Michael W Lucas

Table of Contents

Acknowledgements

Chapter 0: Introduction

Chapter 1: Encryption, Algorithms, and Keys
Chapter 2: Common Configuration

Chapter 3: The OpenSSH Server

Chapter 4: Verifying Server Keys

Chapter 5: SSH Clients

Chapter 6: Copying Files over SSH

Chapter 7: SSH Keys

Chapter 8: X Forwarding

Chapter 9: Port Forwarding

Chapter 10: Keeping SSH Connections Open
Chapter 11: Key Distribution

Chapter 12: Automation
Chapter 13: Virtual Private Networks

Chapter 14: Certificate Authorities
Chapter 15: OpenSSH Scraps
Afterword

About the Author

Sponsors
Patrons

Copyright Information

Acknowledgements

Thanks go first to the fine folks who wrote OpenSSH and PuTTY. These people
literally changed the world for the better by creating and supporting their
software. I must notably thank OpenSSH ringleader Damien Miller, for taking
the time to point me in the right direction when I had a dumb question.

I must also thank my technical reviewers: Bill Allaire, Jim Allen, Tim
Enders, Marie Helene Kvello-Aune, Kurt Mosiejczuk, Mike O’Connor, Bernard
Spil, Loganaden Velvindron (from hackers.mu), and Markus Waldeck. Any
errors that appear in this book crept in despite the efforts of these fine folks.

To the people who offer me ongoing support via Patreon
(https://www.patreon.com/mwlucas), my gratitude. A whole passel of them got a
copy of this book as thanks.

Writing this book would have been impossible without the source code for all
the software involved.

This is for Liz.

Chapter 0: Introduction

Over the last 15 years, OpenSSH (http://www.OpenSSH.com) has become the
standard tool for remote management of UNIX-like systems and many network
devices. Most systems administrators use only the bare minimum OpenSSH
functionality necessary to get a command line, however. OpenSSH has many
powerful features that will make systems management easier if you take the time
to understand them. You’ll find information and tutorials about OpenSSH all
over the Internet. Some of them are poorly written, or only applicable to narrow
scenarios. Many are well written, but are ten years old and cover problems
solved by a software update nine years ago. If you have a few spare days, and
know the questions to ask, you can sift through the dross and find effective,
current tutorials.

This task-oriented book will save you that effort and time, freeing you up to
prepare for the next version of Castle Wolfenstein. I assume that you are using
fairly recent versions of OpenSSH and PuTTY, and I disregard edge cases such
as “my twenty-year-old router only supports SSH version 1.” If you found this
book, chances are you’re capable of searching the Internet to answer very
specific questions. I won’t discuss building OpenSSH from source, or how to
install the OpenSSH server on fifty different platforms. If you’re a systems
administrator, you know where to find that information. If you are a system user,
your system administrator should install and configure the OpenSSH server for
you, but mastering the client programs will help you work more quickly and
effectively.

Who Should Read This Book?

Everyone who manages a UNIX-like system must understand SSH. OpenSSH is
the most commonly deployed SSH implementation. Unless you are specifically
using a different SSH implementation, read this book.

People who are not systems administrators, but who must connect to a server
over SSH, will also find this book helpful. While you can learn the basics of
SSH in five minutes, proper SSH use will make your job easier and faster. You
can skip the sections on server configuration if you wish, although it’s always
good to know what your system administrator can actually do as opposed to
what they feel like doing.

SSH Components
Secure shell (SSH) is a protocol for creating an encrypted communications

channel between two networked hosts. SSH protects data passing between two
machines so that other people cannot eavesdrop on it. Tatu Ylénen created the

initial protocol and implementation in 1995, designing it to replace insecure
protocols such as telnet, RSH, and rlogin. With the release of OpenSSH in 1999,
SSH rapidly became the standard method for managing hosts. Today, many
different software packages rely on the SSH protocol for encrypted and well-
authenticated transport of data across private, public, and hostile networks.

OpenSSH

OpenSSH is the most widely deployed implementation of the SSH protocol. It
started as an offshoot of a freely licensed version of the original SSH software,
but has been heavily rewritten, expanded, and updated. OpenSSH is developed
as part of the OpenBSD Project, a community known for writing secure
software. OpenSSH is the standard SSH implementation in the Linux and BSD
world, and is also used in products from large companies such as HP, Cisco,
Oracle, Novell, Juniper, IBM, and so on.

OpenSSH comes in two versions, OpenBSD and Portable OpenSSH.
OpenSSH’s main development happens as part of OpenBSD. They hold
OpenSSH to the same standards of simple, secure code as they do the rest of
OpenBSD. This version of OpenSSH is small and secure, but only supports
OpenBSD. The OpenSSH Portability Team takes the OpenBSD version and
adds the glue necessary to make OpenSSH work on other operating systems,
creating Portable OpenSSH. Not only do different operating systems use
different compilers, libraries, and so on, they have different authentication
systems. The Portable OpenSSH team needs to account for all of these
differences on every platform. They do their best to hide this complexity, so you
don’t have to worry about it. This book applies to both versions.

Any operating system probably comes with OpenSSH, or the operating
system vendor provides a package. Even Microsoft offers an OpenSSH package
in their Linux layer, and a beta of a native port has recently escaped as an
optional Windows component. If your operating system doesn’t provide an
OpenSSH package, download the Portable OpenSSH source code from
http://www.OpenSSH.com and follow the instructions to build the software.

OpenSSH is available under a BSD—style license. You can use it for any
purpose, with no strings attached. You cannot sue the software authors if
OpenSSH breaks, and you can’t claim you wrote OpenSSH, but you can use it
any way you wish, including adding it to your own products. You can charge to
install or support OpenSSH, but the software itself is free.

SSH Server
An SSH server listens on the network for incoming SSH requests, authenticates
those requests, and provides a system command prompt (or another service that

you configure). The most popular SSH server is OpenSSH’s sshd.

SSH Clients

Use an SSH client to connect to your remote server or network device. The most
popular SSH client for Windows systems is PuTTY. The standard SSH client for
Unix-like systems is ssh(1), from OpenSSH. Both are freely available and usable
for any purpose, commercial or noncommercial, at no cost.

Microsoft also recently forked OpenSSH to include an SSH client in
Windows. It’s considered experimental, though, and development is continuing.
Experiment with it as you wish; it should work much like OpenSSH. It’s also
part of Windows’ Linux subsystem. If you’re using a Windows-native SSH,
though, you really want to use PowerShell rather than the traditional terminal.

Once you understand PuTTY and OpenSSH, you’ll have the base knowledge
to use any secure SSH client.

SSH Protocol Versions

The SSH protocol comes in two versions, SSH-1 (version 1) and SSH-2 (version
2). Always use SSH-2. All modern SSH software defaults to version 2. You will
find old embedded devices that still rely on SSH version 1, but SSH-1 is barely
more secure than unencrypted telnet.

One person designed SSH-1 for his own needs. It met those needs admirably,
and in the 1990s it was a whole bunch better than telnet. As SSH grew more
popular, more people examined the protocol and exposed weaknesses in the
original design. With today’s computing power, SSH-1 is highly vulnerable to
attacks. While SSH-1 encrypts your data in transit and prevents casual
eavesdropping, an attacker that knows a couple tricks can capture your data,
decrypt your data in transit, lull you into thinking that you logged on to the
correct machine when you are actually connected to a different host, insert
arbitrary text into the data stream, or any combination of these. Attacking an
SSH-1 data stream isn’t quite a point-and-click process, but intruders do break
SSH-1 in the real world.

The appearance of security is worse than no security. Never use SSH version
1.

It might seem harmless to permit SSH-1 for servers or clients that don’t
support SSH-2. The client and server transparently negotiate the SSH version
they will use for a connection however. If either client or server tolerates SSH-1,
an intruder can capture your login credentials and all transmitted data. It’s fairly
straightforward to insert arbitrary text (such as rm -rf /) into an SSH-1 session.
This was discovered in 1998, and today’s massive computing power has made
this attack far easier. SSH-1 sessions can be decoded in real time by programs

such as Ettercap. The incremental improvements to SSH-1, such as SSH 1.3 and
1.5, are vulnerable. SSH servers that offer SSH version 1.99 support SSH
version 1 and version 2.

Do not let your SSH clients request SSH-1. Do not let your SSH servers offer
SSH-1.

OpenSSH has removed support for SSH-1, so if you have an old embedded
device that only speaks SSH-1, you’ll need to manage it with PuTTY or, better

still, spend a couple dollars to replace that device with something built this

millennium.!

SSH-2 is the modern standard. The protocol is designed so that vulnerabilities
can be quickly addressed as they are discovered. Our constantly-increasing
computing power makes today’s strong encryption tomorrow’s security risk, so
SSH-2 is designed so that its algorithms and protocols can be upgraded in place.

Protocols such as SCP and SFTP (Chapter 7) are built atop SSH.

What Isn’t In This Book?

This book is meant to familiarize you with SSH, and help you reach a minimum
level of competence with OpenSSH and PuTTY. This means eliminating
passwords, restricting your SSH services to the minimum necessary privileges,
and using SSH as a transport for common management tools. You will be able to
easily copy files over SSH, manage server keys with minimal fuss, use digital
certificates to permit only approved keys on your network, and a few other
tricks.

This book is not intended as a comprehensive SSH tome. It doesn’t cover
integrating SSH with Kerberos, or SecurID, or hooking your SSH install into
Google authenticator, or using your SSH agent as an authentication source for
third-party programs. These are all interesting topics, but very platform specific,
and might well change before you finish reading this book. Sysadmins interested
in authentication options might find my book PAM Mastery (Tilted Windmill
Press, 2016) useful.

What Is In This Book?

Chapter 0 is this introduction.

Chapter 1, “Encryption and Keys,” gives basic information about encryption
and how SSH uses it.

Chapter 2, “Common Configuration,” covers configuration syntax used
throughout the OpenSSH server and client.

Chapter 3, “The OpenSSH Server,” discusses configuring the OpenSSH
server sshd. This chapter orients you on configuring sshd, but more specific
examples appear throughout this book.

Chapter 4, “Host Key Verification,” covers a frequently overlooked but vital
part of using any SSH client: verifying server keys. This topic is so vital that it
needs its own chapter, even before our first discussion of SSH clients.

Chapter 5, “SSH Clients,” discusses two popular SSH clients, OpenSSH’s
ssh(1) for Unix-like systems and PuTTY for Windows.

Chapter 6, “Copying Files Over SSH,” covers moving files across the
network using SSH as a transport, with the SCP (secure copy) and SFTP (SSH
file transfer) protocols.

Chapter 7, “SSH Keys,” walks you through creating a personal key pair
(public and private cryptographic key). Key pairs make authentication more
secure. When combined with agents they eliminate the need to routinely type
passwords but don’t degrade SSH security.

Chapter 8, “X Forwarding,” will teach you how to display graphics over your
SSH connections while minimizing risk.

Chapter 9, “Port Forwarding,” covers using SSH as a generic TCP/IP proxy,
letting you redirect arbitrary network connections through the network to remote
machines.

Chapter 10, “Keeping SSH Sessions Open,” covers ways to keep SSH
sessions running despite the firewalls and proxy servers and unreliable ISPs that
want to shut them down after minutes or hours.

Chapter 11, “Key Distribution,” tells systems administrators how to
automatically distribute host keys and improve security while eliminating the
need for users to manually compare host key fingerprints. We also cover issues
in distributing user public keys across large cloud systems.

Chapter 12 “Automation,” discusses ways to use SSH as a transport for
automated tools and tightly—controlled user tasks, as well as creating single-
purpose user keys.

Chapter 13, “OpenSSH VPNs,” demonstrates how to use OpenSSH to create
an encrypted tunnel between two sites.

Chapter 14, “Certificate Authorities,” guides you through creating a
certificate authority to permit only authorized user keys to log on to your
network.

That’s enough blather! Let’s get to work.

1 A few Linux distributions deliberately ship an SSH client that supports SSH-1. That’s on them.

Chapter 1: Encryption, Algorithms, and Keys

OpenSSH encrypts traffic. What does that mean, and how does it work? I give a
detailed explanation in my book PGP & GPG (No Starch Press, 2006), but
here’s the brief version.

Encryption transforms readable plaintext into unreadable ciphertext that
attackers cannot understand. Decryption reverses the transformation, producing
readable text from apparent gibberish. An encryption algorithm is the exact
method for performing this transformation. Most children discover the code that
substitutes numbers for letters, so that A equals one, B equals two, Z equals 26,
and so on. This is a simple encryption algorithm. Modern computer-driven
encryption algorithms work on chunks of text at a time and perform far more
complicated transformations.

Most encryption algorithms use a key; a chunk of text, numbers, symbols, or
data used to encrypt messages. A key can be chosen by the user or randomly
generated. (People habitually choose easily-guessed keys, so OpenSSH doesn’t
even give users an option to create your own.) The encryption algorithm uses the
key to encrypt the text, making it more difficult for an outsider to decrypt. Even
if you know the encryption algorithm, you cannot decrypt the message without
the secret encryption key.

Think of the encryption algorithm as a type of lock, and the key is a specific
key. Locks come in many different types: house doors, bicycles, factories, and so
on. Each uses a certain type of key—your door key is probably the wrong shape
to fit into any vehicle ignition. But even a key of the proper type won’t work in
the wrong lock. Your front door key unlocks your front door, and only your front
door. Encryption keys work similarly.

Algorithm Types
Encryption algorithms come in two varieties, symmetric and asymmetric.

A symmetric algorithm uses the same key for both encryption and decryption.
Symmetric algorithms include, but are not limited to, the Advanced Encryption
Standard (AES) and ChaCha20, as well as older but now insecure algorithms
like 3DES and Blowfish. A child’s substitution code is a symmetric algorithm.
Once you know that A equals one and so on, you can encrypt and decrypt
messages. Symmetric algorithms (more sophisticated than simple substitution)
can be very fast and secure, so long as only authorized people have the key. And
that’s the problem: an outsider who gets the key can read your messages or
replace them with his own. You must protect the key. Sending a key
unencrypted across the Internet is like standing on the playground shouting, “A

is one, B is two.” Anyone who hears the key can read your private message.

An asymmetric algorithm uses different keys for encryption and decryption.
You encrypt a message with one key, and then decrypt it with another. This
works because the keys are very large numbers, and multiplying very large
numbers is much easier than figuring out how to divide them. (There are very
good explanations out on the Internet, if you want the details.) Asymmetric
encryption became popular only with the wide availability of computers that can
handle the very difficult math, and is much, much slower and more
computationally expensive than symmetric encryption.

Having two separate keys creates interesting possibilities. Make one key
public. Give it away. Broadcast it to the entire world. Keep the other key private,
and protected at all costs. Anyone who has the public key can encrypt a message
that only someone who knows the private key can read. Someone who has the
private key can encrypt a message and send it out into the world. Anyone can
use the public key to decrypt that message, but the fact that the public key can
decrypt the message assures recipients that the message sender had the private
key. This is the basis of public key encryption. The public key and its matching
private key are called a key pair. Again, think of the lock on your front door. The
lock itself is public; anyone can touch it. The key is private. You must have both
to get into your home. (You can learn more by researching Diffie-Hellman key
exchange.)

How SSH Uses Encryption

Symmetric encryption is fast, but offers no way for hosts to securely exchange
keys. Asymmetric encryption lets hosts exchange public keys, but it’s slow and
computationally expensive. How can you efficiently encrypt the session between
two hosts that have never previously communicated?

Every SSH server has a key pair. Whenever a client connects, the server and
the client use this key pair to negotiate a temporary key pair shared only between
these two hosts. The client and the server both use this temporary key pair to
derive a symmetric key that they will use to exchange data during this session, as
well as related keys to provide connection integrity. If the session runs for a long
time or exchanges a lot of data, the computers will intermittently negotiate a new
temporary key pair and new symmetric key. The SSH protocol is more
complicated than this, and include safeguards to prevent many different
cryptographic attacks, but cryptographic key exchange is the heart of the
protocol.

SSH supports many symmetric and asymmetric encryption algorithms. The
client and server negotiate mutually agreeable algorithms at every connection.

While OpenSSH offers options to easily change the algorithms supported and its
preference for each, don’t! Programmers with more cryptography experience
than both of us together arrived at OpenSSH’s encryption preferences after much
hard thought, troubleshooting, and suffering. Gossip, rumor, and innuendo might
crown Blowfish as the awesome encryption algorithm du jour, but that doesn’t
mean you should tweak your OpenSSH server to use that algorithm and no other.

The most common reason people offer for changing the encryption
algorithms is to improve speed. SSH’s primary purpose is security, not speed.
Do not abandon security to improve speed. You might encounter a device that
only speaks older encryption algorithms. We’ll cope with those in Chapter 15,
“OpenSSH Scraps.”

Now that you understand how SSH encryption works, leave the encryption
settings alone.

Chapter 2: Common Configuration

The OpenSSH client and server share a common configuration syntax. We’ll
discuss these common elements before delving into the details of either
application. Sysadmins familiar with Unix-like systems should have no trouble
with OpenSSH configuration.

All system-wide OpenSSH configuration files reside in etcssn by default.
Some operating systems use an alternate location—for example, OSX uses
/privateetcssh but symlinks etcssh there, while FreeBSD’s add-on openssh-portable
package uses usriocaletcssh. Once you find the configuration directory, you’ll find
a pretty standard set of files.

Default settings for the ssh(1) client appear in ssh_config.

The files starting with ssh_nost and ending in _key are the server’s private keys.
The middle of each file name gives the encryption algorithm—for example,
ssh_host_ecdsa_key contains the host key that uses the ECDSA algorithm. These
files should only be readable by root.

Each private key has a corresponding file with the same name but an added
.pub at the end. This is the public key for that file. The server will offer the
content of these files to any client.

Finally, ssha_conrig contains the server configuration. While you can tweak
sshd with command-line options, permanent configuration is handled in the
configuration file.

Both configuration files consist of a series of keywords, followed by the
value that keyword is set to. These values can have any format that makes sense

for the configuration target. Here’s how OpenSSH sets one common value.
Port 22

The keyword Port is set to 22. Presumably this makes sense for whatever the
Port keyword is intended to represent. We’ll get to what that is in Chapter 3,
“The OpenSSH Server.” You’ll also see keywords set to file paths. Here we see

the value HostKey set to a file path in the etcssn directory.
HostKey etcssh/ssh_host_ed25519_key Follow existing examples when setting any keyword.
Always refer back to the man pages if you have trouble.

The pound sign (#) indicates a comment. Everything on a line after a
comment is ignored. The OpenSSH crew distributes their configuration files
with all options set to the default and commented out. While sshd(8) requires a
configuration file to start, you can create a valid, useful, and working
configuration with touch sshd_config. The SSH client and server run just fine with
everything at the default setting. The commented-out settings are provided as a
convenient reference, that’s all.

To change the defaults, remove the pound sign and change the value.

Multiple Values
Some environments need keywords set to multiple values. How you set those
values depends on the keyword. Keywords like HostKey and Port can appear

multiple times, each with a separate value.
Port 22
Port 2222

Keywords like Host accept multiple values, separated by a space.
Host envy.mwl.io avarice.mwl.io Other keywords, such as Address, expect comma-separated
values.
Address 192.0.2.0/25, 198.51.100.0/24

If ssh(1) or sshd(8) complains about a configuration, verify that you’re
separating multiple entries correctly. This book contains many examples of
assigning multiple values, but the OpenSSH manual is always the final word.

Wildcards in OpenSSH Configuration Files

Configuration files for the OpenSSH server and client accept wildcards, called
patterns. Rather than listing all possible values of a configuration setting,
patterns let you say “anything that matches this expression.” Wildcards are most
often used for Match rules, as discussed in “Conditional Configuration with
Match” later this chapter. Patterns let you write configuration statements such as
“all hosts in this domain” or “all IP addresses in this network.” The two wildcard
characters are: ? matches exactly one character * matches zero or more
characters For example, I could use a pattern to set the value of the Host

keyword to any host in mwl.io.
Host *.mwl.io

If T used the question mark wildcard, this pattern would match any host with
a one-character hostname. Very few environments segregate security domains by
the length of the hostname, but if they did, you could use multiple question
marks to identify them. This pattern matches sioth.mw1.io and wrath.mw1.io, but not

gluttony.mwl.io OI avarice.mwl.io.

Host ?????.mwl.io Patterns are also useful for IP addresses. Here I match the hosts
203.0.113.10 through 203.0.113.19.

Address 203.0.113.1?

If T use the asterisk wildcard, I can match any IP within a /24 network.
Address 203.0.113.*

You might use netmasks with IP address ranges, as discussed in Chapter 5.
Negate patterns by putting an exclamation point in front. This pattern

matches everything except hosts in mwl.io.
Host !*.mwl.io

Negation is most useful when combined with a larger entity—that is, to say
“Match everything except that one little piece.” If I want to match every host in
mwl.io except for the customers in the subdomain vermin.mwl.io, I could use

this pattern. Not all keywords support negation; you’ll have to try it and see if it

works in your environment.
Host !.vermin.mwl.io *.mwl.io The lead OpenSSH developer describes negation as “a little
fiddly.” I call it “likely to pull a shiv on you.” If you need negation, test thoroughly.

Conditional Configuration with Match

Your server might need to behave differently depending on the source address or
hostname of an incoming connection, or the username. An SSH client might
need to use a different username for a particular group of hosts, or to activate X
forwarding (Chapter 9) when used on the local network. The Match sshd_config
keyword lets you establish special configurations for such situations.

Follow each Match statement by a set of conditions that trigger the match,
then by a series of configuration statements OpenSSH should apply to
connections that meet all of those conditions. We’ll see several examples in the
next sections.

Before implementing a Match statement, configure OpenSSH for the most
common setting. For example, if you are configuring sshd, you might want to
deny X forwarding to all but select users. Configure sshd to deny X forwarding,
then use a Match statement to check the username and permit X forwarding to
matching users. While we haven’t covered X forwarding yet, denying it is a

single entry in sshd_config.
X11Forwarding no In all of the examples below, such an entry appears near the beginning of
sshd_config as a default setting that we’ll selectively override.

You cannot use Match statements to adjust all possible ssh_config and
sshd_config keywords. Check the manual pages for the complete list of supported
keywords.

Matching Users and Groups
The most common situation I encounter is when I want to enable an option for a

particular user or group. The User or Group Match terms permit this.
X11Forwarding no Match User mwlucas X1lForwarding yes I am always permitted to use X
forwarding, as my awesome psychic powers eliminate all possible security risks.

If all of my system administrators share these powers, or if I settle for
exterminating sysadmins who empower intruders, I could Match the whole

group Contalmng my sysadmms.

X11Forwarding no Match Group wheel X11Forwarding yes If you need multiple Match terms,
separate them by commas.

X11Forwarding no Match User mwlucas, jgballard X11Forwarding yes I know when to use X
forwarding. My user claims he does, too. We’ll see.

Matching Addresses or Hosts
Perhaps you must permit X forwarding, but only from particular networks. You

can match on IP addresses.

X11Forwarding no Match Address 203.0.113.0/29, 198.51.100.0/24

X11Forwarding yes If you set UseDNS to yes in sshd_config Match will accept hostnames,
with the usual DNS security and availability caveats.

X11Forwarding no Match Host *.mwl.io, *.michaelwlucas.com X11lForwarding yes Double-check

that a DNS failure won’t lock you out of your DNS server and prevent you from fixing the
problem.

For ssh_config only, skip the word Match when using per-host configurations.

X11Forwarding no Host avarice
X11Forwarding yes This configuration statement in ssh_config predates the Match syntax.

Multiple Match Conditions
You can list multiple Match terms on a single line. Here, I permit a single user to

use password authentication if they connect from a certain IP address.
Match Address 192.0.2.8 User djm PasswordAuthentication yes The user djm can log in via
password, but only from the host at 192.0.2.8.

Placing Match Statements

All configuration statements that follow a Match statement belong to that Match
statement, until another Match statement appears or until the file ends. This
means that Matches must appear at the end of the configuration file. Consider
the following snippet of sshd_config.

X11Forwarding no PasswordAuthentication no ..

Match Group wheel X1lForwarding yes Match Address 192.0.2.0/29, 192.0.2.128/27
PasswordAuthentication yes The keywords Xl11lForwarding and PasswordAuthentication are set
to no. When a user in the group wheel logs in, sshd sets the option X1lForwarding to yes
for that user. When a user logs in from an IP address in 192.0.2.0/29 or 192.0.2.128/27,
the PasswordAuthentication option gets set to yes. If a user in the wheel group logs in
from one of those addresses, he gets both options.

We’ll demonstrate Match statements for both sshd(8) and ssh(1) throughout
this book.
Now let’s talk about the OpenSSH server.

Chapter 3: The OpenSSH Server

The OpenSSH server sshd is highly configurable and lets you restrict who may
connect to the server, what actions those users can take, and what actions it
permits. Every modern Unix-like operating system comes with sshd installed as
part of the base operating system.

We’ll look at some basics of running sshd, and proceed to various global
configuration options. More specific options get discussed in relevant chapters
of this book.

Is sshd Running?

From a client, the simplest way to test if a server is running an accessible SSH
daemon is to try to log into the server. While that’s great when everything
works, a failure to connect means that either the client or server could be busted,
or maybe you have a packet filter in the middle. SSH normally runs on TCP port

22. Use netcat(1) to see if you can access the daemon.
$ nc -v devio.us 22

Connection to devio.us 22 port [tcp/ssh] succeeded!
SSH-2.0-0penSSH_7.0

nC

When you connect over raw TCP, sshd returns a banner giving the SSH
protocol version, the SSH server software, and the software version. This host
uses SSH protocol 2, provided by OpenSSH version 7.0.

If you don’t get something similar perhaps sshd isn’t running, or maybe you
have a packet filter in the way.

From the server, check and see if the ssha process is running.
$ ps ax | grep sshd
626 - Is 0:00.03 usrsbin/sshd 31960 - Is 0:00.38 sshd: mwlucas [priv] (sshd) 44387 - S
0:05.75 sshd: mwlucas@pts/0 (sshd) This host shows three sshd(8) processes. The first, PID
626, shows plain old usrsbin/sshd. It’s the master process that listens to TCP port 22.

The second process, PID 31960, is the privileged process that handles my
SSH connection into this host. The third, PID 44387, is the unprivileged child
process that handles your login session. OpenSSH improves security through
privilege separation, discussed in “Protecting the SSH Server” at the end of this

chapter. If someone has deliberately disabled privilege separation and is running

sshd insecurely, you won’t see the unprivileged sessions.1

If sshd isn’t running, enable it through your operating system configuration
tool.
Configuring sshd
Most operating systems run sshd as a standalone server without any command-
line arguments. The usual way to configure sshd is through the keywords in
etcssh/sshd_config. Before you start mucking with changes in that file, though, you

should know how to test and debug them.

OpenSSH makes debugging sshd configurations as simple as possible. You
must be root to run sshd, debugging or not. The simplest debugging methods are
alternate configuration files, alternate ports, and debugging mode.

Alternate Configuration Files and Ports
Suppose you want to edit sshd_config, but need to be sure that the change works as
expected. The -r command-line argument tells sshd(8) to use an alternate

configuration file.
usrsbin/sshd -f sshd_config.test

Note that I executed this test configuration using the full path to sshd.
OpenSSH’s sshd re-executes itself when accepting a connection, and it needs the
full path to do so. If you don’t give the full path, you’ll get an error like “sshd re-

exec requires execution with an absolute path.”

Only one sshd instance can attach to a particular TCP port. Your test sshd
process probably won’t start because it cannot bind to port 22. You could edit
sshd_config. test t0 assign your test process another port, but then you have to re-
edit the file when moving it to production, and we all know that’s exactly the
point that will figure prominently in the outage report. Instead, override the

configured TCP port and assign a new one with the -p command-line argument.
usrsbin/sshd -f sshd_config.test -p 2022

The test process is now listening on port 2022. (Note that -p cannot override a
ListenAddress keyword binding sshd to a port as well as an address; see
“Network Options” later this chapter.) By setting an alternate configuration file
and port on the command line you can test your new configuration, approve it,
and move it into production, confident that you didn’t wreck a file in making the
final, untested change. (Not that I’ve ever broken a system that way, mind you.)
In any case, save your original sshd_config, just in case your change causes
problems testing didn’t expose.

Remember to kill your test sshd process when you finish testing.

Validating sshd_config Changes

Perhaps you want to make a minor change and think you don’t need to perform a
full test. You can ask sshd(8) to verify the configuration file and all the key files
with the -t flag.

sshd -t

etcssh/sshd_config: line 112: Bad configuration option: ExposeAuthInfo etcssh/sshd_config:
terminating, 1 bad configuration options Either the version of sshd installed on this host
is too old to support the ExposeAuthInfo keyword, or the operating system packager
deliberately removed the option.

Debugging sshd(8)
The -4 flag tells sshd to run in foreground debugging mode, without detaching
from the controlling terminal. In debugging mode, sshd can only handle a single

login request—no, not one request at a time. It processes one login or login
attempt, and exits. Don’t do this in production; run it on an alternate port.

Debugging displays everything your sshd process does, in real time, like so.
usrsbin/sshd -p 2022 -d

debugl: sshd version OpenSSH_7.5, OpenSSL 1.0.21-freebsd 25 May 2017

debugl: private host key #0: ssh-rsa SHA256:N+faE/0OyKhlho8MR8Vw3uhdo75aiuhYotnP/g00e82E
debugl: private host key #1: ecdsa-sha2-nistp256
SHA256:Q1buYGtWowrN1/8g/EaTEMQr+69h+/Pai3xI4LXNOC8

debugl: private host key #2: ssh-ed25519
SHA256:0TCTf0jZUxzu8dahNrLmuKu19TOBkruI4e3mPOjVInE

debugl: rexec_argv[0]='usrsbin/sshd'

debugl: rexec_argv[1]='-p'

debugl: rexec_argv[2]='2022"

debugl: rexec_argv[3]='-d'

debugl: Bind to port 2022 on ::.

debugl: Server TCP RWIN socket size: 65536

Server listening on :: port 2022.

debugl: Bind to port 2022 on 0.0.0.0.

debugl: Server TCP RWIN socket size: 65536

Server listening on 0.0.0.0 port 2022.

The debug session starts with the identifying information for your version of
sshd(8)—in this case, OpenSSH 7.5, built with OpenSSL 1.0.21, as part of
FreeBSD. We then see three private keys being loaded, using RSA2, ECDSA,
and ED25519. The daemon parses its arguments and binds to a port.

If the daemon can’t start, it’ll say why, very clearly, right here. You might
have to read the manual page or do a few Internet searches to figure out what the
error means, but you’ll know the exact problem.

Connect to this server with an SSH client, and you’ll get hundreds of lines of
debugging output as the server and client agree upon encryption protocols, the
user attempts to authenticate, and various SSH features like X forwarding are
negotiated. I won’t walk you through such a session, as the output varies widely
depending on the client, the authentication method, and the SSH features
requested and offered.

If you have a problem with SSH, run the server in debugging mode, connect
with a client, and read the output. Most often, sshd will tell you exactly what the
problem is.

When you finish debugging, log out of the client. The sshd(8) process will
clean up after itself and exit. You can also unceremoniously terminate sshd and
throw the client out by hitting CTRL-C.

If a single -d doesn’t provide enough detail, add multiples to increase
verbosity. Running usrsbin/sshd -dd should quench your curiosity. If not, add more
-d’s until you are no longer curious.

Configuring sshd(8)
This chapter discusses some generally useful sshd(8) options. Most sshd_config
options appear in the chapter where they’re most useful—that is, options

affecting X forwarding appear in Chapter 8, “X Forwarding,” while certificate
options appear in Chapter 14, “Certificate Authorities.”

The version of OpenSSH shipped with your operating system might not
support all of the keywords described in this book. I’ve written this based on
OpenSSH 7.6. Some operating systems either ship older versions, or deliberately
remove functions for their own reasons. If a configuration option doesn’t work
on your server, consult your operating system documentation or ask your

vendor.2

Set Host Keys
The HostKey keyword gives the full path to a file containing a private key. Each

supported encryption algorithm uses a separate file.

HostKey usrlocaletcssh/ssh_host_rsa_key HostKey usrlocaletcssh/ssh_host_ecdsa_key HostKey

usrlocaletcssh/ssh_host_ed25519_key The default files are named after the type of key they
contain. The file ssh_host_rsa_key contains an RSA key, ssh_host_ed25519 key is an ED25519
key, and so on. This isn’t mandatory—-OpenSSH will figure out what type of key is in a file
and load it if appropriate-but it’s definitely the best practice. Putting your RSA key in

a file named after ED25519 will confuse everyone.

Different operating systems handle missing key files differently. BSD-style
and Red Hat-based systems automatically create missing key files. Many Linux
systems require the sysadmin to manually create missing key files, but integrate
key creation into their usual system administration tools. For example, Debian-
based systems create missing key files when you run dpkg-reconfigure openssh-
server.

Chapter 7, “SSH Keys,” covers creating host keys using OpenSSH’s native
tools.

Network Options
You can control how sshd(8) uses the network, from the version of IP all the
way to the TCP port.

Port 22

AddressFamily any
ListenAddress 0.0.0.0
ListenAddress ::

The Port keyword controls the TCP port sshd uses. Internet standards call for
SSH to run on port 22. Some organizations use a different port for SSH in the
hope of improving security. Running SSH on an unusual port won’t actually
help secure SSH, but it will reduce the number of login attempts from SSH-
cracking worms, as discussed in “Protecting the SSH Server” later this chapter.
It also lets you escape particularly ineffective firewalls. Override the Port
keyword on the command line with -p.

AddressFamily refers to the version of TCP/IP sshd uses. To use only IPv4,
set this to inet. To only use IPv6, set this to inet6. The default, any, tells sshd to
process requests no matter what protocol they arrive over. Some operating

systems patch sshd(8) to support non-TCP/IP protocols such as the Stream
Control Transmission Protocol (SCTP).

Many hosts have multiple IP addresses. By default, sshd listens for incoming
requests on all of them. If you want to limit the IP addresses that sshd attaches to,
use the ListenAddress keyword. A ListenAddress of 0.0.0.0 means “all IPv4
addresses,” while :: means “all [Pv6 addresses.” (Some operating systems use ::
to mean “all IPv4 and IPv6 addresses,” because why would they let you turn on
a service for IPv6 only?) Each ListenAddress takes a single IP address as an
argument, but you can use as many ListenAddress keywords as you need.
Explicitly list every IP address that you want the SSH server to accept
connections on.

If a host has many IP addresses and you want to block SSH access to just a
few of them, you might find blocking traffic with a packet filter easier than using
many ListenAddress statements.

You can also use ListenAddress to add an additional port on a particular IP
address, by specifying the port in a ListenAddress statement. Consider the

following configuration.
ListenAddress 0.0.0.0
ListenAddress 192.0.2.8:2222

Our first ListenAddress, 0.0.0.0, tells sshd to listen to all addresses on this
machine. The default Port is 22, so we’ll get port 22 on all addresses. That’s
fine. The second ListenAddress makes sshd also listen for connections on port
2222 on the address 192.0.2.8. Each address can have its own ListenAddress

statement.

ListenAddress 192.0.2.8:2222
ListenAddress 192.0.2.9:25
ListenAddress 192.0.2.10:80

Three different addresses, each with a different port. Mind you, having sshd
listen to the SMTP and HTTP ports is generally unwise, but OpenSSH is not
designed to prevent you from doing generally unwise things. If you’re stuck
behind a naive firewall that blocks everything but ports 80 and 443, running sshd

on those ports would let you evade the firewall.2

Banners and Login Messages

Many sysadmins want to display a message to the user before they log in. This is
called a banner. The SSH protocol doesn’t require clients to display banners.
The server can offer a banner, but you can’t guarantee that the user will see it.
Both ssh(1) and PuTTY display banners. Set the keyword Banner to the full path
of the file.

Banner etcssh/banner
Be aware that if the banner does work, it might interfere with automated

processes run over SSH. In some locations, a banner can serve as a legal notice

to intruders. (Mind you, I’m not aware of anyone who’s been successfully
prosecuted through use of such banner warnings, but that is the law.) Choose the
headache you prefer.

If the user is authenticating with public keys and the client does display the
banner, the login will proceed. No human being will see your legal department’s
finely worded warning about logging into the host until the login is complete.

You can reliably display the system message of the day, etcmota. This message
doesn’t appear until after the client has authenticated, though, so it might not
meet your needs. The keyword PrintMotd is set to yes by default, but you can

turn it off.
PrintMotd yes

On systems that use Pluggable Authentication Modules (PAM), a PAM
module might be responsible for printing etcmotd. If you’re having trouble
enabling or disabling the display of etcmotd, check your PAM configuration.

Once a user has logged on, sshd prints the time of the user’s last logon and

where they logged in from. To turn this off, set PrintLastLog to no.
PrintLastLog yes

While it might seem unnecessary, I strongly recommend leaving
PrintLastLog on. More than once, users have alerted me to intrusions when they
saw that their previous login was from a foreign country or at a ridiculous hour.

Authentication Options
In a default OpenSSH install, a user can try to log in 6 times in 2 minutes in a
single SSH session. You should be using public key authentication (Chapter 7,
“SSH Keys”) almost everywhere, but even users with passwords should be able
to incorrectly type their password in twenty seconds. You can change both the
timing and the number of attempts.

The LoginGraceTime keyword controls how long sshd gives a user to
authenticate. If a session connects to sshd for this long without successfully
authenticating, the connection terminates. You can give a number of seconds (s),

minutes (m), or hours (h).
LoginGraceTime 2m

You can also control how many times a user may attempt to authenticate in a

single connection with MaxAuthTries. The default is 6.
MaxAuthTries 6

After half of a user’s permitted attempts in a single session have failed, sshd
logs further failures. Authentication attempts include both public key
authentication and passwords. After MaxAuthTries failures, the user must
initiate a new SSH session and try again.

My usual failure procedure is to fail to log in six times, then remember that I
have a different username on this machine. When I take my own advice on

changing usernames from Chapter 5, “SSH Clients,” and install my public key
everywhere as in Chapter 7, “SSH Keys,” this problem goes away.

Verify Login Attempts against DNS

A log message like “Login failed from boss’s computer” makes you sigh. A log
message like “Login succeeded from Hacker Haven Nation” should trigger
alarm. The owner of an IP address controls the reverse DNS for that address. An
intruder who controls the reverse DNS for his IP address can change the
apparent hostname to something within your company. For protection against
this sort of attack, sshd can verify connection attempts against forward DNS

entries.
UseDNS no

When set to yes, every time a client connects, sshd looks up the host name for
the source IP, and then looks up the IP address for the host name. If the DNS
names don’t match, sshd rejects the connection.

Suppose an intruder controls the reverse DNS for his IP address 192.0.2.99.
He gives it a hostname within your organization, such as dhcp12.mwl.io, and
connects to your SSH server. Your SSH server asks its DNS server for the IP
address for dhcp12.mwl.io. If that DNS entry doesn’t exist, or it points to an IP
other than 192.0.2.99, sshd rejects the connection.

If DNS fails, sshd waits for a full DNS timeout before allowing the
connection.

UseDNS requires that your DNS be tidy, coherent, and correct. While I’m in
favor of auditing an organization’s DNS entries, performing such audits via
UseDNS lacks elegance. DNS checks don’t help if an intruder can poison the
server’s DNS cache. If you’re a home user, your ISP probably controls the
reverse DNS on your connection. Also, DNS checks can increase system load. If
you serve hundreds or thousands of simultaneous SSH users, that load can be
substantial. When DNS fails, failed DNS checks will slow down all SSH logins.
Finally, many IPv6 sites haven’t configured reverse DNS and won’t for the
foreseeable future.

I discourage enabling UseDNS.

System Administration Features
Tell sshd(8) where to stash its process ID file with the PidFile keyword. Don’t
do this lightly. Many management tools (foolishly) use the PID file.

PidFile varrun/sshd.pid

This file is written before sshd(8) reduces its privileges, so it can be owned
by root. If you want to disable writing a PID file, set PidFile to none.

The sshd(8) process logs via syslogd, defaulting to the AUTH facility and the
INFO level. Control these with the SyslogFacility and LogLevel keywords.

SyslogFacility Auth

LogLevel INFO

The SyslogFacility keyword accepts any syslog facility. Check the
documentation for syslogd(8) for a list of facilities.

Not only does syslogd use LogLevel to determine where to send log
messages, sshd(8) uses it to determine what to send to syslogd.

A LogLevel of QUIET logs nothing.

LogLevel FATAL logs only when sshd(8) dies.

The ERROR LoglLevel reports only problems.

LogLevel INFO logs problems and when people login and logoff.

VERBOSE logs every detail that doesn’t violate privacy, including the
fingerprints of public keys used to authenticate.

The DEBUG1, DEBUG2, and DEBUG3 LogLevels send enough data to
violate user privacy. Debug messages get sent to syslogd. Most default logging
systems don’t capture this level of detail; you’ll need to configure yours to
capture all these details. Also, don’t send debug data across an open network
using traditional unencrypted syslogd.

Changing Encryption Algorithms

You might find the keywords Cipher and Mac in your configuration. They don’t
appear in the sshd_conrig provided by OpenSSH, but some operating systems add
them. These settings allow you to change the encryption methods your server
supports.

Don’t muck with these settings. You will only hurt yourself.

Certain organizations, most commonly governments, require using only
approved encryption algorithms. The most well-known is the United States’
FIPS standard. Such organizations have very specific documents mandating how
to configure SSH to comply.

How Many Unauthenticated Connections?

OpenSSH avoids the headaches of threaded programming by starting a separate
process to handle each incoming connection. A common denial of service attack
against hosts running such programs is to start a whole bunch of client
connections until the server exhausts all its resources and falls over. OpenSSH
avoids this problem with the MaxStartups option.

MaxStartups lets you set a number of simultaneous unauthenticated
connections to the SSH daemon. Once this many connections are trying to
authenticate, sshda won’t accept another connection until an existing connection
fails or LoginGraceTime expires for an existing unauthenticated connection. A
simple value like 10 protects the server, but doesn’t let you log in to do
something to try to defend against an ongoing attack.

A better choice is to use Random Early Drop (RED), a protocol long used by

network engineers to avoid congestion. A DOS attack isn’t exactly network
congestion, but it shares a whole bunch of characteristics with network
congestion. RED works by setting throttling limits. Once incoming connections
exceed a lower limit, sshd gives each subsequent incoming connection a chance
of being flat-out rejected. The chance of rejecting a connection increases until
the number of unauthenticated connections reaches an upper limit, where all
connections are rejected. Using RED means that an attacker needs to throw a
monstrous amount of resources at an SSH server to guarantee the sysadmin can’t
get in. It doesn’t make the attack any less annoying, but it does give the
sysadmin (and legit users) a chance to log in during the attack.

Configure RED for sshd by specifying the lower limit, the initial chance of

rejecting a connection, and the upper threshold. The default is 10, 30, and 100.
MaxStartups 10:30:100

This means that sshd accepts up to 10 unauthenticated connections
simultaneously. The 11 simultaneous unauthenticated connection has a thirty
percent chance of being refused. The odds of a connection being refused
increase linearly until the upper threshold of 100, where all connections are
refused.

Using RED means that if you keep trying to connect during a DOS attack,
you’ll eventually get a winning ticket and be admitted.

We talk more about defending sshd in “Protecting the SSH Server” at the end
of this chapter.

Restricting Access by User or Group

Many networked applications rely on user accounts from the underlying
operating system. People use an application over a web page or proprietary
client, but never actually SSH into the host. If Fred down in shipping needs
access to the Enterprise Resource Planning system to print his shipping labels,
and the ERP system requires an underlying user account, the host needs an
account for Fred. This isn’t ideal practice, but it is reality. If you’re responsible
for such an application, configure the host so that such users cannot log on to the
server.

OpenSSH supports user restrictions with the DenyUsers, AllowUsers,
DenyGroups, and AllowGroups options. These options take comma-delimited
lists of users or groups as arguments, and are processed in that specific order.
The first match wins.

A user listed in DenyUsers cannot log in via SSH, even if listed later in
AllowUsers or AllowGroups.

A user listed in AllowUsers can log in via SSH, unless explicitly forbidden in
DenyUsers.

A user that belongs to a group listed in DenyGroups cannot log in via SSH,
unless specifically permitted to by an AllowUsers statement. This lets you make
exceptions for a user.

Lastly, as you might guess, a user that belongs to a group listed in
AllowGroups can log in via SSH.

Additionally, the presence of an AllowUsers or AllowGroups entry implies
that nobody else can log in. The system denies SSH logins to everyone who is
not explicitly permitted.

These restrictions work on a first match basis. Statements are processed in
order, and when a user matches a rule, the rule applies immediately and
processing stops.

Confused? Let’s look at some examples. My host has four users: backup,

mwlucas, pkdick, and jgballard. They are in groups as below.
wheel: mwlucas

staff: mwlucas, pkdick, jgballard

support: pkdick, mwlucas

billing: jgballard

While these are small groups, the principles apply to groups of any size.

The billing application requires system accounts, but the user doesn’t need
access via SSH. If I just want to block the user from the billing department from
logging in via SSH, I could use DenyUsers.

DenyUsers jgballard
All users not listed would still have SSH access. When I add another user
from that department, though, I must explicitly add them to DenyUsers. I’'m

better served by blocking access by group.
DenyGroups billing

With this one statement, I can add a user to the bi11ing group and they
automatically can’t get their money-grubbing mitts on my precious virtual
terminals.

The presence of an AllowGroups statement means that only members of that
group can log in. On a BSD system, wheel is the group for system administrators.
Ubuntu does something similar with the admin group, but I’m a BSD guy so you
get my preferences. To allow only sysadmins to log in via SSH, use
AllowGroups.

AllowGroups wheel

Anyone in the whee1 group can log in. While I haven’t explicitly forbidden
anyone else from logging in, the users backup, pkdick and jgballard are not in the
wheel group, so they’re out.

I’m the only member of the whee1 group. I could list myself explicitly.
AllowUsers mwlucas

I do hope to eventually have help, though. When that day comes, I'll have to
create an account for my new sysadmin and add them to the AllowUsers

statement on all of my machines. I'll forget one or the other. Use groups
whenever possible.

The support team has access to a different host. I have one particular system
where a certain person is forbidden to log in. Here I block that user, but permit
the group.

DenyUsers pkdick
AllowGroups support

This demonstrates “first match wins.” User pkdick is denied immediately, and
that decision is final. Other users can proceed to the AllowGroups statement.
You might use this setup on, say, a Raspberry Pi’s built-in pi account.

Some applications, like properly-configured rsync, need accounts with SSH
access. This requires a user account with public key authentication (Chapter 7,
“SSH Keys”). These accounts can be dangerous. While you can restrict the
accounts that the user can run when authenticated with a key, you don’t want
rsync connections from random hosts, and you don’t want a user with shell
access able to circumvent restrictions by editing a file he owns. You can use
these Allow and Deny options to restrict where users can come from by adding

an @ and an IP address after the username.
AllowUsers backup@192.0.2.0/24
AllowGroups support

Users in the support group can log in from anywhere, and the user backup can
log in from any host with an IP between 192.0.2.0 and 192.0.2.255. All other
users are rejected.

With sensible group memberships and thoughtful Allow and Deny options,
you can restrict login access almost any way you need. When in doubt, give
accounts the least level of privilege that lets users and programs accomplish their
required tasks.

Root SSH Access

Sometimes it might seem that you must allow users, sysadmins, or applications
to SSH into the system as root. In almost all environments, this is a colossally
bad idea. When users must log in as a regular user and then change to root, the
system logs the user’s account, providing accountability and attribution. Logging
in as root destroys that audit trail. Many server programs are initially started by
root, and the environment changes that make a user account friendly can
propagate into those programs’ environments, disrupting service.

If a user requires root-level access, there’s always su(1). Or sudo, or pfexec,
or any number of privilege management tools. SSH-based orchestration systems
like Ansible support all of these programs. Sudo in particular can be configured
to authenticate via an SSH agent, so that the users’ credentials are never exposed
to the server.

Certain environments, particularly large cloud-based server farms, are
designed so that logging in as root is not only possible but preferable. These
environments require public key authentication and log the key used to
authenticate each session. Most readers of this book do not work in that
environment. We’ll look at setting that up in Chapter 14, “Certificate
Authorities.”

OpenSSH controls direct login as root with the PermitRootLogin keyword.
By default, sshd permits direct root logins if they’re done with public key

authentication.
PermitRootLogin prohibit-password

The prohibit-password Option is the same as the older but confusingly-named
without-password. Users can log in as root, so long as they don’t use a password to
do it. Once you get into public key authentication, nothing prohibits a user from
adding their key to the list of keys permitted to use the root account. I advise
against llSiI'lg prohibit-password.

Setting PermitRootLogin to no disallows direct logins by root. Most operating
systems set this by default.

If you must allow remote root logins, consider setting PermitRootLogin to
forced-commands-only. Chapter 12 discusses the ForceCommand option, letting you
restrict automated tasks that must run as root to only perform certain commands.

Logging in as root via SSH almost always means you’re solving the wrong
problem. Step back and look for other ways to accomplish your real goal.

Tokens

Certain keywords in sshd_config can also use tokens, symbols that represent some
variable. Tokens make these keywords much more flexible. We’ll talk about
using tokens when we discuss the keywords that can use them, but from the start
you need to recognize them on sight. We’ll use tokens when building chroots in
the next section, and then throughout this book.

All tokens start with a percent sign (%). The simplest token is %%, which stands
for an actual percent sign. If you have file paths with a percent sign in them, you
might need this.

The token %u represents the username.

The token %n represents the user’s home directory.

Most of the other tokens are used only in very special circumstances, when
using less common functions. We’ll touch on them as needed, but these are the
ones everyone must know. The sshd_config(5) man page lists all the tokens.

Chrooting Users
At times a user needs access to a command prompt or a specific program, but

you don’t want the user to access anything outside his home directory. A
directory the user cannot escape is called a chroot. (A chroot is also useful for
SFTP, as discussed in Chapter 6, but that requires much less configuration.)
OpenSSH supports chrooting users with the ChrootDirectory option.

ChrootDirectory none

By default, sshd does not chroot users.
Populating a Chroot
A chrooted user cannot access anything outside the chroot. Any chroot you
create will not have device nodes, shells, or other programs unless you place
them there. When your restricted user logs in, sshd will fail to find a shell or
home directory and immediately disconnect them. To give a chrooted user shell
access you must at minimum set permissions on the chroot directory, create a
home directory for the imprisoned user, create device nodes, and install a shell.

You only need to populate the chroot if the user needs shell access. If the user
only gets file copy access via SFTP, the ForceCommand keyword discussed in
Chapter 6 is preferable to a populated chroot.

The chroot directory must be owned by root and not writable by the restricted
user, just as you would not permit an unprivileged user to write to the host’s root
directory. If the restricted user can write to the chroot directory, sshd will not let
them log in.

A user’s home directory (as shown inside etcpasswd) is expected to be available
inside the chroot. If user pkdick’s home directory is listed as nomepkdick, and he is
chrooted into usrprisonroot, you must create the diI‘ECtOI‘Y usrprisonroothomepkdick.
This directory should be owned by the user, just like a regular home directory,
and should contain any necessary dotfiles.

Create a device node directory inside the chroot. With a chroot directory of
usrprisonroot, you’d need usrprisonroot/dev. Now you need to populate this with
device nodes. A chroot doesn’t require a full complement of device nodes, but
most chrooted applications need at least devrandom, devstdin, devstdout, devstderr,
devtty, and devzero. The method to create device nodes varies between operating
systems. OpenBSD and many Linuxes use a shell script devmakeoev, while
FreeBSD and many commercial Unix-like systems use a device filesystem.
Check your operating system to see what device nodes a chroot needs and how
to create them. Some operating systems include tools to easily populate a chroot.

Finally, users need a shell. Copy a statically-linked shell into the chroot’s /»in
directory. Also copy static versions of any other programs the user needs. If you
want to use dynamically linked programs, you must also copy over any
necessary files.

Assigning Chroot Directories

Use the ChrootDirectory option to establish chroots.

ChrootDirectory homedjm
This works for a single user account, or if all SSH users have the same chroot

directory, but this is a place where tokens come in useful.
If your chroot directory path includes a literal percent sign, use the % token.

Here we chroot into the directory nomedisks1/djm.

ChrootDirectory homedisk%%1/djm The %h macro expands to the user’s home directory, as
specified in etcpasswd.

ChrootDirectory %h

At login, djm gets locked into homedjn. Note that he’ll need a chrooted home
directory inside this directory, so you’ll need to create homedjmhomed;m.
The »u macro expands to the user’s username. This lets you assign a group of

users unique home directories under central chroot directory.
ChrootDirectory usrprisonroot/%u You’ll need to populate each user’s chroot separately.

Choosing Users to Chroot

You can chroot everyone, but that would make it hard for your sysadmins to
perform maintenance. Chances are you only want to chroot a subset of your
users. Use a Match statement to selectively chroot users.

ChrootDirectory none

Match Group billing
ChrootDirectory %h

If a majority of your users are chrooted, reverse the default to allow only your
sysadmins full access.

ChrootDirectory %h

Match Group wheel
ChrootDirectory none

Choose whichever method makes sense for your environment.
Debugging a Chroot
Chroots are difficult to manage in that they normally lack a complete userland. If
a chrooted user cannot log in, run sshd in debugging mode, attached to a terminal
window. Have the chrooted user attempt to log in, and watch the debugging
output; you’ll probably see the problem. Common issues include missing device
nodes, incorrect directory permissions, or a missing shell.

Protecting the SSH Server
Any Internet-facing server will have lots of random stuff poking at it. Worms,
script kiddies, and other assorted scum would really like to break into your
computer. If nothing else, someone wants to run an IRC bot on it. How can you
protect your SSH service?

Some people recommend changing the TCP port that sshd uses. This is a
perfect example of security through obscurity, which does not work. Scanners

constantly probe all ports of all Internet-connected IP addresses, and they’re
pretty good at figuring out what service is running on which port. Changing
ports might buy you a couple of minutes against a dedicated intruder, but no
longer. Changing ports can reduce the amount of random noise you get in your
logs, increasing the odds of you noticing real problems.

You'’ll also see random folks on the Internet recommend using a different
protocol banner, which is a poor idea. You’ll see the protocol banner when you
use netcat to connect to the SSH daemon. The banner identifies the type of
server. All SSH servers differ slightly, and might require special client settings.
SSH clients use the protocol banner to detect any quirks needed for a reliable
connection with a server. If you change the protocol banner from SSH-2.0-
OpenSSH_7.0 to SSH-2.0-ParanoidWhackJob, you’re depriving clients of
information they need to reliably connect.

You might also consider add-on solutions to block IP addresses that
repeatedly connect but fail to authenticate, such as fail2ban and blacklistd. The
details of implementing these varies widely by platform, so I’'m not going into
them, but they are worth considering.

To some extent, sshd(8) protects itself via privilege separation. Only a small
section of the service runs with root privileges. Most of the server runs as an
unprivileged user. This means that if an intruder successfully breaks into the
server daemon, he can only do a limited amount of damage to your system. It’s
still really annoying, but not devastating.

Additionally, sshd(8) restricts the unprivileged process via a sandbox. The
sandbox restricts which syscalls ssha can call before the user authenticates.
OpenSSH supports a few different sandbox methods, from Apple’s sandbox(7)
to Linux’s seccomp(2). If the operating system doesn’t offer any other
sandboxing methods, sshd uses rlimit to set the number of open files and child
processes to zero.

As with all Internet-facing services, a simple way to reduce risk to your SSH
service is to reduce the number of IP addresses that can access it. OpenSSH
respects TCP wrappers (etchosts.allow). If your server or network has a packet
filter, use it instead. By only allowing authorized IP addresses to access your
SSH server, you block the vast majority of attackers.

The most effective way to protect your server, however, is to disable
passwords and only allow logins via keys. We cover access via keys in Chapter
7, “SSH Keys.”

We’ll return to configuring ssha when we cover specific features, but for now
let’s talk about server keys.

1 And you need to inflict bodily harm until privilege separation gets turned back on.
21f you don’t like your vendor’s answer, ask more loudly and with malice aforethought.

3 The impact on your employment of evading the corporate firewall is left as an exercise for the reader.

Chapter 4: Verifying Server Keys

If you’re paranoid, or if you’ve been a sysadmin for longer than a week, you
need to be sure that the server you’re logging into is the server you think you’re
logging into. Server keys help verify a server’s identity before you exchange
authentication information with the wrong machine.

Network connections over unencrypted, unauthenticated protocols are easily
diverted to the wrong machine. An intruder who controls a publicly accessible
device, such as a server, can make it spoof a different server’s identity. Every
user that logs onto the spoof server gives his username and password to the
intruder. Often the intruder will then forward the session to the actual destination
host, so that the user never realizes that they’ve been caught. This is a classic
network attack that is still widespread today; the protocols change, the
applications change, but man-in-the-middle attacks and spoofing are forever.

When properly deployed and used, SSH categorically eliminates these
attacks. Even if an intruder can make one machine resemble another, even if he
copies the login prompts and the web site and the operating system version, the
intruder cannot copy the target server’s private key unless he already controls the
server. Without the private key, the spoof server cannot decrypt anything
transmitted via the server’s public key.

SSH server keys verify the server’s identity to the client. They are important,
not something you just hit ENTER to accept.

Every SSH server has one or more unique public keys, as discussed in
Chapter 1. The first time an SSH client connects to an SSH server, it displays the
server’s public key fingerprint to the user. The user is expected to compare the
fingerprint shown with the server’s key fingerprint. If they match, the user tells
their SSH client to cache the key and the connection continues. If the keys don’t
match, the user terminates the connection.

On all subsequent connections to the server, the client compares its cached
key to the key presented by the server. If the keys match, the connection
continues. If the keys don’t match, the client assumes that something has gone
wrong and requests user intervention.

For SSH server keys to be useful, you must verify that the key displayed by
the client is identical to the key offered by your target server. A public key is
several hundred characters long, however. Sysadmins can’t realistically ask
users to compare hundreds of characters to a list of known-good keys; most
users automatically dismiss the task as impossible. Explaining that it’s very
possible, but very tedious and very annoying, does not improve the discussion.

SSH summarizes public keys with key fingerprints.
Key Fingerprints
A key fingerprint is an almost human-readable summary of a public key. Any
user can get the public key fingerprints; if you need the private key fingerprints,
you’ll need to be root. View a key’s fingerprint with the ssh-keygen(1) program,
using -1 to print the fingerprint and -r to specify a key file. Here I view the
fingerprint of this host’s ED25519 key.

$ cd etcssh

$ ssh-keygen -1f ssh_host_ed25519 key.pub

256 SHA256: JwmD+yFwH83rPdhorge/S6qxXAUy3/GOCVFQTrcIWkY root@www (ED25519) We see that this
key use 256-bit SHA-256. The fingerprint itself is the long string beginning with JwmD..
and ending with cIwWkY. After that we have the user and host that generated the key, plus
the key type in parenthesis.

The server and client negotiate on which key to use for a connection. The
client might present any supported key to the user, so you’ll need the fingerprint
of every public key on the server. The easiest way to collect all the fingerprints

is to copy them to a file.

$ ssh-keygen -1f ssh_host_ed25519 key.pub > $HOME/fingerprints.txt
$ ssh-keygen -1f ssh_host_ecdsa_key.pub >> $HOME/fingerprints.txt
$ ssh-keygen -1f ssh_host_rsa_key.pub >> $HOME/fingerprints.txt

Now get those fingerprints to your users.

You can use ssh-keyscan(1) to retrieve key fingerprints from your SSH
servers, but you must verify those fingerprints against the server’s public key.
By the time you do that, you might as well extract the public key fingerprint
from the server itself. The ssh-keyscan program is useful for verifying that a
host’s public key fingerprints haven’t changed, however.

Making Host Key Fingerprints Available

A user first connecting to an SSH server should compare the host key fingerprint
that appears in their client to a known good host key fingerprint. Real users only
do this if the comparison process is easy, though. The system administrator
needs to make fingerprint comparisons simultaneously easy and secure. The
easiest way is probably to display the key fingerprints on an encrypted Web site
accessible from within your organization. When an employee needs SSH access
to the server, give them a link to the fingerprint page when you give them their
login credentials. Do not distribute key fingerprints over insecure media, such as
email or an unencrypted Web site.

Chapter 11 offers methods to automatically distribute keys and fingerprints.
Deploying these methods eliminates the need for users to manually verify keys,
simultaneously increasing compliance and decreasing everyone’s workload.

If you’re running the OpenSSH client, you can simplify key verification with
key certificates (Chapter 14), SSHFP records (Chapter 11), or both. Very few
other clients, including PuTTY, support these protocols.

Host Keys and the OpenSSH Client

When you first connect to an SSH server with the OpenSSH client ssh(1), you’ll

see a prompt requesting that you verify the key.

$ ssh gluttony

The authenticity of host 'gluttony (203.0.113.213)' can't be established.
ECDSA key fingerprint is SHA256:jovoulbQO0S1Ex6QBjo4T+0+FzwzyTXLgxF/aPudVTnk.
No matching host key fingerprint found in DNS.

This is your opportunity to verify that the OpenSSH server is actually the
host you think it is. OpenSSH offers you the ECDSA key fingerprint. Grab your
list of server keys and compare the ECDSA key fingerprint in the list to the
ECDSA key fingerprint in the client. If the key fingerprints match, type yes to
cache the verified key and continue the connection. You’ll get a message much

like the following.
Warning: Permanently added 'gluttony' (ECDSA) to the list of known hosts.

The next time you connect to this host, ssh(1) will compare the cached host
key to the host key on the server and either silently and securely connect, or
loudly and securely disconnect.

If the key does not match, ssh(1) immediately disconnects without caching
the key. Immediately notify your sysadmin and/or security team that the host key
does not match.

OpenSSH also supports an easier way to compare key fingerprints, called
randomart. A randomart image is a visual interpretation of a key fingerprint. It’s
a non-standard representation, however. Feel free to experiment with randomart,
but don’t assume it’s universally available.

Host Keys and the PuTTY Client

The first time you connect to a server with PuTTY, you’ll get a warning much
like Figure 4-1.

PUTTY Security Alert *

The server's host key is not cached in the registry. You
! have no guarantee that the server is the computer you

think it is.

The server's rsa2 key fingerprint is:

ssh-rsa 2048 03:29:55:17:25:eb:fobficd:8bie1:7bnd1:ca:02:06

If you trust this host, hit Yes to add the key to

PuTTY"s cache and carry on connecting.

If you want to carry on connecting just once, without

adding the key to the cache, hit No.

If you do not trust this host, hit Cancel to abandon the

connection.

Yes No Cancel Help

Figure 4-1: PuTTY Key Fingerprint Message Compare the key fingerprint shown in the client to the key
fingerprint in your list. Note that PuTTY negotiated a connection using an RSA key, which is different that
the ECDSA key agreed on between OpenSSH and its OpenSSH server.

If the keys match and you want PuTTY to cache the key for future reference
and then connect, hit Yes.

If the keys match, and you want PuTTY to connect without caching the key,
hit No.

If the keys do not match, hit Cancel to terminate the connection. The host
you’re connecting to is not the host you think you’re connecting to. Verify that
you entered the correct hostname, then notify your sysadmin and/or security
team of the non-matching host key.

When Keys Don’t Match

If a host key has changed, you’ll get a message much like this.
$ ssh gluttony

@EPEEEEEEEEEEEEEEEPEEEEEPEEPEPEEPEEEPEE@E@E@@(

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@EPEEEEEEEEEEEEEEEPEEEEEPEEPEEEPEPEEPEE@E@E@@(

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that a host key has just been changed.

The fingerprint for the ECDSA key sent by the remote host is
SHA256:TSJ39GppnUdf8IX6J00AT9+Cga2LzLNXX+tid541fo04.

Please contact your system administrator.

Add correct host key in homemwlucas/.ssh/known_hosts to get rid of this message.
offending ECDSA key in homemwlucas/.ssh/known_hosts:5

ECDSA host key for gluttony.mwl.io has changed and you have requested strict checking.
Host key verification failed.

Scary-looking stuff? It should be. Something scary has happened. Your SSH
client is screaming that something is Very Wrong. If your laptop was an
ambulance, the lights would be spinning and the siren blaring. The super-secret
host key pair used to identify this system has changed. This can happen for one
of six reasons. Identifying which requires talking to the sysadmin.

Maybe the sysadmin destroyed the key pair, either accidentally or
deliberately, and generated a new key pair. She should have a new key
fingerprint for you.

Perhaps the key fingerprint cached by your client is wrong. You might have a
desktop security issue.

Or, the server might have been upgraded or replaced, and now supports a new
key algorithm. The sysadmin should have a new key fingerprint for you.

It could be that the site uses round-robin DNS, effectively giving several

servers a single hostname, and you’re connecting to the shared name rather than
an individual server’s unique name. Access individual hosts, not a shared
hostname.

Perhaps your host’s key cache is corrupt. Re-validate the host key. This is
annoying, but not insurmountable. Your sysadmin can confirm that the host key
has not changed.

Lastly, it’s possible that an intruder controls the server or has diverted your
connection to a different server. You, the sysadmin, and/or your security team,
are about to have a bad day.

The only way to know which? Talk to the sysadmin. DO NOT CONNECT
TO THE SERVER UNTIL YOU KNOW WHY THE KEY CHANGED. All of
these are serious errors that require investigation.

If the key changed for a legitimate reason, verify the new key. If the new key
is correct, replace the old key with the new one. PuTTY offers to replace the key
for you, while in OpenSSH you must edit the key cache yourself, as discussed in
Chapter 5. The error message gives the line in «known_nosts that contains the
obsolete key. If the key is still not correct, talk to the sysadmin again. A
legitimate SSH key change might mask an illegitimate intruder; I’ve seen more
than one freshly installed server get compromised before the first legitimate
logon.

You can override the SSH client’s refusal to connect to machines when the
host key changes, or not cache the new key, but remember, SSH doesn’t just
validate the server and protect your data in transit. A completed connection also
hands your authentication information to the SSH server. If you give your
username and password to a compromised machine, you’ve just given the
intruder your username and password. If you use the same password on multiple
machines, you can no longer trust any of them. Cancel your weekend plans right
now, and possibly next weekend’s as well. You’ll be busy recovering from
backup and managing irate customers.

A mismatched key message is a sign that SSH works. Use it.

Chapter 5: SSH Clients

SSH client software resides on a user’s workstation and permits connections to
an SSH server. We’ll discuss two common clients: the OpenSSH command-line
client for Unix-like hosts, ssh(1), and the PuTTY client for Microsoft Windows.
Both clients are freely usable and redistributable, in source or binary form, with
very minimal restrictions or limitations.

People have written other SSH clients, of course. You can get an OpenSSH-
based client for Windows systems either through Cygwin or Microsoft’s
Windows Subsystem for Linux on Windows 10 and newer. There’s a straight
port of OpenSSH to Windows (https://github.com/PowerShell/Win32-
OpenSSH). Microsoft has released a beta port of OpenSSH to Windows 10 and
newer, as a developer feature. Similarly, PuTTY has been ported to many Unix-
like systems and mobile devices. Many people have forked both PuTTY and
OpenSSH, modifying them to fit their needs. Many of these are solid, reliable
projects. Once you have a solid grounding in SSH, feel free to use the client that
you prefer.

Each client has its own section in this chapter. Further chapters involving
SSH clients will get chopped into three sections: one for the theory of what
we’re doing, followed by separate sections on configuring each client.

OpenSSH Client

The OpenSSH client, ssh, is developed synchronously with the OpenSSH server.
As new features often appear in OpenSSH before other SSH implementations,
you’ll get the bleeding edge of SSH features by using the newest OpenSSH
client. The OpenSSH client is developed as part of OpenBSD, but a new
portable release appears every six months.

A user’s personal SSH settings are recorded as files in swome/. ssh/. Like the
home directory, this directory must be writable only by the user and root,
although you can allow it to be world-readable. Various client and server
functions stop working if others can write to this directory. While ssh creates
sHome/ . ssh with correct permissions, if your SSH suite behaves oddly check the
permissions.

To run ssh, enter the command follow by the host you want to connect to.
$ ssh gluttony.mwl.io

This uses your client’s default settings to connect to the host giuttony.mw1.io,

including your current username.!

If ssh doesn’t behave as you expect, try running it in verbose mode with -v.
You’ll see the server and client negotiate protocol version and encryption

algorithms, the server present its host key, the client verify that key, and the two
negotiate authentication methods. While this might not solve your problem, it
will tell you where the login fails and give you a hint about where to look.
Reading the output carefully might tell you that, for example, the server only
permits logins with public keys or you’re trying to use an unsupported

encryption method.
$ ssh -v gluttony.mwl.io

If you still have trouble, multiple -v options increase the debugging level.
In normal cases, that’s it. The rest of this book is about abnormal cases.

OpenSSH Client Configuration

Configure ssh by setting options, either on the command line or in a
configuration file. Use configuration files for permanent changes and the
command line for temporary ones. We’ll look at the configuration file first.

Two files control SSh(l) behavior: etcssh/ssh_config and sHome/ . ssh/config. Each
contains keywords and values, as discussed in Chapter 2. The former establishes
default behavior for all system users. The latter is the user’s personal SSH client
configuration. A user’s configuration overrides all global settings, but most users
can’t be bothered to enter their own custom configurations. Configuration file
changes affect all SSH sessions started after the change. There’s no process to
restart, but changing the configuration doesn’t affect existing SSH sessions. Both
files have the same syntax and accept exactly the same options. I’ll refer to
ssh_config for brevity, but everything applies equally well to stowe/. ssh/config.

While most connection options can be set on the command line, I recommend
storing permanent information in ssh_config. Programs such as scp(1) and sftp(1)
(see Chapter 6) read ssn_conrig, and each of these programs have slightly different
command line options. Using a configuration file centralizes configuration.

The user’s personal configuration overrides the global configuration. Options
set on the command line override both.

Per-Host Configuration
You can use the Host keyword to change how ssh connects to certain hosts. Here,
I use the Port keyword to change the TCP port ssh connects to, but only for hosts

in the mi1.i0 domain. It uses port 22 for all other hosts, as specified in etcservices.
Host *.mwl.io
Port 2222

I could also specify an IP address, or a network of IP addresses.
Host 192.0.2.*
Port 2224

Note that ssh matches these ssh_config entries based on what the user enters on
the command line. Host entries must be an exact case-sensitive match for what
the user types. Assume that my ssn_conrig contains both Host entries above, and

let’s see how this works in practice.
$ ssh gluttony.mwl.io

This matches the first Host entry, so ssh connects to port 2222.
My desktop’s etcresoiv.conr automatically appends the domain mw1.io to any
lone hostnames, so I probably wouldn’t type the fully qualified domain name.

Instead, I’d just do something like this.
$ ssh gluttony

This won’t match my first Host entry, as I didn’t explicitly type the domain
name given in ssh_config. If the host gluttony has an IP address in 192.0.2.0/24,
though, wouldn’t the second Host entry match? No, because the Host entries
match on the command line; there is no check against DNS. To match based on
the IP address in the Host entry, I would need to explicitly run ssh

192.0.2.whatever. Custom settings for this host require a Host entry like this.
Host gluttony
Port 2222

Conditions are parsed on a first-match basis. Configuration options listed
after Host entries remain in effect until the next Host entry. This ssh_config is
probably wrong.

Host *.mwl.io
Host 192.0.2.*
Port 2222

The user probably wanted the Port keyword to apply to all hosts in mw1.io and
all IP addresses in 192.0.2.0/24. We have an entry for any host in the mw1.io0
domain, but there’s no special configuration for it. Any hosts in 192.0.2.0/24 run
sshd on port 2222. Instead of doing this, list multiple hosts on the same line,
separated by spaces. Here I list my domain name, my IP addresses, and my

Servers.
Host 129.0.2.* mwl.io *.mwl.io gluttony avarice lust pride wrath envy sloth Port 2222

I list both *.mwl.io and mwl.io because there is a specific machine named
mw1.io. The leading asterisk and period before the domain name will not match
that host.

Put any global defaults at the beginning of your configuration file. Suppose
your organization has a policy of running SSH on port 981, because they like
security through obscurity, but your special servers use a different port for even

more obscurity.
Port 981

Host *.mwl.io
Port 2222

Here the default port is 981, but the specified hosts use port 2222.

Sometimes you want to test changes without mucking with a working
configuration, or maybe you have an automated process that needs a special
configuration file. To use a configuration file other than ssh_config, specify it on
the command line with the -r option.

$ ssh -F test-config avarice

You can now experiment with features without breaking your working
configuration.

If you have enough hosts, you might consider establishing canonical
hostnames in ssh_config.

Canonical Hostnames

On a large enough network, or in an orchestrated environment where servers are
dynamically created and destroyed, listing all of your SSH servers quickly
becomes unrealistic. The CanonicalizeHostname keyword tells ssh to rewrite
standalone Host entries in ssh_config into specific domains, and then (if they
exist) use that hostname for configuration and key management. This lets you
eliminate many lengthy Host keywords. Set CanonicalizeHostname to yes and
CanonicalDomains to your domain. Consider the following configuration:

CanonicalizeHostname yes
CanonicalDomains mwl.io

Host *.mwl.io

Port 2222

The next time I run ssh giuttony, ssh checks to see if there’s a hostname
gluttony.mwl.io. If that hostname exists, ssh evaluates ssn_config as if I’d run sshn
gluttony.mwl.io. This connection gets the special rules that apply to hosts in the
mwl.io domain.

You can list multiple canonical domains. The canonical names are tested in

the order they’re listed, and the first match wins. Consider an entry like this.
CanonicalDomains mwl.io michaelwlucas.com When I run ssh wrath, ssh(1) searches for
wrath.mwl.io. If it finds that host, it opens a connection. If it can’t find that host,
ssh searches for wrath.michaelwlucas.com.

If you activate hostname canonicalization, ssh defaults to trying to
canonicalize hosts with one or fewer dots in them. This lets canonicalization
catch subdomains, like www.detroit.mi1.io fOr www.detroit. To change the maximum
number of dots in the hostname, use the CanonicalizeMaxDots keyword. Here I

allow zero or fewer dots.
CanonicalizeMaxDots 0

OpenSSH has a few other hostname canonicalization features, discussed in
ssh_config(5).

Common SSH Options

The most common features people use are changing the username, the port, or
adding SSH options.

Changing Usernames

Most SSH clients assume that your username is identical on both the client and
server, and tries to log into the remote system with the same username you have
on the local machine. On most of my systems, my username is m1. Occasionally

someone creates an account for me with a different username, like miucas Or 1ucas
Or michael OT jerkface. | must tell ssh to use that username on the remote system.
Do this by putting the user account name, followed by the @ symbol, then the

remote machine name.
$ ssh jerkface@devio.us

You can also specify a username with -1.
$ ssh -1 jerkface devio.us

If this is an ongoing thing, specify the username in ssh_conrig with the User

option.
Host devio.us
User jerkface

By storing usernames in ssh_config, I can forget about them and free up
valuable brain space.
Changing Port
Some sites run SSH on a port other than 22, usually to provide an appearance of
improved security. It doesn’t actually secure SSH, but it does reduce log noise.
Use -p and a port number to change the port ssh connects to. If your server runs
sshd on port 2222, connect with: $ ssh -p 2222 gluttony

You can specify the port in ssh_config.
Port 2222

Again, I recommend storing permanent connection information in ssh_config.
SSH Options on the Command Line
SSH isn’t just a command; it’s a protocol. And that protocol has all sorts of edge
cases. Sometimes you’ll need to set some of those edges on the command line.
While everything OpenSSH supports is available as an ssh_conrig keyword, not
all of those keywords have command-line equivalents. To set those keywords on
the command line use the -0 command-line option, the option name, an equals

sign, and the value of that keyword.
$ ssh -o Port=2222 sloth

This example is trivial—the Port keyword has a dedicated command-line

option, -p. We’ll see more complicated examples later.

Evaluating your SSH Configuration

You can set command-line options, options in the user’s configuration file, and
options in the global client configuration file. Host keywords can muck up your
carefully adjusted defaults, or your carefully adjusted defaults can require you to
use Host keywords for specific servers. How do you know what options ssh(1) is
really using when you connect to a host?

Use the - option to ssh. It tells ssh(1) to parse all the configurations for the
target host, print out the configuration it’s going to use, and immediately exit
without connecting. You can review your settings to verify you’re getting what
you need.

SSH Jump Hosts

Sysadmins often have to pass through one host to get to another. Maybe you
trust this intermediate host. Maybe you don’t. OpenSSH supports jump hosts,
letting you use an SSH server as a relay to connect to a second server. Yes, you
could do this manually by logging into the intermediate host and running ssh
again, but using the built-in support means that the jump host sees none of your
plain text. The jump host has no control over the options your client and the
target server negotiate. This means you can, say, forward X or your SSH agent
through a jump host that accepts neither.

Specify a jump host with -3. Add the username if needed.
$ ssh -J mwl@envy jerkface@pride

I’m trying to log in as jerkface on the host pride, using the account ms1 on host
envy as a jump host. I’'ll get prompted for my authentication credentials on the
jump host, and then my credentials on the destination.It’s best to use public key
authentication on both hosts.

Set a jump host in ssh_conrig with the ProxyJump keyword.

Host pride.mwl.io
ProxyJump mwl@envy.mwl.io

How much do you have to trust your jump host? None of your keystrokes
reach the jump host, so you don’t have to worry about session logging. The only
thing the jump host can see is an encrypted data stream between your client and
the destination server. The jump host could alter or interrupt the encrypted
stream, but that’s exactly the sort of tampering SSH is designed to detect.

Some Linux distributions disable jump hosts in their client.

Addressing Options
The OpenSSH client lets you choose how it uses TCP/IP, by setting the address
family and the source address.

IP Protocol Version

Hosts can have both IPv4 and IPv6 addresses. The AddressFamily keyword tells
the client to connect with only IPv4 (inet) or with only IPv6 (inet6). The default
is any, which means “connect over whichever protocol the system resolver
returns an address for.” Sometimes, you’ll have better connectivity over one
protocol or the other. If you get your IPv6 connectivity via a tunnel, using only
IPv4 for SSH might make sense. Similarly, if you have unlimited IPv6
connectivity, you might want to use IPv6 for everything. Here I deliberately
disable IPv4.

AddressFamily inet6

You can choose to use only IPv4 with the -4 command-line option.
$ ssh -4 lust

Force IPv6 with -s.

Set Source Address

Hosts with multiple IP addresses on a single interface default to originating all
connections from that interface’s primary IP address. This is not always
desirable. Services can migrate from host to host, often independently of any
firewall changes. You can tell ssh to use a source IP address other than the

primary with the BindAddress keyword in ssh_config.
BindAddress 192.0.2.91

The BindAddress must be attached to the local machine.
BindAddress has no convenient command-line flag. You must specify it with

(0]

The OpenSSH Host Key Cache
The OpenSSH client records host keys approved by the user in
$HoME/ . ssh/known_hosts. Each key appears on its own line in known_nosts, much like

this.
wrath.mwl.io ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbm..

Each line contains the machine’s hostname (wrath.mw1.i0), host key type

(ecdsa-sha2-nistp256), and the public key itself.

Key Caching

How do you want to update your key cache? In some environments, users must
manually verify host keys and then manually add them to the key cache. In other
environments, it’s acceptable to automatically add new keys to the cache. Most
commonly, users want ssh to ask them what it should do. The
StrictHostKeyChecking ssh_conrig option tells ssh how to treat new host keys.

If you want ssh to refuse to connect to any host that doesn’t have an entry in
known_hosts, set StrictHostKeyChecking to yes. The only way for the client to
connect is to add the host key to the known_nosts, presumably from a central
repository provided by the sysadmin. This makes most sense in an environment
where host keys are automatically distributed.

If you’re at the opposite extreme, and you will never verify a host key no
matter how important it is, you might as well set StrictHostKeyChecking to
accept-new. This tells ssh to blll’ldly update known_hosts With every new key it gets.
This is the equivalent of never bothering to lock your home, car, office, and bank
vault—it might feel airy and freeing, but sooner or later someone’s going to take
uncivil liberties with your personal belongings.

The default setting, ask, tells ssh to present any unknown keys and ask the user
what to do. You can verify the key, accept it, and have ssh add it to known_nosts, or
reject the host key.

Choose the option that best suits your environment. Your laptop probably has
different needs than a server run by the NSA or a criminal cartel, and all of those

are different from the orchestration system in your test lab.

Cache Security: Hashing known_hosts

The known_nosts file comes in really handy to intruders who break into your
desktop; it’s a convenient list of SSH servers to target. As your SSH servers
might share a common sysadmin, the technique used to penetrate your desktop
might work on any of those servers. Additionally, sysadmins and other users can
view the contents of known_nosts. The best way to prevent snooping is to change
known_hosts SO that it no longer contains a list of hostnames. Accomplish this by
hashing the hostnames, exactly as etcpasswa does with passwords.

If you replace the hostnames with hashes, nobody can read the host names
from the file, nor can anyone reverse-compute the hostnames. When you connect
to a host, however, ssh can easily compute the hash of the server hostname and
look up that hash in known_nosts.

A hashed known_nosts entry looks something like this.
|1|PBMO7JICRBjfg8q0z1BokTtCD1ly0=|DVXUOIFq/dC4GMfbEbfVkhptVjQ= ecdsa-sha2-nistp256
AAAAE2V]Z..

If you examine the entry, you’ll see the key algorithm and the host key
fingerprint further down.
To have ssh automatically hash new host keys added to known_nosts, use the

ssh_config keyword HashKnownHosts.
HashKnownHosts yes

This will not hash existing entries, however. Use the -+ flag to ssh-keygen(1)

to hash your existing known_hosts.

$ ssh-keygen -H

homemwlucas/.ssh/known_hosts updated.

Original contents retained as homemwlucas/.ssh/known_hosts.old WARNING:
homemwlucas/.ssh/known_hosts.old contains unhashed entries Delete this file to ensure
privacy of hostnames Hashing your known_hosts copies the existing cache to
known_hosts.old, then hashes everything inside known_hosts. Verify that ssh can still
connect to all your usual hosts. Once you feel confident that your key cache is still
usable, delete the unhashed known_hosts.old.

To find a single host entry in the hashed known_nosts file, use ssh-keygen -r and

the target hostname.

$ ssh-keygen -F avarice.mwl.io

Host avarice.mwl.io found: line 17

| 1] 5hcRWDHWXWXCWr FTngG4jT40hJ0=| TyJXB6z+0EJXSP5MzakulFWgPDI= ecdsa-sha2-nistp256..

You now know that this entry is on line 17 of the file, and can easily copy it.

To remove a hashed hostname, use ssh-keygen -r.
$ ssh-keygen -R avarice.mwl.io
Host avarice.mwl.io found: line 17
homemwlucas/.ssh/known_hosts updated.
Original contents retained as homemwlucas/.ssh/known_hosts.old If you hadn’t deleted the
unhashed known_hosts.old, well, it’s gone now.

When distributing «nown_nosts from a central system (Chapter 11), there’s no
reason not to provide the hashed version.

The PuTTY Client

PuTTY is an SSH, telnet, and serial client, as well as a terminal emulator, for
both Windows and Unix-like systems. It’s available at
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html, or a Web
search for “putty SSH” will take you right there. While it’s not written by the
professional paranoiacs in the OpenBSD team, PuTTY’s freely-available source
code has been repeatedly audited. PuTTY is probably the most widely deployed
Windows SSH software.

The PuTTY download page offers several choices. I recommend the full
installer that contains PuTTY and all its related programs. You won’t need
everything, but it’ll be easier and faster than downloading various utilities
individually. PuTTY doesn’t truly need an installer; you can download plain
PuTTY .exe if you prefer. The installer does create shortcuts in the Start Menu,
registers the programs with the operating system, and handles all the other
Windows minutiae.

PuTTY can run on the command line. The arguments and command-line
flags are conveniently similar to those of OpenSSH. If you’re running Windows,
though, you’re probably interested in PuTTY as a graphical program. We’ll
focus on the pointy-clicky interface, but you should know that the command line
is an option if needed.

If you feel adventurous, you could download the PuTTY development
snapshot instead. This includes all of PuTTY’s latest patches and features, but it
might also contain brand-new bugs.

Start PuTTY and you’ll get a screen like Figure 5-1.

ﬁ PUTTY Configuration ? X
Category:
[=-Session -~ Basic options for your PuTTY session
i.-Logging) .
& Terminal Specify the destination you wantto connectto
- Keyboard HostName (or IP address) Port
- Bell | | |22 |
o VII-r--i-aneoe‘lLures Connection type:
&=l z (—‘] -
- Npper O Raw Olelnet ORIogln (@ SSH O Serial
-~ Behaviour Load, save or delete a stored session
- Translation .
- Talatbion Saved Sessions
-- Colours | |
=l Connection "
= Default Settings
- Data 2 Lind
- Proxy
- Telnet Saye
elete
i}t..S_SH et]
i Kex
i Host keys
- Cipher Close window on exit
!ﬁz--,ﬂ:uth () Always (I Never {®) Only on clean exit
i - GSSAPI
W TTY w
About Help Open Cancel

Figure 5-1: PuTTY Startup Screen On the right side you’ll configure connections to different servers. We
only have one connection right now, Default Settings. It won’t connect to anything, but you’ll use it to set
your PuTTY defaults. You can always get back to this screen by hitting Session on the left-hand side.

On the left side, you configure options on how PuTTY presents itself and
how it handles supported protocols. PuTTY supports a variety of protocols. If
you need a flexible general-purpose terminal emulator, PuTTY can probably
meet your needs. We’re only going to cover SSH, however. Note the SSH
option, second from the bottom. Click there, or expand that little “plus™ sign, to
view and edit details on how PuTTY performs SSH.

If you select something on the left side, the right-hand side changes to show
details on your selected option. Select SSH, and the right-hand side shows a few
basic protocol options, such as the protocol version and sharing SSH connections
(see “Connection Multiplexing” later this chapter.) We’ll use these settings to
establish our PuTTY defaults.
Setting PuUTTY Defaults
Your fresh PuTTY install lists only one connection, Default Settings. Every new
connection you create starts by copying everything in Default Settings. Click on
the Default Settings connection and hit Load. You can then edit and save the
Default Settings connection.

Start by setting a default username. My accounts on my work system all have

the same username. The only time my username varies is when it’s an account
on an external system. I can set my default username in PuTTY, and have it
preconfigured to my most common setting. In the left side, choose Connection.
Under auto-login username, I put my standard username.

Now go back to the Session panel. Select Default Settings, and hit Save.
You’ve updated your default connection. Repeat the process to make further
changes to your defaults.

Starting SSH Sessions with PuTTY
In the Sessions PUTTY screen, go to Host Name (or IP Address). Enter the
hostname or IP address of your SSH server. You can also change the port
number here if needed. Click Open at the bottom of the window.

The PuTTY configuration window will disappear, replaced by a black
terminal window.

Saving PuTTY Connections
You can preconfigure PuTTY connections, ensuring that your sessions with a
particular host happen the same way every time. Enter the SSH server’s
hostname under Host Name (or IP Address). Under Saved Sessions, type a name
for this connection. I usually name my connections after the host, plus possibly a
word or two for any special configuration in the session. I might have a
connection labeled dns1, and another named dns1 with X, so that I can easily use
X forwarding when I need it.

To run a saved connection, double-click the connection name.

To copy a saved connection, highlight it, click Load, make your changes, and
save it under a different name.
PuTTY Management
You’ll see a PuTTY icon in the upper left-hand corner of your work running
PuTTY session. This leads to a drop-down menu of useful tasks.

To duplicate an existing session, opening a second window to the same host,
select Duplicate Session.

To open a new window to a host that you’ve already save the configuration
for, select Saved Sessions and the session name.

To open a window to a completely new host, select New Session.
PuTTY Copy and Paste
PuTTY does not use the standard Windows cut-and-paste shortcuts. It works
more like a UNIX-style X terminal. To copy text in a PuTTY window, highlight
it with the mouse. To paste text into a PuTTY window, click the right mouse
button. You can also use sHIrT-InserT.

PuTTY Configuration

PuTTY stores its configuration and host key cache in the Windows Registry,
under HKeY_CURRENT_USER\Software\SimonTatham. TO move your PuTTY configuration
from one host to another, copy this section of the registry to your new machine.
Some people even use these registry settings to distribute valid PuTTY
configurations to their users via Active Directory.

Debugging PuTTY
PuTTY has two debugging facilities: the Event Log and the session log.

The Event Log records what happens during the current SSH session. You
can see the name, IP address, and port you’re connected to, selected encryption
algorithms, and all the various negotiations required to establish an SSH session.
To view the Event Log, click the upper left corner of your PuTTY window and
go down to Event Log.

For serious debugging, use a session log. Before opening your SSH
connection, take a look at the left-hand pane. Under Session you’ll find the
Logging option. Choose it. This window gives you several options for logging
your SSH session. I usually choose All session output. Give PuTTY a name for
the log file, and browse to select a directory. Once your session has been running
a while, this file will contain a large amount of detail about the session, much
like the OpenSSH clients debugging option.

Changing Live PuTTY Sessions

You can alter some of the settings in an existing PuTTY session. The username
and encryption information are set at login, but you can change logging, terminal
behavior, and tunnel settings.

Go to the upper left-hand corner of your existing PuTTY session, and click
the PuTTY icon. From the drop-down menu, choose Change Settings. This
brings up a simplified New Session window, presenting only the options that
you may change. Once you make your edits, and have confirmed that the session
works the way you desire, you can save the session, either overwriting the
existing name or choosing a new name.

Multiplexing Connections

SSH sessions can take a long time to open, particularly if the SSH server can’t
find a reverse DNS entry for the client’s IP address. Or you might have a naive
firewall that limits the number of simultaneous connections between network
segments. Perhaps one of the machines is so old that the initial key exchange
takes several seconds. SSH supports connection multiplexing for these
situations, permitting you to run several SSH sessions over one TCP connection.
While this doesn’t get rid of the delay for the first connection, additional
sessions start much more quickly.

PuTTY supports and uses connection multiplexing by default. OpenSSH can
multiplex connections, but requires additional configuration.
Configuring Multiplexing
OpenSSH’s ssh client uses UNIX sockets to manage multiplex connections. The
user must create a directory for the sockets and set the permissions so that only

she can read them.
$ cd $HOME/.ssh
$ mkdir sockets
$ chmod 700 sockets/

You can now enable multiplexing in ssh_config.
ControlMaster auto
ControlPath ~/.ssh/sockets/%r@%h:%p The ControlMaster setting tells ssh to try to use
connection multiplexing, but to fall back to a separate TCP connection should multiplexing
fail. This lets you enable multiplexing as a default, but still connect to non-OpenSSH
servers.

ControlPath tells ssh where to find the multiplexing management files. This
statement accepts tokens, much like sshd_conrig. The su macro expands to the
username, %h to the host, and «%p to the port. If I connect to the host avarice on port
2222 as the user mwl, SSH automatically creates the socket file mvigavarice:2222 in
the specified directory.

PuTTY enables connection multiplexing by default. To turn it off before
opening a session, open PuTTY and select SSH from the left-hand pane. You’ll
see a checkbox called Share SSH connections if possible. Unselect it.

Risks of Multiplexing

Anyone who can read OpenSSH’s multiplexing control files or access PuTTY’s
similar sockets can access all data going over your SSH connection. The original
connection has already authenticated, so such an intruder wouldn’t even need
your password to get a terminal on the remote machine. Only use connection
multiplexing on clients where you trust everybody who has administrative
access.

Copying a large file over a multiplex SSH session can slow down your other
sessions.

X forwarding does not work well with connection multiplexing.

Remember that when multiplexing, all of your SSH connections to a server
run over the first connection you opened to the host. If that connection fails, all
connections multiplexed with it will also fail.

Personally, I only enable multiplexing on single-user desktop systems. Others
disagree with me. Do what makes sense for your environment.

SSH Compression
You’ll hear in many places that SSH can compress data before sending it over
the network. This was very useful back when a 33.6 modem was the standard

way for people to connect from home. On modern multi-megabit connections,
compression normally slows down connections. Consider using compression if
and only if you are seriously bandwidth-constrained.

The one case where compression makes sense is in forwarding X (Chapter 8).
Adding the -C flag to ssh(1) can as much as double throughput of forwarded X
connections.

That covers the basics of PUTTY and the OpenSSH client. Now let’s look at
using SSH to move files around the network.

1 But use one of your hosts. If you connect to mine, I might post your username, IP, and password on social
media.

Chapter 6: Copying Files over SSH

File Transfer Protocol (FTP) was the standard method for copying files between
machine for decades, predating even TCP/IP. FTP transmits everything
unencrypted, making it roughly as secure as telnet. The file can be viewed or
altered during transmission. Other old protocols, (RCP), are even worse. How
about using SSH to securely transfer files between machines?

There are many ways to use SSH to move files. Applications such as rsync
can use SSH as a transport mechanism. Some window managers include SSH
file transfer tools. We’ll cover two specific protocols, SCP and SFTP, for both
Unix-like and Microsoft systems. Most other tools that transfer files over SSH
are actually front ends to one of these protocols.

Secure Copy Protocol, or SCP, was designed as a drop-in replacement for
RCP. SSH File Transfer Protocol, or SFTP, was designed to replace FTP. It’s an
interactive protocol, allowing you to browse remote filesystems. OpenSSH
includes the client programs sftp(1) and scp(1), while Windows clients can use
WinSCP for both protocols.

File Copy with OpenSSH

OpenSSH includes two file transfer programs, scp and sftp. We’ll start with the
simpler but less flexible program.

scp(1)

You can use scp(1) to copy individual files. The syntax follows the usual Unix

semantics.
$ scp what-you-have where-you-want-it

Separate hosts and filenames with a colon, like so.
$ scp source-host:filename destination-host:filename

Once you authenticate, scp transfers the file over the encrypted channel.

If you don’t enter an element in the command, it’s assumed to be unchanged.
For example, to copy the local file data. txt to the server sioth, Tun: $ scp data.txt
sloth:

I don’t enter a machine name in the source side, so it’s assumed to be the
local machine. I enter a remote hostname but not a remote filename, so the
filename doesn’t change. My file data. txt is copied to my login directory on sioth.

If the destination file already exists, scp silently overwrites it. If the account
lacks the privileges to overwrite the file, the copy fails. The scp program assumes
that if you told it to overwrite an existing file, you had good reason to. For this
reason, I recommend not copying files while logged in as root.

You must use a colon after a hostname. When you skip the colon, scp assumes
that the argument is a file name. Here I skip the colon and copy the file data. txt

to the file sioth on the local machine.
$ scp data.txt sloth

It’s a very secure local copy, at least.

To change the file name on the remote side, give a new file name.
$ scp data.txt sloth:stuff.txt

If your source file is on a different machine and you want to copy it to the

local host, specify the remote hostname as the source.
$ scp sloth:data2.txt data2.txt

You can copy files to or from any location where you have sufficient

privileges.
$ scp sloth:varlog/messages sloth-messages

To recursively copy a directory to another machine, use the arguments -rp.
Here I replicate my home directory on the remote host, overwriting any files

with the same name.
$ scp -rp homemwlucas sloth:

The scp program deliberately borrows many command-line options from
cp(1) and rcp(1). This is why the command line options often don’t match
ssh(1); it’s a drop-in replacement for rcp(1), so the rcp flags take precedence.
Still, if you have more complicated copying needs, check the documentation.

The scp(1) program is largely built out of quarter-century-old rcp(1) code.
This makes adding new features difficult. While nobody’s looking to actively
pitch scp into the Dead Code Dumpster, nobody’s really giving it any attention
either. The program is what it is.

If you have complicated file-copying requirements, look at sftp(1).
sftp(1)

The SSH File Transfer Protocol (SFTP) is more flexible than SCP. Where SCP
only copies files, SFTP permits many different file operations such as renaming
and removing files, listing directories, and so on. You’ll find a few different
protocols named after some variant of “secure” and “FTP,” so don’t get
confused. SFTP is not the same as FTP over SSH, nor is it FTP over SSL.

SFTP commands are deliberately copied from FTP commands, to simplify
transitioning between the two. Much of your knowledge of the FTP command
line applies to SFTP, but we’ll go through the basics.

Open a connection with the sftp command and a hostname.
$ sftp pride

Once you authenticate, you’ll be connected and get an SFTP prompt.
sftp>

Once you’ve logged in, entering a question mark or the word ne1p will list all
the commands the SFTP server supports. FTP users will recognize most of them.
To copy a file from your local computer to the server, use put and the

filename.
sftp> put upload.txt

To copy a file from the server to the local computer, use get and the filename.
sftp> get download.txt

If your connection is interrupted before the download finishes, use reget to
resume the download where it left off. A reget doesn’t perform file integrity
checking, but only looks at the offset.

To change the name of the file on the server use rename, followed by the

current file name and the new file name.
sftp> rename data.txt old-data.txt

To change directories on the server, use cd and the directory name.
sftp> cd varlog

To change directories on the client, use 1cd and the directory name.
sftp> lcd Downloads

End your SFTP session with either quit Or exit.
Changing Usernames and Configurations
With either scp or sftp, if you use a different account name on the remote
machine, put the account name and an e symbol right before the server name,
just as you would when connecting via ssh. (Old-fashioned remote copy did not
support this option.) $ scp data.txt doofus@sloth:

The easiest way to remember this is to make an entry in ssh_conrig. Both file
copy programs take configurations from ssh_config, S0 make changes there once
to have them affect the whole software suite.

While both programs use command-line arguments to change how they
behave, those arguments are not consistent with ssh(1). SFTP is designed to
replace FTP, while SCP replaces RCP. The developers prioritized comforting
migrating users over using ssh-style options. For example, you can change the
port each of these uses with -p rather than the -p used by ssh(1). Avoid
confusion: use ssh_config.

File Copy with WinSCP

The PuTTY installer ships with excellent command-line SCP and SFTP clients,
but if you’re running Windows, you probably want a pretty graphical interface.
WinSCP is a SCP, SFTP, FTP, and WebDav client for Microsoft Windows. It
switches transparently between protocols depending on what the server supports.

Grab WinSCP from https://winscp.net. While there’s no fee to use WinSCP
in your home or business, its license (GPLv2) restricts redistributing changed
versions of the program to your customers. If you wish to include WinSCP in
your own product, read the license carefully.

WinSCP comes with a standard Windows installer. The defaults are fine for
most users, and include convenient features such as adding WinSCP to the right-
click menu when you select a file. The installer also installs Pageant and
puttygen, if you didn’t install those as part of PuTTY. We’ll use those in Chapter

7.
Start WinSCP and you’ll see this screen.

ﬁ Login = *
@ New Site Session
File protocol:
SFTP v
Host name: Port number:
| || 23|
User name: Password:
Save - Advanced... |v
Tools b 2 Manage 38 Lagin 3 Clase Help

Figure 6-1: WinSCP Login The left side contains your saved connections. Set up new connections on the
right. Enter the server’s hostname, your username, and your password. Change the port if needed. You can
save this connection by hitting Save.

WinSCP can import your PuTTY host key cache. Select Tools->Import.
You’ll see the contents of PuTTY’s key cache, with a check box by each. Verify
every server you want to use is checked, then select OK. WinSCP can now
piggyback on all the work you did verifying host keys.

Once you verify a host key in PuTTY, you can go back into WinSCP and
import the verified key there.

Using WinSCP

Double-click on WinSCP. Enter your username, password, and the hostname of
your SSH server. WinSCP will log in and open a double window. The left side
shows your local home directory, while the right side shows your home directory
on the remote server. This is called a “Commander-Style” interface. Drag and
drop files from one side to the other.

You can tell WinSCP to use an “Explorer-style” interface. It will open a
single window, styled exactly like every other Windows Explorer window,
containing the remote host. To see a local directory, you must open a separate
window. To enable Explorer style, select Tools->Preferences-> Interface and

choose Explorer. Your WinSCP now looks so Windows-like it’ll confuse even
you.

And thanks to WinSCP’s context menus, you can now right-click on a file
and select Send To WinSCP to upload files.

Configuring the SCP and SFTP Servers
OpenSSH supports SCP and SFTP by default. Neither needs much
configuration, but you can change a few things about how they behave.

For SCP, the scp(1) program must be in the system’s default spath. If the SSH
server can’t find scp, the user will get an error saying so. On or off, present or
not: that’s your only option.

The sshd server comes with an SFTP server, activated by an sshd_config entry.
Subsystem sftp usrlibexec/sftp-server The mere presence of this entry suffices to enable
SFTP support.

SFTPOnly Users
You probably have users that need access to copy files to or from a server, but
don’t need shell access. OpenSSH supports SEFTPonly users. This is most
commonly combined with a chroot (Chapter 3), allowing the users to access only
a part of the filesystem. You’ll see this in web servers that support multiple
customers, where each site should be able to access only the files for their site.
Where a chrooted user who needs shell access needs a bunch of files in their
chroot, an SFTPonly user needs only an ssnd_conrig keyword.
Start by creating a group for SFTPonly users. I’ve called mine sftponly. By
using a Match term in sshd_conrig, I deny these users access to anything beyond

their home directory and only permit them SFTP access.

Match Group sftponly ChrootDirectory %h ForceCommand internal-sftp AllowTcpForwarding no
We use the ChrootDirectory keyword to lock the user in one directory. The ForceCommand
keyword restricts the user into accessing only one command. That’s it! The internal SFTP
server provides all the userland commands and device node access the user might need.

Disabling SSH File Copy
You might want to disable the ability to copy files over SSH while still allowing
users command-line access. This is really, really hard. You can remove
usrlibexec/sftp-server and usrbin/scp from your host and disable SFTP in sshd_config,
but that only disables the obvious ways to copy files. Users are tricky little
critters, especially frustrated users who think that the sysadmins are blocking
them from doing their job. Users can copy files through any number of methods.
Many of these send unencrypted data across the network. A user with shell
access can always copy files from one host to another.

If you must prevent users from copying files, use chroots and limit what files
the users can access. They’ll still be able to copy files, but only the files in the
chroot.

Chapter 7: SSH Keys

An SSH host key identifies a server. SSH also supports authenticating users with
keys. Using keys to authenticate users requires more setup ahead of time than
passwords, but when correctly done is both far more secure and much more
convenient. We’ll consider both server and user keys.

Manually Creating Server Keys
If an intruder compromises your server, the server’s private key is no longer
private. You must replace it. This requires generating a new key pair. While
most operating systems automatically create missing host keys, others don’t. Use
ssh-keygen (1) to manually create server keys.

If your server runs a recent OpenSSH version, run ssh-keygen - as root t0
automatically generate all supported but missing host keys.

You might need to create host keys for a host other than the local host, such
as when deploying new installs using some orchestration systems. You can

create key files manually using the -t and -f arguments to ssh-keygen.
$ ssh-keygen -t ecdsa -f ssh_host_ecdsa key -N ''
$ ssh-keygen -t ed25519 -f ssh_host_ed25519 key -N ''

The -t flag specifies the type of key to create. Here we create two different
types of keys, ECDSA, and ED25519. The -r flag gives the file name of the
private key file. The public key for each key pair is in a file of the same name
with .pub added to the end. Finally, -~ lets you specify a passphrase on the
command line. Host keys have no passphrase. The two single quotes indicate an
empty passphrase.

Whenever you generate host keys, be sure to get the key fingerprints as
discussed in chapter 4. Your users will need the fingerprints to verify the host
keys.

Passphrases

What’s this passphrase thing I just mentioned? A passphrase is like a password,
but longer. It includes spaces, words, special characters, numbers, and anything
else you can type. The passphrase is used to encrypt and decrypt the private key.
A key with a passphrase cannot be used until someone enters the correct
passphrase.

Passphrases are most often used with user authentication keys. A user with a
key pair can access the system without providing a password for that system.
Desktop and laptop systems are usually less secure than servers, and get
infected, hijacked, or outright stolen depressingly often. If a user’s
authentication key pair is stolen, the intruder can use that key pair to access

servers just as if he was the legitimate user. Encrypting the private key with the
passphrase means that even if the user’s private key file is stolen, the intruder
cannot use the key without the passphrase. If an intruder gets either your private
key file or your passphrase, but not both, the damage is contained. Make the
passphrase too long to guess by brute force and sufficiently complex to
discourage casual eavesdropping.

Can a passphrase be a single word, like a password? Yes, but it’s a really bad
idea. Computers are now so fast that they can quickly discover short passwords
by trying all possible passwords in succession. Using a short passphrase
considerably reduces your private key’s security.

A passphrase should be at least several words long, something you can easily
remember, and shouldn’t be obvious to others—even to people who know you. It
should include special characters such as #, !, ~, and so on. Peculiar words from
specialized non-computing vocabularies are useful. Substitute numbers for
letters. Never use anything from pop culture, and never use any of your own
personal catchphrases. Anything you’ve said to friends or coworkers that was
catchy enough to repeat is a poor choice. If your imagination completely fails,
Diceware (http://www.diceware.com) is a tool for randomly generating mostly-
memorable passphrases from real words using ordinary dice. While intruders can
ruin your week, a coworker with your private key and a sense of humor can be
even more aggravating.

Host keys do not use passphrases, because the SSH service must start when
the system boots. You could use a passphrase with the server key, but SSH
would not start until someone entered the passphrase at the server console. This
is unacceptable in most environments.

User Keys

User key pairs provide stronger authentication than passwords. Combined with
agents (see “SSH Agents” later this chapter), user keys eliminate the need to
type any authentication credentials into remote machines. Cryptographically,
user keys are identical to host keys. The only difference is where the keys are
used.

Speaking very generally, a computer can identify you based on something
you are, something you know, or something you have. Iris scanners and
fingerprint readers verify your physical body, something you are. A password
verifies that you know a secret. Getting into a house requires that you have the
door key. Key-based authentication combines two of these: you must have the
file containing the private key and you must know the passphrase for that key.
Admittedly, a private key file is easier to reproduce than a physical key—it’s

only copying the file—but it’s more difficult to reproduce than an 8-character
password. This additional layer of security provides extra protection against
unauthorized use of an account.

Keys are more complicated than passwords, however. Just as you wouldn’t
leave your front door key hanging from the doorknob, you must protect your
private keys. If the computer is lost or stolen, any private keys on that machine
should be considered lost as well. While it’s possible to remember a password,
most people won’t put in the time or energy to remember the thousands of
characters in a private key. Yes, you should have backups... but if your laptop is
stolen, the private keys on that laptop should be considered compromised
anyway.

Is setting up authentication via user keys really worth the trouble? For almost
a decade, a network of compromised machines dubbed the “Hail Mary Cloud”
has repeatedly scanned the Internet for SSH servers. When a cloud member finds
an SSH server, it lets the other machines in the network know about it. The
cloud then methodically tries possible usernames and passwords. One host on
the network tries a few times, then another, then another. Blocking individual IP
addresses is not a useful defense against these scanners, because each address
only tries a few passwords before the next attacker takes its turn.

Any one attempt has low odds of guessing successfully. The attempts are
constant. They never end. Eventually the Hail Mary Cloud will get lucky and
break into your server. It might be tomorrow, or next year, but it will happen. To
prevent this intrusion, you can either use packet filtering to block public access
to your SSH server, or you can eliminate password authentication. User keys let
you eliminate passwords.

SSH Agents

Replacing a password with a passphrase and a private key has one obvious flaw:
typing passwords is an annoyance. Why replace an annoying password with an
even more annoying passphrase? It might be more secure, but are you and your
users really going to bother?

That’s where an SSH agent comes in. An SSH agent is a small program that
runs in the background. When you start a desktop session, you enter your
passphrase to decrypt your private key. The decrypted private key is loaded into
the SSH agent. The agent stores the key in memory, never on disk. The agent
processes all private key operations for the SSH client. When the SSH client
needs to decrypt something with the private key, it asks the agent to handle it.
When you log off for the day, the SSH agent shuts down. The decrypted private
key disappears from memory. In other words, with an SSH agent, you type your

passphrase once per work session, no matter how many SSH sessions you open
that day.

On a typical day I log into my workstation, activate my SSH agent, and type
my passphrase once. I then open innumerable SSH sessions to servers and
routers all over my network, without typing a passphrase or password again.
When I log off for the day, my agent shuts down. The memory used by the agent
is wiped and returned to the operating system. My private key is once again
available only in the encrypted file.

Agents do not guarantee security. Anyone who can read your computer’s
memory while you are logged in can access the decrypted key. This includes the
root account. If you don’t trust the system administrator on your desktop, don’t

use an SSH agent.! If you suspend your laptop, the decrypted private key
remains in memory. Anyone who can wake your laptop and login can use the
key as their access rights permit. A random thief interested in swapping your
laptop for a quick buck probably won’t know or understand what he has, but a
thief who is specifically targeting you and/or your employer will probably check
for a live private key. More commonly, if you don’t lock your desktop before
going to lunch, a coworker might take advantage of your unsecured terminals.
These problems are best solved by emptying or shutting down your agent when
you’re not actively using the system.

Agent security is also a problem on multiuser machines. Anyone who has
administrative or superuser privileges on the system can access any SSH agent
running on the host. If other people have root or Administrator access on your
desktop, they can access your agent and masquerade as you. Using an agent
would be unwise.

We’ll discuss SSH agents for both PuTTY and OpenSSH later this chapter.

Creating an OpenSSH User Key
If you have a Unix-like desktop, generate a key using ssh-keygen(1). Don’t use
any arguments and the program will walk you through generating a user

authentication key.

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (homemwlucas/.ssh/id_rsa): Enter passphrase (empty for
no passphrase): Enter same passphrase again:

Your identification has been saved in homemwlucas/.ssh/id_rsa.
Your public key has been saved in homemwlucas/.ssh/id_rsa.pub.
The key fingerprint is:

SHA256 : LK+1dKbb/PtN8KjiXLDdZz0K1fivRKMZIn8YoOrmEvA mwlucas@zfsi
The key's randomart image is:

+---[RSA 2048]----+

You’ll be asked where the new key should be saved. The various OpenSSH

programs expect to find key files in the default locations, so take the suggestion.
You’ll then be asked to enter a passphrase twice, to verify that you can type it
more than once. Your private key will be encrypted with this passphrase. Always
use a passphrase, as discussed just a few pages previous.

SSH uses identical key formats for hosts and users. When you generate a user
key, you get a key fingerprint and a randomart image. Neither is particularly
useful for user authentication keys.

You’ll find your new private key in stowe/. ssh/id_rsa and your new public key
in gHome/ . ssh/id_rsa.pub. Immediately backup your new key pair on off-line media,
such as a flash drive or CD-ROM. If you destroy your workstation, you’ll want
the ability to recover your key pair.

Key Algorithms

Like host keys, user keys can use a few different encryption algorithms. If you
don’t specify an algorithm, the OpenSSH tools use the recommended one—at
this time, 2048-bit RSA. You can specify a different algorithm with the -t flag.

$ ssh-keygen -t ecdsa

Why create multiple keys? Cryptographers have this distressing habit of
finding weaknesses in cryptographic algorithms. One day the unthinkable will
happen and someone will discover a flaw in a widely used and broadly trusted
algorithm. All keys that use that algorithm will immediately become
untrustworthy. If you have user keys with different algorithms, you can disable
the broken algorithm on your SSH server and still have server access.

Our examples assume that you’re using an RSA key, but they’re just as
applicable for keys made with other algorithms.

Creating a PuTTY User Key

Use the PuTTYgen program to create user authentication keys for PuTTY. The
PuTTY installer includes puttygen, or you can download it individually from the
PuTTY website. When you start puttygen, you’ll get a screen like Figure 7-1.

B PuTTY Key Generator pd
File Key Conversions Help %
Key
MNo key.
Actions
Generate a publicfprivate key pair i Generate ;
Load an existing private key file Load
Save the generated key Save public key Save private key
Parameters
Type of key to generate:
@ RSA ()DSA (JECDSA () ED25519 () SSH-1(RSA)
MNumber of bits in a generated key:

Figure 7-1: PuTTYgen Startup Use RSA, ECDSA, or ED25519 keys. DSA keys are on their way out, and
SSH-1 RSA keys are far obsolete. Verify that the number of bits is at least 2048. More is not necessarily
helpful. You might use fewer bits for user keys dedicated to ancient servers, such as VAXes or Alphas.
Click Generate. The next PuTTYgen screen asks you to generate randomness by wiggling the mouse over

the blank area. Once you generate sufficient entropy, PuTTYgen creates your key, as displayed in Figure 7-
2.

B PuTTY Key Generator X
File Key Conversions Help

Key
Public key for pasting into OpenSSH authorized_keys file:

ecdsa-sha2-nistp256
AAMAEVIZHNRLXNoY ThbmlzdHAYNTY AAAAIbmIzdHAYNTY AAABBEBMitt

+Ku/kDolvisAxDiK/mZYtehC

+eq2Adi2KvubaoCTSqdOkxE3G5+zJ JwgR 1TAFFMWWEKIP 2t34uk/pgxR TsY= crashbox.mwl.io
2018-02-05

Key fingerprint |ecdsa-sha£-nistp25€255f3:dd:Zb:fd:bf.99:dﬂ:eS‘:Eﬁ%:Se:Ea:q-D:Da:SE:dc |
Key comment |crashbox.mwl.io 2018-02-05 |
Key passphrase: |FI-III-III'III'I-III-III-III-I-III-III-IIII-III-III-IIII-III-III-I-III-II|
Confirm passphrase: |II-II-I-III-III-I-III-III-III-I-III-III-IIII-III-III-IIII-III-III-I-III-I'”
Actions

Generate a public/private key pair Generate

Load an existing private key file Load

Save the generated key Save public key Save private key
Parameters

Type of key to generate:

{JRSA {)DSA @ ECDSA () ED25519 () SSH-1(RSA)
Curve to use for generating this key: nistp256 ~

Figure 7-2: PuTTYgen Key and Passphrase You have three fields you can enter here. The first is the key
comment. I recommend changing the comment to reflect the machine you generated the key on and the date

you created it. Now enter your passphrase twice.
Now click save public key. You’ll get a standard Windows Save as dialog box

asking you to choose a location to save the key. Save the file in a location that
only you have permissions to access. You can use a folder under Documents, but
make sure you go in later and set the permissions so that other users on your
machine cannot view the file. I normally name these files after the machine

they’re created on and the date. Puttygen won’t assign a file extension by

default, so use a .pub extension.2

Now save the private key. Use the same file name for the public and private
keys. PuTTYgen uses a .ppk extension for private keys, so they won’t overwrite
each other.

You now have a public key. Congratulations! But don’t exit PuTTYgen yet.

The top of the screen shows the key in OpenSSH-friendly authorized_keys
format. Copy that into a file, all on a single line. I usually name that file after the
machine the key was generated on, the date, and add the string authorized_keys.

Installing Public Keys
No matter which client you use, you must install your public key on your server

before you can login with it. Whenever you SSH into a host, the OpenSSH
server checks the local file gnome/. ssh/authorized keys. This file contains public
keys, one per (very long) line. The SSH server compares the public key offered
by the client with the keys in the file. If the key matches, and the client can
successfully exchange data with that key, then the client has demonstrated it has
the corresponding private key. Access is granted. If there is no authorized keys file,
the server falls back to the next authentication method (usually passwords).

If you are a user requesting access to a server that only accepts public key
authentication, the sysadmin will ask you for your authorized_keys file. If this is
your first time using public key authentication, this is not a security risk—
remember, your public key file is public. Anyone can have it. It’s utterly useless
without the corresponding private key.

The most common type of user key is an RSA key. OpenSSH stores your
client’s RSA public key in the file gnove/. ssh/id_rsa.pub. PuTTY’s key generator
makes you name your own key files, and you’ll have a few different key files.
You want the file containing the authorized_keys-friendly version. If you
followed my suggestion, the file name will contain authorized_keys. To simplify
the examples, we’ll use the file name id_rsa_authorized_keys.pub. Substitute your
PuTTY file as needed.

To use your public key, you must copy the client’s public key file to the
authorized_keys file in your account on the server. You could use the graphic
interface’s copy and paste function, but that’s error-prone. Uploading the public
key file via SFTP or SCP and then concatenating it Onto authorized_keys iS more
reliable. Remember, each key must be on one and only one line in authorized_keys.
More than one of my simple cut-and-paste attempts have turned to tears, then to
threats of starting a new career as a llama smuggler, only to end in a manic-
depressive binge at the nearest gelato shop. Have the machine copy the file. It’s
better at it than you are.

Here, I copy my client’s id_rsa_authorized_keys.pub t0 the server sioth using

scp(1).

$ scp .ssh/id_rsa_authorized_keys.pub sloth:

The server will still request a password to upload the key file; you’ve created
the key, but it’s not yet installed.

PuTTY users should use WinSCP’s friendly drag-and-drop file copy.

Now log onto the server and append the contents of id_rsa_authorized_keys.pub
to the authorized_keys file. If this is the first time you’ve installed a public key, you
could copy your key file to authorized_keys. If you let yourself get into that habit,
however, one day you’ll overwrite an existing authorized_keys and spend the next
couple of hours kicking yourself for making such a simple mistake.

$ cat id_rsa_authorized_keys.pub >> .ssh/authorized_keys

Now you can try to authenticate with your key. If key-based authentication
doesn’t work for you, check the permissions on authorized_keys and the .ssh
directory. Neither should be writable by any user except you.

If you are uploading from a UNIX-like host, you can do the upload and copy

in one command.
$ cat .ssh/id_rsa_authorized_keys.pub | ssh sloth "cat >>~/.ssh/authorized_keys"

If you ever manually edit authorized_keys, be certain that the last key ends with
a newline. If the final entry doesn’t end in a newline, the next key you add to this
file will be tacked onto the end of the previous key. Both the new key and the
old key will stop working. If in doubt, go to the end of the file and hit return. An
extra newline at the end of authorized_keys won’t hurt anything.

Only upload the public key, never the private key. Your private key should
never cross the network.

Once you have your authorized_keys file exactly the way you want it, you’ll
want to copy it to all of your servers. There’s lots of ways to manage this. Many
UNIX-like hosts include ssh-copy-id(1), a convenient way to copy an existing
authorized_keys from one host to another. I have my up-to-date authorized_keys
stashed on a public Web server, so that I can easily install it on any machine I
happen to wander into. Or, you can use the techniques discussed in Chapter 11 to
automatically copy the authorized_keys files for you and all of your users to all of
your machines.

Now test your key from your client.

Authenticating with Keys
Using a key for authentication changes how you log in. No matter what client
you’re using, verify that your key works before going any further. Don’t attempt
to use an SSH agent until you know the key works.

If the key doesn’t work, use the SSH debugging tools discussed in Chapter 5.
Run ssh in verbose mode. Use PuTTY session logging. Read the output. If you
have a permissions problem or configuration error, the answer is in there.

Using OpenSSH User Keys
When your client finds a key pair in swowe/. ssh and the SSH server finds an
authorized_keys file in your account, the client asks you to enter your passphrase.

Here I connect to the remote machine sioth: $ ssh sloth

Enter passphrase for key 'homemwl/.ssh/id_rsa': All of the software involved has found
your key files. Once you enter your passphrase, the client can decrypt the private key and
use it to authenticate with the server.

Yes, this looks much like a regular password-based logon, but behind the
scenes it’s very different. You’ve decrypted the key file locally. The only
authentication information you’ve sent to the server is confirmation that you’re

able to exchange data encrypted with a public key stored in the authorized keys file
in your account on the server. You never send a password or other traditional
authentication information.

OpenSSH automatically checks for all the standard key files. You might have
a special-purpose key that’s only used for special circumstances, such as
automated jobs. To use that key with scp, sftp, or ssh, use the -i flag and the

filename.
$ ssh -i $HOME/specialkey sloth

Now that you know your key works, you’ll need to enter your passphrase
every time you log onto this server. This is a good time to configure an SSH
agent.

Using PuTTY User Keys

If you don’t have an agent running, you must tell PuTTY where to find your
private key file. On the left side of the PuTTY Configuration screen, select
Connection-> SSH-> Auth. In the text box labeled private key file for
authentication:, put the full path to your private key file. Remember, the private
key file ends in .ppk.

Now try to connect. PUTTY should prompt you for your username and then
request your passphrase. If you enter the passphrase correctly, you’ll get a
command prompt.

Once you know that your key works and is installed correctly, reduce how
often you must type your passphrase with the Pageant SSH agent.

SSH Agents
While the SSH agents for OpenSSH and PuTTY are wildly different, both
perform identical tasks. They host your private key in secure memory so that you
don’t have to keep typing your passphrase. Both let you view the decrypted
keys, add new keys, and delete keys. The only real difference between them is
how they’re programmed and how you make them behave—you know, the
unimportant stuff.

With your key loaded into ssh-agent, your login attempts will look like this: $

ssh mail
Last login: Thu Nov 16 16:56:52 2017 from ceo.worldhq.mwl.io FreeBSD 10.3-RELEASE-p20
(GENERIC) #0: Wed Jul 12 03:13:07 UTC 2017

Note the absence of any request for a password or passphrase; you’ve just
logged into the remote machine without human authentication. If you connect to
many machines during your working day, an SSH agent makes life much easier
and transforms user keys from an annoyance into a pleasure.

OpenSSH Agent
Any UNIX-like system that includes OpenSSH has the SSH agent ssh-agent(1).

And that’s where the easy stuff stops.

One annoyance about the multiplicity of desktop environments in the UNIX-
like world is that every environment has its own preferred way of running ssh-
agent. We’ll discuss a couple of them here, but if none of these work in your
environment, you’ll need to check your operating system or window manager
documentation. Many Unix variants have their own slightly unique desktop
setups, and they change the precise methods of using ssh-agent to suit the
developers’ personal prejudices and the Whim Of The Week.

Most display managers, like xdm and kdm, have hooks to automatically check
for SSH keys in the user’s home directory. When the display manager finds a
key during the logon process, it creates a pop-up window to request your
passphrase. Enter the passphrase and the display manager attaches the SSH agent
to your desktop environment. You’re ready to begin work.

If you’re more old-fashioned and run your desktop with startx(1), tell the

SSH agent you have a key with ssh-add(1) before running startx.

$ ssh-add

Enter passphrase for homemwl/.ssh/id_rsa: Enter your passphrase to add your keys to the
agent.

Text console users must first run ssh-agent(1) with their shell as an argument,

and then run ssh-add.
$ ssh-agent bintcsh
$ ssh-add

All SSH sessions that start from that console session run with the agent. The
agent doesn’t work across virtual console terminals, only for the children of the
shell run by ssh-agent. Another virtual terminal needs its own SSH agent.

If you have multiple keys with the same passphrase, ssh-add automatically
decrypts all of the keys. If you have multiple keys with different passphrases,
ssh-add prompts for each passphrase separately.

Use ssh-add -1 to list all private keys currently stored in the agent, and ssh-add -
p to remove the keys from a running agent. Re-add them once you get back from
lunch.

PuTTY Agent

The PuTTY SSH agent, Pageant, provides a friendly Windows-style interface to
SSH. Start Pageant by double-clicking on it. The Pageant icon, a computer with
a black broad-brimmed hat, will appear in the system tray.

Right-click on the Pageant icon. You’ll see several options, including View
Keys, Add Key, and Exit. There are also options for running a saved or new
PuTTY session. Select Add Key to bring up a standard Window file browser.
Find your private key and select it. Pageant will display a dialog box to request
your passphrase. Enter it. If you can’t type your passphrase correctly, Pageant

will ask you to do it again.

Once Pageant is ready, open a PuTTY session. Connect to a machine that has
your public key installed. You should get a command prompt without needing to
enter your passphrase.

If key-based authentication works when you specify a private key file, but not
when using Pageant, verify that PUTTY is configured to use Pageant. Select
Connection->SSH->Auth. Under Authentication Methods, you’ll find an Attempt
authentication using Pageant checkbox. Make sure it’s checked.

Once you know that Pageant works, it’s helpful to have it start at login. Find
your account’s Startup folder (the exact location varies depending on your
version of Windows). In another window, find your Pageant program. It will
probably be in the PuTTY directory under either programs O Program Files (x86).
Create a link to Pageant in the startup directory.

For optimal convenience, have the shortcut load your private key at login.
You can either give Pageant the full path to your key as an argument, or you can
set a Start in directory and only use the short file name. I recommend setting the
Start in directory, because it makes loading multiple keys at login much simpler.
Right-click on your Pageant shortcut. Under Target, add the name of your
private key file as an argument. The Target should now look something like
"C:\Program Files\PuTTY\pageant.exe" moose.ppk. On that same screen, YOU’H see a Start
in field. Enter the full path to your keys directory there. On my laptop, that
would be c: \Users\mwlucas\Documents\keys.

To verify this works, exit your running Pageant and double-click on the new
icon in the startup folder. You should be prompted to enter the passphrase for
your key. If it doesn’t work, you’ve probably messed up a path in the shortcut.
Remember that you need to put quotes around any path with a space in it.
Backing Up Key Files
If you lose your private key, your key pair is useless. Once you know your key
pair works for authentication, back up both the private and public keys. The
PuTTY .ppk file contains both the public and private keys, but OpenSSH key
pairs need both files. Don’t just copy your private key to another machine—
every machine that has your private key is another place your key can be stolen
from. Back up your private key on off-line media, such as a flash drive or a CD.
You might also encrypt it with a program like GnuPG. (If you are not familiar
with GnuPG, I recommend the book PGP & GPG: Email for the Practical
Paranoid, by yours truly.)

Keys and Multiple Machines
Many sysadmins have multiple computers. I regularly use two desktops and a

laptop. It is possible to move key pairs between machines by copying the key
files. You can even import OpenSSH keys into PuTTY. How do you realistically
manage a single key between multiple machines?

You don’t.

Rather than reusing a single private key on all of your desktops and laptops,
create a separate private key for each. Create an authorized_keys file that contains
the public keys for all of your authentication keys. When a machine is
decommissioned, stolen, or self-immolates, remove that machine’s key from use.
Delete the corresponding public key from the authorized_keys file on all of your
servers. Generate a new key on your replacement machine.

If one of your desktop machines is compromised, you must remove that
machine’s authentication key from use. If all your clients share a single private
key, you must regenerate a new key pair and distribute it to all of your machines.
The intruder who has your private key might well lock you out of your own
systems before you can accomplish this. If each machine has a unique key pair—
even if all the keys share the same passphrase—then compromise or loss of one
key does not compromise the keys on all your other machines.

Also, preferred key algorithms change over time. When I wrote the first
edition of this book, user authentication keys defaulted to 1024 bits. The default
is now 2048. If I was still using keys created years ago, they would be too weak
for current use. It’s entirely possible that the default user authentication key
algorithm of RSA will be replaced by an entirely different algorithm in the
future. By creating a new key whenever you get a new machine, and invalidating
keys associated with old hardware, you ensure that your keys are relatively
recent and secure.

Disabling Passwords in the SSH Server

Passwords are less secure than keys. Now that you have working key-based
authentication, the smart thing to do is to disallow password-based
authentication. The ssnd_config keyword ChallengeResponse Authentication
disables generic challenge-response authentication systems, such as a prompt
requesting a username and password. The keyword PasswordAuthentication
enables and disables passwords. To disable password-based authentication, set
both of these keywords to no.

ChallengeResponseAuthentication no PasswordAuthentication no
While sshd permits public key authentication by default, verify that nobody’s
changed that keyword. The PubkeyAuthentication keyword must be set to yes.

PubkeyAuthentication yes
Now restart sshd, either with the built-in system command or pki1l -1 sshd.
Changing sshd_conrig will not change how other programs use passwords. If

you use passwords for sudo, sudo Will still ask users for their password.

Password Authentication Warning!
If you make a mistake in configuring SSH such that nobody can login, you can
lock yourself out of your server. When making changes to sshd_conrig, do not log
out of your existing SSH session until you verify your changes work.
(Remember, you can run sshd on an alternate port for testing, as discussed in
Chapter 3.) Create a new SSH session. Verify that you can login and become root
before disconnecting your first session.

The preceding paragraph is very important. Ignore it at your peril, or be
prepared for your own manic-depressive gelato binge.

Permitting Passwords from Specific Hosts

While passwords are weak, sometimes you cannot disable them entirely. You
might have a few users or applications that cannot use keys for one daft reason
or another. The underlying problems are most often political rather than
technical, but they’re still problems. While you’re working on solving those
problems, you can allow passwords from specific hosts with conditional
configuration, as discussed in Chapter 3. Here, we allow password

authentication from a particular subnet.
Match Address 192.0.2.0/24
PasswordAuthentication yes

Remember, all Match statements go at the bottom of sshd_conrig.

It is possible but extremely unwise to permit password authentication based
on username. The SSH server, rather than hanging up on clients that request
passwords, must get the username before hanging up on the client. This means
that the Hail Mary Cloud will continuously poke at the server. The reasons that
compel you to permit limited password authentication probably make requiring a
strong password just as problematic—the same boss that demands he be allowed
to use passwords probably thinks that p455w0rd is a secure password. The
account that permits passwords will be a weak spot. The only thing that can save
you here is good off-host logging to a very secure bastion host, so that when the
machine is compromised you can tell the boss that the downtime is his fault.

Agent Forwarding

Suppose I disabled password-based authentication on all my computers. The
only way to access a command prompt on any of my hosts is by authentication
with public keys. I’'m working on my server wrath, and must copy a file over to
the server giuttony. This presents a problem. My private key isn’t on wrath.
Copying the private key to a server is terrible security practice—you want your
private key on as few hosts as possible, and never on your servers. But
passwords don’t work. How can I use SCP or SFTP?

The answer is to forward authentication requests back to your workstation.
Agent forwarding is exactly that. When you try to SSH from one server to
another, the SSH client on the server sends private key requests back to your
desktop. The agent is available as a socket, in a location given by the

environment variable s$ssH_auTH_sock.
$ echo $SSH_AUTH_SOCK
tmpssh-z0eUnDTnkb/agent.2513

To use agent forwarding, both the client and the server must permit it and the
SSH agent must be running before starting your first SSH connection. If both the
client and the server support and request forwarding, the authentication request
will be forwarded.

Agent Forwarding Security

The risk of agent forwarding is that you must extend some trust to the SSH
servers. Anyone who has root access can access your SSH agent socket. Anyone
who can access your SSH agent’s socket can use your private key without
providing a passphrase.

If your SSH server is compromised, the intruder can piggyback onto your
authentication socket to log into remote servers with your credentials.
Promiscuous agent forwarding has been responsible for intrusions in many
organizations, even organizations you’d think would know better. Only enable
agent forwarding to machines that you control.

Agent Forwarding in sshd
To enable agent forwarding on the server, set to the AllowAgentForwarding
keyword to yes.

AllowAgentForwarding yes

I’ll generally disable agent forwarding globally, then use a Match statement
to permit only certain users or addresses to forward their agents.
OpenSSH Client Agent Forwarding

In ssh_conrig, use the ForwardAgent keyword to activate agent forwarding.
ForwardAgent yes

The next time you connect to a server, the client will request agent
forwarding.

PuTTY Agent Forwarding
PuTTY enables agent forwarding by default. On the left side of your PuTTY
setup screen, go to Connection -> SSH -> Auth. Under Authentication
parameters, you’ll see a check box labeled Allow agent forwarding.

You can also use key authentication and authorized_keys to very specifically
restrict what a user may do over SSH. We’ll examine that in chapter 12. Now,
let’s look at forwarding X.

1 Not trusting the desktop’s sysadmins basically destroys any hopes of server security. Yes, we’ve all
worked there.

2 Don’t open public keys in Microsoft Publisher. That doesn’t make anybody happy.

Chapter 8: X Forwarding

Unix-like systems use the X protocol (or X11) to display a graphic user
interface. X has improved over the years but it’s still famously baroque. One of
X’s more useful features is the separation between the system a program runs on
and the system the program’s display appears on. You can run a program on one
host, and have the display appear on a completely different workstation. I can
run a graphical web browser on a host on the public Internet, and funnel the
display back to my laptop inside my employer’s firewall, bypassing the firewall
content filter restrictions—for completely legitimate work reasons, of course. In
this scenario all web requests originate from my server, and the results appear on
my laptop. You can do the same thing with any X program.

If you’ve never used X before, it might seem a little strange. That’s okay.
Play with it and you’ll quickly understand its usefulness.

Vanilla X transmits information across the network unencrypted. Secure X
in-transit by wrapping it with SSH via X11 forwarding.

X Security
X dates from a time when network security was not nearly the issue it is today.
The developers were happy to get graphic applications working at all, given the
limited hardware available in those days. Retrofitting security into any protocol
isn’t as effective as we might hope. Displaying X from a remote machine
requires extending trust to the remote machine. The more you trust the remote
machine, the more X programs you can display locally. If you fully trust a
compromised machine, the intruder can use X to take over your workstation,
capture your keystrokes, and access your systems as if she was you.

Only permit X forwarding to users or hosts that truly require it.

X and the Network

Back when X was developed, a site’s Internet connection might be as fast as 56
kbs. Attempting to use X forwarding between sites was the sort of things
sysadmins would laugh at over a beer. Now that bandwidth is not such a
concern, though, people might run a browser on one continent and display it in
another.

While bandwidth is no longer an issue in many parts of the world, latency is
very real. Many graphical programs are highly sensitive to latency. A program
might reasonably expect to perform several hundred graphics operations a
second. That’s fine when each takes a nanosecond. When each takes fifty
milliseconds thanks to the cross-country link, though, your program becomes
unusable. If latency isn’t a problem, jitter and packet loss can destroy usefulness.

If you have any latency at all, investigate alternatives to forwarding X.
Maybe dynamic port forwarding (Chapter 9) would solve your problem. Perhaps
your program has a feature for remote use, such as Wireshark’s ability accept a
tcpdump Stream from another host. Use a protocol designed to accommodate high
latency.

Inside your local network, though, X forwarding can be incredibly useful.

The X Server and Client

The X server is the computer that provides the graphic display. The X client runs
the program that generates the display. This seems backwards to many people. If
you are using X, the X server is almost certainly your desktop. Your desktop
must have an X server to use X forwarding.

Almost all Unix-like systems include an X server, usually from X.org but
possibly a vendor’s proprietary system. If you are running Windows, you’ll need
a third-party X server. We’ll cover those in the discussion of PuTTY and X.

X Forwarding on the SSH Server
To use X forwarding, the SSH server must have the xauth(1) program. If it’s
present, you can enable forwarding with the X11Forwarding keyword in

sshd_config.
X11Forwarding yes

Restart (or pkil1 -1) sshd after making this change.

The OpenSSH manuals mention several other options for configuring the fine
details of X forwarding, but the overwhelming majority of you will never need
any of them. If you have an odd problem, investigate the various X11 keywords
in sshd_config(5).

X Forwarding in the OpenSSH Client

The OpenSSH client supports two levels of X forwarding, differentiated by
security level. Configure both in ssh_conrig. Basic X forwarding supports only a
less-insecure subset of the X protocol. This level of X forwarding is fairly safe.
Intruders cannot take over your desktop or snoop your keystrokes with basic X

forwarding.
ForwardxX11l yes

Always try this basic X forwarding first.

Many X programs use functions beyond the less-insecure subset. When
forwarded over SSH, these programs show an error and unceremoniously crash.
Once you enable X forwarding, you can choose to allow the full set of X

functions with the keyword ForwardX11Trusted.

ForwardX11Trusted yes When you permit all X functions, you fully trust the SSH server. An
intruder who controls the SSH server can capture everything on your local screen and your
every keystroke. Be really, really sure you trust every single remote server you might
ever log into before permitting this level of trust globally. And once you’re absolutely

certain—don’t do it.

X forwarding is one of those rare places where SSH compression makes
sense. Set the Compression keyword to yes to enable compression. It’s best only
used on a per-host basis, however.

Per-Host X Forwarding
You can configure per—host settings to restrict X forwarding to only necessary
hosts, using Match rules. Here I have a program on pride that requires fully

trusting X, so I make a special entry for it in ssh_config.
ForwardxX11l no

Host pride

ForwardX11l yes

ForwardX11Trusted yes Compression yes

Now I only have to worry about X software on one host, not every host I SSH
into.

Forwarding X on the Command Line
Even better then restricting X forwarding to certain hosts is enabling it on a
connection-by-connection basis.

In the previous example I fully trust X for all connections to the host pride. I
have a program on that host that needs full X access, but I don’t run that
program every time I log into that host. I want to enable X forwarding for only
certain sessions. Enable compression with the -c flag. Activate standard X

forwarding when necessary using the -x command-line option.
$ ssh -CX pride

If you must fully trust the remote host, equivalent to ForwardX11Trusted, use

-Y.
$ ssh -CY pride

This eliminates the risks of routinely forwarding X, but supports X
forwarding when necessary.

X Forwarding with PuTTY

The first problem with forwarding X to a Windows host is that Windows does
not include an X server. You need additional software. Fortunately, many people
have ported the standard X.org software from UNIX to Windows. Use any of
them you like. I generally use Xming, but don’t worry if your employers or
coworkers insist you use a different one.

Xming

Xming is a widely used and frequently updated X server for Windows systems.
The most recent version of Xming is only available to people who donate to the
project, but the next older version is free. As with all of the software in this
book, if you find Xming useful, I encourage you to donate to the programmer.
Xming brings to Windows all sorts of X tricks familiar to UNIX users, but for
our purposes we’ll use it only to display programs running on a remote machine.

Download Xming from http://sourceforge.net/projects/xming/. The Xming
installer is very straightforward to any Windows user, so [won’t walk you
through it. Take the defaults. Once you complete the install, run Xming to start
the server.

Enabling and Disabling X Forwarding
PuTTY forwards X by default. What’s more, PuTTY does no security-based
filtering of X; it’s forwarding is equivalent to ForwardX11Trusted in ssh. For this
reason, I recommend disabling X forwarding by default, then enabling it only
when needed.

On the left-hand side of the PuTTY Configurations screen, select Connection
-> SSH -> X11. The first checkbox is Enable X11 forwarding. Deselect it, then
save the Default Settings. Leave the other settings unchanged, as they’re only
useful in uncommon situations.

Is Forwarding Working?
Your SSH session won’t look any different after you forward X. How can you
prove forwarding works before you need it? If SSH has successfully negotiated

X forwarding, it will set the sorspLav variable in your shell.
$ echo $DISPLAY
localhost:10.0

Your shell knows that there’s an X server attached to it. You can run your X
program. If forwarding isn’t working, sorspLav is undefined. Check your system
log, or the debugging log of your SSH client.

A connection using the insecure, legacy protocol XDMCP will have a sprspLay
value of something like remote:1. This means that your shell found an X display,
somewhere, somehow, but it’s not the one you’re trying to forward over SSH.
Don’t run your X program if sorspLay looks weird! Something might be very,
very wrong.

Now run an X program from your shell, and it should display on your
desktop. Most X clients include the xterm(1) terminal emulator. Run xterm in the

background on your SSH server.
$ xterm &

You’ll get a command prompt back on the SSH server. In a moment or two,
depending on the bandwidth and latency between your server and client, a
terminal on the remote system will appear on your desktop.

If you don’t like xternm, Iy xclock, xeyes, OI xcalc instead.

When you connect with X forwarding enabled, you might see warnings like
untrusted X11 forwarding set up failed OI' No xauth data. These wamings are not critical
when forwarding X over SSH, and should not worry you.

Remote X Commands with OpenSSH

Logging into another machine just to run an X program—or any program—can
be an annoyance. The -f option to ssh lets you run a command on another
machine while keeping the SSH session itself backgrounded. This looks like
you’re executing a command directly on the other host. Give the command right
after the host you want to access. For example, if [want to run an xterm on wrath
I could run: $ ssh -f wrath xterm

The client will connect to the server and display whatever login text the
server shows. The SSH client then goes into the background, restoring your
command prompt on your local system even as it runs the command on the
remote system.

Note that remote commands are run in the user’s full logon environment. Any
files attached to the user’s shell, such as .cshrc or .profile, are sourced. This
might give you trouble, depending on the application you’re running.

Backgrounding forwarded X-over-SSH sessions is very useful, but
forwarding TCP ports over SSH is even more useful. We’ll look at that next.

Chapter 9: Port Forwarding

Port forwarding over SSH is a divisive topic.

SSH can serve as a wrapper around arbitrary TCP traffic. You can cloak
unencrypted services such as telnet, POP3, IMAP, or HTTP inside SSH,
securely transporting these natively insecure protocols. An SSH session can
carry any TCP/IP protocol, including protocols your local IT security team has
forbidden on the organization network. For this reason, many organizations with
high security requirements do not allow SSH to traverse and/or leave their
network. Organizations that have less stringent requirements use this ability to
secure their network. (You can also use SSH to create a VPN to carry all IP
protocols, but that’s in Chapter 13.) For example, I manage my website and blog
with WordPress. It provides a friendly pointy-clicky interface for website
administration and design, giving me a decent-looking page without me actually

needing to learn anything about web design.l At one time, in those dark days
before Let’s Encrypt, my website used plain HTTP. I used SSH port forwarding
to tunnel HTTP between my Web server and my desktop. This protected my
credentials in transit and eliminated the risk of my password being stolen on the
wire. This is a sensible and legitimate use of SSH port forwarding.

Suppose my desktop is inside a high-security network, however. The firewall
tightly restricts web browsing and blocks all file transfers. If I can use SSH to
connect to a server outside the network, I could forward my desktop’s traffic to
that outside server to get unrestricted Internet access. I could upload confidential
documents over SSH, and the firewall logs would show only that I made an SSH
connection. Your network administrator would object, with good reason.

Port Forwarding versus Security Policy

If you’re an organization’s security officer, port forwarding might make you
consider entirely blocking SSH. I understand. I’ve had your job. You should also
know that a recalcitrant user can tunnel SSH inside DNS, HTTP, or almost any
other service or protocol, including raw ICMP. The only way to absolutely block
SSH is to deny all TCP, UDP, or ICMP connections, use a web proxy that
intelligently inspects traffic, and not allow your client machines access to public
DNS even through a proxy. I’ve seen one firm actually implement this type of
security perimeter, and they had many gaps and exceptions for notably clunky
business-critical software. If you cannot implement this in your environment but
have stringent security requirements, you must work with your users to meet
those requirements and the business needs. I strongly recommend establishing a
solid network traffic awareness program as well as intrusion and extrusion

detection, so you know when your network traffic deviates from the norm. Read
Richard Bejtlich’s books on intrusion and extrusion analysis, as well as my own
Network Flow Analysis (No Starch Press, 2010), and implement programs like
those discussed.

As a user, having the ability to tunnel arbitrary traffic over SSH does not
mean you should do so. If your organization’s security policy forbids port
forwarding and/or tunneling, don’t do it. If the policy says “use the web proxy
and stay off IRC,” then listen. I am not responsible if you use these techniques
and are reprimanded, terminated, or exterminated. (Even if we IT security
officers are all petty tinpot despots who don’t understand your very personal and
deeply urgent need for IRC and MySpace.)

Troubleshooting Port Forwarding

Some applications misbehave when used over port forwarding. It’s important to
separate application failures from port forwarding failures. If you’ve forwarded a
port and your application doesn’t work over it, use netcat Or even telnet to
determine if the port is actually open. (I demonstrated netcat at the beginning of
Chapter 3.) The server should send the same feedback to a netcat request over a
forwarded port as it does over a non—forwarded port.

If you don’t get a response, you’ve probably misconfigured port forwarding.
Double-check your command line. If necessary, use the debugging on one or
both sides of the connection to see what’s really happening. Remember that only
one process may open a given port at a time.

If port forwarding works, your application has trouble with it. Perhaps you
need a hosts entry, as is common with many web applications. Maybe it’s an old
and clunky protocol that expects a wide variety of ports open. FTP is a classic
example. You’ll need to dive into the application and its protocol to figure out
why it’s not working.

Port forwarding is a tool. Not all protocols work with this tool. Sometimes,
using port forwarding is like trying to drive screws with a hammer; any result
you get will displease you.

Example Environment
For all of these port forwarding examples, I assume that the SSH client is behind
a firewall. This might be anything from a great big corporate proxy to a home
router. There are several other servers behind this firewall, including web and
email servers. The client is inaccessible to the public Internet; the outside world
cannot connect to it.

The SSH server is on the public Internet. Anyone can connect to it, and it can
freely access the rest of the Internet.

Port Forwarding Types
The three types of port forwarding are local, remote, and dynamic.

Local port forwarding redirects one port on the client to one port on the
server. Essentially you’re saying “Grab such-and-such port on the SSH server
and make it local to my client.” Suppose you want to download your email from
a server that only offers unencrypted POP3, but you have SSH access to the
server. You can forward, say, port 2110 on your local machine to port 110 on
your POP3 server. Configure your email client to download its messages from
port 2110 on the local host address. SSH intercepts all requests to port 2110 and
patches them through to the mail server’s port 110. Figure 9-1 illustrates the data
flow of local port forwarding.

forwarded paort
-
o —>
] SEH connection
client server

Figure 9-1: Local Port Forwarding Data Flow Remote port forwarding works in reverse. A port on the SSH
server is forwarded to a port on your SSH client. You’re saying, “take such-and-such port on my client and
attach it to the remote server.” For example, you could enable sshd on your workstation behind the corporate
firewall. Then you SSH from your workstation to your server on the public Internet. With remote port
forwarding, you could forward port 2222 on your public Internet server to the SSH port on your
workstation. Anyone who connected to port 2222 on your public server would be transparently connected to
your workstation’s SSH server. They could get inside the firewall without any VPN client and with
complete disregard for firewall policies. You might use remote port forwarding to make a private web
server publicly available. Figure 9-2 illustrates remote port forwarding.

forwarded port |

S
—>
S5H connection
client server

Figure 9-2: Remote Port Forwarding Data Flow Dynamic port forwarding is a broader system, where many
different client programs can connect to many different services. It creates a SOCKS proxy on the SSH
client, and tumbles any requests to that proxy out through the server. A SOCKS proxy is a generic gateway
that can carry any TCP/IP traffic. (SOCKS doesn’t actually stand for anything, by the way.) This gives
anyone who connects to the proxy complete access to the server’s network. Figure 9-3 illustrates dynamic

port forwarding.

| forwarded port
& &

o —3
] SEH connection
client server

Figure 9-3: Dynamic Port Forwarding Data Flow When the underlying SSH session dies, all ports stop
being forwarded. Chapter 10 offers suggestions for keeping SSH sessions alive.

With these possibilities, it’s easy to see why sysadmins love SSH, and why
many corporate security departments forbid it.

Privileged Ports and Forwarding

On Unix-like systems, TCP ports below 1024 are reserved for system use. Only
root can bind to these ports. As an unprivileged user, you can attach the local end
of your SSH port forwarder to any port above 1024. Forwarding a reserved port
requires using SSH as root. Performing routine tasks as root is poor practice, so
don’t do it without a really good reason.

Only the side of the connection that is attaching to a privileged port needs to
run as root. If you’re binding a reserved port on the client, run the client as root
but to log into the server as a regular user. If you’re binding a reserved port on
the server, you’ll need to log into the server as root. In the latter case, it’s a better
idea to change the port so you don’t have to login directly as root.

Microsoft systems do not implement privileged ports. Anyone can bind to
any open port on the system. The absence of port restrictions creates all sorts of
potentially amusing security issues, but it does make forwarding low-numbered
reports no more difficult than forwarding any other port. You never need to run
PuTTY as root.

Local Port Forwarding

Before setting up local port forwarding, verify that normal SSH works. Then
figure out what service you want to forward, and what port that service runs on.
Some typical choices are 80 (HTTP), 25 (SMTP), and 110 (POP3). The services
that usually run on these ports are not normally encrypted.

Now choose a local port you want to use for the forwarding. Some clients
work well when run on any port. Almost any mail client lets you set a TCP port
to check POP 3 on. Others... don’t. Websites frequently choke if you change the
port number. If you don’t know how the protocol behaves when forwarded from
one port to another, try it on a test server and see.

For our local port forwarding examples, we’ll forward port 8080 on my client
to port 80 on the server sioth. Now that TLS certificates are free, why would you
need to do this? Some proprietary web-based applications don’t support TLS,

and if you try to convert them to TLS they die screaming.2 I'll need to edit the
client’s hosts file (either etchosts OI C: \Windows\System32\drivers\etc\hosts) to tell my
client that the website has the IP address 127.0.0.1. I’ll need a second alias so
that I can SSH out to the actual machine. If I’m the only one that uses this
application, once I have port forwarding setup I could tell the application to only
listen on the server’s local host address. This would not only protect my data in
transit as TLS would, it would add another layer of protection for the
application.

OpenSSH Local Forwarding

To tell the SSH client to activate local forwarding, use the -. flag.
$ ssh -L localIP:localport:remoteIP:remoteport hostname

If you don’t specify an IP address on the SSH client, SSH attaches to
127.0.0.1. You can skip the first argument in this case, making the command: $
ssh -L localport:remotelP:remoteport hostname

For now, only use the IP address 127.0.0.1. This is the loopback address on
every machine, accessible only on that machine. While it might look like we’re
forwarding an address to the same address, 127.0.0.1 on the client is not the
same as 127.0.0.1 on the server. We’ll consider binding a forwarded port to a
different IP address in “Choosing IP Addresses™ later this chapter.

So here’s how we use local port forwarding to connect to the server sioth, and

forward port 80 on the localhost address of s1oth to my client’s port 8080.
$ ssh -L 8080:127.0.0.1:80 sloth

I’m attaching to port 8080 on my workstation. I haven’t specified a local IP
address, so ssh attaches the forwarding to the client’s 127.0.0.1. My SSH session
logs on normally, and gives me a terminal on the server. But if I point my web
browser to localhost:8080, I'll be connected to the website running on the server.
An alias in the hosts file will make the website much more usable.

To set up local port forwarding every time you connect to a server, use the

LocalForward keyword in ssh_config.

LocalForward client-IP:client-port server-IP:server-port This looks like port forwarding
on the command line, but the middle colon is missing. Here I forward port 8080 on my
workstation to port 80 on the server. We attach to the 127.0.0.1, or localhost, on both
the client and the server. I'm using port 8080 on the workstation because using port 80
would require running SSH as root every single time.

Host envy.mwl.io

LocalForward localhost:8080 localhost:80

The LocalForward keyword most often appears with a Host statement,
enabling local port forwarding when you connect to specific servers. To avoid IP
and port conflicts, each server usually gets assigned its own local port.

PuTTY Local Forwarding

PuTTY has a special control panel just for port forwarding. On the PuTTY
Configuration screen’s left side, select Connection -> SSH -> Tunnels, as shown
in Figure 9-4.

ﬁ PuTTY Configuration

Category:
e band & Options controlling SSH port forwarding

- Bell Port forwarding

- Features

= Window |:| Local ports accept connections from other hosts

-- Appearance |:| Remote ports do the same (SSH-2 only)

- Behaviour .

s Forwarded ports: Remove
- Selection
- Colours

= Connection

Ei::y Add new forwarded port:

- Telnet Source port I:l Add
- Rlogin

- SSH Destination |
e @ Local (O Remote () Dynamic

- Host keys
- Giphist @ Auto Olpva OIPve

[Auth
- TTY
X1

- Bugs
- More bugs L

Figure 9-4: PuTTY Port Forwarding With local port forwarding, PuTTY attaches to the client’s localhost
address by default. I must specify the address on the SSH server to use, however. To forward port 80 on the
SSH server to port 80 on my workstation, I’1l use the server’s localhost address. In Source port, enter 80. In
Destination, enter the IP address on the server, a colon, and the port to be forwarded. Here I’ll use
127.0.0.1:80. At the bottom, select Local. It should look like Figure 9-5.

ﬁ PUTTY Configuration ? X

Category:

-- Keyboard ~ Options controlling SSH port forwarding
- Bell

- Features
= Window []Local ports accept connections from other hosts

-- Appearance |:| Remote pors do the same (SSH-2 only)
- Behaviour

- Translation
- Selection
- Colours

= Connection

- Data Add new forwarded port
- Proxy

- Rlogin
=.85H Destination |‘|2?.D.D.1:BD|

- Kex (@) Local (") Remote () Dynamic

- Host keys
- Ciphet (@ Auto () 1Pva ()IPve

[Auth

- TTY

X1

- Tunnels

- Bugs

- More bugs L

Figure 9-5: PuTTY Local Port Forwarding Settings Hit Add, then connect. You now have port forwarding.
Point your browser at localhost, and see what happens.

To bind this forwarding to the client’s network-facing IP address, select
Local ports accept connections from other hosts. This binds the forwarded port
to all IP addresses on the client, so that other hosts on the workstation’s network
can access the forwarding. See “Choosing IP Addresses” later this chapter for a
discussion of the implications.

If you want to use this forwarding every time you connect to this host, save
this session.

Remote Port Forwarding
Before configuring remote port forwarding, verify that normal SSH works.
Determine the client and server ports you want to forward to and from.

Where local port forwarding is usually used to wrap a service with
encryption, remote port forwarding is used to access a service behind a firewall.
For this example, I’'m going to forward port 2222 on the SSH server’s localhost
address to port 22 on the workstation. When I connect to port 2222 on the SSH
server, remote forwarding will redirect me to the workstation’s SSH service.

Why do this? Remember from our example environment, the client is behind
a firewall. The firewall might be my home NAT device, or my employer’s
industrial-grade corporate firewall cluster. Remote forwarding lets me use my

Port forwarding

Forwarded ports: Bemove

client to give an SSH server outside the network a way to connect to a host
inside the firewall, despite any firewall rules to the contrary. This might be my
invaluable emergency back door into my own network, or it might violate my
employer’s security policy. Or, better still: both!

Note that you cannot bind a forwarded port to the SSH server’s public-facing
IP addresses unless the server is specifically configured to permit this with the
GatewayPorts keyword. See “Restricting Port Forwarding” later this chapter.

OpenSSH Remote Forwarding

Configure remote port forwarding with the - flag.
$ ssh -R remoteIP:remoteport:localIP:localport hostname

If you don’t specify an IP address to attach to on the SSH server, SSH
attaches to 127.0.0.1. You can skip the first argument in this case, making the
command: $ ssh -R remoteport:localIP:localport hostname

I want to connect port 2222 on the SSH server sioth to port 22 on my

workstation, using the localhost address on both sides.
$ ssh -R 2222:localhost:22 sloth

My client connects to the server and gives me a command prompt. As long as
that SSH session remains open, another user on sioth could SSH to my

workstation by connecting to port 2222.
sloth$ ssh -p 2222 localhost

Poof! A new SSH connection into my workstation, tunneled inside my
existing SSH session. This new session would show up in the client log as a new
connection, originating from the localhost. You really need to trust the people
who have accounts on your systems when setting up remote port forwarding.
Anyone who can access your system’s localhost address can use the port
forwarding. I would never use remote port forwarding on an SSH server I didn’t
wholly trust.

If you want to establish remote port forwarding every time you connect to a

server, use the RemoteForward keyword in ssh_config.

RemoteForward server-IP:server-port client-IP:client-port Once again, this resembles port
forwarding on the command line, but the middle colon is missing. Here I set up this same
port forwarding in the configuration file.

Host sloth.mwl.io

RemoteForward localhost:2222 localhost:22

The RemoteForward keyword most commonly appears with a Host
statement, unless you want to perform remote forwarding on every host you
connect to.

PuTTY Remote Forwarding

To configure remote forwarding, go to the PuTTY Configuration screen’s left
side, select Connection -> SSH -> Tunnels, as Figure 9-4 shows. As we’re
forwarding from server to client, the Source port field refers to the port on the
server that will be forwarded to the workstation. In this case, the source port is

2222. The Destination is localhost:22, because the workstation’s SSH server

runs on port 22.3 Select Remote for remote port forwarding.

Hit Add, then connect. Port forwarding should work.

To bind this forwarding to the server’s network-facing IP address, select
Remote ports do the same (SSH-2 only). This binds the forwarded port to all IP
addresses on the SSH server, so other hosts can access the forwarding.
“Choosing IP Addresses” later this chapter discusses the implications.

To make the remote forwarding permanent for this server, save the session.

You can now laugh at the firewall all the way to the unemployment office. Or
get into your network when the VPN fails, saving your company. Or, again,
both.

Dynamic Port Forwarding
Dynamic port forwarding transforms your SSH client into a SOCKS (version 5)
proxy. Any traffic sent to the proxy will be tunneled to the SSH server, which
forwards that traffic as its own access permits. You must have a SOCKS-aware
application to access the proxy, but most web browsers include SOCKS support.
In this example, I’'m going to configure port 9999 on my workstation as a
SOCKS proxy and dynamically forward all traffic to my server on the public
Internet.

When using SOCKS, your client will probably need to forward all DNS
requests to the SOCKS server. Not all clients support this.

OpenSSH Dynamic Forwarding
Use the -o flag to tell OpenSSH to use dynamic port forwarding.

$ ssh -D localaddress:localport hostname
If you don’t specify an IP address, ssh automatically binds to 127.0.0.1.
Here, I create my proxy on port 9999 on my workstation. All traffic sent to
the proxy gets forwarded to the SSH server sioth, which relays it to its

destination.
$ ssh -D 9999 sloth

As usual with port forwarding, you’ll log on to the server and get a command
prompt. The dynamic forwarding runs in the background. Configure the web
browser on the workstation to use the SOCKS proxy at 127.0.0.1:9999. It should
send all your browsing over the SSH connection to your server.

If you want remote port forwarding configured every time you connect to a

host, use the DynamicForward keyword in ssh_config.
DynamicForward host:port

Like the other forwarding statements, and for the same reasons, the
DynamicForward keyword most commonly appears in a Host statement.

PuTTY Dynamic Forwarding

Go to the Tunnels screen shown in Figure 9-4. In the Source port field, enter the
port that you want your SOCKS proxy to use. Leave Destination blank. Select
Dynamic, then hit Add. You’ll see the port forwarding appear in the Forwarded
ports list. Open the connection. Your browser should now be able to connect via
the SOCKS proxy.

For my sample use, I enter 9999 in the Source port field, select Dynamic, hit
Add, and connect. That’s it.

To bind this forwarding to the client’s network-facing IP address, select
Local ports accept connections from other hosts. This binds the proxy to all IP
addresses on the workstation, so other hosts can access the forwarding.
Remember that you’re offering the tunnel to everyone who can access your
client when you do this.

Save the session if you want this forwarding started automatically every time
you open this connection.

Testing Dynamic Forwarding
You can verify dynamic forwarding with any program that supports SOCKS
proxies. The most common program of this type is a web browser.

Configure your firewall to block all port 80 traffic from your workstation.
Verify that you can no longer browse the web. If you’re going to browse, you’ll
need to do it over proxy.

Start a dynamic port forwarding SSH session. Configure the web browser to
access that proxy. If you can see the Internet, dynamic forwarding is working.

Backgrounding OpenSSH Forwarding

Sometimes you want to use OpenSSH to forward a connection, but you don’t
need a terminal session on the SSH server. Use the -n flag to tell ssh to not run
anything, including a terminal, on the server, and the -r flag to tell ssh to go into
the background on the client. Here I background a local forwarding session to

the server pride.
$ ssh -fNL 2222:1ocalhost:22 pride &

Backgrounding this command gives you your original terminal back.
Backgrounded forwarding is useful when you do not have shell access on the
SSH server, but you are allowed to authenticate yourself and create a tunnel.
(This is one way to create an SSH-based VPN, but Chapter 13 discusses better
ways.)

Choosing IP Addresses

When port forwarding, you must choose the IP address you want the forwarded
port to listen on, and the IP you want to attach the forwarded port to. Choosing
the IP helps control who may connect to the forwarded port.

The most common choice is to bind to the localhost address, 127.0.0.1, on
either or both ends of the tunnel. Every machine with a functional TCP/IP stack
uses 127.0.0.1 as the address for itself, and only the local machine can connect to
it. If I forward port 80 on my workstation’s localhost address to port 80 on the
server’s localhost address, no other hosts can connect to that forwarded port over
my tunnel. Most daemons on a server listen to the localhost address as well as
one or more network-facing IP addresses, so using the localhost address is a
reasonable way to forward ports.

If you want your client to accept requests from other machines and use local
port forwarding to send them to the SSH server, attach the port forwarding to the
client’s network-facing IP address. If I forward port 80 on my machine’s
network-facing IP address to port 80 on the SSH server, this forwarding is
available to all hosts that can connect to my client’s port 80. With PuTTY, you
must select Local ports accept connections from other hosts. With OpenSSH,
you must have a GatewayPorts keyword set in ssh_config (see “Gateway Ports”
later this chapter.) If you want the SSH server to forward requests from other
machines to your client using remote port forwarding, attach the port forwarding
to the server’s network-facing IP address. You must adjust GatewayPorts in
sshd_config as shown in “Gateway Ports™ later this chapter. For example, we used
remote report forwarding to connect a port on our server to the client’s sshd. You
could attach this remote forwarding to the server’s public facing IP address, so
that any host on the Internet could connect to the client’s SSH service even
though it’s behind a firewall. Remember, while creating a back channel into a
private network might be useful, opening that back channel to the entire Internet
is downright gauche.

If you want an SSH client to act as a SOCKS proxy for other machines via
dynamic port forwarding, attach the port forwarding to the client’s network-
facing IP address.

Always remember that a host running any modern OS can have multiple IP
addresses. It might make sense for you to pick a particular address rather than
allowing all network-facing addresses.

Suppose my workstation has an IP of 192.0.2.18 and is on a network with a
whole bunch of other clients. We have to access a critical web-based application
that doesn’t encrypt data in transit. I can provide an encrypted tunnel from my
workstation to the server via local port forwarding. If I wanted to provide this
tunnel to my desktop alone, I would attach the client’s end of the tunnel to
127.0.0.1. If T wanted to offer this tunnel to everyone on my network, I would
attach the client end to 192.0.2.18.

Or maybe I’m responsible for running the company’s content-filtering web

proxy and I’m trying to debug a problem where a certain website doesn’t
function through the proxy. I want to see what this website looks like from
outside my network. I could set up a private SOCKS proxy to bypass the
organization’s proxy, letting me browse from the outside server instead. Setting
up an unauthorized proxy server that anyone can use is a great way to need a
new job, so I make absolutely sure that the local end of that tunnel uses the
localhost address.

You can use a hostname instead of the actual IP address, provided that the
hostname appears correctly in the DNS. You can also use the word 1oca1host
instead of 127.0.0.1.

Restricting and Requiring Port Forwarding
The OpenSSH server controls what types of port forwarding users can perform.
You can either deny port forwarding, permit port forwarding but allow binding
only to the localhost address, or permit only specific addresses and ports.
Implementing these blocks at the server level isn’t as effective as one might
hope, though. A user who has shell access can easily install their own
forwarders. Properly disabling forwarding for shell users requires controlling
which binaries are executable, disabling interpreters like Perl or Python, and
preventing users from installing further programs. For the most part, unless
you’re really dedicated, users with shell access can figure out ways to forward
ports. Still, disabling or restricting port forwarding will give your users a really
solid hint that they shouldn’t be forwarding ports.

Block Port Forwarding
The sshd_conrig keyword AllowTcpForwarding tells ssha whether it should permit
port forwarding. The default is yes, allowing port forwarding. If set to no, port
forwarding is completely disallowed.

To permit only local port forwarding, set AllowTcpForwarding to 1ocal.
Similarly, remote permits only remote port forwarding.

Gateway Ports
The GatewayPorts keyword controls whether a client can bind a remote
forwarded port to any IP address other than 1ocainost. This keyword appears in
both ssh_config and sshd_config. The ssh_config OptiOH controls local port
forwarding, while the ssnd_config option controls remote port forwarding.
GatewayPorts is set to no by default, meaning that clients cannot connect any
port forwarding to any network-facing IP address. This is identical in both
ssh_config and sshd_config.
When used in ssh_config, setting GatewayPorts to yes to allows ssh to request to
listen to any IP on the client.

On the server side, setting GatewayPorts to yes in sshd_config means that no
matter what the client requests, remote forwarding always listens to all addresses
on the host. I have no idea why you’d enable global network access on all port
forwardings, but it’s an option.

The server supports one additional GatewayPorts option in sshd_config,
clientspecified, Which tells sshd to let a client bind to whatever they request.
Permitting the client fine-grained control on a forwarding-by-forwarding basis is
usually the best choice.

Allow Specific Ports and Addresses

If you want more specificity than GatewayPorts supports, you can restrict which
TCP ports and addresses can be forwarded with the PermitOpen keyword in
sshd_config. PermitOpen takes a space-delimited list of ports that may be
forwarded in the form of hostname:port. For example, here I permit the server’s
ports 25 and 110 to be forwarded back to the client, and only from the localhost

address.
PermitOpen localhost:25 localhost:110

Anything not permitted is forbidden. The SSH session will open normally,
but when you attempt to pass traffic over a forbidden forwarded port your SSH
client displays an error.

Requiring Port Forwarding

Perhaps the port forwarding is the only reason for this connection to exist. If
setting up port forwarding fails, you don’t even want the connection to establish.
The ExitOnForwardFailure ssh_config keyword tells ssh what to do in the event an
attempt to forward a port fails. The default, no, means the connection should be
set up even if port forwarding cannot be established. By setting
ExitOnForwardFailure to yes, you tell SSH to immediately disconnect if the port
forwarding doesn’t work.

Now that you know how to selectively forward ports to help glue your
network together, let’s see how to keep an SSH session alive for hours or days at
a time, without human intervention.

1 My HTML education ended about 1996, and I have no desire to resume it.
2 Yes, we're solving the wrong problem here. The real fix is to replace the boneheaded application.

31 know, I know, most Windows systems don't have an SSH service. I'm choosing to keep my examples
consistent, rather than confuse you further.

Chapter 10: Keeping SSH Connections Open

Port forwarding transforms SSH from a protocol that gets you a terminal session
into a tool for arbitrarily forwarding TCP traffic. But most firewalls (and some
Internet service providers) deliberately terminate TCP connections left idle for a
period of time. SSH sessions left idle will eventually be disconnected by the
server, the client, or some network device in between. If you’re forwarding a
service over SSH, or even if you’re too lazy to log into your SSH server every
time the firewall cuts your connection, you want to keep your session alive.

Most methods for keeping an SSH connection up amount to “pass a small
amount of traffic in the background so that intermediate network devices don’t
see the connection as idle.” These are called keepalives. Running a program that
continuously displays and updates, like top(1), can act as a keepalive without
changing any SSH settings. All you need to do is get in the habit of starting top
every time you’re interrupted.

The problem with keepalives is that temporary disconnections terminate the
session. If your service provider has a problem in the middle of the night and the
keepalive packets cannot cross the network for a few minutes, either your client
or your server will terminate the connection. Decide how to configure keepalives
appropriately for your network. You might not want them at all.

If your connection is so erratic that keepalives can’t sustain your connection,
investigate mosh (https://mosh.org). It’s a remote connection protocol similar to
SSH, but designed for unreliable networks.

You have two options for keepalives, TCP keepalives and SSH keepalives.

TCP Keepalives
Both PuTTY and OpenSSH support TCP keepalives. While TCP keepalives are
not as configurable as SSH keepalives, they’re sufficient for most end-users.

A TCP keepalive is part of the TCP protocol, is sent at the transport layer,
and is not part of SSH itself. When a TCP connection remains idle, it eventually
times out and disconnects. Turning on TCP keepalives sends occasional packets
back and forth just to remind everyone that this connection is still here. A TCP
keepalive can be spoofed or forged, though. This is not necessarily bad—I can’t
imagine why anyone would want to spoof your connection to keep it alive, but
someone more clever and more nasty than I can probably come up with more
than one bad reason. How often you need to send a TCP keepalive depends on
your operating system’s TCP stack, but it should never be longer than two
minutes.

PuTTY only supports TCP keepalives, but doesn’t originate them by default.

It responds to any TCP keepalives it receives, however. On the PuTTY
Configuration screen, go to the Connection section. The first option is Seconds
between keepalives. This defaults to zero, disabling sending keepalives. In most
cases, sending a TCP keepalive every 90 seconds suffices to hold the connection
open. Even if PuUTTY doesn’t send keepalives, SSH servers usually do, and
PuTTY responds to them. This usually suffices to hold the connection open.

The OpenSSH server sends TCP keepalives by default. If you want to disable
them, set the keyword TCPKeepAlive to no in sshd_config.

OpenSSH Keepalives

While TCP keepalives might meet most people’s needs, OpenSSH’s keepalives
are much more flexible. The keepalive messages, sent within the encrypted
channel, tell intermediary network devices that this TCP session is still in use.
Receiving a keepalive tells the host that the remote end is still connected, and
that the SSH session is still valid. An SSH keepalive is also more likely to
continue holding a session open even through a lengthy router reboot.

Both OpenSSH’s client and the server support keepalives. Strictly speaking,
the client sends client alive messages and the server sends server alive messages.
While these must be different for protocol reasons, to us they’re both just
keepalives. OpenSSH doesn’t use SSH keepalives by default; you must
configure them before starting a session.

A host that sends keepalives expects to receive keepalives in return. Each
host tracks how long it’s been since it received a keepalive from the other end. If
a host sends a specified number of keepalives without receiving any, it assumes
that the connection is lost and terminates the SSH session.

Using SSH keepalives requires deciding how often you want to send a
keepalive packet, and how many of those packets can be missed before the host
disconnects the session. The server uses the keywords ClientAlivelnterval and
ClientAliveCountMax. The client supports the keywords ServerAlivelnterval
and ServerAliveCountMax.

The Alivelnterval keywords dictate how many seconds the connection must
be idle before the host sends a keepalive. To make a client transmit a keepalive
after ninety seconds of inactivity, set ServerAlivelnterval to 90. The default is 0,
disabling keepalives.

The AliveCountMax keywords tell the host how many keepalives it must
send in a row before terminating the connection. The default is three.

Let’s look at how this works in practice. We have the following in the

server’s sshd_config: ClientAlivelnterval 90
ClientAliveCountMax 5

On the client side, we’ve put the following in ssh_conrig.

ServerAlivelnterval 90
ServerAliveCountMax 4

We log into our SSH server, do some work, and let the connection go idle.
Ninety seconds after the connection goes idle, the client sends a keepalive to the
server. If the server responds with its own keepalive, both client and server know
that the connection is alive. If another ninety seconds pass without receiving a
response from the server, the client will send another keepalive. It knows that
it’s sent two keepalive requests without receiving any response from the server.
If the connection remains idle, the client keeps sending keepalives. At the fourth
keepalive, after six minutes, the client throws away the SSH session and exits.

The server sends keepalives in the same way, but note that it’s set to tear
down the connection at five unacknowledged keepalive requests. This particular
client tolerates less interruption than the server.

Note that the TCP protocol also plays into this. A host sending TCP packets
expects the recipient to acknowledge every packet. If the sender does not get this
acknowledgment, it eventually tears down the connection despite anything SSH
can do. The length of time varies by operating system, but you should know that
if you cannot maintain a TCP connection you cannot maintain an SSH session.

If you want to keep your connection alive no matter what, cranking

AliveCountMax to high values helps, especially when you’re behind a cheap!
Network Address Translation device such as many home routers.
PuTTY does not support SSH keepalives.

Keepalives and the SSH Server
If you disable all keepalives on your SSH server, the server cannot notice when a
client goes off-line. This means that when a workstation crashes or a network
link fails, forcibly disconnecting a client, the server won’t know. It will continue
running the SSH processes for these clients. If your server is up for a long time,
you may accumulate hundreds or even thousands of defunct sshd processes.
Cleaning them up is kind of a pain. I recommend using TCP keepalives at a
minimum, and preferably SSH keepalives as well.

Now let’s look at simplifying your life through key distribution.

1 I'm fine with inexpensive, but I detest cheap.

Chapter 11: Key Distribution

Unquestionably, the most annoying part of managing SSH is distributing and
verifying keys.

No matter how dire the lecture you inflict upon your users, many of them
won’t bother to compare server fingerprints to the list you provide; instead
they’ll hit “Yes, accept the key.” No matter how hard we try to educate them,
users quickly grow inured to the scary-looking warnings and learn to ignore
them. The best way to help users pay attention is to ensure that they don’t see
warnings unless something is truly wrong.

Similarly, key-based authentication is usually more secure than password-
based. Many users won’t bother to copy their authorized_keys to a server, however.
They’ll just stick with familiar passwords. If you want to enforce key-based
authentication, you’ll need to get the user’s authorized_keys on the servers
yourself. And if you manage dozens or hundreds of servers and/or users, you
will need automation to distribute user key updates amongst your systems.

While OpenSSH doesn’t include automated key distribution tools,
understanding key-related features can vastly simplify your automation process.
We’ll start with host keys, and proceed to user keys.

known_hosts In Detail

Host key distribution, for both OpenSSH and PuTTY, starts with known_nosts. If
you’re going to distribute host public keys, you’ll want to be sure that those
records are pristine. That means you need to completely understand the
known_hosts file.

Each line in known_nosts represents one public key from one host, in space-
separated fields. If a host supports three different public key algorithms, and
you’ve connected to this host using all three keys, that host will have three
entries in known_nosts. Each entry also gives the server’s hostname or IP address
and the algorithm used for the key. But each entry can also include a couple
other fields.

Marker
The known_nosts file supports to special markers, @cert-authority and @revoked.
These markers must appear first in line.

A known_nosts entry that starts with @cert-authority indicates that the host key
is for an SSH certification authority. An SSH certification authority is not the
same as a TLS CA. Chapter 14 discusses SSH CAs.

If an intruder breaks into an SSH server and copies the servers private key,
that key can no longer be trusted. A savvy intruder might use that key to try to

spoof the server. By marking a key with @revoked in «nown_nosts you tell ssh to

not accept this key and to generate a scary warning.
$ ssh gluttony

@EREEEEEEEEEEPEEEEEPEEEEEPEEPEEEPEEEPEE@E@E@@(

@ WARNING: REVOKED HOST KEY DETECTED! @

@EREEEEEEEEEEPEEEEEPEEEEEPEEPEEEPEEEPEE@E@E@@(

The ECDSA host key for gluttony.mwl.io is marked as revoked.

This could mean that a stolen key is being used to impersonate this host.

ECDSA host key for gluttony.mwl.io was revoked and you have requested strict checking.
Host key verification failed.

Note that there is no “accept this key anyway” option. A revoked key is
utterly un-trusted. Leaving the key in known_nosts but marking it as a revoked
gives the user clear warning that they’ve encountered a compromised system.

Markers must go at the beginning of the line, before the hostname.

Hostname
The hostname is how SSH identifies an SSH server. If you used a short
hostname to connect to the server, ssh records the full hostname that it used to
contact the server. This means that if I typed ssh wrath, ssh would record the
hostname as wrath.mw1.io because that’s the name my system’s resolver provided
to ssh(1). The machine might have other host names or aliases, and is probably
also known by its IP address. A truly authoritative known_nosts file must include
keys for each of those names.

The good news is, you don’t have to include multiple mostly-duplicate lines
for these different names. The known_nosts file accepts multiple host names in a

single entry, so long as they are separated by commas.
gluttony.mwl.io,mail.mwl.io, 203.0.113.213 ecdsa-sha2-nistp256
AAAAE2VjZHNhLXNoOYTItbmlzdHAyN..

Some sysadmins change the TCP port their SSH service runs on. This isn’t
terribly useful for security, but helps slow down the more primitive worms and
reduces log chatter. These host names appear in brackets in known_nosts, followed

by a colon and the port number.
[lust.mwl.io]:2222 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAYNTYAAAAIbmlzdHAYNT..

Chapter 5 covered obscuring host names by hashing them, preventing a
casual intruder from extracting server information from known_nosts. Listing
multiple host names on a single line simplifies central management of known_nosts,
but conflicts with hashing host names. If you wish to hash host names, you must
list each hostname on a separate line. A host known as avarice.mwl.io, mail.mwl. io,
and 198.51.100.12 requires three known_nosts entries, and each will be separately
hashed. If you’re going to hash known_nosts entries before distributing them, I

recommend maintaining your master file in clear text.

A host that accepts connections on multiple IP addresses theoretically needs a
known_hosts entry for each of those addresses. If you don’t normally connect to all
of those addresses, then don’t bother. I have a server with dozens of IP
addresses, but I only connect via SSH to one of those addresses, so that server
has only one known_nosts IP entry. If you have such a server, locking sshd to only
listening on one address might simplify management.

Key Type

The key type is the algorithm used to generate this host key. A modern
known_hosts can contain six different key types: ssh-dss (DSA keys), ssh-rsa (RSA
keys), ecdsa-sha2-nistp256, ecdsa-sha2-nistp384, and ecdsa-sha2-nistp512
(ECDSA keys), and ssh-ed25519 (ED 25519 keys). Anything else that appears
in the space is weird and needs investigation.

Key

The public key is a long gibberishy alphanumeric string. It often starts with a
series of capital A’s and often (but not always) ends with equal signs (=). The
key fills the majority of the line.

Comment

The comment is free-form text. You can use the comment anyway you need. It’s
generally blank in automatically-maintained known_nosts files, but you’ll find it
useful in centralized management.

Creating known_hosts

The easy way to generate a known_nosts is to use ssh-keyscan(1).
$ ssh-keyscan wrath > wrath.known_hosts

That gives you a known_nosts file to start with. Now you need to verify those
keys against the fingerprints you generated in Chapter 4. That’s a great job to
give to a meticulous, conscientious flunky you loathe.

I encourage you to automate collecting known_nosts entries. How you do this
depends entirely on your organization’s preferred tools. Ideally, you’d run ssh-
keyscan when the machine is first deployed, before any intruder has a chance to
trash it, and immediately update your known_nosts.

If you want to simplify known_nosts, you could reduce the number of keys that
an SSH server offers. You might declare that all hosts in your network only offer
ED25519 keys, eliminating all the known_nosts entries for all other key types. The
sshd_config HostKeyAlgorithms keyword lets you set the algorithms ssha will use

for host identification.

HostKeyAlgorithms ssh-ed25519, ssh-rsa The exact method you’ll use depends entirely on the
tools you’re comfortable with and the automation you already have in place. If at all
possible, repurpose your existing tools.

And if you write a good tool to collect, verify, and build a known_nosts file,

please make it publicly available.

Revoking Host Keys
If you have reason to suspect that a server’s key has been compromised, revoke
it. Find all of the server’s host key entries in your known_nosts. Add to the string
@revoked in front of all of them. Generate new host keys for the server and
restart sshd, then add the new host keys to your known_nosts. You can now
distribute your updated known_nosts to your clients, and in the (unlikely) event that
the user attempts to use the revoked key, the user will get a warning.

The effectiveness of revoked keys depends entirely on distributing known_nosts
to your clients.

Distributing Host Keys
Any time an SSH server’s host key is added, moved, or changed, users will see
warnings about the host key. The whole point of distributing known_nosts is to keep

users from seeing unnecessary warnings. Stay ahead of your users.l Update your
known_hosts any time you deploy or remove a server, or if you must give a server
new keys. If you delay updating known_nosts, users will learn to ignore warnings.

The worst part of maintaining a centralized known_nosts file is copying the file
to all of your servers and workstations. You’re busy. If the update takes a long
time or a lot of energy, you won’t keep up on it. You really need a centralized
system like Ansible, Puppet, or one of their many competitors. Active Directory
works fine for distributing host keys to Windows systems. If you’ve never used
automation, I recommend Ansible. Once you have a complete known_nosts for your
existing systems, updating that file and pushing it out to all of your systems
should only take a minute or two, and will save your users and your support
team hours of labor.

Distributing known_hosts

All OpenSSH clients check etcssh/ssh_known_nosts for host keys. Copy your
known_hosts 10 this location on each of your servers and workstations. The next
time someone uses ssh(1) on these machines, the correct key will already be in
place.

OpenSSH checks for host keys in each user’s personal known_nosts file in
addition to the system’s etcssh/ssh_known_hosts. The client will use any entry that
matches the key offered by the server. When you first deploy a centralized
known_hosts, each user will probably have an existing personal known_nosts. You
don’t want any obsolete or invalid entries in the user’s personal cache to
interfere with later key changes or revocations. Don’t just go deleting everyone’s
known_nosts; they might contain verified host keys for servers you don’t control.
Instead, on your first deployment, move each user’s personal known_hosts to

somewhere like known_hosts.personal.

Be sure to tell your users what’s going on. Preferably in advance.

Once you have a system in place to maintain known_nosts, you’ll find other uses
for automation in SSH. Remember that etcssh/ssh_config sets systemwide defaults
for ssh(1). If you have organizational standards that require special settings, you
can enter them in the global configuration and save your users the effort of
editing their own configurations or remembering command-line arguments. If
your organization runs SSH on a non-standard port, setting the Port keyword in
etcssh/ssh_config might actually earn you good karma from your users. Personal
config files override systemwide settings, so users can still shoot themselves in
the foot if they’re really intent on it.

Distributing PuTTY Host Keys

PuTTY keeps its host keys in the Windows Registry. Copying the keys isn’t as
easy as moving a file to all of your workstations, but it can be simplified. The
PuTTY team has a Python script to convert known_nosts into PuTTY’s Registry
keys, hkareg.py. You won’t find hkareg.py in the normal PuTTY installation, but
it’s included with the source code. You can download the PuTTY source code
from the PuTTY website, or grab it from the PuTTY GitHub at
https://github.com/github/putty, in the “contrib” directory.

Run nkzreg.py and give it a single argument, your pristine known_hosts.
$ kh2reg.py pristine-known_hosts > putty.reg

Install this registry file on your clients via Active Directory, a login script, or
by having your users double-click on it.2

Remember that PuTTY stores keys in each individual user’s Registry. There
is no systemwide PuTTY registry tree. Distribute keys by user, not by machine.

If you are maintaining known_nosts for a variety of platforms, I suggest this
workflow for distributing host keys: Start by gathering your host keys. Create a
known_nosts file for your OpenSSH clients. Trigger the script to automatically
distribute the new known_nosts to each of your OpenSSH systems. While that runs,
use khzreg.py to create your Windows registry. Last, queue your new registry file
for distribution via Active Directory. The next time people login, they should
have all the new keys.

Host Keys in DNS

OpenSSH supports checking for host key fingerprints in the Domain Name
System. (PuTTY does not.) This eliminates pushing the file to your servers, but
traditional DNS services are not secure. You absolutely must have DNS Security
Extensions (DNSSEC) if you want to securely distribute your servers public key
fingerprints via DNS. If you do not yet have DNSSEC, go configure it now and

then come back here. You might find my book DNSSEC Mastery (Tilted
Windmill Press, 2013) useful.

We’re not going to cover DNS basics. If you’re considering distributing key
fingerprints via DNS I'll take it as given that you know what a zone file is, why
an RR is important, and why you update serial numbers.

SSHFP Records
The SSH Finger Print (SSHFP) record provides a host’s SSH fingerprint. The
record looks something like this: wrath IN SSHFP 1 1
07988cadf134050d458dfa5f2c062b5e68106163

As with any standard DNS record, the first field gives the hostname, the
second indicates this is an Internet record, while the third indicates this is an
SSH fingerprint record. SSH-specific details start appearing in field four, which
gives the algorithm type. You don’t have to memorize which number maps to
which algorithms, but the 1 here means this is an RSA fingerprint. The fifth field
is the message digest algorithm used to produce this fingerprint. 1 indicates
SHA-1, while a 2 represents SHA-256. Finally, the sixth field is the actual key
fingerprint.

You’ll need two SSHFP records for every public key your server offers; one
for SHA-1 and and one for SHA-256.

Creating SSHFP Records
Don’t even try to create SSHFP records by hand. The ssh-keygen program can read
the key files on the local server and produce records, by using the -r flag. Give

the hostname as an argument.

$ ssh-keygen -r wrath

wrath IN SSHFP 1 1 07988cadf134050d458dfa5f2c062b5e68106163

wrath IN SSHFP 1 2 b7931f47398caled73e8642hd029fb69dda05913058ffb09612358c429436013

wrath IN SSHFP 2 1 3f73194323def663866a7b3996e6bel113d7ea303

wrath IN SSHFP 2 2 927b54096876789ca926dalaa80db5a09751c8d9c5¢c99527b3a231e878802e3e wrath
IN SSHFP 3 1 cf61d5ed8a653750198daf77f0a409d48c8ef760

wrath IN SSHFP 3 2 4d2277f46a699d475ff095fa274a007fdf8281ad8bcch3575feb62779e257e8e wrath
IN SSHFP 4 1 59c3ed21e086b923a4e8a49504691c844f5a1590

wrath IN SSHFP 4 2 4e2fl1c2ee4850d1bb43fffd43e16d27df99d0a34915821f51423dd7d48944f513

Load these records into your DNS server.
You could also copy the server’s public key files to a central host and tell ssh-

keygen t0 use those files with the -r flag.
$ ssh-keygen -r wrath -f ssh_host_ed25519 key.pub

You must run this command separately for each key file, but if you have a
central automation server this approach has a lot to recommend it. Remember,
the public keys are displayed to anyone who can connect to the server’s SSH
port. Copying the public key files to a secure server is not usually a security risk.

As I write this some free DNS providers, such as Hurricane Electric, support
SSHFP records.

Configuring the Client
The OpenSSH client might use SSHFP records by default, depending on how the
operating system distributor compiled it. Use the VerifyHostKeyDNS keyword
to explicitly define what ssh should do. If set to yes, the client completely trusts
keys provided by SSHFP records. If set to ask, ssh displays the key fingerprint
and asks the user what to do.

This handles the host keys. Now let’s talk user authentication keys.

Distributing authorized_keys
A lone sysadmin with only a handful of servers can pretty easily maintain her
Own authorized_keys file. Get up to seven or eight servers, and copying
authorized_keys everywhere gets pretty tedious. Have a whole team of sysadmins,
and want to ban password authentication across your hundreds of servers? You
really have to look at ways to automate authorized_keys replication. You can either
have your automation system replicate authentication keys on all systems, or
have sshd query the network for a user’s authorized_keys at every login attempt.
Both have their place.
Replicating Key Files
Having users maintain their own key files can cause operational problems. Users
have an uncanny ability to corrupt their files, especially when they think they
know what they’re doing. By having a centralized system to deploy
authorized_keys, you get a chance to perform some basic integrity tests before the
user gets themselves in trouble. You don’t need a complicated key file parsing
and validation system, but being able to say, “Did you realize that your key
entries have newlines in the middle of them?” can reduce annoyance for
everybody involved. Also, if a user’s workstation gets hacked into, and the
intruder bootstraps that into server access, the intruder can add their own key to
the user’s authorized_keys and copy it to all the servers in known_nosts. Centralizing
key management and removing a user’s ability to upload new key files without
passing through the automation system can be desirable.

You really don’t want your automation system mucking around in each user’s
home directory. Instead, take advantage of the AuthorizedKeysFile sshd_config
keyword. This lets you put a user’s authorized_keys file anywhere you want.

Combine this with the % token to have root own all the user keys.
AuthorizedKeysFile etcssh/keys/%u Remember that the %u token represents the username. With
this AuthorizedKeysFile setting, the authentication keys for the user mwl would be in
etcssh/mwl, while the keys for the user djm would be in etcssh/djm. Key files outside the
user’s home directory look exactly like any other authorized_ keys, but they must be owned
by root. Even if our hypothetical intruder penetrates an account, they can’t edit the keys
without privilege escalation.

Use any features your operating system supports to secure these files. On a
UFS filesystem, maybe the immutable flag would suit your environment. Or

NFSv4 ACLs. If something annoyed you by refusing to let you change a file,
consider it for protecting authorized key files.

Querying the Network for Keys

If you have centralized authentication system such as LDAP, you can store user
authentication keys in that system. OpenSSH can query that information source
with the AuthorizedKeysCommand and AuthorizedKeysCommandUser
keywords.

AuthorizedKeysCommand usrscripts/getAuthorizedKeys.pl AuthorizedKeysCommandUser ldap Any
time you look at network-based authentication people’s brains leap into LDAP. LDAP is
specifically meant for this sort of directory lookup—it’s pretty much a database optimized
for reads. I can’t go into detail here, as LDAP directories vary wildly between vendors.
No matter which you use, however, you’ll need to get an SSH key schema loaded into your
directory. Talk with your LDAP administrator and see what they can provide. The exact
schema needed varies with the directory arrangement, but it usually involves attaching an
sshPublicKeys entry to the user’s account. LDAP administrators for large enterprises that
are built upon commercial LDAP offerings are often reluctant to extend core directory
entries, because that limits their ability to get vendor support. In my experience,
solving this problem required more effort than any other part of key distribution.

Once you have the schema loaded, you need a script to fetch authorized keys
from the directory. The type of script varies precisely as much as the types of
authentication systems people use. A script that authenticates against Active
Directory will be completely different from one that authenticates against a
home-brewed OpenLDAP directory. CentOS ships with a script to authenticate
against their LDAP server, ssh-ldap-helper(8). People have solved this problem
for a variety of directory services, and made their scripts available, so be sure to
look for existing solutions before spending the next ten years debugging your
oW,

The AuthorizedKeysCommandUser keyword defines the account that will
run the script in AuthorizedKeysCommand. If you don’t set
AuthorizedKeysCommandUser, sshd will not run the script. All attempts to get a
user’s authorized_keys Will fail. I recommend creating a user with no privileges
except running this one script. Isolated unprivileged users are a ridiculously
inexpensive security solution that doesn’t get used often enough.

Just because LDAP gets all of the attention, don’t limit yourself by thinking
LDAP is a requirement. It’s convenient if you have it, yes, but you can use any
service that makes sense for your environment. If your organization has a rule
that all applications must interoperate via ODBC, or perhaps Wordpress
XMLRPC over HTTPS, leverage your existing expertise and write a script that
fetches keys that way. AuthorizedKeysCommand is a script. You’re a sysadmin.
This is your thing.

Whether you’re talking about user authentication keys or host public keys,
automation and key distribution are vital. Now that you can have your
automation manage SSH, let’s see how SSH can manage automation.

1 And remember, your users are quick—especially when it’s inconvenient.

2 Emailing a Registry file to all of your users and telling them to double-click on it before using SSH does
not encourage a security mindset.

Chapter 12: Automation

SSH is an incredibly powerful tool for automation. Many programs can use SSH
as a transport, relying on known-secure software rather than attempting to
implement their own network security. Most network orchestration tools like
Ansible and Puppet use SSH; breaking your SSH configuration means you can’t
use them.

This same flexibility can cause security issues, however. Automated
processes should not get access to anything except the bare minimums needed to
perform their task. Fortunately, you can limit the commands that particular users
can run via SSH, through the authorized_keys file or even in sshd itself.
Additionally, you can automatically run commands whenever a user logs in.
We’ll start with that function, and proceed to limiting users.

Running Commands at Login

The SSH server checks for commands to run any time a user starts a new
session. This was mostly designed to configure services needed to make the
account usable before login, such as mounting filesystems and assigning an X
display, but you can use it for whatever you need.

At login, sshd checks for the shell script swome/. ssh/re. If it exists, it gets run. If
it doesn’t exist, sshd checks for a script at sshsshrc and runs that. Either way, the
script is run by the account being logged into. If you need to perform tasks every
time a user logs in, consider this functionality.

The script must be a valid shell script, complete with #:binsh at the top of the
file, and it must be executable. (Some Linux distributions execute this command
even if it doesn’t meet these requirements.) The SSH daemon hands the script
one argument, an X11 cookie. With modern X software, you almost certainly
can ignore it.

The sshd_conrig keyword PermitUserRC turns this script check on and off.
While it defaults to yes, you can disable the script by setting it to no.

authorized_keys Restrictions

While a user’s authorized_keys dictates the key pairs that can be used for
authentication, you can also use it to limit the commands that a user logged in
with that key may run. One account might have a key pair for interactive use and
a second key pair for an automated task. Configuring requires understanding the
authorized_keys file format.

Authorized_keys Format

A minimal authorized_keys entry has three parts: the key type, a few hundred

alphanumeric characters representing the public key, and a comment field. Each
entry goes on a single line, no matter how long it is. It will look something like
this: ssh-rsa AAAAB3NzaClyc2EAAAABJQAAA... wE2Ime8Rs/Q== moose-
20160525

This is an RSA key, as shown by ssh-rsa at the beginning of the entry. This
public key begins with a AAA and ends with 8Rs/Q==. Many but not all public-
key entries end in the double equals sign. The comment at the end gives the host
this key was created on and the date of creation.

You can put additional keywords and instructions on how this key may be
used at the beginning of the entry. The server obeys those instructions, within
the limits of the user’s permissions. Find a complete list of authorized_keys
keywords in the sshd(5) man page, but here are the most commonly used ones.

command="command"

Whenever someone logs in using this key, run the specified command. SSH
ignores any command provided by the user in favor of the one dictated by
authorized_keys. You might use this for automated processes, such as configuring a
VPN (Chapter 13) or running rsync.

command="sudo ifconfig tun®@ inet 192.0.2.2/30" ssh-rsa AAAAB3NzaClyc2EAAAABJQAAA..

One interesting feature is that SSH retains any command the client requested
in the environment variable $ssH_orzcInNAL_commanp. YOu can have authorized_keys run
a script that checks this environment variable and acts appropriately. (“The
backup account just requested access to binbash? Hello, sysadmin, we have a
problem...”)

environment="NAME=value"
This set an environment variable when this key is used to log in. You can use

dany number of environment statements.
environment="automated=1" ssh-rsa AAAAB3NzaClyc2EAAAABJQAAA..

By default, sshd does not permit setting environment variables. The sysadmin
must set PermitUserEnvironment to yes in sshd_config for users to set environment
variables.
from="ssh-pattern"

This key can only be used for authentication if the clients address or reverse
DNS matches the given pattern. We discussed patterns in Chapter 2. I frequently
use this to restrict automated processes. Even if an intruder steals a private user

key, he cannot access the SSH server from any host other than the one I permit.
from="198.51.100.0/29" ssh-rsa AAAAB3NzaClyc2EAAAABJIQAAA..

Only hosts in the IP range 198.51.100.0 through 198.51.100.7 can use this
key to log into the SSH server.
You can only use host names in the pattern if UseDNS is set to yes.

Remember that intruders can frequently forge their reverse DNS entries, so it’s
most often best to disable DNS in sshd and stick with IP addresses.

no-agent-forwarding
This disables SSH agent forwarding (see Chapter 7) for this key.

no-agent-forwarding ssh-rsa AAAAB3NzaClyc2EAAAABJQAAA..
no-x11-forwarding
This (wait for it...) disables X forwarding (see Chapter 8).

no-x11-forwarding ssh-rsa AAAAB3NzaClyc2EAAAABJIQAAA..
no-pty
Sessions that authenticate with this key will not be granted a pseudo-terminal.

Many programs that run under automation do not need a terminal.
no-pty ssh-rsa AAAAB3NzaClyc2EAAAABJIQAAA..

no-user-rc
This disables sshd’s login script checks, as discussed in “Running Commands at

Login” at the beginning of this chapter.
no-user-rc ssh-rsa AAAAB3NzaClyc2EAAAABJIQAAA..

permitopen="host:port"
The permitopen keyword restricts local port forwarding so that it can only attach
to the given hostname or IP address and port on the local machine. If the server

doesn’t allow local port forwarding, this has no effect.
permitopen="1localhost:25" ssh-rsa AAAAB3NzaClyc2EAAAABJQAAA..

This example allows port forwarding to connect to port 25 on 127.0.0.1, but
nothing else.
You can set permitopen to none to disallow all port forwarding.

tunnel="n"

Use a specific tunnel device number for SSH tunnels (see Chapter 13).
tunnel="3" ssh-rsa AAAAB3NzaClyc2EAAAABJIQAAA..

restrict

By default, anything not denied is permitted. The restrict keyword inverts that,
blocking everything unless you specifically allow it. You can use the keywords
agent-forwarding, port-forwarding, pty, user-rc, and X11-forwarding to turn
those functions back on.

Using Multiple Keywords

As with just about everything in OpenSSH, you can use multiple keywords in

one entry. Separate keywords with commas, not spaces.
restrict, command="usrlocal/scripts/backup.sh" ssh-rsa AAAAB3NzaClyc2EAAAABJQAAA..

Keys and Automated Programs

Lots of us want to use SSH as a secure transport for other programs. Maybe you
have a custom monitor program, or a backup process that runs over rsync. Such
clients should never have a hard-coded username and password; in addition to

being insecure, it’s neither maintainable nor scalable. One solution is to use an

authentication key without a passphrase. By tightly restricting how that key can
be used and what actions can be taken with that key, you minimize the damage

an intruder can inflict.

Note that potential damage is only minimized, not eliminated. An rsync
backup run at the wrong time can damage an existing good backup or saturate
the network. Bringing a VPN up at the wrong time can be highly disruptive. In
most environments, however, these are less damaging and more visible than
someone copying or destroying all of your proprietary data.

First you need a user key suitable for use by a program, then you need
appropriate authorized_keys restrictions.

Automation Authentication Keys
Automated processes cannot type passphrases. Any scheduled or otherwise
automated task that requires SSH access to another host needs a key without a

passphrase. Generate this key exactly like you would generate a host key.
$ ssh-keygen -f filename -N ''

This creates two files, one with your chosen file name and one with that same

name but .pu» appended. Here I create a key called task-key.
$ ssh-keygen -f task-key -N ''

I end up with the files task-key and task-key.pub. The .pub file is the public key.

Either create an account on the SSH server for this automated task, or choose
an existing account. The host’s SSH server must permit logins to that account.
Add the .pub file to that account’s authorized keys.

The client machine should now be able to log on to the SSH server using the
key. Remember to use the -i argument to ssh(1) to specify the alternate key file.

Here I use this key to log on to the machine sioth.
$ ssh -i task-key sloth

If you successfully log onto the server, the key is correctly installed. Now
let’s lock it down.

Limiting Automation Keys

Best practice forbids all access unnecessary for a user to perform his task. Does
your automated process need port or X forwarding? Turn them off. Does it need
a special environment? Probably not, because you can establish that environment
more easily in the user account. Your automated job runs on a single machine, so
you can restrict the key so that it can only be used from that one machine. You’ll

probably end up with an authorized_keys entry like this.
restrict, command="dump home > backups/ date +s’.dump",from="192.0.2.8" ssh-rsa
AAAAB3NzaClyc2EAAAABJIQAAA..

Configuring the key like this reduces the scope of disasters. The backup
script won’t accidentally overwrite your root partition. An intruder can only run

your backup script. This isn’t great, but it’s better than the intruder stealing your
data and deleting your log files.

Developing Automation Scripts

One challenge in restricting a key is understanding what commands the program
actually needs, versus what you think it needs. The debugging mode of sshd can
help you figure this out. Have your client run its command against sshd in
debugging mode, and study the output. You’ll see all of the commands that the
client runs. This will also let you lock down the key further than you might
otherwise—if you know the exact flags rsync will use on your server, you can
impose those as a restriction.

I’ve written scripts that seem to work from the command line, but fail when
scheduled, and each time it’s turned out that my script was picking up
authentication information from my SSH agent rather than using the key I'd
created for the task. The IdentitiesOnly keyword tells ssh(1) to only use the
identity specified on the command line and not your agent. Set -o
Identitiesonly=yes iIl your SCI‘ipt’S SSH command.

An automated script should never be prompted for user input. You don’t want
your script hanging and waiting at a password prompt. The BatchMode keyword
disables password and passphrase prompts. By setting BatchMode to yes the SSH
part of your script will crash and die immediately, rather than pointlessly
hanging around forever.

Server-Side Restrictions

Perhaps you don’t want to use authorized_keys t0 restrict access, or maybe you’d
like additional protections. You can use the ForcecCommand sshd_conrig keyword
to restrict what an account can run.

ForceCommand takes one argument, the command to be run. It’s run under
the user’s regular privileges, and disregards whatever command the client
requested. Much like defining a command in authorized_keys, ForceCommand
retains the requested command in the sssi_orzeInaL_commano environment variable.

ForceCommand is best used inside a Match statement.

Automation and Root Logins

“My command needs to run as root!” It is possible to login as root using the
PermitRootLogin keyword. Don’t do it. Logging in as root for automation
breaks many fundamental security principles. Trusting your automated scripts
with remote root privileges is a good way to spend an unscheduled weekend
restoring the servers from backup. (You do have backups beyond rsync, right?
Remember that rsync is a tactic, not a strategy.) Yes, a few environments can
securely support root logins. Some people are using root logins in a manner that

can support auditing. If you’re reading this book to learn about SSH, however,
your environment is nowhere near ready for this.

If your automated process needs privileged access, use sudo. Sudo
(https://www.sudo.ws) lets unprivileged users run particular commands with
elevated privileges and is available for every Unix-like system. I’m not going to
go into detail on using sudo; if you need a tutorial, check any number of
websites or my book Sudo Mastery (Tilted Windmill Press, 2013). Sudo is far
more flexible, and more dangerous, than most people give it credit for.

We’ll use restricted keys in the next chapter to build a VPN over SSH.

Chapter 13: Virtual Private Networks

You can wrap SSH around arbitrary TCP connections, adding a layer of
encryption to any protocol. But OpenSSH also supports building generic tunnels
that can pass all traffic and all protocols, not just TCP. You can link to remote
offices with OpenSSH, creating a Virtual Private Network (VPN) that allows
users at one office to access the other office almost as if they were on the next
floor rather than the next country.

VPNs are an OpenSSH extension to the SSH protocol. PuTTY does not
include VPN functions and the PuTTY developers have repeatedly stated that
they do not intend to add it to their client (see the tun-openssh wish list item on
the PuTTY website). We will only examine OpenSSH VPNs on Unix-like
systems.

SSH was not designed as a generic VPN protocol, and tunneling protocols
inside TCP is terrible practice. When a TCP connection loses packets, it must re-
transmit those packets until the other end of the connection acknowledges
receipt. By wrapping a TCP connection inside another TCP connection, you
amplify the effects of packet loss. TCP-based VPNs collapse in the face of
congestion. I strongly recommend using OpenVPN instead of OpenSSH for your
VPN. An OpenSSH VPN does have the advantage that it only requires a single
TCP port open between the client and the server. If that’s all the connectivity
you have, an OpenSSH VPN might be your least terrible option.

A VPN is perhaps the most complicated thing you can do with OpenSSH.
This chapter assumes you are comfortable with the earlier chapters, including
public-key authentication, keeping an SSH session alive, and restricting the
commands available to SSH clients.

Example Network
Our SSH client, avarice.mwl.io, has two network interfaces. One is on the public
Internet. While we could refer to that interface by IP address, we’ll use the
hostname instead. The second interface is on private network A, with an address
of 172.16.0.1/24.

The SSH server, giuttony.mu1.i0, also has one interface on the public Internet.
We’ll refer to this interface by hostname rather than IP. Its second network card
is on private network B, and has an IP address of 172.17.0.1/24.

152.168.0.2/30 192.168.0.1/30

< >
: —g VPN tunnel |:| e
- 172.16.0.1/24 i p - L, 172.17.0.1/24
avarice SS5H connection gluttony R
{client) (server)

Figure 13-1: VPN Network We’ll use SSH to establish a point-to-point tunnel between the two hosts. The
client’s end of the tunnel will have the IP address 192.168.0.2/30. The server end of the tunnel gets
192.168.0.1/30.

We’ll consider OpenBSD, FreeBSD, Debian, and CentOS. OpenBSD has the
best SSH VPN support of any operating system—which shouldn’t surprise
anyone, considering that OpenSSH originates in OpenBSD. Running an SSH
VPN on FreeBSD requires basic scripting. Most Linux distributions change
OpenSSH to fit better with their systems, and they’ve also deprecated the
standard UNIX networking commands in favor of Linux-specific tools. This
means every operating system needs a different approach. Between these four,
you should find a method that you can adapt for your operating system.

Creating and managing VPNs is the most difficult feature in OpenSSH, and
the operating systems that support them change over time. I wouldn’t be shocked
to see these VPN instructions become outdated more quickly than the rest of this
book. If you have trouble with these examples, consult your operating system
documentation for more current references.

Common Concepts

The following concepts and configurations for OpenSSH VPNs appear across all
operating systems. No matter which OS you run, you must understand this
material and follow these general principles. While you can find tools that
purport to simplify tunnel setup, once you understand how the tunnel works
you’ll find using raw SSH trivially simple.

Tunnel Interfaces

An SSH VPN works using a tunnel (or tun) interface. A tunnel is a virtual
interface that sits above some other network interface. The most common use for
tunnel interfaces is to create a virtual link between two separate hosts, such as in
a VPN. This tunnel is treated as a point-to-point connection. The method for
creating tunnel interfaces varies by operating system.

When you use an SSH VPN, the client and server both attach themselves to
tunnel interfaces on their respective machines. When the operating system sends
a packet to the tunnel, the packet is relayed through the SSH connection. When
the other machines SSH process receives the packet, it unwraps it and sends it to
the operating system via the local tunnel interface.

Just like any other interface you want to use for IP routing, your tunnel

interfaces need IP addresses. You must route traffic destined for the remote
network to the IP address at the remote end of the tunnel. We’ll demonstrate this
in each example.

Each tunnel interface needs a device number, like any other device on a
Unix-like system. Just as your network interface might be ethO or em1, tunnel
devices might tun0 or tunl. Our examples use device zero, creating device
names like tun0. If you have many tunnel devices I recommend both assigning a
specific device for each purpose and reassessing your design choices.

SSH Server Configuration
The sshd_conrig keyword PermitTunnel specifies if a client may establish a VPN
tunnel. PermitTunnel has four valid options: yes, no, point-to-point, or ethernet.
If set to no (the default), tunnels are forbidden. If set to yes, all tunnels are
permitted.

A point-to-point tunnel is a virtual private circuit that runs from one spot to
another. A point-to-point tunnel requires routing to be usable. This is usually the
best type of tunnel for an SSH VPN.

PermitTunnel point-to-point An Ethernet tunnel transmits layer 2 traffic, permitting two
separate locations to share their local LAN. Don’t tunnel Ethernet over SSH if you can
possibly avoid it. Local network problems on one side of the VPN can propagate across the
link and saturate your external bandwidth. SSH VPNs are already vulnerable to congestion;
don’t amplify that problem even more.

To use an SSH VPN, the SSH processes must have sufficient privileges to
make changes to the tunnel devices and the routing table on both the client and
the server. Creating an SSH VPN requires root privileges on both the client and
the server. You’ll run ssh as root and log in directly as root. I stated earlier that
logging in as root is a terrible option. I stand by that statement. If you’re using an
SSH VPN, however, you’re basically out of good options.

Here I permit our SSH client a root login on the SSH server, but only through

public-key authentication. I also allow that IP address to open a tunnel.
Match Address avarice.mwl.io PermitRootLogin prohibit-password PermitTunnel point-to-point
In your production configuration, use the client’s IP address rather than the hostname.

Very old versions of OpenSSH might not let you put the PermitTunnel
statement inside a Match statement. If you encounter such an sshd, immediately
upgrade the server’s OpenSSH—it’s not safe to have on the public Internet.

IP Forwarding

For an SSH VPN to connect two different networks, both the SSH server and the
client must forward packets from one interface to another. This is called IP
forwarding. Forwarding packets between interfaces is the only difference
between a host and a router. The SSH client receives packets on its internal
Ethernet interface, and transmits those packets meant for the remote location
across the VPN. Similarly, the SSH server accepts packets bound for the other

office on its internal interface and shoots them across the VPN.

VPN Authentication Key

Use key authentication with VPNSs. If you’re going to bring up your VPN
manually, only on special occasions, create a standard user authentication key as
discussed in Chapter 7, “SSH Keys”. If an automated process will start the VPN,
create a key without a passphrase as covered in Chapter 12, “Automation”. Put
the key in a special file, such as root.ssn/tunneikey on the client.

COpy the kEY’S pUth key to the server’s root. ssh/authorized_keys. This key
should only be able to run the VPN commands; even with key-based
authentication, you don’t want a remote intruder able to get a root login on your
server. Chapter 12 discusses restricting key privileges, but the exact commands
needed vary by operating system.

The SSH Tunnel Command
Activate an OpenSSH tunnel with the -w flag.

ssh -i keyfile -f -wclientTunnelNumber :serverTunnelNumber servername true

The -i tells ssh which private key file to use. The -w tells the client to request a
tunnel, and which tunnel device numbers to request on each side. The -r puts ssh
into the background, so that you don’t have a command prompt on the remote
system. And we run true(1) just so we have a command that always runs
successfully.

In our examples, the key file is root.ssh/tunneikey. I want to use tunnel device 0

on each side, and the server is gluttony.mwl. io.
ssh -i tunnelkey -f -w0:0 gluttony.mwl.io true

If all works well, this should silently return to a local command prompt.

Some of these command-line options can be set in ssh_config. I recommend
placing tunnel options in root.ssh/config, rather than the system-wide
configuration. You don’t want an unprivileged user’s innocent SSH session

attempt to open a tunnel and route across it.
Host gluttony.mwl.io

Tunnel point-to-point

TunnelDevice 0:0

IdentityFile root.ssh/tunnelkey IdentitiesOnly yes

Add other options for the host as your environment or the operating system

requires. This strips down the command line needed to activate the tunnel.
ssh -f gluttony.mwl.io true

Our examples assume that you have enabled root logins, copied the client’s
public key to the server, and set up the host’s key and tunnel devices in
root.ssh/config.

Debugging
If you follow the steps for your operating system and the tunnel doesn’t start, run
ssh in verbose mode. You’ll see the details of your errors. If that doesn’t help,

run sshd in debug mode. Search the Internet for the exact text of your error
messages. You will certainly find people who have experienced and solved your
problem.

Now let’s configure some VPNs.

OpenBSD

OpenSSH is developed inside OpenBSD, and the OpenBSD team created the
OpenSSH VPN function, so OpenBSD has very good support for OpenSSH
VPNs. Start by tightening up what your client may access with this key by

putting controls in root.ssh/authorized_keys.
restrict, tunnel="0", command="binsh etcnetstart tun@" ssh-rsa AAAAB3Nza..

I’ve locked down all the key-based options, then added the ability to access a
specific tunnel device and run the command that configures that tunnel. Even if
the client is compromised and logs into the server as root, it can’t inflict much
damage.

Enable packet forwarding on OpenBSD by setting the sysctl

net.inet.ip.forwarding to 1.
sysctl net.inet.ip.forwarding=1

To make this change permanent across reboots, make a matching entry in

etcsysctl.conf.
net.inet.ip.forwarding=1

Now configure your tunnel devices. You’ll need an etchostname. tune on both
the client and the server. Each contains two lines. Here’s the client: 192.168.0.2
192.168.0.1 netmask 255.255.255.252

'route add 172.17.0.1/24 192.168.0.1 > devnull 2>&1

The first line creates a tunnel interface with a local IP of 192.168.0.2 and a
remote IP of 192.168.0.1. OpenBSD will configure this interface at boot, but the
interface won’t be active; the tunnel isn’t attached to anything. When you
activate your SSH tunnel, it attaches to the tunnel interface. The second line of
hostname. tune is @ command that OpenBSD runs when the tunnel activates. This
command configures routing to the LAN behind the server.

The server’s hostname. tuno looks really similar.
192.168.0.1 192.168.0.2 netmask 255.255.255.252
'route add 172.16.0.1/24 192.168.0.2 > devnull 2>&1

The IP addresses are reversed. When the tunnel comes up, the network
behind the client gets routed across it.

SSH from the client to the server. The tunnel should come up and configure
itself.

FreeBSD
FreeBSD doesn’t incorporate OpenSSH VPNs out-of-the-box, but they’re really
easy to set up. The easiest method is via calling a shell script when the tunnel

comes up. You can avoid that need by being tricky and clever, but tricky and
clever has an uncanny ability to bite you during an outage. Additionally, I’ll use
the scripts to illustrate a couple OpenSSH features.

First, enable packet forwarding on both the client and the server. Use the
sysctl net.inet.ip.forwarding as in OpenBSD, or set
GATEWAY_ENABLE:YES in etcrc. conf.

sysrc gateway_enable=YES
Now let’s get the scripts ready. The server will use the script
usrlocal/scripts/tunnelserver.sh. I’1l lock the client’s entry IN authorized_keys tO

permit it to run only that script.
restrict, tunnel="0", command="usrlocal/scripts/tunnelserver.sh" ssh-rsa AAAAB3Nz..

Whenever this key is used to log in, sshd runs the configured script. Let’s look

at the server-side script.

#!binsh

sbinifconfig tun® 192.168.0.1/30 192.168.0.2
sbinroute add -net 172.16.0.0/24 192.168.0.2

The script adds IP addresses to the tunnel interface and configures a route to
the remote network.
We’ll use a similar script on the client, usriocal/scripts/tunnelclient.sh, to add

the IP addresses and routes to this side of the tunnel.
#!binsh

sbinifconfig tun® 192.168.0.2/30 192.168.0.1

sbinroute add -net 172.17.0.0/24 192.168.0.1

SSH-ing into the server activates the tunnel and configures the server side of
it. You’ll need to run the client script to configure the client side. Fortunately,
ssh(1) has the LocalCommand keyword to automatically run a command when

you connect to a host.

Host gluttony

Tunnel point-to-point

TunnelDevice 0:0

IdentityFile root.ssh/tunnelkey IdentitiesOnly yes

PermitLocalCommand yes

LocalCommand usrlocal/scripts/tunnelclient.sh Here I use PermitLocalCommand to say “yes,
you may run a command locally when you connect,” and LocalCommand to define the command.

When you SSH from the client to the server, the tunnel should come up
automatically.

CentOS and Debian
Configure SSH VPNs on these two popular Linux distributions in a very similar
way to FreeBSD. Both distributions have obsoleted standard Unix tools like
ifconfig(8) and route(8), however, so we must use the Linux-specific ip(8)
instead.

Create your tunnel key, enable SSH tunneling, and permit root logins using
keys, as discussed in “Common Concepts.” Then the client needs a root.ssh/config
precisely like that used for FreeBSD.

Host gluttony

Tunnel point-to-point

TunnelDevice 0:0

IdentityFile root.ssh/tunnelkey IdentitiesOnly yes

PermitLocalCommand yes

LocalCommand usrlocal/scripts/tunnelclient.sh Enable IP forwarding on Linux setting the
sysctl net.ipv4.ip_forward to 1 in etcsysctl.conf. Debian already has this entry,
commented-out.

Lock down the server’s root.ssh/authorized_keys so that this key can only open

the tunnel device.
restrict, tunnel="0", command="usrlocal/scripts/tunnelserver.sh" ssh-rsa AAAAB3Nz..

Now all you need are the Linux scripts. Here’s a

usrlocal/scripts/tunnelserver.shI##!binstl
ip addr add 192.168.0.1/30 dev tun®
ip link set dev tun® up ip route add 172.16.0.0/24 via 192.168.0.2 dev tun®

And here’s a client script.
#!binsh
ip addr add 192.168.0.2/30 dev tun®
ip link set dev tun® up ip route add 172.17.0/24 via 192.168.0.2 dev tun®

Now run ssh -f gluttony from your client, and your tunnel will come up.

With these three examples, you should be able to get an SSH VPN running
on any Unix-like operating system. Remember that an SSH VPN is not a
wonderful solution, though. Before you have trouble or experience congestion,
investigate real VPN software like OpenVPN.

Chapter 14: Certificate Authorities

The hardest part of using SSH correctly isn’t the software, or obscure or hidden
checkboxes, or even more obscure command-line arguments. It’s verifying keys.
Users are expected to verify host keys, a tedious process that most of them won’t
even bother with. Users generate authentication keys, but then they need to be
copied around the network. If you’re managing your systems with automation,
you can automate part of the verification process and vastly reduce risk by
implementing an OpenSSH Certificate Authority.

An SSH CA is not the same as the X.509 Certificate Authority you’re

probably familiar with from the TLS! deployed on websites. If you had to
purchase an X.509 certificate for each and every host to use SSH, you wouldn’t
bother. But take a moment and consider what a certificate authority does for you.

A certificate authority is a method of delegating trust. Every web browser has
a list of trusted certificate authorities built into it. When your browser calls up a
website that uses a certificate, the browser checks to see if that certificate is
signed by a trusted certificate authority. If it is, the browser trusts the certificate
on that website. If the certificate is signed by anything other than a trusted
certificate authority, the user sees a warning.

SSH public keys resemble self-signed certificates. The server is declaring,
“this is who I am, and you can either accept this or go away.” You create an SSH
CA by giving your clients and servers a certificate that they trust. Install this
certificate on all of your OpenSSH software, and it will trust any public key
signed by that CA key.

X.509 certificates are complicated in part because they’re part of a global
network of certification. Organizations use TLS certificates to secure websites,
email, and pretty much any other arbitrary TCP connection. Certificates contain
fields for a whole bunch of stuff that most of us will never need.

SSH certificates only need the ability to digitally sign data and carry a few
chunks of metadata. They’re not a global entity. An OpenSSH CA is entirely
internal. A standard SSH key pair has all the functionality needed to sign keys.

Once you deploy an OpenSSH CA, clients configured to trust the CA key
will automatically trust host keys signed with that key. Servers configured to
trust that CA key will automatically trust user authentication keys signed with
the CA key. Your users will only see warnings when they connect to hosts
outside of your organization, or if something is seriously wrong.

Certificate authorities are an OpenSSH extension. Other clients have not yet
adopted them. Even if all of your desktop clients run something other than

OpenSSH, SSH certificate authorities are useful for verifying host keys when
connecting between servers.

Don’t even consider deploying an OpenSSH CA unless you can
automatically distribute files to all your servers and remotely restart sshd on
them. If you don’t have automation in place, take a look at Ansible or one of its
competitors.

An SSH CA has a whole bunch of functions that are only useful in edge
cases. An organization like Google or Facebook needs a whole bunch of features
that most of us don’t. Read the ssh-keygen(1) man page for the full range of CA
options. Here we’ll set up a comparatively simple CA for a middle-sized
network, starting with the simpler host certificates, then proceeding to the more
complex user certificates.

Certificate Expiration

A critical part of signed certificates is that they expire. Yes, you could set all of
your certificates to be good for a quarter-century, but those keys will be insecure
long before that. Plan from the beginning to use your automation system to
regularly update your certificates.

Attacking public keys computationally, in the absence of a flawed
implementation, can take billions of years. Software has bugs, though, and it’s
possible that a bug might let an intruder crack a key in much less time. Also,
those aeons needed to computationally break a key are averages. The intruder
might get lucky. Eternally valid certificates increase the intruder’s chances of
success.

How long should a certificate be good for? Rolling over certs every year or so
is most common. If you have one of those orchestrated networks where servers
appear and disappear by the magic of automatic deployment, you might want to
regenerate your host key certificates every week or month.

In short, never plan to use certificates longer than a year, except in those rare
cases where a host cannot be changed. No, I don’t mean “the boss would really
like this host to never change,” I mean “the federal government has declared this
host a life-sustaining service and changing the certificate is a felony that carries
a minimum jail sentence.”

Don’t set your certificates to expire in exactly one year, though. Remember,
life happens. Maybe you put on your calendar to renew all of your certificates in
52 weeks, but you develop appendicitis the day before and you’re off work for
three weeks. I allow at least a month of leeway for such emergencies, so these
examples assume we expire all certificates in fifty-six weeks and five days.

Better still? Use your automation system to renew and replace all certificates

at half their expiration date. Issue and deploy new one-year certificates every six
months. As you gain confidence in your automation and work out the bugs,
slowly decrease that time. Automatically create new certificates every year, then
every month, then every week. Then reduce the time you use your CA keys.
Making certificate renewals painlessly routine can transform potential key
compromises from disasters into trivialities.

SSH CA Keys

Before you even think about creating an OpenSSH CA, consider how you’re
going to handle and secure those keys. Your certificate authority is the key to
your kingdom. Protect it as you would any other critical infosec asset. An
intruder that compromises your OpenSSH CA can create user keys trusted by all
of your servers. That would be bad. I keep my OpenSSH CA on a dedicated-
purpose OpenBSD machine that only gets booted when I need to sign keys.
Larger organizations will want to put their OpenSSH CA in the same part of the
network where they keep other, similarly critical hosts.

Best practice recommends creating two certificate authorities: one for
certifying host keys, the other for user keys. Different teams of people manage
users and hosts, and having two different certificate authorities allows each to
use the workflows best suited to those tasks. Each CA might even reside on
different machines, in different parts of the network. While you can install any
number of certificate authorities on a host, making it possible to split CAs later,
very few sysadmins regret complying with such a simple best practice from the
beginning.

As your network grows, so will the number of public keys you manage.
Organize your CA well from the beginning to minimize later struggle.

I recommend putting your CA in a directory like usriocai/sshca. Create
subdirectories for host and user keys, with unambiguous names like
usrlocal/sshca/hosts and usrlocal/sshca/users. Each host and user should get its own
SUbdiTECtOFy thETEiIl, such as usriocal/sshca/hosts/sloth and usrlocal/sshca/users/mul.
Don’t put your CA in /root, and especially not /root/.ssn. Those directories are
for the root account’s information, much as etcssh is reserved for this particular

host’s SSH services. 2 A certificate authority is a major project, and deserves its
own directory.

Why separate by directory and not by filename? Each host and user has files
with the same name. You’ll find etcssh/ssh_nost_ecdsa_key on every single SSH
server, while every user has an id_rsa.pub. While it’s certainly possible to copy
that file on the host sioth t0 sioth-ssh_nost_ecdsa_key, generate a cert for it, and then
rename the cert as you’re sending it back to the server, that’s a couple extra

steps. Giving each host and user unique directories decreases fragility.

Create an SSH CA key the same way you would manually create a host key. I
add the -c flag to add a special comment to the key. SSH CA keys look like
every other SSH key, so the comment helps identify them. Here’s a host key
signing key.

ssh-keygen -t rsa -f host-mwlca-key -c 'CA host key generated 2017-11-30'

Use a good passphrase. You’ll be able to use your SSH agent for mass
signings, so feel free to make it complex. You’ll get the file nost-mwica-key
containing the private key for the certificate authority, and the file nost-mwica-
key.pub with the public key.

Creating a user-certifying CA is exactly the same, except for the file name

and the comment.
ssh-keygen -t rsa -f user-mwlca-key -c 'CA user key generated 2017-11-30'

Protect these private keys. Feel free to spam your whole network with the
public keys, however.

Trusting Your Certificate Authority
The ssh(1) client and sshd(8) server have completely different ways of
configuring certificate authorities.

sshd(8) and Certificates

SSH servers use user certificates to validate certificates used for authentication.
Set a file containing all of your trusted certificates in sshd_config, using the
TrustedUserCAKeys keyword.

TrustedUserCAKeys etcssh/user-ca-keys.pub The CA file contains one CA public key per line,
and accepts comments marked off with a leading pound sign (#). It looks exactly like an
authorized_keys file.

Restart sshd, and it will trust keys signed by this certificate authority.
ssh(1) and Certificates
SSH clients use host certificates to validate host public keys. Configure trusted
host certificate authorities in known_nosts. The most effective place for a CA key is
in etcssh/ssh_known_hosts, both so that all clients immediately recognize the CA and
so users can’t muck with the key.

Don’t just copy the CA’s public key file to known_nosts, though. You must
mark this key as a certificate authority and add the hostnames this key is valid
for. Copy the public key to a separate file—never muck with your original key
files! Add the marker @cert-authority to the beginning of the line, then add an SSH
pattern for the hosts this key is valid for. This key is valid for all hosts in the

mwl.io domain.
@cert-authority *.mwl.io ssh-rsa AAAAB3NzaClyc2EAAAADAQABA..

If the key is valid for multiple domains, separate them with commas. Don’t

use spaces.
@cert-authority *.mwl.io,michaelwlucas.com ssh-rsa AAAAB3NzaClyc2EAAAADAQABA..

Add this line to etcssh/ssh_known_hosts on each of your hosts. They will
immediately trust certificates signed with this key.

Common Certificate Considerations

Both user and host certificates have a whole bunch of details in common,
including serial numbers, certificate IDs, and expiration date format.
Certificate Serial Numbers

Each X.509 certificate is supposed to have a serial number. These serial
numbers are unique to the certificate authority. OpenSSH CAs support the same
functionality, but SSH doesn’t really need it. Use them if your organization has
some separate need for them.

Serial numbers should not increase monotonically—that is, don’t issue them
in sequential order. Random serial numbers are best. If you decide to use serial
numbers in your SSH certificates, you’ll need a mechanism to generate unique
random numbers.

I’ll mention how to list serial numbers when signing keys, but not spend any
time on them.

Certificate Identity

Every certificate has a certificate identity, a text string used to say what this key
is for. I assign identities based on the hostname or username, but if your
organization has other need for the identity feel free to use it. You might decide
to use it for inventory tags, personnel ID numbers, or anything else needed. In
my examples, I use host_ and the hostname for host certificates, and user_ plus the
username for user certificates.

Whenever a user authenticates with a certificate, the log message includes the
certificate identity. Some people use the certificate identity to let everybody log
in as root but still retain user accountability.

Certificate Archives

Regenerating certificates requires only a command. You have automation to
automatically update and distribute certificates and keys across your network. As
people find out just how useful certificates are, the number of certificates you
have will multiply. Be sure your CA retains a copy of every certificate and the
corresponding public key.

If you discover that a private key has been compromised, you’ll need to
revoke the certificate for that key. It’s much easier to revoke the certificate when
you have a copy on hand. When I create a certificate I create a copy of the
certificate and its corresponding public key, both prepended with the date in ISO
8601 format (numeric year-month-day). This makes it easy to find certificates
with a certain date.

When you create a new CA key and obsolete the old one, you can discard
certificates created with that key.

Setting Expiration Date

Expiration dates are assigned with the standard Unix relative date format. You
don’t assign a specific end date, but rather how far in the future you want the
certificate to expire.

The expiration date begins with a plus sign, plus how far in the future you
want. Use w to indicate weeks, 4 for days, n for hours, m for minutes, and s for
seconds. To have a key expire 56 weeks, 5 days, 12 hours, and 13 seconds from
NOwW, use +56w5d12h13s.

Host Certificates

OpenSSH clients trust server public keys that have been signed by a recognized
certificate authority. Deploying this requires creating certificates and installing
those certificates on the server.

Creating Host Certificates

Use your certificate authority to sign a server’s public host keys. If you already
have a system where you keep copies of each server’s public key files, consider
either placing your certificate authority on that host or moving the functions that
need those files to your CA server.

Sign keys with ssh-keygen(8). Yes, there’s an ssh-keysign(8) command, but
it’s for replacing rsh(1) with SSH and disabled by default. Use the -s flag to give
the filename of your CA key. The -1 flag defines the certificate identity. Add the
-h to declare this is a host key certificate. The -n identifies the host this certificate
is good for. (You can use multiple host names, separating them by commas.) Use
-v to give the expiration date, then give the filenames of the key files you want to
create certificates for.

Here I use my CA host-mwlca-key to create key certificates for the host sioth.
It expires in fifty-six weeks and five days. I sign keys for every public key file in
the current directory. (I must give the full path to the CA key, but the path is
trimmed here for clarity.) # ssh-keygen -s host-mwlca-key -I host_sloth -h -n
sloth.mwlio -V +56w5d ssh_host_*pub

I copied four public keys to this host, so I get a cert for each of them. Each
certificate is named after its public key file, with -cert inserted before the trailing
. pub. The certificate for ssh_host_rsa_key.pub is ssh_host_rsa_key-cert.pub,
ssh_host_ecdsa_key.pub gets ssh_host_ecdsa-keycert.pub, and so on.

Copy all of these certificates to the SSH server’s etcssh directory.

Installing Host Certificates
Once you have your certificates installed on the server, configure them in

sshd_config with the HostCertificate keyword. As I’'m easily confused, I put my
HostCertificate keywords right next to the related HostKey keywords.

HostKey etcssh/ssh_host_rsa_key HostCertificate etcssh/ssh_host_rsa_key-cert.pub ..
HostKey etcssh/ssh_host_ed25519_key HostCertificate etcssh/ssh_host_ed25519_key-cert.pub
Restart sshd. You are now ready to use host certificates!

Testing Host Certificates
Once you configure certificates in sshd(8) and have set up your client’s
etcssh/ssh_known_hosts, you’re ready to try certificate-based host key validation.

Move your sHome/. ssh/known_hosts file out of the way, or delete it if you’re
really, really confident. Now SSH into the server. You should get a logon
prompt without being prompted to verify the host key.

If the host certificate doesn’t work correctly, add a -v or two to your ssh
command line. Does the client see the certificate? If not, run sshd in debugging
mode to see if it’s loading the certificate, and if not, why not. Does ssh see the
certificate, but not recognize it? If so, you fouled up your ssh_known_nosts entry.

Revoking Certificates

Certificates are great, until someone hacks into your server and grabs a signed
keypair. The thief could use that signed key to masquerade as the compromised
host. This is bad. Fortunately, you can use the RevokedHostKeys ssh_config
keyword to tell clients not to trust a public key.

RevokedHostKeys etcssh/revoked-hosts The revoked host keys file contains a list of public
keys, one per line. The client will not accept these public keys, even if they have an
accompanying certificate.

Your enterprise needs the ability to update clients’ revoked keys file, and
must test it regularly. While real-time updates are best, even a logon script is
better than nothing.

Viewing Certificates
You can view the contents of a certificate with ssh-keygen -L. Use - to give the

certificate file.
ssh-keygen -Lf ssh_host_ed25519 key-cert.pub
ssh_host_ed25519_key-cert.pub:
Type: ssh-ed25519-cert-v0@1@openssh.com host certificate Public key: ED25519-CERT
SHA256 : nNtyIQidY3MXAEfpWZOwzkXKQFNCoQhe®OCRI1dc4EB8
Signing CA: RSA SHA256:ZQHNMc2TmWlnygGy9+UoOYFK92RdbguzNi+cX4gA414
Key ID: "sloth"
Serial: ©
Valid: from 2017-12-04T11:52:00 to 2017-12-25T11:53:17
Principals:
sloth.mwl.io
Critical Options: (none)
Extensions: (none)

Perhaps the most vital details here are the key ID (sloth, for the hostname)
and the validity dates. If you have multiple certificate authorities, you might find
the signing CA field useful. The principals field gives the entities this certificate
is valid for, one per line. If you’ve gotten your key files so mixed up that you

need to compare the public key field to the keys on your server, start over.
The fields that define critical options and extensions are useful for user
certificates.

User Certificates

User certificates are more complex than host certificates, mainly because users
are more complicated than hosts. An SSH user certificate allows you to replicate
everything in authorized_keys, including the restrictions and limitations discussed
in Chapter 12, “Automation.” This requires delving more deeply into SSH
certificates, however.

A key concept of an SSH certificate is the principal. A principal defines what
entities this certificate is for. For a host certificate, the principal is the hostname.
A user certificate’s principal is usually the username the certificate is for, but it
might also contain limitations, restrictions, and other information. A user
certificate without a principal can be used to authenticate as any user. You must
assign a principal to every certificate, unless you truly want a wildcard
authentication certificate.

We’ll refer to the principal throughout this section. Early on you can think of
it as the username, but as we proceed the meaning will expand.

Creating and Viewing User Certificates
Get the user’s public authentication key, usually id_rsa.pub, and copy it to your
certificate authority machine. You’ll need it to generate the certificate. The
public key is not confidential, so there’s no risk in sending it across the network.
The command to create a user certificate closely resembles creating a host
certificate. Use -s to give the path to the user CA key. The -1 flag defines the
certificate identity, and -n gives the certificate principal. Use -v to define the
expiration time. The last argument is the public key file to sign. Here I have my
user CA sign the public key of one of my users, making it valid for username djm.
I set the validity period to 52 weeks, or one year, because if this expires before

the user submits it for renewal I’ll entirely blame it on him.
ssh-keygen -s user-mwlca-key -I user_djm -n djm -V +52w id_rsa.pub

I enter the CA passphrase and get a certificate file, id_rsa-cert.pub. If you’ve

never done this before, look at the certificate.
ssh-keygen -Lf id_rsa-cert.pub
id_rsa-cert.pub:
Type: ssh-rsa-cert-vOl@openssh.com user certificate Public key: RSA-CERT
SHA256 : CfVbRUF+AaUcOxm1l6wI5CT5nvtjzBDHENCcXaGUA4...
Signing CA: RSA SHA256:CKZFZXRgOy1ji8zmUhU0zjJQfNs9gLEqAWSjA8pB4dg Key ID: "user_djm"
Serial: ©
Valid: from 2017-12-04T07:31:00 to 2018-12-23T07:32:37
Principals:
djm
Critical Options: (none)
Extensions:

permit-X11-forwarding
permit-agent-forwarding
permit-port-forwarding
permit-pty
permit-user-rc

While the top looks a whole lot like a host certificate, users get different
information below. Our principal is djm, so this certificate is only good for this
user. We have no critical options, but the Extensions list several keywords.
These are the SSH permissions granted to this user, as we’ll very soon see in
“Restricted Certificates.”

Return this certificate to the user.

Using User Certificates
Copy the certificate into s+ome/. ssh. The user’s public authentication key should
already be there.

You should have already set the TrustedUserCAKeys keyword, as discussed
in “Trusting your Certificate Authority” earlier this chapter. If so, move the
user’s authorized_keys file aside. Have the user SSH into the server. If the server is
properly configured, the user should get in without the server having any
information about this particular key.

If this is all you want, you’re done. But let’s look at some harder stuff.

Revoking User Certificates
Generally, you don’t revoke user certificates. You revoke the public keys

associated with the certificate, using the RevokedKeys sshd_conrig keyword.
RevokedKeys etcssh/revoked One reason to rotate your CA is that it holds down the length
of your revoked certificates list. You don’t want to have certificates from a laptop
stolen five years ago still in your revoked certificates file!

If you have a complicated list of revoked keys, investigate Key Revocation
Lists (KRLs) in ssh-keygen(8).
Restricted Certificates
Just as you can limit the access of accounts and keys, you have the power to
restrict certificates. You can do this with the -o flag to ssh-keygen. The -o flag has a
whole list of possible restrictions identical to those for authorized_keys in Chapter
12. These OptiOHS include no-agent-forwarding, no-port-forwarding, no-pty, no-user-rc,
and no-x11-forwarding. All of these no- restrictions have a corresponding permit-
version: permit-agent-forwarding, permit-port-forwarding, permit-pty, permit-user-rc, and
permit-x11-forwarding. AddlthHaHy you have the source-address restriction that
dictates the IP addresses that can authenticate using this certificate. There’s also
the ciear restriction that (much like restrict in authorized_keys) turns off all
privileges, allowing you to turn them on selectively with a permit-statement.
Finally, force-command compels the user to run that specific command.

One common case for automation is when you have a key that can only run a

single task. I want to create a certificate for a key that can only be used to run the
command usrlocal/scripts/backup.sh. Create a key called backup O the client, and
send backup.pub to the CA for signing. I want to erase all permissions from this
certificate using the clear option, and then compel running the backup script with
force-command. I use -o twice to assign these permissions. Otherwise, it looks

like any other user key signing.
ssh-keygen -s user-mwlca-key -I user_backup -n backup -V +52w -0 clear -0 force-
command="usrlocal/scripts/backup.sh" backup.pub

This generates the certificate file packup-cert.pub. Look at the contents.
ssh-keygen -Lf backup-cert.pub
backup-cert.pub:
Type: ssh-rsa-cert-vOl@openssh.com user certificate Public key: RSA-CERT
SHA256:UL4ctioc5p8aSN1S318FI5RpsS1rnxJdrOEDb/B69Jg Signing CA: RSA
SHA256 : CKZFZXRg0y13ji8zmUhU0zjJQfNS9gLEqAwWSjA8pB4dg Key ID: "user_backup"
Serial: ©
Valid: from 2017-12-05T07:56:00 to 2018-12-04T07:57:50
Principals:
backup
Critical Options:
force-command usrlocal/scripts/backup.sh Extensions: (none)

Compare this key to the regular user certificate we just created. The user key
has no critical options, while this certificate lists the force-command statement
as a critical option. Where the user key has a bunch of privileges under
Extension, this key has none. This certificate grants the right to use only the one
command.

There is no specific privilege to create an SSH tunnel at this time. If your
organization is large enough to need certificates, it should have standards

declaring acceptable VPN types.3

Disabling authorized_keys
Once you’ve fully deployed SSH certificates for user authentication, you might

decide to disable authorized_keys files. That’s easily done in sshd_config.
AuthorizedKeysFile none

If you have clients that can’t support certificates, however, you’ll need to
provide a way for those clients to log in. Some organizations require all
sysadmins to use Unix-based desktops so they can support certificates. Some
large organizations like Facebook disallow SSH from clients except to a central
bastion host that holds the user’s private keys and certificates.

And speaking of Facebook, let’s talk about how they manage SSH.

Massive Scale SSH

Organizations like Google, Facebook, and Amazon have tens of thousands of
sysadmins and millions of servers. Imagine the load on their LDAP directory
just for managing the accounts, and the number of user groups they have.

And once you’ve imagined that, forget it.

Facebook’s engineering team kindly posted an article on how they use SSH

certificates to allow everyone to log in as root, but control which servers people
can access, through certificate principals. Do an Internet search on “Facebook
SSH certificates” and you’ll get right to it. I won’t dive deep into their system,
but here’s an overview.

Organizations without millions of servers and teams use usernames as the
principal. A principal doesn’t have to be a user, however. You can use the
AuthorizedPrincipals sshd_conrig keywords to set up a list of principals that can
access the host, and develop principals based on role, location, or function.

The AuthorizedPrincipalsFile keyword points to a text file that contains a list
of principals, one per line. Here are three principals that might appear in such a

system.
everywhere-root
europe-root
europe-database

This tells sshd to accept authentication from a certificate that includes any of
the principals root-everywhere, europe-root, OI' europe-database. The
AuthorizedPrincipalsFile keyword accepts the usual tokens, so you could break

this out by username.
AuthorizedPrincipalsFile etcssh/principals/%u When a user tries to log in as root, sshd
checks etcssh/principals/root for the list of permitted principals.

Assign the principals when you create the certificate. This certificate, for user
mw1, assigns this certificate the principals peasants and vermin. As there are many
many sysadmins, some with identical names, I store the employee number as

well as the name in the key identity.
ssh-keygen -s user-mwlca-key -I user_87181 Michael Lucas -n peasants,vermin -V +52w
id_rsa.pub

This works because the key identity gets logged whenever the key is used to
authenticate. Using principals in this way accommodates the need for
accountability.

If you’re using this many servers, though, having text files on each server
dictating who can log into which account scales badly. You can use the
AuthorizedPrincipalsCommand and AuthorizedPrincipalsCommandUser
keywords to run a command that fetches the list of authorized principals for this
account. This lets your global enterprise with millions of servers continue using
that Microsoft Access database for account information—or, yes, you could use
LDAP or a modern database like Postgres, if you wanted to be fancy about it.

CA Key Rotation

You can achieve another level of certificate security by rotating your OpenSSH
certificate authority keys. This involves creating a new CA keypair, recreating
all certificates, distributing those certificates to hosts and users, and removing
the old CA’s keys.

It’s possible to deploy SSH certificates without automation—painful, but
possible. It’s not impossible to rotate your certificate authorities without
automation, but it’s much easier to deploy Ansible to automate the process.
Don’t even try to rotate your CA key without automation.

Start by generating your new CA keys and distributing the public keys to
each of your hosts. The files that contain trusted CA keys, either
etcssh/ssh_known_hosts OF the file given by the TrustedUserCAKeys sshd_config
keyword, can contain multiple CA keys simultaneously. Don’t delete the old CA
keys yet; only add the new keys.

Once all of your hosts have the public keys for your new CAs, regenerate
certificates for all of your hosts and/or users. Distribute those certificates as
needed, removing the certificates created with the old CA. Your automation
system will report which hosts have the new file and which don’t.

Once your new certificates are distributed, disable the old CA public keys on
all of your hosts.

Not only will automation simplify making a key rotation possible, automation
makes it possible to rotate your certificate authority keys frequently. If you have
a team of sysadmins, forget certificates with a one-year expiration; try one-week
host certificates that you update every night! Even if an intruder manages to steal
a certificate and a public key, there’s no way they’ll brute-force the private key
before the certificate expires.

This is the basics of certificates. Certificates have many small features that
can be helpful, if you have the right environment; learn more in ssh-keygen(8).
Next, the final chapter takes us through some OpenSSH scraps.

1SSLis no longer a thing, unless you like bystanders decrypting your traffic.

21f you put your SSH CA in etcssh, the Sysadmin Code declares that your co-workers are allowed to beat
you with a spiked club, provided the spikes are no longer than four inches and not coated with neurotoxin.
Local law may vary.

3 Also, nobody’s asked the OpenSSH maintainer for the feature.

Chapter 15: OpenSSH Scraps

This chapter covers a potpourri of SSH topics that you should probably know
about, but that don’t merit their own chapters. We’ll discuss host key rotation in
OpenSSH, connecting to hosts that only support obsolete ciphers, and escape
characters.

Host Key Rotation
After a host has been accepting connections from the public Internet for a year or
two, you should consider rotating the host keys. Not only do algorithms grow
easier to break as computing power advances, but prospective intruders have had
more time to brute-force your private key. If you ask your users to verify new
host keys every year or so, though, they’ll get annoyed. You can use the existing
host key to securely transmit the new host key to the client. This isn’t useful if
the existing host key has been compromised, but it can let you proactively
distribute the forthcoming host keys to clients before getting rid of the old ones.

Once you have many servers, OpenSSH certificates are more useful than
occasional key rotation. Certificates eliminate known_nosts and the need to update
the client at all.

Configure SSH key rotation on both the server and the client.

Server Key Rotation
Start by creating your next set of keys. Create each sort of key you intend to
support. They’ll need different file names, of course. I name new keys

prepended with the year they’re created.

ssh-keygen -f 2018 _ssh_host_rsa key -t rsa -N ''

ssh-keygen -f 2018_ssh_host_ecdsa key -t ecdsa -N ''

ssh-keygen -f 2018 _ssh_host_ed25519 key -t ed25519 -N ''

This gives us four new keys. Now use the standard sshd_conrig HostKey
keyword to add these keys. Add new keys after the existing host keys.

HostKey etcssh/2018_ssh_host_rsa_key HostKey etcssh/2018_ssh_host_dsa_key HostKey
etcssh/2018_ssh_host_ecdsa_key HostKey etcssh/2018_ssh_host_ed25519_key Your server is now
ready to distribute those host keys to clients.

Once you’re certain all of your clients have copies of the new host keys, and
you’ve given up waiting for that one user who never updates everything, you can
disable the old host keys.

Client Key Rotation

Tell ssh(1) to look for additional keys with the UpdateHostKeys ssh_config
option. The default, no, tells ssh to ignore new host keys. Setting it to yes
automatically updates known_nosts with any new keys for this host. The ask setting
means to query the user to see if the new keys should be accepted. This mirrors
the StrictHostKeyChecking keyword.

When you connect to a host with the UpdateHostKeys option set, your initial

connection will look a little different.

$ ssh avarice

The authenticity of host 'avarice.mwl.io (203.0.113.209)' can't be established.
ECDSA key fingerprint is SHA256:JUf11zyEVYXhbJCfXLvPi6elLJdYCZhEBzJD8C+NGLzw.

No matching host key fingerprint found in DNS.

Are you sure you want to continue connecting (yes/no)? yes

Verify the host’s public key fingerprint and accept it if correct. But then

you’ll get another set of warnings.

Learned new hostkey: RSA SHA256:nNUnWCojrzeHAALXyM/yGpGM7uUIPrP/ph8zV3qUx9M
Learned new hostkey: ED25519 SHA256:nNtyIQidY3MXAEfpWZOwzkXKQFnCoQheO®CRIldcA4...
Accept updated hostkeys? (yes/no): yes

Your client has grabbed the public keys for this host’s RSA and ED25519
keys. You can only accept or reject these additional public keys en masse. It’s a
very rare attacker that will leave the main host key untouched while subverting
the other keys, but you really should verify them all.

When the server adds new host keys, the client will display the fingerprints

and give you a chance to verify them.

$ ssh avarice

Learned new hostkey: RSA SHA256:aDqGAPMnT6b3aYqT3DXjRofYfHzNOMbVFWZg3yw/fTI Learned new
hostkey: ECDSA SHA256:9eHjmXAFrGmRT21iz/WY5pHLCcvOoOHQ5pailcpEcXwWns Learned new hostkey:
ED25519 SHA256:BZ5X6sIbfa5AWCQYORjNMRLIzLX1+som5TmTV/K/ ...

Accept updated hostkeys? (yes/no): Host key updates are incompatible with connection
multiplexing (the ControlPersist) keyword. Enabling ControlPersist disables host key
updates.

While PuTTY can grab the public key of algorithms it isn’t using for a
connection (go to the upper left corner menu and select Special Command ->
Cache New Host Key Type), it can’t accept multiple keys of the same type.
When you get rid of the old host keys, your PuTTY users must re-verify host
keys.

Connecting to Obsolete SSH Servers

Over the last few years, OpenSSH has deprecated a whole bunch of protocols
and cryptographic algorithms. The blatantly insecure SSH version 1 has been
extirpated from the source code. But whole slews of cryptographic algorithms
that worked well in the 1990s are no longer suited to today’s Internet. OpenSSH
still supports these types of encryption, but they’re not enabled by default. You
must use special command-line options to use them.

Why disable these algorithms? Awareness. You should know when an SSH
connection uses weak crypto. If you never realize that a server or embedded
device only supports cruddy cryptographic algorithms, you’ll never upgrade or
replace it.

When OpenSSH fails to connect to an SSH server due to its weak crypto, it
tells you all the information you need to manually connect. You have to
understand SSH’s encryption characteristics, though.

SSH Encryption

The SSH protocol uses cryptography in four different roles. Each role needs
different algorithms. OpenSSH uses a keyword to set each of these in ssh_config
or on the command line.

The Key Exchange Method (KEX) is used to generate the one-time per-
connection symmetric key. The keyword KexAlgorithms sets the key exchange
methods.

The general encryption algorithms are set with the Ciphers keyword.

Message Authentication Codes (MAC) detect alterations in traffic. The
MACs keyword sets them.

The HostKeyAlgorithms lets you set algorithms for host keys.

Finally, some public key algorithms are obsoleted. The
PubkeyAcceptedKeyTypes keyword lets you enable obsolete key types.

Example Connection
My home entertainment network connects to the Internet with an inexpensive

embedded router. It offers SSH... sort of.

$ ssh admin@203.0.113.1

Unable to negotiate with 203.0.113.1 port 22: no matching host key type found. Their
offer: ssh-dss The router doesn’t offer a type of host key that current OpenSSH accepts by
default. The HostKeyAlgorithms keyword lets you re-enable supported but no longer enabled
host key algorithms. The ssh-dss algorithm (also known as DSA) is very weak and abandoned
in modern SSH, but as this is my home network I’'1ll trust it here. Use the
HostKeyAlgorithms keyword to add it back to the options ssh supports.

$ ssh -o HostKeyAlgorithms=+ssh-dss admin@203.0.113.1

Fssh_ssh_dispatch_run_fatal: Connection to 203.0.113.1 port 22: DH GEX group out of range
What, another error? When connecting to an SSH server that only supports obsolete crypto,
you can expect to need to set a few keywords on the command line. Figuring out which are
the necessary settings is an iterative process.

This error is a little more obscure. There’s no obvious keyword to choose
here, unlike with the host key algorithm error. If you’re not familiar with Diffie-
Hellman key exchange, your best bet is to use an Internet search engine to see if
someone’s had the same error before. If you’re the first person in the entire
world to experience this exact problem, run ssh in verbose mode, gather the
output, and contact the vendor.

This particular error turns out to be a key exchange problem, well-known

with this vendor. I have to reactivate an obsolete key exchange algorithm.
$ ssh -o HostKeyAlgorithms=+ssh-dss -o KexAlgorithms=diffie-hellman-group14-shal
admin@203.0.113.1

I can now connect.
One day, OpenSSH will fully deprecate these algorithms. Upgrade your
equipment before then. As a temporary fix, though, you can set these options in

ssh_config.
Host 203.0.113.1
HostKeyAlgorithms +ssh-dss KexAlgorithms +diffie-hellman-group14-shal

Now that I’ve written this section, though, I can upgrade my router.

Escape Characters
When you SSH into a server, your keystrokes all get passed through to the
server. With escape characters, though, you can talk to the locally running SSH
process. An escape character temporarily and briefly suspends your SSH session.
You can use the escape character to interrupt a hung SSH session, add port
forwarding, send an old-fashioned serial-style break to network gear, and more.
The default escape character is the tilde (~). Very few Unix commands use
the tilde, but you can hit it twice to send it once. Hitting ~~ means “yes, I really
meant to send a tilde.” If you need to change the escape character use ssh’s -e
argument and your desired escape character in quotes.
Issue instructions by hitting enter, the escape character, and a second
character. Disconnecting is -., editing your port forwarding is -c, and so on.

Ending Your Session
The easiest use of the escape character is to terminate an SSH session. If the

remote server is hung, enter tilde-period.
wrath# ~.
Connection to server wrath.mwl.io closed client$

You’re now back on the local machine.

Adjusting Port Forwarding

The escape character kind of lets you travel backwards in time, adjusting the
command you used to connect to the host. While you can’t muck with key
exchange algorithms and such, you can adjust port forwarding. Enter ~c to enter
the command line, and then enter the desired port forwarding.

Suppose I’m in the middle of an SSH session, and I want to add a dynamic
port forward from port 9999 on my desktop out to the server. If I was opening
the SSH session with this, I’d add the flag -o 9999 to the command line. I start by
typing ~c, and get an ssh> prompt.

ssh>
This is the internal ssh(1) command prompt. Add your command line changes

here.
ssh> -D9999
Forwarding port.

Going back to my client, I’1l see that ssh(1) has port 9999 open. The dynamic
forwarding is live.

To cancel a port forwarding, go back to the SSH command line. Use the -k
flag and the command you used to create the port forwarding. Here I disable the

dynamic forwarding I just created.
ssh> -KD9999
Canceled forwarding.

The dynamic forward disappears.
Escape characters have other features, but most of them aren’t useful today. If

you’re curious, though, ~? displays a list of all available escape characters.
There’s a lot more you can do with SSH. If you can do all of this, you’re
more competent with SSH than almost everyone. Congratulations!

Afterword

Seven years ago, I had a temper tantrum about sysadmins managing critical,
public-facing systems with password-based SSH.

This isn’t anything new. Millions of sysadmins more senior than I have given
that rant. I decided to write the first edition of SSH Mastery with the explicit
purpose of killing passwords. I’m not sure if it helped, but a whole bunch of
senior sysadmins have come up to me and thanked me for writing the book,
specifically because slapping people with it was considered “professional
behavior.” I’'m hopeful that this second edition, by covering features like
certificates, will help those same sysadmins further secure their servers.

Unix users should already know that OpenSSH is one of the most important
pieces of security software in the world. If you don’t: OpenSSH is one of the
most important pieces of security software in the world. Almost every
technology vendor includes OpenSSH in their product. These multi-billion-
dollar firms don’t pay for OpenSSH. Some OpenSSH developers hold a specific
day job because their employer gives them time to work on OpenSSH, and
companies like Google, Microsoft, and Facebook have donated funds to support
the project. For the most part, OpenSSH is created by a bunch of people who
love good software.

Running a major software project isn’t cheap. OpenSSH is developed as part
of the OpenBSD Project. They need servers, bandwidth, and electricity like any
other IT organization, but must constantly scrape up funding. If you find
OpenSSH useful, consider sending the OpenBSD Foundation
(http://www.openbsdfoundation.org/) a few dollars so they can keep going.

Windows folks, PuUTTY has revolutionized using SSH from Microsoft
systems. And the PuTTY developers gratefully accept donations. They don’t
have a server infrastructure to feed, but they appreciate donations just the same.
With refreshing honesty, they declare that they’ll spend small donations on
motivational beer and curry, while larger donations can help buy any necessary
hardware or tools. Volunteer programmers might have more powerful motivators
than Unexpected Appreciation Beer, but I’ve yet to see what that would be. See
the PuTTY FAQ for their PayPal address.

If you work for one of those big firms that make cash out of shipping
OpenSSH or PuTTY with their product, do consider blackmating extorting
persuading your employer to throw a few bucks to the folks who write the
software. Or at least buy some developers a few pints on your expense account.
We’ll all benefit.

And if you’re still using passwords after reading this far? I have a whole
horde of sysadmins queued up to slap you with a book.

About the Author

Sign up for Michael W Lucas’ mailing list.
https://mwl.io More Tech Books from Michael W Lucas Absolute BSD

Absolute OpenBSD (1% and 2™ edition) Cisco Routers for the Desperate (1% and 2"? edition) PGP and
GPG
Absolute FreeBSD
Network Flow Analysis Absolute FreeBSD 3™ edition (coming 2018) the IT Mastery Series SSH Mastery
(1%t and pnd edition) DNSSEC Mastery Sudo Mastery FreeBSD Mastery: Storage Essentials Networking for
Systems Administrators Tarsnap Mastery FreeBSD Mastery: ZFS
FreeBSD Mastery: Specialty Filesystems FreeBSD Mastery: Advanced ZFS
PAM Mastery Relayd and Httpd Mastery Novels (as Michael Warren Lucas) git commit murder git sync
murder (coming 2018) Immortal Clay Kipuka Blues Bones Like Water (coming 2018) Butterfly Stomp
Waltz Hydrogen Sleets

Sponsors

Somehow, I’m paying the bills as a full-time writer. The only way I’ve managed
that is because people buy my books. I’m grateful to every one of my readers.

A few people like my books so much that they want to help support me. They
send me money for a book as I’'m writing that book. In exchange, I put their
names in the print and/or electronic versions of the book. Ebook sponsors paid at
least $25 to have their name in the electronic version of SSH Mastery, 2"
Edition, while print sponsors paid at least $125 to get their name on dead trees.

Everyone who contributed: thank you. While I don’t need sponsorships, they
do give me an invaluable financial cushion. You distinctly and directly improve
my life.

Print Sponsors

William Allaire Carlos Cardenas Jake Cross Benedict Reuschling Phi
Network Systems John W. O’Brien Stefan Johnson Majid Al Suwaidi Mischa
Peters Dominique Poulain
Ebook Sponsors

Julien Vallée Alessandro Lenzen Martin Pugh Alexander Riepl Anonymous
Jay Nelson Timur Anthony D B

Bernard Spil Roman Zolotarev Steven Hogarth Grant Taylor Matthias
Schmidt Danilo Baio Sergio Ligregni John W. O’Brien Mathias Zimmermann
Don Jackson Darren Janisse Filipp Lepalaan Viacheslav Bachynskyi Markus
Weber Filipe Rodrigues Garance A Drosehn Lucas Holt Aaron Poffenberger
Mischa Peters Dominique Poulain Paul Kelly Aubry Hamonic

Patrons

Where the sponsors backed this particular book, a handful of maniaes fine folks
sponsor absolutely everything I write, via my Patreon
(https://www.patreon.com/mwlucas). The following amazing people send me at
least twenty dollars every month.

Digital Supporters
Jeff Marracini
Trent T.

Earl Percival
Allan Jude

Copyright Information

by Michael W Lucas SSH Mastery: OpenSSH, PuTTY, Certificates, Tunnels,

and Keys: 2" edition Copyright 2017 by Michael W Lucas
(https://www.michaelwlucas.com, https://mwl.io).

All rights reserved.

Authors: Michael W Lucas Copyediting: Amanda Robinson Cover art: Eddie
Sharam All rights reserved. No part of this work may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including but
not limited to photocopying, recording, feline yowls, or by any information
storage or retrieval system, without the prior written permission of the copyright
holder and the publisher. For information on book distribution, translations, or
other rights, please contact Tilted Windmill Press
(accounts@tiltedwindmillpress.com).

The information in this book is provided on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither
the author nor Tilted Windmill Press shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

Tilted Windmill Press https://www.tiltedwindmillpress.com

	Table of Contents
	Acknowledgements
	Chapter 0: Introduction
	Chapter 1: Encryption, Algorithms, and Keys
	Chapter 2: Common Configuration
	Chapter 3: The OpenSSH Server
	Chapter 4: Verifying Server Keys
	Chapter 5: SSH Clients
	Chapter 6: Copying Files over SSH
	Chapter 7: SSH Keys
	Chapter 8: X Forwarding
	Chapter 9: Port Forwarding
	Chapter 10: Keeping SSH Connections Open
	Chapter 11: Key Distribution
	Chapter 12: Automation
	Chapter 13: Virtual Private Networks
	Chapter 14: Certificate Authorities
	Chapter 15: OpenSSH Scraps
	Afterword
	About the Author
	Sponsors
	Patrons
	Copyright Information

