

Table	of	Contents

Acknowledgements

Chapter	0:	Introduction

Chapter	1:	Encryption,	Algorithms,	and	Keys

Chapter	2:	Common	Configuration

Chapter	3:	The	OpenSSH	Server

Chapter	4:	Verifying	Server	Keys

Chapter	5:	SSH	Clients

Chapter	6:	Copying	Files	over	SSH

Chapter	7:	SSH	Keys

Chapter	8:	X	Forwarding

Chapter	9:	Port	Forwarding

Chapter	10:	Keeping	SSH	Connections	Open

Chapter	11:	Key	Distribution

Chapter	12:	Automation

Chapter	13:	Virtual	Private	Networks

Chapter	14:	Certificate	Authorities

Chapter	15:	OpenSSH	Scraps

Afterword

About	the	Author

Sponsors

Patrons

Copyright	Information

Acknowledgements
Thanks	go	first	to	the	fine	folks	who	wrote	OpenSSH	and	PuTTY.	These	people
literally	changed	the	world	for	the	better	by	creating	and	supporting	their
software.	I	must	notably	thank	OpenSSH	ringleader	Damien	Miller,	for	taking
the	time	to	point	me	in	the	right	direction	when	I	had	a	dumb	question.

I	must	also	thank	my	technical	reviewers:	Bill	Allaire,	Jim	Allen,	Tim
Enders,	Marie	Helene	Kvello-Aune,	Kurt	Mosiejczuk,	Mike	O’Connor,	Bernard
Spil,	Loganaden	Velvindron	(from	hackers.mu),	and	Markus	Waldeck.	Any
errors	that	appear	in	this	book	crept	in	despite	the	efforts	of	these	fine	folks.

To	the	people	who	offer	me	ongoing	support	via	Patreon
(https://www.patreon.com/mwlucas),	my	gratitude.	A	whole	passel	of	them	got	a
copy	of	this	book	as	thanks.

Writing	this	book	would	have	been	impossible	without	the	source	code	for	all
the	software	involved.

	
This	is	for	Liz.

Chapter	0:	Introduction
Over	the	last	15	years,	OpenSSH	(http://www.OpenSSH.com)	has	become	the
standard	tool	for	remote	management	of	UNIX-like	systems	and	many	network
devices.	Most	systems	administrators	use	only	the	bare	minimum	OpenSSH
functionality	necessary	to	get	a	command	line,	however.	OpenSSH	has	many
powerful	features	that	will	make	systems	management	easier	if	you	take	the	time
to	understand	them.	You’ll	find	information	and	tutorials	about	OpenSSH	all
over	the	Internet.	Some	of	them	are	poorly	written,	or	only	applicable	to	narrow
scenarios.	Many	are	well	written,	but	are	ten	years	old	and	cover	problems
solved	by	a	software	update	nine	years	ago.	If	you	have	a	few	spare	days,	and
know	the	questions	to	ask,	you	can	sift	through	the	dross	and	find	effective,
current	tutorials.

This	task-oriented	book	will	save	you	that	effort	and	time,	freeing	you	up	to
prepare	for	the	next	version	of	Castle	Wolfenstein.	I	assume	that	you	are	using
fairly	recent	versions	of	OpenSSH	and	PuTTY,	and	I	disregard	edge	cases	such
as	“my	twenty-year-old	router	only	supports	SSH	version	1.”	If	you	found	this
book,	chances	are	you’re	capable	of	searching	the	Internet	to	answer	very
specific	questions.	I	won’t	discuss	building	OpenSSH	from	source,	or	how	to
install	the	OpenSSH	server	on	fifty	different	platforms.	If	you’re	a	systems
administrator,	you	know	where	to	find	that	information.	If	you	are	a	system	user,
your	system	administrator	should	install	and	configure	the	OpenSSH	server	for
you,	but	mastering	the	client	programs	will	help	you	work	more	quickly	and
effectively.
Who	Should	Read	This	Book?
Everyone	who	manages	a	UNIX-like	system	must	understand	SSH.	OpenSSH	is
the	most	commonly	deployed	SSH	implementation.	Unless	you	are	specifically
using	a	different	SSH	implementation,	read	this	book.

People	who	are	not	systems	administrators,	but	who	must	connect	to	a	server
over	SSH,	will	also	find	this	book	helpful.	While	you	can	learn	the	basics	of
SSH	in	five	minutes,	proper	SSH	use	will	make	your	job	easier	and	faster.	You
can	skip	the	sections	on	server	configuration	if	you	wish,	although	it’s	always
good	to	know	what	your	system	administrator	can	actually	do	as	opposed	to
what	they	feel	like	doing.
SSH	Components
Secure	shell	(SSH)	is	a	protocol	for	creating	an	encrypted	communications
channel	between	two	networked	hosts.	SSH	protects	data	passing	between	two
machines	so	that	other	people	cannot	eavesdrop	on	it.	Tatu	Ylönen	created	the

initial	protocol	and	implementation	in	1995,	designing	it	to	replace	insecure
protocols	such	as	telnet,	RSH,	and	rlogin.	With	the	release	of	OpenSSH	in	1999,
SSH	rapidly	became	the	standard	method	for	managing	hosts.	Today,	many
different	software	packages	rely	on	the	SSH	protocol	for	encrypted	and	well-
authenticated	transport	of	data	across	private,	public,	and	hostile	networks.
OpenSSH
OpenSSH	is	the	most	widely	deployed	implementation	of	the	SSH	protocol.	It
started	as	an	offshoot	of	a	freely	licensed	version	of	the	original	SSH	software,
but	has	been	heavily	rewritten,	expanded,	and	updated.	OpenSSH	is	developed
as	part	of	the	OpenBSD	Project,	a	community	known	for	writing	secure
software.	OpenSSH	is	the	standard	SSH	implementation	in	the	Linux	and	BSD
world,	and	is	also	used	in	products	from	large	companies	such	as	HP,	Cisco,
Oracle,	Novell,	Juniper,	IBM,	and	so	on.

OpenSSH	comes	in	two	versions,	OpenBSD	and	Portable	OpenSSH.
OpenSSH’s	main	development	happens	as	part	of	OpenBSD.	They	hold
OpenSSH	to	the	same	standards	of	simple,	secure	code	as	they	do	the	rest	of
OpenBSD.	This	version	of	OpenSSH	is	small	and	secure,	but	only	supports
OpenBSD.	The	OpenSSH	Portability	Team	takes	the	OpenBSD	version	and
adds	the	glue	necessary	to	make	OpenSSH	work	on	other	operating	systems,
creating	Portable	OpenSSH.	Not	only	do	different	operating	systems	use
different	compilers,	libraries,	and	so	on,	they	have	different	authentication
systems.	The	Portable	OpenSSH	team	needs	to	account	for	all	of	these
differences	on	every	platform.	They	do	their	best	to	hide	this	complexity,	so	you
don’t	have	to	worry	about	it.	This	book	applies	to	both	versions.

Any	operating	system	probably	comes	with	OpenSSH,	or	the	operating
system	vendor	provides	a	package.	Even	Microsoft	offers	an	OpenSSH	package
in	their	Linux	layer,	and	a	beta	of	a	native	port	has	recently	escaped	as	an
optional	Windows	component.	If	your	operating	system	doesn’t	provide	an
OpenSSH	package,	download	the	Portable	OpenSSH	source	code	from
http://www.OpenSSH.com	and	follow	the	instructions	to	build	the	software.

OpenSSH	is	available	under	a	BSD–style	license.	You	can	use	it	for	any
purpose,	with	no	strings	attached.	You	cannot	sue	the	software	authors	if
OpenSSH	breaks,	and	you	can’t	claim	you	wrote	OpenSSH,	but	you	can	use	it
any	way	you	wish,	including	adding	it	to	your	own	products.	You	can	charge	to
install	or	support	OpenSSH,	but	the	software	itself	is	free.
SSH	Server
An	SSH	server	listens	on	the	network	for	incoming	SSH	requests,	authenticates
those	requests,	and	provides	a	system	command	prompt	(or	another	service	that

you	configure).	The	most	popular	SSH	server	is	OpenSSH’s	sshd.
SSH	Clients
Use	an	SSH	client	to	connect	to	your	remote	server	or	network	device.	The	most
popular	SSH	client	for	Windows	systems	is	PuTTY.	The	standard	SSH	client	for
Unix-like	systems	is	ssh(1),	from	OpenSSH.	Both	are	freely	available	and	usable
for	any	purpose,	commercial	or	noncommercial,	at	no	cost.

Microsoft	also	recently	forked	OpenSSH	to	include	an	SSH	client	in
Windows.	It’s	considered	experimental,	though,	and	development	is	continuing.
Experiment	with	it	as	you	wish;	it	should	work	much	like	OpenSSH.	It’s	also
part	of	Windows’	Linux	subsystem.	If	you’re	using	a	Windows-native	SSH,
though,	you	really	want	to	use	PowerShell	rather	than	the	traditional	terminal.

Once	you	understand	PuTTY	and	OpenSSH,	you’ll	have	the	base	knowledge
to	use	any	secure	SSH	client.
SSH	Protocol	Versions
The	SSH	protocol	comes	in	two	versions,	SSH-1	(version	1)	and	SSH-2	(version
2).	Always	use	SSH-2.	All	modern	SSH	software	defaults	to	version	2.	You	will
find	old	embedded	devices	that	still	rely	on	SSH	version	1,	but	SSH-1	is	barely
more	secure	than	unencrypted	telnet.

One	person	designed	SSH-1	for	his	own	needs.	It	met	those	needs	admirably,
and	in	the	1990s	it	was	a	whole	bunch	better	than	telnet.	As	SSH	grew	more
popular,	more	people	examined	the	protocol	and	exposed	weaknesses	in	the
original	design.	With	today’s	computing	power,	SSH-1	is	highly	vulnerable	to
attacks.	While	SSH-1	encrypts	your	data	in	transit	and	prevents	casual
eavesdropping,	an	attacker	that	knows	a	couple	tricks	can	capture	your	data,
decrypt	your	data	in	transit,	lull	you	into	thinking	that	you	logged	on	to	the
correct	machine	when	you	are	actually	connected	to	a	different	host,	insert
arbitrary	text	into	the	data	stream,	or	any	combination	of	these.	Attacking	an
SSH-1	data	stream	isn’t	quite	a	point-and-click	process,	but	intruders	do	break
SSH-1	in	the	real	world.

The	appearance	of	security	is	worse	than	no	security.	Never	use	SSH	version
1.

It	might	seem	harmless	to	permit	SSH-1	for	servers	or	clients	that	don’t
support	SSH-2.	The	client	and	server	transparently	negotiate	the	SSH	version
they	will	use	for	a	connection	however.	If	either	client	or	server	tolerates	SSH-1,
an	intruder	can	capture	your	login	credentials	and	all	transmitted	data.	It’s	fairly
straightforward	to	insert	arbitrary	text	(such	as	rm	-rf	/*)	into	an	SSH-1	session.
This	was	discovered	in	1998,	and	today’s	massive	computing	power	has	made
this	attack	far	easier.	SSH-1	sessions	can	be	decoded	in	real	time	by	programs

such	as	Ettercap.	The	incremental	improvements	to	SSH-1,	such	as	SSH	1.3	and
1.5,	are	vulnerable.	SSH	servers	that	offer	SSH	version	1.99	support	SSH
version	1	and	version	2.

Do	not	let	your	SSH	clients	request	SSH-1.	Do	not	let	your	SSH	servers	offer
SSH-1.

OpenSSH	has	removed	support	for	SSH-1,	so	if	you	have	an	old	embedded
device	that	only	speaks	SSH-1,	you’ll	need	to	manage	it	with	PuTTY	or,	better
still,	spend	a	couple	dollars	to	replace	that	device	with	something	built	this
millennium.1

SSH-2	is	the	modern	standard.	The	protocol	is	designed	so	that	vulnerabilities
can	be	quickly	addressed	as	they	are	discovered.	Our	constantly-increasing
computing	power	makes	today’s	strong	encryption	tomorrow’s	security	risk,	so
SSH-2	is	designed	so	that	its	algorithms	and	protocols	can	be	upgraded	in	place.

Protocols	such	as	SCP	and	SFTP	(Chapter	7)	are	built	atop	SSH.
What	Isn’t	In	This	Book?
This	book	is	meant	to	familiarize	you	with	SSH,	and	help	you	reach	a	minimum
level	of	competence	with	OpenSSH	and	PuTTY.	This	means	eliminating
passwords,	restricting	your	SSH	services	to	the	minimum	necessary	privileges,
and	using	SSH	as	a	transport	for	common	management	tools.	You	will	be	able	to
easily	copy	files	over	SSH,	manage	server	keys	with	minimal	fuss,	use	digital
certificates	to	permit	only	approved	keys	on	your	network,	and	a	few	other
tricks.

This	book	is	not	intended	as	a	comprehensive	SSH	tome.	It	doesn’t	cover
integrating	SSH	with	Kerberos,	or	SecurID,	or	hooking	your	SSH	install	into
Google	authenticator,	or	using	your	SSH	agent	as	an	authentication	source	for
third-party	programs.	These	are	all	interesting	topics,	but	very	platform	specific,
and	might	well	change	before	you	finish	reading	this	book.	Sysadmins	interested
in	authentication	options	might	find	my	book	PAM	Mastery	(Tilted	Windmill
Press,	2016)	useful.
What	Is	In	This	Book?
Chapter	0	is	this	introduction.

Chapter	1,	“Encryption	and	Keys,”	gives	basic	information	about	encryption
and	how	SSH	uses	it.

Chapter	2,	“Common	Configuration,”	covers	configuration	syntax	used
throughout	the	OpenSSH	server	and	client.

Chapter	3,	“The	OpenSSH	Server,”	discusses	configuring	the	OpenSSH
server	sshd.	This	chapter	orients	you	on	configuring	sshd,	but	more	specific
examples	appear	throughout	this	book.

Chapter	4,	“Host	Key	Verification,”	covers	a	frequently	overlooked	but	vital
part	of	using	any	SSH	client:	verifying	server	keys.	This	topic	is	so	vital	that	it
needs	its	own	chapter,	even	before	our	first	discussion	of	SSH	clients.

Chapter	5,	“SSH	Clients,”	discusses	two	popular	SSH	clients,	OpenSSH’s
ssh(1)	for	Unix-like	systems	and	PuTTY	for	Windows.

Chapter	6,	“Copying	Files	Over	SSH,”	covers	moving	files	across	the
network	using	SSH	as	a	transport,	with	the	SCP	(secure	copy)	and	SFTP	(SSH
file	transfer)	protocols.

Chapter	7,	“SSH	Keys,”	walks	you	through	creating	a	personal	key	pair
(public	and	private	cryptographic	key).	Key	pairs	make	authentication	more
secure.	When	combined	with	agents	they	eliminate	the	need	to	routinely	type
passwords	but	don’t	degrade	SSH	security.

Chapter	8,	“X	Forwarding,”	will	teach	you	how	to	display	graphics	over	your
SSH	connections	while	minimizing	risk.

Chapter	9,	“Port	Forwarding,”	covers	using	SSH	as	a	generic	TCP/IP	proxy,
letting	you	redirect	arbitrary	network	connections	through	the	network	to	remote
machines.

Chapter	10,	“Keeping	SSH	Sessions	Open,”	covers	ways	to	keep	SSH
sessions	running	despite	the	firewalls	and	proxy	servers	and	unreliable	ISPs	that
want	to	shut	them	down	after	minutes	or	hours.

Chapter	11,	“Key	Distribution,”	tells	systems	administrators	how	to
automatically	distribute	host	keys	and	improve	security	while	eliminating	the
need	for	users	to	manually	compare	host	key	fingerprints.	We	also	cover	issues
in	distributing	user	public	keys	across	large	cloud	systems.

Chapter	12	“Automation,”	discusses	ways	to	use	SSH	as	a	transport	for
automated	tools	and	tightly–controlled	user	tasks,	as	well	as	creating	single-
purpose	user	keys.

Chapter	13,	“OpenSSH	VPNs,”	demonstrates	how	to	use	OpenSSH	to	create
an	encrypted	tunnel	between	two	sites.

Chapter	14,	“Certificate	Authorities,”	guides	you	through	creating	a
certificate	authority	to	permit	only	authorized	user	keys	to	log	on	to	your
network.

That’s	enough	blather!	Let’s	get	to	work.

1	A	few	Linux	distributions	deliberately	ship	an	SSH	client	that	supports	SSH-1.	That’s	on	them.

Chapter	1:	Encryption,	Algorithms,	and	Keys
OpenSSH	encrypts	traffic.	What	does	that	mean,	and	how	does	it	work?	I	give	a
detailed	explanation	in	my	book	PGP	&	GPG	(No	Starch	Press,	2006),	but
here’s	the	brief	version.

Encryption	transforms	readable	plaintext	into	unreadable	ciphertext	that
attackers	cannot	understand.	Decryption	reverses	the	transformation,	producing
readable	text	from	apparent	gibberish.	An	encryption	algorithm	is	the	exact
method	for	performing	this	transformation.	Most	children	discover	the	code	that
substitutes	numbers	for	letters,	so	that	A	equals	one,	B	equals	two,	Z	equals	26,
and	so	on.	This	is	a	simple	encryption	algorithm.	Modern	computer-driven
encryption	algorithms	work	on	chunks	of	text	at	a	time	and	perform	far	more
complicated	transformations.

Most	encryption	algorithms	use	a	key;	a	chunk	of	text,	numbers,	symbols,	or
data	used	to	encrypt	messages.	A	key	can	be	chosen	by	the	user	or	randomly
generated.	(People	habitually	choose	easily-guessed	keys,	so	OpenSSH	doesn’t
even	give	users	an	option	to	create	your	own.)	The	encryption	algorithm	uses	the
key	to	encrypt	the	text,	making	it	more	difficult	for	an	outsider	to	decrypt.	Even
if	you	know	the	encryption	algorithm,	you	cannot	decrypt	the	message	without
the	secret	encryption	key.

Think	of	the	encryption	algorithm	as	a	type	of	lock,	and	the	key	is	a	specific
key.	Locks	come	in	many	different	types:	house	doors,	bicycles,	factories,	and	so
on.	Each	uses	a	certain	type	of	key—your	door	key	is	probably	the	wrong	shape
to	fit	into	any	vehicle	ignition.	But	even	a	key	of	the	proper	type	won’t	work	in
the	wrong	lock.	Your	front	door	key	unlocks	your	front	door,	and	only	your	front
door.	Encryption	keys	work	similarly.
Algorithm	Types
Encryption	algorithms	come	in	two	varieties,	symmetric	and	asymmetric.

A	symmetric	algorithm	uses	the	same	key	for	both	encryption	and	decryption.
Symmetric	algorithms	include,	but	are	not	limited	to,	the	Advanced	Encryption
Standard	(AES)	and	ChaCha20,	as	well	as	older	but	now	insecure	algorithms
like	3DES	and	Blowfish.	A	child’s	substitution	code	is	a	symmetric	algorithm.
Once	you	know	that	A	equals	one	and	so	on,	you	can	encrypt	and	decrypt
messages.	Symmetric	algorithms	(more	sophisticated	than	simple	substitution)
can	be	very	fast	and	secure,	so	long	as	only	authorized	people	have	the	key.	And
that’s	the	problem:	an	outsider	who	gets	the	key	can	read	your	messages	or
replace	them	with	his	own.	You	must	protect	the	key.	Sending	a	key
unencrypted	across	the	Internet	is	like	standing	on	the	playground	shouting,	“A

is	one,	B	is	two.”	Anyone	who	hears	the	key	can	read	your	private	message.
An	asymmetric	algorithm	uses	different	keys	for	encryption	and	decryption.

You	encrypt	a	message	with	one	key,	and	then	decrypt	it	with	another.	This
works	because	the	keys	are	very	large	numbers,	and	multiplying	very	large
numbers	is	much	easier	than	figuring	out	how	to	divide	them.	(There	are	very
good	explanations	out	on	the	Internet,	if	you	want	the	details.)	Asymmetric
encryption	became	popular	only	with	the	wide	availability	of	computers	that	can
handle	the	very	difficult	math,	and	is	much,	much	slower	and	more
computationally	expensive	than	symmetric	encryption.

Having	two	separate	keys	creates	interesting	possibilities.	Make	one	key
public.	Give	it	away.	Broadcast	it	to	the	entire	world.	Keep	the	other	key	private,
and	protected	at	all	costs.	Anyone	who	has	the	public	key	can	encrypt	a	message
that	only	someone	who	knows	the	private	key	can	read.	Someone	who	has	the
private	key	can	encrypt	a	message	and	send	it	out	into	the	world.	Anyone	can
use	the	public	key	to	decrypt	that	message,	but	the	fact	that	the	public	key	can
decrypt	the	message	assures	recipients	that	the	message	sender	had	the	private
key.	This	is	the	basis	of	public	key	encryption.	The	public	key	and	its	matching
private	key	are	called	a	key	pair.	Again,	think	of	the	lock	on	your	front	door.	The
lock	itself	is	public;	anyone	can	touch	it.	The	key	is	private.	You	must	have	both
to	get	into	your	home.	(You	can	learn	more	by	researching	Diffie-Hellman	key
exchange.)
How	SSH	Uses	Encryption
Symmetric	encryption	is	fast,	but	offers	no	way	for	hosts	to	securely	exchange
keys.	Asymmetric	encryption	lets	hosts	exchange	public	keys,	but	it’s	slow	and
computationally	expensive.	How	can	you	efficiently	encrypt	the	session	between
two	hosts	that	have	never	previously	communicated?

Every	SSH	server	has	a	key	pair.	Whenever	a	client	connects,	the	server	and
the	client	use	this	key	pair	to	negotiate	a	temporary	key	pair	shared	only	between
these	two	hosts.	The	client	and	the	server	both	use	this	temporary	key	pair	to
derive	a	symmetric	key	that	they	will	use	to	exchange	data	during	this	session,	as
well	as	related	keys	to	provide	connection	integrity.	If	the	session	runs	for	a	long
time	or	exchanges	a	lot	of	data,	the	computers	will	intermittently	negotiate	a	new
temporary	key	pair	and	new	symmetric	key.	The	SSH	protocol	is	more
complicated	than	this,	and	include	safeguards	to	prevent	many	different
cryptographic	attacks,	but	cryptographic	key	exchange	is	the	heart	of	the
protocol.

SSH	supports	many	symmetric	and	asymmetric	encryption	algorithms.	The
client	and	server	negotiate	mutually	agreeable	algorithms	at	every	connection.

While	OpenSSH	offers	options	to	easily	change	the	algorithms	supported	and	its
preference	for	each,	don’t!	Programmers	with	more	cryptography	experience
than	both	of	us	together	arrived	at	OpenSSH’s	encryption	preferences	after	much
hard	thought,	troubleshooting,	and	suffering.	Gossip,	rumor,	and	innuendo	might
crown	Blowfish	as	the	awesome	encryption	algorithm	du	jour,	but	that	doesn’t
mean	you	should	tweak	your	OpenSSH	server	to	use	that	algorithm	and	no	other.

The	most	common	reason	people	offer	for	changing	the	encryption
algorithms	is	to	improve	speed.	SSH’s	primary	purpose	is	security,	not	speed.
Do	not	abandon	security	to	improve	speed.	You	might	encounter	a	device	that
only	speaks	older	encryption	algorithms.	We’ll	cope	with	those	in	Chapter	15,
“OpenSSH	Scraps.”

Now	that	you	understand	how	SSH	encryption	works,	leave	the	encryption
settings	alone.

Chapter	2:	Common	Configuration
The	OpenSSH	client	and	server	share	a	common	configuration	syntax.	We’ll
discuss	these	common	elements	before	delving	into	the	details	of	either
application.	Sysadmins	familiar	with	Unix-like	systems	should	have	no	trouble
with	OpenSSH	configuration.

All	system-wide	OpenSSH	configuration	files	reside	in	etcssh	by	default.
Some	operating	systems	use	an	alternate	location—for	example,	OSX	uses
/privateetcssh	but	symlinks	etcssh	there,	while	FreeBSD’s	add-on	openssh-portable
package	uses	usrlocaletcssh.	Once	you	find	the	configuration	directory,	you’ll	find
a	pretty	standard	set	of	files.

Default	settings	for	the	ssh(1)	client	appear	in	ssh_config.
The	files	starting	with	ssh_host	and	ending	in	_key	are	the	server’s	private	keys.

The	middle	of	each	file	name	gives	the	encryption	algorithm—for	example,
ssh_host_ecdsa_key	contains	the	host	key	that	uses	the	ECDSA	algorithm.	These
files	should	only	be	readable	by	root.

Each	private	key	has	a	corresponding	file	with	the	same	name	but	an	added
.pub	at	the	end.	This	is	the	public	key	for	that	file.	The	server	will	offer	the
content	of	these	files	to	any	client.

Finally,	sshd_config	contains	the	server	configuration.	While	you	can	tweak
sshd	with	command-line	options,	permanent	configuration	is	handled	in	the
configuration	file.

Both	configuration	files	consist	of	a	series	of	keywords,	followed	by	the
value	that	keyword	is	set	to.	These	values	can	have	any	format	that	makes	sense
for	the	configuration	target.	Here’s	how	OpenSSH	sets	one	common	value.
Port	22

The	keyword	Port	is	set	to	22.	Presumably	this	makes	sense	for	whatever	the
Port	keyword	is	intended	to	represent.	We’ll	get	to	what	that	is	in	Chapter	3,
“The	OpenSSH	Server.”	You’ll	also	see	keywords	set	to	file	paths.	Here	we	see
the	value	HostKey	set	to	a	file	path	in	the	etcssh	directory.
HostKey	etcssh/ssh_host_ed25519_key	Follow	existing	examples	when	setting	any	keyword.

Always	refer	back	to	the	man	pages	if	you	have	trouble.

The	pound	sign	(#)	indicates	a	comment.	Everything	on	a	line	after	a
comment	is	ignored.	The	OpenSSH	crew	distributes	their	configuration	files
with	all	options	set	to	the	default	and	commented	out.	While	sshd(8)	requires	a
configuration	file	to	start,	you	can	create	a	valid,	useful,	and	working
configuration	with	touch	sshd_config.	The	SSH	client	and	server	run	just	fine	with
everything	at	the	default	setting.	The	commented-out	settings	are	provided	as	a
convenient	reference,	that’s	all.

To	change	the	defaults,	remove	the	pound	sign	and	change	the	value.
Multiple	Values
Some	environments	need	keywords	set	to	multiple	values.	How	you	set	those
values	depends	on	the	keyword.	Keywords	like	HostKey	and	Port	can	appear
multiple	times,	each	with	a	separate	value.
Port	22

Port	2222

Keywords	like	Host	accept	multiple	values,	separated	by	a	space.
Host	envy.mwl.io	avarice.mwl.io	Other	keywords,	such	as	Address,	expect	comma-separated

values.

Address	192.0.2.0/25,	198.51.100.0/24

If	ssh(1)	or	sshd(8)	complains	about	a	configuration,	verify	that	you’re
separating	multiple	entries	correctly.	This	book	contains	many	examples	of
assigning	multiple	values,	but	the	OpenSSH	manual	is	always	the	final	word.
Wildcards	in	OpenSSH	Configuration	Files
Configuration	files	for	the	OpenSSH	server	and	client	accept	wildcards,	called
patterns.	Rather	than	listing	all	possible	values	of	a	configuration	setting,
patterns	let	you	say	“anything	that	matches	this	expression.”	Wildcards	are	most
often	used	for	Match	rules,	as	discussed	in	“Conditional	Configuration	with
Match”	later	this	chapter.	Patterns	let	you	write	configuration	statements	such	as
“all	hosts	in	this	domain”	or	“all	IP	addresses	in	this	network.”	The	two	wildcard
characters	are:	?	matches	exactly	one	character	*	matches	zero	or	more
characters	For	example,	I	could	use	a	pattern	to	set	the	value	of	the	Host
keyword	to	any	host	in	mwl.io.
Host	*.mwl.io

If	I	used	the	question	mark	wildcard,	this	pattern	would	match	any	host	with
a	one-character	hostname.	Very	few	environments	segregate	security	domains	by
the	length	of	the	hostname,	but	if	they	did,	you	could	use	multiple	question
marks	to	identify	them.	This	pattern	matches	sloth.mwl.io	and	wrath.mwl.io,	but	not
gluttony.mwl.io	or	avarice.mwl.io.
Host	?????.mwl.io	Patterns	are	also	useful	for	IP	addresses.	Here	I	match	the	hosts

203.0.113.10	through	203.0.113.19.

Address	203.0.113.1?

If	I	use	the	asterisk	wildcard,	I	can	match	any	IP	within	a	/24	network.
Address	203.0.113.*

You	might	use	netmasks	with	IP	address	ranges,	as	discussed	in	Chapter	5.
Negate	patterns	by	putting	an	exclamation	point	in	front.	This	pattern

matches	everything	except	hosts	in	mwl.io.
Host	!*.mwl.io

Negation	is	most	useful	when	combined	with	a	larger	entity—that	is,	to	say
“Match	everything	except	that	one	little	piece.”	If	I	want	to	match	every	host	in
mwl.io	except	for	the	customers	in	the	subdomain	vermin.mwl.io,	I	could	use

this	pattern.	Not	all	keywords	support	negation;	you’ll	have	to	try	it	and	see	if	it
works	in	your	environment.
Host	!.vermin.mwl.io	*.mwl.io	The	lead	OpenSSH	developer	describes	negation	as	“a	little

fiddly.”	I	call	it	“likely	to	pull	a	shiv	on	you.”	If	you	need	negation,	test	thoroughly.

Conditional	Configuration	with	Match
Your	server	might	need	to	behave	differently	depending	on	the	source	address	or
hostname	of	an	incoming	connection,	or	the	username.	An	SSH	client	might
need	to	use	a	different	username	for	a	particular	group	of	hosts,	or	to	activate	X
forwarding	(Chapter	9)	when	used	on	the	local	network.	The	Match	sshd_config
keyword	lets	you	establish	special	configurations	for	such	situations.

Follow	each	Match	statement	by	a	set	of	conditions	that	trigger	the	match,
then	by	a	series	of	configuration	statements	OpenSSH	should	apply	to
connections	that	meet	all	of	those	conditions.	We’ll	see	several	examples	in	the
next	sections.

Before	implementing	a	Match	statement,	configure	OpenSSH	for	the	most
common	setting.	For	example,	if	you	are	configuring	sshd,	you	might	want	to
deny	X	forwarding	to	all	but	select	users.	Configure	sshd	to	deny	X	forwarding,
then	use	a	Match	statement	to	check	the	username	and	permit	X	forwarding	to
matching	users.	While	we	haven’t	covered	X	forwarding	yet,	denying	it	is	a
single	entry	in	sshd_config.
X11Forwarding	no	In	all	of	the	examples	below,	such	an	entry	appears	near	the	beginning	of

sshd_config	as	a	default	setting	that	we’ll	selectively	override.

You	cannot	use	Match	statements	to	adjust	all	possible	ssh_config	and
sshd_config	keywords.	Check	the	manual	pages	for	the	complete	list	of	supported
keywords.
Matching	Users	and	Groups
The	most	common	situation	I	encounter	is	when	I	want	to	enable	an	option	for	a
particular	user	or	group.	The	User	or	Group	Match	terms	permit	this.
X11Forwarding	no	Match	User	mwlucas	X11Forwarding	yes	I	am	always	permitted	to	use	X

forwarding,	as	my	awesome	psychic	powers	eliminate	all	possible	security	risks.

If	all	of	my	system	administrators	share	these	powers,	or	if	I	settle	for
exterminating	sysadmins	who	empower	intruders,	I	could	Match	the	whole
group	containing	my	sysadmins.
X11Forwarding	no	Match	Group	wheel	X11Forwarding	yes	If	you	need	multiple	Match	terms,

separate	them	by	commas.

X11Forwarding	no	Match	User	mwlucas,	jgballard	X11Forwarding	yes	I	know	when	to	use	X

forwarding.	My	user	claims	he	does,	too.	We’ll	see.

Matching	Addresses	or	Hosts
Perhaps	you	must	permit	X	forwarding,	but	only	from	particular	networks.	You
can	match	on	IP	addresses.
X11Forwarding	no	Match	Address	203.0.113.0/29,	198.51.100.0/24

X11Forwarding	yes	If	you	set	UseDNS	to	yes	in	sshd_config	Match	will	accept	hostnames,

with	the	usual	DNS	security	and	availability	caveats.

X11Forwarding	no	Match	Host	*.mwl.io,	*.michaelwlucas.com	X11Forwarding	yes	Double-check

that	a	DNS	failure	won’t	lock	you	out	of	your	DNS	server	and	prevent	you	from	fixing	the

problem.

For	ssh_config	only,	skip	the	word	Match	when	using	per-host	configurations.
X11Forwarding	no	Host	avarice

X11Forwarding	yes	This	configuration	statement	in	ssh_config	predates	the	Match	syntax.

Multiple	Match	Conditions
You	can	list	multiple	Match	terms	on	a	single	line.	Here,	I	permit	a	single	user	to
use	password	authentication	if	they	connect	from	a	certain	IP	address.
Match	Address	192.0.2.8	User	djm	PasswordAuthentication	yes	The	user	djm	can	log	in	via

password,	but	only	from	the	host	at	192.0.2.8.

Placing	Match	Statements
All	configuration	statements	that	follow	a	Match	statement	belong	to	that	Match
statement,	until	another	Match	statement	appears	or	until	the	file	ends.	This
means	that	Matches	must	appear	at	the	end	of	the	configuration	file.	Consider
the	following	snippet	of	sshd_config.
…

X11Forwarding	no	PasswordAuthentication	no	…

Match	Group	wheel	X11Forwarding	yes	Match	Address	192.0.2.0/29,	192.0.2.128/27

PasswordAuthentication	yes	The	keywords	X11Forwarding	and	PasswordAuthentication	are	set

to	no.	When	a	user	in	the	group	wheel	logs	in,	sshd	sets	the	option	X11Forwarding	to	yes

for	that	user.	When	a	user	logs	in	from	an	IP	address	in	192.0.2.0/29	or	192.0.2.128/27,

the	PasswordAuthentication	option	gets	set	to	yes.	If	a	user	in	the	wheel	group	logs	in

from	one	of	those	addresses,	he	gets	both	options.

We’ll	demonstrate	Match	statements	for	both	sshd(8)	and	ssh(1)	throughout
this	book.

Now	let’s	talk	about	the	OpenSSH	server.

Chapter	3:	The	OpenSSH	Server
The	OpenSSH	server	sshd	is	highly	configurable	and	lets	you	restrict	who	may
connect	to	the	server,	what	actions	those	users	can	take,	and	what	actions	it
permits.	Every	modern	Unix-like	operating	system	comes	with	sshd	installed	as
part	of	the	base	operating	system.

We’ll	look	at	some	basics	of	running	sshd,	and	proceed	to	various	global
configuration	options.	More	specific	options	get	discussed	in	relevant	chapters
of	this	book.
Is	sshd	Running?
From	a	client,	the	simplest	way	to	test	if	a	server	is	running	an	accessible	SSH
daemon	is	to	try	to	log	into	the	server.	While	that’s	great	when	everything
works,	a	failure	to	connect	means	that	either	the	client	or	server	could	be	busted,
or	maybe	you	have	a	packet	filter	in	the	middle.	SSH	normally	runs	on	TCP	port
22.	Use	netcat(1)	to	see	if	you	can	access	the	daemon.
$	nc	-v	devio.us	22

Connection	to	devio.us	22	port	[tcp/ssh]	succeeded!

SSH-2.0-OpenSSH_7.0

^C

When	you	connect	over	raw	TCP,	sshd	returns	a	banner	giving	the	SSH
protocol	version,	the	SSH	server	software,	and	the	software	version.	This	host
uses	SSH	protocol	2,	provided	by	OpenSSH	version	7.0.

If	you	don’t	get	something	similar	perhaps	sshd	isn’t	running,	or	maybe	you
have	a	packet	filter	in	the	way.

From	the	server,	check	and	see	if	the	sshd	process	is	running.
$	ps	ax	|	grep	sshd

626	-	Is	0:00.03	usrsbin/sshd	31960	-	Is	0:00.38	sshd:	mwlucas	[priv]	(sshd)	44387	-	S

0:05.75	sshd:	mwlucas@pts/0	(sshd)	This	host	shows	three	sshd(8)	processes.	The	first,	PID

626,	shows	plain	old	usrsbin/sshd.	It’s	the	master	process	that	listens	to	TCP	port	22.

The	second	process,	PID	31960,	is	the	privileged	process	that	handles	my
SSH	connection	into	this	host.	The	third,	PID	44387,	is	the	unprivileged	child
process	that	handles	your	login	session.	OpenSSH	improves	security	through
privilege	separation,	discussed	in	“Protecting	the	SSH	Server”	at	the	end	of	this
chapter.	If	someone	has	deliberately	disabled	privilege	separation	and	is	running
sshd	insecurely,	you	won’t	see	the	unprivileged	sessions.1

If	sshd	isn’t	running,	enable	it	through	your	operating	system	configuration
tool.
Configuring	sshd
Most	operating	systems	run	sshd	as	a	standalone	server	without	any	command-
line	arguments.	The	usual	way	to	configure	sshd	is	through	the	keywords	in
etcssh/sshd_config.	Before	you	start	mucking	with	changes	in	that	file,	though,	you

should	know	how	to	test	and	debug	them.
OpenSSH	makes	debugging	sshd	configurations	as	simple	as	possible.	You

must	be	root	to	run	sshd,	debugging	or	not.	The	simplest	debugging	methods	are
alternate	configuration	files,	alternate	ports,	and	debugging	mode.
Alternate	Configuration	Files	and	Ports
Suppose	you	want	to	edit	sshd_config,	but	need	to	be	sure	that	the	change	works	as
expected.	The	-f	command-line	argument	tells	sshd(8)	to	use	an	alternate
configuration	file.
#	usrsbin/sshd	-f	sshd_config.test

Note	that	I	executed	this	test	configuration	using	the	full	path	to	sshd.
OpenSSH’s	sshd	re-executes	itself	when	accepting	a	connection,	and	it	needs	the
full	path	to	do	so.	If	you	don’t	give	the	full	path,	you’ll	get	an	error	like	“sshd	re-
exec	requires	execution	with	an	absolute	path.”

Only	one	sshd	instance	can	attach	to	a	particular	TCP	port.	Your	test	sshd
process	probably	won’t	start	because	it	cannot	bind	to	port	22.	You	could	edit
sshd_config.test	to	assign	your	test	process	another	port,	but	then	you	have	to	re-
edit	the	file	when	moving	it	to	production,	and	we	all	know	that’s	exactly	the
point	that	will	figure	prominently	in	the	outage	report.	Instead,	override	the
configured	TCP	port	and	assign	a	new	one	with	the	-p	command-line	argument.
#	usrsbin/sshd	-f	sshd_config.test	-p	2022

The	test	process	is	now	listening	on	port	2022.	(Note	that	-p	cannot	override	a
ListenAddress	keyword	binding	sshd	to	a	port	as	well	as	an	address;	see
“Network	Options”	later	this	chapter.)	By	setting	an	alternate	configuration	file
and	port	on	the	command	line	you	can	test	your	new	configuration,	approve	it,
and	move	it	into	production,	confident	that	you	didn’t	wreck	a	file	in	making	the
final,	untested	change.	(Not	that	I’ve	ever	broken	a	system	that	way,	mind	you.)
In	any	case,	save	your	original	sshd_config,	just	in	case	your	change	causes
problems	testing	didn’t	expose.

Remember	to	kill	your	test	sshd	process	when	you	finish	testing.
Validating	sshd_config	Changes
Perhaps	you	want	to	make	a	minor	change	and	think	you	don’t	need	to	perform	a
full	test.	You	can	ask	sshd(8)	to	verify	the	configuration	file	and	all	the	key	files
with	the	-t	flag.
#	sshd	-t

etcssh/sshd_config:	line	112:	Bad	configuration	option:	ExposeAuthInfo	etcssh/sshd_config:

terminating,	1	bad	configuration	options	Either	the	version	of	sshd	installed	on	this	host

is	too	old	to	support	the	ExposeAuthInfo	keyword,	or	the	operating	system	packager

deliberately	removed	the	option.

Debugging	sshd(8)
The	-d	flag	tells	sshd	to	run	in	foreground	debugging	mode,	without	detaching
from	the	controlling	terminal.	In	debugging	mode,	sshd	can	only	handle	a	single

login	request—no,	not	one	request	at	a	time.	It	processes	one	login	or	login
attempt,	and	exits.	Don’t	do	this	in	production;	run	it	on	an	alternate	port.
Debugging	displays	everything	your	sshd	process	does,	in	real	time,	like	so.
#	usrsbin/sshd	-p	2022	-d

debug1:	sshd	version	OpenSSH_7.5,	OpenSSL	1.0.2l-freebsd	25	May	2017

debug1:	private	host	key	#0:	ssh-rsa	SHA256:N+faE/OyKhlho8MR8Vw3uhdo75aiuhYotnP/gOOe82E

debug1:	private	host	key	#1:	ecdsa-sha2-nistp256

SHA256:Q1buYGtWowrN1/8g/EaTEMQr+69h+/Pai3xI4LXN0c8

debug1:	private	host	key	#2:	ssh-ed25519

SHA256:0TCTf0jZUxzu8dahNrLmuKu19T0BkruI4e3mPOjVInE

debug1:	rexec_argv[0]='usrsbin/sshd'

debug1:	rexec_argv[1]='-p'

debug1:	rexec_argv[2]='2022'

debug1:	rexec_argv[3]='-d'

debug1:	Bind	to	port	2022	on	::.

debug1:	Server	TCP	RWIN	socket	size:	65536

Server	listening	on	::	port	2022.

debug1:	Bind	to	port	2022	on	0.0.0.0.

debug1:	Server	TCP	RWIN	socket	size:	65536

Server	listening	on	0.0.0.0	port	2022.

The	debug	session	starts	with	the	identifying	information	for	your	version	of
sshd(8)—in	this	case,	OpenSSH	7.5,	built	with	OpenSSL	1.0.2l,	as	part	of
FreeBSD.	We	then	see	three	private	keys	being	loaded,	using	RSA2,	ECDSA,
and	ED25519.	The	daemon	parses	its	arguments	and	binds	to	a	port.

If	the	daemon	can’t	start,	it’ll	say	why,	very	clearly,	right	here.	You	might
have	to	read	the	manual	page	or	do	a	few	Internet	searches	to	figure	out	what	the
error	means,	but	you’ll	know	the	exact	problem.

Connect	to	this	server	with	an	SSH	client,	and	you’ll	get	hundreds	of	lines	of
debugging	output	as	the	server	and	client	agree	upon	encryption	protocols,	the
user	attempts	to	authenticate,	and	various	SSH	features	like	X	forwarding	are
negotiated.	I	won’t	walk	you	through	such	a	session,	as	the	output	varies	widely
depending	on	the	client,	the	authentication	method,	and	the	SSH	features
requested	and	offered.

If	you	have	a	problem	with	SSH,	run	the	server	in	debugging	mode,	connect
with	a	client,	and	read	the	output.	Most	often,	sshd	will	tell	you	exactly	what	the
problem	is.

When	you	finish	debugging,	log	out	of	the	client.	The	sshd(8)	process	will
clean	up	after	itself	and	exit.	You	can	also	unceremoniously	terminate	sshd	and
throw	the	client	out	by	hitting	CTRL-C.

If	a	single	-d	doesn’t	provide	enough	detail,	add	multiples	to	increase
verbosity.	Running	usrsbin/sshd	-dd	should	quench	your	curiosity.	If	not,	add	more
-d’s	until	you	are	no	longer	curious.
Configuring	sshd(8)

This	chapter	discusses	some	generally	useful	sshd(8)	options.	Most	sshd_config
options	appear	in	the	chapter	where	they’re	most	useful—that	is,	options

affecting	X	forwarding	appear	in	Chapter	8,	“X	Forwarding,”	while	certificate
options	appear	in	Chapter	14,	“Certificate	Authorities.”

The	version	of	OpenSSH	shipped	with	your	operating	system	might	not
support	all	of	the	keywords	described	in	this	book.	I’ve	written	this	based	on
OpenSSH	7.6.	Some	operating	systems	either	ship	older	versions,	or	deliberately
remove	functions	for	their	own	reasons.	If	a	configuration	option	doesn’t	work
on	your	server,	consult	your	operating	system	documentation	or	ask	your
vendor.2

Set	Host	Keys
The	HostKey	keyword	gives	the	full	path	to	a	file	containing	a	private	key.	Each
supported	encryption	algorithm	uses	a	separate	file.
HostKey	usrlocaletcssh/ssh_host_rsa_key	HostKey	usrlocaletcssh/ssh_host_ecdsa_key	HostKey

usrlocaletcssh/ssh_host_ed25519_key	The	default	files	are	named	after	the	type	of	key	they

contain.	The	file	ssh_host_rsa_key	contains	an	RSA	key,	ssh_host_ed25519_key	is	an	ED25519

key,	and	so	on.	This	isn’t	mandatory—OpenSSH	will	figure	out	what	type	of	key	is	in	a	file

and	load	it	if	appropriate—but	it’s	definitely	the	best	practice.	Putting	your	RSA	key	in

a	file	named	after	ED25519	will	confuse	everyone.

Different	operating	systems	handle	missing	key	files	differently.	BSD-style
and	Red	Hat-based	systems	automatically	create	missing	key	files.	Many	Linux
systems	require	the	sysadmin	to	manually	create	missing	key	files,	but	integrate
key	creation	into	their	usual	system	administration	tools.	For	example,	Debian-
based	systems	create	missing	key	files	when	you	run	dpkg-reconfigure	openssh-
server.

Chapter	7,	“SSH	Keys,”	covers	creating	host	keys	using	OpenSSH’s	native
tools.
Network	Options
You	can	control	how	sshd(8)	uses	the	network,	from	the	version	of	IP	all	the
way	to	the	TCP	port.
Port	22

AddressFamily	any

ListenAddress	0.0.0.0

ListenAddress	::

The	Port	keyword	controls	the	TCP	port	sshd	uses.	Internet	standards	call	for
SSH	to	run	on	port	22.	Some	organizations	use	a	different	port	for	SSH	in	the
hope	of	improving	security.	Running	SSH	on	an	unusual	port	won’t	actually
help	secure	SSH,	but	it	will	reduce	the	number	of	login	attempts	from	SSH-
cracking	worms,	as	discussed	in	“Protecting	the	SSH	Server”	later	this	chapter.
It	also	lets	you	escape	particularly	ineffective	firewalls.	Override	the	Port
keyword	on	the	command	line	with	-p.

AddressFamily	refers	to	the	version	of	TCP/IP	sshd	uses.	To	use	only	IPv4,
set	this	to	inet.	To	only	use	IPv6,	set	this	to	inet6.	The	default,	any,	tells	sshd	to
process	requests	no	matter	what	protocol	they	arrive	over.	Some	operating

systems	patch	sshd(8)	to	support	non-TCP/IP	protocols	such	as	the	Stream
Control	Transmission	Protocol	(SCTP).

Many	hosts	have	multiple	IP	addresses.	By	default,	sshd	listens	for	incoming
requests	on	all	of	them.	If	you	want	to	limit	the	IP	addresses	that	sshd	attaches	to,
use	the	ListenAddress	keyword.	A	ListenAddress	of	0.0.0.0	means	“all	IPv4
addresses,”	while	::	means	“all	IPv6	addresses.”	(Some	operating	systems	use	::
to	mean	“all	IPv4	and	IPv6	addresses,”	because	why	would	they	let	you	turn	on
a	service	for	IPv6	only?)	Each	ListenAddress	takes	a	single	IP	address	as	an
argument,	but	you	can	use	as	many	ListenAddress	keywords	as	you	need.
Explicitly	list	every	IP	address	that	you	want	the	SSH	server	to	accept
connections	on.

If	a	host	has	many	IP	addresses	and	you	want	to	block	SSH	access	to	just	a
few	of	them,	you	might	find	blocking	traffic	with	a	packet	filter	easier	than	using
many	ListenAddress	statements.

You	can	also	use	ListenAddress	to	add	an	additional	port	on	a	particular	IP
address,	by	specifying	the	port	in	a	ListenAddress	statement.	Consider	the
following	configuration.
ListenAddress	0.0.0.0

ListenAddress	192.0.2.8:2222

Our	first	ListenAddress,	0.0.0.0,	tells	sshd	to	listen	to	all	addresses	on	this
machine.	The	default	Port	is	22,	so	we’ll	get	port	22	on	all	addresses.	That’s
fine.	The	second	ListenAddress	makes	sshd	also	listen	for	connections	on	port
2222	on	the	address	192.0.2.8.	Each	address	can	have	its	own	ListenAddress
statement.
ListenAddress	192.0.2.8:2222

ListenAddress	192.0.2.9:25

ListenAddress	192.0.2.10:80

Three	different	addresses,	each	with	a	different	port.	Mind	you,	having	sshd
listen	to	the	SMTP	and	HTTP	ports	is	generally	unwise,	but	OpenSSH	is	not
designed	to	prevent	you	from	doing	generally	unwise	things.	If	you’re	stuck
behind	a	naïve	firewall	that	blocks	everything	but	ports	80	and	443,	running	sshd
on	those	ports	would	let	you	evade	the	firewall.3

Banners	and	Login	Messages
Many	sysadmins	want	to	display	a	message	to	the	user	before	they	log	in.	This	is
called	a	banner.	The	SSH	protocol	doesn’t	require	clients	to	display	banners.
The	server	can	offer	a	banner,	but	you	can’t	guarantee	that	the	user	will	see	it.
Both	ssh(1)	and	PuTTY	display	banners.	Set	the	keyword	Banner	to	the	full	path
of	the	file.
Banner	etcssh/banner

Be	aware	that	if	the	banner	does	work,	it	might	interfere	with	automated
processes	run	over	SSH.	In	some	locations,	a	banner	can	serve	as	a	legal	notice

to	intruders.	(Mind	you,	I’m	not	aware	of	anyone	who’s	been	successfully
prosecuted	through	use	of	such	banner	warnings,	but	that	is	the	law.)	Choose	the
headache	you	prefer.

If	the	user	is	authenticating	with	public	keys	and	the	client	does	display	the
banner,	the	login	will	proceed.	No	human	being	will	see	your	legal	department’s
finely	worded	warning	about	logging	into	the	host	until	the	login	is	complete.

You	can	reliably	display	the	system	message	of	the	day,	etcmotd.	This	message
doesn’t	appear	until	after	the	client	has	authenticated,	though,	so	it	might	not
meet	your	needs.	The	keyword	PrintMotd	is	set	to	yes	by	default,	but	you	can
turn	it	off.
PrintMotd	yes

On	systems	that	use	Pluggable	Authentication	Modules	(PAM),	a	PAM
module	might	be	responsible	for	printing	etcmotd.	If	you’re	having	trouble
enabling	or	disabling	the	display	of	etcmotd,	check	your	PAM	configuration.

Once	a	user	has	logged	on,	sshd	prints	the	time	of	the	user’s	last	logon	and
where	they	logged	in	from.	To	turn	this	off,	set	PrintLastLog	to	no.
PrintLastLog	yes

While	it	might	seem	unnecessary,	I	strongly	recommend	leaving
PrintLastLog	on.	More	than	once,	users	have	alerted	me	to	intrusions	when	they
saw	that	their	previous	login	was	from	a	foreign	country	or	at	a	ridiculous	hour.
Authentication	Options
In	a	default	OpenSSH	install,	a	user	can	try	to	log	in	6	times	in	2	minutes	in	a
single	SSH	session.	You	should	be	using	public	key	authentication	(Chapter	7,
“SSH	Keys”)	almost	everywhere,	but	even	users	with	passwords	should	be	able
to	incorrectly	type	their	password	in	twenty	seconds.	You	can	change	both	the
timing	and	the	number	of	attempts.

The	LoginGraceTime	keyword	controls	how	long	sshd	gives	a	user	to
authenticate.	If	a	session	connects	to	sshd	for	this	long	without	successfully
authenticating,	the	connection	terminates.	You	can	give	a	number	of	seconds	(s),
minutes	(m),	or	hours	(h).
LoginGraceTime	2m

You	can	also	control	how	many	times	a	user	may	attempt	to	authenticate	in	a
single	connection	with	MaxAuthTries.	The	default	is	6.
MaxAuthTries	6

After	half	of	a	user’s	permitted	attempts	in	a	single	session	have	failed,	sshd
logs	further	failures.	Authentication	attempts	include	both	public	key
authentication	and	passwords.	After	MaxAuthTries	failures,	the	user	must
initiate	a	new	SSH	session	and	try	again.

My	usual	failure	procedure	is	to	fail	to	log	in	six	times,	then	remember	that	I
have	a	different	username	on	this	machine.	When	I	take	my	own	advice	on

changing	usernames	from	Chapter	5,	“SSH	Clients,”	and	install	my	public	key
everywhere	as	in	Chapter	7,	“SSH	Keys,”	this	problem	goes	away.
Verify	Login	Attempts	against	DNS
A	log	message	like	“Login	failed	from	boss’s	computer”	makes	you	sigh.	A	log
message	like	“Login	succeeded	from	Hacker	Haven	Nation”	should	trigger
alarm.	The	owner	of	an	IP	address	controls	the	reverse	DNS	for	that	address.	An
intruder	who	controls	the	reverse	DNS	for	his	IP	address	can	change	the
apparent	hostname	to	something	within	your	company.	For	protection	against
this	sort	of	attack,	sshd	can	verify	connection	attempts	against	forward	DNS
entries.
UseDNS	no

When	set	to	yes,	every	time	a	client	connects,	sshd	looks	up	the	host	name	for
the	source	IP,	and	then	looks	up	the	IP	address	for	the	host	name.	If	the	DNS
names	don’t	match,	sshd	rejects	the	connection.

Suppose	an	intruder	controls	the	reverse	DNS	for	his	IP	address	192.0.2.99.
He	gives	it	a	hostname	within	your	organization,	such	as	dhcp12.mwl.io,	and
connects	to	your	SSH	server.	Your	SSH	server	asks	its	DNS	server	for	the	IP
address	for	dhcp12.mwl.io.	If	that	DNS	entry	doesn’t	exist,	or	it	points	to	an	IP
other	than	192.0.2.99,	sshd	rejects	the	connection.

If	DNS	fails,	sshd	waits	for	a	full	DNS	timeout	before	allowing	the
connection.

UseDNS	requires	that	your	DNS	be	tidy,	coherent,	and	correct.	While	I’m	in
favor	of	auditing	an	organization’s	DNS	entries,	performing	such	audits	via
UseDNS	lacks	elegance.	DNS	checks	don’t	help	if	an	intruder	can	poison	the
server’s	DNS	cache.	If	you’re	a	home	user,	your	ISP	probably	controls	the
reverse	DNS	on	your	connection.	Also,	DNS	checks	can	increase	system	load.	If
you	serve	hundreds	or	thousands	of	simultaneous	SSH	users,	that	load	can	be
substantial.	When	DNS	fails,	failed	DNS	checks	will	slow	down	all	SSH	logins.
Finally,	many	IPv6	sites	haven’t	configured	reverse	DNS	and	won’t	for	the
foreseeable	future.

I	discourage	enabling	UseDNS.
System	Administration	Features
Tell	sshd(8)	where	to	stash	its	process	ID	file	with	the	PidFile	keyword.	Don’t
do	this	lightly.	Many	management	tools	(foolishly)	use	the	PID	file.
PidFile	varrun/sshd.pid

This	file	is	written	before	sshd(8)	reduces	its	privileges,	so	it	can	be	owned
by	root.	If	you	want	to	disable	writing	a	PID	file,	set	PidFile	to	none.

The	sshd(8)	process	logs	via	syslogd,	defaulting	to	the	AUTH	facility	and	the
INFO	level.	Control	these	with	the	SyslogFacility	and	LogLevel	keywords.
SyslogFacility	Auth

LogLevel	INFO

The	SyslogFacility	keyword	accepts	any	syslog	facility.	Check	the
documentation	for	syslogd(8)	for	a	list	of	facilities.

Not	only	does	syslogd	use	LogLevel	to	determine	where	to	send	log
messages,	sshd(8)	uses	it	to	determine	what	to	send	to	syslogd.

A	LogLevel	of	QUIET	logs	nothing.
LogLevel	FATAL	logs	only	when	sshd(8)	dies.
The	ERROR	LogLevel	reports	only	problems.
LogLevel	INFO	logs	problems	and	when	people	login	and	logoff.
VERBOSE	logs	every	detail	that	doesn’t	violate	privacy,	including	the

fingerprints	of	public	keys	used	to	authenticate.
The	DEBUG1,	DEBUG2,	and	DEBUG3	LogLevels	send	enough	data	to

violate	user	privacy.	Debug	messages	get	sent	to	syslogd.	Most	default	logging
systems	don’t	capture	this	level	of	detail;	you’ll	need	to	configure	yours	to
capture	all	these	details.	Also,	don’t	send	debug	data	across	an	open	network
using	traditional	unencrypted	syslogd.
Changing	Encryption	Algorithms
You	might	find	the	keywords	Cipher	and	Mac	in	your	configuration.	They	don’t
appear	in	the	sshd_config	provided	by	OpenSSH,	but	some	operating	systems	add
them.	These	settings	allow	you	to	change	the	encryption	methods	your	server
supports.

Don’t	muck	with	these	settings.	You	will	only	hurt	yourself.
Certain	organizations,	most	commonly	governments,	require	using	only

approved	encryption	algorithms.	The	most	well-known	is	the	United	States’
FIPS	standard.	Such	organizations	have	very	specific	documents	mandating	how
to	configure	SSH	to	comply.
How	Many	Unauthenticated	Connections?
OpenSSH	avoids	the	headaches	of	threaded	programming	by	starting	a	separate
process	to	handle	each	incoming	connection.	A	common	denial	of	service	attack
against	hosts	running	such	programs	is	to	start	a	whole	bunch	of	client
connections	until	the	server	exhausts	all	its	resources	and	falls	over.	OpenSSH
avoids	this	problem	with	the	MaxStartups	option.

MaxStartups	lets	you	set	a	number	of	simultaneous	unauthenticated
connections	to	the	SSH	daemon.	Once	this	many	connections	are	trying	to
authenticate,	sshd	won’t	accept	another	connection	until	an	existing	connection
fails	or	LoginGraceTime	expires	for	an	existing	unauthenticated	connection.	A
simple	value	like	10	protects	the	server,	but	doesn’t	let	you	log	in	to	do
something	to	try	to	defend	against	an	ongoing	attack.

A	better	choice	is	to	use	Random	Early	Drop	(RED),	a	protocol	long	used	by

network	engineers	to	avoid	congestion.	A	DOS	attack	isn’t	exactly	network
congestion,	but	it	shares	a	whole	bunch	of	characteristics	with	network
congestion.	RED	works	by	setting	throttling	limits.	Once	incoming	connections
exceed	a	lower	limit,	sshd	gives	each	subsequent	incoming	connection	a	chance
of	being	flat-out	rejected.	The	chance	of	rejecting	a	connection	increases	until
the	number	of	unauthenticated	connections	reaches	an	upper	limit,	where	all
connections	are	rejected.	Using	RED	means	that	an	attacker	needs	to	throw	a
monstrous	amount	of	resources	at	an	SSH	server	to	guarantee	the	sysadmin	can’t
get	in.	It	doesn’t	make	the	attack	any	less	annoying,	but	it	does	give	the
sysadmin	(and	legit	users)	a	chance	to	log	in	during	the	attack.

Configure	RED	for	sshd	by	specifying	the	lower	limit,	the	initial	chance	of
rejecting	a	connection,	and	the	upper	threshold.	The	default	is	10,	30,	and	100.
MaxStartups	10:30:100

This	means	that	sshd	accepts	up	to	10	unauthenticated	connections
simultaneously.	The	11th	simultaneous	unauthenticated	connection	has	a	thirty
percent	chance	of	being	refused.	The	odds	of	a	connection	being	refused
increase	linearly	until	the	upper	threshold	of	100,	where	all	connections	are
refused.

Using	RED	means	that	if	you	keep	trying	to	connect	during	a	DOS	attack,
you’ll	eventually	get	a	winning	ticket	and	be	admitted.

We	talk	more	about	defending	sshd	in	“Protecting	the	SSH	Server”	at	the	end
of	this	chapter.
Restricting	Access	by	User	or	Group
Many	networked	applications	rely	on	user	accounts	from	the	underlying
operating	system.	People	use	an	application	over	a	web	page	or	proprietary
client,	but	never	actually	SSH	into	the	host.	If	Fred	down	in	shipping	needs
access	to	the	Enterprise	Resource	Planning	system	to	print	his	shipping	labels,
and	the	ERP	system	requires	an	underlying	user	account,	the	host	needs	an
account	for	Fred.	This	isn’t	ideal	practice,	but	it	is	reality.	If	you’re	responsible
for	such	an	application,	configure	the	host	so	that	such	users	cannot	log	on	to	the
server.

OpenSSH	supports	user	restrictions	with	the	DenyUsers,	AllowUsers,
DenyGroups,	and	AllowGroups	options.	These	options	take	comma-delimited
lists	of	users	or	groups	as	arguments,	and	are	processed	in	that	specific	order.
The	first	match	wins.

A	user	listed	in	DenyUsers	cannot	log	in	via	SSH,	even	if	listed	later	in
AllowUsers	or	AllowGroups.

A	user	listed	in	AllowUsers	can	log	in	via	SSH,	unless	explicitly	forbidden	in
DenyUsers.

A	user	that	belongs	to	a	group	listed	in	DenyGroups	cannot	log	in	via	SSH,
unless	specifically	permitted	to	by	an	AllowUsers	statement.	This	lets	you	make
exceptions	for	a	user.

Lastly,	as	you	might	guess,	a	user	that	belongs	to	a	group	listed	in
AllowGroups	can	log	in	via	SSH.

Additionally,	the	presence	of	an	AllowUsers	or	AllowGroups	entry	implies
that	nobody	else	can	log	in.	The	system	denies	SSH	logins	to	everyone	who	is
not	explicitly	permitted.

These	restrictions	work	on	a	first	match	basis.	Statements	are	processed	in
order,	and	when	a	user	matches	a	rule,	the	rule	applies	immediately	and
processing	stops.

Confused?	Let’s	look	at	some	examples.	My	host	has	four	users:	backup,
mwlucas,	pkdick,	and	jgballard.	They	are	in	groups	as	below.
wheel:	mwlucas

staff:	mwlucas,	pkdick,	jgballard

support:	pkdick,	mwlucas

billing:	jgballard

While	these	are	small	groups,	the	principles	apply	to	groups	of	any	size.
The	billing	application	requires	system	accounts,	but	the	user	doesn’t	need

access	via	SSH.	If	I	just	want	to	block	the	user	from	the	billing	department	from
logging	in	via	SSH,	I	could	use	DenyUsers.
DenyUsers	jgballard

All	users	not	listed	would	still	have	SSH	access.	When	I	add	another	user
from	that	department,	though,	I	must	explicitly	add	them	to	DenyUsers.	I’m
better	served	by	blocking	access	by	group.
DenyGroups	billing

With	this	one	statement,	I	can	add	a	user	to	the	billing	group	and	they
automatically	can’t	get	their	money-grubbing	mitts	on	my	precious	virtual
terminals.

The	presence	of	an	AllowGroups	statement	means	that	only	members	of	that
group	can	log	in.	On	a	BSD	system,	wheel	is	the	group	for	system	administrators.
Ubuntu	does	something	similar	with	the	admin	group,	but	I’m	a	BSD	guy	so	you
get	my	preferences.	To	allow	only	sysadmins	to	log	in	via	SSH,	use
AllowGroups.
AllowGroups	wheel

Anyone	in	the	wheel	group	can	log	in.	While	I	haven’t	explicitly	forbidden
anyone	else	from	logging	in,	the	users	backup,	pkdick	and	jgballard	are	not	in	the
wheel	group,	so	they’re	out.

I’m	the	only	member	of	the	wheel	group.	I	could	list	myself	explicitly.
AllowUsers	mwlucas

I	do	hope	to	eventually	have	help,	though.	When	that	day	comes,	I’ll	have	to
create	an	account	for	my	new	sysadmin	and	add	them	to	the	AllowUsers

statement	on	all	of	my	machines.	I’ll	forget	one	or	the	other.	Use	groups
whenever	possible.

The	support	team	has	access	to	a	different	host.	I	have	one	particular	system
where	a	certain	person	is	forbidden	to	log	in.	Here	I	block	that	user,	but	permit
the	group.
DenyUsers	pkdick

AllowGroups	support

This	demonstrates	“first	match	wins.”	User	pkdick	is	denied	immediately,	and
that	decision	is	final.	Other	users	can	proceed	to	the	AllowGroups	statement.
You	might	use	this	setup	on,	say,	a	Raspberry	Pi’s	built-in	pi	account.

Some	applications,	like	properly-configured	rsync,	need	accounts	with	SSH
access.	This	requires	a	user	account	with	public	key	authentication	(Chapter	7,
“SSH	Keys”).	These	accounts	can	be	dangerous.	While	you	can	restrict	the
accounts	that	the	user	can	run	when	authenticated	with	a	key,	you	don’t	want
rsync	connections	from	random	hosts,	and	you	don’t	want	a	user	with	shell
access	able	to	circumvent	restrictions	by	editing	a	file	he	owns.	You	can	use
these	Allow	and	Deny	options	to	restrict	where	users	can	come	from	by	adding
an	@	and	an	IP	address	after	the	username.
AllowUsers	backup@192.0.2.0/24

AllowGroups	support

Users	in	the	support	group	can	log	in	from	anywhere,	and	the	user	backup	can
log	in	from	any	host	with	an	IP	between	192.0.2.0	and	192.0.2.255.	All	other
users	are	rejected.

With	sensible	group	memberships	and	thoughtful	Allow	and	Deny	options,
you	can	restrict	login	access	almost	any	way	you	need.	When	in	doubt,	give
accounts	the	least	level	of	privilege	that	lets	users	and	programs	accomplish	their
required	tasks.
Root	SSH	Access
Sometimes	it	might	seem	that	you	must	allow	users,	sysadmins,	or	applications
to	SSH	into	the	system	as	root.	In	almost	all	environments,	this	is	a	colossally
bad	idea.	When	users	must	log	in	as	a	regular	user	and	then	change	to	root,	the
system	logs	the	user’s	account,	providing	accountability	and	attribution.	Logging
in	as	root	destroys	that	audit	trail.	Many	server	programs	are	initially	started	by
root,	and	the	environment	changes	that	make	a	user	account	friendly	can
propagate	into	those	programs’	environments,	disrupting	service.

If	a	user	requires	root-level	access,	there’s	always	su(1).	Or	sudo,	or	pfexec,
or	any	number	of	privilege	management	tools.	SSH-based	orchestration	systems
like	Ansible	support	all	of	these	programs.	Sudo	in	particular	can	be	configured
to	authenticate	via	an	SSH	agent,	so	that	the	users’	credentials	are	never	exposed
to	the	server.

Certain	environments,	particularly	large	cloud-based	server	farms,	are
designed	so	that	logging	in	as	root	is	not	only	possible	but	preferable.	These
environments	require	public	key	authentication	and	log	the	key	used	to
authenticate	each	session.	Most	readers	of	this	book	do	not	work	in	that
environment.	We’ll	look	at	setting	that	up	in	Chapter	14,	“Certificate
Authorities.”

OpenSSH	controls	direct	login	as	root	with	the	PermitRootLogin	keyword.
By	default,	sshd	permits	direct	root	logins	if	they’re	done	with	public	key
authentication.
PermitRootLogin	prohibit-password

The	prohibit-password	option	is	the	same	as	the	older	but	confusingly-named
without-password.	Users	can	log	in	as	root,	so	long	as	they	don’t	use	a	password	to
do	it.	Once	you	get	into	public	key	authentication,	nothing	prohibits	a	user	from
adding	their	key	to	the	list	of	keys	permitted	to	use	the	root	account.	I	advise
against	using	prohibit-password.

Setting	PermitRootLogin	to	no	disallows	direct	logins	by	root.	Most	operating
systems	set	this	by	default.

If	you	must	allow	remote	root	logins,	consider	setting	PermitRootLogin	to
forced-commands-only.	Chapter	12	discusses	the	ForceCommand	option,	letting	you
restrict	automated	tasks	that	must	run	as	root	to	only	perform	certain	commands.

Logging	in	as	root	via	SSH	almost	always	means	you’re	solving	the	wrong
problem.	Step	back	and	look	for	other	ways	to	accomplish	your	real	goal.
Tokens
Certain	keywords	in	sshd_config	can	also	use	tokens,	symbols	that	represent	some
variable.	Tokens	make	these	keywords	much	more	flexible.	We’ll	talk	about
using	tokens	when	we	discuss	the	keywords	that	can	use	them,	but	from	the	start
you	need	to	recognize	them	on	sight.	We’ll	use	tokens	when	building	chroots	in
the	next	section,	and	then	throughout	this	book.

All	tokens	start	with	a	percent	sign	(%).	The	simplest	token	is	%%,	which	stands
for	an	actual	percent	sign.	If	you	have	file	paths	with	a	percent	sign	in	them,	you
might	need	this.

The	token	%u	represents	the	username.
The	token	%h	represents	the	user’s	home	directory.
Most	of	the	other	tokens	are	used	only	in	very	special	circumstances,	when

using	less	common	functions.	We’ll	touch	on	them	as	needed,	but	these	are	the
ones	everyone	must	know.	The	sshd_config(5)	man	page	lists	all	the	tokens.
Chrooting	Users
At	times	a	user	needs	access	to	a	command	prompt	or	a	specific	program,	but

you	don’t	want	the	user	to	access	anything	outside	his	home	directory.	A
directory	the	user	cannot	escape	is	called	a	chroot.	(A	chroot	is	also	useful	for
SFTP,	as	discussed	in	Chapter	6,	but	that	requires	much	less	configuration.)
OpenSSH	supports	chrooting	users	with	the	ChrootDirectory	option.
ChrootDirectory	none

By	default,	sshd	does	not	chroot	users.
Populating	a	Chroot
A	chrooted	user	cannot	access	anything	outside	the	chroot.	Any	chroot	you
create	will	not	have	device	nodes,	shells,	or	other	programs	unless	you	place
them	there.	When	your	restricted	user	logs	in,	sshd	will	fail	to	find	a	shell	or
home	directory	and	immediately	disconnect	them.	To	give	a	chrooted	user	shell
access	you	must	at	minimum	set	permissions	on	the	chroot	directory,	create	a
home	directory	for	the	imprisoned	user,	create	device	nodes,	and	install	a	shell.

You	only	need	to	populate	the	chroot	if	the	user	needs	shell	access.	If	the	user
only	gets	file	copy	access	via	SFTP,	the	ForceCommand	keyword	discussed	in
Chapter	6	is	preferable	to	a	populated	chroot.

The	chroot	directory	must	be	owned	by	root	and	not	writable	by	the	restricted
user,	just	as	you	would	not	permit	an	unprivileged	user	to	write	to	the	host’s	root
directory.	If	the	restricted	user	can	write	to	the	chroot	directory,	sshd	will	not	let
them	log	in.

A	user’s	home	directory	(as	shown	inside	etcpasswd)	is	expected	to	be	available
inside	the	chroot.	If	user	pkdick’s	home	directory	is	listed	as	homepkdick,	and	he	is
chrooted	into	usrprisonroot,	you	must	create	the	directory	usrprisonroothomepkdick.
This	directory	should	be	owned	by	the	user,	just	like	a	regular	home	directory,
and	should	contain	any	necessary	dotfiles.

Create	a	device	node	directory	inside	the	chroot.	With	a	chroot	directory	of
usrprisonroot,	you’d	need	usrprisonroot/dev.	Now	you	need	to	populate	this	with
device	nodes.	A	chroot	doesn’t	require	a	full	complement	of	device	nodes,	but
most	chrooted	applications	need	at	least	devrandom,	devstdin,	devstdout,	devstderr,
devtty,	and	devzero.	The	method	to	create	device	nodes	varies	between	operating
systems.	OpenBSD	and	many	Linuxes	use	a	shell	script	devMAKEDEV,	while
FreeBSD	and	many	commercial	Unix-like	systems	use	a	device	filesystem.
Check	your	operating	system	to	see	what	device	nodes	a	chroot	needs	and	how
to	create	them.	Some	operating	systems	include	tools	to	easily	populate	a	chroot.

Finally,	users	need	a	shell.	Copy	a	statically-linked	shell	into	the	chroot’s	/bin
directory.	Also	copy	static	versions	of	any	other	programs	the	user	needs.	If	you
want	to	use	dynamically	linked	programs,	you	must	also	copy	over	any
necessary	files.
Assigning	Chroot	Directories

Use	the	ChrootDirectory	option	to	establish	chroots.
ChrootDirectory	homedjm

This	works	for	a	single	user	account,	or	if	all	SSH	users	have	the	same	chroot
directory,	but	this	is	a	place	where	tokens	come	in	useful.

If	your	chroot	directory	path	includes	a	literal	percent	sign,	use	the	%%	token.
Here	we	chroot	into	the	directory	homedisk%1/djm.
ChrootDirectory	homedisk%%1/djm	The	%h	macro	expands	to	the	user’s	home	directory,	as

specified	in	etcpasswd.

ChrootDirectory	%h

At	login,	djm	gets	locked	into	homedjm.	Note	that	he’ll	need	a	chrooted	home
directory	inside	this	directory,	so	you’ll	need	to	create	homedjmhomedjm.

The	%u	macro	expands	to	the	user’s	username.	This	lets	you	assign	a	group	of
users	unique	home	directories	under	central	chroot	directory.
ChrootDirectory	usrprisonroot/%u	You’ll	need	to	populate	each	user’s	chroot	separately.

Choosing	Users	to	Chroot
You	can	chroot	everyone,	but	that	would	make	it	hard	for	your	sysadmins	to
perform	maintenance.	Chances	are	you	only	want	to	chroot	a	subset	of	your
users.	Use	a	Match	statement	to	selectively	chroot	users.
…

ChrootDirectory	none

…

Match	Group	billing

ChrootDirectory	%h

If	a	majority	of	your	users	are	chrooted,	reverse	the	default	to	allow	only	your
sysadmins	full	access.
…

ChrootDirectory	%h

…

Match	Group	wheel

ChrootDirectory	none

Choose	whichever	method	makes	sense	for	your	environment.
Debugging	a	Chroot
Chroots	are	difficult	to	manage	in	that	they	normally	lack	a	complete	userland.	If
a	chrooted	user	cannot	log	in,	run	sshd	in	debugging	mode,	attached	to	a	terminal
window.	Have	the	chrooted	user	attempt	to	log	in,	and	watch	the	debugging
output;	you’ll	probably	see	the	problem.	Common	issues	include	missing	device
nodes,	incorrect	directory	permissions,	or	a	missing	shell.
Protecting	the	SSH	Server
Any	Internet-facing	server	will	have	lots	of	random	stuff	poking	at	it.	Worms,
script	kiddies,	and	other	assorted	scum	would	really	like	to	break	into	your
computer.	If	nothing	else,	someone	wants	to	run	an	IRC	bot	on	it.	How	can	you
protect	your	SSH	service?

Some	people	recommend	changing	the	TCP	port	that	sshd	uses.	This	is	a
perfect	example	of	security	through	obscurity,	which	does	not	work.	Scanners

constantly	probe	all	ports	of	all	Internet-connected	IP	addresses,	and	they’re
pretty	good	at	figuring	out	what	service	is	running	on	which	port.	Changing
ports	might	buy	you	a	couple	of	minutes	against	a	dedicated	intruder,	but	no
longer.	Changing	ports	can	reduce	the	amount	of	random	noise	you	get	in	your
logs,	increasing	the	odds	of	you	noticing	real	problems.

You’ll	also	see	random	folks	on	the	Internet	recommend	using	a	different
protocol	banner,	which	is	a	poor	idea.	You’ll	see	the	protocol	banner	when	you
use	netcat	to	connect	to	the	SSH	daemon.	The	banner	identifies	the	type	of
server.	All	SSH	servers	differ	slightly,	and	might	require	special	client	settings.
SSH	clients	use	the	protocol	banner	to	detect	any	quirks	needed	for	a	reliable
connection	with	a	server.	If	you	change	the	protocol	banner	from	SSH-2.0-
OpenSSH_7.0	to	SSH-2.0-ParanoidWhackJob,	you’re	depriving	clients	of
information	they	need	to	reliably	connect.

You	might	also	consider	add-on	solutions	to	block	IP	addresses	that
repeatedly	connect	but	fail	to	authenticate,	such	as	fail2ban	and	blacklistd.	The
details	of	implementing	these	varies	widely	by	platform,	so	I’m	not	going	into
them,	but	they	are	worth	considering.

To	some	extent,	sshd(8)	protects	itself	via	privilege	separation.	Only	a	small
section	of	the	service	runs	with	root	privileges.	Most	of	the	server	runs	as	an
unprivileged	user.	This	means	that	if	an	intruder	successfully	breaks	into	the
server	daemon,	he	can	only	do	a	limited	amount	of	damage	to	your	system.	It’s
still	really	annoying,	but	not	devastating.

Additionally,	sshd(8)	restricts	the	unprivileged	process	via	a	sandbox.	The
sandbox	restricts	which	syscalls	sshd	can	call	before	the	user	authenticates.
OpenSSH	supports	a	few	different	sandbox	methods,	from	Apple’s	sandbox(7)
to	Linux’s	seccomp(2).	If	the	operating	system	doesn’t	offer	any	other
sandboxing	methods,	sshd	uses	rlimit	to	set	the	number	of	open	files	and	child
processes	to	zero.

As	with	all	Internet-facing	services,	a	simple	way	to	reduce	risk	to	your	SSH
service	is	to	reduce	the	number	of	IP	addresses	that	can	access	it.	OpenSSH
respects	TCP	wrappers	(etchosts.allow).	If	your	server	or	network	has	a	packet
filter,	use	it	instead.	By	only	allowing	authorized	IP	addresses	to	access	your
SSH	server,	you	block	the	vast	majority	of	attackers.

The	most	effective	way	to	protect	your	server,	however,	is	to	disable
passwords	and	only	allow	logins	via	keys.	We	cover	access	via	keys	in	Chapter
7,	“SSH	Keys.”

We’ll	return	to	configuring	sshd	when	we	cover	specific	features,	but	for	now
let’s	talk	about	server	keys.

1	And	you	need	to	inflict	bodily	harm	until	privilege	separation	gets	turned	back	on.
2	If	you	don’t	like	your	vendor’s	answer,	ask	more	loudly	and	with	malice	aforethought.
3	The	impact	on	your	employment	of	evading	the	corporate	firewall	is	left	as	an	exercise	for	the	reader.

Chapter	4:	Verifying	Server	Keys
If	you’re	paranoid,	or	if	you’ve	been	a	sysadmin	for	longer	than	a	week,	you
need	to	be	sure	that	the	server	you’re	logging	into	is	the	server	you	think	you’re
logging	into.	Server	keys	help	verify	a	server’s	identity	before	you	exchange
authentication	information	with	the	wrong	machine.

Network	connections	over	unencrypted,	unauthenticated	protocols	are	easily
diverted	to	the	wrong	machine.	An	intruder	who	controls	a	publicly	accessible
device,	such	as	a	server,	can	make	it	spoof	a	different	server’s	identity.	Every
user	that	logs	onto	the	spoof	server	gives	his	username	and	password	to	the
intruder.	Often	the	intruder	will	then	forward	the	session	to	the	actual	destination
host,	so	that	the	user	never	realizes	that	they’ve	been	caught.	This	is	a	classic
network	attack	that	is	still	widespread	today;	the	protocols	change,	the
applications	change,	but	man-in-the-middle	attacks	and	spoofing	are	forever.

When	properly	deployed	and	used,	SSH	categorically	eliminates	these
attacks.	Even	if	an	intruder	can	make	one	machine	resemble	another,	even	if	he
copies	the	login	prompts	and	the	web	site	and	the	operating	system	version,	the
intruder	cannot	copy	the	target	server’s	private	key	unless	he	already	controls	the
server.	Without	the	private	key,	the	spoof	server	cannot	decrypt	anything
transmitted	via	the	server’s	public	key.

SSH	server	keys	verify	the	server’s	identity	to	the	client.	They	are	important,
not	something	you	just	hit	ENTER	to	accept.

Every	SSH	server	has	one	or	more	unique	public	keys,	as	discussed	in
Chapter	1.	The	first	time	an	SSH	client	connects	to	an	SSH	server,	it	displays	the
server’s	public	key	fingerprint	to	the	user.	The	user	is	expected	to	compare	the
fingerprint	shown	with	the	server’s	key	fingerprint.	If	they	match,	the	user	tells
their	SSH	client	to	cache	the	key	and	the	connection	continues.	If	the	keys	don’t
match,	the	user	terminates	the	connection.

On	all	subsequent	connections	to	the	server,	the	client	compares	its	cached
key	to	the	key	presented	by	the	server.	If	the	keys	match,	the	connection
continues.	If	the	keys	don’t	match,	the	client	assumes	that	something	has	gone
wrong	and	requests	user	intervention.

For	SSH	server	keys	to	be	useful,	you	must	verify	that	the	key	displayed	by
the	client	is	identical	to	the	key	offered	by	your	target	server.	A	public	key	is
several	hundred	characters	long,	however.	Sysadmins	can’t	realistically	ask
users	to	compare	hundreds	of	characters	to	a	list	of	known-good	keys;	most
users	automatically	dismiss	the	task	as	impossible.	Explaining	that	it’s	very
possible,	but	very	tedious	and	very	annoying,	does	not	improve	the	discussion.

SSH	summarizes	public	keys	with	key	fingerprints.
Key	Fingerprints
A	key	fingerprint	is	an	almost	human-readable	summary	of	a	public	key.	Any
user	can	get	the	public	key	fingerprints;	if	you	need	the	private	key	fingerprints,
you’ll	need	to	be	root.	View	a	key’s	fingerprint	with	the	ssh-keygen(1)	program,
using	-l	to	print	the	fingerprint	and	-f	to	specify	a	key	file.	Here	I	view	the
fingerprint	of	this	host’s	ED25519	key.
$	cd	etcssh

$	ssh-keygen	-lf	ssh_host_ed25519_key.pub

256	SHA256:JwmD+yFwH83rPdhorge/S6qxXAUy3/G0CvFqTrcIWkY	root@www	(ED25519)	We	see	that	this

key	use	256-bit	SHA-256.	The	fingerprint	itself	is	the	long	string	beginning	with	JwmD…

and	ending	with	cIWkY.	After	that	we	have	the	user	and	host	that	generated	the	key,	plus

the	key	type	in	parenthesis.

The	server	and	client	negotiate	on	which	key	to	use	for	a	connection.	The
client	might	present	any	supported	key	to	the	user,	so	you’ll	need	the	fingerprint
of	every	public	key	on	the	server.	The	easiest	way	to	collect	all	the	fingerprints
is	to	copy	them	to	a	file.
$	ssh-keygen	-lf	ssh_host_ed25519_key.pub	>	$HOME/fingerprints.txt

$	ssh-keygen	-lf	ssh_host_ecdsa_key.pub	>>	$HOME/fingerprints.txt

$	ssh-keygen	-lf	ssh_host_rsa_key.pub	>>	$HOME/fingerprints.txt

Now	get	those	fingerprints	to	your	users.
You	can	use	ssh-keyscan(1)	to	retrieve	key	fingerprints	from	your	SSH

servers,	but	you	must	verify	those	fingerprints	against	the	server’s	public	key.
By	the	time	you	do	that,	you	might	as	well	extract	the	public	key	fingerprint
from	the	server	itself.	The	ssh-keyscan	program	is	useful	for	verifying	that	a
host’s	public	key	fingerprints	haven’t	changed,	however.
Making	Host	Key	Fingerprints	Available
A	user	first	connecting	to	an	SSH	server	should	compare	the	host	key	fingerprint
that	appears	in	their	client	to	a	known	good	host	key	fingerprint.	Real	users	only
do	this	if	the	comparison	process	is	easy,	though.	The	system	administrator
needs	to	make	fingerprint	comparisons	simultaneously	easy	and	secure.	The
easiest	way	is	probably	to	display	the	key	fingerprints	on	an	encrypted	Web	site
accessible	from	within	your	organization.	When	an	employee	needs	SSH	access
to	the	server,	give	them	a	link	to	the	fingerprint	page	when	you	give	them	their
login	credentials.	Do	not	distribute	key	fingerprints	over	insecure	media,	such	as
email	or	an	unencrypted	Web	site.

Chapter	11	offers	methods	to	automatically	distribute	keys	and	fingerprints.
Deploying	these	methods	eliminates	the	need	for	users	to	manually	verify	keys,
simultaneously	increasing	compliance	and	decreasing	everyone’s	workload.

If	you’re	running	the	OpenSSH	client,	you	can	simplify	key	verification	with
key	certificates	(Chapter	14),	SSHFP	records	(Chapter	11),	or	both.	Very	few
other	clients,	including	PuTTY,	support	these	protocols.

Host	Keys	and	the	OpenSSH	Client
When	you	first	connect	to	an	SSH	server	with	the	OpenSSH	client	ssh(1),	you’ll
see	a	prompt	requesting	that	you	verify	the	key.
$	ssh	gluttony

The	authenticity	of	host	'gluttony	(203.0.113.213)'	can't	be	established.

ECDSA	key	fingerprint	is	SHA256:jovou1bQ0S1Ex6QBjo4T+0+FzwzyTXLqxF/aPudVTnk.

No	matching	host	key	fingerprint	found	in	DNS.

This	is	your	opportunity	to	verify	that	the	OpenSSH	server	is	actually	the
host	you	think	it	is.	OpenSSH	offers	you	the	ECDSA	key	fingerprint.	Grab	your
list	of	server	keys	and	compare	the	ECDSA	key	fingerprint	in	the	list	to	the
ECDSA	key	fingerprint	in	the	client.	If	the	key	fingerprints	match,	type	yes	to
cache	the	verified	key	and	continue	the	connection.	You’ll	get	a	message	much
like	the	following.
Warning:	Permanently	added	'gluttony'	(ECDSA)	to	the	list	of	known	hosts.

The	next	time	you	connect	to	this	host,	ssh(1)	will	compare	the	cached	host
key	to	the	host	key	on	the	server	and	either	silently	and	securely	connect,	or
loudly	and	securely	disconnect.

If	the	key	does	not	match,	ssh(1)	immediately	disconnects	without	caching
the	key.	Immediately	notify	your	sysadmin	and/or	security	team	that	the	host	key
does	not	match.

OpenSSH	also	supports	an	easier	way	to	compare	key	fingerprints,	called
randomart.	A	randomart	image	is	a	visual	interpretation	of	a	key	fingerprint.	It’s
a	non-standard	representation,	however.	Feel	free	to	experiment	with	randomart,
but	don’t	assume	it’s	universally	available.
Host	Keys	and	the	PuTTY	Client
The	first	time	you	connect	to	a	server	with	PuTTY,	you’ll	get	a	warning	much
like	Figure	4-1.

Figure	4-1:	PuTTY	Key	Fingerprint	Message	Compare	the	key	fingerprint	shown	in	the	client	to	the	key
fingerprint	in	your	list.	Note	that	PuTTY	negotiated	a	connection	using	an	RSA	key,	which	is	different	that
the	ECDSA	key	agreed	on	between	OpenSSH	and	its	OpenSSH	server.

If	the	keys	match	and	you	want	PuTTY	to	cache	the	key	for	future	reference
and	then	connect,	hit	Yes.

If	the	keys	match,	and	you	want	PuTTY	to	connect	without	caching	the	key,
hit	No.

If	the	keys	do	not	match,	hit	Cancel	to	terminate	the	connection.	The	host
you’re	connecting	to	is	not	the	host	you	think	you’re	connecting	to.	Verify	that
you	entered	the	correct	hostname,	then	notify	your	sysadmin	and/or	security
team	of	the	non-matching	host	key.
When	Keys	Don’t	Match
If	a	host	key	has	changed,	you’ll	get	a	message	much	like	this.
$	ssh	gluttony

@@@

@	WARNING:	REMOTE	HOST	IDENTIFICATION	HAS	CHANGED!	@

@@@

IT	IS	POSSIBLE	THAT	SOMEONE	IS	DOING	SOMETHING	NASTY!

Someone	could	be	eavesdropping	on	you	right	now	(man-in-the-middle	attack)!

It	is	also	possible	that	a	host	key	has	just	been	changed.

The	fingerprint	for	the	ECDSA	key	sent	by	the	remote	host	is

SHA256:TSJ39GppnUdf8JX6J0oAf9+Cga2LzLNXX+tid54lfo4.

Please	contact	your	system	administrator.

Add	correct	host	key	in	homemwlucas/.ssh/known_hosts	to	get	rid	of	this	message.

Offending	ECDSA	key	in	homemwlucas/.ssh/known_hosts:5

ECDSA	host	key	for	gluttony.mwl.io	has	changed	and	you	have	requested	strict	checking.

Host	key	verification	failed.

Scary-looking	stuff?	It	should	be.	Something	scary	has	happened.	Your	SSH
client	is	screaming	that	something	is	Very	Wrong.	If	your	laptop	was	an
ambulance,	the	lights	would	be	spinning	and	the	siren	blaring.	The	super-secret
host	key	pair	used	to	identify	this	system	has	changed.	This	can	happen	for	one
of	six	reasons.	Identifying	which	requires	talking	to	the	sysadmin.

Maybe	the	sysadmin	destroyed	the	key	pair,	either	accidentally	or
deliberately,	and	generated	a	new	key	pair.	She	should	have	a	new	key
fingerprint	for	you.

Perhaps	the	key	fingerprint	cached	by	your	client	is	wrong.	You	might	have	a
desktop	security	issue.

Or,	the	server	might	have	been	upgraded	or	replaced,	and	now	supports	a	new
key	algorithm.	The	sysadmin	should	have	a	new	key	fingerprint	for	you.

It	could	be	that	the	site	uses	round-robin	DNS,	effectively	giving	several

servers	a	single	hostname,	and	you’re	connecting	to	the	shared	name	rather	than
an	individual	server’s	unique	name.	Access	individual	hosts,	not	a	shared
hostname.

Perhaps	your	host’s	key	cache	is	corrupt.	Re-validate	the	host	key.	This	is
annoying,	but	not	insurmountable.	Your	sysadmin	can	confirm	that	the	host	key
has	not	changed.

Lastly,	it’s	possible	that	an	intruder	controls	the	server	or	has	diverted	your
connection	to	a	different	server.	You,	the	sysadmin,	and/or	your	security	team,
are	about	to	have	a	bad	day.

The	only	way	to	know	which?	Talk	to	the	sysadmin.	DO	NOT	CONNECT
TO	THE	SERVER	UNTIL	YOU	KNOW	WHY	THE	KEY	CHANGED.	All	of
these	are	serious	errors	that	require	investigation.

If	the	key	changed	for	a	legitimate	reason,	verify	the	new	key.	If	the	new	key
is	correct,	replace	the	old	key	with	the	new	one.	PuTTY	offers	to	replace	the	key
for	you,	while	in	OpenSSH	you	must	edit	the	key	cache	yourself,	as	discussed	in
Chapter	5.	The	error	message	gives	the	line	in	known_hosts	that	contains	the
obsolete	key.	If	the	key	is	still	not	correct,	talk	to	the	sysadmin	again.	A
legitimate	SSH	key	change	might	mask	an	illegitimate	intruder;	I’ve	seen	more
than	one	freshly	installed	server	get	compromised	before	the	first	legitimate
logon.

You	can	override	the	SSH	client’s	refusal	to	connect	to	machines	when	the
host	key	changes,	or	not	cache	the	new	key,	but	remember,	SSH	doesn’t	just
validate	the	server	and	protect	your	data	in	transit.	A	completed	connection	also
hands	your	authentication	information	to	the	SSH	server.	If	you	give	your
username	and	password	to	a	compromised	machine,	you’ve	just	given	the
intruder	your	username	and	password.	If	you	use	the	same	password	on	multiple
machines,	you	can	no	longer	trust	any	of	them.	Cancel	your	weekend	plans	right
now,	and	possibly	next	weekend’s	as	well.	You’ll	be	busy	recovering	from
backup	and	managing	irate	customers.

A	mismatched	key	message	is	a	sign	that	SSH	works.	Use	it.

Chapter	5:	SSH	Clients
SSH	client	software	resides	on	a	user’s	workstation	and	permits	connections	to
an	SSH	server.	We’ll	discuss	two	common	clients:	the	OpenSSH	command-line
client	for	Unix-like	hosts,	ssh(1),	and	the	PuTTY	client	for	Microsoft	Windows.
Both	clients	are	freely	usable	and	redistributable,	in	source	or	binary	form,	with
very	minimal	restrictions	or	limitations.

People	have	written	other	SSH	clients,	of	course.	You	can	get	an	OpenSSH-
based	client	for	Windows	systems	either	through	Cygwin	or	Microsoft’s
Windows	Subsystem	for	Linux	on	Windows	10	and	newer.	There’s	a	straight
port	of	OpenSSH	to	Windows	(https://github.com/PowerShell/Win32-
OpenSSH).	Microsoft	has	released	a	beta	port	of	OpenSSH	to	Windows	10	and
newer,	as	a	developer	feature.	Similarly,	PuTTY	has	been	ported	to	many	Unix-
like	systems	and	mobile	devices.	Many	people	have	forked	both	PuTTY	and
OpenSSH,	modifying	them	to	fit	their	needs.	Many	of	these	are	solid,	reliable
projects.	Once	you	have	a	solid	grounding	in	SSH,	feel	free	to	use	the	client	that
you	prefer.

Each	client	has	its	own	section	in	this	chapter.	Further	chapters	involving
SSH	clients	will	get	chopped	into	three	sections:	one	for	the	theory	of	what
we’re	doing,	followed	by	separate	sections	on	configuring	each	client.
OpenSSH	Client
The	OpenSSH	client,	ssh,	is	developed	synchronously	with	the	OpenSSH	server.
As	new	features	often	appear	in	OpenSSH	before	other	SSH	implementations,
you’ll	get	the	bleeding	edge	of	SSH	features	by	using	the	newest	OpenSSH
client.	The	OpenSSH	client	is	developed	as	part	of	OpenBSD,	but	a	new
portable	release	appears	every	six	months.

A	user’s	personal	SSH	settings	are	recorded	as	files	in	$HOME/.ssh/.	Like	the
home	directory,	this	directory	must	be	writable	only	by	the	user	and	root,
although	you	can	allow	it	to	be	world-readable.	Various	client	and	server
functions	stop	working	if	others	can	write	to	this	directory.	While	ssh	creates
$HOME/.ssh	with	correct	permissions,	if	your	SSH	suite	behaves	oddly	check	the
permissions.

To	run	ssh,	enter	the	command	follow	by	the	host	you	want	to	connect	to.
$	ssh	gluttony.mwl.io

This	uses	your	client’s	default	settings	to	connect	to	the	host	gluttony.mwl.io,
including	your	current	username.1

If	ssh	doesn’t	behave	as	you	expect,	try	running	it	in	verbose	mode	with	-v.
You’ll	see	the	server	and	client	negotiate	protocol	version	and	encryption

algorithms,	the	server	present	its	host	key,	the	client	verify	that	key,	and	the	two
negotiate	authentication	methods.	While	this	might	not	solve	your	problem,	it
will	tell	you	where	the	login	fails	and	give	you	a	hint	about	where	to	look.
Reading	the	output	carefully	might	tell	you	that,	for	example,	the	server	only
permits	logins	with	public	keys	or	you’re	trying	to	use	an	unsupported
encryption	method.
$	ssh	-v	gluttony.mwl.io

If	you	still	have	trouble,	multiple	-v	options	increase	the	debugging	level.
In	normal	cases,	that’s	it.	The	rest	of	this	book	is	about	abnormal	cases.

OpenSSH	Client	Configuration
Configure	ssh	by	setting	options,	either	on	the	command	line	or	in	a
configuration	file.	Use	configuration	files	for	permanent	changes	and	the
command	line	for	temporary	ones.	We’ll	look	at	the	configuration	file	first.

Two	files	control	ssh(1)	behavior:	etcssh/ssh_config	and	$HOME/.ssh/config.	Each
contains	keywords	and	values,	as	discussed	in	Chapter	2.	The	former	establishes
default	behavior	for	all	system	users.	The	latter	is	the	user’s	personal	SSH	client
configuration.	A	user’s	configuration	overrides	all	global	settings,	but	most	users
can’t	be	bothered	to	enter	their	own	custom	configurations.	Configuration	file
changes	affect	all	SSH	sessions	started	after	the	change.	There’s	no	process	to
restart,	but	changing	the	configuration	doesn’t	affect	existing	SSH	sessions.	Both
files	have	the	same	syntax	and	accept	exactly	the	same	options.	I’ll	refer	to
ssh_config	for	brevity,	but	everything	applies	equally	well	to	$HOME/.ssh/config.

While	most	connection	options	can	be	set	on	the	command	line,	I	recommend
storing	permanent	information	in	ssh_config.	Programs	such	as	scp(1)	and	sftp(1)
(see	Chapter	6)	read	ssh_config,	and	each	of	these	programs	have	slightly	different
command	line	options.	Using	a	configuration	file	centralizes	configuration.

The	user’s	personal	configuration	overrides	the	global	configuration.	Options
set	on	the	command	line	override	both.
Per-Host	Configuration
You	can	use	the	Host	keyword	to	change	how	ssh	connects	to	certain	hosts.	Here,
I	use	the	Port	keyword	to	change	the	TCP	port	ssh	connects	to,	but	only	for	hosts
in	the	mwl.io	domain.	It	uses	port	22	for	all	other	hosts,	as	specified	in	etcservices.
Host	*.mwl.io

Port	2222

I	could	also	specify	an	IP	address,	or	a	network	of	IP	addresses.
Host	192.0.2.*

Port	2224

Note	that	ssh	matches	these	ssh_config	entries	based	on	what	the	user	enters	on
the	command	line.	Host	entries	must	be	an	exact	case-sensitive	match	for	what
the	user	types.	Assume	that	my	ssh_config	contains	both	Host	entries	above,	and

let’s	see	how	this	works	in	practice.
$	ssh	gluttony.mwl.io

This	matches	the	first	Host	entry,	so	ssh	connects	to	port	2222.
My	desktop’s	etcresolv.conf	automatically	appends	the	domain	mwl.io	to	any

lone	hostnames,	so	I	probably	wouldn’t	type	the	fully	qualified	domain	name.
Instead,	I’d	just	do	something	like	this.
$	ssh	gluttony

This	won’t	match	my	first	Host	entry,	as	I	didn’t	explicitly	type	the	domain
name	given	in	ssh_config.	If	the	host	gluttony	has	an	IP	address	in	192.0.2.0/24,
though,	wouldn’t	the	second	Host	entry	match?	No,	because	the	Host	entries
match	on	the	command	line;	there	is	no	check	against	DNS.	To	match	based	on
the	IP	address	in	the	Host	entry,	I	would	need	to	explicitly	run	ssh
192.0.2.whatever.	Custom	settings	for	this	host	require	a	Host	entry	like	this.
Host	gluttony

Port	2222

Conditions	are	parsed	on	a	first-match	basis.	Configuration	options	listed
after	Host	entries	remain	in	effect	until	the	next	Host	entry.	This	ssh_config	is
probably	wrong.
Host	*.mwl.io

Host	192.0.2.*

Port	2222

The	user	probably	wanted	the	Port	keyword	to	apply	to	all	hosts	in	mwl.io	and
all	IP	addresses	in	192.0.2.0/24.	We	have	an	entry	for	any	host	in	the	mwl.io
domain,	but	there’s	no	special	configuration	for	it.	Any	hosts	in	192.0.2.0/24	run
sshd	on	port	2222.	Instead	of	doing	this,	list	multiple	hosts	on	the	same	line,
separated	by	spaces.	Here	I	list	my	domain	name,	my	IP	addresses,	and	my
servers.
Host	129.0.2.*	mwl.io	*.mwl.io	gluttony	avarice	lust	pride	wrath	envy	sloth	Port	2222

I	list	both	*.mwl.io	and	mwl.io	because	there	is	a	specific	machine	named
mwl.io.	The	leading	asterisk	and	period	before	the	domain	name	will	not	match
that	host.

Put	any	global	defaults	at	the	beginning	of	your	configuration	file.	Suppose
your	organization	has	a	policy	of	running	SSH	on	port	981,	because	they	like
security	through	obscurity,	but	your	special	servers	use	a	different	port	for	even
more	obscurity.
Port	981

Host	*.mwl.io

Port	2222

Here	the	default	port	is	981,	but	the	specified	hosts	use	port	2222.
Sometimes	you	want	to	test	changes	without	mucking	with	a	working

configuration,	or	maybe	you	have	an	automated	process	that	needs	a	special
configuration	file.	To	use	a	configuration	file	other	than	ssh_config,	specify	it	on
the	command	line	with	the	-F	option.

$	ssh	-F	test-config	avarice

You	can	now	experiment	with	features	without	breaking	your	working
configuration.

If	you	have	enough	hosts,	you	might	consider	establishing	canonical
hostnames	in	ssh_config.
Canonical	Hostnames
On	a	large	enough	network,	or	in	an	orchestrated	environment	where	servers	are
dynamically	created	and	destroyed,	listing	all	of	your	SSH	servers	quickly
becomes	unrealistic.	The	CanonicalizeHostname	keyword	tells	ssh	to	rewrite
standalone	Host	entries	in	ssh_config	into	specific	domains,	and	then	(if	they
exist)	use	that	hostname	for	configuration	and	key	management.	This	lets	you
eliminate	many	lengthy	Host	keywords.	Set	CanonicalizeHostname	to	yes	and
CanonicalDomains	to	your	domain.	Consider	the	following	configuration:
CanonicalizeHostname	yes
CanonicalDomains	mwl.io

Host	*.mwl.io

Port	2222

The	next	time	I	run	ssh	gluttony,	ssh	checks	to	see	if	there’s	a	hostname
gluttony.mwl.io.	If	that	hostname	exists,	ssh	evaluates	ssh_config	as	if	I’d	run	ssh
gluttony.mwl.io.	This	connection	gets	the	special	rules	that	apply	to	hosts	in	the
mwl.io	domain.

You	can	list	multiple	canonical	domains.	The	canonical	names	are	tested	in
the	order	they’re	listed,	and	the	first	match	wins.	Consider	an	entry	like	this.
CanonicalDomains	mwl.io	michaelwlucas.com	When	I	run	ssh	wrath,	ssh(1)	searches	for

wrath.mwl.io.	If	it	finds	that	host,	it	opens	a	connection.	If	it	can’t	find	that	host,

ssh	searches	for	wrath.michaelwlucas.com.

If	you	activate	hostname	canonicalization,	ssh	defaults	to	trying	to
canonicalize	hosts	with	one	or	fewer	dots	in	them.	This	lets	canonicalization
catch	subdomains,	like	www.detroit.mwl.io	for	www.detroit.	To	change	the	maximum
number	of	dots	in	the	hostname,	use	the	CanonicalizeMaxDots	keyword.	Here	I
allow	zero	or	fewer	dots.
CanonicalizeMaxDots	0

OpenSSH	has	a	few	other	hostname	canonicalization	features,	discussed	in
ssh_config(5).
Common	SSH	Options
The	most	common	features	people	use	are	changing	the	username,	the	port,	or
adding	SSH	options.
Changing	Usernames
Most	SSH	clients	assume	that	your	username	is	identical	on	both	the	client	and
server,	and	tries	to	log	into	the	remote	system	with	the	same	username	you	have
on	the	local	machine.	On	most	of	my	systems,	my	username	is	mwl.	Occasionally

someone	creates	an	account	for	me	with	a	different	username,	like	mlucas	or	lucas
or	michael	or	jerkface.	I	must	tell	ssh	to	use	that	username	on	the	remote	system.
Do	this	by	putting	the	user	account	name,	followed	by	the	@	symbol,	then	the
remote	machine	name.
$	ssh	jerkface@devio.us

You	can	also	specify	a	username	with	-l.
$	ssh	-l	jerkface	devio.us

If	this	is	an	ongoing	thing,	specify	the	username	in	ssh_config	with	the	User
option.
Host	devio.us

User	jerkface

By	storing	usernames	in	ssh_config,	I	can	forget	about	them	and	free	up
valuable	brain	space.
Changing	Port
Some	sites	run	SSH	on	a	port	other	than	22,	usually	to	provide	an	appearance	of
improved	security.	It	doesn’t	actually	secure	SSH,	but	it	does	reduce	log	noise.
Use	-p	and	a	port	number	to	change	the	port	ssh	connects	to.	If	your	server	runs
sshd	on	port	2222,	connect	with:	$	ssh	-p	2222	gluttony

You	can	specify	the	port	in	ssh_config.
Port	2222

Again,	I	recommend	storing	permanent	connection	information	in	ssh_config.
SSH	Options	on	the	Command	Line
SSH	isn’t	just	a	command;	it’s	a	protocol.	And	that	protocol	has	all	sorts	of	edge
cases.	Sometimes	you’ll	need	to	set	some	of	those	edges	on	the	command	line.
While	everything	OpenSSH	supports	is	available	as	an	ssh_config	keyword,	not
all	of	those	keywords	have	command-line	equivalents.	To	set	those	keywords	on
the	command	line	use	the	-o	command-line	option,	the	option	name,	an	equals
sign,	and	the	value	of	that	keyword.
$	ssh	-o	Port=2222	sloth

This	example	is	trivial—the	Port	keyword	has	a	dedicated	command-line
option,	-p.	We’ll	see	more	complicated	examples	later.
Evaluating	your	SSH	Configuration
You	can	set	command-line	options,	options	in	the	user’s	configuration	file,	and
options	in	the	global	client	configuration	file.	Host	keywords	can	muck	up	your
carefully	adjusted	defaults,	or	your	carefully	adjusted	defaults	can	require	you	to
use	Host	keywords	for	specific	servers.	How	do	you	know	what	options	ssh(1)	is
really	using	when	you	connect	to	a	host?

Use	the	-G	option	to	ssh.	It	tells	ssh(1)	to	parse	all	the	configurations	for	the
target	host,	print	out	the	configuration	it’s	going	to	use,	and	immediately	exit
without	connecting.	You	can	review	your	settings	to	verify	you’re	getting	what
you	need.

SSH	Jump	Hosts
Sysadmins	often	have	to	pass	through	one	host	to	get	to	another.	Maybe	you
trust	this	intermediate	host.	Maybe	you	don’t.	OpenSSH	supports	jump	hosts,
letting	you	use	an	SSH	server	as	a	relay	to	connect	to	a	second	server.	Yes,	you
could	do	this	manually	by	logging	into	the	intermediate	host	and	running	ssh
again,	but	using	the	built-in	support	means	that	the	jump	host	sees	none	of	your
plain	text.	The	jump	host	has	no	control	over	the	options	your	client	and	the
target	server	negotiate.	This	means	you	can,	say,	forward	X	or	your	SSH	agent
through	a	jump	host	that	accepts	neither.

Specify	a	jump	host	with	-J.	Add	the	username	if	needed.
$	ssh	-J	mwl@envy	jerkface@pride

I’m	trying	to	log	in	as	jerkface	on	the	host	pride,	using	the	account	mwl	on	host
envy	as	a	jump	host.	I’ll	get	prompted	for	my	authentication	credentials	on	the
jump	host,	and	then	my	credentials	on	the	destination.It’s	best	to	use	public	key
authentication	on	both	hosts.

Set	a	jump	host	in	ssh_config	with	the	ProxyJump	keyword.
Host	pride.mwl.io

ProxyJump	mwl@envy.mwl.io

How	much	do	you	have	to	trust	your	jump	host?	None	of	your	keystrokes
reach	the	jump	host,	so	you	don’t	have	to	worry	about	session	logging.	The	only
thing	the	jump	host	can	see	is	an	encrypted	data	stream	between	your	client	and
the	destination	server.	The	jump	host	could	alter	or	interrupt	the	encrypted
stream,	but	that’s	exactly	the	sort	of	tampering	SSH	is	designed	to	detect.

Some	Linux	distributions	disable	jump	hosts	in	their	client.
Addressing	Options
The	OpenSSH	client	lets	you	choose	how	it	uses	TCP/IP,	by	setting	the	address
family	and	the	source	address.
IP	Protocol	Version
Hosts	can	have	both	IPv4	and	IPv6	addresses.	The	AddressFamily	keyword	tells
the	client	to	connect	with	only	IPv4	(inet)	or	with	only	IPv6	(inet6).	The	default
is	any,	which	means	“connect	over	whichever	protocol	the	system	resolver
returns	an	address	for.”	Sometimes,	you’ll	have	better	connectivity	over	one
protocol	or	the	other.	If	you	get	your	IPv6	connectivity	via	a	tunnel,	using	only
IPv4	for	SSH	might	make	sense.	Similarly,	if	you	have	unlimited	IPv6
connectivity,	you	might	want	to	use	IPv6	for	everything.	Here	I	deliberately
disable	IPv4.
AddressFamily	inet6

You	can	choose	to	use	only	IPv4	with	the	-4	command-line	option.
$	ssh	-4	lust

Force	IPv6	with	-6.

Set	Source	Address
Hosts	with	multiple	IP	addresses	on	a	single	interface	default	to	originating	all
connections	from	that	interface’s	primary	IP	address.	This	is	not	always
desirable.	Services	can	migrate	from	host	to	host,	often	independently	of	any
firewall	changes.	You	can	tell	ssh	to	use	a	source	IP	address	other	than	the
primary	with	the	BindAddress	keyword	in	ssh_config.
BindAddress	192.0.2.91

The	BindAddress	must	be	attached	to	the	local	machine.
BindAddress	has	no	convenient	command-line	flag.	You	must	specify	it	with

-o.
The	OpenSSH	Host	Key	Cache
The	OpenSSH	client	records	host	keys	approved	by	the	user	in
$HOME/.ssh/known_hosts.	Each	key	appears	on	its	own	line	in	known_hosts,	much	like
this.
wrath.mwl.io	ecdsa-sha2-nistp256	AAAAE2VjZHNhLXNoYTItbm…

Each	line	contains	the	machine’s	hostname	(wrath.mwl.io),	host	key	type
(ecdsa-sha2-nistp256),	and	the	public	key	itself.
Key	Caching
How	do	you	want	to	update	your	key	cache?	In	some	environments,	users	must
manually	verify	host	keys	and	then	manually	add	them	to	the	key	cache.	In	other
environments,	it’s	acceptable	to	automatically	add	new	keys	to	the	cache.	Most
commonly,	users	want	ssh	to	ask	them	what	it	should	do.	The
StrictHostKeyChecking	ssh_config	option	tells	ssh	how	to	treat	new	host	keys.

If	you	want	ssh	to	refuse	to	connect	to	any	host	that	doesn’t	have	an	entry	in
known_hosts,	set	StrictHostKeyChecking	to	yes.	The	only	way	for	the	client	to
connect	is	to	add	the	host	key	to	the	known_hosts,	presumably	from	a	central
repository	provided	by	the	sysadmin.	This	makes	most	sense	in	an	environment
where	host	keys	are	automatically	distributed.

If	you’re	at	the	opposite	extreme,	and	you	will	never	verify	a	host	key	no
matter	how	important	it	is,	you	might	as	well	set	StrictHostKeyChecking	to
accept-new.	This	tells	ssh	to	blindly	update	known_hosts	with	every	new	key	it	gets.
This	is	the	equivalent	of	never	bothering	to	lock	your	home,	car,	office,	and	bank
vault—it	might	feel	airy	and	freeing,	but	sooner	or	later	someone’s	going	to	take
uncivil	liberties	with	your	personal	belongings.

The	default	setting,	ask,	tells	ssh	to	present	any	unknown	keys	and	ask	the	user
what	to	do.	You	can	verify	the	key,	accept	it,	and	have	ssh	add	it	to	known_hosts,	or
reject	the	host	key.

Choose	the	option	that	best	suits	your	environment.	Your	laptop	probably	has
different	needs	than	a	server	run	by	the	NSA	or	a	criminal	cartel,	and	all	of	those

are	different	from	the	orchestration	system	in	your	test	lab.
Cache	Security:	Hashing	known_hosts
The	known_hosts	file	comes	in	really	handy	to	intruders	who	break	into	your
desktop;	it’s	a	convenient	list	of	SSH	servers	to	target.	As	your	SSH	servers
might	share	a	common	sysadmin,	the	technique	used	to	penetrate	your	desktop
might	work	on	any	of	those	servers.	Additionally,	sysadmins	and	other	users	can
view	the	contents	of	known_hosts.	The	best	way	to	prevent	snooping	is	to	change
known_hosts	so	that	it	no	longer	contains	a	list	of	hostnames.	Accomplish	this	by
hashing	the	hostnames,	exactly	as	etcpasswd	does	with	passwords.

If	you	replace	the	hostnames	with	hashes,	nobody	can	read	the	host	names
from	the	file,	nor	can	anyone	reverse-compute	the	hostnames.	When	you	connect
to	a	host,	however,	ssh	can	easily	compute	the	hash	of	the	server	hostname	and
look	up	that	hash	in	known_hosts.

A	hashed	known_hosts	entry	looks	something	like	this.
|1|PBM07JCRBjfg8qOz1BokTtCDly0=|DVXu0IFq/dC4GMfbEbfVkhptVjQ=	ecdsa-sha2-nistp256

AAAAE2VjZ…

If	you	examine	the	entry,	you’ll	see	the	key	algorithm	and	the	host	key
fingerprint	further	down.

To	have	ssh	automatically	hash	new	host	keys	added	to	known_hosts,	use	the
ssh_config	keyword	HashKnownHosts.
HashKnownHosts	yes

This	will	not	hash	existing	entries,	however.	Use	the	-H	flag	to	ssh-keygen(1)
to	hash	your	existing	known_hosts.
$	ssh-keygen	-H

homemwlucas/.ssh/known_hosts	updated.

Original	contents	retained	as	homemwlucas/.ssh/known_hosts.old	WARNING:

homemwlucas/.ssh/known_hosts.old	contains	unhashed	entries	Delete	this	file	to	ensure

privacy	of	hostnames	Hashing	your	known_hosts	copies	the	existing	cache	to

known_hosts.old,	then	hashes	everything	inside	known_hosts.	Verify	that	ssh	can	still

connect	to	all	your	usual	hosts.	Once	you	feel	confident	that	your	key	cache	is	still

usable,	delete	the	unhashed	known_hosts.old.

To	find	a	single	host	entry	in	the	hashed	known_hosts	file,	use	ssh-keygen	-F	and
the	target	hostname.
$	ssh-keygen	-F	avarice.mwl.io

#	Host	avarice.mwl.io	found:	line	17

|1|5hcRwDHWxwxCWrFTngG4jT4OhJ0=|TyJXB6z+oEJXSP5MzakulFWgPDI=	ecdsa-sha2-nistp256…

You	now	know	that	this	entry	is	on	line	17	of	the	file,	and	can	easily	copy	it.
To	remove	a	hashed	hostname,	use	ssh-keygen	-R.

$	ssh-keygen	-R	avarice.mwl.io

#	Host	avarice.mwl.io	found:	line	17

homemwlucas/.ssh/known_hosts	updated.

Original	contents	retained	as	homemwlucas/.ssh/known_hosts.old	If	you	hadn’t	deleted	the

unhashed	known_hosts.old,	well,	it’s	gone	now.

When	distributing	known_hosts	from	a	central	system	(Chapter	11),	there’s	no
reason	not	to	provide	the	hashed	version.
The	PuTTY	Client

PuTTY	is	an	SSH,	telnet,	and	serial	client,	as	well	as	a	terminal	emulator,	for
both	Windows	and	Unix-like	systems.	It’s	available	at
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html,	or	a	Web
search	for	“putty	SSH”	will	take	you	right	there.	While	it’s	not	written	by	the
professional	paranoiacs	in	the	OpenBSD	team,	PuTTY’s	freely-available	source
code	has	been	repeatedly	audited.	PuTTY	is	probably	the	most	widely	deployed
Windows	SSH	software.

The	PuTTY	download	page	offers	several	choices.	I	recommend	the	full
installer	that	contains	PuTTY	and	all	its	related	programs.	You	won’t	need
everything,	but	it’ll	be	easier	and	faster	than	downloading	various	utilities
individually.	PuTTY	doesn’t	truly	need	an	installer;	you	can	download	plain
PuTTY.exe	if	you	prefer.	The	installer	does	create	shortcuts	in	the	Start	Menu,
registers	the	programs	with	the	operating	system,	and	handles	all	the	other
Windows	minutiae.

PuTTY	can	run	on	the	command	line.	The	arguments	and	command-line
flags	are	conveniently	similar	to	those	of	OpenSSH.	If	you’re	running	Windows,
though,	you’re	probably	interested	in	PuTTY	as	a	graphical	program.	We’ll
focus	on	the	pointy-clicky	interface,	but	you	should	know	that	the	command	line
is	an	option	if	needed.

If	you	feel	adventurous,	you	could	download	the	PuTTY	development
snapshot	instead.	This	includes	all	of	PuTTY’s	latest	patches	and	features,	but	it
might	also	contain	brand-new	bugs.

Start	PuTTY	and	you’ll	get	a	screen	like	Figure	5-1.

Figure	5-1:	PuTTY	Startup	Screen	On	the	right	side	you’ll	configure	connections	to	different	servers.	We
only	have	one	connection	right	now,	Default	Settings.	It	won’t	connect	to	anything,	but	you’ll	use	it	to	set
your	PuTTY	defaults.	You	can	always	get	back	to	this	screen	by	hitting	Session	on	the	left-hand	side.

On	the	left	side,	you	configure	options	on	how	PuTTY	presents	itself	and
how	it	handles	supported	protocols.	PuTTY	supports	a	variety	of	protocols.	If
you	need	a	flexible	general-purpose	terminal	emulator,	PuTTY	can	probably
meet	your	needs.	We’re	only	going	to	cover	SSH,	however.	Note	the	SSH
option,	second	from	the	bottom.	Click	there,	or	expand	that	little	“plus”	sign,	to
view	and	edit	details	on	how	PuTTY	performs	SSH.

If	you	select	something	on	the	left	side,	the	right-hand	side	changes	to	show
details	on	your	selected	option.	Select	SSH,	and	the	right-hand	side	shows	a	few
basic	protocol	options,	such	as	the	protocol	version	and	sharing	SSH	connections
(see	“Connection	Multiplexing”	later	this	chapter.)	We’ll	use	these	settings	to
establish	our	PuTTY	defaults.
Setting	PuTTY	Defaults
Your	fresh	PuTTY	install	lists	only	one	connection,	Default	Settings.	Every	new
connection	you	create	starts	by	copying	everything	in	Default	Settings.	Click	on
the	Default	Settings	connection	and	hit	Load.	You	can	then	edit	and	save	the
Default	Settings	connection.

Start	by	setting	a	default	username.	My	accounts	on	my	work	system	all	have

the	same	username.	The	only	time	my	username	varies	is	when	it’s	an	account
on	an	external	system.	I	can	set	my	default	username	in	PuTTY,	and	have	it
preconfigured	to	my	most	common	setting.	In	the	left	side,	choose	Connection.
Under	auto-login	username,	I	put	my	standard	username.

Now	go	back	to	the	Session	panel.	Select	Default	Settings,	and	hit	Save.
You’ve	updated	your	default	connection.	Repeat	the	process	to	make	further
changes	to	your	defaults.
Starting	SSH	Sessions	with	PuTTY
In	the	Sessions	PuTTY	screen,	go	to	Host	Name	(or	IP	Address).	Enter	the
hostname	or	IP	address	of	your	SSH	server.	You	can	also	change	the	port
number	here	if	needed.	Click	Open	at	the	bottom	of	the	window.

The	PuTTY	configuration	window	will	disappear,	replaced	by	a	black
terminal	window.
Saving	PuTTY	Connections
You	can	preconfigure	PuTTY	connections,	ensuring	that	your	sessions	with	a
particular	host	happen	the	same	way	every	time.	Enter	the	SSH	server’s
hostname	under	Host	Name	(or	IP	Address).	Under	Saved	Sessions,	type	a	name
for	this	connection.	I	usually	name	my	connections	after	the	host,	plus	possibly	a
word	or	two	for	any	special	configuration	in	the	session.	I	might	have	a
connection	labeled	dns1,	and	another	named	dns1	with	X,	so	that	I	can	easily	use
X	forwarding	when	I	need	it.

To	run	a	saved	connection,	double-click	the	connection	name.
To	copy	a	saved	connection,	highlight	it,	click	Load,	make	your	changes,	and

save	it	under	a	different	name.
PuTTY	Management
You’ll	see	a	PuTTY	icon	in	the	upper	left-hand	corner	of	your	work	running
PuTTY	session.	This	leads	to	a	drop-down	menu	of	useful	tasks.

To	duplicate	an	existing	session,	opening	a	second	window	to	the	same	host,
select	Duplicate	Session.

To	open	a	new	window	to	a	host	that	you’ve	already	save	the	configuration
for,	select	Saved	Sessions	and	the	session	name.

To	open	a	window	to	a	completely	new	host,	select	New	Session.
PuTTY	Copy	and	Paste
PuTTY	does	not	use	the	standard	Windows	cut-and-paste	shortcuts.	It	works
more	like	a	UNIX-style	X	terminal.	To	copy	text	in	a	PuTTY	window,	highlight
it	with	the	mouse.	To	paste	text	into	a	PuTTY	window,	click	the	right	mouse
button.	You	can	also	use	SHIFT-INSERT.
PuTTY	Configuration

PuTTY	stores	its	configuration	and	host	key	cache	in	the	Windows	Registry,
under	HKEY_CURRENT_USER\Software\SimonTatham.	To	move	your	PuTTY	configuration
from	one	host	to	another,	copy	this	section	of	the	registry	to	your	new	machine.
Some	people	even	use	these	registry	settings	to	distribute	valid	PuTTY
configurations	to	their	users	via	Active	Directory.
Debugging	PuTTY
PuTTY	has	two	debugging	facilities:	the	Event	Log	and	the	session	log.

The	Event	Log	records	what	happens	during	the	current	SSH	session.	You
can	see	the	name,	IP	address,	and	port	you’re	connected	to,	selected	encryption
algorithms,	and	all	the	various	negotiations	required	to	establish	an	SSH	session.
To	view	the	Event	Log,	click	the	upper	left	corner	of	your	PuTTY	window	and
go	down	to	Event	Log.

For	serious	debugging,	use	a	session	log.	Before	opening	your	SSH
connection,	take	a	look	at	the	left-hand	pane.	Under	Session	you’ll	find	the
Logging	option.	Choose	it.	This	window	gives	you	several	options	for	logging
your	SSH	session.	I	usually	choose	All	session	output.	Give	PuTTY	a	name	for
the	log	file,	and	browse	to	select	a	directory.	Once	your	session	has	been	running
a	while,	this	file	will	contain	a	large	amount	of	detail	about	the	session,	much
like	the	OpenSSH	clients	debugging	option.
Changing	Live	PuTTY	Sessions
You	can	alter	some	of	the	settings	in	an	existing	PuTTY	session.	The	username
and	encryption	information	are	set	at	login,	but	you	can	change	logging,	terminal
behavior,	and	tunnel	settings.

Go	to	the	upper	left-hand	corner	of	your	existing	PuTTY	session,	and	click
the	PuTTY	icon.	From	the	drop-down	menu,	choose	Change	Settings.	This
brings	up	a	simplified	New	Session	window,	presenting	only	the	options	that
you	may	change.	Once	you	make	your	edits,	and	have	confirmed	that	the	session
works	the	way	you	desire,	you	can	save	the	session,	either	overwriting	the
existing	name	or	choosing	a	new	name.
Multiplexing	Connections
SSH	sessions	can	take	a	long	time	to	open,	particularly	if	the	SSH	server	can’t
find	a	reverse	DNS	entry	for	the	client’s	IP	address.	Or	you	might	have	a	naïve
firewall	that	limits	the	number	of	simultaneous	connections	between	network
segments.	Perhaps	one	of	the	machines	is	so	old	that	the	initial	key	exchange
takes	several	seconds.	SSH	supports	connection	multiplexing	for	these
situations,	permitting	you	to	run	several	SSH	sessions	over	one	TCP	connection.
While	this	doesn’t	get	rid	of	the	delay	for	the	first	connection,	additional
sessions	start	much	more	quickly.

PuTTY	supports	and	uses	connection	multiplexing	by	default.	OpenSSH	can
multiplex	connections,	but	requires	additional	configuration.
Configuring	Multiplexing
OpenSSH’s	ssh	client	uses	UNIX	sockets	to	manage	multiplex	connections.	The
user	must	create	a	directory	for	the	sockets	and	set	the	permissions	so	that	only
she	can	read	them.
$	cd	$HOME/.ssh

$	mkdir	sockets

$	chmod	700	sockets/

You	can	now	enable	multiplexing	in	ssh_config.
ControlMaster	auto

ControlPath	~/.ssh/sockets/%r@%h:%p	The	ControlMaster	setting	tells	ssh	to	try	to	use

connection	multiplexing,	but	to	fall	back	to	a	separate	TCP	connection	should	multiplexing

fail.	This	lets	you	enable	multiplexing	as	a	default,	but	still	connect	to	non-OpenSSH

servers.

ControlPath	tells	ssh	where	to	find	the	multiplexing	management	files.	This
statement	accepts	tokens,	much	like	sshd_config.	The	%u	macro	expands	to	the
username,	%h	to	the	host,	and	%p	to	the	port.	If	I	connect	to	the	host	avarice	on	port
2222	as	the	user	mwl,	SSH	automatically	creates	the	socket	file	mwl@avarice:2222	in
the	specified	directory.

PuTTY	enables	connection	multiplexing	by	default.	To	turn	it	off	before
opening	a	session,	open	PuTTY	and	select	SSH	from	the	left-hand	pane.	You’ll
see	a	checkbox	called	Share	SSH	connections	if	possible.	Unselect	it.
Risks	of	Multiplexing
Anyone	who	can	read	OpenSSH’s	multiplexing	control	files	or	access	PuTTY’s
similar	sockets	can	access	all	data	going	over	your	SSH	connection.	The	original
connection	has	already	authenticated,	so	such	an	intruder	wouldn’t	even	need
your	password	to	get	a	terminal	on	the	remote	machine.	Only	use	connection
multiplexing	on	clients	where	you	trust	everybody	who	has	administrative
access.

Copying	a	large	file	over	a	multiplex	SSH	session	can	slow	down	your	other
sessions.

X	forwarding	does	not	work	well	with	connection	multiplexing.
Remember	that	when	multiplexing,	all	of	your	SSH	connections	to	a	server

run	over	the	first	connection	you	opened	to	the	host.	If	that	connection	fails,	all
connections	multiplexed	with	it	will	also	fail.

Personally,	I	only	enable	multiplexing	on	single-user	desktop	systems.	Others
disagree	with	me.	Do	what	makes	sense	for	your	environment.
SSH	Compression
You’ll	hear	in	many	places	that	SSH	can	compress	data	before	sending	it	over
the	network.	This	was	very	useful	back	when	a	33.6	modem	was	the	standard

way	for	people	to	connect	from	home.	On	modern	multi-megabit	connections,
compression	normally	slows	down	connections.	Consider	using	compression	if
and	only	if	you	are	seriously	bandwidth-constrained.

The	one	case	where	compression	makes	sense	is	in	forwarding	X	(Chapter	8).
Adding	the	-C	flag	to	ssh(1)	can	as	much	as	double	throughput	of	forwarded	X
connections.

That	covers	the	basics	of	PuTTY	and	the	OpenSSH	client.	Now	let’s	look	at
using	SSH	to	move	files	around	the	network.

1	But	use	one	of	your	hosts.	If	you	connect	to	mine,	I	might	post	your	username,	IP,	and	password	on	social
media.

Chapter	6:	Copying	Files	over	SSH
File	Transfer	Protocol	(FTP)	was	the	standard	method	for	copying	files	between
machine	for	decades,	predating	even	TCP/IP.	FTP	transmits	everything
unencrypted,	making	it	roughly	as	secure	as	telnet.	The	file	can	be	viewed	or
altered	during	transmission.	Other	old	protocols,	(RCP),	are	even	worse.	How
about	using	SSH	to	securely	transfer	files	between	machines?

There	are	many	ways	to	use	SSH	to	move	files.	Applications	such	as	rsync
can	use	SSH	as	a	transport	mechanism.	Some	window	managers	include	SSH
file	transfer	tools.	We’ll	cover	two	specific	protocols,	SCP	and	SFTP,	for	both
Unix-like	and	Microsoft	systems.	Most	other	tools	that	transfer	files	over	SSH
are	actually	front	ends	to	one	of	these	protocols.

Secure	Copy	Protocol,	or	SCP,	was	designed	as	a	drop-in	replacement	for
RCP.	SSH	File	Transfer	Protocol,	or	SFTP,	was	designed	to	replace	FTP.	It’s	an
interactive	protocol,	allowing	you	to	browse	remote	filesystems.	OpenSSH
includes	the	client	programs	sftp(1)	and	scp(1),	while	Windows	clients	can	use
WinSCP	for	both	protocols.
File	Copy	with	OpenSSH
OpenSSH	includes	two	file	transfer	programs,	scp	and	sftp.	We’ll	start	with	the
simpler	but	less	flexible	program.
scp(1)
You	can	use	scp(1)	to	copy	individual	files.	The	syntax	follows	the	usual	Unix
semantics.
$	scp	what-you-have	where-you-want-it

Separate	hosts	and	filenames	with	a	colon,	like	so.
$	scp	source-host:filename	destination-host:filename

Once	you	authenticate,	scp	transfers	the	file	over	the	encrypted	channel.
If	you	don’t	enter	an	element	in	the	command,	it’s	assumed	to	be	unchanged.

For	example,	to	copy	the	local	file	data.txt	to	the	server	sloth,	run:	$	scp	data.txt
sloth:

I	don’t	enter	a	machine	name	in	the	source	side,	so	it’s	assumed	to	be	the
local	machine.	I	enter	a	remote	hostname	but	not	a	remote	filename,	so	the
filename	doesn’t	change.	My	file	data.txt	is	copied	to	my	login	directory	on	sloth.

If	the	destination	file	already	exists,	scp	silently	overwrites	it.	If	the	account
lacks	the	privileges	to	overwrite	the	file,	the	copy	fails.	The	scp	program	assumes
that	if	you	told	it	to	overwrite	an	existing	file,	you	had	good	reason	to.	For	this
reason,	I	recommend	not	copying	files	while	logged	in	as	root.

You	must	use	a	colon	after	a	hostname.	When	you	skip	the	colon,	scp	assumes
that	the	argument	is	a	file	name.	Here	I	skip	the	colon	and	copy	the	file	data.txt

to	the	file	sloth	on	the	local	machine.
$	scp	data.txt	sloth

It’s	a	very	secure	local	copy,	at	least.
To	change	the	file	name	on	the	remote	side,	give	a	new	file	name.

$	scp	data.txt	sloth:stuff.txt

If	your	source	file	is	on	a	different	machine	and	you	want	to	copy	it	to	the
local	host,	specify	the	remote	hostname	as	the	source.
$	scp	sloth:data2.txt	data2.txt

You	can	copy	files	to	or	from	any	location	where	you	have	sufficient
privileges.
$	scp	sloth:varlog/messages	sloth-messages

To	recursively	copy	a	directory	to	another	machine,	use	the	arguments	-rp.
Here	I	replicate	my	home	directory	on	the	remote	host,	overwriting	any	files
with	the	same	name.
$	scp	-rp	homemwlucas	sloth:

The	scp	program	deliberately	borrows	many	command-line	options	from
cp(1)	and	rcp(1).	This	is	why	the	command	line	options	often	don’t	match
ssh(1);	it’s	a	drop-in	replacement	for	rcp(1),	so	the	rcp	flags	take	precedence.
Still,	if	you	have	more	complicated	copying	needs,	check	the	documentation.

The	scp(1)	program	is	largely	built	out	of	quarter-century-old	rcp(1)	code.
This	makes	adding	new	features	difficult.	While	nobody’s	looking	to	actively
pitch	scp	into	the	Dead	Code	Dumpster,	nobody’s	really	giving	it	any	attention
either.	The	program	is	what	it	is.

If	you	have	complicated	file-copying	requirements,	look	at	sftp(1).
sftp(1)
The	SSH	File	Transfer	Protocol	(SFTP)	is	more	flexible	than	SCP.	Where	SCP
only	copies	files,	SFTP	permits	many	different	file	operations	such	as	renaming
and	removing	files,	listing	directories,	and	so	on.	You’ll	find	a	few	different
protocols	named	after	some	variant	of	“secure”	and	“FTP,”	so	don’t	get
confused.	SFTP	is	not	the	same	as	FTP	over	SSH,	nor	is	it	FTP	over	SSL.

SFTP	commands	are	deliberately	copied	from	FTP	commands,	to	simplify
transitioning	between	the	two.	Much	of	your	knowledge	of	the	FTP	command
line	applies	to	SFTP,	but	we’ll	go	through	the	basics.

Open	a	connection	with	the	sftp	command	and	a	hostname.
$	sftp	pride

Once	you	authenticate,	you’ll	be	connected	and	get	an	SFTP	prompt.
sftp>

Once	you’ve	logged	in,	entering	a	question	mark	or	the	word	help	will	list	all
the	commands	the	SFTP	server	supports.	FTP	users	will	recognize	most	of	them.

To	copy	a	file	from	your	local	computer	to	the	server,	use	put	and	the
filename.
sftp>	put	upload.txt

To	copy	a	file	from	the	server	to	the	local	computer,	use	get	and	the	filename.
sftp>	get	download.txt

If	your	connection	is	interrupted	before	the	download	finishes,	use	reget	to
resume	the	download	where	it	left	off.	A	reget	doesn’t	perform	file	integrity
checking,	but	only	looks	at	the	offset.

To	change	the	name	of	the	file	on	the	server	use	rename,	followed	by	the
current	file	name	and	the	new	file	name.
sftp>	rename	data.txt	old-data.txt

To	change	directories	on	the	server,	use	cd	and	the	directory	name.
sftp>	cd	varlog

To	change	directories	on	the	client,	use	lcd	and	the	directory	name.
sftp>	lcd	Downloads

End	your	SFTP	session	with	either	quit	or	exit.
Changing	Usernames	and	Configurations
With	either	scp	or	sftp,	if	you	use	a	different	account	name	on	the	remote
machine,	put	the	account	name	and	an	@	symbol	right	before	the	server	name,
just	as	you	would	when	connecting	via	ssh.	(Old-fashioned	remote	copy	did	not
support	this	option.)	$	scp	data.txt	doofus@sloth:

The	easiest	way	to	remember	this	is	to	make	an	entry	in	ssh_config.	Both	file
copy	programs	take	configurations	from	ssh_config,	so	make	changes	there	once
to	have	them	affect	the	whole	software	suite.

While	both	programs	use	command-line	arguments	to	change	how	they
behave,	those	arguments	are	not	consistent	with	ssh(1).	SFTP	is	designed	to
replace	FTP,	while	SCP	replaces	RCP.	The	developers	prioritized	comforting
migrating	users	over	using	ssh-style	options.	For	example,	you	can	change	the
port	each	of	these	uses	with	-P	rather	than	the	-p	used	by	ssh(1).	Avoid
confusion:	use	ssh_config.
File	Copy	with	WinSCP
The	PuTTY	installer	ships	with	excellent	command-line	SCP	and	SFTP	clients,
but	if	you’re	running	Windows,	you	probably	want	a	pretty	graphical	interface.
WinSCP	is	a	SCP,	SFTP,	FTP,	and	WebDav	client	for	Microsoft	Windows.	It
switches	transparently	between	protocols	depending	on	what	the	server	supports.

Grab	WinSCP	from	https://winscp.net.	While	there’s	no	fee	to	use	WinSCP
in	your	home	or	business,	its	license	(GPLv2)	restricts	redistributing	changed
versions	of	the	program	to	your	customers.	If	you	wish	to	include	WinSCP	in
your	own	product,	read	the	license	carefully.

WinSCP	comes	with	a	standard	Windows	installer.	The	defaults	are	fine	for
most	users,	and	include	convenient	features	such	as	adding	WinSCP	to	the	right-
click	menu	when	you	select	a	file.	The	installer	also	installs	Pageant	and
puttygen,	if	you	didn’t	install	those	as	part	of	PuTTY.	We’ll	use	those	in	Chapter

7.
Start	WinSCP	and	you’ll	see	this	screen.

Figure	6-1:	WinSCP	Login	The	left	side	contains	your	saved	connections.	Set	up	new	connections	on	the
right.	Enter	the	server’s	hostname,	your	username,	and	your	password.	Change	the	port	if	needed.	You	can
save	this	connection	by	hitting	Save.

WinSCP	can	import	your	PuTTY	host	key	cache.	Select	Tools->Import.
You’ll	see	the	contents	of	PuTTY’s	key	cache,	with	a	check	box	by	each.	Verify
every	server	you	want	to	use	is	checked,	then	select	OK.	WinSCP	can	now
piggyback	on	all	the	work	you	did	verifying	host	keys.

Once	you	verify	a	host	key	in	PuTTY,	you	can	go	back	into	WinSCP	and
import	the	verified	key	there.
Using	WinSCP
Double-click	on	WinSCP.	Enter	your	username,	password,	and	the	hostname	of
your	SSH	server.	WinSCP	will	log	in	and	open	a	double	window.	The	left	side
shows	your	local	home	directory,	while	the	right	side	shows	your	home	directory
on	the	remote	server.	This	is	called	a	“Commander-Style”	interface.	Drag	and
drop	files	from	one	side	to	the	other.

You	can	tell	WinSCP	to	use	an	“Explorer-style”	interface.	It	will	open	a
single	window,	styled	exactly	like	every	other	Windows	Explorer	window,
containing	the	remote	host.	To	see	a	local	directory,	you	must	open	a	separate
window.	To	enable	Explorer	style,	select	Tools->Preferences->	Interface	and

choose	Explorer.	Your	WinSCP	now	looks	so	Windows-like	it’ll	confuse	even
you.

And	thanks	to	WinSCP’s	context	menus,	you	can	now	right-click	on	a	file
and	select	Send	To	WinSCP	to	upload	files.
Configuring	the	SCP	and	SFTP	Servers
OpenSSH	supports	SCP	and	SFTP	by	default.	Neither	needs	much
configuration,	but	you	can	change	a	few	things	about	how	they	behave.

For	SCP,	the	scp(1)	program	must	be	in	the	system’s	default	$PATH.	If	the	SSH
server	can’t	find	scp,	the	user	will	get	an	error	saying	so.	On	or	off,	present	or
not:	that’s	your	only	option.

The	sshd	server	comes	with	an	SFTP	server,	activated	by	an	sshd_config	entry.
Subsystem	sftp	usrlibexec/sftp-server	The	mere	presence	of	this	entry	suffices	to	enable

SFTP	support.

SFTPOnly	Users
You	probably	have	users	that	need	access	to	copy	files	to	or	from	a	server,	but
don’t	need	shell	access.	OpenSSH	supports	SFTPonly	users.	This	is	most
commonly	combined	with	a	chroot	(Chapter	3),	allowing	the	users	to	access	only
a	part	of	the	filesystem.	You’ll	see	this	in	web	servers	that	support	multiple
customers,	where	each	site	should	be	able	to	access	only	the	files	for	their	site.

Where	a	chrooted	user	who	needs	shell	access	needs	a	bunch	of	files	in	their
chroot,	an	SFTPonly	user	needs	only	an	sshd_config	keyword.

Start	by	creating	a	group	for	SFTPonly	users.	I’ve	called	mine	sftponly.	By
using	a	Match	term	in	sshd_config,	I	deny	these	users	access	to	anything	beyond
their	home	directory	and	only	permit	them	SFTP	access.
Match	Group	sftponly	ChrootDirectory	%h	ForceCommand	internal-sftp	AllowTcpForwarding	no

We	use	the	ChrootDirectory	keyword	to	lock	the	user	in	one	directory.	The	ForceCommand

keyword	restricts	the	user	into	accessing	only	one	command.	That’s	it!	The	internal	SFTP

server	provides	all	the	userland	commands	and	device	node	access	the	user	might	need.

Disabling	SSH	File	Copy
You	might	want	to	disable	the	ability	to	copy	files	over	SSH	while	still	allowing
users	command-line	access.	This	is	really,	really	hard.	You	can	remove
usrlibexec/sftp-server	and	usrbin/scp	from	your	host	and	disable	SFTP	in	sshd_config,
but	that	only	disables	the	obvious	ways	to	copy	files.	Users	are	tricky	little
critters,	especially	frustrated	users	who	think	that	the	sysadmins	are	blocking
them	from	doing	their	job.	Users	can	copy	files	through	any	number	of	methods.
Many	of	these	send	unencrypted	data	across	the	network.	A	user	with	shell
access	can	always	copy	files	from	one	host	to	another.

If	you	must	prevent	users	from	copying	files,	use	chroots	and	limit	what	files
the	users	can	access.	They’ll	still	be	able	to	copy	files,	but	only	the	files	in	the
chroot.

Chapter	7:	SSH	Keys
An	SSH	host	key	identifies	a	server.	SSH	also	supports	authenticating	users	with
keys.	Using	keys	to	authenticate	users	requires	more	setup	ahead	of	time	than
passwords,	but	when	correctly	done	is	both	far	more	secure	and	much	more
convenient.	We’ll	consider	both	server	and	user	keys.
Manually	Creating	Server	Keys
If	an	intruder	compromises	your	server,	the	server’s	private	key	is	no	longer
private.	You	must	replace	it.	This	requires	generating	a	new	key	pair.	While
most	operating	systems	automatically	create	missing	host	keys,	others	don’t.	Use
ssh-keygen	(1)	to	manually	create	server	keys.

If	your	server	runs	a	recent	OpenSSH	version,	run	ssh-keygen	-A	as	root	to
automatically	generate	all	supported	but	missing	host	keys.

You	might	need	to	create	host	keys	for	a	host	other	than	the	local	host,	such
as	when	deploying	new	installs	using	some	orchestration	systems.	You	can
create	key	files	manually	using	the	-t	and	-f	arguments	to	ssh-keygen.
$	ssh-keygen	-t	ecdsa	-f	ssh_host_ecdsa_key	-N	''

$	ssh-keygen	-t	ed25519	-f	ssh_host_ed25519_key	-N	''

The	-t	flag	specifies	the	type	of	key	to	create.	Here	we	create	two	different
types	of	keys,	ECDSA,	and	ED25519.	The	-f	flag	gives	the	file	name	of	the
private	key	file.	The	public	key	for	each	key	pair	is	in	a	file	of	the	same	name
with	.pub	added	to	the	end.	Finally,	-N	lets	you	specify	a	passphrase	on	the
command	line.	Host	keys	have	no	passphrase.	The	two	single	quotes	indicate	an
empty	passphrase.

Whenever	you	generate	host	keys,	be	sure	to	get	the	key	fingerprints	as
discussed	in	chapter	4.	Your	users	will	need	the	fingerprints	to	verify	the	host
keys.
Passphrases
What’s	this	passphrase	thing	I	just	mentioned?	A	passphrase	is	like	a	password,
but	longer.	It	includes	spaces,	words,	special	characters,	numbers,	and	anything
else	you	can	type.	The	passphrase	is	used	to	encrypt	and	decrypt	the	private	key.
A	key	with	a	passphrase	cannot	be	used	until	someone	enters	the	correct
passphrase.

Passphrases	are	most	often	used	with	user	authentication	keys.	A	user	with	a
key	pair	can	access	the	system	without	providing	a	password	for	that	system.
Desktop	and	laptop	systems	are	usually	less	secure	than	servers,	and	get
infected,	hijacked,	or	outright	stolen	depressingly	often.	If	a	user’s
authentication	key	pair	is	stolen,	the	intruder	can	use	that	key	pair	to	access

servers	just	as	if	he	was	the	legitimate	user.	Encrypting	the	private	key	with	the
passphrase	means	that	even	if	the	user’s	private	key	file	is	stolen,	the	intruder
cannot	use	the	key	without	the	passphrase.	If	an	intruder	gets	either	your	private
key	file	or	your	passphrase,	but	not	both,	the	damage	is	contained.	Make	the
passphrase	too	long	to	guess	by	brute	force	and	sufficiently	complex	to
discourage	casual	eavesdropping.

Can	a	passphrase	be	a	single	word,	like	a	password?	Yes,	but	it’s	a	really	bad
idea.	Computers	are	now	so	fast	that	they	can	quickly	discover	short	passwords
by	trying	all	possible	passwords	in	succession.	Using	a	short	passphrase
considerably	reduces	your	private	key’s	security.

A	passphrase	should	be	at	least	several	words	long,	something	you	can	easily
remember,	and	shouldn’t	be	obvious	to	others—even	to	people	who	know	you.	It
should	include	special	characters	such	as	#,	!,	~,	and	so	on.	Peculiar	words	from
specialized	non-computing	vocabularies	are	useful.	Substitute	numbers	for
letters.	Never	use	anything	from	pop	culture,	and	never	use	any	of	your	own
personal	catchphrases.	Anything	you’ve	said	to	friends	or	coworkers	that	was
catchy	enough	to	repeat	is	a	poor	choice.	If	your	imagination	completely	fails,
Diceware	(http://www.diceware.com)	is	a	tool	for	randomly	generating	mostly-
memorable	passphrases	from	real	words	using	ordinary	dice.	While	intruders	can
ruin	your	week,	a	coworker	with	your	private	key	and	a	sense	of	humor	can	be
even	more	aggravating.

Host	keys	do	not	use	passphrases,	because	the	SSH	service	must	start	when
the	system	boots.	You	could	use	a	passphrase	with	the	server	key,	but	SSH
would	not	start	until	someone	entered	the	passphrase	at	the	server	console.	This
is	unacceptable	in	most	environments.
User	Keys
User	key	pairs	provide	stronger	authentication	than	passwords.	Combined	with
agents	(see	“SSH	Agents”	later	this	chapter),	user	keys	eliminate	the	need	to
type	any	authentication	credentials	into	remote	machines.	Cryptographically,
user	keys	are	identical	to	host	keys.	The	only	difference	is	where	the	keys	are
used.

Speaking	very	generally,	a	computer	can	identify	you	based	on	something
you	are,	something	you	know,	or	something	you	have.	Iris	scanners	and
fingerprint	readers	verify	your	physical	body,	something	you	are.	A	password
verifies	that	you	know	a	secret.	Getting	into	a	house	requires	that	you	have	the
door	key.	Key-based	authentication	combines	two	of	these:	you	must	have	the
file	containing	the	private	key	and	you	must	know	the	passphrase	for	that	key.
Admittedly,	a	private	key	file	is	easier	to	reproduce	than	a	physical	key—it’s

only	copying	the	file—but	it’s	more	difficult	to	reproduce	than	an	8-character
password.	This	additional	layer	of	security	provides	extra	protection	against
unauthorized	use	of	an	account.

Keys	are	more	complicated	than	passwords,	however.	Just	as	you	wouldn’t
leave	your	front	door	key	hanging	from	the	doorknob,	you	must	protect	your
private	keys.	If	the	computer	is	lost	or	stolen,	any	private	keys	on	that	machine
should	be	considered	lost	as	well.	While	it’s	possible	to	remember	a	password,
most	people	won’t	put	in	the	time	or	energy	to	remember	the	thousands	of
characters	in	a	private	key.	Yes,	you	should	have	backups…	but	if	your	laptop	is
stolen,	the	private	keys	on	that	laptop	should	be	considered	compromised
anyway.

Is	setting	up	authentication	via	user	keys	really	worth	the	trouble?	For	almost
a	decade,	a	network	of	compromised	machines	dubbed	the	“Hail	Mary	Cloud”
has	repeatedly	scanned	the	Internet	for	SSH	servers.	When	a	cloud	member	finds
an	SSH	server,	it	lets	the	other	machines	in	the	network	know	about	it.	The
cloud	then	methodically	tries	possible	usernames	and	passwords.	One	host	on
the	network	tries	a	few	times,	then	another,	then	another.	Blocking	individual	IP
addresses	is	not	a	useful	defense	against	these	scanners,	because	each	address
only	tries	a	few	passwords	before	the	next	attacker	takes	its	turn.

Any	one	attempt	has	low	odds	of	guessing	successfully.	The	attempts	are
constant.	They	never	end.	Eventually	the	Hail	Mary	Cloud	will	get	lucky	and
break	into	your	server.	It	might	be	tomorrow,	or	next	year,	but	it	will	happen.	To
prevent	this	intrusion,	you	can	either	use	packet	filtering	to	block	public	access
to	your	SSH	server,	or	you	can	eliminate	password	authentication.	User	keys	let
you	eliminate	passwords.
SSH	Agents
Replacing	a	password	with	a	passphrase	and	a	private	key	has	one	obvious	flaw:
typing	passwords	is	an	annoyance.	Why	replace	an	annoying	password	with	an
even	more	annoying	passphrase?	It	might	be	more	secure,	but	are	you	and	your
users	really	going	to	bother?

That’s	where	an	SSH	agent	comes	in.	An	SSH	agent	is	a	small	program	that
runs	in	the	background.	When	you	start	a	desktop	session,	you	enter	your
passphrase	to	decrypt	your	private	key.	The	decrypted	private	key	is	loaded	into
the	SSH	agent.	The	agent	stores	the	key	in	memory,	never	on	disk.	The	agent
processes	all	private	key	operations	for	the	SSH	client.	When	the	SSH	client
needs	to	decrypt	something	with	the	private	key,	it	asks	the	agent	to	handle	it.
When	you	log	off	for	the	day,	the	SSH	agent	shuts	down.	The	decrypted	private
key	disappears	from	memory.	In	other	words,	with	an	SSH	agent,	you	type	your

passphrase	once	per	work	session,	no	matter	how	many	SSH	sessions	you	open
that	day.

On	a	typical	day	I	log	into	my	workstation,	activate	my	SSH	agent,	and	type
my	passphrase	once.	I	then	open	innumerable	SSH	sessions	to	servers	and
routers	all	over	my	network,	without	typing	a	passphrase	or	password	again.
When	I	log	off	for	the	day,	my	agent	shuts	down.	The	memory	used	by	the	agent
is	wiped	and	returned	to	the	operating	system.	My	private	key	is	once	again
available	only	in	the	encrypted	file.

Agents	do	not	guarantee	security.	Anyone	who	can	read	your	computer’s
memory	while	you	are	logged	in	can	access	the	decrypted	key.	This	includes	the
root	account.	If	you	don’t	trust	the	system	administrator	on	your	desktop,	don’t
use	an	SSH	agent.1	If	you	suspend	your	laptop,	the	decrypted	private	key
remains	in	memory.	Anyone	who	can	wake	your	laptop	and	login	can	use	the
key	as	their	access	rights	permit.	A	random	thief	interested	in	swapping	your
laptop	for	a	quick	buck	probably	won’t	know	or	understand	what	he	has,	but	a
thief	who	is	specifically	targeting	you	and/or	your	employer	will	probably	check
for	a	live	private	key.	More	commonly,	if	you	don’t	lock	your	desktop	before
going	to	lunch,	a	coworker	might	take	advantage	of	your	unsecured	terminals.
These	problems	are	best	solved	by	emptying	or	shutting	down	your	agent	when
you’re	not	actively	using	the	system.

Agent	security	is	also	a	problem	on	multiuser	machines.	Anyone	who	has
administrative	or	superuser	privileges	on	the	system	can	access	any	SSH	agent
running	on	the	host.	If	other	people	have	root	or	Administrator	access	on	your
desktop,	they	can	access	your	agent	and	masquerade	as	you.	Using	an	agent
would	be	unwise.

We’ll	discuss	SSH	agents	for	both	PuTTY	and	OpenSSH	later	this	chapter.
Creating	an	OpenSSH	User	Key
If	you	have	a	Unix-like	desktop,	generate	a	key	using	ssh-keygen(1).	Don’t	use
any	arguments	and	the	program	will	walk	you	through	generating	a	user
authentication	key.
$	ssh-keygen

Generating	public/private	rsa	key	pair.

Enter	file	in	which	to	save	the	key	(homemwlucas/.ssh/id_rsa):	Enter	passphrase	(empty	for

no	passphrase):	Enter	same	passphrase	again:

Your	identification	has	been	saved	in	homemwlucas/.ssh/id_rsa.

Your	public	key	has	been	saved	in	homemwlucas/.ssh/id_rsa.pub.

The	key	fingerprint	is:

SHA256:LK+1dKbb/PtN8KjiXLDdZzOK1fivRkMZIn8YoOrmEvA	mwlucas@zfs1

The	key's	randomart	image	is:

+---[RSA	2048]----+

…

You’ll	be	asked	where	the	new	key	should	be	saved.	The	various	OpenSSH

programs	expect	to	find	key	files	in	the	default	locations,	so	take	the	suggestion.
You’ll	then	be	asked	to	enter	a	passphrase	twice,	to	verify	that	you	can	type	it
more	than	once.	Your	private	key	will	be	encrypted	with	this	passphrase.	Always
use	a	passphrase,	as	discussed	just	a	few	pages	previous.

SSH	uses	identical	key	formats	for	hosts	and	users.	When	you	generate	a	user
key,	you	get	a	key	fingerprint	and	a	randomart	image.	Neither	is	particularly
useful	for	user	authentication	keys.

You’ll	find	your	new	private	key	in	$HOME/.ssh/id_rsa	and	your	new	public	key
in	$HOME/.ssh/id_rsa.pub.	Immediately	backup	your	new	key	pair	on	off-line	media,
such	as	a	flash	drive	or	CD-ROM.	If	you	destroy	your	workstation,	you’ll	want
the	ability	to	recover	your	key	pair.
Key	Algorithms
Like	host	keys,	user	keys	can	use	a	few	different	encryption	algorithms.	If	you
don’t	specify	an	algorithm,	the	OpenSSH	tools	use	the	recommended	one—at
this	time,	2048-bit	RSA.	You	can	specify	a	different	algorithm	with	the	-t	flag.
$	ssh-keygen	-t	ecdsa

Why	create	multiple	keys?	Cryptographers	have	this	distressing	habit	of
finding	weaknesses	in	cryptographic	algorithms.	One	day	the	unthinkable	will
happen	and	someone	will	discover	a	flaw	in	a	widely	used	and	broadly	trusted
algorithm.	All	keys	that	use	that	algorithm	will	immediately	become
untrustworthy.	If	you	have	user	keys	with	different	algorithms,	you	can	disable
the	broken	algorithm	on	your	SSH	server	and	still	have	server	access.

Our	examples	assume	that	you’re	using	an	RSA	key,	but	they’re	just	as
applicable	for	keys	made	with	other	algorithms.
Creating	a	PuTTY	User	Key
Use	the	PuTTYgen	program	to	create	user	authentication	keys	for	PuTTY.	The
PuTTY	installer	includes	puttygen,	or	you	can	download	it	individually	from	the
PuTTY	website.	When	you	start	puttygen,	you’ll	get	a	screen	like	Figure	7-1.

Figure	7-1:	PuTTYgen	Startup	Use	RSA,	ECDSA,	or	ED25519	keys.	DSA	keys	are	on	their	way	out,	and
SSH-1	RSA	keys	are	far	obsolete.	Verify	that	the	number	of	bits	is	at	least	2048.	More	is	not	necessarily
helpful.	You	might	use	fewer	bits	for	user	keys	dedicated	to	ancient	servers,	such	as	VAXes	or	Alphas.
Click	Generate.	The	next	PuTTYgen	screen	asks	you	to	generate	randomness	by	wiggling	the	mouse	over
the	blank	area.	Once	you	generate	sufficient	entropy,	PuTTYgen	creates	your	key,	as	displayed	in	Figure	7-
2.

Figure	7-2:	PuTTYgen	Key	and	Passphrase	You	have	three	fields	you	can	enter	here.	The	first	is	the	key
comment.	I	recommend	changing	the	comment	to	reflect	the	machine	you	generated	the	key	on	and	the	date
you	created	it.	Now	enter	your	passphrase	twice.

Now	click	Save	public	key.	You’ll	get	a	standard	Windows	Save	as	dialog	box
asking	you	to	choose	a	location	to	save	the	key.	Save	the	file	in	a	location	that
only	you	have	permissions	to	access.	You	can	use	a	folder	under	Documents,	but
make	sure	you	go	in	later	and	set	the	permissions	so	that	other	users	on	your
machine	cannot	view	the	file.	I	normally	name	these	files	after	the	machine
they’re	created	on	and	the	date.	Puttygen	won’t	assign	a	file	extension	by
default,	so	use	a	.pub	extension.2

Now	save	the	private	key.	Use	the	same	file	name	for	the	public	and	private
keys.	PuTTYgen	uses	a	.ppk	extension	for	private	keys,	so	they	won’t	overwrite
each	other.

You	now	have	a	public	key.	Congratulations!	But	don’t	exit	PuTTYgen	yet.
The	top	of	the	screen	shows	the	key	in	OpenSSH-friendly	authorized_keys

format.	Copy	that	into	a	file,	all	on	a	single	line.	I	usually	name	that	file	after	the
machine	the	key	was	generated	on,	the	date,	and	add	the	string	authorized_keys.
Installing	Public	Keys
No	matter	which	client	you	use,	you	must	install	your	public	key	on	your	server

before	you	can	login	with	it.	Whenever	you	SSH	into	a	host,	the	OpenSSH
server	checks	the	local	file	$HOME/.ssh/authorized_keys.	This	file	contains	public
keys,	one	per	(very	long)	line.	The	SSH	server	compares	the	public	key	offered
by	the	client	with	the	keys	in	the	file.	If	the	key	matches,	and	the	client	can
successfully	exchange	data	with	that	key,	then	the	client	has	demonstrated	it	has
the	corresponding	private	key.	Access	is	granted.	If	there	is	no	authorized_keys	file,
the	server	falls	back	to	the	next	authentication	method	(usually	passwords).

If	you	are	a	user	requesting	access	to	a	server	that	only	accepts	public	key
authentication,	the	sysadmin	will	ask	you	for	your	authorized_keys	file.	If	this	is
your	first	time	using	public	key	authentication,	this	is	not	a	security	risk—
remember,	your	public	key	file	is	public.	Anyone	can	have	it.	It’s	utterly	useless
without	the	corresponding	private	key.

The	most	common	type	of	user	key	is	an	RSA	key.	OpenSSH	stores	your
client’s	RSA	public	key	in	the	file	$HOME/.ssh/id_rsa.pub.	PuTTY’s	key	generator
makes	you	name	your	own	key	files,	and	you’ll	have	a	few	different	key	files.
You	want	the	file	containing	the	authorized_keys-friendly	version.	If	you
followed	my	suggestion,	the	file	name	will	contain	authorized_keys.	To	simplify
the	examples,	we’ll	use	the	file	name	id_rsa_authorized_keys.pub.	Substitute	your
PuTTY	file	as	needed.

To	use	your	public	key,	you	must	copy	the	client’s	public	key	file	to	the
authorized_keys	file	in	your	account	on	the	server.	You	could	use	the	graphic
interface’s	copy	and	paste	function,	but	that’s	error-prone.	Uploading	the	public
key	file	via	SFTP	or	SCP	and	then	concatenating	it	onto	authorized_keys	is	more
reliable.	Remember,	each	key	must	be	on	one	and	only	one	line	in	authorized_keys.
More	than	one	of	my	simple	cut-and-paste	attempts	have	turned	to	tears,	then	to
threats	of	starting	a	new	career	as	a	llama	smuggler,	only	to	end	in	a	manic-
depressive	binge	at	the	nearest	gelato	shop.	Have	the	machine	copy	the	file.	It’s
better	at	it	than	you	are.

Here,	I	copy	my	client’s	id_rsa_authorized_keys.pub	to	the	server	sloth	using
scp(1).
$	scp	.ssh/id_rsa_authorized_keys.pub	sloth:

The	server	will	still	request	a	password	to	upload	the	key	file;	you’ve	created
the	key,	but	it’s	not	yet	installed.

PuTTY	users	should	use	WinSCP’s	friendly	drag-and-drop	file	copy.
Now	log	onto	the	server	and	append	the	contents	of	id_rsa_authorized_keys.pub

to	the	authorized_keys	file.	If	this	is	the	first	time	you’ve	installed	a	public	key,	you
could	copy	your	key	file	to	authorized_keys.	If	you	let	yourself	get	into	that	habit,
however,	one	day	you’ll	overwrite	an	existing	authorized_keys	and	spend	the	next
couple	of	hours	kicking	yourself	for	making	such	a	simple	mistake.

$	cat	id_rsa_authorized_keys.pub	>>	.ssh/authorized_keys

Now	you	can	 try	 to	authenticate	with	your	key.	 If	key-based	authentication
doesn’t	 work	 for	 you,	 check	 the	 permissions	 on	 authorized_keys	 and	 the	 .ssh
directory.	Neither	should	be	writable	by	any	user	except	you.

If	you	are	uploading	from	a	UNIX-like	host,	you	can	do	the	upload	and	copy
in	one	command.
$	cat	.ssh/id_rsa_authorized_keys.pub	|	ssh	sloth	"cat	>>~/.ssh/authorized_keys"

If	you	ever	manually	edit	authorized_keys,	be	certain	that	the	last	key	ends	with
a	newline.	If	the	final	entry	doesn’t	end	in	a	newline,	the	next	key	you	add	to	this
file	will	be	tacked	onto	the	end	of	the	previous	key.	Both	the	new	key	and	the
old	key	will	stop	working.	If	in	doubt,	go	to	the	end	of	the	file	and	hit	RETURN.	An
extra	newline	at	the	end	of	authorized_keys	won’t	hurt	anything.

Only	upload	the	public	key,	never	the	private	key.	Your	private	key	should
never	cross	the	network.

Once	you	have	your	authorized_keys	file	exactly	the	way	you	want	it,	you’ll
want	to	copy	it	to	all	of	your	servers.	There’s	lots	of	ways	to	manage	this.	Many
UNIX-like	hosts	include	ssh-copy-id(1),	a	convenient	way	to	copy	an	existing
authorized_keys	from	one	host	to	another.	I	have	my	up-to-date	authorized_keys
stashed	on	a	public	Web	server,	so	that	I	can	easily	install	it	on	any	machine	I
happen	to	wander	into.	Or,	you	can	use	the	techniques	discussed	in	Chapter	11	to
automatically	copy	the	authorized_keys	files	for	you	and	all	of	your	users	to	all	of
your	machines.

Now	test	your	key	from	your	client.
Authenticating	with	Keys
Using	a	key	for	authentication	changes	how	you	log	in.	No	matter	what	client
you’re	using,	verify	that	your	key	works	before	going	any	further.	Don’t	attempt
to	use	an	SSH	agent	until	you	know	the	key	works.

If	the	key	doesn’t	work,	use	the	SSH	debugging	tools	discussed	in	Chapter	5.
Run	ssh	in	verbose	mode.	Use	PuTTY	session	logging.	Read	the	output.	If	you
have	a	permissions	problem	or	configuration	error,	the	answer	is	in	there.
Using	OpenSSH	User	Keys
When	your	client	finds	a	key	pair	in	$HOME/.ssh	and	the	SSH	server	finds	an
authorized_keys	file	in	your	account,	the	client	asks	you	to	enter	your	passphrase.
Here	I	connect	to	the	remote	machine	sloth:	$	ssh	sloth
Enter	passphrase	for	key	'homemwl/.ssh/id_rsa':	All	of	the	software	involved	has	found

your	key	files.	Once	you	enter	your	passphrase,	the	client	can	decrypt	the	private	key	and

use	it	to	authenticate	with	the	server.

Yes,	this	looks	much	like	a	regular	password-based	logon,	but	behind	the
scenes	it’s	very	different.	You’ve	decrypted	the	key	file	locally.	The	only
authentication	information	you’ve	sent	to	the	server	is	confirmation	that	you’re

able	to	exchange	data	encrypted	with	a	public	key	stored	in	the	authorized_keys	file
in	your	account	on	the	server.	You	never	send	a	password	or	other	traditional
authentication	information.

OpenSSH	automatically	checks	for	all	the	standard	key	files.	You	might	have
a	special-purpose	key	that’s	only	used	for	special	circumstances,	such	as
automated	jobs.	To	use	that	key	with	scp,	sftp,	or	ssh,	use	the	-i	flag	and	the
filename.
$	ssh	-i	$HOME/specialkey	sloth

Now	that	you	know	your	key	works,	you’ll	need	to	enter	your	passphrase
every	time	you	log	onto	this	server.	This	is	a	good	time	to	configure	an	SSH
agent.
Using	PuTTY	User	Keys
If	you	don’t	have	an	agent	running,	you	must	tell	PuTTY	where	to	find	your
private	key	file.	On	the	left	side	of	the	PuTTY	Configuration	screen,	select
Connection->	SSH->	Auth.	In	the	text	box	labeled	Private	key	file	for
authentication:,	put	the	full	path	to	your	private	key	file.	Remember,	the	private
key	file	ends	in	.ppk.

Now	try	to	connect.	PuTTY	should	prompt	you	for	your	username	and	then
request	your	passphrase.	If	you	enter	the	passphrase	correctly,	you’ll	get	a
command	prompt.

Once	you	know	that	your	key	works	and	is	installed	correctly,	reduce	how
often	you	must	type	your	passphrase	with	the	Pageant	SSH	agent.
SSH	Agents
While	the	SSH	agents	for	OpenSSH	and	PuTTY	are	wildly	different,	both
perform	identical	tasks.	They	host	your	private	key	in	secure	memory	so	that	you
don’t	have	to	keep	typing	your	passphrase.	Both	let	you	view	the	decrypted
keys,	add	new	keys,	and	delete	keys.	The	only	real	difference	between	them	is
how	they’re	programmed	and	how	you	make	them	behave—you	know,	the
unimportant	stuff.

With	your	key	loaded	into	ssh-agent,	your	login	attempts	will	look	like	this:	$
ssh	mail
Last	login:	Thu	Nov	16	16:56:52	2017	from	ceo.worldhq.mwl.io	FreeBSD	10.3-RELEASE-p20

(GENERIC)	#0:	Wed	Jul	12	03:13:07	UTC	2017

Note	the	absence	of	any	request	for	a	password	or	passphrase;	you’ve	just
logged	into	the	remote	machine	without	human	authentication.	If	you	connect	to
many	machines	during	your	working	day,	an	SSH	agent	makes	life	much	easier
and	transforms	user	keys	from	an	annoyance	into	a	pleasure.
OpenSSH	Agent
Any	UNIX-like	system	that	includes	OpenSSH	has	the	SSH	agent	ssh-agent(1).

And	that’s	where	the	easy	stuff	stops.
One	annoyance	about	the	multiplicity	of	desktop	environments	in	the	UNIX-

like	world	is	that	every	environment	has	its	own	preferred	way	of	running	ssh-
agent.	We’ll	discuss	a	couple	of	them	here,	but	if	none	of	these	work	in	your
environment,	you’ll	need	to	check	your	operating	system	or	window	manager
documentation.	Many	Unix	variants	have	their	own	slightly	unique	desktop
setups,	and	they	change	the	precise	methods	of	using	ssh-agent	to	suit	the
developers’	personal	prejudices	and	the	Whim	Of	The	Week.

Most	display	managers,	like	xdm	and	kdm,	have	hooks	to	automatically	check
for	SSH	keys	in	the	user’s	home	directory.	When	the	display	manager	finds	a
key	during	the	logon	process,	it	creates	a	pop-up	window	to	request	your
passphrase.	Enter	the	passphrase	and	the	display	manager	attaches	the	SSH	agent
to	your	desktop	environment.	You’re	ready	to	begin	work.

If	you’re	more	old-fashioned	and	run	your	desktop	with	startx(1),	tell	the
SSH	agent	you	have	a	key	with	ssh-add(1)	before	running	startx.
$	ssh-add

Enter	passphrase	for	homemwl/.ssh/id_rsa:	Enter	your	passphrase	to	add	your	keys	to	the

agent.

Text	console	users	must	first	run	ssh-agent(1)	with	their	shell	as	an	argument,
and	then	run	ssh-add.
$	ssh-agent	bintcsh

$	ssh-add

All	SSH	sessions	that	start	from	that	console	session	run	with	the	agent.	The
agent	doesn’t	work	across	virtual	console	terminals,	only	for	the	children	of	the
shell	run	by	ssh-agent.	Another	virtual	terminal	needs	its	own	SSH	agent.

If	you	have	multiple	keys	with	the	same	passphrase,	ssh-add	automatically
decrypts	all	of	the	keys.	If	you	have	multiple	keys	with	different	passphrases,
ssh-add	prompts	for	each	passphrase	separately.

Use	ssh-add	-l	to	list	all	private	keys	currently	stored	in	the	agent,	and	ssh-add	-
D	to	remove	the	keys	from	a	running	agent.	Re-add	them	once	you	get	back	from
lunch.
PuTTY	Agent
The	PuTTY	SSH	agent,	Pageant,	provides	a	friendly	Windows-style	interface	to
SSH.	Start	Pageant	by	double-clicking	on	it.	The	Pageant	icon,	a	computer	with
a	black	broad-brimmed	hat,	will	appear	in	the	system	tray.

Right-click	on	the	Pageant	icon.	You’ll	see	several	options,	including	View
Keys,	Add	Key,	and	Exit.	There	are	also	options	for	running	a	saved	or	new
PuTTY	session.	Select	Add	Key	to	bring	up	a	standard	Window	file	browser.
Find	your	private	key	and	select	it.	Pageant	will	display	a	dialog	box	to	request
your	passphrase.	Enter	it.	If	you	can’t	type	your	passphrase	correctly,	Pageant

will	ask	you	to	do	it	again.
Once	Pageant	is	ready,	open	a	PuTTY	session.	Connect	to	a	machine	that	has

your	public	key	installed.	You	should	get	a	command	prompt	without	needing	to
enter	your	passphrase.

If	key-based	authentication	works	when	you	specify	a	private	key	file,	but	not
when	using	Pageant,	verify	that	PuTTY	is	configured	to	use	Pageant.	Select
Connection->SSH->Auth.	Under	Authentication	Methods,	you’ll	find	an	Attempt
authentication	using	Pageant	checkbox.	Make	sure	it’s	checked.

Once	you	know	that	Pageant	works,	it’s	helpful	to	have	it	start	at	login.	Find
your	account’s	Startup	folder	(the	exact	location	varies	depending	on	your
version	of	Windows).	In	another	window,	find	your	Pageant	program.	It	will
probably	be	in	the	PuTTY	directory	under	either	Programs	or	Program	Files	(x86).
Create	a	link	to	Pageant	in	the	startup	directory.

For	optimal	convenience,	have	the	shortcut	load	your	private	key	at	login.
You	can	either	give	Pageant	the	full	path	to	your	key	as	an	argument,	or	you	can
set	a	Start	in	directory	and	only	use	the	short	file	name.	I	recommend	setting	the
Start	in	directory,	because	it	makes	loading	multiple	keys	at	login	much	simpler.
Right-click	on	your	Pageant	shortcut.	Under	Target,	add	the	name	of	your
private	key	file	as	an	argument.	The	Target	should	now	look	something	like
"C:\Program	Files\PuTTY\pageant.exe"	moose.ppk.	On	that	same	screen,	you’ll	see	a	Start
in	field.	Enter	the	full	path	to	your	keys	directory	there.	On	my	laptop,	that
would	be	C:\Users\mwlucas\Documents\keys.

To	verify	this	works,	exit	your	running	Pageant	and	double-click	on	the	new
icon	in	the	startup	folder.	You	should	be	prompted	to	enter	the	passphrase	for
your	key.	If	it	doesn’t	work,	you’ve	probably	messed	up	a	path	in	the	shortcut.
Remember	that	you	need	to	put	quotes	around	any	path	with	a	space	in	it.
Backing	Up	Key	Files
If	you	lose	your	private	key,	your	key	pair	is	useless.	Once	you	know	your	key
pair	works	for	authentication,	back	up	both	the	private	and	public	keys.	The
PuTTY	.ppk	file	contains	both	the	public	and	private	keys,	but	OpenSSH	key
pairs	need	both	files.	Don’t	just	copy	your	private	key	to	another	machine—
every	machine	that	has	your	private	key	is	another	place	your	key	can	be	stolen
from.	Back	up	your	private	key	on	off-line	media,	such	as	a	flash	drive	or	a	CD.
You	might	also	encrypt	it	with	a	program	like	GnuPG.	(If	you	are	not	familiar
with	GnuPG,	I	recommend	the	book	PGP	&	GPG:	Email	for	the	Practical
Paranoid,	by	yours	truly.)
Keys	and	Multiple	Machines
Many	sysadmins	have	multiple	computers.	I	regularly	use	two	desktops	and	a

laptop.	It	is	possible	to	move	key	pairs	between	machines	by	copying	the	key
files.	You	can	even	import	OpenSSH	keys	into	PuTTY.	How	do	you	realistically
manage	a	single	key	between	multiple	machines?

You	don’t.
Rather	than	reusing	a	single	private	key	on	all	of	your	desktops	and	laptops,

create	a	separate	private	key	for	each.	Create	an	authorized_keys	file	that	contains
the	public	keys	for	all	of	your	authentication	keys.	When	a	machine	is
decommissioned,	stolen,	or	self-immolates,	remove	that	machine’s	key	from	use.
Delete	the	corresponding	public	key	from	the	authorized_keys	file	on	all	of	your
servers.	Generate	a	new	key	on	your	replacement	machine.

If	one	of	your	desktop	machines	is	compromised,	you	must	remove	that
machine’s	authentication	key	from	use.	If	all	your	clients	share	a	single	private
key,	you	must	regenerate	a	new	key	pair	and	distribute	it	to	all	of	your	machines.
The	intruder	who	has	your	private	key	might	well	lock	you	out	of	your	own
systems	before	you	can	accomplish	this.	If	each	machine	has	a	unique	key	pair—
even	if	all	the	keys	share	the	same	passphrase—then	compromise	or	loss	of	one
key	does	not	compromise	the	keys	on	all	your	other	machines.

Also,	preferred	key	algorithms	change	over	time.	When	I	wrote	the	first
edition	of	this	book,	user	authentication	keys	defaulted	to	1024	bits.	The	default
is	now	2048.	If	I	was	still	using	keys	created	years	ago,	they	would	be	too	weak
for	current	use.	It’s	entirely	possible	that	the	default	user	authentication	key
algorithm	of	RSA	will	be	replaced	by	an	entirely	different	algorithm	in	the
future.	By	creating	a	new	key	whenever	you	get	a	new	machine,	and	invalidating
keys	associated	with	old	hardware,	you	ensure	that	your	keys	are	relatively
recent	and	secure.
Disabling	Passwords	in	the	SSH	Server
Passwords	are	less	secure	than	keys.	Now	that	you	have	working	key-based
authentication,	the	smart	thing	to	do	is	to	disallow	password-based
authentication.	The	sshd_config	keyword	ChallengeResponseAuthentication
disables	generic	challenge-response	authentication	systems,	such	as	a	prompt
requesting	a	username	and	password.	The	keyword	PasswordAuthentication
enables	and	disables	passwords.	To	disable	password-based	authentication,	set
both	of	these	keywords	to	no.
ChallengeResponseAuthentication	no	PasswordAuthentication	no

While	sshd	permits	public	key	authentication	by	default,	verify	that	nobody’s
changed	that	keyword.	The	PubkeyAuthentication	keyword	must	be	set	to	yes.
PubkeyAuthentication	yes

Now	restart	sshd,	either	with	the	built-in	system	command	or	pkill	-1	sshd.
Changing	sshd_config	will	not	change	how	other	programs	use	passwords.	If

you	use	passwords	for	sudo,	sudo	will	still	ask	users	for	their	password.
Password	Authentication	Warning!
If	you	make	a	mistake	in	configuring	SSH	such	that	nobody	can	login,	you	can
lock	yourself	out	of	your	server.	When	making	changes	to	sshd_config,	do	not	log
out	of	your	existing	SSH	session	until	you	verify	your	changes	work.
(Remember,	you	can	run	sshd	on	an	alternate	port	for	testing,	as	discussed	in
Chapter	3.)	Create	a	new	SSH	session.	Verify	that	you	can	login	and	become	root
before	disconnecting	your	first	session.

The	preceding	paragraph	is	very	important.	Ignore	it	at	your	peril,	or	be
prepared	for	your	own	manic-depressive	gelato	binge.
Permitting	Passwords	from	Specific	Hosts
While	passwords	are	weak,	sometimes	you	cannot	disable	them	entirely.	You
might	have	a	few	users	or	applications	that	cannot	use	keys	for	one	daft	reason
or	another.	The	underlying	problems	are	most	often	political	rather	than
technical,	but	they’re	still	problems.	While	you’re	working	on	solving	those
problems,	you	can	allow	passwords	from	specific	hosts	with	conditional
configuration,	as	discussed	in	Chapter	3.	Here,	we	allow	password
authentication	from	a	particular	subnet.
Match	Address	192.0.2.0/24

PasswordAuthentication	yes

Remember,	all	Match	statements	go	at	the	bottom	of	sshd_config.
It	is	possible	but	extremely	unwise	to	permit	password	authentication	based

on	username.	The	SSH	server,	rather	than	hanging	up	on	clients	that	request
passwords,	must	get	the	username	before	hanging	up	on	the	client.	This	means
that	the	Hail	Mary	Cloud	will	continuously	poke	at	the	server.	The	reasons	that
compel	you	to	permit	limited	password	authentication	probably	make	requiring	a
strong	password	just	as	problematic—the	same	boss	that	demands	he	be	allowed
to	use	passwords	probably	thinks	that	p455w0rd	is	a	secure	password.	The
account	that	permits	passwords	will	be	a	weak	spot.	The	only	thing	that	can	save
you	here	is	good	off-host	logging	to	a	very	secure	bastion	host,	so	that	when	the
machine	is	compromised	you	can	tell	the	boss	that	the	downtime	is	his	fault.
Agent	Forwarding
Suppose	I	disabled	password-based	authentication	on	all	my	computers.	The
only	way	to	access	a	command	prompt	on	any	of	my	hosts	is	by	authentication
with	public	keys.	I’m	working	on	my	server	wrath,	and	must	copy	a	file	over	to
the	server	gluttony.	This	presents	a	problem.	My	private	key	isn’t	on	wrath.
Copying	the	private	key	to	a	server	is	terrible	security	practice—you	want	your
private	key	on	as	few	hosts	as	possible,	and	never	on	your	servers.	But
passwords	don’t	work.	How	can	I	use	SCP	or	SFTP?

The	answer	is	to	forward	authentication	requests	back	to	your	workstation.
Agent	forwarding	is	exactly	that.	When	you	try	to	SSH	from	one	server	to
another,	the	SSH	client	on	the	server	sends	private	key	requests	back	to	your
desktop.	The	agent	is	available	as	a	socket,	in	a	location	given	by	the
environment	variable	$SSH_AUTH_SOCK.
$	echo	$SSH_AUTH_SOCK

tmpssh-zOeUnDTnkb/agent.2513

To	use	agent	forwarding,	both	the	client	and	the	server	must	permit	it	and	the
SSH	agent	must	be	running	before	starting	your	first	SSH	connection.	If	both	the
client	and	the	server	support	and	request	forwarding,	the	authentication	request
will	be	forwarded.
Agent	Forwarding	Security
The	risk	of	agent	forwarding	is	that	you	must	extend	some	trust	to	the	SSH
servers.	Anyone	who	has	root	access	can	access	your	SSH	agent	socket.	Anyone
who	can	access	your	SSH	agent’s	socket	can	use	your	private	key	without
providing	a	passphrase.

If	your	SSH	server	is	compromised,	the	intruder	can	piggyback	onto	your
authentication	socket	to	log	into	remote	servers	with	your	credentials.
Promiscuous	agent	forwarding	has	been	responsible	for	intrusions	in	many
organizations,	even	organizations	you’d	think	would	know	better.	Only	enable
agent	forwarding	to	machines	that	you	control.
Agent	Forwarding	in	sshd
To	enable	agent	forwarding	on	the	server,	set	to	the	AllowAgentForwarding
keyword	to	yes.
AllowAgentForwarding	yes

I’ll	generally	disable	agent	forwarding	globally,	then	use	a	Match	statement
to	permit	only	certain	users	or	addresses	to	forward	their	agents.
OpenSSH	Client	Agent	Forwarding
In	ssh_config,	use	the	ForwardAgent	keyword	to	activate	agent	forwarding.
ForwardAgent	yes

The	next	time	you	connect	to	a	server,	the	client	will	request	agent
forwarding.
PuTTY	Agent	Forwarding
PuTTY	enables	agent	forwarding	by	default.	On	the	left	side	of	your	PuTTY
setup	screen,	go	to	Connection	->	SSH	->	Auth.	Under	Authentication
parameters,	you’ll	see	a	check	box	labeled	Allow	agent	forwarding.

You	can	also	use	key	authentication	and	authorized_keys	to	very	specifically
restrict	what	a	user	may	do	over	SSH.	We’ll	examine	that	in	chapter	12.	Now,
let’s	look	at	forwarding	X.

1	Not	trusting	the	desktop’s	sysadmins	basically	destroys	any	hopes	of	server	security.	Yes,	we’ve	all
worked	there.
2	Don’t	open	public	keys	in	Microsoft	Publisher.	That	doesn’t	make	anybody	happy.

Chapter	8:	X	Forwarding
Unix-like	systems	use	the	X	protocol	(or	X11)	to	display	a	graphic	user
interface.	X	has	improved	over	the	years	but	it’s	still	famously	baroque.	One	of
X’s	more	useful	features	is	the	separation	between	the	system	a	program	runs	on
and	the	system	the	program’s	display	appears	on.	You	can	run	a	program	on	one
host,	and	have	the	display	appear	on	a	completely	different	workstation.	I	can
run	a	graphical	web	browser	on	a	host	on	the	public	Internet,	and	funnel	the
display	back	to	my	laptop	inside	my	employer’s	firewall,	bypassing	the	firewall
content	filter	restrictions—for	completely	legitimate	work	reasons,	of	course.	In
this	scenario	all	web	requests	originate	from	my	server,	and	the	results	appear	on
my	laptop.	You	can	do	the	same	thing	with	any	X	program.

If	you’ve	never	used	X	before,	it	might	seem	a	little	strange.	That’s	okay.
Play	with	it	and	you’ll	quickly	understand	its	usefulness.

Vanilla	X	transmits	information	across	the	network	unencrypted.	Secure	X
in-transit	by	wrapping	it	with	SSH	via	X11	forwarding.
X	Security
X	dates	from	a	time	when	network	security	was	not	nearly	the	issue	it	is	today.
The	developers	were	happy	to	get	graphic	applications	working	at	all,	given	the
limited	hardware	available	in	those	days.	Retrofitting	security	into	any	protocol
isn’t	as	effective	as	we	might	hope.	Displaying	X	from	a	remote	machine
requires	extending	trust	to	the	remote	machine.	The	more	you	trust	the	remote
machine,	the	more	X	programs	you	can	display	locally.	If	you	fully	trust	a
compromised	machine,	the	intruder	can	use	X	to	take	over	your	workstation,
capture	your	keystrokes,	and	access	your	systems	as	if	she	was	you.

Only	permit	X	forwarding	to	users	or	hosts	that	truly	require	it.
X	and	the	Network
Back	when	X	was	developed,	a	site’s	Internet	connection	might	be	as	fast	as	56
kbs.	Attempting	to	use	X	forwarding	between	sites	was	the	sort	of	things
sysadmins	would	laugh	at	over	a	beer.	Now	that	bandwidth	is	not	such	a
concern,	though,	people	might	run	a	browser	on	one	continent	and	display	it	in
another.

While	bandwidth	is	no	longer	an	issue	in	many	parts	of	the	world,	latency	is
very	real.	Many	graphical	programs	are	highly	sensitive	to	latency.	A	program
might	reasonably	expect	to	perform	several	hundred	graphics	operations	a
second.	That’s	fine	when	each	takes	a	nanosecond.	When	each	takes	fifty
milliseconds	thanks	to	the	cross-country	link,	though,	your	program	becomes
unusable.	If	latency	isn’t	a	problem,	jitter	and	packet	loss	can	destroy	usefulness.

If	you	have	any	latency	at	all,	investigate	alternatives	to	forwarding	X.
Maybe	dynamic	port	forwarding	(Chapter	9)	would	solve	your	problem.	Perhaps
your	program	has	a	feature	for	remote	use,	such	as	Wireshark’s	ability	accept	a
tcpdump	stream	from	another	host.	Use	a	protocol	designed	to	accommodate	high
latency.

Inside	your	local	network,	though,	X	forwarding	can	be	incredibly	useful.
The	X	Server	and	Client
The	X	server	is	the	computer	that	provides	the	graphic	display.	The	X	client	runs
the	program	that	generates	the	display.	This	seems	backwards	to	many	people.	If
you	are	using	X,	the	X	server	is	almost	certainly	your	desktop.	Your	desktop
must	have	an	X	server	to	use	X	forwarding.

Almost	all	Unix-like	systems	include	an	X	server,	usually	from	X.org	but
possibly	a	vendor’s	proprietary	system.	If	you	are	running	Windows,	you’ll	need
a	third-party	X	server.	We’ll	cover	those	in	the	discussion	of	PuTTY	and	X.
X	Forwarding	on	the	SSH	Server
To	use	X	forwarding,	the	SSH	server	must	have	the	xauth(1)	program.	If	it’s
present,	you	can	enable	forwarding	with	the	X11Forwarding	keyword	in
sshd_config.
X11Forwarding	yes

Restart	(or	pkill	-1)	sshd	after	making	this	change.
The	OpenSSH	manuals	mention	several	other	options	for	configuring	the	fine

details	of	X	forwarding,	but	the	overwhelming	majority	of	you	will	never	need
any	of	them.	If	you	have	an	odd	problem,	investigate	the	various	X11	keywords
in	sshd_config(5).
X	Forwarding	in	the	OpenSSH	Client
The	OpenSSH	client	supports	two	levels	of	X	forwarding,	differentiated	by
security	level.	Configure	both	in	ssh_config.	Basic	X	forwarding	supports	only	a
less-insecure	subset	of	the	X	protocol.	This	level	of	X	forwarding	is	fairly	safe.
Intruders	cannot	take	over	your	desktop	or	snoop	your	keystrokes	with	basic	X
forwarding.
ForwardX11	yes

Always	try	this	basic	X	forwarding	first.
Many	X	programs	use	functions	beyond	the	less-insecure	subset.	When

forwarded	over	SSH,	these	programs	show	an	error	and	unceremoniously	crash.
Once	you	enable	X	forwarding,	you	can	choose	to	allow	the	full	set	of	X
functions	with	the	keyword	ForwardX11Trusted.
ForwardX11Trusted	yes	When	you	permit	all	X	functions,	you	fully	trust	the	SSH	server.	An

intruder	who	controls	the	SSH	server	can	capture	everything	on	your	local	screen	and	your

every	keystroke.	Be	really,	really	sure	you	trust	every	single	remote	server	you	might

ever	log	into	before	permitting	this	level	of	trust	globally.	And	once	you’re	absolutely

certain—don’t	do	it.

X	forwarding	is	one	of	those	rare	places	where	SSH	compression	makes
sense.	Set	the	Compression	keyword	to	yes	to	enable	compression.	It’s	best	only
used	on	a	per-host	basis,	however.
Per-Host	X	Forwarding
You	can	configure	per–host	settings	to	restrict	X	forwarding	to	only	necessary
hosts,	using	Match	rules.	Here	I	have	a	program	on	pride	that	requires	fully
trusting	X,	so	I	make	a	special	entry	for	it	in	ssh_config.
ForwardX11	no

Host	pride

ForwardX11	yes

ForwardX11Trusted	yes	Compression	yes

Now	I	only	have	to	worry	about	X	software	on	one	host,	not	every	host	I	SSH
into.
Forwarding	X	on	the	Command	Line
Even	better	then	restricting	X	forwarding	to	certain	hosts	is	enabling	it	on	a
connection-by-connection	basis.

In	the	previous	example	I	fully	trust	X	for	all	connections	to	the	host	pride.	I
have	a	program	on	that	host	that	needs	full	X	access,	but	I	don’t	run	that
program	every	time	I	log	into	that	host.	I	want	to	enable	X	forwarding	for	only
certain	sessions.	Enable	compression	with	the	-C	flag.	Activate	standard	X
forwarding	when	necessary	using	the	-X	command-line	option.
$	ssh	-CX	pride

If	you	must	fully	trust	the	remote	host,	equivalent	to	ForwardX11Trusted,	use
-Y.
$	ssh	-CY	pride

This	eliminates	the	risks	of	routinely	forwarding	X,	but	supports	X
forwarding	when	necessary.
X	Forwarding	with	PuTTY
The	first	problem	with	forwarding	X	to	a	Windows	host	is	that	Windows	does
not	include	an	X	server.	You	need	additional	software.	Fortunately,	many	people
have	ported	the	standard	X.org	software	from	UNIX	to	Windows.	Use	any	of
them	you	like.	I	generally	use	Xming,	but	don’t	worry	if	your	employers	or
coworkers	insist	you	use	a	different	one.
Xming
Xming	is	a	widely	used	and	frequently	updated	X	server	for	Windows	systems.
The	most	recent	version	of	Xming	is	only	available	to	people	who	donate	to	the
project,	but	the	next	older	version	is	free.	As	with	all	of	the	software	in	this
book,	if	you	find	Xming	useful,	I	encourage	you	to	donate	to	the	programmer.
Xming	brings	to	Windows	all	sorts	of	X	tricks	familiar	to	UNIX	users,	but	for
our	purposes	we’ll	use	it	only	to	display	programs	running	on	a	remote	machine.

Download	Xming	from	http://sourceforge.net/projects/xming/.	The	Xming
installer	is	very	straightforward	to	any	Windows	user,	so	I	won’t	walk	you
through	it.	Take	the	defaults.	Once	you	complete	the	install,	run	Xming	to	start
the	server.
Enabling	and	Disabling	X	Forwarding
PuTTY	forwards	X	by	default.	What’s	more,	PuTTY	does	no	security-based
filtering	of	X;	it’s	forwarding	is	equivalent	to	ForwardX11Trusted	in	ssh.	For	this
reason,	I	recommend	disabling	X	forwarding	by	default,	then	enabling	it	only
when	needed.

On	the	left-hand	side	of	the	PuTTY	Configurations	screen,	select	Connection
->	SSH	->	X11.	The	first	checkbox	is	Enable	X11	forwarding.	Deselect	it,	then
save	the	Default	Settings.	Leave	the	other	settings	unchanged,	as	they’re	only
useful	in	uncommon	situations.
Is	Forwarding	Working?
Your	SSH	session	won’t	look	any	different	after	you	forward	X.	How	can	you
prove	forwarding	works	before	you	need	it?	If	SSH	has	successfully	negotiated
X	forwarding,	it	will	set	the	$DISPLAY	variable	in	your	shell.
$	echo	$DISPLAY

localhost:10.0

Your	shell	knows	that	there’s	an	X	server	attached	to	it.	You	can	run	your	X
program.	If	forwarding	isn’t	working,	$DISPLAY	is	undefined.	Check	your	system
log,	or	the	debugging	log	of	your	SSH	client.

A	connection	using	the	insecure,	legacy	protocol	XDMCP	will	have	a	$DISPLAY
value	of	something	like	remote:1.	This	means	that	your	shell	found	an	X	display,
somewhere,	somehow,	but	it’s	not	the	one	you’re	trying	to	forward	over	SSH.
Don’t	run	your	X	program	if	$DISPLAY	looks	weird!	Something	might	be	very,
very	wrong.

Now	run	an	X	program	from	your	shell,	and	it	should	display	on	your
desktop.	Most	X	clients	include	the	xterm(1)	terminal	emulator.	Run	xterm	in	the
background	on	your	SSH	server.
$	xterm	&

You’ll	get	a	command	prompt	back	on	the	SSH	server.	In	a	moment	or	two,
depending	on	the	bandwidth	and	latency	between	your	server	and	client,	a
terminal	on	the	remote	system	will	appear	on	your	desktop.

If	you	don’t	like	xterm,	try	xclock,	xeyes,	or	xcalc	instead.
When	you	connect	with	X	forwarding	enabled,	you	might	see	warnings	like

untrusted	X11	forwarding	set	up	failed	or	No	xauth	data.	These	warnings	are	not	critical
when	forwarding	X	over	SSH,	and	should	not	worry	you.
Remote	X	Commands	with	OpenSSH

Logging	into	another	machine	just	to	run	an	X	program—or	any	program—can
be	an	annoyance.	The	-f	option	to	ssh	lets	you	run	a	command	on	another
machine	while	keeping	the	SSH	session	itself	backgrounded.	This	looks	like
you’re	executing	a	command	directly	on	the	other	host.	Give	the	command	right
after	the	host	you	want	to	access.	For	example,	if	I	want	to	run	an	xterm	on	wrath
I	could	run:	$	ssh	-f	wrath	xterm

The	client	will	connect	to	the	server	and	display	whatever	login	text	the
server	shows.	The	SSH	client	then	goes	into	the	background,	restoring	your
command	prompt	on	your	local	system	even	as	it	runs	the	command	on	the
remote	system.

Note	that	remote	commands	are	run	in	the	user’s	full	logon	environment.	Any
files	attached	to	the	user’s	shell,	such	as	.cshrc	or	.profile,	are	sourced.	This
might	give	you	trouble,	depending	on	the	application	you’re	running.

Backgrounding	forwarded	X-over-SSH	sessions	is	very	useful,	but
forwarding	TCP	ports	over	SSH	is	even	more	useful.	We’ll	look	at	that	next.

Chapter	9:	Port	Forwarding
Port	forwarding	over	SSH	is	a	divisive	topic.

SSH	can	serve	as	a	wrapper	around	arbitrary	TCP	traffic.	You	can	cloak
unencrypted	services	such	as	telnet,	POP3,	IMAP,	or	HTTP	inside	SSH,
securely	transporting	these	natively	insecure	protocols.	An	SSH	session	can
carry	any	TCP/IP	protocol,	including	protocols	your	local	IT	security	team	has
forbidden	on	the	organization	network.	For	this	reason,	many	organizations	with
high	security	requirements	do	not	allow	SSH	to	traverse	and/or	leave	their
network.	Organizations	that	have	less	stringent	requirements	use	this	ability	to
secure	their	network.	(You	can	also	use	SSH	to	create	a	VPN	to	carry	all	IP
protocols,	but	that’s	in	Chapter	13.)	For	example,	I	manage	my	website	and	blog
with	WordPress.	It	provides	a	friendly	pointy-clicky	interface	for	website
administration	and	design,	giving	me	a	decent-looking	page	without	me	actually
needing	to	learn	anything	about	web	design.1	At	one	time,	in	those	dark	days
before	Let’s	Encrypt,	my	website	used	plain	HTTP.	I	used	SSH	port	forwarding
to	tunnel	HTTP	between	my	Web	server	and	my	desktop.	This	protected	my
credentials	in	transit	and	eliminated	the	risk	of	my	password	being	stolen	on	the
wire.	This	is	a	sensible	and	legitimate	use	of	SSH	port	forwarding.

Suppose	my	desktop	is	inside	a	high-security	network,	however.	The	firewall
tightly	restricts	web	browsing	and	blocks	all	file	transfers.	If	I	can	use	SSH	to
connect	to	a	server	outside	the	network,	I	could	forward	my	desktop’s	traffic	to
that	outside	server	to	get	unrestricted	Internet	access.	I	could	upload	confidential
documents	over	SSH,	and	the	firewall	logs	would	show	only	that	I	made	an	SSH
connection.	Your	network	administrator	would	object,	with	good	reason.
Port	Forwarding	versus	Security	Policy
If	you’re	an	organization’s	security	officer,	port	forwarding	might	make	you
consider	entirely	blocking	SSH.	I	understand.	I’ve	had	your	job.	You	should	also
know	that	a	recalcitrant	user	can	tunnel	SSH	inside	DNS,	HTTP,	or	almost	any
other	service	or	protocol,	including	raw	ICMP.	The	only	way	to	absolutely	block
SSH	is	to	deny	all	TCP,	UDP,	or	ICMP	connections,	use	a	web	proxy	that
intelligently	inspects	traffic,	and	not	allow	your	client	machines	access	to	public
DNS	even	through	a	proxy.	I’ve	seen	one	firm	actually	implement	this	type	of
security	perimeter,	and	they	had	many	gaps	and	exceptions	for	notably	clunky
business-critical	software.	If	you	cannot	implement	this	in	your	environment	but
have	stringent	security	requirements,	you	must	work	with	your	users	to	meet
those	requirements	and	the	business	needs.	I	strongly	recommend	establishing	a
solid	network	traffic	awareness	program	as	well	as	intrusion	and	extrusion

detection,	so	you	know	when	your	network	traffic	deviates	from	the	norm.	Read
Richard	Bejtlich’s	books	on	intrusion	and	extrusion	analysis,	as	well	as	my	own
Network	Flow	Analysis	(No	Starch	Press,	2010),	and	implement	programs	like
those	discussed.

As	a	user,	having	the	ability	to	tunnel	arbitrary	traffic	over	SSH	does	not
mean	you	should	do	so.	If	your	organization’s	security	policy	forbids	port
forwarding	and/or	tunneling,	don’t	do	it.	If	the	policy	says	“use	the	web	proxy
and	stay	off	IRC,”	then	listen.	I	am	not	responsible	if	you	use	these	techniques
and	are	reprimanded,	terminated,	or	exterminated.	(Even	if	we	IT	security
officers	are	all	petty	tinpot	despots	who	don’t	understand	your	very	personal	and
deeply	urgent	need	for	IRC	and	MySpace.)
Troubleshooting	Port	Forwarding
Some	applications	misbehave	when	used	over	port	forwarding.	It’s	important	to
separate	application	failures	from	port	forwarding	failures.	If	you’ve	forwarded	a
port	and	your	application	doesn’t	work	over	it,	use	netcat	or	even	telnet	to
determine	if	the	port	is	actually	open.	(I	demonstrated	netcat	at	the	beginning	of
Chapter	3.)	The	server	should	send	the	same	feedback	to	a	netcat	request	over	a
forwarded	port	as	it	does	over	a	non—forwarded	port.

If	you	don’t	get	a	response,	you’ve	probably	misconfigured	port	forwarding.
Double-check	your	command	line.	If	necessary,	use	the	debugging	on	one	or
both	sides	of	the	connection	to	see	what’s	really	happening.	Remember	that	only
one	process	may	open	a	given	port	at	a	time.

If	port	forwarding	works,	your	application	has	trouble	with	it.	Perhaps	you
need	a	hosts	entry,	as	is	common	with	many	web	applications.	Maybe	it’s	an	old
and	clunky	protocol	that	expects	a	wide	variety	of	ports	open.	FTP	is	a	classic
example.	You’ll	need	to	dive	into	the	application	and	its	protocol	to	figure	out
why	it’s	not	working.

Port	forwarding	is	a	tool.	Not	all	protocols	work	with	this	tool.	Sometimes,
using	port	forwarding	is	like	trying	to	drive	screws	with	a	hammer;	any	result
you	get	will	displease	you.
Example	Environment
For	all	of	these	port	forwarding	examples,	I	assume	that	the	SSH	client	is	behind
a	firewall.	This	might	be	anything	from	a	great	big	corporate	proxy	to	a	home
router.	There	are	several	other	servers	behind	this	firewall,	including	web	and
email	servers.	The	client	is	inaccessible	to	the	public	Internet;	the	outside	world
cannot	connect	to	it.

The	SSH	server	is	on	the	public	Internet.	Anyone	can	connect	to	it,	and	it	can
freely	access	the	rest	of	the	Internet.

Port	Forwarding	Types
The	three	types	of	port	forwarding	are	local,	remote,	and	dynamic.
Local	port	forwarding	redirects	one	port	on	the	client	to	one	port	on	the

server.	Essentially	you’re	saying	“Grab	such-and-such	port	on	the	SSH	server
and	make	it	local	to	my	client.”	Suppose	you	want	to	download	your	email	from
a	server	that	only	offers	unencrypted	POP3,	but	you	have	SSH	access	to	the
server.	You	can	forward,	say,	port	2110	on	your	local	machine	to	port	110	on
your	POP3	server.	Configure	your	email	client	to	download	its	messages	from
port	2110	on	the	local	host	address.	SSH	intercepts	all	requests	to	port	2110	and
patches	them	through	to	the	mail	server’s	port	110.	Figure	9-1	illustrates	the	data
flow	of	local	port	forwarding.

Figure	9-1:	Local	Port	Forwarding	Data	Flow	Remote	port	forwarding	works	in	reverse.	A	port	on	the	SSH
server	is	forwarded	to	a	port	on	your	SSH	client.	You’re	saying,	“take	such-and-such	port	on	my	client	and
attach	it	to	the	remote	server.”	For	example,	you	could	enable	sshd	on	your	workstation	behind	the	corporate
firewall.	Then	you	SSH	from	your	workstation	to	your	server	on	the	public	Internet.	With	remote	port
forwarding,	you	could	forward	port	2222	on	your	public	Internet	server	to	the	SSH	port	on	your
workstation.	Anyone	who	connected	to	port	2222	on	your	public	server	would	be	transparently	connected	to
your	workstation’s	SSH	server.	They	could	get	inside	the	firewall	without	any	VPN	client	and	with
complete	disregard	for	firewall	policies.	You	might	use	remote	port	forwarding	to	make	a	private	web
server	publicly	available.	Figure	9-2	illustrates	remote	port	forwarding.

Figure	9-2:	Remote	Port	Forwarding	Data	Flow	Dynamic	port	forwarding	is	a	broader	system,	where	many
different	client	programs	can	connect	to	many	different	services.	It	creates	a	SOCKS	proxy	on	the	SSH
client,	and	tumbles	any	requests	to	that	proxy	out	through	the	server.	A	SOCKS	proxy	is	a	generic	gateway
that	can	carry	any	TCP/IP	traffic.	(SOCKS	doesn’t	actually	stand	for	anything,	by	the	way.)	This	gives
anyone	who	connects	to	the	proxy	complete	access	to	the	server’s	network.	Figure	9-3	illustrates	dynamic
port	forwarding.

Figure	9-3:	Dynamic	Port	Forwarding	Data	Flow	When	the	underlying	SSH	session	dies,	all	ports	stop
being	forwarded.	Chapter	10	offers	suggestions	for	keeping	SSH	sessions	alive.

With	these	possibilities,	it’s	easy	to	see	why	sysadmins	love	SSH,	and	why
many	corporate	security	departments	forbid	it.

Privileged	Ports	and	Forwarding
On	Unix-like	systems,	TCP	ports	below	1024	are	reserved	for	system	use.	Only
root	can	bind	to	these	ports.	As	an	unprivileged	user,	you	can	attach	the	local	end
of	your	SSH	port	forwarder	to	any	port	above	1024.	Forwarding	a	reserved	port
requires	using	SSH	as	root.	Performing	routine	tasks	as	root	is	poor	practice,	so
don’t	do	it	without	a	really	good	reason.

Only	the	side	of	the	connection	that	is	attaching	to	a	privileged	port	needs	to
run	as	root.	If	you’re	binding	a	reserved	port	on	the	client,	run	the	client	as	root
but	to	log	into	the	server	as	a	regular	user.	If	you’re	binding	a	reserved	port	on
the	server,	you’ll	need	to	log	into	the	server	as	root.	In	the	latter	case,	it’s	a	better
idea	to	change	the	port	so	you	don’t	have	to	login	directly	as	root.

Microsoft	systems	do	not	implement	privileged	ports.	Anyone	can	bind	to
any	open	port	on	the	system.	The	absence	of	port	restrictions	creates	all	sorts	of
potentially	amusing	security	issues,	but	it	does	make	forwarding	low-numbered
reports	no	more	difficult	than	forwarding	any	other	port.	You	never	need	to	run
PuTTY	as	root.
Local	Port	Forwarding
Before	setting	up	local	port	forwarding,	verify	that	normal	SSH	works.	Then
figure	out	what	service	you	want	to	forward,	and	what	port	that	service	runs	on.
Some	typical	choices	are	80	(HTTP),	25	(SMTP),	and	110	(POP3).	The	services
that	usually	run	on	these	ports	are	not	normally	encrypted.

Now	choose	a	local	port	you	want	to	use	for	the	forwarding.	Some	clients
work	well	when	run	on	any	port.	Almost	any	mail	client	lets	you	set	a	TCP	port
to	check	POP	3	on.	Others…	don’t.	Websites	frequently	choke	if	you	change	the
port	number.	If	you	don’t	know	how	the	protocol	behaves	when	forwarded	from
one	port	to	another,	try	it	on	a	test	server	and	see.

For	our	local	port	forwarding	examples,	we’ll	forward	port	8080	on	my	client
to	port	80	on	the	server	sloth.	Now	that	TLS	certificates	are	free,	why	would	you
need	to	do	this?	Some	proprietary	web-based	applications	don’t	support	TLS,
and	if	you	try	to	convert	them	to	TLS	they	die	screaming.2	I’ll	need	to	edit	the
client’s	hosts	file	(either	etchosts	or	C:\Windows\System32\drivers\etc\hosts)	to	tell	my
client	that	the	website	has	the	IP	address	127.0.0.1.	I’ll	need	a	second	alias	so
that	I	can	SSH	out	to	the	actual	machine.	If	I’m	the	only	one	that	uses	this
application,	once	I	have	port	forwarding	setup	I	could	tell	the	application	to	only
listen	on	the	server’s	local	host	address.	This	would	not	only	protect	my	data	in
transit	as	TLS	would,	it	would	add	another	layer	of	protection	for	the
application.
OpenSSH	Local	Forwarding

To	tell	the	SSH	client	to	activate	local	forwarding,	use	the	-L	flag.
$	ssh	-L	localIP:localport:remoteIP:remoteport	hostname

If	you	don’t	specify	an	IP	address	on	the	SSH	client,	SSH	attaches	to
127.0.0.1.	You	can	skip	the	first	argument	in	this	case,	making	the	command:	$
ssh	-L	localport:remoteIP:remoteport	hostname

For	now,	only	use	the	IP	address	127.0.0.1.	This	is	the	loopback	address	on
every	machine,	accessible	only	on	that	machine.	While	it	might	look	like	we’re
forwarding	an	address	to	the	same	address,	127.0.0.1	on	the	client	is	not	the
same	as	127.0.0.1	on	the	server.	We’ll	consider	binding	a	forwarded	port	to	a
different	IP	address	in	“Choosing	IP	Addresses”	later	this	chapter.

So	here’s	how	we	use	local	port	forwarding	to	connect	to	the	server	sloth,	and
forward	port	80	on	the	localhost	address	of	sloth	to	my	client’s	port	8080.
$	ssh	-L	8080:127.0.0.1:80	sloth

I’m	attaching	to	port	8080	on	my	workstation.	I	haven’t	specified	a	local	IP
address,	so	ssh	attaches	the	forwarding	to	the	client’s	127.0.0.1.	My	SSH	session
logs	on	normally,	and	gives	me	a	terminal	on	the	server.	But	if	I	point	my	web
browser	to	localhost:8080,	I’ll	be	connected	to	the	website	running	on	the	server.
An	alias	in	the	hosts	file	will	make	the	website	much	more	usable.

To	set	up	local	port	forwarding	every	time	you	connect	to	a	server,	use	the
LocalForward	keyword	in	ssh_config.
LocalForward	client-IP:client-port	server-IP:server-port	This	looks	like	port	forwarding

on	the	command	line,	but	the	middle	colon	is	missing.	Here	I	forward	port	8080	on	my

workstation	to	port	80	on	the	server.	We	attach	to	the	127.0.0.1,	or	localhost,	on	both

the	client	and	the	server.	I’m	using	port	8080	on	the	workstation	because	using	port	80

would	require	running	SSH	as	root	every	single	time.

Host	envy.mwl.io

LocalForward	localhost:8080	localhost:80

The	LocalForward	keyword	most	often	appears	with	a	Host	statement,
enabling	local	port	forwarding	when	you	connect	to	specific	servers.	To	avoid	IP
and	port	conflicts,	each	server	usually	gets	assigned	its	own	local	port.
PuTTY	Local	Forwarding
PuTTY	has	a	special	control	panel	just	for	port	forwarding.	On	the	PuTTY
Configuration	screen’s	left	side,	select	Connection	->	SSH	->	Tunnels,	as	shown
in	Figure	9-4.

Figure	9-4:	PuTTY	Port	Forwarding	With	local	port	forwarding,	PuTTY	attaches	to	the	client’s	localhost
address	by	default.	I	must	specify	the	address	on	the	SSH	server	to	use,	however.	To	forward	port	80	on	the
SSH	server	to	port	80	on	my	workstation,	I’ll	use	the	server’s	localhost	address.	In	Source	port,	enter	80.	In
Destination,	enter	the	IP	address	on	the	server,	a	colon,	and	the	port	to	be	forwarded.	Here	I’ll	use
127.0.0.1:80.	At	the	bottom,	select	Local.	It	should	look	like	Figure	9-5.

Figure	9-5:	PuTTY	Local	Port	Forwarding	Settings	Hit	Add,	then	connect.	You	now	have	port	forwarding.
Point	your	browser	at	localhost,	and	see	what	happens.

To	bind	this	forwarding	to	the	client’s	network-facing	IP	address,	select
Local	ports	accept	connections	from	other	hosts.	This	binds	the	forwarded	port
to	all	IP	addresses	on	the	client,	so	that	other	hosts	on	the	workstation’s	network
can	access	the	forwarding.	See	“Choosing	IP	Addresses”	later	this	chapter	for	a
discussion	of	the	implications.

If	you	want	to	use	this	forwarding	every	time	you	connect	to	this	host,	save
this	session.
Remote	Port	Forwarding
Before	configuring	remote	port	forwarding,	verify	that	normal	SSH	works.
Determine	the	client	and	server	ports	you	want	to	forward	to	and	from.

Where	local	port	forwarding	is	usually	used	to	wrap	a	service	with
encryption,	remote	port	forwarding	is	used	to	access	a	service	behind	a	firewall.
For	this	example,	I’m	going	to	forward	port	2222	on	the	SSH	server’s	localhost
address	to	port	22	on	the	workstation.	When	I	connect	to	port	2222	on	the	SSH
server,	remote	forwarding	will	redirect	me	to	the	workstation’s	SSH	service.

Why	do	this?	Remember	from	our	example	environment,	the	client	is	behind
a	firewall.	The	firewall	might	be	my	home	NAT	device,	or	my	employer’s
industrial-grade	corporate	firewall	cluster.	Remote	forwarding	lets	me	use	my

client	to	give	an	SSH	server	outside	the	network	a	way	to	connect	to	a	host
inside	the	firewall,	despite	any	firewall	rules	to	the	contrary.	This	might	be	my
invaluable	emergency	back	door	into	my	own	network,	or	it	might	violate	my
employer’s	security	policy.	Or,	better	still:	both!

Note	that	you	cannot	bind	a	forwarded	port	to	the	SSH	server’s	public-facing
IP	addresses	unless	the	server	is	specifically	configured	to	permit	this	with	the
GatewayPorts	keyword.	See	“Restricting	Port	Forwarding”	later	this	chapter.
OpenSSH	Remote	Forwarding
Configure	remote	port	forwarding	with	the	-R	flag.
$	ssh	-R	remoteIP:remoteport:localIP:localport	hostname

If	you	don’t	specify	an	IP	address	to	attach	to	on	the	SSH	server,	SSH
attaches	to	127.0.0.1.	You	can	skip	the	first	argument	in	this	case,	making	the
command:	$	ssh	-R	remoteport:localIP:localport	hostname

I	want	to	connect	port	2222	on	the	SSH	server	sloth	to	port	22	on	my
workstation,	using	the	localhost	address	on	both	sides.
$	ssh	-R	2222:localhost:22	sloth

My	client	connects	to	the	server	and	gives	me	a	command	prompt.	As	long	as
that	SSH	session	remains	open,	another	user	on	sloth	could	SSH	to	my
workstation	by	connecting	to	port	2222.
sloth$	ssh	-p	2222	localhost

Poof!	A	new	SSH	connection	into	my	workstation,	tunneled	inside	my
existing	SSH	session.	This	new	session	would	show	up	in	the	client	log	as	a	new
connection,	originating	from	the	localhost.	You	really	need	to	trust	the	people
who	have	accounts	on	your	systems	when	setting	up	remote	port	forwarding.
Anyone	who	can	access	your	system’s	localhost	address	can	use	the	port
forwarding.	I	would	never	use	remote	port	forwarding	on	an	SSH	server	I	didn’t
wholly	trust.

If	you	want	to	establish	remote	port	forwarding	every	time	you	connect	to	a
server,	use	the	RemoteForward	keyword	in	ssh_config.
RemoteForward	server-IP:server-port	client-IP:client-port	Once	again,	this	resembles	port

forwarding	on	the	command	line,	but	the	middle	colon	is	missing.	Here	I	set	up	this	same

port	forwarding	in	the	configuration	file.

Host	sloth.mwl.io

RemoteForward	localhost:2222	localhost:22

The	RemoteForward	keyword	most	commonly	appears	with	a	Host
statement,	unless	you	want	to	perform	remote	forwarding	on	every	host	you
connect	to.
PuTTY	Remote	Forwarding
To	configure	remote	forwarding,	go	to	the	PuTTY	Configuration	screen’s	left
side,	select	Connection	->	SSH	->	Tunnels,	as	Figure	9-4	shows.	As	we’re
forwarding	from	server	to	client,	the	Source	port	field	refers	to	the	port	on	the
server	that	will	be	forwarded	to	the	workstation.	In	this	case,	the	source	port	is

2222.	The	Destination	is	localhost:22,	because	the	workstation’s	SSH	server
runs	on	port	22.3	Select	Remote	for	remote	port	forwarding.

Hit	Add,	then	connect.	Port	forwarding	should	work.
To	bind	this	forwarding	to	the	server’s	network-facing	IP	address,	select

Remote	ports	do	the	same	(SSH-2	only).	This	binds	the	forwarded	port	to	all	IP
addresses	on	the	SSH	server,	so	other	hosts	can	access	the	forwarding.
“Choosing	IP	Addresses”	later	this	chapter	discusses	the	implications.

To	make	the	remote	forwarding	permanent	for	this	server,	save	the	session.
You	can	now	laugh	at	the	firewall	all	the	way	to	the	unemployment	office.	Or

get	into	your	network	when	the	VPN	fails,	saving	your	company.	Or,	again,
both.
Dynamic	Port	Forwarding
Dynamic	port	forwarding	transforms	your	SSH	client	into	a	SOCKS	(version	5)
proxy.	Any	traffic	sent	to	the	proxy	will	be	tunneled	to	the	SSH	server,	which
forwards	that	traffic	as	its	own	access	permits.	You	must	have	a	SOCKS-aware
application	to	access	the	proxy,	but	most	web	browsers	include	SOCKS	support.
In	this	example,	I’m	going	to	configure	port	9999	on	my	workstation	as	a
SOCKS	proxy	and	dynamically	forward	all	traffic	to	my	server	on	the	public
Internet.

When	using	SOCKS,	your	client	will	probably	need	to	forward	all	DNS
requests	to	the	SOCKS	server.	Not	all	clients	support	this.
OpenSSH	Dynamic	Forwarding
Use	the	-D	flag	to	tell	OpenSSH	to	use	dynamic	port	forwarding.
$	ssh	-D	localaddress:localport	hostname

If	you	don’t	specify	an	IP	address,	ssh	automatically	binds	to	127.0.0.1.
Here,	I	create	my	proxy	on	port	9999	on	my	workstation.	All	traffic	sent	to

the	proxy	gets	forwarded	to	the	SSH	server	sloth,	which	relays	it	to	its
destination.
$	ssh	-D	9999	sloth

As	usual	with	port	forwarding,	you’ll	log	on	to	the	server	and	get	a	command
prompt.	The	dynamic	forwarding	runs	in	the	background.	Configure	the	web
browser	on	the	workstation	to	use	the	SOCKS	proxy	at	127.0.0.1:9999.	It	should
send	all	your	browsing	over	the	SSH	connection	to	your	server.

If	you	want	remote	port	forwarding	configured	every	time	you	connect	to	a
host,	use	the	DynamicForward	keyword	in	ssh_config.
DynamicForward	host:port

Like	the	other	forwarding	statements,	and	for	the	same	reasons,	the
DynamicForward	keyword	most	commonly	appears	in	a	Host	statement.
PuTTY	Dynamic	Forwarding

Go	to	the	Tunnels	screen	shown	in	Figure	9-4.	In	the	Source	port	field,	enter	the
port	that	you	want	your	SOCKS	proxy	to	use.	Leave	Destination	blank.	Select
Dynamic,	then	hit	Add.	You’ll	see	the	port	forwarding	appear	in	the	Forwarded
ports	list.	Open	the	connection.	Your	browser	should	now	be	able	to	connect	via
the	SOCKS	proxy.

For	my	sample	use,	I	enter	9999	in	the	Source	port	field,	select	Dynamic,	hit
Add,	and	connect.	That’s	it.

To	bind	this	forwarding	to	the	client’s	network-facing	IP	address,	select
Local	ports	accept	connections	from	other	hosts.	This	binds	the	proxy	to	all	IP
addresses	on	the	workstation,	so	other	hosts	can	access	the	forwarding.
Remember	that	you’re	offering	the	tunnel	to	everyone	who	can	access	your
client	when	you	do	this.

Save	the	session	if	you	want	this	forwarding	started	automatically	every	time
you	open	this	connection.
Testing	Dynamic	Forwarding
You	can	verify	dynamic	forwarding	with	any	program	that	supports	SOCKS
proxies.	The	most	common	program	of	this	type	is	a	web	browser.

Configure	your	firewall	to	block	all	port	80	traffic	from	your	workstation.
Verify	that	you	can	no	longer	browse	the	web.	If	you’re	going	to	browse,	you’ll
need	to	do	it	over	proxy.

Start	a	dynamic	port	forwarding	SSH	session.	Configure	the	web	browser	to
access	that	proxy.	If	you	can	see	the	Internet,	dynamic	forwarding	is	working.
Backgrounding	OpenSSH	Forwarding
Sometimes	you	want	to	use	OpenSSH	to	forward	a	connection,	but	you	don’t
need	a	terminal	session	on	the	SSH	server.	Use	the	-N	flag	to	tell	ssh	to	not	run
anything,	including	a	terminal,	on	the	server,	and	the	-f	flag	to	tell	ssh	to	go	into
the	background	on	the	client.	Here	I	background	a	local	forwarding	session	to
the	server	pride.
$	ssh	-fNL	2222:localhost:22	pride	&

Backgrounding	this	command	gives	you	your	original	terminal	back.
Backgrounded	forwarding	is	useful	when	you	do	not	have	shell	access	on	the
SSH	server,	but	you	are	allowed	to	authenticate	yourself	and	create	a	tunnel.
(This	is	one	way	to	create	an	SSH-based	VPN,	but	Chapter	13	discusses	better
ways.)
Choosing	IP	Addresses
When	port	forwarding,	you	must	choose	the	IP	address	you	want	the	forwarded
port	to	listen	on,	and	the	IP	you	want	to	attach	the	forwarded	port	to.	Choosing
the	IP	helps	control	who	may	connect	to	the	forwarded	port.

The	most	common	choice	is	to	bind	to	the	localhost	address,	127.0.0.1,	on
either	or	both	ends	of	the	tunnel.	Every	machine	with	a	functional	TCP/IP	stack
uses	127.0.0.1	as	the	address	for	itself,	and	only	the	local	machine	can	connect	to
it.	If	I	forward	port	80	on	my	workstation’s	localhost	address	to	port	80	on	the
server’s	localhost	address,	no	other	hosts	can	connect	to	that	forwarded	port	over
my	tunnel.	Most	daemons	on	a	server	listen	to	the	localhost	address	as	well	as
one	or	more	network-facing	IP	addresses,	so	using	the	localhost	address	is	a
reasonable	way	to	forward	ports.

If	you	want	your	client	to	accept	requests	from	other	machines	and	use	local
port	forwarding	to	send	them	to	the	SSH	server,	attach	the	port	forwarding	to	the
client’s	network-facing	IP	address.	If	I	forward	port	80	on	my	machine’s
network-facing	IP	address	to	port	80	on	the	SSH	server,	this	forwarding	is
available	to	all	hosts	that	can	connect	to	my	client’s	port	80.	With	PuTTY,	you
must	select	Local	ports	accept	connections	from	other	hosts.	With	OpenSSH,
you	must	have	a	GatewayPorts	keyword	set	in	ssh_config	(see	“Gateway	Ports”
later	this	chapter.)	If	you	want	the	SSH	server	to	forward	requests	from	other
machines	to	your	client	using	remote	port	forwarding,	attach	the	port	forwarding
to	the	server’s	network-facing	IP	address.	You	must	adjust	GatewayPorts	in
sshd_config	as	shown	in	“Gateway	Ports”	later	this	chapter.	For	example,	we	used
remote	report	forwarding	to	connect	a	port	on	our	server	to	the	client’s	sshd.	You
could	attach	this	remote	forwarding	to	the	server’s	public	facing	IP	address,	so
that	any	host	on	the	Internet	could	connect	to	the	client’s	SSH	service	even
though	it’s	behind	a	firewall.	Remember,	while	creating	a	back	channel	into	a
private	network	might	be	useful,	opening	that	back	channel	to	the	entire	Internet
is	downright	gauche.

If	you	want	an	SSH	client	to	act	as	a	SOCKS	proxy	for	other	machines	via
dynamic	port	forwarding,	attach	the	port	forwarding	to	the	client’s	network-
facing	IP	address.

Always	remember	that	a	host	running	any	modern	OS	can	have	multiple	IP
addresses.	It	might	make	sense	for	you	to	pick	a	particular	address	rather	than
allowing	all	network-facing	addresses.

Suppose	my	workstation	has	an	IP	of	192.0.2.18	and	is	on	a	network	with	a
whole	bunch	of	other	clients.	We	have	to	access	a	critical	web-based	application
that	doesn’t	encrypt	data	in	transit.	I	can	provide	an	encrypted	tunnel	from	my
workstation	to	the	server	via	local	port	forwarding.	If	I	wanted	to	provide	this
tunnel	to	my	desktop	alone,	I	would	attach	the	client’s	end	of	the	tunnel	to
127.0.0.1.	If	I	wanted	to	offer	this	tunnel	to	everyone	on	my	network,	I	would
attach	the	client	end	to	192.0.2.18.

Or	maybe	I’m	responsible	for	running	the	company’s	content-filtering	web

proxy	and	I’m	trying	to	debug	a	problem	where	a	certain	website	doesn’t
function	through	the	proxy.	I	want	to	see	what	this	website	looks	like	from
outside	my	network.	I	could	set	up	a	private	SOCKS	proxy	to	bypass	the
organization’s	proxy,	letting	me	browse	from	the	outside	server	instead.	Setting
up	an	unauthorized	proxy	server	that	anyone	can	use	is	a	great	way	to	need	a
new	job,	so	I	make	absolutely	sure	that	the	local	end	of	that	tunnel	uses	the
localhost	address.

You	can	use	a	hostname	instead	of	the	actual	IP	address,	provided	that	the
hostname	appears	correctly	in	the	DNS.	You	can	also	use	the	word	localhost
instead	of	127.0.0.1.
Restricting	and	Requiring	Port	Forwarding
The	OpenSSH	server	controls	what	types	of	port	forwarding	users	can	perform.
You	can	either	deny	port	forwarding,	permit	port	forwarding	but	allow	binding
only	to	the	localhost	address,	or	permit	only	specific	addresses	and	ports.

Implementing	these	blocks	at	the	server	level	isn’t	as	effective	as	one	might
hope,	though.	A	user	who	has	shell	access	can	easily	install	their	own
forwarders.	Properly	disabling	forwarding	for	shell	users	requires	controlling
which	binaries	are	executable,	disabling	interpreters	like	Perl	or	Python,	and
preventing	users	from	installing	further	programs.	For	the	most	part,	unless
you’re	really	dedicated,	users	with	shell	access	can	figure	out	ways	to	forward
ports.	Still,	disabling	or	restricting	port	forwarding	will	give	your	users	a	really
solid	hint	that	they	shouldn’t	be	forwarding	ports.
Block	Port	Forwarding
The	sshd_config	keyword	AllowTcpForwarding	tells	sshd	whether	it	should	permit
port	forwarding.	The	default	is	yes,	allowing	port	forwarding.	If	set	to	no,	port
forwarding	is	completely	disallowed.

To	permit	only	local	port	forwarding,	set	AllowTcpForwarding	to	local.
Similarly,	remote	permits	only	remote	port	forwarding.
Gateway	Ports
The	GatewayPorts	keyword	controls	whether	a	client	can	bind	a	remote
forwarded	port	to	any	IP	address	other	than	localhost.	This	keyword	appears	in
both	ssh_config	and	sshd_config.	The	ssh_config	option	controls	local	port
forwarding,	while	the	sshd_config	option	controls	remote	port	forwarding.

GatewayPorts	is	set	to	no	by	default,	meaning	that	clients	cannot	connect	any
port	forwarding	to	any	network-facing	IP	address.	This	is	identical	in	both
ssh_config	and	sshd_config.

When	used	in	ssh_config,	setting	GatewayPorts	to	yes	to	allows	ssh	to	request	to
listen	to	any	IP	on	the	client.

On	the	server	side,	setting	GatewayPorts	to	yes	in	sshd_config	means	that	no
matter	what	the	client	requests,	remote	forwarding	always	listens	to	all	addresses
on	the	host.	I	have	no	idea	why	you’d	enable	global	network	access	on	all	port
forwardings,	but	it’s	an	option.

The	server	supports	one	additional	GatewayPorts	option	in	sshd_config,
clientspecified,	which	tells	sshd	to	let	a	client	bind	to	whatever	they	request.
Permitting	the	client	fine-grained	control	on	a	forwarding-by-forwarding	basis	is
usually	the	best	choice.
Allow	Specific	Ports	and	Addresses
If	you	want	more	specificity	than	GatewayPorts	supports,	you	can	restrict	which
TCP	ports	and	addresses	can	be	forwarded	with	the	PermitOpen	keyword	in
sshd_config.	PermitOpen	takes	a	space-delimited	list	of	ports	that	may	be
forwarded	in	the	form	of	hostname:port.	For	example,	here	I	permit	the	server’s
ports	25	and	110	to	be	forwarded	back	to	the	client,	and	only	from	the	localhost
address.
PermitOpen	localhost:25	localhost:110

Anything	not	permitted	is	forbidden.	The	SSH	session	will	open	normally,
but	when	you	attempt	to	pass	traffic	over	a	forbidden	forwarded	port	your	SSH
client	displays	an	error.
Requiring	Port	Forwarding
Perhaps	the	port	forwarding	is	the	only	reason	for	this	connection	to	exist.	If
setting	up	port	forwarding	fails,	you	don’t	even	want	the	connection	to	establish.
The	ExitOnForwardFailure	ssh_config	keyword	tells	ssh	what	to	do	in	the	event	an
attempt	to	forward	a	port	fails.	The	default,	no,	means	the	connection	should	be
set	up	even	if	port	forwarding	cannot	be	established.	By	setting
ExitOnForwardFailure	to	yes,	you	tell	SSH	to	immediately	disconnect	if	the	port
forwarding	doesn’t	work.

Now	that	you	know	how	to	selectively	forward	ports	to	help	glue	your
network	together,	let’s	see	how	to	keep	an	SSH	session	alive	for	hours	or	days	at
a	time,	without	human	intervention.

1	My	HTML	education	ended	about	1996,	and	I	have	no	desire	to	resume	it.
2	Yes,	we're	solving	the	wrong	problem	here.	The	real	fix	is	to	replace	the	boneheaded	application.
3	I	know,	I	know,	most	Windows	systems	don't	have	an	SSH	service.	I'm	choosing	to	keep	my	examples
consistent,	rather	than	confuse	you	further.

Chapter	10:	Keeping	SSH	Connections	Open
Port	forwarding	transforms	SSH	from	a	protocol	that	gets	you	a	terminal	session
into	a	tool	for	arbitrarily	forwarding	TCP	traffic.	But	most	firewalls	(and	some
Internet	service	providers)	deliberately	terminate	TCP	connections	left	idle	for	a
period	of	time.	SSH	sessions	left	idle	will	eventually	be	disconnected	by	the
server,	the	client,	or	some	network	device	in	between.	If	you’re	forwarding	a
service	over	SSH,	or	even	if	you’re	too	lazy	to	log	into	your	SSH	server	every
time	the	firewall	cuts	your	connection,	you	want	to	keep	your	session	alive.

Most	methods	for	keeping	an	SSH	connection	up	amount	to	“pass	a	small
amount	of	traffic	in	the	background	so	that	intermediate	network	devices	don’t
see	the	connection	as	idle.”	These	are	called	keepalives.	Running	a	program	that
continuously	displays	and	updates,	like	top(1),	can	act	as	a	keepalive	without
changing	any	SSH	settings.	All	you	need	to	do	is	get	in	the	habit	of	starting	top
every	time	you’re	interrupted.

The	problem	with	keepalives	is	that	temporary	disconnections	terminate	the
session.	If	your	service	provider	has	a	problem	in	the	middle	of	the	night	and	the
keepalive	packets	cannot	cross	the	network	for	a	few	minutes,	either	your	client
or	your	server	will	terminate	the	connection.	Decide	how	to	configure	keepalives
appropriately	for	your	network.	You	might	not	want	them	at	all.

If	your	connection	is	so	erratic	that	keepalives	can’t	sustain	your	connection,
investigate	mosh	(https://mosh.org).	It’s	a	remote	connection	protocol	similar	to
SSH,	but	designed	for	unreliable	networks.

You	have	two	options	for	keepalives,	TCP	keepalives	and	SSH	keepalives.
TCP	Keepalives
Both	PuTTY	and	OpenSSH	support	TCP	keepalives.	While	TCP	keepalives	are
not	as	configurable	as	SSH	keepalives,	they’re	sufficient	for	most	end-users.

A	TCP	keepalive	is	part	of	the	TCP	protocol,	is	sent	at	the	transport	layer,
and	is	not	part	of	SSH	itself.	When	a	TCP	connection	remains	idle,	it	eventually
times	out	and	disconnects.	Turning	on	TCP	keepalives	sends	occasional	packets
back	and	forth	just	to	remind	everyone	that	this	connection	is	still	here.	A	TCP
keepalive	can	be	spoofed	or	forged,	though.	This	is	not	necessarily	bad—I	can’t
imagine	why	anyone	would	want	to	spoof	your	connection	to	keep	it	alive,	but
someone	more	clever	and	more	nasty	than	I	can	probably	come	up	with	more
than	one	bad	reason.	How	often	you	need	to	send	a	TCP	keepalive	depends	on
your	operating	system’s	TCP	stack,	but	it	should	never	be	longer	than	two
minutes.

PuTTY	only	supports	TCP	keepalives,	but	doesn’t	originate	them	by	default.

It	responds	to	any	TCP	keepalives	it	receives,	however.	On	the	PuTTY
Configuration	screen,	go	to	the	Connection	section.	The	first	option	is	Seconds
between	keepalives.	This	defaults	to	zero,	disabling	sending	keepalives.	In	most
cases,	sending	a	TCP	keepalive	every	90	seconds	suffices	to	hold	the	connection
open.	Even	if	PuTTY	doesn’t	send	keepalives,	SSH	servers	usually	do,	and
PuTTY	responds	to	them.	This	usually	suffices	to	hold	the	connection	open.

The	OpenSSH	server	sends	TCP	keepalives	by	default.	If	you	want	to	disable
them,	set	the	keyword	TCPKeepAlive	to	no	in	sshd_config.
OpenSSH	Keepalives
While	TCP	keepalives	might	meet	most	people’s	needs,	OpenSSH’s	keepalives
are	much	more	flexible.	The	keepalive	messages,	sent	within	the	encrypted
channel,	tell	intermediary	network	devices	that	this	TCP	session	is	still	in	use.
Receiving	a	keepalive	tells	the	host	that	the	remote	end	is	still	connected,	and
that	the	SSH	session	is	still	valid.	An	SSH	keepalive	is	also	more	likely	to
continue	holding	a	session	open	even	through	a	lengthy	router	reboot.

Both	OpenSSH’s	client	and	the	server	support	keepalives.	Strictly	speaking,
the	client	sends	client	alive	messages	and	the	server	sends	server	alive	messages.
While	these	must	be	different	for	protocol	reasons,	to	us	they’re	both	just
keepalives.	OpenSSH	doesn’t	use	SSH	keepalives	by	default;	you	must
configure	them	before	starting	a	session.

A	host	that	sends	keepalives	expects	to	receive	keepalives	in	return.	Each
host	tracks	how	long	it’s	been	since	it	received	a	keepalive	from	the	other	end.	If
a	host	sends	a	specified	number	of	keepalives	without	receiving	any,	it	assumes
that	the	connection	is	lost	and	terminates	the	SSH	session.

Using	SSH	keepalives	requires	deciding	how	often	you	want	to	send	a
keepalive	packet,	and	how	many	of	those	packets	can	be	missed	before	the	host
disconnects	the	session.	The	server	uses	the	keywords	ClientAliveInterval	and
ClientAliveCountMax.	The	client	supports	the	keywords	ServerAliveInterval
and	ServerAliveCountMax.

The	AliveInterval	keywords	dictate	how	many	seconds	the	connection	must
be	idle	before	the	host	sends	a	keepalive.	To	make	a	client	transmit	a	keepalive
after	ninety	seconds	of	inactivity,	set	ServerAliveInterval	to	90.	The	default	is	0,
disabling	keepalives.

The	AliveCountMax	keywords	tell	the	host	how	many	keepalives	it	must
send	in	a	row	before	terminating	the	connection.	The	default	is	three.

Let’s	look	at	how	this	works	in	practice.	We	have	the	following	in	the
server’s	sshd_config:	ClientAliveInterval	90
ClientAliveCountMax	5

On	the	client	side,	we’ve	put	the	following	in	ssh_config.

ServerAliveInterval	90

ServerAliveCountMax	4

We	log	into	our	SSH	server,	do	some	work,	and	let	the	connection	go	idle.
Ninety	seconds	after	the	connection	goes	idle,	the	client	sends	a	keepalive	to	the
server.	If	the	server	responds	with	its	own	keepalive,	both	client	and	server	know
that	the	connection	is	alive.	If	another	ninety	seconds	pass	without	receiving	a
response	from	the	server,	the	client	will	send	another	keepalive.	It	knows	that
it’s	sent	two	keepalive	requests	without	receiving	any	response	from	the	server.
If	the	connection	remains	idle,	the	client	keeps	sending	keepalives.	At	the	fourth
keepalive,	after	six	minutes,	the	client	throws	away	the	SSH	session	and	exits.

The	server	sends	keepalives	in	the	same	way,	but	note	that	it’s	set	to	tear
down	the	connection	at	five	unacknowledged	keepalive	requests.	This	particular
client	tolerates	less	interruption	than	the	server.

Note	that	the	TCP	protocol	also	plays	into	this.	A	host	sending	TCP	packets
expects	the	recipient	to	acknowledge	every	packet.	If	the	sender	does	not	get	this
acknowledgment,	it	eventually	tears	down	the	connection	despite	anything	SSH
can	do.	The	length	of	time	varies	by	operating	system,	but	you	should	know	that
if	you	cannot	maintain	a	TCP	connection	you	cannot	maintain	an	SSH	session.

If	you	want	to	keep	your	connection	alive	no	matter	what,	cranking
AliveCountMax	to	high	values	helps,	especially	when	you’re	behind	a	cheap1
Network	Address	Translation	device	such	as	many	home	routers.

PuTTY	does	not	support	SSH	keepalives.
Keepalives	and	the	SSH	Server
If	you	disable	all	keepalives	on	your	SSH	server,	the	server	cannot	notice	when	a
client	goes	off-line.	This	means	that	when	a	workstation	crashes	or	a	network
link	fails,	forcibly	disconnecting	a	client,	the	server	won’t	know.	It	will	continue
running	the	SSH	processes	for	these	clients.	If	your	server	is	up	for	a	long	time,
you	may	accumulate	hundreds	or	even	thousands	of	defunct	sshd	processes.
Cleaning	them	up	is	kind	of	a	pain.	I	recommend	using	TCP	keepalives	at	a
minimum,	and	preferably	SSH	keepalives	as	well.

Now	let’s	look	at	simplifying	your	life	through	key	distribution.

1	I'm	fine	with	inexpensive,	but	I	detest	cheap.

Chapter	11:	Key	Distribution
Unquestionably,	the	most	annoying	part	of	managing	SSH	is	distributing	and
verifying	keys.

No	matter	how	dire	the	lecture	you	inflict	upon	your	users,	many	of	them
won’t	bother	to	compare	server	fingerprints	to	the	list	you	provide;	instead
they’ll	hit	“Yes,	accept	the	key.”	No	matter	how	hard	we	try	to	educate	them,
users	quickly	grow	inured	to	the	scary-looking	warnings	and	learn	to	ignore
them.	The	best	way	to	help	users	pay	attention	is	to	ensure	that	they	don’t	see
warnings	unless	something	is	truly	wrong.

Similarly,	key-based	authentication	is	usually	more	secure	than	password-
based.	Many	users	won’t	bother	to	copy	their	authorized_keys	to	a	server,	however.
They’ll	just	stick	with	familiar	passwords.	If	you	want	to	enforce	key-based
authentication,	you’ll	need	to	get	the	user’s	authorized_keys	on	the	servers
yourself.	And	if	you	manage	dozens	or	hundreds	of	servers	and/or	users,	you
will	need	automation	to	distribute	user	key	updates	amongst	your	systems.

While	OpenSSH	doesn’t	include	automated	key	distribution	tools,
understanding	key-related	features	can	vastly	simplify	your	automation	process.
We’ll	start	with	host	keys,	and	proceed	to	user	keys.
known_hosts	In	Detail
Host	key	distribution,	for	both	OpenSSH	and	PuTTY,	starts	with	known_hosts.	If
you’re	going	to	distribute	host	public	keys,	you’ll	want	to	be	sure	that	those
records	are	pristine.	That	means	you	need	to	completely	understand	the
known_hosts	file.

Each	line	in	known_hosts	represents	one	public	key	from	one	host,	in	space-
separated	fields.	If	a	host	supports	three	different	public	key	algorithms,	and
you’ve	connected	to	this	host	using	all	three	keys,	that	host	will	have	three
entries	in	known_hosts.	Each	entry	also	gives	the	server’s	hostname	or	IP	address
and	the	algorithm	used	for	the	key.	But	each	entry	can	also	include	a	couple
other	fields.
Marker
The	known_hosts	file	supports	to	special	markers,	@cert-authority	and	@revoked.
These	markers	must	appear	first	in	line.

A	known_hosts	entry	that	starts	with	@cert-authority	indicates	that	the	host	key
is	for	an	SSH	certification	authority.	An	SSH	certification	authority	is	not	the
same	as	a	TLS	CA.	Chapter	14	discusses	SSH	CAs.

If	an	intruder	breaks	into	an	SSH	server	and	copies	the	servers	private	key,
that	key	can	no	longer	be	trusted.	A	savvy	intruder	might	use	that	key	to	try	to

spoof	the	server.	By	marking	a	key	with	@revoked	in	known_hosts	you	tell	ssh	to
not	accept	this	key	and	to	generate	a	scary	warning.
$	ssh	gluttony

@@@

@	WARNING:	REVOKED	HOST	KEY	DETECTED!	@

@@@

The	ECDSA	host	key	for	gluttony.mwl.io	is	marked	as	revoked.

This	could	mean	that	a	stolen	key	is	being	used	to	impersonate	this	host.

ECDSA	host	key	for	gluttony.mwl.io	was	revoked	and	you	have	requested	strict	checking.

Host	key	verification	failed.

Note	that	there	is	no	“accept	this	key	anyway”	option.	A	revoked	key	is
utterly	un-trusted.	Leaving	the	key	in	known_hosts	but	marking	it	as	a	revoked
gives	the	user	clear	warning	that	they’ve	encountered	a	compromised	system.

Markers	must	go	at	the	beginning	of	the	line,	before	the	hostname.
Hostname
The	hostname	is	how	SSH	identifies	an	SSH	server.	If	you	used	a	short
hostname	to	connect	to	the	server,	ssh	records	the	full	hostname	that	it	used	to
contact	the	server.	This	means	that	if	I	typed	ssh	wrath,	ssh	would	record	the
hostname	as	wrath.mwl.io	because	that’s	the	name	my	system’s	resolver	provided
to	ssh(1).	The	machine	might	have	other	host	names	or	aliases,	and	is	probably
also	known	by	its	IP	address.	A	truly	authoritative	known_hosts	file	must	include
keys	for	each	of	those	names.

The	good	news	is,	you	don’t	have	to	include	multiple	mostly-duplicate	lines
for	these	different	names.	The	known_hosts	file	accepts	multiple	host	names	in	a
single	entry,	so	long	as	they	are	separated	by	commas.
gluttony.mwl.io,mail.mwl.io,203.0.113.213	ecdsa-sha2-nistp256

AAAAE2VjZHNhLXNoYTItbmlzdHAyN…

Some	sysadmins	change	the	TCP	port	their	SSH	service	runs	on.	This	isn’t
terribly	useful	for	security,	but	helps	slow	down	the	more	primitive	worms	and
reduces	log	chatter.	These	host	names	appear	in	brackets	in	known_hosts,	followed
by	a	colon	and	the	port	number.
[lust.mwl.io]:2222	ecdsa-sha2-nistp256	AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNT…

Chapter	5	covered	obscuring	host	names	by	hashing	them,	preventing	a
casual	intruder	from	extracting	server	information	from	known_hosts.	Listing
multiple	host	names	on	a	single	line	simplifies	central	management	of	known_hosts,
but	conflicts	with	hashing	host	names.	If	you	wish	to	hash	host	names,	you	must
list	each	hostname	on	a	separate	line.	A	host	known	as	avarice.mwl.io,	mail.mwl.io,
and	198.51.100.12	requires	three	known_hosts	entries,	and	each	will	be	separately
hashed.	If	you’re	going	to	hash	known_hosts	entries	before	distributing	them,	I

recommend	maintaining	your	master	file	in	clear	text.
A	host	that	accepts	connections	on	multiple	IP	addresses	theoretically	needs	a

known_hosts	entry	for	each	of	those	addresses.	If	you	don’t	normally	connect	to	all
of	those	addresses,	then	don’t	bother.	I	have	a	server	with	dozens	of	IP
addresses,	but	I	only	connect	via	SSH	to	one	of	those	addresses,	so	that	server
has	only	one	known_hosts	IP	entry.	If	you	have	such	a	server,	locking	sshd	to	only
listening	on	one	address	might	simplify	management.
Key	Type
The	key	type	is	the	algorithm	used	to	generate	this	host	key.	A	modern
known_hosts	can	contain	six	different	key	types:	ssh-dss	(DSA	keys),	ssh-rsa	(RSA
keys),	ecdsa-sha2-nistp256,	ecdsa-sha2-nistp384,	and	ecdsa-sha2-nistp512
(ECDSA	keys),	and	ssh-ed25519	(ED	25519	keys).	Anything	else	that	appears
in	the	space	is	weird	and	needs	investigation.
Key
The	public	key	is	a	long	gibberishy	alphanumeric	string.	It	often	starts	with	a
series	of	capital	A’s	and	often	(but	not	always)	ends	with	equal	signs	(=).	The
key	fills	the	majority	of	the	line.
Comment
The	comment	is	free-form	text.	You	can	use	the	comment	anyway	you	need.	It’s
generally	blank	in	automatically-maintained	known_hosts	files,	but	you’ll	find	it
useful	in	centralized	management.
Creating	known_hosts
The	easy	way	to	generate	a	known_hosts	is	to	use	ssh-keyscan(1).
$	ssh-keyscan	wrath	>	wrath.known_hosts

That	gives	you	a	known_hosts	file	to	start	with.	Now	you	need	to	verify	those
keys	against	the	fingerprints	you	generated	in	Chapter	4.	That’s	a	great	job	to
give	to	a	meticulous,	conscientious	flunky	you	loathe.

I	encourage	you	to	automate	collecting	known_hosts	entries.	How	you	do	this
depends	entirely	on	your	organization’s	preferred	tools.	Ideally,	you’d	run	ssh-
keyscan	when	the	machine	is	first	deployed,	before	any	intruder	has	a	chance	to
trash	it,	and	immediately	update	your	known_hosts.

If	you	want	to	simplify	known_hosts,	you	could	reduce	the	number	of	keys	that
an	SSH	server	offers.	You	might	declare	that	all	hosts	in	your	network	only	offer
ED25519	keys,	eliminating	all	the	known_hosts	entries	for	all	other	key	types.	The
sshd_config	HostKeyAlgorithms	keyword	lets	you	set	the	algorithms	sshd	will	use
for	host	identification.
HostKeyAlgorithms	ssh-ed25519,	ssh-rsa	The	exact	method	you’ll	use	depends	entirely	on	the

tools	you’re	comfortable	with	and	the	automation	you	already	have	in	place.	If	at	all

possible,	repurpose	your	existing	tools.

And	if	you	write	a	good	tool	to	collect,	verify,	and	build	a	known_hosts	file,

please	make	it	publicly	available.
Revoking	Host	Keys
If	you	have	reason	to	suspect	that	a	server’s	key	has	been	compromised,	revoke
it.	Find	all	of	the	server’s	host	key	entries	in	your	known_hosts.	Add	to	the	string
@revoked	in	front	of	all	of	them.	Generate	new	host	keys	for	the	server	and
restart	sshd,	then	add	the	new	host	keys	to	your	known_hosts.	You	can	now
distribute	your	updated	known_hosts	to	your	clients,	and	in	the	(unlikely)	event	that
the	user	attempts	to	use	the	revoked	key,	the	user	will	get	a	warning.

The	effectiveness	of	revoked	keys	depends	entirely	on	distributing	known_hosts
to	your	clients.
Distributing	Host	Keys
Any	time	an	SSH	server’s	host	key	is	added,	moved,	or	changed,	users	will	see
warnings	about	the	host	key.	The	whole	point	of	distributing	known_hosts	is	to	keep
users	from	seeing	unnecessary	warnings.	Stay	ahead	of	your	users.1	Update	your
known_hosts	any	time	you	deploy	or	remove	a	server,	or	if	you	must	give	a	server
new	keys.	If	you	delay	updating	known_hosts,	users	will	learn	to	ignore	warnings.

The	worst	part	of	maintaining	a	centralized	known_hosts	file	is	copying	the	file
to	all	of	your	servers	and	workstations.	You’re	busy.	If	the	update	takes	a	long
time	or	a	lot	of	energy,	you	won’t	keep	up	on	it.	You	really	need	a	centralized
system	like	Ansible,	Puppet,	or	one	of	their	many	competitors.	Active	Directory
works	fine	for	distributing	host	keys	to	Windows	systems.	If	you’ve	never	used
automation,	I	recommend	Ansible.	Once	you	have	a	complete	known_hosts	for	your
existing	systems,	updating	that	file	and	pushing	it	out	to	all	of	your	systems
should	only	take	a	minute	or	two,	and	will	save	your	users	and	your	support
team	hours	of	labor.
Distributing	known_hosts
All	OpenSSH	clients	check	etcssh/ssh_known_hosts	for	host	keys.	Copy	your
known_hosts	to	this	location	on	each	of	your	servers	and	workstations.	The	next
time	someone	uses	ssh(1)	on	these	machines,	the	correct	key	will	already	be	in
place.

OpenSSH	checks	for	host	keys	in	each	user’s	personal	known_hosts	file	in
addition	to	the	system’s	etcssh/ssh_known_hosts.	The	client	will	use	any	entry	that
matches	the	key	offered	by	the	server.	When	you	first	deploy	a	centralized
known_hosts,	each	user	will	probably	have	an	existing	personal	known_hosts.	You
don’t	want	any	obsolete	or	invalid	entries	in	the	user’s	personal	cache	to
interfere	with	later	key	changes	or	revocations.	Don’t	just	go	deleting	everyone’s
known_hosts;	they	might	contain	verified	host	keys	for	servers	you	don’t	control.
Instead,	on	your	first	deployment,	move	each	user’s	personal	known_hosts	to

somewhere	like	known_hosts.personal.
Be	sure	to	tell	your	users	what’s	going	on.	Preferably	in	advance.
Once	you	have	a	system	in	place	to	maintain	known_hosts,	you’ll	find	other	uses

for	automation	in	SSH.	Remember	that	etcssh/ssh_config	sets	systemwide	defaults
for	ssh(1).	If	you	have	organizational	standards	that	require	special	settings,	you
can	enter	them	in	the	global	configuration	and	save	your	users	the	effort	of
editing	their	own	configurations	or	remembering	command-line	arguments.	If
your	organization	runs	SSH	on	a	non-standard	port,	setting	the	Port	keyword	in
etcssh/ssh_config	might	actually	earn	you	good	karma	from	your	users.	Personal
config	files	override	systemwide	settings,	so	users	can	still	shoot	themselves	in
the	foot	if	they’re	really	intent	on	it.
Distributing	PuTTY	Host	Keys
PuTTY	keeps	its	host	keys	in	the	Windows	Registry.	Copying	the	keys	isn’t	as
easy	as	moving	a	file	to	all	of	your	workstations,	but	it	can	be	simplified.	The
PuTTY	team	has	a	Python	script	to	convert	known_hosts	into	PuTTY’s	Registry
keys,	hk2reg.py.	You	won’t	find	hk2reg.py	in	the	normal	PuTTY	installation,	but
it’s	included	with	the	source	code.	You	can	download	the	PuTTY	source	code
from	the	PuTTY	website,	or	grab	it	from	the	PuTTY	GitHub	at
https://github.com/github/putty,	in	the	“contrib”	directory.

Run	hk2reg.py	and	give	it	a	single	argument,	your	pristine	known_hosts.
$	kh2reg.py	pristine-known_hosts	>	putty.reg

Install	this	registry	file	on	your	clients	via	Active	Directory,	a	login	script,	or
by	having	your	users	double-click	on	it.2

Remember	that	PuTTY	stores	keys	in	each	individual	user’s	Registry.	There
is	no	systemwide	PuTTY	registry	tree.	Distribute	keys	by	user,	not	by	machine.

If	you	are	maintaining	known_hosts	for	a	variety	of	platforms,	I	suggest	this
workflow	for	distributing	host	keys:	Start	by	gathering	your	host	keys.	Create	a
known_hosts	file	for	your	OpenSSH	clients.	Trigger	the	script	to	automatically
distribute	the	new	known_hosts	to	each	of	your	OpenSSH	systems.	While	that	runs,
use	kh2reg.py	to	create	your	Windows	registry.	Last,	queue	your	new	registry	file
for	distribution	via	Active	Directory.	The	next	time	people	login,	they	should
have	all	the	new	keys.
Host	Keys	in	DNS
OpenSSH	supports	checking	for	host	key	fingerprints	in	the	Domain	Name
System.	(PuTTY	does	not.)	This	eliminates	pushing	the	file	to	your	servers,	but
traditional	DNS	services	are	not	secure.	You	absolutely	must	have	DNS	Security
Extensions	(DNSSEC)	if	you	want	to	securely	distribute	your	servers	public	key
fingerprints	via	DNS.	If	you	do	not	yet	have	DNSSEC,	go	configure	it	now	and

then	come	back	here.	You	might	find	my	book	DNSSEC	Mastery	(Tilted
Windmill	Press,	2013)	useful.

We’re	not	going	to	cover	DNS	basics.	If	you’re	considering	distributing	key
fingerprints	via	DNS	I’ll	take	it	as	given	that	you	know	what	a	zone	file	is,	why
an	RR	is	important,	and	why	you	update	serial	numbers.
SSHFP	Records
The	SSH	Finger	Print	(SSHFP)	record	provides	a	host’s	SSH	fingerprint.	The
record	looks	something	like	this:	wrath	IN	SSHFP	1	1
07988cadf134050d458dfa5f2c062b5e68106163

As	with	any	standard	DNS	record,	the	first	field	gives	the	hostname,	the
second	indicates	this	is	an	Internet	record,	while	the	third	indicates	this	is	an
SSH	fingerprint	record.	SSH-specific	details	start	appearing	in	field	four,	which
gives	the	algorithm	type.	You	don’t	have	to	memorize	which	number	maps	to
which	algorithms,	but	the	1	here	means	this	is	an	RSA	fingerprint.	The	fifth	field
is	the	message	digest	algorithm	used	to	produce	this	fingerprint.	1	indicates
SHA-1,	while	a	2	represents	SHA-256.	Finally,	the	sixth	field	is	the	actual	key
fingerprint.

You’ll	need	two	SSHFP	records	for	every	public	key	your	server	offers;	one
for	SHA-1	and	and	one	for	SHA-256.
Creating	SSHFP	Records
Don’t	even	try	to	create	SSHFP	records	by	hand.	The	ssh-keygen	program	can	read
the	key	files	on	the	local	server	and	produce	records,	by	using	the	-r	flag.	Give
the	hostname	as	an	argument.
$	ssh-keygen	-r	wrath

wrath	IN	SSHFP	1	1	07988cadf134050d458dfa5f2c062b5e68106163

wrath	IN	SSHFP	1	2	b7931f47398ca1ed73e8642bd029fb69dda05913058ffb096f2358c429436013

wrath	IN	SSHFP	2	1	3f73194323def663866a7b3996e6be113d7ea303

wrath	IN	SSHFP	2	2	927b54096876789ca926da1aa80db5a09751c8d9c5c99527b3a231e878802e3e	wrath

IN	SSHFP	3	1	cf61d5ed8a653750198daf77f0a409d48c8ef760

wrath	IN	SSHFP	3	2	4d2277f46a699d475ff095fa274a007fdf8281ad8bccb3575feb62779e257e8e	wrath

IN	SSHFP	4	1	59c3ed21e086b923a4e8a49504691c844f5a1590

wrath	IN	SSHFP	4	2	4e2f1c2ee4850d1bb43fffd43e16d27df99d0a3491582f51423dd7d48944f513

Load	these	records	into	your	DNS	server.
You	could	also	copy	the	server’s	public	key	files	to	a	central	host	and	tell	ssh-

keygen	to	use	those	files	with	the	-f	flag.
$	ssh-keygen	-r	wrath	-f	ssh_host_ed25519_key.pub

You	must	run	this	command	separately	for	each	key	file,	but	if	you	have	a
central	automation	server	this	approach	has	a	lot	to	recommend	it.	Remember,
the	public	keys	are	displayed	to	anyone	who	can	connect	to	the	server’s	SSH
port.	Copying	the	public	key	files	to	a	secure	server	is	not	usually	a	security	risk.

As	I	write	this	some	free	DNS	providers,	such	as	Hurricane	Electric,	support
SSHFP	records.

Configuring	the	Client
The	OpenSSH	client	might	use	SSHFP	records	by	default,	depending	on	how	the
operating	system	distributor	compiled	it.	Use	the	VerifyHostKeyDNS	keyword
to	explicitly	define	what	ssh	should	do.	If	set	to	yes,	the	client	completely	trusts
keys	provided	by	SSHFP	records.	If	set	to	ask,	ssh	displays	the	key	fingerprint
and	asks	the	user	what	to	do.

This	handles	the	host	keys.	Now	let’s	talk	user	authentication	keys.
Distributing	authorized_keys
A	lone	sysadmin	with	only	a	handful	of	servers	can	pretty	easily	maintain	her
own	authorized_keys	file.	Get	up	to	seven	or	eight	servers,	and	copying
authorized_keys	everywhere	gets	pretty	tedious.	Have	a	whole	team	of	sysadmins,
and	want	to	ban	password	authentication	across	your	hundreds	of	servers?	You
really	have	to	look	at	ways	to	automate	authorized_keys	replication.	You	can	either
have	your	automation	system	replicate	authentication	keys	on	all	systems,	or
have	sshd	query	the	network	for	a	user’s	authorized_keys	at	every	login	attempt.
Both	have	their	place.
Replicating	Key	Files
Having	users	maintain	their	own	key	files	can	cause	operational	problems.	Users
have	an	uncanny	ability	to	corrupt	their	files,	especially	when	they	think	they
know	what	they’re	doing.	By	having	a	centralized	system	to	deploy
authorized_keys,	you	get	a	chance	to	perform	some	basic	integrity	tests	before	the
user	gets	themselves	in	trouble.	You	don’t	need	a	complicated	key	file	parsing
and	validation	system,	but	being	able	to	say,	“Did	you	realize	that	your	key
entries	have	newlines	in	the	middle	of	them?”	can	reduce	annoyance	for
everybody	involved.	Also,	if	a	user’s	workstation	gets	hacked	into,	and	the
intruder	bootstraps	that	into	server	access,	the	intruder	can	add	their	own	key	to
the	user’s	authorized_keys	and	copy	it	to	all	the	servers	in	known_hosts.	Centralizing
key	management	and	removing	a	user’s	ability	to	upload	new	key	files	without
passing	through	the	automation	system	can	be	desirable.

You	really	don’t	want	your	automation	system	mucking	around	in	each	user’s
home	directory.	Instead,	take	advantage	of	the	AuthorizedKeysFile	sshd_config
keyword.	This	lets	you	put	a	user’s	authorized_keys	file	anywhere	you	want.
Combine	this	with	the	%u	token	to	have	root	own	all	the	user	keys.
AuthorizedKeysFile	etcssh/keys/%u	Remember	that	the	%u	token	represents	the	username.	With

this	AuthorizedKeysFile	setting,	the	authentication	keys	for	the	user	mwl	would	be	in

etcssh/mwl,	while	the	keys	for	the	user	djm	would	be	in	etcssh/djm.	Key	files	outside	the

user’s	home	directory	look	exactly	like	any	other	authorized_keys,	but	they	must	be	owned

by	root.	Even	if	our	hypothetical	intruder	penetrates	an	account,	they	can’t	edit	the	keys

without	privilege	escalation.

Use	any	features	your	operating	system	supports	to	secure	these	files.	On	a
UFS	filesystem,	maybe	the	immutable	flag	would	suit	your	environment.	Or

NFSv4	ACLs.	If	something	annoyed	you	by	refusing	to	let	you	change	a	file,
consider	it	for	protecting	authorized	key	files.
Querying	the	Network	for	Keys
If	you	have	centralized	authentication	system	such	as	LDAP,	you	can	store	user
authentication	keys	in	that	system.	OpenSSH	can	query	that	information	source
with	the	AuthorizedKeysCommand	and	AuthorizedKeysCommandUser
keywords.
AuthorizedKeysCommand	usrscripts/getAuthorizedKeys.pl	AuthorizedKeysCommandUser	ldap	Any

time	you	look	at	network-based	authentication	people’s	brains	leap	into	LDAP.	LDAP	is

specifically	meant	for	this	sort	of	directory	lookup—it’s	pretty	much	a	database	optimized

for	reads.	I	can’t	go	into	detail	here,	as	LDAP	directories	vary	wildly	between	vendors.

No	matter	which	you	use,	however,	you’ll	need	to	get	an	SSH	key	schema	loaded	into	your

directory.	Talk	with	your	LDAP	administrator	and	see	what	they	can	provide.	The	exact

schema	needed	varies	with	the	directory	arrangement,	but	it	usually	involves	attaching	an

sshPublicKeys	entry	to	the	user’s	account.	LDAP	administrators	for	large	enterprises	that

are	built	upon	commercial	LDAP	offerings	are	often	reluctant	to	extend	core	directory

entries,	because	that	limits	their	ability	to	get	vendor	support.	In	my	experience,

solving	this	problem	required	more	effort	than	any	other	part	of	key	distribution.

Once	you	have	the	schema	loaded,	you	need	a	script	to	fetch	authorized_keys
from	the	directory.	The	type	of	script	varies	precisely	as	much	as	the	types	of
authentication	systems	people	use.	A	script	that	authenticates	against	Active
Directory	will	be	completely	different	from	one	that	authenticates	against	a
home-brewed	OpenLDAP	directory.	CentOS	ships	with	a	script	to	authenticate
against	their	LDAP	server,	ssh-ldap-helper(8).	People	have	solved	this	problem
for	a	variety	of	directory	services,	and	made	their	scripts	available,	so	be	sure	to
look	for	existing	solutions	before	spending	the	next	ten	years	debugging	your
own.

The	AuthorizedKeysCommandUser	keyword	defines	the	account	that	will
run	the	script	in	AuthorizedKeysCommand.	If	you	don’t	set
AuthorizedKeysCommandUser,	sshd	will	not	run	the	script.	All	attempts	to	get	a
user’s	authorized_keys	will	fail.	I	recommend	creating	a	user	with	no	privileges
except	running	this	one	script.	Isolated	unprivileged	users	are	a	ridiculously
inexpensive	security	solution	that	doesn’t	get	used	often	enough.

Just	because	LDAP	gets	all	of	the	attention,	don’t	limit	yourself	by	thinking
LDAP	is	a	requirement.	It’s	convenient	if	you	have	it,	yes,	but	you	can	use	any
service	that	makes	sense	for	your	environment.	If	your	organization	has	a	rule
that	all	applications	must	interoperate	via	ODBC,	or	perhaps	Wordpress
XMLRPC	over	HTTPS,	leverage	your	existing	expertise	and	write	a	script	that
fetches	keys	that	way.	AuthorizedKeysCommand	is	a	script.	You’re	a	sysadmin.
This	is	your	thing.

Whether	you’re	talking	about	user	authentication	keys	or	host	public	keys,
automation	and	key	distribution	are	vital.	Now	that	you	can	have	your
automation	manage	SSH,	let’s	see	how	SSH	can	manage	automation.

1	And	remember,	your	users	are	quick—especially	when	it’s	inconvenient.
2	Emailing	a	Registry	file	to	all	of	your	users	and	telling	them	to	double-click	on	it	before	using	SSH	does
not	encourage	a	security	mindset.

Chapter	12:	Automation
SSH	is	an	incredibly	powerful	tool	for	automation.	Many	programs	can	use	SSH
as	a	transport,	relying	on	known-secure	software	rather	than	attempting	to
implement	their	own	network	security.	Most	network	orchestration	tools	like
Ansible	and	Puppet	use	SSH;	breaking	your	SSH	configuration	means	you	can’t
use	them.

This	same	flexibility	can	cause	security	issues,	however.	Automated
processes	should	not	get	access	to	anything	except	the	bare	minimums	needed	to
perform	their	task.	Fortunately,	you	can	limit	the	commands	that	particular	users
can	run	via	SSH,	through	the	authorized_keys	file	or	even	in	sshd	itself.
Additionally,	you	can	automatically	run	commands	whenever	a	user	logs	in.
We’ll	start	with	that	function,	and	proceed	to	limiting	users.
Running	Commands	at	Login
The	SSH	server	checks	for	commands	to	run	any	time	a	user	starts	a	new
session.	This	was	mostly	designed	to	configure	services	needed	to	make	the
account	usable	before	login,	such	as	mounting	filesystems	and	assigning	an	X
display,	but	you	can	use	it	for	whatever	you	need.

At	login,	sshd	checks	for	the	shell	script	$HOME/.ssh/rc.	If	it	exists,	it	gets	run.	If
it	doesn’t	exist,	sshd	checks	for	a	script	at	sshsshrc	and	runs	that.	Either	way,	the
script	is	run	by	the	account	being	logged	into.	If	you	need	to	perform	tasks	every
time	a	user	logs	in,	consider	this	functionality.

The	script	must	be	a	valid	shell	script,	complete	with	#!binsh	at	the	top	of	the
file,	and	it	must	be	executable.	(Some	Linux	distributions	execute	this	command
even	if	it	doesn’t	meet	these	requirements.)	The	SSH	daemon	hands	the	script
one	argument,	an	X11	cookie.	With	modern	X	software,	you	almost	certainly
can	ignore	it.

The	sshd_config	keyword	PermitUserRC	turns	this	script	check	on	and	off.
While	it	defaults	to	yes,	you	can	disable	the	script	by	setting	it	to	no.
authorized_keys	Restrictions
While	a	user’s	authorized_keys	dictates	the	key	pairs	that	can	be	used	for
authentication,	you	can	also	use	it	to	limit	the	commands	that	a	user	logged	in
with	that	key	may	run.	One	account	might	have	a	key	pair	for	interactive	use	and
a	second	key	pair	for	an	automated	task.	Configuring	requires	understanding	the
authorized_keys	file	format.
Authorized_keys	Format
A	minimal	authorized_keys	entry	has	three	parts:	the	key	type,	a	few	hundred

alphanumeric	characters	representing	the	public	key,	and	a	comment	field.	Each
entry	goes	on	a	single	line,	no	matter	how	long	it	is.	It	will	look	something	like
this:	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…	wE2Ime8Rs/Q==	moose-
20160525

This	is	an	RSA	key,	as	shown	by	ssh-rsa	at	the	beginning	of	the	entry.	This
public	key	begins	with	a	AAA	and	ends	with	8Rs/Q==.	Many	but	not	all	public-
key	entries	end	in	the	double	equals	sign.	The	comment	at	the	end	gives	the	host
this	key	was	created	on	and	the	date	of	creation.

You	can	put	additional	keywords	and	instructions	on	how	this	key	may	be
used	at	the	beginning	of	the	entry.	The	server	obeys	those	instructions,	within
the	limits	of	the	user’s	permissions.	Find	a	complete	list	of	authorized_keys
keywords	in	the	sshd(5)	man	page,	but	here	are	the	most	commonly	used	ones.
command="command"
Whenever	someone	logs	in	using	this	key,	run	the	specified	command.	SSH
ignores	any	command	provided	by	the	user	in	favor	of	the	one	dictated	by
authorized_keys.	You	might	use	this	for	automated	processes,	such	as	configuring	a
VPN	(Chapter	13)	or	running	rsync.
command="sudo	ifconfig	tun0	inet	192.0.2.2/30"	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

One	interesting	feature	is	that	SSH	retains	any	command	the	client	requested
in	the	environment	variable	$SSH_ORIGINAL_COMMAND.	You	can	have	authorized_keys	run
a	script	that	checks	this	environment	variable	and	acts	appropriately.	(“The
backup	account	just	requested	access	to	binbash?	Hello,	sysadmin,	we	have	a
problem…”)
environment="NAME=value"
This	set	an	environment	variable	when	this	key	is	used	to	log	in.	You	can	use
any	number	of	environment	statements.
environment="automated=1"	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

By	default,	sshd	does	not	permit	setting	environment	variables.	The	sysadmin
must	set	PermitUserEnvironment	to	yes	in	sshd_config	for	users	to	set	environment
variables.
from="ssh-pattern"
This	key	can	only	be	used	for	authentication	if	the	clients	address	or	reverse
DNS	matches	the	given	pattern.	We	discussed	patterns	in	Chapter	2.	I	frequently
use	this	to	restrict	automated	processes.	Even	if	an	intruder	steals	a	private	user
key,	he	cannot	access	the	SSH	server	from	any	host	other	than	the	one	I	permit.
from="198.51.100.0/29"	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

Only	hosts	in	the	IP	range	198.51.100.0	through	198.51.100.7	can	use	this
key	to	log	into	the	SSH	server.

You	can	only	use	host	names	in	the	pattern	if	UseDNS	is	set	to	yes.

Remember	that	intruders	can	frequently	forge	their	reverse	DNS	entries,	so	it’s
most	often	best	to	disable	DNS	in	sshd	and	stick	with	IP	addresses.
no-agent-forwarding
This	disables	SSH	agent	forwarding	(see	Chapter	7)	for	this	key.
no-agent-forwarding	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

no-x11-forwarding
This	(wait	for	it…)	disables	X	forwarding	(see	Chapter	8).
no-x11-forwarding	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

no-pty
Sessions	that	authenticate	with	this	key	will	not	be	granted	a	pseudo-terminal.
Many	programs	that	run	under	automation	do	not	need	a	terminal.
no-pty	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

no-user-rc
This	disables	sshd’s	login	script	checks,	as	discussed	in	“Running	Commands	at
Login”	at	the	beginning	of	this	chapter.
no-user-rc	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

permitopen="host:port"
The	permitopen	keyword	restricts	local	port	forwarding	so	that	it	can	only	attach
to	the	given	hostname	or	IP	address	and	port	on	the	local	machine.	If	the	server
doesn’t	allow	local	port	forwarding,	this	has	no	effect.
permitopen="localhost:25"	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

This	example	allows	port	forwarding	to	connect	to	port	25	on	127.0.0.1,	but
nothing	else.

You	can	set	permitopen	to	none	to	disallow	all	port	forwarding.
tunnel="n"
Use	a	specific	tunnel	device	number	for	SSH	tunnels	(see	Chapter	13).
tunnel="3"	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

restrict
By	default,	anything	not	denied	is	permitted.	The	restrict	keyword	inverts	that,
blocking	everything	unless	you	specifically	allow	it.	You	can	use	the	keywords
agent-forwarding,	port-forwarding,	pty,	user-rc,	and	X11-forwarding	to	turn
those	functions	back	on.
Using	Multiple	Keywords
As	with	just	about	everything	in	OpenSSH,	you	can	use	multiple	keywords	in
one	entry.	Separate	keywords	with	commas,	not	spaces.
restrict,command="usrlocal/scripts/backup.sh"	ssh-rsa	AAAAB3NzaC1yc2EAAAABJQAAA…

Keys	and	Automated	Programs
Lots	of	us	want	to	use	SSH	as	a	secure	transport	for	other	programs.	Maybe	you
have	a	custom	monitor	program,	or	a	backup	process	that	runs	over	rsync.	Such
clients	should	never	have	a	hard-coded	username	and	password;	in	addition	to

being	insecure,	it’s	neither	maintainable	nor	scalable.	One	solution	is	to	use	an
authentication	key	without	a	passphrase.	By	tightly	restricting	how	that	key	can
be	used	and	what	actions	can	be	taken	with	that	key,	you	minimize	the	damage
an	intruder	can	inflict.

Note	that	potential	damage	is	only	minimized,	not	eliminated.	An	rsync
backup	run	at	the	wrong	time	can	damage	an	existing	good	backup	or	saturate
the	network.	Bringing	a	VPN	up	at	the	wrong	time	can	be	highly	disruptive.	In
most	environments,	however,	these	are	less	damaging	and	more	visible	than
someone	copying	or	destroying	all	of	your	proprietary	data.

First	you	need	a	user	key	suitable	for	use	by	a	program,	then	you	need
appropriate	authorized_keys	restrictions.
Automation	Authentication	Keys
Automated	processes	cannot	type	passphrases.	Any	scheduled	or	otherwise
automated	task	that	requires	SSH	access	to	another	host	needs	a	key	without	a
passphrase.	Generate	this	key	exactly	like	you	would	generate	a	host	key.
$	ssh-keygen	-f	filename	-N	''

This	creates	two	files,	one	with	your	chosen	file	name	and	one	with	that	same
name	but	.pub	appended.	Here	I	create	a	key	called	task-key.
$	ssh-keygen	-f	task-key	-N	''

I	end	up	with	the	files	task-key	and	task-key.pub.	The	.pub	file	is	the	public	key.
Either	create	an	account	on	the	SSH	server	for	this	automated	task,	or	choose

an	existing	account.	The	host’s	SSH	server	must	permit	logins	to	that	account.
Add	the	.pub	file	to	that	account’s	authorized_keys.

The	client	machine	should	now	be	able	to	log	on	to	the	SSH	server	using	the
key.	Remember	to	use	the	-i	argument	to	ssh(1)	to	specify	the	alternate	key	file.
Here	I	use	this	key	to	log	on	to	the	machine	sloth.
$	ssh	-i	task-key	sloth

If	you	successfully	log	onto	the	server,	the	key	is	correctly	installed.	Now
let’s	lock	it	down.
Limiting	Automation	Keys
Best	practice	forbids	all	access	unnecessary	for	a	user	to	perform	his	task.	Does
your	automated	process	need	port	or	X	forwarding?	Turn	them	off.	Does	it	need
a	special	environment?	Probably	not,	because	you	can	establish	that	environment
more	easily	in	the	user	account.	Your	automated	job	runs	on	a	single	machine,	so
you	can	restrict	the	key	so	that	it	can	only	be	used	from	that	one	machine.	You’ll
probably	end	up	with	an	authorized_keys	entry	like	this.
restrict,command="dump	home	>	backups/`date	+s`.dump",from="192.0.2.8"	ssh-rsa

AAAAB3NzaC1yc2EAAAABJQAAA…

Configuring	the	key	like	this	reduces	the	scope	of	disasters.	The	backup
script	won’t	accidentally	overwrite	your	root	partition.	An	intruder	can	only	run

your	backup	script.	This	isn’t	great,	but	it’s	better	than	the	intruder	stealing	your
data	and	deleting	your	log	files.
Developing	Automation	Scripts
One	challenge	in	restricting	a	key	is	understanding	what	commands	the	program
actually	needs,	versus	what	you	think	it	needs.	The	debugging	mode	of	sshd	can
help	you	figure	this	out.	Have	your	client	run	its	command	against	sshd	in
debugging	mode,	and	study	the	output.	You’ll	see	all	of	the	commands	that	the
client	runs.	This	will	also	let	you	lock	down	the	key	further	than	you	might
otherwise—if	you	know	the	exact	flags	rsync	will	use	on	your	server,	you	can
impose	those	as	a	restriction.

I’ve	written	scripts	that	seem	to	work	from	the	command	line,	but	fail	when
scheduled,	and	each	time	it’s	turned	out	that	my	script	was	picking	up
authentication	information	from	my	SSH	agent	rather	than	using	the	key	I’d
created	for	the	task.	The	IdentitiesOnly	keyword	tells	ssh(1)	to	only	use	the
identity	specified	on	the	command	line	and	not	your	agent.	Set	-o
IdentitiesOnly=yes	in	your	script’s	SSH	command.

An	automated	script	should	never	be	prompted	for	user	input.	You	don’t	want
your	script	hanging	and	waiting	at	a	password	prompt.	The	BatchMode	keyword
disables	password	and	passphrase	prompts.	By	setting	BatchMode	to	yes	the	SSH
part	of	your	script	will	crash	and	die	immediately,	rather	than	pointlessly
hanging	around	forever.
Server-Side	Restrictions
Perhaps	you	don’t	want	to	use	authorized_keys	to	restrict	access,	or	maybe	you’d
like	additional	protections.	You	can	use	the	ForceCommand	sshd_config	keyword
to	restrict	what	an	account	can	run.

ForceCommand	takes	one	argument,	the	command	to	be	run.	It’s	run	under
the	user’s	regular	privileges,	and	disregards	whatever	command	the	client
requested.	Much	like	defining	a	command	in	authorized_keys,	ForceCommand
retains	the	requested	command	in	the	$SSH_ORIGINAL_COMMAND	environment	variable.

ForceCommand	is	best	used	inside	a	Match	statement.
Automation	and	Root	Logins
“My	command	needs	to	run	as	root!”	It	is	possible	to	login	as	root	using	the
PermitRootLogin	keyword.	Don’t	do	it.	Logging	in	as	root	for	automation
breaks	many	fundamental	security	principles.	Trusting	your	automated	scripts
with	remote	root	privileges	is	a	good	way	to	spend	an	unscheduled	weekend
restoring	the	servers	from	backup.	(You	do	have	backups	beyond	rsync,	right?
Remember	that	rsync	is	a	tactic,	not	a	strategy.)	Yes,	a	few	environments	can
securely	support	root	logins.	Some	people	are	using	root	logins	in	a	manner	that

can	support	auditing.	If	you’re	reading	this	book	to	learn	about	SSH,	however,
your	environment	is	nowhere	near	ready	for	this.

If	your	automated	process	needs	privileged	access,	use	sudo.	Sudo
(https://www.sudo.ws)	lets	unprivileged	users	run	particular	commands	with
elevated	privileges	and	is	available	for	every	Unix-like	system.	I’m	not	going	to
go	into	detail	on	using	sudo;	if	you	need	a	tutorial,	check	any	number	of
websites	or	my	book	Sudo	Mastery	(Tilted	Windmill	Press,	2013).	Sudo	is	far
more	flexible,	and	more	dangerous,	than	most	people	give	it	credit	for.

We’ll	use	restricted	keys	in	the	next	chapter	to	build	a	VPN	over	SSH.

Chapter	13:	Virtual	Private	Networks
You	can	wrap	SSH	around	arbitrary	TCP	connections,	adding	a	layer	of
encryption	to	any	protocol.	But	OpenSSH	also	supports	building	generic	tunnels
that	can	pass	all	traffic	and	all	protocols,	not	just	TCP.	You	can	link	to	remote
offices	with	OpenSSH,	creating	a	Virtual	Private	Network	(VPN)	that	allows
users	at	one	office	to	access	the	other	office	almost	as	if	they	were	on	the	next
floor	rather	than	the	next	country.

VPNs	are	an	OpenSSH	extension	to	the	SSH	protocol.	PuTTY	does	not
include	VPN	functions	and	the	PuTTY	developers	have	repeatedly	stated	that
they	do	not	intend	to	add	it	to	their	client	(see	the	tun-openssh	wish	list	item	on
the	PuTTY	website).	We	will	only	examine	OpenSSH	VPNs	on	Unix-like
systems.

SSH	was	not	designed	as	a	generic	VPN	protocol,	and	tunneling	protocols
inside	TCP	is	terrible	practice.	When	a	TCP	connection	loses	packets,	it	must	re-
transmit	those	packets	until	the	other	end	of	the	connection	acknowledges
receipt.	By	wrapping	a	TCP	connection	inside	another	TCP	connection,	you
amplify	the	effects	of	packet	loss.	TCP-based	VPNs	collapse	in	the	face	of
congestion.	I	strongly	recommend	using	OpenVPN	instead	of	OpenSSH	for	your
VPN.	An	OpenSSH	VPN	does	have	the	advantage	that	it	only	requires	a	single
TCP	port	open	between	the	client	and	the	server.	If	that’s	all	the	connectivity
you	have,	an	OpenSSH	VPN	might	be	your	least	terrible	option.

A	VPN	is	perhaps	the	most	complicated	thing	you	can	do	with	OpenSSH.
This	chapter	assumes	you	are	comfortable	with	the	earlier	chapters,	including
public-key	authentication,	keeping	an	SSH	session	alive,	and	restricting	the
commands	available	to	SSH	clients.
Example	Network
Our	SSH	client,	avarice.mwl.io,	has	two	network	interfaces.	One	is	on	the	public
Internet.	While	we	could	refer	to	that	interface	by	IP	address,	we’ll	use	the
hostname	instead.	The	second	interface	is	on	private	network	A,	with	an	address
of	172.16.0.1/24.

The	SSH	server,	gluttony.mwl.io,	also	has	one	interface	on	the	public	Internet.
We’ll	refer	to	this	interface	by	hostname	rather	than	IP.	Its	second	network	card
is	on	private	network	B,	and	has	an	IP	address	of	172.17.0.1/24.

	

Figure	13-1:	VPN	Network	We’ll	use	SSH	to	establish	a	point-to-point	tunnel	between	the	two	hosts.	The
client’s	end	of	the	tunnel	will	have	the	IP	address	192.168.0.2/30.	The	server	end	of	the	tunnel	gets
192.168.0.1/30.

We’ll	consider	OpenBSD,	FreeBSD,	Debian,	and	CentOS.	OpenBSD	has	the
best	SSH	VPN	support	of	any	operating	system—which	shouldn’t	surprise
anyone,	considering	that	OpenSSH	originates	in	OpenBSD.	Running	an	SSH
VPN	on	FreeBSD	requires	basic	scripting.	Most	Linux	distributions	change
OpenSSH	to	fit	better	with	their	systems,	and	they’ve	also	deprecated	the
standard	UNIX	networking	commands	in	favor	of	Linux-specific	tools.	This
means	every	operating	system	needs	a	different	approach.	Between	these	four,
you	should	find	a	method	that	you	can	adapt	for	your	operating	system.

Creating	and	managing	VPNs	is	the	most	difficult	feature	in	OpenSSH,	and
the	operating	systems	that	support	them	change	over	time.	I	wouldn’t	be	shocked
to	see	these	VPN	instructions	become	outdated	more	quickly	than	the	rest	of	this
book.	If	you	have	trouble	with	these	examples,	consult	your	operating	system
documentation	for	more	current	references.
Common	Concepts
The	following	concepts	and	configurations	for	OpenSSH	VPNs	appear	across	all
operating	systems.	No	matter	which	OS	you	run,	you	must	understand	this
material	and	follow	these	general	principles.	While	you	can	find	tools	that
purport	to	simplify	tunnel	setup,	once	you	understand	how	the	tunnel	works
you’ll	find	using	raw	SSH	trivially	simple.
Tunnel	Interfaces
An	SSH	VPN	works	using	a	tunnel	(or	tun)	interface.	A	tunnel	is	a	virtual
interface	that	sits	above	some	other	network	interface.	The	most	common	use	for
tunnel	interfaces	is	to	create	a	virtual	link	between	two	separate	hosts,	such	as	in
a	VPN.	This	tunnel	is	treated	as	a	point-to-point	connection.	The	method	for
creating	tunnel	interfaces	varies	by	operating	system.

When	you	use	an	SSH	VPN,	the	client	and	server	both	attach	themselves	to
tunnel	interfaces	on	their	respective	machines.	When	the	operating	system	sends
a	packet	to	the	tunnel,	the	packet	is	relayed	through	the	SSH	connection.	When
the	other	machines	SSH	process	receives	the	packet,	it	unwraps	it	and	sends	it	to
the	operating	system	via	the	local	tunnel	interface.

Just	like	any	other	interface	you	want	to	use	for	IP	routing,	your	tunnel

interfaces	need	IP	addresses.	You	must	route	traffic	destined	for	the	remote
network	to	the	IP	address	at	the	remote	end	of	the	tunnel.	We’ll	demonstrate	this
in	each	example.

Each	tunnel	interface	needs	a	device	number,	like	any	other	device	on	a
Unix-like	system.	Just	as	your	network	interface	might	be	eth0	or	em1,	tunnel
devices	might	tun0	or	tun1.	Our	examples	use	device	zero,	creating	device
names	like	tun0.	If	you	have	many	tunnel	devices	I	recommend	both	assigning	a
specific	device	for	each	purpose	and	reassessing	your	design	choices.
SSH	Server	Configuration
The	sshd_config	keyword	PermitTunnel	specifies	if	a	client	may	establish	a	VPN
tunnel.	PermitTunnel	has	four	valid	options:	yes,	no,	point-to-point,	or	ethernet.
If	set	to	no	(the	default),	tunnels	are	forbidden.	If	set	to	yes,	all	tunnels	are
permitted.

A	point-to-point	tunnel	is	a	virtual	private	circuit	that	runs	from	one	spot	to
another.	A	point-to-point	tunnel	requires	routing	to	be	usable.	This	is	usually	the
best	type	of	tunnel	for	an	SSH	VPN.
PermitTunnel	point-to-point	An	Ethernet	tunnel	transmits	layer	2	traffic,	permitting	two

separate	locations	to	share	their	local	LAN.	Don’t	tunnel	Ethernet	over	SSH	if	you	can

possibly	avoid	it.	Local	network	problems	on	one	side	of	the	VPN	can	propagate	across	the

link	and	saturate	your	external	bandwidth.	SSH	VPNs	are	already	vulnerable	to	congestion;

don’t	amplify	that	problem	even	more.

To	use	an	SSH	VPN,	the	SSH	processes	must	have	sufficient	privileges	to
make	changes	to	the	tunnel	devices	and	the	routing	table	on	both	the	client	and
the	server.	Creating	an	SSH	VPN	requires	root	privileges	on	both	the	client	and
the	server.	You’ll	run	ssh	as	root	and	log	in	directly	as	root.	I	stated	earlier	that
logging	in	as	root	is	a	terrible	option.	I	stand	by	that	statement.	If	you’re	using	an
SSH	VPN,	however,	you’re	basically	out	of	good	options.

Here	I	permit	our	SSH	client	a	root	login	on	the	SSH	server,	but	only	through
public-key	authentication.	I	also	allow	that	IP	address	to	open	a	tunnel.
Match	Address	avarice.mwl.io	PermitRootLogin	prohibit-password	PermitTunnel	point-to-point

In	your	production	configuration,	use	the	client’s	IP	address	rather	than	the	hostname.

Very	old	versions	of	OpenSSH	might	not	let	you	put	the	PermitTunnel
statement	inside	a	Match	statement.	If	you	encounter	such	an	sshd,	immediately
upgrade	the	server’s	OpenSSH—it’s	not	safe	to	have	on	the	public	Internet.
IP	Forwarding
For	an	SSH	VPN	to	connect	two	different	networks,	both	the	SSH	server	and	the
client	must	forward	packets	from	one	interface	to	another.	This	is	called	IP
forwarding.	Forwarding	packets	between	interfaces	is	the	only	difference
between	a	host	and	a	router.	The	SSH	client	receives	packets	on	its	internal
Ethernet	interface,	and	transmits	those	packets	meant	for	the	remote	location
across	the	VPN.	Similarly,	the	SSH	server	accepts	packets	bound	for	the	other

office	on	its	internal	interface	and	shoots	them	across	the	VPN.
VPN	Authentication	Key
Use	key	authentication	with	VPNs.	If	you’re	going	to	bring	up	your	VPN
manually,	only	on	special	occasions,	create	a	standard	user	authentication	key	as
discussed	in	Chapter	7,	“SSH	Keys”.	If	an	automated	process	will	start	the	VPN,
create	a	key	without	a	passphrase	as	covered	in	Chapter	12,	“Automation”.	Put
the	key	in	a	special	file,	such	as	root.ssh/tunnelkey	on	the	client.

Copy	the	key’s	public	key	to	the	server’s	root.ssh/authorized_keys.	This	key
should	only	be	able	to	run	the	VPN	commands;	even	with	key-based
authentication,	you	don’t	want	a	remote	intruder	able	to	get	a	root	login	on	your
server.	Chapter	12	discusses	restricting	key	privileges,	but	the	exact	commands
needed	vary	by	operating	system.
The	SSH	Tunnel	Command
Activate	an	OpenSSH	tunnel	with	the	-w	flag.
#	ssh	-i	keyfile	-f	-wclientTunnelNumber:serverTunnelNumber	servername	true

The	-i	tells	ssh	which	private	key	file	to	use.	The	-w	tells	the	client	to	request	a
tunnel,	and	which	tunnel	device	numbers	to	request	on	each	side.	The	-f	puts	ssh
into	the	background,	so	that	you	don’t	have	a	command	prompt	on	the	remote
system.	And	we	run	true(1)	just	so	we	have	a	command	that	always	runs
successfully.

In	our	examples,	the	key	file	is	root.ssh/tunnelkey.	I	want	to	use	tunnel	device	0
on	each	side,	and	the	server	is	gluttony.mwl.io.
#	ssh	-i	tunnelkey	-f	-w0:0	gluttony.mwl.io	true

If	all	works	well,	this	should	silently	return	to	a	local	command	prompt.
Some	of	these	command-line	options	can	be	set	in	ssh_config.	I	recommend

placing	tunnel	options	in	root.ssh/config,	rather	than	the	system-wide
configuration.	You	don’t	want	an	unprivileged	user’s	innocent	SSH	session
attempt	to	open	a	tunnel	and	route	across	it.
Host	gluttony.mwl.io

Tunnel	point-to-point

TunnelDevice	0:0

IdentityFile	root.ssh/tunnelkey	IdentitiesOnly	yes

Add	other	options	for	the	host	as	your	environment	or	the	operating	system
requires.	This	strips	down	the	command	line	needed	to	activate	the	tunnel.
#	ssh	-f	gluttony.mwl.io	true

Our	examples	assume	that	you	have	enabled	root	logins,	copied	the	client’s
public	key	to	the	server,	and	set	up	the	host’s	key	and	tunnel	devices	in
root.ssh/config.
Debugging
If	you	follow	the	steps	for	your	operating	system	and	the	tunnel	doesn’t	start,	run
ssh	in	verbose	mode.	You’ll	see	the	details	of	your	errors.	If	that	doesn’t	help,

run	sshd	in	debug	mode.	Search	the	Internet	for	the	exact	text	of	your	error
messages.	You	will	certainly	find	people	who	have	experienced	and	solved	your
problem.

Now	let’s	configure	some	VPNs.
OpenBSD
OpenSSH	is	developed	inside	OpenBSD,	and	the	OpenBSD	team	created	the
OpenSSH	VPN	function,	so	OpenBSD	has	very	good	support	for	OpenSSH
VPNs.	Start	by	tightening	up	what	your	client	may	access	with	this	key	by
putting	controls	in	root.ssh/authorized_keys.
restrict,tunnel="0",command="binsh	etcnetstart	tun0"	ssh-rsa	AAAAB3Nza…

I’ve	locked	down	all	the	key-based	options,	then	added	the	ability	to	access	a
specific	tunnel	device	and	run	the	command	that	configures	that	tunnel.	Even	if
the	client	is	compromised	and	logs	into	the	server	as	root,	it	can’t	inflict	much
damage.

Enable	packet	forwarding	on	OpenBSD	by	setting	the	sysctl
net.inet.ip.forwarding	to	1.
#	sysctl	net.inet.ip.forwarding=1

To	make	this	change	permanent	across	reboots,	make	a	matching	entry	in
etcsysctl.conf.
net.inet.ip.forwarding=1

Now	configure	your	tunnel	devices.	You’ll	need	an	etchostname.tun0	on	both
the	client	and	the	server.	Each	contains	two	lines.	Here’s	the	client:	192.168.0.2
192.168.0.1	netmask	255.255.255.252
!route	add	172.17.0.1/24	192.168.0.1	>	devnull	2>&1

The	first	line	creates	a	tunnel	interface	with	a	local	IP	of	192.168.0.2	and	a
remote	IP	of	192.168.0.1.	OpenBSD	will	configure	this	interface	at	boot,	but	the
interface	won’t	be	active;	the	tunnel	isn’t	attached	to	anything.	When	you
activate	your	SSH	tunnel,	it	attaches	to	the	tunnel	interface.	The	second	line	of
hostname.tun0	is	a	command	that	OpenBSD	runs	when	the	tunnel	activates.	This
command	configures	routing	to	the	LAN	behind	the	server.

The	server’s	hostname.tun0	looks	really	similar.
192.168.0.1	192.168.0.2	netmask	255.255.255.252

!route	add	172.16.0.1/24	192.168.0.2	>	devnull	2>&1

The	IP	addresses	are	reversed.	When	the	tunnel	comes	up,	the	network
behind	the	client	gets	routed	across	it.

SSH	from	the	client	to	the	server.	The	tunnel	should	come	up	and	configure
itself.
FreeBSD
FreeBSD	doesn’t	incorporate	OpenSSH	VPNs	out-of-the-box,	but	they’re	really
easy	to	set	up.	The	easiest	method	is	via	calling	a	shell	script	when	the	tunnel

comes	up.	You	can	avoid	that	need	by	being	tricky	and	clever,	but	tricky	and
clever	has	an	uncanny	ability	to	bite	you	during	an	outage.	Additionally,	I’ll	use
the	scripts	to	illustrate	a	couple	OpenSSH	features.

First,	enable	packet	forwarding	on	both	the	client	and	the	server.	Use	the
sysctl	net.inet.ip.forwarding	as	in	OpenBSD,	or	set
GATEWAY_ENABLE=YES	in	etcrc.conf.
#	sysrc	gateway_enable=YES

Now	let’s	get	the	scripts	ready.	The	server	will	use	the	script
usrlocal/scripts/tunnelserver.sh.	I’ll	lock	the	client’s	entry	in	authorized_keys	to
permit	it	to	run	only	that	script.
restrict,tunnel="0",command="usrlocal/scripts/tunnelserver.sh"	ssh-rsa	AAAAB3Nz…

Whenever	this	key	is	used	to	log	in,	sshd	runs	the	configured	script.	Let’s	look
at	the	server-side	script.
#!binsh

sbinifconfig	tun0	192.168.0.1/30	192.168.0.2

sbinroute	add	-net	172.16.0.0/24	192.168.0.2

The	script	adds	IP	addresses	to	the	tunnel	interface	and	configures	a	route	to
the	remote	network.

We’ll	use	a	similar	script	on	the	client,	usrlocal/scripts/tunnelclient.sh,	to	add
the	IP	addresses	and	routes	to	this	side	of	the	tunnel.
#!binsh

sbinifconfig	tun0	192.168.0.2/30	192.168.0.1

sbinroute	add	-net	172.17.0.0/24	192.168.0.1

SSH-ing	into	the	server	activates	the	tunnel	and	configures	the	server	side	of
it.	You’ll	need	to	run	the	client	script	to	configure	the	client	side.	Fortunately,
ssh(1)	has	the	LocalCommand	keyword	to	automatically	run	a	command	when
you	connect	to	a	host.
Host	gluttony

Tunnel	point-to-point

TunnelDevice	0:0

IdentityFile	root.ssh/tunnelkey	IdentitiesOnly	yes

PermitLocalCommand	yes

LocalCommand	usrlocal/scripts/tunnelclient.sh	Here	I	use	PermitLocalCommand	to	say	“yes,

you	may	run	a	command	locally	when	you	connect,”	and	LocalCommand	to	define	the	command.

When	you	SSH	from	the	client	to	the	server,	the	tunnel	should	come	up
automatically.
CentOS	and	Debian
Configure	SSH	VPNs	on	these	two	popular	Linux	distributions	in	a	very	similar
way	to	FreeBSD.	Both	distributions	have	obsoleted	standard	Unix	tools	like
ifconfig(8)	and	route(8),	however,	so	we	must	use	the	Linux-specific	ip(8)
instead.

Create	your	tunnel	key,	enable	SSH	tunneling,	and	permit	root	logins	using
keys,	as	discussed	in	“Common	Concepts.”	Then	the	client	needs	a	root.ssh/config
precisely	like	that	used	for	FreeBSD.
Host	gluttony

Tunnel	point-to-point

TunnelDevice	0:0

IdentityFile	root.ssh/tunnelkey	IdentitiesOnly	yes

PermitLocalCommand	yes

LocalCommand	usrlocal/scripts/tunnelclient.sh	Enable	IP	forwarding	on	Linux	setting	the

sysctl	net.ipv4.ip_forward	to	1	in	etcsysctl.conf.	Debian	already	has	this	entry,

commented-out.

Lock	down	the	server’s	root.ssh/authorized_keys	so	that	this	key	can	only	open
the	tunnel	device.
restrict,tunnel="0",command="usrlocal/scripts/tunnelserver.sh"	ssh-rsa	AAAAB3Nz…

Now	all	you	need	are	the	Linux	scripts.	Here’s	a
usrlocal/scripts/tunnelserver.sh:	#!binsh
ip	addr	add	192.168.0.1/30	dev	tun0

ip	link	set	dev	tun0	up	ip	route	add	172.16.0.0/24	via	192.168.0.2	dev	tun0

And	here’s	a	client	script.
#!binsh

ip	addr	add	192.168.0.2/30	dev	tun0

ip	link	set	dev	tun0	up	ip	route	add	172.17.0/24	via	192.168.0.2	dev	tun0

Now	run	ssh	-f	gluttony	from	your	client,	and	your	tunnel	will	come	up.
With	these	three	examples,	you	should	be	able	to	get	an	SSH	VPN	running

on	any	Unix-like	operating	system.	Remember	that	an	SSH	VPN	is	not	a
wonderful	solution,	though.	Before	you	have	trouble	or	experience	congestion,
investigate	real	VPN	software	like	OpenVPN.

Chapter	14:	Certificate	Authorities
The	hardest	part	of	using	SSH	correctly	isn’t	the	software,	or	obscure	or	hidden
checkboxes,	or	even	more	obscure	command-line	arguments.	It’s	verifying	keys.
Users	are	expected	to	verify	host	keys,	a	tedious	process	that	most	of	them	won’t
even	bother	with.	Users	generate	authentication	keys,	but	then	they	need	to	be
copied	around	the	network.	If	you’re	managing	your	systems	with	automation,
you	can	automate	part	of	the	verification	process	and	vastly	reduce	risk	by
implementing	an	OpenSSH	Certificate	Authority.

An	SSH	CA	is	not	the	same	as	the	X.509	Certificate	Authority	you’re
probably	familiar	with	from	the	TLS1	deployed	on	websites.	If	you	had	to
purchase	an	X.509	certificate	for	each	and	every	host	to	use	SSH,	you	wouldn’t
bother.	But	take	a	moment	and	consider	what	a	certificate	authority	does	for	you.

A	certificate	authority	is	a	method	of	delegating	trust.	Every	web	browser	has
a	list	of	trusted	certificate	authorities	built	into	it.	When	your	browser	calls	up	a
website	that	uses	a	certificate,	the	browser	checks	to	see	if	that	certificate	is
signed	by	a	trusted	certificate	authority.	If	it	is,	the	browser	trusts	the	certificate
on	that	website.	If	the	certificate	is	signed	by	anything	other	than	a	trusted
certificate	authority,	the	user	sees	a	warning.

SSH	public	keys	resemble	self-signed	certificates.	The	server	is	declaring,
“this	is	who	I	am,	and	you	can	either	accept	this	or	go	away.”	You	create	an	SSH
CA	by	giving	your	clients	and	servers	a	certificate	that	they	trust.	Install	this
certificate	on	all	of	your	OpenSSH	software,	and	it	will	trust	any	public	key
signed	by	that	CA	key.

X.509	certificates	are	complicated	in	part	because	they’re	part	of	a	global
network	of	certification.	Organizations	use	TLS	certificates	to	secure	websites,
email,	and	pretty	much	any	other	arbitrary	TCP	connection.	Certificates	contain
fields	for	a	whole	bunch	of	stuff	that	most	of	us	will	never	need.

SSH	certificates	only	need	the	ability	to	digitally	sign	data	and	carry	a	few
chunks	of	metadata.	They’re	not	a	global	entity.	An	OpenSSH	CA	is	entirely
internal.	A	standard	SSH	key	pair	has	all	the	functionality	needed	to	sign	keys.

Once	you	deploy	an	OpenSSH	CA,	clients	configured	to	trust	the	CA	key
will	automatically	trust	host	keys	signed	with	that	key.	Servers	configured	to
trust	that	CA	key	will	automatically	trust	user	authentication	keys	signed	with
the	CA	key.	Your	users	will	only	see	warnings	when	they	connect	to	hosts
outside	of	your	organization,	or	if	something	is	seriously	wrong.

Certificate	authorities	are	an	OpenSSH	extension.	Other	clients	have	not	yet
adopted	them.	Even	if	all	of	your	desktop	clients	run	something	other	than

OpenSSH,	SSH	certificate	authorities	are	useful	for	verifying	host	keys	when
connecting	between	servers.

Don’t	even	consider	deploying	an	OpenSSH	CA	unless	you	can
automatically	distribute	files	to	all	your	servers	and	remotely	restart	sshd	on
them.	If	you	don’t	have	automation	in	place,	take	a	look	at	Ansible	or	one	of	its
competitors.

An	SSH	CA	has	a	whole	bunch	of	functions	that	are	only	useful	in	edge
cases.	An	organization	like	Google	or	Facebook	needs	a	whole	bunch	of	features
that	most	of	us	don’t.	Read	the	ssh-keygen(1)	man	page	for	the	full	range	of	CA
options.	Here	we’ll	set	up	a	comparatively	simple	CA	for	a	middle-sized
network,	starting	with	the	simpler	host	certificates,	then	proceeding	to	the	more
complex	user	certificates.
Certificate	Expiration
A	critical	part	of	signed	certificates	is	that	they	expire.	Yes,	you	could	set	all	of
your	certificates	to	be	good	for	a	quarter-century,	but	those	keys	will	be	insecure
long	before	that.	Plan	from	the	beginning	to	use	your	automation	system	to
regularly	update	your	certificates.

Attacking	public	keys	computationally,	in	the	absence	of	a	flawed
implementation,	can	take	billions	of	years.	Software	has	bugs,	though,	and	it’s
possible	that	a	bug	might	let	an	intruder	crack	a	key	in	much	less	time.	Also,
those	aeons	needed	to	computationally	break	a	key	are	averages.	The	intruder
might	get	lucky.	Eternally	valid	certificates	increase	the	intruder’s	chances	of
success.

How	long	should	a	certificate	be	good	for?	Rolling	over	certs	every	year	or	so
is	most	common.	If	you	have	one	of	those	orchestrated	networks	where	servers
appear	and	disappear	by	the	magic	of	automatic	deployment,	you	might	want	to
regenerate	your	host	key	certificates	every	week	or	month.

In	short,	never	plan	to	use	certificates	longer	than	a	year,	except	in	those	rare
cases	where	a	host	cannot	be	changed.	No,	I	don’t	mean	“the	boss	would	really
like	this	host	to	never	change,”	I	mean	“the	federal	government	has	declared	this
host	a	life-sustaining	service	and	changing	the	certificate	is	a	felony	that	carries
a	minimum	jail	sentence.”

Don’t	set	your	certificates	to	expire	in	exactly	one	year,	though.	Remember,
life	happens.	Maybe	you	put	on	your	calendar	to	renew	all	of	your	certificates	in
52	weeks,	but	you	develop	appendicitis	the	day	before	and	you’re	off	work	for
three	weeks.	I	allow	at	least	a	month	of	leeway	for	such	emergencies,	so	these
examples	assume	we	expire	all	certificates	in	fifty-six	weeks	and	five	days.

Better	still?	Use	your	automation	system	to	renew	and	replace	all	certificates

at	half	their	expiration	date.	Issue	and	deploy	new	one-year	certificates	every	six
months.	As	you	gain	confidence	in	your	automation	and	work	out	the	bugs,
slowly	decrease	that	time.	Automatically	create	new	certificates	every	year,	then
every	month,	then	every	week.	Then	reduce	the	time	you	use	your	CA	keys.
Making	certificate	renewals	painlessly	routine	can	transform	potential	key
compromises	from	disasters	into	trivialities.
SSH	CA	Keys
Before	you	even	think	about	creating	an	OpenSSH	CA,	consider	how	you’re
going	to	handle	and	secure	those	keys.	Your	certificate	authority	is	the	key	to
your	kingdom.	Protect	it	as	you	would	any	other	critical	infosec	asset.	An
intruder	that	compromises	your	OpenSSH	CA	can	create	user	keys	trusted	by	all
of	your	servers.	That	would	be	bad.	I	keep	my	OpenSSH	CA	on	a	dedicated-
purpose	OpenBSD	machine	that	only	gets	booted	when	I	need	to	sign	keys.
Larger	organizations	will	want	to	put	their	OpenSSH	CA	in	the	same	part	of	the
network	where	they	keep	other,	similarly	critical	hosts.

Best	practice	recommends	creating	two	certificate	authorities:	one	for
certifying	host	keys,	the	other	for	user	keys.	Different	teams	of	people	manage
users	and	hosts,	and	having	two	different	certificate	authorities	allows	each	to
use	the	workflows	best	suited	to	those	tasks.	Each	CA	might	even	reside	on
different	machines,	in	different	parts	of	the	network.	While	you	can	install	any
number	of	certificate	authorities	on	a	host,	making	it	possible	to	split	CAs	later,
very	few	sysadmins	regret	complying	with	such	a	simple	best	practice	from	the
beginning.

As	your	network	grows,	so	will	the	number	of	public	keys	you	manage.
Organize	your	CA	well	from	the	beginning	to	minimize	later	struggle.

I	recommend	putting	your	CA	in	a	directory	like	usrlocal/sshca.	Create
subdirectories	for	host	and	user	keys,	with	unambiguous	names	like
usrlocal/sshca/hosts	and	usrlocal/sshca/users.	Each	host	and	user	should	get	its	own
subdirectory	therein,	such	as	usrlocal/sshca/hosts/sloth	and	usrlocal/sshca/users/mwl.
Don’t	put	your	CA	in	/root,	and	especially	not	/root/.ssh.	Those	directories	are
for	the	root	account’s	information,	much	as	etcssh	is	reserved	for	this	particular
host’s	SSH	services.	2	A	certificate	authority	is	a	major	project,	and	deserves	its
own	directory.

Why	separate	by	directory	and	not	by	filename?	Each	host	and	user	has	files
with	the	same	name.	You’ll	find	etcssh/ssh_host_ecdsa_key	on	every	single	SSH
server,	while	every	user	has	an	id_rsa.pub.	While	it’s	certainly	possible	to	copy
that	file	on	the	host	sloth	to	sloth-ssh_host_ecdsa_key,	generate	a	cert	for	it,	and	then
rename	the	cert	as	you’re	sending	it	back	to	the	server,	that’s	a	couple	extra

steps.	Giving	each	host	and	user	unique	directories	decreases	fragility.
Create	an	SSH	CA	key	the	same	way	you	would	manually	create	a	host	key.	I

add	the	-c	flag	to	add	a	special	comment	to	the	key.	SSH	CA	keys	look	like
every	other	SSH	key,	so	the	comment	helps	identify	them.	Here’s	a	host	key
signing	key.
#	ssh-keygen	-t	rsa	-f	host-mwlca-key	-c	'CA	host	key	generated	2017-11-30'

Use	a	good	passphrase.	You’ll	be	able	to	use	your	SSH	agent	for	mass
signings,	so	feel	free	to	make	it	complex.	You’ll	get	the	file	host-mwlca-key
containing	the	private	key	for	the	certificate	authority,	and	the	file	host-mwlca-
key.pub	with	the	public	key.

Creating	a	user-certifying	CA	is	exactly	the	same,	except	for	the	file	name
and	the	comment.
#	ssh-keygen	-t	rsa	-f	user-mwlca-key	-c	'CA	user	key	generated	2017-11-30'

Protect	these	private	keys.	Feel	free	to	spam	your	whole	network	with	the
public	keys,	however.
Trusting	Your	Certificate	Authority
The	ssh(1)	client	and	sshd(8)	server	have	completely	different	ways	of
configuring	certificate	authorities.
sshd(8)	and	Certificates
SSH	servers	use	user	certificates	to	validate	certificates	used	for	authentication.
Set	a	file	containing	all	of	your	trusted	certificates	in	sshd_config,	using	the
TrustedUserCAKeys	keyword.
TrustedUserCAKeys	etcssh/user-ca-keys.pub	The	CA	file	contains	one	CA	public	key	per	line,

and	accepts	comments	marked	off	with	a	leading	pound	sign	(#).	It	looks	exactly	like	an

authorized_keys	file.

Restart	sshd,	and	it	will	trust	keys	signed	by	this	certificate	authority.
ssh(1)	and	Certificates
SSH	clients	use	host	certificates	to	validate	host	public	keys.	Configure	trusted
host	certificate	authorities	in	known_hosts.	The	most	effective	place	for	a	CA	key	is
in	etcssh/ssh_known_hosts,	both	so	that	all	clients	immediately	recognize	the	CA	and
so	users	can’t	muck	with	the	key.

Don’t	just	copy	the	CA’s	public	key	file	to	known_hosts,	though.	You	must
mark	this	key	as	a	certificate	authority	and	add	the	hostnames	this	key	is	valid
for.	Copy	the	public	key	to	a	separate	file—never	muck	with	your	original	key
files!	Add	the	marker	@cert-authority	to	the	beginning	of	the	line,	then	add	an	SSH
pattern	for	the	hosts	this	key	is	valid	for.	This	key	is	valid	for	all	hosts	in	the
mwl.io	domain.
@cert-authority	*.mwl.io	ssh-rsa	AAAAB3NzaC1yc2EAAAADAQABA…

If	the	key	is	valid	for	multiple	domains,	separate	them	with	commas.	Don’t
use	spaces.
@cert-authority	*.mwl.io,michaelwlucas.com	ssh-rsa	AAAAB3NzaC1yc2EAAAADAQABA…

Add	this	line	to	etcssh/ssh_known_hosts	on	each	of	your	hosts.	They	will
immediately	trust	certificates	signed	with	this	key.
Common	Certificate	Considerations
Both	user	and	host	certificates	have	a	whole	bunch	of	details	in	common,
including	serial	numbers,	certificate	IDs,	and	expiration	date	format.
Certificate	Serial	Numbers
Each	X.509	certificate	is	supposed	to	have	a	serial	number.	These	serial
numbers	are	unique	to	the	certificate	authority.	OpenSSH	CAs	support	the	same
functionality,	but	SSH	doesn’t	really	need	it.	Use	them	if	your	organization	has
some	separate	need	for	them.

Serial	numbers	should	not	increase	monotonically—that	is,	don’t	issue	them
in	sequential	order.	Random	serial	numbers	are	best.	If	you	decide	to	use	serial
numbers	in	your	SSH	certificates,	you’ll	need	a	mechanism	to	generate	unique
random	numbers.

I’ll	mention	how	to	list	serial	numbers	when	signing	keys,	but	not	spend	any
time	on	them.
Certificate	Identity
Every	certificate	has	a	certificate	identity,	a	text	string	used	to	say	what	this	key
is	for.	I	assign	identities	based	on	the	hostname	or	username,	but	if	your
organization	has	other	need	for	the	identity	feel	free	to	use	it.	You	might	decide
to	use	it	for	inventory	tags,	personnel	ID	numbers,	or	anything	else	needed.	In
my	examples,	I	use	host_	and	the	hostname	for	host	certificates,	and	user_	plus	the
username	for	user	certificates.

Whenever	a	user	authenticates	with	a	certificate,	the	log	message	includes	the
certificate	identity.	Some	people	use	the	certificate	identity	to	let	everybody	log
in	as	root	but	still	retain	user	accountability.
Certificate	Archives
Regenerating	certificates	requires	only	a	command.	You	have	automation	to
automatically	update	and	distribute	certificates	and	keys	across	your	network.	As
people	find	out	just	how	useful	certificates	are,	the	number	of	certificates	you
have	will	multiply.	Be	sure	your	CA	retains	a	copy	of	every	certificate	and	the
corresponding	public	key.

If	you	discover	that	a	private	key	has	been	compromised,	you’ll	need	to
revoke	the	certificate	for	that	key.	It’s	much	easier	to	revoke	the	certificate	when
you	have	a	copy	on	hand.	When	I	create	a	certificate	I	create	a	copy	of	the
certificate	and	its	corresponding	public	key,	both	prepended	with	the	date	in	ISO
8601	format	(numeric	year-month-day).	This	makes	it	easy	to	find	certificates
with	a	certain	date.

When	you	create	a	new	CA	key	and	obsolete	the	old	one,	you	can	discard
certificates	created	with	that	key.
Setting	Expiration	Date
Expiration	dates	are	assigned	with	the	standard	Unix	relative	date	format.	You
don’t	assign	a	specific	end	date,	but	rather	how	far	in	the	future	you	want	the
certificate	to	expire.

The	expiration	date	begins	with	a	plus	sign,	plus	how	far	in	the	future	you
want.	Use	w	to	indicate	weeks,	d	for	days,	h	for	hours,	m	for	minutes,	and	s	for
seconds.	To	have	a	key	expire	56	weeks,	5	days,	12	hours,	and	13	seconds	from
now,	use	+56w5d12h13s.
Host	Certificates
OpenSSH	clients	trust	server	public	keys	that	have	been	signed	by	a	recognized
certificate	authority.	Deploying	this	requires	creating	certificates	and	installing
those	certificates	on	the	server.
Creating	Host	Certificates
Use	your	certificate	authority	to	sign	a	server’s	public	host	keys.	If	you	already
have	a	system	where	you	keep	copies	of	each	server’s	public	key	files,	consider
either	placing	your	certificate	authority	on	that	host	or	moving	the	functions	that
need	those	files	to	your	CA	server.

Sign	keys	with	ssh-keygen(8).	Yes,	there’s	an	ssh-keysign(8)	command,	but
it’s	for	replacing	rsh(1)	with	SSH	and	disabled	by	default.	Use	the	-s	flag	to	give
the	filename	of	your	CA	key.	The	-I	flag	defines	the	certificate	identity.	Add	the
-h	to	declare	this	is	a	host	key	certificate.	The	-n	identifies	the	host	this	certificate
is	good	for.	(You	can	use	multiple	host	names,	separating	them	by	commas.)	Use
-V	to	give	the	expiration	date,	then	give	the	filenames	of	the	key	files	you	want	to
create	certificates	for.

Here	I	use	my	CA	host-mwlca-key	to	create	key	certificates	for	the	host	sloth.
It	expires	in	fifty-six	weeks	and	five	days.	I	sign	keys	for	every	public	key	file	in
the	current	directory.	(I	must	give	the	full	path	to	the	CA	key,	but	the	path	is
trimmed	here	for	clarity.)	#	ssh-keygen	-s	host-mwlca-key	-I	host_sloth	-h	-n
sloth.mwl.io	-V	+56w5d	ssh_host_*pub

I	copied	four	public	keys	to	this	host,	so	I	get	a	cert	for	each	of	them.	Each
certificate	is	named	after	its	public	key	file,	with	-cert	inserted	before	the	trailing
.pub.	The	certificate	for	ssh_host_rsa_key.pub	is	ssh_host_rsa_key-cert.pub,
ssh_host_ecdsa_key.pub	gets	ssh_host_ecdsa-keycert.pub,	and	so	on.

Copy	all	of	these	certificates	to	the	SSH	server’s	etcssh	directory.
Installing	Host	Certificates
Once	you	have	your	certificates	installed	on	the	server,	configure	them	in

sshd_config	with	the	HostCertificate	keyword.	As	I’m	easily	confused,	I	put	my
HostCertificate	keywords	right	next	to	the	related	HostKey	keywords.
HostKey	etcssh/ssh_host_rsa_key	HostCertificate	etcssh/ssh_host_rsa_key-cert.pub	…

HostKey	etcssh/ssh_host_ed25519_key	HostCertificate	etcssh/ssh_host_ed25519_key-cert.pub

Restart	sshd.	You	are	now	ready	to	use	host	certificates!

Testing	Host	Certificates
Once	you	configure	certificates	in	sshd(8)	and	have	set	up	your	client’s
etcssh/ssh_known_hosts,	you’re	ready	to	try	certificate-based	host	key	validation.

Move	your	$HOME/.ssh/known_hosts	file	out	of	the	way,	or	delete	it	if	you’re
really,	really	confident.	Now	SSH	into	the	server.	You	should	get	a	logon
prompt	without	being	prompted	to	verify	the	host	key.

If	the	host	certificate	doesn’t	work	correctly,	add	a	-v	or	two	to	your	ssh
command	line.	Does	the	client	see	the	certificate?	If	not,	run	sshd	in	debugging
mode	to	see	if	it’s	loading	the	certificate,	and	if	not,	why	not.	Does	ssh	see	the
certificate,	but	not	recognize	it?	If	so,	you	fouled	up	your	ssh_known_hosts	entry.
Revoking	Certificates
Certificates	are	great,	until	someone	hacks	into	your	server	and	grabs	a	signed
keypair.	The	thief	could	use	that	signed	key	to	masquerade	as	the	compromised
host.	This	is	bad.	Fortunately,	you	can	use	the	RevokedHostKeys	ssh_config
keyword	to	tell	clients	not	to	trust	a	public	key.
RevokedHostKeys	etcssh/revoked-hosts	The	revoked	host	keys	file	contains	a	list	of	public

keys,	one	per	line.	The	client	will	not	accept	these	public	keys,	even	if	they	have	an

accompanying	certificate.

Your	enterprise	needs	the	ability	to	update	clients’	revoked	keys	file,	and
must	test	it	regularly.	While	real-time	updates	are	best,	even	a	logon	script	is
better	than	nothing.
Viewing	Certificates
You	can	view	the	contents	of	a	certificate	with	ssh-keygen	-L.	Use	-f	to	give	the
certificate	file.
#	ssh-keygen	-Lf	ssh_host_ed25519_key-cert.pub

ssh_host_ed25519_key-cert.pub:

Type:	ssh-ed25519-cert-v01@openssh.com	host	certificate	Public	key:	ED25519-CERT

SHA256:nNtyIQidY3MXAEfpWZ0wzkXKQFnCoQhe0CRIldc4EB8

Signing	CA:	RSA	SHA256:ZQHNMc2TmWlnygGy9+UoOYFK92RdbguzNi+cX4gA414

Key	ID:	"sloth"

Serial:	0

Valid:	from	2017-12-04T11:52:00	to	2017-12-25T11:53:17

Principals:

sloth.mwl.io

Critical	Options:	(none)

Extensions:	(none)

Perhaps	the	most	vital	details	here	are	the	key	ID	(sloth,	for	the	hostname)
and	the	validity	dates.	If	you	have	multiple	certificate	authorities,	you	might	find
the	signing	CA	field	useful.	The	principals	field	gives	the	entities	this	certificate
is	valid	for,	one	per	line.	If	you’ve	gotten	your	key	files	so	mixed	up	that	you

need	to	compare	the	public	key	field	to	the	keys	on	your	server,	start	over.
The	fields	that	define	critical	options	and	extensions	are	useful	for	user

certificates.
User	Certificates
User	certificates	are	more	complex	than	host	certificates,	mainly	because	users
are	more	complicated	than	hosts.	An	SSH	user	certificate	allows	you	to	replicate
everything	in	authorized_keys,	including	the	restrictions	and	limitations	discussed
in	Chapter	12,	“Automation.”	This	requires	delving	more	deeply	into	SSH
certificates,	however.

A	key	concept	of	an	SSH	certificate	is	the	principal.	A	principal	defines	what
entities	this	certificate	is	for.	For	a	host	certificate,	the	principal	is	the	hostname.
A	user	certificate’s	principal	is	usually	the	username	the	certificate	is	for,	but	it
might	also	contain	limitations,	restrictions,	and	other	information.	A	user
certificate	without	a	principal	can	be	used	to	authenticate	as	any	user.	You	must
assign	a	principal	to	every	certificate,	unless	you	truly	want	a	wildcard
authentication	certificate.

We’ll	refer	to	the	principal	throughout	this	section.	Early	on	you	can	think	of
it	as	the	username,	but	as	we	proceed	the	meaning	will	expand.
Creating	and	Viewing	User	Certificates
Get	the	user’s	public	authentication	key,	usually	id_rsa.pub,	and	copy	it	to	your
certificate	authority	machine.	You’ll	need	it	to	generate	the	certificate.	The
public	key	is	not	confidential,	so	there’s	no	risk	in	sending	it	across	the	network.

The	command	to	create	a	user	certificate	closely	resembles	creating	a	host
certificate.	Use	-s	to	give	the	path	to	the	user	CA	key.	The	-I	flag	defines	the
certificate	identity,	and	-n	gives	the	certificate	principal.	Use	-V	to	define	the
expiration	time.	The	last	argument	is	the	public	key	file	to	sign.	Here	I	have	my
user	CA	sign	the	public	key	of	one	of	my	users,	making	it	valid	for	username	djm.
I	set	the	validity	period	to	52	weeks,	or	one	year,	because	if	this	expires	before
the	user	submits	it	for	renewal	I’ll	entirely	blame	it	on	him.
#	ssh-keygen	-s	user-mwlca-key	-I	user_djm	-n	djm	-V	+52w	id_rsa.pub

I	enter	the	CA	passphrase	and	get	a	certificate	file,	id_rsa-cert.pub.	If	you’ve
never	done	this	before,	look	at	the	certificate.
#	ssh-keygen	-Lf	id_rsa-cert.pub

id_rsa-cert.pub:

Type:	ssh-rsa-cert-v01@openssh.com	user	certificate	Public	key:	RSA-CERT

SHA256:CfVbRUF+AaUcOxml6wI5Cf5nvtjzBDH6NcXaGU4…

Signing	CA:	RSA	SHA256:CKZFZXRgOy1ji8zmUhU0zjJQfNs9gLEqAwSjA8pB4dg	Key	ID:	"user_djm"

Serial:	0

Valid:	from	2017-12-04T07:31:00	to	2018-12-23T07:32:37

Principals:

djm

Critical	Options:	(none)

Extensions:

permit-X11-forwarding

permit-agent-forwarding

permit-port-forwarding

permit-pty

permit-user-rc

While	the	top	looks	a	whole	lot	like	a	host	certificate,	users	get	different
information	below.	Our	principal	is	djm,	so	this	certificate	is	only	good	for	this
user.	We	have	no	critical	options,	but	the	Extensions	list	several	keywords.
These	are	the	SSH	permissions	granted	to	this	user,	as	we’ll	very	soon	see	in
“Restricted	Certificates.”

Return	this	certificate	to	the	user.
Using	User	Certificates
Copy	the	certificate	into	$HOME/.ssh.	The	user’s	public	authentication	key	should
already	be	there.

You	should	have	already	set	the	TrustedUserCAKeys	keyword,	as	discussed
in	“Trusting	your	Certificate	Authority”	earlier	this	chapter.	If	so,	move	the
user’s	authorized_keys	file	aside.	Have	the	user	SSH	into	the	server.	If	the	server	is
properly	configured,	the	user	should	get	in	without	the	server	having	any
information	about	this	particular	key.

If	this	is	all	you	want,	you’re	done.	But	let’s	look	at	some	harder	stuff.
Revoking	User	Certificates
Generally,	you	don’t	revoke	user	certificates.	You	revoke	the	public	keys
associated	with	the	certificate,	using	the	RevokedKeys	sshd_config	keyword.
RevokedKeys	etcssh/revoked	One	reason	to	rotate	your	CA	is	that	it	holds	down	the	length

of	your	revoked	certificates	list.	You	don’t	want	to	have	certificates	from	a	laptop

stolen	five	years	ago	still	in	your	revoked	certificates	file!

If	you	have	a	complicated	list	of	revoked	keys,	investigate	Key	Revocation
Lists	(KRLs)	in	ssh-keygen(8).
Restricted	Certificates
Just	as	you	can	limit	the	access	of	accounts	and	keys,	you	have	the	power	to
restrict	certificates.	You	can	do	this	with	the	-O	flag	to	ssh-keygen.	The	-O	flag	has	a
whole	list	of	possible	restrictions	identical	to	those	for	authorized_keys	in	Chapter
12.	These	options	include	no-agent-forwarding,	no-port-forwarding,	no-pty,	no-user-rc,
and	no-x11-forwarding.	All	of	these	no-	restrictions	have	a	corresponding	permit-
version:	permit-agent-forwarding,	permit-port-forwarding,	permit-pty,	permit-user-rc,	and
permit-x11-forwarding.	Additionally	you	have	the	source-address	restriction	that
dictates	the	IP	addresses	that	can	authenticate	using	this	certificate.	There’s	also
the	clear	restriction	that	(much	like	restrict	in	authorized_keys)	turns	off	all
privileges,	allowing	you	to	turn	them	on	selectively	with	a	permit-statement.
Finally,	force-command	compels	the	user	to	run	that	specific	command.

One	common	case	for	automation	is	when	you	have	a	key	that	can	only	run	a

single	task.	I	want	to	create	a	certificate	for	a	key	that	can	only	be	used	to	run	the
command	usrlocal/scripts/backup.sh.	Create	a	key	called	backup	on	the	client,	and
send	backup.pub	to	the	CA	for	signing.	I	want	to	erase	all	permissions	from	this
certificate	using	the	clear	option,	and	then	compel	running	the	backup	script	with
force-command.	I	use	-O	twice	to	assign	these	permissions.	Otherwise,	it	looks
like	any	other	user	key	signing.
#	ssh-keygen	-s	user-mwlca-key	-I	user_backup	-n	backup	-V	+52w	-O	clear	-O	force-

command="usrlocal/scripts/backup.sh"	backup.pub

This	generates	the	certificate	file	backup-cert.pub.	Look	at	the	contents.
#	ssh-keygen	-Lf	backup-cert.pub

backup-cert.pub:

Type:	ssh-rsa-cert-v01@openssh.com	user	certificate	Public	key:	RSA-CERT

SHA256:UL4ctioc5p8aSN1S318FI5RpsS1rnxJdrOEDb/B69Jg	Signing	CA:	RSA

SHA256:CKZFZXRgOy1ji8zmUhU0zjJQfNs9gLEqAwSjA8pB4dg	Key	ID:	"user_backup"

Serial:	0

Valid:	from	2017-12-05T07:56:00	to	2018-12-04T07:57:50

Principals:

backup

Critical	Options:

force-command	usrlocal/scripts/backup.sh	Extensions:	(none)

Compare	this	key	to	the	regular	user	certificate	we	just	created.	The	user	key
has	no	critical	options,	while	this	certificate	lists	the	force-command	statement
as	a	critical	option.	Where	the	user	key	has	a	bunch	of	privileges	under
Extension,	this	key	has	none.	This	certificate	grants	the	right	to	use	only	the	one
command.

There	is	no	specific	privilege	to	create	an	SSH	tunnel	at	this	time.	If	your
organization	is	large	enough	to	need	certificates,	it	should	have	standards
declaring	acceptable	VPN	types.3

Disabling	authorized_keys
Once	you’ve	fully	deployed	SSH	certificates	for	user	authentication,	you	might
decide	to	disable	authorized_keys	files.	That’s	easily	done	in	sshd_config.
AuthorizedKeysFile	none

If	you	have	clients	that	can’t	support	certificates,	however,	you’ll	need	to
provide	a	way	for	those	clients	to	log	in.	Some	organizations	require	all
sysadmins	to	use	Unix-based	desktops	so	they	can	support	certificates.	Some
large	organizations	like	Facebook	disallow	SSH	from	clients	except	to	a	central
bastion	host	that	holds	the	user’s	private	keys	and	certificates.

And	speaking	of	Facebook,	let’s	talk	about	how	they	manage	SSH.
Massive	Scale	SSH
Organizations	like	Google,	Facebook,	and	Amazon	have	tens	of	thousands	of
sysadmins	and	millions	of	servers.	Imagine	the	load	on	their	LDAP	directory
just	for	managing	the	accounts,	and	the	number	of	user	groups	they	have.

And	once	you’ve	imagined	that,	forget	it.
Facebook’s	engineering	team	kindly	posted	an	article	on	how	they	use	SSH

certificates	to	allow	everyone	to	log	in	as	root,	but	control	which	servers	people
can	access,	through	certificate	principals.	Do	an	Internet	search	on	“Facebook
SSH	certificates”	and	you’ll	get	right	to	it.	I	won’t	dive	deep	into	their	system,
but	here’s	an	overview.

Organizations	without	millions	of	servers	and	teams	use	usernames	as	the
principal.	A	principal	doesn’t	have	to	be	a	user,	however.	You	can	use	the
AuthorizedPrincipals	sshd_config	keywords	to	set	up	a	list	of	principals	that	can
access	the	host,	and	develop	principals	based	on	role,	location,	or	function.

The	AuthorizedPrincipalsFile	keyword	points	to	a	text	file	that	contains	a	list
of	principals,	one	per	line.	Here	are	three	principals	that	might	appear	in	such	a
system.
everywhere-root

europe-root

europe-database

This	tells	sshd	to	accept	authentication	from	a	certificate	that	includes	any	of
the	principals	root-everywhere,	europe-root,	or	europe-database.	The
AuthorizedPrincipalsFile	keyword	accepts	the	usual	tokens,	so	you	could	break
this	out	by	username.
AuthorizedPrincipalsFile	etcssh/principals/%u	When	a	user	tries	to	log	in	as	root,	sshd

checks	etcssh/principals/root	for	the	list	of	permitted	principals.

Assign	the	principals	when	you	create	the	certificate.	This	certificate,	for	user
mwl,	assigns	this	certificate	the	principals	peasants	and	vermin.	As	there	are	many
many	sysadmins,	some	with	identical	names,	I	store	the	employee	number	as
well	as	the	name	in	the	key	identity.
#	ssh-keygen	-s	user-mwlca-key	-I	user_87181_Michael_Lucas	-n	peasants,vermin	-V	+52w

id_rsa.pub

This	works	because	the	key	identity	gets	logged	whenever	the	key	is	used	to
authenticate.	Using	principals	in	this	way	accommodates	the	need	for
accountability.

If	you’re	using	this	many	servers,	though,	having	text	files	on	each	server
dictating	who	can	log	into	which	account	scales	badly.	You	can	use	the
AuthorizedPrincipalsCommand	and	AuthorizedPrincipalsCommandUser
keywords	to	run	a	command	that	fetches	the	list	of	authorized	principals	for	this
account.	This	lets	your	global	enterprise	with	millions	of	servers	continue	using
that	Microsoft	Access	database	for	account	information—or,	yes,	you	could	use
LDAP	or	a	modern	database	like	Postgres,	if	you	wanted	to	be	fancy	about	it.
CA	Key	Rotation
You	can	achieve	another	level	of	certificate	security	by	rotating	your	OpenSSH
certificate	authority	keys.	This	involves	creating	a	new	CA	keypair,	recreating
all	certificates,	distributing	those	certificates	to	hosts	and	users,	and	removing
the	old	CA’s	keys.

It’s	possible	to	deploy	SSH	certificates	without	automation—painful,	but
possible.	It’s	not	impossible	to	rotate	your	certificate	authorities	without
automation,	but	it’s	much	easier	to	deploy	Ansible	to	automate	the	process.
Don’t	even	try	to	rotate	your	CA	key	without	automation.

Start	by	generating	your	new	CA	keys	and	distributing	the	public	keys	to
each	of	your	hosts.	The	files	that	contain	trusted	CA	keys,	either
etcssh/ssh_known_hosts	or	the	file	given	by	the	TrustedUserCAKeys	sshd_config
keyword,	can	contain	multiple	CA	keys	simultaneously.	Don’t	delete	the	old	CA
keys	yet;	only	add	the	new	keys.

Once	all	of	your	hosts	have	the	public	keys	for	your	new	CAs,	regenerate
certificates	for	all	of	your	hosts	and/or	users.	Distribute	those	certificates	as
needed,	removing	the	certificates	created	with	the	old	CA.	Your	automation
system	will	report	which	hosts	have	the	new	file	and	which	don’t.

Once	your	new	certificates	are	distributed,	disable	the	old	CA	public	keys	on
all	of	your	hosts.

Not	only	will	automation	simplify	making	a	key	rotation	possible,	automation
makes	it	possible	to	rotate	your	certificate	authority	keys	frequently.	If	you	have
a	team	of	sysadmins,	forget	certificates	with	a	one-year	expiration;	try	one-week
host	certificates	that	you	update	every	night!	Even	if	an	intruder	manages	to	steal
a	certificate	and	a	public	key,	there’s	no	way	they’ll	brute-force	the	private	key
before	the	certificate	expires.

This	is	the	basics	of	certificates.	Certificates	have	many	small	features	that
can	be	helpful,	if	you	have	the	right	environment;	learn	more	in	ssh-keygen(8).
Next,	the	final	chapter	takes	us	through	some	OpenSSH	scraps.

1	SSL	is	no	longer	a	thing,	unless	you	like	bystanders	decrypting	your	traffic.
2	If	you	put	your	SSH	CA	in	etcssh,	the	Sysadmin	Code	declares	that	your	co-workers	are	allowed	to	beat
you	with	a	spiked	club,	provided	the	spikes	are	no	longer	than	four	inches	and	not	coated	with	neurotoxin.
Local	law	may	vary.
3	Also,	nobody’s	asked	the	OpenSSH	maintainer	for	the	feature.

Chapter	15:	OpenSSH	Scraps
This	chapter	covers	a	potpourri	of	SSH	topics	that	you	should	probably	know
about,	but	that	don’t	merit	their	own	chapters.	We’ll	discuss	host	key	rotation	in
OpenSSH,	connecting	to	hosts	that	only	support	obsolete	ciphers,	and	escape
characters.
Host	Key	Rotation
After	a	host	has	been	accepting	connections	from	the	public	Internet	for	a	year	or
two,	you	should	consider	rotating	the	host	keys.	Not	only	do	algorithms	grow
easier	to	break	as	computing	power	advances,	but	prospective	intruders	have	had
more	time	to	brute-force	your	private	key.	If	you	ask	your	users	to	verify	new
host	keys	every	year	or	so,	though,	they’ll	get	annoyed.	You	can	use	the	existing
host	key	to	securely	transmit	the	new	host	key	to	the	client.	This	isn’t	useful	if
the	existing	host	key	has	been	compromised,	but	it	can	let	you	proactively
distribute	the	forthcoming	host	keys	to	clients	before	getting	rid	of	the	old	ones.

Once	you	have	many	servers,	OpenSSH	certificates	are	more	useful	than
occasional	key	rotation.	Certificates	eliminate	known_hosts	and	the	need	to	update
the	client	at	all.

Configure	SSH	key	rotation	on	both	the	server	and	the	client.
Server	Key	Rotation
Start	by	creating	your	next	set	of	keys.	Create	each	sort	of	key	you	intend	to
support.	They’ll	need	different	file	names,	of	course.	I	name	new	keys
prepended	with	the	year	they’re	created.
#	ssh-keygen	-f	2018_ssh_host_rsa_key	-t	rsa	-N	''

#	ssh-keygen	-f	2018_ssh_host_ecdsa_key	-t	ecdsa	-N	''

#	ssh-keygen	-f	2018_ssh_host_ed25519_key	-t	ed25519	-N	''

This	gives	us	four	new	keys.	Now	use	the	standard	sshd_config	HostKey
keyword	to	add	these	keys.	Add	new	keys	after	the	existing	host	keys.
HostKey	etcssh/2018_ssh_host_rsa_key	HostKey	etcssh/2018_ssh_host_dsa_key	HostKey

etcssh/2018_ssh_host_ecdsa_key	HostKey	etcssh/2018_ssh_host_ed25519_key	Your	server	is	now

ready	to	distribute	those	host	keys	to	clients.

Once	you’re	certain	all	of	your	clients	have	copies	of	the	new	host	keys,	and
you’ve	given	up	waiting	for	that	one	user	who	never	updates	everything,	you	can
disable	the	old	host	keys.
Client	Key	Rotation
Tell	ssh(1)	to	look	for	additional	keys	with	the	UpdateHostKeys	ssh_config
option.	The	default,	no,	tells	ssh	to	ignore	new	host	keys.	Setting	it	to	yes
automatically	updates	known_hosts	with	any	new	keys	for	this	host.	The	ask	setting
means	to	query	the	user	to	see	if	the	new	keys	should	be	accepted.	This	mirrors
the	StrictHostKeyChecking	keyword.

When	you	connect	to	a	host	with	the	UpdateHostKeys	option	set,	your	initial
connection	will	look	a	little	different.
$	ssh	avarice

The	authenticity	of	host	'avarice.mwl.io	(203.0.113.209)'	can't	be	established.

ECDSA	key	fingerprint	is	SHA256:JUf1lzyEVYxhbJCfXLvPi6eLJdYCZhEBzJD8c+NGLzw.

No	matching	host	key	fingerprint	found	in	DNS.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

Verify	the	host’s	public	key	fingerprint	and	accept	it	if	correct.	But	then
you’ll	get	another	set	of	warnings.
Learned	new	hostkey:	RSA	SHA256:nNUnWCojrzeHAALXyM/yGpGM7uUIPrP/ph8zV3qUx9M

Learned	new	hostkey:	ED25519	SHA256:nNtyIQidY3MXAEfpWZ0wzkXKQFnCoQhe0CRIldc4…

Accept	updated	hostkeys?	(yes/no):	yes

Your	client	has	grabbed	the	public	keys	for	this	host’s	RSA	and	ED25519
keys.	You	can	only	accept	or	reject	these	additional	public	keys	en	masse.	It’s	a
very	rare	attacker	that	will	leave	the	main	host	key	untouched	while	subverting
the	other	keys,	but	you	really	should	verify	them	all.

When	the	server	adds	new	host	keys,	the	client	will	display	the	fingerprints
and	give	you	a	chance	to	verify	them.
$	ssh	avarice

Learned	new	hostkey:	RSA	SHA256:aDqGAPMnT6b3aYqT3DXjRofYfHznOMbVFWZg3yw/fTI	Learned	new

hostkey:	ECDSA	SHA256:9eHjmXAFrGmRT2iz/WY5pHLcvoo0HQ5paiLcpEcXWns	Learned	new	hostkey:

ED25519	SHA256:BZ5X6sIbfa5AWcQY0RjnMRL9zLX1+som5TmTV/k/…

Accept	updated	hostkeys?	(yes/no):	Host	key	updates	are	incompatible	with	connection

multiplexing	(the	ControlPersist)	keyword.	Enabling	ControlPersist	disables	host	key

updates.

While	PuTTY	can	grab	the	public	key	of	algorithms	it	isn’t	using	for	a
connection	(go	to	the	upper	left	corner	menu	and	select	Special	Command	->
Cache	New	Host	Key	Type),	it	can’t	accept	multiple	keys	of	the	same	type.
When	you	get	rid	of	the	old	host	keys,	your	PuTTY	users	must	re-verify	host
keys.
Connecting	to	Obsolete	SSH	Servers
Over	the	last	few	years,	OpenSSH	has	deprecated	a	whole	bunch	of	protocols
and	cryptographic	algorithms.	The	blatantly	insecure	SSH	version	1	has	been
extirpated	from	the	source	code.	But	whole	slews	of	cryptographic	algorithms
that	worked	well	in	the	1990s	are	no	longer	suited	to	today’s	Internet.	OpenSSH
still	supports	these	types	of	encryption,	but	they’re	not	enabled	by	default.	You
must	use	special	command-line	options	to	use	them.

Why	disable	these	algorithms?	Awareness.	You	should	know	when	an	SSH
connection	uses	weak	crypto.	If	you	never	realize	that	a	server	or	embedded
device	only	supports	cruddy	cryptographic	algorithms,	you’ll	never	upgrade	or
replace	it.

When	OpenSSH	fails	to	connect	to	an	SSH	server	due	to	its	weak	crypto,	it
tells	you	all	the	information	you	need	to	manually	connect.	You	have	to
understand	SSH’s	encryption	characteristics,	though.

SSH	Encryption
The	SSH	protocol	uses	cryptography	in	four	different	roles.	Each	role	needs
different	algorithms.	OpenSSH	uses	a	keyword	to	set	each	of	these	in	ssh_config
or	on	the	command	line.

The	Key	Exchange	Method	(KEX)	is	used	to	generate	the	one-time	per-
connection	symmetric	key.	The	keyword	KexAlgorithms	sets	the	key	exchange
methods.

The	general	encryption	algorithms	are	set	with	the	Ciphers	keyword.
Message	Authentication	Codes	(MAC)	detect	alterations	in	traffic.	The

MACs	keyword	sets	them.
The	HostKeyAlgorithms	lets	you	set	algorithms	for	host	keys.
Finally,	some	public	key	algorithms	are	obsoleted.	The

PubkeyAcceptedKeyTypes	keyword	lets	you	enable	obsolete	key	types.
Example	Connection
My	home	entertainment	network	connects	to	the	Internet	with	an	inexpensive
embedded	router.	It	offers	SSH…	sort	of.
$	ssh	admin@203.0.113.1

Unable	to	negotiate	with	203.0.113.1	port	22:	no	matching	host	key	type	found.	Their

offer:	ssh-dss	The	router	doesn’t	offer	a	type	of	host	key	that	current	OpenSSH	accepts	by

default.	The	HostKeyAlgorithms	keyword	lets	you	re-enable	supported	but	no	longer	enabled

host	key	algorithms.	The	ssh-dss	algorithm	(also	known	as	DSA)	is	very	weak	and	abandoned

in	modern	SSH,	but	as	this	is	my	home	network	I’ll	trust	it	here.	Use	the

HostKeyAlgorithms	keyword	to	add	it	back	to	the	options	ssh	supports.

$	ssh	-o	HostKeyAlgorithms=+ssh-dss	admin@203.0.113.1

Fssh_ssh_dispatch_run_fatal:	Connection	to	203.0.113.1	port	22:	DH	GEX	group	out	of	range

What,	another	error?	When	connecting	to	an	SSH	server	that	only	supports	obsolete	crypto,

you	can	expect	to	need	to	set	a	few	keywords	on	the	command	line.	Figuring	out	which	are

the	necessary	settings	is	an	iterative	process.

This	error	is	a	little	more	obscure.	There’s	no	obvious	keyword	to	choose
here,	unlike	with	the	host	key	algorithm	error.	If	you’re	not	familiar	with	Diffie-
Hellman	key	exchange,	your	best	bet	is	to	use	an	Internet	search	engine	to	see	if
someone’s	had	the	same	error	before.	If	you’re	the	first	person	in	the	entire
world	to	experience	this	exact	problem,	run	ssh	in	verbose	mode,	gather	the
output,	and	contact	the	vendor.

This	particular	error	turns	out	to	be	a	key	exchange	problem,	well-known
with	this	vendor.	I	have	to	reactivate	an	obsolete	key	exchange	algorithm.
$	ssh	-o	HostKeyAlgorithms=+ssh-dss	-o	KexAlgorithms=diffie-hellman-group14-sha1

admin@203.0.113.1

I	can	now	connect.
One	day,	OpenSSH	will	fully	deprecate	these	algorithms.	Upgrade	your

equipment	before	then.	As	a	temporary	fix,	though,	you	can	set	these	options	in
ssh_config.
Host	203.0.113.1

HostKeyAlgorithms	+ssh-dss	KexAlgorithms	+diffie-hellman-group14-sha1

Now	that	I’ve	written	this	section,	though,	I	can	upgrade	my	router.

Escape	Characters
When	you	SSH	into	a	server,	your	keystrokes	all	get	passed	through	to	the
server.	With	escape	characters,	though,	you	can	talk	to	the	locally	running	SSH
process.	An	escape	character	temporarily	and	briefly	suspends	your	SSH	session.
You	can	use	the	escape	character	to	interrupt	a	hung	SSH	session,	add	port
forwarding,	send	an	old-fashioned	serial-style	break	to	network	gear,	and	more.

The	default	escape	character	is	the	tilde	(~).	Very	few	Unix	commands	use
the	tilde,	but	you	can	hit	it	twice	to	send	it	once.	Hitting	~~	means	“yes,	I	really
meant	to	send	a	tilde.”	If	you	need	to	change	the	escape	character	use	ssh’s	-e
argument	and	your	desired	escape	character	in	quotes.

Issue	instructions	by	hitting	ENTER,	the	escape	character,	and	a	second
character.	Disconnecting	is	~.,	editing	your	port	forwarding	is	~C,	and	so	on.
Ending	Your	Session
The	easiest	use	of	the	escape	character	is	to	terminate	an	SSH	session.	If	the
remote	server	is	hung,	enter	tilde-period.
wrath#	~.

Connection	to	server	wrath.mwl.io	closed	client$

You’re	now	back	on	the	local	machine.
Adjusting	Port	Forwarding
The	escape	character	kind	of	lets	you	travel	backwards	in	time,	adjusting	the
command	you	used	to	connect	to	the	host.	While	you	can’t	muck	with	key
exchange	algorithms	and	such,	you	can	adjust	port	forwarding.	Enter	~C	to	enter
the	command	line,	and	then	enter	the	desired	port	forwarding.

Suppose	I’m	in	the	middle	of	an	SSH	session,	and	I	want	to	add	a	dynamic
port	forward	from	port	9999	on	my	desktop	out	to	the	server.	If	I	was	opening
the	SSH	session	with	this,	I’d	add	the	flag	-D	9999	to	the	command	line.	I	start	by
typing	~C,	and	get	an	ssh>	prompt.
ssh>

This	is	the	internal	ssh(1)	command	prompt.	Add	your	command	line	changes
here.
ssh>	-D9999

Forwarding	port.

Going	back	to	my	client,	I’ll	see	that	ssh(1)	has	port	9999	open.	The	dynamic
forwarding	is	live.

To	cancel	a	port	forwarding,	go	back	to	the	SSH	command	line.	Use	the	-K
flag	and	the	command	you	used	to	create	the	port	forwarding.	Here	I	disable	the
dynamic	forwarding	I	just	created.
ssh>	-KD9999

Canceled	forwarding.

The	dynamic	forward	disappears.
Escape	characters	have	other	features,	but	most	of	them	aren’t	useful	today.	If

you’re	curious,	though,	~?	displays	a	list	of	all	available	escape	characters.
There’s	a	lot	more	you	can	do	with	SSH.	If	you	can	do	all	of	this,	you’re

more	competent	with	SSH	than	almost	everyone.	Congratulations!

Afterword
Seven	years	ago,	I	had	a	temper	tantrum	about	sysadmins	managing	critical,
public-facing	systems	with	password-based	SSH.

This	isn’t	anything	new.	Millions	of	sysadmins	more	senior	than	I	have	given
that	rant.	I	decided	to	write	the	first	edition	of	SSH	Mastery	with	the	explicit
purpose	of	killing	passwords.	I’m	not	sure	if	it	helped,	but	a	whole	bunch	of
senior	sysadmins	have	come	up	to	me	and	thanked	me	for	writing	the	book,
specifically	because	slapping	people	with	it	was	considered	“professional
behavior.”	I’m	hopeful	that	this	second	edition,	by	covering	features	like
certificates,	will	help	those	same	sysadmins	further	secure	their	servers.

Unix	users	should	already	know	that	OpenSSH	is	one	of	the	most	important
pieces	of	security	software	in	the	world.	If	you	don’t:	OpenSSH	is	one	of	the
most	important	pieces	of	security	software	in	the	world.	Almost	every
technology	vendor	includes	OpenSSH	in	their	product.	These	multi-billion-
dollar	firms	don’t	pay	for	OpenSSH.	Some	OpenSSH	developers	hold	a	specific
day	job	because	their	employer	gives	them	time	to	work	on	OpenSSH,	and
companies	like	Google,	Microsoft,	and	Facebook	have	donated	funds	to	support
the	project.	For	the	most	part,	OpenSSH	is	created	by	a	bunch	of	people	who
love	good	software.

Running	a	major	software	project	isn’t	cheap.	OpenSSH	is	developed	as	part
of	the	OpenBSD	Project.	They	need	servers,	bandwidth,	and	electricity	like	any
other	IT	organization,	but	must	constantly	scrape	up	funding.	If	you	find
OpenSSH	useful,	consider	sending	the	OpenBSD	Foundation
(http://www.openbsdfoundation.org/)	a	few	dollars	so	they	can	keep	going.

Windows	folks,	PuTTY	has	revolutionized	using	SSH	from	Microsoft
systems.	And	the	PuTTY	developers	gratefully	accept	donations.	They	don’t
have	a	server	infrastructure	to	feed,	but	they	appreciate	donations	just	the	same.
With	refreshing	honesty,	they	declare	that	they’ll	spend	small	donations	on
motivational	beer	and	curry,	while	larger	donations	can	help	buy	any	necessary
hardware	or	tools.	Volunteer	programmers	might	have	more	powerful	motivators
than	Unexpected	Appreciation	Beer,	but	I’ve	yet	to	see	what	that	would	be.	See
the	PuTTY	FAQ	for	their	PayPal	address.

If	you	work	for	one	of	those	big	firms	that	make	cash	out	of	shipping
OpenSSH	or	PuTTY	with	their	product,	do	consider	blackmailing	extorting
persuading	your	employer	to	throw	a	few	bucks	to	the	folks	who	write	the
software.	Or	at	least	buy	some	developers	a	few	pints	on	your	expense	account.
We’ll	all	benefit.

And	if	you’re	still	using	passwords	after	reading	this	far?	I	have	a	whole
horde	of	sysadmins	queued	up	to	slap	you	with	a	book.

About	the	Author
Sign	up	for	Michael	W	Lucas’	mailing	list.

https://mwl.io	More	Tech	Books	from	Michael	W	Lucas	Absolute	BSD
Absolute	OpenBSD	(1st	and	2nd	edition)	Cisco	Routers	for	the	Desperate	(1st	and	2nd	edition)	PGP	and

GPG
Absolute	FreeBSD

Network	Flow	Analysis	Absolute	FreeBSD	3rd	edition	(coming	2018)	the	IT	Mastery	Series	SSH	Mastery
(1st	and	2nd	edition)	DNSSEC	Mastery	Sudo	Mastery	FreeBSD	Mastery:	Storage	Essentials	Networking	for

Systems	Administrators	Tarsnap	Mastery	FreeBSD	Mastery:	ZFS
FreeBSD	Mastery:	Specialty	Filesystems	FreeBSD	Mastery:	Advanced	ZFS

PAM	Mastery	Relayd	and	Httpd	Mastery	Novels	(as	Michael	Warren	Lucas)	git	commit	murder	git	sync
murder	(coming	2018)	Immortal	Clay	Kipuka	Blues	Bones	Like	Water	(coming	2018)	Butterfly	Stomp

Waltz	Hydrogen	Sleets

Sponsors
Somehow,	I’m	paying	the	bills	as	a	full-time	writer.	The	only	way	I’ve	managed
that	is	because	people	buy	my	books.	I’m	grateful	to	every	one	of	my	readers.

A	few	people	like	my	books	so	much	that	they	want	to	help	support	me.	They
send	me	money	for	a	book	as	I’m	writing	that	book.	In	exchange,	I	put	their
names	in	the	print	and/or	electronic	versions	of	the	book.	Ebook	sponsors	paid	at
least	$25	to	have	their	name	in	the	electronic	version	of	SSH	Mastery,	2nd
Edition,	while	print	sponsors	paid	at	least	$125	to	get	their	name	on	dead	trees.

Everyone	who	contributed:	thank	you.	While	I	don’t	need	sponsorships,	they
do	give	me	an	invaluable	financial	cushion.	You	distinctly	and	directly	improve
my	life.

	
Print	Sponsors

William	Allaire	Carlos	Cardenas	Jake	Cross	Benedict	Reuschling	Phi
Network	Systems	John	W.	O’Brien	Stefan	Johnson	Majid	Al	Suwaidi	Mischa
Peters	Dominique	Poulain
Ebook	Sponsors

Julien	Vallée	Alessandro	Lenzen	Martin	Pugh	Alexander	Riepl	Anonymous
Jay	Nelson	Timur	Anthony	D	B

Bernard	Spil	Roman	Zolotarev	Steven	Hogarth	Grant	Taylor	Matthias
Schmidt	Danilo	Baio	Sergio	Ligregni	John	W.	O’Brien	Mathias	Zimmermann
Don	Jackson	Darren	Janisse	Filipp	Lepalaan	Viacheslav	Bachynskyi	Markus
Weber	Filipe	Rodrigues	Garance	A	Drosehn	Lucas	Holt	Aaron	Poffenberger
Mischa	Peters	Dominique	Poulain	Paul	Kelly	Aubry	Hamonic

Patrons
Where	the	sponsors	backed	this	particular	book,	a	handful	of	maniacs	fine	folks
sponsor	absolutely	everything	I	write,	via	my	Patreon
(https://www.patreon.com/mwlucas).	The	following	amazing	people	send	me	at
least	twenty	dollars	every	month.

	
Digital	Supporters

Jeff	Marracini
Trent	T.
Earl	Percival
Allan	Jude

Copyright	Information
by	Michael	W	Lucas	SSH	Mastery:	OpenSSH,	PuTTY,	Certificates,	Tunnels,
and	Keys:	2nd	edition	Copyright	2017	by	Michael	W	Lucas
(https://www.michaelwlucas.com,	https://mwl.io).
	
All	rights	reserved.
	
Authors:	Michael	W	Lucas	Copyediting:	Amanda	Robinson	Cover	art:	Eddie
Sharam	All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or
transmitted	in	any	form	or	by	any	means,	electronic	or	mechanical,	including	but
not	limited	to	photocopying,	recording,	feline	yowls,	or	by	any	information
storage	or	retrieval	system,	without	the	prior	written	permission	of	the	copyright
holder	and	the	publisher.	For	information	on	book	distribution,	translations,	or
other	rights,	please	contact	Tilted	Windmill	Press
(accounts@tiltedwindmillpress.com).
	
The	information	in	this	book	is	provided	on	an	“As	Is”	basis,	without	warranty.
While	every	precaution	has	been	taken	in	the	preparation	of	this	work,	neither
the	author	nor	Tilted	Windmill	Press	shall	have	any	liability	to	any	person	or
entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly
or	indirectly	by	the	information	contained	in	it.
	
Tilted	Windmill	Press	https://www.tiltedwindmillpress.com

	Table of Contents
	Acknowledgements
	Chapter 0: Introduction
	Chapter 1: Encryption, Algorithms, and Keys
	Chapter 2: Common Configuration
	Chapter 3: The OpenSSH Server
	Chapter 4: Verifying Server Keys
	Chapter 5: SSH Clients
	Chapter 6: Copying Files over SSH
	Chapter 7: SSH Keys
	Chapter 8: X Forwarding
	Chapter 9: Port Forwarding
	Chapter 10: Keeping SSH Connections Open
	Chapter 11: Key Distribution
	Chapter 12: Automation
	Chapter 13: Virtual Private Networks
	Chapter 14: Certificate Authorities
	Chapter 15: OpenSSH Scraps
	Afterword
	About the Author
	Sponsors
	Patrons
	Copyright Information

