces a side channel that
may be exploited in a chosen ciphertext attack [23]. In the following year, Vaudenay
and a few other researchers published a follow-up paper in which they showed that
the CBC padding problem can actually be turned into a feasible attack [24]. In 2004,
Gregory Bard found another vulnerability in CBC padding that can be exploited in
a blockwise adaptive chosen plaintext attack [25]. The bottom line was that TLS
1.0 had to be revised and that TLS 1.1 had to take precautions to protect against
these attacks (see Section 5.3). Both problems can easily be circumnavigated by not
using a block cipher in CBC mode in the first place. Fortunately, most Web browsers
routinely invoke the stream cipher RC4 by default.

4.5 FINAL REMARKS

In this chapter, we introduced, overviewed, and went through the details of the
SSL protocol and its use in practice. We saw that the protocol is simple and
straightforward—especially if RSA or Diffie-Hellman are used for key exchange
(the use of a Diffie-Hellman key exchange is advantageous, because it makes sure
that both parties participate in the generation of the cryptographic keys). There
are only a few details that can be discussed controversially, such as the use of
a separate content type forHENGECIPHERSPEC messages, and these details
may even change in the future. But from a security perspective, simplicity and
straightforwardness are always advantageous properties, and hence the starting
position of the SSL protocol with regard to security is very good. All attempts to
break the security of the SSL protocol have failed so far, and—as outlined in the
previous section—the few attacks that are known are not particularly worrisome or
can be remedied easily. Against this background, the SSL protocol has established
itself as the leading security protocol for Internet and Web-based applications.

130 SSL and TLS: Theory and Practice

In fact, the SSL protocol is slowly eliminating alternative and partly competing
cryptographic security protocols, such as IPsec/IKE. If we consider virtual private
networking, for example, we observe a trend from IPsec/IKE-based virtual private
networks (VPNSs) to SSL/TLS-based VPNs. A similar trend can be observed in many
other areas, and all of these trends emphasize the key role the SSL protocol is playing
in the security scene.

Like any other security technology, the SSL protocol also has a few disadvan-
tages and pitfalls. For example, the use of the SSL protocol makes content screening
impossible. If a data stream is encrypted using, for example, the SSL protocol with
a cryptographically strong cipher, then it is no longer possible to subject the data
stream to content screening. This is because the content screener only “sees” en-
crypted data in which it cannot efficiently find malicious content. In order to screen
content, it is necessary to temporarily decrypt the data stream and to reencrypt it just
after the screening process. This calls for an SSL proxy (see Section 7.3). Another
problem that pops up when the SSL protocol is used in the field is the need for public
key certificates. As mentioned before, an SSL-enabled Web server always needs a
certificate and must be configured in a way that it can make use of it. Additionally,

a Web server can also be configured in a way that it requires clients to authenti-
cate themselves with a public key certificate. In this case, the clients must also be
equipped with public key certificates. As there are many potential clients for a Web
server, the process of equipping clients with certificates is involved and tricky. It is
also the reason why the original designers of the SSL protocol opted to make client
authentication optional in the first case. There is much more to say about public key
certificates and PKIls, and we therefore allocate a separate chapter for this important
topic.

References

[1] Khare, R., and S. Lawrence, “Upgrading to TLS Within HTTP/1.1,” Standards Track Request for
Comments 2817, May 2000.

[2] Rescorla, E., “HTTP Over TLS,” Informational Request for Comments 2818, May 2000.

[3] Hoffman, P., “SMTP Service Extension for Secure SMTP over TLS,” Standards Track Request
for Comments 2487, January 1999.

[4] Klensin, J., Freed, N., Rose, M., Stefferud, E., and D. Crocker, “SMTP Service Extensions,”
Standards Track Request for Comments 1869 (STD 10), November 1995.

[5] Kaliski, B., “PKCS #1: RSA Encryption Version 1.5,” Informational Request for Comments 2313,
March 1998.

[6] Kaliski, B., and J. Staddon, “PKCS #1: RSA Cryptography Specifications Version 2.0,” Informa-
tional Request for Comments 2437, October 1998.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

[22]

SSL Protocol 131

Jonsson, J., and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1,” Informational Request for Comments 3447, February 2003.

Canetti, R., and H. Krawczyk, “Analysis of Key-Exchange Protocols and Their Use for Building
Secure ChannelsProceedings of EUROCRYPT '0$pringer-Verlag, LNCS 2045, 2001, pp.
453-474.

Krawczyk, H., “The Order of Encryption and Authentication for Protecting Communications
(Or: How Secure is SSL?)Proceedings of CRYPTO '0Bpringer-Verlag, LNCS 2139, 2001,
pp. 310-331.

Rescorla, E.SSL and TLS: Designing and Building Secure Systems. Addison-Wesley, Reading,
MA, 2000.

Wagner, D., and B. Schneier, “Analysis of the SSL 3.0 Protod@igceedings of the Second
USENIX Workshop on Electronic CommertSENIX Press, November 1996, pp. 29—-40.

Mitchell, J., Shmatikov, V., and U. Stern, “Finite-State Analysis of SSL F@gceedings of the
Seventh USENIX Security SymposiWSENIX, 1998, pp. 201-216.

Paulson, L.C., “Inductive Analysis of the Internet Protocol TLSCM Transactions on Computer
and System Securjtyol. 2, No. 3, 1999, pp. 332-351.

Bleichenbacher, D., “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption
Standard PKCS #1Proceedings of CRYPTO '9&pringer-Verlag, LNCS 1462, August 1998,
pp. 1-12.

Davida, G.I., “Chosen Signature Cryptanalysis of the RSA (MIT) Public Key Cryptosystem,” TR-
CS-82-2, Deptartment of Electrical Engineering and Computer Science, University of Wisconsin,
Milwaukee, 1982.

Alexi, W., Chor, B., Goldreich, O., and C.P. Schnorr, “RSA and Rabin Functions: Certain Parts
are as Hard as the Whol&1AM Journal on Computing/ol. 17, No. 2, 1988, pp. 194—-209.

Hastad, J., and M. Naslund, “The Security of all RSA and Discrete Log Bljtnal of the
ACM, Vol. 51, No. 2, March 2004, pp. 187-230.

Bellare, M., and P. Rogaway, “Optimal Asymmetric EncryptioRroceedings of EUROCRYPT
'94, Springer-Verlag, LNCS 950, 1994, pp. 92-111.

Cramer, R., and V. Shoup, “A Practical Public Key Cryptosystem Provably Secure Against
Adaptive Chosen Ciphertext Attack’roceedings of CRYPTO '98pringer-Verlag, LNCS 1462,
August 1998, pp. 13-25.

Manger, J., “A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding
(OAEP) as Standardized in PKCS#1 v2 Broceedings of CRYPTO '0$pringer-Verlag, August
2001, pp. 230-238.

Klima, V., Pokorny, O., and T. Rosa, “Attacking RSA-Based Sessions in SSL/Ar&¢eedings
of Cryptographic Hardware and Embedded Systems (CH&®)nger-Verlag, September 2003,
pp. 426-440.

Boneh, D., and D. Brumley, “Remote Timing Attacks are Practic@tdceedings of the 12th
USENIX Security Symposiuy2003, pp. 1-14.

132 SSL and TLS: Theory and Practice

[23] Vaudenay, S., “Security Flaws Induced by CBC Padding—Applications to SSL, IPSEC, WTLS
..., Proceedings of EUROCRYPT '02msterdam, Netherland, Springer-Verlag, LNCS 2332,
2002, pp. 534-545.

[24] Canvel, B., Hiltgen, A., Vaudenay, S., and M. Vuagnoux, “Password Interception in a SSL/TLS
Channel,"Proceedings of CRYPTO '08pringer-Verlag, LNCS 2729, 2003, pp. 583-599.

[25] Bard, G.V., “Vulnerability of SSL to Chosen-Plaintext Attack,” Cryptology ePrint Archive, Report
2004/111, 2004.

Chapter 5

TLS Protocol

In this chapter, we elaborate on the TLS protocol—the designated successor of the
SSL protocol. We assume the reader to be familiar with the SSL protocol, and
hence we confine ourselves to elaborating on the differences between the SSL and
the various versions of the TLS protocol. See Section 3.2 for an outline of the
TLS protocol evolution, comprising version 1.0 [1], version 1.1 [2], and—most
importantly—version 1.2 [3]. In the sequel, we provide an introduction in Section
5.1, and we then focus on TLS 1.0 in Section 5.2, TLS 1.1 in Section 5.3, and
TLS 1.2 in Section 5.4. After these specification-related parts, we provide a traffic
analysis of a TLS session in Section 5.5, briefly analyze its security in Section 5.6,
and conclude with some final remarks in Section 5.7.

5.1 INTRODUCTION

The TLS protocol is structurally identical to the SSL protocol: it is a client/server
protocol that is stacked on top of a reliable transport layer protocol, such as TCP in
the case of the TCP/IP, and that consists of the same two layers and protocols as SSL
(the only exception is that the prefix “SSL” in the protocols’ names is replaced with
the prefix “TLS”).

e On the lower layer, th&LS Record Protocadk to fragment, optionally com-
press, and cryptographically protect higher-layer protocol data. The corre-
sponding data structures are callEdSPI ai nt ext, TLSConpr essed,
andTLSCi phert ext . As with SSL, each of these data structures comprises
four fields:

— A typefield that refers to the higher-layer protocol;

133

134 SSL and TLS: Theory and Practice

— A versionfield that refers to the protocol version (e.g., 3,1 for TLS 1.0);

— A lengthfield that refers to the byte length of the fragment;

— An arbitrarily (up to2'* bytes) longfragmentfield that comprises the
higher-layer protocol data (typically 8LSCi pher t ext data struc-

ture).

Remember that data of different content types may be interleaved in a single
TLS record, and that application data is generally of lower precedence for
transmission than other content types.

e On the higher layer, the TLS protocol comprises the following four protocols
we already know from the SSL protocol:

TheTLS Change Cipher Spec Proto¢aD);
TheTLS Alert Protoco(21);

TheTLS Handshake Protoc(22);
TheTLS Application Data ProtocqP3).

Each protocol is identified with a unique content type (for which the cor-
responding value is appended in brackets). To allow future extensions, addi-
tional record types may be defined and supported by the TLS Record Protocol.

Again, we use the terriLS protocolto refer to all four protocols itemized
above, and we use a more specific term to refer to a particular protocol.

Table 5.1

Security Parameters for a TLS Connection

connection end

bul k encryption algorithm

MAC al gorithm
conpression algorithm
nmaster secret
client random
server random

Information whether the entity is considered the “client”
or the “server” in the connection

Algorithm used for bulk data encryption (including its key
size, how much of that key is secret, whether it is a block
or stream cipher, the block size of the cipher if itis a
block cipher, and whether the cipher is exportable)
Algorithm used for message authentication

Algorithm used for data compression

48-byte secret shared between the client and the server
32-byte value provided by the client

32-byte value provided by the server

Similar to the SSL protocol, the TLS protocol also makes a distinction between
aTLS session and a connection:

TLS Protocol 135

Table 5.2
TLS Connection State Elements

conpression state The current state of the compression algorithm

ci pher state The current state of the encryption algorithm
MAC secr et MAC secret for this connection
sequence nunber 64-bit sequence number for the records transmitted under a

particular connection state (initially set to zero)

e A TLS connectiomepresents the operating environment of the TLS protocol;

e Several TLS connection may correspond to a sif@l§ session

As with SSL, there are always four connection states outstandingutihent
read and write states, as well as ffendingread and write states. All TLS records
are processed under the current (read and write) states, whereas the security param-
eters and elements for the pending states are negotiated and set during the execution
of the TLS Handshake Protocol.

The state elements of a TLS session are basically the same as the state
element of an SSL session (see Table 4.2), so we don't have to repeat them here.
At the connection level, however, the specifications of the SSL and TLS protocols
are slightly different: while the TLS protocol distinguishes between the security
parameters summarized in Table 5.1 and the state elements summarized in Table 5.2,
the SSL protocol does not make this distinction and only considers state elements
(see Table 4.3). But taking the security parameters and state elements together,
the differences between SSL and TLS connections are rather minor and not very
profound. In addition to the security parameters summarized in Table 5.1, the PRF
algorithm in use is another security parameter that must be considered separately
since TLS version 1.2.

The most obvious difference between the SSL and TLS protocols is related to
the way the protocols generate the keying material. In Section 4.1, we saw that SSL
uses a unique construction for the generation of the master secret and key block
(that is then used to generate the keying material). TLS 1.0 also uses a unique
construction, but this construction is centered around a TLS-specific PRF. Let us
therefore first introduce the TLS PRF, before we delve into the details of how the
TLS protocol actually generates the keying material needed. The subtle differences
between TLS 1.0 and TLS 1.1, on the one hand, and TLS 1.2, on the other hand, are
only briefly raised.

136 SSL and TLS: Theory and Practice

01101101001001...

Figure 5.1 Overview of the TLS PRF.

5.1.1 TLSPRF

As overviewed in Figure 5.1, the TLS protocol employs a PRF that takes as input a
secret, a seed, and a label (sometimes termed “identifying label”), and that generates
as output an arbitrarily long bit sequence. To make the TLS PRF as secure as
possible, it combines two cryptographic hash functions—MD5 and SHA-1—in a
way that is supposed to be secure at least as long as one of the two hash functions
remains secure. This is true for TLS 1.0 and 1.1; as discussed later, it is no longer
true for TLS 1.2. The TLS PRF (used for TLS 1.0 and 1.1) is based on an auxiliary
data expansion function, termé&d hash(secr et, seed) in the TLS protocol
specification. This function uses a single cryptographic hash funictistn (which

can be MD5 or SHA-1) to expand a secret and a sl into an arbitrarily long
output value. In particular, the data expansion function is defined as follows:

P_hash(secret, seed) = HVAC hash(secret, A(1) +seed) +
HVAC hash(secret, A(2) +seed) +
HVAC hash(secret, A(1) +seed) +

As usual,+ denotes the string concatenation operator. The A-function, in turn, is
recursively defined as follows:

seed
HVAC hash(secret, A(i-1)) for i>0

A0)
AP

Using this recursive definition, the A-values that are necessary to evaluate the
expansion function can be computed as follows:

A(1l) = HVAC hash(secret, A(0))
= HVAC hash(secret, seed)
A(2) = HVAC hash(secret, A(1))

HVAC hash(secret, HVAC hash(secret, seed))

TLS Protocol 137

A(3) HVAC hash(secret, A(2))
HVAC hash(secret, HVAC hash(secret,

HVAC hash(secret, seed)))

The A-function of the TLS PRF is illustrated in Figure 5.2. The output of the
function consists oA(1), A(2), A(3), ... For each iteration of the expansion
functionP_hash(secr et, seed) , one additional output value of the A-function
is needed. This can theoretically be continued an infinite number of times.

Secret Seed
A(0)
A(1)
HMAC
A(2)
CHMAC)
A(3)
CHMAC)

Figure 5.2 The A-function of the TLS PRF.

More specifically, the expansion functi®h hash(secr et , seed) is iter-
atively applied as many times as necessary to generate the required output data. Let
us assume that we need 64 bytes of output data. If MD5 is used, then four iterations
of the hash function are sufficient, sinde 16 = 64 bytes. If, however, SHA-1
is used, then four iterations yieltd- 20 = 80 bytes. In this case, the first 64 output
bytes are effectively used, whereas the last 16 bytes are silently discarded and remain
unused.

The expansion functio®_hash(secr et , seed) is the major ingredient
of the TLS PRF. As mentioned above and illustrated in Figure 5.1, the TLS PRF

138 SSL and TLS: Theory and Practice

| Secret |
l |
| S1 | S2 |
P_MD5 P_SHA-1

Figure 5.3 The internal structure of the TLS PRF (as used for TLS 1.0 and TLS 1.1).

takes as input a secret, a seed, and a label, and it generates as output a block of data
of appropriate length. The secret and the seed are the parameters that are input to
P_hash(secret, seed),whereas the label represents an arbitrary ASCII string.
The string should be included in the exact form, without a length byte or trailing null
character. For example, the label “eSECURITY” would be processed by hashing the
following sequence of bytes (in hexadecimal notation): 65 53 45 43 55 52 49 54 59.
The internal structure of the TLS PRF (as used for TLS 1.0 and TLS 1.1) is
illustrated in Figure 5.3. First, the secret is split into two halves (i.e., S1 and S2). S1
is taken from the first half of the secret, whereas S2 is taken from the second half of
the secret. Their length is created by rounding up the length of the secret divided by
two. If the secret happens to be an odd number of bytes long, then the last byte of
S1 will be repeated and be the same as the first byte of S2. S1 and the concatenation
of the label and the seed are then inpuPtdvD5, whereas S2 and the concatenation
of the label and the seed are inputRoSHA- 1. At the end, both output values are
subject to a bitwise addition modulo 2 (XOR). Hence, the TLS PRF can be formally
expressed as follows:

PRF(secret, | abel , seed) =
P_NMD5(S1, | abel +seed) XOR P_SHA- 1(S2, | abel +seed)

Note that MD5 produces an output value of 16 bytes, whereas SHA-1 produces an
output value of 20 bytes. Therefore, the boundaries of the iteratioRs D5 and
P_SHA- 1 are not aligned, and the expansion functions must be iterated differently
many times. To generate an output of 80 bytes, for exarfpleP5 must be iterated

5 times, whereaB_SHA- 1 must be iterated only 4 times.

TLS Protocol 139

As already mentioned above, the TLS PRF overviewed so far is used in TLS
1.0 and TLS 1.1. Since TLS 1.2, however, the combined use of MD5 and SHA-1
has been abandoned, and a single—but hopefully more secure—cryptographic hash
function is used. In this case, the PRF construction is conceptually simpler and more
straightforward. It can be expressed as follows:

PRF(secret, | abel ,seed) = P_hash(secret, | abel +seed)

The cryptographic hash functidrash is part of the cipher suite. For the typical
case of using SHA-25@ hash actually refers td®>_SHA256. Independent from

the TLS PRF in use (be it the PRF for TLS 1.0 and 1.1 or the PRF for TLS 1.2), the
keying material is generated in a specific way that is addressed next.

5.1.2 Generation of Keying Material

The primary use of the TLS PRF is to generate the keying material needed fora TLS
connection. First, the variable-length premaster secret that is the output of the key
exchange algorithm and part of the TLS session state is used to generate a 48-byte
long master secret:

master_secret =
PRF(pre_naster_secret,"master secret",
client_randomtserver _randon

In this step, the string “master secret” refers to the label, and the concatenation of
the two random valuesl i ent _r andomandcl i ent _r andomrepresents the
seed. Note thatl i ent _r andomis the same value a&d i ent r andomin Table
5.1. The use of the underscore character is used inconsistently in the SSL and TLS
protocol specifications, and we use both terms synonymously and interchangeably.
The bottom line is that the master secret and the server and client random values are
security parameters for the TLS connection (see Table 5.1).

Next, the 48-byte master secret is used as a source of entropy to determine the
various keys that are needed for the TLS connection. The keys are taken from a key
block of appropriate size that is generated as follows:

key bl ock =
PRF(mast er _secret, "key expansion”,
server _randomtcl i ent _randon

This time, the master secret is the secret, the string “key expansion” refers to the
label, and the concatenation of the two random valaesent _r andomand

cl i ent _randomrepresents the seed. The key block can then be partitioned into
the following values that are appropriately sized:

140 SSL and TLS: Theory and Practice

client_wite MAC secret
server_wite MAC secret
client_wite_key
server_wite_key
client_wite IV
server_wite |V

Any additional material in the key block is discarded. For example, a cipher suite
that uses 3DES in CBC mode and SHA-1 requie®4 = 48 bytes for the 3DES
keys,2 - 8 = 16 bytes for the IVs, an@ - 20 = 40 bytes for the MAC keys. Hence,
a total of 104 bytes of keying material is needed. If the key block is longer, then the
spare bytes can be discarded.

If the cipher in use is exportable (basically meaning that the Boolean predicate
i s_export abl e of the cipher in use is true), then the write keys are used to
generate the final write keys:

final _client_wite key =
PRF(client_wite_key,"client wite key",
server_randomtcl i ent _random
final _server wite key =
PRF(server_wite_key, "server wite key",
client_randomtserver_randon)

Also, if the cipher happens to be an exportable block cipher, then the 1Vs are derived
solely from the random values of the TLS Handshake Protocol's hello messages
(i.e., without any secret). In this case, instead of usingctheent _wite |V
andserver _write_ | Vvalues mentioned above, an IV block is generated from
which the IVs are actually taken. The IV block is generated as follows:

iv_block =
PRF("","1V bl ock", client_random+server _random

In this construction, the secret is empty and the label refers to the string “IV block.”
The resulting IV block is then partitioned into two appropriately sized IVs:

client_wite IV
server_wite_|V

An example to generate the keying material for an exportable block cipher (i.e.,
RC2 with 40-bit keys) can be found in the TLS 1.0 protocol specification [1]. It
is not repeated here (mainly because exportable block ciphers are not widely used
anymore).

A number of protocols wish to leverage TLS to perform key establishment but
then use some of the keying material for their own purposes. There is work going

TLS Protocol 141

on within the IETF TLS WG to describe a general mechanism for allowing'that.
In this setting, the keying material is call&kported Keying MaterialEKM). It is
generated using the TLS PRF in the following way:

EKM = PRF(master_secret, | abel,
server _randomtcl i ent _randomt
cont ext _val ue_| engt h+cont ext _val ue)

In this formula, the label refers to a disambiguating string and context value refers
to an application-specific value. Assuming the PRF having good pseudorandomness
properties, it is prohibitively difficult to distinguish the EKM from random data
(independent from the length of the EKM).

In addition to the TLS PRF and the generation of the keying material, there
are other differences between the SSL protocol and the various versions of the TLS
protocol. These differences are outlined and discussed next. For each difference, we
give some background information and the rationale that has led to the respective
design.

52 TLS1.0

It has been mentioned several times so far that TLS 1.0 is very close to and
backward-compatible with SSL 3.0, and that it can therefore be viewed as essentially
SSL 3.1. This viewpoint is reflected in the version field that is included in each
TLS record. In fact, this field comprises the two bytes 3 and 1, where 3 stands for
the major version and 1 stands for the minor version. This suggests that TLS 1.0
is actually the same as SSL 3.1. In addition to the version, there are a few other
differences between 3.0 and TLS 1.0. For example, we have seen that both protocols
employ different PRFs to determine the keying material. Also the TLS protocol
distinguishes between security parameters and state elements for TLS connections,
whereas the SSL protocol only considers state elements. In addition to these obvious
differences, there are also some differences that are more subtle and require further
explanation; they are addressed next.

5.2.1 Cipher Suites

As with SSL, a TLS cipher spec refers to a pair of algorithms that are used
to authenticate messages and encrypt data, whereas a cipher suite additionally
comprises a key exchange algorithm. TLS 1.0 supports the same cipher suites as

1 http://www.ietf.org/internet-drafts/draft-ietf-tls-extractor-*.txt

142 SSL and TLS: Theory and Practice

SSL 3.0 (see Table 4.4). Only the three cipher suites that employ FORTEZZA, that
is,

e SSLFORTEZZAKEA_WITH_NULL _SHA;
e SSL FORTEZZAKEA_WITH_FORTEZZA CBC_SHA,
e SSL_FORTEZZAKEA_WITH_RC4.128 SHA,

are no longer supported and have no counterpart in TLS 1.0. This means that
there is a total of 28 cipher suites supported by TLS 1.0. Also, for obvious rea-
sons, the names of the cipher suites have changed from«S8LTLS x, so the

cipher suite SSIDHE RSA WITH_3DESEDE CBC_SHA has effectively become
TLS_.DHE_RSA WITH_3DESEDE CBC_SHA without any substantial change with
regard to content. But there are still a few subtle changes that need to be mentioned
at this point. The changes refer to message authentication and data encryption. The
key exchange algorithms have not changed and remain exactly the same.

5.2.1.1 Message Authentication

The MAC construction employed by the SSL protocol (see Section 4.2.1.3) is
conceptually similar to the HMAC construction, but it is not exactly the same. For
TLS 1.0, it was therefore decided to consistently use the HMAC construction for
message authentication. The input parameters to the HMAC construction are the
MAC key K, as well as the concatentation of the sequence nugdgenumber

and the four components of thELSConpr essed structure (i.e.type, version,
length, and fragment). Hence, the HMAC value is generated as follows:

HMACK(TLSCompressed) =
h(K || opad || h(K || ipad || seq-number ||
type || version || length || fragment))

TLSCompressed

In this notation,h refers to the cryptographic hash function in use (as specified
by the MAC algorithm parameter of the TLS connection). If one associates the
concatenation ofeq_number and the four components of thELSConpr essed
structure with the message to be authenticated, then it is clear that the method
specified above really refers to the HMAC construcion. Using this method, TLS
1.0 is now in line with international standardization.

TLS Protocol 143

5.2.1.2 Data Encryption

SSL 3.0 was specified prior to the enactment of the new U.S. export controls (see
Section 2.1.6). Consequently, the preferred ciphers were DES (in the case of a block
cipher) and RC4 (in the case of a stream cipher). When TLS 1.0 was specified in
1999, the situation regarding the U.S. export controls was about to change, and
hence stronger ciphers could be prescribed. The AES was not yet standardized, and
hence 3DES represented the greatest common denominator. In the absence of an
application profile standard specifying otherwise, a TLS 1.0-compliant application
must implement the cipher suite TUSHE_ DSSWITH_3DESEDE CBC_SHA. In
fact, TLSDHE DSSWITH_3DESEDE CBC_SHA is the only cipher suite that is
mandatory to implement according to the TLS 1.0 specification.

If a cipher suite comprises a block cipher operated in CBC mode (such as
TLS_DHE DSSWITH_3DESEDE CBC_SHA), then there is a subtle change to
be mentioned here: while SSL 3.0 assumes the padding (that forces the length of
the plaintext that comprises the fragment oFlaSConpr essed structure to be a
multiple of the cipher’s block size) to be as short as possible, TLS 1.0 does not make
this assumption. In fact, TLS 1.0 provides the possibility to add more padding (up
to 255 bytes) prior to encryption. This allows the sender of a message to better hide
the actual length of the message, and hence to better protect against traffic analysis
attacks.

Table 5.3
The Camellia-Based Cipher Suites for TLS [4]

Cipher suite Value
TLS_.RSAWITH_.CAMELLIA 128 CBC_.SHA {0x00, Ox41}
TLS_.RSAWITH_CAMELLIA _128 CBC_SHA {0x00, 0x41 }

TLS_DH_DSSWITH_CAMELLIA 128 CBC_SHA {0x00, 0x42 }
TLS_.DH_RSAWITH_CAMELLIA _128 CBC_SHA {0x00, 0x43 }
TLS_DHE.DSSWITH_CAMELLIA _128 CBC_.SHA { 0x00, 0x44 }
TLS_DHE_RSAWITH_CAMELLIA 128 CBC.SHA { 0x00, 0x45 }
TLS_DH_anonWITH_CAMELLIA _128 CBC_SHA { 0x00, 0x46 }
TLS_.RSAWITH_.CAMELLIA 256 CBC_SHA {0x00, 0x84 }
TLS_.DH_DSSWITH_CAMELLIA 256 CBC_SHA { 0x00, 0x85 }
TLS_DH_RSAWITH_.CAMELLIA 256 CBC_.SHA {0x00, 0x86 }
TLS_.DHE_.DSSWITH_CAMELLIA 256.CBC_.SHA { 0x00, 0x87 }
TLS_DHE.RSAWITH_.CAMELLIA 256 CBC_.SHA { 0x00, 0x88 }
TLS_DH_anonWITH_CAMELLIA _256. CBC_SHA {0x00, 0x89 }

In addition to the move from DES to 3DES, a complementary RFC was
released in 2005 [4] that proposed a couple of cipher suites that employ the Camellia

144 SSL and TLS: Theory and Practice

block cipher. The RFC has been submitted to the IETF Standards Track and is still
valid (even for TLS 1.1 and TLS 1.2). The Camellia-based cipher suites and their
respective values are itemized in Table 5.3. Note that all cipher suites employ the
cryptographic hash function SHA-1. The Camellia-based cipher suites are mainly
used in Japan and partly in Europe.

Last but not least, we note that all TLS cipher suites are itemized in Appendix
A (in numerical order). This applies for the TLS 1.0 cipher suites, but it also applies
forthe TLS 1.1 and TLS 1.2 cipher suites.

Table 5.4
TLS 1.0 Certificate Type Values

Value Name Description

1 rsasign RSA signing
2 dsssign DSA signing
3 rsafixeddh RSA signing with fixed DH key exchange
4 dssfixed.dh DSA signing with fixed DH key exchange

5.2.2 Certificate Management

With regard to certificate management, there are two far-reaching differences be-
tween SSL 3.0 and TLS 1.0:

e First, SSL 3.0 requires complete certificate chains, meaning that certificates
must go back to a root CA, whereas TLS 1.0 accepts certificate chains that
go back “only” to an intermediate CA. This simplifies the verification and
validation of certificates considerably.

e Second, TLS 1.0 supports a reduced and slightly different set of certificate
types used for ERTIFICATEREQUESTmMessages. In fact, TLS 1.0 only sup-
ports the four certificate types itemized in Table 5.4:

RSA signing (1);
DSA signing (2);
RSA signing with fixed Diffie-Hellman key exchange (3);

DSA signing with fixed Diffie-Hellman key exchange (4).

The numbers in brackets refer to their respective type values. These
types correspond to the first four certificate types supported by SSL (see Table

TLS Protocol 145

4.5). So TLS 1.0 does no longer support RSA signing with ephemeral Diffie-
Hellman key exchange (5), DSA signing with ephemeral Diffie-Hellman key
exchange (6), and FORTEZZA signing and key exchange (20). The first two
certificate types (5 and 6) are not really needed, because a certificate that can
be used to generate RSA (DSA) signatures can also be used to sign ephemeral
Diffie-Hellman keys. Also, the last certificate type (20) is no longer needed,
because the FORTEZZA-type cipher suites have been removed from TLS 1.0
anyway.

Later in this chapter, we will see that the certificate types missing in TLS 1.0
have been reintroduced in TLS 1.1 as reserved values (see Section 5.3).

Table 5.5
TLS Alert Messages (Part 1)

Alert Code Brief description (if new)

close_notify 0

unexpect ed_nessage 10

bad_r ecord_mac 20

decryption_failed 21 The sender notifies the recipient that a ciphertext (received in the

fragment of alLSCi pher t ext record) decrypted in an invalid
way. This alert is always fatal.

record_overfl ow 22 The sender notifies the recipient that a record was too long (i.e.,
either aTLSCi pher t ext record was longer thad** + 2048
bytes or aTLSConpr essed record was longer thad'* + 1024
bytes. This alert is always fatal and should never be observed in
communication between proper implementations.

deconpression_failure 30
handshake_fail ure 40
bad_certificate 42
unsupported_certificate 43
certificate_revoked 44
certificate_expired 45
certificate_unknown 46
illegal _paraneter a7
unknown_ca 48 The sender notifies the recipient that a valid certificate chain was

received, but at least one certificate was not accepted because the CA
cerificate could not be located or could not be matched with a trusted
CA. This alert is always fatal.

access_deni ed 49 The sender notifies the recipient that a valid certificate was received,
but when access control was applied, the sender decided not to proceed
with negotiation. This alert is always fatal.

5.2.3 Alert Messages

TLS 1.0 uses a set of alert messages that is slightly different from SSL 3.0. In fact,
the 23 Alert Protocol message types of TLS 1.0 are summarized in Tables 5.5 (Part

146

SSL and TLS: Theory and Practice

Table 5.6

TLS Alert Messages (Part 2)

Alert

Code

Brief description (if new)

decode_error

decrypt _error

export_restriction

prot ocol _version

insufficient_security

internal _error

user _cancel ed

no_renegoti ation

50

51

60

70

71

80

90

100

The sender notifies the recipient that a message could not be decoded
because some field was out of the specified range or the length of the
message was incorrect. This alert is always fatal.

The sender notifies the recipient that a handshake cryptographic
operation failed, including being unable to verify a signature, decrypt

a key exchange, or validate a finished message.

The sender notifies the recipient that a negotiation not in compliance
with export restrictions was detected. This alert is always fatal.

The sender notifies the recipient that the protocol version the client
has attempted to negotiate is recognized but not supported (for example,
an older protocol version might be avoided for security reasons). This
alert is always fatal.

Returned instead dfandshake_f ai | ur e when a negotiation has
failed specifically because the server requires ciphers more secure
than those supported by the client. This alert is always fatal.

The sender notifies the recipient that an internal error unrelated to

the peer or the correctness of the protocol makes it impossible to
continue. This alert is always fatal.

The sender notifies the recipient that this handshake is being canceled
for some reason unrelated to a protocol failure. If the user cancels an
operation after the handshake is complete, just closing the connection
by sending &l ose_not i f y is more appropriate. This alert should be
followed by acl ose_noti fy. This alert is generally a warning.

The sender notifies the recipient that a renegotiation is not appropriate.
This alert is always a warning.

1) and 5.6 (Part 2). In these tables, only the message types that are new (related to
SSL 3.0) come along with a description. In addition to the new message types, there

is also one message type that has become obsolete and is now marked as reserved
(i,e.,no_certificateorno_certificate_RESERVEDwith an alert code

of 41).

5.2.4 Other Differences

TLS 1.0 uses simplified and streamlined formats and ways of computing the hash
values for the ERTIFICATEV ERIFY and the FNISHED messages.

e With regard to the ERTIFICATEVERIFY message, the handshake messages
are simply hashed (using MD5 or SHA-1) and digitally signed using the
appropriate signing key. Compare this to the relatively complex construction
of the SSL G&RTIFICATEVERIFY message (see Section 4.2.2.10).

e With regard the the INISHED message, the TLS PRF is used to generate

TLS Protocol 147

PRF(nast er _secret, fini shed_| abel
MD5(handshake_nessages) +
SHA- 1(handshake_nessages)),

wheref i ni shed_I| abel refers to the string “client finished” (if the client
sends the WNISHED message) or “server finished” (if the sever sends the
FINISHED message), andandshake_nmessages comprises all handshake
messages (except anfH OREQUESTmMessage) up to but not including the
current message. This includes only data visible at the handshake layer and
does not include any record layer header. From the output of this PRF, only
the first 12 bytes are used to form the actuallIBHED message.

53 TLS11

The official TLS 1.0 protocol specification was released approximately one decade
ago. Itis therefore not particularly surprising that more recent developments have led
to changes in the TLS protocol specification. In April 2006, some of these changes
were approved and the specification of the TLS 1.1 protocol was officially released
[2]. This version of the TLS protocol is referenced as 3,2. Let us start with some
preliminary remarks, before we delve more deeply into the differences between TLS
1.0and TLS 1.1.

5.3.1 Preliminary Remarks

At the end of Section 4.4, we mentioned that some researchers have found (mostly
subtle) security problems in the CBC padding scheme employed by the SSL pro-
tocol. In 2002, for example, Vaudenay published a paper in which he explained
how CBC padding used by SSL induces a side channel that may be exploited in
a chosen ciphertext attack [5]. Note that the existence of this attack is in seeming
contrast to the theoretical result that EtA is secure if a block cipher in CBC mode or
a stream cipher is used for encryption. This, in turn, attests to the fact that a theoreti-
cally secure scheme need not remain secure when implemented in practice. Anyway,
Vaudenay's side channel attack starts from the fact that most cryptographic security
protocols employ some form of padding before messages are subject to block cipher
encryption. When a recipient receives a ciphertext, he or she usually decrypts it and
verifies the format of the padding, before further processing the message (verifying,
for example, the MAC that comes along with the message). Consequently, validity
of the format often leaks from a security protocol in a chosen ciphertext attack,
since the recipient typically sends an acknowledgment or an error message (e.g.,
decryption_fail edinthe case of the SSL protocol). If the adversary is able to

148 SSL and TLS: Theory and Practice

tell the two situations apart, then he or she has a side channel that may be exploited.
Note that a MAC does not protect against such an attack, because message padding
is performed after the computation of the MAC (so the MAC cannot be verified
before the padding in the decryption).

Vaudenay’s side channel attacks are theoretically interesting but not practically
feasible in a typical SSL/TLS setting. This is because the error messages (i.e.,
decryption_fail ed messages) are usually encrypted and the adversary has
no access to the logdfile. So, in general, the adversary cannot tell an acknowledgment
and an error message apart. To make things worse, an SSL/TLS connection is usually
aborted prematurely once an error has occured. Both problems limit the feasibility
of the attacks. But there may still be situations in which such an attack is feasible.
For example, in a 2003 follow-up paper, Vaudenay and some of his colleagues
showed how a multisession attack can be used to intercept a password transmitted
over an SSL/TLS connection (the target situation is an IMAP client that uses the
SSL/TLS protocols to securely connect to an IMAP server) [6]. This paper became
a headline in the trade press, and hence the designers of the TLS protocol were
strongly encouraged (if not forced) to take precautions to protect the TLS protocol
against the attack. More specifically, they had to update TLS 1.0 and come up with
TLS 1.1.

In a 2002 posting, Bodo Mollérargued that the distinction between alert
messages fobad_r ecor d_mac (code 20) andlecrypti on_f ai |l ed (code
21) is disadvantageous from a security viewpoint as it improves the odds of
an adversary. He therefore recommended to neglect the distinction and return a
bad_record_nmc alertin either case. Consequentlygpad r ecor d_nmac alert
message must also be returned FlaSCi phert ext decrypts in an invalid way;
either because its length is not an even multiple of the block length, or its padding
values, when checked, are not correct. This recommendation was adopted in TLS
1.13 in spite of the fact that it was challenged in [6]. The doubts are caused by the
fact that timing differences may still exist to tell the two situations apart. Instead
of suppressinglecr ypti on_f ai | ed alert messages, one can try to make alert
messages time-invariant by simulating a MAC verification even if a padding error
has already occured. One can even go one step further and add random noise to
the time delay. The first of these recommendations found its way into the TLS 1.1
protocol specification (at least as an implementation note). In addition, TLS 1.1
also replaces the implicit IV used in TLS 1.0 with an explicit random IV. This is
in response to another vulnerability in CBC padding that was found by Gregory
Bard, and that can be exploited in a blockwise adaptive chosen plaintext attack

2 http://www.openssl.org/bodo/tls-cbe.txt.
3 The TLS 1.1 protocol specification says that the decryptiled error alert “MAY be returned if a
TLSCiphertext decrypted in an invalid way.”

TLS Protocol 149

[7]. This means that for eachLSConpr essed fragment that is encryted there

is a seperate IV that is randomly chosen and sent along with the corresponding
TLSC phert ext fragment. Since the IVs are now explicit and sent along with the
TLSC phert ext fragments, there is no need to initially generate 1Vs. So the key
generation process overviewed in Section 5.1.2 can be simplified to only generate
theclient_wite MAC secret and theserver_wite MAC secret,
aswellasthel i ent _wite_keyandtheserver _wite_ key.

Table 5.7
TLS 1.1 Standard Cipher Suites

Cipher suite Value

TLS.NULL _WITH_NULL _NULL { 0x00, 0x00 }
TLS_.RSAWITH_NULL _MD5 { 0x00, 0x01 }
TLS_.RSAWITH_NULL _SHA { 0x00, 0x02 }
TLS_.RSAWITH_RC4.128 MD5 { 0x00, 0x04 }
TLS_.RSAWITH_.RC4.128 SHA { 0x00, 0x05 }
TLS_.RSAWITH_IDEA_CBC_SHA { 0x00, 0x07 }
TLS_.RSAWITH_.DESCBC_SHA { 0x00, 0x09 }
TLS.RSAWITH_3DESEDE CBC_SHA { 0x00, Ox0A}
TLS.DH.DSSWITH_DES.CBC_SHA { 0x00, Ox0C}
TLS.DH_.DSSWITH_3DESEDE CBC_SHA { 0x00, Ox0D}
TLS.DH.RSAWITH_DES.CBC_SHA { 0x00, OxOF }
TLS.DH_RSAWITH_3DESEDE CBC_SHA { 0x00, 0x10 }
TLS.DHE_DSSWITH_DES CBC_SHA {0x00, Ox12 }
TLS.DHE_DSSWITH_3DESEDE CBC_.SHA { 0x00, 0x13 }
TLS.DHE_RSAWITH_DES.CBC_SHA {0x00, Ox15 }
TLS.DHE_RSAWITH_3DESEDE CBC_.SHA { 0x00, 0x16 }
TLS_DH_anonWITH_RC4.128 MD5 { 0x00, 0x18 }
TLS_.DH_anonWITH_DES.CBC_SHA {0x00, Ox1A}

TLS_DH_anonWITH_3DESEDE CBC_SHA { 0x00, 0x1B}

5.3.2 Cipher Suites

The cipher suites supported by TLS 1.1 have been changed considerably. This is not
true for the HMAC construction, but it is true for a number of other things. First and
foremost, all cipher suites that comprise an export-grade key exchange algorithm
or cipher may still be offered for backward compatibility, but they must not be
negotiated in TLS 1.1. This applies to all cipher suites written in italics in Table
4.4 (except SSINULL _WITH_NULL _NULL) and the export-grade Kerberos-based
cipher suites from RFC 2712 [8]. The other Kerberos- and AES-based cipher suites
specified in RFC 2712 and RFC 3268 [9] have been included in TLS 1.1. The

150 SSL and TLS: Theory and Practice

Table 5.8
TLS 1.1 Kerberos-Based Cipher Suites

Cipher suite Value

TLS_KRB5_WITH_DES. CBC_SHA { 0x00, Ox1E}
TLS_KRB5_WITH_3DESEDE CBC.SHA { 0x00, Ox1F }
TLS_KRB5.WITH_RC4.128 SHA { 0x00, 0x20 }
TLS_KRB5_WITH_IDEA_CBC_SHA {0x00, Ox21}
TLS_KRB5_WITH_DES. CBC_MD5 { 0x00, 0x22 }
TLS_KRB5_WITH_3DESEDE.CBC.MD5 { 0x00, 0x23 }
TLS_KRB5.WITH_RC4.128 MD5 { 0x00, 0x24 }
TLS_KRB5_WITH_IDEA_CBC_MD5 { 0x00, 0x25 }

Table 5.9

TLS 1.1 AES-Based Cipher Suites

Cipher suite Value

TLS.RSAWITH_AES.128 CBC_SHA { 0x00, Ox2F }
TLS_DH_.DSSWITH_AES_128 CBC_SHA { 0x00, 0x30 }
TLS_.DH_RSAWITH_AES_128 CBC_SHA { 0x00, Ox31 }
TLS_DHE_DSSWITH_AES_.128 CBC_.SHA { 0x00, 0x32 }
TLS.DHE_RSAWITH_AES 128 CBC.SHA { 0x00, 0x33 }
TLS_DH_anonWITH_AES.128 CBC_SHA { 0x00, 0x34 }
TLS_RSAWITH_AES 256 CBC_SHA { 0x00, 0x35 }
TLS_DH_.DSSWITH_AES 256 CBC_SHA { 0x00, 0x36 }
TLS_.DH_RSAWITH_AES_256. CBC_SHA { 0x00, 0x37 }
TLS_DHE_DSSWITH_AES 256 CBC_.SHA { 0x00, 0x38 }
TLS.DHE_RSAWITH_AES 256 CBC_.SHA { 0x00, 0x39 }
TLS_DH_anonWITH_AES_256. CBC_SHA { 0x00, Ox3A}

resulting cipher suites supported by TLS 1.1 are summarized in Tables 5.7 to
5.9 (together with their respective code values). The Camellia-based cipher suites
itemized in Table 5.3 still apply and can be used for TLS 1.1. Again, refer to the
appendix for a complete listing of all TLS cipher suites and their respective code
values.

5.3.3 Certificate Management

As mentioned above and summarized in Table 5.10, the certificate type values 5, 6,
and 20 were reintroduced in TLS 1.1 as reserved values (meaning that they should
no longer be used).

TLS Protocol 151

Table 5.10
TLS 1.1 Certificate Type Values

Value Name Description
1 rsasign RSA signing and key exchange
2 dsssign DSA signing only
3 rsafixed-dh RSA signing with fixed DH key exchange
4 dssfixed-dh DSA signing with fixed DH key exchange
5 rsaephemeradhRESERVED RSA signing with ephemeral DH key exchange
6 dssephemeradh. RESERVED DSA signing with ephemeral DH key exchange

20 fortezzadms RESERVED FORTEZZA signing and key exchange

5.3.4 Alert Messages

In addition to alert message 41 (i.eq_certificateorno certificate_
RESERVED) that has become obsolete in TLS 1.0, alert message 6Gfieart _
restrictionorexport_restricti on_RESERVED) has also become ob-
solete in TLS 1.1. This is because export-grade encryption is no longer supported by
TLS 1.1 (as mentioned above), and hence there is no need for corresponding alert
messages anymore.

5.3.5 Other Differences

There are at least two other differences between TLS 1.0 and TLS 1.1 that deserve
to be mentioned:

e First, a premature closure (i.e., a closure without a mutual exchange of
cl ose_noti fy messages) no longer causes a TLS session to be nonre-
sumable. Put in other words: even if a connection is closed without having
the communicating peers properly exchamdeose noti fy, it may still
be resumable under certain conditions. But keep in mind that any connection
terminated with a fatal alert must not be resumed.

e Second, a number of new registries have been created by the Internet Assigned
Numbers Authority (IANA) for parameter values, such as certificate types,
cipher suites, content types, alert values, and handshake types. The goal is to
add flexibility to the TLS protocol. If a parameter must be added or changed,
then it is no longer necessary to modify the protocol specification. Instead,
adding or changing the parameter in the registry is sufficient.

4 The IANA is responsible for the global coordination of the DNS Root, IP addressing, and other
Internet protocol resources.

152 SSL and TLS: Theory and Practice

In theory, there are many possibilities for assigning the parameter values
mentioned above. In practice, however, the assignments are usually in line with RFC
2434 (BCP 26) [10] and conform with one of the following three policies given in
this document:

e Values that are assigned \Béandards Actioare reserved for Standards Track
RFCs approved by the Internet Engineering Steering Group (IESG).

e Values that are assigned vi&pecification Requiredhust at least be docu-
mented in an RFC or other permanent and readily available reference, in suf-
ficient detail so that interoperability between independent implementations is
possible.

e Values that are assigned Waivate Useneed not fulfill any requirement. In
fact, there is no need for IANA to review such assignments and they are not
generally useful for interoperability.

For example, the certificate types supported by TLS 1.1 are divided into three
groups: values in the range 0—63 inclusive are assigned via Standards Action, values
in the range 64—-223 inclusive are assigned via Specification Required, and values in
the range 224-255 inclusive are assigned via Private Use. Similarly, the cipher suites
supported by TLS 1.1 are also divided into three groups: values with the first byte in
the range 0-191 are assigned via Standards Action (e.g., all cipher suites mentioned
so far), values with the first byte in the range 192—254 are assigned via Specification
Required (e.g., cipher suites that employ ECC as mentioned below), and values with
the first byte 255 are assigned via Private Use. Last but not least, all content type,
alert value, and handshake type values are allocated via Standards Action.

54 TLS1.2

After the offical release of TLS 1.1 in 2006, the respective standardization activities
continued and many people working in the field continued to make proposals on how
TLS could be extended and evolved. In 2008, the next version of the TLS protocol—
TLS 1.2—became ready and was officially released in RFC 5246 [3]. Itis referenced
as version 3,3.

As mentioned at the end of Section 5.1, TLS 1.2 uses a new PRF that is
simpler and more straightforward than its predecessor (mainly because it uses only
one cryptographic hash function instead of combining two functions). Similarly, for
digital signatures, the combined use of MD5 and SHA-1 has been replaced with
the use of a single cryptographic hash value. Again, we start with some preliminary

TLS Protocol 153

remarks regarding TLS extensions, before we delve more deeply into the specific
differences between TLS 1.1 and TLS 1.2.

5.4.1 TLS Extensions

Remember from Section 3.2 that the specification of TLS 1.2 [3] not only made RFC
4346 [2] obsolete, but also RFC 3268 [9] and RFC 4366 [11]:

o RFC 3268 introduces AES-based cipher suites for TLS (that can be used by
all versions of the TLS protocol).

e AsTLSis used in anincreasing variety of new operational environments (e.g.,
wireless networky, RFC 4366 introduces a couple of extensions that may be
used to add functionality (and hence flexibility) to the TLS protocol.

More specifically, RFC 4366 provides both generic extension mechanisms for
the TLS handshake client and server hello messages, as well as specific extensions
using these mechanisms. The extensions may be used by TLS clients and servers;
they are backward-compatible, meaning that communication is possible between
TLS clients that support the extensions and TLS servers that do not support the
extensions, and vice versa.

A client may request the use of extensions via an extendeNGHELLO
message. An extended ENTHELLO message, in turn, is just a “normal’L&NT-

HELLO message with an additional block of data that comprises a list of extensions.
Remember that additional information can be appended toilaBNGHELLO mes-

sage, and hence an extendedeSMTHELLO message that conforms to the speci-
fication does not “break” existing TLS servers. A TLS server is to accept such a
message, even if it does not properly understand the extensions. The presence of
extensions can be detected by determining whether there are bytes following the
compression methods at the end of thelEITHELLO message. This method of
detecting optional data is not in line with the usual method of having a variable
length field, but it is used for compatibility with TLS before extensions were de-
fined. Anyway, if the server understands the extensions, it sends back an extended
SERVERHELLO message in place of a “normal'EBVERHELLO message. Again,

the extended SRVERHELLO message may comprise a list of extensions. Note
that the extendedeERvVERHELLO message is only sent in response to an extended
CLIENTHELLO message. This prevents the possibility that the extenae SR-

HELLO message “breaks” existing TLS clients. Also note that there is no upper

5 Endpoint devices that connect to wireless networks often suffer from a number of constraints not
commonly present in wired networks, such as limitations in terms of bandwidth, computational
power, or battery lifetime.

154

SSL and TLS: Theory and Practice

bound for the length of the list of extensions. So it may happen that a client floods
a server by sending a very long list of extensions. If this poses a problem, then it is
possible and very likely that future server implementations will limit the maximum

length of an extended CENTHELLO message.

Table 5.11
TLS Extension Types and Values

Extension type Values Description References
server _nane 0 Server name [11]
max_fragnent _| ength 1 Maximal fragment length [11]
client_certificate_url 2 Client certificate URL [11]
trusted_ca_keys 3 Trusted CA keys [11]
truncat ed_hmac 4 Truncated HMAC [11]

st at us_request 5 Status request [11]
user _nmappi ng 6 User mapping [12, 13]
— 7,8 Reserved

cert_type 9 Certificate types [14]
elliptic_curves 10 Elliptic curves [15]
ec_point _formats 11 Elliptic curve point formats [15]
srp 12 SRP protocol [16]
supported_signature_al gorithns 13 Signature algorithms [3]
— 14-34 Unassigned

Sessi onTi cket 35 Session tickets [17]

Each extension consists of a type and a data field that is specific for the type
(it may also be empty). As mentioned at the end of the previous section, the IANA
maintains a registry of available content type valti@he values are assigned via
IETF Concensus, meaning that new assignments are made via RFCs approved by
the IESG. The registry is a moving target and subject to change. The currently valid
TLS extension types and values are summarized in Table 5.11.

The first six extension types 0-5 are defined in RFC 4366 [11] and a follow-up
document that is currently in the status of an Internet-Drdthe extension type 6
is defined in RFC 4680 [12] and RFC 4681 [13], the extension type 9 is defined in
RFC 5081 [14], the extensions types 10 and 11 are defined in RFC 4492 [15], the
extensiontype 12 is defined in RFC 5054 [16], and the extension type 13 is defined in
the original TLS 1.2 protocol specification [3]. Last but not least, the extension type
35 is defined in RFC 5077 [17]. In the sequel, we briefly overview these extension
types and finish up this section with a summary. Before we do so, we note that RFC

6 http://www.iana.org/assignments/tls-extensiontype-values/.
7 draft-ietf-tls-rfc4366-bis-*.txt

TLS Protocol 155

Table 5.12
New TLS Alert Messages Introduced in RFC 4366 [11]

Alert Code Brief description (if new)

unsuppor t ed_ext ensi on 110 The sender (client) notifies the recipient (server) that
it does not support an extension contained in an exten-
ded ERVERHELLO message. This alert message is
always fatal.

certificate_unobtainable 111 The sender (server) notifies the recipient (client) that
it is unable to retrieve a certificate (chain) from the
URL supplied in a @RTIFICATEURL message. This
alert message may be fatal.

unr ecogni zed_nane 112 The sender (server) notifies the recipient (client) that
it does not recognize the server specified in a server
name extension. This alert message may be fatal.

bad_certificate_status_response 113 The sender (client) notifies the recipient (server) that
it has received an invalid certificate status response.
This alert message is always fatal.

bad_certificate_hash_val ue 114 The sender (server) notifies the recipient (client) that
a certificate hash does not match a client-provided
value. This alert message is always fatal.

4366 also introduces a number of new TLS alert messages (overviewed in Table
5.12). Meanwhile, thaunsupport ed_ext ensi on alert message has become
part of the TLS 1.2 protocol specification (the other messages are not yet part of
the TLS protocol specification).

5.4.1.1 Server Name

Virtual hosting is a commonly used method to host multiple servers (e.g., Web
servers) with different domain names on the same computer, sometimes on the
same |IP address. To make use of virtual hosting, a client typically establishes a
TCP session to the hosting computer, establishes an HTTP/1.1 connection on top of
this TCP session, and specifies the Web server's domain name lio#iteheader

of a subsequent HTTP request message. This works perfectly fine for HTTP. If,
however, HTTPS is used instead of HTTP, then a SSL/TLS connection must be
established prior to the invocation of HTTP. This basically means that the client
must employ other means to support virtual hosting. SSL 3.0, TLS 1.0, and TLS
1.1 have no other means, so these protocols do not support virtual hosting, meaning
that each SSL/TLS-enabled Web server must have a unique IP address. This is a
severe disadvantage when it comes to the large-scale deployment of the SSL/TLS
protocol, and it is probably one of the main reasons why SSL/TLS-enabled Web
servers are not as widely deployed as they could be. In fact, the disadvantage is so
severe that TLS 1.2 has been extended to support virtual hosting. More specifically,
an extension typeer ver _nane (value 0) has been defined that can be used by

156 SSL and TLS: Theory and Practice

a client to tell the Web server the domain name of the server it is trying to connect
to. The bottom line is that a particular computer with a unique IP address server can
now host multiple virtual SSL/TLS-enabled Web servers. This is important for the
large-scale deployment of the TLS protocol.

5.4.1.2 Maximal Fragment Length

We have already seen in Section 4.2 that the maximum fragment length of an SSL
record is2'* bytes. This also applies to TLS. In many situations, it is reasonable
to work with fragments of exactly this length. There are, however, also situations in
which the clients are constrained and need to operate on fragments of smaller length.
This is where the extension typmax_f r agnent _| engt h (value 1) comes into

play. It can be used by a client to tell the server that it needs to negotiate a smaller
maximal fragment length. The actual maximum fragment length is sent in the data
field of the extension. Supported values are 1 (standing’bgtes), 2 (standing for

210 pytes), 3 (standing fad2'! bytes), and 4 (standing f@r? bytes).

5.4.1.3 Client Certificate URL

Normally, when client authentication is required in the execution of the SSL/TLS
protocols, the client sends eE€TIFICATE message to the server and this message
includes a certificate. In many situations this works perfectly fine. But there are
also situations in which the transmission of a full-fledged certificate or certificate
chain is too expensive, and in which it is advantageous to transmit only a cer-
tificate URL in place of a certificate. The aim is that the server can retrieve the
client certificate from the corresponding URL. This is computationally and com-
municationally less expensive for the client. More specifically, the extension type
client _certificate_url (value 2) can be used by a client to provide a cer-
tificate URL. The data field of the extension is empty. If and only if the server has
agreed on this extension, the client provides eROFICATEURL message (type
21) instead of a “normal” ERTIFICATE message (type 11) to the serveer3IFI-
CATEURL is one of the two new message types introduced in RFC 4366 [11].

5.4.1.4 Trusted CA Keys

In the “normal” execution of the SSL/TLS protocol, the server has no clue about
what root CAs the client trusts. So when the server provides its certificate (chain)
in the CERTIFICATE message, it may be the case that the certificate is not accepted
by the client. This means that the SSL/TLS handshake needs to be repeated. In the
most extreme case, it may happen that SSL/TLS handshakes need to be repeated

TLS Protocol 157

multiple times. This is not efficient, especially if clients are configured to trust
only a few (or only very specific) root CAs. Repeated SSL/TLS handshakes are
particularly undesirable in low