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Foreword

Over the last 15 years, the shift in the world economy and transaction activity to the
online medium has perhaps been the fastest big shift in the society ever. It is quite
common today for multiple people from several countries to electronically “talk”
about participating in an online game. Imagine what that conversation would have
been like just a short 20 years ago.

Since the early days of the Web, we have realized that commercial applications
start to grow and become popular, and that securing traffic on the open Internet is a
key requirement. It goes hand in hand with the requirement that end users do not have
to perform any task in order for the secure connection to be established. Today, the
success of SSL as an Internet and e-commerce security standard is perhaps the most
visible achievement of the information security industry. There are many lessons to
be learned from this experience.

The technology was developed by a world-class team in security and network-
ing, but not within a security company. The fact that the protocol was embedded in
the browsers from their first incarnations made SSL part of a new infrastructure that
the Web accepted. When the first e-commerce applications were being considered,
it was clear that the most vulnerable area was that everyone could have access to any
information on the Internet—after all the Internet was designed to be an open net-
work to provide information and serve as a collaboration medium for all concerned.
SSL was designed from the beginning to prevent unauthorized access to secured
data on the open wire. SSL has withstood the test of more than a billion users over
15 years, and has been the underpinning of the Web security for all e-commerce
applications.

I joined Netscape as a chief scientist in early 1995, after the first version of
SSL had been released. When it became apparent that SSL may in fact become the
defacto standard for e-commerce, it was recognized that a redesign is necessary to
make sure that transactions are safe. I had the opportunity to put together a great
team of the best designers. Paul Kocher was contacted to be the security specialist
for the team, Alan Freier was the networking specialist, and Phil Karlton was the
overall architect. The team worked over a couple of months to put together a design
that can support all the requirements, not the least of which is the overall security
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level of the protocol. It is noteworthy here to mention that Netscape recognized early
on that security was one of the cornerstones of the success of the Web as a medium
for conducting commerce and the company invested a lot in the security space. Jim
Clark had contacted RSA Security at the very beginning of the company, when it
was still called Mosaic Communications to make sure that he had the right security
components in place. This was quite different from what most other companies did;
security had always been an after the fact issue, but here security was in the middle
of everything.

After the completion of the first incarnations of what was later called SSL 3.0,
we thought that we needed the security industry to “bless” the protocol. So we did
something that was quite new in the Internet industry: we contacted many security
experts from other organizations, both academic and industrial and invited them
to sessions at Netscape to work through the new protocol. These sessions proved
to be very beneficial, not just because of the expertise level in that room, but also
because this was the key for us to promote the protocol as an industry standard. The
expert team soon became part of the Netscape team and SSL 3.0 became the industry
standard for Web security.

There were two other important factors to making SSL succeed:

• The first factor was protecting the intellectual property. Often, companies
file patents to protect their intellectual property against others who may be
working on the same space. Netscape decided to file for patents to protect
SSL in order to prevent others from moving into the same space, not to get
others to obtain licenses. The patents were in fact awarded in 1997 and soon
after given away to the community for everyone to use for free.

• The second factor was to get the standards communities to adopt and own
the follow on work for SSL. We chose the Internet Engineering Task Force
(IETF) for this task because of their involvement in other Internet and security
standard work. The IETF did in fact adopt SSL 3.0 as the initial Web security
standard and called it Transport Layer Security (TLS). It was perhaps the
proper name for the protocol, versus Secure Sockets Layer (SSL), as sockets
are not actually a layer in the Internet network stack and the protocol did
actually apply at the transport layer.

The final, and perhaps most difficult, step to get SSL to be the Web security
standard was to get competitors to adopt it. At the time, Microsoft was the primary
competitor in the space, with independent effort in the same area. The effort to
“give” the protocol to the IETF served also as the catalyst to bring Microsoft to
the same table to adopt SSL as the one standard. Today, we use SSL for basically all
e-commerce and other transactions on the Web, thanks to efforts from the Netscape
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team, the security experts we brought in, and the IETF for adopting SSL 3.0 as the
first and basis protocol. The book you have in hand bears witness to the tremendous
success of SSL and TLS.

Taher Elgamal
Axway and independent security expert

Redwood City, California
September 2009





Preface

Terms like electronic commerce (e-commerce), electronic business (e-business), and
electronic government (e-government) are omnipresent today. When people use
these terms, they often refer to stringent security requirements that must be met.
If they want to show that they are tech-savvy, they bring in acronyms like SSL or
TLS. Since SSL stands forsecuresockets layer and TLS stands for transport layer
security, people think that adding SSL or TLS to applications makes them inherently
secure and magically solves all security-related problems. This is arguably not the
case and largely overestimates the role SSL/TLS can play in the security arena.
Nevertheless, SSL/TLS is still the most widely used and most important technology
to secure e-∗ applications or certain aspects thereof. This is certainly true for
applications for the World Wide Web (WWW) based on the Hypertext Transfer
Protocol (HTTP), but it is also true for many other Internet applications, such
as e-mail, instant messaging, file transfer, terminal access, or any other form of
collaboration. As mentioned by Taher Elgamal in the foreword, it is even true for
online games. Many of these applications are nowadays layered on top of SSL/TLS
to provide basic security services.

Considering the large deployment of SSL/TLS, it is important to teach e-∗
application designers and developers the fundamental principles and the rationale
behind the design of the SSL/TLS protocols. Simply invoking secure libraries and
function calls is not enough to design and develop secure applications. In fact, it
is fairly common today to invoke such libraries and function calls from exploitable
code. The resulting application is not going to be secure—whether SSL/TLS is in
place or not. Against this background, secure programming techniques are important
to build secure applications. Also, a thorough understanding of a security technology
is required to correctly apply it and to properly complement it with other security
technologies. This rule of thumb also applies to SSL/TLS; it is necessary to fully
understand what the SSL/TLS protocols can do and what they cannot do in order to
properly apply them.

The SSL/TLS protocols are not a panacea. They enable applications to be only
as secure as the underlying infrastructural components, both in terms of computer
networks and hosts (i.e., clients and servers). In the case of SSL/TLS, things are even
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more involved than they could be due to the fact that the protocol specifications use
a terminology and notation of their own. This makes it unnecessarily difficult for
nonsecurity-minded readers to get in touch with the specifications (and specifics) of
the SSL/TLS protocols. This is unfortunate (to say the least).

When I started to compile a teaching module on SSL/TLS some time ago,
I was surprised to learn that the few books that were available either addressed
the technology only superficially or—maybe worse—were out of date. This was
particularly true for the two reference books used in the field [1, 2]. They both
appeared in 2000—which, at the time of this writing, is almost 10 years ago. Against
this background, I decided to take my lecture notes and compile a new book that
would not only address the fundamental principles of the SSL/TLS protocols, but
would also try to explain the rationale behind their current design. The resulting
book is intended for anyone who wants to get a deep understanding of the SSL/TLS
protocols and their proper use—be it a theorist or practitioner. The major focus of
the book is SSL/TLS, but it also addresses related topics, such as TLS extensions,
datagram TLS (DTLS), firewall traversal, as well as public key certificates and
public key infrastructures (PKIs). Its claim is to provide a comprehensive overview
and discussion of the SSL/TLS protocols, and to put them into perspective.

Implementation issues are intentionally not addressed (or only addressed in a
very superficial way). There are so many implementations of the SSL/TLS protocols,
both freely and commercially available, that it literally makes no sense to address
them in a book like the one you have in hand. If you want to practically use the
SSL/TLS protocols (e.g., to secure an e-∗ application), then you have to delve
into the documentation and technical specification of the development environment
you are using anyway. This book is only aimed at providing the basic knowledge
to understand these documents—you still have to capture and read them. In the
case of OpenSSL, you may use [3] as a reference book. In the case of another
library or development environment, you may be be confined to use the original
documentation. Apart from implementation issues, I hope that the book is reasonably
complete. If I have missed important topics, then I am the one to blame and I hope
to have the opportunity to improve the book in the future.

This book assumes basic familiarity with the TCP/IP protocols and their
working principles. This assumption is reasonable, because anybody not familar
with TCP/IP is well advised to first get in touch and try to comprehend TCP/IP
networking, before he or she moves on to the SSL/TLS protocols. Only trying to
understand SSL/TLS is not likely to be fruitful. Readers who are unfamilar with
TCP/IP networking can consult one of the many books describing TCP/IP. Among
these books, I particularly recommend the classic books of Richard Stevens [4]
and Douglas Comer [5], but there are many other (or rather complementary) books
available in the shelves of the bookstores.
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To properly understand the contents of this book, it is also necessary to have
a working knowledge of the Internet standardization process. Again, this process is
likely to be explained in a book on TCP/IP networking. It is also explained in RFC
2026 [6] and Section 2.3 of [7]. For each protocol specified in an RFC document,
we are going to say whether it is submitted to the Internet Standards Track or
specified for experimental or informational purposes. This distinction is important
and relevant in practice.

When we discuss the practical use of the SSL/TLS protocols, it is highly rec-
ommended to visualize things with a network protocol analyzer, such asWireshark
(http://www.wireshark.org) or another software tool that provides similar function-
alities. Wireshark is a freely available open source software tool released under the
GNU General Public License. With regard to SSL/TLS, it is sufficiently complete,
meaning that it can be used to analyze SSL/TLS-based data exchanges. We don’t
reproduce screenshots in this book, mainly because the graphical user interfaces
(GUIs) of tools like Wireshark are highly nonlinear and the corresponding screen-
shots are difficult to read and interpret. When we use Wireshark output, we provide
it in textual form. This is visually less stimulating, but more useful in practice.

Because the SSL/TLS protocols are cryptographic in nature, properly under-
standing them requires at least some basic familiarity with cryptography. I try to
introduce and overview the basic principles of cryptography in a short primer in
Chapter 2, but I am well aware of the fact that—due to space limitations—the treat-
ment is fairly superficial and incomplete. Anyone who wants to get a more complete
picture is advised to additionally consult a book on cryptography. I certainly rec-
ommend my own book entitledContemporary Cryptography[8], but there are many
other books that can be used instead (many of them are referenced in [8] and Chapter
2 of this book).

SSL/TLS: Theory and Practiceis organized and structured in the following
nine chapters:

• Chapter 1,Introduction, provides some fundamentals and basic principles that
are necessary for a serious and deep treatment of network security protocols,
such as the SSL/TLS protocols.

• Chapter 2,Cryptography Primer, provides a cryptography primer, meaning
that it introduces, overviews, and puts into perspective the basic principles of
cryptography as far as they are relevant for the SSL/TLS protocols.

• Chapter 3,Transport Layer Security, briefly overviews, explains, and puts into
perspective the various technologies and protocols that can be used to provide
basic security services at the transport layer of the TCP/IP protocol stack.
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• Chapter 4,SSL Protocol, introduces, overviews, puts into perspective, and
thoroughly discusses the first main transport layer security protocol (i.e., the
SSL protocol).

• Chapter 5,TLS Protocol, does the same with the second main transport layer
security protocol (i.e., the TLS protocol). Unlike Chapter 4, it does not start
from scratch, but focuses on the main differences between the SSL and TLS
protocols.

• Chapter 6,DTLS Protocol, elaborates on the DTLS protocol, which is basi-
cally a UDP version of the TLS protocol. Again, the chapter mainly focuses
on the differences between the SSL/TLS protocols and the DTLS protocol.

• Chapter 7,Firewall Traversal, addresses the practically relevant and nontrivial
problem of how the SSL/TLS protocols can (securely) traverse a firewall. This
is a relevant topic for the practical deployment of the SSL/TLS protocols.

• Chapter 8,Public Key Certificates and PKIs, elaborates on the management of
public key certificates used for the SSL/TLS protocols, for example, as part of
a PKI. Again, this chapter is kept as short as possible and only addresses the
issues that are relevant for the understanding of the SSL/TLS protocols and
their proper use.

• Chapter 9,Conclusions and Outlook, also introduces and discusses a few
research challenges for the future.

Last but not least, the book also includes an appendix summarizing the
standardized TLS cipher suites, a list of abbreviations and acronyms, a page about
me (as an author), and an index.

I hope thatSSL/TLS: Theory and Practiceserves your needs. Also, I would
like to take the opportunity to invite you as a reader to let me know your opinions
and thoughts. If you have something to correct or add, please let me know. If I have
not expressed myself clearly, please let me know, too. I appreciate and sincerely
welcome any comment or suggestion in order to update the book in future editions
and turn it into a reference book that can be used for educational purposes. The best
way to reach me is to send a message to rolf.oppliger@esecurity.ch. You can also
visit the book’s home page at http://books.esecurity.ch/ssltls.html. I use this page to
periodically post errata lists, additional information, and complementary material. I
am looking forward to hearing from you.
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Chapter 1

Introduction

In this introductory chapter, we start slowly and gradually work towards the topic
of the book. More specifically, we provide the fundamentals and basic principles
that are necessary for a serious and deep treatment of network security protocols in
general, and the SSL/TLS protocols in particular. We start with a generic network
security architecture or terminology framework known as the OSI security architec-
ture in Section 1.1, introduce a security definition and elaborate on how the SSL/TLS
protocols attempt to meet this definition in Section 1.2, and conclude with some final
remarks in Section 1.3.

1.1 OSI SECURITY ARCHITECTURE

According to the IETF Internet Security Glossary published in RFC 2828 [1], a
security architecturerefers to “a plan and set of principles that describe (a) the
security services that a system is required to provide to meet the needs of its
users, (b) the system elements required to implement the services, and (c) the
performance levels required in the elements to deal with the threat environment.” As
such, a security architecture is always the result of applying principles of systems
engineering and addresses issues related to physical security, computer security,
communication security, organizational security (e.g., administrative and personnel
security), and legal security. This integral approach to security is important; too
many systems and applications are built and deployed without having an appropriate
security architecture in mind.

Following the line of argumentation introduced in [2], it is worthwhile to have
a look at the real world to illustrate the importance of having (implemented) an
appropriate security architecture. If, for example, we want to build a house, then
the first—and often most important—person to talk to is the architect. We hardly

1



2 SSL and TLS: Theory and Practice

know anything about architecture and the art or science of designing and building
a house, so we feel comfortable having a professional deal with these issues on our
behalves. One of the first things an architect does—either explicitly or implicitly—is
a threat and risk analysis. For example, given the fact that most burglars enter a house
through the front door, he or she makes sure that the house has a front door with a
lock, and that entering the house always requires breaking either the door’s lock or
a windowpane. In general, the architect does not design the house with unbreakable
windowpanes; unbreakable windowpanes are simply too expensive and impractical
for normal houses. If, however, the house were to host a branch bank, then broken
windows would be more likely to occur, and the architect would probably suggest
to install unbreakable windowpanes (or no windows at all). Also, he or she would
consult a security specialist to get a burglar alarm system and a vault. The bottom
line is that the threat and risk analysis leads to an architecture that is reasonably
secure for a given environment. This type of analysis is omnipresent in daily life;
often we don’t even realize that it is going on in the back of our heads.

Contrary to the real world, the importance of doing a threat and risk analysis
and coming up with an appropriate security architecture is less common and hardly
understood in the digital world. Too many companies and organizations try to
avoid security architectures and directly go to ad hoc testing (also known as ethical
hacking1). They hire external forces that attack and try to break into their systems,
networks, or applications. If the forces do not suceed, then the customers assume (or
rather hope) that they are secure. If, however, the forces suceed, then the customers
assume (or rather know) that they are insecure. In this case, they patch the found
vulnerabilities and security holes, and then they hope that they are done, meaning
that they have found and eliminated all relevant vulnerabilities and security holes.
Against this background, the decision whether a customer is secure or not looks
arbitrary and mainly depends on the capabilities of the external forces and the tools
they are aware of and have at hand.

An interesting point to note is that the real-world analogy of an “ethical
hacker” would be an “ethical burglar,” and that we don’t see this profession in the
real world. In fact, ex-burglars are seldom hired to break windowpanes or rob houses
simply to show that the initiator is vulnerable. We know that we are vulnerable, and
hence there is no market for ex-burglars to ethically break into houses. In the real
world, we neither trust them nor do we believe in the value of such investigations
(if this statement were wrong, then there would be a market for such services in the
first place). Why should the digital world be different? In fact, it does not seem to be
different, and breaking into computer systems and networks is always possible—it

1 One commonly cited difference between an ethical hacker and an adversary is that the former
operates with the knowledge, authorization, and consent obtained in advance, whereas the latter
operates without these features.
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is just a question of time, talent, and expenditure. Another point to keep in mind
and consider with care when it comes to ethical hacking is that such investigations
mainly address threats from the outside. This is not particularly useful, as most
statistics reveal the fact that many IT systems and networks are routinely attacked
from the inside. This means that insiders should also be considered to be part of the
threats model.

In the digital world, we need a clear understanding of what we are going
to design and implement, what adversaries we should keep in mind and protect
against, what resources (in terms of time and computational power) these adversaries
typically have, what attack strategies are most likely to occur, what the implications
are if an adversary succeeds, what reactions are planned, and so on. All of these
considerations should be made in a comprehensive threat and risk analysis that is
backed with a security audit. Based on this analysis and audit, a comprehensive
security architecture must be defined and documented. Keep in mind that the security
architecture is specific and situational, and that there is no such thing as a universally
applicable security architecture.

In an attempt to extend the field of application of the Open Systems Inter-
connection (OSI) basic reference model, the Joint Technical Committee 1 (JTC1)
of the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) appended a security architecture as part two of
ISO/IEC 7498 in 1989 [3]. Since its publication, the OSI security architecture has
turned out to be a primary reference for network security professionals working in
the field. In 1991, the Telecommunication Standardization Sector of the International
Telecommunication Union (ITU), also known as ITU-T, adopted the OSI security
architecture in recommendation X.800 [4]. Also in the early 1990s, the Privacy and
Security Research Group (PSRG) of the Internet Research Task Force (IRTF2) pre-
liminarly adapted the OSI security architecture in a corresponding Internet security
architecture published as an Internet-Draft.3 In essence, ISO/IEC 7498-2, ITU-T
X.800, and the Internet security architecture draft all describe the same security
architecture, and in this book we use the termOSI security architectureto refer to
all of them. Contrary to the OSI basic reference model, the OSI security architecture
is in widespread use today—at least for referential purposes.

In essence, the OSI security architecture provides a general description of
security services and related security mechanisms and discusses their interrelation-
ships. It also shows how the security services map onto a given network architecture

2 The IRTF is a sister group to the Internet Engineering Task Force (IETF). Its stated mission is
“To promote research of importance to the evolution of the future Internet by creating focused,
long-term and small Research Groups working on topics related to Internet protocols, applications,
architecture and technology.”

3 This work has been abandoned.
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and briefly discusses their appropriate placement within the OSI reference model.
Having the definition of a security architecture according to [1] in mind, it is quite
obvious that the OSI security architecture as specified in [3] and [4] does not con-
form to it. In fact, the OSI security architecture rather refers to a terminological
framework and a general description of security services and related security mech-
anisms than a full-fledged security architecture. For convenience, we still use the
term OSI security architecture in this book. But keep in mind that an e-∗ application
usually requires a security architecture that is more comprehensive and situational.
It may use the OSI security architecture as a starting point, but it normally has to go
beyond it and be more specific.

Table 1.1
Classes of OSI Security Services

1 Peer entity authentication service
Data origin authentication service

2 Access control service
3 Connection confidentiality service

Connectionless confidentiality service
Selected field confidentiality service
Traffic flow confidentiality service

4 Connection integrity service with recovery
Connection integrity service without recovery
Selected field connection integrity service
Connectionless integrity service
Selected field connectionless integrity service

5 Nonrepudiation with proof of origin
Nonrepudiation with proof of delivery

1.1.1 Security Services

As shown in Table 1.1, the OSI security architecture distinguishes between five
classes of security services (i.e., authentication, access control, data confidentiality,
data integrity, and nonrepudiation4 services). Just as layers define functionality in the
OSI reference model, so do services in the OSI security architecture. These services
may be placed at appropriate layers in the OSI reference model.

4 There is some controversy in the community regarding the correct spelling of the term “nonrepu-
diation.” In fact, the OSI security architecture uses “non-repudiation” instead of “nonrepudiation,”
and there are many people still using this spelling. In this book, however, we use the more modern
spelling of the term without a hyphen.
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1.1.1.1 Authentication Services

As its name suggests, anauthentication serviceis to provide for the authentication of
a communicating peer entity or data origin. The corresponding services are slightly
different:

• A peer entity authentication serviceprovides each entity in an association with
the ability to verify that the peer entity is what it claims to be. In particular,
a peer entity authentication service provides assurance that an entity is not
attempting to masquerade or performing an unauthorized replay. Peer entity
authentication is typically performed either during a connection establishment
phase or, occasionally, during a data transfer phase.

• A data origin authentication serviceallows the source of data received to
be verified to be as claimed. A data origin authentication service is typically
provided during a data transfer phase. It cannot provide protection against
the duplication or modification of data units. To achieve this, the data origin
authentication service must be complemented with a data integrity service.

Authentication services are important and a prerequisite for the provision
of authorization, access control, and accountability services. Authorization refers
to the process of granting rights, which includes the granting of access based on
access rights. Access control refers to the process of enforcing access rights, and
accountability refers to the property that actions of an entity can be traced uniquely
to this particular entity.

1.1.1.2 Access Control Services

Access control servicesare to protect system resources against unauthorized use.
The use of a system resource is unauthorized, if the entity that seeks to use the
resource does not have the privileges or permissions necessary to do so. As such,
access control services are typically the most commonly thought of services in
computer and network security. But as mentioned above, access control services
are closely tied to authentication services: a user or process acting on the user’s
behalf must usually be authenticated before an access control service can be invoked.
Authentication and access control services therefore usually go hand in hand—this is
why people sometimes use the termauthentication and authorization infrastructure
(AAI) to refer to an infrastructure that provides support for both authentication and
authorization in terms of access control.
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1.1.1.3 Data Confidentiality Services

In general parlance, data confidentiality refers to the property that data is not made
available or disclosed to unauthorized individuals, entities, or processes, and hence
data confidentiality servicesprotect data from unauthorized disclosure. There are
several forms of such services:

• A connection confidentiality serviceprovides confidentiality for all data trans-
ferred over a connection.

• A connectionless confidentiality serviceprovides confidentiality for individual
data units.

• A selective field confidentiality serviceprovides confidentiality for certain
fields within individual data units or data transmitted in a connection.

• A traffic flow confidentiality serviceprovides confidentiality for traffic flows,
meaning that it attempts to protect all data that is associated with and com-
municated in a traffic flow from further analysis. Traffic analysis, in turn, can
be defined as the “inference of information from observable characteristics of
data flow(s), even when the data is encrypted or otherwise not directly avail-
able. Such characteristics include the identities and locations of the source(s)
and destination(s), and the presence, amount, frequency, and duration of oc-
currence” [1].

The first three confidentiality services can be implemented in a simple and
straightforward way by using standard cryptographic techniques. This is not neces-
sarily the case for traffic flow confidentiality services. In fact, the provision of traffic
flow confidentiality services is inherently more involved; it is certainly beyond the
scope of SSL/TLS.

1.1.1.4 Data Integrity Services

Data integrity refers to the property that data is not altered or destroyed in some
unauthorized way, and hencedata integrity servicesare to protect data from unau-
thorized modification. Again, there are several forms of such services:

• A connection integrity service with recoveryprovides integrity for all data
transmitted in a connection. If possible, the loss of integrity is recovered.

• A connection integrity service without recoveryis similar to a connection in-
tegrity service with recovery, except that the loss of integrity is not recovered.
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• A selected field connection integrity serviceprovides integrity for specific
fields within the data transmitted in a connection.

• A connectionless integrity serviceprovides integrity for indiviual data units.

• A selected field connectionless integrity serviceprovides integrity for specific
fields within indiviual data units.

The use of a peer entity authentication service at the start of a connection
and a connection integrity service during the connection can jointly provide for
the corroboration of the source of all data units transferred on the connection,
the integrity of those data units, and may additionally detect data units that are
duplicated.

1.1.1.5 Nonrepudiation Services

Nonrepudiation servicesare implemented to prevent an entity involved in a commu-
nication from later denying having participated in all or part of the communication.
In a messaging environment, for example, such services protect against an originator
denying that he or she has originated the message, or a recipient denying that he or
she has received the message. Consequently, there are at least two nonrepudiation
services that are relevant in practice:

• A nonrepudiation service with proof of originprovides the recipient of a
message with a proof of origin.

• A nonrepudiation service with proof of deliveryprovides the sender of a
message with a proof of delivery.

Nonrepudiation services are increasingly important for many Internet-based
e-commerce (e.g., [5]). Consider, for example, the situation in which an investor
communicates with his or her stockbroker over the Internet. If the investor decides
to sell a large number of stocks, then he or she sends a corresponding request to the
stockbroker. If the prices are about to change only moderately, then everything works
fine. But if the stock price raises sharply, then the investor may deny ever sending the
order to sell the stocks. Conversely, it is possible that under reverse circumstances
the stockbroker may deny receiving the order to sell the stocks. In situations like
these, the provision of nonrepudiation services ought to be mandatory.
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1.1.2 Security Mechanisms

In addition to the security services mentioned above, the OSI security architecture
also itemizes security mechanisms that may be used to implement the services. A
distinction is made between specific security mechanisms and pervasive ones.

Table 1.2
OSI Specific Security Mechanisms

1 Encipherment
2 Digital signature mechanisms
3 Access control mechanisms
4 Data integrity mechanisms
5 Authentication exchange mechanisms
6 Traffic padding mechanisms
7 Routing control mechanisms
8 Notarization mechanisms

1.1.2.1 Specific Security Mechanisms

Specific security mechanisms may be incorporated into an appropriate layer to
provide some of the security services mentioned in Section 1.1.1. As shown in Table
1.2, the OSI security architecture enumerates eight specific security mechanisms that
can be characterized as follows:

1. Enciphermentcan be used to protect the confidentiality of data units or
to support or complement other security mechanisms. The cryptographic
techniques used for encipherment are introduced in Chapter 2.

2. Digital signature mechanismscan be used to provide an electronic analog of
handwritten signatures for electronic documents. Like handwritten signatures,
digital signatures must not be forgeable, a recipient must be able to verify it,
and the signatory must not be able to repudiate it later. But unlike handwritten
signatures, digital signatures incorporate the data (or a hash value of the data)
that is signed. Different data therefore results in different signatures even if
the signatory remains the same. Again, we postpone the discussion of digital
signature mechanisms to Chapter 2.

3. Access control mechanismscan be used to control access to system resources.
Traditionally, a distinction is made between a discretionary access control
(DAC) and a mandatory access control (MAC) [6]. In either case, the access
control is described in terms of subjects, objects, and access rights:
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• A subject is an entity that attempts to access objects. This can be a host,
a user, or an application.

• An object is a resource to which access needs to be controlled. This can
range from an individual data field in a file to a large program.

• Access rights specify the level of authority for a subject to access
an object, so access rights are defined for each subject-object-pair.
Examples of UNIX-style access rights are read, write, and execute.

More recently, people have introduced the notion of a role and have
developed role-based access controls (RBACs) to make the assignment of
access rights to subjects more dynamic and flexible (e.g., [7, 8]).

4. Data integrity mechanismscan be used to protect the integrity of data—be it
individual data units or fields within them or sequences of data units or fields
within them. Note that data integrity mechanisms, in general, do not protect
against replay attacks that work by recording and replaying previously sent
valid messages. Also, protecting the integrity of a sequence of data units and
fields within these data units generally requires some form of explicit ordering,
such as sequence numbering, time-stamping, or cryptographic chaining.

5. Authentication exchange mechanismscan be used to verify the claimed iden-
tities of entities. It is common to use the termstrong to refer to an authenti-
cation exchange mechanism that uses cryptographic techniques to protect the
messages that are exchanged, andweakto refer to an authentication exchange
mechanism that does not do so. It goes without saying that weak authentica-
tion exchange mechanisms are vulnerable to passive wiretapping and replay
attacks.

6. Traffic padding mechanismscan be used to protect against traffic analysis. It
works by having the data originator generate and transmit randomly composed
data hand in hand with the actual data. Only the data originator and intended
recipient(s) know how these data are transmitted; thus, an unauthorized party
who captures and attempts to replay the data cannot distinguish the randomly
generated data from meaningful data.

7. Routing control mechanismscan be used to choose—either dynamically or
by prearrangement—specific routes for data transmission. Communicating
systems may, on detection of persistent passive or active attacks, wish to
instruct the network service provider to establish a connection via a different
route. Similarly, data carrying certain security labels may be forbidden by
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policy to pass through certain networks or links. Routing control mechanisms
are not always available, but if they are they tend to be very effective.

8. Notarization mechanismscan be used to assure certain properties of the data
communicated between two or more entities, such as its integrity, origin, time,
or destination. The assurance is provided by a trusted party—sometimes also
called trusted third party (TTP)—in a testifiable manner.

All specific security mechanisms except access control, traffic padding, and
routing control mechanisms are employed by the SSL/TLS protocols. Access control
mechanisms must be used above the transport layer (typically at the application
layer), whereas traffic padding and routing control mechanisms are best invoked
underneath the transport layer.

1.1.2.2 Pervasive Security Mechanisms

Contrary to specific security mechanisms, pervasive security mechanisms are gen-
erally not specific to a particular security service. Some of these mechanisms can
even be regarded as aspects of security management. As shown in Table 1.3, the
OSI security architecture enumerates the following five security mechanisms that
are pervasive in this sense:

Table 1.3
OSI Pervasive Security Mechanisms

1 Trusted functionality
2 Security labels
3 Event detection
4 Security audit trail
5 Security recovery

1. As its name suggests,trusted functionalityis about functionality that can be
trusted to perform as intended. From a security perspective, any functionality
(provided by a service and implemented by a mechanism) should be trusted,
and hence trusted functionality is a pervasive security mechanism that is
orthogonal to all specific security mechanisms itemized above.

2. System resources may havesecurity labelsassociated with them, for example,
to indicate a sensitivity level. This allows the resources to be treated in an
appropriate way. For example, it allows data to be encrypted transparently
(i.e., without user invocation) for transmission. In general, a security label
may be additional data associated with the data or it may be implicit (e.g.,
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implied by the use of a specific key to encipher data or implied by the context
of the data such as the source address or route).

3. It is increasingly important to complement preventive security mechanisms
with detective and even corrective ones. This basically means that security-
related events must be detected in one way or another. This is whereevent
detectionas another pervasive security mechanism comes into play. Event
detection basically depends on heuristics.

4. A security audit refers to an independent review and examination of system
records and activities to test for adequacy of system controls, to ensure
compliance with established policy and operational procedures, to detect
breaches in security, and to recommend any indicated changes in control,
policy, and procedures. Consequently, asecurity audit trail refers to data
collected and potentially used to facilitate a security audit. Needless to say
that this a very fundamental and important pervasive security mechanism.

5. As mentioned above, corrective security mechanisms are getting more and
more important.Security recoveryis about implementing corrective security
mechanisms and putting them in appropriate places. Similar to event detec-
tion, security recovery largely depends on heuristics.

The SSL/TLS protocols do not prescribe any pervasive security mechanism.
Instead, it is up to a particular implementation to support one or several pervasive
security mechanisms. It goes without saying that SSL/TLS alert messages at least
provide a basis for event detection, security audit trail, and security recovery.

Last but not least, we recapitulate the fact that the OSI security architecture
has not been developed to solve a particular network security problem, but rather
to provide the network security community with a terminology that can be used
to consistently describe and discuss security-related problems and corresponding
solutions. In this book, we use the OSI security architecture exactly for this purpose.

1.2 SECURITY DEFINITION

With the profileration of the Internet and WWW for e-∗ applications, security has
become a major issue. But the termsecurityhas many facets, and it not always clear
what people mean when they talk about security (sometimes it is not even clear that
they mean anything in the first place). Instead of properly analyzing the security
requirements of an e-∗ application, people sometimes just bring in terms likeSSLor
TLS. Since the SSL/TLS protocols are not known to be insecure, people are expected
to get a good feeling about the security of the e-∗application. It goes without saying
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that the reduction of security to SSL/TLS is inappropriate and overly simplified,
and that a deeper security discussion is required most of the time. The statement
“SSL/TLS equals security” is wrong and sometimes even dangerous (because it
leads to an easygoing user behavior).

In order to make precise statements about the security of a system, such as
an e-∗ application, one must understand the security requirements of the application
and how these are satisfied through deployment and administration. Unfortunately,
reality looks different, and the world is full of systems that claim to be secure
without providing an appropriate definition for security. This is unfortunate, because
anything can be claimed to be secure, unless its meaning is defined and precisely
nailed down. In general, a security definition must answer (at least) the following
two questions:

1. What are the capabilities of the adversary one has in mind?An answer to
this question must specifiy, for example, the adversary’s computing power,
available memory, available time, types of feasible attacks, and access to a
priori or side information. Properly answering this question culminates in a
threats model.

2. What is the task the adversary must solve in order to be successful (i.e., to
break the security of the system)?In a typical setting, the adversary’s task is
to find (i.e., compute, guess, or otherwise determine) one or several pieces
of information he or she should not be able to know. For example, if the
adversary is able to determine a secret key used for encryption, then he or she
must certainly be considered to be successful. There are, however, also weaker
forms of attacks that may still be considered to be successful. For example,
the adversary may be able to determine only the first plaintext bit or byte of
a given ciphertext. This task may be simpler to solve, but being able to solve
it may still be devastating in a given situation. For example, if the adversary
knows that the plaintext message is either “Yes” or “No,” then being able to
determine the first plaintext byte reveals the entire plaintext message.

Strong security definitions are obtained when the adversary is assumed to be
as powerful as possible, whereas the task he or she must solve is assumed to be as
simple as possible. Let us consider a real-world analogy to illustrate this point: if we
play a soccer game, then we may consider two scenarios:

1. Our team is playing against the world’s best players and they are not even able
to make a single goal.

2. Our team is playing against a group of schoolboys and they are not able to win
the game.
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In this example, it is obvious that our team is better in the first case. The
adversary is stronger (i.e., the world’s best soccer players) and the task to solve is
simpler (i.e., make a single goal). Consequently, if this overly strong adversary is not
able to solve even this simple task, then we are really good. In computer security,
the situation is comparable. We assume a strong adversary who must solve a simple
task. If he or she does not succeed, then we can feel secure.

More generally, we capture the notion of a secure system in the following
Definition 1.1.

Definition 1.1 (Secure system)A system issecureif an adversary with specified
capabilities is not able to break it, meaning that he or she is not able to solve the
specified task.

Following the line of argumentation given above, there are different degrees
of security (depending on the adversary and the task to solve) that fulfill Definition
1.1. If we want to argue about the security of a particular system, then we must at
least answer the two questions itemized above. This applies in all cases, and hence
it also applies to the SSL/TLS protocols or any e-∗ application that employs them.

With regard to the first question, it is reasonable to make standard crypto-
graphic assumptions, such as that the adversary is polynomially bounded in terms of
computational power and time, meaning that he or she cannot factorize large inte-
gers, compute discrete logarithms, and so on, and that the standardDolev-Yao model
[9] applies. In this model, the adversary is yet able to control the communications
network used to transmit messages, but he or she is not able to compromise the end
systems. This basically means that the adversary can mount all kinds of (passive and
active) attacks on the network. Roughly speaking, a passive attack “attempts to learn
or make use of information from the system but does not affect system resources,”
whereas an active attack “attempts to alter system resources or affect their operation”
[1]. Obviously, passive and active attacks can (and will) be combined to effectively
invade a computing or networking environment. For example, a passive wiretapping
attack can be used to eavesdrop on the authentication information that is transmitted
in the clear (e.g., username and password), and this information can then be used
to masquerade the user and to actively attack the system accordingly. The SSL/TLS
protocols have been designed to be secure in the Dolev-Yao model, but the model
has some limitations and shortcomings. For example, many contemporary attacks
are either based on malware or employ sophisticated techniques to spoof the user
interface of the client systen. These attacks are outside the scope of the Dolev-Yao
model, and hence the model needs to be extended. This is a current topic in network
security research.

With regard to the second question, things are even more involved. We already
mentioned the case in which the adversary is able to determine the first plaintext
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bit or byte from a given ciphertext. Whether this poses a problem mainly depends
on the application context. Again, if we know, for example, that a given message
represents either “Yes” or “No,” then the decryption of the very first byte is sufficient
to reveal the entire plaintext message. Similar situations occur if only a few plaintext
messages are possible in the first place. To be as application-independentas possible,
one usually requires that even a very simple task is impossible or infeasible to solve
for the adversary one has in mind. For example, theorists often assume an ideal
system and require that an adversary cannot tell a real system apart form this ideal
system with a probability significantly greater than guessing. Note that telling two
systems apart is indeed the simplest task to solve for an adversary, because any
difference between the systems can be exploited. So if the real system cannot be
told apart from the ideal system, then the real system obviously behaves like the
ideal system, and hence, for all practical purposes, the real system implements the
ideal system. Using this line of argumentation, many cryptographic systems have
been shown to be secure in the past—at least in theory. Because people are looking
for tasks that are as simple to solve as possible, they usually get nervous when a
vulnerability is found in a real system. It may not be obvious how to exploit the
vulnerability, but its mere existence may still lead to corrective actions. For example,
as further addressed in Section 5.3, when some original block ciphers in CBC mode
were shown to leak information, the TLS protocol specification was immediately
modified to deal with the defect. This pattern frequently occurs and presses ahead
with research and development.

The bottom line is that properly defining security is not trivial, and that one has
to be very careful about the security definition one uses and refers to in a particular
environment. This obviously also applies to the SSL/TLS protocols and the e-∗
applications that employ them.

1.3 FINAL REMARKS

In this chapter, we provided the fundamentals and basic principles that are necessary
for a serious and deep treatment of cryptographic network security protocols, such
as the SSL/TLS protocols. More specifically, we introduced and overviewed the OSI
security architecture and possibilities to define security. We will use both topics in
this book: we use the OSI security architecture as a terminology framework and
we use the possibilities to define security whenever we claim that something is
secure. With regard to the second point, we want to be precise in this book. We avoid
striking statements about the security of the SSL/TLS protocols; instead, we want
to specifically say what security services the SSL/TLS protocols are able to provide
and what (specific and/or pervasive) security mechanisms are employed to actually
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provide the services. Also, when we elaborate on security-related modifications
of the SSL/TLS protocols, we want to be specific and explain the attacks the
modifications are intended to protect against. If there is no attack a modification
can protect against, then the modification is useless and can be discarded in the first
place. Or, alternatively speaking, if an attack is not relevant in a given application
context, then the modification need not be considered in the first place. These
considerations are important to put things into perspective.
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Chapter 2

Cryptography Primer

Cryptography is an increasingly important and broad subject area that is covered in
many books (e.g., [1–20] itemized in alphabetical order with regard to their respec-
tive authors). In this chapter, we provide a short cryptography primer, meaning that
we introduce, overview, and put into perspective the basic principles of cryptography
as far as they are relevant for a proper understanding of the SSL/TLS protocols. In
Section 2.1, we introduce the topic, in Section 2.2, we overview and put into per-
spective the cryptosystems in use today, and in Section 2.3, we conclude with some
final remarks. As already mentioned in the Preface, more information is available,
for example, in [15].

2.1 INTRODUCTION

In this section, we introduce cryptography at a fairly high level of abstraction.
We start with some preliminary remarks mainly regarding terminology, introduce
cryptographic systems (cryptosystems), distinguish between three classes of cryp-
tosystems, elaborate on secure cryptosystems, provide some historical background
information, and briefly overview the legal situation.

2.1.1 Preliminary Remarks

The term cryptology is derived from the Greek words “kryptós,” standing for
“hidden,” and “lógos,” standing for “word.” Consequently, the meaning of the term
cryptology is best paraphrased as “hidden word.” This paraphrase refers to the
original intent of cryptology, namely to hide the meaning of specific words and to
protect their confidentiality and secrecy accordingly. From today’s perspective, this

17
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viewpoint is too narrow and the term cryptology is used for many other security-
related purposes and applications (this point should become clear in the remaining
part of this chapter).

Cryptology refers to the mathematical science and field of study that comprises
both cryptography and cryptanalysis.

• The term cryptography is derived from the Greek words “kryptós” (see
above) and “gráphein,” standing for “write.” Consequently, the meaning of
the term cryptography is best paraphrased as “hidden writing.” According
to [21], cryptography refers to the “mathematical science that deals with
transforming data to render its meaning unintelligible (i.e., to hide its semantic
content), prevent its undetected alteration, or prevent its unauthorized use.
If the transformation is reversible, cryptography also deals with restoring
encrypted data to intelligible form.” Consequently, cryptography refers to the
process of protecting data in a very broad sense.

• The termcryptanalysisis derived from the Greek words “kryptós” (see above)
and “analýein,” standing for “to loosen.” Consequently, the meaning of the
term cryptanalysis can be paraphrased as “to loosen the hidden word.” This
paraphrase refers to the process of destroying the cryptographic protection,
or—more generally—to study the security properties and possibilities to
break cryptographic techniques and systems. Again referring to [21], the term
cryptanalysis is used to refer to the “mathematical science that deals with
analysis of a cryptographic system in order to gain knowledge needed to break
or circumvent the protection that the system is designed to provide.” As such,
the cryptanalyst is the antagonist of the cryptographer, meaning that his or
her job is to break or at least circumvent the protection the cryptographer has
designed and implemented in the first place. Quite naturally, there is an arms
race going on between cryptographers and cryptanalysts.

Many other definitions for the terms cryptology, cryptography, and cryptanal-
ysis are available in the literature. For example, the term cryptography is some-
times said to refer to the study of mathematical techniques related to all aspects of
information security (e.g., [12]). These aspects include (but are not restricted to)
data confidentiality, data integrity, entity authentication, data origin authentication,
and/or nonrepudiation. Again, this definition is broad and comprises anything that is
directly or indirectly related to information security.

In some literature, the term cryptology is even said to include steganography
(in addition to cryptography and cryptanalysis).

• The termsteganographyis derived from the Greek words “steganos,” standing
for “impenetrable,” and “gráphein” (see above). Consequently, the meaning



Cryptography Primer 19

of the term steganography can be paraphrased as “impenetrable writing.” Ac-
cording to [21], the term steganography refers to “methods of hiding the ex-
istence of a message or other data. This is different than cryptography, which
hides the meaning of a message but does not hide the message itself.” Let
us consider an analogy to make this point more clear: if we have money to
protect or safeguard, then we can either hide its existence (by putting it, for
example, under a mattress), or we can put it in a safe that is assumed to be
burglarproof. In the first case, we are referring to steganographic methods,
whereas in the second case, we are referring to cryptographic methods. An
example of a formerly used steganographic method is invisible ink. Contem-
porary methods are more sophisticated and try to hide additional information
in electronic files. In general, this information is arbitrary. It may, however,
also be used to name the owner of a file or its recipient(s). In the first case,
one refers todigital watermarking, whereas in the second case, one refers to
digital fingerprinting. Digital watermarking and fingerprinting are currently
very active areas of research and development (e.g., [22, 23]).

It goes without saying that cryptographic and steganographic techniques are
not mutually exclusive, and that they can be combined to complement each other. In
fact, there are increasingly many products that combine cryptographic and stegano-
graphic techniques in innovative and ingenious ways. We only refer to TrueCrypt’s
hidden volumes that are to provide plausible deniability.

2.1.2 Cryptographic Systems

According to [21], the termcryptographic system(or cryptosystemin short) refers to
“a set of cryptographic algorithms together with the key management processes that
support use of the algorithms in some application context.” Again, this definition is
broad and comprises all kinds of cryptographic algorithms and protocols.1 The term
algorithm, in turn, is usually defined as a well-defined computational procedure that
takes a variable input and generates a corresponding output. It is sometimes also
required that an algorithm halts within a reasonable amount of time. Typically, one
distinguishes between deterministic and probabilistic algorithms.

1 In some literature, the termcryptographic schemeis used to refer to a cryptographic system.
Unfortunately, it is seldom explained what the difference(s) between a (cryptographic) scheme and
a system really is (are). So for the purpose of this book, we don’t make a distinction, and we use
the term cryptographic system to refer to either of them. We hope that this simplification is not
too confusing. In the realm of digital signatures, for example, people frequently talk about digital
signature schemes. In this book, however, we are consistantly talking about digital signature systems
and actually mean the same thing.
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• An algorithm isdeterministicif its behavior is completely determined by the
input. Consequently, the algorithm always generates the same output for the
same input (if executed multiple times).

• An algorithm isprobabilistic(or randomized) if its behavior is not completely
determined by the input, meaning that the algorithm internally uses and takes
advantage of randomly or pseudorandomly generated values. Consequently, a
probabilistic algorithm may generate a different output each time it is executed
with the same input.

If more than one entity takes part in the execution of an algorithm (or
the computational procedure it defines, respectively), then one is in the realm of
protocols. Consequently, a protocol can be viewed as a distributed algorithm in
which two or more entities take part. Alternatively, one can also define a protocol as a
distributed algorithm in which a set of entities (instead of two or more entities) takes
part. In this case, it becomes immediately clear that an algorithm also represents a
protocol, namely one that is degenerated in a specific sense (i.e., the set consists
of only one entity). Hence, an algorithm can always be viewed as a special case
of a protocol. The major distinction between an algorithm and a protocol is that
only one entity is involved in the former, whereas typically two or more entities
are involved in the latter. This distinguishing fact is important and must be kept
in mind when one talks about algorithms and protocols (not only cryptographic
ones). For example, it becomes immediately clear that protocols are typically more
involved than algorithms. Similar to an algorithm, a protocol may be deterministic
or probabilistic—depending on whether the protocol internally uses random values.

In cryptography, one is typically interested incryptographic algorithmsand
cryptographic protocols(i.e., algorithms and protocols that employ and make use of
cryptographic techniques and mechanisms). Remember the definition for a crypto-
graphic system (or cryptosystem) given above. According to this definition, a cryp-
tosystem may comprise more than one algorithm, and the algorithms need not neces-
sarily be executed by the same entity (i.e., they may be executed by multiple entities
in a distributed way). Consequently, this notion of a cryptosystem comprises the
notion of a cryptographic protocol as suggested above. Hence, another way to look
at cryptographic algorithms and protocols is to say that a cryptographic algorithm
is a single-entity cryptosystem, whereas a cryptographic protocol is amultientity
or multiple entities cryptosystem. These terms, however, are not really used in the
literature.

It is important to note that cryptographic applications may consist of multiple
(sub)protocols, that these (sub)protocols and their concurrent executions may inter-
act in some subtle ways, and that these interactions and interdependencies may be
exploited by chosen-protocol attacks (see, for example, [24]). As of this writing, we
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are just at the beginning of properly understanding chosen-protocol attacks and how
they can be used in practice.

In the cryptographic literature, it is quite common to use human names to
refer to the entities that take part and participate in a cryptographic protocol. For
example, in a two-party protocol the participating entities are usually calledAlice
andBob. This is a convenient way of making things unambiguous with relatively
few words, since the pronounshecan then be used for Alice, andhecan be used for
Bob. The disadvantage of this naming scheme is that people assume that the names
are referring to people. This need not be the case, and Alice, Bob, and all other
entities may be computer systems, cryptographic devices, or anything else. In this
book, we don’t follow the tradition of using Alice, Bob, and the rest of the gang.
Instead, we use single-letter characters, such as A, B, C,. . . , to refer to the entities
that take part and participate in a cryptographic protocol. This is less fun (we guess),
but more appropriate (we hope). At least it gives us the opportunity to distinguish
between the devices that implement cryptographic techniques and mechanisms and
the human users of these devices.

2.1.3 Classes of Cryptographic Systems

Cryptographic systems may or may not use secret parameters (e.g., cryptographic
keys). If secret parameters are used, then they may or may not be shared between the
participating entities. Consequently, there are three classes of cryptographic systems
(see Definitions 2.1–2.3).

Definition 2.1 (Unkeyed cryptosystem)An unkeyed cryptosystem is a cryptographic
system that uses no secret parameter.

Representatives of unkeyed cryptosystems are one-way functions, crypto-
graphic hash functions, and random bit generators as outlined in Section 2.2.1.

Definition 2.2 (Secret key cryptosystem)A secret key cryptosystem is a crypto-
graphic system that uses secret parameters that are shared between the participating
entities.

Representatives of secret key cryptosystems are symmetric encryption sys-
tems, message authentication codes, and pseudorandom bit generators (PRBGs) as
outlined in Section 2.2.2.

Definition 2.3 (Public key cryptosystem)A public key cryptosystem is a crypto-
graphic system that uses secret parameters that are not shared between the partici-
pating entities.
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Representatives of public key cryptosystems are asymmetric encryption sys-
tems, digital signature systems, and key agreement protocols as outlined in Section
2.2.3.

More concrete examples of unkeyed, secret key, and public key cryptosystems
are given in the sections referenced above. Let us now focus on the notion of a
“secure” cryptosystem.

2.1.4 Secure Cryptosystems

The goal of cryptography is to design, implement, deploy, and make use of crypto-
graphic systems that are secure in some meaningful way. In order to make precise
statements about the security of a cryptosystem, one must formally define the term
security. According to Section 1.2, one must answer at least two questions:

• What are the capabilities of the adversary?

• What is the task the adversary must solve in order to be successful (i.e., to
break the security of the system)?

Referring to Definition 1.1, a cryptographic system issecureif an adversary
with specified capabilities is not able to break it, meaning that he or she is not able to
solve the specified task. Consequently, there are several notions of security that can
be considered for a cryptographic system (one for every adversary and every possible
task to solve). Depending on the adversary’s capabilities, for example, there are two
notions of security usually distinguished in the literature.

Unconditional security: If the adversary is not able to solve the task even with
infinite computing power, then we talk aboutunconditionalor information-
theoretic security. The mathematical theories behind this type of security are
probability theory and information theory.

Conditional security: If the adversary is theoretically able to solve the task, but it
is computationally infeasible for him or her (meaning that he or she is not able
to solve the task given his or her resources, capabilities, and access to a priori
or side information), then we talk aboutconditionalor computational secu-
rity. The mathematical theory behind this type of security is computational
complexity theory.

In some literature,provable securityis mentioned as yet another notion of
security. The idea of provable security goes back to the early days of public key
cryptography, when Whitfield Diffie and Martin E. Hellman proposed a complexity-
based proof (for the security of a public key cryptosystem) [25]. The idea is
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to show that breaking a cryptosystem is computationally equivalent to solving a
hard mathematical problem. This means that one must prove the following two
statements:

• If the hard problem can be solved, then the cryptosystem can be broken.

• If the cryptosystem can be broken, then the hard problem can be solved.

Diffie and Hellman proved only the first statement for their key exchange
protocol. This is unfortunate, because the second statement is also important for
the security of a system. If we can prove that an adversary who is able to break a
cryptosystem is also able to solve the hard problem, then we can argue that it is
very unlikely that such an adversary really exists and hence that the cryptosystem in
question is likely to be secure. The notion of provable security has fueled a lot of
research and there are many public key cryptosystems shown to be provably secure
in this sense. It is, however, also important to note that a complexity-based proof is
not absolute and that it is only relative to the assumed intractability of the underlying
mathematical problem(s).

Provable security is difficult to achieve for complex cryptographic systems,
such as security protocols. More recently, people have therefore come up with a
methodology to design systems that are not really provably secure, but for which
one can at least have a “good feeling” about their security properties [26]. The
basic idea is to design anideal systemthat employs one (or several) random
function(s)—also known as random oracle(s)—and to prove the security of this
system mathematically. The ideal system is then implemented in areal systemby
replacing each random oracle with a “good” and “appropriately chosen” publicly
known pseudorandom function—typically a cryptographic hash function, such as
MD5 or SHA-1. This way, one obtains an implementation of the ideal system in
the real world (where random oracles do not exist). If the pseudorandom functions
in use have good properties, then one can hope that the security proof of the ideal
system is inherited to the real system. It is not a proof anymore, but it may still
provide evidence for the security of the real system. Due to the use of random
oracles, this design methodology is known asrandom oracle methodology; it yields
cryptographic systems that are provably secure in the so-calledrandom oracle
model. Unfortunately, it has been shown that it is possible to craft cryptographic
systems that are provably secure in the random oracle model, but become totally
insecure whenever a cryptographic hash function is specified and nailed down [27].
This theoretical result is worrisome, and since its publication many researchers
have started to think controversially about the usefulness of the random oracle
methodology. In fact, most researchers prefer security proofs that do not require
random oracles.
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In the past, we have seen many examples in which people have tried to improve
the security of a cryptographic system by keeping secret its design and internal
working principles. This approach is sometimes referred to as “security through
obscurity.” Many of these systems do not work and can be broken trivially.2 This
insight has a long tradition in cryptography, and there is a well-known cryptographic
principle—theKerckhoffs’ principle3—that basically states that a cryptographic
system should be designed so as to be secure even when the adversary knows all
details of the system, except for the values explicitly declared to be secret, such
as cryptographic keys [28]. Kerckhoffs’ principle is certainly something to keep in
mind when one designs cryptographic systems.

Last but not least, it is important to note that a theoretically secure cryptosys-
tem may not remain secure when implemented in practice, and that there are usually
many possibilities to mount attacks against a concrete implementation of such a
system (e.g., [29]). For example, there are many attacks that take advantage of and
try to exploit side channel information an implementation may leak. Side channel
information, in turn, is information that can be retrieved from the execution of the
cryptosystem that is neither the specified input nor the specified output. In the case
of an encryption system, for example, the specified input refers to the plaintext mes-
sage and the key, whereas the specified output refers to the ciphertext. Hence, side
channel information is information an implementation of the encryption system may
leak except for the plaintext message, the key, or the ciphertext. This includes, for
example, timing information, power consumption, as well as radiation of all sorts.
Attacks that try to exploit side channel information are calledside channel attacks.
Since about the middle of the 1990s, researchers have found and come up with
many possibilities to mount side channel attacks. Examples include timing attacks
[30], differential power analysis [31], and fault analysis [32, 33]. It is reasonable
to say that every computation done on a real computer system leads to physical
effects and phenomena that may be measured and exploited to reveal information
about the keying material in use. This problem is inherent and cannot be avoided by
cryptography—be it provably secure or not.

2.1.5 Historical Background Information

Cryptography has a long and thrilling history that is addressed in many books (e.g.,
[34–36]). Since the very beginning of the spoken and—even more important—
written word, people have tried to transform data “to render its meaning unintelligi-
ble (i.e., to hide its semantic content), prevent its undetected alteration, or prevent its

2 Note that “security through obscurity” may work well outside the realm of cryptography.
3 The principle is named after Auguste Kerckhoffs who lived from 1835 to 1903.
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unauthorized use” [21]. According to this definition, these people have always em-
ployed cryptography and cryptographic techniques. The mathematics behind these
early systems may not have been very advanced, but they still employed cryptog-
raphy and cryptographic techniques. For example, Gaius Julius Caesar4 used an
encryption system in which every letter in the Latin alphabet was substituted with
the letter that is found three positions afterwards in the lexical order (i.e., “A” is
substituted with “D,” “B” is substituted with “E,” and so on). This simple additive
cipher is known asCaesar cipher. Later on, people employed encryption systems
that use more involved mathematical transformations. The encryption systems in
use today are very different.

Until World War II, cryptography was considered to be an art (rather than
a science) that was primarily used in military and diplomacy. The following two
developments and scientific achievements turned cryptography from an art into a
science:

• During World War II, Claude E. Shannon5 developed a mathematical theory of
communication [37] and a related communication theory of secrecy systems
[38] when he was working at AT&T Laboratories.6 After their publication, the
two theories started a new branch of research that is commonly referred to as
information theory.

• As mentioned earlier, Diffie and Hellman developed and proposed the idea of
public key cryptography at Stanford University in the 1970s.7 Their vision
was to employ trapdoor functions to encrypt and digitally sign electronic
documents. Informally speaking, a trapdoor function is a function that is easy
to compute but hard to invert, unless one knows and has access to some
specific trapdoor information. This information represents the private key that
must be held by only one person. Diffie and Hellman’s work culminated in
a key agreement protocol that allows two parties that share no prior secret

4 Gaius Julius Caesar was a Roman emperor who lived from 102 BC to 44 BC.
5 Claude E. Shannon was a mathematician who lived from 1916 to 2001.
6 Similar studies were done by Norbert Wiener who lived from 1894 to 1964.
7 Similar ideas were pursued by Ralph C. Merkle at the University of California at Berkeley [39].

More recently, the British government announced that public key cryptography, including the
Diffie-Hellman key agreement protocol and the RSA public key cryptosystem, was invented at the
Government Communications Headquarters (GCHQ) in Cheltenham in the early 1970s by James
H. Ellis, Clifford Cocks, and Malcolm J. Williamson under the namenon-secret encryption(NSE).
You may refer to the note “The Story of Non-Secret Encryption” written by Ellis in 1997 (available
at http://citeseer.ist.psu.edu/ellis97story.html) to get the story. Being part of the world of secret
services and intelligence agencies, Ellis, Cocks, and Williamson were not allowed to openly talk
about their discovery.
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to exchange a few messages over a public channel and to establish a shared
(secret) key. This key can then be used as a session key.

After Diffie and Hellman published their discovery [25], a number of public
key cryptosystems were developed and proposed. Some of these systems are still
in use today, such as the RSA [40] and Elgamal8 [41] public key cryptosystems.
Other systems, such as a number of public key cryptosystems based on the knapsack
problem, have been broken and are no longer in use.

Since around the early 1990s, we have seen a wide deployment and massive
commercialization of cryptography. Today, many companies develop, market, and
sell all kinds of cryptographic techniques, mechanisms, services, and products (im-
plemented in hardware or software) on a global scale. Furthermore, there are many
cryptography-related conferences and trade shows to learn more about particular
products.

2.1.6 Legal Situation

The legal situation regarding cryptography is involved and tricky. This is particularly
true on the international level. There are many regulations on the import, export,
and use of cryptography and cryptographic products, and these regulations differ
from country to country (see, for example, Bert-Jaap Koops’ Crypto Law Survey9

for a corresponding overview). In some countries, the use of cryptography is reg-
ulated and strictly controlled, whereas in other countries, it is encouraged or even
mandatory to use cryptography to secure specific applications, such as, for example,
applications in health care.

In many countries, the export of cryptographic products is regulated, whereas
the import and use is not. This applies, for example, to the United States. Until the
end of the 1990s, the United States had strong export controls on cryptographic prod-
ucts in place, and these controls were administered by the Department of Defense
(DoD). These controls made it prohibitively difficult or next to impossible for U.S.
companies to sell products that implement strong cryptography abroad. This led to
a situation in which U.S. companies had to sell domestic and international versions
of their cryptographic products, such as Web browsers. The domestic versions of
these browsers were able to support SSL cipher suites with encryption algorithms
of sufficiently long key lengths (e.g., 128 bits), whereas the international versions of
the same browsers could only employ 40-bit keys. Later on, the companies added

8 The Elgamal public key cryptosystem was developed and proposed by Taher Elgamal—the author
of this book’s foreword—in the 1980s.

9 http://rechten.uvt.nl/koops/cryptolaw.
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features to dynamically handle variable key lengths. For example, Netscape Com-
munications added a feature namedInternational Step-Upand Microsoft added a
similar feature namedServer Gated Cryptography(SGC). Both features allowed an
international browser to switch to strong cryptography, if and only if the Web server
was able to provide a specific certificate. So the browser-side use of cryptography
was effectively controlled by the server and the certificate(s) it was able to provide.
Because old browsers are still in use today, International Step-Up and SGC are still
with us.

In 1999, the Clinton administration announced a new framework for U.S. ex-
port controls on cryptographic products. This was in response to the changing global
market, advances in technology, and the need to give U.S. industry better access to
these markets, while continuing to provide essential protections for national security.
In January 2000, the administration published a regulation implementing this new
framework. It included several items. For example, export controls were now admin-
istered by the Bureau of Industry and Security (BIS) of the Department of Commerce
(DoC) instead of the DoD. More specifically, rules governing exports and reexports
of cryptographic products were now found in the Export Administration Regulations
(EAR). If a U.S. company wanted to sell a cryptographic product abroad, then it
would still have to have export approval according to the EAR. These regulations,
however, enlarge the use of license exceptions, implement the changes agreed to at
the Wassenaar Arrangement10 on export controls for conventional arms and dual-use
goods and technologies in December 1998, and eliminate the deemed export rule for
encryption technology. In addition, new license exception provisions were created
for certain types of encryption, such as source code and toolkits. Some countries
are exempted from the regulation (i.e., Cuba, Iran, Iraq, Libya, North Korea, Sudan,
and Syria). Overall, the legal situation for U.S. companies regarding export controls
are now comparable to their international competitors. Nevertheless, there are still a
couple of remains of the former U.S. export controls.

10 The Wassenaar Arrangement is a treaty originally negotiated in July 1996 and signed by 31 coun-
tries to restrict the export of dual-use goods and technologies to specific countries considered to be
dangerous. The countries that have signed the Wassenaar Arrangement include the former Coordi-
nating Committee for Multilateral Export Controls (COCOM) member and cooperating countries,
as well as some new countries such as Russia. The COCOM was an international munitions con-
trol organization that also restricted the export of cryptography as a dual-use technology. It was
formally dissolved in March 1994. More recently, the Wassenaar Arrangement was updated. The
participating countries of the Wassenaar Arrangement are Argentina, Australia, Austria, Belgium,
Bulgaria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Japan, Luxembourg, The Netherlands, New Zealand, Norway, Poland, Portugal, Republic of
Korea, Romania, Russian Federation, Slovakia, Spain, Sweden, Switzerland, Turkey, Ukraine, the
United Kingdom, and the United States. Further information on the Wassenaar Arrangement can be
found at http://www.wassenaar.org.
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For the purpose of this book, we do not further address legal issues regarding
the import, export, or use of cryptographic products. It is a topic of its own, and
whenever you want to come in touch with cryptographic products you should
be careful and talk to a lawyer (or any other legally savvy person) first. This is
particularly true for the import and export of such products—there are many pitfalls
to avoid.

2.2 CRYPTOSYSTEMS OVERVIEW

In this section, we overview and put into perspective the most important cryptosys-
tems in use today. We follow the classification introduced above, meaning that we
distinguish between unkeyed, secret key, and public key cryptosystems.

2.2.1 Unkeyed Cryptosystems

According to Definition 2.1, unkeyed cryptosystems use no secret parameter. The
most important representatives of unkeyed cryptosystems are one-way functions,
cryptographic hash functions, and random bit generators.

2.2.1.1 One-Way Functions

The notion of a one-way function plays a central role in modern cryptography.
Informally speaking, a functionf : X → Y is one way if it is easy to compute
but hard to invert. The termeasymeans that the computation can be done efficiently,
whereas the termhardmeans that the computation is not known to be feasible in an
efficient way (i.e., no efficient algorithm is known to exist). Consequently, one can
define aone-way functionas suggested in Definition 2.4 and illustrated in Figure
2.1.

X Y
Efficiently computable

?

x yDomain Range

Figure 2.1 A one-way function.
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Definition 2.4 (One-way function) A functionf : X → Y is one way iff(x) can
be computed efficiently for allx ∈ X , butf−1(y) cannot be computed efficiently for
any randomly choseny ∈ Y .

To be more precise, one must say that it may be possible to computef−1(y),
but that the entity that wants to do the computation does not know how to do it. Also,
Definition 2.4 is not mathematically precise, because we have not defined what an
efficient computation really is. To do so requires complexity-theoretic arguments.
We simplify things a little bit by saying that a computation is efficient, if the (ex-
pected) running time of the algorithm that does the computation is bounded by a
polynomial in the length of the input. The algorithm itself may be probabilistic.
Otherwise, for example, if the expected running time is not bounded by a polyno-
mial, then the algorithm requires super-polynomial (e.g., exponential) time and is
said to be inefficient.

A real-world example of a one-way function is a telephone book. Using
such a book, the function that assigns a telephone number to a name is easy to
compute (because the names are sorted alphabetically) but hard to invert (because
the telephone numbers are not sorted numerically). Also, many physical processes
are inherently one way. If, for example, we smash a bottle into pieces, then it is
prohibitively difficult to put the pieces together and reconstruct the bottle. Similarly,
if we drop a bottle from a bridge, it falls down. The reverse process does not
frequently occur in real life. Last but not least, time is one way, and it is (currently)
not known how to travel back in time. In fact, we continuously age and have no
possibility to make ourselves young again.

In contrast to the real world, the idealized world of mathematics is less rich
with one-way functions. In fact, there are only a few functions conjectured to be
one way. Examples include the discrete exponentiation function, the modular power
function, and the modular square function. These functions are frequently used in
public key cryptography. But note that none of these functions has been shown to
be one way, and that it is theoretically not even known whether one-way functions
really exist. These facts should be kept in mind when people discuss the use (and
usefulness) of one-way functions in contemporary cryptography.

Assuming the existence of one-way functions, there is a class of such functions
that can be inverted efficiently if and—as it is hoped—only if some extra information
is known. This brings us to the notion of atrapdoor (one-way) functionas suggested
in Definition 2.5.

Definition 2.5 (Trapdoor function) A one-way functionf : X → Y is a trapdoor
function (or a trapdoor one-way function, respectively) if there exists some extra
information (i.e., thetrapdoor) with which f can be inverted efficiently, that is,
f−1(y) can be computed efficiently for any randomly choseny ∈ Y .
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The mechanical analog of a trapdoor (one-way) function is a padlock. It
can be closed by everybody (if it is in an unlocked state), but it can be opened
only by somebody who holds or has access to the proper key. In this analogy, a
padlock without a keyhole represents a one-way function without trapdoor. In the
real world, this is not a particularly useful construct, but in the digital world, there are
many interesting applications for it. Consequently, one-way functions and trapdoor
functions yield all kinds of public key cryptosystems, such as asymmetric encryption
systems, digital signature systems, or key agreement protocols.

2.2.1.2 Cryptographic Hash Functions

Hash functions are frequently used and have many applications in computer science.
Informally speaking, a hash function is an efficiently computable function that takes
an arbitrarily sized input (string) and generates an output (string) of fixed size. This
idea is captured in Defintion 2.6.

Definition 2.6 (Hash function) LetΣin be an input alphabet andΣout be an output
alphabet. Any functionh : Σ∗

in → Σn
out that can be computed efficiently is said to

be ahash function. It generates hash values of lengthn.

In this definition, the domain of the hash function isΣ∗

in. This means that it
consists of all strings over the input alphabetΣin. In theory, these strings can be
infinitely long. In practice, however, one usually has to assume a maximum string
lengthnmax for technical reasons. In this case, a hash function can be formally
expressed as

h : Σnmax

in → Σn
out.

Note that the hash function must be efficiently computable in complexity-theoretic
terminology. Also, note that the two alphabetsΣin andΣout can be (and typically
are) the same. In this case,Σ is used to refer to either of them. In a typical
(cryptographic) setting,Σ is the binary alphabet (i.e.,Σ = {0, 1}) andn is 128
or 160 bits. In such a setting, a hash functionh generates binary strings of 128 or
160 bits.

In cryptography, we are interested in hash functions with the following prop-
erties:

• A hash functionh is one-wayor preimage resistantif it is computationally
infeasible to find an input wordx ∈ Σ∗

in with h(x) = y for any given (and
randomly chosen) output wordy ∈ Σn

out.
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• A hash functionh is second-preimage resistantor weak collision resistantif
it is computationally infeasible to find a second input wordx′ ∈ Σ∗

in with
x′ 6= x andh(x′) = h(x) for any given (and randomly chosen) input word
x ∈ Σ∗

in.

• A hash functionh is collision resistantor strong collision resistantif it is
computationally infeasible to find two input wordsx, x′ ∈ Σ∗

in with x′ 6= x
andh(x′) = h(x).

The third property is a stronger version of the second property. The first
property, however, is independent from the other two properties. Consequently, the
first property can be combined with either the second or the third property.

• A one-way hash functionis a hash function that is preimage resistant and
second-preimage resistant (or weak collision resistant);

• A collision resistant hash functionis a hash function that is preimage resistant
and collision resistant (or strong collision resistant).

As suggested in Definition 2.7, either of these functions is calledcrypto-
graphic and can be used for cryptographic purposes (e.g., for data integrity pro-
tection, message authentication, and digital signatures).

Definition 2.7 (Cryptographic hash function) A hash functionh : Σ∗

in → Σn
out is

cryptographic if it is one way or collision resistant.

A cryptographic hash functionh is typically used to hash arbitrarily long
messages to binary strings of fixed size. This is illustrated in Figure 2.2, where the
ASCII-encoded message “This is a file that includes some important but long state-
ments. Consequently, we may need a short representation of this file.” is hashed to
0xE423AB7D1767D13EF6EAEA69805FF6E0 (in hexadecimal notation). The
resulting hash value represents afingerprint or digestthat is characteristic for the
message and—in some sense—uniquely identifies it. The collision resistance prop-
erty implies that it is difficult or computationally intractable to find another message
that hashes to the same fingerprint or digest.

Examples of cryptographic hash functions in widespread use are MD5 (as
used in Figure 2.2) and SHA-1. Both functions represent interated hash functions
that follow the Merkle-Damgård construction [42, 43]. This basically means that a
collision-resistant compression function is applied iteratively on subsequent mes-
sage blocks, and that the resulting hash function inherits the collision resistance-
property of the underlying compression function.
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This is a file that includes some important but long statements.
Consequently, we may need a short representation of this file.

  E4 23 AB 7D 17 67 D1 3E F6 EA EA 69 80 5F F6 E0

h

Figure 2.2 A cryptographic hash function.

MD5

MD5 is a cryptographic hash function that was originally designed by Ron Rivest
in 1991. It is specified in RFC 1321 [44], and it generates hash values of 128 bits
(independent from the input message length).

Since its publication, many people have tried to find collisions for MD5. Some
of them have been successful for incomplete or simplified versions of MD5. With
regard to the full version of MD5, collisions were found in 2004 [45]. Since then, it
has been recommended to replace MD5 with stronger (i.e., more collision-resistant)
cryptographic hash functions. More recently, this recommendation has become more
severe, because a group of international researchers has been able to exploit MD5
collisions to generate a rogue CA certificate.11

SHA

Soon after Rivest released the specification of MD5, the U.S. NIST proposed the
Secure Hash Algorithm(SHA) that is conceptually similar to MD5, but is a little bit
stronger and slower. Probably after discovering a never-published weakness in the

11 http://www.win.tue.nl/hashclash/rogue-ca.
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orginal SHA proposal,12 the NIST revised it and called the revised version SHA-
1. As such, SHA-1 was specified in the Federal Information Processing Standards
Publication (FIPS) PUB 180-1 [47],13 also known asSecure Hash Standard(SHS).
In 2002, FIPS PUB 180 was revised a second time and the resulting FIPS PUB
180-214 superseded FIPS PUB 180-1 beginning February 1, 2003. In addition to
superseding FIPS 180-1, FIPS 180-2 added three new algorithms that produce and
output larger hash values. The SHA-1 algorithm specified in FIPS 180-2 is the
same algorithm as specified in FIPS 180-1, although some of the notation has been
modified to be consistent with the notation used for SHA-256, SHA-384, and SHA-
512—collectively referred to as SHA-2. As summarized in Table 2.1, SHA-1, SHA-
256, SHA-384, and SHA-512 produce and output hash values of different sizes (160,
256, 384, and 512 bits), and their maximal message sizes, block sizes, and word sizes
also vary considerably.

In February 2004, the NIST published a change notice for FIPS 180-2 to
include SHA-224.15 SHA-224 is identical to SHA-256, but uses different initial
hash values and truncates the final hash value to the leftmost 224 bits. All SHA-
2 algorithms can be implemented efficiently. A long hash value does not necessarily
mean that the corresponding implementation is inefficient; it only means that the
resulting output is longer. This is advantageous from a collision resistance point of
view, but it is disadvantageous from a space requirements point of view.

Table 2.1
Secure Hash Algorithms as Specified in FIPS 180-2

Algorithm Message Size Block Size Word Size Hash Value Size
SHA-1 < 264 bits 512 bits 32 bits 160 bits
SHA-224 < 264 bits 512 bits 32 bits 224 bits
SHA-256 < 264 bits 512 bits 32 bits 256 bits
SHA-384 < 2128 bits 1,024 bits 64 bits 384 bits
SHA-512 < 2128 bits 1,024 bits 64 bits 512 bits

Like MD5, many people have tried to find collisions for SHA-1. It was not
until 2005 that Wang et al. found an attack that finds collisions for the full version
of SHA-1 requiring fewer than269 operations (note that a brute-force search would
require280 operations). This result was later improved to263 [50], and it is currently
a research topic to lower this bound. The bottom line is that the collision resistance

12 At CRYPTO ’98, Florent Chabaud and Antoine Joux published a weakness of SHA-0 [46]. This
weakness was fixed by SHA-1, so it is reasonable to assume that they found the original weakness.

13 SHA-1 is also specified in informational RFC 4634 [48].
14 http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.
15 SHA-224 is also specified in informational RFC 3874 [49].
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of SHA-1 is in question (to say the least), and that people are looking for viable
alternatives. Certainly, SHA-2 provides such an alternative. But in addition to SHA-
2, people are also looking for alternative paradigms for the design of cryptographic
hash functions. The U.S. NIST holds a competiton to find a successor of SHA-2—
preliminarily termed SHA-3. The official release of SHA-3 is scheduled for 2012. It
is possible and likely that SHA-3 will be widely deployed in practice.

2.2.1.3 Random Bit Generators

Randomness is one of the most fundamental ingredients of and prerequisites for the
security of cryptographic systems. In fact, the generation of secret and unpredictable
random quantities (i.e., random bits or random numbers) is at the heart of most
practically relevant cryptographic systems. The frequency and volume of these
quantities vary from system to system. If, for example, we consider secret key
cryptography, then we must have random quantities that can be used as secret keys.
In the most extreme case, we must have a random bit for every bit that we want
to encrypt in a perfectly secure way. If we consider public key cryptography, then
we must have random quantities to generate public key pairs. In either case, a
cryptographic system may be probabilistic, meaning that random quantities must
be generated for every use of the system. The required quantities must then be
random in the sense that the probability of any particular value being selected
must be sufficiently small to preclude an adversary from gaining advantage through
optimizing a search strategy based on such probability. This is where the notion of
a random bit generatoras introduced in Definition 2.8 and illustrated in Figure 2.3
comes into play.

Definition 2.8 (Random bit generator) A random bit generator is a device or
algorithm that outputs a sequence of statistically independent and unbiased bits.
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Figure 2.3 A random bit generator.

Alternatively, a random bit generator is sometimes also defined as an idealized
model of a device that generates and outputs a sequence of statistically independent
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and unbiased bits. In either case, it is important to note that a random bit generator
has no input (i.e., it only generates an output), and that because the output of the
random bit generator is a sequence of statistically independent and unbiased bits,
the bits occur with the same probability (i.e., Pr[0] = Pr[1] = 1/2), or—more
generally—all2k differentk-tuples occur approximately equally often for allk ∈ N.
There are many statistical tests that can be used to verify the (randomness) properties
of a given random bit generator.

There is no known deterministic (i.e., computational) realization or implemen-
tation of a random bit generator. There are, however, many nondeterministic realiza-
tions and implementations thereof. Many of these realizations and implementations
make use of physical events and phenomena. In fact, it is fair to say that a (true)
random bit generator requires a naturally occuring source of randomness. Designing
and implementing a device or algorithm that exploits this source of randomness to
generate binary sequences that are free of biases and correlations is a challenging
engineering task.

2.2.2 Secret Key Cryptosystems

According to Definition 2.2, secret key cryptosystems use secret parameters that
are shared between the participating entities. The most important representatives of
secret key cryptosystems are symmetric encryption systems, MACs, and PRBGs.

2.2.2.1 Symmetric Encryption Systems

If one talks about cryptography, then one often implicitly refers to confidentiality
protection using symmetric encryption (i.e., to encrypt and decrypt data).Encryption
is the process that turns aplaintext message(or plaintextin short) into aciphertext,
anddecryptionis the reverse process (i.e., the process that turns a ciphertext into a
plaintext message). As suggested in Definition 2.9, asymmetric encryption system
consists of a set of possible plaintext messages (i.e., the plaintext message space), a
set of possible ciphertexts (i.e., the ciphertext space), and a set of possible keys (i.e.,
the key space), as well as two families of encryption and decryption functions (or
algorithms) that are inverse to each other.

Definition 2.9 (Symmetric encryption system)A symmetric encryption system or
cipher consists of the following five components:

• A plaintext message spaceM;

• A ciphertext spaceC;

• A key spaceK;
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• A family E = {Ek : k ∈ K} of (deterministic or probabilistic)encryption
functionsEk : M → C;

• A family D = {Dk : k ∈ K} of (deterministic)decryption functions
Dk : C → M.

For every keyk ∈ K and every messagem ∈ M, the functionsDk andEk must be
inverse to each other, that is,Dk(Ek(m)) = m.

In most symmetric encryption systems, it does not matter whether one encrypts first
and then decrypts or decrypts first and then encrypts; that is,

Dk(Ek(m)) = Ek(Dk(m)) = m.

Typically, M = C = {0, 1}∗ (i.e., the set of binary strings of arbitrary but finite
length), andK = {0, 1}l for some fixed key lengthl (e.g.,l = 128).
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k

D

k

Figure 2.4 The working principle of a symmetric encryption system.

The working principle of a symmetric encryption system is illustrated in
Figure 2.4. On the left side, the sender encrypts the plaintext messagem ∈ M
with his or her implementation of the encryption functionE (parametrized with the
secret keyk). The resulting ciphertextEk(m) = c ∈ C is sent to the recipient over a
potentially unsecure channel (drawn as a dotted line in Figure 2.4). On the right side,
the recipient decryptsc with his or her implementation of the decryption function
D (again, parametrized with the secret keyk). If the decryption is successful, then
the recipient is able to recover the plaintext messagem. The characteristic feature
of a symmetric encryption system is that thek on the sender side and thek on
the recipient side are equal or trivially computable from each other, meaning thatk
represents a bilateraly known (encryption and decryption) key.

On a high level of abstraction, people sometimes distinguish between block
and stream ciphers.
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• A block cipheroperates on fixed-length groups of bits (i.e., blocks) with an
unvarying transformation (determined by the key).

• A stream cipheroperates on individual bits or bytes, and the actual transfor-
mation varies during the encryption process.

The distinction between block and stream ciphers is not as sharp as it may
look like, and there are modes of operation that effectively turn a block cipher into
a stream cipher. A block cipher can, for example, be operated in the electronic
code book (ECB) or—more preferrably—cipherblock chaining (CBC) mode. Al-
ternatively, a block cipher can also be turned into a stream cipher by operating it
in the cipher feedback (CFB) or output feedback (OFB) mode [51]. Alternatively,
the block cipher can also be operated in counter mode or one of the newer modes
that provide message authentication (in addition to data encryption). We will revisit
these modes when we address TLS 1.2 in Section 5.4.

Many examples of symmetric encryption systems are described in the lit-
erature. Some of these systems are relevant and used in practice, whereas others
are not (i.e., they are only theoretically or historically interesting, or they are used
only in small and typically closed environments). TheData Encryption Standard
(DES) andAdvanced Encryption Standard(AES) are the two most widely deployed
block ciphers, whereasRC4 is the most widely deployed stream cipher. Note that
all practically relevant symmetric encryption systems are “only” conditionally or
computationally secure. Unconditionally or information-theoretically secure sym-
metric encryption systems exist, but they require keys that are at least as long as
the plaintext messages that are encrypted, and hence their key management is pro-
hibitively expensive. Let us now have a brief look at DES, AES, RC4, and a few
other symmetric encryption systems relevant for the SSL/TLS protocols, such as
RC2, IDEA, Skipjack, and Camellia.

DES

The DES is a block cipher that was orginally designed at IBM (after an encryption
algorithm named Lucifer) and standardized in FIPS PUB 46. It was reaffirmed as an
official standard three times. The last reaffirmation took place in 1999 [52]. In some
literature, a distinction is made between DES as a standard and DES as an encryption
algorithm. In the latter case, the DES is also termedData Encryption Algorithm
(DEA). For the purpose of this book, however, we don’t make a distinction and we
use the terms DES and DEA synonymously and interchangeably.

Technically speaking, DES is a Feistel cipher that has a block size of 64 bits
and operates in 16 rounds. The key length is 64 bits, but the last bit in every byte of
the key represents a parity bit. Consequently, the effective key length is only 56 bits.
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The overall security of DES seems to be good and the encryption algorithm
has turned out to be surprisingly resistant against the most powerful cryptanalytical
attacks (in particular, differential and linear crytanalysis). The major weakness and
vulnerability of DES is its restricted key length of 56 bits. This means that an
exhaustive key search can be done in256 operations in the worst case and255

operations on the average. People have built DES cracking machines and designed
distributed algorithms to do an exhaustive search for DES keys. The bottom line
is that breaking DES is perfectly feasible today, and that the use of DES cannot
be recommended anymore. In many applications, DES is therefore replaced with a
multiple-iteration version of it. Double DES is not particularly useful, because it is
vulerable to the meet-in-the-middle attack. But Triple DES (3DES) is useful and has
a large acceptance rate in practice. The major disadvantage of 3DES is performance,
since a 3DES implementation is roughly three times slower than a normal DES
implementation.

AES

In the late 1990s, the U.S. NIST carried out a competition for a successor of DES.
The competition was won by a block cipher namedRijndaelthat was originally de-
veloped by two Belgian cryptographers, Joan Daemen and Vincent Rijmen. Rijndael
was chosen to become the AES and was published in FIPS PUB 197 [53].

Table 2.2
The Three Official Versions of the AES

Block size Key length Number of rounds
AES-128 128 128 10
AES-192 128 192 12
AES-256 128 256 14

The AES is a block cipher with a fixed block size of 128 bits. As summarized
in Table 2.2, there are three official versions of the AES: AES-128 takes a 128-bit
key, AES-192 takes a 192-bit key, and AES-256 takes a 256-bit key. Like the key
length, the number of rounds also increases from version to version (i.e., 10, 12, and
14 rounds).

Unlike DES, the AES has a clean mathematical structure. This allows a mathe-
matical treatment of its security properties. Unfortunately, it also gives mathematical
structure to the adversary who may try to exploit it. The bottom line is that math-
ematical structure is a double-edged sword that may speak in favor or against the
security of a cipher. As of this writing, nobody has found a way to break the AES
that is significantly more efficient than an exhaustive key search. So people have a
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good feeling when they use AES today. This is amplified by the fact that the NSA
announced in June 2003 that the AES may be used for the encryption of classified
information. This even applies to TOP SECRET information for 192- or 256-bit
keys.

RC4

Most stream ciphers in use today are based on linear feedback shift registers
(LFSRs). LFSRs can be efficiently implemented in hardware, but they are rather
slow when implemented in software. Consequently, there is room for non-LFSR-
based stream ciphers that can be efficiently implemented in hardware and software.
The most widely deployed example is RC4 designed by Ron Rivest in 1987. While
it is officially termedRivest Cipher 4, the RC acronym is alternatively understood
to stand for “Ron’s Code.” RC4 was initially a trade secret of RSA Security. But in
September 1994, a description was anonymously posted to the Cypherpunks mailing
list. The leaked code was confirmed to be genuine as its output was found to match
that of proprietary software using licensed RC4. Because the algorithm is known, it
is no longer a trade secret. But the name “RC4” is still trademarked, so it is often
referred to asARCFOURor ARC4. This name stands for “alleged RC4,” because
RSA Security has never officially released the algorithm (mainly to avoid possible
trademark problems).

RC4 is an additive stream cipher, meaning that it generates a stream of
pseudorandom bits (a keystream) that, for encryption, is combined with the plaintext
using the bitwise addition modulo 2 (i.e., XOR operaton). Decryption is performed
the same way. To generate the keystream, the cipher makes use of a variable-length
secret key. The ability to handle variable-length keys is one of the advantages of
RC4. It was particularly important when U.S. companies had to implement and
support domestic and international versions of their software. The domestic versions
could use keys of arbitrary length, whereas the international versions could use keys
of up to 40 bits. This flexibility in key lengths is one of the major reasons for RC4’s
success.

In spite of the fact that RC4 is more than 20 years old, no serious vulnerability
has been found so far. The only known weakness is that the keystream generated
by RC4 is biased in varying degrees towards certain bit sequences. This weakness
was exploited in attacks against the way RC4 is used in the wired equivalent privacy
(WEP) encryption used with 802.11 wireless local area networks (WLANs). The
consequence is that the first 512 bytes of every keystream should be discarded. This
is best practice. If RC4 is used this way, then it may provide a reasonable level of
security.
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RC2

RC2 is a block cipher also developed by Ron Rivest in 1987 for inclusion in Lotus
Notes. After the NSA suggested a couple of changes and Rivest incorporated these
changes, the cipher was approved for export in 1989. Along with RC4, RC2 with a
40-bit key size was treated favorably under the former U.S. export controls.

Initially, the details of RC2 were kept secret. But in January 1996, source code
for RC2 was anonymously posted to the Internet (similar to the disclosure of RC4).
It is unclear whether the poster had access to the specifications or whether it had
been reverse engineered. Unlike RC4, the correctness of the posting was offically
confirmed in 1998 [54, 55].

RC2 has a block length of 64 bits and can handle key lengths between 8 and
128 bits. The algorithm operates in 18 rounds. In 1997, RC2 was cryptanalyzed
using234 chosen plaintexts [56]. Consequently, the security of RC2 is known to be
weak and the symmetric encryption system should therefore not be used anymore
(at least not for any security-critical application).

IDEA

The International Data Encryption Algorithm(IDEA) is a block cipher that was
originally designed by Xuejia Lai and James Massey as a replacement for the DES
[57]. In fact, IDEA is a minor revision of an earlier cipher, the Proposed Encryption
Standard (PES), and was originally called Improved PES (IPES). The cipher is
patented in Austria, France, Germany, Italy, Japan, Netherlands, Spain, Sweden,
Switzerland, United Kingdom, and the United States, but most of these patents are
about to expire soon. Note, however, that the name “IDEA” is also a trademark.
IDEA is best known for its use in former versions of thePretty Good Privacy(PGP)
software.

IDEA is a block cipher with a block length of 64 bits and a key length of
128 bits. To encrypt a block, a series of eight identical transformations and an
output transformation are performed. The processes for encryption and decryption
are similar. IDEA derives much of its security by interleaving operations from
different groups that are algebraically incompatible to some extent. The operations
are addition modulo216, multiplication modulo216+1, and bitwise addition modulo
2 (i.e., XOR).

The IDEA was designed to be resistant against differential cryptanalysis
and related attacks. Concerning this matter, IDEA has been very successful; no
successful linear or algebraic weaknesses have been reported so far. As of 2007,
the best attack that applies to all keys can break IDEA reduced to 6 rounds (the
full IDEA cipher uses 8 identical rounds and a different final round). In spite of
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its cryptanalytical strength, a successor of IDEA has been developed [58]. So far,
however, this successor has not been particularly successful.

Skipjack

Skipjack is a block cipher developed by the NSA. Initially classified, it was intended
for use in the controversial Clipper chip. The key escrow facility was achieved
through the use of a complementary mechanism known as the law enforcement
access field (LEAF). The Clipper chip was not successful, and it was later decided to
implement Skipjack also in FORTEZZA16 cards—in addition to a digital signature
system, SHA-1, and a key exchange algorithm (KEA)—known as FORTEZZA
KEA (see below). Probably to speed up the deployment rate of FORTEZZA cards,
Skipjack was declassified in June 1998. Its specification is now publicly available
and provides a unique insight into the cipher designs of a government intelligence
agency.17

Skipjack has a block cipher with a block length of 64 bits and a key length of
80 bits. It operates in 32 rounds. Cryptanalysts have been able to find attacks against
31-round versions of Skipjack, but they have not been able to find attacks against
the full version of Skipjack. In spite of its resistance against cryptanalytical attacks
(at least in its full version), Skipjack is avoided in practice and this is probably due
to its questionable role with regard to key escrow.

Camellia

Camellia is a block cipher that was jointly developed by Mitsubishi and NTT in
2000 [59, 60],18 and that has been evaluated favorably by several organizations in
Europe and Japan. Similar to DES, Camellia represents a Feistel cipher. It has a
block size of 128 bits, and—similar to the AES—can use 128-bit, 192-bit, or 256-
bit keys. The number of rounds is 18 (for 128-bit keys) or 24 (for 192-bit or 256-bit
keys). Also, Camellia was designed to be suitable for both software and hardware
implementations and to cover all possible encryption applications, from low-cost
smart cards to high-speed network systems.

Camellia has been designed to be particularly resistant against known block
cipher attacks. Similar to the AES, it can be completely defined by minimal systems
of multivariate polynomials. But the number of free terms is approximately the same

16 FORTEZZA is derived from the Italian word for fortress or fort. It is a registered trademark of
the NSA, and it refers to a family of security products and devices (e.g., PCMCIA cards, serial
port devices, Ethernet cards, and modems) that were originally developed to create user-friendly,
low-cost security solutions for the Defense Message System (DMS) of the DoD.

17 http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf.
18 http://info.isl.ntt.co.jp/crypt/eng/camellia/.
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number as for AES. Theoretically, such properties might make it possible to break
Camellia (and AES) using an algebraic attack, but as of this writing such an attack
is not feasible.

Although patented, Camellia is available under a royalty-free license.19 This
has allowed Camellia cipher to become part of the OpenSSL project in 2006. More
recently, Camellia has also become part of some TLS 1.2 cipher suites (see Section
5.4) that are supported by Mozilla Firefox 3 since June 2008. Camellia has also been
submitted to other standardization bodies, such as ISO and the IETF S/MIME Mail
Security (SMIME) WG.20

2.2.2.2 Message Authentication Codes

It is not always necessary to encrypt messages and to protect their confidentiality.
Sometimes, it is sufficient to protect their authenticity and integrity, meaning that it
must be possible for the recipient of a message to verify its authenticity and integrity
(note that message authenticity and integrity always go hand in hand). In this case,
one can add anauthentication tagto a message and have the recipient verify the
tag before he or she accepts the message as being genuine. A message and a tag
computed from it (and appended to the message) are illustrated in Figure 2.5.

Message

Message Tag

Figure 2.5 A message and a tag computed from it.

One possibility to compute and verify an authentication tag is to use public
key cryptography and digital signatures. This is, however, neither necessary nor
always desired, and sometimes more lightweight mechanisms based on secret key
cryptography are preferred. This is where the notion of a MAC as suggested in
Definition 2.10 comes into play.21

19 http://www.ntt.co.jp/news/news01e/0104/010417.html
20 http://www.ietf.org/html.charters/smime-charter.html
21 In some literature, the termmessage integrity code(MIC) is used synonymously and interchange-

ably with MAC.
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Definition 2.10 (Message authentication code)A MAC is an authentication tag
that can be computed and verified with a secret parameter (e.g., secret cryptographic
key).

In the case of a message that is sent from one sender to a single recipient, the
secret parameter must be shared between the two entities. If, however, a message
is sent to multiple recipients, then the secret parameter must be shared between the
sender and all receiving entities. In this case, the distribution and management of
the secret parameter is a major issue (and probably one of the Achilles’ heels of the
entire system).

Similar to a symmetric encryption system, one can introduce and formally
define amessage authentication systemto compute and verify MACs. As captured
in Definition 2.11, such a system consists of a set of possible messages (i.e., the
message space), a set of possible authentication tags (i.e., the tag space), a set
of possible keys (i.e., the key space), as well as two families of related message
authentication and verification functions.

Definition 2.11 (Message authentication system)A message authentication sys-
tem consists of the following five components:

• A message spaceM;

• A tag spaceT ;

• A key spaceK;

• A familyA = {Ak : k ∈ K} of authentication functionsAk : M → T ;

• A family V = {Vk : K ∈ K} of verification functionsVk : M × T →
{valid, invalid}. Vk(m, t) must yieldvalid if t is a valid authentication tag
for messagem and keyk (i.e.,t = Ak(m)).

For every keyk ∈ K and every messagem ∈ M, Vk(m, Ak(m)) must yieldvalid.

Typically, M = {0, 1}∗, T = {0, 1}ltag for some fixed tag lengthltag,
andK = {0, 1}lkey for some fixed key lengthlkey. In a typical setting,ltag =
lkey = 128), meaning that tags and keys are both 128 bits long. There are many
message authentication systems developed and proposed in the literature. Some of
them are unconditionally (i.e., information-theoretically) secure, whereas others are
conditionally (i.e., computationally) secure. In fact, most message authentication
systems used in practice are conditionally secure and reuse a key to authenticate
multiple messages.

For all practical purposes, there is is a MAC construction, known ashashed
MAC (HMAC), that is omnipresent in network security protocols [61]. The HMAC
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construction works as follows:

HMACk(m) = h(k ⊕ opad ‖ h(k ⊕ ipad ‖ m))

In this construction,h denotes the cryptographic hash function in use (e.g., MD5,
SHA-1, . . . ),k the secret key (used for message authentication),m the message to
be authenticated,ipad (standing for “inner pad”) the byte0x36 (i.e.,00110110)
repeated 64 times,opad (standing for “outer pad”) the byte0x5C (i.e.,01011100)
repeated 64 times,⊕ the bit-wise addition modulo 2, and‖ the concatenation
operation. Note thatk ⊕ ipad andk ⊕ opad are intermediate values that can be
precomputed at the time of generation of the keyk, or before its first use. This
precomputation allows the HMAC construction to be implemented very efficiently.
Also note the output of the HMAC construction may be truncated to a value that is
shorter than the output of the hash value in use, typically 80 or 96 bits. The truncated
HMAC construction is, for example, also supported by the most recent version of
the TLS protocol (see Section 5.4.1.5).

2.2.2.3 PRBGs

As mentioned above, random bit generators are important building blocks for many
cryptographic systems. There is no deterministic (computational) realization or
implementation of such a generator, but that there are nondeterministic realizations
and implementations making use of physical events and phenomena. Unfortunately,
these realizations and implementations are not always appropriate, and there are
situations in which one needs to deterministically generate binary sequences that
appear to be random (e.g., if one needs a random bit generator but none is available,
or if one must make statistical simulations or experiments that can be repeated as
needed). Also, one may have a short random bit sequence that must be stretched
into a long sequence. This is where the notion of a PRBG as illustrated in Figure
2.6 and introduced in Definition 2.12 comes into play.22 Again, the definition is not
precise in a mathematically strong sense, because we have neither defined the notion
of an efficient algorithm nor have we specified what we really mean by saying that
a binary sequence “appears to be random.”

Definition 2.12 (Pseudorandom bit generator)A PRBG is an efficient determin-
istic algorithm that takes as input a random binary sequence of lengthk (i.e., the
seed) and generates as output another binary sequence (i.e., the pseudorandom bit
sequence) of lengthl ≫ k that appears to be random.

22 Note the subtle difference between Figures 2.3 and 2.6. Both generators output a binary sequence.
The random bit generator has no input, whereas the PRBG has a seed that serves as input.
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Figure 2.6 A PRBG.

Note that the pseudorandom bit sequence a PRBG outputs may be of infinite
length (i.e.,l = ∞). Also note that in contrast to a random bit generator, a PRBG
represents a deterministic algorithm (i.e., an algorithm that can be implemented in
a deterministic way). This suggests that a PRBG is implemented as a finite state
machine and that the sequence of generated bits must be cyclic (with a potentially
very large cycle). This is why we cannot require that the bits in a pseudorandom
sequence be truly random, only that they appear to be so (for a computationally
bounded adversary). Again, statistical tests can be used to verify the randomness
properties of the output of a PRBG.

From a theoretical perspective, a PRBG iscryptographically secureif it is not
possible for an adversary to predict the next output bit with a success probability that
is significantly better than guessing. There are some constructions that employ a one-
way function with a hard-core predicate to come up with a cryptographically secure
PRBG. The most important example is theBBS generatororiginally developed by
Lenore and Manuel Blum as well as Michael Shub (e.g., [62]).

2.2.3 Public Key Cryptosystems

According to Definition 2.3, public key cryptosystems use secret parameters that
are not shared between the participating entities. Instead, each entity holds a set of
secret parameters (collectively referred to asprivate keyk−1) and publishes another
set of parameters (collectively referred to aspublic keyk) that don’t have to be secret
and can be published at will.23 A necessary (but usually not sufficient) condition for
a public key cryptosystem to be secure is that it is computationally infeasible to
compute the private key from the public key. This means that the public key can be
published without running the risk of compromising the private key.

23 It depends on the cryptosystem, whether it matters which set of parameters is used to represent the
private key and which set of parameters is used to represent the public key.
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Because public key cryptography is computationally less efficient than secret
key cryptography, public key cryptosystems are mainly used for authentication
and key management. The resulting cryptosystems combine secret and public key
cryptography and are often calledhybrid. In fact, hybrid cryptosystems are very
frequently used in practice—including, for example, the SSL/TLS protocols.

The fact that public key cryptosystems use secret parameters that are not
shared between the participating entities implies that the corresponding algorithms
must be executed by different entities. Consequently, such cryptosystems are typ-
ically defined as sets of algorithms (that may be executed by different entities).
Examples include asymmetric encryption systems, digital signature systems, and
key agreement protocols.

2.2.3.1 Asymmetric Encryption Systems

Similar to a symmetric encryption system, an asymmetric encryption system can
be used to encrypt and decrypt plaintext messages. The major difference between a
symmetric and an asymmetric encryption system is that the former employs secret
key cryptography and corresponding techniques, whereas the latter employs public
key cryptography and corresponding techniques.

As already mentioned above, an asymmetric encryption system requires a
trapdoor function.24 Each public key pair yields a public key that represents a one-
way function and a private key that represents the trapdoor or inverse of the function.
To send a secret message to a recipient, the sender must look up the recipient’s public
key, apply the corresponding one-way function to the plaintext message, and send
the resulting ciphertext to the recipient. The recipient, in turn, is the only person
who is supposed to know the trapdoor (information) necessary to invert the one-way
function. Consequently, he or she is the only person who is able to properly decrypt
the ciphertext and to recover the original (plaintext) message accordingly.

In the literature, the encryption (decryption) algorithm is often denoted asE
(D), and subscripts are used to refer to the entities that hold the appropriate keys.
For example,EA refers to the encryption algorithm fed with the public key of A
(i.e.,kA), whereasDA refers to the decryption algorithm fed with the private key of
A (i.e., k−1

A ). Consequently, it is implicitly assumed that the public key is used for
encryption and the private key is used for decryption.

The working principle of an asymmetric encryption system is illustrated in
Figure 2.7. On the left side, the sender applies the recipient B’s one-way function
(implemented by the encryption algorithmE parametrized with B’s public keykB)

24 More specifically, an asymmetric encryption system requires a family of trapdoor functions.
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Figure 2.7 The working principle of an asymmetric encryption system.

to the plaintext messagem, and sends the resulting ciphertext

c = EB(m) = EkB
(m)

to B. On the right side, B knows his or her private keyk−1
B (representing the trapdoor

information) and can use this key to invert the one-way function and decrypt the
original plaintext message

m = DB(c) = Dk
−1

B
(c).

According to Definition 2.13, an asymmetric encryption system is a public key
cryptosystem that can be specified by a set of three algorithms.

Definition 2.13 (Asymmetric encryption system)An asymmetric encryption sys-
tem consists of the following three efficiently computable algorithms:

• Generate(1n) is a probabilistic key generation algorithm that takes as input
a security parameter1n and generates as output a public key pair (consisting
of a public keyk and a corresponding private keyk−1).25

• Encrypt(k, m) is a deterministic or probabilistic encryption algorithm that
takes as input a public keyk and a plaintext messagem, and that generates
as output a ciphertextc (i.e.,c = Encrypt(k, m)).

• Decrypt(k−1, c) is a deterministic decryption algorithm that takes as input a
private keyk−1 and a ciphertextc, and that generates as output a plaintext
messagem (i.e.,m = Decrypt(k−1, c)).

25 In most literature, the security parameter is denoted by1k (i.e.,k written in unary representation).
Because this notation may provide confusion betweenk standing for the security parameter andk

standing for the public key, we don’t use it. Instead, we use1n to refer to the security parameter.
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For every public key pair(k, k−1) and every plaintext messagem, the algo-
rithms Encrypt(k, ·) and Decrypt(k−1, ·) must be inverse to each other, meaning
that

Decrypt(k−1, Encrypt(k, m)) = m.

If k andk−1 do not correspond to each other, then the ciphertext must decrypt to
gibberish.

An asymmetric encryption system can be fully specified by a triple of algo-
rithmsGenerate, Encrypt, andDecrypt. Many such systems have been developed,
proposed, and published in the literature. Still the most important example is RSA
overviewed next.

RSA

The RSA public key cryptosystem was designed by Ron Rivest, Adi Shamir, and
Len Adleman in 1977 [40]. It was the first viable implementation of the ideas
developed by Diffie and Hellman in the preceding year. As such, the RSA public key
cryptosystem yields both an asymmetric encryption system and a digital signature
system. This means that the same set of algorithms can be used to encrypt and
decrypt messages, as well as to digitally sign messages and verify digital signatures.
The function provided depends on the cryptographic key in use:

• If the recipient’s public key is used to encrypt a plaintext message, then the
RSA public key cryptosystem yields an asymmetric encryption system. In this
case, the recipient’s private key is used to decrypt the ciphertext. Ideally, this
can only be done by the recipient of the message.

• If the sender’s private key is used to encrypt a plaintext message (or hash value
thereof), then the RSA key cryptosystem yields a digital signature system. In
this case, the sender’s public key is used to verify the digital signature. This
can be done by anybody.

The RSA public key cryptosystem is based on modular exponentiation and the
RSA family of trapdoor functions (or permutations, respectively). Recognizing the
relevance of their work, Rivest, Shamir, and Adleman were granted the prestigious
ACM Turing Award in 2002.

Let us introduce the RSA asymmetric encryption system by elaborating on the
three algorithms mentioned above.

• The RSAGenerate algorithm first randomly selects two appropriately sized
prime numbersp and q and computes the RSA modulusn = pq. It then
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randomly selects an integer1 < e < φ(n) with gcd(e, φ(n)) = 1 and
computes another integer1 < d < φ(n) with de ≡ 1 (mod φ(n)) using, for
example, the extended Euclid algorithm.d then represents the multiplicative
inverse ofe moduloφ(n). The output of the algorithm is a public key pair that
consists of a public key(n, e) and a corresponding private keyd.

• The RSAEncrypt algorithm is deterministic. It takes as input a public key
(n, e) and a plaintext messagem ∈ Zn, and it generates as output the
ciphertextc = me (mod n).

• The RSADecrypt algorithm is deterministic, too. It takes as input a private
keyd and a ciphertextc, and it generates as output the corresponding plaintext
messagem = cd (mod n).

Let us consider a toy example to illustrate the working principles of the
RSA asymmetric encryption system. The RSAGenerate algorithm randomly selects
p = 11 andq = 23, and computesn = 11 · 23 = 253 andφ(253) = 10 · 22 = 220.
It then selectse = 3 and uses the extended Euclid algorithm to computed = 147
modulo 220. Note that3 · 147 = 441 ≡ 1 (mod 220), and henced = 147 indeed
is the multiplicative inverse element ofe = 3 modulo 220. Consequently,(253, 3)
represents the public key, and 147 represents the private key. If somebody wants
to encrypt the plaintext messagem = 26, then he or she computesc = 263 =
17, 576 (mod 253) ≡ 119. This value represents the ciphertext transmitted to the
recipient(s). On the recipient side, the RSADecrypt algorithm decrypts 119 and
recovers the original plaintext messagem = 119147 (mod 253) ≡ 26.

The security of the RSA public key cryptosystem is based on the assumed
intractability of the integer factorization problem: it is not known how to efficiently
(i.e., in polynomial time) factorize large integers. If somebody found an efficient
integer factorization algorithm, then the RSA public key cryptosystem would be
broken. More worrisome, it may even be possible to break the RSA public key
cryptosystem without having to factorize integers, meaning that the computational
equivalence of breaking RSA and factorizing large integers has not been shown so
far.

2.2.3.2 Digital Signature Systems

Digital signatures can be used to protect the authenticity and integrity of data objects.
According to RFC 2828, adigital signaturerefers to “a value computed with a
cryptographic algorithm and appended to a data object in such a way that any
recipient of the data can use the signature to verify the data’s origin and integrity”
[21]. This definition refers to the notion of adigital signature with appendix, because
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the signature is appended to the data object. There is also the notion of adigital
signature giving message recovery, in which case the data unit is cryptographically
transformed in a way that it represents both the data unit (or message) that is signed
and the signature. This type of digital signatures is less common in practice, so we
can ignore them for the purpose of this book.

A digital signature system is used to digitally sign messages and verify digital
signatures. The entity that digitally signs a message is calledsigneror signatory,
whereas the entity that verifies the signature is calledverifier. With the proliferation
of the Internet in general, and Internet-based electronic commerce in particular,
digital signatures and the legislation thereof have become important and very timely
topics.

Valid /
invalidm D m,s

k

E

kA

-1

A

Figure 2.8 The working principle of a digital signature system.

The working principle of a digital signature system (with appendix) is illus-
trated in Figure 2.8. Having in mind the notion of a trapdoor function, it is simple
and straightforward to explain what is going on. On the left side, the signatory A
uses its private keyk−1

A —the trapdoor—to invert the one-way function for message
m and to compute the signatures:

s = DA(m) = Dk−1

A
(m)

The signatory then sendsm ands to the verifier. On the right side, the verifier must
use the signatory’s public key (i.e.,kA) to compute the one-way function fors. The
result is compared withm. If and only if the two values are equal is the signature
valid. In practice, the messagem can be very long, and it is therefore appropriate
to hash it with a cryptographic hash functionh before it is signed. In this case, the



Cryptography Primer 51

signatures is computed as

s = DA(h(m)) = Dk
−1

A
(h(m))

and this signature is valid if and only ifs subjected to A’s one-way function equals to
the hash value ofm. In either case, it is important to note that only A can computes
(because only A is assumed to knowk−1

A ), whereas everybody can verifys (because
everybody has access tokA). In fact, public verifiability is a basic property of most
digital signatures and corresponding digital signature systems in use today.

As outlined in Definition 2.14, a digital signature system can be defined as a
set of three efficiently computable algorithms.

Definition 2.14 (Digital signature system with appendix)A digital signature sys-
tem with appendix consists of the following three efficiently computable algorithms:

• Generate(1n) is a probabilistic key generation algorithm that takes as input
a security parameter1n and generates as output a signing keyk−1 and
a corresponding verification keyk. Both keys represent the public key pair
(k, k−1).

• Sign(k−1, m) is a deterministic or probabilistic signature generation algo-
rithm that takes as input a signing keyk−1 and a messagem (i.e., the message
to be signed), and that generates as output a digital signatures for m.26

• Verify(k, m, s) is a deterministic signature verification algorithm that takes as
input a verification keyk, a messagem, and a purported digital signatures
for m, and that generates as output a binary decision (i.e., whether the digital
signature is valid). In fact,Verify(k, m, s) must yieldvalid if and only ifs is
a valid digital signature for messagem and verification keyk.

For every public key pair(k, k−1) and messagem, Verify(k, m, Sign(k−1, m))
must yieldvalid.

The definition of a digital signature system giving message recovery is similar
(the major difference is that theVerify algorithm is replaced with aRecover algo-
rithm). With regard to the SSL/TLS protocols, the relevant digital signature systems
are RSA and DSA.

RSA

As mentioned above, the RSA public key cryptosystem [40] also yields a digital
signature system. If—instead of the recipient’s public key—the signatory’s private

26 Optionally, the signing algorithm may also output a new (i.e., updated) signing key. Note, however,
that in a memoryless digital signature system, the signing key always remains the same.
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key is used to encrypt a message (or its hash value), then an RSA signature is
generated for that particular message. The signature, in turn, can be verified with
the signatory’s public key.

More specifically, the RSAGenerate algorithm is the same as stated above
(see Section 2.2.3.1). The RSASign algorithm takes as input a signing key(n, d)
and a messagem ∈ Zn, and it generates as output the digital signature

s = md (mod n) or s = h(m)d (mod n)

The RSAVerify algorithm takes as input a verification key(n, e), a messagem, and
a digital signatures, and it generates as output one bit saying whethers is a valid
signature form with respect to(n, e). It therefore computes

m′ = se (mod n)

and compares it either withm or h(m). The signature is valid if and only if equality
holds (i.e.,m′ = m or m′ = h(m)).

Again, we use the toy example withp = 11, q = 23, n = 253, φ(n) =
(p − 1)(q − 1) = 10 · 22 = 220, e = 3, andd = 147 (generated by the RSA
Generate algorithm). If the signatory wants to digitally sign the messagem = 26
(or h(m) = 26, respectively) then the RSASign algorithm computes

d ≡ md (mod n) ≡ 26147 (mod 253) = 104

and this value represents the digital signature for 26. Similarly, the RSAVerify

algorithm computes

m′ = RSA253,3(104) ≡ 1043 (mod 253) = 26

and returnsvalid (becausem′ = 26 matches the messagem = 26 transmitted with
the signatures).

DSA

In 1985, Taher Elgamal turned the Diffie-Hellman key exchange protocol into a
public key cryptosystem that yields an asymmetric encryption system and a digital
signature system [41]. The system also employs modular exponentiation and a
large primep that serves as modulus. The Elgamal digital signature system has
the disadvantage that computation is done inZ

∗

p, and that the digital signatures are
represented by two elements of this group. In the early 1990s, Claus-Peter Schnorr
proposed (and patented) a modification of the Elgamal digital signature system
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that can be used to optimize the signature generation and signature verification
algorithms considerably [63]. The idea is to do the modular arithmetic not in a
group of orderp − 1 (e.g.,Z∗

p), but in a much smaller subgroup of prime orderq
with q | p − 1. As a consequence, the computations can be done more efficiently
and the resulting digital signatures can be made much shorter (as compared to the
Elgamal digital signature system).

Based on the Elgamal digital signature system and the proposed modification
of Schnorr, the NIST developed thedigital signature algorithm(DSA) and specified
a correspondingdigital signature standardin FIPS PUB 186 [64]. Since its publi-
cation in 1994, FIPS PUB 186 has been revised twice.27 Since 1993, the DSA has
been covered by U.S. Patent 5,231,668 attributed to David W. Kravitz, a former NSA
employee. The patent was given to “The United States of America as represented by
the Secretary of Commerce, Washington, D.C.” and the NIST has made the patent
available worldwide without having to pay any royalty. Schnorr still claims that his
patent covers DSA, but this claim has been disputed ever since.

The acronym ECDSA refers to the elliptic curve analog of the DSA. This
basically means that, instead of working in a subgroup ofZ

∗

p, one works in a group
of points on an elliptic curve over a finite field. The mathematical formulae look
more involved, but the actual computations are simpler and can be done with shorter
keys (for the same level of security). Consequently, ECDSA is the preferred choice
im many constrained environments. It is also supported in the more recent versions
of the TLS protocol.

2.2.3.3 Key Agreement Protocols

If two or more entities want to employ and make use of secret key cryptography,
then they must share a secret parameter or cryptographic key. Consequently, in
a large system many secret keys must typically be generated, stored, managed,
and destroyed in a highly secure way. If, for example,n entities want to securely
communicate with each other, then there are

(
n
2

)

=
n(n − 1)

1 · 2
=

n2 − n

2

secret keys that must be generated, stored, managed, and destroyed. This number
grows in the order ofn2, and hence the establishment of secret keys is a major
practical problem (and probably the Achilles’ heel) for the large-scale deployment

27 The first revision was made in December 1998 and led to the publication of FIPS PUB 186-1.
The second revision was made in January 2000 and led to the publication of FIPS PUB 186-2. It
is electronically available at http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf.
The third and latest revision was made in March 2006. The corresponding draft is FIPS PUB 186-3.
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of secret key cryptography. For example, ifn = 1,000 entities want to securely
communicate with each other, then there are

(
1,000

2

)

=
10002 − 1000

2
= 499500

secret keys. Even for moderately largen, the generation, storage, and management
of so many keys is prohibitively expensive, and the predistribution of the keys is
infeasible.

Things get even more involved when one considers that keys are often used in
dynamic environments, where new entities join and other entities leave at will, and
that it is usually impossible, impractical, or simply too expensive to transmit keys
over secure channels (e.g., by a trusted courier). Consequently, one typically faces
a key establishment problem in computer networks and distributed systems. There
are basically two approaches to address (and hopefully solve) the key establishment
problem in computer networks and distributed systems:

• The use of a key distribution center (KDC);

• The use of a key establishment protocol.

A prominent and widely deployed example of a KDC is the Kerberos authenti-
cation and key distribution system. Unfortunately, KDCs have many disadvantages.
The most important disadvantage is that each entity must unconditionally trust the
KDC and share a secret master key with it. There are situations in which this level
of trust is neither justified nor can be accepted by the communicating entities. Con-
sequently, the use of key establishment protocols (that typically make use of public
key cryptography in some way or another) provides a viable alternative in many
situations. For example, a simple and straightforward key establishment protocol
can be constructed by having one enitity (pseudo)randomly generate a session key,
asymmetricly encrypt this key with the public key of the other entity, and send
the encrypted key to this other entity. In this case, the RSA asymmetric encryption
system (or any other asymmetric encryption system) can be used. From a security
viewpoint, however, one may face the problem that the security of the session key
is bound by the quality and the security of the key generation process (which is
typically a PRBG). Consequently, it is advantageous to have a mechanism in place in
which two or more entities can establish and agree on a commonly shared secret key.
This is where the notion of a key agreement protocol comes into play (as opposed
to a key distribution protocol). The most important key agreement protocol for two
entities is introduced next.
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Diffie-Hellman Key Exchange

As its name suggests and was mentioned above, theDiffie-Hellman key exchange
protocolwas developed by Diffie and Hellman [25]. It can be used by two entities
that have no prior relationship to agree on a secret key by communicating over a
public but authentic channel. As such, the mere existence of the Diffie-Hellman key
exchange protocol sounds like a paradox.

Protocol 2.1 The Diffie-Hellman key exchange protocol usingZ
∗

p.

A B

(p, g) (p, g)

xa ∈R {0, . . . , p− 2} xb ∈R {0, . . . , p− 2}
ya ≡ gxa (mod p) yb ≡ gxb (mod p)

ya
−→
yb←−

Kab ≡ y
xa
b

(mod p) Kba ≡ y
xb
a (mod p)

(Kab) (Kba)

The Diffie-Hellman key exchange protocol can be implemented in any cyclic
groupG in which the discrete logarithm problem (i.e., given a generatorg of G
and an arbirary elementy ∈ G, find x so thaty = gx) is intractable. The simplest
example of such a group is the multiplicative group of a finite fieldZp (i.e., Z

∗

p).
The Diffie-Hellman key exchange protocol using this group is illustrated in Protocol
2.1. Letp be a large prime andg a generator ofZ∗

p. A and B knowp andg, and
want to use the Diffie-Hellman key exchange protocol to agree on a shared secret
key K. A randomly selects a private exponentxa ∈ {0, . . . , p − 2}, computes
the corresponding public exponentya ≡ gxa (mod p), and sendsya to B. B,
in turn, randomly selects a private exponentxb ∈ {0, . . . , p − 2}, computes the
corresponding public exponentyb ≡ gxb (mod p), and sendsyb to A. A then
computes

Kab ≡ yxa

b ≡ gxbxa (mod p)

and B computes

Kba ≡ yxb
a ≡ gxaxb (mod p).

Because the exponents commute,Kab is equal toKba. It is the output of the Diffie-
Hellman key exchange protocol and can be used as a secret keyK.
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Let us consider a toy example to illustrate the Diffie-Hellman key exchange
protocol. Letp = 17 andg = 3 (i.e., g = 3 generatesZ∗

17). A randomly selects
xa = 7, computesya ≡ 37 (mod 17) = 11, and sends the resulting value11 to
B. B, in turn, randomly selectsxb = 4, computesyb ≡ 34 (mod 17) = 13, and
sends the resulting value13 to A. A now computesyxa

b ≡ 137 (mod 17) = 4, and
B computesyxb

a ≡ 114 (mod 17) = 4. Consequently,K = 4 is the shared secret
that can be used as a session key.

Note that an adversary eavesdropping on the communication channel between
A and B knowsp, g, ya, andyb, but does not knowxa andxb. The problem of
determiningK ≡ gxaxb (mod p) from ya andyb (without knowingxa or xb) is
known as theDiffie-Hellman problem. It is known to be as difficult to solve as the
discrete logarithm problem (see above), but it is still an open question whether it is
always (i.e., in every group) necessary to compute a discrete logarithm to solve an
instance of the Diffie-Hellman problem.

Also note that the Diffie-Hellman key exchange protocol can be transformed
into a (probabilistic) asymmetric encryption system. For a plaintext messagem (that
represents an element of the cyclic group), A randomly selects anxa, computes
the common keyKab (using B’s public exponent and following the Diffie-Hellman
key exchange protocol), and combinesm with Kab to obtain the ciphertextc. The
special case wherec = mKab refers to the Elgamal asymmetric encryption system
introduced in [41] and mentioned above.

Like any other protocol that employs public key cryptography, the Diffie-
Hellman key exchange protocol is vulnerable to theman-in-the-middle attack. Note
what happens if an adversary C is able to place himself or herself between A and B
and provide both with messages of his or her choice. In this case, C can provide A
and B with faked public exponents. More specifically, C can provide A withy′

b (of
which he or she knows the private exponentx′

b) and B withy′

a (of which he or she
knows the private exponentx′

a). In this case, A computesKab′ ≡ y′xa

b ( mod p) and
thinks that he or she shares this key with B, and B computesKb′a ≡ y′xb

a (mod p)
and thinks that he or she shares this key with A. In reality, they both don’t share
any key with each other, but they both share a key with C. If, for example, A
wanted to send a secret message to B, A would use the key he or she thinks is
being shared with B to encrypt the message, and send it to B accordingly. C would
be sitting in the line and grab the message. Equipped withKab′ , C would be able
to decrypt the message, eventually modify it, reencrypt it withKb′a, and forward
it to B. B, in turn, would successfully decrypt the message usingKb′a and think
that the message is authentically coming from A. The only way to protect the
communicating entities against this type of attack is to make sure that the public
exponents are authentic. So, in practice, the native Diffie-Hellman key exchange
protocol is usually combined with a mutual authentication protocol to come up



Cryptography Primer 57

with an authenticated key exchange protocol. In most of these protocols, the public
exponents used in the Diffie-Hellman key exchange are authenticated using RSA
signatures. Consequently, digital certificates and PKIs must be used to securely
deploy authenticated key exchange protocols.

As mentioned earlier, the Diffie-Hellman key exchange protocol can be used
in any group (other thanZ∗

p) in which the discrete logarithm problem is intractable.
There are basically two reasons for using other groups.

• Performance:There may be groups in which the Diffie-Hellman key exchange
protocol (or the modular exponentiation function) can be implemented more
efficiently in hardware or software.

• Security:There may be groups in which the discrete logarithm problem is
more difficult to solve.

The two reasons are not independent from each other. If, for example, one
has a group in which the discrete logarithm problem is more difficult to solve, then
one can work with much smaller keys (for a similar level of security). This is the
major advantage of elliptic curve cryptography (ECC). The ECC-based version of
a Diffie-Hellman key exchange is intuitively called elliptic curve Diffie-Hellman
(ECDH) key exchange. Again, it works in a group of points on an elliptic curve
over a finite field, and again it is supported by some of the more recent versions of
the TLS protocol. Last but not least, we note that the acronym ECMQV stands for
elliptic curve Menezes-Qu-Vanstone, which is a version of ECDH that provides an
authenticated key exchange. Its original version was proposed by Alfred Menezes,
Minghua Qu, and Scott Vanstone in 1995 [65], but it has been updated several
times since then. Today, the security of ECMQV and its descendant is discussed
contraversionally, but the term ECMQV still appears frequently in the cryptographic
literature.

FORTEZZA KEA

As mentioned above, FORTEZZA cards implement a key exchange algorithm
known as FORTEZZA KEA. It was originally designed by NSA in 1994. Its design,
however, was kept secret until 1998 when it was declassified and became available
to the public. It is conceptually similar to a protocol proposed in 1997 [66] and its
security was throughly analyzed in 2006 [67].

The FORTEZZA KEA basically refers to a modified Diffie-Hellman key ex-
change protocol. In short, a long-term certificate-based Diffie-Hellman key exchange
is combined with an ephemeral Diffie-Hellman key exchange. Furthermore, the
block cipher Skipjack (see Section 2.2.2.1) is utilized to reduce the final values
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to a key that is 80 bits long. The FORTEZZA KEA protocol requires a 1,024-bit
prime modulusp and a few related values that are generated according to the DSA
specification. More specifically, the FORTEZZA KEA requires a 160-bit prime di-
visor q of p − 1, a 1,024-bit baseg for the exponentiation (referring to an element
of orderq in the multiplicative group modulop), a 160-bit private valuexA and a
1,024-bit public valueYA = gxA (mod p) for user A. It is assumed that the public
values can be retrieved from a directory in some authenticated form. In addition, the
FORTEZZA KEA also requires an 80-bit padding valuepad and a 160-bit random
numberr.

Protocol 2.2 The FORTEZZA KEA.

A B

(p, q, g) (p, q, g)

xA ∈R (0, . . . , q) xB ∈R (0, . . . , q)
YA ≡ gxA (mod p) YB ≡ gxB (mod p)

YA−→
YB←−

rA ∈R (0, . . . , q) rB ∈R (0, . . . , q)
RA ≡ grA (mod p) RB ≡ grB (mod p)

RA−→
RB←−

tAB ≡ (YB)rA (mod p) tBA ≡ (RA)xB (mod p)
uAB ≡ (RB)xA (mod p) uBA ≡ (YA)rB (mod p)

w ≡ (tAB + uAB) (mod p) w ≡ (tBA + uBA) (mod p)

(K) (K)

The FORTEZZA KEA is illustrated in Protocol 2.2. The input parametersp,
q, andg are common on either side. A randomly selects a 160-bit private value
xA, computes the corresponding 1,024-bit public valueYA ≡ gxA (mod p), and
sendsYA to B. B does the same thing withxB andYB . Next, A randomly selects a
160-bit private valuerA, computes the corresponding 1024-bit public valueRA ≡
grA (mod p), and sendsRA to B. Again, B does the same thing withrB andRB.
Now, A and B check all values received. If everything is fine, then A and B compute
t ≡ grAxB (mod p). More specifically, A computestAB ≡ (YB)rA (mod p) and
B computestBA ≡ (RA)xB (mod p). Both values refer tot. Similarly, A and
B computeu ≡ gxArB (mod p) (A computesuAB ≡ (RB)xA (mod p) and B
computesuBA ≡ (YA)rB (mod p)). Both parties can then computew and verify
thatw 6= 0. If this inequality holds, then A and B both extractv1 andv2 from w
and form the session keyK from v1, v2, and thepad. These steps are not included
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Figure 2.9 The formation of the TEKK according to the FORTEZZA KEA.

in Protocol 2.2, but they are illustrated in Figure 2.9. Note that the block cipher
Skipjack is used here. In the terminology of the FORTEZZA KEA,K represents the
token encryption key(TEK).

2.3 FINAL REMARKS

In this chapter, we provided a cryptography primer, meaning that we introduced,
overviewed, and put into perspective the basic principles of cryptography as far
as they are relevant for a proper understandig of the SSL/TLS protocols. This
is particularly true for a few cryptographic hash functions, symmetric encryption
systems (also known as ciphers), and key exchange algorithms. The examples given
in the text are exactly the ones that we will see when we go through the SSL/TLS
protocols. If your thirst for knowledge is not yet satisfied, then you may refer to
[15] or any other books referenced at the beginning of this chapter to get more and
advanced information about the current state of the art in cryptography. But keep
in mind that cryptography is a very broad and conceptually rich (and hence very
involved) field of study. So one of the biggest dangers is not to see the forest for the
trees. We hope that this primer helps you still see the forest.
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Chapter 3

Transport Layer Security

After having introduced the fundamentals and basic principles of cryptography, we
are now ready to approach the real topic of the book. To set the stage, we use this
chapter to overview and put into perspective the various technologies and protocols
that can be used to provide basic security services at the transport layer of the TCP/IP
protocol stack. More specifically, we give an introduction in Section 3.1, overview
the evolution of the transport layer security protocols in Section 3.2, and conclude
with some final remarks in Section 3.3.

3.1 INTRODUCTION

When the WWW started its triumphal procession in the first half of the 1990s, people
started to purchase items electronically. Among the electronic payment systems
available at this time, credit card transactions were the most widely deployed ones.
Because people had reservations about the transmission of credit card information
as part of Web transactions, many companies and researchers were looking into
possibilities to provide Web transaction security and corresponding services. The
greatest common denominator of all these possibilities was the use of cryptographic
techniques to provide some basic security services. Except for this fact, there was
hardly any consensus about what cryptographic techniques to use and at what layer
to apply them.

The bird’s-eye view reveals that there are many possibilities to invoke cryp-
tographic techniques at various layers of the TCP/IP protocol stack. In principle,
all Internet security protocols overviewed in [1] or Chapter 5 of [2] can be used to
secure Web transactions:
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• On the network access layer, IEEE 802.1AE elaborates on media access
control MAC security and specifies ways to provide data origin authentication,
connectionless confidentiality, and connectionless integrity services to MAC
frames. Also, there are several virtual private networking technologies and
protocols, such as the point-to-point tunneling protocol (PPTP) or the layer 2
tunneling protocol (L2TP) when combined with IPsec/IKE (see next bullet).
All of these network access layer security protocols can also be used to
securely transmit Web transactions (among other things).

• On the Internet layer, there are the IP security (IPsec) and Internet Key
Exchange (IKE) protocols [3] that can be used to establish a secure connection
between two IP entities. Again, the secure connections can then be used to
securely transmit Web transactions. The nice thing about IPsec/IKE is that it
coresides with IP, and hence all Internet applications are layered on top of
them. This means that it can be used to secure all Internet applications. The
less nice thing about IPsec/IKE is that the protocols are overly complex; this
makes the deployment and operation of IPsec/IKE involved and tricky.

• On the transport layer, the Transmission Control Protocol (TCP)—on which
HTTP is layered—can be enhanced to invoke cryptographic techniques and
to provide basic security services for Web transactions. This is basically the
approach of the SSL/TLS protocols.

• On the application layer, either HTTP can be enhanced to invoke crypto-
graphic techniques and to provide Web transaction security, or an authen-
tication and key distribution system, such as Kerberos, can be employed to
basically achieve the same thing. In the second case, the use of a standardized
application programming interface (API) is an important requirement.

Last but not least, there is also the possibility to layer Web transaction security
above the application layer, meaning that the Web transactions are protected in a way
that is independent from the transmission technologies in use. This is conceptually
similar to secure messaging approaches, like PGP, OpenPGP, or Secure MIME
(S/MIME) [4].

The Internet security protocols and their placement in the TCP/IP protocol
stack is illustrated in Figure 3.1. All possibilities have advantages and disadvan-
tages. Roughly speaking, providing Web transaction security at a low layer has the
advantage that applications don’t have to care (and needn’t be modified accordingly),
whereas providing Web transaction security at a high layer has the advantage that it
has no impact on the networking infrastructure, and hence the infrastructure can be
left as it is.
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Network Access Layer

Network Layer

Transport Layer

Application Layer

IPsec / IKE

SSL / TLS / DTLS

IEEE 802.1AE
PPTP / L2TP (IPsec/IKE)

S-HTTP Kerberos

PGP / OpenPGP / S/MIME

Figure 3.1 The Internet security protocols and their placement in the TCP/IP protocol stack.

There is a famousend-to-end argumentin system design [5] that strongly
speaks in favor of providing security services at a high layer. The argument basically
says

• That any nontrivial communications system involves intermediaries, such as
network devices, relay stations, computer systems, and software modules that
are, in principle, unaware of the context of the communication being involved.

• That these intermediaries are incapable of ensuring that the data is processed
correctly.

The bottom line is that, whenever possible, communications protocol operations
should be defined to occur at the end points of a communications system, or as
close as possible to the resource being controlled. The end-to-end argument applies
generally (i.e., for any type of functionality). As pointed out in [6], it particularly
applies to the provision of network security services.

Following the end-to-end argument and design principle, the IETF chartered a
Web Transaction Security (WTS) WG in the early 1990s.1 The goal of the WG was
to develop requirements and a specification for the provision of security services
to Web transaction (e.g., transactions using the HTTP). The outcome of the WG is
documented in [7–9]. A group of researchers at Enterprise Integration Technologies
(EIT) was particularly active. They developed and came up with a proposal to
enhance HTTP with a possibility to encrypt and/or digitally sign documents or
specific parts thereof. The proposal was namedSecure Hypertext Transfer Protocol
(S-HTTP or SHTTP), and it was later officially specified in an experimental RFC

1 http://www.ietf.org/html.charters/OLD/wts-charter.html.
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[9]. S-HTTP is conceptually similar to today’s specifications of the World Wide
Web Consortium (W3C) related to eXtensible Markup Language (XML) encryption
and XML signatures. It was submitted to the Web transaction discussion in 1994,
and due to its strong initial support in the software industry it seemed to be only a
question of time until it would become the dominant key player in the field.

But things evolved differently. Independent from the end-to-end argument and
the S-HTTP proposal, the developers at Netscape Communications prosecuted the
claim that transport layer security provides an interesting compromise between low-
layer and high-layer security. In fact, they took the viewpoint of the application
developer and wanted to enable him or her to establish secure connections (instead
of “normal” connections) in a way that is as simple as possible. To achieve this goal,
they inserted an intermediate layer between the transport layer and the application
layer. This layer was namedSecure Sockets Layer(SSL) and its job was to handle
security, meaning that it had to establish secure connections and to transmit data
over these secure connections. As such, its functionality is deeply interwinded with
the one of a transport layer protocol like TCP, and hence we technically assign the
SSL protocol to the transport layer. More specifically, the SSL protocol is layered
on top of connection-oriented and reliable transport layer protocol like TCP. The
connectionless best effort datagram delivery protocol that operates at the transport
layer protocol is named User Datagram Protocol (UDP),2 and it has only been
recently that the TLS protocol has been adapted to be used on top of UDP, as well.
This is the realm of the DTLS protocol further addressed in Chapter 6. The SSL
protocol was so successful that it became the starting point of a whole evolution of
similar but still slightly different transport layer security protocols. This evolution is
sketched next.

3.2 PROTOCOL EVOLUTION

Netscape Communications started to develop the SSL protocol soon after the Na-
tional Center for Supercomputing Applications (NCSA) released Mosaic 1.0—the
first popular Web browser—in 1993. Eight months later, in the middle of 1994,

2 It is sometimes argued that TCP is connection-oriented and reliable, whereas UDP is connectionless
and unreliable. This characterization is imprecise, mainly because the term “unreliable” suggests
that UDP was intentionally designed to lose packets. This was clearly not the case. Instead, a best-
effort delivery protocol has no built-in functions to detect or correct for packet loss but relies on
underlying protocols to provide this service. Over a modern LAN, for example, loss is nearly zero,
and hence a best-effort delivery protocol is sufficient for many applications. A key benefit from
providing no loss detection is that the resulting protocol is efficient to process and introduces no
latency to the delivery. The bottom line is that it is more appropriate to say that UDP is a best-effort
datagram delivery protocol than an unreliable one.
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Netscape Communications already completed the design for SSL version 1 (SSL
1.0). This version circulated only internally (i.e., inside Netscape Communications),
since it had several shortcomings and flaws. For example, it didn’t provide data
integrity protection. In combination with the use of the stream cipher RC4 for data
encryption, this allowed an adversary to make predictable changes to the plaintext
messages. Also, SSL 1.0 did not use sequence numbers, so it was vulnerable to
replay attacks. Later on, the designers of SSL 1.0 added sequence numbers and
checksums, but still used an overly simple cyclic redundancy check (CRC) instead
of a cryptographically strong hash function that is one-way and collision-resistant.

This and a few other problems had to be resolved, and at the end of 1994
Netscape Communications came up with SSL version 2 (SSL 2.0).3 Among other
changes, the CRC was replaced with MD5 that was still assumed to be secure
at this time. Netscape Communications then released the Netscape Navigator that
implemented SSL 2.0 together with a few other products that also supported SSL
2.0. The official SSL 2.0 protocol specification was written by Kipp E.B. Hickman
from Netscape Communications, and it was submitted as an Internet-Draft entitled
“The SSL Protocol” in April 1995.4 In August 1995, Netscape Communications
also filed a patent application entitled “Secure Socket Layer Application Program
Apparatus and Method” that basically referred to the SSL protocol (hence the patent
is also called theSSL patent). The SSL patent was granted in August 1997 (U.S.
Patent No. 5,657,390) and was assigned to Netscape Communications. Remember
from the foreword that Netscape Communications filed for patents to protect SSL in
order to prevent others from moving into the same space, and that the SSL patent
was given away to the community for everyone to use for free.

With the release of the Netscape Navigator (supporting the newly specified
SSL 2.0 protocol), the Internet and WWW started to take off. This made some
other companies nervous about the potential and the lost opportunities of not
getting involved. Most importantly, Microsoft decided to become active and came
up with the Internet Explorer in the second half of 1995. Microsoft also published a
protocol—namedPrivate Communication Technology(PCT)—that is conceptually
and technically very similar to SSL 2.0.5 In fact, the PCT protocol’s record format is
compatible with that of SSL. Servers implementing both protocols can distinguish
between PCT and SSL clients because the version number field occurs in the same
position in the first handshake message in both protocols, and in the case of PCT, the
most significant bit of the protocol version number is set to one (instead of zero as
with SSL). From today’s perspective, the PCT protocol is only historically relevant.
Some Microsoft products still support it, but outside the world of Microsoft products

3 http://tools.ietf.org/html/draft-hickman-netscape-ssl-00.
4 draft-hickman-netscape-ssl-00.txt.
5 http://graphcomp.com/info/specs/ms/pct.htm.
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the PCT protocol has never been supported and probably will never be supported.
So we can safely ignore it for the purpose of this book. All you need to know is the
acronym and what is actually stands for (roughly speaking, PCT is the Microsoft
version of SSL).

In addition to a few minor changes (mainly regarding the handshake phase),
the PCT protocol improved some weaknesses and vulnerabilities of SSL 2.0. The
ideas were also incorporated in SSL version 3 (SSL 3.0) that was released soon after
the publication of PCT (still before the end of 1995). The SSL 3.0 protocol was spec-
ified by Alan O. Freier and Philip Karlton from Netscape Communications with the
support of an independent consultant named Paul C. Kocher (Kocher later founded
Cryptography Research6). Also, around this time, Netscape Communications em-
ployed several security professionals, including, for example, Taher Elgamal—the
inventor of the Elgamal public key cryptosystem [10] and the provider of this book’s
foreword. These distinguished security professionals helped making SSL 3.0 more
robust and secure. The specification of SSL 3.0 was finally published as an Internet-
Draft entitled “The SSL Protocol Version 3.0” in November 1996.7 Even today this
document serves as a primary reference for the SSL protocol.

From todays perspective, SSL 2.0 is known to have several shortcomings and
security problems that are corrected in SSL 3.0:

• SSL 2.0 permits the client and server to send only one public key certificate
each. Thus, this certificate has to be directly signed by a trusted root CA.
Contrary to that, SSL 3.0 allows clients and servers to have arbitrary-length
certificate chains.

• SSL 2.0 uses the same keys for message authentication and encryption, which
may lead to problems for certain ciphers. Also, if SSL 2.0 is used with RC4
in export mode, then the message authentication and encryption keys are both
based on 40 bits of secret data. This is in contrast to the fact that the message
authentication keys can be longer (export restrictions typically apply only to
encryption keys). In SSL 3.0, different keys are used, and hence even if weak
ciphers are used, mounting attacks against message authenticity and integrity
can still be made intractable (by using long keys for message authentication).

• SSL 2.0 exclusively uses the cryptographic hash function MD5 to generate
MACs. In SSL 3.0, MD5 is complemented with SHA-1, and the MAC
construction is more sophisticated.

Because of these shortcomings and security problems, it is generally recom-
mended to avoid the use of SSL 2.0, and to consistantly replace it with SSL 3.0.

6 http://www.cryptography.com
7 draft-freier-ssl-version3-02.txt.
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After the publication of SSL 3.0 and PCT, there was quite a lot of confusion in
the security community. On the one hand, there was Netscape Communications and
a large part of the Internet and Web security community pushing SSL 3.0. On the
other hand, there was Microsoft with its huge installed base pushing PCT (they also
had to support SSL for interoperability reasons). To make things worse, Microsoft
had even came up with yet another protocol proposal, namedSecure Transport Layer
Protocol(STLP), that was basically a modification of SSL 3.0, providing additionl
features which Microsoft considered to be critical, such as support for UDP, client
authentication based on shared secrets, and some performance optimizations (many
of these features are discussed today for inclusion in the TLS protocol). In this
situation, an IETF Transport Layer Security (TLS) Working Group8 was formed
in 1996 to resolve the issue and to standardize a unified TLS protocol. This task was
technically simple (because the protocols to begin with—SSL 3.0 and PCT/STLP—
were already technically very close), but still difficult for at least three reasons:

• First, the Internet standards process [11] requests that a statement be obtained
from a patent holder indicating that a license will be made available to
applicants under reasonable terms and conditions. This also applied to the
SSL patent (such a statement was not included in the original specification of
SSL 3.0).

• Second, at the April 1995 IETF meeting in Danvers, Massachusetts, the IESG
adopted theDanvers Doctrine, which basically said that the IETF should
design protocols that embodied good engineering principles, regardless of
exportability issues. This doctrine implied support for DES at a minimum and
over time it came to mean 3DES.

• Third, the IETF had a longstanding preference for unencumbered algorithms
when possible. So when the Merkle-Hellman patent (covering many public
key cryptosystems) expired in 1998, but RSA was still patented, the IESG
began pressuring working groups to adopt the use of unpatented public key
cryptosystems.

When the IETF TLS WG finished its work in late 1997, it sent the first
version of the TLS protocol specification off to the IESG. The IESG, in turn,
returned the specification with a few instructions to add other cryptosystems, namely
DSA for authentication, Diffie-Hellman for key exchange (note that the Merkle-
Hellman patent was about to expire), and 3DES for encryption, mainly to solve
the two last issues mentioned above (the first issue could be solved by adding
a corresponding statement in the TLS protocol specification). Much discussion

8 http://www.ietf.org/html.charters/tls-charter.html
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on the mailing list ensued, with Netscape Communications in particular resisting
mandatory cryptographic systems in general and 3DES in particular. After some
heated discussions between the IESG and the IETF TLS WG, grudging consensus
was reached and the protocol specification was resubmitted with the appropriate
changes in place.

Unfortunately, in the meantime, another problem appeared: the IETF Public
Key Infrastructure (PKIX) WG had been tasked to standardize a profile for X.509
certificates in the Internet, and this WG was just winding up its work. For reasons
discussed later in this book, the TLS protocol depended on X.509 certificates and
hence on the outcome of the IETF PKIX WG. In the meantime, the rules of the
IETF forbid protocols advancing ahead of other protocols on which they depend.
PKIX finalization took rather longer than expected and added another delay. The
bottom line is that it took almost three years until the IETF TLS WG could officially
release its resulting security protocol of the same name.9 In fact, the first version of
the TLS protocol (i.e., TLS 1.0), was specified in RFC 2246 [12] and was released
in January 1999. The required patent statement was included in appendix G of this
document. Despite the change of names, TLS 1.0 is nothing more than a new version
of SSL 3.0. In fact, there are fewer differences between TLS 1.0 and SSL 3.0 than
there are differences between SSL 3.0 and SSL 2.0 (the latter is not addressed in this
book). TLS 1.0 is therefore sometimes also referred to as SSL 3.1. In addition to the
TLS 1.0 specification, the IETF TLS WG also completed a series of extensions to
the TLS protocol that are documented elsewhere.

After the 1999 release of TLS 1.0, work on the TLS protocol continued in the
IETF TLS WG. In April 2006, the TLS protocol version 1.1 (TLS 1.1) was specified
in Standards Track RFC 4346 [13], making RFC 2246 obsolete. As discussed later,
there were some cryptographic problems resolved in TLS 1.1. After another two-
years’ revision period, in August 2008, the TLS protocol version 1.2 (TLS 1.2) was
specified in Standards Track RFC 5246 [14]. This document not only made RFC
4346 obsolete, but also RFC 3268 (that specified the use of the AES in TLS) [15]
and RFC 4366 (that specified extensions for TLS) [16]. Furthermore, RFC 5246
also updated informational RFC 4492 [17] that elaborates on the use of ECC-based
cipher suites for TLS. Most of these extensions have been incorportaed in TLS
1.2. They represent the most substantial progress of TLS 1.2. The bottom line is
that the standardization of the TLS protocol and its extensions has become highly
involved and subtle. We will more thoroughly address the topic in Chapter 5. Also,
the TLS protocol has been adapted to be used to secure UDP-based applications.
The corresponding DTLS protocol is addressed in Chapter 6.

9 The name had to be changed from SSL to TLS to avoid the appearance of bias toward any particular
company.
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3.3 FINAL REMARKS

In this chapter, we overviewed and put into perspective the technologies and proto-
cols that can be used to provide basic security services on the transport layer of the
TCP/IP protocol stack. Most importantly, the SSL/TLS protocols represent transport
layer security protocols that are omnipresent and in widespread use. In fact, for the
last few years, support for SSL/TLS has been built into nearly every Web browser
and server software. This even applies to Microsoft (as mentioned above, Microsoft
originally came up with protocol proposals of its own acronymed PCT and STLP,
but these proposals very rapidly sank into oblivion).

There are two major advantages of transport layer security technologies and
protocols:

• On the one hand, they can be used to secure any application layer protocol
that is layered on top of them. This means that any TCP-based application
can potentially be secured with the SSL/TLS protocols. Also, there is the
possibility to secure any UDP-based application with the DTLS protocol.

• On the other hand, they can operate nearly transparently for users, meaning
that users need not be aware of the fact that the SSL/TLS protocols are in
place.10 This simplifies the deployment of the protocols considerably.

All transport layer security protocols mentioned so far employ public key
cryptography and public key certificates. This is almost always true for the servers
that support the SSL/TLS protocols, but it is optionally also true for the clients. The
corresponding protocol specifications assume the existence of certificates, but they
do not address the proper management of these certificates. In fact, the management
of public key certificates is assumed to take place outside the scope of the SSL/TLS
protocols. We postpone the discussion of digital certificates and PKIs to Chapter 8.
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Chapter 4

SSL Protocol

After having introduced the notion of a transport layer security, we now delve more
deeply into the SSL protocol. More specifically, we introduce the topic in Section
4.1, overview the protocols SSL consists of in Section 4.2, provide a traffic analysis
of an SSL session in Section 4.3, analyze the security of the SSL protocol in Section
4.4, and conclude with some final remarks in Section 4.5. This chapter represents
one of the main parts of the book; as such, it is a little bit more voluminous than
most other chapters.

4.1 INTRODUCTION

In Section 3.2, we looked back into the 1990s and explained why Netscape Com-
munications proposed SSL and how the SSL protocol evolved in three versions—
SSL 1.0, SSL 2.0, and SSL 3.0—to finally become the protocol we know as TLS
today. Referring to the terminology introduced in Section 1.1, the SSL protocol is
a client/server protocol that provides the following basic security services to the
communicating peers:

• Authentication (both peer entity and data origin authentication) services;

• Connection confidentiality services;

• Connection integrity services (without recovery).

In spite of the fact that the SSL protocol uses public key cryptography, it does
not provide nonrepudiation services—neither nonrepudiation with proof of origin
nor nonrepudiation with proof of delivery. This is in sharp contrast to S-HTTP and
XML signatures that are able (and have been specifically designed) to provide such
services. As its name suggests, the SSL protocol is sockets-oriented, meaning that
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all or none of the data that is sent to or received from a socket are cryptographically
protected in exactly the same way (i.e., there is no way to digitally sign individual
pieces of the data).

The term SSL refers to a layer that is best viewed as an intermediate layer
between the transport and the application layer. Its scope of functions is twofold:

• On the one hand, it is to establish a secure (i.e., authentic and confidential)
connection between the communicating peers.

• On the other hand, it is to use this connection to securely transmit higher-
layer protocol data from the sender to the recipient. It therefore fragments the
data into manageable pieces (called fragments), and processes each fragment
individually. More specifically, each fragment is optionally compressed, au-
thenticated with a MAC, encrypted, prepended with a header, and transmitted
to the recipient. Each fragment that is treated and prepared this way is called
an SSL record.1 On the recipient’s side, the SSL records must be decrypted,
verified (with regard to their MACs), decompressed, and reassembled, before
the data can be delivered to the respective higher-layer—typically the appli-
cation layer—protocol.

Network Access Layer

Network Layer

Transport Layer

Application Layer
SSL Record Protocol

IP

UDP TCP

SSL
Handshake

Protocol

SSL Change
Cipher Spec

Protocol

SSL
Alert

Protocol

Application
Data

Protocol

Application Layer Protocol

Figure 4.1 The SSL with its (sub)layers and (sub)protocols.

1 To be precise, an SSL record consists of four fields: a type field, a version field, a length field, and
a fragment field. The fragment field, in turn, comprises the higher-layer protocol data.
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The placement of the SSL layer is illustrated in Figure 4.1. It consists of two
sublayers and a few subprotocols:

• The lower layer is stacked on top of some connection-oriented and reliable
transport layer protocol, such as TCP in the case of the TCP/IP protocol
stack.2 This layer basically comprises theSSL Record Protocolthat is used
for the first function mentioned above (i.e., the encapsulation of higher-layer
protocol data).

• The higher layer is stacked on top of the SSL Record Protocol and comprises
four protocols:

– The SSL Handshake Protocolis the core protocol of SSL. It allows
the communicating peers to authenticate each other and to negotiate a
cipher suite and a compression method used for the communications. As
its name suggests, the cipher suite is used to cryptographically protect
data in terms of authenticity, integrity, and confidentiality, whereas the
compression method is to optionally compress data.

– TheSSL Change Cipher Spec Protocolallows the communicating peers
to signal a cipher spec change (i.e., a change in the ciphering strategy
and the way data is cryptographically protected). While the SSL Hand-
shake Protocol is used to negotiate security parameters, the SSL Change
Cipher Spec Protocol is used to put these parameters in place and make
them effective.

– TheSSL Alert Protocolallows the communicating peers to signal indi-
cators of potential problems and to exchange corresponding alert mes-
sages.

– The SSL Application Data Protocolis used for the second function
mentioned above (i.e., the secure transmission of application data). This
protocol is the actual workhorse of SSL: it takes higher-layer—typically
application layer—data and feeds it into the SSL Record Protocol for
cryptographic protection and secure transmission.

In spite of the fact that SSL consists of several subprotocols, we use the term
SSL protocolto refer to all of them. This may be oversimplified, but we think it is
more appropriate to carry the main messages and to make the points. When we refer
to a specific subprotocol, we usually employ its full name.

2 This is in contrast to the DTLS protocol that is stacked on top of UDP. The DTLS protocol is
addressed in Chapter 6.
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Like most protocols based on TCP, the SSL protocol is self-delimiting, mean-
ing that it can autonomously determine the beginning and ending of an SSL message
inside an SSL record or TCP segment (i.e., without the assistance of TCP). The SSL
protocol therefore employs various length fields. In fact, each SSL record is tagged
with a length field that refers to the length of the entire record. In addition, each SSL
message carried inside an SSL record is also tagged with a respective length field.
As explained later, multiple SSL messages of the same type can in fact be carried
inside a single SSL record.

One major advantage of the SSL protocol is that it is application layer protocol
independent, meaning that any TCP-based application protocol can be layered on
top of SSL to provide the basic security services mentioned above. In order to
accomodate connections from clients that do not employ SSL, servers must typically
be prepared to accept both secure and nonsecure versions of a given application layer
protocol. There are usually two strategies to achieve this goal: separate ports and
upward negotiation.

• In a separate port strategy, a different port number is assigned to the secure
version of the application layer protocol. This suggests that the server has to
listen both on the original port and the new (secure) port. For any connection
that arrives on the secure port, SSL is invoked automatically.

• In contrast, in anupward negotiation strategy, a single port is used for both
versions of the application layer protocol. This protocol, in turn, must be
extended to support a message indicating that one side would like to upgrade
to SSL. If the other side agrees, SSL is invoked and a secure channel is
established to be used by the application layer protocol.

Both strategies have advantages and disadvantages, and hence, in principle,
both strategies can be pursued. For example, in the case of HTTP, the upward
negotiation strategy is employed in the standards track RFC 2817 [1],3 whereas the
separate port strategy is employed in the informational RFC 2818 [2].

• RFC 2817 explains how to use the upgrade mechanism in HTTP/1.1 to initiate
SSL/TLS over an existing TCP connection. This mechanism can be invoked
by either the client or server, and upgrading can be optional or mandatory.
In either case, the HTTP/1.1 Upgrade header must be employed. This is a
hop-by-hop header, and hence care must be taken to upgrade across (possibly
multiple) proxy servers. The bottom line is that the upgrade mechanism in
HTTP/1.1 allows unsecured and secured HTTP traffic to share the same port
(typically 80). It also enables virtual hosting, so a single HTTPS server can

3 Note that this RFC is written for the TLS protocol, but the same mechanism also applies to the SSL
protocol.
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Table 4.1
Port Numbers Reserved for Applicaton Protocols Layered over SSL/TLS

Protocol Description Port #

nsiiops IIOP Name Service over SSL/TLS 261
https HTTP over SSL/TLS 443
nntps NNTP over SSL/TLS 563
ldaps LDAP over SSL/TLS 636
ftps-data FTP Data over SSL/TLS 989
ftps FTP Control over SSL/TLS 990
telnets Telnet over SSL/TLS 992
imaps IMAP4 over SSL/TLS 993
ircs IRC over SSL/TLS 994
pop3s POP3 over SSL/TLS 995
tftps TFTP over SSL/TLS 3713
sip-tls SIP over SSL/TLS 5061
. . . . . . . . .

differentiate between traffic intended for several hostnames at a single IP
address.

• RFC 2818 elaborates on using a different server port for the secured HTTP
traffic. This is comparably simple and straightforward.

In general, it is up to the designer of the application layer protocol to make a
choice between the separate port and upward negotiation strategy. Historically, most
protocol designers have made a choice in favor of the separate port strategy. For
example, until the SSL 3.0 protocol specification was officially released in 1996, the
Internet Assigned Numbers Authority (IANA) had already reserved the port number
443 for use by HTTP over SSL (https), and was about to reserve the port numbers
465 for use by the Simple Mail Transfer Protocol (SMTP) over SSL (ssmtp) and
563 for the Network News Transfer Protocol (NNTP) over SSL (snntp). Later on,
the IANA decided to consistently append the letter “s” after the protocol name, so
snntp effectively becamenntps. Today, there are several port numbers reserved
by the IANA for application layer protocols stacked on top of SSL/TLS.4 The
most important examples are summarized in Table 4.1. Among these examples,
ldaps, ftps (andftps-data), imaps andpop3s are particularly important
and most widely used in practice. In contrast, there are only a few application
layer protocols that implement an upward negotiation strategy. We mentioned the
HTTP/1.1 upgrade mechanism above. But by far the most prominent example is
SMTP with its STARTTLS feature specified in RFC 2487 [3] that invokes SSL for

4 http://www.iana.org/assignments/port-numbers.
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the secure transmission of data between two mail servers. STARTTLS is based on
the SMTP extensions mechanism specified in RFC 1869 [4].

The separate port strategy has the disadvantage that it effectively halves the
number of available ports on the server side (because two ports must be reserved
for each application protocol and service). During an IETF meeting in 1997, the
Applications Area Directors and the IESG therefore affirmed that the upward nego-
tiation strategy would be the way to go, and that the separate port strategy should
therefore be deprecated. In reality, however, we see a distinct development: in spite
of the fact that RFC 2817 (specifying an upgrade mechansism for HTTP/1.1) has
been available for almost a decade and is even representing a standards track RFC,
there has hardly been any interest in implementing alternatives to port 443. This may
change for future application protocols. But for HTTP, implementing the separate
port strategy and using port 443 is still the most widely deployed option. This is not
likely to change in the foreseeable future.

The SSL protocol was designed with interoperability in mind. This means
that the protocol is intended to make the probability that two independent SSL
implementations interoperate as large as possible. As such, the design of the SSL
protocol is simpler and more straightforward than the design of many other security
protocols, including, for example, the IPsec/IKE protocols. But the simple and
straightforward design of the SSL protocol is also slightly stashed away by the
fact that the Internet-Draft that specifies SSL 3.0 as well as the RFC documents
that specify the various versions of the TLS protocol all use a specific presentation
language. For the purpose of this book, we neither introduce this language nor do
we actually use it. Instead, we use plain English text to describe the protocols with
as few bit-level details as necessary.

The SSL protocol and its successors are block-oriented with a block size
of one byte (i.e., eight bits). Against this background, multiple-byte values are
just concatenations of bytes. The concatenations are written from left to right
and from top to bottom, but keep in mind that the resulting strings are just byte
strings transmitted over the wire. The byte ordering—also known asendianness—
for muliple-byte values is the usualnetwork byte orderor big endianformat. So the
sequence of the hexadecimal bytes 0x01, 0x02, 0x03, and 0x04 is equivalent to the
decimal value

1 · 166 + 2 · 164 + 3 · 162 + 4 · 160 = 16, 777, 216 + 131, 072 + 768 + 4

= 16, 909, 060.

The aim of the SSL protocol is to securely transmit application data between
communicating peers. The SSL protocol therefore establishes and employs SSL
connections and SSL sessions. Both terms are required to properly understand the
functioning of SSL.
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• An SSL connectionis used to actually transmit data between two communicat-
ing peers, typically a client and a server, in some cryptographically protected
and optionally compressed form. Hence, there are some cryptographic (and
other) parameters that must be put in place and applied to the data transmit-
ted over the SSL connection. One or several SSL connections may then be
associated with an SSL session.

• Similar to an IPsec/IKE security association,5 an SSL sessionrefers to an
association between two communicating peers that is created by the SSL
Handshake Protocol. The SSL session defines a set of cryptographic (and
other) parameters that are commonly used by the SSL connections associated
with the session to cryptographically protect and optionally compress the
data in transmission. Hence, an SSL session can be shared among multiple
SSL connections, and SSL sessions are primarily used to avoid the expensive
negotiation of new parameters for each SSL connection.

Between a pair of entities, there may be multiple SSL connections in place.
In theory, there may also coexist multiple simultaneous SSL sessions, but this
possibility is seldom used in the field.

SSL sessions and connections are stateful, meaning that the client and server
must keep some state information. It is in the responsibility of the SSL Handshake
Protocol to establish and coordinate (as well as possibly synchronize) this state on
the client and server side, thereby allowing the SSL protocol state machines on either
side to operate consistently. Logically, the state is represented twice, once as the
current state, and once as thepending state. Also, separatereadandwrite states are
maintained. So there is a total of four states that need to be managed. The transition
from a pending to a current state occurs when a CHANGECIPHERSPEC message is
sent or received during an SSL handshake negotiaton (as further explained below).
The rules are as follows:

• If an entity (i.e., client or server) sends a CHANGECIPHERSPEC message,
then it copies the pending write state into the current write state. The read
states remain unchanged.

5 There are still a few conceptual and subtle differences between an IPsec/IKE security association
and an SSL session: (1) An IPsec/IKE security association is unidirectional, whereas an SSL session
is bidirectional. (2) An IPsec/IKE security association identifier—also known assecurity parameter
index(SPI)—is intentionally kept as short as 32 bits (as it is being transmitted in each IP packet),
whereas the length of an SSL session identifier does not really matter and need not be minimized. (3)
IPsec/IKE do not really represent client/server protocols, mainly because clients and servers do not
really exist at the Internet layer (instead the termsinitiator andresponderare used in this context).
In contrast, the SSL protocol in general, and the SSL Handshake Protocol in particular represent
real client/server protocols.
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• If an entity receives a CHANGECIPHERSPEC message, then it copies the
pending read state into the current read state. In this case, the write states
remain unchanged.

When the SSL handshake negotiaton is complete, the client and server have
exchanged CHANGECIPHERSPEC messages, and hence they can communicate us-
ing the newly agreed-upon cryptographic (and other) parameters. As discussed be-
low, the FINISHED message is the first SSL handshake message that is protected
according to these new parameters.

For each SSL session and connection, the SSL protocol state machine must
hold some information elements. The corresponding session state and connection
state elements are summarized in Tables 4.2 and 4.3. We revisit some of these
elements when we go through the SSL protocol in detail (later in this chapter).

Table 4.2
SSL Session State Elements

session identifier Arbitrary byte sequence chosen by the server to identify an active or
resumable session state (maximum length is 32 bytes)

peer certificate X.509v3 certificate of the peer (if available)
compression method Data compression algorithm used (prior to encryption)
cipher spec Data encryption and MAC algorithms used (together with crypto-

graphic parameters, such as the length of the hash values)
master secret 48-byte secret that is shared between the client and the server
is resumable Flag indicating whether the SSL session is resumable, meaning that it

can be used to initiate new connections

The SSL protocol is a cryptographic protocol, meaning that it employs cryp-
tography and cryptographic technques. More specifically, the SSL protocol employs
secret key cryptography for message authentication and bulk data encryption, and it
uses public key cryptography for peer entity authentication and key establishment.
Before secret key cryptographic techniques can be invoked, some keying material
must be established. There are basically three key exchange algorithms that can be
used to establish a 48-byte premaster secret, termedpre_master_secret in the
SSL protocol specification: RSA, Diffie-Hellman, and FORTEZZA.6 Some of these
algorithms combine a key exchange with peer entity authentication, and hence actu-
ally refer to authenticated key exchange algorithms. To make this distinction explicit,
a key exchange without peer entity authentication can also be called an anonymous

6 Remember from Section 2.2.2.1 that the Skipjack cipher and the FORTEZZA KEA were declassi-
fied in 1998. Because the SSL 3.0 specification was released in 1996, the details of the FORTEZZA
KEA could not be included. Instead, the FORTEZZA KEA was treated as a black box in the speci-
fication of SSL 3.0.
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Table 4.3
SSL Connection State Elements

server and client random Byte sequences that are chosen by the server and client
for each connection

server write MAC key Secret used in MAC operations on data written by the
server

client write MAC key Secret used in MAC operations on data written by the
client

server write key Key used for data encrypted by the server and decrypted
by the client

client write key Key used for data encrypted by the client and decrypted
by the server

initialization vectors If a block cipher in CBC mode is used for data encryption,
then an IV must be maintained for each key. This field is
first initialized by the SSL Handshake Protocol.
Afterwards, the final ciphertext block from each SSL
record is preserved to serve as IV for the next record.

sequence numbers SSL message authentication employs sequence numbers.
This basically means that the client and server must
maintain a sequence number for the messages that are
transmitted or received on a particular connection.
Each sequence number is 64 bits long and ranges from 0 to
264 − 1. It is set to zero whenever a CHANGECIPHERSPEC

message is sent or receved.

key exchange. To keep things simple, the SSL protocol specification only speaks
about key exchange algorithms and does not distinguish between authenticated and
anonymous ones. Let us now briefly explore the possibilities the SSL provides to
exchange cryptographic keys.

• If RSA is used for key exchange, then the client generates a premaster secret,
encrypts it under the server’s public key, and sends the resulting ciphertext
to the server. The server’s public key, in turn, can either be long-termed and
retrieved from a public key certificate, or short-termed and provided for a
particular key exchange. In either case, the server uses the corresponding
private key to decrypt the premaster secret.

• If Diffie-Hellman is used for key exchange, then a Diffie-Hellman key ex-
change is performed and the resulting Diffie-Hellman value (without leading
zero bytes) represents the premaster secret. The SSL protocol provides support
for three versions of the Diffie-Hellman key exchange:
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– In a fixed Diffie-Hellman key exchange(abbreviated DH), some Diffie-
Hellman parameters are fixed and part of the respective public key
certificates. This applies to the server, but and it may also apply to
the client. This means that the client’s Diffie-Hellman parameters can
either be fixed and part of the client certificate, if client authentication
is required, or they may be dynamically generated and provided in
corresponding SSL handshake messages.

– In an ephemeral Diffie-Hellman key exchange(abbreviated DHE), the
Diffie-Hellman parameters are not fixed and are not part of public key
certificates. Instead, a Diffie-Hellman key exchange is performed to gen-
erate an ephemeral key. The corresponding Diffie-Hellman parameters
are dynamically generated and must be authenticated in some way. Usu-
ally, the parameters are digitally signed with the sender’s private (RSA
or DSS) signing key. The recipient can then use the sender’s public key
to verify the signature. Authenticity of the public key is guaranteed, if it
is retrieved from a valid public key certificate.

– In ananonymous Diffie-Hellman key exchange(abbreviated DHanon),
a Diffie-Hellman key exchange is performed, but the Diffie-Hellman
parameters that are exchanged are not authenticated. This means that
the resulting key exchange is susceptible to a man-in-the-middle attack.

The ephemeral Diffie-Hellman key exchange appears to be the most
secure version of the Diffie-Hellman key exchange, because it yields tem-
porary but authenticated keys. The fixed Diffie-Hellman key exchange has
the problem that the keying material generated is always the same for two
participating entities, and the anonymous Diffie-Hellman key exchange has
the problem that it is vulnerable to man-in-the-middle attacks. Anyway, if the
same Diffie-Hellman keypair is to be used for multiple handshakes, either
because the client or server has a certificate containing a fixed Diffie-Hellman
key or because the server is reusing keying material, care must be taken to pre-
vent small subgroup attacks. Such attacks are most easily avoided by using an
ephemeral key exchange and generating a fresh Diffie-Hellman key for each
handshake. This has the additional advantage that it provides perfect forward
secrecy (PFS). This basically means that the compromise of long-term keying
material does not necessarily compromise each and every session key.

• In the case of FORTEZZA, the key exchange process yields a TEK that can
then be used to securely transmit a randomly chosen premaster secret together
with some additional keys and cryptographic parameters to the server. Note
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that FORTEZZA encryption keys are generated by the token and not derived
from the premaster or master secret.

In the past, RSA has been the predominant SSL key exchange method. This
is in spite of the fact that the ephemeral Diffie-Hellman key exchange method has
some security advantages (mainly because both parties participate in the generation
of the keying material).

Once a premaster secret is established, it can be used to construct a master se-
cret that is calledmaster_secret in the SSL protocol specification. According to
Table 4.2, the master secret represents an SSL session state element. It is constructed
as follows:

master_secret =
MD5(pre_master_secret + SHA(’A’ + pre_master_secret

+ ClientHello.random + ServerHello.random)) +
MD5(pre_master_secret + SHA(’BB’ + pre_master_secret

+ ClientHello.random + ServerHello.random)) +
MD5(pre_master_secret + SHA(’CCC’ + pre_master_secret

+ ClientHello.random + ServerHello.random))

In this notation, SHA refers to SHA-1,’A’, ’BB’, and ’CCC’ refer to the
respective byte strings 0x41, 0x4242, and 0x434343,ClientHello.randomand
ServerHello.random refer to a pair of values that are randomly chosen by the
client and server and exchanged in SSL Handshake Protocol messages (see below),
and+ refers to the string concatenation operator. Interestingly, the construction does
not use either MD5 or SHA-1, but combines the two cryptographic hash functions
(probably to compensate any potential deficiency).

An MD5 hash value is 16 bytes long, so the total length of the master secret
is 3 · 16 = 48 bytes. Its construction is the same for the RSA, Diffie-Hellman, or
FORTEZZA key exchange algorithms (but in the case of FORTEZZA, the master
secret is not used to derive encryption keys). As illustrated in Table 4.2, the master
secret is part of the session state and is treated accordingly. It serves as a source of
entropy for the generation of the cryptographic parameters (e.g., cryptographic keys
and IVs) that are used to secure the communications. Note that the premaster secret
can be safely deleted from memory once the master secret has been constructed.

Equipped with the master secret, a handcrafted PRF can be employed to
generate an arbitrarily long key block, termedkey_block in the SSL protocol
specification. In this PRF construction, the master secret serves as a seed, and the
client and server random values represent salt values (to make cryptanalysis more
difficult). The key block is iteratively constructed in the following way:

key_block =
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MD5(master_secret + SHA(’A’ + master_secret +
ServerHello.random + ClientHello.random)) +

MD5(master_secret + SHA(’BB’ + master_secret +
ServerHello.random + ClientHello.random)) +

MD5(master_secret + SHA(’CCC’ + master_secret +
ServerHello.random + ClientHello.random)) +

[...]

Every iteration adds 16 bytes (i.e., the length of the MD5 hash value), and hence
the construction is continued until the key block is sufficiently long to form the
cryptographic SSL connection state elements of Table 4.3 that are still missing:

client_write_MAC_secret
server_write_MAC_secret
client_write_key
server_write_key
client_write_IV
server_write_IV

The first two values represent message authentication keys, the second two values
represent encryption keys, and the third two values represent IVs that are needed if
a block cipher in CBC mode is used (so these values are optional). Any additional
material in the key block is discarded. The construction equally applies to RSA and
Diffie-Hellman, as well as for the MAC key contruction of FORTEZZA. It does not
apply to the construction of encryption keys and IVs for FORTEZZA—these values
are generated inside the FORTEZZA token of the client and securely transmitted in
a corresponding key exchange message.

If the encryption algorithm in use is exportable, then some additional process-
ing is required to derive the final encryption keys and IVs:

final_client_write_key =
MD5(client_write_key + ClientHello.random +

ServerHello.random);
final_server_write_key =

MD5(server_write_key + ServerHello.random +
ClientHello.random);

client_write_IV =
MD5(ClientHello.random + ServerHello.random);

server_write_IV =
MD5(ServerHello.random + ClientHello.random);

The output of MD5 is always trimmed to the appropriate size by discarding the
least-significant bytes.
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The SSL protocol partly conforms to standards. For example, RSA digital
signatures are always performed using public key cryptography standard (PKCS)
#1 block type 1,7 whereas RSA public key encryption employs PKCS #1 block type
2. The PKCS #1 version that was relevant when the SSL protocol was specified in
1996 was 1.5 [5]. As discussed later in this chapter, PKCS #1 version 1.5 turned out
to be susceptible to adaptive chosen ciphertext attacks, and hence it was replaced
with a more secure version 2.0 in 1998 [6]. Later on, some subtle vulnerabilities led
to another revision of PKCS #1, so that the current version is 2.1 [7].

4.2 PROTOCOLS

As mentioned above, the SSL protocols comprise the SSL Record Protocol, the SSL
Handshake Protocol, the SSL Change Cipher Spec Protocol, the SSL Alert Protocol,
and the SSL Application Data Protocol. We overview and discuss these protocols in
this order.

4.2.1 SSL Record Protocol

We already said that the SSL Record Protocol is used for the encapsulation of higher-
layer protocol data, and that it therefore fragments the data into manageable pieces
(called fragments), and processes each fragment individually. More specifically,
each fragment is optionally compressed and cryptographically protected according
to the compression method and cipher spec of the SSL session state and the
cryptographic parameters of the SSL connection state. The result represents the
fragment of the SSL record sent to the recipient.

The SSL record processing is overviewed in Figure 4.2. Fragmentation,
compression, and cryptographic protection lead to data structures that are called
SSLPlaintext,SSLCompressed, andSSLCiphertext in the SSL protocol
specification. At the end, an SSL record header is appended to theSSLCiphertext
structure to form an SSL record. Each structure comprises four fields: a type field, a
version field, a length field, and a fragment field. The four steps are more thoroughly
addressed next.

7 There is another block type 0 specified in PKCS #1. This type, however, is not used in the SSL
protocol specification.
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Figure 4.2 The SSL record processing (overview).

4.2.1.1 Fragmentation

In the first step, the SSL Record Protocol fragments the higher-layer protocol data
into blocks of214 bytes or less. Each block is packed into anSSLPlaintext struc-
ture. Client message boundaries are not preserved, meaning that multiple messages
of the same type may be coalesced into a singleSSLPlaintext structure.

4.2.1.2 Compression

In the second step, the SSL Record Protocol compresses theSSLPlaintext
structure according to the compression method specified in the SSL session state.
This method is initially set to null, so compression is optional by default. In spite
of the fact that compression is seldom used in practice, providing the possibility
for compression before encryption is still an important feature. This is because data
cannot be significantly compressed anymore once it is encrypted (i.e., encrypted data
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cannot be distinguished from random data, and hence there is hardly any redundancy
that can be removed with data compression).

The SSL specification mandates that the compression is lossless and that
it should not increase the length of the fragment by more than 1,024 bytes.8 As
a practical matter, no compression method other than null compression has been
defined for SSL 3.0. Anyway, compression turns anSSLPlaintext structure
into anSSLCompressed structure. If the compression method is null, then the
compression method is the identity operation, and hence theSSLPlaintext and
SSLCompressed fragments are identical.

4.2.1.3 Cryptographic Protection

In the third step, the SSL Record Protocol protects aSSLCompressed structure
according to the cipher spec specified in the SSL session state. According to Table
4.2, acipher specrefers to a pair of algorithms that are used to cryptographically
protect data. It consists of a message authentication and a data encryption algorithm.
The cipher spec is complemented with a key exchange algorithm. A cipher spec
together with a key exchange algorithm form acipher suite, and the set of 31 cipher
suites defined for SSL is summarized in Appendix A and Appendix C of the SSL 3.0
protocol specification. They are also illustrated in Table 4.4. In this table, the first
column itemizes the names of the cipher suites. The suites written in italics used to
be exportable from the United States (this criterion was important until the end of the
1990s). They were exportable only if the length of the Diffie-Hellman keys was not
longer than 512 bits, and the key length of the block cipher was not longer than 40
bits. The other three columns decompose a cipher suite into its components in terms
of key exchange algorithm, cipher (i.e., symmetric encryption system), and crypto-
graphic hash function. For example, SSLDH RSA WITH 3DESEDE CBC SHA
refers to the cipher suite that comprises RSA for key exchange, 3DES in CBC mode
for encryption, and SHA-1 for message authentication. Each cipher suite is encoded
in two bytes: the first byte is 0x00 and the second byte is the hexadecimal repre-
sentation of the cipher suite number as they occur in Table 4.4 (starting with 0). All
cipher suites whose first byte is 0xFF are considered private and can be used for
experimentation. Interoperability of such types is a local matter. If the RFC editor’s
office agrees, then additional cipher suites may be publishing in informational or
even standards track RFCs.

8 Of course, one hopes that compression shrinks rather than expands the fragment. However, for very
short fragments, it is possible, because of formatting conventions, that the compression method
actually provides output that is longer than the input.
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Table 4.4
SSL Cipher Suites

CipherSuite Key Exchange Cipher Hash

SSLNULL WITH NULL NULL NULL NULL NULL
SSLRSAWITH NULL MD5 RSA NULL MD5
SSLRSAWITH NULL SHA RSA NULL SHA
SSLRSAEXPORTWITH RC440 MD5 RSA EXPORT RC440 MD5
SSL RSA WITH RC4 128 MD5 RSA RC4 128 MD5
SSL RSA WITH RC4 128 SHA RSA RC4 128 SHA
SSLRSAEXPORTWITH RC2CBC 40 MD5 RSA EXPORT RC2CBC 40 MD5
SSL RSA WITH IDEA CBC SHA RSA IDEA CBC SHA
SSL RSAEXPORTWITH DES40CBC SHA RSA EXPORT DES40CBC SHA
SSL RSA WITH DES CBC SHA RSA DES CBC SHA
SSL RSA WITH 3DESEDE CBC SHA RSA 3DESEDE CBC SHA
SSL DH DSSEXPORTWITH DES40CBC SHA DH DSS EXPORT DES40CBC SHA
SSL DH DSS WITH DES CBC SHA DH DSS DES CBC SHA
SSL DH DSS WITH 3DESEDE CBC SHA DH DSS 3DES EDE CBC SHA
SSL DH RSAEXPORTWITH DES40CBC SHA DH RSA EXPORT DES40CBC SHA
SSL DH RSA WITH DES CBC SHA DH RSA DES CBC SHA
SSL DH RSA WITH 3DESEDE CBC SHA DH RSA 3DES EDE CBC SHA
SSL DHE DSSEXPORTWITH DES40CBC SHA DHE DSSEXPORT DES40CBC SHA
SSL DHE DSSWITH DES CBC SHA DHE DSS DES CBC SHA
SSL DHE DSSWITH 3DESEDE CBC SHA DHE DSS 3DES EDE CBC SHA
SSL DHE RSAEXPORTWITH DES40CBC SHA DHE RSA EXPORT DES40CBC SHA
SSL DHE RSA WITH DES CBC SHA DHE RSA DES CBC SHA
SSL DHE RSA WITH 3DESEDE CBC SHA DHE RSA 3DES EDE CBC SHA
SSL DH anonEXPORTWITH RC440 MD5 DH anonEXPORT RC440 MD5
SSL DH anonWITH RC4 128 MD5 DH anon RC4 128 MD5
SSLDH anonEXPORTWITH DES40CBC SHA DH anon DES40CBC SHA
SSL DH anonWITH DES CBC SHA DH anon DES CBC SHA
SSL DH anonWITH 3DESEDE CBC SHA DH anon 3DES EDE CBC SHA
SSL FORTEZZA KEA WITH NULL SHA FORTEZZA KEA NULL SHA
SSL FORTEZZA KEA WITH FORTEZZA CBC SHA FORTEZZAKEA FORTEZZA CBC SHA
SSL FORTEZZA KEA WITH RC4 128 SHA FORTEZZA KEA RC4 128 SHA

There is always an active cipher suite, but it is initially set to SSLNULL WITH
NULL NULL, which does not provide any security service. In fact, this cipher suite

refers to the identity operation for encryption and a MAC size of zero.
Cryptographic protection includes message authentication and encryption. So

the first question that pops up is related to the order. In theory, there are three
possibilities:

1. Authenticate the message, encrypt the message and the MAC, and send
the resulting ciphertext (that now includes the MAC) to the recipient. This
possibility is calledauthenticate-then-encrypt(abbreviated AtE), and it is
used, for example, by the SSL/TLS protocols.
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2. Encrypt the message, authenticate the ciphertext, and send the ciphertext
along with the MAC to the recipient. This possibility is calledencrypt-then-
authenticate(abbreviated EtA), and it is used, for example, by the IPsec
protocol.

3. Encrypt the message, authenticate the message, and send the ciphertext
along with the MAC to the recipient. This possibility is calledencrypt-and-
authenticate(abbreviated E&A), and it is used, for example, by the SSH pro-
tocol.

It has been shown by Hugo Krawczyk and Ran Canetti [8, 9] that EtA is the
generically secure method of combining secure message authentication and secure
encryption, but that EtA is also secure if a block cipher in CBC mode or a stream
cipher is used for encryption. This is the underlying reason why all ciphers in Table
4.4 are either block ciphers in CBC mode or stream ciphers. Let us now have a closer
look at message authentication and encryption.

Message Authentication

First of all, we note that an SSL cipher suite specifies a cryptographic hash function
(not a MAC algorithm), and hence some additional information is required to
actually compute and verify a MAC. The algorithm used by SSL is a predecessor of
the HMAC construction frequently used today (see Section 2.2.2.2). In fact, the SSL
MAC algorithm is based on the original Internet-Draft for the HMAC construction,
which used the concatenation instead of the XOR operation. Hence, the SSL MAC
algorithm is conceptually similar and its security is assumed to be comparable to the
one of the HMAC construction. Remember that the HMAC construction is defined
as follows:

HMACk(m) = h(k ⊕ opad ‖ h(k ⊕ ipad ‖ m))

In this construction,h denotes a cryptographic hash function (i.e., MD5 or SHA-1),
k the secret key (used for message authentication),m the message to be authenti-
cated,ipad (standing for “inner pad”) the byte0x36 (i.e.,00110110) repeated 64
times,opad (standing for “outer pad”) the byte0x5C (i.e.,01011100) repeated 64
times,⊕ the bit-wise addition modulo 2, and‖ the concatenation operation. Using a
similar notation, the SSL MAC construction can be represented as

SSL MACk(SSLCompressed) =

h(k ‖ opad ‖ h(k ‖ ipad ‖ seq number ‖ type ‖ length ‖ fragment
︸ ︷︷ ︸

SSLCompressed∗

))
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where SSLCompressed refers to the SSL structure that is authenticated (and
that comprisestype, version, length, andfragment fields),SSLCompressed∗

represents the same structure without theversion field, h denotes a cryptographic
hash function, andk refers to the (server or client) MAC write key. The two values
ipad andopad are the same bytes repeated 48 times (for MD5) or 40 times (for SHA-
1)—compare this to the 64 times that are required in the HMAC construction. Last
but not least, the SSL MAC construction also takes into account a 64-bit sequence
numberseq number for the message to be authenticated.9

Encryption

After having appended a MAC to theSSLCompressed structure, the SSL Record
Protocol encrypts theSSLCompressed structure and the MAC to generate a
SSLCiphertext structure. The situation is different in the case where a stream
cipher is used and the case where a block cipher is used.

• If a stream cipher is used, then no padding and IV are needed. But a stream
cipher is stateful, meaning that some cipher state must be maintained. In the
case of the SSL protocol, the cipher state from the end of the encryption of one
structure is used for the encryption of the next structure. According to Table
4.4, the SSL protocol envisions the use of the stream cipher RC4 with either a
40-bit or 128-bit key.

• If a block cipher is used, then things get more involved mainly for two reasons:

– First, padding is needed to force the length of the plaintext to be a
multiple of the cipher’s block size. If, for example, DES is used for
encryption, then the length of the plaintext must be a multiple of 64
bits or 8 bytes. The padding is in the form of a number of padding bytes
followed by a 1-byte indication of the byte-length of the padding. The
byte specifying the byte-length of the padding is then replicated for each
byte in the padding. In the SSL protocol, the padding is assumed to be
as short as possible (this is different in the TLS protocols).

– Second, an IV is needed in some encryption modes. In the case of the
CBC mode, for example, the SSL Handshake Protocol must provide
an IV that also represents an SSL connection state element (see Table
4.3). This IV is used to encrypt the first structure. Afterwards, the last

9 The sequence number is a count of the number of messages the parties have exchanged so far. Its
value is set to zero with each CHANGECIPHERSPECmessage, and it is incremented once for each
subsequent SSL record layer message in the session.
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ciphertext block of each structure is used as IV for the encryption of the
next structure.

According to Table 4.4, the SSL protocol envisions the use of the block
ciphers RC2 (with a 40-bit key), DES (with a 40 or 56-bit key), 3DES, IDEA,
and Skipjack (named FORTEZZA). It goes without saying that, in principle,
any other block cipher can also be used. Note, however, that the use of a block
cipher is nontrivial, and that there are many difficulties and pitfalls to avoid if
one uses a block cipher (some problems will be addressed in Sections 4.4 and
5.2).

Due to its simplicity, many SSL implementations prefer stream ciphers and
employ RC4 by default. Consequently, if you use a standard browser and do not
change your preferences or settings, then it is very likely that your browser employs
RC4 for encryption.

At the bottom line, the algorithms specified in the cipher suite transform
an SSLCompressed structure into anSSLCiphertext structure. Encryption
should not increase the fragment length by more than another 1024 bytes, so the total
length of theSSLCiphertext fragment (i.e., encrypted data and MAC) should
not exceed214 + 2048 bytes.

4.2.1.4 SSL Record Header

Last but not least, in the fourth step, the SSL Record Protocol appends an SSL
record header to theSSLCiphertext structure. This turns aSSLCiphertext
structure into an SSL record. In addition to the fragment (that is taken from the
fragment of theSSLCiphertext structure), the SSL record header comprises
three additional fields:

1. An 8-bit (content)typefield that refers to the higher-layer SSL protocol. There
are four predefined values:

• 20 refers to the SSL Change Cipher Spec Protocol;

• 21 refers to the SSL Alert Protocol;

• 22 refers to the SSL Handshake Protocol;

• 23 refers to the SSL Application Data Protocol.

2. A (protocol)versionfield that refers to the version of the SSL protocol in use.
It is a two-byte value that consists of a major and a minor version number
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separated with a comma. Hence, the value of the SSL protocol version the
original specification refers to is 3,0.10

3. A 16-bit lengthfield that refers to the byte-length of the following higher-
layer protocol messages (that are transmitted in the fragment part of the SSL
record). Remember that multiple higher-layer protocol messages that belong
to the same type can be concatenated into a single SSL record, and that each
of these higher-layer protocol messages must be self-delimiting, for example,
by using an appropriate length field.

Type Version Length MACSSLCiphertext structure (optionally compressed)

Encrypted

Major
version

Minor
version

Figure 4.3 The outline of an SSL record.

The outline of an SSL record is illustrated in Figure 4.3. The fragment of the
SSL records comprises anSSLCiphertext structure (optionally compressed) and
a MAC in possibly encrypted form. The entire SSL record is sent to the recipient in a
TCP segment. If multiple SSL records must be sent to the same recipient, then these
records may be sent together in a single TCP segment.

4.2.2 SSL Handshake Protocol

The SSL Handshake Protocol is layered on top of the SSL Record Protocol. It
allows a client and server to authenticate each other and to negotiate items like
cipher suites and compression methods. The protocol and its message flows are
illustrated in Figure 4.4. Messages that are written in square brackets are optional
or situation-dependent, meaning that they are not always sent. Note that CHANGE-
CIPHERSPEC is not actually an SSL Handshake Protocol message but represents an
SSL protocol—and hence a content type—of its own. In Figure 4.4, the CHANGE-
CIPHERSPEC message is therefore illustrated but written in italics. Also note that
each SSL message is typed with a one-byte value (i.e., a decimal number between 0
and 255), and that these values are appended in brackets in the outline that follows
(the different messages are more thoroughly discussed after the outline).

10 Remember from Section 3.2 that the PCT protocol’s record format was compatible with that of the
SSL protocol, and that in the case of PCT the most significant bit of the protocol version field was
set to one.
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ClientHello

ServerHello

Client

[ Certificate ]
[ ServerKeyExchange ]

[ CertificateRequest ]
ServerHelloDone

[ Certificate ]
 ClientKeyExchange

[ CertificateVerify ]

ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Server

Application Data

Figure 4.4 The SSL handshake protocol.

The SSL handshake protocol comprises four sets of messages—somtimes
also termedflights11—that are exchanged between the client and server. Each set
is typically transmitted in a separate TCP segment. There may be even a fifth set
of messages that comprises a HELLOREQUESTmessage (type 0) that may be sent
from the server to the client to actually invoke an SSL handshake. This message,
however, is seldom used in practice and it is therefore ignored in the outline (but it
is explained later on). In either case, the messages are presented in the order they are
sent. Sending SSL handshake messages in unexpected order must result in a fatal
error.

• The first set of messages is sent from the client to the server. It only comprises
a CLIENTHELLO message (type 1).

• The second set of messages comprises 2–5 messages that are sent from the
server to the client:

11 The term is not used in this book. It was introduced in the datagram TLS (DTLS) protocol
specification addressed in Chapter 6.
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1. A SERVERHELLO message (type 2) is sent in response to the CLIENT-
HELLO message.

2. If the server is to authenticate itself (which is generally the case), it may
send a CERTIFICATE message (type 11) to the client.

3. Under some circumstances (discussed below), the server may send a
SERVERKEYEXCHANGE message (type 12) to the client.

4. If the server requires the client to authenticate itself with a certificate, it
may send a CERTIFICATEREQUESTmessage (type 13) to the client.

5. Finally, the server sends a SERVERHELLODONE message (type 14) to
the client.

After having exchanged CLIENTHELLO and SERVERHELLO messages,
the client and server have negotiated a protocol version, a session identifier
(ID), a cipher suite, and a compression method. Furthermore, two random
values (i.e.,ClientHello.random andServerHello.random), have
been generated and are now available for use.

• The third set of messages comprises 3–5 messages that are again sent from
the client to the server:

1. If the server has sent a CERTIFICATEREQUESTmessage, then the client
sends a CERTIFICATE message (type 11) to the server.

2. In the main step of the protocol, the client sends a CLIENTKEYEX-
CHANGE message (type 16) to the server. The content of this message
depends on the key exchange algorithm in use.

3. If the client has sent a certificate to the server, then it must also send a
CERTIFICATEVERIFY message (type 15) to the server. This message is
digitally signed with the private key that corresponds to the certificate’s
public key.

4. The client sends a CHANGECIPHERSPECmessage12 to the server (using
the SSL Change Cipher Spec Protocol) and copies its pending write state
into the current write state.

12 The missing type indicates that the CHANGECIPHERSPEC message is not an SSL Handshake
Protocol message. Instead, it is an SSL Change Cipher Spec Protocol message (identified with a
content type value of 20).
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5. The client sends a FINISHED message (type 20) to the server. As men-
tioned above, this is the first message that is cryptographically protected
under the new cipher spec.

• Finally, the fourth set of messages comprises two messages that are sent from
the server to the client:

1. The server sends another CHANGECIPHERSPEC message to the client
and copies its pending write state into the current write state.

2. Finally, the server sends a FINISHED message (type 20) to the client.
Again, this message is cryptographically protected under the new cipher
spec.

At this point in time, the SSL handshake is complete and the client and
server may begin exchanging application layer protocol data units (using the SSL
Application Data Protocol).

ClientHello

ServerHello

Client

ChangeCipherSpec
Finished

ChangeCipherSpec

Finished

Server

Application Data

Figure 4.5 The simplied SSL handshake protocol (to resume a session).

When the client and server are willing to resume a previously established
or duplicate an existing SSL session, then the SSL Handshake Protocol can be
simplified considerably. The resulting (simplified) protocol is illustrated in Figure
4.5. The client sends a CLIENTHELLO message including the ID of the session to
be resumed. The server then checks its session cache for a match. If a match is
found and the server is willing to reestablish a connection under this session state,
then it sends back a SERVERHELLO message with this particular session ID. The
client and server can then directly move to the CHANGECIPHERSPECand FINISHED

messages. If a session ID match is not found, then the server must generate a
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new session ID and the client and server must go through a full SSL handshake
negotiation.

Type Version Length

Type

22 3 0

Length

Handshake message 1

Length

Handshake message 2

Type

Figure 4.6 The structure of an SSL handshake protocol message.

Let us now have a closer look at the various messages that are exchanged in
the course of an SSL handshake negotiation. Each message starts with a 1-bytetype
field that refers to the SSL handshake message and a 3-bytelengthfield that refers to
the byte length of the message. Remember that multiple SSL handshake messages
can be sent in a single SSL record. The structure of such a message is illustrated
in Figure 4.6. The strongly framed part of a message refers to the SSL handshake
message(s), whereas the leading 5 bytes refer to the SSL record header. This header,
in turn, always comprises a 1-byte type value 22 (referring to the SSL Handshake
Protocol), a 2-byte version value 3,0 (standing for SSL 3.0), and a 2-byte length
value referring to the byte length of the remaining part of the SSL record. If a value
is fixed, then it is indicated below the respective field name.

4.2.2.1 HELLOREQUESTMessage

As mentioned above, the HELLOREQUESTmessage allows a server to ask a client
to restart an SSL handshake negotiation. The message is not often used, but it gives
servers additional options. If, for example, an SSL connection has been in use for so
long that its security is put in question, then the server may send a HELLOREQUEST

message to actually force the client to negotiate new session keys.
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Type Version Length

Type
22 3 0

4 0

0

0

Length
0

0

Figure 4.7 An SSL HELLOREQUESTmessage.

As illustrated in Figure 4.7, an SSL HELLOREQUEST message starts with
the usual 5-byte SSL record header. Afterwards, a type field value of zero refers
to a HELLOREQUEST message. Since the message body is empty, the three bytes
referring to the message length are also all set to zero. Because the HELLOREQUEST

message is 4 bytes long, this value is also included in the length field of the SSL
record header.

4.2.2.2 CLIENTHELLO Message

The CLIENTHELLO message is the first message that is sent from the client to the
server in an SSL handshake negotiation. In fact, it is normally the message an SSL
handshake negotiation begins with. As illustrated in Figure 4.8, an SSL CLIENT-
HELLO message starts with the usual 5-byte SSL record header, a type field value
of one (referring to a CLIENTHELLO message), and a 3-byte message length field
value. In addition, a CLIENTHELLO message comprises the following fields:

• The 2 bytes immediately following the message length field refer to the
highest SSL version supported by the client (typically 3,0). In the SSL
protocol specification, this field is calledclient_version.

• The 32 bytes following the SSL version field comprise a client-generated
random value. In the SSL protocol specification, this field is calledrandom.
It basically consists of two parts:

– A 4-byte date and time (up to the second) string in standard UNIX
format that is defined as the number of seconds elapsed since midnight
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Type Version Length

Type
22 3 0

Length

Random

Session ID

Version
3 0

Session ID
length

Cipher suites length Cipher suite 1

Cipher suite 2

Cipher suite n Compr. length Compr. 1

Compr. 2 Compr. n

1

Figure 4.8 An SSL CLIENTHELLO message.

Coordinated Universal Time (UTC13) of January 1, 1970, not counting
leap seconds14 according to the sender’s internal clock;15

– A 28-byte string that is randomly or pseudorandomly generated.

This value, together with a similar value created by the server, provides
input for several cryptographic computations. Consequently, it is required that

13 Note that, for historical reasons, the term used at this point is sometimes Greenwich Mean Time
(GMT), a predecessor of UTC.

14 A leap second is a one-second adjustment that keeps broadcast standards for time of day close to
mean solar time.

15 The SSL protocol specification does not require a particular level of accuracy for this value, as it
is not intended to provide an accurate time indication. Instead, the specification suggests using the
date and time string as a way to ensure that the client does not reuse particular values.
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it is unpredictable to some extent, and hence that a cryptographically strong
random or pseudorandom bit generator is used to generate the second part.

• The byte immediately following therandom value refers to the length of the
session ID. If this value is set to zero, then there is no SSL session to resume
or the client wants to generate new security parameters. In this case, the server
is going to select an appropriate ID for the session. Otherwise, for example,
if the session ID length is not equal to zero, then the client aims at resuming
(and reusing) the identified session. Because a session ID may have a variable
length, its value must be specified.

• If the session ID length is greater than zero, then the corresponding number of
bytes following the session ID length represent the session ID. In the SSL
protocol specification, this value—together with the session ID length—is
calledsession_id. The SSL protocol limits session IDs (including length
field) to 32 bytes or fewer, but it places no constraints on their content. Note
though, that since session IDs are transmitted in CLIENTHELLO messages
before any encryption is put in place, implementations should not place any
information in the session ID that might, if revealed, compromise security.

• The 2 bytes immediately following the session ID refer to the number of
cipher suites supported by the client. This number equals the length of the
following list of cipher suites. The list is ordered according to the client’s
preferences (i.e., the client’s first preference appears first).

• For every cipher suite supported by the client, there is a 2-byte code re-
ferring to it. In fact, the first byte of the code is always set to zero,
whereas the second byte of the code refers to the index in Table 4.4.
For example, SSLNULL WITH NULL NULL has a code 0,0, whereas
SSL RSA WITH 3DESEDE CBC SHA has a code 0,10. These codes are
appended in a variable-length cipher suites field, calledcipher_suites in
the SSL protocol specification. If thesession_id field is not empty (im-
plying a session resumption request), then the value of thecipher_suites
field must at least include the cipher suites from the session that is going to be
resumed.

• After the cipher suites, a similar scheme applies to the compression meth-
ods supported by the client. In fact, the 2 bytes immediately following the
cipher_suites field refer to the number of compression methods sup-
ported by the client. This number equals the length of the following list
of compression methods. The list itself is ordered according to the client’s
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preferences (i.e., the client’s first preference appears first). For every com-
pression method, a unique code is appended. The resulting value is writ-
ten into thecompression_methods field (as it is called in the SSL
protocol specification). If thesession_id field is not empty, then the
compression_methods value must at least include the compression
methods from that session. Due to the fact that SSL 3.0 only defines the null
compression, all current implementations set the compression length to one
and the following byte to zero, referring to null compression.

In the interest of forward compatibility, it is permitted for a CLIENTHELLO

message to include extra data after thecompression_methods field. This data
must be included in the handshake hashes, but otherwise it must be ignored. This is
the only handshake message for which this is legal (i.e., for all other messages, the
amount of data in the message must match the description of the message precisely).

Type Version Length

Type
22 3 0

Length

Random

Session ID

Version
3 0

Session ID
length

Cipher suite Compr.

2

Figure 4.9 An SSL SERVERHELLO message.

4.2.2.3 SERVERHELLO Message

After having received a CLIENTHELLO message, it is up to the server to process
and verify it, and to return a SERVERHELLO message in the positive case. As Figure
4.9 illustrates, the SERVERHELLO message closely resembles the CLIENTHELLO
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message. The only significant differences are the value of the SSL handshake mes-
sage type (2 instead of 1) and the fact that the server specifies a single cipher suite
and a single compression method (instead of lists of cipher suites and compression
methods). Remember that the server must pick from among the choices proposed by
the client, and hence the values specified by the server refer to the ones that are then
used for the session.

More specifically, an SSL SERVERHELLO message starts with the usual 5-
byte SSL record header, a type field value of two (referring to a SERVERHELLO

message), and a 3-byte message length field. Afterwards, a SERVERHELLO message
comprises the following fields:

• The 2 bytes immediately following the message length field refer to the SSL
version that is going to be used. In the SSL protocol specification, this field
is calledserver_version. It basically corresponds to the lower version
of that suggested by the client in the CLIENTHELLO message and the highest
version supported by the server. Typically, the server version is set to 3,0.

• The 32 bytes following the server version field comprise a 32-byte server-
generated random value, again calledrandom in the SSL protocol specifica-
tion. The structure of the random value is identical to the one generated by the
client; its actual value, however, must be independent and different from the
client’s value.

• The byte following the server random value field specifies the length of the
session ID. Remember that the server may include, at its own discretion,
a session ID in the SERVERHELLO message. If it does, then it allows the
client to attempt to resume and reuse the session at some later point in time.
Servers that don’t wish to allow session resumption can omit a session ID by
specifying a length of zero.

• If the session ID length is not equal to zero, then the corresponding number of
bytes after the length field represent the session ID. If thesession_id field
of the CLIENTHELLO message was not empty, then the server is asked to look
in its session cache for a match. If a match is found and the server is willing
to establish a new connection using the old session state, then the server must
respond with the samesession_id value as supplied by the client. This
indicates a resumed session and dictates that the parties must proceed to the
CHANGECIPHERSPEC and FINISHED messages. Otherwise, if no match is
found or the server is not willing to establish a new connection using the old
session state, then thesession_id field must contain a new value, and this
new value is going to identify the new session.
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• The 2 bytes immediately following the session ID field refer to the cipher
suite selected by the server. This field is calledcipher_suite in the SSL
protocol specification (note the singular form in the field name). For resumed
sessions, the value for the cipher suite field must be copied from the resumed
session state.

• Finally, the last byte refers to the compression method selected by the server.
This field is calledcompression_method in the SSL protocol specifica-
tion (note the singular form). Again, for resumed sessions, the value for the
compression method field must be copied from the resumed session state.

After the server has sent out an SSL SERVERHELLO message, it is assumed
that the client and server have a common understanding about which SSL version
and session to use, meaning that they know which session to resume or which
algorithms to use to establish a new session.

Type Version
Length

Type
22 3 0

Length

Certificate chain length

11

Certificate 1 length

Certificate 1

Certificate n length

Certificate n

Figure 4.10 An SSL CERTIFICATE message.
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4.2.2.4 CERTIFICATE Message

Most key exchange methods are nonanonymous, meaning that the server must au-
thenticate itself to the client with a public key certificate (this applies to all key
exchange methods except DHanon). The server therefore sends a CERTIFICATE

message to the client, immediately following a SERVERHELLO message. The same
message type occurs later in the SSL handshake negotiation, when the server asks
the client for a certificate with a CERTIFICATEREQUEST message and the client
responds with another CERTIFICATE message. In either case, the aim of the CER-
TIFICATE message is to transfer a public key certificate, or—more generally—a set
of public key certificates that form a certificate chain. In the SSL protocol specifica-
tion, the field that may comprise a certificate chain is calledcertificate_list;
it includes all certificates required to form the chain. Each chain is ordered with the
sender’s certificate first followed by a series of CA certificates proceeding sequen-
tially upward until a root CA is reached. Note that support for certificate chains is
a unique feature of SSL 3.0 that was not present in previous versions of the SSL
protocol. Anyway, the certificate types must be appropriate for the key exchange
algorithm in use. Typically, these are X.509 certificates (or some modified X.509
certificates as in the case of the FORTEZZA key exchange algorithm). All X.509
certificate profiles that are relevant in this context are specified by the IETF PKIX
WG and further addressed in Chapter 8.

As illustrated in Figure 4.10, an SSL CERTIFICATE message starts with the
usual 5-byte SSL record header, a type field value of value 11 (referring to an SSL
CERTIFICATE message), and a 3-byte message length field. As mentioned above,
the body of the message then contains a certificate chain that begins with 3 bytes
that indicate the length of the entire chain (this value is always three less than the
message length) and a certificate chain of exactly this length. Each certificate in
the chain also begins with a 3-byte field referring to the length of this particular
certificate. Depending on the length of the chain, the CERTIFICATE message may be
considerably long.

In Section 2.1.6, we already mentioned that—due to the U.S. export controls
that were in place until the end of the 1990s—Netscape Communications and Mi-
crosoft added features to their browsers that allowed them to use strong cryptogra-
phy if triggered with specifically crafted certificates (otherwise support for strong
cryptography was hidden from the server). These features were calledInternational
Step-Up(Netscape Communications) orSGC(Microsoft). In eiher case, the corre-
sponding certificates were issued by officially approved CAs (e.g., VeriSign) and
contained a special attribute in the extended key usage (extKeyUsage) field. In
fact, an International Step-Up certificate included the OID 2.16.840.1.113730.4.1,
whereas an SGC certificate included the OID 1.3.6.1.4.1.311.10.3.3. To keep things
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as simple as possible, a single certificate was typically issued that included both
extended key usage objects (so the same certificate could be used to support Inter-
national Step-Up and SGC).

In order to invoke International Step-Up or SGC, a normal initial SSL hand-
shake took place. In the CLIENTHELLO message, the client claimed to support
only export-strength cipher suites. So the server had no choice but to select a
corresponding cipher suite. In fact, at this point in time, the server did not even
know that the client supported strong cryptography in the first place. As soon as the
server provided its CERTIFICATE message, however, the client knew that the server
was capable of supporting strong cryptography. Depending on whether the client
supported International Step-Up or SGC it proceeded the following way;

• In the case of International Step-Up, the client completed the initial hand-
shake, but instead of beginning the exchange of application data, it started a
new handshake with another CLIENTHELLO message. In this message, the
client proposed full-strength cipher suites, and the server was to select one.

• In the case of SGC, the client aborted the initial handshake and sent a new
CLIENTHELLO message to the server. This message proposed full-strength
cipher suites, allowing the server to select one.

The bottom line of either International Step-Up or SGC is that a second SSL
handshake takes place in which the server and client can negotiate the use of strong
cryptography.

The use of International Step-Up and/or SGC was a compromise between the
needs of the U.S. government to limit the use of full-strength cryptography abroad
and the desire of browser manufacturers to offer the strongest possible product
to the widest audience. Controlling the use of full-strength cryptography became
a matter of controlling the issuance of International Step-Up or certificates SGC.
Consequently, the U.S. government controlled which companies were allowed to
purchase those certificates (mainly financial institutions that operated on a global
scale).

Soon after International Step-Up and SGC were launched, a couple of local
proxy servers for SSL, such as C2Net Software’sSafePassage Web Proxy, popped
up and were brought to market. As further addressed and put into perspective in
Section 7.3, these proxies were able to transform export-grade cryptography into
strong cryptography, independent from the browser. Even more interestingly, a
tool namedFortify16 was distributed internationally. The aim of the tool was to
patch (or rather remove) the artificial barrier that precluded a browser from using
strong cryptography (independent from the server certificate in use). This tool made

16 http://www.fortify.net.
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International Step-Up and SGC obsolete, and the two initiatives silently sank into
oblivion. They finally became obsolete when the U.S. government liberalized its
export controls. Nevertheless, commercial CAs still sell SGC certificates, mainly
because—as they argue—many elder export-version browsers that only employ
strong cryptography if triggered with an appropriate certificate are still in use.
These CAs can issue SGC certificates for all companies and organizations, not only
financial ones.

Type Version Length
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DH Ys

Figure 4.11 The beginning of an SSL SERVERKEYEXCHANGE message using Diffie-Hellman.
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Figure 4.12 The beginning of an SSL SERVERKEYEXCHANGE message using RSA.

4.2.2.5 SERVERKEYEXCHANGE Message

If RSA is used for key exchange, then the client can retrieve the public key from the
server certificate and encrypt the premaster secret with this key. Similarly, if a fixed
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Figure 4.13 An SSL SERVERKEYEXCHANGE message using FORTEZZA.

Diffie-Hellman key exchange is used, then the client can retrieve the server’s Diffie-
Hellman parameters from the server certificate, employ these parameters to perform
a Diffie-Hellman key exchange, and use the result as the premaster secret. In all
of these cases, the server’s CERTIFICATE message is sufficient and no additional
information is required for the client to securely communicate a premaster secret
to the server. In particular, no SERVERKEYEXCHANGE message is needed. In
some other cases, however, the client needs some additional information, and this
information must be delivered by the server in a SERVERKEYEXCHANGE message.
This applies, for example, for an ephemeral or anonymous Diffie-Hellman key
exchange and the FORTEZZA KEA.

A special case occurs if RSAEXPORT is used for key exchange: in this case,
a former U.S. export law may apply, according to which RSA keys larger than 512
bits could not directly be used for key exchange in software exported from the
United States. Instead, these RSA keys could be used (as signature-only keys) to
sign temporary shorter RSA keys for key exchange. Consequently, temporary 512-
bit RSA keys were used and these keys were signed with the larger RSA keys (found
in the certificate). Needless to say that this extra step is obsolete if the original RSA
keys are 512 bits long or shorter. The bottom line is that one has to distinguish
between two cases:

• If RSA EXPORT is used for key exchange and the public key in the server
certificate is longer than 512 bits, then the extra step must be taken and the
SERVERKEYEXCHANGE message (that includes a signed shorter RSA key)
must be sent.

• If, however, RSAEXPORT is used for key exchange and the public key in
the server certificate is 512 bits long or shorter, then the extra step need not be
taken and the SERVERKEYEXCHANGE message need not be sent.
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As illustrated in Figures 4.11 to 4.13, an SSL SERVERKEYEXCHANGE mes-
sage always starts with the usual 5-byte SSL record header, a type field value of
value 22 (referring to a SERVERKEYEXCHANGE message), and a 3-byte message
length field. The rest of the SERVERKEYEXCHANGE message mainly depends on
the key exchange algorithm in use (Diffie-Hellman, RSA, or FORTEZZA).

• If ephemeral or anonymous Diffie-Hellman is used, then the rest of the
SERVERKEYEXCHANGE message comprises the server’s Diffie-Hellman pa-
rameters, including a prime modulusp, generatorg, and public exponentYs,
as well as a digital signature for the parameters. The beginning of such a mes-
sage is illustrated in Figure 4.11 (without signature part). Note that the fields
for the Diffie-Hellman parameters have a variable length (consistently set to
three in Figure 4.11).

• If RSA is used but the server has a signature-only RSA key, then the client
cannot send a premaster secret encrypted with the server’s public key. In-
stead, the server must create a temporary RSA public key pair and use the
SERVERKEYEXCHANGE message to deliver the public key to the client. The
SERVERKEYEXCHANGE message then includes the two parameters that to-
gether define a temporary RSA public key: the modulus and the exponent.
Again, these parameters must come along with a digital signature. The begin-
ning of such a message is illustrated in Figure 4.12 (without signature part).
Note again that the fields for the RSA parameters have a variable length (con-
sistently set to three in Figure 4.12).

• If FORTEZZA is used, then the SERVERKEYEXCHANGE message only car-
ries the server’srs value that is required by the FORTEZZA KEA. Since this
value is always 128 bytes long, there is no need for a separate length parame-
ter. Also, there is no need for a digital signature. A SERVERKEYEXCHANGE

message is illustrated in Figure 4.13.

In the first two cases, the SERVERKEYEXCHANGE message may include a
signature part. If server authentication is not part of a particular SSL session, then
no signature part is required, and the SERVERKEYEXCHANGE message ends with
the Diffie-Hellman, RSA, or FORTEZZA parameters. If the server is not acting
anonymously and has sent a CERTIFICATE message, however, then the signed
parameters format depends on the signature algorithm indicated in the server’s
certificate (RSA or DSA):

• If the server’s certificate is for RSA signing, then the signed parameters consist
of the concatenation of two hash values: an MD5 hash value and a SHA-1
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hash value. Note that the two hash values are not individually signed, but one
signature is generated for the combined hashes.

• If the server’s certificate is for DSA signing, then the signed parameters
consist solely of a SHA-1 hash value.

In either case, the input to the hash functions is a string that consists of
ClientHello.random (i.e., therandom value of the CLIENTHELLO mes-
sage),ServerHello.random (i.e., therandom value of the SERVERHELLO

message), and the server key parameters mentioned above (all components are con-
catenated). The random values are included so old signatures and temporary keys
cannot be replayed. The server key parameters refer to either the Diffie-Hellman
parameters of Figure 4.11 or the RSA parameters of Figure 4.12. As mentioned
above, no signed parameters are included for FORTEZZA.

Type Version Length

Type
22 3 0
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CT length CT 1

... CT n

DN of CA 1

Figure 4.14 An SSL CERTIFICATEREQUESTmessage.

4.2.2.6 CERTIFICATEREQUESTMessage

A nonanonymous server can optionally authenticate the client.17 It therefore sends a
CERTIFICATEREQUESTmessage to the client. This message not only asks the client
to send a certificate (and to sign data using its corresponding private signing key
later on), but it also informs the client which certificates are acceptable to the server.

17 Note that an anonymous server must not request a certificate from the client. Otherwise a fatal alert
message (handshake failure) must be sent to the server.
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Table 4.5
SSL Certificate Type Values

Value Name Description

1 rsasign RSA signing and key exchange
2 dsssign DSA signing only
3 rsafixed dh RSA signing with fixed DH key exchange
4 dssfixed dh DSA signing with fixed DH key exchange
5 rsaephemeraldh RSA signing with ephemeral DH key exchange
6 dssephemeraldh DSA signing with ephemeral DH key exchange
20 fortezzakea FORTEZZA signing and key exchange

As illustrated in Figure 4.14, an SSL CERTIFICATEREQUESTmessage starts
with the usual 5-byte SSL record header, a type field value of value 13 (referring
to a CERTIFICATEREQUESTmessage), and a 3-byte message length field. The re-
maining part of the CERTIFICATEREQUESTmessage begins with a list of acceptable
certificate types (calledcertificate_types in the SSL protocol specification
and acronymed CT in Figure 4.14). This type list has a length field of its own, and
consists of one or more single-byte values that identify specific certificate types. The
defined certificate type values and their meanings are summarized in Table 4.5. Note
that the last three types are no longer needed in the TLS protocol.

After the certificate types, the CERTIFICATEREQUESTmessage also indicates
which CAs the server considers appropriate. In the SSL protocol specification,
this list is calledcertificate_authorities. It starts with a 2-byte length
field and then contains one or more distinguished names (DNs). Each CA (or DN,
respectively) has its own 2-byte length field that is put in front of the CA’s DN. In
Figure 4.14, only one CA is included. Keep in mind that this list may be very long.
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Figure 4.15 An SSL SERVERHELLODONEmessage.

4.2.2.7 SERVERHELLODONE Message

The SERVERHELLODONE message is sent by the server to indicate the end of the
SERVERHELLO and associated messages. As illustrated in Figure 4.15, an SSL
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SERVERHELLODONE message starts with the usual 5-byte SSL record header, a
type field value of value 14 (referring to a SERVERHELLODONE message), and a
3-byte message length field. Since the body of the SERVERHELLODONE message is
empty, the three bytes referring to the message length are all set to zero. The entire
HELLOREQUESTmessage is 4 bytes long, and hence this value is included in the
last byte of the length field of the SSL record header.

4.2.2.8 CERTIFICATE Message

After having received a SERVERHELLODONE message, it is up to the client to
verify the server certificate (if required) and check that the values provided in the
SERVERHELLO message are acceptable. If everything is fine, the client sends a
couple of messages to the server. If the server requested a certificate, then the
client would send a CERTIFICATE message to the server. This message would be
structurally the same as the message sent from the server to the client (see Section
4.2.2.4). If the Diffie-Hellman key exchange algorithm is used, then the client-side
Diffie-Hellman parameters must be compliant to the ones provided by the server,
meaning that the Diffie-Hellman group and generator encoded in the client certificate
must match the server’s values.

Type Version
Length

Type
22 3 0

Length

Encrypted premaster secret

16

Figure 4.16 An SSL CLIENTKEYEXCHANGE message using RSA.

4.2.2.9 CLIENTKEYEXCHANGE Message

One of the most important messages in an SSL handshake is the CLIENTKEYEX-
CHANGE message that is sent from the client to the server. It provides the server
with the client-side keying material that is later used to secure communications.
As illustrated in Figures 4.16 to 14.18, the format of the CLIENTKEYEXCHANGE

message depends on the key exchange algorithm actually in use. In either case,
it starts with the usual 5-byte SSL record header, a type field value of value 16
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Figure 4.17 An SSL CLIENTKEYEXCHANGE message using FORTEZZA.
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Figure 4.18 An SSL CLIENTKEYEXCHANGE message using Diffie-Hellman.

(referring to a CLIENTKEYEXCHANGE message), and a 3-byte message length
field.18 The body of the message then depends on the key exchange algorithm in
use:

• If RSA or FORTEZZA is used, then the body of the CLIENTKEYEX-
CHANGE message comprises an encrypted 48-byte premaster secret (i.e.,
pre_master_secret), that is sent from the client to the server. To detect
version rollback attacks, the first 2 bytes from the 48 bytes refer to the lat-
est (newest) version supported by the client and offered in the corresponding
CLIENTHELLO message (note that this need not be the version that is actually

18 According to [10], some early SSL 3.0 implementations of Netscape Communications were buggy
in the sense that the length field was omitted (because the length can be unambiguously determined
anyway). This bug was mimicked by some early adopters and implementators of SSL 3.0. The
bottom line was that some SSL 3.0 implementations omitted the length field in spite of the fact
that it had been present in the protocol specification. Even today, it may happen that an SSL 3.0
implementation still omits the length field (for historical reasons).
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in use19). Upon receiving the premaster secret, the server should check that
this value matches the value transmitted by the client in the CLIENTHELLO

message.

– In the case of RSA, the premaster secret is encrypted under the public
RSA key from the server’s certificate or temporary RSA key from
the SERVERKEYEXCHANGE message. A coresponding SSL CLIENT-
KEYEXCHANGE message using RSA is illustrated in Figure 4.16. The
premaster secret is then used to generate a master secret, and the master
secret is used to generate the various session keys.

– In the case of FORTEZZA, the KEA is used to derive a TEK, and the
TEK is used to encrypt (and securely transmit) the premaster secret and
a few other cryptographic parameters to the server. A corresponding
SSL CLIENTKEYEXCHANGE message is illustrated in Figure 4.17. The
FORTEZZA key material actually consists of 10 values, summarized in
Table 4.6. Note that the client’sYC value for the KEA calculation is
between 64 and 128 bytes long, and that it is empty ifYC is part of the
client certificate.

Table 4.6
FORTEZZA Key Material

Parameter Size

Length ofYC 2 bytes
Client’s YC value for the KEA calculation 0–128 bytes
Client’s RC value for the KEA calculation 128 bytes
DSA signature for the client’s KEA public key 40 bytes
Client’s write key, wrapped by the TEK 12 bytes
Client’s read key, wrapped by the TEK 12 bytes
IV for the client write key 24 bytes
IV for the server write key 24 bytes
IV for the TEK used to encrypt the premaster secret 24 bytes
Premaster secret, encrypted by the TEK 48 bytes

• If ephemeral or anonymous Diffie-Hellman is used, then the CLIENTKEYEX-
CHANGE message comprises the client’s public Diffie-Hellman parameterYc.
Such a message is illustrated in Figure 4.18. If, however, fixed Diffie-Hellman
is used, then the client’s public Diffie-Hellman parameters were already sent

19 There are implementations that employ the version in use instead of the latest version supported by
the client. This is not a severe security problem, but there are some interoperability issues involved.
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in a CERTIFICATE message, and hence a CLIENTKEYEXCHANGE message is
not needed anymore.

If the server receives a CLIENTKEYEXCHANGE message, then it uses its
private key to decrypt the premaster secret in the case of RSA or FORTEZZA, and
it uses a Diffie-Hellman parameter of its own to compute a shared secret in the case
of Diffie-Hellman.

4.2.2.10 CERTIFICATEVERIFY Message

If the client has provided a certificate with signing capabilities20 in a SERVER-
HELLODONE message, then it must still prove that it possesses the corresponding
private key (the certificate alone cannot authenticate the client). Therefore, the client
sends a CERTIFICATEVERIFY message to the server and this message basically
comprises a digital signature generated with the client’s private key.

Type Version Length
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Digital signature

Figure 4.19 An SSL CERTIFICATEVERIFY message.

As illustrated in Figure 4.19, an SSL CERTIFICATEVERIFY message starts
with the usual 5-byte SSL record header, a type field value of value 15 (referring
to a CERTIFICATEVERIFY message), and a 3-byte message length field. The body
of the CERTIFICATEVERIFY message comprises a digital signature, where the exact
format of the signature depends on whether the client’s certificate is for RSA or
DSA.

• For RSA certificates, two separate hash values are combined and signed: an
MD5 hash value and a SHA-1 hash values. The signature covers both values
(there are not two separate signatures).

• For DSA certificates, only a SHA-1 hash value is signed.

20 This applies for all certificates except those containing fixed Diffie-Hellman parameters.
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In either case, the information that serves as input to the hash functions (and
hence is the information that is digitally signed) is the same. Ifhandshake messages
refers to the concatenation of all SSL handshake messages that have been exchanged
so far,21 then the hash value is computed according to

h(k ‖ opad ‖ h(handshake messages ‖ k ‖ ipad))

whereh is MD5 or SHA-1,k is the master secret, andipad andopad are the values
introduced earlier in this chapter. Again, the two values are repeated 48 times for
MD5 and 40 times for SHA-1.

4.2.2.11 FINISHED Message

A FINISHED message is always sent immediately after a CHANGECIPHERSPEC

message (as part of the SSL Change Cipher Spec Protocol) to verify that the key
exchange and authentication processes have been successful. It is the first message
protected with the newly negotiated algorithms and keys. No acknowledgment is
required (i.e., parties may begin sending encrypted data immediately after sending
the FINISHED message).
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Figure 4.20 An SSL FINISHED message.

21 Note that CHANGECIPHERSPECmessages are not SSL handshake messages, and hence they are
not included in the hash computations.
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As illustrated in Figure 4.20, an SSL FINISHED message starts with the usual
5-byte SSL record header, and then continues with a body part that is cryptograph-
ically protected, meaning that it is encrypted most of the time (depending on the
cipher suite in use). The encrypted body part comprises a header for the FINISHED

message, with a type field value of value 20 (referring to a CERTIFICATEVERIFY

message) and a 3-byte message length field, a 16-byte MD5 hash value, a 20-byte
SHA-1 value, and a 16- or 20-byte MAC (the MAC length actually depends on
the hash function in use). Both hash calculations use the same information and are
computed according to

h(k ‖ opad ‖ h(handshake messages ‖ sender ‖ k ‖ ipad)),

where againh is MD5 or SHA-1,k is the master secret,ipad andopad are the values
introduced earlier in this chapter,handshake messages is the concatenation of all
SSL handshake messages that have been exchanged so far (this value is different
from the value used for the CERTIFICATEVERIFY message), andsender refers to
the entity that sends out the FINISHED message. If the client sends out the message,
then this value is0x434C4E54. Otherwise, if the server sends out the message,
then this value is0x53525652. Note the similarity between this calculation and
the hash calculation for the CERTIFICATEVERIFY message; the only differences
refer to the inclusion of the sender and the different base for the construction of
handshake messages. The length of the FINISHED message body is 36 bytes,
whereas the length of the FINISHED message is 40 bytes. Depending on whether
MD5 or SHA-1 is used for message authentication, the length of the SSL record
fragment is 56 or 60 bytes. This value is included in the SSL record header’s length
field.

4.2.3 SSL Change Cipher Spec Protocol

As mentioned above, the SSL Change Cipher Spec Protocol is a protocol of its own
that allows the communicating peers to signal transitions in ciphering strategies.
The protocol itself is very simple. It consists of a single message (i.e., a CHANGE-
CIPHERSPEC message), that is compressed and encrypted according to the current
(not pending) cipher spec. The placement of the CHANGECIPHERSPEC messages
in a normal SSL handshake is illustrated in Figure 4.4. When resuming a previously
established SSL session, the CHANGECIPHERSPEC message is just sent after the
hello messages (see Figure 4.5).

As illustrated in Figure 4.21, an SSL CHANGECIPHERSPEC message starts
with a 5-byte SSL record header, this time referring to type 20 (standing for the
SSL Change Cipher Spec Protocol). The rest of the SSL record header remains
unchanged and includes a version and a length field. The length field value is actually
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Figure 4.21 An SSL CHANGECIPHERSPECmessage.

set to one, because the CHANGECIPHERSPEC message only includes a single type
byte. This byte, in turn, is a placeholder that can currently only have a single value
of one.

The CHANGECIPHERSPECmessage is unique in that it is not properly part of
the SSL handshake but rather has its own content type and hence represents an SSL
(sub-)protocol of its own. Because the CHANGECIPHERSPEC message must not be
encrypted and the FINISHED message must be encrypted, they cannot be transmitted
in the same SSL record. Using separate content types is one way of achieving this.
But it is useful only if an implementation attempts to send multiple handshake
messages in a single SSL record. In fact, it is sometimes a performance improvement
to send multiple handshake messages in the same TCP segment, and sending them
in the same SSL record is one way of doing so. However, many implementations
instead opt to transmit multiple records in the same TCP segment, which has very
much the same effect (an example will be given in the following section). For
such implementations, the use of separate content types is an inconvenience that
unnecessarily complicates the state machine of the SSL Handshake Protocol. The
bottom line is that the use of a separate content type for the CHANGECIPHERSPEC

message can be (and sometimes is) discussed controversially.

4.2.4 SSL Alert Protocol

As mentioned above, the SSL Alert Protocol allows the communicating peers to
exchange alert messages. Each alert message carries an alert level and an alert
description:

• Thealert levelcomprises 1 byte, where the value 1 stands for “warning” and
the value 2 stands for “fatal.” For all errors messages for which a particular
alert level is not explicitly specified, the sender may determine at its discretion
whether it is fatal or not. Similarly, if an alert with an alert level of warning
is received, the receiver may decide at its discretion whether to treat this as a
fatal error. Anyway, all messages that are transmitted with an alert level of fatal
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Table 4.7
SSL Alert Messages

Alert Code Brief description

close_notify 0 The sender notifies the recipient that it will not send any more
messages on the connection. This alert is always a warning.

unexpected_message 10 The sender notifies the recipient that an inappropriate message
was received. This alert is always fatal and should never be observed
in communication between proper implementations.

bad_record_mac 20 The sender notifies the recipient that a record with an incorrect
MAC was received. This alert is always fatal and should never be
observed in communication between proper implementations.

decompression_failure 30 The sender notifies the recipient that the decompression function
received improper input, meaning that it could not decompress the
received data. This alert is always fatal and should never be
observed in communication between proper implementations.

handshake_failure 40 The sender notifies the recipient that it was not able to negotiate
an acceptable set of security parameters given the options available.
This alert is always fatal.

no_certificate 41 The sender (which is always a client) notifies the recipient (which
is always a server) that it has no certificate that can satisfy the
server’s certificate request. Note that this alert is only used in
SSL (it is no longer used in any version of TLS).

bad_certificate 42 The sender notifies the recipient that the certificate provided is
corrupt (e.g., its signature cannot be verified).

unsupported_certificate 43 The sender notifies the recipient that the certificate provided is
not supported.

certificate_revoked 44 The sender notifies the recipient that the certificate provided has
been revoked by the issuing CA.

certificate_expired 45 The sender notifies the recipient that the certificate provided has
expired and is no longer valid.

certificate_unknown 46 The sender notifies the recipient that some unspecified issue arose
in processing the certificate provided, rendering it unacceptable.

illegal_parameter 47 The sender notifies the recipient that a field in the SSL handshake
message was out of range or inconsistent with some other field. This
alert is always fatal.

must be treated accordingly, meaning that they must result in the immediate
termination of the connection.

• Thealert descriptionalso comprises 1 byte, where a numeric code refers to
a specific situation. The SSL alert messages are summarized in Table 4.7 (or
Appendix A.3 of the SSL 3.0 specification). For example, code 0 stands for the
closure alertclose_notify that notifies the recipient that the sender will
not send any more messages. Note that the sender and the server must share
knowledge that a connection is ending in order to avoid a truncation attack,
and that either party may initiate a closure by sending aclose_notify alert
accordingly. Any data received after such an alert must be ignored. In addition
to the closure alert, there are a number of error alerts. In fact, all other SSL
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alert messages refer to error alerts. When an error is detected, the detecting
party sends a message to the other party. Upon transmission or receipt of an
fatal alert message, both parties immediately close the connection and drop
any information related to it.
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Figure 4.22 An SSL ALERT message.

As illustrated in Figure 4.22, an SSL ALERT message starts with a 5-byte SSL
record header, this time referring to type 21 (standing for the SSL Alert Protocol).
The rest of the SSL record header remains the same and includes a version and a
length field. The length is actually set to two, because the ALERT message includes
only two bytes (one byte referring to the alert level and the other byte referring to
the alert description code).

4.2.5 SSL Application Data Protocol

As mentioned earlier in this chapter, the SSL Application Data Protocol allows
the communicating peers to exchange data according to some application layer
protocol. More specifically, it takes application data and feeds it into the SSL
Record Protocol for fragmentation, compression, and cryptographic protection. The
resulting SSL records are then sent to the recipient, where they are decrypted,
verified, decompressed, and reassembled.

Figure 4.23 illustrates some application data encapsulated in an SSL record.
As usual, the SSL record starts with a 5-byte header, including a type field (this time
referring to 23 standing for the SSL Application Data Protocol), a version field, and
a length field. Everything after the SSL record header is encrypted and can only be
decrypted using the appropriate key. This applies to the actual application data, but
it also applies to the MAC (that is either 16 or 20 bytes long). As mentioned above,
things are slightly more involved if a block cipher is used. In this case, some message
padding must be appended to the SSL record, and the last byte in the record must
then refer to the padding length. The corresponding format of an SSL record for a
block cipher is illustrated in Figure 4.24.
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Type Version Length
23 3 0

Application data

MAC (16 or 20 bytes)
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Figure 4.23 Application data encapsulated in an SSL record (stream cipher).

4.3 TRAFFIC ANALYSIS OF AN SSL SESSION

To illustrate the functioning of the SSL protocol, we provide a traffic analysis of an
SSL session. We therefore consider a setting in which a client (i.e., a Web browser)
tries to access an SSL-enabled Web server, and we use a network protocol analyzer
(Wireshark) to capture the SSL records that are sent back and forth. The dissection
of these records is well suited to show what is going on behind the scenes (i.e., at the
protocol level). Before the SSL protocol can be invoked, the client must establish
a TCP connection to the server. We jump over this step and assume such a TCP
connection between the client and server already exists.

In our example, the client takes the initiative and sends a CLIENTHELLO

message to the server. This message is encapsulated in an SSL record that looks
as follows (in hexadecimal notation):

16 03 00 00 41 01 00 00 3d 03 00 48 b4 54 9e 00
6b 0f 04 dd 1f b8 a0 52 a8 ff 62 23 27 c0 16 a1
59 c0 a9 21 4a 4e 3e 61 58 ed 25 00 00 16 00 04
00 05 00 0a 00 09 00 64 00 62 00 03 00 06 00 13
00 12 00 63 01 00

The SSL record starts with a type field that comprises the value0x16 (representing
22 in decimal notation, and hence standing for the SSL Handshake Protocol), a
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Type Version
Length

23 3 0

Application data

MAC (16 or 20 bytes)

E
n

c
ry

p
te

d

Message padding

Padding

Figure 4.24 Application data encapsulated in an SSL record (block cipher).

version field that comprises the value0x0300 (referring to SSL 3.0), and a length
field that comprises the value0x0041 (representing 65 in decimal notation). This
basically means that the fragment of the SSL record is 65 bytes long, and that the
following 65 bytes thus represent the CLIENTHELLO message. This message, in
turn, starts with0x01 standing for the SSL handshake message type 1 (referring
to a CLIENTHELLO message),0x00003d standing for a message length of 61
bytes, and0x0300 again representing SSL 3.0. The subsequent 32 bytes—from
0x48b4 to 0xed25—represent the random value chosen by the client (remember
that the first 4 bytes represent the date and time). Because there is no SSL session to
resume, the session ID length is set to zero (0x00) and no session ID is appended.
Instead, the next value0x0016 (representing 22 in decimal notation) indicates that
the subsequent 22 bytes refer to the 11 cipher suites that are supported by the client.
Each pair of bytes represents a cipher suite. The second-to-last byte01 indicates
that there is a single compression method supported by the client, and the last byte
0x00 refers to this compression method (which actually refers to no compression).
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After having received the CLIENTHELLO message, the server is to respond
with a series of SSL handshake messages. If possible, then all messages are merged
into a single SSL record and transmitted in a single TCP segment to the client. In
our example, such an SSL record comprsies a SERVERHELLO, a CERTIFICATE,
and a SERVERHELLODONE message. The corresponding SSL record starts with the
following byte sequence:

16 03 00 0a 5f

Again,0x16 refers to the SSL Handshake Protocol,0x0300 refers to SSL version
3.0, and0x0a5f refers to the length of the SSL record (which is actually 2655
bytes). The three above-mentioned messages are then encapsulated in the rest of the
SSL record.

• The SERVERHELLO message looks as follows:

02 00 00 46 03 00 48 b4 54 9e da 94 41 94 59 a9
64 bc d6 15 30 6c b0 08 30 8a b2 e0 6d ea 8f 7b
6b df d5 a7 3c d4 20 48 b4 54 9e 26 8b a1 9d 26
59 1b 5e 31 4c fe d3 2b a7 96 26 99 55 55 41 7c
d8 e8 44 8a 3e f9 d5 00 05 00

The message starts with0x02 standing for the SSL Handshake Protocol mes-
sage type 2 (referring to a SERVERHELLO message),0x000046 standing for
a message length of 70 bytes, and0x0300 again standing for SSL 3.0. The
subsequent 32 bytes

48 b4 54 9e da 94 41 94 59 a9 64 bc d6 15 30 6c
b0 08 30 8a b2 e0 6d ea 8f 7b 6b df d5 a7 3c d4

represent the random value chosen by the server (note again that the first 4
bytes represent the date and time). Afterwards,0x20 refers to a session ID
length of 32 bytes, and hence the subsequent 32 bytes

48 b4 54 9e 26 8b a1 9d 26 59 1b 5e 31 4c fe d3
2b a7 96 26 99 55 55 41 7c d8 e8 44 8a 3e f9 d5

represent the session ID. Remember that this ID is going to be used if the client
wants to resume the SSL session at some later point in time (before the session
expires). Following the session ID,0x0005 refers to the selected cipher suite
(which is TLSRSA WITH RC4 128 SHA in this example) and0x00 refers
to the selected compression method (which is the null compression).

• Next, the CERTIFICATE message comprises the server’s public key certificate.
It is quite comprehensive and begins with the followiung byte sequence:
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0b 00 0a 0d 00 0a 0a

In this byte sequence,0x0b stands for the SSL Handshake Protocol message
type 11 (referring to a CERTIFICATE message),0x000a0d stands for a
message length of 2573 bytes, and0x000a0a stands for the length of the
certificate chain. Note that the length of the certificate chain must equal the
message length minus 3 (the length of the length field). The remaining 2570
bytes of the message then comprise the certificate chain required to validate
the server’s public key certificate (these bytes are not illustrated above).

• Last but not least, the SSL record also comprises a SERVERHELLODONE

message. This message is very simple and only consists of 4 bytes:

0e 00 00 00

0x0e stands for the SSL Handshake Protocol message type 14 (referring to a
SERVERHELLODONE message) and0x000000 stands for a message length
of zero bytes.

After having received the SERVERHELLODONE message, it is up to the client
to submit a series of messages to the server. In our example, this series comprises a
CLIENTKEYEXCHANGE, a CHANGECIPHERSPEC, and a FINISHED message. Each
of these messages is transmitted in an SSL record of its own, but all three records
can be transmitted in a single TCP segment to the server.

• The CLIENTKEYEXCHANGE message is transmitted in the first SSL record.
In our example, this record looks as follows:

16 03 00 00 84 10 00 00 80 18 4a 74 7e 92 66 72
fa ee ac 4b f8 fb 7c c5 6f b2 55 61 47 4e 1e 4a
ad 5f 4b f5 70 fe d1 b4 0b ef 36 52 4f 7b 33 34
ad 23 67 f0 60 ec 67 67 35 5a cf 50 f8 d0 3d 28
4e fb 01 88 56 06 86 3c c7 c3 85 8c 81 2c 0d d8
20 a6 1b 09 ee 86 c5 6c 37 e5 e8 56 96 cc 46 44
58 ee c1 9b 73 53 ff 88 ab 90 19 53 3d f2 23 5b
8f 57 d2 b0 74 2a bd 05 f9 9e dd 6a 50 69 50 4a
55 8a f1 5b 9b 6d ba 6f b0

In the SSL record header,0x16 stands for the SSL Handshake Protocol,
0x0300 refers to SSL version 3.0, and0x0084 represents the length of the
SSL record (132 bytes). After this header, the byte0x10 stands for the SSL
Handshake Protocol message type 16 (referring to a CLIENTKEYEXCHANGE

message), and the following three bytes0x000080 refer to the message
length (128 bytes or 1024 bits). Consequently, the remaining 128 bytes of
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the message represent the premaster secret (as chosen by the client) encrypted
under the server’s public RSA key. The RSA encryption is line with PKCS #1.

• The CHANGECIPHERSPECmessage is transmitted in the second SSL record.
This record is very simple and consists of only 6 bytes:

14 03 00 00 01 01

In the SSL record header,0x14 (20 in decimal notation) stands for the
SSL Change Cipher Spec Protocol,0x0300 refers to SSL version 3.0, and
0x0001 represents the message length of one single byte. This byte (i.e.,
0x01), in turn, is the last byte in the record.

• The FINISHED message is the first message that is cryptographically protected
according to the newly negotiated cipher spec. Again, it is transmitted in an
SSL record of its own. This record looks as follows:

16 03 00 00 3c 38 9c 10 98 a9 d3 89 30 92 c2 41
52 59 e3 7f c7 b3 88 e6 5f 6f 33 08 59 84 20 65
55 c2 82 cb e2 a6 1c 6f dc c1 13 4b 1a 45 30 8c
e5 f4 01 1a 71 08 06 eb 5c 54 be 35 66 52 21 35
f1

In the SSL record header,0x16 stands for the SSL Handshake Protocol,
0x0300 refers to SSL version 3.0, and0x003c represents the length of the
SSL record (60 bytes). These 60 bytes are encrypted and look like gibberish
to somebody not holding the appropriate decryption key.

After having received the CHANGECIPHERSPECand FINISHED messages, the
server must respond with the same pair of messages (not illustrated in our example).
Afterwards, application data can be exchanged in SSL records. Such a record may
start as follows:

17 03 00 02 73

In the SSL record header,0x17 (23 in decimal notation) stands for the SSL
Application Data Protocol,0x0300 stands for SSL version 3.0, and0x0273 (627)
stands for the length of the encrypted data fragment. It goes without saying that an
arbitrary number of SSL records can be exchanged between the client and the server.

4.4 SECURITY ANALYSIS

Many researchers have investigated the security of the SSL protocol. For example,
soon after Netscape Communications released its first browsers supporting the SSL
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protocol in 1996, David Wagner and Ian Goldberg showed that the method used to
seed the PRBG (to generate the premaster secrets) was cryptographically weak.22

In fact, the seeds were derived from a few predictable (or at least easily guessable)
quantitities, such as the time of day, the process ID, and the parent process ID. These
values do not provide enough entropy, and hence the premaster secrets generated
by the browsers were partially predictable. This result became a press headline
and casted a damning light on the security of the evolving SSL protocol. This was
unfortunate, because the real problem was not the SSL protocol, but the way it was
implemented by Netscape Communications. It goes without saying that the problem
could easily be remedied by strengthening the PRBGs in use. This was quickly done
by Netscape Communications, but the story still illustrated the well-known fact that
even a secure protocol can be implemented in an insecure way.

Later in 1996, David Wagner and Bruce Schneier were the first who did an
informal security analysis of the SSL protocol. They found a number of minor
flaws and new active attacks, but their overall assessment was still positive. They
concluded that “on the whole SSL 3.0 is a valuable contribution towards practical
communications security” [11]. In the aftermath of the Wagner-Schneier analysis, a
few other researchers tried to do more formal analyses by applying formal methods
for the security analysis of SSL 3.0 [12, 13]. Again, the results and key findings
were positive in the sense that no major vulnerability was found. This reaffirmed the
community that SSL 3.0 was indeed a reasonably secure protocol.

In addition to the general security analyses of SSL 3.0, some researchers
have cryptanalyzed specific implementations or parts thereof. For example, in 1998,
Daniel Bleichenbacher found an adaptive chosen ciphertext attack23 against certain
cryptographic protocols that—like SSL 3.0—are based on PKCS #1 version 1.5 [14].
The attack is based on two well-known facts about RSA when used as asymmetric
encryption system:

• RSA encryption (in its native form) is susceptible to a chosen ciphertext attack
[15]: An adversary who wants to find the decryption ofm ≡ cd (mod n) of
a given ciphertextc can choose a random integerr and ask for the decryption
of the innocent-looking ciphertextc′ ≡ rec (mod n). From the answer
m′ ≡ (c′)d (mod n), the adversary can easily recover the plaintext original
message, becausem ≡ m′s−1 (mod n).

• The least significant bit (LSB) of an RSA encryption is as secure as the whole
message [16]. This fact—also known as bit security-property of RSA—can
be extended in the sense that all individual RSA bits are secure [17]. This

22 http://www.ddj.com/windows/184409807.
23 In the cryptographic literature, a chosen ciphertext attack is acronymed CCA and an adaptive chosen

ciphertext attack is acronymed CCA2.
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basically means that there exists an algorithm that can decrypt a ciphertext if
there exists another algorithm that can predict the LSB or any other bit of a
message given only the corresponding ciphertext and the public key. Hence, it
is not necessary for an adversary to learn the complete decrypted message in
a chosen ciphertext attack; single bits per chosen ciphertext may be sufficient.

Bleichenbacher turned these theoretical results into a practical attack that
allows one private-key RSA operation to be performed if the adversary has access
to an oracle that, for any chosen ciphertext, returns one bit telling whether the
ciphertext corresponds to some unknown block of data encrypted using PKCS #1.

00 0002 Padding Data block

Figure 4.25 PKCS #1 block format for encryption (block type 2).

To make the point more clear, we say that a ciphertext isPKCS #1 conforming,
if its decryption is formed according to PKCS #1 (block type 2). The PKCS
#1 block format is illustrated in Figure 4.25. Such a data block starts with a
zero byte, a byte referring to block type 2, a variable length padding string, a
zero byte, and the actual data block that is encrypted. The Bleichenbacher attack
exploits the fact that a PKCS #1 conforming block must always start with two
characteristic bytes (i.e., 0x00 and 0x02) and can be recognized accordingly. The
adversary can use the above-mentioned oracle to decrypt a given ciphertextc (i.e.,
computecd ( mod n)). This ciphertext can, for example, be a previously transmitted
SSL CLIENTKEYEXCHANGE message. In this case, the adversary can retrieve the
corresponding premaster secret and derive the master secret and the SSL encryption
keys accordingly.

Theoretically, an adversary can use the algorithm given in the reduction proof
of [17] to find c. In [14], however, Bleichenbacher proposed a different algorithm
that tries to minimize the number of chosen ciphertexts. More specifically, if the
adversary wants to findm ≡ cd (mod n) for a given ciphertextc, he or she
can choose an integerr < n, computec′ ≡ rec (mod n), and sendc′ to the
oracle. If the oracle says thatc′ is PKCS #1 conforming, then—according to the
rationale given above—the adversary automatically knows that the first two bytes of
mr (mod n) refer to 0x00 and 0x02. This, in turn, implies that

2B ≤ mr (mod n) < 3B

for B = 28(k−2) and k referring to the byte length ofn. The adversary now
has an interval formr (mod n) (and hence form), and he or she can iterate the
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procedure to narrow down the interval. After sufficiently many steps, he or she
is able to determine the original plaintext messagem. Typically (and according
to the analysis given in [14]),220—which is slightly more than one million—
chosen ciphertexts will be sufficient, but this number may vary widely depending
on numerous implementation details.

Due to the fact that the Bleichenbacher attack requires a huge quantity of
oracle queries, it can usually be detected quite easily in an online setting. Also, a
feasible way to avoid vulnerability to this attack is to treat incorrectly formatted
blocks in a manner indistinguishable from correctly formatted blocks. Thus, when
the server receives an incorrectly formatted RSA block, it should generate a random
48-byte value and proceed using it as the premaster secret. The server then acts
identically whether the received RSA block is correctly encoded or not. This
easily defeats the Bleichenbacher attack. But in spite of its easy detection and
circumvention, the attack still demonstrated the feasibility and potential severity
of adaptive chosen ciphertext attacks, and as such, it has had (and continues to
have) a deep impact on cryptographic research. Before the attack, people had only
theoretically argued about the possibility of chosen ciphertext attacks, but it was not
generally perceived as a real threat. After its publication, there was strong concensus
that chosen ciphertext attacks indeed pose a threat, and that it makes a lot of sense
to use (asymmetric) encryption systems that protect against it. Consequently, PKCS
#1 was rapidly updated in version 2.0 [6], adapting a technique known asoptimal
asymmetric encryption padding(OAEP) [18]. Unlike ad-hoc schemes such as the
padding used in PKCS #1 version 1.5, OAEP had been proven secure against chosen
ciphertext attacks in the random oracle model. In addition to OAEP, the research
community has come up with other asymmetric encryption systems provably secure
against chosen ciphertext attacks—the most important system being proposed by
Ronald Cramer and Victor Shoup [19]. The Cramer-Shoup system was the first
asymmetric encryption system that was provably secure against chosen ciphertext
attacks in the standard model (i.e., without requiring random oracles).

In the aftermath of the Bleichenbacher attack, many researchers tried to extend
or optimize it, or to find similar attacks. For example (and in spite of the fact that
RSA-OAEP is theoretically secure against chosen ciphertext attacks in the random
oracle model), James Manger found possibilities to mount highly efficient chosen
ciphertext attacks against several implementations of PKCS #1 version 2.0 in 2001
[20]. Again, PKCS #1 had to be updated to reduce the likelihood of success for
the Manger attack. The resulting PKCS #1 version 2.1 [7] refers to the state-of-the-
art and is the version in use today. Similarly, three Czech cryptologists—Vlastimil
Klı́ma, Ondrej Pokorný, and Tomás Rosa—came up with another extension of the
Bleichenbacher attack in 2003 [21].
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Both extensions of the Bleichenbacher attack reaffirmed the well-known fact
that even a theoretically (or provably) secure cryptosystem can be vulnerable and
successfully attacked as soon as it gets implemented in practice. This fact is also
supported by the huge quantity of side-channel attacks that have been developed
and proposed in the last decade. There are even some side-channel attacks that can
be mounted remotely (i.e., against network servers), such as, for example, the timing
attacks demonstrated by Dan Boneh and David Brumley [22]. Due to this insight,
implementations that use RSA for key exchange should use RSA blinding or some
other technique that protects against timing attacks.

In addition to the Bleichenbacher attack and its extensions, some researchers
have found other (mostly subtle) security problems in the CBC padding scheme
used by the SSL protocol. In 2002, for example, Serge Vaudenay published a paper
in which he explained how CBC padding as used in SSL induces a side channel that
may be exploited in a chosen ciphertext attack [23]. In the following year, Vaudenay
and a few other researchers published a follow-up paper in which they showed that
the CBC padding problem can actually be turned into a feasible attack [24]. In 2004,
Gregory Bard found another vulnerability in CBC padding that can be exploited in
a blockwise adaptive chosen plaintext attack [25]. The bottom line was that TLS
1.0 had to be revised and that TLS 1.1 had to take precautions to protect against
these attacks (see Section 5.3). Both problems can easily be circumnavigated by not
using a block cipher in CBC mode in the first place. Fortunately, most Web browsers
routinely invoke the stream cipher RC4 by default.

4.5 FINAL REMARKS

In this chapter, we introduced, overviewed, and went through the details of the
SSL protocol and its use in practice. We saw that the protocol is simple and
straightforward—especially if RSA or Diffie-Hellman are used for key exchange
(the use of a Diffie-Hellman key exchange is advantageous, because it makes sure
that both parties participate in the generation of the cryptographic keys). There
are only a few details that can be discussed controversially, such as the use of
a separate content type for CHANGECIPHERSPEC messages, and these details
may even change in the future. But from a security perspective, simplicity and
straightforwardness are always advantageous properties, and hence the starting
position of the SSL protocol with regard to security is very good. All attempts to
break the security of the SSL protocol have failed so far, and—as outlined in the
previous section—the few attacks that are known are not particularly worrisome or
can be remedied easily. Against this background, the SSL protocol has established
itself as the leading security protocol for Internet and Web-based applications.
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In fact, the SSL protocol is slowly eliminating alternative and partly competing
cryptographic security protocols, such as IPsec/IKE. If we consider virtual private
networking, for example, we observe a trend from IPsec/IKE-based virtual private
networks (VPNs) to SSL/TLS-based VPNs. A similar trend can be observed in many
other areas, and all of these trends emphasize the key role the SSL protocol is playing
in the security scene.

Like any other security technology, the SSL protocol also has a few disadvan-
tages and pitfalls. For example, the use of the SSL protocol makes content screening
impossible. If a data stream is encrypted using, for example, the SSL protocol with
a cryptographically strong cipher, then it is no longer possible to subject the data
stream to content screening. This is because the content screener only “sees” en-
crypted data in which it cannot efficiently find malicious content. In order to screen
content, it is necessary to temporarily decrypt the data stream and to reencrypt it just
after the screening process. This calls for an SSL proxy (see Section 7.3). Another
problem that pops up when the SSL protocol is used in the field is the need for public
key certificates. As mentioned before, an SSL-enabled Web server always needs a
certificate and must be configured in a way that it can make use of it. Additionally,
a Web server can also be configured in a way that it requires clients to authenti-
cate themselves with a public key certificate. In this case, the clients must also be
equipped with public key certificates. As there are many potential clients for a Web
server, the process of equipping clients with certificates is involved and tricky. It is
also the reason why the original designers of the SSL protocol opted to make client
authentication optional in the first case. There is much more to say about public key
certificates and PKIs, and we therefore allocate a separate chapter for this important
topic.
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Chapter 5

TLS Protocol

In this chapter, we elaborate on the TLS protocol—the designated successor of the
SSL protocol. We assume the reader to be familiar with the SSL protocol, and
hence we confine ourselves to elaborating on the differences between the SSL and
the various versions of the TLS protocol. See Section 3.2 for an outline of the
TLS protocol evolution, comprising version 1.0 [1], version 1.1 [2], and—most
importantly—version 1.2 [3]. In the sequel, we provide an introduction in Section
5.1, and we then focus on TLS 1.0 in Section 5.2, TLS 1.1 in Section 5.3, and
TLS 1.2 in Section 5.4. After these specification-related parts, we provide a traffic
analysis of a TLS session in Section 5.5, briefly analyze its security in Section 5.6,
and conclude with some final remarks in Section 5.7.

5.1 INTRODUCTION

The TLS protocol is structurally identical to the SSL protocol: it is a client/server
protocol that is stacked on top of a reliable transport layer protocol, such as TCP in
the case of the TCP/IP, and that consists of the same two layers and protocols as SSL
(the only exception is that the prefix “SSL” in the protocols’ names is replaced with
the prefix “TLS”).

• On the lower layer, theTLS Record Protocolis to fragment, optionally com-
press, and cryptographically protect higher-layer protocol data. The corre-
sponding data structures are calledTLSPlaintext, TLSCompressed,
andTLSCiphertext. As with SSL, each of these data structures comprises
four fields:

– A typefield that refers to the higher-layer protocol;
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– A versionfield that refers to the protocol version (e.g., 3,1 for TLS 1.0);

– A lengthfield that refers to the byte length of the fragment;

– An arbitrarily (up to214 bytes) longfragmentfield that comprises the
higher-layer protocol data (typically aTLSCiphertext data struc-
ture).

Remember that data of different content types may be interleaved in a single
TLS record, and that application data is generally of lower precedence for
transmission than other content types.

• On the higher layer, the TLS protocol comprises the following four protocols
we already know from the SSL protocol:

– TheTLS Change Cipher Spec Protocol(20);

– TheTLS Alert Protocol(21);

– TheTLS Handshake Protocol(22);

– TheTLS Application Data Protocol(23).

Each protocol is identified with a unique content type (for which the cor-
responding value is appended in brackets). To allow future extensions, addi-
tional record types may be defined and supported by the TLS Record Protocol.

Again, we use the termTLS protocolto refer to all four protocols itemized
above, and we use a more specific term to refer to a particular protocol.

Table 5.1
Security Parameters for a TLS Connection

connection end Information whether the entity is considered the “client”
or the “server” in the connection

bulk encryption algorithm Algorithm used for bulk data encryption (including its key
size, how much of that key is secret, whether it is a block
or stream cipher, the block size of the cipher if it is a
block cipher, and whether the cipher is exportable)

MAC algorithm Algorithm used for message authentication
compression algorithm Algorithm used for data compression
master secret 48-byte secret shared between the client and the server
client random 32-byte value provided by the client
server random 32-byte value provided by the server

Similar to the SSL protocol, the TLS protocol also makes a distinction between
aTLS session and a connection:
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Table 5.2
TLS Connection State Elements

compression state The current state of the compression algorithm
cipher state The current state of the encryption algorithm
MAC secret MAC secret for this connection
sequence number 64-bit sequence number for the records transmitted under a

particular connection state (initially set to zero)

• A TLS connectionrepresents the operating environment of the TLS protocol;

• Several TLS connection may correspond to a singleTLS session.

As with SSL, there are always four connection states outstanding: thecurrent
read and write states, as well as thependingread and write states. All TLS records
are processed under the current (read and write) states, whereas the security param-
eters and elements for the pending states are negotiated and set during the execution
of the TLS Handshake Protocol.

The state elements of a TLS session are basically the same as the state
element of an SSL session (see Table 4.2), so we don’t have to repeat them here.
At the connection level, however, the specifications of the SSL and TLS protocols
are slightly different: while the TLS protocol distinguishes between the security
parameters summarized in Table 5.1 and the state elements summarized in Table 5.2,
the SSL protocol does not make this distinction and only considers state elements
(see Table 4.3). But taking the security parameters and state elements together,
the differences between SSL and TLS connections are rather minor and not very
profound. In addition to the security parameters summarized in Table 5.1, the PRF
algorithm in use is another security parameter that must be considered separately
since TLS version 1.2.

The most obvious difference between the SSL and TLS protocols is related to
the way the protocols generate the keying material. In Section 4.1, we saw that SSL
uses a unique construction for the generation of the master secret and key block
(that is then used to generate the keying material). TLS 1.0 also uses a unique
construction, but this construction is centered around a TLS-specific PRF. Let us
therefore first introduce the TLS PRF, before we delve into the details of how the
TLS protocol actually generates the keying material needed. The subtle differences
between TLS 1.0 and TLS 1.1, on the one hand, and TLS 1.2, on the other hand, are
only briefly raised.
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Figure 5.1 Overview of the TLS PRF.

5.1.1 TLS PRF

As overviewed in Figure 5.1, the TLS protocol employs a PRF that takes as input a
secret, a seed, and a label (sometimes termed “identifying label”), and that generates
as output an arbitrarily long bit sequence. To make the TLS PRF as secure as
possible, it combines two cryptographic hash functions—MD5 and SHA-1—in a
way that is supposed to be secure at least as long as one of the two hash functions
remains secure. This is true for TLS 1.0 and 1.1; as discussed later, it is no longer
true for TLS 1.2. The TLS PRF (used for TLS 1.0 and 1.1) is based on an auxiliary
data expansion function, termedP_hash(secret,seed) in the TLS protocol
specification. This function uses a single cryptographic hash functionhash (which
can be MD5 or SHA-1) to expand a secret and a seedseed into an arbitrarily long
output value. In particular, the data expansion function is defined as follows:

P_hash(secret,seed) = HMAC_hash(secret,A(1)+seed) +
HMAC_hash(secret,A(2)+seed) +
HMAC_hash(secret,A(1)+seed) +
...

As usual,+ denotes the string concatenation operator. The A-function, in turn, is
recursively defined as follows:

A(0) = seed
A(i) = HMAC_hash(secret,A(i-1)) for i>0

Using this recursive definition, the A-values that are necessary to evaluate the
expansion function can be computed as follows:

A(1) = HMAC_hash(secret,A(0))
= HMAC_hash(secret,seed)

A(2) = HMAC_hash(secret,A(1))
= HMAC_hash(secret,HMAC_hash(secret,seed))
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A(3) = HMAC_hash(secret,A(2))
= HMAC_hash(secret,HMAC_hash(secret,

HMAC_hash(secret,seed)))
...

The A-function of the TLS PRF is illustrated in Figure 5.2. The output of the
function consists ofA(1), A(2), A(3), . . . For each iteration of the expansion
functionP_hash(secret,seed), one additional output value of the A-function
is needed. This can theoretically be continued an infinite number of times.

Secret Seed

HMAC

A(0)

HMAC

HMAC

HMAC

A(1)

A(2)

A(3)

Figure 5.2 The A-function of the TLS PRF.

More specifically, the expansion functionP_hash(secret,seed) is iter-
atively applied as many times as necessary to generate the required output data. Let
us assume that we need 64 bytes of output data. If MD5 is used, then four iterations
of the hash function are sufficient, since4 · 16 = 64 bytes. If, however, SHA-1
is used, then four iterations yield4 · 20 = 80 bytes. In this case, the first 64 output
bytes are effectively used, whereas the last 16 bytes are silently discarded and remain
unused.

The expansion functionP_hash(secret,seed) is the major ingredient
of the TLS PRF. As mentioned above and illustrated in Figure 5.1, the TLS PRF
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Figure 5.3 The internal structure of the TLS PRF (as used for TLS 1.0 and TLS 1.1).

takes as input a secret, a seed, and a label, and it generates as output a block of data
of appropriate length. The secret and the seed are the parameters that are input to
P_hash(secret,seed), whereas the label represents an arbitrary ASCII string.
The string should be included in the exact form, without a length byte or trailing null
character. For example, the label “eSECURITY” would be processed by hashing the
following sequence of bytes (in hexadecimal notation): 65 53 45 43 55 52 49 54 59.

The internal structure of the TLS PRF (as used for TLS 1.0 and TLS 1.1) is
illustrated in Figure 5.3. First, the secret is split into two halves (i.e., S1 and S2). S1
is taken from the first half of the secret, whereas S2 is taken from the second half of
the secret. Their length is created by rounding up the length of the secret divided by
two. If the secret happens to be an odd number of bytes long, then the last byte of
S1 will be repeated and be the same as the first byte of S2. S1 and the concatenation
of the label and the seed are then input toP_MD5, whereas S2 and the concatenation
of the label and the seed are input toP_SHA-1. At the end, both output values are
subject to a bitwise addition modulo 2 (XOR). Hence, the TLS PRF can be formally
expressed as follows:

PRF(secret,label,seed) =
P_MD5(S1,label+seed) XOR P_SHA-1(S2,label+seed)

Note that MD5 produces an output value of 16 bytes, whereas SHA-1 produces an
output value of 20 bytes. Therefore, the boundaries of the iterations ofP_MD5 and
P_SHA-1 are not aligned, and the expansion functions must be iterated differently
many times. To generate an output of 80 bytes, for example,P_MD5must be iterated
5 times, whereasP_SHA-1 must be iterated only 4 times.
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As already mentioned above, the TLS PRF overviewed so far is used in TLS
1.0 and TLS 1.1. Since TLS 1.2, however, the combined use of MD5 and SHA-1
has been abandoned, and a single—but hopefully more secure—cryptographic hash
function is used. In this case, the PRF construction is conceptually simpler and more
straightforward. It can be expressed as follows:

PRF(secret,label,seed) = P_hash(secret,label+seed)

The cryptographic hash functionhash is part of the cipher suite. For the typical
case of using SHA-256,P_hash actually refers toP_SHA256. Independent from
the TLS PRF in use (be it the PRF for TLS 1.0 and 1.1 or the PRF for TLS 1.2), the
keying material is generated in a specific way that is addressed next.

5.1.2 Generation of Keying Material

The primary use of the TLS PRF is to generate the keying material needed for a TLS
connection. First, the variable-length premaster secret that is the output of the key
exchange algorithm and part of the TLS session state is used to generate a 48-byte
long master secret:

master_secret =
PRF(pre_master_secret,"master secret",

client_random+server_random)

In this step, the string “master secret” refers to the label, and the concatenation of
the two random valuesclient_random andclient_random represents the
seed. Note thatclient_random is the same value asclient random in Table
5.1. The use of the underscore character is used inconsistently in the SSL and TLS
protocol specifications, and we use both terms synonymously and interchangeably.
The bottom line is that the master secret and the server and client random values are
security parameters for the TLS connection (see Table 5.1).

Next, the 48-byte master secret is used as a source of entropy to determine the
various keys that are needed for the TLS connection. The keys are taken from a key
block of appropriate size that is generated as follows:

key_block =
PRF(master_secret,"key expansion",

server_random+client_random)

This time, the master secret is the secret, the string “key expansion” refers to the
label, and the concatenation of the two random valuesclient_random and
client_random represents the seed. The key block can then be partitioned into
the following values that are appropriately sized:
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client_write_MAC_secret
server_write_MAC_secret
client_write_key
server_write_key
client_write_IV
server_write_IV

Any additional material in the key block is discarded. For example, a cipher suite
that uses 3DES in CBC mode and SHA-1 requires2 · 24 = 48 bytes for the 3DES
keys,2 · 8 = 16 bytes for the IVs, and2 · 20 = 40 bytes for the MAC keys. Hence,
a total of 104 bytes of keying material is needed. If the key block is longer, then the
spare bytes can be discarded.

If the cipher in use is exportable (basically meaning that the Boolean predicate
is_exportable of the cipher in use is true), then the write keys are used to
generate the final write keys:

final_client_write_key =
PRF(client_write_key,"client write key",

server_random+client_random)
final_server_write_key =

PRF(server_write_key,"server write key",
client_random+server_random)

Also, if the cipher happens to be an exportable block cipher, then the IVs are derived
solely from the random values of the TLS Handshake Protocol’s hello messages
(i.e., without any secret). In this case, instead of using theclient_write_IV
andserver_write_IV values mentioned above, an IV block is generated from
which the IVs are actually taken. The IV block is generated as follows:

iv_block =
PRF("","IV block",client_random+server_random)

In this construction, the secret is empty and the label refers to the string “IV block.”
The resulting IV block is then partitioned into two appropriately sized IVs:

client_write_IV
server_write_IV

An example to generate the keying material for an exportable block cipher (i.e.,
RC2 with 40-bit keys) can be found in the TLS 1.0 protocol specification [1]. It
is not repeated here (mainly because exportable block ciphers are not widely used
anymore).

A number of protocols wish to leverage TLS to perform key establishment but
then use some of the keying material for their own purposes. There is work going
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on within the IETF TLS WG to describe a general mechanism for allowing that.1

In this setting, the keying material is calledExported Keying Material(EKM). It is
generated using the TLS PRF in the following way:

EKM = PRF(master_secret,label,
server_random+client_random+
context_value_length+context_value)

In this formula, the label refers to a disambiguating string and context value refers
to an application-specific value. Assuming the PRF having good pseudorandomness
properties, it is prohibitively difficult to distinguish the EKM from random data
(independent from the length of the EKM).

In addition to the TLS PRF and the generation of the keying material, there
are other differences between the SSL protocol and the various versions of the TLS
protocol. These differences are outlined and discussed next. For each difference, we
give some background information and the rationale that has led to the respective
design.

5.2 TLS 1.0

It has been mentioned several times so far that TLS 1.0 is very close to and
backward-compatible with SSL 3.0, and that it can therefore be viewed as essentially
SSL 3.1. This viewpoint is reflected in the version field that is included in each
TLS record. In fact, this field comprises the two bytes 3 and 1, where 3 stands for
the major version and 1 stands for the minor version. This suggests that TLS 1.0
is actually the same as SSL 3.1. In addition to the version, there are a few other
differences between 3.0 and TLS 1.0. For example, we have seen that both protocols
employ different PRFs to determine the keying material. Also the TLS protocol
distinguishes between security parameters and state elements for TLS connections,
whereas the SSL protocol only considers state elements. In addition to these obvious
differences, there are also some differences that are more subtle and require further
explanation; they are addressed next.

5.2.1 Cipher Suites

As with SSL, a TLS cipher spec refers to a pair of algorithms that are used
to authenticate messages and encrypt data, whereas a cipher suite additionally
comprises a key exchange algorithm. TLS 1.0 supports the same cipher suites as

1 http://www.ietf.org/internet-drafts/draft-ietf-tls-extractor-*.txt
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SSL 3.0 (see Table 4.4). Only the three cipher suites that employ FORTEZZA, that
is,

• SSL FORTEZZA KEA WITH NULL SHA;

• SSL FORTEZZA KEA WITH FORTEZZA CBC SHA;

• SSL FORTEZZA KEA WITH RC4 128 SHA;

are no longer supported and have no counterpart in TLS 1.0. This means that
there is a total of 28 cipher suites supported by TLS 1.0. Also, for obvious rea-
sons, the names of the cipher suites have changed from SSL∗ to TLS ∗, so the
cipher suite SSLDHE RSA WITH 3DESEDE CBC SHA has effectively become
TLS DHE RSA WITH 3DESEDE CBC SHA without any substantial change with
regard to content. But there are still a few subtle changes that need to be mentioned
at this point. The changes refer to message authentication and data encryption. The
key exchange algorithms have not changed and remain exactly the same.

5.2.1.1 Message Authentication

The MAC construction employed by the SSL protocol (see Section 4.2.1.3) is
conceptually similar to the HMAC construction, but it is not exactly the same. For
TLS 1.0, it was therefore decided to consistently use the HMAC construction for
message authentication. The input parameters to the HMAC construction are the
MAC key K, as well as the concatentation of the sequence numberseq number
and the four components of theTLSCompressed structure (i.e.,type, version,
length, andfragment). Hence, the HMAC value is generated as follows:

HMACK(TLSCompressed) =

h(K ‖ opad ‖ h(K ‖ ipad ‖ seq number ‖

type ‖ version ‖ length ‖ fragment
︸ ︷︷ ︸

TLSCompressed

))

In this notation,h refers to the cryptographic hash function in use (as specified
by the MAC algorithm parameter of the TLS connection). If one associates the
concatenation ofseq number and the four components of theTLSCompressed
structure with the message to be authenticated, then it is clear that the method
specified above really refers to the HMAC construcion. Using this method, TLS
1.0 is now in line with international standardization.
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5.2.1.2 Data Encryption

SSL 3.0 was specified prior to the enactment of the new U.S. export controls (see
Section 2.1.6). Consequently, the preferred ciphers were DES (in the case of a block
cipher) and RC4 (in the case of a stream cipher). When TLS 1.0 was specified in
1999, the situation regarding the U.S. export controls was about to change, and
hence stronger ciphers could be prescribed. The AES was not yet standardized, and
hence 3DES represented the greatest common denominator. In the absence of an
application profile standard specifying otherwise, a TLS 1.0-compliant application
must implement the cipher suite TLSDHE DSSWITH 3DESEDE CBC SHA. In
fact, TLSDHE DSSWITH 3DESEDE CBC SHA is the only cipher suite that is
mandatory to implement according to the TLS 1.0 specification.

If a cipher suite comprises a block cipher operated in CBC mode (such as
TLS DHE DSSWITH 3DESEDE CBC SHA), then there is a subtle change to
be mentioned here: while SSL 3.0 assumes the padding (that forces the length of
the plaintext that comprises the fragment of aTLSCompressed structure to be a
multiple of the cipher’s block size) to be as short as possible, TLS 1.0 does not make
this assumption. In fact, TLS 1.0 provides the possibility to add more padding (up
to 255 bytes) prior to encryption. This allows the sender of a message to better hide
the actual length of the message, and hence to better protect against traffic analysis
attacks.

Table 5.3
The Camellia-Based Cipher Suites for TLS [4]

Cipher suite Value

TLS RSA WITH CAMELLIA 128 CBC SHA { 0x00,0x41 }
TLS RSA WITH CAMELLIA 128 CBC SHA { 0x00,0x41 }
TLS DH DSSWITH CAMELLIA 128 CBC SHA { 0x00,0x42 }
TLS DH RSA WITH CAMELLIA 128 CBC SHA { 0x00,0x43 }
TLS DHE DSS WITH CAMELLIA 128 CBC SHA { 0x00,0x44 }
TLS DHE RSA WITH CAMELLIA 128 CBC SHA { 0x00,0x45 }
TLS DH anonWITH CAMELLIA 128 CBC SHA { 0x00,0x46 }
TLS RSA WITH CAMELLIA 256 CBC SHA { 0x00,0x84 }
TLS DH DSSWITH CAMELLIA 256 CBC SHA { 0x00,0x85 }
TLS DH RSA WITH CAMELLIA 256 CBC SHA { 0x00,0x86 }
TLS DHE DSS WITH CAMELLIA 256 CBC SHA { 0x00,0x87 }
TLS DHE RSA WITH CAMELLIA 256 CBC SHA { 0x00,0x88 }
TLS DH anonWITH CAMELLIA 256 CBC SHA { 0x00,0x89 }

In addition to the move from DES to 3DES, a complementary RFC was
released in 2005 [4] that proposed a couple of cipher suites that employ the Camellia
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block cipher. The RFC has been submitted to the IETF Standards Track and is still
valid (even for TLS 1.1 and TLS 1.2). The Camellia-based cipher suites and their
respective values are itemized in Table 5.3. Note that all cipher suites employ the
cryptographic hash function SHA-1. The Camellia-based cipher suites are mainly
used in Japan and partly in Europe.

Last but not least, we note that all TLS cipher suites are itemized in Appendix
A (in numerical order). This applies for the TLS 1.0 cipher suites, but it also applies
for the TLS 1.1 and TLS 1.2 cipher suites.

Table 5.4
TLS 1.0 Certificate Type Values

Value Name Description

1 rsasign RSA signing
2 dsssign DSA signing
3 rsafixed dh RSA signing with fixed DH key exchange
4 dssfixed dh DSA signing with fixed DH key exchange

5.2.2 Certificate Management

With regard to certificate management, there are two far-reaching differences be-
tween SSL 3.0 and TLS 1.0:

• First, SSL 3.0 requires complete certificate chains, meaning that certificates
must go back to a root CA, whereas TLS 1.0 accepts certificate chains that
go back “only” to an intermediate CA. This simplifies the verification and
validation of certificates considerably.

• Second, TLS 1.0 supports a reduced and slightly different set of certificate
types used for CERTIFICATEREQUESTmessages. In fact, TLS 1.0 only sup-
ports the four certificate types itemized in Table 5.4:

– RSA signing (1);

– DSA signing (2);

– RSA signing with fixed Diffie-Hellman key exchange (3);

– DSA signing with fixed Diffie-Hellman key exchange (4).

The numbers in brackets refer to their respective type values. These
types correspond to the first four certificate types supported by SSL (see Table
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4.5). So TLS 1.0 does no longer support RSA signing with ephemeral Diffie-
Hellman key exchange (5), DSA signing with ephemeral Diffie-Hellman key
exchange (6), and FORTEZZA signing and key exchange (20). The first two
certificate types (5 and 6) are not really needed, because a certificate that can
be used to generate RSA (DSA) signatures can also be used to sign ephemeral
Diffie-Hellman keys. Also, the last certificate type (20) is no longer needed,
because the FORTEZZA-type cipher suites have been removed from TLS 1.0
anyway.

Later in this chapter, we will see that the certificate types missing in TLS 1.0
have been reintroduced in TLS 1.1 as reserved values (see Section 5.3).

Table 5.5
TLS Alert Messages (Part 1)

Alert Code Brief description (if new)

close_notify 0
unexpected_message 10
bad_record_mac 20
decryption_failed 21 The sender notifies the recipient that a ciphertext (received in the

fragment of aTLSCiphertext record) decrypted in an invalid
way. This alert is always fatal.

record_overflow 22 The sender notifies the recipient that a record was too long (i.e.,
either aTLSCiphertext record was longer than214 + 2048
bytes or aTLSCompressed record was longer than214 + 1024
bytes. This alert is always fatal and should never be observed in
communication between proper implementations.

decompression_failure 30
handshake_failure 40
bad_certificate 42
unsupported_certificate 43
certificate_revoked 44
certificate_expired 45
certificate_unknown 46
illegal_parameter 47
unknown_ca 48 The sender notifies the recipient that a valid certificate chain was

received, but at least one certificate was not accepted because the CA
cerificate could not be located or could not be matched with a trusted
CA. This alert is always fatal.

access_denied 49 The sender notifies the recipient that a valid certificate was received,
but when access control was applied, the sender decided not to proceed
with negotiation. This alert is always fatal.

5.2.3 Alert Messages

TLS 1.0 uses a set of alert messages that is slightly different from SSL 3.0. In fact,
the 23 Alert Protocol message types of TLS 1.0 are summarized in Tables 5.5 (Part
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Table 5.6
TLS Alert Messages (Part 2)

Alert Code Brief description (if new)

decode_error 50 The sender notifies the recipient that a message could not be decoded
because some field was out of the specified range or the length of the
message was incorrect. This alert is always fatal.

decrypt_error 51 The sender notifies the recipient that a handshake cryptographic
operation failed, including being unable to verify a signature, decrypt
a key exchange, or validate a finished message.

export_restriction 60 The sender notifies the recipient that a negotiation not in compliance
with export restrictions was detected. This alert is always fatal.

protocol_version 70 The sender notifies the recipient that the protocol version the client
has attempted to negotiate is recognized but not supported (for example,
an older protocol version might be avoided for security reasons). This
alert is always fatal.

insufficient_security 71 Returned instead ofhandshake_failure when a negotiation has
failed specifically because the server requires ciphers more secure
than those supported by the client. This alert is always fatal.

internal_error 80 The sender notifies the recipient that an internal error unrelated to
the peer or the correctness of the protocol makes it impossible to
continue. This alert is always fatal.

user_canceled 90 The sender notifies the recipient that this handshake is being canceled
for some reason unrelated to a protocol failure. If the user cancels an
operation after the handshake is complete, just closing the connection
by sending aclose_notify is more appropriate. This alert should be
followed by aclose_notify. This alert is generally a warning.

no_renegotiation 100 The sender notifies the recipient that a renegotiation is not appropriate.
This alert is always a warning.

1) and 5.6 (Part 2). In these tables, only the message types that are new (related to
SSL 3.0) come along with a description. In addition to the new message types, there
is also one message type that has become obsolete and is now marked as reserved
(i.e.,no_certificate or no_certificate_RESERVED with an alert code
of 41).

5.2.4 Other Differences

TLS 1.0 uses simplified and streamlined formats and ways of computing the hash
values for the CERTIFICATEVERIFY and the FINISHED messages.

• With regard to the CERTIFICATEVERIFY message, the handshake messages
are simply hashed (using MD5 or SHA-1) and digitally signed using the
appropriate signing key. Compare this to the relatively complex construction
of the SSL CERTIFICATEVERIFY message (see Section 4.2.2.10).

• With regard the the FINISHED message, the TLS PRF is used to generate
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PRF(master_secret,finished_label,
MD5(handshake_messages)+

SHA-1(handshake_messages)),

wherefinished_label refers to the string “client finished” (if the client
sends the FINISHED message) or “server finished” (if the sever sends the
FINISHED message), andhandshake_messages comprises all handshake
messages (except any HELLOREQUESTmessage) up to but not including the
current message. This includes only data visible at the handshake layer and
does not include any record layer header. From the output of this PRF, only
the first 12 bytes are used to form the actual FINISHED message.

5.3 TLS 1.1

The official TLS 1.0 protocol specification was released approximately one decade
ago. It is therefore not particularly surprising that more recent developments have led
to changes in the TLS protocol specification. In April 2006, some of these changes
were approved and the specification of the TLS 1.1 protocol was officially released
[2]. This version of the TLS protocol is referenced as 3,2. Let us start with some
preliminary remarks, before we delve more deeply into the differences between TLS
1.0 and TLS 1.1.

5.3.1 Preliminary Remarks

At the end of Section 4.4, we mentioned that some researchers have found (mostly
subtle) security problems in the CBC padding scheme employed by the SSL pro-
tocol. In 2002, for example, Vaudenay published a paper in which he explained
how CBC padding used by SSL induces a side channel that may be exploited in
a chosen ciphertext attack [5]. Note that the existence of this attack is in seeming
contrast to the theoretical result that EtA is secure if a block cipher in CBC mode or
a stream cipher is used for encryption. This, in turn, attests to the fact that a theoreti-
cally secure scheme need not remain secure when implemented in practice. Anyway,
Vaudenay’s side channel attack starts from the fact that most cryptographic security
protocols employ some form of padding before messages are subject to block cipher
encryption. When a recipient receives a ciphertext, he or she usually decrypts it and
verifies the format of the padding, before further processing the message (verifying,
for example, the MAC that comes along with the message). Consequently, validity
of the format often leaks from a security protocol in a chosen ciphertext attack,
since the recipient typically sends an acknowledgment or an error message (e.g.,
decryption_failed in the case of the SSL protocol). If the adversary is able to
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tell the two situations apart, then he or she has a side channel that may be exploited.
Note that a MAC does not protect against such an attack, because message padding
is performed after the computation of the MAC (so the MAC cannot be verified
before the padding in the decryption).

Vaudenay’s side channel attacks are theoretically interesting but not practically
feasible in a typical SSL/TLS setting. This is because the error messages (i.e.,
decryption_failed messages) are usually encrypted and the adversary has
no access to the logfile. So, in general, the adversary cannot tell an acknowledgment
and an error message apart. To make things worse, an SSL/TLS connection is usually
aborted prematurely once an error has occured. Both problems limit the feasibility
of the attacks. But there may still be situations in which such an attack is feasible.
For example, in a 2003 follow-up paper, Vaudenay and some of his colleagues
showed how a multisession attack can be used to intercept a password transmitted
over an SSL/TLS connection (the target situation is an IMAP client that uses the
SSL/TLS protocols to securely connect to an IMAP server) [6]. This paper became
a headline in the trade press, and hence the designers of the TLS protocol were
strongly encouraged (if not forced) to take precautions to protect the TLS protocol
against the attack. More specifically, they had to update TLS 1.0 and come up with
TLS 1.1.

In a 2002 posting, Bodo Möller2 argued that the distinction between alert
messages forbad_record_mac (code 20) anddecryption_failed (code
21) is disadvantageous from a security viewpoint as it improves the odds of
an adversary. He therefore recommended to neglect the distinction and return a
bad_record_mac alert in either case. Consequently, abad_record_mac alert
message must also be returned if aTLSCiphertext decrypts in an invalid way;
either because its length is not an even multiple of the block length, or its padding
values, when checked, are not correct. This recommendation was adopted in TLS
1.1,3 in spite of the fact that it was challenged in [6]. The doubts are caused by the
fact that timing differences may still exist to tell the two situations apart. Instead
of suppressingdecryption_failed alert messages, one can try to make alert
messages time-invariant by simulating a MAC verification even if a padding error
has already occured. One can even go one step further and add random noise to
the time delay. The first of these recommendations found its way into the TLS 1.1
protocol specification (at least as an implementation note). In addition, TLS 1.1
also replaces the implicit IV used in TLS 1.0 with an explicit random IV. This is
in response to another vulnerability in CBC padding that was found by Gregory
Bard, and that can be exploited in a blockwise adaptive chosen plaintext attack

2 http://www.openssl.org/∼bodo/tls-cbc.txt.
3 The TLS 1.1 protocol specification says that the decryptionfailed error alert “MAY be returned if a

TLSCiphertext decrypted in an invalid way.”
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[7]. This means that for eachTLSCompressed fragment that is encryted there
is a seperate IV that is randomly chosen and sent along with the corresponding
TLSCiphertext fragment. Since the IVs are now explicit and sent along with the
TLSCiphertext fragments, there is no need to initially generate IVs. So the key
generation process overviewed in Section 5.1.2 can be simplified to only generate
the client_write_MAC_secret and theserver_write_MAC_secret,
as well as theclient_write_key and theserver_write_key.

Table 5.7
TLS 1.1 Standard Cipher Suites

Cipher suite Value

TLS NULL WITH NULL NULL { 0x00,0x00 }
TLS RSA WITH NULL MD5 { 0x00,0x01 }
TLS RSA WITH NULL SHA { 0x00,0x02 }
TLS RSA WITH RC4 128 MD5 { 0x00,0x04 }
TLS RSA WITH RC4 128 SHA { 0x00,0x05 }
TLS RSA WITH IDEA CBC SHA { 0x00,0x07 }
TLS RSA WITH DES CBC SHA { 0x00,0x09 }
TLS RSA WITH 3DESEDE CBC SHA { 0x00,0x0A }
TLS DH DSS WITH DES CBC SHA { 0x00,0x0C }
TLS DH DSS WITH 3DES EDE CBC SHA { 0x00,0x0D }
TLS DH RSA WITH DES CBC SHA { 0x00,0x0F }
TLS DH RSA WITH 3DESEDE CBC SHA { 0x00,0x10 }
TLS DHE DSS WITH DES CBC SHA { 0x00,0x12 }
TLS DHE DSS WITH 3DESEDE CBC SHA { 0x00,0x13 }
TLS DHE RSA WITH DES CBC SHA { 0x00,0x15 }
TLS DHE RSA WITH 3DES EDE CBC SHA { 0x00,0x16 }
TLS DH anonWITH RC4 128 MD5 { 0x00,0x18 }
TLS DH anonWITH DES CBC SHA { 0x00,0x1A }
TLS DH anonWITH 3DESEDE CBC SHA { 0x00,0x1B }

5.3.2 Cipher Suites

The cipher suites supported by TLS 1.1 have been changed considerably. This is not
true for the HMAC construction, but it is true for a number of other things. First and
foremost, all cipher suites that comprise an export-grade key exchange algorithm
or cipher may still be offered for backward compatibility, but they must not be
negotiated in TLS 1.1. This applies to all cipher suites written in italics in Table
4.4 (except SSLNULL WITH NULL NULL) and the export-gradeKerberos-based
cipher suites from RFC 2712 [8]. The other Kerberos- and AES-based cipher suites
specified in RFC 2712 and RFC 3268 [9] have been included in TLS 1.1. The
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Table 5.8
TLS 1.1 Kerberos-Based Cipher Suites

Cipher suite Value

TLS KRB5 WITH DES CBC SHA { 0x00,0x1E }
TLS KRB5 WITH 3DESEDE CBC SHA { 0x00,0x1F }
TLS KRB5 WITH RC4 128 SHA { 0x00,0x20 }
TLS KRB5 WITH IDEA CBC SHA { 0x00,0x21 }
TLS KRB5 WITH DES CBC MD5 { 0x00,0x22 }
TLS KRB5 WITH 3DESEDE CBC MD5 { 0x00,0x23 }
TLS KRB5 WITH RC4 128 MD5 { 0x00,0x24 }
TLS KRB5 WITH IDEA CBC MD5 { 0x00,0x25 }

Table 5.9
TLS 1.1 AES-Based Cipher Suites

Cipher suite Value

TLS RSA WITH AES 128 CBC SHA { 0x00,0x2F }
TLS DH DSSWITH AES 128 CBC SHA { 0x00,0x30 }
TLS DH RSA WITH AES 128 CBC SHA { 0x00,0x31 }
TLS DHE DSS WITH AES 128 CBC SHA { 0x00,0x32 }
TLS DHE RSA WITH AES 128 CBC SHA { 0x00,0x33 }
TLS DH anonWITH AES 128 CBC SHA { 0x00,0x34 }
TLS RSA WITH AES 256 CBC SHA { 0x00,0x35 }
TLS DH DSSWITH AES 256 CBC SHA { 0x00,0x36 }
TLS DH RSA WITH AES 256 CBC SHA { 0x00,0x37 }
TLS DHE DSS WITH AES 256 CBC SHA { 0x00,0x38 }
TLS DHE RSA WITH AES 256 CBC SHA { 0x00,0x39 }
TLS DH anonWITH AES 256 CBC SHA { 0x00,0x3A }

resulting cipher suites supported by TLS 1.1 are summarized in Tables 5.7 to
5.9 (together with their respective code values). The Camellia-based cipher suites
itemized in Table 5.3 still apply and can be used for TLS 1.1. Again, refer to the
appendix for a complete listing of all TLS cipher suites and their respective code
values.

5.3.3 Certificate Management

As mentioned above and summarized in Table 5.10, the certificate type values 5, 6,
and 20 were reintroduced in TLS 1.1 as reserved values (meaning that they should
no longer be used).
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Table 5.10
TLS 1.1 Certificate Type Values

Value Name Description

1 rsasign RSA signing and key exchange
2 dsssign DSA signing only
3 rsafixed dh RSA signing with fixed DH key exchange
4 dssfixed dh DSA signing with fixed DH key exchange
5 rsaephemeraldh RESERVED RSA signing with ephemeral DH key exchange
6 dssephemeraldh RESERVED DSA signing with ephemeral DH key exchange
20 fortezzadmsRESERVED FORTEZZA signing and key exchange

5.3.4 Alert Messages

In addition to alert message 41 (i.e.,no_certificate or no_certificate_
RESERVED) that has become obsolete in TLS 1.0, alert message 60 (i.e.,export_
restriction or export_restriction_RESERVED) has also become ob-
solete in TLS 1.1. This is because export-grade encryption is no longer supported by
TLS 1.1 (as mentioned above), and hence there is no need for corresponding alert
messages anymore.

5.3.5 Other Differences

There are at least two other differences between TLS 1.0 and TLS 1.1 that deserve
to be mentioned:

• First, a premature closure (i.e., a closure without a mutual exchange of
close_notify messages) no longer causes a TLS session to be nonre-
sumable. Put in other words: even if a connection is closed without having
the communicating peers properly exchangeclose_notify, it may still
be resumable under certain conditions. But keep in mind that any connection
terminated with a fatal alert must not be resumed.

• Second, a number of new registries have been created by the Internet Assigned
Numbers Authority (IANA4) for parameter values, such as certificate types,
cipher suites, content types, alert values, and handshake types. The goal is to
add flexibility to the TLS protocol. If a parameter must be added or changed,
then it is no longer necessary to modify the protocol specification. Instead,
adding or changing the parameter in the registry is sufficient.

4 The IANA is responsible for the global coordination of the DNS Root, IP addressing, and other
Internet protocol resources.
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In theory, there are many possibilities for assigning the parameter values
mentioned above. In practice, however, the assignments are usually in line with RFC
2434 (BCP 26) [10] and conform with one of the following three policies given in
this document:

• Values that are assigned viaStandards Actionare reserved for Standards Track
RFCs approved by the Internet Engineering Steering Group (IESG).

• Values that are assigned viaSpecification Requiredmust at least be docu-
mented in an RFC or other permanent and readily available reference, in suf-
ficient detail so that interoperability between independent implementations is
possible.

• Values that are assigned viaPrivate Useneed not fulfill any requirement. In
fact, there is no need for IANA to review such assignments and they are not
generally useful for interoperability.

For example, the certificate types supported by TLS 1.1 are divided into three
groups: values in the range 0–63 inclusive are assigned via Standards Action, values
in the range 64–223 inclusive are assigned via Specification Required, and values in
the range 224–255 inclusive are assigned via Private Use. Similarly, the cipher suites
supported by TLS 1.1 are also divided into three groups: values with the first byte in
the range 0–191 are assigned via Standards Action (e.g., all cipher suites mentioned
so far), values with the first byte in the range 192–254 are assigned via Specification
Required (e.g., cipher suites that employ ECC as mentioned below), and values with
the first byte 255 are assigned via Private Use. Last but not least, all content type,
alert value, and handshake type values are allocated via Standards Action.

5.4 TLS 1.2

After the offical release of TLS 1.1 in 2006, the respective standardization activities
continued and many people working in the field continued to make proposals on how
TLS could be extended and evolved. In 2008, the next version of the TLS protocol—
TLS 1.2—became ready and was officially released in RFC 5246 [3]. It is referenced
as version 3,3.

As mentioned at the end of Section 5.1, TLS 1.2 uses a new PRF that is
simpler and more straightforward than its predecessor (mainly because it uses only
one cryptographic hash function instead of combining two functions). Similarly, for
digital signatures, the combined use of MD5 and SHA-1 has been replaced with
the use of a single cryptographic hash value. Again, we start with some preliminary
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remarks regarding TLS extensions, before we delve more deeply into the specific
differences between TLS 1.1 and TLS 1.2.

5.4.1 TLS Extensions

Remember from Section 3.2 that the specification of TLS 1.2 [3] not only made RFC
4346 [2] obsolete, but also RFC 3268 [9] and RFC 4366 [11]:

• RFC 3268 introduces AES-based cipher suites for TLS (that can be used by
all versions of the TLS protocol).

• As TLS is used in an increasing variety of new operational environments (e.g.,
wireless networks5), RFC 4366 introduces a couple of extensions that may be
used to add functionality (and hence flexibility) to the TLS protocol.

More specifically, RFC 4366 provides both generic extension mechanisms for
the TLS handshake client and server hello messages, as well as specific extensions
using these mechanisms. The extensions may be used by TLS clients and servers;
they are backward-compatible, meaning that communication is possible between
TLS clients that support the extensions and TLS servers that do not support the
extensions, and vice versa.

A client may request the use of extensions via an extended CLIENTHELLO

message. An extended CLIENTHELLO message, in turn, is just a “normal” CLIENT-
HELLO message with an additional block of data that comprises a list of extensions.
Remember that additional information can be appended to a CLIENTHELLO mes-
sage, and hence an extended CLIENTHELLO message that conforms to the speci-
fication does not “break” existing TLS servers. A TLS server is to accept such a
message, even if it does not properly understand the extensions. The presence of
extensions can be detected by determining whether there are bytes following the
compression methods at the end of the CLIENTHELLO message. This method of
detecting optional data is not in line with the usual method of having a variable
length field, but it is used for compatibility with TLS before extensions were de-
fined. Anyway, if the server understands the extensions, it sends back an extended
SERVERHELLO message in place of a “normal” SERVERHELLO message. Again,
the extended SERVERHELLO message may comprise a list of extensions. Note
that the extended SERVERHELLO message is only sent in response to an extended
CLIENTHELLO message. This prevents the possibility that the extended SERVER-
HELLO message “breaks” existing TLS clients. Also note that there is no upper

5 Endpoint devices that connect to wireless networks often suffer from a number of constraints not
commonly present in wired networks, such as limitations in terms of bandwidth, computational
power, or battery lifetime.
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bound for the length of the list of extensions. So it may happen that a client floods
a server by sending a very long list of extensions. If this poses a problem, then it is
possible and very likely that future server implementations will limit the maximum
length of an extended CLIENTHELLO message.

Table 5.11
TLS Extension Types and Values

Extension type Values Description References

server_name 0 Server name [11]
max_fragment_length 1 Maximal fragment length [11]
client_certificate_url 2 Client certificate URL [11]
trusted_ca_keys 3 Trusted CA keys [11]
truncated_hmac 4 Truncated HMAC [11]
status_request 5 Status request [11]
user_mapping 6 User mapping [12, 13]
— 7,8 Reserved
cert_type 9 Certificate types [14]
elliptic_curves 10 Elliptic curves [15]
ec_point_formats 11 Elliptic curve point formats [15]
srp 12 SRP protocol [16]
supported_signature_algorithms 13 Signature algorithms [3]
— 14–34 Unassigned
SessionTicket 35 Session tickets [17]

Each extension consists of a type and a data field that is specific for the type
(it may also be empty). As mentioned at the end of the previous section, the IANA
maintains a registry of available content type values.6 The values are assigned via
IETF Concensus, meaning that new assignments are made via RFCs approved by
the IESG. The registry is a moving target and subject to change. The currently valid
TLS extension types and values are summarized in Table 5.11.

The first six extension types 0–5 are defined in RFC 4366 [11] and a follow-up
document that is currently in the status of an Internet-Draft.7 The extension type 6
is defined in RFC 4680 [12] and RFC 4681 [13], the extension type 9 is defined in
RFC 5081 [14], the extensions types 10 and 11 are defined in RFC 4492 [15], the
extension type 12 is defined in RFC 5054 [16], and the extension type 13 is defined in
the original TLS 1.2 protocol specification [3]. Last but not least, the extension type
35 is defined in RFC 5077 [17]. In the sequel, we briefly overview these extension
types and finish up this section with a summary. Before we do so, we note that RFC

6 http://www.iana.org/assignments/tls-extensiontype-values/.
7 draft-ietf-tls-rfc4366-bis-*.txt
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Table 5.12
New TLS Alert Messages Introduced in RFC 4366 [11]

Alert Code Brief description (if new)

unsupported_extension 110 The sender (client) notifies the recipient (server) that
it does not support an extension contained in an exten-
ded SERVERHELLO message. This alert message is
always fatal.

certificate_unobtainable 111 The sender (server) notifies the recipient (client) that
it is unable to retrieve a certificate (chain) from the
URL supplied in a CERTIFICATEURL message. This
alert message may be fatal.

unrecognized_name 112 The sender (server) notifies the recipient (client) that
it does not recognize the server specified in a server
name extension. This alert message may be fatal.

bad_certificate_status_response 113 The sender (client) notifies the recipient (server) that
it has received an invalid certificate status response.
This alert message is always fatal.

bad_certificate_hash_value 114 The sender (server) notifies the recipient (client) that
a certificate hash does not match a client-provided
value. This alert message is always fatal.

4366 also introduces a number of new TLS alert messages (overviewed in Table
5.12). Meanwhile, theunsupported_extension alert message has become
part of the TLS 1.2 protocol specification (the other messages are not yet part of
the TLS protocol specification).

5.4.1.1 Server Name

Virtual hosting is a commonly used method to host multiple servers (e.g., Web
servers) with different domain names on the same computer, sometimes on the
same IP address. To make use of virtual hosting, a client typically establishes a
TCP session to the hosting computer, establishes an HTTP/1.1 connection on top of
this TCP session, and specifies the Web server’s domain name in theHost header
of a subsequent HTTP request message. This works perfectly fine for HTTP. If,
however, HTTPS is used instead of HTTP, then a SSL/TLS connection must be
established prior to the invocation of HTTP. This basically means that the client
must employ other means to support virtual hosting. SSL 3.0, TLS 1.0, and TLS
1.1 have no other means, so these protocols do not support virtual hosting, meaning
that each SSL/TLS-enabled Web server must have a unique IP address. This is a
severe disadvantage when it comes to the large-scale deployment of the SSL/TLS
protocol, and it is probably one of the main reasons why SSL/TLS-enabled Web
servers are not as widely deployed as they could be. In fact, the disadvantage is so
severe that TLS 1.2 has been extended to support virtual hosting. More specifically,
an extension typeserver_name (value 0) has been defined that can be used by
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a client to tell the Web server the domain name of the server it is trying to connect
to. The bottom line is that a particular computer with a unique IP address server can
now host multiple virtual SSL/TLS-enabled Web servers. This is important for the
large-scale deployment of the TLS protocol.

5.4.1.2 Maximal Fragment Length

We have already seen in Section 4.2 that the maximum fragment length of an SSL
record is214 bytes. This also applies to TLS. In many situations, it is reasonable
to work with fragments of exactly this length. There are, however, also situations in
which the clients are constrained and need to operate on fragments of smaller length.
This is where the extension typemax_fragment_length (value 1) comes into
play. It can be used by a client to tell the server that it needs to negotiate a smaller
maximal fragment length. The actual maximum fragment length is sent in the data
field of the extension. Supported values are 1 (standing for29 bytes), 2 (standing for
210 bytes), 3 (standing for211 bytes), and 4 (standing for212 bytes).

5.4.1.3 Client Certificate URL

Normally, when client authentication is required in the execution of the SSL/TLS
protocols, the client sends a CERTIFICATE message to the server and this message
includes a certificate. In many situations this works perfectly fine. But there are
also situations in which the transmission of a full-fledged certificate or certificate
chain is too expensive, and in which it is advantageous to transmit only a cer-
tificate URL in place of a certificate. The aim is that the server can retrieve the
client certificate from the corresponding URL. This is computationally and com-
municationally less expensive for the client. More specifically, the extension type
client_certificate_url (value 2) can be used by a client to provide a cer-
tificate URL. The data field of the extension is empty. If and only if the server has
agreed on this extension, the client provides a CERTIFICATEURL message (type
21) instead of a “normal” CERTIFICATE message (type 11) to the server. CERTIFI-
CATEURL is one of the two new message types introduced in RFC 4366 [11].

5.4.1.4 Trusted CA Keys

In the “normal” execution of the SSL/TLS protocol, the server has no clue about
what root CAs the client trusts. So when the server provides its certificate (chain)
in the CERTIFICATE message, it may be the case that the certificate is not accepted
by the client. This means that the SSL/TLS handshake needs to be repeated. In the
most extreme case, it may happen that SSL/TLS handshakes need to be repeated
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multiple times. This is not efficient, especially if clients are configured to trust
only a few (or only very specific) root CAs. Repeated SSL/TLS handshakes are
particularly undesirable in low bandwidth scenarios, and this is where the extension
type trusted_ca_keys (value 3) comes into play: it can be used by a client
to tell the server which root CAs it actually trusts (to avoid repeated handshake
failures). The information about the root CAs is actually sent in the data field of
the extension. This also imposes a bandwidth penalty, but compared to repeated
SSL/TLS handshakes this penalty is negligible.

5.4.1.5 Truncated HMAC

In Section 2.2.2.2, we mentioned that the output of the HMAC construction may
be truncated to a value that is shorter than the output of the hash value in use, and
that there are situations in which the truncated HMAC construction is advantageous.
Against this background, the extension typetruncated_hmac (value 4) has been
defined. It can be used by a client to tell the server that it supports truncated HMACs,
meaning that it that it can handle HMACs that are truncated, for example, to 80 bits.
The data field of this extension is empty.

5.4.1.6 Status Request

Normally, when a participating entity of an SSL/TLS protocol execution receives a
certificate, it is up to him or her to verify the validity of the certificate. Most im-
portantly, the certificate revocation list (CRL) of the certificate issuing-CA must be
retrieved and checked. Normally, this poses no problem, especially if the certificate-
receiving entity is a server. But if the certificate-receiving entity is a constrained
client, it may still happen that retrieving and checking the CRL is computationally
too expensive, and that an alternative that burdens the server would be preferred.
This is where the extension typestatus_request (value 5) comes into play: it
can be used by a client to tell the server that it wishes to receive certificate status
information, such as an Online Certificate Status Protocol (OCSP) response. Addi-
tional information related to OCSP is sent in the data field of the extension. The
certificate status information, in turn, is provided by the server in a CERTIFICATE-
STATUS message (type 22). This is the other new message type introduced in RFC
4366 [11].

5.4.1.7 User Mapping

The user mapping extension is based on a general mechanism defined in RFC
4680 [12]. This mechanism can be used by a client to exchange supplemental
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application data in an extended CLIENTHELLO message. If the server is willing
to accept the supplemental application data, then it must respond with an extended
SERVERHELLO message and a corresponding SUPPLEMENTALDATA message (type
23). The TLS implementation cannot do anything else with a SUPPLEMENTALDATA

message than to forward it to the application layer. The client may also provide
a SUPPLEMENTALDATA message, but otherwise the TLS protocol message flow
remains the same.

ClientHello (with extensions)

ServerHello (with extensions)

Client

[ Certificate ]
[ ServerKeyExchange ]

[ CertificateRequest ]
ServerHelloDone

[ Certificate ]
 ClientKeyExchange

[ CertificateVerify ]
ChangeCipherSpec

Finished

ChangeCipherSpec
Finished

Server

Application Data

[ SupplementalData ]

[ SupplementalData ]

Figure 5.4 The TLS handshake protocol supporting the exchange of supplemental application data.

The resulting TLS handshake protocol supporting the exchange of supple-
mental application data is illustrated in Figure 5.4. If the server is not willing to
accept the supplemental application data unless the client is properly authenticated,
then a double handshake technique must be used. Using this technique, a first TLS
handshake is performed to establish a first TLS session, and this session is then used
to protect a second TLS handshake. The supplemental application data is actually
transmitted as part of the second TLS handshake.

Based on RFC 4680, RFC 4681 [13] defines a TLS extension and a payload for
the SUPPLEMENTALDATA message in a TLS handshake that can be used to accom-
modate mapping of users to their accounts when using TLS client authentication.
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The extension typeuser_mapping (value 6) is therefore sent in the CLIENT-
HELLO message, and—in the positive case—it is also included in the SERVER-
HELLO message (to inform the client that the server understands the extension).
The user mapping data is then included in the SUPPLEMENTALDATA message that
is sent from the client to the server. It is up to the server to parse this message, extract
the client’s domain, and store it in the context for use when mapping the certificate
to the user’s directory account.

5.4.1.8 Certificate Types

In Section 8.1, we will see that there are two sets of standards for public key
certificates supported by the IETF: X.509 and PGP (or OpenPGP, respectively). The
SSL/TLS protocols natively support X.509 certificates, but there are situations in
which X.509 certificates are not readily available and the participants are equipped
with non-X.509 (e.g., OpenPGP) certificates instead. To support situations like these,
the IETF TLS WG has specified both an extension typecert_type (value 9)
and an Experimental RFC 5081 [14] that elaborates on the use of such non-X.509
certificates in a TLS setting. As usual, the extension is backward-compatible with
TLS, so that existing implementations that make “normal” use of X.509 certificates
are not negatively affected. This also means that no cipher suite is required to
use non-X.509 certificates, but that all cipher suites may be used in combination
with such certificates (if the key exchange method is compatible with them). The
cert_type extension comes along with a data field that carries the encodings of
the corresponding certificate types as registered by the IANA.

The values 0 (X.509) and 1 (OpenPGP) are defined in RFC 5081. The values
between 2 and 223 (in decimal notation) are unassigned and can be assigned via
IETF Concensus, whereas the values between 224 and 255 (again, in decimal
notation) are reserved for Private Use. Consequently, there is room for future
extensions and complementary certificate types.

If a client wants to indicate the support of multiple certificate types, it must
include acert_type extension in the CLIENTHELLO message. The data field
of the extension must carry a list of supported certificate types, sorted by client
preference. If the server receives a CLIENTHELLO message with thecert_type
extension and chooses a cipher suite that requires a certificate, then it must either
select a certificate type from the list of client-supported certificate types or terminate
the connection with a fatal alert of typeunsupported_certificate (alert
code 43). In the first case, the server must encode the selected certificate type in
an extended SERVERHELLO message (with anothercert_type extension). X.509
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certificates are assumed by default, meaning that servers that only support X.509 cer-
tificates may also omit including thecert_type extension in the SERVERHELLO

message.
In addition to the CLIENTHELLO and SERVERHELLO messages, the contents

of the CERTIFICATE messages sent from the server to the client and vice versa are
also determined by the negotiated certificate type and the selected key exchange
algorithm (that is part of the cipher suite). In particular, if the OpenPGP certificate
type is negotiated, then it is required to include an OpenPGP certificate in the
CERTIFICATE message with a public key that matches the selected key exchange
algorithm. If RSA is used for key exchange, then the OpenPGP certificate must
contain an RSA public key that can be used for encryption. Similarly, if DHEDSS
(DHE RSA) is used for key exchange, then the OpenPGP certificate must contain a
DSS (RSA) public key that can be used for authentication. Anyway, any OpenPGP
certificate appearing in a CERTIFICATE message must be sent in the standardized
binary OpenPGP format. Optionally, it is also possible to send only a fingerprint of
the OpenPGP certificate, instead of the entire certificate.

All other TLS handshake messages remain unaffected by thecert_type
extension. There is, however, a subtle remark to be made with regard to the CERTIFI-
CATEREQUESTmessage that may be sent from the server to the client (see Section
4.2.2.6). If such a message is sent, then it may specify certificate types and CAs
that are accepted by the server. In the case of OpenPGP certificates, the list of CAs
that are accepted by the server must be empty (because OpenPGP certificates are
typically issued by peers instead of CAs).

5.4.1.9 Elliptic Curves and Elliptic Curve Point Formats

We already mentioned in Chapter 2 that ECC is an emerging public key crypto-
graphic technology, because it offers equivalent security with smaller key sizes and
smaller key sizes result in savings for power, memory, bandwidth, and computational
costs. This makes ECC particularly interesting for constrained resource environ-
ments. Against this background, the IETF TLS WG has worked on incorporating
ECC into TLS. The result of this work is documented in Informational RFC 4492
[15] officially released in May 2006. It is applicable to both TLS 1.0 and TLS 1.1,
and it may even be applicable to TLS 1.2 (note that TLS 1.2 was specified after the
official release of RFC 4492).

More specifically, RFC 4492 introduces five new ECC-based key exchange
algorithms for the TLS handshake protocol. All of them use the ECDH key exchange
to compute the TLS premaster secret, and they differ only in the lifetime of ECDH
keys (long-term or ephemeral) and the mechanism used to authenticate them. The
derivation of the TLS master secret from the premaster secret and the subsequent
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generation of the keying material and initialization vectors is independent from the
key exchange algorithm and not impacted by the use of ECC. The five ECC-based
key exchange algorithms can be characterized as follows:

• ECDH ECDSA uses long-term ECDH keys and ECDSA-signed certificates.
More specifically, the server’s certificate must contain a long-term ECDH pub-
lic key signed with ECDSA, and hence a SERVERKEYEXCHANGE message
need not be sent. The client generates an ECDH key pair on the same elliptic
curve as the server’s long-term public key and may send its own public key in
the CLIENTKEYEXCHANGE message. Both client and server then perform an
ECDH key exchange and use the result as the premaster secret.

• ECDHE ECDSA uses ephemeral ECDH keys and ECDSA-signed certifi-
cates. More specifically, the server’s certificate must contain an ECDSA public
key signed with ECDSA. The server sends it ephemeral ECDH public key
and a specification of the corresponding elliptic curve in a SERVERKEYEX-
CHANGE message. The parameters are digitally signed with ECDSA using
the private key corresponding to the public key in the server’s certificate. The
client generates another ECDH key pair on the same curve and sends its pub-
lic key to the server in a CLIENTKEYEXCHANGE message. Again, both the
client and the server perform an ECDH key exchange and use the result as the
premaster secret.

• ECDH RSA uses long-term ECDH keys and RSA-signed certificates. This
key exchange algorithm is essentially the same as ECDHECDSA, except that
the server’s certificate is signed with RSA instead of ECDSA.

• ECDHE RSA uses ephemeral ECDH keys and RSA-signed certificates. This
key exchange algorithm is essentially the same as ECDHEECDSA, except
that the server’s certificate must contain an RSA public key authorized for
signing, and the signature in the SERVERKEYEXCHANGE message must be
generated with the corresponding private RSA key. Also, the server certificate
must be signed with RSA instead of ECDSA.

• ECDH anon uses an anonymous ECDH key exchange without any authenti-
cation. This basically means that no signature must be provided, and hence
no certificate must be in place. The ECDH public keys are exchanged in
SERVERKEYEXCHANGE and CLIENTKEYEXCHANGE messages.

The ECDHEECDSA and ECDHERSA key exchange algorithms provide
PFS. With ECDHERSA, a server can reuse its existing RSA certificate and still
comply with a constrained client’s ECC preferences. But the computational cost for
the server is higher than for traditional RSA key exchange.
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Table 5.13
TLS 1.2 Cipher Suites That Employ ECC (According to [15])

Cipher Suite Value

TLS ECDH ECDSA WITH NULL SHA { 0xC0,0x01 }
TLS ECDH ECDSA WITH RC4 128 SHA { 0xC0,0x02 }
TLS ECDH ECDSA WITH 3DES EDE CBC SHA ∗ { 0xC0,0x03 }
TLS ECDH ECDSA WITH AES 128 CBC SHA ∗ { 0xC0,0x04 }
TLS ECDH ECDSA WITH AES 256 CBC SHA { 0xC0,0x05 }
TLS ECDHE ECDSA WITH NULL SHA { 0xC0,0x06 }
TLS ECDHE ECDSA WITH RC4 128 SHA { 0xC0,0x07 }
TLS ECDHE ECDSA WITH 3DESEDE CBC SHA { 0xC0,0x08 }
TLS ECDHE ECDSA WITH AES 128 CBC SHA { 0xC0,0x09 }
TLS ECDHE ECDSA WITH AES 256 CBC SHA { 0xC0,0x0A }
TLS ECDH RSA WITH NULL SHA { 0xC0,0x0B }
TLS ECDH RSA WITH RC4 128 SHA { 0xC0,0x0C }
TLS ECDH RSA WITH 3DESEDE CBC SHA { 0xC0,0x0D }
TLS ECDH RSA WITH AES 128 CBC SHA { 0xC0,0x0E }
TLS ECDH RSA WITH AES 256 CBC SHA { 0xC0,0x0F }
TLS ECDHE RSA WITH NULL SHA { 0xC0,0x10 }
TLS ECDHE RSA WITH RC4 128 SHA { 0xC0,0x11 }
TLS ECDHE RSA WITH 3DES EDE CBC SHA ∗ { 0xC0,0x12 }
TLS ECDHE RSA WITH AES 128 CBC SHA ∗ { 0xC0,0x13 }
TLS ECDHE RSA WITH AES 256 CBC SHA { 0xC0,0x14 }
TLS ECDH anonWITH NULL SHA { 0xC0,0x15 }
TLS ECDH anonWITH RC4 128 SHA { 0xC0,0x16 }
TLS ECDH anonWITH 3DESEDE CBC SHA { 0xC0,0x17 }
TLS ECDH anonWITH AES 128 CBC SHA { 0xC0,0x18 }
TLS ECDH anonWITH AES 256 CBC SHA { 0xC0,0x19 }

Each of the five key exchange algorithms can be combined with no encryption,
RC4, 3DES, and AES (with either 128-bit or 256-bit keys), as well as the cryp-
tographic hash function SHA-1. The resulting TLS 1.2 cipher suites that employ
ECC are summarized in Table 5.13. In RFC 4492, it is recommended that server
implementations should support all cipher suites, whereas client implementations
should support at least one of the cipher suites marked with a star in Table 5.13.

In addition to the ECC-based key exchange algorithms and cipher suites
mentioned so far, RFC 4492 also defines three new client authentication mech-
anisms, each named after the type of client certificate involved: ECDSAsign,
ECDSA fixed ECDH, and RSAfixed ECDH. The ECDSAsign mechanism can
be used with any of the nonanonymous ECC-based key exchange algorithms
itemized above, as well as other nonanonymous key exchange algorithms de-
fined in the TLS protocol specification. Contrary to that, the ECDSAfixed ECDH
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and RSAfixed ECDH mechanisms can be used only with ECDHECDSA and
ECDH RSA. In either case, the server can request ECC-based client authentication
by including one or more of these certificate types in its CERTIFICATEREQUEST

message. If the client has an appropriate certificate and is willing to use it for
authentication, then it must send that certificate in a CERTIFICATE message and
prove possession of the corresponding private key. For ECDSAsign, this proof
is explicit and comprises a digitally signed CERTIFICATEVERIFY message. For
ECDSA fixed ECDH and RSAfixed ECDH, the proof is implicit and no CERTIFI-
CATEVERIFY message needs to be sent.

To actually invoke ECC, RFC 4492 defines two new extension types that allow
negotiating the use of ECC during a TLS handshake: the supported elliptic curves
extension and the supported point formats extension:

• The supported elliptic curves extensionelliptic_curves (vales 10) that
may be sent in an extended CLIENTHELLO message allows the client to
indicate the set of elliptic curves it supports. The curves defined in RFC 4492
are the ones that are specified by the Standards for Efficient Cryptography
Group (SECG8) in [18]. Many of these curves are also recommended by other
standardization bodies, such as ANSI and NIST.

• Similarly, the supported point formats extensionec_point_formats
(value 11) is also sent in an extended CLIENTHELLO message and allows
the client to indicate the set of point formats it can parse.

For both extensions, it is up to the server to select an elliptic curve and a
corresponding point format in an extended SERVERHELLO message.

5.4.1.10 SRP Protocol

In Section 2.2.3.3, we mentioned that the Diffie-Hellman key exchange is susceptible
to man-in-the-middle attacks, and hence the participating peers need to authenticate
themselves in one way or another (this applies to any key agreement protocol).
Consequently, there are multiple ways to design and come up with an authenticated
Diffie-Hellman key exchange, and the use of a password is certainly the most
simple and straightforward choice. But many proposals for a password-authenticated
Diffie-Hellman key exchange have turned out to be susceptible to dictionary attacks,
meaning that an adversary can simply try out all possible password candidates (until
he or she finds the correct one). Against this background, Steven M. Bellovin and
Michael Merritt introduced the notion of anEncrypted Key Exchange(EKE) in the
early 1990s to defeat dictionary attacks [19, 20]. In the most general form of EKE,

8 http://www.secg.org.
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at least one party encrypts an ephemeral (one-time) public key using a password,
and sends it to a second party, who decrypts it and uses it to negotiate a shared key
with the first party. The password is not susceptible to dictionary attacks, because it
is used to encrypt a randomly looking value, and hence an adversary is not able to
decide whether a password candidate is actually correct. The notion of an EKE was
later refined by many researchers, and one of these refinements has become known
as theSecure Remote Password(SRP) [21, 22].9

The use of the SRP protocol for client authentication in a TLS handshake is
addressed in an Informational RFC 5054 [16]. It complements the use of public
key certificates, preshared keys, and/or Kerberos for client authentication. The
SRP extension allows the use of user names and passwords over unencrypted
channels without revealing the password to an eavesdropper. Since SRP is based
on a Diffie-Hellman key exchange, it also supplies a shared secret at the end of the
authentication process. This shared secret can then be used to generate the keying
material that is required.

Table 5.14
SRP-Based Cipher Suites for the TLS Protocol (According to [16])

Cipher Suite Value

TLS SRPSHA WITH 3DES EDE CBC SHA { 0xC0,0x1A }
TLS SRPSHA RSA WITH 3DES EDE CBC SHA { 0xC0,0x1B }
TLS SRPSHA DSS WITH 3DES EDE CBC SHA { 0xC0,0x1C }
TLS SRPSHA WITH AES 128 CBC SHA { 0xC0,0x1D }
TLS SRPSHA RSA WITH AES 128 CBC SHA { 0xC0,0x1E }
TLS SRPSHA DSS WITH AES 128 CBC SHA { 0xC0,0x1F }
TLS SRPSHA WITH AES 256 CBC SHA { 0xC0,0x20 }
TLS SRPSHA RSA WITH AES 256 CBC SHA { 0xC0,0x21 }
TLS SRPSHA DSS WITH AES 256 CBC SHA { 0xC0,0x22 }

When the client sends the CLIENTHELLO message to the server, it basi-
cally adds ansrp extension (type value 12) to the message. This is to initi-
ate an execution of the SRP protocol. The client and server then exchange SRP-
specific SERVERKEYEXCHANGE and SERVERKEYEXCHANGE messages. In the
end, the client and server are able to compute a shared secret (and the SRP
password ensures that an eavesdropper cannot mount a dictionary attack against
the password in use). The SRP-based cipher suites for the TLS protocol are
itemized in Table 5.14. Implementations conforming to RFC 5054 must imple-
ment the cipher suite TLSSRPSHA WITH 3DESEDE CBC SHA. They should

9 http://srp.stanford.edu.
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also implement TLSSRPSHA WITH AES 128 CBC SHA and TLSSRPSHA
WITH AES 256 CBC SHA, and they may implement the remaining cipher suites.

5.4.1.11 Signature Algorithms

There are multiple hash and signature algorithms that may or may not be supported
by different clients. The extension typesupported_signature_algorithms
(type 13) is defined in the original TLS 1.2 protocol specification [3]. It can be used
by a client to tell the server which hash and signature algorithms it actually supports.
The IANA maintains registries for these algorithms that are in line with RFC 2434
[10]. Supported hash algorithms are none (0),10 MD5 (1), SHA-1 (2), SHA-224 (3),
SHA-256 (4), SHA-384 (5), and SHA-512 (6), whereas supported signature algo-
rithms are anonymous (0), RSA (1),11 DSA (2), and ECDSA (3). The corresponding
code values are appended in brackets. Because not all hash and signature algorithms
may be accepted by an implementation, algorithms are always listed in pairs (for ex-
ample, DSA with SHA-1 may be accepted, but DSA with SHA-256 typically is not).
Each pair of algorithms specifies a way to generate and verify signatures. Due to this
flexibility, the TLS 1.2 CERTIFICATEREQUESTmessage must also list the hash and
signature algorithm pairs the server accepts, and hence the message must include
an additionalsupported_signature_algorithms parameter that yields
this information. This parameter is in addition tocertificate_types and
certificate_authorities. The interaction of thecertificate_types
andsupported_signature_algorithms parameters is tricky and much of
the functionality of the first parameter is superseded by the second.

5.4.1.12 Session Tickets

The extension typeSessionTicket (value 35) introduced in [17] can be used by
a server to resume sessions without having to keep per-client session state. It is based
on ideas originally proposed in [23, 24]. A client can indicate support for session
tickets by including aSessionTicket extension in the CLIENTHELLO message.
If the client does not already possess a ticket, then the data field of the extension must
be empty. The server, in turn, returns another emptySessionTicket extension
to the client. As such, it indicates that it will send a new session ticket to the
client in a NEWSESSIONTICKET handshake message (type 4). The ticket basically
comprises the session state, including, for example, the cipher suite and master
secret in use. It is encrypted and integrity-protected with a key that needs to be

10 The “none” value is provided for future extensibility, in case of a signature algorithm that does not
require hashing before signing.

11 The “RSA” value actually refers to RSA using PKCS version 1.5.
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known only to the server. This simplifies key management considerably. Normally,
the NEWSESSIONTICKET message is sent by the server during the handshake
before the CHANGECIPHERSPEC message, after it has successfully verified the
client’s FINISHED message. The corresponding protocol message flow is illustrated
in Figure 5.5.

ClientHello (empty SessionTicket extension)

ServerHello (empty SessionTicket extension)

Client

[ Certificate ]
[ ServerKeyExchange ]
[ CertificateRequest ]

ServerHelloDone

[ Certificate ]
 ClientKeyExchange

[ CertificateVerify ]
ChangeCipherSpec

Finished

ChangeCipherSpec
Finished

Server

Application Data

NewSessionTicket

Figure 5.5 The message flow of the TLS handshake protocol issuing a new session ticket.

After having received the NEWSESSIONTICKET message, the client caches
the session ticket along with the master secret and some other parameters associated
with the current session. When it wishes to resume the session at some later point in
time, it includes the ticket in theSessionTicket extension within the CLIENT-
HELLO message. The server decrypts the received ticket (using its respective key),
verifies the ticket’s validity, retrieves the session state, and uses this state to resume
the session. If the server successfully verifies the session ticket provided by the
client, then it may also renew the ticket by including a NEWSESSIONTICKET

message after its SERVERHELLO message. The corresponding message flow is
illustrated in Figure 5.6.

If, in the setting sketched above, the server cannot or does not want to accept
the session ticket provided by the client, then it can initiate a full TLS handshake
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ClientHello (SessionTicket extension)

ServerHello (empty SessionTicket extension)

Client

ChangeCipherSpec
Finished

Server

Application Data

NewSessionTicket
ChangeCipherSpec

Finished

Figure 5.6 The message flow for an abbreviated TLS handshake protocol using a new session ticket.

with the client. If the server does not wish to issue a new ticket, then it can
complete the TLS handshake without including aSessionTicket extension or
NEWSESSIONTICKET message. The corresponding message flow is the same as the
one illustrated in Figure 4.4 (for the SSL handshake protocol). The only difference is
that the initial CLIENTHELLO message comprises aSessionTicket extension.

Last but not least, it is also possible that a client submits a session ticket
in a simplified TLS handshake protocol in order to resume a session (similar to
Figure 4.5 for the SSL handshake protocol). In this case, the client also uses a
SessionTicket extension. If the server accepts the ticket, then everything is
fine. If, however, the server does not accept the ticket, then there are basically two
situations to distinguish:

• If the server does not accept the ticket and does not wish to issue a new
ticket, then it simply does not send back a SERVERHELLO message with a
SessionTicket extension.

• If the server does not accept the ticket but still wishes to issue a new ticket,
then it may perform a full handshake. The resulting message flow is the
same as the one illustrated in Figure 5.5, except that theSessionTicket
extension in the CLIENTHELLO is not empty.

As mentioned above, a session ticket is signaled by theSessionTicket
extension and sent in the corresponding data field. It comprises an opaque data
structure and a lifetime (in seconds) to specify the temporal validity. Anyway, the
session ticket is part of the CLIENTHELLO and/or SERVERHELLO messages, and
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as such it is also included in the hash value used to create and verify the FINISHED

messages of the TLS handshake.
It is sometimes argued that session tickets are vulnerable to a similar set of

exploits as the kind that are directed at cookie implementations. This argument is
flawed, mainly because a session ticket is cryptographically protected with a key that
is held only by the server and the use of the ticket requires some client-side state.
Consequently, an adversary who is able to capture a session ticket is neither able to
decrypt it nor use it for another purpose (because it does not have the appropriate
state). There are proposals to encrypt cookies in a similar way [25], but as of this
writing such secure cookies are not yet widely deployed.

5.4.1.13 Summary

In this section, we have seen that TLS 1.2 introduces and comes along with many
possible extensions. For most extensions, it is sufficient to extend the CLIENT-
HELLO and/or SERVERHELLO messages. For some extensions, however, it is also
necessary to use new TLS handshake messages. This is particularly true for the
NEWSESSIONTICKET message (type 4), CERTIFICATEURL message (type 21),
CERTIFICATESTATUS message (type 22), and SUPPLEMENTALDATA message (type
23). These messages have no counterparts in the SSL protocol or previous versions
of the TLS protocol.

5.4.2 Cipher Suites

TLS 1.0 and TLS 1.1 include cipher suites based on single-DES and IDEA. Both
block ciphers are no longer recommended for general use in TLS, and have been
entirely removed from TLS 1.2. There is an Internet-Draft12 (targeted as an Informa-
tional RFC) that specifies these cipher suites for completeness, and discusses reasons
why their use is no longer recommended. According to Table 5.7, this applies to

• TLS RSA WITH DES CBC SHA,

• TLS DH DSS WITH DES CBC SHA,

• TLS DH RSA WITH DES CBC SHA,

• TLS DHE DSSWITH DES CBC SHA,

• TLS DHE RSA WITH DES CBC SHA, and

• TLS DH anonWITH DES CBC SHA

12 http://www.ietf.org/internet-drafts/draft-ietf-tls-des-idea-*.txt.
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for single-DES, and

• TLS RSA WITH IDEA CBC SHA

for IDEA.

Table 5.15
TLS 1.2 Cipher Suites That Require a Server-Side RSA Certificate for Key Exchange

Cipher Suite Value

TLS RSA WITH NULL MD5 { 0x00,0x01 }
TLS RSA WITH NULL SHA { 0x00,0x02 }
TLS RSA WITH NULL SHA256 { 0x00,0x3B }
TLS RSA WITH RC4 128 MD5 { 0x00,0x04 }
TLS RSA WITH RC4 128 SHA { 0x00,0x05 }
TLS RSA WITH 3DESEDE CBC SHA { 0x00,0x0A }
TLS RSA WITH AES 128 CBC SHA { 0x00,0x2F }
TLS RSA WITH AES 256 CBC SHA { 0x00,0x35 }
TLS RSA WITH AES 128 CBC SHA256 { 0x00,0x3C }
TLS RSA WITH AES 256 CBC SHA256 { 0x00,0x3D }

The cipher suites supported by TLS 1.2 are listed in Tables 5.15 to 5.17. Note
that the cipher suites that employ an anonymous Diffie-Hellman key exchange (see
Table 5.17) must not be used by TLS 1.2 implementations unless the application
layer has specifically requested to allow anonymous key exchange. In addition to the
cipher suites listed in Tables 5.15 to 5.17, TLS 1.2 also supports the default cipher
suite TLSNULL WITH NULL NULL with its value{0x00,0x00}. This is similar
to all previous versions of the SSL and TLS protocols. In the absence of an applica-
tion profile standard specifying otherwise, a TLS-compliant application must imple-
ment and actively support the cipher suite TLSRSA WITH AES 128 CBC SHA.

Also, note that some TLS 1.2 cipher suites have been extended to support
SHA-256 in addition to SHA-1, and that TLS 1.2 also supports modes of operation
for authenticated encryption [26]. The term used in the specifications is AEAD, an
acronym standing for authenticated encryption with additional data. Examples are
the counter with CBC-MAC mode (CCM) [27] and the Galois/counter mode (GCM)
[28] as specified by NIST. The use of the AES in GCM in specified in a pair of RFCs
[29, 30]. Generally speaking, AEAD ciphers take as input the following components:

• A single key;

• A nonce;

• A plaintext;

• Some additional data to be included in the authentication check.
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Table 5.16
TLS 1.2 Cipher Suites That Employ a Nonanonymous Diffie-Hellman Key Exchange

Cipher Suite Value

TLS DH DSSWITH 3DESEDE CBC SHA { 0x00,0x0D }
TLS DH RSA WITH 3DES EDE CBC SHA { 0x00,0x10 }
TLS DHE DSS WITH 3DES EDE CBC SHA { 0x00,0x13 }
TLS DHE RSA WITH 3DESEDE CBC SHA { 0x00,0x16 }
TLS DH DSSWITH AES 128 CBC SHA { 0x00,0x30 }
TLS DH RSA WITH AES 128 CBC SHA { 0x00,0x31 }
TLS DHE DSS WITH AES 128 CBC SHA { 0x00,0x32 }
TLS DHE RSA WITH AES 128 CBC SHA { 0x00,0x33 }
TLS DH DSSWITH AES 256 CBC SHA { 0x00,0x36 }
TLS DH RSA WITH AES 256 CBC SHA { 0x00,0x37 }
TLS DHE DSS WITH AES 256 CBC SHA { 0x00,0x38 }
TLS DHE RSA WITH AES 256 CBC SHA { 0x00,0x39 }
TLS DH DSSWITH AES 128 CBC SHA256 { 0x00,0x3E }
TLS DH RSA WITH AES 128 CBC SHA256 { 0x00,0x3F }
TLS DHE DSS WITH AES 128 CBC SHA256 { 0x00,0x40 }
TLS DHE RSA WITH AES 128 CBC SHA256 { 0x00,0x67 }
TLS DH DSSWITH AES 256 CBC SHA256 { 0x00,0x68 }
TLS DH RSA WITH AES 256 CBC SHA256 { 0x00,0x69 }
TLS DHE DSS WITH AES 256 CBC SHA256 { 0x00,0x6A }
TLS DHE RSA WITH AES 256 CBC SHA256 { 0x00,0x6B }

The key is eitherclient_write_keyorserver_write_key; no MAC
key is used. Each AEAD cipher suite must specify how the nonce is constructed
and how long it should be. The plaintext is the fragment of theTLSCompressed
structure. Last but not least, the additional data is the concatenation of the sequence
number and the type, version, and length fields of theTLSCompressed structure.
Anyway, the output of an AEAD cipher is a ciphertext that can be uniquely decrypted
using the same values.

There are situations in which public key operations are too expensive or have
other management disadvantages. In these situations it may be advantageous to use
symmetric keys, shared in advance among communicating parties, to establish a
TLS connection. For example, Standards Track RFC 4279 [31] specifies three sets
of cipher suites for the TLS protocol that support authentication based onpreshared
keys(PSKs). As its name suggests, a PSK is a symmetric key that is shared in
advance among communicating parties. The three sets of cipher suites that employ
a PSK are summarized in Table 5.18. They can be described as follows:
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Table 5.17
TLS 1.2 Cipher Suites That Employ an Anonymous Diffie-Hellman Key Exchange

Cipher Suite Value

TLS DH anonWITH RC4 128 MD5 { 0x00,0x18 }
TLS DH anonWITH 3DES EDE CBC SHA { 0x00,0x1B }
TLS DH anonWITH AES 128 CBC SHA { 0x00,0x34 }
TLS DH anonWITH AES 256 CBC SHA { 0x00,0x3A }
TLS DH anonWITH AES 128 CBC SHA256 { 0x00,0x6C }
TLS DH anonWITH AES 256 CBC SHA256 { 0x00,0x6D }

Table 5.18
TLS Cipher Suites That Employ a PSK (According to [31])

Cipher Suite Value

TLS PSK WITH RC4 128 SHA { 0x00,0x8A }
TLS PSK WITH 3DES EDE CBC SHA { 0x00,0x8B }
TLS PSK WITH AES 128 CBC SHA { 0x00,0x8C }
TLS PSK WITH AES 256 CBC SHA { 0x00,0x8D }
TLS DHE PSK WITH RC4 128 SHA { 0x00,0x8E }
TLS DHE PSK WITH 3DES EDE CBC SHA { 0x00,0x8F }
TLS DHE PSK WITH AES 128 CBC SHA { 0x00,0x90 }
TLS DHE PSK WITH AES 256 CBC SHA { 0x00,0x91 }
TLS RSA PSK WITH RC4 128 SHA { 0x00,0x92 }
TLS RSA PSK WITH 3DES EDE CBC SHA { 0x00,0x93 }
TLS RSA PSK WITH AES 128 CBC SHA { 0x00,0x94 }
TLS RSA PSK WITH AES 256 CBC SHA { 0x00,0x95 }

• The first set of cipher suites (with the PSK key exchange algorithm) use
only secret key algorithms and are thus especially suitable for performance-
constrained environments.

• The second set of cipher suites (with DHEPSK key exchange algorithm) use
a PSK to authenticate an ephemeral Diffie-Hellman key exchange.

• The third set of cipher suites (with RSAPSK key exchange algorithm) com-
bine RSA-based authentication of the server with client-based authentication
using a PSK.

Note that the SRP-based cipher suites addressed in Section 5.4.1.10 can also
be thought of as cipher suites belonging to the first set. The SRP protocol is
computationally more expensive than a PSK-based key exchange method, but it is
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also cryptographically more sound (mainly because it protects against dictionary
attacks).

Table 5.19
TLS Cipher Suites With No Encryption That Employ a PSK (According to [32])

Cipher Suite Value

TLS PSK WITH NULL SHA { 0x00,0x2C }
TLS DHE PSK WITH NULL SHA { 0x00,0x2D }
TLS RSA PSK WITH NULL SHA { 0x00,0x2E }

In addition to RFC 4279, RFC 4785 [32] specifies three TLS cipher suites
with no encryption that employ a PSK. The cipher suites are itemized in Table
5.19. They are useful when authentication and integrity protection is desired, but
confidentiality is not needed or not permitted. Anyway, clients and servers may
have PSKs with several different parties. The client therefore indicates which
key to use by including aPSK identityin the CLIENTKEYEXCHANGE message.
To help the client in selecting which identity to use, the server can provide a
PSK identity hintin the SERVERKEYEXCHANGE message. If no hint is provided,
then the SERVERKEYEXCHANGE message can be omitted (at least for the PSK
and RSAPSK key exchange algorithms). If the client provides a PSK identity
but the server is not able to make any use of it, then the server may return an
unknown_psk_identity alert message (with alert code 115).

Table 5.20
TLS Cipher Suites That Combine a PSK and ECC (Work in Progress)

Cipher Suite

TLS ECDHE PSK WITH RC4 128 SHA
TLS ECDHE PSK WITH 3DES EDE CBC SHA
TLS ECDHE PSK WITH AES 128 CBC SHA
TLS ECDHE PSK WITH AES 256 CBC SHA
TLS ECDHE PSK WITH AES 128 CBC SHA256
TLS ECDHE PSK WITH AES 256 CBC SHA384
TLS ECDHE PSK WITH NULL SHA
TLS ECDHE PSK WITH NULL SHA256
TLS ECDHE PSK WITH NULL SHA384

Furthermore, in addition to RFCs 4279 and 4785, there is work going on
within the IETF TLS WG to combine a PSK and ECC, and to specify a set of
cipher suites that use a PSK to authenticate an ephemeral ECDH key exchange.13

13 http://www.ietf.org/internet-drafts/draft-ietf-tls-ecdhe-psk-*.txt.
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The corresponding cipher suites are itemized in Table 5.20. Their values still have
to be assigned from the TLS cipher suite registry. Also, there is related work that
seeks to define sets of cipher suites in which SHA-1 is replaced with some stronger
cryptographic hash functions (i.e., SHA-256 or SHA-384) and/or cipher suites that
use the AES in GCM.14 The corresponding cipher suites are itemized in Table 5.21.
Again, their values still have to be assigned from the TLS cipher suite registry.

Table 5.21
TLS Cipher Suites That Combine a PSK With AES-GCM and Stronger Cryptographic Hash Functions

(Work in Progress)

Cipher Suite

TLS PSK WITH AES 128 GCM SHA256
TLS PSK WITH AES 256 GCM SHA384
TLS PSK WITH NULL SHA256
TLS PSK WITH NULL SHA384
TLS DHE PSK WITH AES 128 GCM SHA256
TLS DHE PSK WITH AES 256 GCM SHA384
TLS DHE PSK WITH NULL SHA256
TLS DHE PSK WITH NULL SHA384
TLS RSA PSK WITH AES 128 GCM SHA256
TLS RSA PSK WITH AES 256 GCM SHA384
TLS RSA PSK WITH NULL SHA256
TLS RSA PSK WITH NULL SHA384

5.4.3 Certificate Management

The certificate types of TLS 1.1 are listed in Table 5.10. Due to the fact that TLS
1.2 supports ECC, there is need for additional certificate types. For example, while
dsssign refers to a certificate for a DSA public key, ecdsasign refers to a certificate
for an ECDSA public key. Similarly, rsafixed ecdh and ecdsafixed ecdh refer to
certificates for an ECDH key exchange. In all cases, the certificate must use the
same elliptic curve as the server’s key and a point format actually supported by the
server. Also, it must be signed with an appropriate hash and signature generation
algorithm pair.

5.4.4 Alert Messages

In addition to alert message 41 (no_certificate_RESERVED) that has become
obsolete in TLS 1.0 and alert message 60 (export_restriction_RESERVED)

14 http://www.ietf.org/internet-drafts/draft-ietf-tls-psk-new-mac-aes-gcm-*.txt.



174 SSL and TLS: Theory and Practice

that has also become obsolete in TLS 1.1, alert message 21 has become obsolete
and is now referred to asdecryption_failed_RESERVED in TLS 1.2. Also—
as mentioned above—theunsupported_extension alert message (see Table
5.12) is included in the TLS 1.2 protocol specification.

5.4.5 Other Differences

Compression algorithms for TLS 1.2 are specified in RFC 3749 [33]. In addition to
value 0 (referring to null compression), this RFC also introduces value 1 (referring to
the DEFLATE compression method and encoding format specified in Informational
RFC 1951 [34]).

Remember from Section 5.2 that a TLS FINISHED message always uses 12
bytes from the output of the PRF. Since TLS 1.2, the length of the PRF output taken
into account depends on the cipher suite in use. The default value is still 12 and all
existing cipher suites adopt this value. But future cipher suites may specify other
lengths (that are greater than 12).

5.5 TRAFFIC ANALYSIS OF A TLS SESSION

To illustrate the functioning of the TLS protocol, we provide a traffic analysis of a
TLS session. We therefore consider the same setting as described in Section 4.3. The
client takes the initiative and launches the TLS protocol by sending a CLIENTHELLO

message to the server. The message looks as follows (in hexadecimal notation):

16 03 01 00 41 01 00 00 3d 03 01 49 47 77 14 b9
02 5d e6 35 ff 49 d0 65 cb 89 93 7d 68 9b 55 e7
b6 49 e6 93 e9 e9 48 c0 b7 d2 13 00 00 16 00 04
00 05 00 0a 00 09 00 64 00 62 00 03 00 06 00 13
00 12 00 63 01 00

The TLS record starts with a type field that comprises the value0x16 (representing
22 in decimal notation, and hence standing for the Handshake Protocol), a version
field that comprises the value0x0301 (referring to TLS 1.0), and a length field
that comprises the value0x0041 (representing 65 in decimal notation). This means
that the fragment of the TLS record is 65 bytes long, and that the following 65
bytes thus represent the CLIENTHELLO message. This message, in turn, starts with
0x01 standing for the TLS handshake message type 1 (referring to a CLIENTHELLO

message),0x00003d standing for a message length of 61 bytes, and0x0301
again representing TLS 1.0. The subsequent 32 bytes—from0x4947 to0xd213—
represent the random value chosen by the client (remember that the first 4 bytes
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represent the date and time). Because there is no TLS session to resume, the session
ID length is set to zero (0x00) and no session ID is appended. Instead, the next
value0x0016 (representing 22 in decimal notation) indicates that the subsequent
22 bytes refer to the 11 cipher suites that are supported by the client. Each pair of
bytes represents a cipher suite. For example, the first two cipher suites are referenced
with the values0x0004 and0x0005 (i.e., TLS RSA WITH RC4 128 MD5 and
TLS RSA WITH RC4 128 SHA). The second-to-last byte01 indicates that there
is a single compression method supported by the client, and the last byte0x00 refers
to this compression method (which actually refers to no compression).

After having received the CLIENTHELLO message, the server responds with
a series of TLS handshake messages. If possible, then all messages are merged into
a single TLS record and transmitted in a single TCP segment to the client. In our
example, such a TLS record comprsies a SERVERHELLO, a CERTIFICATE, and
a SERVERHELLODONE message. Similar to SSL, the TLS record starts with the
following byte sequence:

16 03 01 0a 5f

Again,0x16 refers to the TLS Handshake Protocol,0x0301 refers to TLS 1.0, and
0x0a5f refers to the length of the TLS record (which is actually 2,655 bytes). The
three above-mentioned messages are then encapsulated in the rest of the TLS record.

• The SERVERHELLO message looks as follows:

02 00 00 46 03 01 49 47 77 14 a2 fd 8f f0 46 2e
1b 05 43 3a 1f 6e 15 04 d3 56 1b eb 89 96 71 81
48 d4 87 10 6d e9 20 49 47 77 14 42 53 e0 5e bd
17 6a e9 35 31 06 f2 d2 30 28 af 46 19 d1 d2 e4
49 0a 0c cd 90 66 20 00 05 00

The message starts with0x02 standing for the Handshake Protocol message
type 2 (referring to a SERVERHELLO message),0x000046 standing for
a message length of 70 bytes, and0x0301 standing for TLS 1.0. The
subsequent 32 bytes

49 47 77 14 a2 fd 8f f0 46 2e 1b 05 43 3a 1f 6e
15 04 d3 56 1b eb 89 96 71 81 48 d4 87 10 6d e9

represent the random value chosen by the server (note again that the first 4
bytes represent the date and time). Afterwards,0x20 refers to a session ID
length of 32 bytes, and hence the subsequent 32 bytes

49 47 77 14 42 53 e0 5e bd 17 6a e9 35 31 06 f2
d2 30 28 af 46 19 d1 d2 e4 49 0a 0c cd 90 66 20
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represent the session ID. Remember that this ID is going to be used if the client
wants to resume the TLS session at some later point in time (before the session
expires). Following the session ID,0x0005 refers to the selected cipher suite
(which is TLSRSA WITH RC4 128 SHA in this example) and0x00 refers
to the selected compression method (which is the null compression).

• Next, the CERTIFICATE message comprises the server’s public key certificate.
It is quite comprehensive and begins with the followiung byte sequence:

0b 00 0a 0d 00 0a 0a

In this byte sequence,0x0b stands for the TLS Handshake Protocol message
type 11 (referring to a CERTIFICATE message),0x000a0d stands for a
message length of 2573 bytes, and0x000a0a stands for the length of the
certificate chain. Note that the length of the certificate chain must equal the
message length minus 3 (the length of the length field). The remaining 2570
bytes of the message then comprise the certificate chain required to validate
the server’s public key certificate (again, these bytes are not illustrated above).

• Last but not least, the TLS record also comprises a SERVERHELLODONE

message. This message is very simple and only consists of 4 bytes:

0e 00 00 00

0x0e stands for the TLS Handshake Protocol message type 14 (referring to a
SERVERHELLODONE message) and0x000000 stands for a message length
of zero bytes.

After having received the SERVERHELLODONE message, it is up to the client
to submit a series of messages to the server. In our example, this series comprises a
CLIENTKEYEXCHANGE, a CHANGECIPHERSPEC, and a FINISHED message. Each
of these messages is transmitted in a TLS record of its own, but all three records can
be transmitted in a single TCP segment to the server.

• The CLIENTKEYEXCHANGE message is transmitted in the first TLS record.
In our example, this record looks as follows:

16 03 01 00 86 10 00 00 82 00 80 ac 18 48 2e 50
32 32 bb 5d 2b 35 39 f2 3d 32 cd 19 86 b4 57 e9
c8 a5 5b ad da 29 24 22 90 bc d7 3d cd f8 94 8a
4f 95 72 0c 13 52 52 82 e4 b0 25 f4 b8 b6 e1 7d
2e d9 65 ce 6f 7c 33 70 12 41 63 87 b4 8b 35 71
07 d1 0f 52 9d 3a ce 65 96 bc 42 af 2f 7b 13 78
67 49 3e 36 6e d1 ed e2 1b b2 54 2e 35 bd cc 2c
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88 b2 2d 0c 5c bb 20 9a d4 c3 97 e9 81 a7 a8 39
05 1a 5d f8 06 af e4 ef 17 07 30

In the TLS record header,0x16 stands for the Handshake Protocol,0x0301
refers to TLS 1.0, and0x0086 represents the length of the TLS record (134
bytes). After this header, the byte0x10 stands for the Handshake Protocol
message type 16 (referring to a CLIENTKEYEXCHANGE message), and the
following three bytes0x000082 refer to the message length (130 bytes).
Consequently, the remaining 130 bytes of the message represent the premaster
secret (as chosen by the client) encrypted under the server’s public RSA key.
The RSA encryption is line with PKCS #1.

• The CHANGECIPHERSPECmessage is transmitted in the second TLS record.
This record is very simple and consists of only 6 bytes:

14 03 01 00 01 01

In the TLS record header,0x14 (20 in decimal notation) stands for the
Change Cipher Spec Protocol,0x0301 refers to TLS 1.0, and0x0001
represents the message length of one single byte. This byte (i.e.,0x01), in
turn, is the last byte in the record.

• The FINISHED message is the first message that is cryptographically protected
according to the newly-negotiated cipher spec. Again, it is transmitted in a
TLS record of its own. This record looks as follows:

16 03 01 00 24 fb 94 5f ea 62 ec 90 04 36 5a f6
c7 c9 1e ae 5d da 70 31 cc 63 2f 81 87 97 60 46
d0 43 fa 6e 29 94 6c cd 17

In the TLS record header,0x16 stands for the Handshake Protocol,0x0301
refers to TLS 1.0, and0x0024 represents the length of the TLS record (36
bytes). These 36 bytes are encrypted and look like gibberish to somebody not
holding the appropriate decryption key.

After having received the CHANGECIPHERSPECand FINISHED messages, the
server must respond with the same pair of messages (not illustrated in our example).
Afterwards, application data can be exchanged in TLS records. Such a record may
start as follows:

17 03 01 02 13

In the TLS record header,0x17 (23 in decimal notation) stands for the Application
Data Protocol,0x0301 stands for TLS 1.0, and0x0213 (531) stands for the length
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of the encrypted data fragment. It goes without saying that an arbitrary number of
TLS records can be exchanged between the client and the server.

5.6 SECURITY ANALYSIS

Due to the fact that the SSL and TLS protocols have a long history, they have
been subject to many security analyses in the past (see Section 4.4). Some of these
analyses led to the modifications incorporated in TLS 1.1 [5–7]. Since then, no
serious cryptographic vulnerability or shortcoming has been found. This is good
news and very much speaks in favor of the cryptographical strength of the current
version of the TLS protocol. An informal security analysis of TLS 1.2 is given in
appendix F of [3]. Since we have addressed most points raised in this analysis in
previous parts of this chapter, there is no need to repeat them here. In spite of the
assumed security of the SSL/TLS protocols, it may still be the case that specific
implementations of the protocol have specific vulnerabilities or security flaws. In
ths case of OpenSSL, for example, a corresponding list of vulnerabilities is publicly
available15 and open for discussion.

5.7 FINAL REMARKS

In this chapter, we overviewed, discussed, and put into perspective the (various
versions of the) TLS protocol. With its latest modifications and extensions, the TLS
protocol has slowly drifted away from the simple and straightforward cryptographic
security protocol it used to be. Today, TLS 1.2 is quite involved and implementing it
in an interoperable way is no longer a trivial task. On the other side, the modifications
and extensions that have been incorporated also help making the TLS protocol
more flexible and useful in nonstandard situations. In its current form, the TLS
protocol is able to support all fancy technologies and techniques the cryptographic
community has come up with in the recent past. This applies, for example, to the
AES (in possibly new modes of operation), ECC, HMAC, and SHA-2. Whenever
a new cryptographic technology or technique is proposed, there is strong incentive
to write an RFC document that specifies the use of this technology or technique
to make the TLS protocol more secure (the RFC document can be experimental,
informational, or subject to the Internet Standards Track). One such example is the
use of the SRP protocol specified in Informational RFC 5054 [21]. There have even
been proposals to add cipher suites supporting quantum cryptography to the TLS
protocol specification. This is not something to recommend, but it illustrates the

15 http://www.openssl.org/news/vulnerabilities.html.
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point that any cryptographic technology or technique can be used in an SSL/TLS
setting. It is possible and very likely that we will see many such proposals in the
literature; it is then important to be able to put these proposals into perspective. This
book should help you in this regard.

References

[1] Dierks, T., and C. Allen, “The TLS Protocol Version 1.0,” Standards Track Request for Comments
2246, January 1999.

[2] Dierks, T., and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.1,” Stan-
dards Track Request for Comments 4346, April 2006.

[3] Dierks, T., and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” Stan-
dards Track Request for Comments 5246, August 2008.

[4] Moriai, S., Kato, A., and M. Kanda, “Addition of Camellia Cipher Suites to Transport Layer
Security (TLS),” Standards Track Request for Comments 4132, July 2005.

[5] Vaudenay, S., “Security Flaws Induced by CBC Padding—Applications to SSL, IPSEC, WTLS ...
,” Proceedings of EUROCRYPT ’02, Amsterdam, the Netherlands, Springer-Verlag, LNCS 2332,
2002, pp. 534–545.

[6] Canvel, B., Hiltgen, A., Vaudenay, S., and M. Vuagnoux, “Password Interception in a SSL/TLS
Channel,”Proceedings of CRYPTO ’03, Springer-Verlag, LNCS 2729, 2003, pp. 583–599.

[7] Bard, G.V., “Vulnerability of SSL to Chosen-Plaintext Attack,” Cryptology ePrint Archive, Report
2004/111, 2004.

[8] Medvinsky, A., and M. Hur, “Addition of Kerberos Cipher Suites to Transport Layer Security
(TLS),” Standards Track Request for Comments 2712, October 1999.

[9] Chown, P., “Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security
(TLS),” Standards Track Request for Comments 3268, June 2002.

[10] Narten, T., and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,”
Request for Comments 2434 (BCP 26), October 1998.

[11] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and T. Wright, “Transport Layer
Security (TLS) Extensions,” Standards Track Request for Comments 4366, April 2006.

[12] Santesson, S., “TLS Handshake Message for Supplemental Data,” Standards Track Request for
Comments 4680, September 2006.

[13] Santesson, S., Medvinsky, A., and J. Ball, “TLS User Mapping Extension,” Standards Track
Request for Comments 4681, October 2006.

[14] Mavrogiannopoulos, N., “Using OpenPGP Keys for Transport Layer Security (TLS) Authentica-
tion,” Experimental Request for Comments 5081, November 2007.

[15] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B. Moeller, “Elliptic Curve Cryptography
(ECC) Cipher Suites for Transport Layer Security (TLS),” Informational Request for Comments
4492, May 2006.



180 SSL and TLS: Theory and Practice

[16] Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin, “Using the Secure Remote Password
(SRP) Protocol for TLS Authentication,” Informational Request for Comments 5054, November
2007.

[17] Salowey, Y., Zhou, H., Eronen, P., and H. Tschofenig, “Transport Layer Security (TLS) Session
Resumption without Server-Side State,” Standards Track Request for Comments 5077, January
2008.

[18] Standards for Efficient Cryptography, “SEC 2: Recommended Elliptic Curve Domain Parame-
teres,” Version 1.0, September 2000.

[19] S.M. Bellovin, and M. Merritt, “Encrypted Key Exchange: Password-Based Protocols Secure
Against Dictionary Attacks,”Proceedings of the 1992 IEEE Symposium on Security and Privacy,
IEEE Computer Society, Washington, D.C., 1992, pp. 72.

[20] S.M. Bellovin, and M. Merritt, “Augmented Encrypted Key Exchange: A Password-based Proto-
col Secure Against Dictionary Attacks and Password File Compromise,”Proceedings of 1st ACM
Conference on Computer and Communications Security, Fairfax, Virginia, November 1993, pp.
244–250.

[21] T. Wu, “The Secure Remote Password Protocol,”Proceedings of the 1998 Internet Society
Network and Distributed System Security Symposium, San Diego, CA, March 1998, pp. 97–111.

[22] T. Wu, “The SRP Authentication and Key Exchange System,” Standards Track Request for
Comments 2945, September 2000.

[23] Aura, T., and P. Nikander, “Stateless Connections,”Proceedings of the First International Con-
ference on Information and Communication Security (ICICS 97), Springer-Verlag, LNCS 1334,
1997, pp. 87–97.

[24] Shacham, H., Boneh, D., and E. Rescorla, “Client-side caching for TLS,”Transactions on
Information and System Security (TISSEC), Vol. 7, No. 4, 2004, pp. 553–575.

[25] Park, J.S., and R. Sandhu, “Secure Cookies on the Web,”IEEE Internet Computing, Vol. 4, No.
4, 2000, pp. 36–44.

[26] McGrew, D., “An Interface and Algorithms for Authenticated Encryption,” Standards Track
Request for Comments 5116, January 2008.

[27] Dworkin, M., Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality, NIST Special Publication 800-38C, May 2004.

[28] Dworkin, M., Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, NIST Special Publication 800-38D, November 2007.

[28] Salowey, J., Choudhury, A., and D. McGrew, “AES Galois Counter Mode (GCM) Cipher Suites
for TLS,” Standards Track Request for Comments 5288, August 2008.

[30] Rescorla, E., “TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter
Mode (GCM),” Informational Request for Comments 5289, August 2008.

[31] Eronen, P., and H. Tschofenig (Eds.), “Pre-Shared Key Ciphersuites for Transport Layer Security
(TLS),” Standards Track Request for Comments 4279, December 2005.



TLS Protocol 181

[32] Blumenthal, U., and P. Goel, “Pre-Shared Key (PSK) Ciphersuites with NULL Encryption for
Transport Layer Security (TLS),” Standards Track Request for Comments 4785, January 2007.

[33] Hollenbeck, S., “Transport Layer Security Protocol Compression Methods,” Standards Track
Request for Comments 3749, May 2004.

[34] Deutsch, P., “DEFLATE Compressed Data Format Specification version 1.3,” Informational
Request for Comments 1951, May 1996.



182 SSL and TLS: Theory and Practice



Chapter 6

DTLS Protocol

As its name suggests, the DTLS protocol is the datagram version of the TLS
protocol. This basically means that it can be used to secure UDP-based applications
and application layer protocols. The DTLS protocol is picked out as a central theme
in this chapter. We begin with an introduction in Section 6.1, focus on the specifics
of the DTLS 1.0 and DTLS 1.2 protocols in Sections 6.2 and 6.3, briefly analyze
their security in Section 6.4, and conclude with some final remarks in Section 6.5.
Because the DTLS protocol is similar and not fundamentally different from the
SSL/TLS protocols, this chapter mainly focuses on the differences between TLS
and DTLS. It is therefore intentionally kept short.

6.1 INTRODUCTION

As mentioned several times so far, the SSL and TLS protocols are layered on top of
a connection-oriented and reliable transport protocol, such as TCP in the case of the
TCP/IP protocol stack. But there is an increasingly large body of applications and
application layer protocols that are stacked on UDP (instead of TCP). Examples
include media streaming, realtime communications (e.g., Internet telephony and
video conferencing), multicast communications, online gaming, and gambling. UDP
is a transport layer protocol that provides a best-effort datagram delivery service
that is connectionless, and hence neither the SSL protocol nor any of the TLS
protocol versions can be stacked on it (because they all require a connection-
oriented and reliable transport layer data delivery service). The same is true for the
theDatagram Congestion Control Protocol(DCCP) [1] that provides a best-effort
datagram delivery service, similar to UDP, but with adaptive congestion control,
similar to TCP or even theStream Control Transmission Protocol(SCTP). DCCP
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can in fact be viewed equally well as either UDP-plus-congestion-control or TCP-
minus-reliability (although, unlike TCP, DCCP offers multiple congestion control
algorithms). As addressed later, the DTLS protocol can also be stacked on DCCP,
and hence it also provides a solution to secure DCCP-based applications.

Having the inappropriateness of the SSL/TLS protocols to secure UDP-based
(or DCCP-based) applications in mind, the designers of a corresponding application
protocol are generally faced with three options:

• First, they can make sure that the application protocol is layered on top of
TCP instead of UDP. Unfortunately, this is not always possible, and there are
types of applications that perform poorly over TCP. This applies, for example,
to applications that are latency and jitter sensitive, and that would suffer from
TCP’s loss and congestion correction algorithms.

• Second, they can use an Internet layer security protocol, such as IPsec/IKE,
and make sure that the application protocol takes advantage of it. Unfortu-
nately (as pointed out in Section 3.1), the use of Internet layer security pro-
tocols in general, and IPsec/IKE in particular, tends to be involved and error-
prone. This also applies to the new versions of IPsec/IKE.

• Third, they can design a custom (and new) application layer security protocol.
Unfortunately, although application layer security protocols generally provide
superior security properties, they also require an unacceptably large amount
of effort to design, implement, and deploy. This is in sharp contrast to the
relatively small amount of effort required to run a protocol over SSL/TLS.

All three options have severe disadvantages and are therefore unsatisfactory
when used in practice. The most desirable way to secure an application protocol
would still be to use SSL/TLS or a similar transport layer security technology that
can run in application space (without requiring any kernel modification). In the past,
there have been a few proposals for a cryptographic security protocol that meets
these requirements. For example, a few years ago, Microsoft proposed STLP (see
Section 3.2) and the Wireless Application Protocol (WAP) Forum1 proposed the
Wireless TLS (WTLS). Both protocols have not been successful in the field and
have silently sunk into oblivion. The reasons for these failures are design flaws.
Most importantly, both protocols required an additional Web or proxy infrastructure
for handheld use, which proved to be an unacceptable overhead and created some
unacceptable network deployment constraints.

More importantly (at least for the purpose of this book), the IETF TLS WG
became active and tried to adapt the TLS protocol for UDP-based applications at

1 The WAP Forum was founded in 1997 and was consolidated (along with many other forums of the
industry) into the Open Mobile Alliance (OMA) in 2002.
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the beginning of this century. The term coined to refer to the resulting protocol
is datagram TLS, or DTLS in short [2]. The fact that DTLS is layered on top of
UDP implies that the DTLS protocol must be able to deal with datagrams that
are not reliably transmitted, meaning that they may get lost, reordered, or even
replayed. Note that the TLS protocol has no internal facilities to handle this type
of unreliability, and hence TLS implementations usually break when layered on top
of UDP. This should be different with DTLS, and yet DTLS should be deliberately
designed to be as similar to TLS as possible, both to minimize new security invention
and to maximize the amount of code and infrastructure reuse.

In essence, the characteristics of UDP causes (at least) two problem areas that
must be addressed in one way or another:

• First, UDP is a connectionless best-effort datagram delivery protocol that
operates at the transport layer. This means that a UDP datagram is transmitted
and processed independently from all other datagrams, and hence it must also
be possible to encrypt and decrypt a DTLS record (that is transmitted in a UDP
datagram) independently from all other records that have been encrypted and
decrypted in the past. This severely limits the statefulness of the cryptographic
operations in use. Note that TLS records are not processed independently, and
that there are at least the following two types of interrecord dependencies:

– In some cipher suites, cryptographic context is chained between subse-
quent TLS records. If, for example, a block cipher is used in CBC mode,
then some former versions of the SSL/TLS protocols required that the
last ciphertext block is the IV for the encryption of the next plaintext
block. Also, if a stream cipher is used, then it is relevant which key bits
from the stream are used to encrypt and decrypt a record. The key stream
therefore represents the context and yields an interrecord dependency.

– As addressed in Section 5.2, the TLP protocol provides protection againt
replay and message reordering attacks by using a MAC that also com-
prises a sequence number (that is implicit to the record). It goes without
saying that the sequence number is incremented for each TLS record, so
the sequence number yields an interrecord dependency.

These dependencies imply that TLS records cannot be treated inde-
pendently. But with regard to DTLS, the dependencies can be overcome by
either ignoring some cryptographic mechanisms or adding explicit state to
the respective records. If, for example, stream ciphers are not used in DTLS,
then stream cipher key state must not be maintained in the first place. This is
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why RC4-based cipher suites are not part of the DTLS protocol specification.2

Also, TLS 1.1 has already added explicit CBC state to TLS records (see Sec-
tion 5.3). DTLS borrows the same mechanism and adds an explicit sequence
number field to the DTLS record format.

• Second, the TLS Handshake Protocol requires a reliable transport channel for
the transmission of handshake messages. Due to this requirement, the TLS
Handshake Protocol can be kept comparably simple. If UDP is used instead
of TCP, then this requirement is no longer fulfilled, and the DTLS Handshake
Protocol must therefore be modified to compensate for the missing reliability.
In fact, the DTLS Handshake Protocol must incorporate controls for messages
that are lost, reordered, or replayed.

Both problem areas are relevant and have implications for the design of the
DTLS protocol. In April 2006, a companion RFC document to RFC 4346 [3] (that
specifies TLS 1.1) was officially released as RFC 4347 [4] and submitted to the
Internet Standards Track. It specified the first version of the DTLS protocol—or
rather a delta from TLS 1.1—and it is sometimes referred to as DTLS 1.0. The
combination of DTLS and UDP is simple and straightforward. The combination of
DTLS and DCCP is slightly more involved and addressed in a separate Standards
Track RFC [5]. DTLS 1.0 is currently being refined within the IETF TLS WG,
and the next version of the DTLS protocol is going to be version 1.2 (DTLS 1.2).
Consequently, there is no documented version 1.1 of the DTLS protocol. As of this
writing, DTLS 1.2 is still work in progress and the DTLS 1.2 protocol specification
is available only as an Internet-Draft.3 In the following sections, we pick DTLS out
as a central theme, and we overview, discuss, and put into perspective the evolution
of the DTLS protocol from version 1.0 to version 1.2.

6.2 DTLS 1.0

The DTLS protocol is structurally similar to the SSL/TLS protocols. But instead of
being stacked on TCP in the TCP/IP protocol stack, the DTLS protocol is actually
stacked on UDP. This is illustrated in Figure 6.1 (compare this to Figure 4.1 that
illustrates the situation for the SSL/TLS protocols).

2 Theoretically, it would be possible to use RC4 with a per-record seed. But this is fairly inefficient,
especially considering the fact that the first 512 bytes of an RC4 keystream should be discarded
(because they have bad, i.e., cryptographically weak, properties).

3 http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4347-bis-01.txt.
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Figure 6.1 The placement of the DTLS protocol in the TCP/IP protocol stack.

Referring to the two problem areas mentioned above, the major differences be-
tween the TLS and DTLS protocols are related to the DTLS Record and Handshake
Protocols. They are addressed separately.

6.2.1 Record Protocol

Every packet-switched network has a maximum transmission unit (MTU) size that
refers to the size of the largest packet that can be transmitted in the network. This
also applies to IP networks. Thus, if an IP packet needs to be transmitted that exceeds
the size of the MTU, then the sender must fragment the packet and the recipient
must reassemble the fragments to rebuild the original packet. In general, these steps
(for packet fragmentation and reassembly) are computationally expensive. Also,
if a fragment is lost, then the entire packet must be discarded (and eventually
retransmitted). So for very large packets and small MTU sizes, this poses a real
problem, and people are therefore trying to avoid IP fragmentation in the first
place. This is particularly true for UDP-based applications, and hence it also applies
to DTLS. Note that DTLS will still operate correctly with IP fragmentation and
reassembly, since these operations are transparently performed by the kernel. But
DTLS implementations should still try to avoid it and provide a way to determine
the value of the path MTU (PMTU) or, alternatively, the maximum DTLS datagram
size, which is the PMTU minus the DTLS per-record overhead. There are several
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algorithms that can be used to determine the PMTU value (e.g., [6–8]). If the DTLS
implementation tries to send a record that is larger than this value, then the DTLS
implementation should generate an error, thus avoiding IP fragmentation by default.

If IP fragmentation is avoided, then the maximum size of a DTLS record is
bounded by the PMTU value. For example, a DTLS handshake message can be as
large as224 − 1 bytes, whereas the standard MTU size for Ethernet is only 1500
bytes. So handshake messages are routinely transmitted in multiple DTLS records.
Due to the unreliability of UDP, these records can be lost, received out of order, or
even replayed. It therefore makes a lot of sense to send an explicit sequence number
along with the DTLS records. Because multiple DTLS records with similar sequence
numbers may belong to different cipher states, each sequence number is zero-based
(i.e., it starts at zero) but comes along with an epoch number. An alternative to epoch
numbers would be to use randomly chosen initial sequence numbers for records
(similar to the initial sequence numbers used by TCP). If the sequence numbers were
sufficiently large, then the chance of collision of active sequence number ranges
would be very small. The disadvantage of this approach would be that it would
probably require more code to implement than the epoch strategy. To cut a long story
short, a DTLS record comprises the following two additional fields (in addition to
the type, version, length, and fragment fields of a “normal” TLS record):

• A 16-bit epochfield that comprises a counter value that is incremented on
every cipher state change.

• A 48-bit sequence numberfield that comprises an explicit sequence number
that is incremented for every DTLS record (sent in a given cipher state).

If several DTLS handshakes are performed simultaneously or in close succes-
sion, then there may coexist multiple DTLS records with the same sequence number
but from different cipher states. As mentioned above, the epoch field is to allow
recipients to distinguish these records. The epoch field is initially set to zero and is
incremented each time a CHANGECIPHERSPECmessage is sent. The sequence num-
ber field, in turn, always refers to a specific epoch and is incremented on a per-record
basis. It is reset to zero after every CHANGECIPHERSPEC message that is sent.
The DTLS record numbering scheme is illustrated in Figure 6.2. Using this general
scheme, DTLS implementations must ensure that any given epoch/sequence number
pair is unique (because TLS implementations rarely rehandshake, this should not
pose a serious problem).

The sequence numbers of the DTLS records can also be used to provide replay
protection. The corresponding sequence number verification process is similar to the
one employed by IPsec: when a session is established, the receiver first initializes
its record counter with zero. For each received record, the receiver then verifies
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Figure 6.2 The DTLS record numbering scheme.

that the record contains a sequence number that does not duplicate the sequence
number of any other record received in the past (during the session). Duplicates
are detected (and hence, rejected) through the use of a sliding receive window.
A minimum window size of 32 must be supported, but a window size of 64 is
preferred and should be employed by default. Another window size may be chosen
by the receiver. In either case, the right edge of the window represents the highest
validated sequence number value received on this session, whereas records that
contain sequence numbers lower than the left edge of the window are rejected.
Records falling within the window are checked against a list of received records
within the window. An efficient way of performing this task is based on the use of a
bit mask. If the received record falls within the window and is new, or if the record
is to the right of the window, then the receiver proceeds to MAC verification. If this
verification fails, then the receiver must discard the record as invalid. Last but not
least, the receive window is updated only if the MAC verification succeeds.

With regard to MAC generation and verification, we first note that the HMAC
construction used by TLS also employs a sequence numberseq number (see
Section 5.2), but that this sequence number is implicit, meaning that it must be
maintained by the communicating peers. The sequence number employed by DTLS,
in turn, is explicit, meaning that it is part of the DTLS record. If the concatenation of
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the epoch value and the sequence number value is taken as the new 64-bit value for
seq number, then the formula to compute a DTLS 1.0 MAC is exactly the same as
the formula to compute a TLS MAC. In the case of DTLS, however, we can rewrite
the formula as follows:

HMACK(DTLSCompressed) =

h(K ‖ opad ‖ h(K ‖ ipad ‖ epoch ‖ sequence number ‖

type ‖ version ‖ length ‖ fragment))

Again, note that the bitstringepoch ‖ sequence number in DTLS refers to
seq number in TLS. In either case, the length of the bitstring is 64. An important
difference between TLS and DTLS is that in TLS MAC errors must result in
connection termination, whereas in DTLS MAC errors need not result in connection
termination. Instead, the receiving DTLS implementation may discard the offending
record and continue with the transmission. This is possible because DTLS records
are independent from each other. If a DTLS implementation chooses to generate
an alert when it receives a record with an invalid MAC, then it must still generate
abad_record_mac (code 20) with level fatal and terminate its connection state
accordingly.

Last but not least, we note that a subtle difference between the TLS and DTLS
record format is related to the version field: in a DTLS record this field comprises
the 1’s complement of the DTLS version in use. If, for example, the DTLS version
is 1.0, then the 1’s complement of 1,0 is 254,255. So these bytes are included
in the DTLS record’s version field. For DTLS 1.2, the 1’s complement of 1,2 is
254,253, and hence these bytes are included. The maximal spacing between TLS
and DTLS version values is to ensure that records from the two protocols can be
easily distinguished.

6.2.2 Handshake Protocol

As mentioned before, the differences between the TLS and DTLS protocols are kept
as small as possible. This also applies to the handshake protocols, and hence the
DTLS Handshake Protocol is very similar to that of TLS. There are only three major
changes:

1. The header format of the DTSL Handshake Protocol is modified to handle
message loss, reordering, and fragmentation.

2. The DTSL Handshake Protocol can retransmit a message if it is lost (or a
timeout occurs).
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3. A stateless cookie exchange is added to protect against denial of service (DoS)
attacks (also known as resource clogging attacks).

Apart from these changes, the DTLS Handshake Protocol message formats,
flows, and logic are essentially the same as those of the TLS protocol. Let us now
briefly explore the three changes enumerated above.

6.2.2.1 Header Format

Beacuse DTLS handshake messages may be too large to fit into a single DTLS
record, the handshake messages may span multiple records. This means that it may
be necessary to fragment and reassemble handshake messages. In order to do so,
each DTLS handshake message header contains three new fields (in addition to the
“normal” type and length fields):

• A 16-bit message sequencefield that comprises a sequence number for the
message that is sent. The first message each side transmits in a handshake
has a value of zero, and every subsequent message has a message sequence
value that is incremented by one. When a message is retransmitted, the same
message sequence value is used. Note, however, that from the DTLS record
layer’s perspective, the retransmission of a message requires a new record. So
the sequence number of the DTLS record will have a new value.

• A 24-bit fragment offsetfield that contains a value that refers to the number of
bytes contained in previous fragments.

• A 24-bit fragment lengthfield that contains a value that refers to the length of
the fragment.

So the first handshake message that is sent has a message sequence field value
of zero, a fragment offset field value of zero, and an appropriately valued fragment
length field. If this value isn1, then the second handshake message has a message
sequence field value of one, a fragment offset field value ofn1, and a fragment length
field value ofn2. The third handshake message has a message sequence field value
of two, a fragment offset field value ofn1 + n2, and a fragment length field value of
n3. This continues until the last handshake message is sent.

The message sequence, fragment offset, and fragment length fields are inserted
after the message type and length fields in the DTLS handshake message header. The
length field is the same as the length field of the original message. An unfragmented
message is a degenerated case with a fragment offset of zero and a fragment length
that equals the message length.
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6.2.2.2 Message Retransmission

Due to the fact that the DTLS protocol is layered on top of UDP, handshake
messages may get lost and the DTLS protocol must have means to deal with this
situation. The usual approach to handle message loss is the use of acknowledgments
of receipt. This means that the sender starts a timer when it sends out a message,
and that it then waits for an acknowledgment of receipt before a timeout occurs.
The DTLS protocol also envisions this approach: when a client sends an initial
CLIENTHELLO message to the server, it starts a timer and it expects to receive a
HELLOVERIFYREQUESTmessage back from the server within a reasonable amount
of time. If the client does not receive such a message before a timeout occurs, then
it knows that either the CLIENTHELLO or the HELLOVERIFYREQUEST message
got lost. It then retransmits the CLIENTHELLO message to the server. The server
also maintains a timer and retransmits the message when its timer expires. The
DTLS protocol specification recommends a one-second timer (to improve latency
for realtime applications).

The bottom line is that the DTLS protocol requires a new Handshake Protocol
message—the HELLOVERIFYREQUEST message (type 3)—and that this message
must not be included in the MAC computation for the CERTIFICATEVERIFY and
FINISHED messages.

6.2.2.3 Cookie Exchange

Because the DTLS Handshake Protocol takes place over a datagram delivery service,
it is susceptible to at least the following two denial of service (DoS) attacks (also
known as resource clogging attacks):

• The first attack is obvious and refers to a standard resource clogging attack: the
adversary initiates a handshake and this handshake clogs some computational
and communicational resources at the victim.

• The second attack is less obvious and refers to an amplification attack: the
adversary sends a CLIENTHELLO message apparently sourced by the victim
to the server. The server then sends a potentially much longer CERTIFICATE

message to the victim.

To mitigate these attacks, the DTLS protocol uses acookie exchange[9] that
has also been used in other protocols, such as the Photuris session key management
protocol—a predecessor of IKE [10, 11]. Before the proper handshake begins, the
server must provide a stateless cookie in the HELLOVERIFYREQUESTmessage and
the client must replay it in the CLIENTHELLO message in order to demonstrate
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that it is capable of receiving packets at its claimed IP address. A cookie should be
generated in such a way that it can be verified without retaining per-client state on
the server. Ideally, it is a keyed one hash value of some client-specific parameters,
such as the client IP address. The key in use needs to be known only to the server,
so it is not a cryptographic key that must be established in some complicated and
secure way. In DTLS 1.0, the cookie size is limited to 32 bytes.

HelloVerifyRequest
(with cookie)

Client Server

ClientHello
(with cookie)

ClientHello
(without cookie)

Figure 6.3 The cookie exchange mechanism used by the DTLS Handshake Protocol.

The cookie exchange mechanism used by the DTLS Handshake Protocol is
illustrated in Figure 6.3. First, the client sends a DTLS CLIENTHELLO message
without cookie to the server. The server then generates a cookie for this particular
client and sends it to the client in the HELLOVERIFYREQUESTmessage (see above).
Finally, the client resends the CLIENTHELLO message, but this time the message
contains the cookie just received from the server. If the cookie is invalid, then the
server should treat the CLIENTHELLO message as if it did not contain a cookie in
the first place.

To accomodate the cookie exchange mechanism, the CLIENTHELLO message
must be extended to additionally comprise a variable-length cookie field. If the client
does not yet have a cookie (such as when sending the first CLIENTHELLO message),
then the cookie field is left empty (i.e., it has a zero length). Needless to say that the
HELLOVERIFYREQUEST message must also have room for a cookie. In addition
to a cookie field, a HELLOVERIFYREQUEST message also comprises a protocol
version field.

The bottom line of the cookie exchange mechanism is that it forces the
client to be able to receive the cookie, which makes DoS attacks with spoofed IP
addresses much more difficult to mount. Needless to say that this mechanism does
not provide protection against DoS attacks mounted from anticipated IP addresses.
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If, for example, an adversary collects a number of valid cookies from different
IP addresses, then he or she can reuse them and attack the server accordingly.
The server, in turn, can defend against this attack by changing the cryptographic
key frequently, thus invalidating those cookies, but this defense makes the key
management on the server side more involved.

The cookie exchange is optional. If it is performed, then the server has at least
some assurance that the client is not trying to clog its resources from a randomly
chosen IP address. Vice versa, if it is not perfomed, then resource clogging attacks
become feasible. Reality will show whether this is problematic. In the case of IKE,
for example, the cookie exchange is no longer mandatory in version 2. This means
that the risk of resource clogging attacks has turned out to be smaller than originally
anitipated (remember that the cookie exchange was mandatory in the first version of
IKE). This is in line with the fact that the cookie exchange is optional for the DTLS
protocol. Nevertheless, the DTLS protocol specification still suggests that servers
should be configured to perform a cookie exchange whenever a new handshake is
being performed (they may choose not to do a cookie exchange when a session
is resumed). DTLS clients must be prepared to do a cookie exchange with every
DTLS handshake. Again, if the HELLOVERIFYREQUESTmessage is used, then the
first CLIENTHELLO message and the HELLOVERIFYREQUESTmessage must not
be included in the MAC computation for the CERTIFICATEVERIFIY and FINISHED

messages.

6.3 DTLS 1.2

As mentioned before, the IETF TLS WG is currently working on bringing the DTLS
protocol in line with TLS 1.2. The resulting DTLS protocol version 1.2 is currently
being specified. In spite of its unfinished nature, there are only a few substantial
changes related to DTLS 1.2:

• Remember from Section 5.4 that TLS 1.2 introduces a couple of cipher suites
that implement AEAD. These cipher suites can also be used with DTLS.
Also, upon registration, new TLS cipher suites must indicate whether they
are suitable for DTLS usage and what, if any, adaptations must be made.

• DTLS 1.2 increases the cookie size limit of DTLS 1.0 from 32 to 255 bytes.
This should increase the flexibility for future applications.

All other changes are either editorial or of minor concern. It is, however,
possible and very likely that more changes will be incorporated in future versions of
the protocol specification.
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6.4 SECURITY ANALYSIS

Fairly little is known about the real security of the DTLS protocol. Its designers
argue that DTLS does not reveal any additional information beyond TLS during
the handshake or application data transfer phase [2]. For example, at the record
layer, the DTLS protocol reveals the epoch and sequence numbers (in addition to
the usual header fields). Both pieces of information seem to be harmless, and there
is no known vulnerability due to the fact that a passive adversary may learn them.
Similarly, at the handshake layer, messages reveal the message sequence number, the
fragment offset, and the fragment length. Again, these pieces of information seem to
be harmless and can easily be derived by an eavesdropper monitoring a handshake.
Also with regard to side channel attacks, it does not seem to be the case that the
DTLS protocol is inherently different from the TLS protocol. Both protocols must
be implemented with care in order to defeat side channel attacks. There is nothing
special about DTLS at this point.

Maybe the biggest worry is that DTLS is stacked on UDP (instead of TCP),
and that specific vulnerabilities or security problems may be inherited from this
fact. Note that the properties of UDP and TCP are inherently different, and that
some security technologies have problems when faced with the characteristics of
UDP. For example, proxy-based firewalls have not been designed to handle UDP-
based applications, and hence these firewalls usually have a hard time when dealing
with such applications. Obviously, they can always trigger some intrusion detection
and/or prevention heuristics, but the ultimate goal of a proxy-based firewall is to
proxy TCP connections. If an application is not using such connections in the first
place, then the proxy-based firewall cannot be used in its originally intended way.
DTLS therefore has some inherent boundaries and limitations that have not been
sufficiently explored so far.

The bottom line is that one can have a reasonably good feeling about the secu-
rity of the DTLS protocol. The good feeling is inherited from the security analyses
that are available for the SSL/TLS protocols and the belief that the SSL/TLS and
DTLS protocols have very similar security characteristics (because their differences
are so small). It is, however, still a belief, and whether this belief is justified in some
reasonable way is still an open research question. Any analysis in the field is missing.

6.5 FINAL REMARKS

In this chapter, we have elaborated on the DTLS protocol, which is basically a UDP
version of the SSL/TLS protocols. The differences are minor and mainly due to the
characteristics of UDP, being a connectionless best-effort datagram delivery protocol
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that operates at the transport layer. This requires some minor modifications in the
DTLS Record and Handshake Protocols. The modifications are so minor that it is
unlikely that they negatively influence the security of the DTLS protocol. In fact, we
expect the DTLS protocol to be equally secure as the SSL/TLS protocols.

There are a couple of DTLS implementations available on the market. Most
importantly, OpenSSL (since version 0.9.8) and Cisco’s VPN client AnyConnect
support DTLS 1.0, and there are even a few complementary products that also
claim to support DTLS (refer to the corresponding product sheets). For all these
prodcuts, it is important to verify the claims and check whether the DTLS protocol
is implemented properly. Implementing DTLS is not rocket science, but it is still
leading edge technology that is just about to leave standardization. Consequently,
many things must be clarified over time, and there is not a lot of experience in the
field. This is likely to change, as the DTLS protocol is about to become a standard
technology for newer Internet applications (as mentioned at the beginning of this
chapter). Most importantly, the DTLS protocol is frequently discussed in the realm
of Internet telephony and voice over IP (VoIP) technologies. This is certainly the
area where we will see the DTLS protocol being deployed first.

The lack of implementation experience goes hand in hand with the fact that
there are only a few studies about the optimal deployment of DTLS. As DTLS
allows finer control of timers and record sizes, it is worthwhile doing additional
analyses, for example, to determine the optimal values and backoff strategies. This
is certainly a research challenge for the future. As of this writing, it is absolutely
not clear what values and backoff strategy values are optimal for the deployment
of DTLS. The same is true for the firewall traversal of the DTLS protocol. As we
will see in the following chapter, many firewall technologies are well-suited for
TCP-based applications, but they are less well-suited for UDP-based applications.
Consequently, the secure firewall traversal of the DTLS protocol is another research
challenge for the future. The firewall traversal of the SSL/TLS protocols is addressed
next.
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Chapter 7

Firewall Traversal

Firewalls are omnipresent today, but their use and interplay with the SSL/TLS
protocols is somehow tricky if not contradictory. On the one hand, the SSL/TLS
protocols are used to provide end-to-end security services, and hence secure end-
to-end connectivity. On the other hand, firewalls are to restrict or at least control
end-to-end connectivity on the Internet. Against this background, it is not obvious if
and how the SSL/TLS protocols can effectively traverse a firewall. This is the topic
of this chapter. We provide an introduction in Section 7.1, elaborate on SSL/TLS
tunneling and proxying in Sections 7.2 and 7.3, and conclude with some final
remarks in Section 7.4. A lot has been done to leverage the SSL/TLS protocols
in proxy firewalls and application gateways, not only for HTTP but also for many
other messaging and streaming media protocols. You may refer to [1] to get a
comprehensive overview. In this book, we scratch the surface and address only the
tip of the iceberg.

7.1 INTRODUCTION

There are many possibilities to define the termInternet firewall, or firewall in short.
For example, according to RFC 2828 [2], a firewall refers to “an internetwork
gateway that restricts data communication traffic to and from one of the connected
networks (the one said to be ‘inside’ the firewall) and thus protects that network’s
system resources against threats from the other network (the one that is said to be
‘outside’ the firewall).” This definition is fairly broad and not very precise.

In the early days of the firewall technology, William R. Cheswick and Steven
M. Bellovin defined a firewall (system) as a collection of components placed
between two networks that collectively have the following three properties [3]:
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1. All traffic from inside to outside, and vice versa, must pass through the
firewall.

2. Only authorized traffic, as defined by the local security policy, is allowed to
pass through.

3. The firewall itself is immune to penetration.

Note that these properties are design goals. This means that a failure in one
aspect does not necessarily mean that the collection is not a firewall, simply that
it is not a good one. Consequently, there are different grades of security a firewall
may achieve. As indicated in property 2 (with the notion of “authorized traffic”),
there must be a security policy in place that specifies what traffic is authorized
for the firewall, and this policy must also be enforced. In fact, it turns out that the
specification of a security policy is key to the successful deployment of a firewall,
or, alternatively speaking, any firewall without an explicitly specified security policy
is next to useless in practice (because it tends to get holey over time).

There are many technologies to implement a firewall. They range fromstatic
anddynamic1 packet filteringto proxies—or gateways—that operate at the transport
or applicaton layer. In some literature, the former are calledcircuit-level gateways,
whereas the latter are calledapplication-level gateways[3]. Also, there are many
possibilities to combine these technologies in real-world configurations, and to op-
erate them in some centralized or decentralized way. In fact, there are increasingly
many firewalls—so-calledpersonal firewalls—that are operated decentrally, typi-
cally at the desktop level. For the purpose of this book, we don’t delve into the design
and deployment of a firewall configuration. There are many books that elaborate on
these issues (among the many books on firewalls, I particularly recommend [4] and
[5]). Instead, we assume a firewall to exist, and we further assume that this firewall at
least comprises an HTTP proxy server. If a firewall did not comprise an HTTP proxy
server, then it it would be condemned to use “only” packet filters and/or circuit-level
gateways. Such a firewall is not optimal with regard the secuirty it is able to provide.

If an HTTP proxy server is in place and a client2 wants to use HTTP to connect
to an origin Web server, then the corresponding HTTP request is delivered to the
HTTP proxy server and forwarded from there. The HTTP proxy server acts as a
mediator for the HTTP connection, meaning that the client and server talk to the
proxy server, whereas they both think that they are talking directly to each other.
Hence, the HTTP proxy server represents (and can be seen as) a legitimate MITM.
Whether this is acceptable or even desired mainly depends on the application setting.

1 Dynamic packet filtering is also known asstateful inspection.
2 In this chapter, we use the termclient to refer to an HTTP client, which is basically a browser.

Consequently, we could have also used the termbrowserinstead of client.
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In general, different application protocols have different requirements for
proxy servers. On a high level of abstraction, an application protocol can either be
proxied or tunneled through a proxy server.

• When we say that an application protocol is beingproxied, we actually mean
that the corresponding proxy server is aware of the specifics of the protocol
and can understand what is going on at the protocol level. This allows such
things as protocol-level filtering (including, for example, protocol header
anomaly detection), access control, accounting, and logging. Examples of
protocols that are usually proxied include Telnet, FTP, SMTP, and HTTP.

• Contrary to that, we say that an application protocol is beingtunneledwhen
we actually mean that the corresponding proxy server (which is basically
acting as a circuit-level gateway) is not aware of the specifics of the protocol
and cannot understand what is going on at the protocol level. It is simply
relaying—or “tunneling”—data between the client and the server, and it
does not necessarily understand the protocol in use. Consequently, it cannot
perform such things as protocol-level filtering, access control, accounting,
and logging to the same extent as is possible for a full-fledged proxy server.
Examples of protocols that are sometimes tunneled by proxy servers or circuit-
level gateways include proprietary protocols, protocols for which a proxy
server is unavailable, or encrypted protocols (e.g., SSL/TLS protocols).

With regard to the SSL/TLS protocols, the two possibilities itemized above
are illustrated in Figure 7.1. Note that in the case of SSL/TLS tunneling, there exists
a single SSL/TLS connection from the client to the server, whereas in the case of
SSL/TLS proxying there exist two SSL/TLS connections (one from the client to
the proxy server and another one from the proxy server to the server). In SSL/TLS
tunneling, the proxy server is passive in the sense that it yet provides connectivity,
but it does not interfere with the data transmission. Contrary to that, in SSL/TLS
proxying, the proxy server is active and fully controls the data transmission.

In the past, it has been been common practice to tunnel outbound SSL/TLS
connections and proxy inbound SSL/TLS connections. This practice, however, is
about to change as the deployment settings are getting more and more involved. For
example, SSL/TLS tunneling may be used between the client and a company’s proxy
server, whereas the proxy server itself may define a secure perimeter demarcation
point. It is then often assumed that the path between the demarcation point and
the server is trusted and need not be protected by SSL/TLS. This is common, for
example, in SSL/TLS VPNs, secure VoIP configurations (again, refer to [1]), and
server farm deployments. Let us more thoroughly discuss SSL/TLS tunneling and
SSL/TLS proxying next.
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Client ServerProxy server

(a) SSL/TLS tunneling

(b) SSL/TLS proxying

Figure 7.1 SSL/TLS tunneling (a) and proxying (b).

7.2 SSL/TLS TUNNELING

In an early attempt to address the problem of having SSL or HTTPS traffic tra-
verse a proxy-based firewall, Ari Luotonen from Netscape Communications pro-
posed a simple mechanism that allowed an HTTP proxy server to act as a tun-
nel for SSL-enhanced protocols (see, for example, [6] for an early reference). The
mechanism was namedSSL tunneling, and it was effectively specified in a series of
Internet-Drafts.3 Today, the mechanism—or rather the HTTP CONNECT method it
suggests—is also used for the TLS protocol and it is part of the HTTP specification.

In short, SSL/TLS tunneling allows an SSL (or HTTPS) client to open a secure
tunnel through an HTTP proxy server that resides on a firewall. When tunneling SSL
or TLS, the HTTP proxy server must not have access to the data being transferred
in either direction (for the sake of confidentiality). The HTTP proxy server need
only know the source and destination IP addresses and port numbers, as well as the
name of the requesting user (if the HTTP proxy server is configured to require user
authentication). Consequently, there is a handshake between the client and the HTTP
proxy server to establish the connection between the client and the origin server
through the intermediate proxy server. To make SSL/TLS tunneling be backward-
compatible, the handshake must be in the same format as normal HTTP requests,

3 The first four versions of the Internet-Draft entitled “Tunneling SSL Through a WWW Proxy”
are available from http://tools.ietf.org/html/draft-luotonen-ssl-tunneling-XX (where XX stands
for 00, 01, 02, or 03), whereas the second two versions of the Internet-Draft more gener-
ally entitled “Tunneling TCP based protocols through Web proxy servers” are available from
http://tools.ietf.org/html/draft-luotonen-web-proxy-tunneling-XX (where XX stands for 00 or 01).
Note that the most recent version dates back to August 1998.
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so that proxy servers without support for this feature can still determine the request
as impossible for them to service, and provide proper error notification. As such,
SSL/TLS tunneling is not really SSL/TLS-specific. Instead, it is a general way to
have a third party establish a connection between two endpoints, after which bytes
are simply copied back and forth by this intermediary.

More specifically, SSL/TLS tunneling uses the HTTP CONNECT method to
have the HTTP proxy server connect to the origin server. To invoke the method, the
client must specifiy the hostname and port number of the origin server (separated
with a colon), followed by a space, a string specifying the HTTP version number
(e.g., HTTP/1.0), and a line terminator. After that, there is a series of zero or more
HTTP request header lines, followed by an empty line. Consequently, the first line
of a fictitious HTTP CONNECT request message may look as follows:

CONNECT www.esecurity.ch:443 HTTP/1.0

This example requires an SSL/TLS-enabled Web server running at port 443
(default value) ofwww.esecurity.ch. This server does not exist, but the exam-
ple may still give you an idea.

This message is sent out by the client and it is received by the HTTP proxy
server. The proxy server, in turn, tries to establish a TCP connection to port 443 on
the serverwww.esecurity.ch. If the server accepts the TCP connection, then
the HTTP proxy server starts acting as a relay between the client and the server.
This means that is copies back and forth data sent through the connection. It is
then up to the client and the server to perform an SSL/TLS handshake to establish
a secure connection between them. This handshake is opaque to the HTTP proxy
server, meaning that the proxy server need not be aware of the fact that the client
and the server actually perform an SSL/TLS handshake.

SSL/TLS tunneling can also be combined with the “normal” authentication
and authorization mechanisms employed by an HTTP proxy server. For example, if
a client invokes the HTTP CONNECT method but the proxy server is configured
to require user authentication and authorization, then the proxy server does not
immediately set up a tunnel to the origin server. Instead, the proxy server responds
with a 407 status code and aProxy-Authenticate response header to request
user credentials. The corresponding HTTP response message may begin with the
following two lines:

HTTP/1.0 407 Proxy authentication required
Proxy-Authenticate: ...

In the first line, the proxy server informs the client that it has not been able
to serve the request, because it still requires client (or user) authentication. In the
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second line, the proxy server challenges the client with aProxy-Authenticate
response header and a challenge that refers to the authentication scheme and the
parameters applicable to the proxy for this request (not displayed above). It is then
up to the client to send the requested authentication information to the proxy server.
Hence, the next HTTP request that it sends to the proxy server must comprise the
credentials (containing the authentication information). The corresponding HTTP
request message may begin with the following two lines:

CONNECT www.esecurity.ch:443 HTTP/1.0
Proxy-Authorization: ...

In the first line, the client repeats the request to connect to port 443 on the
serverwww.esecurity.ch. This is the same message as before. In the second
line, however, the client provides aProxy-authorization request header that
comprises the credentials as requested by the proxy server. Only if these credentials
are correct does the proxy server connect to the origin server and hot wire the client
with this server accordingly.

Note that the CONNECT method provides a lower level function than the
other HTTP methods. Think of it as some kind of an “escape mechanism” for
saying that the proxy server should not interfere with the transaction, but merely
serve as a circuit-level gateway and forward the data stream accordingly. In fact, the
proxy server should not need to know the entire URL that is being requested—
only the information that is needed to serve the request, such as the hostname
and port number of the origin Web server. Consequently, the HTTP proxy server
cannot verify that the protocol being spoken is really SSL/TLS, and the proxy
server configuration should therefore explicitly limit allowed (tunneled) connections
to well-known SSL/TLS ports, such as 443 for HTTPS (or any other port number
assigned by the IANA).

As of this writing, SSL/TLS tunneling is supported by almost all commercially
or freely available HTTP clients and proxy servers. If, for example, you are located
behind a corporate firewall and connect to an HTTPS server located on the Internet
(e.g., to do Internet banking), then it is very likely that your client and the firewall’s
HTTP proxy server employ SSL/TLS tunneling to interconnect the client and the
origin server. The HTTPS connection is then established end-to-end, meaning that
the HTTP proxy server is not able to interfere with the data transmission. In prin-
ciple, this is advantageous, but it also reveals a disadvantage of SSL/TLS tunnel-
ing: because the cryptographic protection is end-to-end, the requested resources are
useful only for the requesting client. The HTTP proxy server “sees” the resources
only in encrypted form, so it can do neither content screening nor caching in some
meaningful way. Because content screening and caching are increasingly important
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today, SSL/TLS tunneling and its use are getting more and more problematic in
many practically relevant settings.

7.3 SSL/TLS PROXYING

The end-to-end characteristic of SSL/TLS tunneling comes along with a few distinct
disadvantages. First and foremost, we mentioned above that an HTTP proxy server
cannot do content screening or caching in some meaningful way. Similarly, an HTTP
proxy server cannot ensure that the application protocol used on top of SSL/TLS is
really HTTP. It can verify the port number in use, but the port number does not
reliably tell what application protocol is in actual use. If, for example, the client
and the origin server have agreed to use port 443 for some proprietary protocol,
then the client can have the proxy server establish an SSL/TLS tunnel to this port
and use the tunnel to transmit arbitrary application data. The HTTP proxy server
can neither control the protocol in use nor the data that is actually transmitted.
Many companies and organizations therefore support SSL/TLS tunneling only for
outgoing connections. In this case, it is less important to restrict the possible port
numbers for external servers.

In theory, SSL/TLS tunneling could also be used for incoming connections,
namely, to make internal HTTPS servers visible and accessible to the outside world
(i.e., users located on the Internet). In this case, the HTTP proxy server must act
as an inbound proxy4 for the SSL/TLS connection. What this basically means is
that HTTPS connections originating from the outside are relayed by the inbound
proxy to the internal HTTPS servers, where the requesting users need to be strongly
authenticated. Therefore, the internal Web servers need to implement the SSL/TLS
protocols. Unfortunately, this is not always the case and most internal Web servers
are not SSL/TLS-enabled (and do not represent HTTPS servers accordingly). There
are a few software solutions that can be plugged in to act as SSL/TLS wrappers.
Most importantly,stunnel5 is a program that can map SSL/TLS connections to TCP
connections that belong to specific services.

In spite of the fact that it is technically feasible, SSL/TLS tunneling is
seldom used for incoming connections. Instead, SSL/TLS proxying is used, meaning
that there is an SSL/TLS proxy server running at the firewall. This proxy server
accepts SSL/TLS connection requests from the outside world, authenticates and

4 In the literature, inbound proxies are also calledreverse proxiesmost of the time. In this book,
however, we use the term “inbound proxy,” as there is no reverse functionality involved. In fact, a
reverse proxy is doing nothing differently than a normal HTTP proxy server. The only difference is
that it primarily serves inbound connections (instead of outbound connections).

5 http://stunnel.mirt.net.
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authorizes the requesting client, and—in the positive case—establishes a secondary
SSL/TLS connection to the (internal) origin server. In some cases, it may not be
necessary to establish a secondary SSL/TLS connection, and a TCP connection is
sufficient enough. In either case, the SSL/TLS proxy server copies back and forth
the application data. Because the data is not encrypted when processed by the proxy
server, it can do content screening and caching.

To the best of our knowledge, the first SSL/TLS proxy server or gateway was
developed by a group of researchers at the DEC Systems Research Center back
in 1998. They basically used a combination of SSL client authentication (at the
inbound proxy) and URL rewriting techniques in a technology calledsecure Web
tunneling6 [7]. A similar technology to access internal Web servers was developed
and complemented with a one-time password system by a group of researchers at
AT&T Laboratories [8]. During the last decade, many companies and organizations
have developed similar ideas and brought corresponding products to market. Today,
there is such a huge diversity of SSL/TLS proxy servers and gateways with distinct
features that it makes no sense (for this book) to discuss them all.

It is, however, worthwhile mentioning that an SSL/TLS proxy server need
not be operated centrally. Instead, it is possible (and sometimes makes a lot of
sense) for a user to run his or her local SSL/TLS proxy server. During the old
days of U.S. export controls, for example, such proxy servers were used to locally
turn export-grade cryptography into strong cryptography (remember, for example,
C2Net Software’s SafePassage Web Proxy mentioned in Section 4.2.2.4). In this
case, no matter how crippled the cryptographyof the clients was, all communications
went through a local SSL/TLS proxy server that empowered the use of strong
cryptography between the proxy server and the origin server. Needless to say that the
client was still using weak cryptography to exchange data with the proxy server, but
this data exchange occured within the client system and was therefore assumed to be
reasonably secure. Today, the situation is quite different and many malware-based
attacks work this way (i.e., they establish a compromising proxy server between the
client and the “real” proxy or origin server). The compromising proxy server then
represents a MITM. There are few technologies that can be used to protect against a
MITM; some of them are mentioned in Section 9.2.2.

7.4 FINAL REMARKS

In this chapter, we have addressed the practically relevant problem of how the
SSL/TLS protocols can (securely) traverse a firewall. There are basically two pos-
sibilities: SSL/TLS tunneling and SSL/TLS proxying. In the past, most companies

6 Note that, in spite of its name, the technology refers to SSL/TLS proxying and not tunneling.
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and organizations used SSL/TLS tunneling for oubound connections and SSL/TLS
proxying for inbound connections (with or without restrictions regarding the allow-
able port numbers). Due to the huge amount of content-driven attacks (e.g., malware
attacks), however, this strategy is about to change. Today, many security profession-
als opt for proxying outbound SSL/TLS connections, as well. SSL/TLS proxying
enables content screening and this possibility is valued highly today. In fact, there
are many Web application firewalls that basically represent SSL/TLS proxy servers
that are additionally able to do content screening based on heuristics and an up-
to-date rule base. From a performance point of view, SSL/TLS proxying has the
additional advantage that the contents are decrypted and can therefore be cached for
the delivery to some other clients.

In a typical real-world setting for an e-∗ application, both the client and the
server are located on local area network (LAN) segments that are interconnected
through the Internet. Both the client-side LAN and the server-side LAN are protected
with a firewall. In this setting, there are typically multiple intermediate devices
between the client and server. The most important intermediate device is the server-
side firewall that may host an SSL/TLS proxy server. In such a setting, SSL/TLS
tunneling is usually used between the client and the SSL/TLS proxy server, and
SSL/TLS proxying is used between the SSL/TLS proxy server and the origin server.
Whether the server-side firewall uses HTTP or HTTPS to communicate with the
origin server is less important (because this communications occur in a trusted
environment).

Due to the connectionless and best-effort nature of UDP, making the DTLS
protocol traverse a firewall is conceptually more challenging. In particular, proxy-
based firewalls do not natively work, and hence it is not at all obvious how to
effectively implement a DTLS proxy server. Dynamic packet filtering and stateful
inspection techniques may be used instead. At the time of this writing, the DTLS
protocol is just being standardized, and hence firewall traversal in not yet a big
issue. But if the DTLS protocol is successful (what we expect), then dynamic
packet filtering and stateful inspection techniques for the DTLS protocol to securely
traverse a firewall will become important topics in the future.
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Chapter 8

Public Key Certificates and PKIs

In previous chapters, we mentioned that the SSL/TLS protocols yet require public
key certificates, but that the management of these certificates is not addressed in the
corresponding protocol specifications. Consequently, the management of public key
certficates must be addressed outside the scope of SSL/TLS, for example, as part of
a PKI. This is the topic of this chapter. More specifically, we introduce the topic in
Section 8.1, elaborate on server and client certificates in Sections 8.2 and 8.3, and
conclude with some final remarks in Section 8.4. Again, this chapter is intentionally
kept short and readers who want to get more information about public key certificates
and PKIs are referred to the many books that are available on the topic (e.g., [1–4]).

8.1 INTRODUCTION

According to RFC 2828 [5], the termcertificaterefers to “a document that attests
to the truth of something or the ownership of something.” Historically, the term
certificate was coined and first used by Loren M. Kohnfelder to refer to a digitally
signed record holding a name and a public key [6]. As such, the certificate attests to
the legitimate ownership of a public key and attributes a public key to a principal,
such as a person, a hardware device, or any other entity. The resulting certificates
are calledpublic key certificates. They are used by many cryptographic security
protocols, such as IPsec/IKE, SSL/TLS, S/MIME, and many more. Again referring
to RFC 2828, a public key certificate is special case of a certificate, namely one “that
binds a system entity’s identity to a public key value, and possibly to additional data
items.” As such, it is a digitally signed data structure that attests to the true ownership
of a public key.

More generally (but still in accordance with RFC 2828), a certificate can not
only be used to attest to the legitimate ownership of a public key as in the case of
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a public key certificate, but also to attest to the truth of any property attributable to
the certificate owner. This more general class of certificates is commonly referred to
asattribute certificates. The major difference between a public key certificate and
an attribute certificate is that the former includes a public key (i.e., the public key
that is certified), whereas the latter includes a list of attributes (i.e., the attributes
that are certified). In either case, the certificates are issued (and possibly revoked) by
authorities that are recognized and trusted by a community of users.

• In the case of public key certificates, the authorities are calledcertifica-
tion authorities(CAs1) or—more related to digital signature legislation—
certification service providers(CSPs).

• In the case of attribute certificates, the authorities are calledattribute authori-
ties(AAs).

It goes without saying that a CA and a AA may in fact be the same orga-
nization. As soon as attribute certificates start to take off, it is possible and very
likely that CAs will also try to establish themselves as AAs. It also goes without
saying that a CA can have one or severalregistration authorities(RAs)—sometimes
also calledlocal registration authoritiesor local registration agents(LRAs). The
functions an RA carries out varies from case to case, but they typically include the
registration and authentication of the principals that become certificate owners. In
addition, the RA may also be involved in tasks like token distribution, certificate
revocation reporting, key generation, and key archival. In fact, a CA can delegate
some of its authorities (apart from certificate signing) to an RA. Consequently, RAs
are optional components that are transparent to the users. Also, the certificates that
are generated by the CAs may be made available in online directories and certificate
repositories.

In short, a PKI consists of one (or several) CA(s). According to RFC 2828,
a PKI is “a system of CAs that perform some set of certificate management,
archive management, key management, and token management functions for a
community of users” that employ public key cryptography. Another way to look
at a PKI is as an infrastructure that can be used to issue, validate, and revoke public
keys and public key certificates. As such, a PKI comprises a set of agreed-upon
standards, CAs, structures among multiple CAs, methods to discover and validate
certification paths, operational and management protocols, interoperable tools, and
supporting legislation. A PKI and the operation thereof are therefore quite involved.
In the last couple of years, PKIs have experienced hype and many companies and
organizations have announced that they are willing to provide certification services

1 In the past, CAs were often called trusted third parties (TTPs). This is particularly true for CAs that
are operated by government bodies.
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on a commercial basis. As discussed towards the end of this chapter, most of these
service providers have not been commercially successful.

Many standardization bodies are working in the field of public key certificates
and PKIs. Most importantly, the Telecommunication Standardization Sector of the
International Telecommunication Union (ITU-T) has released and is periodically
updating a recommendation that is commonly referred to as ITU-T X.509 [7],
or X.509 in short (the corresponding certificates are addressed in Section 8.1.2).
Meanwhile, the ITU-T X.509 has also been adopted by many other standardization
bodies, including, for example, the ISO/IEC JTC1 [8]. Furthermore, a few other
standardization bodies also work in the field of “profiling” ITU-T X.509 for specific
application environments.2

In 1995, for example, the IETF recognized the importance of public key
certificates, and chartered an IETF Public-Key Infrastructure X.509 (PKIX3) WG
with the intent of developing Internet Standards needed to support an X.509-based
PKI for the Internet community. The PKIX WG has initiated and stimulated a lot
of standardization and profiling activities within the IETF. It is closely aligned with
the respective activities within the ITU-T. In spite of the practical importance of the
specifications of the IETF PKIX WG, we do not delve into the details in this book.
This would be a topic for a book of its own. Feel free to browse through the IETF
PKIX WG’s Web site and the corresponding RFCs and Internet-Drafts; it provides a
rich flora and fauna on the topic.

Public key Naming information

Digital signature(s)

Figure 8.1 A public key certificate comprising three pieces of information.

As illustrated in Figure 8.1, a public key certificate comprises at least the
following three pieces of information:

• A public key;

• Some naming information;

• One or more digital signatures.

2 To “profile” ITU-T X.509—or any general standard or recommendation—basically means to fix the
details with regard to a specific application environment. The result is a profile that elaborates on
how to use and deploy ITU-T X.509 in the environment.

3 http://www.ietf.org/html.charters/pkix-charter.html.
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Thepublic keyis the raison d’être for the public key certificate, meaning that
it is necessary because the certificate only exists to certify the public key in the first
place.

The naming informationis used to identify the owner of the public key
certificate, such as his or her name and first name. In the past, there has been some
confusion about the naming scheme that is appropriate for the global Internet. For
example, the ITU-T recommendation X.500 introduced the notion of a distinguished
name (DN) that can be used to uniquely identify an entity, such as a public key
certificate owner, in a globally unique namespace. There are other examples of
globally unique namespaces on the Internet, the most prominent being the DNS.
The existence and usefulness of globally unique namespaces, however, has also been
challenged in the research community (e.g., [9]). In fact, the Simple Distributed
Security Infrastructure (SDSI) architecture and initiative [10] have evolved from
the argument that a globally unique namespace is not appropriate for the global
Internet, and that logically linked local namespaces provide a simpler and more
realistic model [11]. As such, work on SDSI inspired the establishment of a Simple
Public Key Infrastructure (SPKI) WG within the IETF. The WG was tasked with
producing a certificate infrastructure and operating procedure to meet the needs of
the Internet community for trust management in as easy, simple, and extensible a
way as possible. This was partly in contrast and in competition to the IETF PKIX
WG. The IETF SPKI WG published a pair of experimental RFCs [12, 13], before
its activities were finally abandoned in 2001. Consequently, the SDSI and SPKI
initiatives have turned out to be dead ends for the Internet, and hence they are not
further addressed in this book.

Last but not least, thedigital signature(s)is (are) used to attest to the fact that
the other two pieces of information (i.e., the public key and the naming information)
actually belong together. This basically turns the certificate into a data structure that
is actually useful.

Today, there are two practically relevant types of public key certificates:PGP
certificates(i.e., certificates used for Pretty Good Privacy (PGP) or OpenPGP) and
X.509 certificates(i.e., certificates that conform to ITU-T X.509). As addressed
next, the two types use slightly different certificate formats and trust models. Atrust
model, by the way, refers to the set of rules a system or application uses to decide
whether a certificate is valid. In the direct trust model, for example, a user trusts a
public key certificate because he or she knows where it came from and considers this
entity as trustworthy. In addition to the direct trust model, there is a cumulative trust
model employed, for example, by PGP, and a hierarchical trust model employed, for
example, by ITU-T X.509.
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8.1.1 PGP Certificates

As outlined, for example, in [14], PGP refers to both a standard and a software
package for secure messaging on the Internet. OpenPGP, in turn, is an open specifi-
cation of PGP developed within the IETF, so for the purpose of this book, PGP and
OpenPGP are essentially the same. In particular, they both use the same certificate
format and the same cumulative trust model.

8.1.1.1 Certificate Format

One of the distinguishing features of a PGP certificate is that it can have multiple
user identities (user IDs) and signatures. This basically means that a PGP certificate
is yet issued for a public key, but that multiple user IDs can be associated with that
particular key (meaning that the naming information of Figure 8.1 may comprise
multiple user IDs). Also, multiple signatures can certify the fact that a specific
user ID is associated with the public key. Consequently, there is a one-to-many
relationship between the public key of a PGP certificate and the user IDs associated
with it, and there is another one-to-many relationship for each of these user IDs and
the signatures that are associated with it. Contrary to that, we will see below that
an X.509 certificate is structurally simpler, as it allows only one user ID associated
with a public key and one signature that attests for this association.

Technically speaking, a PGP certificate is a data structure that includes six
pieces of information and corresponding fields.

• Version number:This field is used to identify which version of PGP was used
to create the public key pair.

• Public key:This field is used to hold the public key and the corresponding
algorithm identifier (i.e., RSA, Diffie-Hellman, or DSA).

• Certificate owner information:This field is used to hold identity information
about the certificate owner and the holder of the corresponding private key. As
mentioned above, this field may include several user IDs and signatures.

• Self-signature:This field is used to hold a self-signature for the certificate.
As its name suggests, a self-signature is generated by the certificate owner
using the private key that corresponds to the public key associated with the
certificate. Note that X.509 certificates normally do not include self-signatures
(except for root CA certificates).
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• Validity period: This field is used to determine the start and expiration date
and time of the certificate (if they are specified at all). As such, it may specify
the validity period or lifetime of the certificate.

• Preferred encryption algorithm:This field is used to identify the encryption
algorithm of choice for the certificate owner (e.g., DES, 3DES, or IDEA).
This is a remnant that bears witness to the fact that PGP has evolved from a
secure messaging setting (in which the sender of a message needs to know in
advance what encryption algorithm to use).

One may think of a PGP certificate as a public key with one or more la-
bels attached to it. For example, several user IDs may be attached to it, each of
which may contains different means of identifying the certificate owner (e.g., the
certificate owner’s name and corporate e-mail address or the certificate owner’s
first name and private e-mail address). Typically, a user ID includes the name of
the user and one of his e-mail addresses put in angle brackets (<and>), such as
Rolf Oppliger <rolf.oppliger@esecurity.ch>. The e-mail address
basically makes the user ID unique. Also, one or several photographs may be at-
tached to a PGP certificate to simplify visual authentication. Again, this is a feature
that is not known and does not exist in the realm of X.509 certificates.

8.1.1.2 Cumulative Trust Model

The fact that PGP uses acumulative trust modelbasically means that there is no
central CA trusted by all users by default, and hence every user must decide for
himself or herself whom to trust. If a user trusts another user, then this other user acts
asintroducer, meaning that any PGP certificate signed by him or her will be accepted
by the user (needless to say that different users typically have different introducers).
There are various degrees of trust that can be distinguished. PGP, for example,
originally distinguished between marginal and full trust, but more fine-grained
distinctions are possible, as well (e.g., [15]). The trust model is cumulative in the
sense that more than one introducer can vouch for the validity and trustworthiness
of a certificate. The bottom line is that the association of a user ID and a public key
may be testified by one or several people, each of them generating a digital signature
attached to the certificate. This way, many people can sign a PGP certificate to attest
to their own assurance that the public key included in the certificate actually belongs
to the claimed user ID. The more people to sign a certificate, the more likely it is
going to be trusted by a third party. The resulting certification and trust infrastructure
is highly distributed—it is sometimes called aweb of trust. The PGP web of trust is
discussed in many references and books, including, for example, Chapter 8 of [14].
Because it is not relevant for SSL/TLS, we don’t delve deeper into the topic.
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8.1.2 X.509 Certificates

The ITU-T recommendation X.509 specifies both a certificate format and a certifi-
cate distribution scheme [7]. It was first published in 1988 as part of the X.500
directory recommendations. The X.509 version 1 (X.509v1) format was extended
in 1993 to incorporate two new fields, resulting in the X.509 version 2 (X.509v2)
format. In addition, and as a result of attempting to deploy certificates on the global
Internet, X.509v2 was revised to allow for additional extension fields. The resulting
X.509 version 3 (X.509v3) specification was officially released in June 1996. Mean-
while, the ITU-T recommendation X.509 has been approved by the ISO/IEC JTC1
[8] and many other standardization bodies.

Again, we have a look at the X.509 certificate format and the trust model in
use, which now is a hierarchical one.

8.1.2.1 Certificate Format

The format of an X.509v3 certificate is specified in the abstract syntax notation one
(ASN.14) and the resulting certificates are encoded according to specific encoding
rules5 to produce a series of bits and bytes suitable for transmission. Independent
from the way it is specified and encoded, an X.509 public key certificate always
contains the following fields:

• Version:This field is used to specify the X.509 version in use (i.e., version 1,
2, or 3).

• Serial number:This field is used to specify a serial number for the certificate.
The serial number, in turn, is a unique integer value assigned by the certificate
issuer.

• Algorithm ID: This field is used to specify the object identifier (OID) of the
algorithm that is used to digitally sign the certificate. For example, the OID
1.2.840.113549.1.1.5 refers tosha1RSA, standing for the combined use of
SHA-1 and RSA.

• Issuer:This field is used to specify the DN of the issuer (i.e., the DN of the
CA that actually signs the issues the certificate).

• Validity: This field is used to specify a validity period for the certificate. The
period, in turn, is defined by two dates, a start date and a finish date.

4 ASN.1 is officially specified in ITU-T X.680 and ISO/IEC 8824.
5 There are three standardized encoding rules, namely the basic encoding rules (BER), the distin-

guished encoding rules (DER), and the packet encoding rules (PER). Obviously, anybody can spec-
ify and use his or her own set of encoding rules.
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• Subject:This field is used to specify the DN of the subject (i.e., the owner of
the certificate).

• Subject Public Key Info:This field is used to specify the public key (together
with the algorithm) that is actually certified.

• Issuer Unique Identifier:This field can be used to specify some optional
information related to the issuer of the certificate (only in X.509 versions 2
and 3).

• Subject Unique Identifier:This field can be used to specify some optional
information related to the subject (only in X.509 versions 2 and 3).

• Extensions:This field can be used to specify some optional extensions that
may be critical or not (only in X.509 version 3).

The existence of the three above-mentioned extension fields makes X.509v3
certificates very flexible, but also very difficult to deploy in an interoperable manner.
Anyway, the certificate must come along with a digital signature that conforms to
the digital signature algorithm specified inAlgorithm ID field.

8.1.2.2 Hierarchical Trust Model

In spite of the fact that we characterize the trust model employed by ITU-T X.509
as being hierarchical, it is not so in a strict sense. The possibility to define cross-
certificates, as well as forward and reverse certificates enable the construction of a
mesh (rather than a hierarchy). This means that something similar to PGP’s web
of trust can also be established using ITU-T X.509. The misunderstanding occurs,
because the X.509 trust model is mapped to the directory information tree (DIT),
which is hierarchic in nature (in fact each DN represents a leaf in the DIT).

In the X.509 trust model, the user must define a number of trusted CAs and
corresponding certificates (i.e., certificates that are trusted by default) from which
trust may extend. At this point, a subtle distinction is sometimes made between
between a trusted root CA and an intermediate CA.

• A trusted root CAis trusted by default, meaning that a client is preconfigured
with this CA being trusted. The certificate of the root CA needs to be self-
signed, meaning that the issuer and the subject of the certificate are the same.
Note that from a theoretical point of view, self-signed certificates are not
particularly useful. Anybody can claim something and issue a certificate for
this claim. Consequently, a self-signed certificate basically says: “Here is my
public key, trust me.” But to bootstrap hierarchical trust, one or several root
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CAs with self-signed certificates are unavoidable (because the hierarchy is
finite and must have a top level).

• Unlike a trusted root CA, anintermediate CAis not trusted by default.
Instead, it is trusted because its certificate is issued by a trusted root CA.
The corresponding certificates are not self-signed. The aim of considering
trusted intermediate CAs is to simplify the handling of certifcation chains (as
discussed below).

In a typical setting, a CSP operates a CA that represents a trusted root
CA, and several subordinate CAs that represent intermediate CAs. Note, however,
that not all clients make the distinction between between trusted root CAs and
intermediate CAs. Microsoft Internet Explorer and all browsers that rely on the
certificate management functions of the Windows operating system (e.g., Google
Chrome) make the distinction and can take advantage of it. On the other side, for
example, the Firefox browser does not support intermediate CAs.

Equipped with one or several root CAs with root certificates, a user can try
to find acertification path(or certification chain) from a root certificate to a leaf
certificate (i.e., a certificate that is issued for a user or system). Formally speaking,
a certification path or chain is defined in a tree or wood of CAs (root CAs and
intermediate CAs) and refers to a sequence of one or more certificates that lead from
a trusted root certificate to a leaf certificate. Each certificate certifies the public key
of its successor. Finally, the leaf certificate is typically issued for a person or an
end system. Let’s assume thatCAroot is a root certificate andB is an entity for
which a certificate must be verified. In this case, a certification path or chain withn
intermediate CAs (i.e.,CA1, CA2, . . . ,CAn) would look as follows:

CAroot ≪ CA1 ≫

CA1 ≪ CA2 ≫

CA2 ≪ CA3 ≫

. . .

CAn−1 ≪ CAn ≫

CAn ≪ B ≫

If a client supports intermediate CAs, then it may be sufficient to find a sequence
of certificates that lead from a trusted intermediate CA’s certificate to the leaf
certificate. This may shorten certification chains considerably.

The simplest model one may think of is a certification hierarchy representing a
tree with a single root CA. In practice, however, more general structures are possible,
using multiple root CAs, intermediate CAs, and CAs that issue cross certificates.
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In such a general structure, a certification path may not be unqiue and multiple
certification paths may exist. In such a situation, it is required to have metrics in
place that can handle multiple certification paths. Again, this is a highly challenging
research topic (e.g., [16]).

As mentioned above, each X.509 certificate has a validity period, meaning
that it is well-defined from when to when the certificate is supposedly valid. But
in spite of this information, it may still be possible that a certificate needs to be
revoked ahead of time. For example, it may be the case that a user’s private key gets
compromised or a CA goes out of business. For situations like these, it is necessary
to address certificate revocation in one way or another. The simplest way is to have
the CA periodically issue a CRL (as already briefly mentioned in Section 5.4.1.6).
The CRL is basically a black list that enumerates all certificates (by their serial
numbers) that have been revoked so far or since the issuance of the last CRL in the
case of a delta CRL. In either case, CRLs can be tremendously large and impractical
to handle. Due to the CRLs’ practical disadvantages, the trend goes to retrieving
online status information about the validity of a certificate. The protocol of choice
to retrieve this information is OCSP. In fact, an increasingly large number of CAs
support OCSP requests and operate corresponding OCSP servers. But certificate
revocation remains a challenge on the client side. In fact, many application clients
that employ public key certificates either do not care about certificate revocation or
handle it incompletely or even improperly. This is also true for some HTTP clients
and Web browsers. Fortunately, things are gradually improving and many browsers
are nowadays able to properly address certificate revocation.

8.2 SERVER CERTIFICATES

As mentioned in previous chapters of this book, all nonanonymous key exchange
methods of the SSL/TLS protocols require the server to provide a public key
certificate—or rather a certificate chain since SSL 3.0—in a respective CERTIFICATE

message. The certificate type must be in line with the key exchange method in use.
Typically, it is an X.509 certificate that conforms to the profiles specified by the
IETF PKIX WG. If the server provides a certificate chain, then it must lead from a
trusted root certificate (or a certificate from an intermediate CA, respectively) to a
leaf certificate, representing the actual server certificate. In this case, the certificate
is implicitly accepted and the user need not explicitly confirm the acceptance of the
certificate. If, however, there is at least one certificate in the chain not issued by
a trusted root or intermediate CA, then the server certificate cannot be accepted
automatically. In this case, the client must inform the user that the verification
process for the server certificate poses some problems, and that he or she is asked
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to manually confirm or refuse its acceptance. The GUI for this user dialog varies
from client to client, but the general idea is always the same. Unfortunately, all
empirical investigations reveal the embarrassing fact that most users click through
any such dialog, meaning that they almost certainly click “OK” when they are asked
to confirm acceptance of a certificate. This is independent from the fact that they
theoretically have to verify the server certificate’s fingerprint prior to confirming it
(which is seldom if ever done in practice). This user behavior gives room and enables
some sophisticated attacks, such as MITM attacks (as further addressed in Section
9.2.2).

In order to avoid user dialogs and corresponding inconveniences, SSL/TLS-
enabled Web servers are usually equipped and configured with a certificate issued
by a root CA that is commonly trusted by most browsers in use today. In fact, most
browser manufacturers have a program for CAs to include their root certificates in
their browsers’ certificate stores. In the case of Microsoft, for example, this program
is called the Microsoft Root Certificate Program.6 To become a trusted CA, the CSP
must show conformance with international standards and best practices, such as

• WebTrust7;

• ETSI TS 101 456 [17];

• ETSI TS 102 042 [18];8

• ISO 21188 [19].

Other browser manufacturers have similar programs and criteria. In either case,
including a root certificate in a browser’s certificate store is a lengthly process and
there are good reasons for it to be so.

In spite of the fact that the Microsoft Root Certificate Program and the similar
programs of the other browser manufacturers comprise many dozens of trusted CAs,
the market for server certificates is actually dominated by only a few internationally
operating CSPs. Most importantly, there is VeriSign,9 thawte,10 Geotrust11 (includ-
ing its subsidiary RapidSSL12 that owns an Equifax13 root certificate), Comodo,14

and a few others. Typically, the validity period of a server certificate is a few years

6 http://support.microsoft.com/kb/931125/EN-US/.
7 http://www.webtrust.org.
8 Note that [17] addresses policy requirements for CAs issuing qualified certificates, whereas [18]

does the same for CAs issuing public key certificates.
9 http://www.verisign.com.
10 http://www.thawte.com.
11 http://www.geotrust.com.
12 http://rapidssl.com.
13 Note that Equifax digital certificate services became GeoTrust in 2001.
14 http://www.instantssl.com.
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(e.g., 1–5 years), and its cost is in the range of a few hundred U.S. dollars per year
(except RapidSSL that provides low-end certificates with simplified validation and
certificate issuance processes). In addition to these “normal” certificates, there are
a few other types of server certificates with unique features and a generally higher
price tag. Most importantly, there are wildcard certificates, International Step-Up
and SGC certificates, as well as extended validation certificates.

8.2.1 Wildcard Certificates

To be applicable to the SSL/TLS protocols, a server certificate is usually issued to
a fully qualified domain name (FQDN), such assecure.esecurity.ch. Such
a certificate cannot be used for another subdomain ofesecurity.ch, such as
www.esecurity.ch or books.esecurity.ch. This is certainly fine from a
security viewpoint, but it is sometimes unfortunate from a more practically oriented
viewpoint. This is because it requires a domain owner to procure muliple certificates.
In addition to higher costs, this means that several certificates must be managed
simultaneously. To get over these practical disadvantages, many CSPs offer wildcard
certificates. As its name suggests, awildcard certificateis a server certificate that
has a wildcard in its domain name, meaning that it can be used to secure multiple
subdomains at the expense of a generally higher price tag. If, for example, there
is a wildcard certificate issued for*.esecurity.ch, then this certificate can be
used for all subdomains mentioned above (and optionally also other subdomains
of esecurity.ch). This simplifies certificate management considerably and is
particularly well suited for server farms that support load balancing. The security
implications, however, cannot be ignored, because it may be confusing for a user
not to know exactly to which server he or she is connecting to.

8.2.2 International Step-Up and SGC Certificates

In Section 4.2.2.4, we introduced the notion of International Step-Up15 and SGC
certificates. The former were employed by Netscape Communications, whereas the
latter were (and sometimes still are) employed by Microsoft. Either type of certifi-
cates was relevant in the 1990s, when the U.S. export controls were still in place.
They allowed an international browser to invoke and make use of strong cryptogra-
phy (otherwise it was restricted to crippled export-grade cryptography). Only a few
CSPs (e.g., VeriSign) were authorized and approved by the U.S. government to issue
International Step-Up and SGC certificates.

15 In favor of brevity, International Step-Up certificates are sometimes only called “Step-up” or “Step
up” certificates.
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As mentioned in Section 2.1.6, the legal situation today is completely different
and browser manufacturers are generally allowed to ship their products incorporat-
ing strong cryptography overseas. In such a situation, International Step-Up and
SGC certificates do not make a lot of sense anymore. This is particularly true for
International Step-Up certificates, because hardly anybody is using the Netscape
Navigator anymore. Nevertheless, there are still a few CAs, such as thawte and Co-
modo, that still sell SGC certificates. Consequently, there seems to be a market for
these certificates, and hence not everybody is using a browser that natively supports
strong cryptography.

8.2.3 Extended Validation Certificates

Due to the fact that phishing and Web spoofing have become increasingly popular
on the Internet, a group of commercial CA operators, browser manufacturers, and
WebTrust assessors have joined together to form theCA/Browser Forum.16 Members
of the forum have worked closely together in defining the guidelines and means
of implementation for theextended validation(EV) SSL certificate standard as a
way of providing a heightened security for Internet transactions and creating a more
intuitive method of displaying secure sites to Internet users. EV SSL certificates are
sometimes also calledhigh assurance(HA) certificates. This term, however, is less
frequently used in the literature; it is therefore not used in this book.

Today’s browsers support EV SSL certificates and use different indicators on
their GUIs. For example, the Microsoft Internet Explorer (since version 7) displays
a green address bar if the server is equipped with an EV SSL certificate. Also, the
security status bar alternately displays the name of the server and the CA that issued
the EV SSL certificate.17 Similarly, Mozilla Firefox (since version 3) displays the
name of the server in green, and if the user drags the mouse over the server’s name,
the name of the certificate-issuing CA is also displayed. Other browsers still use
different indicators on their GUIs.

As of this writing, most CSPs already offer EV SSL certificates, and it is
possible and very likely that all will do so in the near future. In fact, we expect
EV SSL certificates to silently replace “normal” server certificates in the field. EV
SSL certificates tend to be a little bit more expensive, but except from that there

16 http://www.cabforum.org.
17 To make sure that all Internet Explorer (version 7 or higher) users can take advantage of EV SSL

certificates, VeriSign offers a server-side solution called EV Upgrader that enforces that requesting
browsers update their VeriSign SSL root certificates of their local certificate stores. The update
is done transparently and is invisible for the user. It is part of the VeriSign Secured seal. More
information about VeriSign EV SSL certificates, the EV Upgrader, and the VeriSign Secured seal is
available at http://www.verisign.com as well as https://extended-validation-ssl.verisign.com.
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is hardly any disadvantage for the service providers that want to show their high
security standards to their customers.

8.3 CLIENT CERTIFICATES

In theory, an X.509 certificate is independent from its owner, meaning that it does
not really matter whether it is issued for a server or a client. The format and the
fields are essentially the same (only the contents differ). In practice, however, there
is a fundamental difference between a server certificate and a client certificate in
the way it is issued: while the former is typically issued by an internationally
operating trusted CA (as discussed above), the latter can be issued by any locally
operating CA that is trusted by the server(s). This makes the issuance of client
certificates conceptually simple and straightfoward. There is, however, a scalability
issue. Typically, there are many clients involved that need to be equipped with
a certificate. For example, if we consider an Internet bank that wants to employ
certificate-based client authentication in SSL/TLS, then literally all customers of the
bank need to be equipped with a certificate. If the bank is large, then we are talking
about a couple hundred thousands or even millions of certificates that need to be
rolled out. This is by far not a simple task. In fact, it refers to the task of rolling out
an entire PKI that has proven to be difficult (to say the least). Nevertheless, there
are many companies that sell client certificates to the general public. The companies
mentioned above are certainly also in the client certificate business, but many other
companies (many of them only locally operating) also compete.

As long as client certificates are only used for authentication (as is the
case in SSL/TLS), one may be skeptical about the success of a PKI. In fact,
public key certificates are hardly competitive when it comes to client (or user)
authentication. One-time password and challenge-response systems are generally
simpler and cheaper to deploy. There is, however, an exception to be mentioned
here. If a client certificate can be automatically rolled out (i.e., without any user
registration and identification process), then things look better for client certificates.
Let’s assume for a moment that we can automatically equip users with anonymous
certificates, and that we already have a mechanism in place to authenticate users
once in a simple way. For example, if they already have a password, then we can
use this password for authentication. Otherwise, we can always provide users with
a one-time password or PIN sent by a postal mail delivery service. The user can
authenticate himself or herself using this mechanism, and he or she can then be
equipped with an anonymous certificate that gets personalized at this point in time
(i.e., the certificate’s serial number is attributed to the user in a database). From
this moment on, the user can always use this certificate to authenticate himself
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or herself to the server. This idea is further explored in [20]. The corresponding
certificates (that are first anonymous and then personalized) are calledcertinyms—
an acronym derived from “anonymous certificates.” One can argue that certinyms (or
somthing conceptually similar with a different name) have a large potential when it
comes to the use of low-end certificates to establish trust in large-scale computing
environments.

8.4 FINAL REMARKS

In this chapter, we elaborated on public key certificates and PKIs as far as they
are relevant for SSL/TLS in general, and the SSL/TLS potocols in particular. The
standard of choice in this area is ITU-T X.509,18 meaning that most (server and
client) certificates in use today are X.509 certificates—this particularly also applies
to SSL/TLS. Hence, there are many CSPs that provide commercial certification
services to the general public. Most of them make a living from selling server
certificates to Web site operators. The marketing of client certificates has turned
out to be more involved than originally anticipated. In fact, many CSPs that have
focused on client certificates in the past have gone out of business (for the reasons
discussed, for example, in [21]). The bottom line is that we are far away from having
a full-fledged PKI that we can use for SSL/TLS support on the the client-side, and
that Web application providers are therefore condemned to use other client or user
authentication technologies instead. Ideally, these technologies are part of the TLS
protocol specification and implemented accordingly. As of this writing, however,
this is not yet the case, and client or user authentication is typically done at the
application layer (i.e., on top of SSL/TLS). The main problem with this approach
is that it is susceptible to MITM attacks (this point is further addressed in Section
9.2.2).

When it comes to using public key certificates, trust is a major issue. Each
browser comes along with a preconfigured set of trusted CAs (root CAs and
intermediate CAs). If a Web server provides a certificate issued by such a CA, then
the browser accepts the certificate (after proper validation) without user interaction.
This is convenient and certainly the preferred choice from a usability perspective.
From a security perspective, however, the preferred choice is to empty the set
of trusted CAs and selectively include only the CAs that are really trustworthy.
Needless to say that most users are overextended with such a procedure, and
hence we don’t see it happen in practice. Sometimes companies and organizations
distribute browser software with a customized set of trusted CAs. This is certainly
an approach that is recommended and should be considered seriously. It allows a

18 Note that technically speaking, ITU-T X.509 is not a standard but a recommendation.
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company or organization to control the user interaction dialogs. Note, however, that
the danger of users clicking through the dialogs remains unsolved—even if the set
of trusted CAs is customized. To solve this problem, certificate validation processes
need to be strengthened and (user) awareness raising needs to be improved. These
are not trivial tasks and they require an interdisciplinary course of action.
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Chapter 9

Conclusions and Outlook

In this chapter, we conclude the book and provide an outlook. More specifically, we
elaborate on the deployment of the SSL/TLS protocols in Section 9.1, address a few
research challenges in Section 9.2, and (try to) predict some future developments in
Section 9.3. While most contents of this book are based on facts and solid ground,
this chapter is speculative in nature. This also means that some statements may turn
out to be wrong in the future—this is the risk of being predictive.

9.1 DEPLOYMENT

In the preceding parts of this book, we have claimed (1) that the SSL/TLS protocols
are widely deployed, and (2) that the protocols provide cryptographic strength to
Web servers and corresponding sites. We now provide some evidence for these
claims.

• With regard to the first claim (i.e., that the SSL/TLS protocols are widely
deployed), it is sufficient to look at some major Internet sites. Many of these
sites provide support for SSL/TLS, be it for specific pages (e.g., login pages)
or for the entire site. This applies, for example, to almost all Internet banking
and auction sites, but it also applies to many other e-commerce sites. Using
SSL/TLS to secure Internet transactions has in fact become best practice, and
users have become accustomed to the use of SSL/TLS (as far as they need to
be aware of the use of SSL/TLS in the first place).

• With regard to the second claim (i.e., that the SSL/TLS protocols provide
cryptographic strength to Web servers and corresponding sites), empirical
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studies were done in 20011 and 2006 [1]. The first study is not representative,
mainly because the SSL/TLS protocols started to take off at exactly the same
time as the study was done. The 2006 study, however, is more representative
and its outcome is characteristic for the current state of Internet security.
The study was done with a specifically designed and developed tool named
Probing SSL Security Tool (PSST) that was applied to more than 19,000 Web
servers. The corresponding results revealed some rather astonishing facts:

– Eighty-five perecent of the servers supported the SSL 2.0 protocol,
whereas a small number of these servers only supported SSL 2.0.

– Ninety-three percent of the servers still supported DES, despite the fact
that this cipher is susceptible to an exhaustive key search. Similarly,
many servers still supported export-grade encryption levels. This, by the
way, provides evidence for the fact that SGC certificates are still needed
today (see Section 8.2.2).

– Almost 4 percent of the servers supported RSA-based authentication
with only 512-bit keys, even though this key length is too small today.

– Over 57 percent of the servers supported AES. Out of these, about 94
percent default to AES when presented with all options (and the vast
majority of them even default to AES-256).

During the period of the study (February 2005 to November 2006), the
situation improved, and the authors argued that it is likely that the situation
will further improve in the future. This is likely to be true, and we are looking
forward to hearing from more recent studies.

We note that—in spite of the fact that the SSL/TLS protocols are widely
deployed and provide cryptographic strength to Web servers and corresponding
sites—the use of the SSL/TLS protocols also comes along with a few disadvantages
and practical problems. For example, the use of the SSL/TLS protocols generally
makes caching difficult (or in the case of SSL/TLS tunneling, even impossible),
and this may slow down the responsiveness and efficiency of Web applications
considerably. To make things worse, the use of the SSL/TLS protocols also requires
that a client download a complete resource and verify it entirely before it can start
rendering and displaying it. This all-or-nothing behavior results in a different (and
typically less comfortable) user experience. This sounds innocent and not really
relevant, but for the daily use of the corresponding applications it is highly relevant
and disturbing.

1 http://www.usenix.org/events/sec01/murray/.
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Against this background, many commercial Web service providers, such as
Google (GMail), Microsoft (Hotmail), Yahoo, and Facebook, employ the SSL/TLS
protocols only to secure the transmission of the users’ passwords at login time,
meaning that an HTTPS connection is established only to securely transmit the
password. Once the user is authenticated, the HTTPS session is dropped and a
“normal” HTTP session is used instead. HTTP session management is then done
traditionally, using, for example, session tokens transmitted in cookies. In this case,
the cookie is transmitted in every single request, even when the application falls
back to HTTP. If an adversary is able to eavesdrop on HTTP request messages sent
to a Web server, then he or she can also extract session tokens and use them to
hijack the respective sessions. This is particularly true in a wireless environment.
At BlackHat 2007, for example, Robert Graham and David Maynor gave a talk
and demonstrated how to hijack a GMail session that was previously authenticated
using SSL/TLS.2 They employed two specifically crafted tools, namedFerret and
Hamster, and coined the termsidejackingto refer to this type of session hijacking
attack. The talk was well received in the trade press, and the term sidejacking made
the headlines (once again, the security industry had created a new term for an already
existing and well-known attack).

There are a couple of defense strategies against sidejacking and related session
hijacking attacks. The most obvious defense strategy is to use the SSL/TLS protocols
not only to securely transmit the user credentials, but to secure the entire session. If
all HTTP requests were protected with SSL/TLS, then eavesdropping could not re-
veal any session token. Unfortunately (as mentioned above), the use of the SSL/TLS
protocols comes along with a few complications and practical problems, and hence
there is room for alternative and more low-weight technologies or techniques to pro-
tect against sidejacking and related session hijacking attacks. In 2008, for example,
Ben Adida came up with a simple approach—namedSessionLock—to protect Web
sessions without extending the use of SSL/TLS [2]. More specifically, SessionLock
uses SSL/TLS in exactly the same way as before, namely to secure the session on
which the user credentials are transmitted. But in addition to a session identifier,
SessionLock also generates a session secret that is never sent in the clear (i.e., over
an HTTP session). Instead, the session secret is used to generate a MAC for every
single HTTP request message that is sent. The secret is passed from the HTTPS login
page to the HTTP portion of the site, and from one page to another under HTTP, by
way of the URL fragment identifier. Thus, although all URLs after the user login
are requested over HTTP, the session secret is never transmitted in the clear. We
think that SessionLock populates an important niche between no security and the
full—but sometimes prohibitively expensive—security of SSL/TLS. Consequently,

2 http://www.erratasec.com/BHDC 07 Data seepage.ppt.
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we expect SessionLock to be used and similar technologies and techniques to be
developed and proposed in the future.

In the following section, we elaborate on a few research challenges that are
more deeply intertwined with the SSL/TLS protocol.

9.2 RESEARCH CHALLENGES

In spite of the fact that the standardization level of the SSL/TLS protocols is quite
mature, meaning that the protocols are well specified and standardized, there are still
a few research challenges and opportunities for further studies. We already men-
tioned that there are research challenges related to the DTLS protocol (see Section
6.5). In addition (but without claim for completeness), we introduce, overview, and
briefly discuss a few others. If you are a scientist, then you may be stimulated by the
ideas and you may even bring in your own thoughts. The field is open for innovative
thinking.

9.2.1 Performance Optimization

The early versions of the SSL/TLS protocols were rather narrow in terms of sup-
ported options and cipher suites. This no longer applies for the more recent versions
of the TLS protocol. Remember, for example, that TLS 1.2 comes along with many
possible extensions that may be used for various things. Against this background,
SSL/TLS performance optimization—both in theory and practice—has become an
increasingly important topic and research challenge.

To the best of our knowledge, the first comprehensive study of the performance
costs of TLS was done in 2001 (a first publication appeared in 2002, but the journal
version of the paper was published in 2006 [3]). The study releavled that TLS
Web servers incur a significant perfomance penalty relative to a regular Web server
running on the same platform (a factor between 3.4 and 9 was reported in the study).
The perfomance penalty is mainly caused by the public key operations that are part
of the TLS Handshake Protocol. This is particularly true for RSA. Consequently,
researchers have tried to design and come up with algorithms and approaches to
accelerate RSA operations. One approach is to perform RSA operations together in
batches [4]; another approach is to offload the RSA operations from Web servers
to dedicated servers with hardware optimized for RSA computations [5]. A similar
approach is to distribute the TLS processing stages among multiple machines (e.g.,
[6]). In all of these approaches, hardware accelerators may be used additionally to
further speed up RSA computations.
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Looking more deeply into the performance issues related to RSA, it is impor-
tant to note that RSA operations are expensive, but that the connection pattern of
a typical client also yields a possibility for optimization. In fact, clients normally
connect and reconnect to only a few Web servers, and this characteristic behavior
can be exploited using caching in several ways. For example, it is always possible to
have an SSL/TLS connection resume an earlier SSL/TLS session and thus reuse the
result of an earlier RSA computation. More specifically, some early research results
suggest that session caching may help improving Web server performance consider-
ably (e.g., [7]). Based on these results, people have started to propose changes in the
TLS protocol (e.g., [8]) or cache as much TLS handshake information as possible
on the client side (e.g., [9, 10]). There are at least two possibilities to implement the
second proposal:

• The client can cache information related to the server’s public parameters
and negotiated paramteres for future use (so they need not be renegotiated
in subsequent handshakes).

• The server can store an encrypted version of the session information on the
client side.

The first possibility leads to afast-trackmechanism [9] that allows a client
to make well-informed guesses about parameters the server is likely to select. For
example, if the client caches the server’s certificate (chain), then the server no longer
has to send this paramter. Similarly, it is possible and very likely that a server
always selects the same Diffie-Hellman group (if a Diffie-Hellman key exchange is
performed in the first place), as well as the same preferred cipher suite and the same
compression method. The overall goal of the fast-track mechanism is to reduce both
network traffic and the number of round trips without requiring additional server
state. These savings are most useful in high latency environments, such as wireless
networks.

The second possibility leads to aclient-side session cachemechanism that
allows a server to maintain a much larger number of sessions for a given mem-
ory size. This mechanism is conceptually similar and the logical predecessor of
theSessionTicket extension for TLS as introduced and discussed in Section
5.4.1.12.

Mechansims like fast track and client-side session cache are important when
it comes to the large-scale deployment of SSL/TLS-enabled Web servers. If most
connections of a Web server are secured using SSL/TLS, then it is important to have
mechanisms in place that minimize the server’s workload and state considerably.
Hence, we expect many other mechanisms and heuristics to be developed and
proposed in the future.
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9.2.2 Protection Against MITM Attacks

According to RFC 2828 [11], a MITM attack refers to “a form of active wiretapping
attack in which the attacker intercepts and selectively modifies communicated data
in order to masquerade as one or more of the entities involved in a communication
association.” Consequently, the major characteristics of an MITM attack are: (1)
that it represents an active attack, and (2) that it targets the association between
the communicating entities (rather than the entities or the communication channel
between them). Note that in some literature, an MITM that carries out an active
attack in real-time is also called adaptive. We don’t use this term and assume that an
MITM attack is already adaptive by default.

There are many possibilities to implement MITM attacks. Examples include
Address Resolution Protocol (ARP) cache poisoning and DNS spoofing.3 In either
case, an MITM attack is very powerful; the attacker can do literally everything the
user is authorized to do on the server side (or everything the server is authorized to
do on the client side, respectively). In a typical setting, the attacker places himself
between the user and the server in a way that he can talk to the user and the server
separately, whereas the user and the server think that they are talking directly with
each other. The best way to think about an MITM attack in an SSL/TLS setting
is to consider an adversary that represents an SSL/TLS proxy server (or relay)
between the user and the server. Neither the user nor the server are aware of the
MITM. Cryptography makes no difference here as the MITM is in the loop and can
decrypt and reencrypt all messages that are sent back and forth. If the user wants to
authenticate himself to an application server, then he reveals his credentials to the
MITM. Afterwards, the MITM may choose to use the credentials fairly or to misuse
them to illegitimately spoof the user. If, for example, the user employs a SecurID
token to authenticate himself or herself to a server, then the MITM can grab the
SecurID string (that is typically valid for a couple of seconds up to a minute) and
reuse it to spoof the user. If the user employs a challenge-response authentication
system, then the MITM can simply send back and forth the challenge and response
messages. Even if the user employed a zero-knowledge authentication protocol [12,
13], then the MITM would still be able to forward the messages and spoof the user
accordingly. The zero-knowledge property of an authentication protocol does not, by
itself, protect against MITM attacks—it only protects against information leakage
related to the user’s secret.4

3 Recently, the term pharming has been coined to refer to DNS spoofing attacks, such as local DNS
cache poisoning.

4 Note, however, that there is a general construction that can be used to immunize a zero-knowledge
authentication protocol against MITM attacks [14].
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Against this background, we make a case that most currently deployed user
authentication mechanisms fail to provide protection against MITM attacks, even
when they run on top of the SSL/TLS protocols. There are basically two reasons for
this failure:

1. SSL/TLS server authentication is usually done poorly by the naı̈ve user, if
done at all.

2. SSL/TLS session establishment is usually decoupled from user authentication.

The first reason leads to a situation in which the user talks to the MITM,
thereby revealing his or her credentials. The second reason means that the credentials
revealed by the user can now be used by the MITM to spoof the user to the server.
Consequently, any effective countermeasure against MITM attacks in an SSL/TLS
setting must address these problems by either enforcing proper server authentication
or combining user authentication with SSL/TLS session establishment.

• With regard to proper server authentication, there are attempts to improve the
quality of the server certificates, such as EV certificates (see Section 8.2.3), as
well as attempts to assist the users in properly validating the certificates. For
example, it is possible to associate the certificate or its fingerprint (i.e., a 128-
or 160-bit cryptographic hash value) with an image or a meaningful word. For
example, Petname5 is a Firefox add-on that allows a user to associate a server
certificate with the name of a pet. When the user establishes an SSL/TLS
session to this particular server, he or she must make sure that the proper
name of the pet is displayed by the browser. If this is not the case, then either
the server has a new certificate, or the SSL/TLS session is established to a
foreign server (that may represent an MITM). There are other attempts to
visually or textually represent the server certificate or its fingerprint, such
as public passwords, visual fingerprints, or snowflakes. The idea is always
the same: if a certificate or its fingerprint is associated with an image or a
meaningful text, then it is simpler for the user to properly validate it. Along a
similar line of argumentation, it is possible to include visual representations of
names (so-called logotypes) in X.509 public key certificates. Such logotypes
are, for example, employed by TrustBar.6 Last but not least, a new approach
is implemented in a system called Perspectives [15].7 It is a system that uses a
collection of notary hosts to observe a server’s public key via multiple network
vantage points (detecting localized attacks) and keep a record of the server’s
key over time (recognizing short-lived attacks). Perspectives has advantages

5 https://addons.mozilla.org/de/firefox/addon/957.
6 http://trustbar.mozdev.org.
7 http://www.cs.cmu.edu/∼perspectives.
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and disadvantages that need to be explored more thoroughly before the system
can be widely deloyed. This yields an interesting research challenge of its
own.

• With regard to combining user authentication with SSL/TLS session establish-
ment, there is some work to secure tunneled authentication protocols against
MITM attacks [16]. More recently, similar ideas were explored in SSL/TLS
session-aware (TLS-SA) user authentication [17]. The basic idea of TLS-SA
is to make it possible for a server to recognize the fact that the client and
server employ different SSL/TLS connections to send and receive the user
credentials. If this is the case, then it is possible and likely that an MITM
(with two distinct SSL/TLS connections to the client and server) is in place.

To the best of our knowledge, the first approach to make the SSL/TLS pro-
tocols resistant against MITM attack was proposed by Bodo Möller in a posting to
the OpenSSL mailing list: after the client and server have exchanged CHANGECI-
PHERSPEC and FINISHED messages, they can exchange additional messages that
include a MAC for the respective FINISHED message. The MAC, in turn, is keyed
with a shared secret, such as a password. Unfortunately, this approach requires the
SSL/TLS protocols to be modified.

There are also some attempts to provide protection against MITM attacks that
are independent from SSL/TLS. Examples include the Interlock protocol [18] that
was shown to be vulnerable when used for authentication [19], delayed password
disclosure (DPD) [20], and the password protection module (PPM8), as well as
the simultaneous use of multiple communication channels and channel hopping
(e.g., [21]). Furthermore, there are some applications—especially in Europe—that
authenticate users by sending out short messaging system (SMS) messages that
contain TANs and require that users enter these TANs when they login. While it has
been argued that this mechanism protects against MITM attacks, unfortunately, this
is not the case. If a MITM is located between the user and the server, then he need not
eavesdrop on the SMS messages; all he needs to do to spoof the user is to forward the
TAN submitted by the user on the SSL/TLS session. If one wants to work with TANs
distributed via SMS messages, then one has to work with transaction-based TANs.
For each transaction submitted by the user, a summary is returned to the user together
with a TAN in an SMS message. To confirm the transaction, the user must enter the
corresponding TAN. There are several other systems that implement similar ideas.
Examples include Phoolproof [22] and AXSionics’ AXS tokens.9 The downside of
this proposal is that transaction-based TANs are expensive (perhaps prohibitively
so) and not particularly user-friendly. Hence, another approach is to have a token

8 http://www.wipo.int/pctdb/en/wo.jsp?wo=2006014358.
9 http://www.axsionics.ch.
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that implements an SSL/TLS proxy server. Whenever critical information is sent to
a server, the user is asked to confirm this information on the token. The IBM Zone
Trusted Information Channel (ZTIC) is an example of this type. Taking all of these
systems into account, it is possible and very likely that we will pass through a phase
of consolidation. It is highly unlikely that all of these systems will survive on the
market. In a few years, we will know more.

9.2.3 Trust Management

In Chapter 8, we elaborated on public key certificates and PKI requirements that
are key for the successful deployment of the SSL/TLS protocols. Ten years ago,
this topic was hot and the few companies that were around at this time were either
bought by larger companies or went out of business. In the more recent past,
the discussion has shifted away from authentication-centric public key certificates
and PKIs to the authorization-centric notion oftrust management. In fact, trust
management has established itself as a new and very active area of research in the
computer network and distributed system security space. This is particularly true
for distributed trust management. There are many initiatives and research projects
that focus on distributed trust management (e.g., [23, 24]). More recently, people
have also started to investigate using X.509 attribute certificates for distributed
trust management (e.g., [25]). The resulting infrastructure is known asprivilege
management infrastructure(PMI). In order to set up and employ a PMI in an
SSL/TLS setting, it is necessary that future versions of the TLS protocol provide
support for attribute certificates. This basically means that clients and servers must
use heuristics to provide the attribute certificates that are relevant in a given context
in respective handshake messages. The use of attribute certificates and PMIs in an
SSL/TLS setting is not yet sufficiently addressed by international standardization,
at least not within the IETF. This is about to change, but it requires a nonnegligible
amount of time.

9.3 FUTURE DEVELOPMENTS

In this book, we saw that SSL/TLS is a broad topic, and that the successful
deployment of the SSL/TLS protocols depends on many factors that need to be
resolved and may even need to be standardized. Meanwhile, the deployment of the
SSL/TLS protocols will continue, and many Internet applications will be empowered
to make use of SSL/TLS. In fact, there is no reason not to layer a TCP-based
application protocol on top of SSL/TLS and a UDP-based application protocol
on top of DTLS. For a relatively small surcharge, the corresponding application
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protocols can be secured in terms of data confidentiality, integrity, and authenticity.
The research challenges mentioned above can be addressed while the SSL/TLS
protocols are being deployed (i.e., there is no need to solve the challenges before
the SSL/TLS protocols are being deployed).

Given the current situation, it is relatively simple and straightforward to predict
that the SSL/TLS protocols will become a key security technology in the future,
probably causing other security technologies to disappear. We mentioned before
that this process is already going on in virtual private networking (as IPsec-based
VPNs are being replaced with SSL/TLS-based VPNs). The tremendeous success
of the SSL/TLS protocols goes hand in hand with further developments. Many
people are working in the field, and these people are constantly making proposals,
implementations, and applications. Consequently, the TLS protocol is subject to
change and represents a moving target. This also means that you have to make
yourself familiar with the most recent version of the TLS protocol. This book can
only give you the starting stimulus—it is up to you to take advantage of it.
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Appendix

Standardized TLS Cipher Suites

TLS NULL WITH NULL NULL { 0x00,0x00 }
TLS RSA WITH NULL MD5 { 0x00,0x01 }
TLS RSA WITH NULL SHA { 0x00,0x02 }
TLS RSA WITH RC4 128 MD5 { 0x00,0x04 }
TLS RSA WITH RC4 128 SHA { 0x00,0x05 }
TLS RSA WITH IDEA CBC SHA { 0x00,0x07 }
TLS RSA WITH DES CBC SHA { 0x00,0x09 }
TLS RSA WITH 3DESEDE CBC SHA { 0x00,0x0A }
TLS DH DSSWITH DES CBC SHA { 0x00,0x0C }
TLS DH DSSWITH 3DESEDE CBC SHA { 0x00,0x0D }
TLS DH RSA WITH DES CBC SHA { 0x00,0x0F }
TLS DH RSA WITH 3DESEDE CBC SHA { 0x00,0x10 }
TLS DHE DSSWITH DES CBC SHA { 0x00,0x12 }
TLS DHE DSSWITH 3DESEDE CBC SHA { 0x00,0x13 }
TLS DHE RSA WITH DES CBC SHA { 0x00,0x15 }
TLS DHE RSA WITH 3DESEDE CBC SHA { 0x00,0x16 }
TLS DH anonWITH RC4 128 MD5 { 0x00,0x18 }
TLS DH anonWITH DES CBC SHA { 0x00,0x1A }
TLS DH anonWITH 3DESEDE CBC SHA { 0x00,0x1B }
TLS KRB5 WITH DES CBC SHA { 0x00,0x1E }
TLS KRB5 WITH 3DESEDE CBC SHA { 0x00,0x1F }
TLS KRB5 WITH RC4 128 SHA { 0x00,0x20 }
TLS KRB5 WITH IDEA CBC SHA { 0x00,0x21 }
TLS KRB5 WITH DES CBC MD5 { 0x00,0x22 }
TLS KRB5 WITH 3DESEDE CBC MD5 { 0x00,0x23 }
TLS KRB5 WITH RC4 128 MD5 { 0x00,0x24 }
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TLS KRB5 WITH IDEA CBC MD5 { 0x00,0x25 }
TLS PSK WITH NULL SHA { 0x00,0x2C }
TLS DHE PSK WITH NULL SHA { 0x00,0x2D }
TLS RSA PSK WITH NULL SHA { 0x00,0x2E }
TLS RSA WITH AES 128 CBC SHA { 0x00,0x2F }
TLS DH DSSWITH AES 128 CBC SHA { 0x00,0x30 }
TLS DH RSA WITH AES 128 CBC SHA { 0x00,0x31 }
TLS DHE DSSWITH AES 128 CBC SHA { 0x00,0x32 }
TLS DHE RSA WITH AES 128 CBC SHA { 0x00,0x33 }
TLS DH anonWITH AES 128 CBC SHA { 0x00,0x34 }
TLS RSA WITH AES 256 CBC SHA { 0x00,0x35 }
TLS DH DSSWITH AES 256 CBC SHA { 0x00,0x36 }
TLS DH RSA WITH AES 256 CBC SHA { 0x00,0x37 }
TLS DHE DSSWITH AES 256 CBC SHA { 0x00,0x38 }
TLS DHE RSA WITH AES 256 CBC SHA { 0x00,0x39 }
TLS DH anonWITH AES 256 CBC SHA { 0x00,0x3A }
TLS RSA WITH NULL SHA256 { 0x00,0x3B }
TLS RSA WITH AES 128 CBC SHA256 { 0x00,0x3C }
TLS RSA WITH AES 256 CBC SHA256 { 0x00,0x3D }
TLS DH DSSWITH AES 128 CBC SHA256 { 0x00,0x3E }
TLS DH RSA WITH AES 128 CBC SHA256 { 0x00,0x3F }
TLS DHE DSSWITH AES 128 CBC SHA256 { 0x00,0x40 }
TLS RSA WITH CAMELLIA 128 CBC SHA { 0x00,0x41 }
TLS RSA WITH CAMELLIA 128 CBC SHA { 0x00,0x41 }
TLS DH DSSWITH CAMELLIA 128 CBC SHA { 0x00,0x42 }
TLS DH RSA WITH CAMELLIA 128 CBC SHA { 0x00,0x43 }
TLS DHE DSSWITH CAMELLIA 128 CBC SHA { 0x00,0x44 }
TLS DHE RSA WITH CAMELLIA 128 CBC SHA { 0x00,0x45 }
TLS DH anonWITH CAMELLIA 128 CBC SHA { 0x00,0x46 }
TLS DHE RSA WITH AES 128 CBC SHA256 { 0x00,0x67 }
TLS DH DSSWITH AES 256 CBC SHA256 { 0x00,0x68 }
TLS DH RSA WITH AES 256 CBC SHA256 { 0x00,0x69 }
TLS DHE DSSWITH AES 256 CBC SHA256 { 0x00,0x6A }
TLS DHE RSA WITH AES 256 CBC SHA256 { 0x00,0x6B }
TLS DH anonWITH AES 128 CBC SHA256 { 0x00,0x6C }
TLS DH anonWITH AES 256 CBC SHA256 { 0x00,0x6D }
TLS RSA WITH CAMELLIA 256 CBC SHA { 0x00,0x84 }
TLS DH DSSWITH CAMELLIA 256 CBC SHA { 0x00,0x85 }
TLS DH RSA WITH CAMELLIA 256 CBC SHA { 0x00,0x86 }
TLS DHE DSSWITH CAMELLIA 256 CBC SHA { 0x00,0x87 }
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TLS DHE RSA WITH CAMELLIA 256 CBC SHA { 0x00,0x88 }
TLS DH anonWITH CAMELLIA 256 CBC SHA { 0x00,0x89 }
TLS PSK WITH RC4 128 SHA { 0x00,0x8A }
TLS PSK WITH 3DESEDE CBC SHA { 0x00,0x8B }
TLS PSK WITH AES 128 CBC SHA { 0x00,0x8C }
TLS PSK WITH AES 256 CBC SHA { 0x00,0x8D }
TLS DHE PSK WITH RC4 128 SHA { 0x00,0x8E }
TLS DHE PSK WITH 3DESEDE CBC SHA { 0x00,0x8F }
TLS DHE PSK WITH AES 128 CBC SHA { 0x00,0x90 }
TLS DHE PSK WITH AES 256 CBC SHA { 0x00,0x91 }
TLS RSA PSK WITH RC4 128 SHA { 0x00,0x92 }
TLS RSA PSK WITH 3DESEDE CBC SHA { 0x00,0x93 }
TLS RSA PSK WITH AES 128 CBC SHA { 0x00,0x94 }
TLS RSA PSK WITH AES 256 CBC SHA { 0x00,0x95 }
TLS ECDH ECDSA WITH NULL SHA { 0xC0,0x01 }
TLS ECDH ECDSA WITH RC4 128 SHA { 0xC0,0x02 }
TLS ECDH ECDSA WITH 3DESEDE CBC SHA { 0xC0,0x03 }
TLS ECDH ECDSA WITH AES 128 CBC SHA { 0xC0,0x04 }
TLS ECDH ECDSA WITH AES 256 CBC SHA { 0xC0,0x05 }
TLS ECDHE ECDSA WITH NULL SHA { 0xC0,0x06 }
TLS ECDHE ECDSA WITH RC4 128 SHA { 0xC0,0x07 }
TLS ECDHE ECDSA WITH 3DESEDE CBC SHA { 0xC0,0x08 }
TLS ECDHE ECDSA WITH AES 128 CBC SHA { 0xC0,0x09 }
TLS ECDHE ECDSA WITH AES 256 CBC SHA { 0xC0,0x0A }
TLS ECDH RSA WITH NULL SHA { 0xC0,0x0B }
TLS ECDH RSA WITH RC4 128 SHA { 0xC0,0x0C }
TLS ECDH RSA WITH 3DESEDE CBC SHA { 0xC0,0x0D }
TLS ECDH RSA WITH AES 128 CBC SHA { 0xC0,0x0E }
TLS ECDH RSA WITH AES 256 CBC SHA { 0xC0,0x0F }
TLS ECDHE RSA WITH NULL SHA { 0xC0,0x10 }
TLS ECDHE RSA WITH RC4 128 SHA { 0xC0,0x11 }
TLS ECDHE RSA WITH 3DESEDE CBC SHA { 0xC0,0x12 }
TLS ECDHE RSA WITH AES 128 CBC SHA { 0xC0,0x13 }
TLS ECDHE RSA WITH AES 256 CBC SHA { 0xC0,0x14 }
TLS ECDH anonWITH NULL SHA { 0xC0,0x15 }
TLS ECDH anonWITH RC4 128 SHA { 0xC0,0x16 }
TLS ECDH anonWITH 3DESEDE CBC SHA { 0xC0,0x17 }
TLS ECDH anonWITH AES 128 CBC SHA { 0xC0,0x18 }
TLS ECDH anonWITH AES 256 CBC SHA { 0xC0,0x19 }
TLS SRPSHA WITH 3DESEDE CBC SHA { 0xC0,0x1A }
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TLS SRPSHA RSA WITH 3DESEDE CBC SHA { 0xC0,0x1B }
TLS SRPSHA DSSWITH 3DESEDE CBC SHA { 0xC0,0x1C }
TLS SRPSHA WITH AES 128 CBC SHA { 0xC0,0x1D }
TLS SRPSHA RSA WITH AES 128 CBC SHA { 0xC0,0x1E }
TLS SRPSHA DSSWITH AES 128 CBC SHA { 0xC0,0x1F }
TLS SRPSHA WITH AES 256 CBC SHA { 0xC0,0x20 }
TLS SRPSHA RSA WITH AES 256 CBC SHA { 0xC0,0x21 }
TLS SRPSHA DSSWITH AES 256 CBC SHA { 0xC0,0x22 }



Abbreviations and Acronyms

AA attribute authority
AAI authentication and authorization infrastructure
ACM Association for Computing Machinery
AEAD authenticated encryption with additional data
AES Advanced Encryption Standard
API application programming interface
ARP Address Resolution Protocol
ASCII American Standard Code for Information Interchange
ASN.1 abstract syntax notation one
AtE authenticate-then-encrypt

BBS Blum, Blum, and Shub
BCP best current practice
BER basic encoding rules
BIS Bureau of Industry and Security

CA certification authority
CBC cipherblock chaining
CCA chosen ciphertext attack
CCA2 adaptive chosen ciphertext attack
CCM counter with CBC-MAC mode
CFB cipher feedback
COCOM Coordinating Committee for Multilateral Export Controls
CRC cyclic redundancy check
CRL certificate revocation list
CSP certification service provider

243



244                                   SSL and TLS: Theory and Practice

CTR counter mode encryption

DAC discretionary access control
DCCP Datagram Congestion Control Protocol
DEA Data Encryption Algorithm
DER distinguished encoding rules
DES Data Encryption Standard
DH Diffie-Hellman
DHE ephemeral Diffie-Hellman
DIT directory information tree
DN distinguished name
DoC Department of Commerce
DoD Department of Defense
DoS denial of service
DPD delayed password disclosure
DSA Digital Signature Algorithm
DSS Digital Signature Standard
DTLS datagram TLS

E&A encrypt-and-authenticate
EAR Export Administration Regulations
ECB electronic code book
ECC elliptic curve cryptography
ECDH elliptic curve Diffie-Hellman
ECDHE elliptic curve ephemeral Diffie-Hellman
ECDSA elliptic curve digital signature algorithm
ECMQV elliptic curve Menezes-Qu-Vanstone
EIT Enterprise Integration Technologies
EKE encrypted key exchange
EKM exported keying material
EtA encrypt-then-authenticate
ETSI European Telecommunications Standards Institute
EV extended validation

FIPS Federal Information Processing Standard
FQDN fully qualified domain name
FSUIT Federal Strategy Unit for Information Technology
FTP File Transfer Protocol
FYI for your information
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GCM Galois/counter mode
GMT Greenwich Mean Time
GNU GNU’s not Unix
GUI graphical user interface

HA high assurance
HMAC hashed MAC
HTTP Hypertext Transfer Protocol

IACR International Association for Cryptologic Research
IANA Internet Assigned Numbers Authority
ICSI International Computer Science Institute
ID identity (identifier)
IDEA International Data Encryption Algorithm
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IESG Internet Engineering Steering Group
IFIP International Federation for Information Processing
IIOP Internet InterORB Protocol
IKE Internet key exchange
IMAP Internet Message Access Protocol
IP Internet Protocol
IPES Improved PES
IPsec IP security
IRC Internet relay chat
IRTF Internet Research Task Force
ISO International Organization for Standardization
ISOC Interent Society
IT information technology
ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector
IV initialization vector

JTC1 Joint Technical Committee 1

KDC key distribution center
KEA key exchange algorithm

L2TP Layer 2 Tunneling Protocol
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LAN local area network
LDAP Lightweight Directory Access Protocol
LEAF law enforcement access field
LFSR linear feedback shift register
LRA local registration authority (or agent)
LSB least significant bit

MAC mandatory access control
media access control
message authentication code

MIC message integrity code
MIME multipurpose Internet mail extensions
MIT Massachusetts Institute of Technology
MITM man-in-the-middle
MTU maximum transmission unit

NCSA National Center for Supercomputing Applications
NIST National Institute of Standards and Technology
NNTP Network News Transfer Protocol
NSA National Security Agency
NTT Nippon Telegraph and Telephone Corporation

OAEP optimal asymmetric encryption padding
OCSP online certificate status protocol
OFB output feedback
OID object identifier
OMA Open Mobile Alliance
OSI Open Systems Interconnection

PCT Private Communication Technology
PER packet encoding rules
PES Proposed Encryption Standard
PGP Pretty Good Privacy
PKCS public key cryptography standard
PKI public key infrastructure
PKIX Public-Key Infrastructure X.509
PMI privilege management infrastructure
PMTU path MTU
POP3 Post Office Protocol
PPM password protection module
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PPTP Point-to-Point Tunneling Protocol
PRBG pseudorandom bit generator
PRF pseudorandom function
PSK preshared key
PSRG Privacy and Security Research Group
PSST Probing SSL Security Tool
PUB Publication

RA registration authority
RBAC role-based access control
RC2 Rivest Cipher 2
RC4 Rivest Cipher 4
RFC request for comments
RSA Rivest, Shamir, and Adleman

SCTP Stream Control Transmission Protocol
SDSI simple distributed security infrastructure
SECG Standards for Efficient Cryptography Group
SGC server gated cryptography
SHA Secure Hash Algorithm
SHS Secure Hash Standard
SIP Session Initiation Protocol
S/MIME Secure MIME
SMS short messaging system
SMTP Simple Mail Transfer Protocol
SPI security parameter index
SPKI simple public key infrastructure
SRP secure remote password
SSH secure shell
SSL secure sockets layer
STLP Secure Transport Layer Protocol
S-HTTP Secure HTTP (also known as SHTTP)

TC11 Technical Committee 11
TCP Transmission Control Protocol
TEK token encryption key
TFTP Trivial FTP
TLS transport layer security
TLS-SA SSL/TLS session-aware
TTP trusted third party
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UDP User Datagram Protocol
URL uniform resource locator
UTC Coordinated Universal Time (in French)

VoIP voice over IP
VPN virtual private network

W3C World Wide Web Consortium
WAP Wireless Application Protocol
WEP wired equivalent privacy
WG Working Group
WLAN wireless local area network
WTLS wireless TLS
WTS Web transaction security
WWW World Wide Web

XML eXtensible Markup Language
XOR exclusive or

ZTIC Zone Trusted Information Channel
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