Real-World

Crypto

David Wong

/'I MANNING

Real-World Cryptography

Real-World
Cryptography

NNNNNNN

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Marina Michaels
Technical development editor: Sam Zaydel

/I/I Manning Publications Co. Review editor: Mihaela Batinic
20 Baldwin Road Production editor: Andy Marinkovich
PO Box 761 Copy editor: Frances Buran
Shelter Island, NY 11964 Proofreader: Keri Hales

Technical proofreader: Michal Rutka
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617296710
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from an usage
of the information herein.

www.manning.com

To my parents, Anne Cerclet and Henry Wong, who nurtured curiosity in me.
To my wife, Felicia Lupu, who supported me throughout this journey.

contents

preface xv

acknowledgments — xx

about this book xxi

about the author xxvi

about the cover illustration xxvii

PART 1 PRIMITIVES: THE INGREDIENTS
OF CRYPTOGRAPHY «.eceeeecessccesscessccsssscessccssccsssccnseel

Introduction 3
1.1 Cryptography is about securing protocols 4
1.2 Symmetric cryptography: What is symmetric encryption? 5
1.3 Kerckhoff’s principle: Only the key is kept secret 7
1.4 Asymmetric cryptography: Two keys are better
than one 10

Key exchanges or how to get a shared secret 10 = Asymmelric
encryption, not like the symmetric one 13 = Digital signatures,
just like your pen-and-paper signatures 15

1.5 Classifying and abstracting cryptography 17
1.6 Theoretical cryptography vs. real-world cryptography 18

viii CONTENTS

1.7 From theoretical to practical: Choose your own adventure
1.8 A word of warning 24

Hash functions 25
2.1 Whatis a hash function? 25
2.2 Security properties of a hash function 28
2.3 Security considerations for hash functions 30
2.4 Hash functions in practice 31

Commitments 32 = Subresource integrity 32
BitTorrent 32 = Tor 33

2.5 Standardized hash functions 34

The SHA-2 hash function 35 = The SHA-3 hash function 38
SHAKE and ¢SHAKE: Two extendable output functions (XOF) 42
Avoid ambiguous hashing with TupleHash 43

2.6 Hashing passwords 44

Message authentication codes 48
3.1 Stateless cookies, a motivating example for MACs 48
3.2 An example in code 51
3.3 Security properties of a MAC 52

Forgery of authentication tag 53 = Lengths of authentication
tag 53 = Replay attacks 54 = Verifying authentication tags
i constant time 55

3.4 MAC in the real world 57

Message authentication 57 = Deriving keys 57 = Integrity
of cookies 58 = Hash tables 58

3.5 Message authentication codes (MAGCs) in practice 58

HMAC, a hash-based MAC 58 = KMAC, a MAC based
on ¢<SHAKE 59

3.6 SHA-2 and length-extension attacks 60

Authenticated encryption 64
4.1 What’s a cipher? 65

4.2 The Advanced Encryption Standard (AES) block cipher 66

How much security does AES provide? 67 = The interface of
AES 67 = The internals of AES 68

19

CONTENTS ix

4.3 The encrypted penguin and the CBC mode
of operation 70
4.4 Alack of authenticity, hence AES-CBC-HMAC 73
4.5 Allin-one constructions: Authenticated encryption 74

What’s authenticated encryption with associated data (AEAD)? 75
The AES-GCM AEAD 76 = ChaCha20-Poly1305 81

4.6 Other kinds of symmetric encryption 84

Key wrapping 84 = Nonce misuse-resistant authenticated

encryption 85 = Disk encryption 85 = Database encryption 85

Key exchanges 87
5.1 What are key exchanges? 88
5.2 The Diffie-Hellman (DH) key exchange 91

Group theory 91 = The discrete logarithm problem: The basis of
Diffie-Hellman 95 = The Diffie-Hellman standards 97

5.3 The Elliptic Curve Diffie-Hellman (ECDH) key exchange 98

What’s an elliptic curve? 98 = How does the Elliptic Curve
Diffie-Hellman (ECDH) key exchange work? 102 = The standards
Sfor Elliptic Curve Diffie-Hellman 103

5.4 Small subgroup attacks and other security considerations 105

Asymmetric encryption and hybrid encryption 109
6.1 What is asymmetric encryption? 110

6.2 Asymmetric encryption in practice and hybrid encryption 111
Key exchanges and key encapsulation 112 = Hybrid
encryption 113

6.3 Asymmetric encryption with RSA: The bad and
the less bad 117
Textbook RSA 117 = Why not to use RSA PKCS#1 v1.5 121
Asymmetric encryption with RSA-OAEP 123

6.4 Hybrid encryption with ECIES 126

Signatures and zero-knowledge proofs 129
7.1 Whatis a signature? 130

How to sign and verify signatures in practice 131 = A prime use
case for signatures: Authenticated key exchanges 132 = A real-
world usage: Public key infrastructures 133

X CONTENTS

7.2 Zero-knowledge proofs (ZKPs): The origin of signatures 134
Schnorr identification protocol: An interactive zero-knowledge
proof 134 = Signatures as non-interactive zero-knowledge
proofs 137

7.3 The signature algorithms you should use (or not) 138

RSA PKCS#1 v1.5: A bad standard 139 = RSA-PSS: A better
standard 142 = The Elliptic Curve Digital Signature Algorithm
(ECDSA) 143 = The Edwards-curve Digital Signature
Algorithm (EdDSA) 145

7.4 Subtle behaviors of signature schemes 149

Substitution attacks on signatures 149 = Signature
malleability 150

Randomness and secrets 152

8.1 What’s randomness? 153

8.2 Slow randomness? Use a pseudorandom number
generator (PRNG) 155

8.3 Obtaining randomness in practice 158

8.4 Randomness generation and security considerations 161

8.5 Public randomness 163

8.6 Key derivation with HKDF 164

8.7 Managing keys and secrets 168

8.8 Decentralize trust with threshold cryptography 169

PART 2 PROTOCOLS: THE RECIPES
OF CRYPTOGRAPHY .cceveeeceeccsccoscoscescescoscoscoscesses 1 1D

Secure transport 177

9.1 The SSL and TLS secure transport protocols 177
Irom SSL to TLS 178 = Using TLS in practice 179

9.2 How does the TLS protocol work? 181

The TLS handshake 181 = How TLS 1.3 encrypts application
data 194

9.3 The state of the encrypted web today 194
9.4 Other secure transport protocols 197

CONTENTS

9.5 The Noise protocol framework: A modern alternative
to TLS 197

The many handshakes of Noise 198 = A handshake
with Noise 199

End-to-end encryption 201
10.1 Why end-to-end encryption? 202
10.2 A root of trust nowhere to be found 203
10.3 The failure of encrypted email 205

PGP or GPG? And how does it work? 205 = Scaling trust between
users with the web of trust 208 = Key discovery is a real issue 208
If not PGP, then what? 210

10.4 Secure messaging: A modern look at end-to-end encryption
with Signal 211

More user-friendly than the WOT: Trust but verify 212 = X3DH:
the Signal protocol’s handshake 215 = Double Ratchet: Signal’s
post-handshake protocol 218

10.5 The state of end-to-end encryption 222

User authentication 226

11.1 Arecap of authentication 227

11.2 User authentication, or the quest to get rid
of passwords 228

One password to rule them all: Single sign-on (S50) and
password managers 231 = Don’t want to see their passwords?
Use an asymmetric password-authenticated key exchange 232
One-time passwords aren’t really passwords: Going passwordless
with symmetric keys 236 = Replacing passwords with
asymmetric keys 239

11.3 User-aided authentication: Pairing devices using some
human help 242

Pre-shared keys 244 = Symmetric password-authenticated key
exchanges with CPace 245 = Was my key exchange MITM’d?
Just check a short authenticated string (SAS) 246

Crypto as in cryptocurrency? 251
12.1 A gentle introduction to Byzantine fault-tolerant (BFT)
consensus algorithms 252

A problem of resilience: Distributed protocols to the rescue 252
A problem of trust? Decentralization helps 254 = A problem of
scale: Permissionless and censorship-resistant networks 255

CONTENTS

12.2 How does Bitcoin work? 257

How Bitcoin handles user balances and transactions 257
Mining BTCs in the digital age of gold 259 = Forking hell!
Solving conflicts in mining 263 = Reducing a block’s size by
using Merkle trees 265

12.3 A tour of cryptocurrencies 267
Volatility 267 = Latency 267 = Blockchain size 268
Confidentiality 268 = Energy efficiency 268

12.4 DiemBFT: A Byzantine fault-tolerant (BFT) consensus
protocol 269

Safety and liveness: The two properties of a BFT consensus
protocol 269 = A round in the DiemBFT protocol 270
How much dishonesty can the protocol tolerate? 270

The DiemBFT rules of voting 271 = When are transactions
considered finalized? 273 = The intuitions behind the
safety of DiemBFT 273

Hardware cryptography 277
13.1 Modern cryptography attacker model 278

13.2 Untrusted environments: Hardware to the rescue 279

White box cryptography, a bad idea 280 = Theyre in your

wallet: Smart cards and secure elements 281 = Banks love them:
Hardware security modules (HSMs) 283 = Trusted Platform
Modules (TPMs): A useful standardization of secure elements 285
Confidential computing with a trusted execution environment
(TEE) 288

13.3 What solution is good for me? 289
13.4 Leakage-resilient cryptography or how to mitigate

side-channel attacks in software 291

Constant-time programming 293 = Don’t use the secret! Masking
and blinding 294 = What about fault attacks? 295

Post-quantum cryptography 298

14.1 What are quantum computers and why are they scaring
cryptographers? 299

Quantum mechanics, the study of the small 299 = From the birth
of quantum computers to quantum supremacy 302 = The impact of
Grover and Shor’s algorithms on cryptography 303 = Post-quantum
cryptography, the defense against quantum computers 304

CONTENTS xiii

14.2 Hash-based signatures: Don’t need anything but a hash
function 305
One-time signatures (OTS) with Lamport signatures 305
Smaller keys with Winternitz one-time signatures (WOTS) 307
Many-times signatures with XMSS and SPHINCS+ 308

14.3 Shorter keys and signatures with lattice-based
cryptography 311
What’s a lattice? 311 = Learning with errors (LWE), a basis for

cryptography? 313 = Kyber, a lattice-based key exchange 314
Dilithium, a lattice-based signature scheme 316

14.4 Do I need to panic? 318

Is thas it? Next-generation cryptography 321
15.1 The more the merrier: Secure multi-party
computation (MPC) 322
Private set intersection (PSI) 323 = General-purpose MPC 324
The state of MPC 326
15.2 Fully homomorphic encryption (FHE) and the promises
of an encrypted cloud 326

An example of homomorphic encryption with RSA encryption 327
The different types of homomorphic encryption 327
Bootstrapping, the key to fully homomorphic encryption 328

An FHE scheme based on the learning with errors problem 330
Where is it used? 332

15.3 General-purpose zero-knowledge proofs (ZKPs) 332

How zk-SNARKs work 335 = Homomorphic commitments to hide
parts of the proof 336 = Bilinear pairings to improve our
homomorphic commitments 336 = Where does the succinctness
come from? 337 = From programs to polynomials 338

Programs are for computers; we need arithmetic circuits instead 338
An arithmetic circuit to a rank-1 constraint system (RICS) 339
From RICS to a polynomial 340 = It takes two to evaluate a
polynomial hiding in the exponent 340

When and where cryptography fails 343

16.1 Finding the right cryptographic primitive or protocol
is a boring job 344

16.2 How do I use a cryptographic primitive or protocol? Polite
standards and formal verification 34b

16.3 Where are the good libraries? 348

16.4
16.5
16.6
16.7

appendix

CONTENTS

Misusing cryptography: Developers are the enemy 349

You're doing it wrong: Usable security 351

Cryptography is not an island 352

Your responsibilities as a cryptography practitioner, don’t
roll your own crypto 353

Answers to exercises 357

ndex 361

preface

As you’ve picked up this book, you might be wondering, why another book on cryp-
tography? Or even, why should I read this book? To answer this, you have to under-
stand when it all started.

A book, years in the making

Today, if you want to learn about almost anything, you Google it, or Bing it, or Baidu
it—you get the idea. Yet, for cryptography, and depending on what you’re looking for,
resources can be quite lacking. This is something I ran into a long time ago and which
has been a continuous source of frustration since then.

Back when I was in school, I had to implement a differential power analysis attack
for a class. This attack was a breakthrough in cryptanalysis at that time, as it was the
first side-channel attack to be published. A differential power analysis attack is some-
thing magical: by measuring the power consumption of a device while it encrypts or
decrypts something, you’re able to extract its secrets. I realized that great papers
could convey great ideas, while putting little effort in clarity and intelligibility. I
remember banging my head against the wall trying to figure out what the author was
trying to say. Worse, I couldn’t find good online resources that explained the paper.
So I banged my head a wee more, and finally I got it. And then, I thought, maybe I
could help others like me who will have to go through this ordeal.

Motivated, I drew some diagrams, animated them, and recorded myself going over
them. That was my first YouTube video on cryptography: https://www.youtube.com/
watch?v=gbqNCgVcXsM.

XV

https://www.youtube.com/watch?v=gbqNCgVcXsM
https://www.youtube.com/watch?v=gbqNCgVcXsM

xvi

PREFACE

Years later, after I uploaded the video, I still receive praises from random people
on the internet. Just yesterday, as I'm writing this preface, someone posted, “Thank
you, really a great explanation that probably saved me hours of trying to understand
that paper.”

What a reward! This baby step in adventuring myself on the other side of the edu-
cational landscape was enough to make me want to do more. I started recording more
of these videos, and then I started a blog to write about cryptography. You can check it
out here: https://cryptologie.net.

Before starting this book, I had amassed nearly 500 articles explaining the many
concepts that stand beyond this intro. This was all just practice. In the back of my
mind, the idea of writing a book was slowly maturing years before Manning Publica-
tions would reach out to me with a book proposal.

The real-world cryptographer curriculum

I finished my bachelor’s in theoretical mathematics and didn’t know what was next for
me. I had also been programming my whole life, and I wanted to reconcile the two.
Naturally, I became curious about cryptography, which seemed to have the best of
both worlds, and started reading the different books at my disposal. I quickly discov-
ered my life’s calling.

Some things were annoying, though: in particular, the long introductions that
would start with history; I was only interested in the technicalities and always had
been. I swore to myself, if I ever wrote a book about cryptography, I would not write a
single line on Vigenere ciphers, Caesar ciphers, and other vestiges of history. And so,
after obtaining a master of cryptography at the University of Bordeaux, I thought I was
ready for the real world. Little did I know.

I believed that my degree was enough, but my education lacked a lot about the
real-world protocols I was about to attack. I had spent a lot of time learning about the
mathematics of elliptic curves but nothing about how these were used in cryp-
tographic algorithms. I had learned about LFSRs, and ElGamal, and DES, and a series
of other cryptographic primitives that I would never see again.

When I started working in the industry at Matasano, which then became NCC
Group, my first gig was to audit OpenSSL, the most popular SSL/TLS implementa-
tion—the code that basically encrypted the whole internet. Oh boy, did it hurt my
brain. I remember coming back home every day with a strong headache. What a train-
wreck of a library and a protocol! I had no idea at the time that I would, years later,
become a coauthor of TLS 1.3, the latest version of the protocol.

But, at that point, I was already thinking, “This is what I should have learned in
school. The knowledge I'm gaining now is what would have been useful to prepare me
for the real world!” After all, I was now a specialized security practitioner in cryptogra-
phy. I was reviewing real-world cryptographic applications. I was doing the job that
one would wish they had after finishing a cryptography degree. I implemented, veri-
fied, used, and advised on what cryptographic algorithms to use. This is the reason

https://cryptologie.net

PREFACE xvii

I'm the first reader of the book I'm writing. This is what I would have written to my
past self in order to prepare him for the real world.

Where most of the bugs are

My consulting job led me to audit many real-world cryptographic applications such as
OpenSSL, the encrypted backup system of Google, the TLS 1.3 implementation of
Cloudflare, the certificate authority protocol of Let’s Encrypt, the sapling protocol
of the Zcash cryptocurrency, the threshold proxy re-encryption scheme of NuCypher,
and dozens of other real-world cryptographic applications that I unfortunately cannot
mention publicly.

Early in my job, I was tasked to audit the custom protocol a well-known corpora-
tion had written to encrypt their communications. It turns out that it was using signa-
tures on almost everything but the ephemeral keys, which completely broke the whole
protocol as one could have easily replaced those—a rookie mistake from anyone with
some experience with secure transport protocols, but something that was missed by
people who thought they were experienced enough to roll their own crypto. I remem-
ber explaining the vulnerability at the end of the engagement and a room full of engi-
neers turning silent for a good 30 seconds.

This story repeated itself many times during my career. There was a time when,
while auditing a cryptocurrency for another client, I found a way to forge transactions
from already existing ones, due to some ambiguity of what was being signed. Looking
at TLS implementations for another client, I found some subtle ways to break an RSA
implementation, which in turn, transformed into a white paper with one of the inven-
tors of RSA, leading to a number of Common Vulnerabilities and Exposures (CVEs)
reported to a dozen of open source projects. More recently, while reading about the
newer Matrix chat protocol as part of writing my book, I realized that their authentica-
tion protocol was broken, leading to a break of their end-to-end encryption. There are
so many details that can, unfortunately, collapse under you when making use of cryp-
tography. At this point, I knew I had to write something about these. This is why my
book contains many of these anecdotes.

As part of the job, I would review cryptography libraries and applications in a mul-
titude of programming languages. I discovered bugs (for example, CVE-2016-3959 in
Golang’s standard library), I researched ways that libraries could fool you into misus-
ing those (for example, my paper “How to Backdoor Diffie-Hellman”), and I advised
on what libraries to use. Developers never knew what library to use, and I always found
the answer to be tricky.

I went on to invent the Disco protocol (https://discocrypto.com; https://embed-
deddisco.com) and wrote its fully-featured cryptographic library in less than 1,000
lines of code, and that, in several languages. Disco only relied on two cryptographic
primitives: the permutation of SHA-3 and Curve25519. Yes, from only those two
things implemented in 1,000 lines of code, a developer could do any type of authen-
ticated key exchange, signatures, encryption, MACs, hashing, key derivation, and so

https://discocrypto.com
https://embeddeddisco.com/
https://embeddeddisco.com/

xviii

PREFACE

on. This gave me a unique perspective as to what a good cryptography library was
supposed to be.

I wanted my book to contain these kinds of practical insights. So naturally, the dif-
ferent chapters contain examples on how to apply “crypto” in different programming
languages, using well-respected cryptographic libraries.

A need for a new book?

As I was giving one of my annual cryptography training sessions at Black Hat (a well-
known security conference), one student came to me and asked if I could recommend
a good book or online course on cryptography. I remember advising the student to
read a book from Boneh and Shoup and to attend Cryptography I from Boneh on
Coursera. (I also recommend both of these resources at the end of this book.)

The student told me, “Ah, I tried, it’s too theoretical!” This answer stayed with me.
I disagreed at first, but slowly realized that they were right. Most of the resources are
pretty heavy in math, and most developers interacting with cryptography don’t want to
deal with math. What else was there for them?

The other two somewhatrespected resources at the time were Applied Cryptography
and Cryptography Engineering (both books by Bruce Schneier). But these books were
starting to be quite outdated. Applied Cryptography spent four chapters on block
ciphers with a whole chapter on cipher modes of operation but none on authenti-
cated encryption. The more recent Cryptography Engineering had a single mention of
elliptic curve cryptography in a footnote. On the other hand, many of my videos or
blog posts were becoming good primary references for some cryptographic concepts.
I knew I could do something special.

Gradually, many of my students started becoming interested in cryptocurrencies,
asking more and more questions on the subject. At the same time, I started to audit
more and more cryptocurrency applications. I later moved to a job at Facebook to
lead security for the Libra cryptocurrency (now known as Diem). Cryptocurrency was,
at that time, one of the hottest fields to work in, mixing a multitude of extremely
interesting cryptographic primitives that so far had seen little-tono real-world use
(zero knowledge proofs, aggregated signatures, threshold cryptography, multi-party
computations, consensus protocols, cryptographic accumulators, verifiable random
functions, verifiable delay functions, . . . the list goes on). And yet, no cryptography
book included a chapter on cryptocurrencies. I was now in a unique position.

I knew I could write something that would tell students, developers, consultants,
security engineers, and others what modern applied cryptography was all about. This
was going to be a book with few formulas but filled with many diagrams. This was
going to be a book with little history but filled with modern stories about cryp-
tographic failures that I had witnessed for real. This was going to be a book with little
about legacy algorithms but filled with cryptography that I've personally seen being
used at scale: TLS, the Noise protocol framework, the Signal protocol, cryptocurren-
cies, HSMs, threshold cryptography, and so on. This was going to be a book with little

PREFACE xix

theoretical cryptography but filled with what could become relevant: password-authenti-
cation key exchanges, zero-knowledge proofs, post-quantum cryptography, and so on.

When Manning Publications reached out to me in 2018, asking if I wanted to write
a book on cryptography, I already knew the answer. I already knew what I wanted to
write. I had just been waiting for someone to give me the opportunity and the excuse
to spend my time writing the book I had in mind. Coincidentally, Manning has a series
of “real-world” books, and so naturally, I suggested that my book extend it. What you
have in front of you is the result of more than two years of hard work and much love. I
hope you like it.

acknowledgments

Thank you to Marina Michaels for her continued help and insights and without whom
this book probably wouldn’t have come to completion.

Thank you to Frances Buran, Sam Zaydel, Michael Rosenberg, Pascal Knecht, Seth
David Schoen, Eyal Ronen, Saralynn Chick, Robert Seacord, Eloi Manuel, Rob Wood,
Hunter Monk, Jean-Christophe Forest, Liviu Bartha, Mattia Reggiani, Olivier Guerra,
Andrey Labunov, Carl Littke, Yan Ivnitskiy, Keller Fuchs, Roman Zabicki, M K Saravanan,
Sarah Zennou, Daniel Bourdrez, Jason Noll, Ilias Cherkaoui, Felipe De Lima, Raul
Siles, Matteo Bocchi, John Woods, Kostas Chalkias, Yolan Romailler, Gerardo Di
Giacomo, Gregory Nazario, Rob Stubbs, Jan Jancar, Gabe Pike, Kiran Tummala,
Stephen Singam, Jeremy O’Donoghue, Jeremy Boone, Thomas Duboucher, Charles
Guillemet, Ryan Sleevi, Lionel Riviere, Benjamin Larsen, Gabriel Giono, Daan
Sprenkels, Andreas Krogen, Vadim Lyubashevsky, Samuel Neves, Steven (Dongze)
Yue, Tony Patti, Graham Steel, and all the livebook commenters for the many discus-
sions and corrections, as well as technical and editorial feedback.

To all the reviewers: Adhir Ramjiawan, Al Pezewski, Al Rahimi, Alessandro Campeis,
Bobby Lin, Chad Davis, David T Kerns, Domingo Salazar, Eddy Vluggen, Gdbor Laszl6
Hajba, Geert Van Laethem, Grzegorz Bernas, Harald Kuhn, Hugo Durana, Jan Pieter
Herweijer, Jeff Smith, Jim Karabatsos, Joel Kotarski, John Paraskevopoulos, Matt Van
Winkle, Michal Rutka, Paul Grebenc, Richard Lebel, Ruslan Shevchenko, Sanjeev
Jaiswal, Shawn P Bolan, Thomas Doylend, William Rudenmalm, your suggestions helped
make this a better book.

about this book

It has now been more than two years since I've started writing Real-World Cryptography.
I originally intended for it to be an introduction to all there is to know about the type
of cryptography that is used in the real world. But, of course, that’s an impossible task.
No field can be summarized in a single book. For this reason, I had to strike a balance
between how much detail I wanted to give the reader and how much area I wanted to
cover. I hope you find yourself in the same box I ended up wiggling myself into. If
you’re looking for a practical book that teaches you the cryptography that companies
and products implement and use, and if you’re curious about how real-world cryptog-
raphy works underneath the surface but aren’t looking for a reference book with all
the implementation details, then this book is for you.

Who should read this book

Here is a list of what I believe are the types of people (although please don’t let any-
one put you in a box) that would benefit from this book.

Students

If you’re studying computer science, security, or cryptography and want to learn about
cryptography as used in the real world (because you are either targeting a job in the
industry or want to work on applied subjects in academia), then I believe this is the
textbook for you. Why? Because, as I said in the preface, I was once such a student,
and I wrote the book I wish I had then.

xxii

ABOUT THIS BOOK

Security practitioners

Pentesters, security consultants, security engineers, security architects, and other secu-
rity roles comprised most of the students I had when I taught applied cryptography.
Due to this, this material has been refined by the many questions I received while I
was trying to explain complicated cryptography concepts to non-cryptographers. As a
security practitioner myself, this book is also shaped by the cryptography I've audited
for large companies and the bugs that I learned about or found along the way.

Developers who use cryptography directly or indirectly

This work has also been shaped by the many discussions I’'ve had with clients and
coworkers, who were by and large neither security practitioners nor cryptographers.
Today, it’s becoming harder and harder to write code without touching cryptography,
and as such, you need to have some understanding of what you’re using. This book
gives you that understanding using coding examples in different programming lan-
guages and more if you're curious.

Cryptographers curious about other fields

This book is an introduction to applied cryptography that’s useful to people like me. I
wrote this first to myself, remember. If I managed to do a good job, a theoretical cryp-
tographer should be able to get a quick understanding of what the applied cryptogra-
phy world looks like; another one working on symmetric encryption should be able to
swiftly pick up on password-authenticated key exchanges by reading the relevant chap-
ter; a third one working with protocols should be able to rapidly get a good under-
standing of quantum cryptography; and so on.

Engineering and product managers who want to understand more

This book also attempts to answer questions that I find to be more product-oriented:
what are the tradeoffs and limitations of these approaches? What risk am I getting
into? Would this path help me comply with regulations? Do I need to do this and that
to work with a government?

Curious people who want to know what real-world crypto is about

You don’t need to be any of the previous types I've listed to read this book. You just
need to be curious about cryptography as used in the real world. Keep in mind, I
don’t teach the history of cryptography, and I don’t teach the basics of computer sci-
ence, so at the very least, you should have heard of cryptography before getting into a
book like this one.

Assumed knowledge, the long version

What will you need in order to get the most out of this book? You should know that
this book assumes that you have some basic understanding of how your laptop or the
internet works, and at least, you should have heard of encryption. The book is about

ABOUT THIS BOOK xxiii

real-world cryptography, and so it will be hard to put things in context if you're not at
ease with computers or if you’ve never heard of the word encryption before.

Assuming that you somewhat know what you’re getting into, it’ll be a real plus if
you know what bits and bytes are and if you’ve seen or even used bitwise operations
like XOR, shift left, and those kinds of things. Is it a deal breaker if you haven’t? No,
but it might mean that you will have to stop for a few minutes here and there to do
some Googling before you can resume reading.

Actually, no matter how qualified you are, when reading this book, you’ll probably
have to stop from time to time in order to get more information from the internet.
Either because I (shame on me) forgot to define a term before using it or because I
wrongly assumed you would know about it. In any case, this should not be a huge deal
as I try to ELYH (explain like you're 5) as best as I can the different concepts that I
introduce.

Finally, when I use the word cryptography, your brain is probably thinking about
math. If, in addition to that thought, your face grimaced, then you’ll be glad to know
that you shouldn’t worry too much about that. Real-World Cryptography is about teach-
ing insights so that you gain an intuition about how it all works, and it attempts to
avoid the mathy nitty-gritty when possible.

Of course, I'd be lying if I said that no math was involved in the making of this
book. There’s no teaching cryptography without math. So here’s what I’ll say: it helps
if you have achieved a good level in mathematics, but if you haven’t, it shouldn’t pre-
vent you from reading most of this book. Some chapters will be unfriendly to you
unless you have a more advanced understanding of math, specifically the last chapters
(14 and 15) on quantum cryptography and next-generation cryptography, but noth-
ing is impossible, and you can get through those chapters with willpower and by
Googling about matrix multiplications and other things you might not know about. If
you decide to skip these, make sure you don’t skip chapter 16, as it’s the icing on top
of the cake.

How this book is organized: A roadmap

Real-World Cryptography is split into two parts. The first part is meant to be read from
the first page to the last and covers most of the ingredients of cryptography: the stuff
you’ll end up using like Lego to construct more complex systems and protocols.

Chapter 1 is an introduction to real-world cryptography, giving you some idea
of what you’ll learn.

Chapter 2 talks about hash functions, a fundamental algorithm of cryptography
used to create unique identifiers from bytestrings.

Chapter 3 talks about data authentication and how you can ensure that nobody
modifies your messages.

Chapter 4 talks about encryption, which allows two participants to hide their
communications from observers.

XXiv

ABOUT THIS BOOK

Chapter 5 introduces key exchanges, which allows you to negotiate a common
secret with someone else interactively.

Chapter 6 describes asymmetric encryption, which allows multiple people to
encrypt messages to a single person.

Chapter 7 talks about signatures, cryptographic equivalents of pen-and-paper
signatures.

Chapter 8 talks about randomness and how to manage your secrets.
The second part of this book contains the systems that are built out of these ingredients.

Chapter 9 teaches you how encryption and authentication are used to secure
connections between machines (via the SSL/TLS protocol).

Chapter 10 describes end-to-end encryption, which is really about how people
like you and I can trust one another.

Chapter 11 shows how machines authenticate people and how people can help
machines sync with one another.

Chapter 12 introduces the nascent field of cryptocurrencies.

Chapter 13 spotlights hardware cryptography, the devices that you can use to
prevent your keys from being extracted.

There are two bonus chapters: chapter 14 on post-quantum cryptography and chapter
15 on next-generation cryptography. These two fields are starting to make their way
into products and companies, either because they are getting more relevant or
because they are becoming more practical and efficient. While I won’t judge you if
you skip these last two chapters, you do have to read through chapter 16 (final words)
before placing this book back on a shelf. Chapter 16 summarizes the different chal-
lenges and the different lessons that a cryptography practitioner (meaning you, once
you finish this book) has to keep in mind. As Spider-Man’s Uncle Ben said, “With
great power comes great responsibility.”

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we've added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (=). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

ABOUT THIS BOOK XXV

liveBook discussion forum

Purchase of Real-World Cryptography includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://livebook.manning.com/book/real-world-cryptography/discussion.
You can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/real-world-cryptography/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion

about the author

DAVID WONG is a senior cryptography engineer at O(1) Labs working on the Mina
cryptocurrency. Prior to that, he was the security lead for the Diem (formally known as
Libra) cryptocurrency at Novi, Facebook, and before that, a security consultant at the
Cryptography Services practice of NCC Group. David is also the author of the book
Real-World Cryptography.

During his career, David has taken part in several publicly funded open source
audits, such as OpenSSL and Let’s Encrypt. He has spoken at various conferences,
including Black Hat and DEF CON, and has taught a recurring cryptography course
at Black Hat. He has contributed to standards like TLS 1.3 and the Noise Protocol
Framework. He has found vulnerabilities in many systems, including CVE-2016-3959
in the Golang standard library, CVE-2018-12404, CVE-2018-19608, CVE-2018-16868,
CVE-2018-16869, and CVE-2018-16870 in various TLS libraries.

Among others, he is the author of the Disco protocol (www.discocrypto.com and
www.embeddeddisco.com) and the Decentralized Application Security Project for
smart contracts (www.dasp.co). His research includes cache attacks on RSA (http://
cat.eyalro.net/), protocol based on QUIC (https://eprint.iacr.org/2019/028), timing
attacks on ECDSA (https://eprint.iacr.org/2015/839), or backdoors in Diffie-Hellman
(https://eprint.iacr.org/2016/644). You can see and read about him these days on his
blog at www.cryptologie.net.

http://cat.eyalro.net/
http://cat.eyalro.net/
https://eprint.iacr.org/2019/028
https://eprint.iacr.org/2015/839
https://eprint.iacr.org/2016/644
http://www.discocrypto.com
http://www.embeddeddisco.com
http://www.dasp.co
http://www.cryptologie.net

about the cover illustration

The figure on the cover of Real-World Cryptography is captioned “Indienne de quito,” or
Quito Indian. The illustration is taken from a collection of dress costumes from vari-
ous countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Dif-
Jférents Pays, published in France in 1797. Each illustration is finely drawn and colored
by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify where they lived and what their trade or station
in life was just by their dress.

The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

XXVii

Part 1

Primzutrves:
The ingredients

of cryptography

-» \elcome to the real-world of cryptography! The book you’'re holding in

your hands (if you chose to acquire a printed version) is split into two equal parts
of eight chapters. By going through all of it, you will learn (almost) all there is to
know about cryptography in the real world—the one you’re standing in.

Note that the first part of the book was written to be read in order, although
each chapter should tell you what the prerequisites are, so do not view this as a
mandatory constraint. The first eight chapters take you through the basics—the
building blocks of cryptography. Each chapter introduces a new ingredient and
teaches you what it does, how it works, and how it can be used with other ele-
ments. This first part is all about giving you good abstractions and insights before
we start making use of it all in the second part of the book.

Good luck!

Introduction

This chapter covers

= What cryptography is about
= Theoretical versus real-world cryptography
= What you'll learn throughout this adventure

Greetings, traveler; sit tight. You're about to enter a world of wonder and mystery—
the world of cryptography. Cryptography is the ancient discipline of securing situa-
tions that are troubled with malicious characters. This book includes the spells that
we need to defend ourselves against the malice. Many have attempted to learn this
craft, but few have survived the challenges that stand in the way of mastery. Exciting
adventures await, indeed!

In this book, we’ll uncover how cryptographic algorithms can secure our letters,
identify our allies, and protect treasures from our enemies. Sailing through the
cryptographic sea will not be the smoothest journey as cryptography is the founda-
tion of all security and privacy in our world—the slightest mistake could be deadly.

NOTE If you find yourself lost, remember to keep moving forward. It will
all eventually make sense.

1.1

CHAPTER 1 Introduction

Cryptography is about securing protocols

Our journey starts with an introduction to cryptography, the science aiming to defend
protocols against saboteurs. But first, what’s a protocol? Simply put, it’s a list of steps
that one (or more people) must follow in order to achieve something. For example,
imagine the following premise: you want to leave your magic sword unattended for a
few hours so you can take a nap. One protocol to do this could be the following:

Deposit weapon on the ground
Take nap under a tree
Recover weapon from the ground

Of course, it’s not a great protocol as anybody can steal your sword while you’'re nap-
ping . . . And so, cryptography is about taking into account the adversaries who are
looking to take advantage of you.

In ancient times, when rulers and generals were busy betraying each other and
planning coups, one of their biggest problems was finding a way to share confidential
information with those they trusted. From here, the idea of cryptography was born. It took
centuries and hard work before cryptography became the serious discipline it is today.
Now, it’s used all around us to provide the most basic services in the face of our cha-
otic and adverse world.

The story of this book is about the practice of cryptography. It takes you on an
expedition throughout the computing world to cover cryptographic protocols in use
today; it also shows you what parts they are made of and how everything fits together.
While a typical cryptography book usually starts with the discovery of cryptography
and takes you through its history, I think that it makes little sense for me to kick off
things that way. I want to tell you about the practical. I want to tell you about what I've
witnessed myself, reviewing cryptographic applications for large companies as a con-
sultant, or the cryptography I've made use of myself as an engineer in the field.

There will be (almost) no scary math formulas. The purpose of this book is to
demystify cryptography, survey what is considered useful nowadays, and provide intu-
ition about how things around you are built. This book is intended for curious people,
interested engineers, adventurous developers, and inquisitive researchers. Chapter 1,

1.2

Symmetric cryptography: What is symmetric encryption? 5

this chapter, initiates a tour of the world of cryptography. We will discover the differ-
ent types of cryptography, which ones matter to us, and how the world agreed on
using these.

Symmetric cryptography: What is symmetric

encryption?

One of the fundamental concepts of cryptography is symmetric encryption. It is used in a
majority of cryptographic algorithms in this book, and it is, thus, extremely important.
I introduce this new concept here via our first protocol.

Let’s imagine that Queen Alice needs to send a letter to Lord Bob, who lives a few
castles away. She asks her loyal messenger to ride his trusty steed and battle his way
through the dangerous lands ahead in order to deliver the precious message to Lord
Bob. Yet, she is suspicious; even though her loyal messenger has served her for many
years, she wishes the message in transit to remain secret from all passive observers,
including the messenger! You see, the letter most likely contains some controversial
gossip about the kingdoms on the way.

What Queen Alice needs is a protocol that mimics handing the message to Lord Bob
herself with no middlemen. This is quite an impossible problem to solve in practice
unless we introduce cryptography (or teleportation) into the equation. This is what
we ended up doing ages ago by inventing a new type of cryptographic algorithm—
called a symmetric encryption algorithm (also known as a cipher).

NOTE By the way, a type of cryptographic algorithm is often referred to as a
primitive. You can think of a primitive as the smallest, useful construction you
can have in cryptography, and it is often used with other primitives in order to
build a protocol. It is mostly a term and has no particularly important mean-
ing, although it appears often enough in the literature that it is good to know
about it.

Let’s see how we can use an encryption primitive to hide Queen Alice’s message from
the messenger. Imagine for now that the primitive is a black box (we can’t see what’s
inside or what it’s doing internally) that provides two functions:

ENCRYPT

DECRYPT

CHAPTER 1 Introduction

The first function, ENCRYPT, works by taking a secret key (usually a large number) and
a message. It then outputs a series of random-looking numbers, some noisy data if you
will. We will call that output the encrypted message. I illustrate this in figure 1.1.

* Figure 1.1 The ENCRYPT function
takes a message and a secret key and
outputs the encrypted message—a
long series of numbers that look like
random noise.

/\< —p | S\ —

The second function, DECRYPT, is the inverse of the first one. It takes the same secret
key and the random output of the first function (the encrypted message) and then it
finds the original message. I illustrate this in figure 1.2.

. s 3 DECRYPT S /\<

T Figure 1.2 The DECRYPT function takes
an encrypted message and a secret key
and returns the original message.

To make use of this new primitive, Queen Alice and Lord Bob have to first meet in
real life and decide on what secret key to use. Later, Queen Alice can use the provided
ENCRYPT function to protect a message with the help of the secret key. She then
passes the encrypted message to her messenger, who eventually delivers it to Lord
Bob. Lord Bob then uses the DECRYPT function on the encrypted message with the
same secret key to recover the original message. Figure 1.3 shows this process.

During this exchange, all the messenger had was something that looked random
and that provided no meaningful insight into the content of the hidden message.
Effectively, we augmented our insecure protocol into a secure one, thanks to the help
of cryptography. The new protocol makes it possible for Queen Alice to deliver a con-
fidential letter to Lord Bob without anyone (except Lord Bob) learning the content
of it.

The process of using a secret key to render things to noise, making them indistin-
guishable from random, is a common way of securing a protocol in cryptography. You
will see more of this as you learn more cryptographic algorithms in the next chapters.

By the way, symmetric encryption is part of a larger category of cryptography algo-
rithms called symmetric cryptography or secret key cryptography. This is due to the same key
being used by the different functions exposed by the cryptographic primitive. As you
will see later, sometimes there’s more than one key.

1.3

Kerckhoff’s principle: Only the key is kept secret 7

DECRYPT TS /\<

Alice

Figure 1.3 (1) Alice uses the ENCRYPT function with a secret key to
transform her message into noise. (2) She then passes the encrypted message
to her messenger, who will not learn anything about the underlying message.
(3) Once Bob receives the encrypted message, he can recover the original
content by using the DECRYPT function with the same secret key Alice used.

Kerckhoff’s principle: Only the key is kept secret

To design a cryptographic algorithm (like our encryption primitive) is an easy task,
but to design a secure cryptographic algorithm is not for the faint of heart. While we
shy away from creating such algorithms in this book, we do learn how to recognize the
good ones. This can be difficult as there is more choice than one can ask for the task.
Hints can be found in the repeated failures of the history of cryptography, as well as
the lessons that the community has learned from them. As we take a look at the past,
we will grasp at what turns a cryptographic algorithm into a trusted-to-be-secure one.

Hundreds of years have passed and many queens and lords have been buried.
Since then, paper has been abandoned as our primary means of communication in
favor of better and more practical technologies. Today, we have access to powerful
computers as well as the internet. More practical, sure, but this also means that our
previous malicious messenger has become much more powerful. He is now every-
where: the Wi-Fi in the Starbucks cafe you’re sitting in, the different servers making
up the internet and forwarding your messages, and even in the machines running our
algorithms. Our enemies are now able to observe many more messages as each
request you make to a website might pass through the wrong wire and become altered
or copied in a matter of nanoseconds without anyone noticing.

Before us, we can see that recent history contains many instances of encryption
algorithms falling apart, being broken by secret state organizations or by independent
researchers, and failing to protect their messages or accomplish their claims. Many

CHAPTER 1 Introduction

lessons were learned, and we slowly came to understand how to produce good cryp-
tography.

NOTE A cryptographic algorithm can be considered broken in many ways. For
an encryption algorithm, you can imagine several ways to attack the algo-
rithm: the secret key can be leaked to the attacker, messages can be decrypted
without the help of the key, some information about the message can be
revealed just by looking at the encrypted message, and so on. Anything that
would somehow weaken the assumptions we made about the algorithm could
be considered a break.

A strong notion came out of the long process of trial and error that cryptography went
through: to obtain confidence in the security claims made by a cryptographic primi-
tive, the primitive has to be analyzed in the open by experts. Short of that, you are
relying on security through obscurity, which hasn’t worked well historically. This is why
cryptographers (the people who build) usually use the help of cryptanalysts (the people
who break) in order to analyze the security of a construction. (Although cryptogra-
phers are often cryptanalysts themselves and vice-versa.)

CRYPTOGRAPUERS CRYPTANALYSTS

o

Let’s take the Advanced Encryption Standard (AES) encryption algorithm as an exam-
ple. AES was the product of an international competition organized by the National
Institute of Standards and Technology (NIST).

NOTE NIST is a United States agency whose role is to define standards and
develop guidelines for use in governmentrelated functions as well as other
public or private organizations. Like AES, it has standardized many widely
used cryptographic primitives.

The AES competition lasted several years, during which many volunteering cryptana-
lysts from around the world gathered to take a chance at breaking the various candi-
date constructions. After several years, once enough confidence was built by the process,
a single competing encryption algorithm was nominated to become the Advanced

Kerckhoff’s principle: Only the key is kept secret 9

Encryption Standard itself. Nowadays, most people trust that AES to be a solid encryp-
tion algorithm, and it is widely used to encrypt almost anything. For example, you use
it every day when you browse the web.

The idea to build cryptographic standards in the open is related to a concept often
referred to as Kerckhoffs’ principle, which can be understood as something like this: it
would be foolish to rely on our enemies not to discover what algorithms we use
because they most likely will. Instead, let’s be open about them.

If the enemies of Queen Alice and Lord Bob knew exactly how they were
encrypting messages, how is their encryption algorithm secure? The answer is the
secret keyl The secrecy of the key makes the protocol secure, not the secrecy of the
algorithm itself. This is a common theme in this book: all the cryptographic algo-
rithms that we will learn about and that are used in the real world are most often
free to be studied and used. Only the secret keys used as input to these algorithms
are kept secret. Ars ipsi secrela magistro (an art secret even for the master), said Jean
Robert du Carlet in 1644. In the next section, I will talk about a totally different kind
of cryptographic primitive. For now, let’s use figure 1.4 to organize what we’ve learned
so far.

T

Symmetric

encryption’¢ i N

Figure 1.4 The cryptographic algorithms you have learned so far. AES is an
instantiation of a symmetric encryption algorithm, which is a cryptographic
primitive that is part of the broader class of symmetric cryptographic algorithms.

10

14

14.1

CHAPTER 1 Introduction

Asymmetric cryptography: Two keys

are better than one

In our discussion about symmetric encryption, we said that Queen Alice and Lord
Bob first met to decide on a symmetric key. This is a plausible scenario, and a lot of
protocols actually do work like this. Nonetheless, this quickly becomes less practical in
protocols with many participants: do we need our web browser to meet with Google,
Facebook, Amazon, and the other billions of websites before securely connecting
to those?

This problem, often referred to as key distribution, has been a hard one to solve for
quite a long time, at least until the discovery in the late 1970s of another large and
useful category of cryptographic algorithms called asymmetric cryptography or public key
cryptography. Asymmetric cryptography generally makes use of different keys for differ-
ent functions (as opposed to a single key used in symmetric cryptography) or provides
different points of view to different participants. To illustrate what this means and how
public key cryptography helps to set up trust between people, I'll introduce a number
of asymmetric primitives in this section. Note that this is only a glance of what you’ll
learn in this book as I'll talk about each of these cryptographic primitives in more
detail in subsequent chapters.

Key exchanges or how to get a shared secret

The first asymmetric cryptography primitive we’ll look at is the key exchange. The first
public key algorithm discovered and published was a key exchange algorithm named
after its authors, Diffie-Hellman (DH). The DH key exchange algorithm’s main purpose
is to establish a common secret between two parties. This common secret can then be
used for different purposes (for example, as a key to a symmetric encryption primitive).

In chapter 5, I will explain how Diffie-Hellman works, but for this introduction,
let’s use a simple analogy in order to understand what a key exchange provides. Like
many algorithms in cryptography, a key exchange must start with the participants
using a common set of parameters. In our analogy, we will simply have Queen Alice
and Lord Bob agree to use a square (). The next step is for them to choose their
own random shape. Both of them go to their respective secret place, and out of sight,
Queen Alice chooses a triangle (A) and Lord Bob chooses a star (%). The objects
they chose need to remain secret at all costs! These objects represent their private keys
(see figure 1.5).

Once they chose their private keys, they both individually combine their secret
shape with the common shape they initially agreed on using (the square). The combi-

Figure 1.5 The first step of a DH
(Diffie-Hellman) key exchange is to

Common shape: . have both participants generate a
Private key S Private key private key. In our analogy, Queen
e ﬁ Alice chooses a triangle as her private
C. A ’ *) key, whereas Lord Bob chooses a star
as his private key.

Asymmetric cryptography: Two keys are better than one 11

nations result in unique shapes representing their public keys. Queen Alice and Lord
Bob can now exchange their public keys (hence the name key exchange) because public
keys are considered public information. I illustrate this in figure 1.6.

Common shape: .
Figure 1.6 The second step of

AN ‘ o a DH key exchange where both
. A * . Bob’s private key participants exchange their
/ / public keys. Participants derive
Alice’s public key their public keys by combining
= + . their private keys with a

common shape.

We are now starting to see why this algorithm is called a public key algorithm. It is
because it requires a key pair comprised of a private key and a public key. The final step
of the DH key exchange algorithm is quite simple: Queen Alice takes Lord Bob’s pub-
lic key and combines it with her private key. Lord Bob does the same with Queen
Alice’s public key and combines it with his own private key. The result should now be
the same on each side; in our example, a shape combining a star, a square, and a trian-
gle (see figure 1.7).

AR A K

Alice’s Bob’s Shared Alice’s Bob’s
private key public key secret public key private key

Figure 1.7 The final step of a DH key exchange where both participants
produce the same shared secret. To do this, Queen Alice combines her
private key with Lord Bob’s public key, and Lord Bob combines his private
key with Queen Alice’s public key. The shared secret cannot be obtained
from solely observing the public keys.

It is now up to the participants of the protocol to make use of this shared secret. You
will see several examples of this in this book, but the most obvious scenario is to make
use of it in an algorithm that requires a shared secret. For example, Queen Alice and
Lord Bob could now use the shared secret as a key to encrypt further messages with a
symmetric encryption primitive. To recap

Alice and Bob exchange their public keys, which masks their respective private
keys.

With the other participant’s public key and their respective private key, they can
compute a shared secret.

An adversary who observes the exchange of public keys doesn’t have enough
information to compute the shared secret.

12

CHAPTER 1 Introduction

NOTE In our example, the last point is easily bypassable. Indeed, without the
knowledge of any private keys, we can combine the public keys together to
produce the shared secret. Fortunately, this is only a limitation of our anal-
ogy, but it works well enough for us to understand what a key exchange does.

In practice, a DH key exchange is quite insecure. Can you take a few seconds to figure
out why?

Because Queen Alice accepts any public key she receives as being Lord Bob’s pub-
lic key, I could intercept the exchange and replace it with mine, which would allow me
to impersonate Lord Bob to Queen Alice (and the same can be done to Lord Bob).
We say that a man-in-the-middle (MITM) attacker can successfully attack the protocol.
How do we fix this? We will see in later chapters that we either need to augment this
protocol with another cryptographic primitive, or we need to be aware in advance of
what Lord Bob’s public key is. But then, aren’t we back to square one?

Previously, Queen Alice and Lord Bob needed to know a shared secret; now Queen
Alice and Lord Bob need to know their respective public keys. How do they get to
know that? Is that a chicken-and-egg problem all over again? Well, kind of. As we will
see, in practice, public key cryptography does not solve the problem of trust, but it
simplifies its establishment (especially when the number of participants is large).

Let’s stop here and move on to the next section as you will learn more about key
exchanges in chapter 5. We still have a few more asymmetric cryptographic primitives
to uncover (see figure 1.8) to finish our tour of real-world cryptography.

Symmetric
encryption’¢ ==~

. a) Key

exchanges

Figure 1.8 The cryptographic algorithms we have learned so far. Two large
classes of cryptographic algorithms are symmetric cryptography (with symmetric
encryption) and asymmetric cryptography (with key exchanges).

14.2

Asymmetric cryptography: Two keys are better than one 13

Asymmetric encryption, not like the symmetric one

The invention of the DH key exchange algorithm was quickly followed by the inven-
tion of the RSA algorithm named after Ron Rivest, Adi Shamir, and Leonard Adleman.
RSA contains two different primitives: a public key encryption algorithm (or asymmet-
ric encryption) and a (digital) signature scheme. Both primitives are part of the larger
class of cryptographic algorithms called asymmetric cryptography. In this section, we will
explain what these primitives do and how they can be useful.

The first one, asymmetric encryption, has a similar purpose to the symmetric
encryption algorithm we talked about previously: it allows one to encrypt messages in
order to obtain confidentiality. Yet, unlike symmetric encryption, which had the two
participants encrypt and decrypt messages with the same symmetric key, asymmetric
encryption is quite different:

It works with two different keys: a public key and a private key.
It provides an asymmetric point of view: anyone can encrypt with the public key,
but only the owner of the private key can decrypt messages.

Let’s now use a simple analogy to explain how one can use asymmetric encryption. We
start with our friend Queen Alice again, who holds a private key (and its associated
public key). Let’s picture her public key as an open chest that she releases to the pub-
lic for anyone to use (see figure 1.9).

Alice’s public key AN Alice’s private key

e

Figure 1.9 To use asymmetric encryption, Queen Alice needs to first
publish her public key (represented as an open box here). Now, anyone
can use the public key to encrypt messages to her. And she should be
able to decrypt them using the associated private key.

Now, you and I and everyone who wants can encrypt a message to her using her public
key. In our analogy, imagine that you would insert your message into the open chest
and then close it. Once the chest is closed, nobody but Queen Alice should be able to
open it. The box effectively protects the secrecy of the message from observers. The
closed box (or encrypted content) can then be sent to Queen Alice, and she can use
her private key (only known to her, remember) to decrypt it (see figure 1.10).

Let’s summarize in figure 1.11 the cryptographic primitives we have learned so far.
We are only missing one more to finish our tour of real-world cryptography!

14 CHAPTER 1 Introduction

A

o\m o .
& -
B

o
! » =~ R

=

Figure 1.10 Asymmetric encryption: (1) anyone can use Queen Alice’s public
key to encrypt messages to her. (2) After receiving them, (3) she can decrypt
the content using her associated private key. Nobody is able to observe the
messages directed to Queen Alice while they are being sent to her.

Symmetric -
encryption,¢ ===
A
. _a) Key
‘ exchanges

- ‘

\
‘ -
‘- -==TTTTN

>

Asymmetric S
encryption

.

Figure 1.11 The cryptographic algorithms we have learned so far: two large
classes of cryptographic algorithms are symmetric cryptography (with
symmetric encryption) and asymmetric cryptography (with key exchanges and
asymmetric encryption).

143

Asymmetric cryptography: Two keys are better than one 15

Digital signatures, just like your pen-and-paper signatures

We saw that RSA provides an asymmetric encryption algorithm, but as we mentioned
earlier, it also provides a digital signature algorithm. The invention of this digital signa-
ture cryptographic primitive has been of immense help to set up trust between the
Alices and Bobs of our world. It is similar to real signatures; you know, the one that you
are required to sign on a contract when you’re trying to rent an apartment, for example.
“What if they forge my signature?” you may ask, and indeed, real signatures don’t
provide much security in the real world. On the other hand, cryptographic signatures
can be used in the same kind of way but provide a cryptographic certificate with your
name on it. Your cryptographic signature is unforgeable and can easily be verified by
others. Pretty useful compared to the archaic signatures you used to write on checks!
In figure 1.12, we can imagine a protocol where Queen Alice wants to show Lord
David that she trusts Lord Bob. This is a typical example of how to establish trust in a
multiparticipant setting and how asymmetric cryptography can help. By signing a piece
of paper containing “I, Queen Alice, trust Lord Bob,” Queen Alice can take a stance and
notify Lord David that Lord Bob is to be trusted. If Lord David already trusts Queen
Alice and her signature algorithm, then he can choose to trust Lord Bob in return.

Alice

S

David °a° Bob
ﬁ / \ Figure 1.12 Lord David already trusts
3 trust trust A Queen Alice. Because Queen Alice trusts
A e o
- A

Lord Bob, can Lord David safely trust Lord
Bob as well?

In more detail, Queen Alice can use the RSA signature scheme and her private key to
sign the message, “I, Queen Alice, trust Lord Bob.” This generates a signature that
should look like random noise (see figure 1.13).

Private key

v

_ Figure 1.13 To sign a message, Queen
> SIGN > Signature Alice uses her private key and generates

a signature.

Anyone can then wverify the signature by combining:
Alice’s public key
The message that was signed
The signature

16 CHAPTER 1 Introduction

The result is either true (the signature is valid) or false (the signature is invalid) as fig-
ure 1.14 shows.

A
— True
VERIFY [y
Signature — False Figure 1.14 To verify a signature from
Queen Alice, one also needs the message
T signed and Queen Alice’s public key. The
result is either validating the signature or
O-m Public key invalidating it.

We have now learned about three different asymmetric primitives:

= Key exchange with Diffie-Hellman
= Asymmetric encryption
= Digital signatures with RSA

These three cryptographic algorithms are the most known and commonly used primi-
tives in asymmetric cryptography. It might not be totally obvious how they can help to
solve real-world problems, but rest assured, they are used every day by many applica-
tions to secure things around them. It is time to complete our picture with all the
cryptographic algorithms we’ve learned about so far (see figure 1.15).

encryption’¢ === - ;

Symmetric
\
Key a

‘ exchanges 7@
- ‘\ etz
\
Q-9

~
RS
Asymmetric
encryption

Figure 1.15 The symmetric and asymmetric algorithms we have learned so far

1.5

Classifying and abstracting cryptography 17

Classifying and abstracting cryptography
In the previous section, we surveyed two large classes of algorithms:

Symmetric cryptography (or secret key cryptography)—A single secret is used. If several
participants are aware of the secret, it is called a shared secret.

Asymmetric cryptography (or public key cryptography)—Participants have an asym-
metrical view of the secrets. For example, some will have knowledge of a public
key, while some will have knowledge of both a public and private key.

Symmetric and asymmetric cryptography are not the only two categories of primitives
in cryptography, and it’s quite hard to classify the different subfields. But yet, as you
will realize, a large part of our book is about (and makes use of) symmetric and asym-
metric primitives. This is because a large part of what is useful in cryptography nowa-
days is contained in these subfields. Another way of dividing cryptography can be

Math-based constructions—These rely on mathematical problems like factoring
numbers. (The RSA algorithm for digital signatures and asymmetric encryption
is an example of such a construction.)

Heuristic-based constructions—These rely on observations and statistical analy-
sis by cryptanalysts. (AES for symmetric encryption is an example of such a
construction.)

There is also a speed component to this categorization as mathematic-based construc-
tions are often much slower than heuristic-based constructions. To give you an idea,
symmetric constructions are most often based on heuristics (what seems to be work-
ing), while most asymmetric constructions are based on mathematical problems (what
is thought to be hard).

It is hard for us to rigorously categorize all of what cryptography has to offer.
Indeed, every book or course on the subject gives different definitions and classifica-
tions. In the end, these distinctions are not too useful for us as we will see most of the
cryptographic primitives as unique tools that make unique security claims. We can, in
turn, use many of these tools as building blocks to create protocols. It is thus essential
to understand how each of these tools work and what kind of security claims they pro-
vide in order to understand how they secure the protocols around us. For this reason,
the first part of this book will go through the most useful cryptographic primitives and
their security properties.

A lot of the concepts in the book can be quite complicated the first time around.
But like everything, the more we read about them and the more we see them in con-
text, the more natural they become, the more we can abstract them. The role of this
book is to help you to create abstractions, to allow you to create a mental model of
what these constructions do, and to understand how they can be combined together
to produce secure protocols. I will often talk about the interface of constructions and
give real-world examples of usage and composition.

The definition of cryptography used to be simple: Queen Alice and Lord Bob want
to exchange secret messages. It isn’t anymore. What cryptography is nowadays is quite

18

1.6

CHAPTER 1 Introduction

complex to describe and has grown organically around discoveries, breakthroughs,
and practical needs. At the end of the day, cryptography is what helps to augment a
protocol in order to make it work in adversarial settings.

To understand exactly how cryptography can help, the set of goals that these pro-
tocols aim to achieve is what matters to us. That’s the useful part. Most of the cryp-
tographic primitives and protocols we’ll learn about in this book provide one or two
of the following properties:

Confidentiality—It’s about masking and protecting some information from the
wrong eyes. For example, encryption masks the messages in transit.
Authentication—It’s about identifying who we are talking to. For example, this
can be helpful in making sure that messages we receive indeed come from Queen
Alice.

Of course, this is still a heavy simplification of what cryptography can provide. In most
cases, the details are in the security claims of the primitives. Depending on how we use
a cryptographic primitive in a protocol, it will achieve different security properties.

Throughout this book, we will learn new cryptographic primitives and how they
can be combined to expose security properties like confidentiality and authentication.
For now, appreciate the fact that cryptography is about providing insurances to a pro-
tocol in adversarial settings. While the “adversaries” are not clearly defined, we can
imagine that they are the ones who attempt to break our protocol: a participant, an
observer, a man in the middle. They reflect what a real-life adversary could be. Because
eventually, cryptography is a practical field made to defend against bad actors in flesh
and bones and bits.

Theoretical cryptography vs. real-world cryptography

In 1993, Bruce Schneier released Applied Cryptography (Wiley), a book targeting develop-
ers and engineers who want to build applications that involve cryptography. Circa 2012,
Kenny Paterson and Nigel Smart started an annual conference called Real World
Crypto that targets the same crowd. But what do applied cryptography and real-world
cryptography refer to? Is there more than one type of cryptography?

To answer the questions, we have to start by defining theoretical cryptography, the
cryptography that cryptographers and cryptanalysts work on. These crypto people are
mostly from academia, working in universities, but sometimes from the industry or in
specific departments of the government. They research everything and anything in
cryptography. Results are shared internationally through publications and presenta-
tions in journals and conferences. Yet not everything they do is obviously useful or
practical. Often, no “proof of concept” or code is released. It wouldn’t make sense
anyway, as no computer is powerful enough to run their research. Having said that,
theoretical cryptography sometimes becomes so useful and practical that it makes its
way to the other side.

1.7

From theoretical to practical: Choose your own adventure 19

The other side is the world of applied cryptography or real-world cryptography. It is the
foundation of the security you find in all applications around you. Although it often
seems like it’s not there, almost transparent, it is there when you log into your bank
account on the internet; it is with you when you message your friends; it helps protect
you when you lose your phone. It is ubiquitous because, unfortunately, attackers are
everywhere and actively try to observe and harm our systems. Practitioners are usually
from the industry but will sometimes vet algorithms and design protocols with the
help of the academic community. Results are often shared through conferences, blog
posts, and open source software.

Real-world cryptography usually cares deeply about real-world considerations:
what is the exact level of security provided by an algorithm? How long does it take to
run the algorithm? What is the size of the inputs and outputs required by the primi-
tive? Real-world cryptography is, as you might have guessed, the subject of this book.
While theoretical cryptography is the subject of other books, we will still take a peek at
what is brewing there in the last chapters of this book. Be prepared to be amazed as
you might catch a glance of the real-world cryptography of tomorrow.

Now you might be wondering: how do developers and engineers choose what cryp-
tography to use for their real-world applications?

From theoretical to practical: Choose your
own adventure

Sitting on top are cryptanalysts who propose and solve hard mathematical problems [. . . |
and at the bottom are software engineers who want to encrypt some data.

—Thai Duong (“So you want to roll your own crypto?,” 2020)

In all the years I've spent studying and working with cryptography, I've never noticed a
single pattern in which a cryptographic primitive ends up being used in real-world
applications. Things are pretty chaotic. Before a theoretical primitive gets to be
adopted, there’s a long list of people who get to handle the primitive and shape it into
something consumable and sometimes safer for the public at large. How can I even
explain that to you?

Have you heard of Choose Your Own Adventure? It’s an old book series where you
got to pick how you want to step through the story. The principle was simple: you
read the first section of the book; at the end of the section, the book lets you decide
on the path forward by giving you different options. Each option was associated
with a different section number that you could skip directly to if you so chose. So, I
did the same here! Start by reading the next paragraph and follow the direction it
gives you.

Where it all begins. Who are you? Are you Alice, a cryptographer? Are you David, work-
ing in the private industry and in need of a solution to your problems? Or are you Eve,
working in a government branch and preoccupied by cryptography?

20

CHAPTER 1 Introduction

You’re Alice, go to step 1.
You're David, go to step 2.
You're Eve, go to step 3.

Step 1: Researchers gotta research. You're a researcher working in a university, or in the
research team of a private company or a nonprofit, or in a government research orga-
nization like NIST or NSA. As such, your funding can come from different places and
might incentivize you to research different things.

You invent a new primitive, go to step 4.
You invent a new construction, go to step 5.
You start an open competition, go to step 6.

Step 2: The industry has a need. As part of your job, something comes up and you are in
need of a new standard. For example, the Wi-Fi Alliance is a nonprofit funded by
interested companies to produce the set of standards around the Wi-Fi protocol.
Another example are banks that got together to produce the Payment Card Industry
Data Security Standard (PCI-DSS), which enforces algorithms and protocols to use if
you deal with credit card numbers.

You decide to fund some much needed research, go to step 1.
You decide to standardize a new primitive or protocol, go to step 5.
You start an open competition, go to step 6.

Step 3: A government has a need. You’re working for your country’s government, and you
need to push out some new crypto. For example, the NIST is tasked with publishing
the Federal Information Processing Standards (FIPS), which mandates what cryptographic
algorithms can be used by companies that deal with the US government. While many
of these standards were success stories and people tend to have a lot of trust in stan-
dards being pushed by government agencies, there is (unfortunately) a lot to say
about failures.

In 2013, following revelations from Edward Snowden, it was discovered that NSA
had purposefully and successfully pushed for the inclusion of backdoor algorithms in
standards (see “Dual EC: A Standardized Back Door” by Bernstein et al.), which
included a hidden switch that allowed NSA, and only the NSA, to predict your secrets.
These backdoors can be thought of as magic passwords that allow the government (and
only it, supposedly) to subvert your encryption. Following this, the cryptographic com-
munity lost a lot of confidence in standards and suggestions coming from governmen-
tal bodies. Recently, in 2019, it was found that the Russian standard GOST had been a
victim of the same treatment.

Cryptographers have long suspected that the agency planted vulnerabilities in a standard
adopted in 20006 by the National Institute of Standards and Technology and later by the
International Organization for Standardization, which has 163 countries as members.
Classified N.S.A. memos appear to confirm that the fatal weakness, discovered by two
Microsoft cryptographers in 2007, was engineered by the agency. The N.S.A. wrote the

From theoretical to practical: Choose your own adventure 21

standard and aggressively pushed it on the international group, privately calling the
effort “a challenge in finesse.”

—New York Times (“N.S.A. Able to Foil Basic Safeguards
of Privacy on Web,” 2013)

You fund some research, go to step 1.

You organize an open competition, go to step 6.

You push for the standardization of a primitive or protocol that you’re using, go
to step 7.

Step 4: A new concept is proposed. As a researcher, you manage to do the impossible; you
invent a new concept. Sure, someone already thought about encryption, but there are
still new primitives being proposed every year in cryptography. Some of them will
prove to be impossible to realize, and some will end up being solvable. Maybe you
have an actual construction as part of your proposal, or maybe you’ll have to wait to
see if someone can come up with something that works.

Your primitive gets implemented, go to step 5.
Your primitive ends up being impossible to implement, go back to the beginning.

Step 5: A new construction or protocol is proposed. A cryptographer or a team of cryptogra-
phers proposes a new algorithm that instantiates a concept. For example, AES is an
instantiation of an encryption scheme. (AES was initially proposed by Vincent Rijmen
and Joan Daemen, who named their construction as a contraction of their names,
Rijndael.) What’s next?

Someone builds on your construction, go to step 5.

You partake in an open competition and win! Go to step 6.

There’s a lot of hype for your work; you’re getting a standard! Go to step 7.
You decide to patent your construction, go to step 8.

You or someone else decides that it’ll be fun to implement your construction.
Go to step 9.

Step 6: An algorithm wins a compelition. The process cryptographers love the most is an
open competition! For example, AES was a competition that invited researchers from
all over the world to compete. After dozens of submissions and rounds of analysis and
help from cryptanalysts (which can take years), the list was reduced to a few candi-
dates (in the case of AES, a single one), which then moved to become standardized.

You got lucky, after many years of competition your construction won! Go to
step 7.
Unfortunately, you lost. Go back to the start.

Step 7: An algorithm or protocol is standardized. A standard is usually published by a gov-
ernment or by a standardization body. The aim is to make sure that everyone is on the
same page so as to maximize interoperability. For example, NIST regularly publishes
cryptographic standards. A well-known standardization body in cryptography is the

22

CHAPTER 1 Introduction

Internet Engineering Task Force (IETF), which is behind many standards on the
internet (like TCP, UDP, TLS, and so on) and that you will hear about a lot in this
book. Standards in the IETF are called Request For Comment (RFC) and can be written
by pretty much anyone who wants to write a standard.

To reinforce that we do not vote, we have also adopted the tradition of “humming”:
When, for example, we have face-to-face meetings and the chair of the working group
wants to get a “sense of the room”, instead of a show of hands, sometimes the chair will
ask for each side to hum on a particular question, either “for” or “against”.

—RFC 7282 (“On Consensus and Humming in the IETF,” 2014)

Sometimes, a company publishes a standard directly. For example, RSA Security LLC
(funded by the creators of the RSA algorithm) released a series of 15 documents
called the Public Key Cryptography Standards (PKCS) to legitimize algorithms and tech-
niques the company used at that time. Nowadays, this is pretty rare, and a lot of com-
panies go through the IETF to standardize their protocols or algorithms as an RFC
instead of a custom document.

Your algorithm or protocol gets implemented, go to step 9.
Nobody cares about your standard, go back to the start.

Step 8: A patent expires. A patent in cryptography usually means that nobody will use the
algorithm. Once the patent expires, it is not uncommon to see a renewed interest in
the primitive. The most popular example is probably Schnorr signatures, which were
the first contender to become the most popular signature scheme until Schnorr him-
self patented the algorithm in 1989. This led to the NIST standardizing a poorer algo-
rithm called Digital Signature Algorithm (DSA), which became the go-to signature
scheme at the time, but doesn’t see much use nowadays. The patent over Schnorr sig-
natures expired in 2008, and the algorithm has since started regaining popularity.

It’s been too long, your algorithm will be forever forgotten. Go back to the
beginning.

Your construction inspires many more constructions to get invented on top of
it, go to step 5.

Now people want to use your construction, but not before it’s standardized for
real. Go to step 7.

Some developers are implementing your algorithm! Go to step 9.

Step 9: A construction or protocol gets implemented. Implementers have the hard task to not
only decipher a paper or a standard (although standards are supposed to target imple-
menters), but they also must make their implementations easy and safe to use. This is not
always a simple task as many devastating bugs can arise in the way cryptography is used.

Someone decides it is time for these implementations to be backed by a stan-
dard. It’s embarrassing without one. Go to step 7.
Hype is raining on your cryptographic library! Go to step 10.

From theoretical to practical: Choose your own adventure 23

Step 10: A developer uses a protocol or primitive in an application. A developer has a need,
and your cryptographic library seems to solve it—easy peasy!

= The primitive solves the need, but it doesn’t have a standard. Not great. Go to
step 7.

= I wish this was written in my programming language. Go to step 9.

= I'misused the library or the construction is broken. Game over.

You got it! There are many means for a primitive to go real-world. The best way
involves many years of analysis, an implementor-friendly standard, and good libraries.
A worse way involves a bad algorithm with a poor implementation. In figure 1.16, I
illustrate the preferred path.

Rijndael The algorithm
Joan Daemen and is included in
freenien o The algorithm is o standardized
The concept of o standardized. protocols.
encryption is e e
invented. Advanced
encryption
standard ;
A team of cryptographers
proposes a new algorithm.
Applications are created The algorithm and
using standardized protocols @ @ protocols
and cryptographic libraries. are implemented

in different
programming languages.

Figure 1.16 The ideal life cycle for a cryptographic algorithm starts when cryptographers instantiate a
concept in a white paper. For example, AES is an instantiation of the concept of symmetric encryption
(there are many more symmetric encryption algorithms out there). A construction can then be standardized:
everybody agrees to implement it a certain way to maximize interoperability. Then support is created by
implementing the standard in different languages.

24

1.8

CHAPTER 1 Introduction

A word of warning

Amnyone, from the most clueless amateur to the best cryptographer, can create an algorithm
that he himself can’t break.

—DBruce Schneier (“Memo to the Amateur Cipher Designer,” 1998)

I must warn you, the art of cryptography is difficult to master. It would be unwise to
assume that you can build complex cryptographic protocols once you're done with
this book. This journey should enlighten you, show you what is possible, and show you
how things work, but it will not make you a master of cryptography.

This book is not the holy grail. Indeed, the last pages of this book take you through
the most important lesson—do not go alone on a real adventure. Dragons can kill, and
you need some support to accompany you in order to defeat them. In other words, cryp-
tography is complicated, and this book alone does not permit you to abuse what you
learn. To build complex systems, experts who have studied their trade for years are
required. Instead, what you will learn is to recognize when cryptography should be used,
or, if something seems fishy, what cryptographic primitives and protocols are available to
solve the issues you're facing, and how all these cryptographic algorithms work under
the surface. Now that you've been warned, go to the next chapter.

Summary

A protocol is a step-by-step recipe where multiple participants attempt to
achieve something like exchanging confidential messages.

Cryptography is about augmenting protocols to secure them in adversarial set-
tings. It often requires secrets.

A cryptographic primitive is a type of cryptographic algorithm. For example,
symmetric encryption is a cryptographic primitive, while AES is a specific sym-
metric encryption algorithm.

One way to classify the different cryptographic primitives is to split them into
two types: symmetric and asymmetric cryptography. Symmetric cryptography
uses a single key (as you saw with symmetric encryption), while asymmetric
cryptography makes use of different keys (as you saw with key exchanges, asym-
metric encryption, and digital signatures).

Cryptographic properties are hard to classify, but they often aim to provide one
of these two properties: authentication or confidentiality. Authentication is
about verifying the authenticity of something or someone, while confidentiality
is about the privacy of data or identities.

Real-world cryptography matters because it is ubiquitous in technological appli-
cations, while theoretical cryptography is often less useful in practice.

Most of the cryptographic primitives contained in this book were agreed on
after long standardization processes.

Cryptography is complicated, and there are many dangers in implementing or
using cryptographic primitives.

2.1

Hash functions

This chapter covers

Hash functions and their security properties

= The widely adopted hash functions in use today
= QOther types of hashing that exist

Attributing global unique identifiers to anything, that’s the promise of the first
cryptographic construction you’ll learn about in this chapter—the hash function.
Hash functions are everywhere in cryptography—everywhere! Informally, they take
as input any data you’d like and produce a unique string of bytes in return. Given
the same input, the hash function always reproduces the same string of bytes. This
might seem like nothing, but this simple fabrication is extremely useful to build
many other constructions in cryptography. In this chapter, you will learn everything
there is to know about hash functions and why they are so versatile.

What is a hash function?

In front of you, a download button is taking a good chunk of the page. You can
read the letters DOWNLOAD, and clicking this seems to redirect you to a different
website containing a file. Below it, lies a long string of unintelligible letters:

f63e68ac0bf052ae923c03f5bl2aedc6ccas9874clc9b0ccf3£39b662d1£487b

25

26

CHAPTER 2 Hash functions

It is followed by what looks like an acronym of some sort: sha256sum. Sound familiar?
You've probably downloaded something in your past life that was also accompanied
with such an odd string (figure 2.1).

A nhttps://www.example.com

Figure 2.1 A web page linking to an
external website containing a file. The
DOWNLOAD external website cannot modify the
content of the file because the first
sha256sum: page provides a hash or digest of the
f63e68ac0bf052ae923¢c03f5b12aedc6ccad49874c1c9b0ccf3f39b662d1f487b fi|e, which ensures the |ntegr|ty over

the downloaded file.

If you’ve ever wondered what was to be done with that long string:

1 Click the button to download the file
2 Use the SHA-256 algorithm to hash the downloaded file
s Compare the output (the digest) with the long string displayed on the web page

This allows you to verify that you downloaded the right file.

NOTE The output of a hash function is often called a digest or a hash. I use the
two words interchangeably throughout this book. Others might call it a check-
sum or a sum, which I avoid, as those terms are primarily used by noncryp-
tographic hash functions and could lead to more confusion. Just keep that in
mind when different codebases or documents use different terms.

To try hashing something, you can use the popular OpenSSL library. It offers a multi-
purpose command-line interface (CLI) that comes by default in a number of systems
including macOS. For example, this can be done by opening the terminal and writing
the following line:

$ openssl dgst -sha256 downloaded file
f63e68ac0bf052ae923c03f5bl2aedc6ccas9874clc9b0ccEl3£39b662d1£487b

With the command, we used the SHA-256 hash function to transform the input (the
downloaded file) into a unique identifier (the value echoed by the command). What
do these extra steps provide? They provide integrity and authenticity. It tells you that
what you downloaded is indeed the file you were meant to download.

All of this works, thanks to a security property of the hash function called second pre-
image resistance. This math-inspired term means that from the long output of the hash

What is a hash function? 27

function, f63e. .., you cannot find another file that will hash to the same output,
f63e.... In practice, it means that this digest is closely tied to the file you’re down-
loading and that no attacker should be able to fool you by giving you a different file.

The hexadecimal notation

By the way, the long output string £63e. . . represents binary data displayed in hexa-
decimal (a base-16 encoding, using numbers from O to 9 and letters from a to f to
represent several bits of data). We could have displayed the binary data with Os
and 1s (base 2), but it would have taken more space. Instead, the hexadecimal
encoding allows us to write 2 alphanumeric characters for every 8 bits (1 byte)
encountered. It is somewhat readable by humans and takes less space. There are
other ways to encode binary data for human consumption, but the two most widely
used encodings are hexadecimal and base64. The larger the base, the less space
it takes to display a binary string, but at some point, we run out of human-readable
characters.

Note that this long digest is controlled by the owner(s) of the web page, and it could
easily be replaced by anyone who can modify the web page. (If you are not convinced,
take a moment to think about it.) This means that we need to trust the page that gave
us the digest, its owners, and the mechanism used to retrieve the page (while we don’t
need to trust the page that gave us the file we downloaded). In this sense, the hash func-
tion alone does not provide integrity. The integrity and authenticity of the downloaded file
comes from the digest combined with the trusted mechanism that gave us the digest
(HTTPS in this case). We will talk about HTTPS in chapter 9, but for now, imagine
that it magically allows you to communicate securely with a website.

Back to our hash function, which can be visualized as the black box in figure 2.2.
Our black box takes a single input and gives out a single output.

Figure 2.2 A hash function takes an
arbitrary-length input (a file, a message,
a video, and so on) and produces a fixed-

HASH length output (for example, 256 bits for
—> IEUSTO > 63068ac0... gy o56). Hashing the same input

produces the same digest or hash.

The input of this function can be of any size. It can even be empty. The output is always
of the same length and deterministic: it always produces the same result if given the
same input. In our example, SHA-256 always provides an output of 256 bits (32 bytes),
which is always encoded as 64 alphanumeric characters in hexadecimal. One major
property of a hash function is that one cannot revert the algorithm, meaning that one
shouldn’t be able to find the input from just the output. We say that hash functions
are one-way.

28

2.2

CHAPTER 2 Hash functions

To illustrate how a hash function works in practice, we’ll hash different inputs with
the SHA-256 hash function using the same OpenSSL CLI. The following terminal ses-
sion shows this. Hashing the same input

§ echo -n "hello" | openssl dgst -sha256 produces the same result.

2cf24dba5fb0a30e26e83b2ac5b9e29elblele5clfa7425e73043362938b9824
$ echo -n "hello" | openssl dgst -sha256

2cf24dba5fb0a30e26e83b2ac5b9e29elblele5clfa7425e73043362938b9824 iAnttl:Z?:a:tge

$ echo -n "hella" | openssl dgst -sha256 complet&!:)ly

70de66401b1399d79b843521ee726dcecled9a8cb5708ecl1520£1£3bb4blddo84 changes the

$ echo -n "this is a very very very very very very output.
very very very long sentence" | openssl dgst -sha256

1166e94d8c45fd8b269ae9451c51547dddec4fc09a91f15a9e27bl4afee30006
The output is always of the same
size, no matter the input size.

In the next section, we will see what are the exact security properties of hash functions.

Security properties of a hash function

Hash functions in applied cryptography are constructions that were commonly
defined to provide three specific security properties. This definition has changed over
time as we will see in the next sections. But for now, let’s define the three strong foun-
dations that make up a hash function. This is important as you need to understand
where hash functions can be useful and where they will not work.

The first one is pre-image resistance. This property ensures that no one should be
able to reverse the hash function in order to recover the input given an output. In fig-
ure 2.3, we illustrate this “one-wayness” by imagining that our hash function is like a
blender, making it impossible to recover the ingredients from the produced smoothie.

5
v
— E —
Input Hash function Digest

Figure 2.3 Given the digest produced by a hash
function (represented as a blender here), it is impossible
? 4 (or technically so hard we assume it will never happen)
to reverse it and find the original input used. This
security property is called pre-image resistance.

"20B899E9}

—

WARNING Is this true if your input is small? Let’s say that it’s either oui or non,
then it is easy for someone to hash all the possible 3-letter words and find out
what the input was. What if your input space is small? Meaning that you always
hash variants of the sentence, “I will be home on Monday at 3 a.m.,” for exam-
ple. Here, one who can predict this but does not know exactly the day of the

Security properties of a hash function 29

week or the hour can still hash all possible sentences until it produces the cor-
rect output. As such, this first pre-image security property has an obvious
caveat: you can’t hide something that is too small or that is predictable.

The second property is second pre-image resistance. We already saw this security property
when we wanted to protect the integrity of a file. The property says the following: if I
give you an input and the digest it hashes to, you should not be able to find a different
input that hashes to the same digest. Figure 2.4 illustrates this principle.

—

Hash function\ \

/ . Figure 2.4 Considering an input and its associated
‘ Digest
? —

B 1

"2j0B899EY}

Input

digest, one should never be able to find a different
input that hashes to the same output. This security
property is called second pre-image resistance.

B 1

Note that we do not control the first input. This emphasis is important to understand the
next security property for hash functions.

Finally, the third property is collision resistance. It guarantees that no one should be
able to produce two different inputs that hash to the same output (as seen in figure
2.5). Here an attacker can choose the two inputs, unlike the previous property that
fixes one of the inputs.

1
B

'
‘ / Digest Figure 2.5 One should never be able to find two inputs
> Y (represented on the left as two random blobs of data)
E that hash to the same output value (on the right). This
Hash function security property is called collision resistance.

Input
People often confuse collision resistance and second pre-image resistance. Take a
moment to understand the differences.

The random oracle
In addition, hash functions are usually designed so that their digests are unpredict-
able and random. This is useful because one cannot always prove a protocol to be

30

2.3

CHAPTER 2 Hash functions

(continued)

secure, thanks to one of the security properties of a hash function we talked about
(like collision resistance, for example). Many protocols are instead proven in the ran-
dom oracle model, where a fictional and ideal participant called a random oracle is
used. In this type of protocol, one can send any inputs as requests to that random
oracle, which is said to return completely random outputs in response, and like a
hash function, giving it the same input twice returns the same output twice.

Proofs in this model are sometimes controversial as we don’t know for sure if we can
replace these random oracles with real hash functions (in practice). Yet, many legiti-
mate protocols are proven secure using this method, where hash functions are seen
as more ideal than they probably are.

Security considerations for hash functions
So far, we saw three security properties of a hash function:

Pre-image resistance
Second pre-image resistance

Collision resistance

These security properties are often meaningless on their own; it all depends on how
you make use of the hash function. Nonetheless, it is important that we understand
some limitations here before we look at some of the real-world hash functions.

First, these security properties assume that you are (reasonably) using the hash
function. Imagine that I either hash the word yes or the word 7o, and I then publish
the digest. If you have some idea of what I am doing, you can simply hash both of the
words and compare the result with what I give you. Because there are no secrets
involved, and because the hashing algorithm we used is public, you are free to do that.
And indeed, one could think this would break the pre-image resistance of the hash
function, but I'll argue that your input was not “random” enough. Furthermore,
because a hash function accepts an arbitrary-length input and always produces an out-
put of the same length, there are also an infinite number of inputs that hash to the
same output. Again, you could say, “Well, isn’t this breaking the second pre-image
resistance?” Second pre-image resistance is merely saying that it is extremely hard to
find another input, so hard we assume it’s in practice impossible but not theoretically
impossible.

Second, the size of the digest does matter. This is not a peculiarity of hash functions
by any means. All cryptographic algorithms must care about the size of their parame-
ters in practice. Let’s imagine the following extreme example. We have a hash func-
tion that produces outputs of length 2 bits in a uniformly random fashion (meaning
that it will output 00 25% of the time, 01 25% of the time, and so on). You're not
going to have to do too much work to produce a collision: after hashing a few random
input strings, you should be able to find two that hash to the same output. For this rea-

24

Hash functions in practice 31

son, there is a minimum output size that a hash function must produce in practice: 256
bits (or 32 bytes). With this large an output, collisions should be out of reach unless a
breakthrough happens in computing.

How was this number obtained? In real-world cryptography, algorithms aim for a
minimum of 128 bits of security. It means that an attacker who wants to break an algo-
rithm (providing 128-bit security) has to perform around 2'#® operations (for exam-
ple, trying all the possible input strings of length 128 bits would take 2'*® operations).
For a hash function to provide all three security properties mentioned earlier, it needs
to provide at least 128 bits of security against all three attacks. The easiest attack is usu-
ally to find collisions due to the birthday bound.

The birthday bound

The birthday bound takes its roots from probability theory in which the birthday prob-
lem reveals some unintuitive results. How many people do you need in a room so
that with at least a 50% chance, two people share the same birthday (that’s a col-
lision). It turns out that 23 people taken at random are enough to reach these odds!
Weird right?

This is called the birthday paradox. In practice, when we randomly generate strings
from a space of 2" possibilities, you can expect with a 50% chance that someone will
find a collision after having generated approximately 22 strings.

If our hash function generates random outputs of 256 bits, the space of all outputs is
of size 2%°°. This means that collisions can be found with good probability after gener-
ating 2'*® digests (due to the birthday bound). This is the number we’re aiming for,
and this is why hash functions at a minimum must provide 256-bit outputs.

Certain constraints sometimes push developers to reduce the size of a digest by
truncating it (removing some of its bytes). In theory, this is possible but can greatly
reduce security. In order to achieve 128-bit security at a minimum, a digest must not
be truncated under:

256 bits for collision resistance
128 bits for pre-image and second pre-image resistance

This means that depending on what property one relies on, the output of a hash func-
tion can be truncated to obtain a shorter digest.

Hash functions in practice

As we said earlier, in practice, hash functions are rarely used alone. They are most
often combined with other elements to either create a cryptographic primitive or a
cryptographic protocol. We will look at many examples of using hash functions to
build more complex objects in this book, but this section describes a few different
ways hash functions have been used in the real world.

32

24.1

24.2

24.3

CHAPTER 2 Hash functions

Commitments

Imagine that you know that a stock in the market will increase in value and reach $50
in the coming month, but you really can’t tell your friends about it (for some legal rea-
son perhaps). You still want to be able to tell your friends that you knew about it after
the fact because you’re smug (don’t deny it). What you can do is to commit to a sen-
tence like, “Stock Xwill reach $50 next month.” To do this, hash the sentence and give
your friends the output. A month later, reveal the sentence. Your friends will be able
to hash the sentence to observe that indeed, it is producing the same output.

This is what we call a commitment scheme. Commitments in cryptography generally
try to achieve two properties:

Hiding—A commitment must hide the underlying value.

Binding—A commitment must hide a single value. In other words, if you com-
mit to a value x, you shouldn’t be able to later successfully reveal a different
value y.

Exercise

Can you tell if a hash function provides hiding and binding if used as a commitment
scheme?

Subresource integrity

It happens (often) that web pages import external JavaScript files. For example, a lot
of websites use Content Delivery Networks (CDNs) to import JavaScript libraries or
web-framework-related files in their pages. Such CDNs are placed in strategic loca-
tions in order to quickly deliver these files to visitors. Yet, if the CDN goes rogue and
decides to serve malicious JavaScript files, this could be a real issue. To counter this,
web pages can use a feature called subresource integrity that allows the inclusion of a
digest in the import tag:

<script src="https://code.jquery.com/jquery-2.1.4.min.js"
integrity="sha256-8WqyJLUuWKRBVhxXIL1jBDD7SDxU9360ZkCnxQbWwIVw="></script>

This is exactly the same scenario we talked about in the introduction of this chapter.
Once the JavaScript file is retrieved, the browser hashes it (using SHA-256) and veri-
fies that it corresponds to the digest that was hardcoded in the page. If it checks out,
the JavaScript file gets executed as its integrity has been verified.

BitTorrent

Users (called peers) around the world use the BitTorrent protocol to share files directly
among each other (what we also call peer-to-peer). To distribute a file, it is cut into
chunks and each chunk is individually hashed. These hashes are then shared as a
source of trust to represent the file to download.

244

Hash functions in practice 33

BitTorrent has several mechanisms to allow a peer to obtain the different chunks
of a file from different peers. In the end, the integrity of the entire file is verified by
hashing each of the downloaded chunks and matching the output to its respectively
known digests (before reassembling the file from the chunks). For example, the fol-
lowing “magnet link” represents the Ubuntu operating system, v19.04. It is a digest
(represented in hexadecimal) obtained from hashing the metadata about the file as
well as all the chunks’ digests.

magnet :?xt=urn:btih:b7b0fbab74a85d4acl170662c645982a862826455

Tor

The Tor browser’s goal is to give individuals the ability to browse the internet anony-
mously. Another feature is that one can create hidden web pages, whose physical loca-
tions are difficult to track. Connections to these pages are secured via a protocol that
uses the web page’s public key. (We will see more about how that works in chapter 9
when we talk about session encryption.) For example, Silk Road, which used to be the
eBay of drugs until it got seized by the FBI, was accessible via silkroadéownowfk
.onion in the Tor browser. This base32 string actually represented the hash of Silk
Road’s public key. Thus, by knowing the onion address, you can authenticate the pub-
lic key of the hidden web page you’re visiting and be sure that you’re talking to the
right page (and not an impersonator). If this is not clear, don’t worry, I’ll mention this
again in chapter 9.

Exercise

By the way, there is no way this string represents 256 bits (32 bytes), right? How is
this secure then, according to what you learned in section 2.3? Also, can you guess
how the Dread Pirate Roberts (the pseudonym of Silk Road’s webmaster) managed
to obtain a hash that contains the name of the website?

In all examples in this section, a hash function provided content integrity or authenticity
in situations where:

Someone might tamper with the content being hashed.
The hash is securely communicated to you.

We sometimes also say that we authenticate something or someone. It is important to
understand that if the hash is not obtained securely, then anyone can replace it with
the hash of something else! Thus, it does not provide integrity by itself. The next
chapter on message authentication code will fix this by introducing secrets. Let’s now
look at what actual hash function algorithms you can use.

34

2.5

CHAPTER 2 Hash functions

Standardized hash functions

We mentioned SHA-256 in our previous example, which is only one of the hash func-
tions we can use. Before we go ahead and list the recommended hash functions of our
time, let’s first mention other algorithms that people use in real-world applications
that are not considered cryptographic hash functions.

First, functions like CRC32 are not cryptographic hash functions but error-detecting
code functions. While they helpfully detect some simple errors, they provide none of
the previously mentioned security properties and are not to be confused with the hash
functions we are talking about (even though they might share the name sometimes).
Their output is usually referred to as a checksum.

Second, popular hash functions like MD5 and SHA-1 are considered broken nowa-
days. While they were both the standardized and widely accepted hash functions of
the 1990s, MD5 and SHA-1 were shown to be broken in 2004 and 2016, respectively,
when collisions were published by different research teams. These attacks were suc-
cessful partly because of advances in computing, but mostly because flaws were found
in the way the hash functions were designed.

Deprecation is hard

Both MD5 and SHA-1 were considered good hash functions until researchers demon-
strated their lack of resistance from collisions. It remains that today, their pre-image
and second pre-image resistance have not been affected by any attack. This does not
matter for us as we want to only talk about secure algorithms in this book. Nonethe-
less, you will still see people using MD5 and SHA-1 in systems that only rely on the
pre-image resistance of these algorithms and not on their collision resistance. These
offenders often argue that they cannot upgrade the hash functions to more secure
ones because of legacy and backward compatibility reasons. As the book is meant
to last in time and be a beam of bright light for the future of real-world cryptography,
this will be the last time | mention these hash functions.

The next two sections introduce SHA-2 and SHA-3, which are the two most widely
used hash functions. Figure 2.6 introduces these functions.

I raru e

SHA-2 (Merkle—-Damgard) SHA-3 (Sponge)

Figure 2.6 SHA-2 and SHA-3, the two most widely adopted hash functions. SHA-2 is
based on the Merkle-Damgard construction, while SHA-3 is based on the sponge
construction.

25.1

Standardized hash functions 35

The SHA-2 hash function

Now that we have seen what hash functions are and had a glimpse at their potential
use cases, it remains to be seen which hash functions we can use in practice. In the
next two sections, I introduce two widely accepted hash functions, and I also give high-
level explanations of how they work from the inside. The high-level explanations
should not provide deeper insights on how to use hash functions because the black
box descriptions I gave should be enough. But nevertheless, it is interesting to see how
these cryptographic primitives were designed by cryptographers in the first place.

The most widely adopted hash function is the Secure Hash Algorithm 2 (SHA-2). SHA-2
was invented by NSA and standardized by NIST in 2001. It was meant to add itself to
the aging Secure Hash Algorithm 1 (SHA-1) already standardized by NIST. SHA-2 pro-
vides 4 different versions, producing outputs of 224, 256, 384, or 512 bits. Their
respective names omit the version of the algorithm: SHA-224, SHA-256, SHA-384, and
SHA-512. In addition, two other versions, SHA-512/224 and SHA-512/256, provide
224-bit and 256-bit output, respectively, by truncating the result of SHA-512.

In the following terminal session, we call each variant of SHA-2 with the OpenSSL
CLI. Observe that calling the different variants with the same input produces outputs
of the specified lengths that are completely different.

$ echo -n "hello world" | openssl dgst -sha224

2f05477fc24bb4faefd86517156dafdecec45b8ad3cf2522a563582b

$ echo -n "hello world" | openssl dgst -sha256

b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde?

$ echo -n "hello world" | openssl dgst -sha384

fdbd8e75a67£29£701a4e040385e2e23986303e€a10239211af907fcbb83578b3
e417cb71ce646e£d0819dd8c088delbd

$ echo -n "hello world" | openssl dgst -sha512

309ecc489cl2d6eb4cc40£50c902f2b4d0ed77ee511a7c7a%9bcd3ca8ed4cd86E
989dd35bc5££499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f

Nowadays, people mostly use SHA-256, which provides the minimum 128 bits of secu-
rity needed for our three security properties, while more paranoid applications make
use of SHA-512. Now, let’s look at a simplified explanation of how SHA-2 works.

The Exclusive OR operation

To understand what follows, you need to understand the XOR (exclusive OR) opera-
tion. XOR is a bitwise operation, meaning that it operates on bits. The following figure
shows how this works. XOR is ubiquitous in cryptography, so make you sure you
remember it.

XOR

®0=1
®@1=0
®1=1
®0=0

[=2N=RN o

CHAPTER 2 Hash functions

(continued)

Exclusive OR or XOR (often denoted as &) operates on 2 bits. It is similar to the OR
operation except for the case where both operands are 1s.

It all starts with a special function called a compression function. A compression function
takes two inputs of some size and produces one output of the size of one of the inputs.
Put simply, it takes some data and returns less data. Figure 2.7 illustrates this.

Compression
function [TTTTTTITTITTITT]

Figure 2.7 A compression function takes two different inputs of size X and Y (here
both 16 bytes) and returns an output of size either X or Y.

While there are different ways of building a compression function, SHA-2 uses the
Davies—Meyer method (see figure 2.8), which relies on a block cipher (a cipher that can
encrypt a fixed-size block of data). I mentioned the AES block cipher in chapter 1, but
you haven’t yet learned about it. For now, accept the compression function as a black
box until you read chapter 4 on authenticated encryption.

Input block Key Output block
OO T T T T [P> Encrypt $ P IIIITIITITI11]

Intermediate InpUtT
OITTTTTTTTTTTTTE

Compression function

Figure 2.8 An illustration of a compression function built via the Davies—-Meyer construction. The
compression function’s first input (the input block) is used as the key to a block cipher. The second
input (the intermediate value) is used as input to be encrypted by the block cipher. It is then used
again by XORing itself with the output of the block cipher.

SHA-2 is a Merkle-Damgdrd construction, which is an algorithm (invented by Ralph
Merkle and Ivan Damgérd independently) that hashes a message by iteratively call-
ing such a compression function. Specifically, it works by going through the follow-
ing two steps.

Standardized hash functions 37

First, it applies a padding to the input we want to hash, then cuts the input into
blocks that can fit into the compression function. Padding means to append specific
bytes to the input in order to make its length a multiple of some block size. Cutting
the padded input into chunks of the same block size allows us to fit these in the first
argument of the compression function. For example, SHA-256 has a block size of 512
bit. Figure 2.9 illustrates this step.

Input
(MO Il Figure 2.9 The first step of the Merkle-Damgard

. construction is to add some padding to the input
l ':eﬂ‘f message. After this step, the input length should be a
EEEEEEEEEEEEEEEEEEEEENEEEEEEEEE] multiple of the input size of the compression function
in use (for example, 8 bytes). To do this, we add
l 5 bytes of padding at the end to make it 32 bytes.
MO OO T OO I T OO T ITTT] - We then cut the messages into 4 blocks of 8 bytes.

Second, it iteratively applies the compression function to the message blocks, using
the previous output of the compression function as second argument to the compres-
sion function. The final output is the digest. Figure 2.10 illustrates this step.

Padding
Input Input Input «——

0 A O O

L— L— L—
\% Digest
O T I T — (NEEEEENENEEENEEE]

Figure 2.10 The Merkle-Damgard construction iteratively applies a compression function to each
block of the input to be hashed and the output of the previous compression function. The final call to
the compression function directly returns the digest.

And this is how SHA-2 works, by iteratively calling its compression function on frag-
ments of the input until everything is processed into a final digest.

NOTE The Merkle-Damgard construction is proven collision resistant if the
compression function itself is. Thus, the security of the arbitrary-length input
hash function is reduced to the security of a fixed-sized compression function,
which is easier to design and analyze. Therein lies the ingenuity of the
Merkle-Damgard construction.

In the beginning, the second argument to the compression function is usually fixed
and standardized to be a “nothing-up-my-sleeve” value. Specifically, SHA-256 uses the
square roots of the first prime numbers to derive this value. A nothing-up-my-sleeve

38

25.2

CHAPTER 2 Hash functions

value is meant to convince the cryptographic community that it was not chosen to
make the hash function weaker (for example, in order to create a backdoor). This is a
popular concept in cryptography.

WARNING While SHA-2 is a perfectly fine hash function to use, it is not suit-
able for hashing secrets. This is because of a downside of the Merkle-Damgard
construction, which makes SHA-2 vulnerable to an attack (called a length-
extension attack) if used to hash secrets. We will talk about this in more detail
in the next chapter.

The SHA-3 hash function

As I mentioned earlier, both the MD5 and SHA-1 hash functions were broken some-
what recently. These two functions made use of the same Merkle-Damgérd construc-
tion I described in the previous section. Because of this, and the fact that SHA-2 is
vulnerable to length-extension attacks, NIST decided in 2007 to organize an open
competition for a new standard: SHA-3. This section introduces the newer standard
and attempts to give a high-level explanation of its inner workings.

In 2007, 64 different candidates from different international research teams
entered the SHA-3 contest. Five years later, Keccak, one of the submissions, was nomi-
nated as the winner and took the name SHA-3. In 2015, SHA-3 was standardized in the
FIPS Publication 202 (https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf).

SHA-3 observes the three previous security properties we talked about and pro-
vides as much security as the SHA-2 variants. In addition, it is not vulnerable to length-
extension attacks and can be used to hash secrets. For this reason, it is now the recom-
mended hash function to use. It offers the same variants as SHA-2, this time indicating
the full name SHA-3 in their named variants: SHA-3-224, SHA-3-256, SHA-3-384, and
SHA-3-512. Thus, similarly to SHA-2, SHA-3-256 provides 256 bits of output, for exam-
ple. Let me now take a few pages to explain how SHA-3 works.

SHA-3 is a cryptographic algorithm built on top of a permutation. The easiest way to
understand a permutation is to imagine the following: you have a set of elements on
the left and the same set of elements on the right. Now trace arrows going from each
element on the left to the right. Each element can only have one arrow starting from
and terminating to it. You now have one permutation. Figure 2.11 illustrates this prin-
ciple. By definition, any permutation is also reversible, meaning that from the output
we can find the input.

SHA-3 is built with a sponge construction, a different construction from Merkle—
Damgard that was invented as part of the SHA-3 competition. It is based on a partic-
ular permutation called keccak-f that takes an input and returns an output of the
same size.

NOTE We won’t explain how keccak-f was designed, but you will get an idea
in chapter 4 about this because it substantially resembles the AES algorithm
(with the exception that it doesn’t have a key). This is no accident, as one of
the inventors of AES was also one of the inventors of SHA-3.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

Standardized hash functions 39

A A
[] []
* *
® ®

The same set of elements Drawing arrows creates Each element must be
appear on both sides. a permutation. connected to a single arrow.

x>
@oxH>
oxH>
@oxH>

Figure 2.11 An example permutation acting on four different shapes. You can use the
permutation described by the arrows in the middle picture to transform a given shape.

In the next few pages, I use an 8-bit permutation to illustrate how the sponge con-
struction works. Because the permutation is set in stone, you can imagine that figure
2.12 is a good illustration of the mapping created by this permutation on all possible
8-bit inputs. Compared to our previous explanation of a permutation, you can also
imagine that each possible 8-bit string is what we represented as different shapes
(000. .. isa triangle, 100. .. is a square, and so on).

[zlelof=f-lo]-1°]
[ele]o]eofeofo]o]~]

[elol-]=0=lo]-]°]

Iol_.l_.l_.l_.l_.l_.l_.l

[2l=1-Jefeofo]o]~]

[elefefo]eofole]o]

Figure 2.12 A sponge construction makes use of a specified permutation f. By operating
on an input, our example permutation creates a mapping between all possible input of
8 bits and all possible output of 8 bits.

To use a permutation in our sponge construction, we also need to define an arbitrary
division of the input and the output into a rate and a capacity. It’s a bit weird but stick
with it. Figure 2.13 illustrates this process.

Where we set the limit between the rate and the capacity is arbitrary. Different ver-
sions of SHA-3 use different parameters. We informally point out that the capacity is to
be treated like a secret, and the larger it is, the more secure the sponge construction.

CHAPTER 2 Hash functions

r > P
Figure 2.13 The permutation f randomizes an
input of size 8 bits into an output of the same size.
c ——p In a sponge construction, this permutation’s input

and output are divided into two parts: the rate (of
size r and the capacity (of size c).

CleTe=T=T=T-T1=]

[cIeTeleT=ToT=T<]

Now, like all good hash functions, we need to be able to hash something, right? Other-
wise, it’s a bit useless. To do that, we simply XOR (&) the input with the rate of the
permutation’s input. In the beginning, this is just a bunch of 0s. As we pointed out ear-
lier, the capacity is treated like a secret, so we won’t XOR anything with it. Figure 2.14
illustrates this.

0 0 1

0 0 1

o>l —> 1

0 0 0

2 ; 2 Figure 2.14 To absorb the 5 bits of input 00101,
0 0 0 a sponge construction with a rate of 5 bits can
? »? > T simply XOR the 5 bits with the rate (which is

— — — initialized to 0s). The permutation then

i ﬂ ﬂ randomizes the state.

The output obtained should now look random (although we can trivially find what
the input is as a permutation is reversible by definition). What if we want to ingest a
larger input? Well, similarly to what we did with SHA-2, we would

1 Pad the input if necessary, then divide the input into blocks of the rate size.

2 Iteratively call the permutation while XORing each block with the input of a
permutation and permuting the state (the intermediate value output by the last
operation) after each block has been XORed.

I ignore the padding in the rest of these explanations for the sake of simplification,
but padding is an important step of the process to distinguish between inputs like 0
and 00, for example. Figure 2.15 pictures these two steps.

So far so good, but we still haven’t produced a digest. To do this, we can simply use
the rate of the last state of the sponge (again, we are not touching the capacity). To

Standardized hash functions 41

|oo101 |o1oo1|o11oo|

A

Figure 2.15 In order to absorb inputs larger
than the rate size, a sponge construction
iteratively XORs input blocks with the rate
and permutates the result.

A 4

=== T=1=T-1

[cI=T=l=T=TcT=T<]

obtain a longer digest, we can continue to permute and read from the rate part of the

state as figure 2.16 shows.

{00101 [o1001 [01100] [11001 [o1011 | 10101]

Figure 2.16 To obtain a digest
with the sponge construction, one
iteratively permutes the state and
. . retrieves as much rate (the upper
AbSOrRINg Squeezing part of the state) as needed.

And this is how SHA-3 works. Because it is a sponge construction, ingesting the input is
naturally called absorbing and creating the digest is called squeezing. The sponge is
specified with a 1,600-bit permutation using different values for rand ¢, depending on
the security advertised by the different versions of SHA-3.

SHA-3 is a random oracle

| talked about random oracles earlier: an ideal and fictional construction that returns
perfectly random responses to queries and repeats itself if we query it with the same
input twice. It turns out that the sponge construction behaves closely to a random
oracle, as long as the permutation used by the construction looks random enough.
How do we prove such security properties on the permutation? Our best approach is
to try to break it, many times, until we gain strong confidence in its design (which is
what happened during the SHA-3 competition). The fact that SHA-3 can be modeled
as a random oracle instantly gives it the security properties we would expect from a
hash function.

42

2.5.3

CHAPTER 2 Hash functions

SHAKE and cSHAKE: Two extendable output functions (XOF)

I introduced the two major hash function standards: SHA-2 and SHA-3. These are
well-defined hash functions that take arbitrary-length inputs and produce random-
looking and fixed-length outputs. As you will see in later chapters, cryptographic pro-
tocols often necessitate this type of primitives but do not want to be constrained by the
fixed sizes of a hash function’s digest. For this reason, the SHA-3 standard introduced
a more versatile primitive called an extendable output function or XOF (pronounced
“zoff”). This section introduces the two standardized XOFs: SHAKE and ¢SHAKE.

SHAKE, specified in FIPS 202 along with SHA-3, can be seen as a hash function
that returns an output of an arbitrary length. SHAKE is fundamentally the same con-
struction as SHA-3, except that it is faster and permutes as much as you want it to per-
mute in the squeezing phase. Producing outputs of different sizes is quite useful, not
only to create a digest, but also to create random numbers, to derive keys, and so on. I
will talk about the different applications of SHAKE again in this book; for now, imag-
ine that SHAKE is like SHA-3 except that it provides an output of any length you
might want.

This construction is so useful in cryptography that one year after SHA-3 was stan-
dardized, NIST published its Special Publication 800-185 containing a customizable
SHAKE called ¢SHAKE. cSHAKE is pretty much exactly like SHAKE, except that it also
takes a customization string. This customization string can be empty, or it can be any
string you want. Let’s first see an example of using cSHAKE in pseudocode:

CSHAKE (input="hello world", output length=256, custom string="my hash")
-> 72444fde79690f0cacl9e866d7e6505¢C

CSHAKE (input="hello world", output length=256, custom string="your hash")
-> 688a49e8clalelab4e78£887clc73957

As you can see, the two digests differ even though ¢SHAKE is as deterministic as
SHAKE and SHA-3. This is because a different customization string was used. A custom-
ization string allows you to customize your XOF! This is useful in some protocols
where, for example, different hash functions must be used in order to make a proof
work. We call this domain separation.

As a golden rule in cryptography: if the same cryptographic primitive is used in dif-
ferent use cases, do not use it with the same key (if it takes a key) or/and apply
domain separation. You will see more examples of domain separation as we survey
cryptographic protocols in later chapters.

WARNING NIST tends to specify algorithms that take parameters in bits
instead of bytes. In the example, a length of 256 bits was requested. Imagine if
you had requested a length of 16 bytes and got 2 bytes instead, due to the pro-
gram thinking you had requested 16 bits of output. This issue is sometimes
called a bit attack.

As with everything in cryptography, the length of cryptographic strings like keys,
parameters, and outputs is strongly tied to the security of the system. It is important

254

Standardized hash functions 43

that one does not request too short outputs from SHAKE or cSHAKE. One can never go
wrong by using an output of 256 bits as it provides 128 bits of security against collision
attacks. But real-world cryptography sometimes operates in constrained environments
that could use shorter cryptographic values. This can be done if the security of the sys-
tem is carefully analyzed. For example, if collision resistance does not matter in the
protocol making use of the value, pre-image resistance only needs 128-bit long out-
puts from SHAKE or cSHAKE.

Avoid ambiguous hashing with TupleHash

In this chapter, I have talked about different types of cryptographic primitives and
cryptographic algorithms. This included

The SHA-2 hash function, which is vulnerable to length-extension attacks but
still widely used when no secrets are hashed

The SHA-3 hash function, which is the recommended hash function nowadays
The SHAKE and cSHAKE XOFs, which are more versatile tools than hash func-
tions because they offer a variable output length

I'will talk about one more handy function, TupleHash, which is based on cSHAKE and
specified in the same standard as cSSHAKE. TupleHash is an interesting function that
allows one to hash a tuple (a list of something). To explain what TupleHash is and why
it is useful, let me tell you a story.

A few years ago I was tasked to review a cryptocurrency as part of my work. It
included basic features one would expect from a cryptocurrency: accounts, payments,
and so on. Transactions between users would contain metadata about who is sending
how much to whom. It would also include a small fee to compensate the network for
processing the transaction.

Alice, for example, can send transactions to the network, but to have them
accepted, she needs to include proof that the transaction came from her. For this, she
can hash the transaction and sign it (I gave a similar example in chapter 1). Anyone can
hash the transaction and verify the signature on the hash to see that this is the transac-
tion Alice meant to send. Figure 2.17 illustrates that a man-in-the-middle (MITM)
attacker who intercepts the transaction before it reaches the network would not be

Man-in-the-middle
(MITM)

~~ From: Alice From: Alice
S — To: Bob = — #“'f — To: [—»)(
Amount: 100 Amount: 100 S

Fee:15 Fee: 15
Signature Signature
Figure 2.17 Alice sends a transaction as well as a signature over the hash of the transaction. If

a MITM attacker attempts to tamper with the transaction, the hash will be different and, thus, the
attached signature will be incorrect.

44

2.6

CHAPTER 2 Hash functions

able to tamper with the transaction. This is because the hash would change, and the
signature would then not verify the new transaction digest.

You will see in chapter 7 that such an attacker is, of course, unable to forge Alice’s
signature on a new digest. And thanks to the second pre-image resistance of the hash
function used, the attacker cannot find a totally different transaction that would hash
to the same digest either.

Is our MITM attacker harmless? We’re not out of the woods yet. Unfortunately, for
the cryptocurrency I was auditing, the transaction was hashed by simply concatenating
each field:

$ echo -n "Alice""Bob""100""15" | openssl dgst -sha3-256
34d6b397c7£2e8a303fc8e39d283771c0397dad74cef08376e27483efc29bb02

What appeared as totally fine, actually completely broke the cryptocurrency’s payment
system. Doing this trivially allows an attacker to break the second pre-image resistance
of the hash function. Take a few moments to think about how you could find a differ-
ent transaction that hashes to the same digest, 34d6. . ..

What happens if we move one digit from the fee field to the amount field? One can
see that the following transaction hashes to the same digest Alice signed:

$ echo -n "Alice""Bob""1001""5" | openssl dgst -sha3-256
34d6b397c7£2e8a303fc8e39d283771c0397dad74cef08376e27483efc29bb02

And thus, a MITM attacker who would want Bob to receive a bit more money would
be able to modify the transaction without invalidating the signature. As you’ve proba-
bly guessed, this is what TupleHash solves. It allows you to unambiguously hash a list of
fields by using non-ambiguous encoding. What happens in reality is something close
to the following (with the | | string concatenation operation):

cSHAKE(input:"S"| | llAlicell| | ||3||‘ ‘"BOb"| | u3u| | nioQ" | |||2|| | |||10||,
output_length=256, custom string="TupleHash"+"anything you want")

The input is this time constructed by prefixing each field of the transaction with its
length. Take a minute to understand why this solves our issue. In general, one can use
any hash function safely by always making sure to serialize the input before hashing it.
Serializing the input means that there always exists a way to deserialize it (meaning to
recover the original input). If one can deserialize the data, then there isn’t any ambi-
guity on field delimitation.

Hashing passwords

You have seen several useful functions in this chapter that either are hash functions or
extend hash functions. But before you can jump to the next chapter, I need to men-
tion password hashing.

Imagine the following scenario: you have a website (which would make you a web-
master) and you want to have your users register and log in to the site, so you create

Hashing passwords 45

two web pages for these two respective features. Suddenly, you wonder, how are you
going to store their passwords? Do you store those in cleartext in a database? There
seems to be nothing wrong with this at first, you think. It is not perfect though. People
tend to reuse the same password everywhere and if (or when) you get breached and
attackers manage to dump all of your users’ passwords, it will be bad for your users,
and it will be bad for the reputation of your platform. You think a little bit more, and
you realize that an attacker who would be able to steal this database would then be
able to log in as any user. Storing the passwords in cleartext is now less than ideal and
you would like to have a better way to deal with this.

One solution could be to hash your passwords and only store the digests. When
someone logs in to your website, the flow would be similar to the following:

You receive the user’s password.

You hash the password they give you and get rid of the password.

You compare the digest with what you had stored previously; if it matches, the
user is logged in.

The flow allows you to handle users’ passwords for a limited time. Still, an attacker
that gets into your servers can stealthily remain to log passwords from this flow until
you detect its presence. We acknowledge that this is still not a perfect situation, but we
still improved the site’s security. In security, we also call this defense in depth, which is
the act of layering imperfect defenses in hope that an attacker will not defeat all of
those layers. This is what real-world cryptography is also about. But other problems
exist with this solution:

If an attacker retrieves hashed passwords, a brute force attack or an exhaustive search (try-
ing all possible passwords) can be undertaken. This would test each attempt against
the whole database. Ideally, we would want an attacker to only be able to attack
one hashed password at a time.

Hash functions are supposed to be as fast. Attackers can leverage this to brute force
(many, many passwords per second). Ideally, we would have a mechanism to
slow down such attacks.

The first issue has been commonly solved by using salts, which are random values that
are public and different for each user. We use a salt along with the user’s password
when hashing it, which in some sense is like using a per-user customization string with
c¢SHAKE: it effectively creates a different hash function for every user. Because each
user uses a different hash function, an attacker cannot precompute large tables of
passwords (called rainbow tables), hoping to test those against the whole database of
stolen password hashes.

The second issue is solved with password hashes, which are designed to be slow. The
current state-of-the-art choice for this is Argon2, the winner of the Password Hashing
Competition (https://password-hashing.net) that ran from 2013 to 2015. At the time of
this writing (2021), Argon2 is on track to be standardized as an RFC (https://datatracker
detf.org/doc/draft-irtf-cfrg-argon2/). In practice, other nonstandard algorithms like

https://password-hashing.net
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/

46

CHAPTER 2 Hash functions

PBKDF2, berypt, and scrypt are also used. The problem is that these can be used with
insecure parameters and are, thus, not straightforward to configure in practice.

In addition, only Argon2 and scrypt defend against heavy optimizations from
attackers as other schemes are not memory hard. The term memory hard means that
the algorithm can only be optimized through the optimization of memory access. In
other words, optimizing the rest doesn’t gain you much. As optimizing memory access
is limited even with dedicated hardware (there’s only so much cache you can put
around a CPU), memory-hard functions are slow to run on any type of device. This is
a desired property when you want to prevent attackers from getting a non-negligible
speed advantage in evaluating a function.

Figure 2.18 reviews the different types of hash functions you saw in this chapter.

Input Input n List of inputs Password
Tuple Password
i Ok hash hash
Digest n-bytes digest Digest Digest
SHA-2, SHA-3, SHAKE, cSHAKE TupleHash Argon2
K12, BLAKE3

Figure 2.18 In this chapter, you saw four types of hash functions: (1) the normal
kind that provide a unique random-looking identifier for arbitrary-length inputs;
(2) extendable output functions that are similar but provide an arbitrary-length
output; (3) tuple hash functions that unambiguously list hash values; and

(4) password-hashing functions that can’t be easily optimized in order to store
passwords safely.

Summary

A hash function provides collision resistance, pre-image resistance, and second

pre-image resistance.

— Pre-image resistance means that one shouldn’t be able to find the input that
produced a digest.

— Second pre-image resistance means that from an input and its digest, one
shouldn’t be able to find a different input that hashes to the same digest.

— Collision resistance means that one shouldn’t be able to find two random
inputs that hash to the same output.

The most widely adopted hash function is SHA-2, while the recommended hash

function is SHA-3 due to SHA-2’s lack of resistance to length-extension attacks.

SHAKE is an extendable output function (XOF) that acts like a hash function

but provides an arbitrary-length digest.

Summary 47

¢SHAKE (for customizable SHAKE) allows one to easily create instances of
SHAKE that behave like different XOFs. This is called domain separation.
Objects should be serialized before being hashed in order to avoid breaking the
second pre-image resistance of the hash function. Algorithms like TupleHash
automatically take care of this.

Hashing passwords make use of slower hash functions designed specifically for
that purpose. Argon2 is the state-of-the-art choice.

Message
authentication codes

This chapter covers

= Message authentication codes (MACs)
= The security properties and the pitfalls of MACs
= The widely adopted standards for MACs

Mix a hash function with a secret key and you obtain something called a message
authentication code (MAC), a cryptographic primitive to protect the integrity of data.
The addition of a secret key is the foundation behind any type of security: without
keys there can be no confidentiality, and there can be no authentication. While
hash functions can provide authentication or integrity for arbitrary data, they do
that thanks to an additional trusted channel that cannot be tampered with. In this
chapter, you will see how a MAC can be used to create such a trusted channel and
what else it can do as well.

NOTE For this chapter, you’ll need to have read chapter 2 on hash functions.

Stateless cookies, a motivating example for MACs

Let’s picture the following scenario: you are a web page. You’'re bright, full of col-
ors, and above all, you're proud of serving a community of loyal users. To interact
with you, visitors must first log in by sending you their credentials, which you must

48

Stateless cookies, a motivating example for MACs 49

then validate. If the credentials match the ones that were used when the user first
signed up, then you have successfully authenticated the user.

Of course, a web browsing experience is composed not just of one, but of many
requests. To avoid having the user re-authenticate with every request, you can make
their browser store the user credentials and resend them automatically within each
request. Browsers have a feature just for that—cookies! Cookies are not just for creden-
tials. They can store anything you want the user to send you within each of their
requests.

While this naive approach works well, usually you don’t want to store sensitive
information like user passwords in cleartext in the browser. Instead, a session cookie
most often carries a random string, generated right after a user logs in. The web
server stores the random string in a temporary database under a user’s nickname. If
the browser publishes the session cookie somehow, no information about the user’s
password is leaked (although it can be used to impersonate the user). The web
server also has the possibility to kill the session by deleting the cookie on their side,
which is nice.

HHM... 1'M PLCE
| AN ny PASSWORD

Hey! con
y iS " HUNTERD

1 LoG iN?

o =

1,
; « ¢ T
! 7'S CoRRECT.
UL\ | ks is » cookiE.
L ~.\ SUST suow HE THIS

NEXT Tine!

There is nothing wrong with this approach, but in some cases, it might not scale well.
If you have many servers, it could be annoying to have all the servers share the associa-
tion between your users and the random strings. Instead, you could store more infor-
mation on the browser side. Let’s see how we can do this.

Naively, you can have the cookie contain a username instead of a random string,
but this is obviously an issue, as I can now impersonate any user by manually modify-
ing the username contained in the cookie. Perhaps the hash functions you learned
about in chapter 2 can help us. Take a few minutes to think of a way hash functions
can prevent a user from tampering with their own cookies.

A second naive approach could be to store not only a username, but a digest of
that username as well in a cookie. You can use a hash function like SHA-3 to hash the
username. I illustrate this in figure 3.1. Do you think this can work?

There’s a big problem with this approach. Remember, the hash function is a public
algorithm and can be recomputed on new data by a malicious user. If you do not trust

50 CHAPTER 3 Message authentication codes

My credentials are
username: bob
password: hunter2

Next time use this
cookie: bob | hash (bob)

<{cookie: bob | hash (bob) and I]

want to see my profile page

Figure 3.1 To authenticate the requests for
a browser, a web server asks the browser to

store a username and a hash of that username,
} sending this information in every subsequent
request.

(OK bob, here itis...

the origin of a hash, it does not provide data integrity! Indeed, figure 3.2 shows that if
a malicious user modifies the username in their cookie, they can also simply recom-
pute the digest part of the cookie.

My credentials are
username: bob
password: hunter2

Next time use this
cookie: bob | hash (bob)

{ cookie: eve | hash (eve)

Figure 3.2 A malicious user can modify the
information contained in their cookies. If a
(Hieve! } cookie contains a username and a hash, both

can be modified to impersonate a different user.

Still, using a hash is not a foolish idea. What else can we do? Turns out that there is a
similar primitive to the hash function, a MAC, that will do exactly what we need.

A MACis a secret key algorithm that takes an input, like a hash function, but it also
takes a secret key (who saw that coming?) It then produces a unique output called an
authentication tag. This process is deterministic; given the same secret key and the same
message, a MAC produces the same authentication tag. I illustrate this in figure 3.3.

Figure 3.3 The interface of a message
authentication code (MAC). The algorithm takes a
secret key and a message, and deterministically
produces a unique authentication tag. Without the
key, it should be impossible to reproduce that
authentication tag.

Key
Authentication tag
Message

3.2

An example in code 51

To make sure a user can’t tamper with their cookie, let’s now make use of this new
primitive. When the user logs in for the first time, you produce an authentication tag
from your secret key and their username and have them store their username and the
authentication tag in a cookie. Because they don’t know the secret key, they won’t be
able to forge a valid authentication tag for a different username.

To validate their cookie, you do the same: produce an authentication tag from
your secret key and the username contained in the cookie and check if it matches the
authentication tag contained in the cookie. If it matches, it must have come from you,
as you were the only one who could have produced a valid authentication tag (under
your secret key). I illustrate this in figure 3.4.

My credentials are
username: bob
password: hunter2

Next time use this
cookie: bob | mac (k, bob)

{ cookie: eve | something Figure 3.4 A malicious user tampers with his

cookie but cannot forge a valid authentication
tag for the new cookie. Subsequently, the web
Wrong authentication tag!

page cannot verify the authenticity and integrity
of the cookie and, thus, discards the request.

A MAC is like a private hash function that only you can compute because you know
the key. In a sense, you can personalize a hash function with a key. The relationship
with hash functions doesn’t stop there. You will see later in this chapter that MACs
are often built from hash functions. Next, let’s see a different example using real
code.

An example in code

So far, you were the only one using a MAC. Let’s increase the number of participants
and use that as a motivation to write some code to see how MACs are used in practice.
Imagine that you want to communicate with someone else, and you do not care about
other people reading your messages. What you really care about, though, is the integ-
rity of the messages: they must not be modified! A solution is to have both you and
your correspondent use the same secret key with a MAC to protect the integrity of
your communications.

For this example, we’ll use one of the most popular MAC functions—hash-based
message authentication code (HMAC)—with the Rust programming language. HMAC is a
message authentication code that uses a hash function at its core. It is compatible
with different hash functions, but it is mostly used in conjunction with SHA-2. As the

52

3.3

CHAPTER 3 Message authentication codes

following listing shows, the sending part simply takes a key and a message and returns
an authentication tag.

Listing 3.1 Sending an authenticated message in Rust

use sha2::Sha256;

use hmac::{Hmac, Mac, NewMac}; Instantiates HMAC
with a secret key
fn send message (key: &[u8], message: &[u8]) -> Vec<u8> ({ and the SHA-256
let mut mac = Hmac::<Sha256>::new(key.into()) ; hash function

Buffers more
input for HMAC

mac.finalize() .into_bytes () .to_vec() 47

mac.update (message) ;

Returns the
authentication tag

On the other side, the process is similar. After receiving both the message and the
authentication tag, your friend can generate their own tag with the same secret key
and then compare those. Similarly to encryption, both sides need to share the same
secret key to make this work. The following listing shows how this works.

Listing 3.2 Receiving an authenticated message in Rust

use sha2::Sha256;
use hmac::{Hmac, Mac, NewMac};
The receiver needs to

fn receive message (key: &[u8], message: &[u8], recreate the authentication
authentication tag: &[u8]) -> bool { tag from the same key and
let mut mac = Hmac::<Sha256>::new(key) ; message.

mac.update (message) ; Checks if the reproduced

authentication tag matches

mac.verify (&authentication tag).is ok() the received one

Note that this protocol is not perfect: it allows replays. If a message and its authentica-
tion tag are replayed at a later point in time, they will still be authentic, but you’ll have
no way of detecting that it is an older message being resent to you. Later in this chap-
ter, I’ll tell you about a solution. Now that you know what a MAC can be used for, I'll
talk about some of the “gotchas” of MACs in the next section.

Security properties of a MAC

MAG:s, like all cryptographic primitives, have their oddities and pitfalls. Before going
any further, I will provide a few explanations on what security properties MACs pro-
vide and how to use them correctly. You will learn (in this order) that

= MAG:s are resistant against forgery of authentication tags.

= An authentication tag needs to be of a minimum length to be secure.
= Messages can be replayed if authenticated naively.

= Verifying an authentication tag is prone to bugs.

3.3.1

3.3.2

Security properties of a MAC 53

Forgery of authentication tag

The general security goal of a MAC is to prevent authentication tag forgery on a new mes-
sage. This means that without knowledge of the secret key, k, one cannot compute the
authentication tag ¢ = MAC(k, m) on messages m of their choice. This sounds fair,
right? We can’t compute a function if we’re missing an argument.

MAGs provide much more assurance than that, however. Real-world applications
often let attackers obtain authentication tags on some constrained messages. For
example, this was the case in our introduction scenario, where a user could obtain
almost arbitrary authentication tags by registering with an available nickname. Hence,
MACs have to be secure even against these more powerful attackers. A MAC usually
comes with a proof that even if an attacker can ask you to produce the authentication
tags for a large number of arbitrary messages, the attacker should still not be able to
forge an authentication tag on a never-seen-before message by themselves.

NOTE One could wonder how proving such an extreme property is useful. If
the attacker can directly request authentication tags on arbitrary messages,
then what is there left to protect? But this is how security proofs work in cryp-
tography: they take the most powerful attacker and show that even then, the
attacker is hopeless. In practice, the attacker is usually less powerful and, thus,
we have confidence that if a powerful attacker can’t do something bad, a less
powerful one has even less recourse.

As such, you should be protected against such forgeries as long as the secret key used with
the MAC stays secret. This implies that the secret key has to be random enough (more
on that in chapter 8) and large enough (usually 16 bytes). Furthermore, a MAC is vul-
nerable to the same type of ambiguous attack we saw in chapter 2. If you are trying to
authenticate structures, make sure to serialize them before authenticating them with a
MACG; otherwise, forgery might be trivial.

Lengths of authentication tag

Another possible attack against usage of MACs are collisions. Remember, finding a col-
lision for a hash function means finding two different inputs X and Y such that
HASH(X) = HASH(Y). We can extend this definition to MACs by defining a collision
when MAC(k, X) = MAC(k, Y) for inputs Xand Y.

As we learned in chapter 2 with the birthday bound, collisions can be found with
high probability if the output length of our algorithm is small. For example, with
MAG s, an attacker who has access to a service producing 64-bit authentication tags can
find a collision with high probability by requesting a much lower number (2%) of tags.
Such a collision is rarely exploitable in practice, but there exist some scenarios where
collision resistance matters. For this reason, we want an authentication tag size that
would limit such attacks. In general, 128-bit authentication tags are used as they pro-
vide enough resistance.

54

3.3.3

CHAPTER 3 Message authentication codes

[requesting 2°* authentication tags] would take 250,000 years in a continuous 1Gbps
link, and without changing the secret key K during all this time.

—RFC 2104 (“HMAC: Keyed-Hashing for Message Authentication,” 1997)

Using a 128-bit authentication tag might appear counterintuitive because we want
256-bit outputs for hash functions. But hash functions are public algorithms that one
can compute offline, which allows an attacker to optimize and parallelize an attack
heavily. With a keyed function like a MAC, an attacker cannot efficiently optimize the
attack offline and is forced to directly request authentication tags from you, which
usually makes the attack much slower. A 128-bit authentication tag requires 2% online
queries from the attacker in order to have a 50% chance to find collisions, which is
deemed large enough. Nonetheless, one might still want to increase an authentication
tag to 256-bit, which is possible as well.

Replay attacks

One thing I still haven’t mentioned are replay attacks. Let’s see a scenario that is vulner-
able to such attacks. Imagine that Alice and Bob communicate in the open using an
insecure connection. In order to protect the messages from tampering, they append
each of their messages with an authentication tag. More specifically, they both use two
different secret keys to protect different sides of the connection (as per best practice).
Iillustrate this in figure 3.5.

25 how are you?
MAC(k1, “how are you?”)

fine and you?

MAC(k2, “fine and you?”) 8
R pretty good! Figure 3.5 Two users sharing two keys,
“at MAC(k1, “pretty good!”)

k1 and k2, exchange messages along with
authentication tags. These tags are computed
from k1 or k2, depending on the direction of

‘ the messages. A malicious observer replays
one of the messages to the user.

fine and you?
MAC((k2, “fine and you?”)

In this scenario, nothing prevents a malicious observer from replaying one of the mes-
sages to its recipient. A protocol relying on a MAC must be aware of this and build
protections against this. One way is to add an incrementing counter to the input of
the MAC as shown in figure 3.6.

In practice, counters are often a fixed 64-bit length. This allows one to send 2%
messages before filling up the counter (and risking it to wrap around and repeat itself).

3.34

Security properties of a MAC 55

) how are you?
°. MAC(k1, “1, how are you?”)
fine and you? Figure 3.6 Two users sharing two keys,
MAC(k2, “1, fine and you?’) k1 and k2, exchange messages along with
authentication tags. These tags are computed
from k1 or k2, depending on the direction of the
2N pretty good! r dep g

messages. A malicious observer replays one of
the messages to the user. Because the victim
has incremented his counter, the tag will be
x fine and you? * computed over 2, fine and you? and will

MAC(k2, Il “1, fine and you?”) not match the tag sent by the attacker. This
allows the victim to successfully reject the
Wrong authentication tag replayed message.

MAC(k1, “2, pretty good!”)

Of course, if the shared secret is rotated frequently (meaning that after X messages,
participants agree to use a new shared secret), then the size of the counter can be
reduced and reset to 0 after a key rotation. (You should convince yourself that reusing
the same counter with two different keys is OK.) Again, counters are never variable-
length because of ambiguous attacks.

Exercise

Can you figure out how a variable-length counter could possibly allow an attacker to
forge an authentication tag?

Verifying authentication tags in constant time

This last gotcha is dear to me as I found this vulnerability many times in applica-
tions I audited. When verifying an authentication tag, the comparison between the
received authentication tag and the one you compute must be done in constant time.
This means the comparison should always take the same time, assuming the
received one is of the correct size. If the time it takes to compare the two authentica-
tion tags is not constant time, it is probably because it returns the moment the two
tags differ. This usually gives enough information to enable attacks that can recreate
byte by byte a valid authentication tag by measuring how long it takes for the verifi-
cation to finish. I explain this in the following comic strip. We call these types of
attacks timing attacks.

Fortunately for us, cryptographic libraries implementing MACs also provide conve-
nient functions to verify an authentication tag in constant time. If you’re wondering
how this is done, listing 3.3 shows how Golang implements an authentication tag com-
parison in constant time code.

56 CHAPTER 3 Message authentication codes

uey! MERE S AN
AUTHENTICRTED
nessace FRon ALicE
wifd TAG 000000

V—

THE TRAG on THiS MESSAGE

suoULD BE 4F 3E 18....
T™E FiRsT RYTE OFf THE
RECEIVED TRG |S ALRCAOY WRON G

THE FIRST 8BYTE 1S
CORRECT. LET'S CHECK
THE SecConD RYTE

HE TooK MORE TIME To
ANSWER THE FIRST 8YTE ‘
MUST HAVE REEN CORRECT .

3.4

34.1

3.4.2

MAC in the real world 57

Listing 3.3 Constant time comparison in Golang

for i := 0; i < len(x); i++ {
v |= x[i] * yI[i]
}

The trick is that no branch is ever taken. How this works exactly is left as an exercise
for the reader.

MAC in the real world

Now that I have introduced what MACs are and what security properties they pro-
vide, let’s take a look at how people use them in real settings. The following sections
address this.

Message authentication

MACGs are used in many places to ensure that the communications between two
machines or two users are not tampered with. This is necessary in both cases where
communications are in cleartext and where communications are encrypted. I have
already explained how this happens when communications are transmitted in clear-
text, and in chapter 4, I will explain how this is done when communications are
encrypted.

Deriving keys

One particularity of MAGs is that they are often designed to produce bytes that look
random (like hash functions). You can use this property to implement a single key to
generate random numbers or to produce more keys. In chapter 8 on secrets and ran-
domness, I will introduce the HMAGC-based key derivation function (HKDF) that does
exactly this by using HMAC, one of the MAC algorithms we will talk about in this
chapter.

The pseudorandom function (PRF)

Imagine the set of all functions that take a variable-length input and produce a ran-
dom output of a fixed size. If we could pick a function at random from this set and
use it as a MAC (without a key), it would be swell. We would just have to agree on
which function (kind of like agreeing on a key). Unfortunately, we can’t have such a
set as it is way too large, but we can emulate picking such a random function by
designing something close enough: we call such constructions pseudorandom func-
tions (PRFs). HMAC and most practical MACs are such constructions. They are ran-
domized by a key argument instead. Choosing a different key is like picking a random
function.

Exercise
Caution: not all MACs are PRFs. Can you see why?

58

3.4.3

3.4.4

3.5

3.5.1

CHAPTER 3 Message authentication codes

Integrity of cookies

To track your users’ browser sessions, you can send them a random string (associated to
their metadata) or send them the metadata directly, attached with an authentication tag
so that they cannot modify it. This is what I explained in the introduction example.

Hash tables

Programming languages usually expose data structures called hash tables (also called
hashmaps, dictionaries, associated arrays, and so on) that make use of noncrypto-
graphic hash functions. If a service exposes this data structure in such a way where the
input of the noncryptographic hash function can be controlled by attackers, this can
lead to denial of service (DoS) attacks, meaning that an attacker can render the service
unusable. To avoid this, the noncryptographic hash function is usually randomized at
the start of the program.

Many major applications use a MAC with a random key in place of the noncryp-
tographic hash function. This is the case for many programming languages (like Rust,
Python, and Ruby), or for major applications (like the Linux kernel). They all make
use of SipHash, a poorly-named MAC optimized for short authentication tags, with a
random key generated at the start of the program.

Message authentication codes (MACs) in practice

You learned that MAGs are cryptographic algorithms that can be used between one or
more parties in order to protect the integrity and the authenticity of information. As
widely used MACs also exhibit good randomness, MACs are also often used to pro-
duce random numbers deterministically in different types of algorithms (for example,
the time-based one-time password [TOTP] algorithm that you will learn in chapter
11). In this section, we will look at two standardized MAC algorithms that one can use
nowadays—HMAC and KMAC.

HMAC, a hash-based MAC

The most widely used MAC is HMAC (for hash-based MAC), invented in 1996 by M.
Bellare, R. Canetti, and H. Krawczyk, and specified in RFC 2104, FIPS Publication 198,
and ANSI X9.71. HMAG, like its name indicates, is a way to use hash functions with a
key. Using a hash function to build MACs is a popular concept as hash functions have
widely available implementations, are fast in software, and also benefit from hardware
support on most systems. Remember that I mentioned in chapter 2 that SHA-2 should
not be used directly to hash secrets due to length-extension attacks (more on that at the
end of this chapter). How does one figure out how to transform a hash function into a
keyed function? This is what HMAC solves for us. Under the hood, HMAC follows
these steps, which I illustrate visually in figure 3.7:

It first creates two keys from the main key: k1 = k @ ipad and k2 = k & opad,
where ipad (inner padding) and opad (outer padding) are constants, and & is
the symbol for the XOR operation.

3.5.2

Message authentication codes (MACs) in practice 59

Figure 3.7 HMAC works by hashing the
concatenation (| |) of a key, k1, and the

input message, and then by hashing the
| concatenation of a key, k2, with the
k2 1l

k1 Il message

output of the first operation. k1 and k2
are both deterministically derived from a
secret key, k.

It then concatenates a key, k1, with the message and hashes it.
The result is concatenated with a key, k2, and hashed one more time.
This produces the final authentication tag.

Because HMAC is customizable, the size of its authentication tag is dictated by the
hash function used. For example, HMAC-SHA256 makes use of SHA-256 and pro-
duces an authentication tag of 256 bits, HMAC-SHA512 produces an authentication
tag of 512 bits, and so on.

WARNING While one can truncate the output of HMAC to reduce its size, an
authentication tag should be at minimum 128 bits as we talked about earlier.
This is not always respected, and some applications will go as low as 64 bits
due to explicitly handling a limited amount of queries. There are tradeofts
with this approach, and once again, it is important to read the fine print
before doing something nonstandard.

HMAC was constructed this way in order to facilitate proofs. In several papers, HMAC
is proven to be secure against forgeries as long as the hash function underneath holds
some good properties, which all cryptographically secure hash functions should. Due
to this, we can use HMAC in combination with a large number of hash functions.
Today, HMAC is mostly used with SHA-2.

KMAC, a MAC based on cSHAKE

As SHA-3 is not vulnerable to length-extension attacks (this was actually a requirement
for the SHA-3 competition), it makes little sense to use SHA-3 with HMAC instead of
something like SHA-3-256 (key | | message) that would work well in practice. This is
exactly what KMAC does.

KMAC makes use of cSHAKE, the customizable version of the SHAKE extendable
output function (XOF) that you saw in chapter 2. KMAC unambiguously encodes the
MAC key, the input, and the requested output length (KMAC is some sort of extend-
able output MAC) and gives this to ¢cSSHAKE as an input to absorb (see figure 3.8).
KMAC also uses “KMAC” as function name (to customize cSHAKE) and can, in addi-
tion, take a user-defined customization string.

Interestingly, because KMAC also absorbs the requested output length, several
calls with different output lengths provide totally different results, which is rarely the
case for XOFs in general. This makes KMAC quite a versatile function in practice.

60 CHAPTER 3 Message authentication codes

Key Input Output length

LN A

X v
Encode (key, inputj/
output length)

KMAC i
. Custom string
Function name: cSHAKE G

MIHC Figure 3.8 KMAC is simply a wrapper

T around cSHAKE. To use a key, it encodes (in
./ a unambiguous way) the key, the input, and
Output of n bits the output length as the input to cSHAKE.

3.6 SHA-2 and length-extension attacks

We have mentioned several times that one shouldn’t hash secrets with SHA-2 as it is
not resistant to length-extension attacks. In this section, we aim to provide a simple expla-
nation of this attack.

Let’s go back to our introduction scenario, to the step where we attempted to sim-
ply use SHA-2 in order to protect the integrity of the cookie. Remember that it was not
good enough as the user can tamper with the cookie (for example, by adding an
admin=true field) and recompute the hash over the cookie. Indeed, SHA-2 is a public
function and nothing prevents the user from doing this. Figure 3.9 illustrates this.

cookie: "username=bob"
SHA-256(cookie)

(Hey bob! }

. Figure 3.9 A web page sends a cookie
e followed by a hash of that cookie t Th
" sername=bob EETTHIE——. ollowed by a hash of that cookie to a user. The
SHA-256(bad cookie) user is then required to send the cookie to
authenticate themselves in every subsequent

request. Unfortunately, a malicious user can
[Hey bob the admin! } tamper with the cookie and recompute the

hash, breaking the integrity check. The cookie
is then accepted as valid by the web page.

The next best idea was to add a secret key to what we hash. This way, the user cannot
recompute the digest as the secret key is required, much like a MAC. On receipt of
the tampered cookie, the page computes SHA-256 (key || tampered_cookie), where

SHA-2 and length-extension attacks 61

| | represents the concatenation of the two values and obtains something that won’t
match what the malicious user probably sent. Figure 3.10 illustrates this approach.

cookie: "username=bob"
SHA-256(key Il cookie)

(Hey bob! }

bad cookie:
"username=bob&admin=true"
SHA-256(key Il cookie) Figure 3.10 By using a key when computing
the hash of the cookie, one could think that a
malicious user who wants to tamper with their
[Wrong digest! } own cookie wouldn’t be able to compute the
correct digest over the new cookie. We will see

later that this is not true for SHA-256.

Unfortunately, SHA-2 has an annoying peculiarity: from a digest over an input, one
can compute the digest of an input and more. What does this mean? Let’s take a look
at figure 3.11, where one uses SHA-256 as SHA-256 (secret || inputl).

Figure 3.11 SHA-256 hashes a

Padding secret concatenated with a cookie
Secret Input! «—s (here named inputl). Remember
s e that SHA-256 works by using the

Merkle-Damgard construction to
iteratively call a compression

— — function over blocks of the input,
v Digest starting from an initialization
O T —— OO
vector (IV).

Figure 3.11 is highly simplified but imagine that input1 is the string user=bob. Notice
that the digest obtained is effectively the full intermediate state of the hash function at
this point. Nothing prevents one from pretending that the padding section is part of
the input, continuing the Merkle-Damgard dance. In figure 3.12, we illustrate this
attack, where one would take the digest and compute the hash of inputl || padding
|| input2. In our example, input2 is &admin=true.

CHAPTER 3 Message authentication codes

Padding Padding
Secret Inputl «— Input2 «——»
OO OO OO
— L— L—»
\% Digest Digest2
O —— OO T ——————— OO

Figure 3.12 The output of the SHA-256 hash of a cookie (the middle digest) is used to extend the
hash to more data, creating a hash (the right digest) of the secret concatenated with input1l,
the first padding bytes, and input2.

This vulnerability allows one to continue hashing from a given digest, like the opera-
tion was not finished. This breaks our previous protocol, as figure 3.13 illustrates.

cookie: "username=bob"
SHA-256(key || cookie)
[Hey bob! }'
bad cookie: "username=bob" || PADDING || "&admin=true"
SHA-256(cookie || PADDING || "&admin=true")

[Hey bob the admin! } '

Figure 3.13 An attacker successfully uses a length-extension attack to tamper
with their cookie and computes the correct hash using the previous hash.

The fact that the first padding now needs to be part of the input might prevent some
protocols from being exploitable. Still, the smallest amount of change can reintro-
duce a vulnerability. For this reason one should never hash secrets with SHA-2. Of
course, there are several other ways to do it correctly (for example, SHA-256 (k | | mes-
sage || k) works), which is what HMAC provides. Thus, use HMAC if you want to use
SHA-2 and use KMAC if you prefer SHA-3.

Summary

= Message authentication codes (MACs) are symmetric cryptographic algorithms

that allow one or more parties who share the same key to verify the integrity
and authenticity of messages.

— To verify the authenticity of a message and its associated authentication tag,

one can recompute the authentication tag of the message and a secret key,

Summary 63

and then match the two authentication tags. If they differ, the message has
been tampered with.
— Always compare a received authentication tag with a computed one in con-
stant time.
While MACs protect the integrity of messages by default, they do not detect
when messages are replayed.
Standardized and well-accepted MACs are the HMAC and the KMAC standards.
One can use HMAC with different hash functions. In practice, HMAC is often
used with the SHA-2 hash function.
Authentication tags should be of a minimum length of 128 bits to prevent colli-
sions and forgery of authentication tags.
Never use SHA-256 directly to build a MAC as it can be done incorrectly. Always
use a function like HMAC to do this.

Authenticated encryption

This chapter covers

= Symmetric encryption vs. authenticated
encryption

= Popular authenticated encryption algorithms
= QOther types of symmetric encryption

Confidentiality is about hiding data from unwanted eyes and encryption is the way
to achieve this. Encryption is what the science of cryptography was initially invented
for; it’s what preoccupied most of the early cryptographers. They would ask them-
selves, “How can we prevent observers from understanding our conversations?”
While the science and its advances first bloomed behind closed doors, benefiting
the governments and their militaries only, it is now opened throughout the world.
Today, encryption is used everywhere to add privacy and security in the different
aspects of our modern lives. In this chapter, we’ll find out what encryption really is,
what types of problems it solves, and how today’s applications make heavy use of
this cryptographic primitive.

NOTE For this chapter, you’ll need to have read chapter 3 on message
authentication codes.

64

4.1

What’s a cipher? 65

What’s a cipher?

It’s like when you use slang to talk to your siblings about what you'll do after school so
your mom doesn’t know what you're up to.

—Natanael L. (2020, https://twitter.com/Natanael_L)

Let’s imagine that our two characters, Alice and Bob, want to exchange some mes-
sages privately. In practice, they have many mediums at their disposal (the mail,
phones, the internet, and so on), and each of these mediums are by default insecure.
The mailman could open their letters; the telecommunication operators can spy on
their calls and text messages; internet service providers or any servers on the network
that are in between Alice and Bob can access the content of the packets being
exchanged.

Without further ado, let’s introduce Alice and Bob’s savior: the encryption algorithm
(also called a cipher). For now, let’s picture this new algorithm as a black box that Alice
can use to encrypt her messages to Bob. By encrypting a message, Alice transforms it
into something that looks random. The encryption algorithm for this takes

A secret key—TIt is crucial that this element is unpredictable, random, and well
protected because the security of the encryption algorithm relies directly on
the secrecy of the key. I will talk more about this in chapter 8 on secrets and
randomness.

Some plaintext—This is what you want to encrypt. It can be some text, an image,
avideo, or anything that can be translated into bits.

This encryption process produces a ciphertext, which is the encrypted content. Alice
can safely use one of the mediums listed previously to send that ciphertext to Bob.
The ciphertext will look random to anyone who does not know the secret key, and no
information about the content of the message (the plaintext) will be leaked. Once
Bob receives this ciphertext, he can use a decryption algorithm to revert the ciphertext
into the original plaintext. Decryption takes

A secret key—This is the same secret key that Alice used to create the ciphertext.
Because the same key is used for both algorithms, we sometimes call the key a
symmetric key. This is also why we also sometimes specify that we are using symmet-
ric encryption and not just encryption.

Some ciphertext—This is the encrypted message Bob receives from Alice.

The process then reveals the original plaintext. Figure 4.1 illustrates this flow.

Encryption allows Alice to transform her message into something that looks ran-
dom and that can be safely transmitted to Bob. Decryption allows Bob to revert the
encrypted message back to the original message. This new cryptographic primitive
provides confidentiality (or secrecy or privacy) to their messages.

NOTE How do Alice and Bob agree to use the same symmetric key? For now,
we’ll assume that one of them had access to an algorithm that generates

https://twitter.com/Natanael_L

66

4.2

CHAPTER 4 Authenticated encryption

key 0x8866...

N

o o o o
A A

A\ key 0x8866...

plaintext “hello” —|

Encrypt

.

ciphertext 0x6e0e...

1. Alice and Bob meet in real life to agree on a key.

2. Alice can now use it to encrypt messages with an
encryption algorithm and the symmetric key.

' — ciphertext 0x6e0e... —>§f

ﬁh%ﬁ: ﬂf:

key 0x8866...
.A. l

ciphertext 0x6e0e... —Pm

plaintext “hello”

3. The ciphertext is sent to Bob. Observers on
the way can’t learn anything about the message.

4. Finally Bob can decrypt the message with a
decryption algorithm and the same symmetric key.

Figure 4.1 Alice (top right) encrypts the plaintext hello with the key 0x8866. .. (an abbreviated
hexadecimal). Then Alice sends the ciphertext to Bob. Bob (bottom right) decrypts the received ciphertext

by using the same key and a decryption algorithm.

unpredictable keys, and that they met in person to exchange the key. In prac-
tice, how to bootstrap such protocols with shared secrets is often one of the
great challenges companies need to solve. In this book, you will see many dif-
ferent solutions to this problem.

Notice that I have yet to introduce what the title of this chapter, “Authenticated
encryption,” refers to. I've only talked about encryption alone so far. While encryption
alone is not secure (more about that later), I have to explain how it works before I can
introduce the authenticated encryption primitive. So bear with me as I first go over
the main standard for encryption: the Advanced Encryption Standard (AES).

The Advanced Encryption Standard (AES) block cipher

In 1997, NIST started an open competition for an Advanced Encryption Standard (AES),
aimed at replacing the Data Encryption Standard (DES) algorithm, their previous
standard for encryption that was starting to show signs of age. The competition lasted
three years, during which time, 15 different designs were submitted by teams of cryp-
tographers from different countries. At the end of the competition, only one sub-
mission, Rijndael, by Vincent Rijmen and Joan Daemen was nominated as the winner.

4.2.1

4.2.2

The Advanced Encryption Standard (AES) block cipher 67

In 2001, NIST released AES as part of the FIPS (Federal Information Processing
Standards) 197 publication. AES, the algorithm described in the FIPS standard, is still
the main cipher used today. In this section, I explain how AES works.

How much security does AES provide?

AES offers three different versions: AES-128 takes a key of 128 bits (16 bytes), AES-192
takes a key of 192 bits (24 bytes), and AES-256 takes a key of 256 bits (32 bytes). The
length of the key dictates the level of security—the bigger, the stronger. Nonetheless, most
applications make use of AES-128 as it provides enough security (128 bits of security).

The term bit security is commonly used to indicate the security of cryptographic
algorithms. For example, AES-128 specifies that the best attack we know of would take
2'%% operations. This number is gigantic, and it is the security level that most
applications aim for.

around

Bit security is an upper bound

The fact that a 128-bit key provides 128 bits of security is specific to AES; it is not a
golden rule. A 128-bit key used in some other algorithm could theoretically provide
less than 128-bit security. While a 128-bit key can provide less than 128-bit security,
it will never provide more (there’s always the brute force attack). Trying all the possi-
ble keys would take at most 2128 operations, reducing the security to 128 bits at
least.

How big is 2'%*? Notice that the amount between two powers of 2 is doubled. For
example 2° is twice as much as 22 If 2!
reach, imagine achieving double that (2'"). To reach 2'*, you have doubled your ini-
tial amount 128 times! In plain English, 2'* is 340 undecillion 282 decillion 366 nonil-
lion 920 octillion 938 septillion 463 sextillion 463 quintillion 374 quadrillion 607
trillion 431 billion 768 million 211 thousand 456. It is quite hard to imagine how big
that number is, but you can assume that we will never be able to reach such a number
in practice. We also didn’t account for the amount of space required for any large and
complex attack to work, which is equally as enormous in practice.

It is foreseeable that AES-128 will remain secure for a long time. That is unless
advances in cryptanalysis find a yet undiscovered vulnerability that would reduce the
number of operations needed to attack the algorithm.

operations are pretty much impossible to

The interface of AES
Looking at the interface of AES for encryption, we see the following:

The algorithm takes a variable-length key as discussed previously.
It also takes a plaintext of exactly 128 bits.
It outputs a ciphertext of exactly 128 bits.

68

4.2.3

CHAPTER 4 Authenticated encryption

Because AES encrypts a fixed-size plaintext, we call it a block cipher. Some other ciphers
can encrypt arbitrarily length plaintexts as you will see later in this chapter.

The decryption operation is exactly the reverse of this: it takes the same key, a
ciphertext of 128 bits, and returns the original 128-bit plaintext. Effectively, decryp-
tion reverts the encryption. This is possible because the encryption and decryption
operations are deterministic; they produce the same results no matter how many times
you call them.

In technical terms, a block cipher with a key is a permutation: it maps all the possi-
ble plaintexts to all the possible ciphertexts (see the example in figure 4.2). Changing

the key changes that mapping. A permutation is also reversible. From a ciphertext,
you have a map back to its corresponding plaintext (otherwise, decryption wouldn’t
work).

key 0x£301...

Plaintexts Ciphertexts

00000000000000000000000000000000 acc4822dc42346f92elec2695340c1b3
00000000000000000000000000000001 d488cf87bfbl25021cdab6663b08edl?
00000000000000000000000000000002 21e0b72510072a2990da839b046b66ad

c7cO0ebb53f3d3dl2acb947b4bcdld8b5 79d3841la4a2c4elf7b£f27741d4507a8

fEffffffffffffffffffffffffffffff 77068a7edlccell371f75ad4dbc2484d3

Figure 4.2 A cipher with a key can be seen as a permutation: it maps all the possible plaintexts to
all the possible ciphertexts.

Of course, we do not have the room to list all the possible plaintexts and their associ-

ated ciphertexts. That would be 2'*® mappings for a 128-bit block cipher. Instead, we
design constructions like AES, which behave like permutations and are randomized

by a key. We say that they are pseudorandom permutations (PRPs).

The internals of AES

Let’s dig a bit deeper into the guts of AES to see what’s inside. Note that AES sees the
state of the plaintext during the encryption process as a 4-by-4 matrix of bytes (as you
can see in figure 4.3).

This doesn’t really matter in practice, but this is how AES is defined. Under the
hood, AES works like many similar symmetric cryptographic primitives called block
ciphers, which are ciphers that encrypt fixed-sized blocks. AES also has a round function

The Advanced Encryption Standard (AES) block cipher 69

Plaintext
| 1f |Oe| ef |52| 3 |60|b4|cd 15|30| 6f |7a| of |a4|51 |09|
State
1f[f3|15] of Figure 4.3 When entering the AES
0e|60(30|a4 algorithm, a plaintext of 16 bytes gets
of |bal 6f | 51 transformed into a 4-by-4 matrix. This
state is then encrypted and finally

52[cd|7a|09 transformed into a 16-byte ciphertext.

that it iterates several times, starting on the original input (the plaintext). I illustrate
this in figure 4.4.

Plaintext
. ROUND
FUNCTION
L ROUND
FUNCTION]

Figure 4.4 AES iterates a round function
over a state in order to encrypt it. The round

ROUND function takes several arguments including
FUNCTION a secret key. (These are missing from the
diagram for simplicity.)

Ciphertext

v

Each call to the round function transforms the state further, eventually producing the
ciphertext. Each round uses a different round key, which is derived from the main sym-
metric key (during what is called a key schedule). This allows the slightest change in the
bits of the symmetric key to give a completely different encryption (a principle called
diffusion).

The round function consists of multiple operations that mix and transform the bytes
of the state. The round function of AES specifically makes use of four different subfunc-
tions. While we will shy away from explaining exactly how the subfunctions work (you
can find this information in any book about AES), they are named SubBytes, Shif-
tRows, MixColumns, and AddRoundKey. The first three are easily reversible (you can find
the input from the output of the operation), but the last one is not. It performs an
exclusive OR (XOR) with the round key and the state and, thus, needs the knowledge of
the round key to be reversed. I illustrate what goes into a round in figure 4.5.

The number of iterations of the round function in AES, which are usually practical
on a reduced number of rounds, was chosen to thwart cryptanalysis. For example,

CHAPTER 4 Authenticated encryption

SubBytes ShiftRows MixColumns AddRoundKey

® ® @ s>

Figure 4.5 A typical round of AES. (The first and last rounds omit some operations.) Four different
functions transform the state. Each function is reversible as decryption wouldn’t work otherwise. The
addition sign inside a circle (®) is the symbol for the XOR operation.

extremely efficient total breaks (attacks that recover the key) exist on three round
variants of AES-128. By iterating many times, the cipher transforms plaintext into
something that looks nothing like the original plaintext. The slightest change in the
plaintext also returns a completely different ciphertext. This principle is called the
avalanche effect.

NOTE Real-world cryptographic algorithms are typically compared by the
security, size, and speed they provide. We already talked about the security
and size of AES; its security depends on the key size, and it can encrypt 128-bit
blocks of data at a time. Speedwise, many CPU vendors have implemented
AES in hardware. For example, AES New Instructions (AES-NI) is a set of
instructions available in Intel and AMD CPUs, which can be used to efficiently
implement encryption and decryption for AES. These special instructions
make AES extremely fast in practice.

One question that you might still have is how do I encrypt more or less than 128 bits
with AES? I’ll answer this next.

The encrypted penguin and the CBC mode of operation

Now that we have introduced the AES block cipher and explained a bit about its
internals, let’s see how to use it in practice. The problem with a block cipher is that
it can only encrypt a block by itself. To encrypt something that is not exactly 128
bits, we must use a padding as well as a mode of operation. So let’s see what these two
concepts are about.

Imagine that you want to encrypt a long message. Naively, you could divide the
message into blocks of 16 bytes (the block size of AES). Then if the last block of plain-
text is smaller than 16 bytes, you could append some more bytes at the end until the
plaintext becomes 16 bytes long. This is what padding is about!

There are several ways to specify how to choose these padding bytes, but the most
important aspect of padding is that it must be reversible. Once we decrypt ciphertext,
we should be able to remove the padding to retrieve the original unpadded message.
Simply adding random bytes, for example, wouldn’t work because you wouldn’t be
able to discern if the random bytes were part of the original message or not.

The encrypted penguin and the CBC mode of operation 71

The most popular padding mechanism is often referred to as PKCS#7 padding,
which first appeared in the PKCS#7 standard published by RSA (a company) at the
end of the 1990s. PKCS#7 padding specifies one rule: the value of each padding byte
must be set to the length of the required padding. What if the plaintext is already 16
bytes? Then we add a full block of padding set to the value 16. I illustrate this visually
in figure 4.6. To remove the padding, you can easily check the value of the last byte of
plaintext and interpret it as the length of padding to remove.

Figure 4.6 If the plaintext is not a
multiple of the block size, it is padded
with the length needed to reach a
multiple of the block size. In the figure,
the plaintext is 8 bytes, so we use 8
more bytes (containing the value 8) to
pad the plaintext up to the 16 bytes
required for AES.

1f |Oe| ef | 52| f3 |60 [b4 |cd

1f [Oe | ef |52 |3 |60 |b4 |cd |08 (08|08 (08|08 |08 08|08

Now, there’s one big problem I need to talk about. So far, to encrypt a long message,
you just divided it into blocks of 16 bytes (and perhaps you padded the last block).
This naive way is called the electronic codebook (ECB) mode of operation. As you learned,
encryption is deterministic, and so encrypting the same block of plaintext twice leads
to the same ciphertext. This means that by encrypting each block individually, the
resulting ciphertext might have repeating patterns.

This might seem fine, but allowing these repetitions lead to many problems. The
most obvious one is that they leak information about the plaintext. The most famous
illustration of this is the ECB penguin, pictured in figure 4.7.

Figure 4.7 The famous ECB penguin is an
encryption of an image of a penguin using the
electronic codebook (ECB) mode of operation.
As ECB does not hide repeating patterns, one
can guess just by looking at the ciphertext

— - E— what was originally encrypted. (Image taken
Original penguin ECB encrypted penguin from Wikipedia.)

To encrypt more than 128 bits of plaintext safely, better modes of operation exist that
“randomize” the encryption. One of the most popular modes of operation for AES is
cipher block chaining (CBC). CBC works for any deterministic block cipher (not just
AES) by taking an additional value called an initialization vector (IV) to randomize the
encryption. Because of this, the IV is the length of the block size (16 bytes for AES)
and must be random and unpredictable.

72 CHAPTER 4 Authenticated encryption

To encrypt with the CBC mode of operation, start by generating a random IV of
16 bytes (chapter 8 tells you how to do this), then XOR the generated IV with the
first 16 bytes of plaintext before encrypting those. This effectively randomizes the
encryption. Indeed, if the same plaintext is encrypted twice but with different IVs, the
mode of operation renders two different ciphertexts.

If there is more plaintext to encrypt, use the previous ciphertext (like we used the
IV previously) to XOR it with the next block of plaintext before encrypting it. This
randomizes the next block of encryption as well. Remember, the encryption of some-
thing is unpredictable and should be as good as the randomness we used to create our
real IV. Figure 4.8 illustrates CBC encryption.

Plaintext
[EEEEEEEEE NN EEE |

Plaintext
[EEEEEEEEEEEEE N

S 4

Plaintext
[EEEEEEEEEEEEEEE

D

AES AES

encryption

Key—» AES

encryption encryption

\%
[IITTITTITITTIITTT

[EEEEEEEEEEEE NN
Ciphertext

[EEEEEEEEENEEEEEE|
Ciphertext

[EEEEEEEEEEEEEEEE|
Ciphertext

Figure 4.8 The CBC mode of operation with AES. To encrypt, we use a random initialization vector (IV) in
addition to padded plaintext (split in multiple blocks of 16 bytes).

To decrypt with the CBC mode of operation, reverse the operations. As the IV is
needed, it must be transmitted in clear text along with the ciphertext. Because the IV
is supposed to be random, no information is leaked by observing the value. I illustrate
CBC decryption in figure 4.9.

v
O

Ciphertext

Ciphertext

Ciphertext

AES

Key —

decryption

D

Plaintext

Key

—®

AES

decryption

Plaintext

AES
decryption

D

Plaintext

Figure 4.9 The CBC mode of operation with AES. To decrypt, the associated initialization vector (IV) is required.

Additional parameters like IVs are prevalent in cryptography. Yet, these are often
poorly understood and are a great source of vulnerabilities. With the CBC mode of

4.4

A lack of authenticity, hence AES-CBC-HMAC 73

operation, an IV needs to be unique (it cannot repeat) as well as unpredictable (it really
needs to be random). These requirements can fail for a number of reasons. Because
developers are often confused by IVs, some cryptographic libraries have removed the
possibility to specify an IV when encrypting with CBC and automatically generate one
randomly.

WARNING When an IV repeats or is predictable, the encryption becomes
deterministic again, and a number of clever attacks become possible. This was
the case with the famous BEAST attack (Browser Exploit Against SSL./TLS)
on the TLS protocol. Note also that other algorithms might have different
requirements for IVs. This is why it is always important to read the manual.
Dangerous details lie in fine print.

Note that a mode of operation and a padding are still not enough to make a cipher
usable. You’re about to see why in the next section.

A lack of authenticity, hence AES-CBC-HMAC

So far, we have failed to address one fundamental flaw: the ciphertext as well as the IV
in the case of CBC can still be modified by an attacker. Indeed, there’s no integrity
mechanism to prevent that! Changes in the ciphertext or IV might have unexpected
changes in the decryption. For example, in AES-CBC (AES used with the CBC mode
of operation), an attacker can flip specific bits of plaintext by flipping bits in its IV and
ciphertext. I'illustrate this attack in figure 4.10.

Ciphertext g Ciphertext Ciphertext
v I TTTTTTT] [TTTTTTT] T

AES

AES
decryption

AES

Key Key

decryption

D P
[TTTTTTT] [TTTTTTT]
Plaintext Plaintext Plaintext

decryption

Figure 4.10 An attacker that intercepts an AES-CBC ciphertext can do the following: (1) Because the IV

is public, flipping a bit (from 1 to 0, for example) of the IV also (2) flips a bit of the first block of plaintext.
(3) Modifications of bits can happen on the ciphertext blocks as well. (4) Such changes impact the following
block of decrypted plaintext. (5) Note that tampering with the ciphertext blocks has the direct effect of
scrambling the decryption of that block.

Consequently, a cipher or a mode of operation must not be used as-is. They lack some
sort of integrity protection to ensure that a ciphertext and its associated parameters
(here the IV) cannot be modified without triggering some alarms.

74

4.5

CHAPTER 4 Authenticated encryption

To prevent modifications on the ciphertext, we can use the message authentication
codes (MACs) that we saw in chapter 3. For AES-CBC, we usually use HMAC (for hash-
based MAC) in combination with the SHA-256 hash function to provide integrity. We
then apply the MAC after padding the plaintext and encrypting it over both the cipher-
text and the IV; otherwise, an attacker can still modify the IV without being caught.

WARNING This construction is called Encrypt-then-MAC. The alternatives (like
MAC-then-Encrypt) can sometimes lead to clever attacks (like the famous
Vaudenay padding oracle attack) and are thus avoided in practice.

The created authentication tag can be transmitted along with the IV and the cipher-
text. Usually, all are concatenated together as figure 4.11 illustrates. In addition, it is
best practice to use different keys for AES-CBC and HMAC.

HMAC key

v Ciphertext Authentication tag
OO T O T T O T T T T T | OO T T

Figure 4.11 The AES-CBC-HMAC construction produces three arguments
that are usually concatenated in the following order: the public 1V, the
ciphertext, and the authentication tag.

Prior to decryption, the tag needs to be verified (in constant time as you saw in chap-
ter 3). The combination of all of these algorithms is referred to as AES-CBC-HMAC
and was one of the most widely used authenticated encryption modes until we started
to adopt more modern all-in-one constructions.

WARNING AES-CBC-HMAC is not the most developer-friendly construction.
It is often poorly implemented and has some dangerous pitfalls when not
used correctly (for example, the IV of each encryption must be unpredictable).
I have spent a few pages introducing this algorithm as it is still widely used
and still works, but I recommend against using it in favor of the more current
constructions I introduce next.

All-in-one constructions: Authenticated encryption

The history of encryption is not pretty. Not only has it been poorly understood that
encryption without authentication is dangerous, but misapplying authentication has
also been a systemic mistake made by developers. For this reason, a lot of research
has emerged seeking to standardize all-in-one constructions that simplify the use of

4.5.1

All-in-one constructions: Authenticated encryption 75

encryption for developers. In the rest of this section, I introduce this new concept as
well as two widely adopted standards: AES-GCM and ChaCha20-Poly1305.

What’s authenticated encryption with associated data (AEAD)?

The most current way of encrypting data is to use an all-in-one construction called
authenticated encryption with associated data (AEAD). The construction is extremely close
to what AES-CBC-HMAC provides as it also offers confidentiality of your plaintexts
while detecting any modifications that could have occurred on the ciphertexts. What’s
more, it provides a way to authenticate associated data.

The associated data argument is optional and can be empty or it can also contain
metadata that is relevant to the encryption and decryption of the plaintext. This data
will not be encrypted and is either implied or transmitted along with the ciphertext.
In addition, the ciphertext’s size is larger than the plaintext because it now contains
an additional authentication tag (usually appended to the end of the ciphertext).

To decrypt the ciphertext, we are required to use the same implied or transmitted
associated data. The result is either an error, indicating that the ciphertext was modi-
fied in transit, or the original plaintext. I illustrate this new primitive in figure 4.12.

A key 0x8866...

key 0x8866... °.° l

plaintext “hello” AEAD
< N encrypt

ad “from alice” —»
o o o o

A A

ciphertext+tag 0x6e0e...

1. Alice and Bob meet in real life to agree on a key. 2. Alice can now use it to encrypt messages with

an AEAD algorithm and the symmetric key.
She can also add some optional associated data.

53 key 0x8866...
—> ciphertext+tag 0x6e0e... —'* O
ciphertext+tag 0x7eoe... AEAD

ad “from alice” —» |l
-.-§ 4+ ciphertext+tag 0x[/eOe...

error

3. The ciphertext and tag are sent to Bob. 4. Bob uses the AEAD decryption algorithm on
An observer on the way intercepts them the modified ciphertext with the same key.
and modifies the ciphertext. The decryption fails.

Figure 4.12 Both Alice and Bob meet in person to agree on a shared key. Alice can then use an AEAD
encryption algorithm with the key to encrypt her messages to Bob. She can optionally authenticate some
associated data (ad); for example, the sender of the message. After receiving the ciphertext and the
authentication tag, Bob can decrypt it using the same key and associated data. If the associated data

is incorrect or the ciphertext was modified in transit, the decryption fails.

76

4.5.2

CHAPTER 4 Authenticated encryption

Let’s see how to use a cryptographic library to encrypt and decrypt with an authenti-
cated encryption primitive. For this, we’ll use the JavaScript programming language
and the Web Crypto API (an official interface supported by most browsers that pro-
vides low-level cryptographic functions) as the following listing shows.

Listing 4.1 Authenticated encryption with AES-GCM in JavaScript

let config = { Generates a 128-bit

name: 'AES-GCM! key for 128 bits of
length: 128 security

}i

let keyUsages = ['encrypt', 'decrypt'l];

let key = await crypto.subtle.generateKey(config, false, keyUsages) ;

let iv = new Uint8Array(12);

await crypto.getRandomValues (iv) ; Generates a 12-byte

IV randomly

let te = new TextEncoder() ;
let ad = te.encode("some associated data") ;
let plaintext = te.encode("hello world") ;

Uses some associated
data to encrypt our
plaintext. Decryption

let param = { must use the same IV
name: 'AES-GCM', and associated data.
iv: iv,

additionalData: ad

}i

let ciphertext = await crypto.subtle.encrypt (param, key, plaintext);

let result = await window.crypto.subtle.decrypt (Decryption throws an
param, key, ciphertext); exception if the IV,
new TextDecoder ("utf-8") .decode (result) ; ciphertext, or associated

data are tampered with.

Note that Web Crypto API is a low-level API, and as such, does not help the developer
to avoid mistakes. For example, it lets us specify an IV, which is a dangerous pattern.
In this listing, I used AES-GCM, which is the most widely used AEAD. Next, let’s talk
more about this AES-GCM.

The AES-GCM AEAD

The most widely used AEAD is AES with the Galois/Counter Mode (also abbreviated
AES-GCM). It was designed for high performance by taking advantage of hardware
support for AES and by using a MAC (GMAC) that can be implemented efficiently.

AES-GCM has been included in NIST’s Special Publication (SP 800-38D) since
2007, and it is the main cipher used in cryptographic protocols, including several ver-
sions of the TLS protocol that is used to secure connections to websites on the inter-
net. Effectively, we can say that AES-GCM encrypts the web.

AES-GCM combines the Counter (CTR) mode of operation with the GMAC mes-
sage authentication code. First, let’s see how CTR mode works with AES. Figure 4.13
shows how AES is used with CTR mode.

All-in-one constructions: Authenticated encryption 77

Nonce 1 Nonce 2 Nonce 3

Key — AES. Key — AES. Key — AES.
encryption encryption encryption
Plaintext Plaintext Plaintext
IIIIIIIIIIIIIIIIl—>€9 IIIIIIIIIIIIIIIIl—’EB IIIIIIIIIIIIIIIII—*E;
CITTTTTTITTTTIITT] CITTTTTTITTTTITTT] [ITTTTTTITTITTITITT]
Ciphertext Ciphertext Ciphertext

Figure 4.13 The AES-CTR algorithm combining the AES cipher with the Counter mode of operation (CTR mode).
A unique nonce is concatenated with a counter and encrypted to produce a keystream. The keystream is then
XORed with the actual bytes of the plaintext.

AES-CTR uses AES to encrypt a nonce concatenated with a number (starting at 1)
instead of the plaintext. This additional argument, “a nonce for number once,” serves
the same purpose as an IV: it allows the mode of operation to randomize the AES
encryption. The requirements are a bit different from the IV of CBC mode, however.
A nonce needs to be unique but not unpredictable. Once this 16-byte block is
encrypted, the result is called a keystream, and it is XORed with the actual plaintext to
produce the encryption.

NOTE Like IVs, nonces are a common term in cryptography, and they are
found in different cryptographic primitives. Nonces can have different
requirements, although the name often indicates that it should not repeat.
But, as usual, what matters is what the manual says, not what the name of the
argument implies. Indeed, the nonce of AES-GCM is sometimes referred to as
an IV.

The nonce in AES-CTR is 96 bits (12 bytes) and takes most of the 16 bytes to be
encrypted. The 32 bits (4 bytes) left serves as a counter, starting from 1 and incre-
mented for each block encryption until it reaches its maximum value at 2% -1 =
4,294,967,295. This means that, at most, 4,294,967,295 blocks of 128 bits can be
encrypted with the same nonce (so less than 69 GBs).

If the same nonce is used twice, the same keystream is created. By XORing the two
ciphertexts together, the keystream is canceled and one can recover the XOR of the
two plaintexts. This can be devastating, especially if you have some information about
the content of one of the two plaintexts.

Figure 4.14 shows an interesting aspect of CTR mode: no padding is required. We
say that it turns a block cipher (AES) into a stream cipher. It encrypts the plaintext
byte by byte.

78 CHAPTER 4 Authenticated encryption

Nonce 1

encryption

Figure 4.14 If the keystream of AES-CTR is longer
than the plaintext, it is truncated to the length of the
[EEEn| plaintext prior to XORing it with the plaintext. This

Ciphertext permits AES-CTR to work without padding.

Plaintext (TTT1+—

Stream ciphers

Stream ciphers are another category of ciphers. They are different than block ciphers
because we can use them directly to encrypt a ciphertext by XORing it with a key-
stream. No need for padding or a mode of operation, allowing the ciphertext to be of
the same length as the plaintext.

In practice, there isn’t much difference between these two categories of ciphers
because block ciphers can easily be transformed into stream ciphers via the CTR
mode of operation. But, in theory, block ciphers have the advantage as they can be
useful when constructing other categories of primitives (similar to what you saw in
chapter 2 with hash functions).

This is also a good moment to note that, by default, encryption doesn’t (or badly)
hides the length of what you are encrypting. Because of this, the use of compression
before encryption can lead to attacks if an attacker can influence parts of what is
being encrypted.

The second part of AES-GCM is GMAC. It is a MAC constructed from a keyed hash
(called GHASH). In technical terms, GHASH is an almost XORed universal hash
(AXU), which is also called a difference unpredictable function (DUF). The requirement
of such a function is weaker than a hash. For example, an AXU does not need to be
collision resistant. Thanks to this, GHASH can be significantly faster. Figure 4.15 illus-
trates the GHASH algorithm.

Input Input Input
OO OO O

Output
Key Key — Key — [T

Figure 4.15 GHASH takes a key and absorbs the input block by block in a manner resembling
CBC mode. It produces a digest of 16 bytes.

All-in-one constructions: Authenticated encryption 79

To hash something with GHASH, we break the input into blocks of 16 bytes and then
hash them in a way similar to CBC mode. As this hash takes a key as input, it can theo-
retically be used as a MAC, but only once (otherwise, the algorithm breaks)—it’s a one-
time MAC. As this is not ideal for us, we use a technique (due to Wegman-Carter) to
transform GHASH into a many-time MAC. I illustrate this in figure 4.16.

Nonce
11

Input Input Input
OO T OO O

D

AES

b Key2 encryption

Key Key — Key —

7

Authentication tag

Figure 4.16 GMAC uses GHASH with a key to hash the input, then encrypts it with a different key
and AES-CTR to produce an authentication tag.

GMAUC is effectively the encryption of the GHASH output with AES-CTR (and a differ-
ent key). Again, the nonce must be unique; otherwise, clever attackers can recover the
authentication key used by GHASH, which would be catastrophic and would allow
easy forgery of authentication tags.

Finally, AES-GCM can be seen as an intertwined combination of CTR mode and
GMAC, similar to the Encrypt-then-MAC construction we previously discussed. I illus-
trate the whole algorithm in figure 4.17.

The counter starts at 1 for encryption, leaving the 0 counter for encrypting the
authentication tag created by GHASH. GHASH, in turn, takes an independent key H,
which is the encryption of the all-zero block with a key K. This way one does not need
to carry two different keys as the key Ksuffices to derive the other one.

As I'said previously, the 12-byte nonce of AES-GCM needs to be unique and, thus,
to never repeat. Notice that it doesn’t need to be random. Consequently, some peo-
ple like to use it as a counter, starting it at 1 and incrementing it for each encryption.
In this case, one must use a cryptographic library that lets the user choose the
nonce. This allows one to encrypt 2'*® — 1 messages before reaching the maximum
value of the nonce. Suffice it to say, this is an impossible number of messages to
reach in practice.

On the other hand, having a counter means that one needs to keep state. If a
machine crashes at the wrong time, it is possible that nonce reuse could happen. For
this reason, it is sometimes preferred to have a random nonce. Actually, some libraries
will not let developers choose the nonce and will generate those at random. Doing

80 CHAPTER 4 Authenticated encryption

Nonce 0 Nonce 1 Nonce 2 Nonce 3
—— —— — R EEE—— e
[EEEEEEEEEEEEEEEE] [ENEEEEEEEEEEEEEE] (NN EEEEEEEE RN T T IT]

AESI K AES_ K— AESl K—s AES_
encryption encryption encryption encryption
Plaintext Plaintext Plaintext
TP TP)
ITTTTTITTTITTTT] CITTITTITTITTITT1] ITTTTITTTTITTTT]
Ciphertext Ciphertext Ciphertext
Additional data)

GHASH m m GHASH

Length(additional data) Il length(ciphertext) —¢
M GHASH
core

[EENEENEENENEEEE]
Authentication tag

Figure 4.17 AES-GCM works by using AES-CTR with a symmetric key K to encrypt the plaintext and by using
GMAC to authenticate the associated data and the ciphertext using an authentication key H.

this avoids repetition with probabilities so high that this shouldn’t happen in practice.
Yet, the more messages that are encrypted, the more nonces are used and the higher
the chances of getting a collision. Because of the birthday bound we talked about in
chapter 2, it is recommended not to encrypt more than 2°%/? = 23 messages with the
same key when generating nonces randomly.

Beyond birthday-bound security

230 messages is quite a large number of messages. It might never be reached in
many scenarios, but real-world cryptography often pushes the limit of what is consid-
ered reasonable. Some long-lived systems need to encrypt many, many messages
per second, eventually reaching these limits. Visa, for example, processes 150 mil-
lion transactions per day. If it needs to encrypt those with a unique key, it would reach
the limit of 23° messages in only a week. In these extreme cases, rekeying (changing
the key used to encrypt) can be a solution. There also exists a research field called
beyond birthday-bound security that aims to improve the maximum number of mes-
sages that can be encrypted with the same key.

4.5.3

All-in-one constructions: Authenticated encryption 81

ChaCha20-Poly1305

The second AEAD I will talk about is ChaCha20-Poly1305. 1t is the combination of two
algorithms: the ChaCha20 stream cipher and the Polyl1305 MAC. Both designed sepa-
rately by Daniel J. Bernstein to be fast when used in software, contrary to AES, which is
slow when hardware support is unavailable. In 2013, Google standardized the Cha-
Cha20-Polyl1305 AEAD in order to make use of it in Android mobile phones relying
on low-end processors. Nowadays, it is widely adopted by internet protocols like
OpenSSH, TLS, and Noise.

ChaCha20 is a modification of the Salsa20 stream cipher, which was originally
designed by Daniel J. Bernstein around 2005. It was one of the nominated algorithms
in the ESTREAM competition (https://www.ecrypt.eu.org/stream/). Like all stream
ciphers, the algorithm produces a keystream, a series of random bytes of the length of
the plaintext. It is then XORed with the plaintext to create the ciphertext. To decrypt,
the same algorithm is used to produce the same keystream, which is XORed with the
ciphertext to give back the plaintext. I illustrate both flows in figure 4.18.

Key Nonce

Figure 4.18 ChaCha20 works by taking a symmetric
key and a unique nonce. It then generates a keystream
[(MIIITIITIIII LI IIITIIITIITIITI] thatisXORedWiththeplaintext(orciphertext)to
D produce the ciphertext (or plaintext). The encryption is
_ length-preserving as the ciphertext and the plaintext
Ciphertext T TTITTITITTITTITTT] are of the same length.

Plaintext T I I I I T T IITTTTIT1]

Under the hood, ChaCha20 generates a keystream by repeatedly calling a block func-
tion to produce many 64-byte blocks of keystream. The block function takes

A 256-bit (32-byte) key like AES-256

A 92-bit (12-byte) nonce like AES-GCM

A 32-bit (4-byte) counter like AES-GCM

The process to encrypt is the same as with AES-CTR. (I illustrate this flow in figure 4.19.)

Run the block function, incrementing the counter every time, until enough
keystream is produced

Truncate the keystream to the length of the plaintext

XOR the keystream with the plaintext

Due to the upper bound on the counter, you can use ChaCha20 to encrypt as many
messages as with AES-GCM (as it is parameterized by a similar nonce). Because the
output created by this block function is much larger, the size of a message that you can
encrypt is also impacted. You can encrypt a message of size 2%? x 64 bytes = 274 GB. If
a nonce is reused to encrypt a plaintext, similar issues to AES-GCM arise. An observer

https://www.ecrypt.eu.org/stream/

82

CHAPTER 4 Authenticated encryption

Key 1 Key 2

Nonce Nonce

ChaCha20 ChaCha20

block block

Figure 4.19 ChaCha20’s keystream is created by
calling an internal block function until enough
bytes are produced. One block function call

64 bytes 64 bytes creates 64 bytes of random keystream.

can obtain the XOR of the two plaintexts by XORing the two ciphertexts and can also
recover the authentication key for the nonce. These are serious issues that can lead to
an attacker being able to forge messages!

The size of nonces and counters

The size of the nonces and the counters are (actually) not always the same every-
where (both for AES-GCM and ChaCha20-Poly1305), but they are the recommended
values from the adopted standards. Still, some cryptographic libraries accept differ-
ent sizes of nonce, and some applications increase the size of the counter (or the
nonce) in order to allow encryption of larger messages (or more messages). Increas-
ing the size of one component necessarily decreases the size of the other.

To prevent this, while allowing a large number of messages to be encrypted under a
single key, other standards like XChaCha20-Poly1305 are available. These standards
increase the size of the nonce while keeping the rest intact, which is important in
cases where the nonce needs to be generated randomly instead of being a counter
tracked in the system.

Inside the ChaCha20 block function, a state is formed. Figure 4.20 illustrates this state.

“expand 32-byte k”

Figure 4.20 The state of the ChaCha20 block
256-bit key function. It is formed by 16 words (represented as
-\/ squares) of 32 bytes each. The first line stores a
constant, the second and third lines store the 32-byte
symmetric key, the following word stores a 4-byte
Nonce counter, and the last 3 words store the 12-byte nonce.

Counter

This state is then transformed into 64 bytes of keystream by iterating a round function
20 times (hence the 20 in the name of the algorithm). This is similar to what was done
with AES and its round function. The round function is itself calling a Quarter Round
(QR) function 4 times per round, acting on different words of the internal state each
time, depending if the round number is odd or even. Figure 4.21 shows this process.

All-in-one constructions: Authenticated encryption 83

Odd: I % @ I Figure 4.21 A round in ChaCha20 affects all the words
contained in a state. As the Quarter Round (QR) function
only takes 4 arguments, it must be called at least 4 times

Even: E ﬁ % E on different words (grayed in the diagram) to modify all 16
words of the state.

The QR function takes four different arguments and updates them using only Add,
Rotate, and XOR operations. We say that it is an ARX stream cipher. This makes Cha-
Cha20 extremely easy to implement and fast in software.

Poly1305 is a MAC created via the Wegman-Carter technique, much like the GMAC
we previously talked about. Figure 4.22 illustrates this cryptographic MAC.

Input Input Input
OITTITTITITITITITTIT OITTITTITITITITITTIT o1
g Poly1305 [mmmmmmnd Poly1305 [mmmmmmmd Poly1305 Output
r— core r— core r— core
+ +«—S
OO

:|:|:|:|:|:|:|:l|:|:|:|:|:|:|:|:

Authentication tag

Figure 4.22 Poly1305'’s core function absorbs an input one block at a time by
taking an additional accumulator set to O initially and an authentication key r.
The output is fed as an accumulator to the next call of the core function.
Eventually the output is added to a random value s to become the
authentication tag.

In the figure, r can be seen as the authentication key of the scheme, like the authenti-
cation key H of GMAC. And s makes the MAC secure for multiple uses by encrypting
the result, thus it must be unique for each usage.

The Poly1305 core function mixes the key with the accumulator (set to 0 in the
beginning) and the message to authenticate. The operations are simple multiplica-
tions modulo a constant P.

NOTE Obviously, a lot of details are missing from our description. I seldom
mention how to encode data or how some arguments should be padded
before being acted on. These are all implementation specificities that do not
matter for us as we are trying to get an intuition of how these things work.

Eventually, we can use ChaCha20 and a counter set to 0 to generate a keystream and
derive the 16-byte r and 16-byte svalues we need for Polyl1305. I illustrate the resulting
AEAD cipher in figure 4.23.

84

4.6

4.6.1

CHAPTER 4 Authenticated encryption
Key Counter=0 Key Counter=1

\ NoTce \ \ Norce \

Chacha20
Plaintext —

[]]

Ciphertext Figure 4.23 ChaCha20-
Poly1305 works by using

associated data Il ciphertext Il len(ciphertext) Il len(associated data) ChaCha20 to encrypt the
plaintext and to derive the
keys required by the
Poly1305 MAC. Poly1305 is
then used to authenticate
the ciphertext as well as the
Authentication tag associated data.

The normal ChaCha20 algorithm is first used to derive the authentication secrets r
and sneeded by Polyl1305. The counter is then incremented, and ChaChaZ20 is used to
encrypt the plaintext. After that, the associated data and the ciphertext (and their
respective lengths) are passed to Polyl305 to create an authentication tag.

To decrypt, the exact same process is applied. ChaCha20 first verifies the authenti-
cation of the ciphertext and the associated data via the tag received. It then decrypts
the ciphertext.

Other kinds of symmetric encryption

Let’s pause for a moment and review the symmetric encryption algorithms you have
learned so far:

Non-authenticated encryption—AES with a mode of operation but without a MAC.
This is insecure in practice as ciphertexts can be tampered with.

Authenticated encryption—AES-GCM and ChaCha20-Polyl1305 are the two most
widely adopted ciphers.

The chapter could end here and it would be fine. Yet, real-world cryptography is not
always about the agreed standards; it is also about constraints in size, in speed, in for-
mat, and so on. To that end, let me give you a brief overview of other types of symmet-
ric encryption that can be useful when AES-GCM and ChaCha20-Poly1305 won’t fit.

Key wrapping

One of the problems of nonce-based AEADs is that they all require a nonce, which
takes additional space. Notice that when encrypting a key, you might not necessarily
need randomization because what is encrypted is already random and will not repeat
with high probabilities (or if it does repeat, it is not a big deal). One well-known stan-
dard for key wrapping is NIST’s Special Publication 800-38F: “Recommendation for

4.6.2

4.6.3

4.6.4

Other kinds of symmetric encryption 85

Block Cipher Modes of Operation: Methods for Key Wrapping.” These key wrapping
algorithms do not take an additional nonce or IV and randomize their encryption
based on what they are encrypting. Thanks to this, they do not have to store an addi-
tional nonce or IV next to the ciphertexts.

Nonce misuse-resistant authenticated encryption

In 2006, Phillip Rogaway published a new key wrapping algorithm called synthetic ini-
tialization vector (SIV). As part of the proposal, Rogaway notes that SIV is not only use-
ful to encrypt keys, but also as a general AEAD scheme that is more tolerant to nonce
repetitions. As you learned in this chapter, a repeating nonce in AES-GCM or Cha-
Cha20-Polyl305 can have catastrophic consequences. It not only reveals the XOR of
the two plaintexts, but it also allows an attacker to recover an authentication key and
to forge valid encryption of messages.

The point of a nonce misuse-resistant algorithm is that encrypting two plaintexts
with the same nonce only reveals if the two plaintexts are equal or not, and that’s it.
It’s not great, but it’s obviously not as bad as leaking an authentication key. The
scheme has gathered a lot of interest and has since been standardized in RFC 8452:
“AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption.” The trick behind
SIV is that the nonce used in the AEAD to encrypt is generated from the plaintext
itself, which makes it highly unlikely that two different plaintexts would end up being
encrypted under the same nonce.

Disk encryption

Encrypting the storage of a laptop or a mobile phone has some hefty constraints: it
has to be fast (otherwise the user will notice) and you can only do it in place (saving
space is important for a large number of devices). Because the encryption can’t
expand, AEADs that need a nonce and an authentication tag are not a good fit. Instead,
unauthenticated encryption is used.

To protect against bitflip attacks, large blocks (think thousands of bytes) of data are
encrypted in a way that a single bitflip would scramble the decryption of the whole
block. This way, an attack has more of a chance of crashing the device than accom-
plishing its goal. These constructions are called wide-block ciphers, although this approach
has also been dubbed poor man’s authentication.

Linux systems and some Android devices have adopted this approach using Adian-
tum, a wide-block construction wrapping the ChaCha cipher and standardized by
Google in 2019. Still, most devices use non-ideal solutions: both Microsoft and Apple
make use of AES-XTS, which is unauthenticated and is not a wide-block cipher.

Database encryption

Encrypting data in a database is tricky. As the whole point is to prevent database
breaches from leaking data, the key used to encrypt and decrypt the data must be
stored away from the database server. Because clients don’t have the data themselves,
they are severely limited in the way they can query the data.

86

CHAPTER 4 Authenticated encryption

The simplest solution is called transparent data encryption (TDE) and simply encrypts
selected columns. This works well in some scenarios, although one needs to be careful
to authenticate associated data identifying the row and the column being encrypted;
otherwise, encrypted content can be swapped. Still, one cannot search through
encrypted data and so queries have to use the unencrypted columns.

Searchable encryption is the field of research that aims at solving this problem. A lot
of different schemes have been proposed, but it seems like there is no silver bullet.
Different schemes propose different levels of “searchability” as well as different degra-
dations in security. Blind indexing, for example, simply allows you to search for exact
matches, while order-preserving and order-revealing encryptions allow you to order
results. The bottom line is, the security of these solutions are to be looked at carefully
as they truly are tradeoffs.

Summary

Encryption (or symmetric encryption) is a cryptographic primitive that can be
used to protect the confidentiality of data. The security relies on a symmetric
key that needs to remain secret.

Symmetric encryption needs to be authenticated (after which we call it authen-
ticated encrption) to be secure, as otherwise, ciphertexts can be tampered with.
Authenticated encryption can be constructed from a symmetric encryption
algorithm by using a message authentication code. But best practice is to use an
authenticated encryption with associated data (AEAD) algorithm as they are all-
in-one constructions that are harder to misuse.

Two parties can use authenticated encryption to hide their communications, as
long as they both have knowledge of the same symmetric key.

AES-GCM and ChaCha20-Polyl1305 are the two most widely adopted AEADs.
Most applications nowadays use either one of these.

Reusing nonces breaks the authentication of AES-GCM and ChaCha20-Poly1305.
Schemes like AES-GCM-SIV are nonce misuse resistant, while encryption of
keys can avoid that problem as nonces are not necessary.

Real-world cryptography is about constraints, and AEADs cannot always fit every
scenario. This is the case for database or disk encryption, for example, that
require the development of new constructions.

Key exchanges

This chapter covers

= What key exchanges are and how they can
be useful

= The Diffie-Hellman and Elliptic Curve Diffie-
Hellman key exchanges

= Security considerations when using key
exchanges

We are now entering the realm of asymmetric cryptography (also called public key cryp-
tography) with our first asymmetric cryptographic primitive: the key exchange. A key
exchange is, as the name hints, an exchange of keys. For example, Alice sends a key
to Bob, and Bob sends a key to Alice. This allows the two peers to agree on a shared

secret, which can then be used to encrypt communications with an authenticated
encryption algorithm.

WARNING As I hinted in the introduction of this book, there is much more
math involved in asymmetric cryptography; therefore, the next chapters
are going to be a tad more difficult for some readers. Don’t get discour-
aged! What you will learn in this chapter will be helpful to understand
many other primitives based on the same fundamentals.

87

88

5.1

CHAPTER 5 Key exchanges

NOTE For this chapter, you’ll need to have read chapter 3 on message
authentication codes and chapter 4 on authenticated encryption.

What are key exchanges?

Let’s start by looking at a scenario where both Alice and Bob want to communicate
privately but have never talked to each other before. This will motivate what key
exchanges can unlock in the simplest of situations.

To encrypt communications, Alice can use the authenticated encryption primitive
you learned about in chapter 4. For this, Bob needs to know the same symmetric key
so Alice can generate one and send it over to Bob. After that, they can simply use the
key to encrypt their communications. But what if an adversary is passively snooping in
on their conversation? Now the adversary has the symmetric key and can decrypt all
encrypted content that Alice and Bob are sending to each other! This is where using a
key exchange can be interesting for Alice and Bob (and for ourselves in the future).
By using a key exchange, they can obtain a symmetric key that a passive observer won’t
be able to reproduce.

A key exchange starts with both Alice and Bob generating some keys. To do this, they
both use a key generation algorithm, which generates a key pair: a private key (or
secret key) and a public key. Alice and Bob then send their respective public keys to
each other. Public here means that adversaries can observe those without conse-
quences. Alice then uses Bob’s public key with her own private key to compute the
shared secret. Bob can, similarly, use his private key with Alice’s public key to obtain
the same shared secret. I illustrate this in figure 5.1.

Bob’s public key Bob’s private key | Alice’s private key Alice’s public key

KEY
EXCHANGE

!

Shared secret

KEY
EXCHANGE

!

Shared secret

Figure 5.1 A key exchange provides the following interface: it takes your
peer’s public key and your private key to produce a shared secret. Your peer can
obtain the same shared secret by using your public key and their private key.

Knowing how a key exchange works from a high level, we can now go back to our ini-
tial scenario and see how this helps. By starting their communication with a key
exchange, Alice and Bob produce a shared secret to use as a key to an authenticated
encryption primitive. Because any man-in-the-middle (MITM) adversaries observing

What are key exchanges? 89

the exchange cannot derive the same shared secret, they won’t be able to decrypt
communications. I illustrate this in figure 5.2.

Here’s a symmetric key Here’s my public key.
we can use to encrypt
A our communications. A
e o o, o, Here’s mine. L
MITM can observe the symmetric key. MITM can’t derive the shared secret.

Figure 5.2 A key exchange between two participants allows them to agree on a secret key, while a man-in-
the-middle (MITM) adversary can’t derive the same secret key from passively observing the key exchange.

Note that the MITM here is passive; an active MITM would have no problem intercept-
ing the key exchange and impersonating both sides. In this attack, Alice and Bob
would effectively perform a key exchange with the MITM, both thinking that they
agreed on a key with each other. The reason this is possible is that none of our charac-
ters have a way to verify who the public key they receive really belongs to. The key
exchange is unauthenticated! 1 illustrate the attack in figure 5.3.

) I'm Alice,

. here’s my public key.
I'm Bob, W %f I'm Alice,
here’s my public key. f . here’s my public key.

I'm Bob, ﬂ
here’s my public key. .

Figure 5.3 An unauthenticated key exchange is vulnerable to an active MITM attacker.
Indeed, the attacker can simply impersonate both sides of the connection and perform two
separate key exchanges.

Let’s take a look at a different scenario to motivate authenticated key exchanges. Imagine
that you want to run a service that gives you the time of day. Yet, you do not want this
information to be modified by a MITM adversary. Your best bet is to authenticate your

CHAPTER 5 Key exchanges

responses using the message authentication codes (MACs) you learned about in chap-
ter 3. As MACs require a key, you could simply generate one and share it manually
with all of your users. But then, any user is now in possession of the MAC key you're
using with the others and might some day make use of it to perform the previously dis-
cussed MITM attack on someone else. You could set up a different key per user, but
this is not ideal as well. For every new user that wants to connect to your service, you will
need to manually provision both your service and the user with a new MAC key. It would
be so much better if you didn’t have anything to do on the server side, wouldn’t it?

Key exchanges can help here! What you could do is have your service generate a
key exchange key pair and provision any new user with the service’s public key. This is
known as an authenticated key exchange; your users know the server’s public key, and
thus, an active MITM adversary cannot impersonate that side of the key exchange.
What a malicious person can do, though, is to perform their own key exchange (as the
client side of the connection is not authenticated). By the way, when both sides are
authenticated, we call that a mutually authenticated key exchange.

This scenario is extremely common, and the key exchange primitive allows it to
scale well with an increase of users. But this scenario doesn’t scale well if the number
of services increase as welll The internet is a good example of this. We have many
browsers trying to communicate securely with many websites. Imagine if you had to
hardcode the public key of all the websites you might one day visit in your browser
and what happens when more websites come online?

While key exchanges are useful, they do not scale well in all scenarios without their
sister primitive—the digital signature. This is just a teaser though. In chapter 7, you will
learn about that new cryptographic primitive and how it helps scaling trust in a system.
Key exchanges are rarely used directly in practice, however. They are often just building
blocks of a more complex protocol. That being said, they can still be useful on their own
in certain situations (for example, as we saw previously against passive adversaries).

Let’s now look at how you would use a key exchange cryptographic primitive in prac-
tice. libsodium is one of the most well known and widely used C/C++ libraries. The
following listing shows how you would use libsodium in practice in order to perform a
key exchange.

Listing 5.1 A key exchange in C

unsigned char client pkl[crypto kx PUBLICKEYBYTES] ; G tes th
- - enerates the

unsigned char client sk[crypto kx SECRETKEYBYTES] ; . .
N T T client’s key pair

crypto_kx keypair(client pk, client sk);

unsigned char server pklcrypto kx PUBLICKEYBYTES] ; We assume that we have some way
obtain (server_pk) ; to obtain the server’s public key.

unsigned char decrypt keyl[crypto kx SESSIONKEYBYTES] ; F libsodium derives two symmetric

unsigned char encrypt keylcrypto kx SESSIONKEYBYTES] ; keys '_nStead of one_ per best
practice; each key is used to

encrypt a single direction.

5.2

5.21

The Diffie-Hellman (DH) key exchange 91

if (crypto_kx client session keys (decrypt key, encrypt key,
client_pk, client sk, server_pk) != 0) { T We perform a key exchange

abort_session(); If the public key is with our secret key and the
} malformed, the function server’s public key.
returns an error.

libsodium hides a lot of details from the developer while also exposing safe-to-use
interfaces. In this instance, libsodium makes use of the X25519 key exchange algorithm,
which you will learn more about later in this chapter. In the rest of this chapter, you
will learn about the different standards used for key exchanges, as well as how they
work under the hood.

The Diffie-Hellman (DH) key exchange

In 1976, Whitfield Diffie and Martin E. Hellman wrote their seminal paper on the Diffie-
Hellman (DH) key exchange algorithm entitled “New Direction in Cryptography.”
What a title! DH was the first key exchange algorithm invented and one of the first for-
malizations of a public key cryptographic algorithm. In this section, I lay out the math
foundations of this algorithm, explain how it works, and finally, talk about the standards
that specify how to use it in a cryptographic application.

Group theory

The DH key exchange is built on top of a field of mathematics called group theory,
which is the base of most public key cryptography today. For this reason, I will spend
some time in this chapter giving you the basics on group theory. I will do my best to
provide good insights on how these algorithms work, but there’s no way around it,
there is going to be some math.

Let’s start with the obvious question: what’s a group? It’s two things:

A set of elements
A special binary operation (like + or x) defined on these elements

If the set and the operation manage to satisfy some properties, then we have a group.
And, if we have a group, then we can do magical things . . . (more on that later). Note
that DH works in a multiplicative group: a group where the multiplication is used as the
defined binary operation. Due to this, the rest of the explanations use a multiplicative
group as examples. I will also often omit the x symbol (for example, I will write @ x bas
ab instead).

I need to be a bit more specific here. For the set and its operation to be a group,
they need the following properties. (As usual, I illustrate these properties in a more
visual way in figure 5.4 to provide you with more material to grasp this new concept.)

Closure—Operating on two elements results in another element of the same set.
For example, for two elements of the group @ and b, @ x b results in another
group element.

92

Closure

CHAPTER 5 Key exchanges

Associativity Identity element Inverse element

(@axb)xc a
b w w a

ax(bxc) axi

1 1 .
ab) a
axa’
For any a, b in the group, For any a, b, cin the group, For any ain the group, For any ain the group,
ax bis in the group. ax(bxc)=(axbyxc axl=a there is a™' as well,

suchthatax a™ =1.

Figure 5.4 The four properties of a group: closure, associativity, identity element, and inverse element.

Associativity—Operating on several elements at a time can be done in any order.
For example, for three elements of the group a, b, and ¢, then a(bc) and (ab)c¢
result in the same group element.

Identity element—Operating with this element does not change the result of the
other operand. For example, we can define the identity element as 1 in our
multiplicative group. For any group element 4, we have a x 1 = a.

Inverse element—Existing as an inverse to all group elements. For example, for
any group element «, there’s an inverse element a™' (also written as 1/a) such
that ax a™' = 1 (also written as a x %z =1).

I can imagine that my explanation of a group can be a bit abstract, so let’s see what

DH uses as a group in practice. First, DH uses a group comprised of the set of strictly

positive integers: 1, 2, 3, 4, ---, p— 1, where p is a prime number and 1 is the identity
element. Different standards specify different numbers for p, but intuitively, it has to
be a large prime number for the group to be secure.

Prime numbers

Second, DH uses the modular multiplication as a special operation. Before I can explain
what modular multiplication is, I need to explain what modular arithmetic is. Modular

A prime number is a number that can only be divided by 1 or by itself. The first prime
numbers are 2, 3, 5, 7, 11, and so on. Prime numbers are everywhere in asymmetric
cryptography! And, fortunately, we have efficient algorithms to find large ones. To
speed things up, most cryptographic libraries will instead look for pseudo-primes
(numbers that have a high probability of being primes). Interestingly, such optimiza-
tions were broken several times in the past; the most infamous occurrence was in
2017, when the ROCA vulnerability uncovered more than a million devices generating
incorrect primes for their cryptographic applications.

The Diffie-Hellman (DH) key exchange 93

arithmetic, intuitively, is about numbers that “wrap around” past a certain number
called a modulus. For example, if we set the modulus to be 5, we say that numbers past
5 go back to 1; for example, 6 becomes 1, 7 becomes 2, and so on. (We also note 5 as
0, but because it is not in our multiplicative group, we don’t care too much about it.)

The mathematical way to express modular arithmetic is to take the remainder of a
number and its Euclidian division with the modulus. Let’s take, for example, the num-
ber 7 and write its Euclidian division with 5as 7 =5 x 1 + 2. Notice that the remainder
is 2. Then we say that 7 =2 mod 5 (sometimes written as 7=2 (mod 5)). This equation
can be read as 7 is congruent to 2 modulo 5. Similarly

8=1mod 7

54 =2 mod 13
170 =0 mod 17
and so on

The classical way of picturing such a concept is with a clock. Figure 5.5 illustrates this
concept.

0
4 1
3 2
The normal clock wraps around at 12. Integers numbers modulo 5.
12is 0, 13is 1, 14 is 2, and so on. 5is 0, 6is 1, and so on.

Figure 5.5 The group of integers modulo the prime number 5 can be pictured
as a clock that resets to 0 after the number 4. Thus 5 is represented as 0, 6
asl,7as 2, 8as3,9as 4,10 as 0, and so on.

A modular multiplication is quite natural to define over such a set of numbers. Let’s
take the following multiplication as an example:

3x2=6

With what you learned previously, you know that 6 is congruent to 1 modulo 5, and
thus the equation can be rewritten as:

3x2=1modb

94

CHAPTER 5 Key exchanges

Quite straightforward, isn’t it? Note that the previous equation tells us that 3 is the
inverse of 2 and vice versa. We could also write the following:

31 =92 mod b

When the context is clear, the modulus part (mod 5 here) is often left out from equa-
tions. So don’t be surprised if I sometimes omit it in this book.

NOTE It happens that when we use the positive numbers modulo a prime
number, only the zero element lacks an inverse. (Indeed, can you find an ele-
ment b such that 0 x b = 1 mod 5?) This is the reason why we do not include
zero as one of our elements in the group.

OK, we now have a group, which includes the set of strictly positive integers 1, 2, -+, p—1
for p a prime number, along with modular multiplication. The group we formed also
happens to be two things:

Commutative—The order of operations doesn’t matter. For example, given two
group elements a and b, then ab = ba. A group that has this property is often
called a Galois group.

A finite field—A Galois group that has more properties, as well as an additional
operation (in our example, we can also add numbers together).

Due to the last point, DH defined over this type of group is sometimes called Finile
Field Diffie-Hellman (FFDH). If you understand what a group is (and make sure you do
before reading any further), then a subgroup is just a group contained inside your orig-
inal group. That is, it’s a subset of the group elements. Operating on elements of the
subgroup results in another subgroup element, and every subgroup element has an
inverse in the subgroup, etc.

A cyclic subgroup is a subgroup that can be generated from a single generator (or
base). A generator generates a cyclic subgroup by multiplying itself over and over. For
example, the generator 4 defines a subgroup consisting of the numbers 1 and 4:

4modb=4

4x4modb=1

4 x4 x4mod 5 =4 (we start again from the beginning)
4x4x4x4modb=1

and so on

NOTE We can also write 4 x 4 x 4 as 4°.

It happens that when our modulus is prime, every element of our group is a generator
of a subgroup. These different subgroups can have different sizes, which we call orders.
Iillustrate this in figure 5.6.

5.2.2

The Diffie-Hellman (DH) key exchange 95

21=2
22=4
23=3
24=1

Group of order 1 generated by 1 | | Group of order 4 generated by 2

3'=3
32=4 4'=4
3= 42=1
3*=1

Group of order 4 generated by 3 | | Group of order 2 generated by 4

Figure 5.6 The different subgroups of the multiplicative group modulo 5.
These all include the number 1 (called the identity element) and have
different orders (number of elements).

All right, you now understand

A group is a set of numbers with a binary operation that respects some proper-
ties (closure, associativity, identity element, inverse element).

DH works in the Galois group (a group with commutativity), formed by the set
of strictly positive numbers up to a prime number (not included) and the mod-
ular multiplication.

In a DH group, every element is a generator of a subgroup.

Groups are the center of a huge amount of different cryptographic primitives. It is
important to have good intuitions about group theory if you want to understand how
other cryptographic primitives work.

The discrete logarithm problem: The basis of Diffie-Hellman

The security of the DH key exchange relies on the discrete logarithm problem in a
group, a problem believed to be hard to solve. In this section, I briefly introduce this
problem.

Imagine that I take a generator, let’s say 3, and give you a random element
among the ones it can generate, let’s say 2 = 3* mod 5 for some x unknown to you.
Asking you “what is x?” is the same as asking you to find the discrete logarithm of 2
in base 3. Thus, the discrete logarithm problem in our group is about finding out
how many times we multiplied the generator with itself in order to produce a given
group element. This is an important concept! Take a few minutes to think about it
before continuing.

In our example group, you can quickly find that 3 is the answer (indeed, 3° = 2
mod 5). But if we picked a much larger prime number than 5, things get much more
complicated: it becomes hard to solve. This is the secret sauce behind Diffie-Hellman.
You now know enough to understand how to generate a key pair in DH:

96

CHAPTER 5 Key exchanges

All the participants must agree on a large prime p and a generator g.
Each participant generates a random number x, which becomes their private key.
Each participant derives their public key as g* mod p.

The fact that the discrete logarithm problem is hard means that no one should be able
to recover the private key from the public key. I illustrate this in figure 5.7.

0. & &, ..., g340282366920938463463374607431768211456 mod p

DH public key —j

Figure 5.7 Choosing a private key in Diffie-Hellman is like choosing
an index in a list of numbers produced by a generator g. The discrete
logarithm problem is to find the index from the number alone.

While we do have algorithms to compute discrete logarithms, they are not efficient in
practice. On the other hand, if I give you the solution x to the problem, you have
extremely efficient algorithms at your disposal to check that, indeed, I provided you
with the right solution: g* mod p. If you are interested, the state-of-the-art technique to
compute the modular exponentiation is called square and multiply. This computes the
result efficiently by going through x bit by bit.

NOTE Like everything in cryptography, it is not impossible to find a solution by
simply trying to guess. Yet, by choosing large enough parameters (here, a
large prime number), it is possible to reduce the efficacy of such a search for
a solution down to negligible odds. This means that even after hundreds of
years of random tries, your odds of finding a solution should still be statisti-
cally close to zero.

Great. How do we use all of this math for our DH key exchange algorithm? Imagine that

Alice has a private key a and a public key A = g¢“ mod p.
Bob has a private key b and a public key B= g’ mod p.

With the knowledge of Bob’s public key, Alice can compute the shared secret as B*
mod p. Bob can do a similar computation with Alice’s public key and his own private
key: A’ mod p. Naturally, we can see that these two calculations end up computing the
same number:

B = (gb)a:gab: (ga)bZAmedp

And that’s the magic of DH. From an outsider’s point of view, just observing the public
keys A and B does not help in any way to compute the result of the key exchange g*
mod p. Next, you will learn about how real-world applications make use of this algo-
rithm and the different standards that exist.

5.2.3

The Diffie-Hellman (DH) key exchange 97

Computational and decisional Diffie-Hellman

By the way, in theoretical cryptography, the idea that observing g2 mod p and g mod
p does not help you to compute g2° mod p is called the computational Diffie-Hellman
assumption (CDH). It is often confused with the stronger decisional Diffie-Hellman
assumption (DDH), which intuitively states that given g mod p, g° mod p, and z mod
p, nobody should be able to confidently guess if the latter element is the result of a
key exchange between the two public keys (82° mod p) or just a random element of
the group. Both are useful theoretical assumptions that have been used to build
many different algorithms in cryptography.

The Diffie-Hellman standards

Now that you have seen how DH works, you can understand that participants need to
agree on a set of parameters, specifically on a prime number p and a generator g In
this section, you’ll learn about how real-world applications choose these parameters
and the different standards that exist.

First things first is the prime number p. As I stated earlier, the bigger, the better.
Because DH is based on the discrete logarithm problem, its security is directly cor-
related to the best attacks known on the problem. Any advances in this area can
weaken the algorithm. With time, we managed to obtain a pretty good idea of how fast
(or slow) these advances are and how much is enough security. The currently known
best practices are to use a prime number of 2,048 bits.

NOTE In general, https://keylength.com summarizes recommendations on
parameter lengths for common cryptographic algorithms. The results are
taken from authoritative documents produced by research groups or govern-
ment bodies like the ANSSI (France), the NIST (US), and the BSI (Germany).
While they do not always agree, they often converge towards similar orders of
magnitude.

In the past, many libraries and software often generated and hardcoded their own
parameters. Unfortunately, they were sometimes found to be either weak or, worse,
completely broken. In 2016, someone found out that Socat, a popular command-line
tool, had modified their default DH group with a broken one a year prior, raising the
question whether this had been a mistake or an intentional backdoor. Using standard-
ized DH groups might seem like a better idea, but DH is one of the unfortunate coun-
terexamples. Only a few months after the Socat issue, Antonio Sanso, while reading
RFC 5114, found that the standard had specified broken DH groups as well.

Due to all of these issues, newer protocols and libraries have converged towards
either deprecating DH in favor of Elliptic Curve Diffie-Hellman (ECDH) or using the
groups defined in the better standard, RFC 7919 (https://www.rfc-editor.org/info/
rfc7919). For this reason, best practice nowadays is to use RFC 7919, which defines
several groups of different sizes and security. For example, ffdhe2048 is the group
defined by the 2,048-bit prime modulus:

https://keylength.com
https://www.rfc-editor.org/info/rfc7919
https://www.rfc-editor.org/info/rfc7919
https://www.rfc-editor.org/info/rfc7919

98

5.3

531

CHAPTER 5 Key exchanges

»=323170060713110073001535134778251633624880571334 89075174588434139269
80683413621000279205636264016468545855635793533081692882902308057347262
52735547424612457410262025279165729728627063003252634282131457669314142
23654220941111348629991657478268034230553086349050635557712219187890332
72956969612974385624174123623722519734640269185579776797682301462539793
30580152268587307611975324364674758554607150438968449403661304976978128
54295958659597567051283852132784468522925504568272879113720098931873959
14337417583782600027803497319855206060753323412260325468408812003110590
7484281003994966956119696956248629032338072839127039

and with generator g= 2

NOTE It is common to choose the number 2 for the generator as computers
are quite efficient at multiplying with 2 using a simple left shift (<<) instruction.

The group size (or order) is also specified as ¢ = (p — 1) /2. This implies that both pri-
vate keys and public keys will be around 2,048 bits size-wise. In practice, these are
quite large sizes for keys (compare that with symmetric keys, for example, that are usu-
ally 128-bit long). You will see in the next section that defining a group over the ellip-
tic curves allow us to obtain much smaller keys for the same amount of security.

The Elliptic Curve Diffie-Hellman (ECDH) key exchange

It turns out that the DH algorithm, which we just discussed, can be implemented in
different types of groups, not just the multiplicative groups modulo a prime number.
It also turns out that a group can be made from elliptic curves, a type of curves studied
in mathematics. The idea was proposed in 1985 by Neal Koblitz and Victor S. Miller,
independently, and much later in 2000, it was adopted when cryptographic algorithms
based on elliptic curves started seeing standardization.

The world of applied cryptography quickly adopted elliptic curve cryptography as
it provided much smaller keys than the previous generation of public key cryptogra-
phy. Compared to the recommended 2,048-bit parameters in DH, parameters of
256 bits were possible with the elliptic curve variant of the algorithm.

What’s an elliptic curve?

Let’s now explain how elliptic curves work. First and foremost, it is good to under-
stand that elliptic curves are just curves! Meaning that they are defined by all the coor-
dinates x and y that solves an equation. Specifically, this equation

Y2+ ayxy + agy=x° + agx® + agx + ag

for some a;, a9, a3, ag, and ag. Note that for most practical curves today, this equation
can be simplified as the short Weierstrass equation:

y?=x*+ ax+ b (where 4a® + 27b* # 0)

The Elliptic Curve Diffie-Hellman (ECDH) key exchange

While the simplification is not possible for two
types of curves (called binary curves and curves
of characteristic 3), these are used rarely enough
that we will use the Weierstrass form in the
rest of this chapter. Figure 5.8 shows an exam-
ple of an elliptic curve with two points taken at
random.

At some point in the history of elliptic
curves, it was found that a group could be con-
structed over them. From there, implementing
DH on top of these groups was straightforward.
I will use this section to explain the intuition
behind elliptic curve cryptography.

Groups over elliptic curves are often defined
as additive groups. Unlike multiplicative groups
defined in the previous section, the + sign is
used instead.

NOTE Using an addition or a multiplication does not matter much in prac-
tice, it is just a matter of preference. While most of cryptography uses a multi-
plicative notation, the literature around elliptic curves has gravitated around
an additive notation, and thus, this is what I will use when referring to elliptic

curve groups in this book.

/_\
N

y'=x*+ax+b

Figure 5.8 One example of an elliptic
curve defined by an equation.

This time, I will define the operation before defining the elements of the group. Our

addition operation is defined in the following way. Figure 5.9 illustrates this process.

Draw a line going through two points that you want to add. The line hits the

curve at another point.

e

N .

1. Trace a line going through P and Q, 2. Trace a vertical line through that point,
it hits the curve at point P+Q.

it hits the curve at another point.

Figure 5.9 An addition operation can be defined over points of an elliptic curve by using geometry.

100 CHAPTER 5 Key exchanges

Draw a vertical line from this newly found point. The vertical line hits the curve
in yet another point.
This point is the result of adding the original two points together.

There are two special cases where this rule won’t work. Let’s define these as well:

How do we add a point to itself? The answer is to draw the tangent to that point
(instead of drawing a line between two points).

What happens if the line we draw in step 1 (or step 2) does not hit the curve at any other
point? Well, this is embarrassing, and we need this special case to work and
produce a result. The solution is to define the result as a made-up point
(something we make up). This newly invented point is called the point at infin-
ity (that we usually write with a big letter 0). Figure 5.10 illustrates these spe-
cial cases.

i
I
I
P+PA
I
I R,
I
| P
I
I
1 Q
P |
I
I
1
To add a point to itself, draw the tangent Sometimes adding points results in the

and follow the previous method. point at infinit: P + P = OandR + Q = O.

Figure 5.10 Building on figure 5.9, addition on an elliptic curve is also defined when
adding a point to itself or when two points cancel each other to result in the point at
infinity (0).

I know this point at infinity is some nextlevel weirdness, but don’t worry too much

about it. It is really just something we came up with in order to make the addition oper-

ation work. Oh, and by the way, it behaves like a zero, and it is our identity element:
0+0=0

and for any point P on the curve

P+0O=P

The Elliptic Curve Diffie-Hellman (ECDH) key exchange 101

All good. So far, we saw that to create a group on top of an elliptic curve, we need

An elliptic curve equation that defines a set of valid points.
A definition of what addition means in this set.
An imaginary point called a point at infinity.

I know this is a lot of information to unpack, but we are missing one last thing. Ellip-
tic curve cryptography makes use of the previously-discussed type of group defined
over a finite field. In practice, what this means is that our coordinates are the num-
bers 1, 2, -+, p— 1 for some large prime number p. This should sound familiar! For
this reason, when thinking of elliptic curve cryptography, you should think of a graph
that looks much more like the one on the right in figure 5.11.

(= |

y'=x*+ax+b y?=x*+ ax + b mod p

Figure 5.11 Elliptic curve cryptography (ECC), in practice, is mostly specified
with elliptic curves in coordinates modulo a large prime number p. This means
that what we use in cryptography looks much more like the right graph than the
left graph.

And that’s it! We now have a group we can do cryptography on, the same way we had a
group made with the numbers (excluding 0) modulo a prime number and a multipli-
cation operation for Diffie-Hellman. How can we do Diffie-Hellman with this group
defined on elliptic curves? Let’s see how the discrete logarithm works now in this group.

Let’s take a point G and add it to itself x times to produce another point Pvia the
addition operation we defined. We can write that as P= G + +-- + G (x times) or use
some mathematical syntactic sugar to write that as P = [x] G, which reads x times G.
The elliptic curve discrete logarithm problem (ECDLP) is to find the number x from
knowing just Pand G.

NOTE We call [x] G scalar multiplication as x is usually called a scalar in such
groups.

102 CHAPTER 5 Key exchanges

5.3.2 How does the Elliptic Curve Diffie-Hellman (ECDH)
key exchange work?

Now that we built a group on elliptic curves, we can instantiate the same Diffie-Hellman
key exchange algorithm on it. To generate a key pair in ECDH:

All the participants agree on an elliptic curve equation, a finite field (most
likely a prime number), and a generator G (usually called a base point in elliptic
curve cryptography).

Each participant generates a random number x, which becomes their private
key.

Each participant derives their public key as [x] G.

Because the elliptic curve discrete logarithm problem is hard, you guessed it, no one
should be able to recover your private key just by looking at your public key. I illustrate
this in figure 5.12.

G, [2]G, [3]G, ..., [340282366920938463463374607431768211456]G, ...

ECDH public key—j

Figure 5.12 Choosing a private key in ECDH is like choosing an
index in a list of numbers produced by a generator (or base point)
G. The Elliptic Curve Discrete Logarithm Problem (ECDLP) is to
find the index from the number alone.

All of this might be a bit confusing as the operation we defined for our DH group was
the multiplication, and for an elliptic curve, we now use addition. Again, these distinc-
tions do not matter at all because they are equivalent. You can see a comparison in fig-

ure 5.13.
1x1=1modp
DH 1,2,...,p=1 axa'=1modp a®=axaxamodp
1xa=amodp
Set of elements Identity element Multiplicative inverse ~ Modular exponentiation
> 0+0=0
ECDH in A-A=0O [BA=A+ A+ A
y2=x3 +ax+bmod p O+A=A
Set of elements Point at infinity Additive inverse Scalar multiplication

Figure 5.13 Some comparisons between the group used in Diffie-Hellman and the group used in Elliptic Curve
Diffie-Hellman (ECDH).

5.3.3

The Elliptic Curve Diffie-Hellman (ECDH) key exchange 103

You should now be convinced that the only thing that matters for cryptography is that
we have a group defined with its operation, and that the discrete logarithm for this
group is hard. For completion, figure 5.14 shows the difference between the discrete
logarithm problem in the two types of groups we’ve seen.

How many times? How many times?
Public key =g x ... x gmod p Publickey=G+ -+ G
Discrete logarithm for DH Discrete logarithm for ECDH

Figure 5.14 A comparison between the discrete logarithm problem
modulo large primes and the discrete logarithm problem in elliptic
curve cryptography (ECC). They both relate to the DH key exchange,
as the problem is to find the private key from a public key.

A last note on the theory, the group we formed on top of elliptic curves differs with
the group we formed with the strictly positive integers modulo a prime number. Due
to some of these differences, the strongest attacks known against DH (known as index
calculus or number field sieve attacks) do not work well on the elliptic curve groups. This
is the main reason why parameters for ECDH can be much lower than the parameters
for DH at the same level of security.

OK, we are done with the theory. Let’s go back to defining ECDH. Imagine that

Alice has a private key ¢ and a public key A = [a] G.
Bob has a private key b and a public key B= [0] G.

With the knowledge of Bob’s public key, Alice can compute the shared secret as [a] B.
Bob can do a similar computation with Alice’s public key and his own private key: [5]A.
Naturally, we can see that these two calculations end up computing the same number:

[alB=[a][b]G = [ab] G=[b][a] G=[b]A

No passive adversary should be able to derive the shared point just from observing the
public keys. Looks familiar, right? Next, let’s talk about standards.

The standards for Elliptic Curve Diffie-Hellman

Elliptic curve cryptography has remained at its full strength since it was first presented in
1985. [. . .] The United States, the UK, Canada and certain other NATO nations have
all adopted some form of elliptic curve cryptography for future systems to protect classified
mformation throughout and between their governments.

—NSA (“The Case for Elliptic Curve Cryptography,” 2005)

104

CHAPTER 5 Key exchanges

The standardization of ECDH has been pretty chaotic. Many standardization bodies
have worked to specify a large number of different curves, which was then followed by
many flame wars over which curve was more secure or more efficient. A large amount
of research, mostly led by Daniel J. Bernstein, pointed out the fact that a number of
curves standardized by NIST could potentially be part of a weaker class of curves only
known to NSA.

I no longer trust the constants. I believe the NSA has manipulated them through their
relationships with industry.

—DBruce Schneier (“The NSA Is Breaking Most
Encryption on the Internet,” 2013)

Nowadays, most of the curves in use come from a couple standards, and most applica-
tions have fixated on two curves: P-256 and Curve25519. In the rest of this section, I
will go over these curves.

NIST FIPS 186-4, “Digital Signature Standard,” initially published as a standard for
signatures in 2000, contains an appendix specifying 15 curves for use in ECDH. One
of these curves, P-256, is the most widely used curve on the internet. The curve was
also specified in Standards for Efficient Cryptography (SEC) 2, v2, “Recommended Ellip-
tic Curve Domain Parameters,” published in 2010 under a different name, secp256r1.
P-256 is defined with the short Weierstrass equation:

y2=x%+ ax+ bmod p

where a=-3 and

b=41058363725152142129326129780047268409114441015993725554835256314039
467401291

and
p — 2256 _ 2224 + 2192 + 296 -1

This defines a curve of prime order:

n=11579208921035624876269744694940757352999695522413576034242225906106
8512044369

meaning that there are exactly n points on the curve (including the point at infinity).
The base point is specified as

G=(484395612939064517590525852527979142027629495260417479958440807170
82404635286, 3613425095674979579858512791958788195661110667298501507187
7198253568414405109)

5.4

Small subgroup attacks and other security considerations 105

The curve provides 128 bits of security. For applications that are using other cryp-
tographic algorithms providing 256-bit security instead of 128 bits of security (for
example, AES with a 256-bit key), P-521 is available in the same standard to match the
level of security.

Can we trust P-256?

Interestingly, P-256 and other curves defined in FIPS 186-4 are said to be generated
from a seed. For P-256, the seed is known to be the byte string

0xc49d360886e704936a6678e1139d26b7819f7€90

| talked about this notion of “nothing-up-my-sleeve” numbers before—constants that
aim to prove that there was no room for backdooring the design of the algorithm.
Unfortunately, there isn't much explanation behind the P-256 seed other than the
fact that it is specified along the curve’s parameter.

RFC 7748, “Elliptic Curves for Security,” which was published in 2016, specifies two
curves: Curve25519 and Curve448. Curve25519 offers approximately 128 bits of secu-
rity, while Curve448 offers around 224 bits of security for protocols that want to hedge
against potential advances in the state of attacks against elliptic curves. I will only talk
about Curve25519 here, which is a Montgomery curve defined by the equation:

y% = x® + 486662 »* + x mod p, where p=2%5-19
Curve25519 has an order
n=29%2 4 97749317777372353535851937790883648493

and the base point used is

G= (9, 14781619447589544791020593568409986887264606134616475288964881837
755586237401)

The combination of ECDH with Curve25519 is often dubbed X25519.

Small subgroup attacks and other security
considerations

Today, I would advise you to use ECDH over DH due to the size of the keys, the lack of
known strong attacks, the quality of the available implementations, and the fact that
elliptic curves are fixed and well standardized (as opposed to DH groups, which are
all over the place). The latter point is quite important! Using DH means potentially
using broken standards (like RFC 5114 mentioned previously), protocols that are too
relaxed (many protocols, like older versions of TLS, don’t mandate what DH groups

106

CHAPTER 5 Key exchanges

to use), software that uses broken custom DH groups (the socat issue mentioned pre-
viously), and so on.

If you do have to use Diffie-Hellman, make sure to stick to the standards. The stan-
dards I mentioned previously make use of safe primes as modulus: primes of the form
p=2q+ 1 where ¢is another prime number. The point is that groups of this form only
have two subgroups: a small one of size 2 (generated by —1) and a large one of size q.
(This is the best you can get, by the way; there exist no prime-order groups in DH.)
The scarcity of small subgroups prevent a type of attack known as small subgroup attack
(more on that later). Safe primes create secure groups because of two things:

The order of a multiplicative group modulo a prime p is calculated as p — 1.
The order of a group’s subgroups are the factors of the group’s order (this is
the Lagrange theorem).

Hence, the order of our multiplicative group modulo a safe prime is p—1= (2¢+ 1) —
1 = 24 that has factors 2 and ¢, which means that its subgroups can only be of order 2
or ¢. In such groups, small subgroup attacks are not possible because there are not
enough small subgroups. A small subgroup attack is an attack on key exchanges in which
an attacker sends several invalid public keys to leak bits of your private key gradually,
and where the invalid public keys are generators of small subgroups.

For example, an attacker could choose —1 (the generator of a subgroup of size 2)
as public key and send it to you. By doing your part of the key exchange, the resulting
shared secret is an element of the small subgroup (-1 or 1). This is because you just
raised the small subgroup generator (the attacker’s public key) to the power of your
private key. Depending on what you do with that shared secret, the attacker could
guess what it is, and leak some information about your private key.

With our example of malicious public key, if your private key was even, the shared
secret would be 1, and if your private key was odd, the shared secret would be —1. As a
result, the attacker learned one bit of information: the least significant bit of your pri-
vate key. Many subgroups of different sizes can lead to more opportunities for the
attacker to learn more about your private key until the entire key is recovered. I illus-
trate this issue in figure 5.15.

While it is always a good idea to verify if the public key you receive is in the correct
subgroup, not all implementations do that. In 2016, a group of researchers analyzed
20 different DH implementations and found that none were validating public keys
(see “Measuring small subgroup attacks against Diffie-Hellman” from Valenta et al.)
Make sure that the DH implementations you’re using do! You can do this by raising
the public key to the order of the subgroup, which should give you back the identity
element if it is an element of that subgroup.

On the other hand, elliptic curves allow for groups of prime order. That is, they
have no small subgroups (besides the subgroup of size 1 generated by the identity ele-
ment), and thus, they are secure against small subgroup attacks. Well, not so fast . . . In
2000, Biehl, Meyer, and Muller found that small subgroup attacks are possible even in
such prime-order elliptic curve groups due to an attack called invalid curve attack.

Small subgroup attacks and other security considerations 107

Subgroup of order m

Subgroup of order 2

Largest subgroup of order g

Group of order n

1. Group of order n can have many 2. An attacker uses the 3. The key exchange with Alice’s
subgroups of different orders. generator of a subgroup private key x and the maliciously
as their public key. crafted public key results

in a small subgroup element.

Figure 5.15 A small subgroup attack impacts DH groups that have many subgroups. By choosing generators
of small subgroups as public keys, an attacker can leak bits of someone’s private key little by little.

The idea behind invalid curve attacks is the following. First, the formulas to imple-
ment scalar multiplication for elliptic curves that use the short Weierstrass equation y*
=&’ + ax + b (like NIST’s P-256) are independent of the variable . This means that an
attacker can find different curves with the same equation except for the value b, and
some of these curves will have many small subgroups. You probably know where this is
going: the attacker chooses a point in another curve that exhibits small subgroups and
sends it to a targeted server. The server goes on with the key exchange by performing
a scalar multiplication with the given point, effectively doing a key exchange on a dif-
ferent curve. This trick ends up re-enabling the small subgroup attack, even on prime-
order curves.

The obvious way to fix this is to, again, validate public keys. This can be done easily
by checking if the public key is not the point at infinity and by plugging the received
coordinates into the curve equation to see if it describes a point on the defined curve.
Unfortunately, in 2015, Jager, Schwenk, and Somorovsky showed in “Practical Invalid
Curve Attacks on TLS-ECDH” that several popular implementations did not perform
these checks. If using ECDH, I would advise you to use the X25519 key exchange due
to the quality of the design (which takes into account invalid curve attacks), the qual-
ity of available implementations, and the resistance against timing attacks by design.

Curve25519 has one caveat though—it is not a prime-order group. The curve has
two subgroups: a small subgroup of size 8 and a large subgroup used for ECDH. On
top of that, the original design did not prescribe validating received points, and librar-
ies, in turn, did not implement these checks. This led to issues being found in differ-
ent types of protocols that were making use of the primitive in more exotic ways. (One
of these I found in the Matrix messaging protocol, which I talk about in chapter 11.)

Not verifying public keys can have unexpected behaviors with X25519. The reason
is that the key exchange algorithm does not have contributory behavior. it does not allow

108

CHAPTER 5 Key exchanges

both parties to contribute to the final result of the key exchange. Specifically, one of
the participants can force the outcome of the key exchange to be all zeros by sending
a point in the small subgroup as public key. RFC 7748 does mention this issue and
proposes to check that the resulting shared secret is not the all zero output, yet lets
the implementer decide to do the check or not! I would recommend making sure that
your implementation performs the check, although it’s unlikely that you’re going to
run into any issues unless you use X25519 in a nonstandard way.

Because many protocols rely on Curve25519, this has been an issue for more than
just key exchanges. Ristretto, the internet draft soon-to-be RFC, is a construction that
adds an extra layer of encoding to Curve25519, effectively simulating a curve of prime
order (see https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-01). The con-
struction has been gaining traction as it simplifies the security assumptions made by
other types of cryptographic primitives that want to benefit from Curve25519 but want
a prime-order field.

Summary

Unauthenticated key exchanges allow two parties to agree on a shared secret,
while preventing any passive man-in-the-middle (MITM) attacker from being
able to derive it as well.

An authenticated key exchange prevents an active MITM from impersonating
one side of the connection, while a mutually authenticated key exchange pre-
vents an active MITM from impersonating both sides.

One can perform an authenticated key exchange by knowing the other party’s
public key, but this doesn’t always scale and signatures will unlock more com-
plex scenarios (see chapter 7).

Diffie-Hellman (DH) is the first key exchange algorithm invented and is still
widely used.

The recommended standard to use for DH is RFC 7919, which includes several
parameters to choose from. The smallest option is the recommended 2,048-bit
prime parameter.

Elliptic Curve Diffie-Hellman (ECDH) has much smaller key sizes than DH. For
128 bits of security, DH needs 2,048-bit parameters, whereas ECDH needs 256-
bit parameters.

The most widely used curves for ECDH are P-256 and Curve25519. Both pro-
vide 128 bits of security. For 256-bit security, P-521 and Curve448 are available
in the same standards.

Make sure that implementations verify the validity of public keys you receive as
invalid keys are the source of many bugs.

https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-01

Asymmetric encryplion
and hybrid encryption

This chapter covers

= Asymmetric encryption to encrypt secrets to a
public key

= Hybrid encryption to encrypt data to a public key

= The standards for asymmetric and hybrid
encryption

In chapter 4, you learned about authenticated encryption, a cryptographic primi-
tive used to encrypt data but limited by its symmetry (both sides of a connection
had to share the same key). In this chapter, I’ll lift this restriction by introducing
asymmetric encryption, a primitive to encrypt to someone else’s key without know-
ing the key. Without surprise, asymmetric encryption makes use of key pairs and
encryption will use public keys instead of symmetric keys.

Halfway through this chapter, you will see that asymmetric encryption is limited
by the size of the data it can encrypt and by the rate at which it can encrypt it. To
remove this obstacle, I’'ll show you how to mix asymmetric encryption with authen-
ticated encryption to form what we call hybrid encryption. Let’s get started!

NOTE For this chapter, you’ll need to have read chapter 4 on authenti-
cated encryption and chapter 5 on key exchanges.

109

110

6.1

CHAPTER 6 Asymmetric encryption and hybrid encryption

What is asymmetric encryption?

The first step in knowing how to encrypt a message is understanding asymmetric encryp-
tion (also called public key encryption). In this section, you will learn about this cryp-
tographic primitive and its properties. Let’s take a look at the following real-world
scenario: encrypled emails.

You probably know that all the emails you send are sent “in the clear” for anyone
sitting in between you and your recipient’s email provider to read. That’s not great.
How do you fix this? You could use a cryptographic primitive like AES-GCM, which
you learned about in chapter 4. To do that, you would need to set up a different
shared symmetric secret for each person that wants to message you.

Exercise
Using the same shared secret with everyone would be very bad; can you see why?

But you can’t expect to know in advance who’ll want to message you, and generating
and exchanging new symmetric keys will get tedious as more and more people want to
encrypt messages to you. This is where asymmetric encryption helps by allowing any-
one in possession of your public key to encrypt messages to you. Furthermore, you are
the only one who can decrypt these messages using the associated private key that only
you own. See figure 6.1 for an illustration of asymmetric encryption.

I will decrypt
them alll
—— Encrypted message M
> AN
0. . Encrypted message > o,

| can’t decrypt other ﬁ Encrypted message >
people’s messages. :

Figure 6.1 With asymmetric encryption, anyone can use Alice’s public
key to send her encrypted messages. Only Alice, who owns the
associated private key, can decrypt these messages.

To set up asymmetric encryption, you first need to generate a key pair via some algo-
rithm. As with any setup function for cryptographic algorithms, the key generation
algorithm accepts a security parameter. This security parameter usually translates to
“how big do you want your keys to be?” where bigger means more secure. Figure 6.2
illustrates this step.

The key generation algorithm generates a key pair comprised of two different parts:
the public key part (as the name indicates) can be published and shared without

6.2

Asymmetric encryption in practice and hybrid encryption 111

Security parameter

|

Generate
asymmetric key pair

Figure 6.2 To use asymmetric encryption, you

first need to generate a key pair. Depending on

Private Public the security parameters you provide, you can
key key generate keys of different security strengths.

much concerns, while the private key must remain secret. Similar to the key genera-
tion algorithms of other cryptographic primitives, a security parameter is required in
order to decide on the bit security of the algorithm. Anyone can then use the public
key part to encrypt messages, and you can use the private key part to decrypt as fig-
ure 6.3 illustrates. And similar to authenticated decryption, decryption can fail if pre-
sented with incoherent ciphertext.

Message Public key —— Ciphertext Private key

| |

Asymmetric

Figure 6.3 Asymmetric encryption allows
one to encrypt a message (plaintext) using
a recipient’s public key. The recipient can
then use a different algorithm to decrypt
the encrypted message (ciphertext) using
a private key that’s related to the public
Ciphertex! m— Plaintext or error key used previously.

Asymmetric

encryption decryption

Note that so far we haven’t talked about authentication. Consider both sides of the wire:

You are encrypting to a public key which you think is owned by Alice.
Alice does not know for sure who sent this message.

For now, we will imagine that we obtained Alice’s public key in a really secure way. In
chapter 7, which covers digital signatures, you will learn how real-world protocols
solve this bootstrapping issue in practice. You will also learn in chapter 7 how you can
communicate to Alice who you really are, in a cryptographic way. Spoiler alert: you'll
be signing your messages.

Let’s move on to the next section where you’ll learn about how asymmetric encryp-
tion is used in practice (and also why it’s rarely used as-is in practice).

Asymmetric encryption in practice

and hybrid encryption

You might be thinking asymmetric encryption is probably enough to start encrypting
your emails. In reality, asymmetric encryption is quite limited due to the restricted
length of messages it can encrypt. The speed of asymmetric encryption and decryption

112

6.2.1

CHAPTER 6 Asymmetric encryption and hybrid encryption

is also slow in comparison to symmetric encryption. This is due to asymmetric con-
structions implementing math operations, as opposed to symmetric primitives that
often just manipulate bits.

In this section, you will learn about these limitations, what asymmetric encryption
is actually used for in practice, and finally, how cryptography overcomes these impedi-
ments. This section is divided in two parts for the two main use cases of asymmetric
encryption:

Key exchanges—You will see that it is quite natural to perform a key exchange (or
key agreement) with an asymmetric encryption primitive.

Hybrid encryption—You will see that the use cases for asymmetric encryption are
quite limited due to the maximum size of what you can encrypt. To encrypt larger
messages, you will learn about a more useful primitive called hybrid encryption.

Key exchanges and key encapsulation

It turns out that asymmetric encryption can be used to perform a key exchange—the
same kind as the ones we saw in chapter 5! In order to do this, you can start by gener-
ating a symmetric key and encrypt it with Alice’s public key—what we also call encapsu-
lating a key—as figure 6.4 demonstrates.

Security parameter

|

Generate

symmetric key

Symmetric Alice’s
key public key

Asymmetric
encryption
2
Figure 6.4 To use asymmetric encryption as
Encrypted a key ex(_:hange primitive, you (1) ge|_1era_te a
symmetric symmetric key and then (2) encrypt it with
key Alice’s public key.

You can then send the ciphertext to Alice, who will be able to decrypt it and learn the
symmetric key. Subsequently, you will have both a shared secret! Figure 6.5 illustrates
the complete flow.

Using asymmetric encryption to perform a key exchange is usually done with an
algorithm called RSA (following the names of its inventors Rivest, Shamir, and Adleman)

6.2.2

Asymmetric encryption in practice and hybrid encryption 113

Security parameter

+

Generate
symmetric key

Symmetric Alice’s fynnﬁx‘;‘tﬁg Alice’s
key public key key private key

Asymmetric
encryption Encrypted Asymme_tric
symmetric decryption
key
© >
Ll
Encrypted f
symmetric SymmeII:c
key y

Figure 6.5 To use asymmetric encryption as a key exchange primitive, you can (1) generate a
symmetric key and (2) encrypt it with Alice’s public key. After (3) sending it to Alice, she can (4) decrypt
it with her associated private key. At the end of the protocol, you both have the shared secret, while no
one else is able to derive it from observing the encrypted symmetric key alone.

and used in many internet protocols. Today, RSA is often not¢ the preferred way of
doing a key exchange, and it is being used less and less in protocols in favor of Elliptic
Curve Diffie-Hellman (ECDH). This is mostly due to historical reasons (many vulnera-
bilities have been discovered with RSA implementations and standards) and the
attractiveness of the smaller parameter sizes offered by ECDH.

Hybrid encryption

In practice, asymmetric encryption can only encrypt messages up to a certain length.
For example, the size of plaintext messages that can be encrypted by RSA are limited
by the security parameters that were used during the generation of the key pair (and
more specifically by the size of the modulus). Nowadays, with the security parameters
used (4,096-bit modulus), the limit is approximately 500 ASCII characters—pretty
small. Therefore, most applications make use of hybrid encryption, whose limitation
is tied to the encryption limits of the authenticated encryption algorithm used.

Hybrid encryption has the same interface as asymmetric encryption in practice
(see figure 6.6). People can encrypt messages with a public key, and the one who owns
the associated private key can decrypt the encrypted messages. The real difference is
in the size limitations of the messages that you can encrypt.

Under the cover, hybrid encryption is simply the combination of an asymmetric
cryptographic primitive with a symmelric cryptographic primitive (hence the name).

114

CHAPTER 6 Asymmetric encryption and hybrid encryption

Security parameter Message Public key Ciphertext Private key

| | 4

Generate
hybrid key pair

Hybrid
decryption

Hybrid
encryption

Private Public Ciphertext Plaintext or error
key key

Figure 6.6 Hybrid encryption has the same interface as asymmetric encryption except
that messages that can be encrypted are much larger in size.

Specifically, it is a non-interactive key exchange with the recipient, followed by the
encryption of a message with an authenticated encryption algorithm.

WARNING You could also use a simple symmetric encryption primitive instead
of an authenticated encryption primitive, but symmetric encryption does not
protect against someone tampering with your encrypted messages. This is why
we never use symmetric encryption alone in practice (as seen in chapter 4).

Let’s learn about how hybrid encryption works! If you want to encrypt a message to
Alice, you first generate a symmetric key and encrypt your message with it and then
use an authenticated encryption algorithm as figure 6.7 illustrates.

Security parameter

4

Generate

symmetric key

Symmetric
key

Message
as plaintext

4

M

Authenticated

encryption Figure 6.7 To encrypt a message to Alice using hybrid
encryption with asymmetric encryption, you (1) generate a
symmetric key for an authenticated encryption algorithm,
then you (2) use the symmetric key to encrypt your
message to Alice.

Ciphertext A&

Once you have encrypted your message, Alice still cannot decrypt it without the
knowledge of the symmetric key. How do we provide Alice with that symmetric key?
Asymmetrically encrypt the symmetric key with Alice’s public key as in figure 6.8.

Asymmetric encryption in practice and hybrid encryption 115

Security parameter Alice’s

4

[CERETEE]
symmetric key

public key

Asymmetric
encryption

Symmetric
key

Message Encrypted
as plaintext /YN Symmetric

* key

Authenticated

encryption

Figure 6.8 Building on figure 6.7, you

(3) encrypt the symmetric key itself by
using Alice’s public key and an asymmetric
encryption algorithm.

Ciphertext A

Finally, you can send both results to Alice. These include

The asymmetrically encrypted symmetric key

The symmetrically encrypted message

This is enough information for Alice to decrypt the message. I illustrate the full flow
in figure 6.9.

Security parameter Alice’s Encrypted
+ public key symmetric Alice’s
key private key
Generate
symmetric key + *

Asymmetric
encryption Asymmetric

decryption

Symmetric

key £ oy Ciphertext <
Message nerypte Symmetric
as plaintext gl symme‘zgc / key l
* y
. Encrypted | .
Authentlc_ated symmetric Authenthated
encryption key decryption
Ciphertext <)\
Ciphertext < Message
Vs o, ° > o, o as plaintext M

or error

Figure 6.9 Building on figure 6.8, (4) after you send both the encrypted symmetric key and the encrypted
message to Alice, (5) Alice decrypts the symmetric key using her private key. (6) She then uses the symmetric
key to decrypt the encrypted message. (Note that steps 5 and 6 can both fail and return errors if the
communications are tampered with by a MITM attacker at step 4.)

116

CHAPTER 6 Asymmetric encryption and hybrid encryption

And this is how we can use the best of both worlds: mixing asymmetric encryption and
symmetric encryption to encrypt large amounts of data to a public key. We often call
the first asymmetric part of the algorithm a key encapsulation mechanism (KEM) and the
second symmetric part a data encapsulation mechanism (DEM).

Before we move to the next section and learn about the different algorithms and
standards that exist for both asymmetric encryption and hybrid encryption, let’s see
(in practice) how you can use a cryptographic library to perform hybrid encryption.
To do this, I chose the Tink cryptography library. Tink was developed by a team of
cryptographers at Google to support large teams inside and outside of the company.
Because of the scale of the project, conscious design choices were made and sane
functions were exposed in order to prevent developers from misusing cryptographic
primitives. In addition, Tink is available in several programming languages (Java, C++,
Obj-C, and Golang).

Listing 6.1 Hybrid encryption in Java

import com.google.crypto.tink.HybridDecrypt;

import com.google.crypto.tink.HybridEncrypt;

import com.google.crypto.tink.hybrid.HybridKeyTemplates
.ECIES_P256 HKDF HMAC SHA256 AES128 GCM;

import com.google.crypto.tink.KeysetHandle;

KeysetHandle privkey = KeysetHandle.generateNew (Genenueskeysforaspedﬁc
ECIES P256 HKDF HMAC SHA256 AES128 GCM) ; hybrid encryption scheme

KeysetHandle publicKeysetHandle = Obtains the public key part
privkey.getPublicKeysetHandle () ; that we can publish or share

HybridEncrypt hybridEncrypt =
publicKeysetHandle.getPrimitive (
HybridEncrypt.class) ;
byte[] ciphertext = hybridEncrypt.encrypt (
plaintext, associatedData) ;

Anyone who knows this public
key can use it to encrypt
plaintext and can authenticate
some associated data.

HybridDecrypt hybridDecrypt = Decrypts an encrypted message
privkey.getPrimitive (HybridDecrypt.class) ; using the same associated data.

byte[] plaintext = hybridDecrypt.decrypt (If the decryption fails, it throws
ciphertext, associatedData) ; anexcepﬁon

One note to help you understand the ECIES_P256 HKDF HMAC_ SHA256 AES128 GCM
string: ECIES (for Elliptic Curve Integrated Encryption Scheme) is the hybrid encryp-
tion standard to use. You'll learn about this later in this chapter. The rest of the string
lists the algorithms used to instantiate ECIES:

= P256 is the NIST standardized elliptic curve you learned about in chapter 5.
= HKDF is a key derivation function you will learn about in chapter 8.

= HMAC is the message authentication code you learned about in chapter 3.
= SHA-256 is the hash function you learned about in chapter 2.

6.3

6.3.1

Asymmetric encryption with RSA: The bad and the less bad 117

AES-128-GCM is the AES-GCM authenticated encryption algorithm using a 128-
bit key you learned about in chapter 4.

See how everything is starting to fit together? In the next section, you will learn about
RSA and ECIES, the two widely adopted standards for asymmetric encryption and
hybrid encryption.

Asymmetric encryption with RSA:
The bad and the less bad

Itis time for us to look at the standards that define asymmetric encryption and hybrid
encryption in practice. Historically, both of these primitives have not been spared by
cryptanalysts, and many vulnerabilities and weaknesses have been found in both stan-
dards and implementations. This is why I will start this section with an introduction to
the RSA asymmetric encryption algorithm and how not to use it. The rest of the chap-
ter will go through the actual standards you can follow to use asymmetric and hybrid
encryptions:

RSA-OAEP—The main standard to perform asymmetric encryption with RSA
ECIES—The main standard to perform hybrid encryption with Elliptic Curve
Diffie-Hellman (ECDH)

Textbook RSA

In this section, you will learn about the RSA public key encryption algorithm and how
it has been standardized throughout the years. This is useful to understand other
secure schemes based on RSA.

Unfortunately, RSA has caught quite some bad rap since it was first published in
1977. One of the popular theories is that RSA is too easy to understand and imple-
ment, and thus, many people do it themselves, which leads to a lot of vulnerable
implementations. It’s an interesting idea, but it misses the whole story. While the con-
cept of RSA (often called textbook RSA) is insecure if implemented naively, even stan-
dards have been found to be broken! But not so fast, to understand these issues, you
will first need to learn how RSA works.

Remember the multiplicative group of numbers modulo a prime p? (We talked
about it in chapter 5.) Itis the set of strictly positive integers:

1; 27 37 45 B p_l

Let’s imagine that one of these numbers is our message. For p large enough, let’s say
4,096 bits, our message can contain around 500 characters tops.

NOTE For computers, a message is just a series of bytes, which can also be
interpreted as a number.

We have seen that by exponentiating a number (let’s say our message), we can gener-
ate other numbers that form a subgroup. I illustrate this in figure 6.10.

118 CHAPTER 6 Asymmetric encryption and hybrid encryption

01234

Integers mod 5

0123401234012340123401234...
01234567289

10 12 14 16 18 20 22 24

Integers mod 5 wrap around

Figure 6.10 Integers modulo a
1 3 prime (here 5) are divided in
4012340123401234... different subgroups. By picking an
910 12 14 116 18 20 22 24
element as a generator (let’s say
the number 2) and exponentiating

it, we can generate a subgroup. For
Let’s take 2 as a generator, it produces the subgroup {2, 4,3, 1}. Rsa, the generator is the message.

X2 x2 x2 x2

N —
]
o G —

This is useful for us when defining how to encrypt with RSA. To do this, we publish a
public exponent e (for encryption) and a prime number p. (In reality p cannot be
prime, but we’ll ignore that for a moment.) To encrypt a message m, one computes

ciphertext = m°mod p
For example, to encrypt the message m = 2 with ¢= 2 and p =5, we compute
ciphertext = 22 mod 5 = 4

And this is the idea behind encryption with RSA!

NOTE Usually, a small number is chosen as the public exponent ¢ so that
encryption is fast. Historically, standards and implementations seem to have
settled on the prime number 65,537 for the public exponent.

This is great! You now have a way for people to encrypt messages to you. But how do
you decrypt those? Remember, if you continue to exponentiate a generator, you actu-
ally go back to the original number (see figure 6.11).

This should give you an idea of how to implement decryption: find out how much
you need to exponentiate a ciphertext in order to recover the original generator
(which is the message). Let’s say that you know such a number, which we’ll call the pri-
vate exponent d (d for decryption). If you receive

ciphertext = message’ mod p
you should be able to raise it to the power d to recover the message:

ciphertext’= (message®)? = message’*? = message mod p

Asymmetric encryption with RSA: The bad and the less bad 119

X2 x2 X2 x2

1 1 ! i
01234012340123401234012340123401234...
0123456789 12 14116 18 20 22 24,26 28 30 32

Figure 6.11 Let’s say that our message is the number 2. By exponentiating
it, we can obtain other numbers in our group. If we exponentiate it enough,
we go back to our original message, 2. We say that the group is cyclic. This
property can be used to recover a message after it has been raised to
some power.

The actual mathematics behind finding this private exponent d is a bit tricky. Simply
put, you compute the inverse of the public exponent modulo the order (number of
elements) of the group:

d = ¢! mod order

We have an efficient algorithm to compute modular inverses (like the Extended
Euclidean algorithm), and so this is not a problem. We do have another problem
though! For a prime p, the order is simply p— 1, and thus, it’s easy for anyone to calculate
the private exponent. This is because every element in this equation besides d is public.

Euler’s theorem

How did we obtain the previous equation to compute the private exponent d? Euler's
theorem states that for m co-prime with p (meaning that they have no common factors):

morder =1 mod p

For order, the number of elements in the multiplicative group created by the integers
modulo p. This implies, in turn, that for any integer multiple

mL+multiplexorder — 1 ¢ (morder)multiple mod p = m mod p
This tells us that the equation we are trying to solve
m®*9=m mod p
can be reduced to
e X d =1+ multiple X order
which can be rewritten as
e x d =1 mod order

This, by definition, means that d is the inverse of e modulo order.

120 CHAPTER 6 Asymmetric encryption and hybrid encryption

One way we could prevent others from computing the private exponent from the pub-
lic exponent is to hide the order of our group. This is the brilliant idea behind RSA: if
our modulus is not a prime anymore but a product of a prime N= p x ¢ (where pand ¢
are large primes known only to you), then the order of our multiplicative group is not
easy to compute as long as we don’t know p and ¢!

The order of an RSA group

You can calculate the order of the multiplicative group modulo a number N with
Euler’s totient function ¢(N), which returns the count of numbers that are co-prime
with N. For example, 5 and 6 are co-prime because the only positive integer that
divides both of them is 1. On the other hand, 10 and 15 are not because 1 and 5
divide each of them. The order of a multiplicative group modulo an RSA modulus
N=pXqis

O(N)=(p-1)x(q-1)

which is too hard to calculate unless you know the factorization of N.

We’re all good! To recapitulate, this is how RSA works:

For key generation
Generate two large prime numbers p and q.
Choose a random public exponent ¢ or a fixed one like e= 65537.
Your public key is the public exponent ¢and the public modulus N= p x ¢.
Derive your private exponent d= ¢~ mod (p—1) (g-1).
Your private key is the private exponent d.
For encryption, compute message’ mod N.
For decryption of the ciphertext, compute ciphertext’ mod N.

Figure 6.12 reviews how RSA works in practice.

Exponentiate with e mod N Exponentiate with d mod N

l 1 1
01234...5490349040 ... 10398090934820 ... 5490349040 ...

Figure 6.12 RSA encryption works by exponentiating a number
(our message) with the public exponent e modulo the public
modulus N = p x q. RSA decryption works by exponentiating the
encrypted number with the private exponent d modulo the public
modulus N.

We say that RSA relies on the factorization problem. Without the knowledge of p and ¢,
no one can compute the order; thus, no one but you can compute the private exponent

Asymmetric encryption with RSA: The bad and the less bad 121

from the public exponent. This is similar to how Diffie-Hellman was based on the dis-
crete logarithm problem (see figure 6.13).

A=g%mod p A=lalG N=pxq
lhard lhard lhard
a a p.q
Diffe-Hellman relies on the Elliptic Curve Diffe-Hellman relies on the RSA relies on the
discrete logarithm problem. elliptic curve discrete logarithm problem. factoring problem.

Figure 6.13 Diffie-Hellman (DH), Elliptic Curve Diffie-Hellman (ECDH), and RSA are asymmetric algorithms that
rely on three distinct problems in mathematics that we believe to be hard. Hard meaning that we do not know
efficient algorithms to solve them when instantiated with large numbers.

6.3.2

Thus, textbook RSA works modulo a composite number N = p x ¢, where p and ¢ are
two large primes that need to remain secret. Now that you understand how RSA
works, let’s see how insecure it is in practice and what standards do to make it secure.

Why not to use RSA PKCS#1 v1.5

You learned about “textbook RSA,” which is insecure by default for many reasons.
Before you can learn about the secure version of RSA, let’s see what you need to avoid.

There are many reasons why you cannot use textbook RSA directly. One example
is that if you encrypt small messages (for example m = 2), then some malicious actor
can encrypt all the small numbers between 0 and 100, for example, and quickly
observe if any of their encrypted numbers match your ciphertext. If it does, they will
know what you encrypted.

Standards fix this issue by making your messages too big to be brute-forced in
such a way. Specifically, they maximize the size of a message (before encryption)
with a nondeterministic padding. For example, the RSA PKCS#1 v1.5 standard defines
a padding that adds a number of random bytes to the message. I illustrate this in fig-
ure 6.14.

The PKCS#1 standard is actually the first standard based on RSA, published as part
of a series of Public Key Cryptography Standard (PKCS) documents written by the
RSA company in the early 90s. While the PKCS#1 standard fixes some known issues, in
1998, Bleichenbacher found a practical attack on PKCS#1 v1.5 that allowed an attacker
to decrypt messages encrypted with the padding specified by the standard. As it
required a million messages, it is infamously called the million message attack. Mitigations
were later found, but interestingly, over the years, the attack has been rediscovered
again and again as researchers found that the mitigations were too hard to implement
securely (if at all).

122

CHAPTER 6 Asymmetric encryption and hybrid encryption

Short message

PADDING

00 byte Random bytes
—t
loojoz|pe[30fas| . |e|13|ee|oo]o2| Padded message FiEUre 6-14 The RSA PKCS#1vL.5

standard specifies a padding to apply
e —t . .
02 byte 00 byte to a message prior to encryption. The
padding must be reversible (so that
decryption can get rid of it) and must
RSA add enough random bytes to the
encryption message in order to avoid brute
force attacks.

Adaptive chosen-ciphertext attacks

Bleichenbacher’s million message attack is a type of attack called an adaptive cho-
sen ciphertext attack (CCA2) in theoretical cryptography. CCA2 means that to perform
this attack, an attacker can submit arbitrary RSA encrypted messages (chosen cipher-
text), observe how it influences the decryption, and continue the attack based on pre-
vious observations (the adaptive part). CCA2 is often used to model attackers in
cryptographic security proofs.

To understand why the attack was possible, you need to understand that RSA cipher-
texts are malleable: you can tamper with an RSA ciphertext without invalidating its
decryption. If I observe the ciphertext ¢ = m mod N, then I can submit the following
ciphertext:

3*x m’= (3m)°mod N
which will decrypt as
((Bm)9)*= (3m)**=3mmod N

I used the number 3 as an example here, but I can multiply the original message with
whatever number I want. In practice, a message must be well-formed (due to the pad-
ding), and thus, tampering with a ciphertext should break the decryption. Neverthe-
less, it happens that sometimes, even after the malicious modification, the padding is
accepted after decryption.

Bleichenbacher made use of this property in his million message attack on RSA
PKCS#1 v1.5. His attack works by intercepting an encrypted message, modifying it,
and sending it to the person in charge of decrypting it. By observing if that person can
decrypt it (the padding remained valid), we obtain some information about the message

6.3.3

Asymmetric encryption with RSA: The bad and the less bad 123

range. Because the first two bytes are 0x0002, we know that the decryption is smaller
than some value. By doing this iteratively, we can narrow that range down to the origi-
nal message itself.

Even though the Bleichenbacher attack is well-known, there are still many systems
in use today that implement RSA PKCS#1 v1.5 for encryption. As part of my work as a
security consultant, I found many applications that were vulnerable to this attack—so
be careful!

Asymmetric encryption with RSA-OAEP

In 1998, version 2.0 of the same PKCS#1 standard was released with a new padding
scheme for RSA called Optimal Asymmetric Encryption Padding (OAEP). Unlike its pre-
decessor, PKCS#1 v1.5, OAEP is not vulnerable to Bleichenbacher’s attack and is, thus,
a strong standard to use for RSA encryption nowadays. Let’s see how OAEP works and
prevents the previously discussed attacks.

First, let’s mention that like most cryptographic algorithms, OAEP comes with a
key generation algorithm. This takes a security parameter as figure 6.15 illustrates.

Security parameter

|

Generate
RSA-OAEP key pair

Figure 6.15 RSA-OAEP, like many public key algorithms, first
Private Public needs to generate a key pair that can be used later in the other
key key algorithms provided by the cryptographic primitive.

This algorithm takes a security parameter, which is a number of bits. As with Diffie-
Hellman, operations happen in the set of numbers modulo a large number. When we
talk about the security of an instantiation of RSA, we usually refer to the size of that
large modulus. This is similar to Diffie-Hellman if you remember.

Currently, most guidelines (see https://keylength.com) estimate a modulus between
2,048 and 4,096 bits to provide 128-bit security. As these estimations are quite differ-
ent, most applications seem to conservatively settle on 4,096-bit parameters.

NOTE We saw that RSA’s large modulus is not a prime but a product N=p x ¢
of two large prime numbers p and ¢. For a 4,096-bit modulus, the key genera-
tion algorithm typically splits things in the middle and generates both pand ¢
of size approximately 2,048 bits.

To encrypt, the algorithm first pads the message and mixes it with a random number
generated per encryption. The result is then encrypted with RSA. To decrypt the
ciphertext, the process is reversed as figure 6.16 shows.

https://keylength.com

124

CHAPTER 6 Asymmetric encryption and hybrid encryption

Mesiage Ciphertext
PADDING RSA
DECRYPT
Padded message Random number
¢ | Masked message | Tag
P
—p
M 3
\ 4 I
| Masked message " Tag | Padded message
RSA REMOVE
ENCRYPT PADDING
Ciphertext Message
Encryption with RSA-OAEP Decryption with RSA-OAEP

Figure 6.16 RSA-OAEP works by mixing the message with a random number prior
to encryption. The mixing can be reverted after decryption. At the center of the
algorithm, a mask generation function (MGF) is used to randomize and enlarge or
reduce an input.

RSA-OAEP uses this mixing in order to make sure that if a few bits of what is
encrypted with RSA leak, no information on the plaintext can be obtained. Indeed, to
reverse the OAEP padding, you need to obtain (close to) all the bytes of the OAEP
padded plaintext! In addition, Bleichenbacher’s attack should not work anymore
because the scheme makes it impossible to obtain wellformed plaintext by modifying
a ciphertext.

NOTE Plaintext-awareness is the property that makes it too difficult for an
attacker to create a ciphertext that will successfully decrypt (of course without
the help of encryption). Due to the plaintext-awareness provided by OAEP,
Bleichenbacher’s attack does not work on the scheme.

Inside of OAEP, MGF stands for mask generation function. In practice, an MGF is an
extendable output function (XOF); you learned about XOFs in chapter 2. As MGFs
were invented before XOFs, they are built using a hash function that hashes the input
repeatedly with a counter (see figure 6.17). And this is how OAEP works!

Asymmetric encryption with RSA: The bad and the less bad 125

Input Il 0 Input Il 1 Input Il

Figure 6.17 A mask generation

function (MGF) is simply a function

that takes an arbitrary length input

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII---IIIIIIIIIIIIIIIIII andproducesarandom.|ooking

¢ arbitrary length output. It works by
hashing an input and a counter,
concatenating the digests
together, and truncating the result
I NN NN NN NN to obtain the length desired.

Manger’s padding oracle attack
Only three years after the release of the OAEP standard, James Manger found a tim-
ing attack similar to Bleichenbacher’s million message attack (but much more prac-
tical) on OAEP if not implemented correctly. Fortunately, it is much simpler to securely
implement OAEP compared to PKCS#1 v1.5, and vulnerabilities in this scheme’s
implementation are much more rare.

Furthermore, the design of OAEP is not perfect; better constructions have been pro-
posed and standardized over the years. One example is RSA-KEM, which has stronger
proofs of security and is much simpler to implement securely. You can observe how
much more elegant the design is in figure 6.18.

Random number =y
Figure 6.18 RSA-KEM is an

Alice’s Message S\ ’
public key as plaintext /\ encryption scheme that works by

* simply encrypting a random number
under RSA. No padding is needed. We
— Authenticated can pass the random number through a
encryption key derivation function (KDF) to obtain
a symmetric key. We then use the
symmetric key to encrypt a message

Asymmetric ([Symmetric s~ via an authenticated encryption
ciphertext ciphertext /7N algorithm

Symmetric key
Asymmetric
encryption

Note the key derivation function (KDF) in use here. It is another cryptographic prim-
itive that can be replaced with an MGF or a XOF. I’ll talk more about what KDFs are in
chapter 8 on randomness and secrets.

Nowadays, most protocols and applications that use RSA either still implement the
insecure PKCS#1 v1.5 or OAEP. On the other hand, more and more protocols are
moving away from RSA encryption in favor of Elliptic Curve Diffie-Hellman (ECDH)

126

6.4

CHAPTER 6 Asymmetric encryption and hybrid encryption

for both key exchanges and hybrid encryption. This is understandable as ECDH pro-
vides shorter public keys and benefits, in general, from much better standards and
much safer implementations.

Hybrid encryption with ECIES

While there exist many hybrid encryption schemes, the most widely adopted standard
is Elliptic Curve Integrated Encryption Scheme (ECIES). The scheme has been specified to
be used with ECDH and is included in many standards like ANSI X9.63, ISO/IEC
18033-2, IEEE 1363a, and SECG SEC 1. Unfortunately, every standard seems to imple-
ment a different variant, and different cryptographic libraries implement hybrid
encryption differently, in part due to this.

For this reason, I rarely see two similar implementations of hybrid encryption in
the wild. It is important to understand that while this is annoying, if all the partici-
pants of the protocol use the same implementation or document the details of the
hybrid encryption scheme they have implemented, then there would be no issues.

ECIES works similarly to the hybrid encryption scheme explained in section 6.2.
The difference is that we implement the KEM part with an ECDH key exchange
instead of with an asymmetric encryption primitive. Let’s explain this step by step.

First, if you want to encrypt a message to Alice, you use an (EC)DH-based key
exchange with Alice’s public key and a key pair that you generate for the occasion
(this is called an ephemeral key pair). You can then use the obtained shared secret with
an authenticated symmetric encryption algorithm like AES-GCM to encrypt a longer
message to her. Figure 6.19 illustrates this.

Security parameter

Generate
(EC)DH key pair

Private key Public key

Alice’s
public key

y

Key exchange

Message
as plaintext /\<

v

Shared secret N Figure 6.19 To encrypt a message to Alice using hybrid
as symmetric -»> encryption encryption with (EC)DH, you (1) generate an ephemeral
key (elliptic curve) DH key pair. Then (2) perform a key
exchange with your ephemeral private key and Alice’s
public key. (3) Use the resulting shared secret as a
Ciphertext /\< symmetric key to an authenticated encryption algorithm
to encrypt your message.

2

Hybrid encryption with ECIES 127

After this, you can send the ephemeral public key and the ciphertext to Alice. Alice
can use your ephemeral public key to perform a key exchange with her own key pair.
She can then use the result to decrypt the ciphertext and retrieve the original mes-
sage. The result is either the original message or an error if the public key or the
encrypted message are tampered with in transit. Figure 6.20 illustrates the full flow.

Security parameter

v

Generate . Received Alice’s
(EC)DH key pair public key private key

Private key ~ Publickey = ==
~

Key exchange

Alice’s TS K
S Ciphertext
public key S 5 ° N
~
N
AN
N Shared secret .
: Authenticated
AN
Key exchange Message S \ as §YMGIHEIC > decryption
A as plaintext /N ‘v L

* Public key

Shared secret Authenticated NS Message

as symmetric > ancryplion Ciphertext | A A as plaintext M
o— ..

key
or error

A

Ciphertext /\<

Figure 6.20 Building on figure 6.19, (4) after you send your ephemeral public key and your encrypted message
to Alice, (5) Alice can perform a key exchange with her private key and your ephemeral public key. (6) She finally
uses the resulting shared secret as a symmetric key to decrypt the encrypted message with the same
authenticated encryption algorithm.

And this is pretty much how ECIES work. There also exists a variant of ECIES using
Diffie-Hellman, called IES, that works pretty much the same way, but not many people
seem to use it.

Removing bias in a key exchange output

Note that | simplified figure 6.20. Most authenticated encryption primitives expect an
uniformly random symmetric key. Because the output of a key exchange is generally
not uniformly random, we need to pass the shared secret through a KDF or a XOF (as
seen in chapter 2) beforehand. You will learn more about this in chapter 8.

Not uniformly random here means that statistically, some of the bits of the key
exchange result might be O more often than 1, or the opposite. The first bits might
always be set to 0, for example.

128

CHAPTER 6 Asymmetric encryption and hybrid encryption

Exercise
Do you see why you can’t use the key exchange output right away?

And that’s it for the different standards you can use. In the next chapter, you’ll learn
about signatures, which will be the last, and perhaps most important, public key cryp-
tography algorithm of part 1.

Summary

We rarely use asymmetric encryption to encrypt messages directly. This is due to
the relatively low size limitations of the data that asymmetric encryption can
encrypt.

Hybrid encryption can encrypt much larger messages by combining asymmetric
encryption (or a key exchange) with a symmetric authenticated encryption
algorithm.

The RSA PKCS#1 version 1.5 standard for asymmetric encryption is broken in
most settings. Prefer the RSA-OAEP algorithm standardized in RSA PKCS#1
version 2.2.

ECIES is the most widely used hybrid encryption scheme. It is preferred over
RSA-based schemes due to its parameter sizes and its reliance on solid standards.
Different cryptographic libraries might implement hybrid encryption differ-
ently. This is not a problem in practice if interoperable applications use the
same implementations.

Signatures and
zero-knowledge proofs

This chapter covers

= Zero-knowledge proofs and cryptographic
signatures

= The existing standards for cryptographic
signatures

= The subtle behaviors of signatures and avoiding
their pitfalls

You’re about to learn one of the most ubiquitous and powerful cryptographic prim-
itives—digital signatures. To put it simply, digital signatures are similar to the real-
life signatures that you're used to, the ones that you scribe on checks and contracts.
Except, of course, that digital signatures are cryptographic and so they provide
much more assurance than their pen-and-paper equivalents.

In the world of protocols, digital signatures unlock so many different possibili-
ties that you’ll run into them again and again in the second part of this book. In
this chapter, I will introduce what this new primitive is, how it can be used in the
real world, and what the modern digital signature standards are. Finally, I will talk
about security considerations and the hazards of using digital signatures.

129

130 CHAPTER 7 Signatures and zero-knowledge proofs

NOTE Signatures in cryptography are often referred to as digital signatures or
signature schemes. In this book, I interchangeably use these terms.

For this chapter, you’ll need to have read

= Chapter 2 on hash functions
= Chapter 5 on key exchanges
= Chapter 6 on asymmetric encryption

7.1 What is a signature?
I explained in chapter 1 that cryptographic signatures are pretty much like real-life
signatures. For this reason, they are usually one of the most intuitive cryptographic
primitives to understand:

= Only you can use your signature to sign arbitrary messages.
= Anybody can verify your signature on a message.

As we’re in the realm of asymmetric cryptography, you can probably guess how this
asymmetry is going to take place. A signature scheme typically consists of three different
algorithms:

= A key pair generation algorithm that a signer uses to create a new private and
public key (the public key can then be shared with anyone).

= Asigning algorithm that takes a private key and a message to produce a signature.

= A verifying algorithm that takes a public key, a message, and a signature and
returns a success or error message.

Sometimes the private key is also called the signing key, and the public key is called the
verifying key. Makes sense, right? I recapitulate these three algorithms in figure 7.1.

Message
Message /\< ﬂ
Security parameter e Private key Public key

Randomness

v

Generate Verify

signature key pair signature

Private Public éigm‘hm True or False
key key

Figure 7.1 The interface of a digital signature. Like other public key cryptographic
algorithms, you first need to generate a key pair via a key generation algorithm that takes
a security parameter and some randomness. You can then use a signing algorithm with the
private key to sign a message and a verifying algorithm with the public key to validate a
signature over a message. You can’t forge a signature that verifies a public key if you don’t
have access to its associated private key.

711

What is a signature? 131

What are signatures good for? They are good for authenticating the origin of a mes-
sage as well as the integrity of a message:

= Ornigin—If my signature is on it, it came from me.
= Integrity—If someone modifies the message, it voids the signature.

NOTE While these two properties are linked to authentication, they are often
distinguished as two separate properties: origin authentication and message authen-
tication (or integrity).

In a sense, signatures are similar to the message authentication codes (MACs) that
you learned about in chapter 3. But unlike MACs, they allow us to authenticate mes-
sages asymmetrically: a participant can verify that a message hasn’t been tampered
without knowledge of the private or signing key. Next, I’ll show you how these algo-
rithms can be used in practice.

Exercise

As you saw in chapter 3, authentication tags produced by MACs must be verified in
constant time to avoid timing attacks. Do you think we need to do the same for veri-
fying signatures?

How to sign and verify signatures in practice

Let’s look at a practical example. For this, I use pyca/cryptography (https:// cryptography
.io), a well-respected Python library. The following listing simply generates a key pair,
signs a message using the private key part, and then verifies the signature using the
public key part.

Listing 7.1 Signing and verifying signatures in Python

from cryptography.hazmat.primitives.asymmetric.ed25519 import (

Ed25519Privatekey Uses the Ed25519 signing algorithm,

) .
a popular signature scheme

private key = Ed25519PrivateKey.generate () ‘ First generates the private key and
public key = private key.public key () then generates the public key

message = b"example.com has the public key 0xab70..." Using the private key, signs a
signature = private key.sign(message) message and obtains a signature

try:
public_key.verify(signature, message) Using the public key,
print ("valid signature") verifies the signature
except InvalidSignature: over the message

print ("invalid signature")

As I said earlier, digital signatures unlock many use cases in the real world. Let’s see an
example in the next section.

https://cryptography.io
https://cryptography.io
https://cryptography.io

132

712

CHAPTER 7 Signatures and zero-knowledge proofs

A prime use case for signatures: Authenticated key exchanges

Chapters 5 and 6 introduced different ways to perform key exchanges between two
participants. In the same chapters, you learned that these key exchanges are useful to
negotiate a shared secret, which can then be used to secure communications with an
authenticated encryption algorithm. Yet, key exchanges didn’t fully solve the problem
of setting up a secure connection between two participants as an active man-in-the-
middle (MITM) attacker can trivially impersonate both sides of a key exchange. This
is where signatures enter the ring.

Imagine that Alice and Bob are trying to set up a secure communication channel
between themselves and that Bob is aware of Alice’s verifying key. Knowing this, Alice
can use her signing key to authenticate her side of the key exchange: she generates a
key exchange key pair, signs the public key part with her signing key, then sends the
key exchange public key along with the signature. Bob can verify that the signature is
valid using the associated verifying key he already knows and then use the key exchange
public key to perform a key exchange.

We call such a key exchange an authenticated key exchange. If the signature is invalid,
Bob can tell someone is actively MITM’ing the key exchange. I illustrate authenticated
key exchanges in figure 7.2.

fake Alice’s public key

fake Bob’s public key

Unauthenticated key exchange

fake Alice’s public key
+
Alice’s siﬂnaime

Authenticated key exchange

Figure 7.2 The first picture (top) represents an unauthenticated key exchange, which
is insecure to an active MITM attacker who can trivially impersonate both sides of the
exchange by swapping their public keys with their own. The second picture (bottom)
represents the beginning of a key exchange, authenticated by Alice’s signature over her
public key. As Bob (who knows Alice’s verifying key) is unable to verify the signature after
the message was tampered by the MITM attacker, he aborts the key exchange.

7.13

What is a signature? 133

Note that in this example, the key exchange is only authenticated on one side: while
Alice cannot be impersonated, Bob can. If both sides are authenticated (Bob would
sign his part of the key exchange), we call the key exchange a mutually-authenticated key
exchange. Signing key exchanges might not appear super useful yet. It seems like we
moved the problem of not knowing Alice’s key exchange public key in advance to the
problem of not knowing her verifying key in advance. The next section introduces a
real-world use of authenticated key exchanges that will make much more sense.

A real-world usage: Public key infrastructures

Signatures become much more powerful if you assume that trust is transitive. By that, 1
mean that if you trust me and I trust Alice, then you can trust Alice. She’s cool.

Transitivity of trust allows you to scale trust in systems in extreme ways. Imagine
that you have confidence in some authority and their verifying key. Furthermore,
imagine that this authority has signed messages indicating what the public key of
Charles is, what the public key of David is, and so on. Then, you can choose to have
faith in this mapping! Such a mapping is called a public key infrastructure. For example,
if you attempt to do a key exchange with Charles and he claims that his public key is a
large number that looks like 3848 . . ., you can verify that by checking if your “beloved”
authority has signed some message that looks like “the public key of Charles is 3848 . . .”

One real-world application of this concept is the web public key infrastructure (web
PKI). The web PKI is what your web browser uses to authenticate key exchanges it per-
forms with the multitude of websites you visit every day. A simplified explanation of
the web PKI (illustrated in figure 7.3) is as follows: when you download a browser, it
comes with some verifying key baked into the program. This verifying key is linked to
an authority whose responsibility is to sign thousands and thousands of websites’ pub-
lic keys so that you can trust these without knowing about them. What you’re not see-
ing is that these websites have to prove to the authority that they truly own their
domain name before they can obtain a signature on their public key. (In reality, your
browser trusts many authorities to do this job, not just a single one.)

In this section, you learned about signatures from a high-level point of view. Let’s
dig deeper into how signatures really work. But for this, we first need to make a detour
and take a look at something called a zero-knowledge proof (ZKP).

Figure 7.3 In the web PKI,
browsers trust an authority to
certify that some domains are
Signs Signs Signs linked to some public keys.
When visiting a website
securely, your browser can
verify that the website’s public
key is indeed theirs (and not
reddit.com from some MITM) by verifying a
signature from the authority.

oogle.com

public key: 0342... public key: ab40...

134

7.2

7.2.1

| KNow THE
DISCRETE LOGARITHH
0f 3 to TME BASE

CHAPTER 7 Signatures and zero-knowledge proofs

Zero-knowledge proofs (ZKPs): The origin of signatures

The best way to understand how signatures work in cryptography is to understand
where they come from. For this reason, let’s take a moment to briefly introduce ZKPs
and then I’ll get back to signatures.

Imagine that Peggy wants to prove something to Victor. For example, she wants to
prove that she knows the discrete logarithm to the base of some group element. In
other words, she wants to prove that she knows x given Y = g* with g the generator of
some group.

Of course, the simplest solution is for Peggy to simply send the value x (called the wit-
ness). This solution would be a simple proof of knowledge, and this would be OK, unless
Peggy does not want Victor to learn it.

NOTE In theoretical terms, we say that the protocol to produce a proof'is com-
plete if Peggy can use it to prove to Victor that she knows the witness. If she
can’t use it to prove what she knows, then the scheme is useless, right?

In cryptography, we’re mostly interested in proofs of knowledge that don’t divulge the
witness to the verifier. Such proofs are called zero-knowledge proofs (ZKPs).

Schnorr identification protocol: An interactive
zero-knowledge proof

In the next pages, I will build a ZKP incrementally from broken protocols to show you
how Alice can prove that she knows x without revealing x.

The typical way to approach this kind of problem in cryptography is to “hide” the
value with some randomness (for example, by encrypting it). But we’re doing more than
just hiding: we also want to prove that it is there. To do that, we need an algebraic way to
hide it. A simple solution is to simply add a randomly generated value k to the witness:

s=k+x

Zero-knowledge proofs (ZKPs): The origin of signatures 135

Peggy can then send the hidden witness s along with the random value % to Victor. At
this point, Victor has no reason to trust that Peggy did, in fact, hide the witness in s.
Indeed, if she doesn’t know the witness x then s is probably just some random value.
What Victor does know is that the witness x is hiding in the exponent of g because he
knows Y= g*

To see if Peggy really knows the witness, Victor can check if what she gave him
matches what he knows, and this has to be done in the exponent of gas well (as this is
where the witness is). In other words, Victor checks that these two numbers are equal:

k+x)

g =g
Y x gk (= gx>< gkzgmk)
The idea is that only someone who knows the witness x could have constructed a

“blinded” witness s that satisfies this equation. And as such, it’s a proof of knowledge. I
recapitulate this ZKP system in figure 7.4.

AN Ill prove that | know X in
: Y=g*mod p
)
Here’s a random value k
)
Here’s a hidden witness
s=k+x Figure 7.4 In order to prove to Victor that she

knows a witness x, Peggy hides it (by adding it
Indeed, g° = Y x g* w to a random value k) and sends the hidden
witness s instead.

Not so fast. There’s one problem with this scheme—it’s obviously not secure! Indeed,
because the equation hiding the witness x only has one unknown (x itself), Victor can
simply reverse the equation to retrieve the witness:

x=s—Fk

To fix this, Peggy can hide the random value £ itself! This time, she has to hide the
random value in the exponent (instead of adding it to another random value) to
make sure that Victor’s equation still works:

R=g"

This way, Victor does not learn the value k (this is the discrete logarithm problem cov-
ered in chapter 5) and, thus, cannot recover the witness x. Yet, he still has enough
information to verify that Peggy knows x! Victor simply has to check that g* (= g"*=
g"x g% isequal to Yx R (= g* x g"). I review this second attempt at a ZKP protocol in
figure 7.5.

136

CHAPTER 7 Signatures and zero-knowledge proofs

an I'll prove that | know x in
Y = g*mod p
N Here’s a hidden random
value R = g*
N
Here’s a hidden witness
S=k+x Figure 7.5 To make a knowledge proof zero-
knowledge, the prover can hide the witness x
Indeed, g° = Y'x R @ with a random value k and then hide the

random value itself.

There is one last issue with our scheme—Peggy can cheat. She can convince Victor
that she knows x without knowing x! All she has to do is to reverse the step in which
she computes her proof. She first generates a random value s and then calculates the
value R based on s:

R= gs x Y—l

Victor then computes ¥ x R= Y x g°x Y~', which indeed matches g*. (Peggy’s trick of
using an inverse to compute a value is used in many attacks in cryptography.)

NOTE In theoretical terms, we say that the scheme is “sound” if Peggy cannot
cheat (if she doesn’t know x, then she can’t fool Victor).

To make the ZKP protocol sound, Victor must ensure that Peggy computes s from R
and not the inverse. To do this, Victor makes the protocol interactive:

Peggy must commit to her random value k so that she cannot change it later.
After receiving Peggy’s commitment, Victor introduces some of his own ran-
domness in the protocol. He generates a random value ¢ (called a challenge) and
sends it to Peggy.

Peggy can then compute her hidden commit based on the random value %k and
the challenge c.

NOTE You learned about commitment schemes in chapter 2 where we used a
hash function to commit to a value that we can later reveal. But commitment
schemes based on hash functions do not allow us to do interesting arithmetic
on the hidden value. Instead, we can simply raise our generator to the value,
2", which we’re already doing.

Because Peggy cannot perform the last step without Victor’s challenge ¢, and Victor
won’t send that to her without seeing a commitment on the random value k, Peggy is
forced to compute s based on k. The obtained protocol, which I illustrate in figure 7.6,
is often referred to as the Schnorr identification protocol.

So-called interactive ZKP systems that follow a three-movement pattern (commit-
ment, challenge, and proof) are often referred to as Sigma protocols in the literature

722

Zero-knowledge proofs (ZKPs): The origin of signatures 137

e I'll prove that | know xin
Y=g*mod p

Here’s a commitment of a
random value R = g~

Here’s a random w
challenge ¢

Here’s a hidden witness Figure 7.6 The Schnorr identification protocol is an
s=k+cxx interactive ZKP that is complete (Peggy can prove she
knows some witness), sound (Peggy cannot prove
Indeed, g° = Ye x R @ anything if she doesn’t know the witness), and zero-
knowledge (Victor learns nothing about the witness).

and are sometimes written as X protocols (due to the illustrative shape of the Greek
letter). But what does that have to do with digital signatures?

NOTE The Schnorr identification protocol works in the honest verifier zero-
knowledge (HVZK) model: if the verifier (Victor) acts dishonestly and does not
choose a challenge randomly, they can learn something about the witness.
Some stronger ZKP schemes are zero-knowledge even when the verifier is
malicious.

Signatures as non-interactive zero-knowledge proofs

The problem with the previous interactive ZKP is that, well, it’s interactive, and real-
world protocols are, in general, not fond of interactivity. Interactive protocols add
some non-negligible overhead as they require several messages (potentially over the
network) and add unbounded delays, unless the two participants are online at the
same time. Due to this, interactive ZKPs are mostly absent from the world of applied
cryptography.

All of this discussion is not for nothing though! In 1986, Amos Fiat and Adi Shamir
published a technique that allowed one to easily convert an interactive ZKP into a
non-interactive ZKP. The trick they introduced (referred to as the Fiat-Shamir heuristic
or Fiat-Shamir transformation) was to make the prover compute the challenge them-
selves, in a way they can’t control.

Here’s the trick—compute the challenge as a hash of all the messages sent and
received as part of the protocol up to that point (which we call the transcript). If we
assume that the hash function gives outputs that are indistinguishable from truly-
random numbers (in other words, it looks random), then it can successfully simulate
the role of the verifier.

Schnorr went a step further. He noticed that anything can be included in that
hash! For example, what if we included a message in there? What we obtain is not only
a proof that we know some witness x, but a commitment to a message that is cryp-
tographically linked to the proof. In other words, if the proof is correct, then only

138

7.3

CHAPTER 7 Signatures and zero-knowledge proofs

someone with the knowledge of the witness (which becomes the signing key) could
have committed that message.

That’s a signature! Digital signatures are just non-interactive ZKPs. Applying the
Fiat-Shamir transform to the Schnorr identification protocol, we obtain the Schnorr
signature scheme, which I illustrate in figure 7.7.

) ‘N
Commitment Commitment
R=g* R= gk
o || o
Random challenge A “Random” challenge
c ¢ = HASH(R, msg)
‘N N
Hidden witness Hidden witness
s=k+cxx S=k+CcxX
Schnorr identification protocol Schnorr signature

Figure 7.7 The left protocol is the Schnorr identification protocol previously discussed,
which is an interactive protocol. The right protocol is a Schnorr signature, which is a
non-interactive version of the left protocol (where the verifier message is replaced by a
call to a hash function on the transcript).

To recapitulate, a Schnorr signature is essentially two values, Rand s, where Ris a com-
mitment to some secret random value (which is often called a nonce as it needs to be
unique per signature), and sis a value computed with the help of the commitment R,
the private key (the witness x), and a message. Next, let’s look at the modern stan-
dards for signature algorithms.

The signature algorithms you should use (or not)

Like other fields in cryptography, digital signatures have many standards, and it is
sometimes hard to understand which one to use. This is why I'm here! Fortunately,
the types of algorithms for signatures are similar to the ones for key exchanges: there
are algorithms based on arithmetic modulo a large number like Diffie-Hellman (DH)
and RSA, and there are algorithms based on elliptic curves like Elliptic Curve Diffie-
Hellman (ECDH).

Be sure you understand the algorithms in chapter 5 and chapter 6 well enough as
we’re now going to build on those. Interestingly, the paper that introduced the DH key
exchange also proposed the concept of digital signatures (without giving a solution):

In order to develop a system capable of replacing the current written contract with some
purely electronic form of communication, we must discover a digital phenomenon with the
same properties as a writlten signature. It must be easy for anyone to recognize the signature
as authentic, but impossible for anyone other than the legitimate signer to produce it. We

7.3.1

The signature algorithms you should use (or not) 139

will call any such technique one-way authentication. Since any digital signal can be copied
precisely, a true digital signature must be recognizable without being known.

—Diffie and Hellman (“New Directions in Cryptography,” 1976)

Avyear later (in 1977), the first signature algorithm (called RSA) was introduced along
with the RSA asymmetric encryption algorithm (which you learned about in chapter
6). RSA for signing is the first algorithm we’ll learn about.

In 1991, NIST proposed the Digital Signature Algorithm (DSA) as an attempt to avoid
the patents on Schnorr signatures. For this reason, DSA is a weird variant of Schnorr
signatures, published without a proof of security (although no attacks have been
found so far). The algorithm was adopted by many but was quickly replaced with an
elliptic curve version called ECDSA (for Elliptic Curve Digital Signature Algorithm),
the same way Elliptic Curve Diffie-Hellman (ECDH) replaced Diffie-Hellman (DH),
thanks to its smaller keys (see chapter 5). ECDSA is the second signature algorithm I
will talk about in this section.

After the patents on Schnorr signatures expired in 2008, Daniel J. Bernstein, the
inventor of ChaCha20-Polyl305 (covered in chapter 4) and X25519 (covered in chap-
ter b), introduced a new signature scheme called EdDSA (for Edwards-curve Digital
Signature Algorithm), based on Schnorr signatures. Since its invention, EADSA has
quickly gained adoption and is nowadays considered state-of-the-art in terms of a digi-
tal signature for real-world applications. EADSA is the third and last signature algo-
rithm I will talk about in this section.

RSA PKCS#1 v1.5: A bad standard

RSA signatures are currently used everywhere, even though they shouldn’t be (as you
will see in this section, they present many issues). This is due to the algorithm being
the first signature scheme to be standardized as well as real-world applications being
slow to move to newer and better algorithms. Because of this, you will most likely
encounter RSA signatures in your journey, and I cannot avoid explaining how they
work and which standards are the adopted ones. But let me say that if you understood
how RSA encryption works in chapter 6, then this section should be straightforward
because signing with RSA is the opposite of encrypting with RSA:

To sign, you encrypt the message with the private key (instead of the public key),
which produces a signature (a random element in the group).

To verify a signature, you decrypt the signature with the public key (instead of
the private key). If it gives you back the original message, then the signature is
valid.

NOTE In reality, a message is often hashed before being signed as it’ll take
less space (RSA can only sign messages that are smaller than its modulus).
The result is also interpreted as a large number so that it can be used in math-
ematical operations.

140

CHAPTER 7 Signatures and zero-knowledge proofs

If your private key is the private exponent d, and your public key is the public expo-
nent ¢and public modulus N, you can

Sign a message by computing signature = message’ mod N

Verify a signature by computing signature’ mod N and check that it is equal to

the message

I illustrate this visually in figure 7.8.

To encrypt To decrypt
exponentiate with e mod N exponentiate with d mod N

[v v
01234...5490349040 ... 10398090934820 ... 5490349040 ...

Encryption with RSA

To sign To verify
exponentiate with d mod N exponentiate with e mod N

[i1 4
01234...5490349040 ... 43929054395495 ... 5490349040 ...

Signature with RSA

Figure 7.8 To sign with RSA, we simply do the inverse of the RSA encryption algorithm: we
exponentiate the message with the private exponent, then to verify, we exponentiate the signature
with the public exponent, which returns to the message.

This works because only the one knowing about the private exponent d can produce a
signature over a message. And, as with RSA encryption, the security is tightly linked
with the hardness of the factorization problem.

What about the standards to use RSA for signatures? Luckily, they follow the same
pattern as does RSA encryption:

RSA for encryption was loosely standardized in the PKCS#1 v1.5 document. The same
document contained a specification for signing with RSA (without a security
proof).

RSA was then standardized again in the PKCS#1 v2 document with a better construction
(called RSA-OAEP). The same happened for RSA signatures with RSA-PSS being
standardized in the same document (with a security proof).

I talked about RSA PKCS#1 v1.5 in chapter 6 on asymmetric encryption. The signa-
ture scheme standardized in that document is pretty much the same as the encryption
scheme. To sign, first hash the message with a hash function of your choice, then pad
it according to PKCS#1 v1.5’s padding for signatures (which is similar to the padding

The signature algorithms you should use (or not) 141

for encryption in the same standard). Next, encrypt the padded and hashed message
with your private exponent. I illustrate this in figure 7.9.

Message

Figure 7.9 RSA PKCS#1 v1.5 for signatures. To sign, hash then pad
the message with the PKCS#1 v1.5 padding scheme. The final step
exponentiates the padded hashed message with the private key d
modulo N. To verify, simply exponentiate the signature with the public
exponent e modulo N and verify that it matches the padded and hashed
message.

The many RSAs

By the way, don’t get confused by the different terms surrounding RSA. There is RSA
(the asymmetric encryption primitive) and RSA (the signature primitive). On top of that,
there is also RSA (the company), founded by the inventors of RSA. When mentioning
encryption with RSA, most people refer to the schemes RSA PKCS#1 v1.5 and RSA-
OAEP. When mentioning signatures with RSA, most people refer to the schemes RSA
PKCS#1 v1.5 and RSA-PSS.

I know this can be confusing, especially for the PKCS#1 v1.5 standard. While there
are official names to distinguish the encryption from the signing algorithm in PKCS#1
v1.5 (RSAES-PKCS1-v1_5 for encryption and RSASSA-PKCS1-v1_5 for signature), |
rarely see those used.

In chapter 6, I mentioned that there were damaging attacks on RSA PKCS#1 v1.5 for
encryption; the same is unfortunately true for RSA PKCS#1 v1.5 signatures. In 1998,
after Bleichenbacher found a devastating attack on RSA PKCS#1 v1.5 for encryption,
he decided to take a look at the signature standard. Bleichenbacher came back in
2006 with a signature forgery attack on RSA PKCS#1 v1.5, one of the most catastrophic

142

7.3.2

CHAPTER 7 Signatures and zero-knowledge proofs

types of attack on signatures—attackers can forge signatures without knowledge of the
private key! Unlike the first attack that broke the encryption algorithm directly, the
second attack was an implementation attack. This meant that if the signature scheme
was implemented correctly (according to the specification), the attack did not work.

An implementation flaw doesn’t sound as bad as an algorithm flaw, that is, if it’s
easy to avoid and doesn’t impact many implementations. Unfortunately, it was shown
in 2019 that an embarrassing number of open source implementations of RSA
PKCS#1 v1.5 for signatures actually fell for that trap and misimplemented the stan-
dard (see “Analyzing Semantic Correctness with Symbolic Execution: A Case Study on
PKCS#1 v1.5 Signature Verification” by Chau et al.) The various implementation flaws
ended up enabling different variants of Bleichenbacher’s forgery attack.

Unfortunately, RSA PKCS#1 v1.5 for signatures is still widely used. Be aware of
these issues if you really have to use this algorithm for backward compatibility reasons.
Having said that, this does not mean that RSA for signatures is insecure. The story
does not end here.

RSA-PSS: A better standard

RSA-PSS was standardized in the updated PKCS#1 v2.1 and included a proof of secu-
rity (unlike the signature scheme standardized in the previous PKCS#1 v1.5). The
newer specification works like this:

Encode the message using the PSS encoding algorithm

Sign the encoded message using RSA (as was done in the PKCS#1 v1.5 standard)

The PSS encoding is a bit more involved and similar to OAEP (Optimal Asymmetric
Encryption Padding). I illustrate this in figure 7.10.

Message

Random __y, IV

salt

PADDING,

Figure 7.10 The RSA-PSS signature scheme
encodes a message using a mask generation
function (MGF) like the RSA-OAEP algorithm
you learned about in chapter 6 before signing
it in the usual RSA way.

Verifying a signature produced by RSA-PSS is just a matter of inverting the encoding
once the signature has been raised to the public exponent modulo the public modulus.

7.3.3

The signature algorithms you should use (or not) 143

Provable security for PSS

PSS (for Probabilistic Signature Scheme) is provably secure, meaning that no one
should be able to forge a signature without knowledge of the private key. Instead of
proving that if RSA is secure then RSA-PSS is secure, RSA-PSS proves the contrapos-
itive: if someone can break RSA-PSS then that someone can also break RSA. That’s
a common way to prove things in cryptography. Of course, this only works if RSA is
secure, which we assume in the proof.

If you remember, I also talked about a third algorithm in chapter 6 for RSA encryp-
tion (called RSA-KEM)—a simpler algorithm that is not used by anyone and yet is
proven to be secure as well. Interestingly, RSA for signatures also mirror this part of
the RSA encryption history and has a much simpler algorithm that pretty much
nobody uses; it’s called Full Domain Hash (FDH). FDH works by simply hashing a mes-
sage and then signing it (by interpreting the digest as a number) using RSA.

Despite the fact that both RSA-PSS and FDH come with proofs of security and are
much easier to implement correctly, today most protocols still make use of RSA
PKCS#1 v1.5 for signatures. This is just another example of the slowness that typically
takes place around deprecating cryptographic algorithms. As older implementations
still have to work with newer implementations, it is difficult to remove or replace algo-
rithms. Think of users that do not update applications, vendors that do not provide
new versions of their softwares, hardware devices that cannot be updated, and so on.
Next, let’s take a look at a more modern algorithm.

The Elliptic Curve Digital Signature Algorithm (ECDSA)

In this section, let’s look at the ECDSA, an elliptic curve variant of DSA that was itself
invented only to circumvent patents in Schnorr signatures. The signature scheme is
specified in many standards including ISO 14888-3, ANSI X9.62, NIST’s FIPS 186-2,
IEEE P1363, and so on. Not all standards are compatible, and applications that want
to interoperate have to make sure that they use the same standard.

Unfortunately, ECDSA, like DSA, does not come with a proof of security, while
Schnorr signatures did. Nonetheless, ECDSA has been widely adopted and is one of
the most used signature schemes. In this section, I will explain how ECDSA works and
how it can be used. As with all such schemes, the public key is pretty much always gen-
erated according to the same formula:

The private key is a large number x generated randomly.
The public key is obtained by viewing x as an index in a group created by a gen-
erator (called base point in elliptic curve cryptography).

More specifically, in ECDSA the public key is computed using [x] G, which is a scalar
multiplication of the scalar x with the base point G.

144

CHAPTER 7 Signatures and zero-knowledge proofs

Additive or multiplicative notation?

Notice that | use the additive notation (with the elliptic curve syntax of placing brack-
ets around the scalar), but that | could have written public_key = G* if | had wanted
to use the multiplicative notation. These differences do not matter in practice. Most
of the time, cryptographic protocols that do not care about the underlying nature of
the group are written using the multiplicative notation, whereas protocols that are
defined specifically in elliptic curve-based groups tend to be written using the additive
notation.

To compute an ECDSA signature, you need the same inputs required by a Schnorr sig-
nature: a hash of the message you’re signing (H(m)), your private key x, and a random
number k that is unique per signature. An ECDSA signature is two integers, r and s,
computed as follows:

ris the x-coordinate of [k] G
sequals k™' (H(m) + xr) mod p

To verify an ECDSA signature, a verifier needs to use the same hashed message H(m),
the signer’s public key, and the signature values rand s. The verifier then

Computes [H(m) sNG+ [rs7] public_key
Validates that the x-coordinate of the point obtained is the same as the value r
of the signature

You can certainly recognize that there are some similarities with Schnorr signatures.
The random number k is sometimes called a nonce because it is a number that must
only be used once, and is also sometimes called an ephemeral key because it must
remain secret.

WARNING I'll reiterate this: k& must never be repeated nor be predictable!
Without that, it is trivial to recover the private key.

In general, cryptographic libraries perform the generation of this nonce (the kvalue)
behind the scenes, but sometimes they don’t and let the caller provide it. This is, of
course, a recipe for disaster. For example, in 2010, Sony’s Playstation 3 was found
using ECDSA with repeating nonces (which leaked their private keys).

WARNING Even more subtle, if the nonce k is not picked uniformly and at
random (specifically, if you can predict the first few bits), there still exist pow-
erful attacks that can recover the private key in no time (so-called lattice
attacks). In theory, we call these kinds of key retrieval attacks total breaks
(because they break everything!). Such total breaks are quite rare in practice,
which makes ECDSA an algorithm that can fail in spectacular ways.

Attempts at avoiding issues with nonces exist. For example, RFC 6979 specifies a deter-
ministic ECDSA scheme that generates a nonce based on the message and the private

7.34

The signature algorithms you should use (or not) 145

key. This means that signing the same message twice involves the same nonce twice
and, as such, produces the same signature twice (which is obviously not a problem).
The elliptic curves that tend to be used with ECDSA are pretty much the same
curves that are popular with the Elliptic Curve Diffie-Hellman (ECDH) algorithm (see
chapter 5) with one notable exception: Secp256kI1. The Secp256kl curve is defined in
SEC 2: “Recommended Elliptic Curve Domain Parameters” (https://secg.org/sec2-
v2.pdf), written by the Standards for Efficient Cryptography Group (SECG). It gained
a lot of traction after Bitcoin decided to use it instead of the more popular NIST
curves, due to the lack of trust in the NIST curves I mentioned in chapter 5.
Secp256Kk1 is a type of elliptic curve called a Koblitz curve. A Koblitz curve is just an
elliptic curve with some constraints in its parameters that allow implementations to
optimize some operations on the curve. The elliptic curve has the following equation:

y2=x%+ax+b

where a=0and b= "7 are constants, and x and y are defined over the numbers modulo
the prime p

p:2192_232_212_28_27_26_23_1

This defines a group of prime order, like the NIST curves. Today, we have efficient for-
mulas to compute the number of points on an elliptic curve. Here is the prime number
that is the number of points in the Secp256k1 curve (including the point at infinity):

11579208923731619542357098500868790785283756427907490438260516314151816
1494337

And we use as a generator (or base point) the fixed-point G of coordinates

x=55066263022277343669578718895168534326250603453777594175500187360389
116729240

and

y=32670510020758816978083085130507043184471273380659243275938904335757
337482424

Nonetheless, today ECDSA is mostly used with the NIST curve P-256 (sometimes
referred to as Secp256r1; note the difference). Next let’s look at another widely popu-
lar signing scheme.

The Edwards-curve Digital Signature Algorithm (EdDSA)

Let me introduce the last signature algorithm of the chapter, the Edwards-curve Digital
Signature Algorithm (EADSA), published in 2011 by Daniel J. Bernstein in response to
the lack of trust in NIST and other curves created by government agencies. The name

https://secg.org/sec2-v2.pdf
https://secg.org/sec2-v2.pdf

146

CHAPTER 7 Signatures and zero-knowledge proofs

EdDSA seems to indicate that it is based on the DSA algorithm like ECDSA is, but this
is deceptive. EADSA is actually based on Schnorr signatures, which is possible due to
the patent on Schnorr signatures expiring earlier in 2008.

One particularity of EADSA is that the scheme does not require new randomness
for every signing operation. EADSA produces signatures deterministically. This has
made the algorithm quite attractive, and it has since been adopted by many protocols
and standards.

EdDSA is on track to be included in NIST’s upcoming update for its FIPS 186-5
standard (still a draft as of early 2021). The current official standard is RFC 8032,
which defines two curves of different security levels to be used with EADSA. Both of
the defined curves are twisted Edwards curves (a type of elliptic curve enabling interest-
ing implementation optimizations):

Edwards25519 is based on Daniel J. Bernstein’s Curve25519 (covered in chapter 5). Its
curve operations can be implemented faster than those of Curve25519, thanks
to the optimizations enabled by the type of elliptic curve. As it was invented
after Curve25519, the key exchange X25519 based on Curve25519 did not ben-
efit from these speed improvements. As with Curve25519, Edwards25519 pro-
vides 128-bit security.

Edwards448 is based on Mike Hamburg’s Ed448-Goldilocks curve. It provides 224-bit
security.

In practice, EADSA is mostly instantiated with the Edwards25519 curve and the
combo is called Ed25519 (whereas EADSA with Edwards448 is shortened as Ed448).
Key generation with EADSA is a bit different from other existing schemes. Instead of
generating a signing key directly, EADSA generates a secret key that is then used to
derive the actual signing key and another key that we call the nonce key. That nonce
key is important! It is the one used to deterministically generate the required per
signature nonce.

NOTE Depending on the cryptographic library you're using, you might be
storing the secret key or the two derived keys: the signing key and the nonce
key. Not that this matters, but if you don’t know this, you might get confused
if you run into Ed25519 secret keys being stored as 32 bytes or 64 bytes,
depending on the implementation used.

To sign, EADSA first deterministically generates the nonce by hashing the nonce key
with the message to sign. After that, a process similar to Schnorr signatures follows:

Compute the nonce as HASH(nonce key || message)

Compute the commitment R as [nonce] G, where G is the base point of the
group

Compute the challenge as HASH(commitment || public key || message)

Compute the proof S as nonce+ challenge x signing key

The signature is (R, S). Iillustrate the important parts of EADSA in figure 7.11.

The signature algorithms you should use (or not) 147

Secret key

y
Public keymH Signing key | Nonce key |

Nonce

v
@4— Commitment = [nonce] G

Challenge

Figure 7.11 EdDSA key generation produces a secret key that is then
used to derive two other keys. The first derived key is the actual signing
key and can thus be used to derive the public key; the other derived key
is the nonce key, used to deterministically derive the nonce during
signing operations. EDDSA signatures are then like Schnorr signatures
with the exception that (1) the nonce is generated deterministically
from the nonce key and the message, and (2) the public key of the
signer is included as part of the challenge.

Notice how the nonce (or ephemeral key) is derived deterministically and not proba-
bilistically from the nonce key and the given message. This means that signing two dif-
ferent messages should involve two different nonces, ingeniously preventing the signer
from reusing nonces and, in turn, leaking out the key (as can happen with ECDSA).
Signing the same message twice produces the same nonce twice, which then produces
the same signature twice as well. This is obviously not a problem. A signature can be
verified by computing the following two equations:

[S1G
R+ [HASH(R || public key || message)] public key

The signature is valid if the two values match. This is exactly how Schnorr signatures
work, except that we are now in an elliptic curve group and I use the additive nota-
tion here.

The most widely used instantiation of EdDSA, Ed25519, is defined with the
Edwards25519 curve and the SHA-512 as a hash function. The Edwards25519 curve is
defined with all the points satisfying this equation:

-x*+y?=1+dx x*xy*mod p

148

CHAPTER 7 Signatures and zero-knowledge proofs

where the value d is the large number

37095705934669439343138083508754565189542113879843219016388785533085940
283555

and the variables x and y are taken modulo p the large number 225 — 19 (the same
prime used for Curve25519). The base pointis G of coordinate

x=15112221349535400772501151409588531511454012693041857206046113283949
847762202

and

y=46316835694926478169428394003475163141307993866256225615783033603165
251855960

RFC 8032 actually defines three variants of EADSA using the Edwards25519 curve. All
three variants follow the same key generation algorithm but with different signing and
verification algorithms:

Ed25519 (or purel:d25519)—That’s the algorithm that I explained previously.
LEd25519ctx—This algorithm introduces a mandatory customization string and
is rarely implemented, if even used, in practice. The only difference is that
some user-chosen prefix is added to every call to the hash function.

Ed25519ph (or Hashlid25519)—This allows applications to prehash the message
before signing it (hence the ph in the name). It also builds on Ed25519ctx,
allowing the caller to include an optional custom string.

The addition of a customization string is quite common in cryptography as you saw with
some hash functions in chapter 2 or will see with key derivation functions in chapter
8. It is a useful addition when a participant in a protocol uses the same key to sign
messages in different contexts. For example, you can imagine an application that
would allow you to sign transactions using your private key and also to sign private
messages to people you talk to. If you mistakenly sign and send a message that looks
like a transaction to your evil friend Eve, she could try to republish it as a valid transac-
tion if there’s no way to distinguish the two types of payload you're signing.

Ed25519ph was introduced solely to please callers that need to sign large mes-
sages. As you saw in chapter 2, hash functions often provide an “init-update-finalize”
interface that allows you to continuously hash a stream of data without having to keep
the whole input in memory.

You are now done with your tour of the signature schemes used in real-world appli-
cations. Next, let’s look at how you can possibly shoot yourself in the foot when using
these signature algorithms. But first, a recap:

74

74.1

Subtle behaviors of signature schemes 149

RSA PKCS#1 v1.5 is still widely in use but is hard to implement correctly and
many implementations have been found to be broken.

RSA-PSS has a proof of security, is easier to implement, but has seen poor adop-
tion due to newer schemes based on elliptic curves.

ECDSA is the main competition to RSA PKCS#1 v1.5 and is mostly used with
NIST’s curve P-256, except in the cryptocurrency world where Secp256k1 seems
to dominate.

Ed25519 is based on Schnorr signatures, has received wide adoption, and it is
easier to implement compared to ECDSA; it does not require new randomness
for every signing operation. This is the algorithm you should use if you can.

Subtle behaviors of signature schemes

There are a number of subtle properties that signature schemes might exhibit. While
they might not matter in most protocols, not being aware of these “gotchas” can end
up biting you when working on more complex and nonconventional protocols. The
end of this chapter focuses on known issues with digital signatures.

Substitution attacks on signatures

A digital signature does not uniquely identify a key or a message.

—Andrew Ayer (“Duplicate Signature Key Selection
Attack in Let’s Encrypt,” 2015)

Substitution attacks, also referred to as duplicate signature key selection (DSKS), are possi-
ble on both RSA PKCS#1 v1.5 and RSA-PSS. Two DSKS variants exist:

Key substitution attacks—A different key pair or public key is used to validate a
given signature over a given message.

Message key substitution attacks—A different key pair or public key is used to vali-
date a given signature over a new message.

One more time: the first attack fixes both the message and the signature; the second
one only fixes the signature. I recapitulate this in figure 7.12.

Existential unforgeability under adaptive chosen message attack (EUF-CMA)

Substitution attacks are a syndrome of a gap between theoretical cryptography and
applied cryptography. Signatures in cryptography are usually analyzed with the EUF-
CMA model, which stands for existential unforgeability under adaptive chosen mes-
sage attack. In this model, you generate a key pair, and then | request you to sign a
number of arbitrary messages. While | observe the signatures you produce, | win if |
can at some point in time produce a valid signature over a message | hadn’t
requested before. Unfortunately, this EUFFCMA model doesn’t seem to encompass
every edge case, and dangerous subtleties like the substitution ones are not taken
into account.

150

CHAPTER 7 Signatures and zero-knowledge proofs

True True True

Verify Verify Verify

signature

*

Original Original

signature

A

signature

A

Original Original

public key public key message public key
Original Original Original Original
sigmxtww message ugmxtww @ Mgmhm Cra'fted
Crafted Crafted public key

public key message

v

v
Verify

Verify

signature signature

True True

Normal signature Key substitution attack Message key substitution attack

Figure 7.12 Signature algorithms like RSA are vulnerable to key substitution attacks, which are
surprising and unexpected behaviors for most users of cryptography. A key substitution attack allows one
to take a signature over a message and to craft a new key pair that validates the original signature. A
variant called message key substitution allows an attacker to create a new key pair and a new message
that validates under the original signature.

74.2 Signature malleability

In February 2014 MtGox, once the largest Bitcoin exchange, closed and filed for
bankruptcy claiming that attackers used malleability attacks to drain its accounts.

—Christian Decker and Roger Wattenhofer
(“Bitcoin Transaction Malleability and MtGox,” 2014)

Most signature schemes are malleable: if you give me a valid signature, I can modify the
signature so that it becomes a different, but still valid signature. I have no clue what
the signing key was, yet I managed to create a new valid signature.

Non-malleability does not necessarily mean that signatures are unique: if I'm the
signer, I can usually create different signatures for the same message and that’s usually
OK. Some constructions like verifiable random functions (which you’ll see later in
chapter 8) rely on signature uniqueness, and so they must deal with this or use signa-
ture schemes that have unique signatures (like the Boneh-Lynn—-Shacham, or BLS,
signatures).

What to do with all of this information? Rest assured, signature schemes are defi-
nitely not broken, and you probably shouldn’t worry if your use of signatures is not
too out-of-the-box. But if you're designing cryptographic protocols or if you're imple-
menting a protocol that’s more complicated than everyday cryptography, you might
want to keep these subtle properties in the back of your mind.

Summary 151

The strong EUF-CMA

A newer security model called SUF-CMA (for strong EUF-CMA) attempts to include non-
malleability (or resistance to malleability) in the security definition of sighature schemes.
Some recent standards like RFC 8032, which specifies Ed25519, include mitigations
against malleability attacks. Because these mitigations are not always present or
common, you should never rely on signatures being non-malleable in your protocols.

Summary

Digital signatures are similar to pen-and-paper signatures but are backed with
cryptography, making them unforgeable by anyone who does not control the
signing (private) key.

Digital signatures can be useful to authenticate origins (for example, one side

of a key exchange) as well as providing transitive trust (if I trust Alice and she

trusts Bob, I can trust Bob).

Zero-knowledge proofs (ZKPs) allow a prover to prove the knowledge of a par-

ticular piece of information (called a witness), without revealing that some-

thing. Signatures can be seen as non-interactive ZKPs as they do not require the
verifier to be online during the signing operation.

You can use many standards to sign:

— RSA PKCS#1 v1.5 is widely used today but not recommended as it is hard to
implement correctly.

— RSA-PSS is a better signature scheme as it is easier to implement and has a
proof of security. Unfortunately, it is not popular nowadays due to elliptic
curve variants that support shorter keys and are, thus, more attractive for net-
work protocols.

— The most popular signature schemes currently are based on elliptic curves:
ECDSA and EdDSA. ECDSA is often used with NIST’s curve P-256, and EADSA
is often used with the Edwards25519 curve (this combination is referred to as
Ed25519).

Some subtle properties can be dangerous if signatures are used in a nonconven-

tional way:

— Always avoid ambiguity as to who signed a message because some signature
schemes are vulnerable to key substitution attacks. External actors can create
a new key pair that would validate an already existing signature over a mes-
sage or create a new key pair and a new message that would validate a given
signature.

— Do not rely on the uniqueness of signatures. First, in most signature schemes,
the signer can create an arbitrary amount of signatures for the same message.
Second, most signature schemes are malleable, meaning that external actors
can take a signature and create another valid signature for the same message.

Randomness and secrets

This chapter covers

= What randomness is and why it’s important

= Obtaining strong randomness and producing
secrets

= The pitfalls of randomness

This is the last chapter of the first part of this book, and I have one last thing to tell
you before we move on to the second part and learn about actual protocols used in
the real world. It is something I've grossly neglected so far—randomness.

You must have noticed that in every cryptographic algorithm you’ve learned (with
the exception of hash functions), you had to use randomness at some point: secret
keys, nonces, IVs, prime numbers, challenges, and so on. As I was going through
these different concepts, randomness always came from some magic black box. This
is not atypical. In cryptography white papers, randomness is often represented by
drawing an arrow with a dollar sign on top. But at some point, we need to ask our-
selves the question, “Where does this randomness really come from?”

152

8.1

What’s randomness? 153

In this chapter, I will provide you with an answer as to what cryptography means
when it mentions randomness. I will also give you pointers about the practical ways that
exist to obtain randomness for real-world cryptographic applications.

NOTE For this chapter, you’ll need to have read chapter 2 on hash functions
and chapter 3 on message authentication codes.

What’s randomness?

Everyone understands the concept of randomness to some degree. Whether playing
with dice or buying some lottery tickets, we’ve all been exposed to it. My first encoun-
ter with randomness was at a very young age, when I realized that a RAND button on
my calculator would produce a different number every time I pressed it. This troubled
me to no end. I had little knowledge about electronics, but I thought I could under-
stand some of its limitations. When I added 4 and 5 together, surely some circuits
would do the math and give me the result. But a random button? Where were the ran-
dom numbers coming from? I couldn’t wrap my head around it.

It took me some time to ask the right questions and to understand that calculators
actually cheated! They would hardcode large lists of random numbers and go through
those one by one. These lists would exhibit good randomness, meaning that if you
looked at the random numbers you were getting, there’d be as many 1Is as 9s, as many
1s as 2s, and so on. These lists would simulate a uniform distribution: the numbers were
distributed in equal proportions (uniformly).

When random numbers are needed for security and cryptography purposes,
then randomness must be unpredictable. Of course, at that time, nobody would have
used those calculators’ “randomness” for anything related to security. Instead, cryp-
tographic applications extract randomness from observing hard-to-predict physical
phenomena.

For example, it is hard to predict the outcome of a dice roll, even though throwing

’ o«

a die is a deterministic process; if you knew all the initial conditions (how you’re
throwing the die, the die itself, the air friction, the grip of the table, and so on), you
should be able to predict the result. That being said, all of these factors impact the
end result so much that a slight imprecision in the knowledge of the initial conditions
would mess with our predictions. The extreme sensitivity of an outcome to its initial
conditions is known as chaos theory, and it is the reason why things like the weather are
hard to predict accurately past a certain number of days.

The following image is a picture that I snapped during one of my visits to the head-
quarters of Cloudflare in San Francisco. LavaRand is a wall of lava lamps, which are
lamps that produce hard-to-predict shapes of wax. A camera is set in front of the wall
to extract and convert the images to random bytes.

154 CHAPTER 8 Randomness and secrets

Applications usually rely on the operating system to provide usable randomness,
which in turn, gather randomness using different tricks, depending on the type of
device it is run on. Common sources of randomness (also called entropy sources) can
be the timing of hardware interrupts (for example, your mouse movements), soft-
ware interrupts, hard disk seek time, and so on.

Entropy

In information theory, the word entropy is used to judge how much randomness a
string contains. The term was coined by Claude Shannon, who devised an entropy
formula that would output larger and larger numbers as a string would exhibit more
and more unpredictability (starting at O for completely predictable). The formula or the
number itself is not that interesting for us, but in cryptography, you often hear “this
string has low entropy” (meaning that it is predictable) or “this string has high
entropy” (meaning that it is less predictable).

Observing interrupts and other events to produce randomness is not great; when a
device boots, these events tend to be highly predictable, and they can also be mali-
ciously influenced by external factors. Today, more and more devices have access to
additional sensors and hardware aids that provide better sources of entropy. These

8.2

Slow randomness? Use a pseudorandom number generator (PRNG) 155

hardware random number generators are often called true random number generators
(TRNGs) as they make use of external unpredictable physical phenomena like ther-
mal noise to extract randomness.

The noise obtained via all these different types of input is usually not “clean” and
sometimes does not provide enough entropy (if at all). For example, the first bit
obtained from some entropy source could be 0 more often than not, or successive bits
could be (more likely than chance) equal. Due to this, randomness extractors must clean
and gather several sources of noise together before it can be used for cryptographic
applications. This can be done, for example, by applying a hash function to the differ-
ent sources and XORing the digests together.

Is this all there is to randomness? Unfortunately not. Extracting randomness from
noise is a process that can be slow. For some applications that might need lots of ran-
dom numbers quickly, it can become a bottleneck. The next section describes how
OSs and real-world applications boost the generation of random numbers.

Slow randomness? Use a pseudorandom number
generator (PRNG)

Randomness is used everywhere. At this point, you should be convinced that this is
true at least for cryptography, but surprisingly, cryptography is not the only place mak-
ing heavy use of random numbers. For example, simple Unix programs like Is require
randomness too! As a bug in a program can be devastating if exploited, binaries
attempt to defend against low-level attacks using a multitude of tricks; one of them is
ASLR (address space layout randomization), which randomizes the memory layout of
a process every time it runs and, thus, requires random numbers. Another example is
the network protocol TCP, which makes use of random numbers every time it creates
a connection to produce an unpredictable sequence of numbers and thwarts attacks
attempting to hijack connections. While all of this is beyond the scope of this book, it
is good to have an idea of how much randomness ends up being used for security rea-
sons in the real world.

I hinted in the last section that, unfortunately, obtaining unpredictable random-
ness is somewhat of a slow process. This is sometimes due to a source of entropy being
slow to produce noise. As a result, OSs often optimize their production of random
numbers by using pseudorandom number generators (PRNGs).

NOTE In order to contrast with random number generators that are not
designed to be secure (and that are useful in different types of applications,
like video games), PRNGs are sometimes called CSPRNGs for cryptographically
secure PRNGs. NIST, wanting to do things differently (as usual), often calls
their PRNGs deterministic random bit generators (DRBGs).

A PRNG needs an initial secret, usually called a seed, that we can obtain from mixing
different entropy sources together and can then produce lots of random numbers
quickly. I'illustrate a PRNG in figure 8.1.

156

CHAPTER 8 Randomness and secrets
Seed —>M—> State —» VL] State —» | EleEI]

Random number Random number

Figure 8.1 A pseudorandom number generator (PRNG) generates a sequence
of random numbers based on a seed. Using the same seed makes the PRNG
produce the same sequence of random numbers. It should be impossible to
recover the state using knowledge of the random outputs (the function next
is one way). It follows that it should also be impossible from observing the
produced random numbers alone to predict future random numbers or to
recover previously generated random numbers.

Cryptographically secure PRNGs usually tend to exhibit the following properties:

= Deterministic—Using the same seed twice produces the same sequence of ran-
dom numbers. This is unlike the unpredictable randomness extraction I talked
about previously: if you know a seed used by a PRNG, the PRNG should be com-
pletely predictable. This is why the construction is called pseudorandom, and

this is what allows a PRNG to be extremely fast.

= Indistinguishable from random—In practice, you should not be able to distinguish
between a PRNG outputting a random number from a set of possible numbers
and a little fairy impartially choosing a random number from the same set
(assuming the fairy knows a magical way to pick a number such that every possi-
ble number can be picked with equal probability). Consequently, observing the
random numbers generated alone shouldn’t allow anyone to recover the inter-

nal state of the PRNG.

The last point is important! A PRNG simulates picking a number uniformly at random,
meaning that each number from the set has an equal chance of being picked. For
example, if your PRNG produces random numbers of 8 bytes, the set is all the possible
strings of 8 bytes, and each 8-byte value should have equal probability of being the
next value that can be obtained from your PRNG. This includes values that have

already been produced by the PRNG at some point in the past.

In addition, many PRNGs exhibit additional security properties. A PRNG has for-
ward secrecy if an attacker learning the state (by getting in your computer at some point
in time, for example) doesn’t allow the PRNG to retrieve previously generated ran-

dom numbers. I illustrate this in figure 8.2.

Slow randomness? Use a pseudorandom number generator (PRNG) 157

Compromised

!

Seed—» Sicictay 4 Update SiE Gl 4 Update

Forward secrecy X

Figure 8.2 A PRNG has forward secrecy if compromise of a state does
not allow recovering previously generated random numbers.

Obtaining the state of a PRNG means that you can determine all future pseudoran-
dom numbers that it will generate. To prevent this, some PRNGs have mechanisms to
“heal” themselves periodically (in case there was a compromise). This healing can be
achieved by reinjecting (or re-seeding) new entropy after a PRNG was already seeded.
This property is called backward secrecy. I illustrate this in figure 8.3.

Not compromised
Additional Additional
entropy entropy

Seed—» M State —p Update State —p [ARG
7

Compromised

Backward secrecy x

Figure 8.3 A PRNG has backward secrecy if compromise of a state does
not allow predicting future random numbers generated by the PRNG. This
is true only once new entropy is produced and injected in the update
function after the compromise.

NOTE The terms forward and backward secrecy are often sources of confusion.
If you read this section thinking shouldn’t forward secrecy be backward
secrecy and backward secrecy be forward secrecy instead, then you are not
crazy. For this reason, backward secrecy is sometimes called future secrecy or
even post-compromise security (PCS).

PRNGs can be extremely fast and are considered safe methods to generate large
numbers of random values for cryptographic purposes if properly seeded. Using a
predictable number or a number that is too small is obviously not a secure way to
seed a PRNG. This effectively means that we have secure cryptographic ways for
quickly stretching a secret of appropriate size to billions of other secret keys. Pretty
cool, right? This is why most (if not all) cryptographic applications do not use random

158

8.3

CHAPTER 8 Randomness and secrets

numbers directly extracted from noise, but instead use them to seed a PRNG in an
initial step and then switch to generating random numbers from the PRNG when
needed.

The Dual-EC backdoor

Today, PRNGs are mostly heuristic-based constructions. This is because construc-
tions based on hard mathematical problems (like the discrete logarithm) are too slow
to be practical. One notorious example is Dual EC, invented by NSA, which relies on
elliptic curves. The Dual EC PRNG was pushed to various standards including some
NIST publications around 2006, and not too long after, several researchers inde-
pendently discovered a potential backdoor in the algorithm. This was later confirmed
by the Snowden revelations in 2013, and a year later the algorithm was withdrawn
from multiple standards.

To be secure, a PRNG must be seeded with an unpredictable secret. More accurately, we
say that the PRNG takes a key of n bytes sampled uniformly at random. This means
that we should pick the key randomly from the set of all possible n-byte strings, where
each byte string has the same chance of being picked.

In this book, I talked about many cryptographic algorithms that produce outputs
indistinguishable from random (from values that would be chosen uniformly at ran-
dom). Intuitively, you should be thinking can we use these algorithms to generate ran-
dom numbers then? And you would be right! Hash functions, XOFs, block ciphers,
stream ciphers, and MACs can be used to produce random numbers. Hash functions
and MAGs are theoretically not defined as providing outputs that are indistinguish-
able from random, but in practice, they often are. Asymmetric algorithms like key
exchange and signatures, on the other hand, are (almost all the time) not indistin-
guishable from random. For this reason, their output is often hashed before being
used as random numbers.

Actually, because AES is hardware-supported on most machines, it is customary to
see AES-CTR being used to produce random numbers. The symmetric key becomes
the seed, and the ciphertexts become the random numbers (for the encryption of an
infinite string of Os, for example). In practice, there is a bit more complexity added to
these constructions in order to provide forward and backward secrecy. Fortunately,
you now understand enough to go to the next section, which provides an overview of
obtaining randomness for real.

Obtaining randomness in practice
You've learned about the three ingredients that an OS needs to provide cryptographi-

cally secure random numbers to its programs:

Noise sources—These are ways for the OS to obtain raw randomness from unpre-
dictable physical phenomena like the temperature of the device or your mouse
movements.

Obtaining randomness in practice 159

Cleaning and mixing—Although raw randommness can be of poor quality (some
bits might be biased), OSs clean up and mix a number of sources together in
order to produce a good random number.

PRNGs—DBecause the first two steps are slow, a single, uniformly random value
can be used to seed a PRNG that can quickly produce random numbers.

In this section, I will explain how systems bundle the three concepts together to pro-
vide simplified interfaces to developers. These functions exposed by the OS usually
allow you to generate a random number by issuing a system call. Behind these system
calls is, indeed, a system bundling up noise sources, a mixing algorithm, and a PRNG
(summarized in figure 8.4).

Entropy Entropy Entropy
source source source

* PBNG [—» Random numbers

Mixing

Uniformly random key

Figure 8.4 Generating random numbers on a system usually means that
entropy was mixed together from different noise sources and used to seed
a long-term PRNG.

Depending on the OS and on the hardware available, these three concepts might be
implemented differently. In 2021, Linux uses a PRNG that’s based on the ChaCha20
stream cipher, while macOS uses a PRNG that’s based on the SHA-1 hash function. In
addition, the random number generator interface exposed to developers will be dif-
ferent depending on the OS. On Windows, the BCryptGenRandom system call can be
used to produce random numbers, while on other platforms, a special file (usually
called /dev/urandom) is exposed and can be read to provide randomness. For
example, on Linux or macOS, one can read 16 bytes from the terminal using the dd
command-line tool:

$ dd if=/dev/urandom bs=16 count=1 2> /dev/null | xxd -p
40b1654b12320e2e0105f0b1ld6ele77bl

One problem with /dev/urandom is that it might not provide enough entropy (its
numbers won’t be random enough) if used too early after booting the device. OSs like
Linux and FreeBSD offer a solution called getrandom, which is a system call that
pretty much offers the same functionality as reading from /dev/urandom. In rare
cases, where not enough entropy is available for initializing its PRNG, getrandom will
block the continuation of the program and wait until properly seeded. For this reason,

160

CHAPTER 8 Randomness and secrets

I recommend that you use getrandon if it is available on your system. The following
listing shows how one can securely use getrandom in C:

Listing 8.1 Getting random numbers in C

#include <sys/random.h> Fills a buffer with random bytes
(note that getrandom is limited

to up to 256 bytes per call).

uint8_t secret[16];

int len = getrandom(secret, sizeof (secret), 0); Thedeﬁuﬂtﬂags(O)

. , is to not block, unless

if (len != sizeof (secret)) { properly seeded.
abort () ;

It is possible that the function fails or returns
} less than the desired amount of random bytes.

If this is the case, the system is corrupt and

aborting might be the best thing to do.

With that example in mind, it is also good to point out that many programming lan-
guages have standard libraries and cryptographic libraries that provide better abstrac-
tions. It might be easy to forget that getrandom only returns up to 256 bytes per call,
for example. For this reason, you should always attempt to generate random numbers
through the standard library of the programming language you’re using.

WARNING Note that many programming languages expose functions and
libraries that produce predictable random numbers. These are not suited for
cryptographic use! Make sure that you use random libraries that generate
cryptographically strong random numbers. Usually the name of the library helps
(for example, you can probably guess which one you should use between the
math/rand and crypto/rand packages in Golang), but nothing replaces read-
ing the manual!

Listing 8.2 shows how to generate some random bytes using PHP 7. Any cryptographic
algorithm can use these random bytes. For example, as a secret key to encrypt with an
authenticated encryption algorithm. Every programming language does things differ-
ently, so make sure to consult your programming language’s documentation in order
to find the standard way to obtain random numbers for cryptographic purposes.

Listing 8.2 Getting random numbers in PHP

<?php

$bad_random_number = rand (0, 10); Produces a random integer between 0

and 10. While fast, rand does not produce
cryptographically secure random numbers
7> so it is not suitable for cryptographic
random_bytes creates and fills a buffer algorithms and protocols.
with 16 random bytes. The result is suitable
for cryptographic algorithms and protocols.

$secret_key = random bytes(16) ;

Now that you’ve learned how you can obtain cryptographically secure randomness in
your programs, let’s think about the security considerations you need to keep in mind
when you generate randomness.

8.4

Randomness generation and security considerations 161

Randomness generation and security considerations

It is good to remember at this point that any useful protocol based on cryptography
requires good randomness and that a broken PRNG could lead to the entire cryp-
tographic protocol or algorithm being insecure. It should be clear to you that a MAC
is only as secure as the key used with it or that the slightest ounce of predictability usu-
ally destroys signature schemes like ECDSA, and so on.

So far, this chapter makes it sound like generating randomness should be a simple
part of applied cryptography, but in practice, it is not. Randomness has actually been
the source of many, many bugs in real-world cryptography due to a multitude of
issues: using a noncryptographic PRNG, badly seeding a PRNG (for example, using
the current time, which is predictable), and so on.

One example includes programs using userland PRNGs as opposed to kernel
PRNGs, which are behind system calls. Userland PRNGs usually add unnecessary
friction and if misused can, in the worst of cases, break the entire system. This was
notably the case with the PRNG offered by the OpenSSL library that was patched
into some OSs in 2006, inadvertently affecting all SSL and SSH generated keys using
the vulnerable PRNG.

Removing this code has the side effect of crippling the seeding process for the OpenSSL
PRNG. Instead of mixing in random data for the initial seed, the only random value
that was used was the current process ID. On the Linux platform, the default maximum
process ID is 32,768, resulting in a very small number of seed values being used for all
PRNG operations.

—H. D. Moore (“Debian OpenSSL Predictable PRNG Toys,” 2008)

For this reason and others, I will mention later in this chapter that it is wise to avoid
userland PRNG and to stick to randomness provided by the OS when available. In
most situations, sticking to what the programming language’s standard library or what
a good cryptography library provides should be enough.

We cannot keep on adding ‘best practice’ after ‘best practice’ to what developers need to
keep in the back of their heads when writing everyday code.

—NMartin BoBlet (“OpenSSL PRNG Is Not (Really) Fork-safe,” 2013)

Unfortunately, no amount of advice can really prepare you for the many pitfalls of
acquiring good randomness. Because randomness is at the center of every cryptogra-
phy algorithm, making tiny mistakes can lead to devastating outcomes. It is good to
keep in mind the following edge cases should you run into them:

Forking processes—When using a userland PRNG (some applications with extremely
high performance requirements might have no other choice), it is important to
keep in mind that a program that forks will produce a new child process that
will have the same PRNG state as its parent. Consequently, both PRNGs will

162

CHAPTER 8 Randomness and secrets

produce the same sequence of random numbers from there on. For this rea-
son, if you really want to use a userland PRNG, you have to be careful to make
forks use different seeds for their PRNGs.

Virtual machines (VMs)—Cloning of PRNG state can also become a problem when
using the OS PRNG. Think about VMs. If the entire state of a VM is saved and
then started several times from this point on, every instance might produce the
exact same sequence of random numbers. This is sometimes fixed by hypervisors
and OSs, but it is good to look into what the hypervisor you’re using is doing
before running applications that request random numbers in VMs.

Early boot entropy— While OSs should have no trouble gathering entropy in user-
operated devices due to the noise produced by the user’s interactions with the
device, embedded devices and headless systems have more challenges to over-
come in order to produce good entropy at boot time. History has shown that
some devices tend to boot in a similar fashion and end up amassing the same
initial noise from the system, leading to the same seed being used for their
internal PRNGs and the same series of random numbers being generated.

There is a window of vulnerability—a boot-time entropy hole—during which Linux’s
urandom may be entirely predictable, at least for single-corve systems. [. . .] When we
disabled entropy sources that might be unavailable on a headless or embedded device, the
Linux RNG produced the same predictable stream on every boot.

—Heninger et al. (“Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices,” 2012)

In these rare cases, where you really, really need to obtain random numbers early
during boot, one can help the system by providing some initial entropy generated
from another machine’s well-seeded getrandom or /dev/urandom. Different OSs might
provide this feature, and you should consult their manuals (as usual) if you find your-
self in this situation.

If available, a TRNG provides an easy solution to the problem. For example, mod-
ern Intel CPUs embed a special hardware chip that extracts randomness from thermal
noise. This randomness is available through an instruction called RDRAND.

The RDRAND controversy

Interestingly, Intel’s RDRAND has been quite controversial due to the fear of back-
doors. Most OSs that have integrated RDRAND as a source of entropy mix it with other
sources of entropy in a way that is contributory. Contributory here means that one
source of entropy cannot force the outcome of the randomness generation.

Exercise

Imagine for a minute that mixing different sources of entropy was done by simply XOR-
ing them together. Can you see how this might fail to be contributory?

8.5

Public randomness 163

Finally, let me mention that one solution to avoid the randomness pitfalls is to use
algorithms that rely less on randomness. For example, you saw in chapter 7 that
ECDSA requires you to generate a random nonce every time you sign, whereas
EdDSA does not. Another example you saw in chapter 4 is AES-GCM-SIV, which
does not catastrophically break down if you happen to reuse the same nonce twice,
as opposed to AES-GCM, which will leak the authentication key and will then lose
integrity of the ciphertexts.

Public randomness

So far, I've talked mostly about private randomness, the kind you might need for your
private keys. Sometimes, privacy is not required and public randomness is needed. In
this section, I briefly survey some ways to obtain such public randomness. I distinguish
two scenarios:

One-to-many—You want to produce randomness for others.
Many-to-many—A set of participants want to produce randomness together.

First, let’s imagine that you want to generate a stream of randomness in a way that
many participants can verify it. In other words, the stream should be unpredictable
but impossible to alter from your perspective. Now imagine that you have a signature
scheme that provides unique signatures based on a key pair and a message. With such
asignature scheme, there exists a construction called a verifiable random function (VRF)
to obtain random numbers in a verifiable way (figure 8.5 illustrates this concept). The
following shows how this works:

You generate a key pair and publish the verifying key. You also publish a pub-

lic seed.
Seed
Private key as message
Proof Seed
roo Public key ~as message
Sign l \
. Proof as
Hash Verify ‘_si nature
Hash l i
Does this match True?
Unique * the random number?
signature Random number
as proof
VRF generation VREF verification

Figure 8.5 A verifiable random function (VRF) generates verifiable randomness via public key
cryptography. To generate a random number, simply use a signature scheme which produces unique
signatures (like BLS) to sign a seed, then hash the signature to produce the public random number.
To validate the resulting randomness, make sure that the hash of the signature is indeed the random
number and verify the signature over the seed.

164

8.6

CHAPTER 8 Randomness and secrets

To generate random numbers, you sign the public seed and hash the signature.
The digest is your random number, and the signature is also published as proof.
To verify the random number, anyone can hash the signature to check if it
matches the random number and verify that the signature is correct with the
public seed and verifying key.

This construction can be extended to produce many random numbers by using the
public seed like a counter. Because the signature is unique and the public seed is
fixed, there is no way for the signer to generate a different random number.

Exercise

Signature schemes like BLS (mentioned in figure 8.5 and in chapter 7) produce
unique signatures, but this is not true for ECDSA and EdDSA. Do you see why?

To solve this, the Internet Draft (a document that is meant to become an RFC)
https://tools.ietf.org/html/draft-irtf-cfrg-vrf-08 specifies how to implement a VRF
using ECDSA. In some scenarios (for example, a lottery game), several participants
might want to randomly decide on a winner. We call them decentralized randomness
beacons as their role is to produce the same verifiable randomness even if some partici-
pants decide not to take part in the protocol. A common solution is to use the previ-
ously discussed VRFs, not with a single key but with a threshold distributed key, a key that
is split among many participants and that produces a unique valid signature for a
given message only after a threshold of participants have signed the message. This
might sound a bit confusing as this is the first time I've talked about distributed keys.
Know that you will learn more about these later in this chapter.

One popular decentralized randomness beacon is called drand and is run in concert
by several organizations and universities. It is available at https://leagueofentropy.com.

The main challenge in generating good randomness is that no party involved in the
randommness generation process should be able to predict or bias the final output. A drand
network is not controlled by anyone of its members. There is no single point of failure, and
none of the drand server operators can bias the randomness generated by the network.

—https://drand.love (“How drand works,” 2021)

Now that I've talked extensively about randomness and how programs obtain it nowa-
days, let’s move the discussion towards the role of secrets in cryptography and how
one can manage those.

Key derivation with HKDF

PRNGs are not the only constructions one can use to derive more secrets from one
secret (in other words, to stretch a key). Deriving several secrets from one secret is
actually such a frequent pattern in cryptography that this concept has its own name:
key derivation. So let’s see what this is about.

https://tools.ietf.org/html/draft-irtf-cfrg-vrf-08
https://tools.ietf.org/html/draft-irtf-cfrg-vrf-08
https://drand.love

Key derivation with HKDF 165

A key derivation function (KDF) is like a PRNG in many ways, except for a number of
subtleties as noted in the following list. The differences are summarized in figure 8.6.

A KDF does not necessarily expect a uniformly random secret (as long as it has enough
entropy). This makes a KDF useful for deriving secrets from key exchange output,
which produce high entropy but biased results (see chapter 5). The resulting
secrets are, in turn, uniformly random, so you can use these in constructions that
expect uniformly random keys.

A KDF is generally used in protocols that require participants to rederive the same keys
several times. In this sense, a KDF is expected to be deterministic, while PRNGs
sometimes provide backward secrecy by frequently reseeding themselves with
more entropy.

A KDF is usually not designed to produce a LOT of random numbers. Instead, it is nor-
mally used to derive a limited number of keys.

Nonuniformly random Uniformly random
arbitrary length input k-bit key

[TTTTT]TITTT] LTI ITTITTITIT]

Figure 8.6 A key
derivation function (KDF)
and a PRNG are two similar
PR constructions. The main
differences are that a KDF
does not expect a fully
uniformly random secret

[TIITITITITT11] (IO as input (as long as it has

Uniformly random Uniformly random enough entropy) and is

arbitrary length output arbitrary length output usually not used to
generate too much output.

The most popular KDF is the HMAC-based key derivation function (HKDF). You learned
about HMAC (a MAC based on hash functions) in chapter 3. HKDF is a light KDF
built on top of HMAC and defined in RFC 5869. For this reason, one can use HKDF
with different hash functions, although, it is most commonly used with SHA-2. HKDF
is specified as two different functions:

HKDF-Extract—Removes biases from a secret input, producing a uniformly ran-
dom secret.

HKDF-Expand—Produces an arbitrary length and uniformly random output.
Like PRNGs, it expects a uniformly random secret as input and is, thus, usually ran
after HKDF-Extract.

Let’s look at HKDF-Extract first, which I illustrate in figure 8.7. Technically, a hash func-
tion is enough to uniformize the randomness of an input byte string (remember, the out-
put of a hash function is supposed to be indistinguishable from random), but HKDF
goes further and accepts one additional input: a salt. As for password hashing, a salt

166

CHAPTER 8 Randomness and secrets

Salt Key

Figure 8.7 HKDF-Expand is the second function specified
by HKDF. It takes an optional info byte string and an input

HMAC secret that needs to be uniformly random. Using different
s ! info byte strings with the same input secret produces
different outputs. The length of the output is controlled
Pseudorandom key (PRK) by a Length argument.

differentiates different usages of HKDF-Extract in the same protocol. While this salt is
optional and set to an all-zero byte string if not used, it is recommended that you do use
it. Furthermore, HKDF does not expect the salt to be a secret; it can be known to every-
one, including adversaries. Instead of a hash function, HKDF-Extract uses a MAC (specif-
ically HMAC), which coincidentally has an interface that accepts two arguments.

Let’s now look at HKDF-Expand, which I illustrate in figure 8.8. If your input secret
is already uniformly random, you can skip HKDF-Extract and use HKDF-Expand.

Info | Ox01 ——® |Info | 0x02 ——* |Infol0x03

PRK =»

Output length—» ate

Outputkeyingmaterial = (T T T T T T T T TT T T T T TTTTITITTITTTTITTITTTITTIT111]

Figure 8.8 HKDF-Extract is the first function specified by HKDF. It takes an optional salt that
is used as the key in HMIAC and the input secret that might be nonuniformly random. Using
different salts with the same input secret produces different outputs.

Similar to HKDF-Extract, HKDF-Expand also accepts an additional and optional cus-
tomization argument called info. While a salt is meant to provide some domain sepa-
ration between calls within the same protocol for HKDF (or HKDF-Extract), info is
meant to be used to differentiate your version of HKDF (or HKDF-Expand) from
other protocols. You can also specify how much output you want, but keep in mind
that HKDF is not a PRNG and is not designed to derive a large number of secrets.
HKDF is limited by the size of the hash function you use; more precisely, if you use
SHA-512 (which produces outputs of 512 bits) with HKDF, you are limited to 512 x
255 bits = 16,320 bytes of output for a given key and an info byte string.

Key derivation with HKDF 167

Calling HKDF or HKDF-Expand several times with the same arguments, except for
the output length, produces the same output truncated to the different length requested
(see figure 8.9). This property is called related outputs and can, in rare scenarios, surprise
protocol designers. It is good to keep this in mind.

Output length = 16

. HKDF-Extract 5e8618ceab4272d8429ff75d8bc2810c
nfo

"real world
crypto example"

Key
0x01020304

HKDF-Extract 5e8618cea64272d8429ff75d8bc2810cb93a...

Output length = 32

Figure 8.9 HKDF and HKDF-Expands provide related outputs, meaning that calling the function with
different output lengths truncates the same result to the requested length.

Most cryptographic libraries combine HKDF-Extract and HKDF-Expand into a single
call as figure 8.10 illustrates. As usual, make sure to read the manual (in this case, RFC
5869) before using HKDF.

Pseudo-
Salt random Info Output Salt Info Output
key string length string length
Input HKDF- Input
key key
material =gl material
Pseudorandom key Output keying material Output keying material
HKDF-Extract HKDF-Expand HKDF

Figure 8.10 HKDF is usually found implemented as a single function call that combines
both HKDF-Extract (to extract uniform randomness from an input key) and HKDF-Expand
(to generate an arbitrary length output).

HKDF is not the only way to derive multiple secrets from one secret. A more naive
approach is to use hash functions. As hash functions do not expect a uniformly random
input and produce uniformly random outputs, they are fit for the task. Hash functions
are not perfect, though, as their interface does not take into account domain separation
(no customization string argument) and their output length is fixed. Best practice is to
avoid hash functions when you can use a KDF instead. Nonetheless, some well-accepted

168

8.7

CHAPTER 8 Randomness and secrets

algorithms do use hash functions for this purpose. For example, you learned in
chapter 7 about the Ed25519 signature scheme that hashes a 256-bit key with SHA-512
to produce two 256-bit keys.

Do these functions really produce random outputs?

In theory, a hash function’s properties do not say anything about the output being
uniformly random; the properties only dictate that a hash function should be collision
resistant, pre-image resistant, and second pre-image resistant. In the real world,
though, we use hash functions all over the place to implement random oracles (as
you learned in chapter 2), and thus, we assume that their outputs are uniformly ran-
dom. This is the same with MACs, which are, in theory, not expected to produce uni-
formly random outputs (unlike PRFs as seen in chapter 3), but in practice, do for the
most part. This is why HMAC is used in HKDF. In the rest of this book, | will assume
that popular hash functions (like SHA-2 and SHA-3) and popular MACs (like HMAC and
KMAC) produce random outputs.

The extended output functions (XOFs) we saw in chapter 2 (SHAKE and ¢SHAKE)
can be used as a KDF as welll Remember, a XOF

Does not expect a uniformly random input
Can produce a practically infinitely large uniformly random output

In addition, KMAC (a MAC covered in chapter 3) does not have the related output
issue I mentioned earlier. Indeed, KMAC’s length argument randomizes the output of
the algorithm, effectively acting like an additional customization string.

Finally, there exists an edge case for inputs that have low entropy. Think about
passwords, for example, that can be relatively guessable compared to a 128-bit key.
The password-based key derivation functions used to hash passwords (covered in
chapter 2) can also be used to derive keys as well.

Managing keys and secrets

All right, all good, we know how to generate cryptographic random numbers, and we
know how to derive secrets in different types of situations. But we’re not out of the
woods yet.

Now that we’re using all of these cryptographic algorithms, we end up having to
maintain a lot of secret keys. How do we store these keys? And how do we prevent
these extremely sensitive secrets from being compromised? And what do we do if a
secret becomes compromised? This problem is commonly known as key management.

Crypto is a tool for turning a whole swathe of problems into key management problems.
—Lea Kissner (2019, http://mng.bz/eMr])

While many systems choose to leave keys close to the application that makes use of
them, this does not necessarily mean that applications have no recourse when bad

http://mng.bz/eMrJ

8.8

Decentralize trust with threshold cryptography 169

things happen. To prepare against an eventual breach or a bug that would leak a key,
most serious applications employ two defense-in-depth techniques:

Key rotation—DBy associating an expiration date to a key (usually a public key)
and by replacing your key with a new key periodically, you can “heal” from an
eventual compromise. The shorter the expiration date and rotation frequency,
the faster you can replace a key that might be known to an attacker.

Key revocation—XKey rotation is not always enough, and you might want to cancel
a key as soon as you hear it has been compromised. For this reason, some sys-
tems allow you to ask if a key has been revoked before making use of it. (You
will learn more about this in the next chapter on secure transport.)

Automation is often indispensable to successfully using these techniques as a well-
oiled machine is much more apt to work correctly in times of crisis. Furthermore, you
can also associate a particular role to a key in order to limit the consequences of a
compromise. For example, you could differentiate two public keys in some fabricated
application as public key 1, which is only for signing transactions, and public key 2,
which is only for doing key exchanges. This allows a compromise of the private key
associated with public key 2 to not impact transaction signing.

If one does not want to leave keys lying around on device storage media, hardware
solutions exist that aim at preventing keys from being extracted. You will learn more
about these in chapter 13 on hardware cryptography.

Finally, many ways exist for applications to delegate key management. This is often
the case on mobile OSs that provide key stores or key chains, which will keep keys for you
and will even perform cryptographic operations!

Applications living in the cloud can sometimes have access to cloud key manage-
ment services. These services allow an application to delegate creation of secret keys
and cryptographic operations and to avoid thinking about the many ways to attack
those. Nonetheless, as with hardware solutions, if an application is compromised, it
will still be able to do any type of request to the delegated service.

NOTE There are no silver bullets, and you should still consider what you can
do to detect and respond to a compromise.

Key management is a hard problem that is beyond the scope of this book, so I will not
dwell on this topic too much. In the next section, I go over cryptographic techniques
that attempt to avoid the key management problem.

Decentralize trust with threshold cryptography

Key management is a vast field of study that can be quite annoying to invest in as
users do not always have the resources to implement best practices, nor the tools
available in the space. Fortunately, cryptography has something to offer for those
who want to lessen the burden of key management. The first one I'll talk about is secret
sharing (or secret splitting). Secret splitting allows you to break a secret into multiple

170

CHAPTER 8 Randomness and secrets

parts that can be shared among a set of participants. Here, a secret can be anything
you want: a symmetric key, a signing private key, and so on.

Typically, a person called a dealer generates the secret, then splits it and shares the
different parts among all participants before deleting the secret. The most famous
secret splitting scheme was invented by Adi Shamir (one of the co-inventors of RSA)
and is called Shamir’s Secret Sharing (SSS). I illustrate this process in figure 8.11.

||

Secret sharing

split

Figure 8.11 Given a key and a number of shares n, the
v v Shamir’s Secret Sharing scheme creates n partial keys of
Partial key 1 Partial key n the same size as the original key.

When the time comes and the secret is needed to perform some cryptographic opera-
tion (encrypting, signing, and so on), all share owners need to return their private
shares back to the dealer who is in charge of reconstructing the original secret. Such a
scheme prevents attackers from targeting a single user as each share is useless by itself
and, instead, forces attackers to compromise all the participants before they can exploit
a key! Lillustrate this in figure 8.12.

Partial key 1 ... Partial key n
| |

Secret sharing

reconstruct

Figure 8.12 The Shamir’s Secret Sharing scheme
used to split a secret in n partial keys requires all of
Key the n partial keys to reconstruct the original key.

The mathematics behind the scheme’s algorithm are actually not too hard to under-
stand! So let me spare a few paragraphs here to give you a simplified idea of the scheme.

Imagine a random straight line on a 2-dimensional space, and let’s say that its
equation—y = ax + b—is the secret. By having two participants hold two random
points on the line, they can collaborate to recover the line equation. The scheme gen-
eralizes to polynomials of any degree and, thus, can be used to divide a secret into an
arbitrary number of shares. This is illustrated in figure 8.13.

Secret splitting is a technique often adopted due to its simplicity. Yet, in order to be
useful, key shares must be gathered into one place to recreate the key each and every
time it is used in a cryptographic operation. This creates a window of opportunity in
which the secret becomes vulnerable to robberies or accidental leaks, effectively getting

Decentralize trust with threshold cryptography 171

+
The secret is a random line. With one point, you can The curve can be reconstructed
Pick two random points on define an infinite number only with the knowledge
the line as partial keys. of lines passing through it. of the two points.

Figure 8.13 The idea behind the Shamir’s Secret Sharing scheme is to see a polynomial defining a
curve as the secret and random points on the curve as partial keys. To recover a polynomial of degree
n that defines a curve, one needs to know n + 1 points on the curve. For example, f(x) = 3x + 5 is of
degree 1, so you need any two points (x, f(x)) to recover the polynomial, and f(x) = 5x% + 2x + 3 is
of degree 2, so you need any three points to recover the polynomial.

us back to a single point of failuremodel. To avoid this single point of failure issue, there
exist several cryptographic techniques that can be useful in different scenarios.

For example, imagine a protocol that accepts a financial transaction only if it has
been signed by Alice. This places a large burden on Alice, who might be afraid of get-
ting targeted by attackers. In order to reduce the impact of an attack on Alice, we can,
instead, change the protocol to accept (on the same transaction) a number 7 of signa-
tures from n different public keys, including Alice’s. An attacker would have to com-
promise all n signatures in order to forge a valid transaction! Such systems are called
multi-signature (often shortened as multi-sig) and are widely adopted in the cryptocur-
rency space.

Naive multi-signature schemes, though, can add some annoying overhead. Indeed,
the size of a transaction in our example grows linearly with the number of signatures
required. To solve this, some signature schemes (like the BLS signature scheme) can
compress several signatures down to a single one. This is called signature aggregation.
Some multi-signature schemes go even further in the compression by allowing the n
public keys to be aggregated into a single public key. This technique is called distrib-
uled key generation (DKG) and is part of a field of cryptography called secure multi-party
computation, which I will cover in chapter 15.

DKG lets n participants collaboratively compute a public key without ever hav-
ing the associated private key in the clear during the process (unlike SSS, there is
no dealer). If participants want to sign a message, they can then collaboratively cre-
ate a signature using each participant’s private shares, which can be verified using
the public key they previously created. Again, the private key never exists physically,
preventing the single point of failure problem SSS has. Because you saw Schnorr
signatures in chapter 7, figure 8.14 shows the intuition behind a simplified Schnorr
DKG scheme.

172 CHAPTER 8 Randomness and secrets
Y,=g? R,=g? c=HASH(Y, R, m)
V=@ Y,=g° R, =g" Hazg"-*
S, =1+ CXX,
S,=r+CxX
20 2 2 (R, S=s,+5,+85,)
S,=r,+CXX,
Y=Y, xY,xY, R=R xR,xR,

Y is the aggregated
public key.

R is generated
distributively.

Independent signatures

Aggregated signature

Figure 8.14 The Schnorr signature scheme can be decentralized into a distributed key generation scheme.

Finally, note that

Each scheme I've mentioned can be made to work even when only a threshold
m out of the n participants take part in the protocol. This is really important
as most real-world systems must tolerate a number of malicious or inactive
participants.

These types of schemes can work with other asymmetric cryptographic algo-
rithms. For example, using threshold encryption, a set of participants can col-
laborate to asymmetrically decrypt a message.

I review all these examples in figure 8.15.

Private key Private key 1 Private key 2
¥ ¥
Private key 1 Private key 2 | Signs | | Signs | Public key 1 Public key 2
i : 7 N ¥
Share 1 Share 2 | Signs | | Signs | Signature 1 Signature 2 DKG

N I'd T 7

Signature 1 Signature 2 Aggregate Public key
Private key Signature

Shamir secret sharing

Naive multi signatures

Aggregated signatures

Distributed key generation

Figure 8.15 A recap of existing techniques to split the trust we have in one participant into several

participants.

Threshold schemes are an important new paradigm in the key management world,
and itis a good idea to follow their development. NIST currently has a threshold cryp-

tography group, which organizes workshops and has the intent to standardize primi-
tives and protocols in the long run.

Summary 173

Summary

A number is taken uniformly and at random from a set if it was picked with

equal probability compared to all the other numbers from that set.

Entropy is a metric to indicate how much randomness a byte string has. High

entropy refers to byte strings that are uniformly random, while low entropy

refers to byte strings that are easy to guess or predict.

Pseudorandom number generators (PRNGs) are algorithms that take a uni-

formly random seed and generate (in practice) a nearly infinite amount of ran-

domness that can be used for cryptographic purposes (as cryptographic keys,

for example) if the seed is large enough.

To obtain random numbers, one should rely on a programming language’s stan-

dard library or on its well-known cryptographic libraries. If these are not avail-

able, operating systems generally provide interfaces to obtain random numbers:

— Windows offers the BCryptGenRandom system call.

— Linux and FreeBSD offer the getrandom system call.

— Other Unix-like operating systems usually have a special file called /dev/
urandom that exhibites randomness.

Key derivation functions (KDFs) are useful in scenarios where one wants to

derive secrets from a biased but high entropy secret.

HKDF (HMAC-based key derivation function) is the most widely used KDF and

is based on HMAC.

Key management is the field of keeping secrets, well, secret. It mostly consists of

finding where to store secrets, proactively expiring and rotating secrets, figur-

ing out what to do when secrets are compromised, and so on.

To lessen the burden of key management, one can split the trust from one par-

ticipant into multiple participants.

Part 2

Protocols: The recipes

of cryptography

You are now entering the second part of this book, which is going to make

use of most of what you’ve learned in the first part. Think about it this way: if the
cryptographic primitives you've learned about were the basic ingredients of
cryptography, you’re now about to learn some recipes. And there’s a lot to cook!
While Caesar might have only been interested in encrypting his communica-
tions, today cryptography is all over the place, and it’s quite hard to keep track of
it all.

In chapter 9, 10, and 11, I show you where you are most likely to run into
cryptography and how cryptography is used to solve real-world problems; that is,
how cryptography encrypts communications and how it authenticates partici-
pants in protocols. For the most part, that’s what cryptography is about. Partici-
pants will be numerous or few, and made of bits or flesh. As you’ll quickly realize,
real-world cryptography is about tradeoffs and, based on the context, solutions
will differ.

Chapter 12 and 13 take you into two quickly evolving fields of cryptography:
cryptocurrencies and hardware cryptography. The former topic has been ignored
by most books on cryptography. (I believe that this book, Real-World Cryptography,
is the first cryptography book to include a chapter on cryptocurrencies.) The lat-
ter topic, hardware cryptography, is often overlooked too; cryptographers often
assume that their primitives and protocols run in a trusted environment, which
is less and less the case. Hardware cryptography is about pushing the boundaries

176

PART 2 Protocols: The recipes of cryptography

of where cryptography can run and providing security assurances when attackers are
getting closer and closer to you.

In chapters 14 and 15, I touch on the bleeding edge: what’s not here yet but will be
and what’s sort of here. You’ll learn about postquantum cryptography, which is a field
of cryptography that might be useful, depending on if we, as a human species, invent
scalable quantum computers. These quantum computers, based on novel paradigms
coming from the realm of quantum physics, could revolutionize research and, per-
haps, even break our crypto . . . You'll also learn about what I call “next-generation
cryptography,” cryptographic primitives that have rarely seen the light of day but that
you will most likely see more frequently as these get studied, become more efficient,
and get adopted by application designers. Finally, I conclude the book in chapter 16
with some final remarks on real-world cryptography and some words on ethics.

Secure transport

This chapter covers

= Secure transport protocols
= The Transport Layer Security (TLS) protocol
= The Noise protocol framework

The heaviest use of cryptography today is most probably to encrypt communica-
tions. After all, cryptography was invented for this purpose. To do this, applications
generally do not make use of cryptographic primitives like authenticated encryp-
tion directly, but instead use much more involved protocols that abstract the use of
the cryptographic primitives. I call these protocols secure transport protocols, for lack
of a better term.

In this chapter, you will learn about the most widely used secure transport pro-
tocol: the Transport Layer Security (TLS) protocol. I will also lightly cover other
secure transport protocols and how they differ from TLS.

The SSL and TLS secure transport protocols

In order to understand why transport protocols (protocols used to encrypt communi-
cations between machines) are a thing, let’s walk through a motivating scenario.
When you enter, say, http://example.comin your web browser, your browser uses a

177

178

9.11

CHAPTER 9 Secure transport

number of protocols to connect to a web server and to retrieve the page you
requested. One of those is the Hypertext Transfer Protocol (HTTP), which your browser
uses to tell the web server on the other side which page itis interested in. HTTP uses a
human-readable format. This means that you can look at the HTTP messages that are
being sent and received over the wire and read them without the help of any other
tool. But this is not enough for your browser to communicate to the web server.

HTTP messages are encapsulated into other types of messages, called TCP frames,
which are defined in the Transmission Control Protocol (TCP). TCP is a binary pro-
tocol, and thus, it is not human-readable: you need a tool to understand the fields of
a TCP frame. TCP messages are further encapsulated using the Internet Protocol
(IP), and IP messages are further encapsulated using something else. This is known
as the Internet protocol suite, and as it is the subject of many books, I won’t go much
further into this.

Back to our scenario, as there’s a confidentiality issue that we need to talk about.
Anyone sitting on the wire in between your browser and the web server of example.com
has an interesting position: they can passively observe and read your requests as well as
the server’s responses. Worse, MITM attackers can also actively tamper and reorder
messages. This is not great.

Imagine your credit card information leaking out every time you buy something on
the internet, your passwords being stolen when you log into a website, your pictures and
private messages pilfered as you send those to your friends, and so forth. This scared
enough people that in the 1990s, the predecessor of TLS—the Secure Sockets Layer (SSL)
protocol—was born. While SSL can be used in different kinds of situations, it was first
built by and for web browsers. As such, it started being used in combination with HTTP,
extending it into the Hypertext Transfer Protocol Secure (HTTPS). HTTPS now allowed
browsers to secure their communications to the different websites they visited.

From SSL to TLS

Although SSL was not the only protocol that attempted to secure some of the web, it
did attract most of the attention and, with time, has become the de facto standard. But
this is not the whole story. Between the first version of SSL and what we currently use
today, a lot has happened. All versions of SSL (the last being SSL v3.0) were broken
due to a combination of bad design and bad cryptographic algorithms. (Many of the
attacks have been summarized in RFC 7457.)

After SSL 3.0, the protocol was officially transferred to the Internet Engineering
Task Force (IETF), the organization in charge of publishing Request For Comments
(RFCs) standards. The name SSL was dropped in favor of TLS, and TLS 1.0 was
released in 1999 as RFC 2246. The most recent version of TLS is TLS 1.3, specified
in RFC 8446 and published in 2018. TLS 1.3, unlike its predecessor, stems from a
solid collaboration between the industry and academia. Yet, today, the internet is
still divided between many different versions of SSL and TLS as servers have been
slow to update.

http://example.com

9.1.2

The SSL and TLS secure transport protocols 179

NOTE There’s a lot of confusion around the two names SSL and TLS. The
protocol is now called TLS, but many articles and even libraries still choose to
use the term SSL.

TLS has become more than just the protocol securing the web; it is now used in many
different scenarios and among many different types of applications and devices as a
protocol to secure communications. Thus, what you will learn about TLS in this chap-
ter is not only useful for the web, but also for any scenario where communications
between two applications need to be secure.

Using TLS in practice

How do people use TLS? First let’s define some terms. In TLS, the two participants
that want to secure their communications are called a client and a server. It works the
same way as with other network protocols like TCP or IP: the client is the one that ini-
tiates the connection, and the server is the one that waits for one to be initiated. A
TLS client is typically built from

= Some configuration—A client is configured with the versions of SSL and TLS that
it wants to support, cryptographic algorithms that it is willing to use to secure
the connection, ways it can authenticate servers, and so on.

= Some information about the server it wants to connect to—It includes at least an IP
address and a port, but for the web, it often includes a fully qualified domain
name instead (like example.com).

Given these two arguments, a client can initiate a connection with a server to produce
a secure session, a channel that both the client and the server can use to share
encrypted messages with each other. In some cases, a secure session cannot success-
fully be created and fails midway. For example, if an attacker attempts to tamper with
the connection or if the server’s configuration is not compatible with the client’s
(more on that later), the client fails to establish a secure session.

ATLS server is often much simpler as it only takes a configuration, which is similar
to the client’s configuration. A server then waits for clients to connect to it in order to
produce a secure session. In practice, using TLS on the client side can be as easy as
the following listing demonstrates (that is, if you use a programming language like
Golang).

Listing 9.1 A TLS client in Golang

The fully qualified domain name

import "crypto/tls" and the server’s port (443 is the
func main() { default port for HTTPS). An empty config
destination := "google.com:443" serves as t.he default
TLSconfig := &tls.Config{} configuration.
conn, err := tls.Dial("tcp", destination, TLSconfig)
if err != nil {

panic("failed to connect: " + err.Error())

180 CHAPTER 9 Secure transport

}

conn.Close ()

How does the client know that the connection it established is really with google.com
and not some impersonator? By default, Golang’s TLS implementation uses your oper-
ating system’s configuration to figure out how to authenticate TLS servers. (Later in this
chapter, you will learn exactly how the authentication in TLS works.) Using TLS on the
server side is pretty easy as well. The following listing shows how simple this is.

Listing 9.2 A TLS server in Golang

import (
"crypto/tls"
"net/http"

)

func hello(rw http.ResponseWriter, req *http.Request) {
rw.Write ([]byte ("Hello, world\n"))

}

func main() {
config := &tls.Config{
MinVersion: tls.VersionTLS13,

A solid minimal
configuration for
a TLS 1.3 server

}

http.HandleFunc("/", hello) <—— Serves a simple page displaying “Hello, world”.
server := &http.Server{ An HTTPS server
Addr: ":8080", starts on port
TLSConfig: config, 8080.
}
cert := "cert.pem"
K " " Some .pem files
ey := "key.pem ntaining a certificate
err := server.ListenAndServeTLS (cert, key) co 2
)) and a secret key (more
if err != nil {

panic (err) on this later)
1

Golang and its standard library do a lot for us here. Unfortunately, not all languages’
standard libraries provide easy-to-use TLS implementations, if they provide a TLS
implementation at all, and not all TLS libraries provide secure-by-default implementa-
tions! For this reason, configuring a TLS server is not always straightforward, depend-
ing on the library. In the next section, you will learn about the inner workings of TLS
and its different subtleties.

NOTE TLS is a protocol that works on top of TCP. To secure UDP connec-
tions, we can use DTLS (D is for datagram, the term for UDP messages), which
is fairly similar to TLS. For this reason, I ignore DTLS in this chapter.

http://google.com
http://google.com

9.2

9.2.1

How does the TLS protocol work? 181

How does the TLS protocol work?

As I 'said earlier, today TLS is the de facto standard to secure communications between
applications. In this section, you will learn more about how TLS works underneath the
surface and how it is used in practice. You will find this section useful for learning how
to use TLS properly and also for understanding how most (if not all) secure transport
protocols work. You will also find out why it is hard (and strongly discouraged) to
redesign or reimplement such protocols.

At a high level, TLS is split into two phases as noted in the following list. Figure 9.1
illustrates this idea.

A handshake phase—A secure communication is negotiated and created between
two participants.

A post-handshake phase—Communications are encrypted between the two
participants.

|Client| |Server I

Handshake

»
< »

Figure 9.1 At a high level, secure transport protocols first
__Encrypted communication create a secure connection during a handshake phase. After
- " that, applications on both sides of the secure connection
can communicate securely.

At this point, because you learned about hybrid encryption in chapter 6, you should
have the following (correct) intuition about how these two steps works:

The handshake is, at its core, simply a key exchange. The handshake ends up with the
two participants agreeing on a set of symmetric keys.

The post-handshake phase is purely about encrypting messages between participants. This
phase uses an authenticated encryption algorithm and the set of keys produced
at the end of the handshake.

Most transport security protocols work this way, and the interesting parts of these proto-
cols always lie in the handshake phase. Next, let’s take a look at the handshake phase.

The TLS handshake

As you’ve seen, TLS is (and most transport security protocols are) divided into two
parts: a handshake and a post-handshake phase. In this section, you’ll learn about the
handshake first. The handshake itself has four aspects that I want to tell you about:

Negotiation—TLS is highly configurable. Both a client and a server can be con-
figured to negotiate a range of SSL and TLS versions as well as a menu of
acceptable cryptographic algorithms. The negotiation phase of the handshake
aims at finding common ground between the client’s and the server’s configu-
rations in order to securely connect the two peers.

182

CHAPTER 9 Secure transport

Key exchange—The whole point of the handshake is to perform a key exchange
between two participants. Which key exchange algorithm to use? This is one of
the things decided as part of the client/server negotiation process.
Authentication—As you learned in chapter 5 on key exchanges, it is trivial for
MITM attackers to impersonate any side of a key exchange. Due to this, key
exchanges must be authenticated. Your browser must have a way to ensure that it is
talking to google.com, for example, and not your internet service provider (ISP).
Session resumption—As browsers often connect to the same websites again and
again, key exchanges can be costly and can slow down a user’s experience. For
this reason, mechanisms to fast-track secure sessions without redoing a key
exchange are integrated into TLS.

This is a comprehensive list! As fast as greased lightning, let’s start with the first item.

NEGOTIATION IN TLS: WHAT VERSION AND WHAT ALGORITHMS?

Most of the complexity in TLS comes from the negotiation of the different moving
parts of the protocol. Infamously, this negotiation has also been the source of many
issues in the history of TLS. Attacks like FREAK, LOGJAM, DROWN, and others took
advantage of weaknesses present in older versions to break more recent versions of
the protocol (sometimes even when the server did not support older versions!). While
not all protocols have versioning or allow for different algorithms to be negotiated,
SSL/TLS was designed for the web. As such, SSL/TLS needed a way to maintain back-
ward compatibility with older clients and servers that could be slow to update.

This is what happens on the web today: your browser might be recent and up-to-
date and made to support TLS version 1.3, but when visiting some old web page,
chances are that the server behind it only supports TLS versions up to 1.2 or 1.1 (or
worse). Vice-versa, many websites must support older browsers, which translates into
supporting older versions of TLS (as some users are still stuck in the past).

Are older versions of SSL and TLS secure?

Most versions of SSL and TLS have security issues, except for TLS versions 1.2 and
1.3. Why not just support the latest version (1.3) and call it a day? The reason is that
some companies support older clients that can’t easily be updated. Due to these
requirements, it is not uncommon to find libraries implementing mitigations to known
attacks in order to securely support older versions. Unfortunately, these mitigations
are often too complex to implement correctly.

For example, well-known attacks like Luckyl3 and Bleichenbacher98 have been
rediscovered again and again by security researchers in various TLS implementations
that had previously attempted to fix the issues. Although it is possible to mitigate a
number of attacks on older TLS versions, | would recommend against it, and | am not
the only one telling you this. In March 2021, the IETF published RFC 8996: “Depre-
cating TLS 1.0 and TLS 1.1,” effectively making the deprecation official.

How does the TLS protocol work? 183

Negotiation starts with the client sending a first request (called a ClientHello) to the
server. The ClientHello contains a range of supported SSL and TLS versions, a suite of
cryptographic algorithms that the client is willing to use, and some more information
that could be relevant for the rest of the handshake or for the application. The suite
of cryptographic algorithms include

One or more key exchange algorithms—TLS 1.3 defines the following algorithms
allowed for negotiations: ECDH with P-256, P-384, P-521, X25519, X448, and
FFDH with the groups defined in RFC 7919. I talked about all of these in chap-
ter 5. Previous versions of TLS also offered RSA key exchanges (covered in
chapter 6), but they were removed in the last version.

Two (for different parts of the handshake) or more digital signature algorithms—TLS 1.3
specifies RSA PKCS#1 version 1.5 and the newer RSA-PSS, as well as more
recent elliptic curve algorithms like ECDSA and EdDSA. I talked about these in
chapter 7. Note that digital signatures are specified with a hash function, which
allows you to negotiate, for example, RSA-PSS with either SHA-256 or SHA-512.
One or more hash functions to be used with HMAC and HKDF—TLS 1.3 specifies
SHA-256 and SHA-384, two instances of the SHA-2 hash function. (You learned
about SHA-2 in chapter 2.) This choice of hash function is unrelated to the one
used by the digital signature algorithm. As a reminder, HMAC is the message
authentication code you learned in chapter 3, and HKDF is the key derivation
function we covered in chapter 8.

One or more authenticated encryption algorithms—These can include AES-GCM with
keys of 128 or 256 bits, ChaCha20-Poly1305, and AES-CCM. I talked about all of
these in chapter 4.

The server then responds with a ServerHello message, which contains one of each type
of cryptographic algorithm, cherry-picked from the client’s selection. The following
illustration depicts this response.

HEUS! | UMT To cowecT newo ! foe sues .

WiTH Tts 1.3, | SURPORT xM: LET'S DO x25510 FoR KEY
MO X22519 FoR VEY BXCUMIGES, EXCHGE | pes-GeH For
AES-GCN AND cupOIND-BLNH35 AUTHEWTICATED ENCRYPTiON, ETC.

¢or AUTHE WTICATED EXCRYPTION - ETC.

If the server is unable to find an algorithm it supports, it aborts the connection.
Although in some cases, the server does not have to abort the connection and can ask

184

CHAPTER 9 Secure transport

the client to provide more information instead. To do this, the server replies with a
message called a HelloRetryRequest, asking for the missing piece of information. The cli-
ent can then resend its ClientHello, this time with the added requested information.

TLS AND FORWARD-SECURE KEY EXCHANGES

The key exchange is the most important part of the TLS handshake! Without it,
there’s obviously no symmetric key being negotiated. But for a key exchange to hap-
pen, the client and the server must first trade their respective public keys.

In TLS 1.2 and previous versions, the client and the server start a key exchange
only after both participants agree on which key exchange algorithm to use. This hap-
pens during a negotiation phase. TLS 1.3 optimizes this flow by attempting to do
both the negotiation and the key exchange at the same time: the client speculatively
chooses a key exchange algorithm and sends a public key in the first message (the
ClientHello). If the client fails to predict the server’s choice of key exchange algo-
rithm, then the client falls back to the outcome of the negotiation and sends a new
ClientHello containing the correct public key. The following steps describe how this
might look. I illustrate the difference in figure 9.2.

The client sends a TLS 1.3 ClientHello message announcing that it can do
either an X25519 or an X448 key exchange. It also sends an X25519 public key.
The server does not support X25519 but does support X448. It sends a Hello-
RetryRequest to the client announcing that it only supports X448.

The client sends the same ClientHello but with an X448 public key instead.
The handshake goes on.

TLS 1.2 TLS 1.3
|CIient| |Server| |Client| |Server|
ClientHello N ClientHello + public key
ServerHello _
Here's my public key _ ServerHello + public key

Here’s my public key

&
<

v

F 3

Figure 9.2 In TLS 1.2, the client waits for the server to choose which key
exchange algorithm to use before sending a public key. In TLS 1.3, the
client speculates on which key exchange algorithm(s) the server will settle
on and preemptively sends a public key (or several) in the first message,
potentially avoiding an extra round trip.

TLS 1.3 is full of such optimizations, which are important for the web. Indeed, many
people worldwide have unstable or slow connections, and it is important to keep non-
application communication to the bare minimum required. Furthermore, in TLS 1.3

How does the TLS protocol work? 185

(and unlike previous versions of TLS), all key exchanges are ephemeral. This means
that for each new session, the client and the server both generate new key pairs, then
get rid of them as soon as the key exchange is done. This provides forward secrecy to the
key exchange: a compromise of the long-term keys of the client or the server, which
won’t allow an attacker to decrypt this session as long as the ephemeral private keys
were safely deleted.

Imagine what would happen if, instead, a TLS server used a single private key for
every key exchange it performs with its clients. By performing ephemeral key
exchanges and getting rid of private keys as soon as a handshake ends, the server pro-
tects against such attackers. I illustrate this in figure 9.3.

Session with Session with
Armand Thomas

Session with Session with Session with
JC Misha Mary

: ‘ > : » Time Figure 9.3 In TLS 1.3, each session
starts with an ephemeral key exchange.
If a server is compromised at some point
Server private key in time, no previous sessions will be
impacted.

is compromised

Exercise

A compromise of the server’s private key at some point in time would be devastating
as MITM attackers would then be able to decrypt all previously recorded conversa-
tions. Do you understand how this can happen?

Once ephemeral public keys are traded, a key exchange is performed, and keys can be
derived. TLS 1.3 derives different keys at different points in time to encrypt different
phases with independent keys.

The first two messages, the ClientHello and the ServerHello, cannot be encrypted
because no public keys were traded at this point. But after that, as soon as the key
exchange happens, TLS 1.3 encrypts the rest of the handshake. (This is unlike previ-
ous versions of TLS that did not encrypt any of the handshake messages.)

To derive the different keys, TLS 1.3 uses HKDF with the hash function negotiated.
HKDF-Extract is used on the output of the key exchange to remove any biases, while
HKDF-Expand is used with different info parameters to derive the encryption keys.
For example, t1s13 ¢ hs traffic (for “client handshake traffic”) is used to derive
symmetric keys for the client to encrypt to the server during the handshake, and
t1lsl3 s ap traffic (for “server application traffic”) is used to derive symmetric keys
for the server to encrypt to the client after the handshake. Remember though, unau-
thenticated key exchanges are insecure! Next, you’ll see how TLS addresses this.

186

CHAPTER 9 Secure transport

TLS AUTHENTICATION AND THE WEB PUBLIC KEY INFRASTRUCTURE
After some negotiations and after the key exchange has taken place, the handshake
must go on. What happens next is the other most important part of TLS—authentication.

You saw in chapter 5 on key exchanges that it is trivial to intercept a key exchange

and impersonate one or both sides of the key exchange. In this section, I’ll explain
how your browser cryptographically validates that it is talking to the right website and
not to an impersonator. But, first, let’s take a step back. There is something I haven’t
told you yet. A TLS 1.3 handshake is actually split into three different stages (as fig-
ure 9.4 illustrates):

|Client|

Key exchange—This phase contains the ClientHello and ServerHello messages that
provide some negotiation and perform the key exchange. All messages includ-
ing handshake messages after this phase are encrypted.

Server parameters—Messages in this phase contain additional negotiation data
from the server. This is negotiation data that does not have to be contained in
the first message of the server and that could benefit from being encrypted.
Authentication—This phase includes authentication information from both the
server and the client.

|Server I

Key exchange

Server parameters

A A A

Authentication

v

Post-handshake > Figure 9.4 A TLS 1.3 handshake is divided into three

r 3

A

phases: the key exchange phase, the server parameters
phase, and (finally) the authentication phase.

On the web, authentication in TLS is usually one-sided. Only the browser verifies that
google.com, for example, is indeed google.com, but google.com does not verify who
you are (or at least not as part of TLS).

Mutually-authenticated TLS

Client authentication is often delegated to the application layer for the web, most
often via a form asking you for your credentials. That being said, client authentication
can also happen in TLS if requested by the server during the server parameters
phase. When both sides of the connection are authenticated, we talk about mutually-
authenticated TLS (sometimes abbreviated as mTLS).

Client authentication is done the same way as server authentication. This can hap-
pen at any point after the authentication of the server (for example, during the hand-
shake or in the post-handshake phase).

How does the TLS protocol work? 187

Let’s now answer the question, “When connecting to google.com, how does your
browser verify that you are indeed handshaking with google.com?” The answer is by
using the web public key infrastructure (web PKI).

You learned about the concept of public key infrastructure in chapter 7 on digital
signatures, but let me briefly reintroduce this concept as it is quite important in
understanding how the web works. There are two sides to the web PKI. First, browsers
must trust a set of root public keys that we call certificate authorities (CAs). Usually,
browsers will either use a hardcoded set of trusted public keys or will rely on the oper-
ating system to provide them.

The web PKI

For the web, there exist hundreds of these CAs that are independently run by different
companies and organizations across the world. It is quite a complex system to ana-
lyze, and these CAs can sometimes also sign the public keys of intermediate CAs
that, in turn, also have the authority to sign the public keys of websites. For this rea-
son, organizations like the Certification Authority Browser Forum (CA/Browser Forum)
enforce rules and decide when new organizations can join the set of trusted public
keys or when a CA can no longer be trusted and must be removed from that set.

Second, websites that want to use HTTPS must have a way to obtain a certification (a sig-
nature of their signing public key) from these CAs. In order to do this, a website owner
(or a webmaster, as we used to say) must prove to a CA that they own a specific domain.

NOTE Obtaining a certificate for your own website used to involve a fee. This
is no longer the case as CAs like Let’s Encrypt provide certificates for free.

To prove that you own example.com, for example, a CA might ask you to host a file at
example.com/some_path/file.txt that contains some random numbers generated for
your request. The following comic strip shows this exchange.

ooy SURE. CANY0U LookS GAD. WERE
i EXAMPLE cor s
ch; i (,:'"E YE & UPLOAD THIS FiLE 1S YoUR (eRificais
cuﬁavpuc AT ol THE TO EXMMRE cot /File ? Sigued BY ME

PeLic kEY ox37A1.-

cEeTiFlont

LRI TY
T

After this, a CA can provide a signature over the website’s public key. As the CA’s sig-
nature is usually valid for a period of years, we say that it is over a long-term signing

188

CHAPTER 9 Secure transport

public key (as opposed to an ephemeral public key). More specifically, CAs do not
actually sign public keys, but instead they sign certificates (more on this later). A certifi-
cate contains the long-term public key, along with some additional important meta-
data like the web page’s domain name.

To prove to your browser that the server it is talking to is indeed google.com, the
server sends a certificate chain as part of the TLS handshake. The chain comprises

Its own leaf certificate, containing (among others) the domain name (google
.com, for example), Google’s long-term signing public key, as well as a CA’s
signature

A chain of intermediate CA certificates from the one that signed Google’s cer-
tificate to the root CA that signed the last intermediate CA

This is a bit wordy so I illustrated this in figure 9.5.

Trust Store contains
Root Certificate Authorities.

Signs _L L... N

Intermediate A L A A
certificate authority . .
Signs
google.com

leaf certificate

Figure 9.5 Web browsers only have to trust a relatively small set
of root CAs in order to trust the whole web. These CAs are stored in
what is called a trust store. In order for a website to be trusted by a
browser, the website must have its leaf certificate signed by one of
these CAs. Sometimes root CAs only sign intermediate CAs, which,
in turn, sign other intermediate CAs or leaf certificates. This is what’s
known as the web PKI.

The certificate chain is sent in a certificate TLS message by the server and by the cli-
ent as if the client has been asked to authenticate. Following this, the server can use its
certified long-term key pair to sign all handshake messages that have been received
and previously sent in what is called a CertificateVerify message. Figure 9.6 reviews this
flow, where only the server authenticates itself.

The signature in the CertificateVerify message proves to the client what the server
has so far seen. Without this signature, a MITM attacker could intercept the server’s
handshake messages and replace the ephemeral public key of the server contained in
the ServerHello message, allowing the attacker to successfully impersonate the server.
Take a few moments to understand why an attacker cannot replace the server’s ephem-
eral public key in the presence of the CertificateVerify signature.

http://google.com
http://google.com
http://google.com

How does the TLS protocol work? 189

ClientHello with my
ephemeral public key

Web browser ServerHello with my Web server
o ephemeral public key

&
<

Figure 9.6 The authentication
part of a handshake starts with the
server sending a certificate chain
> to the client. The certificate chain
starts with the leaf certificate
(the certificate containing the

Server parameters

Authentication

My certificate [website’s public key and additional
__and a certificate chain metadata like the domain name)
) All handshake and ends with a root certificate
messages signed by . that is trusted by the browser.

Each certificate contains a
signature from the certificate
above it in the chain.

A

A
v

Story time

A few years ago, | was hired to review a custom TLS protocol made by a large com-
pany. It turned out that their protocol had the server provide a signature that did not
cover the ephemeral key. When | told them about the issue, the whole room went
silent for a full minute. It was, of course, a substantial mistake: an attacker who
could have intercepted the custom handshake and replaced the ephemeral key with
its own would have successfully impersonated the server.

The lesson here is that it is important not to reinvent the wheel. Secure transport pro-
tocols are hard to get right, and if history has shown anything, they can fail in many
unexpected ways. Instead, you should rely on mature protocols like TLS and make
sure you use a popular implementation that has received a substantial amount of
public attention.

Finally, in order to officially end the handshake, both sides of the connection must
send a Finished message as part of the authentication phase. A Finished message con-
tains an authentication tag produced by HMAC, instantiated with the negotiated hash
function for the session. This allows both the client and the server to tell the other
side, “These are all the messages I have sent and received in order during this hand-
shake.” If the handshake is intercepted and tampered with by MITM attackers, this
integrity check allows the participants to detect and abort the connection. This is
especially useful as some handshakes modes are not signed (more on this later).

Before heading to a different aspect of the handshake, let’s look at X.509 certifi-
cates. They are an important detail of many cryptographic protocols.

190

CHAPTER 9 Secure transport

AUTHENTICATION VIA X.509 CERTIFICATES
While certificates are optional in TLS 1.3 (you can always use plain keys), many appli-
cations and protocols, not just the web, make heavy use of them in order to certify
additional metadata. Specifically, the X.509 certificate standard version 3 is used.
X.509 is a pretty old standard that was meant to be flexible enough to be used in a
multitude of scenarios: from email to web pages. The X.509 standard uses a descrip-
tion language called Abstract Syntax Notation One (ASN.1) to specify information con-
tained in a certificate. A data structure described in ASN.1 looks like this:

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signaturevalue BIT STRING }

You can literally read this as a structure that contains three fields:

tbsCertificate—The to-be-signed certificate. This contains all the informa-
tion that one wants to certify. For the web, this can contain a domain name
(google.com, for example), a public key, an expiration date, and so on.
signatureAlgorithm—The algorithm used to sign the certificate.
signatureValue—The signature from a CA.

Exercise

The values signatureAlgorithm and signatureValue are not contained in the
actual certificate, tbsCertificate. Do you know why?

You can easily check what’s in an X.509 certificate by connecting to any website using
HTTPS and then using your browser functionalities to observe the certificate chain
sent by the server. See figure 9.7 for an example.

You might encounter X.509 certificates as .pem files, which is some base64-
encoded content surrounded by some human-readable hint of what the base64-encoded
data contains (here, a certificate). The following snippet represents the content of a
certificate in a .pem format:

MIIJQzCCCCugAwIBAgIQClQW6WUXJI9ICAAAAAELPA]jANBgkghkiGOwOBAQSFADBC
MQswCQYDVQQGEwJVUzEeMBwWGA1UEChMVR29vZ2x1IFRydXNOIFNlcnZpY2VzMRMw
EQYDVQQODEwWpHVFMgQOEgMU8xMB4XDTESMTAWMzE3MDk ONVOoXDTESMTIyN]jE3MDkO
NVowZjELMAKGA1UEBhMCVVMXEzARBgGNVBAGTCkNhbG1mb3JuaWEXFjAUBgNVBACT
[...]
vaoUgelfNJJIvQjIbMQObSQEP9y8EIi4BnWGZjU6Q+q/3VZ7ybR3cOzhnal.GmgiwFv
4PNBAnVVEVbQICxRiplKVzZSnUvypgBLryYnlekquhlAJS5gnJhzogrz98IiXCQZ
c7mkvTKgCNIR9fedIus+LPHCSD72zUQTgRoOmMcB+kwY7jrFgKkn6thTjwPnfB5aVNK
dl0ng4 fcF8PN+ppgNFbwC2JxX08L1IwWEFk2LvDOQgKgHRITRJOU3A2gkuMt£6Q6au
3KBzGW61/vt3coyyDkQKDmT61t jwy5Sk=

How does the TLS protocol work? 191

google.com

o X
Connection is secure EJ GlobalSign
Your information (for example, passwords or credit “ 15 GTSCA101
card numbers) is private when it is sent to this LM gu g e Com
site. Learn more
— *.google.com

Q@ Location Allow - e Issued by: GTS CA 101

Expires: Thursday, December 26, 2019 at 9:09:45 AM Pacific
Standard Time

@ This certificate is valid
@ Certificate (valid) ¥ Details
Subject Name
Cookies (20 in use) Country or Region US
State/Province California
Q Site settings Locality Mountain View

Organization Google LLC
Common Name *.google.com

Q Issuer Name
Country or Region US
Organization Google Trust Services
Common Name GTS CA101

Serial Number 0B 54 16 E9 65 17 27 D2 02 00 00 00 00 46 CF 76

OK

Figure 9.7 Using Chrome’s Certificate Viewer, we can observe the certificate chain sent by Google’s server. The
root CA is Global Sign, which is trusted by your browser. Down the chain, an intermediate CA called GTS CA 101
is trusted due to its certificate containing a signature from Global Sign. In turn, Google’s leaf certificate, valid for
*.google.com (google.com, mail.google.com, and so on), contains a signature from GTS CA 101.

If you decode the base64 content surrounded by BEGIN CERTIFICATE and END CERTIF-
ICATE, you end up with a Distinguished Encoding Rules (DER) encoded certificate. DER
is a deterministic (only one way to encode) binary encoding used to translate X.509 cer-
tificates into bytes. All these encodings are often quite confusing to newcomers! I
recap all of this in figure 9.8.

DER only encodes information as “here is an integer” or “this is a bytearray.” Field
names described in ASN.1 (like tbsCertificate) are lost after encoding. Decoding
DER without the knowledge of the original ASN.1 description of what each field truly
means is thus pointless. Handy command-line tools like OpenSSL allow you to decode
and translate in human terms the content of a DER-encoded certificate. For example,
if you download google.com’s certificate, you can use the following code snippet to
display its content in your terminal.

192 CHAPTER 9 Secure transport

DER

3082037b30820263a003020102020101
3004060922864886£70d010105050030

ASN.1 5£310b30090603550406130254573112

3010060355040a0c0954414957414e2d

Certificate ::= SEQUENCE { 43413110300€060355040b0c07526£6f

tbsCertificate TBSCertificate, | 742043413122302806035504030c2154

signaturerlgorithm AlgorithmIdentifier, 57434120526£6£742043657274696669
signaturevValue BIT STRING .1

301e170d303830383238303732343333

5a170d3330313233313135353935395a
305£310b300906035504061302545731
123010060355040a0c0954414957414e
2d43413110300€060355040b0c07526£

————— BEGIN CERTIFICATE----- 6£74204341312a302806035504030c21
MIIJQzCCCCugAwIBAgIQCIQWEWUXJI9ICAAAAAEDPA]ANBgkghkiGOwOBAQSFADBC 5457434120526£6£7420436572746966
MQswWCQYDVQQGEWIVUZEEMBWGALUEChMVR29vZ2x1 I FRydXNO IFN1cnZpY2VzMRMw 69636174696£6e20417574686£726974
EQYDVQQDEWpHVFMgQOEgMU8XMB4XDTESMTAWMZE3MDk ONVOXDTESMTIyNj E3MDk 0O 7930820122300d06092a864886£70d01
NVowZj ELMAKGA1UEBhMCVVMxEzARBGNVBAGTCKNhbG1mb3 JuaWEXF j AUBGNVBACT l

[...1

vaoUgel £NJJvQj JbMObSQEPIy8ETi4BnNGZU6Q+q/3VZTybR3cOzhnaLemgiwFy

4PNBANVVEVbQICKRiplKVZZSnUVypgBLry¥Ynl6kquhlAJS5gnThzogrz981iXCQz \ MITJQzCCCCugAWIBAGTQC1QWEWUXJIS I CAAARAEDPA] ANBgkahk i GIwOBAQSFADBC
C7mkvTKgCNIR9fedTus+LPHCSD7ZUQTgROOMCB +kwY 73 rFqKn6 thTjwPnfB5avNK MQSWCQYDVQQGEWIVUZEeMBWGALUEChMVR2 9vZ2x 1 IFRYdXNOIFN1cnZpY2VzMRMw
d10nq4 £ CF8PN+ppgNFbwC2JxX08L1WwEFk2LvDOQGKGHR1 TRI0OU3A2gkuMt £6Q6au EQYDVQQDEWPHVFMgQOEGMU8XMB4XDTESMTAWMZE3MDK ONVOXDTESMTTyNj E3MDk O
3KBzGW61/vt3coyyDkQKDMT61t jwySk= NVowZj ELMAKGA1UEBhMCVVMxEZzARBGNVBAGTCkNhbG1mb3 JuaWEXFj AUBGNVBACT
————— END CERTIFICATE----- [...1

vaoUqel £NJIVQ] JbMObSQEpPIY8ET i4BnWGZ U6Q+q/3VZ7ybR3cOzhnaLlemgiwFy
PEM 4PNBANVVEVHQICXR1ip1KVZZSnUvypgBLry¥Ynl6kquhlAJS5gnThzogrz981iXCQz
c7mkvTKgCNIR9 fedTus+LPHCSD7zUQTGRoONCE+kwY7j rFGKn6thTwPnfB5aVNK
d10ng4 £ CF8PN+ppgNFbwC2JxX08L1wEFk2LvDOQGKGHR1 TRIOU3A2gkuMt £6Q6au
3KBzGW61/vt3coyyDkQKDMT61tjwySk=

Base64

Figure 9.8 On the top left corner, an X.509 certificate is written using the ASN.1 notation. It is then
transformed into bytes that can be signed via the DER encoding. As this is not text that can easily be
copied around or recognized by humans, it is base64-encoded. The last touch wraps the base64 data
with some handy contextual information using the PEM format.

$ openssl x509 -in google.pem -text
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
0b:54:16:€9:65:17:27:d2:02:00:00:00:00:46:cf:76
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = US, O = Google Trust Services, CN = GTS CA 101
Validity
Not Before: Oct 3 17:09:45 2019 GMT
Not After : Dec 26 17:09:45 2019 GMT
Subject: C = US, ST = California, L = Mountain View, O = Google LLC,
CN = *.google.com
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:74:25:79:7d:6f:77:e4:7e:af:fb:1a:eb:4d:41:
b5:27:10:4a:9e:b8:a2:8c:83:ee:d2:0f:12:7£:d1:
77:a7:0£:79:fe:4b:cb:b7:ed:c6:94:4a:02:6d:40:
5c:31:68:18:b6:df:ba:35:e7:£f3:7e:af:39:2d:5b:
43:2d:48:0a:54
ASN1 OID: prime256vl
NIST CURVE: P-256

Having said all of this, X.509 certificates are quite controversial. Validating X.509 cer-
tificates has been comically dubbed “the most dangerous code in the world” by a team

How does the TLS protocol work? 193

of researchers in 2012. This is because DER encoding is a difficult protocol to parse
correctly, and the complexity of X.509 certificates makes for many mistakes to be
potentially devastating. For this reason, I don’t recommend any modern application
to use X.509 certificates unless it has to.

PRE-SHARED KEYS AND SESSION RESUMPTION IN TLS OR HOW TO AVOID KEY EXCHANGES

Key exchanges can be costly and are sometimes not needed. For example, you might
have two machines that only connect to each other, and you might not want to have to
deal with a public key infrastructure in order to secure their communications. TLS 1.3
offers a way to avoid this overhead with pre-shared keys (PSKs). A PSK is simply a secret
that both the client and the server know, one that can be used to derive symmetric
keys for the session.

In TLS 1.3, a PSK handshake works by having the client advertise in its ClientHello
message that it supports a list of PSK identifiers. If the server recognizes one of the
PSK IDs, it can say so in its response (the ServerHello message), and both can then
avoid doing a key exchange (if they want to). By doing this, the authentication phase
is skipped, making the Finished message at the end of the handshake important to
prevent MITM attacks.

Client random and server random

An avid reader might have noticed that ephemeral public keys brought randomness
to the session, and without them the symmetric session keys at the end of the hand-
shake might end up always being the same. Using different symmetric keys for differ-
ent sessions is extremely important as you do not want these sessions to be linked.
Worse, because encrypted messages might be different between sessions, this
could lead to nonce reuses and their catastrophic implications (see chapter 4).

To mitigate this, both the ClientHello and ServerHello messages have a randon field,
which is randomly generated for every new session (and often referred to as client
random and server random). As these random values are used in the derivation of
symmetric keys in TLS, it effectively randomizes the session symmetric keys for each
new connection.

Another use case for PSKs is session resumption. Session resumption is about reusing
secrets created from a previous session or connection. If you have already connected
to google.com and have already verified their certificate chain, performed a key
exchange, agreed on a shared secret, etc., why do this dance again a few minutes or
hours later when you revisit? TLS 1.3 offers a way to generate a PSK after a handshake
is successfully performed, which can be used in subsequent connections to avoid hav-
ing to redo a full handshake.

If the server wants to offer this feature, it can send a New Session Ticket message at
any time during the posthandshake phase. The server can create so-called session tickets
in several ways. For example, the server can send an identifier, associated with the rele-
vant information in a database. This is not the only way, but as this mechanism is quite

194

9.2.2

9.3

CHAPTER 9 Secure transport

complex and most of the time not necessary, I won’t touch on more of it in this chapter.
Next, let’s see the easiest part of TLS—how communications eventually get encrypted.

How TLS 1.3 encrypts application data

Once a handshake takes place and symmetric keys derived, both the client and the
server can send each other encrypted application data. This is not all: TLS also
ensures that such messages cannot be replayed nor reordered! To do this, the nonce
used by the authenticated encryption algorithm starts at a fixed value and is incre-
mented for each new message. If a message is replayed or reordered, the nonce will be
different from what is expected and decryption fails. When this happens, the connec-
tion is killed.

Hiding the plaintext’s length

As you learned in chapter 4, encryption does not always hide the length of what is
being encrypted. TLS 1.3 comes with record padding that you can configure to pad
application data with a random number of zero bytes before encrypting it, effectively
hiding the true length of the message. In spite of this, statistical attacks that remove
the added noise may exist, and it is not straightforward to mitigate them. If you really
require this security property, you should refer to the TLS 1.3 specification.

Starting with TLS 1.3, if a server decides to allow it, clients have the possibility to send
encrypted data as part of their first series of messages, right after the ClientHello mes-
sage. This means that browsers do not necessarily have to wait until the end of the
handshake to start sending application data to the server. This mechanism is called
early data or O-RTT (for zero round trip time). It can only be used with the combina-
tion of a PSK as it allows derivation of symmetric keys during the ClientHello message.

NOTE This feature was quite controversial during the development of the
TLS 1.3 standard because a passive attacker can replay an observed Client-
Hello followed by the encrypted O-RTT data. This is why O-RTT must be used
only with application data that can be replayed safely.

For the web, browsers treat every GET query as idempotent, meaning that GET queries
should not change state on the server side and are only meant to retrieve data (unlike
POST queries, for example). This is, of course, not always the case, and applications
have been known to do whatever they want to do. For this reason, if you are con-
fronted with the decision of using O-RTT or not, it is simpler just to not use it.

The state of the encrypted web today

Today, standards are pushing for the deprecation of all versions of SSL and TLS that
are not TLS versions 1.2 and TLS 1.3. Yet, due to legacy clients and servers, many
libraries and applications continue to support older versions of the protocol (up to
SSL version 3 sometimes!). This is not straightforward and, because of the number of

The state of the encrypted web today 195

vulnerabilities you need to defend against, many hard-to-implement mitigations must
be maintained.

WARNING Using TLS 1.3 (and TLS 1.2) is considered secure and best prac-
tice. Using any lower version means that you will need to consult experts and
will have to figure out how to avoid known vulnerabilities.

By default, browsers still connect to web servers using HTTP, and websites still have to
manually ask a CA to obtain a certificate. This means that with the current protocols,
the web will never be fully encrypted, although some estimates show global web traffic
to be 90% encrypted as of 2019.

The fact that, by default, your browser always uses an insecure connection is also
an issue. Web servers nowadays usually redirect users accessing their pages using HTTP
toward HTTPS. Web servers can also (and often do) tell browsers to use HT'TPS for
subsequent connections. This is done via an HTTPS response header called HTTP
Strict Transport Security (HSTS). Yet, the first connection to a website is still unpro-
tected (unless the user thinks about typing https in the address bar) and can be inter-
cepted to remove the redirection to HTTPS.

In addition, other web protocols like N7P (to get the current time) and DNS (to
obtain the IP behind a domain name) are currently largely unencrypted and vulnera-
ble to MITM attacks. While there are research efforts to improve the status quo, these
are attack vectors that one needs to be aware of.

There’s another threat to TLS users—misbehaving CAs. What if, today, a CA
decides to sign a certificate for your domain and a public key that it controls? If it can
obtain a MITM position, it could start impersonating your website to your users. The
obvious solution, if you control the client-side of the connection, is to either not use
the web PKI (and rely on your own PKI) or to pin a specific certificate or public key.

Certificate or public key pinning are techniques where a server’s certificate (usu-
ally rather a hash of it), or the public key, is directly hardcoded in the client code. If
the server does not present the expected certificate, or the certificate does not con-
tain the expected long-term public key, the client aborts the connection during the
authentication phase of the handshake. This practice is often used in mobile applica-
tions, as they know exactly what the server’s public key or certificate should look like
(unlike browsers that have to connect to an infinite number of servers). Hardcoding
certificates and public keys is not always possible, though, and two other mechanisms
co-exist to deal with bad certificates:

Certificate revocation—As the name indicates, this allows a CA to revoke a certifi-
cate and warn browsers about it.

Certificate monitoring—This is a relatively new system that forces CAs to publicly
log every certificate signed.

The story of certificate revocation has historically been bumpy. The first solution pro-
posed was Certificate Revocation Lists (CRLs), which allowed CAs to maintain a list of

196

CHAPTER 9 Secure transport

revoked certificates, those that were no longer considered valid. The problem with
CRLs is that they can grow quite large and one needs to constantly check them.

CRLs were deprecated in favor of Online Certificate Status Protocol (OCSP), which
are simple web interfaces that you can query to see if a certificate is revoked or not.
OCSP has its own share of problems: it requires CAs to have a highly available service
that can answer to OCSP requests, it leaks web traffic information to the CAs, and
browsers often decide to ignore OCSP requests that time out (to not disrupt the user’s
experience). The current solution is to augment OCSP with OCSP stapling: the website
is in charge of querying the CA for a signed status of its certificate and attaches (sta-
ples) the response to its certificate during the TLS handshake. I review the three solu-
tions in figure 9.9.

Certificate Revocation List Online Certificate Status Protocol OCSP Stapling

My certificate . [|

My certificate [B —] My certificate [} — —
— = — = =

+ OCSP status

Revoked certificates list Status of ?

N |

IRRRCRR
I

Certificate authority

Revoked!

OCSP responder

The browser requests the list of
revoked certificates from the
relevant certificate authority (CA)
and checks if it contains the
received certificate.

The browser requests the status
of the received certificate from
the relevant OCSP responder.

The website sends a recent OCSP
status along with the certificate.

Figure 9.9 Certificate revocation on the web has had three popular solutions: Certificate Revocation Lists
(CRLs), Online Certificate Status Protocol (OCSP), and OCSP stapling.

Certificate revocation might not seem to be a prime feature to support (especially for
smaller systems compared to the World Wide Web) until a certificate gets compro-
mised. Like a car seatbelt, certificate revocation is a security feature that is useless
most of the time but can be a lifesaver in rare cases. This is what we in security call
“defense in depth.”

NOTE For the web, certificate revocation has largely proven to be a good
decision. In 2014, the Heartbleed bug turned out to be one of the most devas-
tating bugs in the history of SSL. and TLS. The most widely used SSL/TLS
implementation (OpenSSL) was found to have a buffer overread bug (reading
past the limit of an array), allowing anyone to send a specially crafted message
to any OpenSSL server and receive a dump of its memory, often revealing its
long-term private keys.

9.4

9.5

The Noise protocol framework: A modern alternative to TLS 197

Yet, if a CA truly misbehaves, it can decide not to revoke malicious certificates or not
to report them. The problem is that we are blindly trusting a non-negligible number
of actors (the CAs) to do the right thing. To solve this issue at scale, Certificate Transpar-
ency was proposed in 2012 by Google. The idea behind a Certificate Transparency is to
force CAs to add each certificate issued to a giant log of certificates for everyone to
see. To do this, browsers like Chrome now reject certificates if they do not include
proofs of inclusion in a public log. This transparency allows you to check if a certifi-
cate was wrongly issued for a domain you own (there should be no other certificates
other than the ones you requested in the past).

Note that a Certificate Transparency relies on people monitoring logs for their
own domain to catch bad certificates after the fact. CAs also have to react fast and
revoke mis-issued certificates once detected. In extreme cases, browsers sometimes
remove misbehaving CAs from their trust stores. Certificate Transparency is, thus, not
as powerful as certificate or public key pinning, which mitigates CA misbehaviors.

Other secure transport protocols

You’ve now learned about TLS, which is the most popular protocol to encrypt com-
munications. You're not done yet, though. TLS is not the only one in the secure trans-
port protocol class. Many other protocols exist, and you might most likely be using
them already. Yet, most of them are TLS-like protocols, customized to support a spe-
cific use case. This is the case, for example, with the following:

Secure Shell (SSH)—The most widely used protocol and application to securely
connect to a remote terminal on a different machine.

Wi-Fi Protected Access (WPA)—The most popular protocol to connect devices to
private network access points or to the internet.

IPSec—One of the most popular virtual network protocols (VPNs) used to con-
nect different private networks together. It is mostly used by companies to link
different office networks. As its name indicates, it acts at the IP layer and is
often found in routers, firewalls, and other network appliances. Another popu-
lar VPN is OpenVPN, which makes direct use of TLS.

All of these protocols typically reimplement the handshake/post-handshake paradigm
and sprinkle some of their own flavors on it. Re-inventing the wheel is not without
issues, as for example, several of the Wi-Fi protocols have been broken. To finish this
chapter, I want to introduce you to the Noise protocol framework. Noise is a much more
modern alternative to TLS.

The Noise protocol framework:
A modern alternative to TLS

TLS is now quite mature and considered a solid solution in most cases, due to the
attention it gets. Yet, TLS adds a lot of overhead to applications that make use of it,
due to historical reasons, backward compatibility constraints, and overall complexity.

198

9.5.1

CHAPTER 9 Secure transport

Indeed, in many scenarios where you are in control of all the endpoints, you might
not need all of the features that TLS has to offer. The next best solution is called the
Noise protocol framework.

The Noise protocol framework removes the run-time complexity of TLS by avoid-
ing all negotiation in the handshake. A client and a server running Noise follow a
linear protocol that does not branch. Contrast this to TLS, which can take many dif-
ferent paths, depending on the information contained in the different handshake
messages. What Noise does is that it pushes all the complexity to the design phase.

Developers who want to use the Noise protocol framework must decide what ad hoc
instantiation of the framework they want their application to use. (This is why it is
called a protocol framework and not a protocol.) As such, they must first decide what
cryptographic algorithms will be used, what side of the connection is authenticated, if
any pre-shared key is used, and so on. After that, the protocol is implemented and
turns into a rigid series of messages, which can be a problem if one needs to update
the protocol later while maintaining backward compatibility with devices that cannot
be updated.

The many handshakes of Noise

The Noise protocol framework offers different handshake patierns that you can choose
from. Handshake patterns typically come with a name that indicates what is going on.
For example, the IK handshake pattern indicates that the client’s public key is sent as
part of the handshake (the first /stands for immediate), and that the server’s public key
is known to the client in advance (the K stands for known). Once a handshake pattern
is chosen, applications making use of it will never attempt to perform any of the other
possible handshake patterns. As opposed to TLS, this makes Noise a simple and linear
protocol in practice.

In the rest of this section, I will use a handshake pattern called NN to explain how
Noise works. It is simple enough for to explain, but insecure because of the two N’s
indicating that no authentication takes place on both sides. In Noise’s lingo, the pat-
tern is written like this:

NN:
-> e
<- e, ee

Each line represents a message pattern, and the arrow indicates the direction of the
message. Each message pattern is a succession of tokens (here, there are only two: e
and ee) that dictates what both sides of the connection need to do:

-> e—Means that the client must generate an ephemeral key pair and send the
public key to the server. The server interprets this message differently: it must
receive an ephemeral public key and store it.

<- e, ee—Means that the server must generate an ephemeral key pair and send
the public key to the client, then it must do a Diffie-Hellman (DH) key exchange

9.5.2

The Noise protocol framework: A modern alternative to TLS 199

with the client’s ephemeral (the first e) and its own ephemeral (the second e).
On the other hand, the client must receive an ephemeral public key from the
server, and use it to do a DH key exchange as well.

NOTE Noise uses a combination of defined tokens in order to specify differ-
ent types of handshakes. For example, the s token means a static key (another
word for long-term key) as opposed to an ephemeral key, and the token es
means that both participants must perform a DH key exchange using the cli-
ent’s ephemeral key and the server’s static key.

There’s more to it: at the end of each message pattern (-> e and <- e, ee), the sender
also gets to transmit a payload. If a DH key exchange has happened previously, which
is not the case in the first message pattern, -> e, the payload is encrypted and authen-
ticated. At the end of the handshake both participants derive a set of symmetric keys
and start encrypting communications similarly to TLS.

A handshake with Noise

One particularity of Noise is that it continuously authenticates its handshake tran-
script. To achieve this, both sides maintain two variables: a hash (h) and a chaining
key (ck). Each handshake message sent or received is hashed with the previous h
value. I illustrate this in figure 9.10.

Figure 9.10 In the Noise protocol framework,

each side of the connection keeps track of a

digest h of all messages that have been sent
Message sent Message sent and received during the handshake. When

l a message is sent and encrypted with an
authenticated encryption with associated data
h—> HASH [—» h _’l HATSH |_> h _’l HASH I_> h (AEAD) algorithm, the current h value is used

as associated data in order to authenticate
Message received the handshake up to this point.

At the end of each message pattern, a (potentially empty) payload is encrypted with
an authenticated encryption with associated data (AEAD) algorithm (covered in chap-
ter 4). When this happens, the h value is authenticated by the associated data field of
the AEAD. This allows Noise to continuously verify that both sides of the connection
are seeing the exact same series of messages and in the same order.

In addition, every time a DH key exchange happens (several can happen during a
handshake), its output is fed along with the previous chaining key (ck) to HKDF,
which derives a new chaining key and a new set of symmetric keys to use for authenti-
cating and encrypting subsequent messages. I illustrate this in figure 9.11.

This makes Noise a simple protocol at run time; there is no branching and both
sides of the connection simply do what they need to do. Libraries implementing Noise
are also extremely simple and end up being a few hundred lines compared to hun-
dreds of thousands of lines for TLS libraries. While Noise is more complex to use and

200

ck

CHAPTER 9 Secure transport

Diffie-Hellman Diffie-Hellman
output output

HKDF HKDF

Keys Keys
ck

ck ——

Figure 9.11 In the Noise protocol framework, each side of the
connection keeps track of a chaining key, ck. This value is used
to derive a new chaining key and new encryption keys to be used
in the protocol every time a DH key exchange is performed.

will require developers who understand how Noise works to integrate it into an appli-

cation, it is a strong alternative to TLS.

Summary

Transport Layer Security (TLS) is a secure transport protocol to encrypt com-
munications between machines. It was previously called Secure Sockets Layer
(SSL) and is sometimes still referred to as SSL.

TLS works on top of TCP and is used daily to protect connections between
browsers, web servers, mobile applications, and so on.

To protect sessions on top of User Datagram Protocol (UDP), TLS has a variant
called Datagram Transport Layer Security (DTLS) that works with UDP.

TLS and most other transport security protocols have a handshake phase (in
which the secure negotiation is created) and a post-handshake phase (in which
communications are encrypted using keys derived from the first phase).

To avoid delegating too much trust to the web public key infrastructure, appli-
cations making use of TLS can use certificate and public key pinning to only
allow secure communications with specific certificates or public keys.

As a defense-in-depth measure, systems can implement certificate revocation
(to remove compromised certificates) and monitoring (to detect compromised
certificates or CAs).

In order to avoid TLS complexity and size and whether you control both sides
of the connection, you can use the Noise protocol framework.

To use Noise, one must decide what variant of a handshake they want to use
when designing the protocol. Due to this, it is much simpler and secure than
TLS, but less flexible.

End-to-end encryption

This chapter covers

End-to-end encryption and its importance
Different attempts at solving email encryption

How end-to-end encryption is changing the
landscape of messaging

Chapter 9 explained transport security via protocols like TLS and Noise. At the
same time, I spent quite some time explaining where trust is rooted on the web:
hundreds of certificate authorities (CAs) trusted by your browser and operating sys-
tem. While not perfect, this system has worked so far for the web, which is a com-
plex network of participants who know nothing of each other.

This problem of finding ways to trust others (and their public keys) and making
it scale is at the center of real-world cryptography. A famous cryptographer was
once heard saying, “Symmetric crypto is solved,” to describe a field of research that
had overstayed its welcome. And, for the most part, the statement was true. We sel-
dom have issues encrypting communications, and we have strong confidence in the
current encryption algorithms we use. When it comes to encryption, most engineer-
ing challenges are not about the algorithms themselves anymore, but about who
Alice and Bob are and how to prove it.

201

202

10.1

CHAPTER 10 End-to-end encryption

Cryptography does not provide one solution to trust but many different ones that
are more or less practical, depending on the context. In this chapter, I will survey
some of the different techniques that people and applications use to create trust
between users.

Why end-to-end encryption?

This chapter starts with a “why” instead of a “what.” This is because end-to-end encryp-
tion is a concept more than a cryptographic protocol; it’s a concept of securing com-
munications between two (or more) participants across an adversarial path. I started
this book with a simple example: Queen Alice wanted to send a message to Lord Bob
without anyone in the middle being able to see it. Nowadays, many applications like
email and messaging exist to connect users, and most of them seldom encrypt mes-
sages from soup to nuts.

You might ask, isn’t TLS enough? In theory, it could be. You learned in chapter 9
that TLS is used in many places to secure communications. But end-to-end encryption
is a concept that involves actual human beings. In contrast, TLS is most often used by
systems that are “men-in-the-middle” by design (see figure 10.1). In these systems, TLS
is only used to protect the communications between a central server and its users,
allowing the server to see everything. Effectively, these MITM servers sit in between
users, are necessary for the application to function, and are trusted third parties of the
protocol. That is to say, we have to trust these parts of the system in order for the pro-
tocol to be considered secure (spoiler alert: that’s not a great protocol).

In practice, much worse topologies exist. Communications between a user and a
server can go through many network hops, and some of these hops might be machines

Trusted server

V)
2 ¥ Encrypte_d N ¢ Encrypte_d N A
B communications communications ‘

Forwarding server

A
" <« Encrypted N

B communications

Figure 10.1 In most systems, a central server (top diagram) relays messages
between users. A secure connection is usually established between a user and
the central server, which can thus see all user messages. A protocol providing
end-to-end encryption (bottom diagram) encrypts communications from one
user up to its intended recipient, preventing any server in the middle from
observing messages in cleartext.

10.2

A root of trust nowhere to be found 203

that look at the traffic (often referred to as middleboxes). Even if traffic is encrypted,
some middleboxes are set up to end the TLS connection (we say that they terminate
TLS) and either forward the traffic in clear from that point on or start another TLS
connection with the next hop. TLS termination is sometimes done for “good” rea-
sons: to better filter traffic, balance connections geographically or within a data cen-
ter, and so on. This adds to the attack surface as traffic is now visible in the clear in
more places. Sometimes, TLS termination is done for “bad” reasons: to intercept,
record, and spy on traffic.

In 2015, Lenovo was caught selling laptops with pre-installed custom CAs (covered
in chapter 9) and software. The software was MITM’ing HTTPS connections using
Lenovo’s CAs and injecting ads into web pages. More concerning, large countries like
China and Russia have been caught redirecting traffic on the internet, making it pass
through their networks in order to intercept and observe connections. In 2013,
Edward Snowden leaked a massive number of documents from NSA showing the
abuses of many governments (not just the US) in spying on people’s communications
by intercepting the internet cables that link the world together.

Owning and seeing user data is also a liability for companies. As I’'ve mentioned
many times in this book, breaches and hacks happen way too often and can be devas-
tating for the credibility of a company. From a legal standpoint, laws like the General
Data Protection Regulation (GDPR) can end up costing organizations a lot of money.
Government requests like the infamous National Security Letters (NSLs) that some-
times prevent companies and people involved from even mentioning that they have
received the letters (so-called gag orders) can be seen as additional cost and stress to
an organization, too, unless you have nothing much to share.

Bottom line, if you're using a popular online application, chances are that one or
more governments already have access or have the ability to gain access to everything
you wrote or uploaded there. Depending on an application’s threat model (what the
application wants to protect against) or the threat model of an application’s most vul-
nerable users, end-to-end encryption plays a major role in ensuring confidentiality
and privacy of end users.

This chapter covers different techniques and protocols that have been created in
order to create trust between people. In particular, you will learn about how email
encryption works today and how secure messaging is changing the landscape of end-
to-end encrypted communications.

A root of trust nowhere to be found

One of the simplest scenarios for end-to-end encryption is the following: Alice wants
to send an encrypted file to Bob over the internet. With all the cryptographic algo-
rithms you learned about in the first chapters of this book, you can probably think of a
way to do this. For example

Bob sends his public key to Alice.
Alice encrypts the file with Bob’s public key and sends it to Bob.

204

CHAPTER 10 End-to-end encryption

Perhaps Alice and Bob can meet in real life or use another secure channel they
already share to exchange the public key in the first message. If this is possible, we say
that they have an out-of-band way of creating trust. This is not always the case, though.
You can imagine me including my own public key in this book and asking you to use it
to send me an encrypted message at some email address. Who says my copyeditor did
not replace the public key with hers?

Same for Alice: how does she figure out if the public key she received truly is Bob’s
public key? It’s possible that someone in the middle could have tampered with the
first message. As you will see in this chapter, cryptography has no real answer to this
issue of trust. Instead, it provides different solutions to help in different scenarios.
The reason why there is no true solution is that we are trying to bridge reality (real
human beings) with a theoretical cryptographic protocol.

This whole business of protecting public keys from tampering is the single most difficult
problem in practical public key applications. It is the ‘Achilles heel’ of public key
cryptography, and a lot of software complexity is tied up in solving this one problem.

—Zimmermann et al. (“PGP User’s Guide Volume I:
Essential Topics,” 1992)

Going back to our simple setup where Alice wants to send a file to Bob, and assuming
that their untrusted connection is all they have, they have somewhat of an impossible
trust issue at hand. Alice has no good way of knowing for sure what truly is Bob’s pub-
lic key. It’s a chicken-and-egg type of scenario. Yet, let me point out that if no mali-
cious active MITM attacker replaces Bob’s public key in the first message, then the
protocol is safe. Even if the messages are being passively recorded, it is too late for an
attacker to come after the fact to decrypt the second message.

Of course, relying on the fact that your chances of being actively MITM’d are
not too high is not the best way to undertake cryptography. We, unfortunately, often
do not have a way to avoid this. For example, Google Chrome ships with a set
of certificate authorities (CAs) that it chooses to trust, but how did you obtain
Chrome in the first place? Perhaps you used the default browser of your operating
system, which relies on its own set of CAs. But where did that come from? From the
laptop you bought. But where did this laptop come from? As you can quickly see,
it’s “turtles all the way down.” At some point, you will have to trust that something
was done right.

A threat model typically chooses to stop addressing issues after a specific turtle and
considers that any turtle further down is out-of-scope. This is why the rest of the chap-
ter will assume that you have a secure way to obtain some o0t of trust. All systems based
on cryptography work by relying on a root of trust, something that a protocol can
build security on top of. A root of trust can be a secret or a public value that we start
the protocol with or an out-of-band channel that we can use to obtain them.

10.3

10.3.1

The failure of encrypted email 205

The failure of encrypted email

Email was created as (and is still today) an unencrypted protocol. We can only blame a
time where security was second thought. Email encryption started to become more than
just an idea after the release of a tool called Pretty Good Privacy (PGP) in 1991. At the
time, the creator of PGP, Phil Zimmermann, decided to release PGP in reaction to a bill
that almost became law earlier in the same year. The bill would have allowed the US gov-
ernment to obtain all voice and text communications from any electronic communica-
tion company and manufacturer. In his 1994 essay “Why Do You Need PGP?”, Philip
Zimmermann ends with “PGP empowers people to take their privacy into their own
hands. There’s a growing social need for it. That’s why I wrote it.”

The protocol was finally standardized in RFC 2440 as OpenPGP in 1998 and caught
traction with the release of the open source implementation, GNU Privacy Guard
(GPG), around the same time. Today, GPG is still the main implementation, and peo-
ple interchangeably use the terms GPG and PGP to pretty much mean the same thing.

PGP or GPG? And how does it work?

PGP, or OpenPGP, works by simply making use of hybrid encryption (covered in chap-
ter 6). The details are in RFC 4880, the last version of OpenPGP, and can be simplified
to the following steps:

The sender creates an email. At this point the email’s content is compressed
before it is encrypted.

The OpenPGP implementation generates a random symmetric key and sym-
metrically encrypts the email using the symmetric key.

The symmetric key is asymmetrically encrypted to each recipient’s public key
(using the techniques you learned in chapter 6).

All of the intended recipients’ encrypted versions of the symmetric key are con-
catenated with the encrypted message. The email body is replaced with this
blob of data and sent to all recipients.

To decrypt an email, a recipient uses their private key to decrypt the symmetric
key, then decrypts the content of the email using the decrypted symmetric key.

Note that OpenPGP also defines how an email can be signed in order to authenticate
the sender. To do this, the plaintext email’s body is hashed and then signed using the
sender’s private key. The signature is then added to the message before being
encrypted in step 2. Finally, so that the recipient can figure out what public key to use
to verify the signature, the sender’s public key is sent along the encrypted email in
step 4. Lillustrate the PGP flow in figure 10.2.

Exercise

Do you know why the email’s content is compressed before it is encrypted and not
after?

206

CHAPTER 10 End-to-end encryption

email
Recipient To: bob@gmail.com
1. Generate random public key
symmetric key Subject: hi Bob!

2. Encrypt symmetric __,| Asymmetric

® Encrypted symmetric key |

message.txt |_ key to recipient encryption
all=eig | Symmetri |
» e%c iiog ° Encrypted message + sig |
How are you today? Your signing key e
| have been thinking of
going to the beach this T
Saturday, do you want to . 4. Encrypt | . A |
q
come? — 3. Sign message —¥ aISI?)EIt?l?n —» message and Public key identifier
g signature
Cheers, T
Alice

5. Add

verifying key

Figure 10.2 PGP’s goal is to encrypt and sign messages. When integrated with email clients it does not care
about hiding the subject or other metadata.

There’s nothing inherently wrong with this design at first sight. It seems to prevent
MITM attackers from seeing your email’s content, although the subject and other
email headers are not encrypted.

NOTE It is important to note that cryptography cannot always hide all meta-
data. In privacy-conscious applications, metadata is a big problem and can, in
the worst cases, de-anonymize you! For example, in end-to-end encrypted pro-
tocols, you might not be able to decrypt messages between users, but you can
probably tell what their IP addresses are, what the length of the messages they
send and receive is, who they commonly talk to (their social graphs), and so
on. A lot of engineering is put into hiding this type of metadata.

Yet, in the details, PGP is actually quite bad. The OpenPGP standard and its main
implementation, GPG, make use of old algorithms, and backward compatibility pre-
vents them from improving the situation. The most critical issue is that encryption is
not authenticated, which means that anyone intercepting an email that hasn’t been
signed might be able to tamper with the encrypted content to some degree, depend-
ing on the exact encryption algorithm used. For this reason alone, I would not recom-
mend anyone to use PGP today.

A surprising flaw of PGP comes from the fact that the signing and encryption oper-
ations are composed without care. In 2001, Don Davis pointed out that because of this
naive composition of cryptographic algorithms, one can re-encrypt a signed email
they received and send that to another recipient. This effectively allows Bob to send
you the email Alice sent him as if you were the intended recipient!

The failure of encrypted email 207

If you’re wondering, signing the ciphertext instead of the plaintext is still flawed as
one could then simply remove the signature that comes with the ciphertext and add
their own signature instead. In effect, Bob could pretend that he sent you an email that
was actually coming from Alice. I recapitulate these two signing issues in figure 10.3.

Alice sent
me a

. . message!
Encrypted with Encrypted with
Bob’s public key Charles’s public key

A~
<. —|Message + O‘wmuﬂnam1e |—> o, o —| Message + Alices ug;mhm'-}
Bob sent
me a
message!

2N __| Message encrypted with ; _| Message encrypted with ;
“at Charles’s public key Charles’s public key

|94ﬂmm &wl Bebs si e

Figure 10.3 In the top diagram, Alice encrypts a message and signature over the
message with Bob’s public key. Bob can re-encrypt this message to Charles, who might
believe that it was intended for him to begin with. This is the PGP flow. In the bottom
diagram, this time Alice encrypts a message to Charles. She also signs the encrypted
message instead of the plaintext content. Bob, who intercepts the encrypted message,
can replace the signature with his own, fooling Charles into thinking that he wrote the
content of the message.

Exercise
Can you think of an unambiguous way of signing a message?

The icing on the cake is that the algorithm does not provide forward secrecy by default.
As a reminder, without forward secrecy, a compromise of your private key implies that
all previous emails sent to you encrypted under that key can now be decrypted. You
can still force forward secrecy by changing your PGP key, but this process is not
straightforward (you can, for example, sign your new key with your older key) and
most users just don’t bother. To recap, remember that

PGP uses old cryptographic algorithms.

PGP does not have authenticated encryption and is, thus, not secure if used
without signatures.

Due to bad design, receiving a signed message doesn’t necessarily mean we
were the intended recipient.

There is no forward secrecy by default.

208

10.3.2

10.3.3

CHAPTER 10 End-to-end encryption

Scaling trust between users with the web of trust

So why am I really talking about PGP here? Well, there is something interesting about
PGP that I haven’t talked about yet: how do you obtain and how can you trust other
people’s public keys? The answer is that in PGP, you build trust yourself!

OK, what does that mean? Imagine that you install GPG and decide that you want
to encrypt some messages to your friends. To start, you must first find a secure way to
obtain your friends’ PGP public keys. Meeting them in real life is one sure way to do
this. You meet, you copy their public keys on a piece of paper, and then you type those
keys back into your laptop at home. Now, you can send your friends signed and
encrypted messages with OpenPGP. But this is tedious. Do you have to do this for
every person you want to email? Of course not. Let’s take the following scenario:

You have obtained Bob’s public key in real life and, thus, you trust it.
You do not have Mark’s public key, but Bob does and he trusts it.

Take a moment here to think about what you could be doing to trust Mark’s public
key. Bob can simply sign Mark’s key, showing you that he trusts the association
between the public key and Mark’s email. If you trust Bob, you can now trust Mark’s
public key and add it to your repertoire. This is the main idea behind PGP’s concept
of decentralized trust. It is called the web of trust (WOT) as figure 10.4 illustrates.

H\ ts — .
/ B rusts /'
7 Charles

Trusts //’ Figure 10.4 The web of trust (WOT) is the
i g concept that users can transitively trust other
)[Intdlre::tly users by relying on signatures. In this figure, we
- - HuSe can see that Alice trusts Bob who trusts Charles.
Y Alice can use Bob’s signature over Charles’s identity
Alice and public key to trust Charles as well.

You will sometimes see “key parties” at conferences, where people meet in real life and
sign their respective public keys. But most of that is role-playing, and, in practice, few
people rely on the WOT to enlarge their PGP circle.

Key discovery is a real issue

PGP did try another way to solve the issue of discovering public keys—*key registries. The
concept is pretty simple: publish your PGP public key and associated signatures from
others that attest to your identity on some public list so that people can find it. In prac-
tice, this doesn’t work as anyone can publish a key and associated signature purportedly
matching your email. In fact, some attackers intentionally spoofed keys on key servers,
although possibly more to cause havoc than to spy on emails. In some settings, we can
relax our threat model and allow for a trusted authority to attest to identities and public
keys. Think of a company managing their employees’ emails, for example.

The failure of encrypted email 209

In 1995, the RSA company proposed Secure/Multipurpose Internet Mail Extensions
(S/MIME) as an extension to the MIME format (which itself is an extension to the
email standard) and as an alternative to PGP. S/MIME, standardized in RFC 5751,
took an interesting departure from the WOT by using a public key infrastructure to
build trust. That is pretty much the only conceptual difference that S/MIME has with
PGP. As companies have processes in place to onboard and offboard employees, it
makes sense for them to start using protocols like S/MIME in order to bootstrap trust
in their internal email ecosystem.

Itis important to note that both PGP and S/MIME are generally used over the Sim-
ple Mail Transfer Protocol (SMTP), which is the protocol used today for sending and
receiving emails. PGP and S/MIME were also invented later, and for this reason, their
integration with SMTP and email clients is far from perfect. For example, only the
body of an email is encrypted not the subject or any of the other email headers.
S/MIME, like PGP, is also quite an old protocol that uses outdated cryptography and
practices. Like PGP, it does not offer authenticated encryption.

Recent research (Efail: “Breaking S/MIME and OpenPGP Email Encryption using
Exfiltration Channels”) on the integration of both protocols in email clients showed
that most of them were vulnerable to exfiltration attacks, where an attacker who
observes encrypted emails can retrieve the content by sending tampered versions to
the recipients.

In the end, these shortcomings might not even matter, as most emails being sent
and received in the world move along the global network unencrypted. PGP has
proven to be quite difficult to use for nontechnical, as well as advanced, users who are
required to understand the many subtleties and flows of PGP in order to encrypt their
emails. For example, it’s not uncommon to see users responding to an encrypted
email without using encryption, quoting the whole thread in cleartext. On top of that,
the poor (or nonexistent) support for PGP by popular email clients hasn’t helped.

In the 1990s, I was excited about the future, and I dreamed of a world where everyone
would install GPG. Now I'm still excited about the future, but I dream of a world where I
can uninstall it.

—Moxie Marlinspike (“GPG and Me,” 2015)

For these reasons, PGP has slowly been losing support (for example, Golang removed
support for PGP from its standard library in 2019), while more and more real-world
cryptography applications are aiming at replacing PGP and solving its usability prob-
lems. Today, it is hard to argue that email encryption will ever have the same level of
success and adoption that, for example, HTTPS has.

If messages can be sent in plaintext, they will be sent in plaintext. Email is end-to-end
unencrypted by default. The foundations of electronic mail are plaintext. All mainstream
email software expects plaintext. In meaningful ways, the Internet email system is simply
designed not to be encrypted.

—Thomas Ptacek (“Stop Using Encrypted Email,” 2020)

210

10.3.4

CHAPTER 10 End-to-end encryption

If not PGP, then what?

I spent several pages talking about how a simple design like PGP can fail in a lot of dif-
ferent and surprising ways in practice. Yes, I would recommend against using PGP.
While email encryption is still an unsolved problem, alternatives are being developed
to replace different PGP use cases.

saltpack is a similar protocol and message format to PGP. It attempts to fix some
of the PGP flaws I've talked about. In 2021, saltpack’s main implementations are
keybase (https://keybase.io) and keys.pub (https://keys.pub). Figure 10.5 illustrates
the keys.pub tool.

L < o
@2 Keys ﬁ Encrypt kex1qweyhh42stéhuhxeu7gtjnzru2rméfegagxxsuqedz6qzyv8ghkghzecyl v
O Secrets [ﬁ Decrypt ned by kex1qweyhh42st6huhxeu7gt jnzru2rméfegaqxxsugedz6qzyv8qhkghzecyl M
A, Tools 2/ sign Hello hello ;)

& Settings © Veriy

% Experiments

BEGIN SALTPACK ENCRYPTED MESSAGE. kcJnSbrvybfNjz6 DS112Nk@YiNsékq g1cM31WeNbhlwcl
yfjc4ETMKUMdDR1 cedVY9dvqJ87T79 MMBXyhycg8H3r@u JHrDcQel1sM19Ysz wigSFEYeQ9s7itD
xUQTUBVBX8iKfAQ tTOJhpimgdoW1sr p4KZkHA7pmgvnb6 E4HVeq9EIGLhMFi f1wf3XWDOeBGdbn
sP2Mgpwbtmiqniq jJuhp24eSusucYx SutdEH1gnYiHsL8 ISXayD9Xft9m771 aZC10pehWB8qwpl
REOhQkFH7Dr1XtJ WXrRS1qgkCVnKY. END SALTPACK ENCRYPTED MESSAGE.

Figure 10.5 keys.pub is a native desktop application that implements the saltpack protocol. You can use it to
import other people’s public keys and to encrypt and sigh messages to them.

These implementations have all moved away from WOT and allow users to broadcast
their public keys on different social networks in order to instill their identity into their
public keys (as figure 10.6 illustrates). PGP could obviously not have anticipated this
key discovery mechanism as it predates the boom of social networks.

On the other hand, most secure communication nowadays is far from a one-time
message, and the use of these tools is less and less relevant. In the next section, I talk

https://keybase.io
https://keys.pub

® © ® 'y (8 MaxKrohnon Twitter: "Ver X = +

Secure messaging: A modern look at end-to-end encryption with Signal 211

> C (@ twittercom/maxtacojstatt o @ Q w) B @ © £ % @ :

Apps [E3 san francisco m TODO | Trello 4 David Wong » | B Other Bookmarks

L 4 ~ Tweet

Max Krohn @maxtaco - Feb 12, 2014 v

Verifying myself: | am max on Keybase.io.
ZnBizHMABRKSB598TaDtjIPILKSEuTWuaT59 /
keybase.io/max/sigs/ZnBiz...

Q s T Q 2 A,
Replies
& Defrag @defrag - Mar 25, 2014 v
Replying to @maxtaco

@maxtaco hey max- wanna come present re: keybase at gluecon.com ?

m 3 @ & O

Figure 10.6 A keybase user broadcasting their public key on the Twitter social network. This allows other
users to obtain additional proof that his identity is linked to a specific public key.

10.4

about secure messaging, one of the fields that aims to replace the communication aspect
of PGP.

Secure messaging: A modern look at end-to-end
encryption with Signal

In 2004, Off-The-Record (OTR) was introduced in a white paper titled “Off-the-Record
Communication, or, Why Not To Use PGP.” Unlike PGP or S/MIME, OTR is not used
to encrypt emails but, instead, chat messages; specifically, it extends a chat protocol
called the Extensible Messaging and Presence Protocol (XMPP).

One of the distinctive features of OTR was deniability—a claim that recipients of
your messages and passive observers cannot use messages you sent them in a court of
justice. Because messages you send are authenticated and encrypted symmetrically
with a key your recipient shares with you, they could have easily forged these messages
themselves. By contrast, with PGP, messages are signed and are, thus, the inverse of
deniable—messages are non-repudiable. To my knowledge, none of these properties have
actually been tested in court.

In 2010, the Signal mobile phone application (then called TextSecure) was
released, making use of a newly created protocol called the Signal protocol. At the time,

212

104.1

CHAPTER 10 End-to-end encryption

most secure communication protocols like PGP, S/MIME, and OTR were based on
Jederated protocols, where no central entity was required for the network to work. The
Signal mobile application largely departed from tradition by running a central service
and offering a single official Signal client application.

While Signal prevents interoperability with other servers, the Signal protocol is
open standard and has been adopted by many other messaging applications including
Google Allo (now defunct), WhatsApp, Facebook Messenger, Skype, and many others.
The Signal protocol is truly a success story, transparently being used by billions of peo-
ple including journalists, targets of government surveillance, and even my 92-year-old
grandmother (I swear I did not make her install it).

It is interesting to look at how Signal works because it attempts to fix many of the
flaws that I previously mentioned with PGP. In this section, I will go over each one of
the following interesting features of Signal:

How can we do better than the WOT? Is there a way to upgrade the existing
social graphs with end-to-end encryption? Signal’s answer is to use a trust on first
use (TOFU) approach. TOFU allows users to blindly trust other users the first
time they communicate, relying on this first, insecure exchange to establish a
long-lasting secure communication channel. Users are then free to check if the
first exchange was MITM’d by matching their session secret out of band and at
any point in the future.

How can we upgrade PGP to obtain forward secrecy every time we start a con-
versation with someone? The first part of the Signal protocol is like most secure
transport protocols: it’s a key exchange, but a particular one called Extended
Triple Diffie-Hellman (X3DH). More on that later.

How can we upgrade PGP to obtain forward secrecy for every single message?
This is important because conversations between users can span years, and a
compromise at some point in time should not reveal years of communication.
Signal addresses this with something called a symmetric ratchet.

What if two users’ session secrets are compromised at some point in time? Is
that game over? Can we also recover from that? Signal introduces a new security
property called post-compromise security (PCS) and addresses this with what is
called a Diffie-Hellman (DH) ratchet.

Let’s get started! First, we’ll see how Signal’s flavor of TOFU works.

More user-friendly than the WOT: Trust but verify

One of email encryption’s biggest failures was its reliance on PGP and the WOT
model to transform social graphs into secure social graphs. PGP’s original design
intended for people to meet in person to perform a key-signing ceremony (also called
a key-signing party) to confirm one another’s keys, but this was cumbersome and
inconvenient in many and various ways. It is really rare today to see people signing
each other’s PGP keys.

Secure messaging: A modern look at end-to-end encryption with Signal 213

The way most people use applications like PGP, OTR, Signal, and so on, is to
blindly trust a key the first time they see it and to reject any future changes (as figure
10.7 illustrates). This way, only the first connection can be attacked (and this only by
an active MITM attacker).

& & &
_ |Alice | |0x90df... I
N ———fmeo—— ——{imBo}——

Alright, | believe you ‘ | already know

Figure 10.7 Trust on first use (TOFU) allows Alice to trust her first connection but not subsequent connections
if they don’t exhibit the same public key. TOFU is an easy mechanism to build trust when the chances that the
first connection is actively MITM’d are low. The association between a public key and the identity (here Bob)
can also be verified after the fact in a different channel.

While TOFU is not the best security model, it is often the best we have and has proven
extremely useful. The Secure Shell (SSH) protocol, for example, is often used by
trusting the server’s public key during the initial connection (see figure 10.8) and by
rejecting any future change.

cee ssh martinez o0 0 i david@davids-MacBook-Air: ~
+ ssh “+ ssh,
The authenticity of host '[62 * can't be established
. © WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
ECDSA key fingerprint is 4bF2F7h1HO+1 1X5e9smZ1 4zbBSXE1Z2 4.
+---[ECDSA 256]--~ IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
| L Someone could be eavesdropping on you right now (man-in-the-middle attack)!
1 +l It is also possible that a host key has just been changed.
| .ol The fingerprint for the ECDSA key sent by the remote host is
| . ool A4bF2F 11XSe9smZ142b6SXE1Z2F4 .
I 4.5 ool Please contact your system administrator.
| +.=0 . . .0..El Add correct host key in /Users/david/.ssh/knonn_hosts to get rid of this message.
| 0=0t0 . =..0.8l Offending ECDSA key in /Users/david/.ssh/known_hosts:18
| ..=0+. . +.0+ Bal ECDSA host key for [62. has changed and you have requested strict checking.

I 4. . ..0.0. O==l Host key verification failed.
+-==-[SHAZ56] -----+ »
Are you sure you want to continue connecting (yes/no/[fingerprint])? |

Figure 10.8 SSH clients use trust on first use. The first time you connect to an SSH server (the left picture),
you have the option to blindly trust the association between the SSH server and the public key displayed. If the
public key of the SSH server later changes (right picture), your SSH client prevents you from connecting to it.

While TOFU systems trust the first key they see, they still allow the user to later verify
that the key is, indeed, the right one and to catch any impersonation attempts. In real-
world applications, users typically compare fingerprints, which are most often hexadec-
imal representations of public keys or hashes of public keys. This verification is, of
course, done out of band. (If the SSH connection is compromised, then the verifica-
tion is compromised as well.)

214 CHAPTER 10 End-to-end encryption

NOTE Of course, if users do not verify fingerprints, then they can be MITM’d
without knowing it. But that is the kind of tradeoff that real-world applica-
tions have to deal with when bringing end-to-end encryption at scale. Indeed,
the failure of the WOT shows that security-focused applications must keep
usability in mind to get widely adopted.

In the Signal mobile application, a fingerprint between Alice and Bob is computed by:

Hashing Alice’s identity key prefixed by her username (a phone number in Sig-
nal) and interpreting a truncation of that digest as a series of numbers

Doing the same for Bob

Displaying the concatenation of the two series of numbers to the user

Applications like Signal make use of QR codes to let users verify fingerprints more eas-
ily as these codes can be lengthy. Figure 10.9 illustrates this use case.

o' Google Fi & 6:21PM 7 @ 89% @m)

X Verify Safety Number |’E|

You have not marked Clint Gibler
as verified.

Tap to Scan

69128 15911 72043 37466
67774 01307 93084 75482

87438 39199 50901 55481 Figure 10.9 With Signal, you can verify
the authenticity and confidentiality of the
If you wish to verify the security of your end-to-end connection you have with a friend by using
encryption with Clint Gibler, compare the numbers a different channel (just like in real life) to
elbee Witk #e AUIHEER e Unell Evies: make sure the two fingerprints (Signal calls
them safety numbers) of you and your friend

Alternatively, you can scan the code on their phone, or
ask them to scan your code. match. This can be done more easily via

the use of a QR code, which encodes this
information in a scannable format. Signal
. also hashes the session secret instead of
¥ Mark as Verified the two users’ public keys, allowing them to
verify one large string instead of two.

Learn More

10.4.2

Secure messaging: A modern look at end-to-end encryption with Signal 215

Next, let’s see how the Signal protocol works under the hood—specifically, how Signal
manages to be forward secure.

X3DH: the Signal protocol’s handshake

Most secure messaging apps before Signal were synchronous. This meant that, for
example, Alice wasn’t able to start (or continue) an end-to-end encrypted conversa-
tion with Bob if Bob was not online. The Signal protocol, on the other hand, is asyn-
chronous (like email), meaning that Alice can start (and continue) a conversation with
people that are offline.

Remember that forward secrecy (covered in chapter 9) means that a compromise of
keys does not compromise previous sessions and that forward secrecy usually means
that the key exchanges are interactive because both sides have to generate ephemeral
Diffie-Hellman (DH) key pairs. In this section, you will see how Signal uses non-interactive
key exchanges (key exchanges where one side is potentially offline) that are still for-
ward secure. OK, let’s get going.

To start a conversation with Bob, Alice initiates a key exchange with him. Signal’s
key exchange, X3DH, combines three (or more) DH key exchanges into one. But
before you learn how that works, you need to understand the three different types of
DH keys that Signal uses:

Identity keys—These are the long-term keys that represent the users. You can
imagine that if Signal only used identity keys, then the scheme would be fairly
similar to PGP, and there would be no forward secrecy.

One-time prekeys—In order to add forward secrecy to the key exchange, even
when the recipient of a new conversation is not online, Signal has users upload
multiple single-use public keys. They are simply ephemeral keys that are uploaded
in advance and are deleted after being used.

Signed prekeys—We could stop here, but there’s one edge case missing. Because
the one-time prekeys that a user uploads can, at some point, be depleted, users
also have to upload a medium-term public key that they sign: a signed prekey. This
way, if no more one-time prekeys are available on the server under your user-
name, someone can still use your signed prekey to add forward secrecy up to
the last time you changed your signed prekey. This also means that you have to
periodically rotate your signed prekey (for example, every week).

This is enough to preview what the flow of a conversation creation in Signal looks like.
Figure 10.10 presents an overview.

Let’s go over each of these steps in more depth. First, a user registers by sending
the following:

One identity key
One signed prekey and its signature
A defined number of one-time prekeys

216

Bob registers.

CHAPTER 10 End-to-end encryption

Alice starts a
conversation with Bob.

Bob connects to the server.

Server

Registers h
t+—F. .

Bob’s Server
ad prekey bundle
‘—

“+* |, Message to Bob
_—

Server
Alice’s

message ﬁ
—_— ..

Bob publishes a long-term
identity key, a signed prekey,

Alice requests a prekey bundle
for Bob. It is used to create a

Bob receives Alice’s message.
He can decrypt it using Alice’s

and several one-time prekeys. message that the server can store. long-term public key and

Bob’s private keys.

Figure 10.10 Signal’s flow starts with a user registering with a number of public keys. If Alice wants to talk to
Bob, she first retrieves Bob’s public keys (called a prekey bundle), then she performs an X3DH key exchange
with these keys and creates an initial message using the output of the key exchange. After receipt of the
message, Bob can perform the same on his side to initialize and continue the conversation.

At this point, it is the responsibility of the user to periodically rotate the signed prekey
and upload new one-time prekeys. I recap this flow in figure 10.11.

NOTE Signal makes use of the identity key to perform signatures over signed
prekeys and key exchanges during the X3DH key exchange. While I've warned
against using the same key for different purposes, Signal has deliberately
analyzed that, in their case, there should be no issue. This does not mean that
this would work in your case and with your key exchange algorithm. I would
advise against using a key for different purposes in general.

After the step introduced in figure 10.11, Alice (going back to our example) would
then start a conversation with Bob by retrieving:

Bob’s identity key.

Bob’s current signed prekey and its associated signature.

If there are still some, one of Bob’s one-time prekeys (the server then deletes
the one-time prekey sent to Alice).

Alice can verify that the signature over the signed prekey is correct. She then per-
forms the X3DH handshake with:
All of the public keys from Bob

An ephemeral key pair that she generates for the occasion in order to add for-
ward secrecy

Her own identity key

The output of X3DH is then used in a post-X3DH protocol, which is used to encrypt
her messages to Bob (more on that in the next section). X3DH is composed of three

Secure messaging: A modern look at end-to-end encryption with Signal 217
Server
Registers ﬂ
«— ¥
Server Server Server Set of
Long-term Signed one-time
public key prekey prekeys
L Ml L N

During registration, Bob generates
a long-term key pair and
publishes it.

Bob also generates a prekey,
signs it, and publishes the public
prekey and signature. This signed

prekey is periodically rotated.

Bob also generates a set of
one-time prekeys and publishes
them. Each key is for single use

only, thus Bob must replenish

the set periodically.

Figure 10.11 Building on figure 10.10, the first step is for a user to register by generating a number of DH key
pairs and sending the public parts to a central server.

(optionally, four) DH key exchanges, grouped into one. The DH key exchanges are
between:

The identity key of Alice and the signed prekey of Bob

The ephemeral key of Alice and the identity key of Bob

The ephemeral key of Alice and the signed prekey of Bob

If Bob still has a one-time prekey available, his one-time prekey and the ephem-
eral key of Alice

The output of X3DH is the concatenation of all of these DH key exchanges, passed to
a key derivation function (KDF), which we covered in chapter 8. Different key
exchanges provide different properties. The first and second ones are here for mutual
authentication, while the last two are here for forward secrecy. All of this is analyzed in
more depth in the X3DH specification (https://signal.org/docs/specifications/x3dh/),
which I encourage you to read if you want to know more as it is well written. Figure 10.12
recaps this flow.

Alice now can send Bob her identity public key, the ephemeral public key she gen-
erated to start the conversation, and other relevant information (like which of Bob’s
one-time prekeys she used). Bob receives the message and can perform the exact
same X3DH key exchange with the public keys contained in it. (For this reason, I skip
illustrating the last step of this flow.) If Alice used one of Bob’s one-time prekeys, Bob
gets rid of it. What happens after X3DH is done? Let’s look at that next.

https://signal.org/docs/specifications/x3dh/

218 CHAPTER 10 End-to-end encryption

Server Bob’s Server Server
' ’d prekey bundle Alice’s
Registers S — message
| «— s o Message to Bob —
_
|
Alice’s Bob’s Alice’s Bob’s Bob’s
identity key signed prekey ephemeral key identity key one-time prekey
| | |
v v v v
Diffie- Diffie- Diffie- Diffie-
Hellman Hellman Hellman Hellman
|
|
4. ____________ -
Session key

Figure 10.12 Building on figure 10.10, to send a message to Bob, Alice fetches a prekey bundle containing
Bob’s long-term key, Bob’s signed prekey, and optionally, one of Bob’s one-time prekeys. After performing
different key exchanges with the different keys, all outputs are concatenated and passed into a KDF to produce
an output used in a subsequent post-X3DH protocol to encrypt messages to Bob.

10.4.3 Double Ratchet: Signal’s post-handshake protocol

The post-X3DH phase lives as long as the two users do not delete their conversations
or lose any of their keys. For this reason, and because Signal was designed with SMS
conversations in mind, where the time between two messages might be counted in
months, Signal introduces forward secrecy at the message level. In this section, you will
learn how this post-handshake protocol (called the Double Ratchet) works.

But first, imagine a simple post-X3DH protocol. Alice and Bob could have taken
the output of X3DH as a session key and use it to encrypt messages between them as
figure 10.13 illustrates.

o, Session key 4—“ » Session key ﬁ

Figure 10.13 Naively, a post-X3DH protocol could simply use the output of X3DH
as a session key to encrypt messages between Alice and Bob.

We usually want to separate the keys used for different purposes though. What we can
do is to use the output of X3DH as a seed (or root key, according to the Double Ratchet
specification) to a KDF in order to derive two other keys. Alice can use one key to

Secure messaging: A modern look at end-to-end encryption with Signal 219

encrypt messages to Bob, and Bob can use the other key to encrypt messages to Alice.
Iillustrate this in figure 10.14.

o, Root key Root key oo
! !

v v v v

Sending key Receiving key Receiving key Sending key

Figure 10.14 Building on figure 10.13, a better post-X3DH protocol would make
use of a KDF with the output of the key exchanges to differentiate keys used to
encrypt Bob’s and Alice’s messages. Here Alice’s sending key is the same as Bob’s
receiving key, and Bob’s sending key is the same as Alice’s receiving key.

This approach could be enough, but Signal notes that texting sessions can last for years.
This is unlike the TLS sessions of chapter 9 that are usually expected to be shortlived.
Because of this, if at any point in time the session key is stolen, all previously recorded
messages can be decrypted!

To fix this, Signal introduced what is called a symmetric ratchet (as figure 10.15 illus-
trates). The sending key is now renamed a sending chain key and is not used directly to

o, Root key Root key oo
! !

v v v v

Sending chain key Receiving chain key Receiving chain key Sending chain key

Sending key

Sending key

Sending chain key

Figure 10.15 Building on figure 10.14, forward secrecy can be introduced in the post-
X3DH protocol by ratcheting (passing into a KDF) a chain key every time one needs to

send a message, and ratcheting another chain key every time one receives a message.

Thus, the compromise of a sending or receiving chain key does not allow an attacker to

recover previous ones.

220

CHAPTER 10 End-to-end encryption

encrypt messages. When sending a message, Alice continuously passes that sending
chain key into a one-way function that produces the next sending chain key as well as
the actual sending keys to encrypt her messages. Bob, on the other hand, will have to
do the same but with the receiving chain key. Thus, by compromising one sending key
or sending chain key, an attacker cannot recover previous keys. (And the same is true
when receiving messages.)

Good. We now have forward secrecy baked into our protocol and at the message
level. Every message sent and received protects all previously sent and received mes-
sages. Note that this is somewhat debatable as an attacker who compromises a key
probably does this by compromising a user’s phone, which will likely contain all previ-
ous messages in cleartext next to the key. Nevertheless, if both users in a conversation
decide to delete previous messages (for example, by using Signal’s “disappearing mes-
sages” feature), the forward secrecy property is achieved.

The Signal protocol has one last interesting thing I want to talk about: PCS (post-
compromise security, also called backward secrecy as you learned in chapter 8). PCS is the
idea that if your keys get compromised at some point, you can still manage to recover
as the protocol will heal itself. Of course, if the attacker still has access to your device
after a compromise, then this is for nothing.

PCS can work only by reintroducing new entropy that a nonpersistent compromise
wouldn’t have access to. The new entropy has to be the same for both peers. Signal’s
way of finding such entropy is by doing an ephemeral key exchange. To do this, the
Signal protocol continuously performs key exchanges in what is called a DH ratchet.
Every message sent by the protocol comes with the current ratchet public key as fig-
ure 10.16 illustrates.

. A. ‘ L] A‘ .
| Alice | Bob
—| Ratchet key A1 + msg |—>

—| Ratchet key A1 + msg |—>

Ratchet key B1 + msg

| Ratchet key A2 + msg |> Figure 10.16 1:ho:e Diffie-Hellman ([_)H) rat.chet
works by advertising a ratchet public key in every
Ratchet key B2 + msg message sent. This ratchet public key can be the
same as the previous one, or it can advertise a new
Ratchet key B2 + msg ratchet public key if a participant decides to

refresh theirs.

When Bob notices a new ratchet key from Alice, he must perform a new DH key
exchange with Alice’s new ratchet key and Bob’s own ratchet key. The output can then

Secure messaging: A modern look at end-to-end encryption with Signal 221
be used with the symmetric ratchet to decrypt the messages received. I illustrate this in

figure 10.17.

., ‘ C,0 . Bob’s ratchet private key
|
—| Ratchet key A1 + msg |—>
—| Ratchet key A1 + msg |—>

Diffie-Hellman | use this to derive
Ve O GIEIRE decryption keys for
Y 9 any following messages.

Ah, a new
ratchet public key!

Figure 10.17 When receiving a new ratchet public key from Alice, Bob must do a key exchange with it and his
own ratchet key to derive decryption keys. This is done with the symmetric ratchet. Alice’s messages can then

be decrypted.

Another thing that Bob must do when receiving a new ratchet key is to generate a new
random ratchet key for himself. With his new ratchet key, he can perform another key
exchange with Alice’s new ratchet key, which he then uses to encrypt messages to her.

This should look like figure 10.18.

A
. Bob’s ratchet private key

|Alice | Bob l
e | use this to derive
Ah, a new Diffie-Hellman decryption keys for any

_l Ratchet key A1 + msg H ratchet public key! E CEEIEES following messages.

—| Ratchet key A1 + msg |—>

Generate iext
And here’s my new e Diffie-Hellman
FEWENSEEY 1 < m8E ratchet public key. D'ffngsg?an key exchange

| use the DH output to derive

new encryption keys to encrypt
subsequent messages.

Figure 10.18 Building on figure 10.17, after receiving a new ratchet key Bob must also generate a new
ratchet key for himself. This new ratchet key is used to derive encryption keys and is advertised to Alice in
his next series of messages (up until he receives a new ratchet key from Alice).

This back and forth of key exchanges is mentioned as a “ping-pong” in the Double

Ratchet specification:

222 CHAPTER 10 End-to-end encryption

This results in a “ping-pong” behavior as the parties take turns replacing ratchet key
pairs. An eavesdropper who briefly compromises one of the parties might learn the value of
a current ratchet private key, but that private key will eventually be replaced with an
uncompromised one. At that point, the Diffie-Hellman calculation between raichet key
pairs will define a DH output unknown to the attacker.

—The Double Ratchet Algorithm

Finally, the combination of the DH ratchet and the symmetric ratchet is called the Dou-
ble Ratchet. It’s a bit dense to visualize as one diagram, but figure 10.19 attempts to do so.

DH Bob’s presigned key Root key 4—m
keygen *

Alice’s new ratchet key = DH output Sending chain key

Sending key
Sending key

Receiving chain key

Figure 10.19 The Double Ratchet (from Alice’s point of view) combines the DH ratchet (on the left)
with the symmetric ratchet (on the right). This provides PCS as well as forward secrecy to the post-
X3DH protocol. In the first message, Alice does not yet know Bob’s ratchet key so she uses his
presigned key instead.

Receiving key

v
DH output —}@—P
Bob’s new ratchet key
keygen

Alice’s new ratchet key =P
Receiving key

Diffie-Hellman ratchet Symmetric ratchet

I know this last diagram is quite dense, so I encourage you to take a look at Signal’s
specifications, which are published on https://signal.org/docs. They provide another
well-written explanation of the protocol.

10.5 The state of end-to-end encryption

Today, most secure communications between users happen through secure messaging
applications instead of encrypted emails. The Signal protocol has been the clear win-
ner in its category, being adopted by many proprietary applications and also by open

https://signal.org/docs

The state of end-to-end encryption 223

source and federated protocols like XMPP (via the OMEMO extension) and Matrix (a
modern alternative to IRC). On the other hand, PGP and S/MIME are being dropped
as published attacks have led to a loss of trust.

What if you want to write your own end-to-end encrypted messaging app? Unfortu-
nately, a lot of what’s being used in this field is ad hoc, and you would have to fill in
many of the details yourself in order to obtain a full-featured and secure system. Sig-
nal has open sourced a lot of its code, but it lacks documentation and can be hard to
use correctly. On the other hand, you might have better luck using a decentralized
open source solution like Matrix, which might prove easier to integrate with. This is
what the French government has done.

Before we close this chapter, there are also a number of open questions and active
research problems that I want to talk about. For example

Group messaging
Support for multiple devices
Better security assurances than TOFU

Let’s start with the first item: group messaging. At this point, while implemented in differ-
ent ways by different applications, group messaging is still being actively researched. For
example, the Signal application has clients make sense of group chats. Servers only see
pairs of users talking—never less, never more. This means that clients have to encrypt a
group chat message to all of the group chat participants and send them individually.
This is called client-side fanout and does not scale super well. It is also not too hard for the
server to figure out what are the group members when it sees Alice, for example, send-
ing several messages of the same length to Bob and Charles (figure 10.20).

)\::'/'5 . _—r
Z0Ts -0 e

Client-side fanout Server-side fanout

Figure 10.20 There are two ways to approach end-to-end encryption for group chats. A client-side fanout
approach means that the client has to individually message each recipient using their already existing
encrypted channel. This is a good approach to hide group membership from the server. A server-side fanout
approach lets the server forward a message to each group chat participant. This is a good approach to
reduce the number of messages sent from the client’s perspective.

224

CHAPTER 10 End-to-end encryption

WhatsApp, on the other hand, uses a variant of the Signal protocol where the server is
aware of group chat membership. This change allows a participant to send a single
encrypted message to the server that, in turn, will have the responsibility to forward it
to the group members. This is called server-side fanout.

Another problem of group chat is scaling to groups of a large memberset. For this,
many players in the industry have recently gathered around a Messaging Layer Security
(MLS) standard to tackle secure group messaging at scale. But there seems to be a lot
of work to be done, and one can wonder, is there really any confidentiality in a group
chat with more than a hundred participants?

NOTE This is still an area of active research, and different approaches come
with different tradeoffs in security and usability. For example, in 2021, no
group chat protocol seems to provide transcript consistency, a cryptographic
property that ensures that all participants of a group chat see the same mes-
sages in the same order.

Support for multiple devices is either not a thing or implemented in various ways,
most often by pretending that your different devices are different participants of a
group chat. The TOFU model can make handling multiple devices quite compli-
cated because having different identity keys per device can become a real key man-
agement problem. Imagine having to verify fingerprints for each of your devices and
each of your friends’ devices. Matrix, for example, has a user sign their own devices.
Other users then can trust all your devices as one entity by verifying their associated
signatures.

Finally, I mentioned that the TOFU model is also not the greatest as it is based on
trusting a public key the first time we see it, and most users do not verify later that the
fingerprints match. Can something be done about this? What if the server decides to
impersonate Bob to Alice only? This is a problem that Key Transparency is trying to
tackle. Key Transparency is a protocol proposed by Google, which is similar to the Cer-
tificate Transparency protocol that I talked about in chapter 9. There is also some
research making use of the blockchain technology that I'll talk about in chapter 12 on
cryptocurrencies.

Summary

End-to-end encryption is about securing communications among real human
beings. A protocol implementing end-to-end encryption is more resilient to vul-
nerabilities that can happen in servers sitting in between users and can greatly
simplify legal requirements for companies.

End-to-end encryption systems need a way to bootstrap trust between users.
This trust can come from a public key that we already know or an out-of-band
channel that we trust.

PGP and S/MIME are the main protocols that are used to encrypt emails today,
yet none of them are considered safe to use as they make use of old cryptographic

Summary 225

algorithms and practices. They also have poor integration with email clients that

have been shown to be vulnerable to different attacks in practice.

— PGP uses a web of trust (WOT) model, where users sign each other public
keys in order to allow others to trust them.

— S/MIME uses a public key infrastructure to build trust between participants.
It is most commonly used in companies and universities.

An alternative to PGP is saltpack, which fixes a number of issues while relying

on social networks to discover other people’s public keys.

Emails will always have issues with encryption as the protocol was built without

encryption in mind. On the other hand, modern messaging protocols and

applications are considered better alternatives to encrypted emails as they are
built with end-to-end encryption in mind.

— The Signal protocol is used by most messaging applications to secure end-to-
end communications between users. Signal messenger, WhatsApp, Facebook
Messenger, and Skype all advertise their use of the Signal protocol to secure
messages.

— Other protocols, like Matrix, attempt to standardize federated protocols for
end-to-end encrypted messaging. Federated protocols are open protocols
that anyone can interoperate with (as opposed to centralized protocols that
are limited to a single application).

User authentication

This chapter covers

= The difference between authenticating people
and data

= User authentication to authenticate users based
on passwords or keys

= User-aided authentication to secure connections
between a user’s devices

In the introduction of this book, I boiled cryptography down to two concepts: con-
fidentiality and authentication. In real-world applications, confidentiality is (usu-
ally) the least of your problems; authentication is where most of the complexity
arises. I know I’ve already talked a lot about authentication throughout this book,
but it can be a confusing concept as it is used with different meanings in cryptogra-
phy. For this reason, this chapter starts with an introduction of what authentication
really is about. As usual with cryptography, no protocol is a panacea, and the rest of
the chapter will teach you a large number of authentication protocols that are used
in real-world applications.

226

A recap of authentication 227

11.1 A recap of authentication

By now, you have heard of authentication many times, so let’s recap. You learned about

Authentication in cryptographic primitives like message authentication codes
(covered in chapter 3) and authenticated encryption (covered in chapter 4)
Authentication in cryptographic protocols like TLS (covered in chapter 9) and
Signal (covered in chapter 10), where one or more participants of a protocol
can be authenticated

In the first case, authentication refers to the authenticity (or integrity) of messages. In
the latter case, authentication refers to proving who you are to someone else. These are dif-
ferent concepts covered by the same word, which can be quite confusing! But both
usages are correct as the Oxford English Dictionary (http://www.oed.com/) points out:

Authentication. The process or action of proving or showing something to be true, genuine,
or valid.

For this reason, you should think of authentication as a term used in cryptography to
convey two different concepts depending on the context:

Message/payload authentication—You’re proving that a message is genuine and
hasn’t been modified since its creation. (For example, are these messages
authenticated or can someone tamper with them?)

Origin/entity/identity authentication—You’re proving that an entity really is who
they say they are. (For example, am I actually communicating with google.com?)

Bottom line: authentication is about proving that something is what it is supposed to
be, and that something can be a person, a message, or something else. In this chapter,
I will use the term authentication only to refer to identifying people or machines. In
other words, identity authentication. By the way, you already saw a lot about this type of
authentication:

In chapter 9, on secure transport, you learned that machines can authenticate
other machines at scale by using public key infrastructures (PKIs).

In chapter 10, on end-to-end encryption, you learned about ways humans can
authenticate one another at scale by using trust on first use (TOFU) (and verify-
ing later) or by using the web of trust (WOT) techniques.

In this chapter, you will learn the following two other cases not previously mentioned.
(I recap these in figure 11.1.)

User authentication, or how machines authenticate humans—beep boop
User-aided authentication, or how humans can help machines authenticate one
another

Another aspect of identity authentication is the identity part. Indeed, how do we define
someone like Alice in a cryptographic protocol? How can a machine authenticate you
and me? There is, unfortunately (or fortunately), an inherent gap between flesh

http://google.com
http://www.oed.com/

228

11.2

CHAPTER 11 User authentication

A User Machine

authentication authentication
o, 0 —> —

e
o

User-aided
authentication

—>

Figure 11.1 In this book, | talk about origin authentication in three
types of scenarios. User authentication happens when a device
authenticates a human being. Machine authentication happens when
a machine authenticates another machine. User-aided authentication
happens when a human is involved in a machine authenticating
another machine.

and bits. To bridge reality and the digital world, we always assume that Alice is the
only one who knows some secret data, and to prove her identity, she has to demon-
strate knowledge of that secret data. For example, she could be sending her pass-
word or she could be signing a random challenge using the private key associated
with her public key.

Alright, that’s enough intro. If this section didn’t make too much sense, the multi-
tude of examples that are to follow will. Let’s now first have a look at the many ways
machines have found to authenticate us humans!

User authentication, or the quest
to get rid of passwords

The first part of this chapter is about how machines authenticate humans or, in other
words, user authentication. There are many ways to do this, and no solution is a pana-
cea. But in most user authentication scenarios, we assume that

= The server is already authenticated.
= The user shares a secure connection with it.

For example, you can imagine that the server is authenticated to the user via the web
public key infrastructure (PKI) and that the connection is secured via TLS (both cov-
ered in chapter 9). In a sense, most of this section is about upgrading a one-way authen-
ticated connection to a mutually-authenticated connection as figure 11.2 illustrates.

User authentication, or the quest to get rid of passwords 229

Key exchange where
[— machine - — >
is authenticated

Can | get access N
to the stuff? ¢

Figure 11.2 User authentication typically happens
over a channel that is already secured but where only

, the server is authenticated. A typical example is
You'll need to . .
authenticate first when you browse the web using HTTPS and log into
1 1 a web page using your credentials.

I have to warn you: user authentication is a vast land of broken promises. You must

have used passwords many times to authenticate to different web pages, and your own
experience probably resembles something like this:

You register with a username and password on a website.

You log into the website using your new credentials.

You change your password after recovering your account or because the website
forces you to.

If you’re out of luck, your password (or a hash of it) is leaked in a series of data-
base breaches.

Sound familiar?

NOTE I will ignore password/account recovery in this chapter, as they have little to
do with cryptography. Just know that they are often tied to the way you first reg-
istered. For example, if you registered with the IT department at your work-
place, then you’ll probably have to go see them if you lose your password, and
they can be the weakest link in your system if you are not careful. Indeed, if I
can recover your account by calling a number and giving someone your birth
date, then no amount of cool cryptography at login time will help.

A naive way to implement the previous user authentication flow is to store the user
password at registration and then ask the user for it at login time. As mentioned in
chapter 3, once successfully authenticated, a user is typically given a cookie that can
be sent in every subsequent request instead of a username and password. But wait; if
the server stores your password in cleartext, then any breach of its databases reveals
your password to the attackers. These attackers will then be able to use it to log into
any websites where you use the same password to register.

A better way to store passwords would be to use a password hashing algorithm like
the standardized Argon2 you’ve learned about in chapter 2. This would effectively
prevent a smash-and-grab type of attack on the database to leak your password,
although an intruder that overextends their welcome would still be able to see your

230 CHAPTER 11 User authentication

password every time you log in. Yet, a lot of websites and companies still store pass-
words in cleartext.

Exercise

Sometimes applications attempt to fix the issue of the server learning about the user
passwords at registration by having the client hash (perhaps with a password hash)
the password before sending it to the server. Can you determine if this really works?

Moreover, humans are naturally bad at passwords. We are usually most comfortable
with small and easy-to-remember passwords. And, if possible, we would want to just
reuse the same password everywhere.

81 % of all hacking-related breaches leverage stolen or weak passwords.

—Verizon Data Breach Report (2017)

The problem of weak passwords and password reuse has led to many silly and annoy-
ing design patterns that attempt to force users to take passwords more seriously. For
example, some websites require you to use special characters in your passwords or
force you to change your password every 6 months, and so on. Furthermore, many
protocols attempt to “fix” passwords or to get rid of them altogether. Every year, new
security experts seem to think that the concept of “password” is dead. Yet, it is still the
most widely used user authentication mechanism.

THE PASSWORD
~| Ispew

) |

-
,§ :
&

osclia |

So here you have it, passwords are probably here to stay. Yet, there exist many proto-
cols that improve or replace passwords. Let’s take a look at those.

User authentication, or the quest to get rid of passwords 231

11.2.1 One password to rule them all: Single sign-on (SSO)
and password managers

OK, password reuse is bad, so what can we do about it? Naively, users could use differ-
ent passwords for different websites, but there are two problems with this approach:

= Users are bad at creating many different passwords.
= The mental load required to remember multiple passwords is impractical.

To alleviate these concerns, two solutions have been widely adopted:

= Single sign-on (SSO)—The idea of SSO is to allow users to connect to many dif-
ferent services by proving that they own the account of a single service. This
way, the user only has to remember the password associated with that one ser-
vice in order to be able to connect to many services. Think “connect with Face-
book” type of buttons as figure 11.3 illustrates.

= Password managers—The previous SSO approach is convenient if the different
services you use all support it, but this is obviously not scalable for scenarios like
the web. A better approach in these extreme cases is to improve the clients as
opposed to attempting to fix the issue on the server side. Nowadays, modern
browsers have built-in password managers that can suggest complex passwords
when you register on new websites, and they can remember all of your pass-
words as long as you remember one master password.

Vacation Rentals, Homes, Expc X+

& airbnb.com % @ Incognito

[XK)
& facebook.com, or G

Facebook

Country/Region B
United States (+1) SR

Log in to use your Facebook account with Airbnb.
Phone number
Email or Phone:

r text you to confirm your number. Standard message and data rates apply. Password:

Continve m
Forgot account?

o ===

Continue with email

Continue with Facebook

Figure 11.3 An example of single sign-on (SS0) on the web. By having an account on Facebook or Google, a user
can connect to new services (in this example, Airbnb) without having to think about a new password.

232

11.2.2

CHAPTER 11 User authentication

The concept of SSO is not new in the enterprise world, but its success with normal
end-users is relatively recent. Today, two protocols are the main competitors when it
comes to setting up SSO:

Security Assertion Markup Language 2.0 (SAML)—A protocol using the Extensible
Markup Language (XML) encoding.

OpenID Connect (OIDC)—An extension to the OAuth 2.0 (RFC 6749) authoriza-
tion protocol using the JavaScript Object Notation (JSON) encoding.

SAML is still widely used, mostly in an enterprise setting, but it is (at this point) a leg-
acy protocol. OIDC, on the other hand, can be seen everywhere on web and mobile
applications. You most likely already used it!

Authentication protocols are often considered hard to get right. OAuth2, the pro-
tocol OIDC relies on, is notorious for being easy to misuse. On the other hand, OIDC
is well specified (see https://openid.net). Make sure that you follow the standards and
that you look at best practices, as this can save you from a lot of trouble.

NOTE Here’s another example of a pretty large company deciding not to fol-
low this advice. In May 2020, the Sign-in with Apple SSO flow that took a depar-
ture from OIDC was found to be vulnerable. Anyone could have obtained a
valid ID token for any Apple account just by querying Apple’s servers.

SSO is great for users as it reduces the number of passwords they have to manage, but
it does not remove passwords altogether. The user still has to use passwords to connect
to OIDC providers. So next, let’s see how cryptography can help hide passwords.

Don’t want to see their passwords? Use an asymmetric
password-authenticated key exchange

The previous section surveyed solutions that attempt to simplify identity management
for users, allowing them to authenticate to multiple services using only one account
linked to a single service. While protocols like OIDC are great, as they effectively
decrease the number of passwords users have to manage, they don’t change the fact
that some service still needs to see the user’s password in cleartext. Even if the pass-
word is stored after password hashing it, it is still sent in clear every time the user reg-
isters, changes their password, or logs in.

Cryptographic protocols called asymmetric (or augmented) password-authenticated key
exchanges (PAKEs) attempt to provide user authentication without having users ever
communicate their passwords directly to the server. This contrasts with symmetric or bal-
anced PAKEs protocols, where both sides know the password.

The most popular asymmetric PAKE at the moment is the Secure Remote Password
(SRP) protocol, which was standardized for the first time in 2000 in RFC 2944 (“Tel-
net Authentication: SRP”) and later integrated into TLS via RFC 5054 (“Using the
Secure Remote Password (SRP) Protocol for TLS Authentication”). It is quite an old
protocol and has a number of flaws. For example, if the registration flow is inter-
cepted by a MITM attacker, the attacker would then be able to impersonate and log in

https://openid.net

User authentication, or the quest to get rid of passwords 233

as the victim. It also does not play well with modern protocols as it cannot be instanti-
ated on elliptic curves, and worse, it is incompatible with TLS 1.3.

Since the invention of SRP, many asymmetric PAKEs have been proposed and
standardized. In the summer of 2019, the Crypto Forum Research Group (CFRG)
of the IETF started a PAKE selection process with the goal to pick one algorithm
to standardize for each category of PAKEs: symmetric/balanced and asymmetric/
augmented. In March 2020, the CFRG announced the end of the PAKE selection
process, selecting

CPace—The recommended symmetric/balanced PAKE, invented by Haase and
Benoit Labrique

OPAQUE—The recommended asymmetric/augmented PAKE, invented by
Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu

In this section, I talk about OPAQUE, which (in early 2021) is still in the process of
being standardized. In the second section of this chapter, you will learn more about
symmetric PAKEs and CPace.

OPAQUIE takes its name from the homonym O-PAKFE, where O refers to the term
oblivious. This is because OPAQUE relies on a cryptographic primitive that I have not
yet mentioned in this book: an oblivious pseudorandom function (OPRF).

OBLIVIOUS PSEUDORANDOM FUNCTIONS (OPRFS)

OPREFs are a two-participant protocol that mimics the PRFs that you learned about
in chapter 3. As a reminder, a PRF is somewhat equivalent to what one would expect
of a MAC: it takes a key and an input and gives you a totally random output of a
fixed length.

NOTE The term oblivious in cryptography generally refers to protocols where
one party computes a cryptographic operation without knowing the input
provided by another party.

Here is how an OPRF works at a high level:

Alice wants to compute a PRF over an input but wants the input to remain
secret. She “blinds” her input with a random value (called a blinding factor) and
sends this to Bob.

Bob runs the OPRFs on this blinded value with his secret key, but the output is
still blinded so it’s useless for Bob. Bob then sends this back to Alice.

Alice finally “unblinds” the result using the same blinding factor she previously
used to obtain the real output.

It is important to note that every time Alice wants to go over this protocol, she has to
create a different blinding factor. But no matter what blinding factor she uses, as long
as she uses the same input, she will always obtain the same result. I illustrate this in fig-
ure 11.4.

234

CHAPTER 11 User authentication

Input —» Blinded input

SELG LIS — Blinding factor 575 a <_Eee;l:ret
Output 4—m Blinded output

Figure 11.4 An oblivious PRF (OPRF) is a construction that allows one party to compute a
PRF over the input of another party without learning that input. To do this, Alice first generates
a random blinding factor, then blinds her input with that before sending it to Bob. Bob uses his
secret key to compute the PRF over the blinded value, then sends the blinded output to Alice
who can unblind it. The result does not depend on the value of the blinding factor.

Here’s an example of an OPRF protocol implemented in a group where the discrete
logarithm problem is hard:

Alice converts her input to a group element x.

Alice generates a random blinding factor r.

Alice blinds her input by computing blinded_input = x'.

Alice sends the blinded_input to Bob.

Bob computes blinded_output = blinded_input*, where kis the secret key.
Bob sends the result back to Alice.

Alice can then unblind the produced result by computing

output = blinded_output'’" = x*, where 1/ris the inverse of r.

How OPAQUE uses this interesting construction is the whole trick behind the asym-
metric PAKE.

THE OPAQUE AsYMMETRIC PAKE, HOW DOES IT WORK?
The idea is that we want a client, let’s say Alice, to be able to do an authenticated key
exchange with some server. We also assume that Alice already knows the server’s pub-
lic key or already has a way to authenticate it (the server could be an HTTPS website
and, thus, Alice can use the web PKI). Let’s see how we could build this to progres-
sively understand how OPAQUE works.

First idea: use public key cryptography to authenticate Alice’s side of the connection.
If Alice owns a long-term key pair and the server knows the public key, she can simply
use her private key to perform a mutually authenticated key exchange with the server,
or she can sign a challenge given by the server. Unfortunately, an asymmetric private key
is too long, and Alice can only remember her password. She could store a key pair on
her current device, but she also wants to be able to log in from another device later.

Second idea: Alice can derive the asymmetric private key from her password, using a
password-based key derivation function (KDF) like Argon2, which you learned about

User authentication, or the quest to get rid of passwords 235

in chapter 2 and chapter 8. Alice’s public key could then be stored on the server. If we
want to avoid someone testing a password against the whole database in case of a data-
base breach, we can have the server supply each user with a different salt that they
have to use with the password-based KDF.

This is pretty good already, but there’s one attack that OPAQUE wants to discard:
a precomputation attack. I can try to log in as you, receive your salt, and then precom-
pute a huge number of asymmetric private keys and their associated public keys
offline. The day the database is compromised, I can quickly see if I can find your pub-
lic key and the associated password in my huge list of precomputed asymmetric
public keys.

Third idea: This is where the main trick of OPAQUE comes in! We can use the
OPRF protocol with Alice’s password in order to derive the asymmetric private key. If
the server uses a different key per user, that’s as good as having salts (attacks can only
target one user at a time). This way, an attacker that wants to precompute asymmetric
private keys based on guesses of our password has to perform online queries (prevent-
ing offline brute force attacks). Online queries are good because they can be rate-
limited (preventing more than 10 sign-in attempts per hour, for example) in order to
prevent these kinds of online brute force attacks.

Note that this is actually not how OPAQUE works: instead of having the user derive
an asymmetric private key, OPAQUE has the user derive a symmetric key. The symmet-
ric key is then used to encrypt a backup of your asymmetric key pair and some addi-
tional data (which can include the server’s public key, for example). I illustrate the
algorithm in figure 11.5.

.. Registration .. Login

| want to sign up as Alice |—> —| I want to log in as Alice |—>

Long-term public key |—> Encrypted key pair
— —| OPRF protocol |- — —¥ 4+ — — | OPRF protocol | — —|
Encrypted key pair

| Mutually authenticated |
+ * key exchange >

Figure 11.5 To register to a server using OPAQUE, Alice generates a long-term key
pair and sends her public key to the server, which stores it and associates it with
Alice’s identity. She then uses the OPRF protocol to obtain a strong symmetric key
from her password and sends an encrypted backup of her key pair to the server. To
log in, she obtains her encrypted key pair from the server, then performs the OPRF
protocol with her password to obtain a symmetric key capable of decrypting her key
pair. All that’s left is to perform a mutually authenticated key exchange (or possibly
sign a challenge) with this key.

236

11.2.3

CHAPTER 11 User authentication

Before going to the next section, let’s review what you’ve learned here. Figure 11.6
illustrates this.

M
A.com | pmm
a
@ Blinded password
B.com a4
B.com - a
[)
®: | B ®:
a a
Passwords $SO Asymmetric/augmented PAKEs

Figure 11.6 Passwords are a handy way to authenticate users as they live in someone’s head and
can be used on any device. On the other hand, users have trouble creating strong passwords, and
because users tend to reuse passwords across websites, password breaches can be damaging. SSO
allows you to connect to many services using one (or a few) service(s), while asymmetric (or
augmented) password-authenticated key exchanges allow you to authenticate without the server
ever learning your real password.

One-time passwords aren’t really passwords:
Going passwordless with symmetric keys

Alright, so far so good. You've learned about different protocols that applications can
leverage to authenticate users with passwords. But, as you’ve heard, passwords are also
not that great. They are vulnerable to brute force attacks, tend to be reused, stolen,
and so on. What is available to us if we can afford to avoid using passwords?

And the answer is—keys! And, as you know, there are two types of keys in cryptog-
raphy and both types can be useful:

Symmetric keys
Asymmetric keys

This section goes over solutions that are based on symmetric keys, while the next sec-
tion goes over solutions based on asymmetric keys. Let’s imagine that Alice registers
with a service using a symmetric key (often generated by the server and communi-
cated to you via a QR code). A naive way to authenticate Alice later would be to simply
ask her to send the symmetric key. This is, of course, not great, as a compromise of her
secret would give an attacker unlimited access to her account. Instead, Alice can
derive what are called one-time passwords (OTPs) from the symmetric key and send
those in place of the longer-term symmetric key. Even though an OTP is not a pass-
word, the name indicates that an OTP can be used in place of a password and warns
that it should never be reused.

The idea behind OTP-based user authentication is straightforward: your security
comes from the knowledge of a (usually) 16- to 32-byte uniformly random symmetric

User authentication, or the quest to get rid of passwords 237

key instead of a low-entropy password. This symmetric key allows you to generate
OTPs on demand as figure 11.7 illustrates.

Figure 11.7 A one-time password (OTP) algorithm
allows you to create as many one-time passwords as

Additional data you want from a symmetric key and some additional
. al Oo-:-i;m OTP data. The additional data is different, depending on
Symmetric key —p [FEL] the OTP algorithm.

OTP-based authentication is most often implemented in mobile applications (see fig-
ure 11.8 for a popular example) or in security keys (a small device that you can plug in
the USB port of your computer). There are two main schemes that one can use to pro-
duce OTPs:

= The HMAC-based one-time password (HOTP) algorithm, standardized in RFC
4226, which is an OTP algorithm where the additional data is a counter.

= The time-based one-time password (TOTP) algorithm, standardized in RFC
6238, which is an OTP algorithm where the additional data is the time.

Most applications nowadays use TOTP because HOTP requires both the client and
the server to store a state (a counter). Storing a state can lead to issues if one side falls
out of synchrony and cannot produce (or validate) legitimate OTPs anymore.

< Search wiil & 4:29 PM < @ 100% (&2

= Authenticator + 7

Github

498 693

qwerty@gmail.com

Facebook

685 770

qwerty@gmail.com

Gmail

984 268

qwerty@gmail.com

Reddit Figure 11.8 A screenshot of the Google
Authenticator mobile app. The application
2 65 1 44 allows you to store unique per-application
symmetric keys that can then be used with
qwerty@gmail.com the TOTP scheme to generate 6-digit, one-time
passwords (OTPs), valid only for 30 seconds.

238 CHAPTER 11 User authentication

In most cases, this is how TOTP works:

When registering, the service communicates a symmetric key to the user (perhaps using a
QR code). The user then adds this key to a TOTP application.
When logging in, the user can use the TOTP application to compute a one-time password.
This is done by computing HMAC(symmetric_key, time), where timerepresents the
current time (rounded to the minute in order to make a one-time password
valid for 60 seconds). Then
The TOTP application displays to the user the derived one-time password,
truncated and in a human-readable base (for example, reduced to 6 charac-
ters in base 10 to make it all digits).
The user either copies or types the one-time password into the relevant
application.
The application retrieves the user’s associated symmetric key and computes
the one-time password in the same way as the user did. If the result matches
the received one-time password, the user is successfully authenticated.

Of course, the comparison between the user’s OTP and the one computed on the
server must be done in constant time. This is similar to MAC authentication tag
checks. I demonstrate this flow in figure 11.9.

Registration

| want to register as Alice 5
AN with a TOTP key

s Add TOTP key ., Here is the TOTP key Oxfe...
@ <4 by scanning = as a QR code example.com
QR code User TOTP key

Adele 0x04...

Registers Alice with i
arandom TOTP key [>| Alice | Oxfe..

Bob 0x3d...

Login 05:03pm

—I | want to connect as Alice]—>
ToTP)\ Give me an OTP
L] L] I I .

] ReadOTP 51 2
512299 | {0 example.com s 1.521290 | gl cxample.com

—

s21 260 +{0]

Figure 11.9 Alice registers with example.com using TOTP as authentication. She imports a symmetric key
from the website into her TOTP application. Later, she can ask the application to compute a one-time password
for example.com and use it to authenticate with the website. The website, example.com, fetches the symmetric
key associated with Alice and computes the one-time password using HMAC and the current time. The website
next compares the one-time password in constant time with what Alice sends.

User authentication, or the quest to get rid of passwords 239

This TOTP-based authentication flow is not ideal, though. There are a number of
things that could be improved, for example:

The authentication can be faked by the server as it also owns the symmetric key.
You can be social-engineered out of your one-time password.

For this reason, symmetric keys are yet another not-perfect replacement for passwords.
Next, let’s see how using asymmetric keys can address these downsides.

Phishing

Phishing (or social engineering) is an attack that does not target vulnerabilities in the
software but rather vulnerabilities in human beings. Imagine that an application
requires you to enter a one-time password to authenticate. What an attacker could
do in this case is to attempt to log in the application as you, and when prompted with
a one-time password request, give you a call to ask you for a valid one (pretending
that they work for the application).

You're telling me you wouldn’t fall for it! Good social engineers are superior at spin-
ning believable stories and fabricating a sense of urgency that would make the best
of us spill the beans. If you think about it, all the protocols that we’ve talked about
previously are vulnerable to these types of attacks.

11.2.4 Replacing passwords with asymmetric keys

Now that we’re dealing with public key cryptography, there’s more than one way we
can use asymmetric keys to authenticate to a server. We can

Use our asymmetric key inside a key exchange to authenticate our side of the
connection
Use our asymmetric key in an already secured connection with an authenti-
cated server

Let’s take a look at each method.

MUTUAL AUTHENTICATION IN KEY EXCHANGES

You’ve already heard about the first method: using the asymmetric key inside a key
exchange. In chapter 9, I mentioned that a TLS server can request the client to use a
certificate as part of the handshake. Often, companies will provision their employees’
devices with a unique per-employee certificate that allows them to authenticate to
internal services. Figure 11.10 provides an idea of what it looks like from a user’s per-
spective.

Client-side certificates are pretty straightforward. For example, in TLS 1.3, a server
can request the client to authenticate during the handshake by sending a Certificate-
Request message. The client then responds by sending its certificate in a Certificate
message, followed by a signature of all messages sent and received in a Certificate-
Verify message (which includes the ephemeral public key used in the key exchange).

240

CHAPTER 11 User authentication

®0®® M Googe

@® localhost vt @ Incognito @

= Select a certificate

i Select a certificate to authenticate yourself to localhost:8080
i !.

¥ BadSSL Client Certificate (BadSSL Client Root Certificate Authority)

Show Certificate Cancel m

How Search works

Figure 11.10 A page prompting the user’s browser for a client certificate. The user
can then select which certificate to use from a list of locally installed certificates. In
the TLS handshake, the client certificate’s key is then used to sign the handshake
transcript, including the client’s ephemeral public key, which is used as part of the
handshake.

The client is authenticated if the server can recognize the certificate and successfully
verify the client’s signature. Another example is the Secure Shell (SSH) protocol, which
also has the client sign parts of the handshake with a public key known to the server.

Note that signing is not the only way to authenticate with public key cryptography
during the handshake phase. The Noise protocol framework (covered in chapter 9 as
well) has several handshake patterns that enable client-side authentication using just
DH key exchanges.

POST-HANDSHAKE USER AUTHENTICATION WITH FIDO2

The second type of authentication with asymmetric keys uses an already secure connec-
tion where only the server is authenticated. To do this, a server can simply ask the cli-
ent to sign a random challenge. This way, replay attacks are prevented.

One interesting standard in this space is the Fast IDentity Online 2 (FIDOZ2). FIDO2
is an open standard that defines how to use asymmetric keys to authenticate users.
The standard specifically targets phishing attacks, and for this reason, FIDOZ2 is made
to work only with hardware authenticators. Hardware authenticators are simply physical

User authentication, or the quest to get rid of passwords 241

Nake e TNON-PASSWOTd-based

Roaming authenticator

Figure 11.11 Two types of hardware authenticators that can be used with FIDO2: (on the
left) a Yubikey, a roaming authenticator, and (on the right) TouchlD, a built-in authenticator.

components that can generate and store signing keys and can sign arbitrary challenges.
FIDO2 is split into two specifications (figure 11.11):

Client to Authenticator Protocol (CTAP)—CTAP specifies a protocol that roaming
authenticators and clients can use to communicate with one another. Roaming
authenticators are hardware authenticators that are external to your main
device. A client in the CTAP specification is defined as the software that wants
to query these authenticators as part of an authentication protocol. Thus, a cli-
ent can be an operating system, a native application like a browser, and so on.
Web Authentication (WebAuthn)—WebAuthn is the protocol that web browsers
and web applications can use to authenticate users with hardware authentica-
tors. It, thus, must be implemented by browsers to support authenticators. If
you are building a web application and want to support user authentication via
hardware authenticators, WebAuthn is what you need to use.

WebAuthn allows websites to use not only roaming authenticators but also platform
authenticators. Platform authenticators are built-in authenticators provided by a
device. They are implemented differently by various platforms and are often pro-
tected by biometrics (for example, a fingerprint reader, facial recognition, and so on).

We are now ending the first part of this chapter. But before I do this, figure 11.12
recaps the nonpassword-based authentication protocols I've talked about.

Now that you have learned about many different techniques and protocols that
exist to either improve passwords or replace them with stronger cryptographic solu-
tions, you might be wondering, which one you should use? Each of these solutions
have their own caveats, and no single solution might do it. If not, combine multiple
ones! This idea is called multi-factor authentication (MFA). Actually, chances are that
you might have already used OTPs or FIDO2 as a second authentication factor in
addition to (and not in place of) passwords.

This concludes the first half of this chapter on authenticating users. Next, let’s take
alook at how humans can help devices to authenticate each other.

242

CHAPTER 11 User authentication

A.com A.com

Jalelelg1l 4= Symmetric key T T

WebAuthn WebAuthn
A ﬁ 2 WQ é
R < e (@ “—>
A : \ == = & —
., 4— Symmetric key
One-time password Roaming authenticator Built-in authenticator

Figure 11.12 To authenticate without using a password, applications can allow users to either use symmetric
keys via OTP-based protocols or use asymmetric keys via the FIDO2 standard. FIDO2 supports different types
of authenticators, roaming authenticators (via the CTAP standard) or built-in authenticators.

11.3

User-aided authentication: Pairing devices
using some human help

Humans help machines to authenticate one another every day—EVERY DAY! You’ve
done it by pairing your wireless headphones with your phone, or by pairing your
phone with your car, or by connecting some device to your home WiFi, and so on. And
as with any pairing, what’s underneath is most probably a key exchange.

The authentication protocols in the last section took place in already secured
channels (perhaps with TLS), where the server was authenticated. Most of this sec-
tion, in contrast, attempts to provide a secure channel to two devices that do not know
how to authenticate each other. In that sense, what you’ll learn in this section is how
humans can help to wpgrade an insecure connection into a mutually authenticated con-
nection. For this reason, the techniques you will learn about next should be reminis-
cent of some of the trust establishment techniques in the end-to-end protocols of
chapter 10, except that there, two humans were trying to authenticate themselves to
each other.

Nowadays, the most common insecure connections that you will run into, those
that do not go through the internet, are protocols based on shortrange radio fre-
quencies like Bluetooth, WiFi, and Near Field Communication (NFC). NFC is what
you use to pay with your phone or with your bank card’s “contactless” payment.
Devices that use these communication protocols tend to range from low-power elec-
tronics to full-featured computers. This already sets some constraints for us:

The device you are trying to connect to might not offer a screen to display a key or a way to
manually enter a key. We call this provisioning the device. For example, most wire-
less audio headsets today only have a few buttons and that’s it.

As a human is part of the validation process, having to type or compare long strings is
often deemed impractical and not user-friendly. For this reason, many protocols attempt
to shorten security-related strings to 4- or 6-digit PINs.

User-aided authentication: Pairing devices using some human help 243

Exercise

Imagine a protocol where you have to enter the correct 4-digit PIN to securely connect
to a device. What are the chances to pick a correct PIN by just guessing?

You’re probably thinking back at some of your device-pairing experiences and realiz-
ing now that a lot of them just worked. For example

You pushed a button on a device.

The device entered pairing mode.

You then tried to find the device in the Bluetooth list on your phone.

After clicking the device icon, it successfully paired the device with your phone.

If you read chapter 10, this should remind you of trust on first use (TOFU). Except, this
time we also have a few more cards in our hand:

Proximity—Both devices have to be close to each other, especially if using the
NFC protocol.

Time—Device pairing is often time-constrained. It is common that if, for exam-
ple, in a 30-second window, the pairing is not successful, the process must be
manually restarted.

Unlike TOFU though, these reallife scenarios usually do not allow you to validate
after the fact that you’ve connected to the right device. This is not ideal, and one
should strive for better security if possible.

NOTE By the way, this is what the Bluetooth core specification actually calls
the TOFU-like protocol: “Just Works.” I should mention that all built-in Blue-
tooth security protocols are currently broken due to many attacks, including
the latest KNOB attack released in 2019 (https://knobattack.com). The tech-
niques surveyed in this chapter are nonetheless secure—if designed and
implemented correctly.

What’s next in our toolkit? This is what we will see in this section: ways for a human to
help devices to authenticate themselves. Spoiler alert:

You’ll see that cryptographic keys are always the most secure approach but not
necessarily the most user-friendly.

You’ll learn about symmetric PAKEs and how you can input the same password
on two devices to connect them securely.

You’ll learn about protocols based on short authenticated strings (SAS), which
authenticate a key exchange after the fact by having you compare and match
two short strings displayed by the two devices.

Let’s get started!

https://knobattack.com

244

CHAPTER 11 User authentication

11.3.1 Pre-shared keys

Naively, the first approach to connect a user to a device would be to reuse protocols
that you learned about in chapter 9 or chapter 10 (for example, TLS or Noise) and to
provision both devices with a symmetric shared secret or, better, with long-term public
keys in order to provide forward secrecy to future sessions. This means that you need
two things for each device to learn the other device’s public key:

You need a way to export a public key from its device.
You need a way for a device to import public keys.

As we will see, this is not always straightforward or user-friendly. But remember, we
have a human in the mix who can observe and (maybe) play with the two devices.
This is unlike other scenarios that we’ve seen before, and we can use this to our
advantage!

The Authentication Problem - One of the main issues in cryptography is the establishment
of a secure peer-to-peer (or group) communication over an insecure channel. With no
assumption, such as availability of an extra secure channel, this task is impossible. However,
given some assumption(s), there exists many ways to set up a secure communication.

—Sylvain Pasini (“Secure Communication Using
Authenticated Channels,” 2009)

All the protocols that follow are based on the fact that you (the human in charge)
have an additional out-of-band channel. This allows you to securely communicate some
information. The addition of this out-of-band channel can be modeled as the two
devices having access to two types of channels (illustrated in figure 11.13):

An insecure channel—Think about a Bluetooth or a WiFi connection with a device.
By default, the user has no way of authenticating the device and can, thus, be
MITM’d.

An authenticated channel—Think about a screen on a device. The channel pro-
vides integrity/authenticity of the information communicated but poor confi-
dentiality (someone could be looking over your shoulder).

Figure 11.13 User-aided authentication
protocols that allow a human to pair two
@ devices are modeled with two types of
channels between the devices: an
insecure channel (for example, NFC,
Bluetooth, WiFi, and so on), which we

Insecure channel P assume is adversary-controlled, and
< > L~ an authenticated channel (for example,
Authenticated channel E real life), which does not provide
< > confidentiality but can be used to

exchange relatively small amounts
of information.

11.3.2

User-aided authentication: Pairing devices using some human help 245

As this out-of-band channel provides poor confidentiality, we usually do not want to
use it to export secrets but rather public data. For example, a public key or some
digest can be displayed by the device’s screen. But once you have exported a public
key, you still need the other device to import it. For example, if the key is a QR code,
then the other device might be able to scan it, or if the key is encoded in a human-
readable format, then the user could manually type it in the other device using a key-
board. Once both devices are provisioned with each other’s public keys, you can use
any protocols I've mentioned in chapter 9 to perform a mutually authenticated key
exchange with the two devices.

What I want you to get from this section is that using cryptographic keys in your
protocol is always the most secure way to achieve something, but it is not always the
most user-friendly way. Yet, real-world cryptography is full of compromise and trade-
offs, and this is why the next two schemes not only exist, but are the most popular ways
to authenticate devices.

Let’s see how we can use passwords to bootstrap a mutually authenticated key
exchange in cases where you cannot export and import long public keys. Then we’ll
look at how short authenticated strings can help in situations where importing data into
one or both of the devices is just not possible.

Symmetric password-authenticated key exchanges with CPace

The previous solution is what you should be doing, if possible, as it relies on strong
asymmetric keys as a root of trust. Yet, it turns out that, in practice, typing a long string
representing a key with some cumbersome keypad manually is tedious. What about
these dear passwords? They are so much shorter and, thus, easier to deal with. We love
passwords right? Perhaps we don’t, but users do, and real-world cryptography is full of
compromises. So be it.

In the section on asymmetric password-authenticated key exchanges, I mentioned
that a symmetric (or balanced) version exists where two peers who know a common
password can perform a mutually authenticated key exchange. This is exactly what
we need.

Composable Password Authenticated Connection Establishment (CPace) was proposed in
2008 by Bjorn Haase and Benoit Labrique and was chosen in early 2020 as the official
recommendation of the CFRG (the Crypto Forum Research Group). The algorithm is
currently being standardized as an RFC. The protocol, simplified, looks something
like the following (figure 11.14 illustrates the algorithm):

Two devices derive a generator (for some predetermined cyclic group) based
on a common password.

Then the two devices use this generator to perform an ephemeral DH key
exchange on top of it.

The devil is in the details, of course, and as a modern specification, CPace targets
elliptic curve “gotchas” and defines when one must verify that a received point is in

246

11.3.3

CHAPTER 11 User authentication

h = derive_group_element(password, metadata)
Figure 11.14 The CPace PAKE works by

P N having the two devices create a generator

- pubkeyA = h? o based on a password and then use it to
A d
bubkeyB = o b perform as a base for the usual ephemeral
——— —

DH key exchange.

the right group (due to the trendy Curve25519 that, unfortunately, does not span a
prime group). It also specifies how one derives a generator based on a password when
in an elliptic curve group (using so-called hash-to-curve algorithms) and how to do
this (using not only a common password but also an unique session ID and some addi-
tional contextual metadata like peer IP addresses and so on).

These steps are important as both peers must derive a generator 4 in a way that
prevents them from knowing its discrete logarithm x such that g* = A. Finally, the ses-
sion key is derived from the DH key exchange output, the transcript (the ephemeral
public keys), and the unique session ID.

Intuitively, you can see that impersonating one of the peers and sending a group
element as part of the handshake means that you’re sending a public key, which is
associated with a private key you cannot know. This means that you can never perform
a DH key exchange if you don’t know the password. The transcript just looks like a
normal DH key exchange, and so, no luck there (as long as DH is secure).

Was my key exchange MITM’d? Just check a short authenticated
string (SAS)

In the second part of this chapter, you saw different protocols that allow two devices to
be paired with the help of a human. Yet, I mentioned that some devices are so con-
strained that they cannot make use of those protocols. Let’s take a look at a scheme
that is used when the two devices cannot import keys but can display some limited
amount of data to the user (perhaps via a screen, or by turning on some LEDs, or by
emitting some sounds, and so on).

First, remember that in chapter 10, you learned about authenticating a session post-
handshake (after the key exchange) using fingerprinis (hashes of the transcript). We
could use something like this as we have our out-of-band channel to communicate these
fingerprints. If the user can successfully compare and match the fingerprints obtained
from both devices, then the user knows that the key exchange was not MITM’d.

The problem with fingerprints is that they are long byte strings (typically, 32 bytes
long), which might be hard to display to the user. They are also cumbersome to com-
pare. But for device pairing, we can use much shorter byte strings because we are
doing the comparison in real time! We call these short authenticated strings (SAS). SAS
are used a lot, notably by Bluetooth, due to them being quite user-friendly (see fig-
ure 11.15 for an example).

There aren’t any standards for SAS-based schemes, but most protocols (including
Bluetooth’s numeric comparison) implement a variant of the Manually Authenticated

User-aided authentication: Pairing devices using some human help

Jason’s iPhone is trying to pair with Ford Fusion
PIN: 305777
Does this number match the
one shown on your device?

Bluetooth Pairing Request

Yes NO “Ford Fusion” would like to pair with
| your iPhone. Confirm that this code is
displayed on “Ford Fusion”.

305777

247

Figure 11.15 To pair a phone with a car via Bluetooth, the Numeric Comparison mode can be used to generate
a short authenticated string (SAS) of the secure connection negotiated between the two devices. Unfortunately,
as | stated eatrlier in this chapter, due to the KNOB attack, Bluetooth’s security protocols are currently broken (as

of 2021). If you control both devices, you need to implement your own SAS protocol.

Diffie-Hellman (MA-DH). MA-DH is a simple key exchange with an additional trick that
makes it hard for an attacker to actively man-in-the-middle the protocol. You might ask,

why not just create SAS from truncating a fingerprint? Why the need for a trick?

An SAS is typically a 6-digit number, which can be obtained by truncating a hash of
the transcript to less than 20 bits and converting that to numbers in base 10. SAS is,
thus, dangerously small, which makes it much easier for an attacker to obtain a second
pre-image on the truncated hash. In figure 11.16, we take the example of two devices

- SR T

public_key, public_key, public_key,,
public_key, public_key,,

Figure 11.16 A typical unauthenticated key exchange (on the left) can be intercepted by an active MITM
attacker (on the right), who can then substitute the public keys of both Alice and Bob. A MITM attack is
successful if both Alice and Bob generate the same short authenticated string. That is, if hash(public_key, ||
public_keyg,) and hash(public_keyg, || public_keyg) match.

248

CHAPTER 11 User authentication

(although we use Alice and Bob) performing an unauthenticated key exchange. An
active MITM attacker can substitute Alice’s public key with their own public key in the
first message. Once the attacker receives Bob’s public key, they would know what SAS
Bob will compute (a truncated hash based on the attacker’s public key and on Bob’s
public key). The attacker just has to generate many public keys in order to find one
(public_key o) that will make the SAS of Alice’s match with Bob’s.

Generating a public key to make both SAS match is actually pretty easy. Imagine
that the SAS is 20 bits, then after only 2%” computations, you should find a second pre-
image that will have both Alice and Bob generate the same SAS. This should be pretty
instant to compute, even on a cheap phone.

The trick behind SAS-based key exchanges is to prevent the attacker from being
able to choose their second public key, forcing the two SAS to match. To do this, Alice
simply sends a commitment of her public key before seeing Bob’s public key (as in fig-
ure 11.17).

” AL ™A

hash(public_key,) hash(public_key,) hash(public_key,,)
public_key,, public_key,
public_key, public_key, public_key,,

Figure 11.17 The diagram on the left pictures a secure SAS-based protocol in which Alice first sends a
commitment of her public key. She then only reveals her public key after receiving Bob’s public key. As she
committed to it, she cannot freely choose her key pair based on Bob’s key. If the exchange is actively MITM’d
(diagram on the right), the attacker cannot choose either key pairs to force Alice’s and Bob’s SAS to match.

As with the previous insecure scheme, the attacker’s choice of public_key; does not
give them any advantage. But now, they also cannot choose a public_keyys that helps
because they do not know Bob’s SAS at this point in the protocol. They are forced to
“shoot in the dark” and hope that Alice’s and Bob’s SAS will match.

If a SAS is 20 bits, that’s a probability of 1 out of 1,048,576. An attacker can have
more chances by running the protocol multiple times, but keep in mind that every
instance of the protocol must have the user manually match a SAS. Effectively, this
friction naturally prevents an attacker from getting too many lottery tickets.

This is it! Figure 11.18 reviews the different techniques you learned in the second
part of this chapter. I'll see you in chapter 12.

Summary 249

B 1R B 0B
D | A Y I T

0x7e..

0x81... hunter2 hunter2 540569 540569

Exchange public keys Enter the same password Verify the session key
out-of-band, then on both devices out-of-band
perform key exchange

Figure 11.18 You’ve learned about three techniques to pair two devices: (1) a
user can either help the devices obtain each other’s public keys so that they can
perform a key exchange; (2) a user can enter the same password on two devices
so that they can perform a symmetric password-authenticated key exchange; or
(3) a user can verify a fingerprint of the key exchange after the fact to confirm
that no MITM attacker intercepted the pairing.

Story time

Interestingly, as | was writing chapter 10 on end-to-end encryption, | started looking into
how users of the Matrix end-to-end encrypted chat protocol authenticated their commu-
nications. In order to make the verification more user-friendly, Matrix created their own
variant of a SAS-based protocol. Unfortunately, it hashed the shared secret of an
X25519 key exchange and did not include the public keys being exchanged in the hash.

In chapter 5, | mentioned that it is important to validate X25519 public keys. Matrix
did not, and this allowed a MITM attacker to send incorrect public keys to users, forc-
ing them to end up with the same predictable shared secret and, in turn, the same
SAS. This completely broke the end-to-end encryption claim of the protocol and ended
up being quickly fixed by Matrix.

Summary

User authentication protocols (protocols for machines to authenticate humans)

often take place over secure connections, where only the machine (server) has

been authenticated. In this sense, it upgrades a one-way authenticated connec-

tion to a mutually authenticated connection.

User authentication protocols make heavy use of passwords. Passwords have

proven to be a somewhat practical solution and one that is widely accepted by

users. But they have also led to many issues due to poor password hygiene, low

entropy, and password database breaches.

There are two ways to avoid having users carry multiple passwords (and possibly

reuse passwords):

- Password managers—Tools that users can use to generate and manage strong
passwords for every application they use.

250

CHAPTER 11 User authentication

— Single sign-on (SSO)—A federated protocol that allows a user to use one account
to register and log into other services.
A solution for servers to avoid learning about and storing their users’ passwords
is to use an asymmetric password-authenticated key exchange (asymmetric
PAKE). An asymmetric PAKE (like OPAQUE) allows users to authenticate to a
known server using passwords but without having to actually reveal their pass-
words to the server.
Solutions to avoid passwords altogether are for users to use symmetric keys via
one-time passwords (OTP) algorithms or to use asymmetric keys via standards
like FIDOZ2.
User-aided authentication protocols often take place over insecure connections
(WiFi, Bluetooth, NFC) and help two devices to authenticate each other. To
secure connections in these scenarios, user-aided protocols assume that the two
participants possess an additional authenticated (but not confidential) channel
that they can use (for example, a screen on the device).
Exporting a device’s public key to another device could allow strongly mutually
authenticated key exchanges to happen. These flows are, unfortunately, not
user-friendly and sometimes not possible due to device constraints (no way to
export or import keys, for example).
Symmetric password-authenticated key exchanges (symmetric PAKEs) like
CPace can decrease the burden for the user to import a long public key by only
having to manually input a password in a device. Symmetric PAKEs are already
used by most people to connect to their home WiFi, for example.
Protocols based on short authenticated strings (SAS) can provide security for
devices that cannot import keys or passwords but are able to display a short
string after a key exchange takes place. This short string must be the same on
both devices in order to ensure that the unauthenticated key exchange was not
actively MITM’d.

Crypio as

in cryptocurrency?

This chapter covers

= Consensus protocols and how they make
cryptocurrencies possible

= The different types of cryptocurrencies

= How the Bitcoin and Diem cryptocurrencies work
in practice

Can cryptography be the basis for a new financial system? This is what cryptocur-
rencies have been trying to answer since at least 2008, when Bitcoin was proposed
by Satoshi Nakamoto (who to this day has yet to reveal his or their identity). Before
that, the term crypto was always used in reference to the field of cryptography. But
since the creation of Bitcoin, I have seen its meaning quickly change, now being
used to refer to cryptocurrencies as well. Cryptocurrency enthusiasts, in turn, have
become more and more interested in learning about cryptography. This makes
sense as cryptography is at the core of cryptocurrencies.
What’s a cryptocurrency? It is two things:

It’s a digital currency. Simply put, it allows people to transact currency elec-
tronically. Sometimes a currency backed by a government is used (like the
US dollar), and sometimes a made-up currency is used (like the bitcoin). You

251

252

12.1

12.1.1

CHAPTER 12 Crypto as in cryptocurrency?

likely already use digital currencies—whenever you send money to someone on
the internet or use a checking account, you are using a digital currency!
Indeed, you don’t need to send cash by mail anymore, and most money transac-
tions today are just updates of rows in databases.

It’s a currency that relies heavily on cryptography to avoid using a trusted third party
and to provide transparency. In a cryptocurrency, there is no central authority
that one has to blindly trust, like a government or a bank. We often talk
about this property as decentralization (as in “we are decentralizing trust”).
Thus, as you will see in this chapter, cryptocurrencies are designed to toler-
ate a certain number of malicious actors, and to allow people to verify that
they function properly.

Cryptocurrencies are relatively new as the first experiment to be successful was Bit-
coin, proposed in 2008 in the middle of a global financial crisis. While the crisis
started in the US, it quickly spread to the rest of the world, eroding the trust people
had in financial systems and providing a platform for more transparent initiatives like
Bitcoin. At that time, many people started to realize that the status quo for financial
transactions was inefficient, expensive to maintain, and opaque to most people. The
rest is history, and I believe this book is the first book on cryptography to include a
chapter on cryptocurrencies.

A gentle introduction to Byzantine fault-tolerant (BFT)
consensus algorithms

Imagine that you want to create a new digital currency. It’s actually not too involved
to build something that works. You could set up a database on a dedicated server,
which would be used to track users and their balances. With this, you provide an
interface for people to query their balance or let them send payments, which would
reduce their balance in the database and increase the balance in another row. Ini-
tially, you could also randomly attribute some of your made-up currency to your
friends so that they can start transferring money to your system. But such a simple
system has a number of flaws.

A problem of resilience: Distributed protocols to the rescue

The system we just saw is a single point of failure. If you lose electricity, your users won’t
be able to use the system. Worse, if some natural disaster unexpectedly destroys your
server, everybody might permanently lose their balance. To tackle this issue, there
exist well-known techniques that you can use to provide more resilience to your sys-
tem. The field of distributed systems studies such techniques.

In this case, the usual solution used by most large applications is to replicate the
content of your database in (somewhat) real time to other backup servers. These serv-
ers can then be distributed across various geographical locations, ready to be used as
backup or even to take over if your main server goes down. This is called high availabil-
ity. You now have a distributed database.

A gentle introduction to Byzantine fault-tolerant (BFT) consensus algorithms 253

For large systems that serve lots of queries, it is often the case that these backup
databases are not just sitting on the sideline waiting to be useful, but instead, they are
used to provide reads to the state. It is difficult to have more than one database accept
writes and updates because then you could have conflicts (the same way two people
editing the same document can be dangerous). Thus, you often want a single data-
base to act as leader and order all writes and updates to the database, while others can
be used to read the state.

Replication of database content can be slow, and it is expected that some of your
databases will lag behind the leader until they catch up. This is especially true if they
are situated further away in the world or are experiencing network delays due to some
reason. This lag becomes a problem when the replicated databases are used to read
the state. (Imagine that you see a different account balance than your friend because
you are both querying different servers.)

In these cases, applications are often written in order to tolerate this lag. This is
referred to as eventual consistency because eventually the states of the databases
become consistent. (Stronger consistency models exist, but they are usually slow
and impractical.) Such systems also have other problems: if the main database
crashes, which one gets to become the main database? Another problem is if the
backup databases were lagging behind when the main database crashed, will we
lose some of the latest changes?

This is where stronger algorithms—-consensus algorithms (also referred to as log
replication, state machine replication, or atomic broadcasts)—come into play when you
need the whole system to agree (or come to a consensus) on some decision. Imag-
ine that a consensus algorithm solves the solution of a group of people trying to
agree on what pizza to order. It’s easy to see what the majority wants if everyone is
in the same room. But if everyone is communicating through the network where
messages can be delayed, dropped, intercepted, and modified, then a more compli-
cated protocol is required.

PIZ2A WITH PINEAPPLE
OR WiTHOUT?

Let’s see how consensus can be used to answer the previous two questions. The first
question of which database gets to take over in the case of a crash is called leader election,

254

12.1.2

CHAPTER 12 Crypto as in cryptocurrency?

and a consensus algorithm is often used to determine which will become the next
leader. The second question is often solved by viewing database changes in two dif-
ferent steps: pending and committed. Changes to the database state are always pending
at first and can only be set as committed if enough of the databases agree to commit
it (this is where a consensus protocol can be used as well). Once committed, the
update to the state cannot be lost easily as most of the database participanting have
committed the change.

Some well-known consensus algorithms include Paxos (published by Lamport in
1989) and its subsequent simplification, Raft, (published by Ongaro and Ouster-
hout in 2013). You can use these algorithms in most distributed database systems
to solve different problems. (For a great interactive explanation on Raft, check out
https://thesecretlivesofdata.com/raft.)

A problem of trust? Decentralization helps

Distributed systems (from an operational perspective) provide a resilient alternative
to systems that act as a single point of failure. The consensus algorithms used by most
distributed database systems do not tolerate faults well. As soon as machines start
crashing, or start misbehaving due to hardware faults, or start getting disconnected
from some of the other machines like network partitions, problems arise. Moreover,
there’s no way to detect this from a user perspective, which is even more of an issue if
servers become compromised.

If T query a server and it tells me that Alice has 5 billion dollars in her account, I
just have to trust it. If the server includes in its response all the money transfers that
she has received and sent since the beginning of time and sums it all up, I could verify
that indeed it results with the 5 billion dollars she has in her account is correct. But
what tells me the server didn’t lie to me? Perhaps when Bob asks a different server, it
returns a completely different balance and/or history for Alice’s account. We call this
a fork (two contradicting states presented as valid), a branch in history that should
never have happened. And, thus, you can imagine that the compromise of one of the
replicated databases can lead to pretty devastating consequences.

In chapter 9, I mentioned certificate transparency, a gossip protocol that aims at
detecting such forks in the web public key infrastructure (PKI). The problem with
money is that detection alone is not enough. You want to prevent forks from happen-
ing in the first place! In 1982, Lamport, the author of the Paxos consensus algorithm,
introduced the idea of Byzantine fault-tolerant (BFT) consensus algorithms.

We imagine that several divisions of the Byzantine army are camped outside an enenvy
city, each division commanded by its own general. The generals can communicate with
one another only by messenger. After observing the enemy, they must decide upon a
common plan of action. However, some of the generals may be traitors, trying to prevent
the loyal generals from reaching agreement.

—Lamport et al. (“The Byzantine Generals Problem,” 1982)

https://thesecretlivesofdata.com/raft
https://thesecretlivesofdata.com/raft

12.1.3

A gentle introduction to Byzantine fault-tolerant (BFT) consensus algorithms 255

With his Byzantine analogy, Lamport started the field of BFT consensus algorithms,
aiming at preventing bad consensus participants from creating different conflicting
views of a system when agreeing on a decision. These BFT consensus algorithms
highly resemble previous consensus algorithms like Paxos and Raft, except that the
replicated databases (the participants of the protocol) do not blindly trust one
another anymore. BFT protocols usually make heavy use of cryptography to authenti-
cate messages and decisions, which in turn, can be used by others to cryptographically
validate the decisions output by the consensus protocol.

These BFT consensus protocols are, thus, solutions to both our resilience and trust
issues. The different replicated databases can run these BFT algorithms to agree on
new system states (for example, user balances), while policing each other by verifying
that the state transitions (transactions between users) are valid and have been agreed
on by most of the participants. We say that the trust is now decentralized.

The first real-world BFT consensus algorithm invented was Practical BFT" (PBFT),
published in 1999. PBFT is a leader-based algorithm similar to Paxos and Raft, where
one leader is in charge of making proposals while the rest attempt to agree on the
proposals. Unfortunately, PBFT is quite complex, slow, and doesn’t scale well past a
dozen participants. Today, most modern cryptocurrencies use more efficient variants
of PBFT. For example, Diem, the cryptocurrency introduced by Facebook in 2019, is
based on HotStuff, a PBFT-inspired protocol.

A problem of scale: Permissionless and
censorship-resistant networks

One limitation of these PBFT-based consensus algorithms is that they all require a
known and fixed set of participants. More problematic, past a certain number of par-
ticipants, they start breaking apart: communication complexity increases drastically,
they become extremely slow, electing a leader becomes complicated, etc.

How does a cryptocurrency decide who the consensus participants are? There are
several ways, but the two most common ways are

Proof of authority (PoA)—The consensus participants are decided in advance.
Proof of stake (PoS)—The consensus participants are picked dynamically, based
on which has the most at stake (and, thus, is less incentivized to attack the pro-
tocol). In general, cryptocurrencies based on PoS elect participants based on
the amount of digital currency they hold.

Having said that, not all consensus protocols are classical BFT consensus protocols.
Bitcoin, for example, took a different approach when it proposed a consensus mecha-
nism that had no known list of participants. This was quite a novel idea at the time,
and Bitcoin achieved this by relaxing the constraints of classical BFT consensus proto-
cols. As you will see later in this chapter, because of this approach, Bitcoin can fork,
and this introduces its own sets of challenges.

256

CHAPTER 12 Crypto as in cryptocurrency?

Without participants, how do you even pick a leader? You could use a PoS system (for
example, the Ouroboros consensus protocol does this). Instead, Bitcoin’s consensus
relied on a probabilistic mechanism called proof of work (PoW). In Bitcoin, this translates
to people attempting to find solutions to puzzles in order to become a participant and a
leader. The puzzle is a cryptographic one as you will see later in this chapter.

Due to a lack of known participants, Bitcoin is called a permissionless network. In a
permissionless network, you do not need extra permissions to participate in consen-
sus; anyone can participate. This is in contrast to permissioned networks that have a
fixed set of participants. I summarize some of these new concepts in figure 12.1.

v
S,

Centralized Decentralized and Decentralized and
permissioned permissionless

Figure 12.1 A centralized network can be seen as a single point of failure, whereas a distributed and
decentralized network are resilient to a number of servers shutting down or acting maliciously. A permissioned
network has a known and fixed set of main actors, while in a permissionless network, anyone can participate.

Until recently, it was not known how to use classical BFT consensus protocols with a
permissionless network, where anyone is allowed to join. Today, there exist many
approaches using PoS to dynamically pick a smaller subset of the participants as
consensus participants. One of the most notable ones is Algorand, published in
2017, which dynamically picks participants and leaders based on how much cur-
rency they hold.

Bitcoin also claims to be resistant to censorship because you cannot know in
advance who will become the next leader and, therefore, cannot prevent the system
from electing a new leader. It is less clear if this is possible in PoS systems where it
might be easier to figure out the identities behind large sums of currency.

I should mention that not all BFT consensus protocols are leader-based. Some are
leaderless, they do not work by having elected leaders decide on the next state transitions.

12.2

1221

How does Bitcoin work? 257

Instead, everyone can propose changes, and the consensus protocol helps everyone
agree on the next state. In 2019, Avalanche launched such a cryptocurrency that allowed
anyone to propose changes and participate in consensus.

Finally, if you thought that consensus was necessary at all for a decentralized
payment system, it’s not exactly right as well. Consensus-less protocols were proposed
in 2018 in “AT2: Asynchronous Trustworthy Transfers” by Guerraoui, Kuznetsov, Monti,
Pavlovic, and Seredinschi. With that in mind, I will not talk about consensus-less pro-
tocols in this chapter as they are a relatively new and haven’t been battle-tested yet.
In the rest of this chapter, I will go over two different cryptocurrencies in order to
demonstrate different aspects of the field:

Bitcoin—The most popular cryptocurrency based on PoW, introduced in 2008.
Diem—A cryptocurrency based on the BFT consensus protocol, announced by
Facebook and a group of other companies in 2019.

How does Bitcoin work?

On October 31, 2008, an anonymous researcher(s) published “Bitcoin: A Peer-to-Peer
Electronic Cash System” under the pseudonym Satoshi Nakamoto. To this day, it
remains unknown who Satoshi Nakamoto is. Not long after, “they” released the Bitcoin
core client, a software that anyone can run in order to join and participate in the
Bitcoin network. That was the only thing that Bitcoin needed: enough users to run the
same software or at least the same algorithm. The first ever cryptocurrency was born—
the bitcoin (or BTC).

Bitcoin is a true success story. The cryptocurrency has been running for more than
a decade (at the time of this writing) and has allowed users from all around the world
to undertake transactions using the digital currency. In 2010, Laszlo Hanyecz, a devel-
oper, bought two pizzas for 10,000 BTCs. As I am writing these lines (February 2021),
a BTC is worth almost $57,000. Thus, one can already take away that cryptocurrencies
can sometimes be extremely volatile.

How Bitcoin handles user balances and transactions

Let’s dive deeper into the internals of Bitcoin, first looking at how Bitcoin handles
user balances and transactions. As a user of Bitcoin, you directly deal with cryptogra-
phy. You do not have a username and password to log into a website as with any
bank; instead, you have an ECDSA (Elliptic Curve Digital Signature Algorithm) key
pair that you generate yourself. A user’s balance is simply an amount of BTC associ-
ated with a public key, and as such, to receive BTCs, you simply share your public
key with others.

To use your BTCs, you sign a transaction with your private key. A transaction pretty
much says what you think it says, “I send X BTC to public key Y,” overlooking some
details that I'll explain later.

258

CHAPTER 12 Crypto as in cryptocurrency?

NOTE In chapter 7, I mentioned that Bitcoin uses the secp256k1 curve with
ECDSA. The curve is not to be confused with NIST’s P-256 curve, which is
known as secp256r1.

The safety of your funds is directly linked to the security your private key. And, as you
know, key management is hard. In the past decade, key management issues in crypto-
currencies have led to the accidental loss (or theft) of keys worth millions of dollars.
Be careful!

There exist different types of transactions in Bitcoin, and most of the transac-
tions seen on the network actually hide the recipient’s public key by hashing it. In
these cases, the hash of a public key is referred to as the address of an account. (For
example, this is my Bitcoin address: bc1g8y6p4x3rp32dz80etpyffh6764ray9842egchy.)
An address effectively hides the actual public key of the account until the account
owner decides to spend the BTCs (in which case, the pre-image of the address needs
to be revealed so that others can verify the signature). This makes addresses shorter
in size and prevents someone from retrieving your private key in case ECDSA one
day breaks.

The fact that different types of transactions exist is an interesting detail of Bitcoin.
Transactions are not just payloads containing some information; they are actually
short scripts written in a made-up and quite limited instruction set. When a transac-
tion is processed, the script needs to be executed before the produced output can
determine if the transaction is valid, and if it is, what steps need to be taken to modify
the state of all the accounts.

Cryptocurrencies like Ethereum have pushed this scripting idea to the limit by
allowing much more complex programs (so-called smart contracts) to run when a trans-
action is executed. There are a few things here that I didn’t touch on:

What’s in a transaction?
What does it mean for a transaction to be executed? And who executes it?

I will explain the second item in the next section. For now, let’s look at what is in a
transaction.

A particularity of Bitcoin is that there is no real database of account balances.
Instead, a user has pockets of BTCs that are available for them to spend and which are
called Unspent Transaction Outputs (UTXOs). You can think of the concept of UTXOs
as a large bowl, visible to everyone, and filled with coins that only their owners can
spend. When a transaction spends some of the coins, the coins disappear from the
bowl, and new ones appear for the payees of the same transaction. These new coins
are just the outputs listed in the transaction.

To know how many BTCs you have in your account, you’d have to count all of the
UTXOs that are assigned to your address. In other words, you’d have to count all of
the money that was sent to you and that you haven’t spent yet. Figure 12.2 gives an
example that illustrates how UTXOs are used in transactions.

1222

How does Bitcoin work? 259

—EEE— W
S a4 Transaction 2 2BTC

mma 3 BTC

Transaction 1

fees

fees

D

Figure 12.2 Transaction 1 is signed by Alice and transfers 1 BTC to Bob.
Because it uses a UTXO of 5 BTCs, the transaction needs to also send back the
change to Alice as well as reserve some of that change as fees. Transaction 2
is signed by Bob and combines two UTXOs to transfer 2 BTCs to Felix. (Note
that in reality, fees are much lower.)

There’s now a chicken-and-egg question: where did the first UTXOs come from?
That, I will answer in the next section.

Mining BTCs in the digital age of gold

You now understand what’s in a Bitcoin transaction and how you can manage your
account or figure out someone’s balance. But who actually keeps track of all these
transactions? The answer is everyone!

Indeed, using Bitcoin means that every transaction must be publicly shared and
recorded in history. Bitcoin is an append-only ledger—a book of transactions where each
page is connected to the previous one. I want to emphasize here that append-only
means that you can’t go back and alter a page in the book. Note also that because
every transaction is public, the only semblance of anonymity you get is that it might be
hard to figure out who’s who (in other words, what public key is linked to what person
in real life).

One can easily inspect any transaction that has happened since the inception of
Bitcoin by downloading a Bitcoin client and using it to download the whole history. By
doing this, you become part of the network and must re-execute every transaction
according to the rules encoded in the Bitcoin client. Of course, Bitcoin’s history is
pretty massive: at the time of this writing, it is around 300 GB, and it can take days,
depending on your connection, to download the entire Bitcoin ledger. You can more
easily inspect transactions by using an online service that does the heavy lifting for you
(as long as you trust an online service). I give an example of these so-called blockchain
explorers in figure 12.3.

260

CHAPTER 12 Crypto as in cryptocurrency?

There’s only one UTXO
Inputs © being spent in the inputs. ex [Them

Index] Details Output
Address 34wdNYp6JfWo3qpva8QsJKpEGhCINjDegh [§ Value 197647532 BTC
Pkseript OP_HASH180

23abcaaB0bf33e2f40c?c01b3b92140ealdBalf56

OP_EQUAL
Sigseript 00200cc24370008d5d64efe710856936a119010743af577621701715¢015¢16c49¢a
Witness 304502210096d4ef173813a382¢ab60712¢227071a2124cc1054409¢cb14c162479686800702201fb15c6d6695983d7cd4c1a5¢062797a9d 2801904 9bABT9a45

bee9e0fdadf59401

3045022100858dab609bBaadcE5bfcd02fd5e39c7eff135894098140c40c8bed69d12d622802201c3e6f33a04807 1c7a025ch76c21acd6beabbefialcc575a83
7T0b032df1bE7bO1

522103d3alc7abd8b15a9e91f2f540443611081df0c54189d2b968f9515457945343c30210265b6af9b40d2ae3769471d6cealf 2d8B4f3a03ba?41fa3271f3c75e7
Bee2eba752ae

Outputs ©

Index 0 Details Unspent
Address 1AWTIMZWZVZVGQ10Py7TkHVDNE3izgkpRIE @ Value 0.00901295 BTC
Phscript OP_DUP \ .

OF_HASHIE0 0.009... are being sent

1671704474dd62dd27165121FB56139769a5ef77 to this address.

OF_EQUALVERIFY

OP_CHECKSIG
Index 1 Details Unspent
Address 34wdNYp6JfWo3qpva8QsJKpEGhCINDegh @ This is change being Value 1.96741869 BTC
Pkscript OP_HASH160 / ok 7

23abeaaB0b33e2140¢7¢01b3b92140ea36aff56 ’

op AL sender’s address.

Figure 12.3 A random transaction | chose to analyze on https://blockchain.com (http://mng.bz/n295).
The transaction uses one input (of around 1.976 BTCs) and splits it in two outputs (of around 0.009 BTC and
1.967 BTCs). The difference between the total input amount and the total output amount is the transaction
fee (not represented as an output). The other fields are the scripts written using Bitcoin’s scripting language
in order to either spend the UTXOs in the inputs or to make the UTXOs in the outputs spendable.

Bitcoin is really just a list of all the transactions that have been processed since its
inception (we call that the genesis) up until now. This should make you wonder: who is
in charge of choosing and ordering transactions in this ledger?

In order to agree on an ordering of transactions, Bitcoin allows anyone (even you) to
propose a list of transactions to be included in the next page of the ledger. This proposal
containing a list of transactions is called a block in Bitcoin’s terms. But letting anyone pro-
pose a block is a recipe for disaster as there are a lot of participants in Bitcoin. Instead, we
want just one person to make a proposal for the next block of transactions. To do this,
Bitcoin makes everybody work on some probabilistic puzzle, and only allows the one who
solves the puzzle first to propose their block. This is the proof of work (PoW) mechanism
I talked about previously. Bitcoin’s PoW is based on finding a block that hashes to a digest
smaller than some value. In other words, the block’s digest must have a binary represen-
tation starting with some given numbers of zeros.

http://mng.bz/n295
https://blockchain.com

How does Bitcoin work? 261

In addition to the transactions you want to include, the block must contain the hash
of the previous block. Hence the Bitcoin ledger is really a succession of blocks, where
each block refers to the previous one, down to the very first block, the genesis block.
This is what Bitcoin calls a blockchain. The beauty of the blockchain is that the slightest
modification to a block would render the chain invalid as the block’s digest would also
change and consequently break the reference the next block had to it.

Note that as a participant who is looking to propose the next block, you don’t
have to change much in your block to derive a new hash from it. You can fix most of
its content first (the transactions it includes, the hash of the block it extends, etc.)
and then only modify a field (called the block’s nonce) to impact the block’s hash.
You can treat this field as a counter, incrementing the value until you find a digest
that fits the rules of the game, or you can generate a random value. I illustrate this
idea of a blockchain in figure 12.4.

Block:

Data:

Prev:

Hash:

Nonce:

1 0 Blocki # 2 Blocki # 3 Blocki ¥ 4
11316 Nonce: 35230 Nonce: 12037 Nonce: 35990

Prev: links to the parent block’s digest.

4 4 z 4

00000000000000000000000000000000 Prev: 000015783b764259d382017d91a36d$0 Prev: 000012£a9b916eb9078£8d98a7864e69 Prev: 0000b9015ce2a08b61216ba5a0778545

000015783b764259d382017d91236d20 Hash: 000012£a9b916eb9078£8d9827864e69 Hash: 0000b9015ce2a08b61216ba5a0778545 Hash: 0000ae8bbcs6cts9ceBbeseloasssccd

e el)

Valid blockchain

Block:

Data:

Prev:

Hash:

Nonce:

1 Block: # 2 Blocki # 3 Block: # 4
1316 Nonce: 35230 Nonce: 12937 Nonce: 35990

Data: something els¢ Data: Data:

Data has been modified.

v

00000000000000000000000000000000 Prev: 00001578357642594382Y17d91a36d20 Prev: 000012£29b916eb9078£8d98a7864e69 Prev: 0000b90150e2a08b61216ba5a0778545

) iThe digest of the block has changed.

000015783b7642594382017d91a36420 Hash: 17£48a09925a5b5ac9ade5al1b737292 Hash: 0000b9015ce2208b61216b2520778545 Hash: 0000ae8bbco6ete9cesbeseloasssced

Invalid blockchain

Figure 12.4 On https://andersbrownworth.com/blockchain/blockchain, one can interactively play with a toy
blockchain. Each block includes its parent’s digest, and each block contains a random nonce that allows its
digest to start with four Os. Notice that this is true for the top blockchain, but the bottom one contains a block
(number 2) that has been modified (its data was initially empty). As the modification changed the block’s
digest, it is no longer authenticated by subsequent blocks.

https://andersbrownworth.com/blockchain/blockchain

262

CHAPTER 12 Crypto as in cryptocurrency?

All of this works because everyone is running the same protocol using the same rules.
When you synchronize with the blockchain, you download every block from other
peers and verify that:

Hashing each block indeed gives a digest that is smaller than some expected value.
Each block refers back to the previous block in the history.

Not everyone has to propose blocks, but you can if you want. If you do so, you are
called a miner. This means that in order to get your transactions in the blockchain, you
need the miners’ help (as figure 12.5 illustrates).

O—0O o—
A client submits a The node forwards the Eventually the transaction reaches miners
transaction to a node. transaction to other nodes. who will include the transaction when mining.

Figure 12.5 The Bitcoin network is a number of nodes (miners or not) that are interconnected. To submit a
transaction, you must send it to a miner that can get it into the blockchain (by including it into a block). As
you do not know which miner will be successful at mining a block, you must propagate your transaction
through the network to reach as many miners as possible.

Miners do not work for free. If a miner finds a block, they collect:

A reward—A fixed number of BTCs will get created and sent to your address. In
the beginning, miners would get 50 BTCs per block mined. But the reward
value halves every 210,000 blocks and will eventually be reduced to 0, capping
the total amount of BTCs that can be created to 21 million.

All the transaction fees contained in the block—This is why increasing the fees in your
transactions allows you to get them accepted faster as miners tend to include
transactions with higher fees in the blocks they mine.

This is how users of Bitcoin are incentivized in making the protocol move forward. A
block always contains what is called a coinbase, which is the address that collects the
reward and the fees. The miner usually sets the coinbase to their own address.

We can now answer the question we had at the beginning of the section: where did
the first UTXOs come from? The answer is that all BTCs in history were, at some point
or another, created as part of the block reward for miners.

How does Bitcoin work? 263

12.2.3 Forking hell! Solving conflicts in mining

Bitcoin distributes the task of choosing the next set of transactions to be processed via
a PoW-based system. Your chance to mine a block is directly correlated to the amount
of hashes you can compute, and thus, the amount of computation you can put pro-
duce. A lot of computation power nowadays is directed at mining blocks in Bitcoin or
other PoW-based cryptocurrencies.

NOTE PoW can be seen as Bitcoin’s way of addressing sybil attacks, which are
attacks that take advantage of the fact that you can create as many accounts as
you want in a protocol, giving you an asymmetric edge to dishonest partici-
pants. In Bitcoin, the only way to obtain more power is really to buy more
hardware to compute hashes, not to create more addresses in the network.

There is still one problem though: the difficulty of finding a hash that is lower than
some value can’t be too easy. If it is, then the network will have too many participants
mining a valid block at the same time. And, if this happens, which mined block is the
legitimate next block in the chain? This is essentially what we call a fork.

To solve forks, Bitcoin has two mechanisms. The first is to maintain the hardness of
PoW. If blocks get mined too quickly or too slowly, the Bitcoin algorithm that every-
one is running dynamically adapts to the network conditions and increases or
decreases the difficulty of the PoW. Simplified, miners have to find a block digest
that has more or less zeros.

NOTE If the difficulty dictates that a block digest needs to start with a 0
byte, you are expected to try 2° different blocks (more specifically different
nonces as explained previously) until you can find a valid digest. Raise this
to 2 bytes, and you are now expected to try 2'° different blocks. The time it
takes for you to get there depends on the amount of power you have and
whether you have specialized hardware to compute these hashes more rap-
idly. Currently, Bitcoin’s algorithm dynamically changes the difficulty so
that a block is mined every 10 minutes.

Our second mechanism is to make sure everyone has the same way of going forward if a
fork does happen. To do this, the rule is to follow the chain with the most amount of work.
The 2008 Bitcoin paper stated, “the longest chain not only serves as proof of the
sequence of events witnessed, but proof that it came from the largest pool of CPU
power,” dictating that participants should honor what they see as the longest chain. The
protocol was later updated to follow the chain with the highest cumulative amount of
work, but this distinction does not matter too much here. I illustrate this in figure 12.6.

I said previously that the consensus algorithm of Bitcoin is not a BFT protocol.
This is because the consensus algorithm allows such forks. Thus, if you are waiting for
your transaction to be processed, you should absolutely not rely on simply observing
your transaction being included in a block! The observed block could actually be a
fork, and a losing one (to a longer fork) at that.

264

CHAPTER 12 Crypto as in cryptocurrency?

Figure 12.6 A fork in the blockchain:

Height 3 two miners publish a valid block at height

Correct chain 3 (meaning 3 blocks after genesis). Later,

Height 1 Height 2 Block another miner mines a block at height 4
that points to the second block at height

Block +—— Block 3. As the second fork is now longer, it is

hieightia hicightit the valid fork that miners should continue

to extend. Note that arrows coming out of
a block point to the parent block (the
block they extend).

Block 4—— Block

You need more assurance to decide when your transaction has been processed for
real. Most wallets and exchange platforms wait for a number of confirmation blocks to
be mined on top of your block. The more blocks on top of the one that includes your
transaction, the less chance that chain will be reorganized into another, due to a lon-
ger existing fork.

The number of confirmation is typically set to 6 blocks, which makes the confirma-
tion time for your transaction around an hour. That being said, Bitcoin still does not
provide 100% assurance that a fork past 6 blocks would never happen. If the mining
difficulty is well adjusted, then it should be fine, and we have reason to believe that
this is true for Bitcoin.

Bitcoin’s PoW difficulty has increased gradually over time as cryptocurrency
becomes more popular. The difficulty is now so high that most people cannot afford
the hardware required to have a chance at mining a block. Today, most miners get
together in what are called mining pools to distribute the work needed to mine a block.
They then share the reward.

With block 632874 [. . .] the expected cumulative work in the Bitcoin blockchain
surpassed 2° double-SHA256 hashes.

—Pieter Wuille (2020, http://mng.bz/aZN]J)

To understand why forks are disruptive, let’s imagine the following scenario. Alice
buys a bottle of wine from you, and you’ve been waiting for her to send you the 5
BTCs she has in her account. Finally, you observe a new block at height 10 (mean-
ing 10 blocks after genesis) that includes her transaction. Being cautious, you
decide to wait for 6 more blocks to be added on top of that. After waiting for a
while, you finally see a block at height 16 that extends the chain containing your
block at height 10. You send the bottle of wine to Alice and call it a day. But this is
not the end of the story.

Later, a block at height 30 appears out of nowhere, extending a different block-
chain that branched out just a block before yours (at height 9). Because the new chain
is longer, it ends up being accepted by everyone as the legitimate chain. The previ-
ous chain you were on (starting from your block at height 10) gets discarded, and

http://mng.bz/aZNJ

12.2.4

How does Bitcoin work? 265

participants in the network simply reorganize their chain to now point to the new lon-
gest one. And as you can guess, this new chain doesn’t has any block that includes
Alice’s transaction. Instead, it includes a transaction moving all of her funds to another
address, preventing you from republishing the original transaction that moved her
funds to your address. Alice effectively double spent her money.

This is a 51 % attack. The name comes from the amount of computation power
Alice needed to perform the attack; she needed just a bit more than everyone else.
(https://cryptobl.app has an interesting table that lists the cost of performing a 51%
attack on different cryptocurrencies based on PoW.) This is not just a theoretical
attack! 51% attacks happen in the real world. For example, in 2018, an attacker man-
aged to double-spend a number of funds in a 51% attack on the Vertcoin currency.

The attacker essentially rewrote part of the ledger’s history and then, using their
dominant hashing power to produce the longest chain, convinced the rest of the miners to
validate this new version of the blockchain. With that, he or she could commit the
ultimate crypto crime: a double-spend of prior transactions, leaving earlier payees holding
nvalidated coins.

—Michael J. Casey (“Vertcoin’s Struggle Is Real:
Why the Latest Crypto 51% Attack Matters,” 2018)

In 2019, the same thing happened to Ethereum Classic (a variant of Ethereum), caus-
ing losses of more than $1 million at the time with several reorganizations of more
than 100 blocks of depth. In 2020, Bitcoin Gold (a variant of Bitcoin) also suffered
from a 51% attack, removing 29 blocks from the cryptocurrency’s history and double-
spending more than $70,000 in less than two days.

Reducing a block’s size by using Merkle trees

One last interesting aspect of Bitcoin that I want to talk about is how it compresses
some of the information available. A block in Bitcoin actually does not contain any
transactions! Transactions are shared separately, and instead, a block contains a single
digest that authenticates a list of transactions. That digest could simply be the hash of
all the transactions contained in the block, but it’s a bit more clever than that. Instead,
the digest is the root of a Merkle tree.

What’s a Merkle tree? Simply put, it’s a tree (data structure) where internal nodes
are hashes of their children. This might be a tad confusing, and a picture is worth a
thousand words, so check out figure 12.7.

Merkle trees are useful structures, and you will find them in all types of real world
protocols. They can compress a large amount of data into a small, fixed-size value—
the root of the tree. Not only that, you do not necessarily need all the leaves to recon-
struct the root.

For example, imagine that you know the root of the Merkle tree due to its inclu-
sion in a Bitcoin block, and you want to know if a transaction (a leaf in the tree) is
included in the block. If it is in the tree, what I can do is to share with you the neighbor

https://crypto51.app

266 CHAPTER 12 Crypto as in cryptocurrency?

Root

The hash of
the concatenation
of Aand B

Figure 12.7 A Merkle tree, a data structure that authenticates the elements in its leaves. In the tree, an
internal node is the hash of its children. The root hash can be used to authenticate the whole structure. In
the diagram, H () represents a hash function, and the comma-separated inputs can be implemented as a
concatenation (as long as there is no ambiguity).

nodes in the path up to the root as a membership proof. (A proof that is logarithmic in
the depth of the tree in size.) What’s left for you is to compute the internal nodes up
to the root of the tree by hashing each pair in the path. It’s a bit complicated to
explain this in writing, so I illustrate the proof in figure 12.8.

/\/T\/\ /\C)
’\ RN RN RN ‘? VRN RN

Leaf Merkle tree root Neighbor
1. Proof of membership for the leaf 2. Using the neighbor nodes
with knowledge of the root verifies if it leads to the root.

Figure 12.8 Knowing the root of a Merkle tree, one can verify that a leaf belongs to the
tree by reconstructing the root hash from all the leaves. To do this, you would need all the
leaves in the first place, which in our diagram is 8 digests (assuming leaves are the
hashes of some object). There’s a more efficient way to construct a proof of membership
if you don’t need all the other leaves: you only need the neighbor nodes in the path from
the leaf to the root, which is 4 digests including your leaf. A verifier can then use these
neighbor nodes to compute the hash of all the missing nodes in the path to the root until
they reconstruct the root hash and see if it matches what they were expecting.

12.3

12.3.1

12.3.2

A tour of cryptocurrencies 267

The reason for using Merkle trees in a block instead of listing all transactions directly
is to lighten the information that needs to be downloaded in order to perform simple
queries on the blockchain. For example, imagine that you want to check that your
recent transaction is included in a block without having to download the whole his-
tory of the Bitcoin blockchain. What you can do is to only download the block head-
ers, which are lighter as they do not contain the transactions, and once you have that,
ask a peer to tell you which block included your transaction. If there is such a block,
they should be able to provide you with a proof that your transaction is in the tree
authenticated by the digest you have in the block header.

There’s a lot more to be said about Bitcoin, but there’s only so many pages left in
this book. Instead, I will use the remaining space in this chapter to give you a tour of
the field and to explain how the classical BFT consensus protocols work.

A tour of cryptocurrencies

Bitcoin is the first successful cryptocurrency and has remained the cryptocurrency
with the largest market share and value in spite of hundreds of other cryptocurrencies
being created. What’s interesting is that Bitcoin had, and still has, many issues that
other cryptocurrencies have attempted to tackle (and some with success). Even more
interesting, the cryptocurrency field has made use of many cryptographic primitives
that until now did not have many practical applications or did not even exist! So with-
out further ado, the following sections list the issues that have been researched since
the advent of Bitcoin.

Volatility

Most people currently use cryptocurrencies as speculation vehicles. The price of Bit-
coin obviously helps that story as it has shown that it can easily move thousands of dol-
lars up or down in a single day. Some people claim that the stability will come over
time, but the fact remains that Bitcoin is not usable as a currency nowadays. Other
cryptocurrencies have experimented with the concept of stablecoin, by tying the price
of their token to an existing fiat currency (like the US dollar).

Latency

You can measure the efficiency of a cryptocurrency in many ways. The throughput of
a cryptocurrency is the number of transactions per second that it can process. Bit-
coin’s throughput, for example, is quite low with only 7 transactions per second.
On the other hand, finality is the time it takes for your transaction to be considered
finalized once it is included in the blockchain. Due to forks, Bitcoin’s finality is
never completely achieved. It is considered that at least one hour after a transac-
tion is included in a new block, the probability of the transaction getting reverted
becomes acceptable. Both numbers greatly impact the latency, which is the amount
of time it takes for a transaction to be finalized from the point of view of the user.

268

12.3.3

12.34

12.3.5

CHAPTER 12 Crypto as in cryptocurrency?

In Bitcoin, latency includes the creation of the transaction, the time it takes to
propagate it through the network, the time it takes for it to get included in a block,
and finally, the wait time for the block to be confirmed.

The solution to these speed issues can be solved by BFT protocols, which usually
provide finality of mere seconds with an insurance that no forks are possible, as well as
throughput in the order of thousands of transactions per second. Yet, this is some-
times still not enough, and different technologies are being explored. So-called layer 2
protocols attempt to provide additional solutions that can enact faster payments off-
chain while saving progress periodically on the main blockchain (referred to as the
layer 1 in comparison).

Blockchain size

Another common problem with Bitcoin and other cryptocurrencies is that the size of
the blockchain can quickly grow to impractical sizes. This creates usability issues when
users who want to use the cryptocurrency (for example, to query their account’s bal-
ance) are expected to first download the entire chain in order to interact with the net-
work. BFT-based cryptocurrencies that process a large number of transactions per
second are expected to easily reach terabytes of data within months or even weeks.
Several attempts exist for solving this.

One of the most interesting ones is Mina, which doesn’t require you to download
the whole history of the blockchain in order to get to the latest state. Instead, Mina
uses zero-knowledge proofs (ZKPs), mentioned in chapter 7 and that I'll cover more
in depth in chapter 15, to compress all the history into a fixed-size 11 KB proof. This is
especially useful for lighter clients like mobile phones that usually have to trust third-
party servers in order to query the blockchain.

Confidentiality

Bitcoin provides pseudo-anonymity in that accounts are only tied to public keys. As long
as nobody can tie a public key to a person, the associated account remains anony-
mous. Remember that all the transactions from and to that account are publicly avail-
able, and social graphs can still be created in order to understand who tends to trade
more often with whom, and who owns how much of the currency.

There are many cryptocurrencies that attempt to solve these issues using ZKPs or
other techniques. Zcashis one of the most well-known confidential cryptocurrencies as
its transactions can encrypt the sender address, receiver address, and the amount
being transacted. All of that using ZKPs!

Energy efficiency

Bitcoin has been criticized heavily for being too consuming in terms of electricity.
Indeed, the University of Cambridge recently evaluated that all of the energy spent
mining BTCs brings Bitcoin to the top 30 energy users in the world (if seen as a
country), consuming more energy in a year than a country like Argentina (February

124

124.1

DiemBFT: A Byzantine fault-tolerant (BFT) consensus protocol 269

2021; https://cbeci.org/). BFT protocols on the other hand do not rely on PoW and
so avoid this heavy overhead. This is most certainly why any modern cryptocurrency
seems to avoid a consensus based on PoW, and even important PoW-based crypto-
currencies like Ethereum have announced plans to move towards greener consensus
protocols. Before going to the next chapter, let’s take a look at these cryptocurrencies
based on BFT consensus protocols.

DiemBFT: A Byzantine fault-tolerant (BFT)
consensus protocol

Many modern cryptocurrencies have ditched the PoW aspect of Bitcoin for greener
and more efficient consensus protocols. Most of these consensus protocols are based
on classical BFT consensus protocols, which are mostly variants of the original PBFT
protocol. In this last section, I will use Diem to illustrate such BFT protocols.

Diem (previously called Libra) is a digital currency initially announced by Facebook
in 2019, and governed by the Diem Association, an organization of companies, univer-
sities, and nonprofits looking to push for an open and global payment network. One
particularity of Diem is that it is backed by real money, using a reserve of fiat curren-
cies. This allows the digital currency to be stable unlike its older cousin Bitcoin. To
run the payment network in a secure and open manner, a BFT consensus protocol
called DiemBFT is used, which is a variant of HotStuff. In this section, let’s see how
DiemBFT works.

Safety and liveness: The two properties of a BFT
consensus protocol

A BFT consensus protocol is meant to achieve two properties, even in the presence of
a tolerated percentage of malicious participants. These properties include

Safety—No contradicting states can be agreed on, meaning that forks are not
supposed to happen (or happen with a negligible probability).
Liveness—When people submit transactions, the state will eventually end up
processing them. In other words, nobody can stop the protocol from doing
its thing.

Note that a participant is generally seen as malicious (also called byzantine) if they do
not behave according to the protocol. This could mean that they’re not doing any-
thing, or that they’re not following the steps of the protocol in the correct order, or
that they’re not respecting some mandatory rule meant to ensure that there is no
fork, and so on.

It’s usually quite straightforward for BFT consensus protocols to achieve safety,
while liveness is known to be more difficult. Indeed, there’s a well-known impossibility
result from Fischer, Lync, and Paterson (“Impossibility of distributed consensus with
one faulty process”) dating from 1985 and linked to BFT protocols that states that

https://cbeci.org/

270

12.4.2

12.4.3

CHAPTER 12 Crypto as in cryptocurrency?

no deterministic consensus protocol can tolerate failures in an asynchronous network
(where messages can take as much time as they want to arrive). Most BFT protocols
avoid this impossibility result by considering the network somewhat synchronous (and
indeed, no protocol is useful if your network goes down for a long period of time) or
by introducing randomness in the algorithm.

For this reason, DiemBFT never forks, even under extreme network conditions. In
addition, it always makes progress even when there’s network partitions where differ-
ent parts of the network can’t reach other parts of the network, as long as the network
ends up healing and stabilizing for a long enough period.

A round in the DiemBFT protocol

Diem runs in a permissioned setting where participants (called validators) are
known in advance. The protocol advances in strictly increasing rounds (round 1, 2,
3, etc.), during which validators take turns to propose blocks of transactions. In
each round

The validator that is chosen to lead (deterministically) collects a number of
transactions, groups them into a new block extending the blockchain, then
signs the block and sends it to all other validators.

Upon receiving the proposed block, other validators can vote to certify it by
signing it and sending the signature to the leader of the next round.

If the leader of the next round receives enough votes for that block, they can
bundle all of them in what is called a quorum certificate (QC), which certifies the
block, and use the QC to propose a new block (in the next round) extending
the now certified block.

Another way to look at this is that whereas in Bitcoin a block only contains the hash of
the block it extends, in DiemBFT, a block also contains a number of signatures over
that hash. (The number of signatures is important, but more on that later.)

Note that if validators do not see a proposal during a round (because the leader is
AFK, for example), they can timeout and warn other validators that nothing hap-
pened. In this case, the next round is triggered and the proposer can extend whatever
is the highest certified block that they have seen. I recap this in figure 12.9.

How much dishonesty can the protocol tolerate?

Let’s imagine that we want to be able to tolerate fmalicious validators at most (even if
they all collude), then DiemBFT says that there needs to be at least 3+ 1 validators to
participate in the protocol (in other words, for fmalicious validators there needs to be
at least 2f+ 1 honest validators). As long as this assumption is true, the protocol pro-
vides safety and liveness.

DiemBFT: A Byzantine fault-tolerant (BFT) consensus protocol 271

Proposer for round 1 _‘
ORMG Proposer for round 2
.y
o0 T TTTTTT T > o,

PR 4

Round 1 -~ - b
- - - //
’
Block o Y
.A.

1. A validator who is elected for a round can sign 2. Other validators can then vote for that block
and broadcast a block of transactions. by signing a message and sending it to the
next proposer.
-‘ Round 1 -‘
e — Block e
Round 2 Round 2
3. If enough votes are gathered the next 4. If the round times out and not enough votes are
proposer proposes a block carrying them, observed, the next proposer extends the certified
certifying the block voted on. block in the highest round they have seen.

Figure 12.9 Each round of DiemBFT starts with the designated leader proposing a block that extends the
last one they’ve seen. Other validators can then vote on this block by sending their vote to the next round’s
leader. If the next round’s leader gathers enough votes to form a quorum certificate (QC), they can propose
a new block containing the QC, effectively extending the previously seen block.

With that in mind, QCs can only be formed with a majority of honest validators’ votes,
which is 2f+ 1 signatures if there are 3f+ 1 participants. These numbers can be a bit
hard to visualize, so I show how they impact confidence in the votes we observe in fig-
ure 12.10.

12.4.4 The DiemBFT rules of voting

Validators must follow two voting rules at all times, without which, they are consid-
ered byzantine:

They can’t vote in the past (for example, if you just finished voting in round 3,
you can only vote in round 4 and above).

They can only vote for a block extending a block at their preferred round or
higher.

What’s a preferred round? By default, it is 0, but if you vote for a block that extends
a block that extends a block (and by that I mean you voted for a block that has a

272 CHAPTER 12 Crypto as in cryptocurrency?

If f have voted for a block, If f +1 have voted for a block,
then they could be all malicious votes. then at least one honest node voted.

If 2f +1 (a quorum) have voted for a block, If 3f +1 have voted for a block,
then at least f +1 honest nodes voted. then everybody has voted.

Figure 12.10 In the DiemBFT protocol, at least two thirds of the validators must be
honest for the protocol to be safe (it won’t fork) and live (it will make progress). In other
words, the protocol can tolerate f dishonest validators if at least 2f + 1 validators are
honest. A certified block has received at least 2f + 1 votes as it is the lowest number
of votes that can represent a majority of honest validators.

grandparent block), then that grandparent block’s round becomes your preferred
round unless your previous preferred round was higher. Complicated? I know, that’s
why I made figure 12.11.

Round 1 Round 3 Round 4 Round 6

Block Block M Block

If 1 vote for the block at round 6, my preferred round becomes round 3.

Round 1 Round 3 Round 4 Round 6
Round 7 Round 8
Block Block

Then | cannot vote for the block at round 7, but | can vote for the block at round 8.

Figure 12.11 After voting for a block, a validator sets their preferred round to the
round of the grandparent block if it is higher than their current preferred round. To vote
on a block, its parent block must have a round greater or equal to the preferred round.

12.4.5

12.4.6

DiemBFT: A Byzantine fault-tolerant (BFT) consensus protocol 273

When are transactions considered finalized?

Note that blocks that are certified are not finalized yet, or as we also say, committed.
Nobody should assume that the transactions contained in the pending blocks won’t
be reverted. Blocks and the transactions they contain can only be considered finalized
once the commit rule is triggered. The commit rule (illustrated in figure 12.12) says
that a block and all the pending blocks it extends become committed if:

The block starts a chain of 3 blocks that are proposed in contiguous rounds (for
example, in round 1, 2, and 3).
The last block of the 3-block chain become certified.

Round 2
r—--| block
|
Round 1 x Round 3 Round 4 Round 5 Round 9
Block |« Block |« Block [« Block [¢——— Block
~— —

.

Commit Commit

Figure 12.12 Three contiguous rounds (3, 4, 5) happen to have a
chain of certified blocks. Any validator observing the certification
of the last block in round 5 by the QC of round 9 can commit the
first block of the chain at round 3, as well as all of its ancestors
(here the block of round 1). Any contradicting branches (for
example, the block of round 2) get dropped.

And this is all there is to the protocol at a high level. But, of course, once again, the
devil is in the details.

The intuitions behind the safety of DiemBFT

While I encourage you to read the one-page safety proof on the DiemBFT paper, I
want to use a couple pages here to give you an intuition on why it works. First, we
notice that two different blocks cannot be certified during the same round. This is an
important property, which I explain visually in figure 12.13.

274 CHAPTER 12

Crypto as in cryptocurrency?

1. Imagine, two contradicting proposals
have reached a quorum of votes (2f+1.)

2. Remember, there’s only 3f+ 1 validators,
some validators have broken the rules.

3. At least f+ 1 validators have voted
for both proposals.

Same honest node

4. Since there is only f malicious validators,
one honest validator broke the rules—absurd!

Figure 12.13 Assuming that there can only be up to f malicious validators in a protocol of 3f + 1 validators, and
that a quorum certificate is created from 2f + 1 signed votes, then there can only be one certified block per round.
The diagram shows a proof by contradiction, a proof that this cannot be because then it would contradict our
initial assumptions.

Using the property that only one block can get certified at a given round, we can sim-
plify how we talk about blocks: block 3 is at round 3, block 6 is at round 6, and so on.
Now, take a look at figure 12.14 and take a moment to figure out why a certified block,

Round 1

Round 5 Round 6

&=

Round 5

Round 1 Round 6 Round 7

Round 1

Round 5 Round 6 Round 8 Round 9

Figure 12.14 In all these
scenarios, committing block 5
could lead to a fork. Only in
scenario number 4 is committing
block 5 safe. Can you tell why it
is dangerous to commit block 5
in all scenarios but 4?

Round 1 Round 5 Round 6 Round 7 Round 10

Summary 275

or two certified blocks, or three certified blocks at noncontiguous rounds cannot lead
to a commit without risking a fork.

Did you manage to find out answers for all the scenarios? The short answer is that
all scenarios, with the exception of the last one, leave room for a block to extend
round 1. This late block effectively branches out and can be further extended according
to the rules of the consensus protocol. If this happens, block 5 and other blocks
extending it will get dropped as another earlier branch gets committed. For scenar-
ios 1 and 2, this can be due to the proposer not seeing the previous blocks. In sce-
nario 3, an earlier block could appear later than expected, perhaps due to network
delays, or worse, due to a validator withholding it up to the right moment. I explain
this further in figure 12.15.

Round 1 Round 5 Round 6 Round 1 Round 5 Round 6 Round 7
Bock @ [Block BIock]d—[Block]d— Block
Round 7 Round 8
Block Block
Round 1 Round 5 Round 6 Round 8 Round 9 Round 1 Round 5 Round 6 Round 7 Round 10
e [Block BIock]i—[Block]i—[BIock]Q— Block o [Block]i— [Block BIock]i—[Block]i— Block
Round 7 Round 8
Block Block

Figure 12.15 Building on figure 12.14, all scenarios except the last one allow for a parallel chain that can
eventually win and discard the branch of block 5. The last scenario has a chain of three certified blocks in
contiguous rounds. This means that block 7 has had a majority of honest voters, who, in turn, updated their
preferred round to round 5. After that, no block can branch out before block 5 and obtain a QC at the same
time. The worst that can happen is that a block extends block 5 or block 6, which will eventually lead to the
same outcome—block 5 is committed.

Summary

Cryptocurrencies are about decentralizing a payment network to avoid a single
point of failure.

To have everyone agree on the state of a cryptocurrency, we can use consen-
sus algorithms.

Byzantine fault-tolerant (BFT) consensus protocols were invented in 1982 and
have evolved to become faster and simpler to understand.

BFT consensus protocols need a known and fixed set of participants to work
(permissioned network). Such protocols can decide who is part of this partici-
pant set (proof of authority or PoA) or dynamically elect the participant set
based on the amount of currency they hold (proof of stake or PoS).

276

CHAPTER 12 Crypto as in cryptocurrency?

Bitcoin’s consensus algorithm (the Nakamoto consensus) uses proof of work
(PoW) to validate the correct chain and to allow anyone to participate (permis-
sionless network).

Bitcoin’s PoW has participants (called miners) compute a lot of hashes in order
to find some with specific prefixes. Successfully finding a valid digest allows a
miner to decide on the next block of transaction and collect a reward as well as
transaction fees.

Accounts in Bitcoin are simply ECDSA key pairs using the secp256kl curve. A
user knows how much BTCs their account holds by looking at all transaction
outputs that have not yet been spent (UTXOs). A transaction is, thus, a signed
message authorizing the movement of a number of older transaction outputs to
new outputs, spendable to different public keys.

Bitcoin uses Merkle trees to compress the size of a block and allow verification
of transaction inclusion to be small in size.

Stablecoins are cryptocurrencies that attempt to stabilize their values, most
often by pegging their token to the value of a fiat currency like the US dollar.
Cryptocurrencies use so-called layer 2 protocols in order to decrease their latency
by processing transactions off-chain and saving progress on-chain periodically.
Zero-knowledge proofs (ZKPs) are used in many different blockchain applica-
tions (for example, in Zcash to provide confidentiality and in Coda to compress
the whole blockchain to a short proof of validity).

Diem is a stablecoin that uses a BFT consensus protocol called DiemBFT. It
remains both safe (no forks) and live (progress is always made) as long as no
more than fmalicious participants exist out of 3+ 1 participants.

DiemBFT works by having rounds in which a participant proposes a block of
transactions extending a previous block. Other participants can then vote for
the block, potentially creating a quorum certificate (QC) if enough votes are
gathered (2f+1).

In DiemBFT, blocks and their transactions are finalized when the commit rule
(a chain of 3 certified blocks at contiguous rounds) is triggered. When this hap-
pens, the first block of the chain and the blocks it extends are committed.

Hardware cryptography

This chapter covers

= Cryptography issues in highly adversarial
environments

= Hardware solutions to increase the attacker’s
cost

= Side-channel attacks and software mitigations

Cryptographic primitives and protocols are often described as isolated building
blocks as if they were running in a galaxy far, far away from any adversary. In prac-
tice, this is an unrealistic assumption that has often proven wrong. In the real
world, cryptography runs in all kinds of environments and is subject to all sorts of
threats. In this chapter, we’ll look at the more extreme scenarios—the highly adver-
sarial environments—and what you can do to protect your keys and your data in
these situations. (Spoiler alert: it involves using specialized hardware.)

277

CHAPTER 13 Hardware cryptography

13.1 Modern cryptography attacker model

Present-day computer and network securily starls with the assumption that there is a
domain that we can trust. For example: if we encrypt data for transport over the Internet,
we generally assume the computer that’s doing the encrypting is not compromised and
that there’s some other “endpoint” at which it can be safely decrypted.

—Joanna Rutkowska (“Intel x86 considered harmful,” 2015)

Cryptography used to be about “Alice wants to encrypt a message to Bob without Eve
being able to intercept it.” Today, a lot of it has moved to something more like “Alice
wants to encrypt a message to Bob, but Alice has been compromised.” It’s a totally dif-
ferent attacker model, which is often not anticipated for in theoretical cryptography.
What do I mean by this? Let me give you some examples:

Using your credit card on an automated teller machine (ATM) that might be
augmented with a skimmer, which is a device that a thief can place on top of the
card reader in order to copy the content of your bank card (see figure 13.1)
Downloading an application on your mobile phone that compromises the oper-
ating system (OS)

Hosting a web server in a shared web-hosting service, where another malicious
customer might be sharing the same machine as you

Managing highly sensitive secrets in a data center that gets visited by spies from
a different country

Figure 13.1 A skimmer, a malicious device that
can be placed in front of ATM or payment terminal
card readers in order to copy data contained in the
card magnetic stripe. The magnetic stripe usually
contains the account number, the expiration date,
and other metadata that’s used by you to pay online
or in a number of payment terminals. Skimmers are
sometimes accompanied with a hidden camera to
obtain your PIN as well, potentially enabling the thief
, N to use ATM withdrawals and payment terminals

SKiMner enforcing PIN entry.

All of these examples are a modern use of cryptography in a threat model that many
cryptographers ignore or are totally unaware of. Indeed, most of the cryptographic
primitives that you read about in the literature will just assume that Alice, for example,
has total control of her execution environment, and only when ciphertext (or a signa-
ture or a public key or . . .) leaves her computer to go over the network will man-in-
the-middle (MITM) attackers be able to perform their tricks. But, in reality and in
these modern times, we often use cryptography in much more adversarial models.

13.2

Untrusted environments: Hardware to the rescue 279

WARNING Security is, after all, a product of your assumptions and what you
expect of a potential attacker. If your assumptions are wrong, you're in for a
bad time.

How do real-world applications reconcile theoretical cryptography with these more
powerful attackers? They make compromises. In other words, they try to make the
attackers’ lives more difficult. The security of such systems is often calculated in cost
(how much does the attacker have to spend to break the system?) rather than compu-
tational complexity.

A'lot of what you’ll learn in this chapter will be imperfect cryptography, which in the
real world, we call defense in depth. There’s a lot to learn, and this chapter comes with
lots of new acronyms and different solutions that different vendors and their market-
ing teams and sales people have come up with. So let’s get started and learn about
trusted systems in untrusted environments.

Untrusted environments: Hardware to the rescue

There are different ways to attack a system in practice. One way to categorize them is
to think:

Software attacks—Attacks that leverage code run on your device
Hardware attacks—Attacks that require the adversary to be physically close to
your device

While I already talked repeatedly about software attacks that target cryptography and
how to mitigate them in previous chapters, there are some software attacks that are
easier to defend if you leverage hardware solutions. For example, by generating and
using cryptographic keys on a separate device connected to your computer, a virus hit-
ting your computer wouldn’t be able to extract the keys.

Hardware attacks, however, are more tricky because attackers who get access to a
device can pretty much do anything they want: data on disk can be arbitrarily modi-
fied, lasers can be shot on targeted places to force a computation to produce an erro-
neous value (so-called fault attacks), chips can be opened to reveal their parts, focused
ion beam (FIB) microscopes can be used to reverse-engineer components, and so on.
The sky’s the limit, and it is hard to protect against such motivated attackers. Typically,
the different solutions available boil down to adding as many layers of defenses as you
can in an attempt to make the attacker’s life much more difficult. It is all about raising
the costs!

Evil maid attacks

Not all hardware attackers are the same. For example, some attackers are able to
spend some quality time with your devices, while others might have a limited amount
of time. Imagine the following scenario: you leave your phone or laptop unattended
in your hotel room, and a “malicious” maid comes in, opens the device, uses a low-
budget, off-the-shelf tool to modify the system, and then leaves the device appearing

280

13.2.1

CHAPTER 13 Hardware cryptography

(continued)

untouched where it was found before you get back to your room. In the literature, this
is known as an evil maid attack and can be generalized for many situations (for exam-
ple, carrying devices in check-in luggages while flying, storing sensitive keys in an
insecure data center, and so forth).

Of course, all systems don’t necessarily need to defend against the most powerful
hardware attacks, and not all applications deal with the same level of threat. Different
hardware solutions exist for different contexts, so the rest of this section is about
understanding the differences between “such and such.”

White box cryptography, a bad idea

Before getting into hardware solutions for untrusted environments, why not use soft-
ware solutions? Can cryptography provide primitives that do not leak their own keys?

White box cryptography is exactly this: a field of cryptography that attempts to scram-
ble a cryptographic implementation with the key it uses. The goal is to prevent
extraction of the key from observers. The attacker obtains the source code of some
white box AES implementation with a fixed key, and it encrypts and decrypts just fine,
but the key is mixed so well with the implementation that it is too hard for anyone to
extract it from the algorithm. That’s the theory at least. In practice, no published
white box crypto algorithm has been found to be secure, and most commercial solu-
tions are closed-source due to this fact.

NOTE Security through obscurity and obfuscation (scrambling code to make it
look unintelligible) are techniques that are generally frowned on as they
haven’t been proven to work effectively. That being said, in the real world,
these techniques sometimes have their place and can be used to delay and
frustrate adversaries.

All in all, white box cryptography is a big industry that sells dubious products to busi-
nesses in need of digital rights management (DRM) solutions (tools that control how
much access a customer can get to a product they bought). For example, you can find
these white-box solutions in the hardware that plays movies you bought in a store or in
the software that plays movies you are watching on a streaming service. In reality, DRM
does not strongly prevent these attacks; it just makes the life of their customers more
difficult. On a more serious note, there is a branch of cryptography called indistin-
guishability obfuscation (10) that attempts to do this cryptographically. iO is a theoreti-
cal, impractical, and so far, not-a-really-proven field of research. We’ll see how that
one goes, but I wouldn’t hold my breath.

Untrusted environments: Hardware to the rescue 281

13.2.2 They’re in your wallet: Smart cards and secure elements

White box cryptography is not great, but that’s pretty much the best software solution
for defending against powerful adversaries. So let’s turn to the hardware side for solu-
tions. (Spoiler alert: things are about to get much more complicated and confusing.)
If you thought that real-world cryptography was messy and that there were too many
standards or ways to do the same thing, wait until you read what’s going on in the
hardware world. Different terms have been made up and used in different ways, and
standards have, unfortunately, proliferated as much as (if not more than) cryptogra-
phy standards.

To understand what all of these hardware solutions are and how they differ from
one another, let’s start with some necessary history. Smart cards are small chips usually
seen packaged inside plastic cards (like bank cards) and were invented in the early
1970s following advances in microelectronics. Smart cards started out as a practical
way to get everyone a pocket computer! Indeed, a modern smart card embeds its own
CPU, different types of programmable or non-programmable memory (ROM, RAM,
and EEPROM), inputs and outputs, a hardware random number generator (also
called TRNG as you learned in chapter 8), and so on.

They’re “smart” in the sense that they can run programs, unlike the not-so-smart
cards that could only store data via a magnetic stripe, which could be easily copied
via the skimmers I talked about previously. Most smart cards allow developers to
write small, contained applications that can run on the card. The most popular stan-
dard supported by smart cards is_JavaCard, which allows developers to write Java-like
applications.

To use a smart card, you first need to activate it by inserting it into a card reader.
More recently, cards have been augmented with the Near Field Communication
(NFC) protocol to achieve the same result via radio frequencies. This allows you to use
the card by getting close to a card reader, as opposed to physically touching it.

Banks and legacy cryptography

By the way, banks make use of smart cards to store a unique per-card secret that’s
capable of saying, “I am indeed the card that you gave to this customer.” Intuitively,
you might think that this is implemented via public key cryptography, but the banking
industry is still stuck in the past and uses symmetric cryptography (due to the vast
amount of legacy software and hardware still in use)!

More specifically, most bank card stores a triple-DES (3DES) symmetric key, an old
64-bit block cipher that seeks to make the insecure Data Encryption Standard (DES)
secure. The algorithm is used not to encrypt, but to produce a MAC (message authen-
tication code) over some challenge. The bank who holds every customer’s current
3DES symmetric key can verify the MAC. This is an excellent example of what real-
world cryptography is often about: legacy algorithms used all over the place in a risky
way. (And this is also why key rotation is such an important concept and why you have
to change your bank cards periodically.)

282

CHAPTER 13 Hardware cryptography

Smart cards mix a number of physical and logical techniques to prevent observation,
extraction, and modification of their execution environment and parts of their mem-
ory (where secrets are stored). There exist many attacks that attempt to break these
cards and hardware devices in general. These attacks can be classified in three differ-
ent categories:

Non-invasive attacks—Attacks that do not affect the targeted device. For exam-
ple, differential power analysis (DPA) attacks evaluate the power consumption
of a smart card while it simultaneously performs cryptographic operations in
order to extract its keys.

Semi-invasive attacks—Attacks that use access to the chip’s surface in a non-
damaging way to mount exploits. For example, differential fault analysis (DFA)
attacks make use of heat, lasers, and other techniques to modify the execution
of a program running on the smart card in order to leak keys.

Invasive attacks—Attacks that open the chip to probe or modify the circuitry in
the silicon itself in order to alter the chip’s function and reveal its secrets. These
attacks are noticeable because they can damage devices and have a greater
chance of rendering devices unusable.

The fact that hardware chips are extremely small and tightly packaged can make
attacks difficult. But specialized hardware usually goes much further by using different
layers of materials to prevent depackaging and physical observation and by using
hardware techniques to increase the inaccuracy of known attacks.

Smart cards got really popular really fast, and it became obvious that having such a
secure black box in other devices could be useful. The concept of a secure element was
born: a tamper-resistant microcontroller that can be found in pluggable form (for
example, the SIM card in your phone required to access your carrier’s network) or
directly bonded on chips and motherboards (for example, the embedded secure ele-
ment attached to an iPhone’s NFC chip for payments). A secure element is really just
a small, separate piece of hardware meant to protect your secrets and their usage in
cryptographic operations.

Secure elements are an important concept to protect cryptographic operations in
the Internet of Things (10T), a colloquial (and overloaded) term referring to devices
that can communicate with other devices (think credit cards, phones, biometric pass-
ports, garage keys, smart home sensors, and so on). You can see all of the solutions
that follow in this section as secure elements implemented in different form factors,
using different techniques to achieve pretty much the same thing, but providing dif-
ferent levels of security and speed.

The main definitions and standards around secure elements have been produced
by Global Platform, a nonprofit association created from the need of the different
players in the industry to facilitate interoperability among different vendors and sys-
tems. There exist more standards and certifications that focus on the security claims

13.2.3

Untrusted environments: Hardware to the rescue 283

of secure elements from standard bodies like Common Criteria (CC), NIST, or the
EMV (for Europay, Mastercard, and Visa).

As secure elements are highly secretive recipes, integrating them in your product
means that you will have to sign nondisclosure agreements and use closed-source
hardware and firmware. For many projects, this is seen as a serious limitation in trans-
parency, but can be understood, as part of the security in these chips come from the
obscurity of their design.

Banks love them: Hardware security modules (HSMs)

If you understood what a secure element is, well a hardware security module (HSM) is
basically a bigger and faster secure element, and like some secure elements, some
HSMs can run arbitrary code as well. This is not always true, however. Some HSMs are
small (like the YubiHSM, a tiny USB dongle that resembles a YubiKey), and the term
hardware security module can be used to mean different things by different people.

Many would argue that all of the hardware solutions discussed so far are HSMs of dif-
ferent forms and that secure elements are just HSMs specified by GlobalPlatform, while
TPMs (Trusted Platform Modules) are HSMs specified by the Trusted Computing
Group. But most of the time, when people talk about HSMs, they mean the big stuff.

HSMs are often classified according to FIPS 140-2, “Security Requirements for
Cryptographic Modules.” The document is quite old, published in 2001, and natu-
rally, does not take into account a number of attacks discovered after its publication.
Fortunately, in 2019, it was superseded by the more modern version, FIPS 140-3. FIPS
140-3 now relies on two international standards:

ISO/IEC 19790:2012—Defines four security levels for hardware security mod-
ules. Level 1 HSMs do not provide any protection against physical attacks (you
can think of these as pure software implementations), while level 3 HSMs wipe
their secrets if they detect any intrusion!

IS0 24759:201 7—Defines how HSMs must be tested in order to standardize cer-
tifications for HSM products.

Unfortunately, the two standards are not free. You’ll have to pay if you want to read
them.

The US, Canada, and some other countries mandate certain industries like banks
to use devices that have been certified according to the FIPS 140 levels. Many compa-
nies worldwide follow these same recommendations as well.

NOTE Wiping secrets is a practice called zeroization. Unlike level 3 HSMs, level
4 HSMs can overwrite secret data multiple times, even in cases of power out-
ages, thanks to backup internal batteries.

Typically, you find an HSM as an external device with its own shelf on a rack (see fig-
ure 13.2) plugged to an enterprise server in a data center, as a PCle card plugged into
a server’s motherboard, or even as small dongles that resemble hardware security

284

CHAPTER 13 Hardware cryptography

Figure 13.2 An IBM 4767 HSM as a PCI card. Photo from Wikipedia
(http://mng.bz/XrAG).

tokens. They can be plugged into your hardware via USB devices (if you don’t mind
the lower performance). To go full circle, some of these HSMs can be administered
using smart cards to install applications, to back up secret keys, and so on.

Some industries highly utilize HSMs. For example, every time you enter your PIN
in an ATM, the PIN ends up being verified by an HSM somewhere. Whenever you
connect to a website via HTTPS, the root of trust comes from a certificate authority
(CA) that stores its private key in an HSM, and the TLS connection is possibly termi-
nated by an HSM. Do you have an Android or iPhone? Chances are that Google or
Apple keep a backup of your phone safe with a fleet of HSMs. This last case is interest-
ing because the threat model is reversed: the user does not trust the cloud with its
data and, thus, the cloud service provider claims that its service can’t see the user’s
encrypted backup nor can it access the keys used to encrypt it.

HSMs don’t really have a standard interface, but most of them will, at least, imple-
ment Public Key Cryptography Standard 11 (PKCS#11), one of the old standards that
were started by the RSA company and that were progressively moved to the OASIS
organization in 2012 to facilitate adoption of the standards. While the last version of
PKCS#11 (v2.40) was released in 2015, it is merely an update of a standard that origi-
nally started in 1994. For this reason, it specifies a number of old cryptographic algo-
rithms, or old ways of doing things, which can lead to vulnerabilities. Nevertheless, it is
good enough for many uses and specifies an interface that allows different systems to
easily interoperate with each other. The good news is that PKCS#11 v3.0 was released
in 2020, including a lot of modern cryptographic algorithms like Curve25519, EADSA,
and SHAKE to name a few.

While the real goal for HSMs is to make sure nobody can extract key material from
them, their security is not always shining. A lot about the security of these hardware

http://mng.bz/XrAG

13.24

Untrusted environments: Hardware to the rescue 285

solutions really relies on their high price, the hardware defense techniques not being
disclosed, and the certifications (like FIPS and Common Criteria) that mostly focus
on the hardware side of things. In practice, devastating software bugs were found, and
it is not always straightforward if the HSM you use is at risk to any of these vulnerabili-
ties. In 2018, Jean-Baptiste Bédrune and Gabriel Campana showed in their research
(“Everybody be Cool, This is a Robbery”) a software attack to extract keys out of popu-
lar HSMs.

NOTE Not only is the price of one HSM high (it can easily be tens of thou-
sands of dollars depending on the security level), but in addition to one HSM,
you often have at least another HSM you use for testing and at least one more
for backup (in case your first HSM dies with its keys in it). It can add up!

Furthermore, I still haven’t touched on the “elephant in the room” with all of these solu-
tions: while you might prevent most attackers from reaching your secret keys, you can’t
prevent attackers from compromising the system and making their own calls to the
HSM (unless the HSM has logic that requires several signatures or the presence of a
threshold of smart cards to operate). But, in most cases, the only service that an HSM
provides is to prevent an attacker from stealthily stealing secrets and using those at some
other time. When integrating hardware solutions like HSMs, it is good to first under-
stand your threat model, the types of attacks you’re looking to thwart, and if threshold
schemes like the multi-signatures I mentioned in chapter 8 aren’t a better solution.

Trusted Platform Modules (TPMs): A useful standardization
of secure elements

While secure elements and HSMs prove to be useful, they are limited to specific use
cases, and the process to write custom applications is known to be tedious. For this
reason, the Trusted Computing Group (TCG) (another nonprofit organization formed
by industry players) came up with a ready-to-use alternative that targets personal as
well as enterprise computers. This is known as the Trusted Platform Module (TPM).

The TPM is not a chip but, instead, a standard (the TPM 2.0 standard); any vendor
who so chooses can implement it. A TPM complying with the TPM 2.0 standard is a
secure microcontroller that carries a hardware random number generator, secure
memory for storing secrets, can perform cryptographic operations, and the whole
thing is tamper-resistant. This description might sound familiar, and indeed, it is com-
mon to see TPMs implemented as a repackaging of secure elements. You usually find
a TPM directly soldered or plugged into the motherboard of enterprise servers, lap-
tops, and desktop computers (see figure 13.3).

Unlike smart cards and secure elements, a TPM does not run arbitrary code.
Instead, it offers a well-defined interface that a greater system can take advantage of.
TPMs are usually pretty cheap, and today many commodity laptops carry one.

Now the bad: the communication channel between a TPM and a processor is usu-
ally just a bus interface, which can easily be intercepted if you manage to steal or gain

286

CHAPTER 13 Hardware cryptography

CHINA

\t
&
\

=
-
| W
S
L2
18
-

1] HINM'IHUNH Wi

— 004 C1B0A

Figure 13.3 A chip implementing the TPM 2.0 standard, plugged into a motherboard. This chip can be
called by the system’s motherboard components as well as user applications running on the computer’s
0S. Photo from Wikipedia (http://mng.bz/Q2je).

temporary physical access to the device. While many TPMs provide a high level of
resistance against physical attacks, the fact that their communication channel is some-
what open does reduce their use cases to mostly defending against software attacks.

To solve these issues, there’s been a move to TPM-like chips that are integrated
directly into the main processor. For example, Apple has the Secure Enclave and
Microsoft has Pluton. Unfortunately, none of these security processors seem to follow
a standard, which means it could be difficult, perhaps impossible, for user applica-
tions to leverage their functionalities. Let’s see some examples to get an idea of what
hardware security chips like TPMs can do.

The simplest use case for TPMs is to protect data. To protect keys, it’s easy: just gen-
erate them in the secure chip and disallow extraction. If you need the keys, ask the
chip to perform the cryptographic operations. To protect data, encrypt it. That con-
ceptis called file-based encryption (FBE) if you’re encrypting individual files and full-disk

http://mng.bz/Q2je

Untrusted environments: Hardware to the rescue 287

encryption (FDE) if it’s the whole disk. FDE sounds much better as it’s an all or nothing
approach. That’s what most laptops and desktops use. In practice, FDE is not that
great though: it doesn’t take into account how we, human beings, use our devices. We
often leave our devices locked, as opposed to turned off, so that background function-
alities can keep running. Computers deal with this by keeping the data-encryption key
(DEK) around, even if your computer is locked. (Think about that the next time you
go to the restroom at Starbucks, leaving your locked computer unattended.) Modern
phones offer more security, encrypting different types of files depending on whether
your phone is locked or turned off.

NOTE In practice, both FDE and FBE have many implementation issues. In
2019, Meijer and Gastel (in “Self-encrypting deception: Weaknesses in the
encryption of solid state drives (SSDs)”) showed that several SSD vendors had
completely insecure solutions. In 2021, Zinkus et al., (in “Data Security on
Mobile Devices: Current State of the Art, Open Problems, and Proposed Solu-
tions”) found that phone disk encryption also had many issues.

Of course, the user should be authenticated before data can be decrypted. This is
often done by asking the user for a PIN or password. A PIN or password is not enough
though, as it would allow simple brute force attacks (especially on 4- or 6-digit PINs).
In general, solutions try to tie the DEK to both a user credential and a symmetric key
kept on the enclave.

But a chip manufacturer can’t hardcode the same key in every device they pro-
duce; it leads to attacks like the DUHK attack (https://duhkattack.com), where thou-
sands of devices were found hardcoding the same secret. This, in turn, means that the
compromise of one device leads to the compromise of all the devices! The solution is
a per-device key that is either fused into the chip at manufacturing time or created by
the chip itself via hardware components called physical unclonable functions. For exam-
ple, each Apple Secure Enclave has a UID, each TPM has a unique endorsement key
and attestation key, etc. To prevent brute force attacks, Apple’s Secure Enclave mixes
both the UID key and the user PIN with a password-based key derivation function (we
covered this in chapter 2) to derive the DEK. Except that I lied: to allow users to
change their PIN quickly, the DEK is not derived directly, but instead encrypted by a
key encryption key (KEK).

Another example is secure boot. When booting your computer, there are different
stages that run until you finally get to the screen you want. One problem users face
are viruses and malwares, and how if they infect the boot process, you then run on
an evil OS.

To protect the integrity of boot, TPMs and integrated secure chips provide a root
of trust, something that we trust 100% and that allows us to trust other stuff down the
line. This root of trust is generally some read-only memory (ROM) that cannot be
overwritten (also called one-time programmable memory as it’s written during manufactur-
ing and can’t be changed). For example, when powering up a recent Apple device,

https://duhkattack.com

288

13.2.5

CHAPTER 13 Hardware cryptography

the first code that gets executed is the boot ROM, located inside the Apple’s Secure
Enclave ROM. That boot ROM is tiny, so usually the only thing it does is:

Prepare some protected memory and load the next program to run there (usu-
ally some other boot loader)

Hash the program and verify its signature against the hardcoded public key in
the ROM

Execute the program

The next boot loader does the same thing, and so on, until finally a boot loader starts
the OS. This is, by the way, how OS updates that are not signed by Apple can’t be
installed on your phone.

TPMs and integrated TPM-like chips are an interesting development, and they
greatly increased the security of our devices in recent years. As they become cheaper
and a winning standard arises, more devices will be able to benefit from them.

Confidential computing with a trusted execution
environment (TEE)

Smart cards, secure elements, HSMs, and TPMs are standalone chips or modules; they
carry their own CPU, memory, TRNG, and so on, and other components can talk to
them via some wires or radio frequency in NFC-enabled chips. TPM-like chips (Micro-
soft’s Pluton and Apple’s Secure Enclave) are standalone chips as well, although tightly
coupled with the main processor inside of a system on chip (SoC). In this section, I will
talk about the next logical step you can take in this taxonomy of security hardware, inte-
grated security, hardware-enforced security within the main processor itself.

Processors that integrate security are said to create a (rusted execution environment
(TEE) for user code by extending the instruction set of a processor to allow for pro-
grams to run in a separate, secure environment. The separation between this secure
environment and the ones we are used to dealing with already (often called a rich exe-
cution environment) is done via hardware. What ends up happening is that modern
CPUs run both a normal OS as well as a secure OS simultaneously. Both have their
own set of registers but share most of the rest of the CPU architecture. By using CPU-
enforced logic, data from the secure world cannot be accessed from the normal
world. For example, a CPU usually splits its memory, giving one part for the exclusive
use of the TEE. Because a TEE is implemented directly on the main processor, not
only does this mean a TEE is a faster and cheaper product than a TPM or secure ele-
ment, it also comes for free in a lot of modern CPUs.

The TEE, like all other hardware solutions, is a concept developed independently by
different vendors and a standard (by Global Platform) trying to play catch-up. The most
known TEEs are Intel’s Software Guard Extensions (SGX) and ARM’s TrustZone.

What are TEEs good for? Let’s look at an example. For the last few years, there’s a
new paradigm—the cloud—with big companies running servers to host your data.
Amazon has AWS, Google has GCP, and Microsoft has Azure. Another way to put this

13.3

What solution is good for me? 289

is that people are moving from running things themselves to running things on some-
one else’s computer. This creates some issues in some scenarios where privacy is import-
ant. To fix that, confidential computing attempts to offer solutions to run client code
without being able to see it or modify its behavior. SGX’s primary use case seems to be
exactly that these days: clients running code that servers can’t see or tamper with.

One interesting problem that arises is how can one trust that the response from a
request came from SGX, for example, and not from some impersonator. This is what
allestation tries to solve. There are two kinds of attestation:

Local attestation—Two enclaves running on the same platform need to commu-
nicate and prove to each other that they are secure enclaves.

Remote attestation—A client queries a remote enclave and needs to make sure
that it is the legitimate enclave that produced the result from the request.

Each SGX chip is provided with unique key pairs (the Root Sealing Keys) at manufactur-
ing time. The public key part is then signed by some Intel CA. The first assumption, if
we ignore the assumption that the hardware is secure, is that Intel is correctly signing
public keys for secure SGX chips only. With that in mind, you can now obtain a signed
attestation from Intel’s CA that you're talking to a real SGX enclave and that it is run-
ning some specific code.

TEE’s goal is to first and foremost thwart software attacks. While the claimed soft-
ware security seems to be attractive, it is, in practice, hard to segregate execution on
the same chip due to the extreme complexity of modern CPUs and their dynamic
states. This is attested to by the many software attacks against SGX and TrustZone
(https://foreshadowattack.eu, https://mdsattacks.com, https://plundervolt.com, and
https://sgaxe.com).

TEE as a concept provides some resistance against physical attacks because things
at this microscopic level are way too tiny and tightly packaged together to analyze
without expensive equipment. Against a motivated attacker, things might be different.

What solution is good for me?

You have learned about many hardware products in this chapter. As a recap, here’s the
list, which I illustrate in figure 13.4 as well:

Smanrt cards are microcomputers that need to be turned on by an external device like a pay-
ment terminal. They can run small custom Java-like applications. Bank cards are
an example of a widely used smart card.

Secure elements are a generalization of smart cards, which rely on a set of Global Platform
standards. SIM Cards are an example of secure elements.

HSMs (hardware security modules) can be seen as larger pluggable secure elements for
enterprise servers. They are faster and more flexible and are seen mostly in data
centers to store secret keys, making attacks on keys more obvious.

TPMs (Trusted Platform Modules) are repackaged secure elements plugged into personal
and enterprise computer motherboards. They follow a standardized API by the Trusted

https://foreshadowattack.eu
https://mdsattacks.com
https://plundervolt.com
https://sgaxe.com

290

CHAPTER 13 Hardware cryptography

-
=F 0123 4567 8910 1112 @‘
wllw

N—

David Wong

Smart card Secure element Hardware security module

Trusted platform module Integrated security chip Trusted execution environment

Figure 13.4 The different hardware solutions you learned in this chapter and an idea of
what they look like.

Computing Group that can provide functionalities for operating systems and
end users.

Security processors are TPM-like chips built extremely close to the main processor and are
not programmable. They follow no standards, and different players have come out
with different technologies.

TEEs (trusted execution environments) like TrustZone and SGX can be thought of as pro-
grammable secure elements implemented within the CPU instruction set. They are faster
and cheaper, mostly providing resistance against software attacks. Most modern
CPUs ship with TEEs and various levels of defense against hardware attacks.

What is the best solution for you? Try to narrow your choice by asking yourself some
questions:

In what form factor? For example, the need for a secure element in a small device
dictates what solutions you won’t be able to use.

How much speed do you need? Applications that need to perform a high number of
cryptographic operations per second will be highly constrained in the solutions
they can use, probably limited to HSMs and TEEs.

How much security do you need? Certifications and claims by vendors correspond
to different levels of software or hardware security. The sky’s the limit.

Keep in mind that no hardware solution is the panacea; you're only increasing the
attack’s cost. Against a sophisticated attacker all of this is pretty much useless.
Design your system so that one compromised device doesn’t imply that all devices
are compromised.

134

Leakage-resilient cryptography or how to mitigate side-channel attacks in software 291

Leakage-resilient cryptography or how to mitigate
side-channel attacks in software

We saw how hardware attempts to prevent direct observation and extraction of secret
keys, but there’s only so much that hardware can do. At the end of the day, it is possi-
ble for the software to not care and give out the key despite all of this hardware hard-
ening. The software can do so somewhat directly (like a backdoor) or it can do it
indirectly by leaking enough information for someone to reconstruct the key. This lat-
ter option is called a side channel, and side-channel vulnerabilities are unintentional
bugs most of the time (at least one would hope).

I mentioned timing attacks in chapter 3, where you learned that MAC authentica-
tion tags had to be compared in constant time; otherwise, attackers could infer the
correct tag after sending you many incorrect ones and measuring how long they
waited for you to respond. Timing attacks are usually taken seriously in all areas of
real-world cryptography as they can potentially be remotely performed over the net-
work, unlike physical side channels.

The most important and known side channel is power consumption, which I men-
tioned earlier in this chapter. This was discovered as an attack, called differential power
analysis (DPA), by Kocher, Jaffe, and Jun in 1998, when they realized that they could
hook an oscilloscope to a device and observe variance in the electricity consumed by
the device over time while performing encryptions of known plaintexts. This variance
clearly depends on the bits of the key used, and the fact that operations like XORing
would consume more or less power, depending if the operand bits were set or not.
This observation led to a key-extraction attack (so-called total breaks).

This concept can be illustrated with simple power analysis (SPA) attack. In ideal situ-
ations and when no hardware or software mitigations are implemented against power
analysis attacks, it suffices to measure and analyze the power consumption of a single
cryptographic operation involving a secret key. I illustrate this in figure 13.5.

Power is not the only physical side channel. Some attacks rely on electromagnetic
radiations, vibrations, and even the sound emitted by the hardware. Let me still men-
tion two other nonphysical side-channels. I know we are in a hardware-focused chap-
ter, but these nonphysical side-channel attacks are important as they need to be
mitigated in many real-world cryptographic applications.

First, returned errors can sometimes leak critical information. For example, in
2018, the ROBOT attack figured out a way to exploit the Bleichenbacher attack (men-
tioned in chapter 6) on a number of servers that implemented RSA PKCS#1 v1.5
decryption in the TLS protocol (covered in chapter 9). Bleichenbacher’s attack only
works if you can distinguish if an RSA ciphertext has a valid padding or not. To pro-
tect against that attack, safe implementations perform the padding validation in
constant time and avoid returning early if they detects that the padding is invalid.
For example, in an RSA key exchange in TLS, the server has to fake its response as if
it completed a successful handshake if the padding of the RSA payload is incorrect.
Yet, if at the end of the padding validation an implementation decides to return a

292

CHAPTER 13 Hardware cryptography

Power consumption
' N

0 00
r—Or— OO0 O— O —O—O——O—

» Time

D Multiplication

D Square

Figure 13.5 Some cryptographic algorithms leak so much information via their power
consumption that a simple power analysis of a single power trace (a measure of the
power consumed in time) can leak the private key of the algorithm. For example, this
figure represents a trace of an RSA exponentiation (the message being exponentiated to
the private exponent; see chapter 6). The RSA exponentiation is implemented with a
square-and-multiply algorithm that iterates through the bits of the private exponent; for
each bit it applies a square operation followed by a multiply operation only if the bit is
set. In this example, multiplication is obviously consuming more power; hence, the
clarity of the power trace.

different error to the client (based on the validity of the padding), then this was all
for nothing.

Second, accessing memory can take more or less time, depending if the data was
previously accessed or not. This is due to the numerous layers of caching that exist in
a computer. For example if the CPU needs something, it first checks if it has been
cached in its internal memory. If not, it then reaches into caches that are further and
further away from it. The further away the cache, the more time it’'ll take. Not only
that, but some caches are specific to a core (L1 cache, for example), while some
caches are shared among cores in a multicore machine (L3 cache, RAM, disk).

Cache attacks exploit the fact that it is possible for a malicious program to run on
the same machine, using the same cryptographic library as a sensitive cryptographic
program. For example, many cloud services host different virtual servers on the same
machine, and many servers use the OpenSSL library for cryptographic operations or
for serving TLS pages. Malicious programs find ways to evict parts of the library that
have been loaded in a cache shared with the victim’s process and then periodically
measure the time it takes to reread some parts of that library. If it takes a long time,
then the victim did not execute this part of the program; if it doesn’t take a long
time, then the victim accessed this part of the program and repopulated the cache
to avoid having to fetch again the program to a far away cache or worse from disk.
What you obtain is a trace that resembles a power trace, and it is indeed exploitable
in similar ways!

134.1

Leakage-resilient cryptography or how to mitigate side-channel attacks in software 293

OK, that’s enough for side-channel attacks. If you’re interested in attacking cryp-
tography via these side channels, there are better resources than this book. In this
section, I want to only talk about software mitigations that cryptographic implementa-
tions can and should implement to protect against side-channel attacks in general.
This whole field of study is called leakage-resilient cryptography, as the cryptographer’s
goal here is to not leak anything.

Defending against physical attackers is an endless battle, which explains why many
of these mitigations are proprietary and akin to obfuscation. This section is obviously
not exhaustive but should give you an idea of the type of things applied cryptogra-
phers are working on to address side-channel attacks.

Constant-time programming

The first line of defense for any cryptographic implementation is to implement its
cryptographic sensitive parts (think any computation that involves a secret) in con-
stant time. It is obvious that implementing something in constant time cancels timing
attacks, but this also gets rid of many classes of attacks like cache attacks and simple
power analysis attacks.

How do you implement something in constant time? Never branch. In other words,
no matter what the input is, always do the same thing. For example, listing 13.1
shows how the Golang language implements a constant-time comparison of authen-
tication tags for the HMAC algorithm. Intuitively, if two bytes are equal, then their
XOR will be 0. If this property is verified for every pair of bytes we compare, then
ORing them will also lead to a 0 value (and a nonzero value otherwise). Note that it
can be quite disconcerting to read this code if this is the first time you’re looking at
constant-time tricks.

Listing 13.1 How Golang implements a constant-time comparison between two bytearrays

func ConstantTimeCompare (x, y [lbyte) byte {
if len(x) != len(y) f{

return O There is no point comparing two strings in
}

constant time if they are of different lengths.

var v byte Here is where the magic happens.

for i := 0; 1 < len(x); i++ { The loop OR accumulates the XOR
} v = x[i] 7 yli] of every byte into a value v.
return v Returns 0 only if v is equal to 0 and

} returns a nonzero value otherwise

For a MAC authentication tag comparison, it is enough to stop here to check if the
result is 0 or not by branching (using a conditional expression such as if). Another
interesting example is scalar multiplication in elliptic curve cryptography, which, as you
learned in chapter 5, consists of adding a point to itself x number of times, where x is
what we call a scalar. This process can be somewhat slow, and thus clever algorithms

294

13.4.2

CHAPTER 13 Hardware cryptography

exist to speed up this part. One of the popular ones is called Montgomery’s ladder
and is pretty much the equivalent to the RSA’s square-and-multiply algorithm I men-
tioned earlier (but in a different group).

Montgomery ladder’s algorithm alternates between the addition of two points and
doubling of a point (adding the point to itself). Both the RSA’s square-and-multiply
and Montgomery ladder’s algorithms have a simple way to mitigate timing attacks:
they do not branch and always perform both operations. (And this is why the RSA
exponentiation algorithm in constant time is usually referred to as square and multi-

ply always.)

NOTE In chapter 7, I mentioned that signature schemes can go wrong in mul-
tiple ways and that key recovery attacks exist against implementations that
leak a few bytes of the nonces they use (in signature schemes like ECDSA).
This is what happened in the Minerva and TPM-Fail attacks, which happened
around the same time. Both attacks found that a number of devices were vul-
nerable due to the amount of timing variation the signing operation takes.

In practice, mitigating timing attacks is not always straightforward as it is not always
clear if CPU instructions for multiplications or conditional moves are in constant
time. Additionally, it is not always clear how the compiler will compile high-level code
when used with different compilation flags. For this reason, a manual review of the
assembly generated is sometimes performed in order to obtain more confidence in
the constant-time code written. Different tools to analyze constant-time code exist
(like ducdect, ct-verif, SideTrail, and so on), but they are rarely used in practice.

Don’t use the secret! Masking and blinding

Another common way of thwarting or at least confusing attackers is to add layers of
indirection to any operation involving secrets. One of these techniques is called
blinding, which is often possible thanks to the arithmetic structure of public key cryp-
tography algorithms. You saw blinding used in oblivious algorithms like password-
authenticated key exchange algorithms in chapter 11, and we can use blinding in the
same way where we want the oblivious party to be the attacker observing leaks from
our computations. Let’s talk about RSA as an example.

Remember, RSA decrypts by taking a ciphertext ¢ and raising it to the private expo-
nent d, where the private exponent d cancels the public exponent ¢, which was used to
compute the ciphertext as m*mod N. If you don’t remember the details, make sure to
consult chapter 6. One way to add indirection is to perform the decryption operation
on a value that is not the ciphertext known to the attacker. This method is called base
blinding and goes like this:

Generate a random blinding factor r
Compute message = (ciphertext x r*)* mod N

Unblind the result by computing real_message = message x v~ mod N, where r~' is
the inverse of r

13.4.3

Leakage-resilient cryptography or how to mitigate side-channel attacks in software 295

This method blinds the value being used with the secret, but we can also blind the
secret itself. For example, elliptic curve scalar multiplication is usually used with a
secret scalar. But as computations take place in a cyclic group, adding a multiple of
order to that secret does not change the computation result. This technique is called
scalar blinding and goes like this:

Generate a random value %

Compute a scalar ko = d + kj x order, where dis the original secret scalar and order
is its order

To compute Q= P, instead compute Q= [ko] P, which results in the same point

All of these techniques have been proven to be more or less efficient and are often
used in combinations with other software and hardware mitigations. In symmetric
cryptography, another somewhat similar technique, called masking, is used.

The concept of masking is to transform the input (the plaintext or ciphertext in
the case of a cipher) before passing it to the algorithm. For example, by XORing the
input with a random value. The output is then unmasked in order to obtain the final
correct output. As any intermediate state is thus masked, this provides the cryp-
tographic computation some amount of decorrelation from the input data and makes
side-channel attacks much more difficult. The algorithm must be aware of this mask-
ing to correctly perform internal operations while keeping the correct behavior of the
original algorithm.

What about fault attacks?

I previously talked about fault attacks, a more intrusive type of side-channel attacks that
modify the execution of the algorithm by inducing faults. Injecting faults can be done
in many creative ways, physically, by increasing the heat of the system, for example, or
even by shooting lasers at calculated points in the targeted chip.

Surprisingly, faults can also be induced via software. An example was found inde-
pendently in the Plundervolt and VOLTpwn attacks, which managed to change the
voltage of a CPU to introduce natural faults. This also happened in the infamous row-
hammer attack, which discovered that repeatedly accessing memory of some DRAM
devices could flip nearby bits. These types of attacks can be difficult to achieve but are
extremely powerful. In cryptography, computing a bad result can sometimes leak the
key. This is, for example, the case with RSA signatures that are implemented with
some specific optimizations.

While it is impossible to fully mitigate these attacks, some techniques exist that can
increase the complexity of a successful attack; for example, by computing the same
operation several times and comparing the results to make sure they match before
releasing it or by verifying the result before releasing it. For signatures, one can verify
the signature via the public key before returning it.

Fault attacks can also have dramatic consequences against random number gener-
ators. One easy solution is to use algorithms that do not use new randomness every

296

CHAPTER 13 Hardware cryptography

time they run. For example, in chapter 7, you learned about EADSA, a signature algo-
rithm that requires no new randomness to sign as opposed to the ECDSA signature
algorithm.

All in all, none of these techniques are foolproof. Doing cryptography in highly
adversarial environments is always about how much more cost you can afford to incur
to the attackers.

Summary

The threat today is not just an attacker intercepting messages over the wire, but

an attacker stealing or tampering with the device that runs your cryptography.

Devices in the so-called Internet of Things (IoT) often run into threats and are,

by default, unprotected against sophisticated attackers. More recently, cloud

services are also considered in the threat model of their users.

Hardware can help protect cryptography applications and their secrets in a

highly adversarial environment. One of the ideas is to provide a device with a

tamper-resistant chip to store and perform crypto operations. That is, if the

device falls in the hands of an attacker, extracting keys or modifying the behav-
ior of the chip will be difficult.

It is generally accepted that one has to combine different software and hard-

ware techniques to harden cryptography in adversarial environments. But

hardware-protected cryptography is not a panacea; it is merely defense in-depth,
effectively slowing down and increasing the cost of an attack. Adversaries with
unlimited time and money will always break your hardware.

Decreasing the impact of an attack can also help deter attackers. This must be

done by designing a system well (for example, by making sure that the compro-

mise of one device does not imply a compromise of all devices).

While there are many hardware solutions, the most popular ones are as follows:

— Smart cards were one of the first such secure microcontrollers that could be
used as a microcomputer to store secrets and perform cryptographic opera-
tions. They are supposed to use a number of techniques to discourage physi-
cal attackers. The concept of a smart card was generalized as a secure
element, which is a term employed differently in different domains, but boils
down to a smart card that can be used as a coprocessor in a greater system
that already has a main processor.

— Hardware security modules (HSMs) are often referred to as pluggable cards
that act like secure elements. They do not follow any standard interface but
usually implement the PKCS#11 standard for cryptographic operations.
HSMs can be certified with different levels of security via some NIST stan-
dard (FIPS 140-3).

— Trusted Platform Modules (TPMs) are similar to secure elements with a spec-
ified interface standardized as TPM 2.0. A TPM is usually seen plugged into a
laptop or server motherboard.

Summary 297

— Trusted execution environment (TEE) is a way to segregate an execution
environment between a secure one and a potentially insecure one. TEEs are
usually implemented as an extension of a CPU’s instruction set.

Hardware is not enough to protect cryptographic operations in highly adversar-

ial environments as software and hardware side-channel attacks can exploit

leakage that occurs in different ways (timing, power consumption, electromag-
netic radiations, and so on). In order to defend against side-channel attacks
cryptographic algorithms implement software mitigations:

— Serious cryptographic implementations are based on constant-time algo-
rithms and avoid all branching as well as memory accesses that depend on
secret data.

— Mitigation techniques based on blinding and masking decorrelate sensitive
operations from either the secret or the data known to be operated on.

— Fault attacks are harder to protect against. Mitigations include computing an
operation several times and comparing and verifying the result of an opera-
tion (for example, verifying a signature with the public key) before releasing
the result.

Hardening cryptography in adversarial settings is a never-ending battle. One

should use a combination of software and hardware mitigations to increase the

cost and the time for a successful attack up to a desired accepted risk. One
should also decrease the impact of an attack by using unique keys per device
and, potentially, unique keys per cryptographic operation.

Post-quantum
cryptography

This chapter covers

= Quantum computers and their impact on
cryptography

= Post-quantum cryptography to defend against
quantum computers

= The post-quantum algorithms of today and
tomorrow

“Quantum computers can break cryptography,” implied Peter Shor, a professor of
mathematics at MIT. It was 1994, and Shor had just come up with a new algorithm.
His discovery unlocked efficient factoring of integers, destroying cryptographic
algorithms like RSA if quantum computers ever were to become a reality. At the
time, the quantum computer was just a theory, a concept of a new class of computer
based on quantum physics. The idea remained to be proven. In mid-2015, the
National Security Agency (NSA) took everybody by surprise after announcing their
plans to transition to quantum-resistant algorithms (cryptographic algorithms not vul-
nerable to quantum computers).

For those partners and vendors that have not yet made the transition to Suite B elliptic
curve algorithms, we recommend not making a significant expenditure to do so at
this point but instead to prepare for the upcoming quantum resistant algorithm

298

14.1

14.1.1

What are quantum computers and why are they scaring cryptographers? 299

transition. [. . .] Unfortunately, the growth of elliptic curve use has bumped up against
the fact of continued progress in the research on quantum computing, which has made it
clear that elliptic curve cryptography is not the long term solution many once hoped it
would be. Thus, we have been obligated to update our strategy.

—National Security Agency (“Cryptography Today,” 2015)

While the idea of quantum computing (building a computer based on physical phenom-
ena studied in the field of quantum mechanics) was not new, it had witnessed a huge
boost in research grants as well as experimental breakthroughs in recent years. Still,
no one was able to demonstrate a break of cryptography using a quantum computer.
Did the NSA know something we didn’t? Were quantum computers really going to
break cryptography? And what is quantum-resistant cryptography? In this chapter, I
will attempt to answer all your questions!

What are quantum computers and why are they

scaring cryptographers?

Since NSA’s announcement, quantum computers have repeatedly made the news as
many large companies like IBM, Google, Alibaba, Microsoft, Intel, and so on have
invested significant resources into researching them. But what are these quantum com-
puters and why are they so scary? It all began with quantum mechanics (also called quan-
tum physics), a field of physics that studies the behavior of small stuff (think atoms and
smaller). As this is the basis of quantum computers, this is where our investigation starts.

There was a time when the newspapers said that only twelve men understood the theory of
relativity. I do not believe there ever was such a time. There might have been a time when
only one man did, because he was the only guy who caught on, before he wrote his paper.
But after people read the paper, a lot of people understood the theory of relativity in some
way or other, certainly more than twelve. On the other hand, I think I can safely say that
nobody understands quantum mechanics.

—Richard Feynman (7The Character of Physical Law, MIT Press, 1965)

Quantum mechanics, the study of the small

Physicists have long thought that the whole world is deterministic, like our cryp-
tographic pseudorandom number generators: if you knew how the universe worked
and if you had a computer large enough to compute the “universe function,” all you
would need is the seed (the information contained in the Big Bang) and you could
predict everything from there. Yes everything, even the fact that merely 13.7 billion
years after the start of the universe you were going to read this line. In such a world,
there is no room for randomness. Every decision that you make is predetermined by
past events, even by those that happened before you were born.

While this view of the world has bemused many philosophers—“Do we really have
free will, then?” they asked—an interesting field of physics started growing in the 1990s,
which has puzzled many scientists since then, We call this the field of quantum physics

300

CHAPTER 14 Post-quantum cryptography

(also called quantum mechanics). It turns out that very small objects (think atoms and
smaller) tend to behave quite differently from what we’ve observed and theorized so
far using what we call classical physics. On this (sub)atomic scale, particles seem to
behave like waves sometimes, in the sense that different waves can superpose to merge
into a bigger wave or cancel each other for a brief moment.

One measurement we can perform on particles like electrons is their spin. For
example, we can measure whether an electron is spinning up or down. So far, nothing
too weird. What’s weird is that quantum mechanics says that a particle can be in these
two states al the same time, spinning up and down. We say that the particle is in quantum
superposition.

This special state can be induced manually using different techniques depending
on the type of particle. A particle can remain in a state of superposition until we mea-
sure it; in which case, the particle collapses into only one of these possible states (spin-
ning up or down). This quantum superposition is what quantum computers end up
using: instead of having a bit that can either be a 1 or a 0, a quantum bit or qubit can be
both 0 and 1 at the same time.

Even weirder, quantum theory says that it is only when a measurement happens,
and not before, that a particle in superposition decides at random which state it is
going to take (each state having a 50% chance of being observed). If this seems weird,
you are not alone. Many physicists could not conceive how this would work in the
deterministic world they had painted. Einstein, convinced that something was wrong
with this new theory, once said “God does not play dice.” Yet cryptographers were
interested, as this was a way to finally obtain ¢ruly random numbers! This is what quan-
tum random number generators (QRNGs) do by continuously setting particles like pho-
tons in a superposed state and then measuring them.

Physicists have also theorized what quantum mechanics would look like with
objects at our scale. This led to the famous experiment of Schridinger’s cat: a cat in a
box is both dead and alive until an observer takes a look inside (which has led to many
debates on what exactly constitutes an observer).

A cat is penned up in a steel chamber, along with the following device (which must be
secured against direct interference by the cat): in a Geiger counter, there is a tiny bit of
radioactive substance, so small, that perhaps in the course of the hour one of the atoms
decays, but also, with equal probability, perhaps none; if it happens, the counter tube
discharges and through a velay releases a hammer that shatters a small flask of
hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that
the cat still lives if meanwhile no atom has decayed. The first atomic decay would have
poisoned it. The psi-function of the entire system would express this by having in it the
living and dead cat (pardon the expression) mixed or smeared out in equal parts.

—LErwin Schrédinger (“The Present Situation in
Quantum Mechanics,” 1935)

All of that is highly unintuitive to us because we’ve never encountered quantum
behavior in our day-to-day lives. Now, let’s add even more weirdness!

What are quantum computers and why are they scaring cryptographers? 301

Sometimes particles interact with each other (for example, by colliding into one
another) and end up in a state of strong correlation, where it is impossible to describe
one particle without the others. This phenomenon is called quantum entanglement, and
itis one of the secret sauces behind the performance boost of quantum computers. If,
let’s say, two particles are entangled, then when one of them is measured, both parti-
cles collapse and the state of one is known to be perfectly correlated to the state of the
other. OK, that was confusing. Let’s take an example: if two electrons are entangled
and one of them is then measured and found to be spinning up, we know that the
other one is then spinning down (but not before the first one is measured). Further-
more, any such experiment always turns out the same.

This is hard to believe, but even more mind-blowing, it was shown that entangle-
ment works even across very long distances. Einstein, Podolsky, and Rosen famously
argued that the description of quantum mechanics was incomplete, most probably
missing Aidden variables, which would explain entanglement (as in, once the particles
are separated, they know exactly what their measurement will be).

Einstein, Podolsky, and Rosen also described a thought experiment (the EPR para-
dox, named after the first letters of their last names) in which two entangled particles
are separated by a large distance (think light-years away) and then measured at
approximately the same time. According to quantum mechanics, the measurement of
one of the particles would instantly affect the other particle, which would be impossi-
ble as no information can travel faster than the speed of light, according to the theory
of relativity (thus the paradox). This strange thought experiment is what Einstein
famously called “spooky action at a distance.”

John Bell later stated an inequality of probabilities known as Bell’s theorem; the theo-
rem, if shown to be true, would prove the existence of the hidden variables mentioned
by the authors of the EPR paradox. The inequality was later violated experimentally
(many, many times), enough to convince us that entanglement is real, discarding the
presence of any hidden variables.

Today, we say that a measurement of entangled particles leads to the particles coor-
dinating with each other, which bypasses the relativistic prediction that communica-
tion cannot go faster than the speed of light. Indeed, try to think of a way you could
use entanglement to devise a communication channel, and you’ll see that it is not pos-
sible. For cryptographers, though, the spooky action at a distance meant that we could
develop novel ways to perform key exchanges; this idea is called quantum key distribu-
tion (QKD).

Imagine distributing two entangled particles to two peers: who would then mea-
sure their respective particles in order to start forming the same key (as measuring
one particle would give you information about the measurement of the other)? QKD’s
concept is made even more sexy by the no-cloning theorem, which states that you can’t pas-
sively observe such an exchange and create an exact copy of one of the particles being
sent on that channel. Yet, these protocols are vulnerable to trivial man-in-the-middle
(MITM) attacks and are sort of useless without already having a way to authenticate

302

14.1.2

CHAPTER 14 Post-quantum cryptography

data. This flaw has led some cryptographers like Bruce Schneier to state that “QKD as
a product has no future.”

This is all I'll say about quantum physics as this is already too much for a book on
cryptography. If you don’t believe any of the bizarre things that you just read, you are
not alone. In his book, Quantum Mechanics for Engineers, Leon van Dommelen writes
“Physics ended up with quantum mechanics not because it seemed the most logical
explanation, but because countless observations made it unavoidable.”

From the birth of quantum computers to quantum supremacy

In 1980, the idea of quantum computing was born. It is Paul Benioff who is first to
describe what a quantum computer could be: a computer built from the observations
made in the last decades of quantum mechanics. Later that same year, Paul Benioff
and Richard Feynman argue that this is the only way to simulate and analyze quantum
systems, short of the limitations of classical computers.

It is only 18 years later when a quantum algorithm running on an actual quantum
computer is demonstrated for the first time by IBM. Fast forward to 2011, D-Wave Sys-
tems, a quantum computer company, announces the first commercially available
quantum computer, launching an entire industry forward in a quest to create the first
scalable quantum computer.

There’s still a long way to go, and a useful quantum computer is something that
hasn’t been achieved yet. The most recent notable result at the time of this writing
(2021) is Google, claiming in 2019 to have reached quantum supremacy with a 53-qubit
quantum computer. Quantum supremacy means that, for the first time ever, a quan-
tum computer achieved something that a classical computer couldn’t. In 3 minutes
and 20 seconds, it performed some analysis that would have taken a classical computer
around 10,000 years to finish. That is, before you get too excited, it outperformed a clas-
sical computer at a task that wasn’t useful. Yet, it is an incredible milestone, and one can
only wonder where this will all lead us.

A quantum computer pretty much uses the quantum physics phenomena (like
superposition and entanglement) the same way classical computers use electricity to
perform computations. Instead of bits, quantum computers use quantum bits or qubis,
which can be transformed via quantum gates to set them to specific values or put them
in a state of superposition and, even, entanglement. This is somewhat similar to how
gates are used in circuits in classical computers. Once a computation is done, the
qubits can be measured in order to be interpreted in a classical way—as Os and 1s. At
that point, one can interpret the result further with a classical computer in order to
finish a useful computation.

In general, N entangled qubits contain information equivalent to 2V classical bits. But
measuring the qubits at the end of a computation only gives you N number of Os or Is.
Thus, it is not always clear how a quantum computer can help, and quantum computers
are only found to be useful for a limited number of applications. It is possible that they
will appear more and more useful as people find clever ways to leverage their power.

14.1.3

What are quantum computers and why are they scaring cryptographers? 303

Today, you can already use a quantum computer from the comfort of your home.
Services like IBM Quantum (https://quantum-computing.ibm.com) allow you to build
quantum circuits and execute those on real quantum computers hosted in the cloud.
Of course, such services are quite limited at the moment (early 2021), with only a few
qubits available. Still, it is quite a mind-blowing experience to create your own circuit
and wait for it to run on a real quantum computer, and all of that for free.

The impact of Grover and Shor’s algorithms on cryptography

Unfortunately, as I said earlier, quantum computers are not useful for every type of
computation, and thus, are not a more powerful drop-in replacement for our classical
computers. But then, what are they good for?

In 1994, at a time where the concept of a quantum computer was just a thought
experiment, Peter Shor proposed a quantum algorithm to solve the discrete loga-
rithm and the factorization problems. Shor had the insight that a quantum computer
could be used to quickly compute solutions to problems that could be related to the
hard problems seen in cryptography. It turns out that there exists an efficient quan-
tum algorithm that helps in finding a period such that f{x + period) = f(x) for any given
x. For example, finding the value period such that g**" = g mod N. This, in turn,
leads to algorithms that can efficiently solve the factorization and the discrete loga-
rithm problems, effectively impacting algorithms like RSA (covered in chapter 6) and
Diffie-Hellman (covered in chapter 5).

Shor’s algorithm is devastating for asymmetric cryptography, as most of the asymmet-
ric algorithms in use today rely on the discrete logarithm or the factorization problem—
most of what you saw throughout this book actually. You could think that discrete log-
arithm and factorization are still hard mathematical problems and that we could
(maybe) increase the size of our algorithms’ parameters in order to upgrade their
defense against quantum computers. Unfortunately, it was shown in 2017, by Bern-
stein and others, that while raising parameters works, it would be highly impractical.
The research estimated that RSA could be made quantum resistant by increasing its
parameters to 1 terabyte. Unrealistic, to say the least.

Shor’s algorithm shatters the foundations for deployed public key cryptography: RSA and
the discrete-logarithm problem in finite fields and elliptic curves. Long-term confidential
documents such as patient health-care records and state secrets have to guarantee security
Jfor many years, but information encrypted today using RSA or elliptic curves and stored
until quantum computers are available will then be as easy to decipher as Enigma-
encrypted messages are today.

—PQCRYPTO: Initial recommendations of long-term
secure post-quantum systems (2015)

For symmetric cryptography, things are much less worrisome. Grover’s algorithm was pro-
posed in 1996, by Lov Grover, as a way to optimize a search in an unordered list. A
search in an unordered list of Nitems takes N/2 operations on average with a classical
computer; it would take ./N operations with a quantum computer. Quite a speed-up!

https://quantum-computing.ibm.com

304

14.1.4

CHAPTER 14 Post-quantum cryptography

Grover’s algorithm is quite a versatile tool that can be applied in lots of ways in
cryptography, for example, to extract a cipher’s symmetric key or find a collision in a
hash function. To search for a key of 128 bits, Grover’s algorithm would run in 2%
operations on a quantum computer as opposed to 2'?” on a classical computer. This is
quite a scary statement for all of our symmetric cryptography algorithms, yet we can
simply bump security parameters from 128 bits to 256 bits and it’s enough to counter
Grover’s attack. Hence, if you want to protect your symmetric cryptography against
quantum computers, you can simply use SHA-3-512 instead of SHA-3-256, AES-256-
GCM instead of AES-128-GCM, and so on.

To summarize, symmetric cryptography is mostly fine, asymmetric cryptography is
not. This is even worse than you might think at first sight: symmetric cryptography
is often preceded by a key exchange, which is vulnerable to quantum computers. So is
this the end of cryptography as we know it?

Post-quantum cryptography, the defense against
quantum computers

Fortunately, this was not the end of the world for cryptography. The community
quickly reacted to the quantum threat by organizing itself and by researching old and
new algorithms that would not be vulnerable to Shor’s and Grover’s attacks. The field
of quantum-resistant cryptography, also known as post-quantum cryptography, was born.
Standardization efforts exist in different places on the internet, but the most well-
regarded effort is from the NIST, which in 2016, started a post-quantum cryptography
standardization process.

It appears that a transition to post-quantum cryptography will not be simple as there is
unlikely to be a simple “drop-in” replacement for our current public key cryptographic
algorithms. A significant effort will be required in order to develop, standardize, and
deploy new post-quantum cryptosystems. In addition, this transition needs to take place
well before any large-scale quantum computers are built, so that any information that is
later compromised by quantum cryptanalysis is no longer sensitive when that compromise
occurs. Therefore, it is desirable to plan for this transition early.

—Post-Quantum Cryptography page of the NIST
standardization process (2016)

Since the NIST started this process, 82 candidates applied and 3 rounds have passed,
narrowing down the list of candidates to 7 finalists and 8 alternate finalists (unlikely to
be considered for standardization, but unique enough to be a good option if one of
the paradigms used by the finalists end up being broken). The NIST standardization
effort seeks to replace the most common type of asymmetric cryptography primitives,
which include signature schemes and asymmetric encryption. The latter can also eas-
ily serve as a key exchange primitive, as you learned in chapter 6.

In the rest of this chapter, I will go over the different types of post-quantum cryp-
tography algorithms that are being considered for standardization and point out
which ones you can make use of today.

14.2

14.2.1

Hash-based signatures: Don’t need anything but a hash function 305

Hash-based signatures: Don’t need anything
but a hash function

While all practical signature schemes seem to use hash functions, ways exist to build
signature schemes that make use of only hash functions, and nothing else. Even
better, these schemes tend to rely only on the pre-image resistance of hash functions
and not their collision resistance. This is quite an attractive proposition, as a huge
part of applied cryptography is already based on solid and well-understood hash
functions.

Modern hash functions are also resistant to quantum computers, which make
these hash-based signature schemes naturally quantum-resistant. Let’s take a look at
what these hash-based signatures are and how they work.

One-time signatures (OTS) with Lamport signatures

On October 18, 1979, Leslie Lamport published his concept of one-time signatures
(OTS): key pairs that you can only use to sign once. Most signature schemes rely (in
part) on one-way functions (typically hash functions) for their security proofs. The
beauty of Lamport’s scheme is that his signature solely relies on the security of such
one-way functions.

Imagine that you want to sign a single bit. First, you generate a key pair by

Generating two random numbers, x and y, which will be the private key
Hashing x and y to obtain two digests 4(x) and Z(y), which you can publish as
the public key

To sign a bit set to 0, reveal the x part of your private key; to sign a bit set to 1, reveal
the y part. To verify a signature, simply hash it to check that it matches the correct part
of the public key. I illustrate this in figure 14.1.

Signing a bit is not that useful, you say. No problem; a Lamport signature works
for larger inputs simply by creating more pairs of secrets, one per bit, to sign (see

Random Random Random Random Random Random
number 1 number 2

Private key Private key Private key

number 1 number 2 number 1 number 2

Hash Hash

Reveal Reveal

Digest1 Digest2 Public key

l Signature Signature

Key generation Signing bit 0 Signing bit 1

Figure 14.1 A Lamport signature is a one-time signature (OTS) based only on hash functions. To generate a key
pair that can sign a bit, generate two random numbers, which will be your private key, and hash each of those
individually to produce the two digests of your public key. To sign a bit set to 0, reveal the first random number;
to sign a bit set to 1, reveal the second random number.

306

CHAPTER 14 Post-quantum cryptography

figure 14.2). Obviously, if your input is larger than 256 bits, you would first hash it
and then sign it.

Random Random Random Random Random Random Private k
number 1 number 2 number 3 number 4 number5 number 6 Ivate key
Hash Hash Hash Hash Hash Hash
Digest 1 Digest 2 Digest 3 Digest 4 Digest 5 Digest 6 Public key
Key generation for a one-time signature that can sign a 3-bit input
Random Random Random Random Random Random
number 1 number2 | number3 number 4 number5 number 6
| | |
Reveal Reveal Reveal
v v v
Random Random Random .
number 1 number 4 number 6 Signature

Signing input 011

Figure 14.2 To generate a Lamport signature key pair that can sign an n-bit
message, generate 2n random numbers, which will be your private key, and hash
each of those individually to produce the 2n digests of your public key. To sign, go
through pairs of secrets and n bits, revealing the first element to sign a bit set to
0 or the second element to sign a bit set to 1.

A major limitation of this scheme is that you can only use it to sign once; if you use it
to sign twice, you end up authorizing someone else to mix the two signatures to forge
other valid signatures. We can improve the situation naively by generating a large
number of one-time key pairs instead of a single one, then making sure to discard a
key pair after using it. Not only does this make your public key as big as the number of
signatures you think you might end up using, but it also means you have to track what
key pairs you've used (or better, get rid of the private keys you've used). For example,
if you know you’ll want to sign a maximum of 1,000 messages of 256 bits with a hash
function with a 256-bit output size, your private key and public key would both have to
be 1000 x (256 x 2 x 256) bits, which is around 16 megabytes. That’s quite a lot for
only 1,000 signatures.

Most of the hash-based signature schemes proposed today build on the founda-
tions created by Lamport to allow for many more signatures (sometimes a practically
unlimited amount of signatures), stateless private keys (although some proposed
schemes are still stateful), and more practical parameter sizes.

Hash-based signatures: Don’t need anything but a hash function 307

14.2.2 Smaller keys with Winternitz one-time signatures (WOTS)

A few months after Lamport’s publication, Robert Winternitz of the Stanford Mathe-
matics Department proposed to publish hashes of hashes of a secret A(A(...h(x))) =
h*(x) instead of publishing multiple digests of multiple secrets in order to optimize
the size of a private key (see figure 14.3). This scheme is called Winternitz one-time sig-
nature (WOTS) after the author.

For example, choosing w = 16 allows you to sign 16 different values or, in other
words, inputs of 4 bits. You start by generating a random value x that serves as your pri-
vate key and hash that 16 times to obtain your public key, 4'°(x). Now imagine you
want to sign the bits 1001 (9 in base 10); you publish the ninth iteration of the hash,
h%(x). Lillustrate this in figure 14.3.

Secret 1 Secret 1 Secret 1 Secret 1
Reveal
Hash Hash Hash
Secret 2 Secret 2 Secret 2
Reveal
Hash Hash
Figure 14.3 The Winternitz
Secret 3 Secret 3 one-time signature (WOTS)
scheme optimizes Lamport
signatures by only using one
Reveal . . .
Hash secret that is hashed iteratively
in order to obtain many other
secrets and, finally, a public key.
Public key Revealing a different secret
allows one to sign a different

Key generation Signing bit 2 Signing bit 1 Signing bit 0 number.

Take a few minutes to understand how this scheme works. Do you see a problem with it?
One major problem is that this scheme allows for signature forgeries. Imagine that you see
someone else’s signature for bit 1001, which would be A”(x) according to our previous
example. You can simply hash it to retrieve any other iterations like 4'’(x) or A'!(x),
which would give you a valid signature for bits 1010 or 1011. This can be circumvented
by adding a short authentication tag after the message, which you would have to sign as
well. I'illustrate this in figure 14.4. To convince yourself that this solves the forgery issue,
try to forge a signature from another signature.

308

14.2.3

CHAPTER 14 Post-quantum cryptography

Secret 1 Secret 4 Secret 1 Secret 4 Secret 1 Secret 4 Secret 1 Secret 4
Reveal Reveal

Hash Hash Hash Hash Hash Hash

Secret 2 Secret 5 Secret 2 Secret2 Secretb Secret 5
Reveal Reveal

Hash Hash Hash Hash

Secret 3 Secret 6 Secret 3 Secret 6
Reveal Reveal
Hash Hash
Public key
Key generation Signing bit 2 Signing bit 1 Signing bit 0

Figure 14.4 WOTS uses an additional signing key to authenticate a signature in order to prevent
tampering. It works like this: when signing, the first private key is used to sign the message, and
the second private key is used to sign the complement of the message. It should be clear that in
any of the scenarios illustrated, tampering with a signhature cannot lead to a new valid signature.

Many-times signatures with XMSS and SPHINCS+

So far, you’ve seen ways of signing things using only hash functions. While Lamport sig-
natures work, they have large key sizes, so WOTS improved on those by reducing the key
sizes. Yet, both these schemes still don’t scale well as they are both one-time signatures
(reuse a key pair and you break the scheme), and thus, their parameters linearly
increase in size depending on the number of signatures you think you’ll need.

Some schemes that tolerate reuse of a key pair for a few signatures (instead of a single
one) do exist. These schemes are called few-time signatures (FTS) and will break, allow-
ing signature forgeries if reused too many times. FTS rely on low probabilities of
reusing the same combination of secrets from a pool of secrets. This is a small
improvement on one-time signatures, allowing a decrease in the risk of key reuse. But
we can do better.

What is one technique you learned about in this book that compresses many things
into one thing? The answer is Merkle trees. As you may recall from chapter 12, a
Merkle treeis a data structure that provides short proofs for questions like is my data in
this set? In the 1990s, the same Merkle who proposed Merkle trees also invented a sig-
nature scheme based on hash functions that compresses a number of one-time signa-
tures into a Merkle tree.

The idea is pretty straightforward: each leaf of your tree is the hash of a one-time
signature, and the root hash can be used as a public key, reducing its size to the out-

Hash-based signatures: Don’t need anything but a hash function 309

put size of your hash function. To sign, you pick a one-time signature that you haven’t
used previously and then apply it as explained in section 14.2.2. The signature is the
one-time signature, along with the Merkle proof that it belongs in your Merkle tree
(all the neighbors). This scheme is obviously stateful as one should be careful not to
reuse one of the one-time signatures in the tree. I illustrate this in figure 14.5.

Public key
Figure 14.5 The Merkle signature scheme is a stateful hash-
based algorithm that makes use of a Merkle tree to compress
many OTS public keys into a smaller public key (the root hash).
The larger the tree, the more signatures it can produce. Note
that signatures now have the overhead of a membership proof,
which is a number of neighbor nodes that allow one to verify
OTS public key that a signature’s associated OTS is part of the tree.

The extended Merkle signature scheme (XMSS), standardized in RFC 8391, sought to pro-
ductionize Merkle signatures by adding a number of optimizations to Merkle’s
scheme. For example, to produce a key pair capable of signing N messages, you must
generate N OTS private keys. While the public key is now just a root hash, you still
have to store N OTS private keys. XMSS reduces the size of the private key you hold by
deterministically generating each OTS in the tree using a seed and the leaf position in
the tree. This way, you only need to store the seed as a private key, instead of all the
OTS private keys, and can quickly regenerate any OTS key pair from its position in the
tree and the seed. To keep track of which leaf/OTS was used last, the private key also
contains a counter that is incremented every time it is used to sign.

Having said that, there’s only so much OTS you can hold in a Merkle tree. The
larger the tree, the longer it’ll take to regenerate the tree in order to sign messages
(as you need to regenerate all the leaves to produce a Merkle proof). The smaller
the tree, the fewer OTS private keys need to be regenerated when signing, but this
obviously defeats the purpose: we are now back to having a limited amount of signa-
tures. The solution is to use a smaller tree where the OTS in its leaves are not used
to sign messages but, instead, used to sign the root hash of other Merkle trees of
OTS. This transforms our initial tree into a hypertree—tree of trees—and is one of
the variants of XMSS called XMSSM'. With XMSSM?, only the trees involved in the
path of an OTS need to be regenerated, based on the same technique. I illustrate
this in figure 14.6.

Note that the statefulness of XMSS and XMSS™! might not be an issue in some sit-
uations, but it is not a desirable property, in general. Having to keep track of a counter
is counterintuitive as it is not expected from users of mainstream signature schemes.
This change of practice can lead to OTS reuse (and, thus, to signature forgery) in case
of misuse. For example, rollbacks to a previous state of the filesystem or using the

310

CHAPTER 14 Post-quantum cryptography

——— E—
Public key

OTS public key =——— OTS public key — OTS public key

-

Signs

Message

Figure 14.6 The XMSS"T stateful hash-based signature scheme uses multiple trees to increase the amount
of signatures supported by the scheme while reducing the work at key generation and signing time. Each tree
is deterministically generated only when they are used in the path to the final leaf that contains the OTS used
to sign a message.

same signing key on multiple servers might induce the same path in the hypertree
being used twice to sign a message.

To fix one the biggest downsides of XMSS (its statefulness) and expose an inter-
face similar to the signature schemes we’re used to, the SPHINCS+ signature scheme was
proposed as part of the NIST’s post-quantum cryptography competition. The stateless

SMT

signature scheme augments XMSS™" with three major changes:

= Signing the same message twice leads to the same signature. In a similar fashion to
EdDSA (covered in chapter 7), the path used in the hypertree is deterministically
derived, based on the private key and the message. This ensures that signing the
same message twice leads to the same OTS and, thus, the same signature; and
because the private key is used, attackers are also unable to predict which path
you’ll take to sign their messages if you somehow sign other people’s messages.

= Using more trees. XMSSM! avoids reusing the same OTS twice by keeping track of
which OTS was used last. As the whole point of SPHINCS+ is to avoid keeping
track of a state, it needs to avoid collisions when it chooses a path pseudoran-
domly. To do this, SPHINCS+ simply uses a much larger amount of OTS, reduc-
ing the probability of reusing the same one twice. Because SPHINCS+ also uses
a hypertree, this translates into more trees.

= Using few-time signatures (FIS). As the security of the scheme is based on the
probability of reusing the same path twice, SPHINCS+ also replaces the final
OTS used to sign messages with the FTS I mentioned earlier. This way, reusing
the same path to sign two different messages still doesn’t directly contribute to a
break of the signature scheme.

14.3

14.3.1

Shorter keys and signatures with lattice-based cryptography 311

While SPHINCS+ is being considered for standardization in the NIST post-quantum
cryptography competition, it’s not the main contender. SPHINCS+ is not only slow, its
signatures are large compared to the proposed alternatives (like lattice-based ones,
which you’ll learn about later in this chapter). Stateful hash-based signature schemes
like XMSS offer faster speed and better signature sizes (under 3 KB compared to the
minimum of 8 KB for SPHINCS+). (In terms of public key sizes, both schemes provide
sizes similar to pre-quantum signatures schemes like ECDSA and Ed25519.) Due to the
more realistic parameter sizes and the well-understood security, XMSS is recommended
as an early standard by the NIST in SP 800-208, “Recommendation for Stateful Hash-
Based Signature Schemes.”

Next, let’s take a look at two other ways to build quantum-resistant cryptographic
primitives. A gentle warning: they are much more math-heavy!

Shorter keys and signatures with
lattice-based cryptography

A large number of post-quantum cryptography schemes are based on lattices, a math-
ematical structure that you’ll learn about in this section. The NIST post-quantum
cryptography competition itself has elected lattice-based schemes for half of its final-
ists. This makes lattice-based cryptography the most likely paradigm to win and obtain
a standard from the NIST. In this section, I will tell you about two lattice-based algo-
rithms: Dilithium, a signature scheme, and Kyber, a public key encryption primitive.
But before that, though, let’s see what lattices are.

What’s a lattice?

First, lattice-based probably doesn’t mean what you think it means. Take RSA (covered
in chapter 6), which we say is based on the factorization problem. This does not mean
that we use factorization in RSA, it instead means that factorization is how you attack
RSA, and because factorization is hard, we say that RSA is secure. It’s the same with
lattice-based cryptosystems: lattices are structures that have hard problems, and these
cryptosystems are safe as long as these problems remain hard.

With that being said, what is a lattice? Well, it’s like a vector space but with integers.
If you don’t remember what a vector space is, it’s the set of all vectors that can be cre-
ated using:

A basis—A set of vectors; for example, (0,1) and (1,0).

An operation between vectors—The vectors can be added together; for example,
(0,1) + (1,0) = (1,1).

A scalar operation—A vector can be multiplied by what we call scalars; for exam-
ple, 3 x (1,2) = (3,6).

In our example, the vector space contains all the vectors that can be expressed as a lin-
ear combination of the basis, which translates to any vector that can be written as a x
(0,1) + & x (1,0) for any scalars a and b. For example, 0.5 x (0,1) + 3.87 x (1,0) =
(3.87,0.5) is in our vector space, so is 99 x (0,1) + 0 x (1,0) = (0,99), and so on.

312

CHAPTER 14 Post-quantum cryptography

A lattice is a vector space where all of the numbers involved are integers. Yup, in cryp-
tography, we like integers. I illustrate this in figure 14.7.

\>/ e Tl R

Figure 14.7 On the left, a basis of two vectors is drawn on a graph. A lattice can be formed by taking all
of the possible integer linear combinations of these two vectors (middle figure). The resulting lattice can
be interpreted as a pattern of points repeating forever in space (right figure).

There are several well-known hard problems in the lattice space, and for each of these
problems, we have algorithms to solve them. These algorithms are often the best we
could think of, but it doesn’t necessarily mean that they are efficient or even practical.
Thus, the problems are said to be hard at least until an more efficient solution is
found. The two most well-known hard problems are as follows. (I illustrate both of
these problems in figure 14.8.)

The shortest vector problem (SVP)—Answers the question, what is the shortest non-
zero vector in your lattice?

The closest vector problem (CVP)—Given a coordinate that is not on the lattice,
finds the closest point to that coordinate on the lattice.

Generally, we use algorithms like LLL (the Lenstra—Lenstra—Lovasz algorithm) or
BKZ (the Block-Korkine-Zolotarev algorithm) to solve both of these problems (CVP
can be reduced to SVP). These are algorithms that reduce the basis of a lattice, meaning
that they attempt to find a set of vectors that are shorter than the ones given and that
managed to produce the exact same lattice.

Shorter keys and signatures with lattice-based cryptography 313

] ° [] ° [) L] [) ° [)
° ° ° ° ° ° ° ° ° ° [°
° [] [] []) [] [] [] Y [} [] []
° ° ° ° °] ° ° °
o (] o [] ° [] L] [] [)
o ° ° ° o ° ° o o ° °
° [] [] [] Y [] [[] Y [} ° []
L] [] L]] [] [] () L]
° [] L] - o ” L] [] - ° °] [] - (]
[} [] [] L] Y [] [] L] Y [} [] °
° ° (] L 3] [L ° ° o e
o L) L] () [] [] () ° []
[] [] L] [} [) [] Y Y °
° ° ° L] ° ° [} L ° °o ° [}
° ° L] ° ° ° ° L] ° [] ° o
[[L] (] [[(] [] [
A lattice generated by The closest vector The shortest vector
some basis. problem (CVP) aims at finding problem (SVP) aims at finding the
the closest lattice point to a shortest non-zero vectors that
non-lattice point. can serve as a basis to the lattice.

Figure 14.8 An illustration of the two major lattice problems used in cryptography: the shortest vector
problem (SVP) and the closest vector problem (CVP)

14.3.2 Learning with errors (LWE), a basis for cryptography?

In 2005, Oded Regev introduced the learning with errors (LWE) problem, which became
the basis for many cryptographic schemes including some of the algorithms in this
chapter. Before going further, let’s see what the LWE problem is about. Let’s start with
the following equations, which are linear combinations of the same integers sy and s;:

550"'251:27
2SO+051:6

We know that by using the Gaussian elimination algorithm, we can quickly and effi-
ciently learn what s, and s are, as long as we have enough of these equations. Now
what’s interesting is that if we add some noise to these equations, the problem becomes
much harder:

5sp+2s =28
280+081=5

While it probably isn’t too hard to figure out the answer given more noisy equations, it
becomes a hard problem once you increase the size of the numbers involved and the
number of s;.

This is essentially what the LWE problem is, albeit often stated with vectors instead.
Imagine that you have a secret vector s with coordinates modulo some large number.
Given an arbitrary number of random vectors a; of the same size and the computa-
tions a;s + ¢;, where ¢;is a random small error, can you find the value s?

NOTE For two vectors v and w, the product vw can be calculated using a dot
product, which is the sum of the product of each pair of coordinates. Let’s look
at an example: if v = (v, v;) and w = (wp, w;), then vw = vy x wp + v| X wy.

314

14.3.3

CHAPTER 14 Post-quantum cryptography

For example, if I use the secret s = (3,6) and I give you the random vectors ap = (5,2) and
a; = (2,0), I get back the equations I started the example with. As I said earlier, lattice-
based schemes actually don’t make any use of lattices; rather, they are proven secure if
the SVP remains hard (for some definition of hard). The reduction can only be seen
if we write the previous equations in a matrix form, as shown in figure 14.9.

OREDIONO PRENA

| .

This can be seen as a linear

combination of the columns of A
L]
> []
... where A’s columns represent ... in which a point t is close
the basis for a lattice ... to the lattice point As

(due to the error).

Figure 14.9 The learning with errors problem (LWE) is said to be a lattice-based construction due
to the existence of a reduction to a lattice problem: the CVP. In other words, if we can find a solution
to the CVP, then we can find a solution to the LWE problem.

This matrix form is important as most LWE-based schemes are expressed and easier to
explain in this form. Take a few minutes to brush up on matrix multiplication. Also, in
case you haven’t noticed, I used some common notational tricks that are quite helpful
to read equations that involve matrices and vectors: both are written in bold, and
matrices are always uppercase letters. For example, A is a matrix, a is a vector, and b is
just a number.

NOTE There exist several variants of the LWE problem (for example, the ring-
LWE or module-LWE problems), which are basically the same problem but
with coordinates in different types of groups. These variants are often preferred
due to the compactness and the optimizations they unlock. The difference
between the variants of LWE does not affect the explanations that follow.

Now that you know what the LWE problem is, let’s learn about some post-quantum
cryptography based on it: the Cryptographic Suite for Algebraic Lattices (CRYSTALS). Con-
veniently, CRYSTALS encompasses two cryptographic primitives: a key exchange
called Kyber and a signature scheme called Dilithium.

Kyber, a lattice-based key exchange

Two NIST finalist schemes are closely related: CRYSTALS-Kyber and CRYSTALS-
Dilithium, which are candidates from the same team of researchers and are both based
on the LWE problem. Kyberis a public key encryption primitive that can be used as a key
exchange primitive, which I will explain in this section. Dilithium is a signature scheme,

Shorter keys and signatures with lattice-based cryptography 315

which T will explain in the next section. Also note that as these algorithms are still in
flux, I will only write about the ideas and the intuitions behind both of the schemes.

First, let’s assume that all operations happen in a group of integers modulo a large
number ¢. Let’s also say that errors and private keys are sampled (chosen uniformly at
random) from a small range centered at 0 that we will call the error range. Specifically,
the error range is the range [-B, B] where B is much smaller than ¢. This is important
as some terms need to be smaller than some value to be considered errors.

To generate the private key, simply generate a random vector s, where every coef-
ficient is in the error range. The first part of the public key is a list of random vec-
tors a; of the same size, and the second part is the associated list of noisy dot products
t; = a;s + e; mod ¢. This is exactly the LWE problem we learned about previously.
Importantly for the rest, we can rewrite this with matrices:

t=As+e

where the matrix A contains the random vectors a; as rows, and the error vector e con-
tains the individual errors e;.

To perform a key exchange with Kyber, we encrypt a symmetric key of 1 bit (yes, a
single bit!) with the scheme. This is akin to the RSA key encapsulation mechanism you
saw in chapter 6. The following four steps shows how the encryption works:

Generate an ephemeral private key vector r (where coefficients are in the error
range) and its associated ephemeral public key rA + e; with some random error
vector ey, using the other peer’s A matrix as a public parameter. Note that the
matrix multiplication is done on the right, which involves multiplying the vec-
tor r with the columns of A instead of computing Ar (a multiplication of the
vector r with the rows of A). It is a detail, but it’s necessary for the decryption
step to work.

We shift our message to the left by multiplying it with ¢/2 in order to avoid
small errors from impacting our message. Note that ¢/2 modulo ¢ usually
means ¢ multiplied with the inverse of 2 modulo ¢, but here it simply means the
closest integer to ¢/2.

Compute a shared secret with the dot product of our ephemeral private key
and the public key of the peer.

Encrypt your (shifted) message by adding it to the shared secret as well as a ran-
dom error ey. This produces a ciphertext.

After performing the steps, we can send both the ephemeral public key and the cipher-
text to the other peer. After receiving both the ephemeral public key and the ciphertext,
we can follow these steps to decrypt the message:

Obtain the shared secret by computing the dot product of your secret with the
ephemeral public key received.

Subtract that shared secret from the ciphertext (the result contains the shifted
message and some error).

316

14.3.4

CHAPTER 14 Post-quantum cryptography

Shift your message back to where it was originally by dividing it with ¢/2, effec-
tively removing the error.
The message is 1 if it is closer to ¢/2 than 0, and it is 0 otherwise.

Of course, 1 bit is not enough, so current schemes employ different techniques to
overcome this limitation. I recapitulate all three algorithms in figure 14.10.

701 Small
A-l232 ephemeral public key u=rA + e, /—
- 828 shared secret =rt =r(As + e) =rAs + re

shifted message = message x (9/2)
ciphertext = shared secret + e ,+ shifted message

8
Private keys= | 6 send ephemeral public key u and ciphertext
1
Encryption
. 1
e= 0
1 Small

shared secret = us = (rA + e,)s =rAs + e,S
shifted message = ciphertext — shared secret
message = shifted message / (9/2)

public key t = As + e and A
return message

Key generation Decryption

Figure 14.10 The Kyber public key encryption scheme. Note that the shared secret is
approximately the same during encryption and decryption as re and e;s are both small values
because r, s, and the errors are much smaller than q/2). Thus, the last step of the decryption
(dividing by q/2, which can be seen as a bitwise shift to the right) gets rid of any discrepancy
between the two shared secrets. Note that all operations are done modulo q.

In practice, for a key exchange, the message you encrypt to your peer’s public key is a
random secret. The result is then derived deterministically from both the secret and
the transcript of the key exchange, which includes the peer’s public key, your ephem-
eral key, and the ciphertext.

The recommended parameters for Kyber leads to public keys and ciphertexts of
around 1 kilobytes, which is much bigger than the pre-quantum schemes we use but
still in the realm of the practical for most use cases. While time will tell if we can fur-
ther reduce the communication overhead of these schemes, it seems like, so far, post-
quantum rhymes with larger sizes.

Dilithium, a lattice-based signature scheme

The next scheme I'll explain, Dilithium, is also based on LWE and is the sister candi-
date of Kyber. As with other types of signatures we’ve seen (like Schnorr’s signature in

Shorter keys and signatures with lattice-based cryptography 317

chapter 7), Dilithium is based on a zero-knowledge proof that is made non-interactive
via the Fiat-Shamir trick.

For key generation, Dilithium is similar to the previous scheme, except that we
keep the error as part of the private key. We first generate the two random vectors that
serve as the private key, s; and so, then compute the public key as t = As; + so, where A
is a matrix obtained in a similar manner as Kyber. The public key is t and A. Note that
we consider the error sy as being part of the private key because we need to reuse it
every time we sign a message (unlike in Kyber, where the error could be discarded
after the key generation step).

To sign, we create a sigma protocol and then convert that to a non-interactive,
zero-knowledge proof via the Fiat-Shamir transformation, which is similar to how the
Schnorr identification protocol gets converted to a Schnorr signature in chapter 7.
The interactive protocol looks like this:

The prover commits on two random vectors, y; and yy, by sending Ay, + yo.
Upon reception of this commit, the verifier responds with a random chal-
lenge c.

The prover then computes the two vectors z; = ¢s; +y; and z9 = ¢so + y9 and
sends them to the verifier only if they are small values.

The verifier checks if Az) + zo — ct and Ay, + yy are the same values.

The Fiat-Shamir trick replaces the role of the verifier in step 2 by having the prover gen-
erate a challenge from a hash of the message to sign and the committed Ay, + yo value.
I recap this transformation in figure 14.11, using a similar diagram from chapter 7.

Commitment of y, and y, Commitment
A+ Y, AV +Y,

c

a@n Hidden witness

Z,=0s,+Y,
z,=Cs,+ Y,

‘N
Random challenge w

“Random” challenge
Hash(msg, Ay, + ¥,)

Hidden witness
Z,=CS +Y,
Z,=CS,+ Y,

Dilithium interactive zero-knowledge proof

Dilithium signature

Figure 14.11 A Dilithium signature is a proof of knowledge of a secret vector s made
non-interactive via the Fiat-Shamir transformation. The diagram on the left shows the

interactive proof protocol, while the diagram on the right shows a non-interactive version
where the challenge is computed as a commitment of both y and the message to sign.

Again, this is a gross simplification of the signature scheme. Many more optimizations
are used in practice to reduce the key and the signature sizes. Usually, these optimiza-
tions look at reducing any random data by deterministically generating it from a

318

14.4

CHAPTER 14 Post-quantum cryptography

smaller random value and by reducing non-random data by compressing it via custom
methods, not necessarily via known compression algorithms. There are also a number
of additional optimizations that are possible due to the unique structure of LWE.

At the recommended security level, Dilithium offers signatures of around 3 KB
and public keys of less than 2 KB. This is obviously much more than the 32-byte public
keys and 64-byte signatures of pre-quantum schemes, but it is also much better than
the stateless hash-based signatures. It is good to keep in mind that these schemes are
still pretty new, and it is possible that better algorithms will be found to solve the LWE
problem, potentially increasing the sizes of public keys and signatures. It is also possi-
ble that we will find better techniques to reduce the sizes of these parameters. In gen-
eral, it’s likely that quantum resistance will always come with a cost in size.

This is not all there is to post-quantum cryptography; the NIST post-quantum cryp-
tography competition has a number of other constructions based on different para-
digms. NIST has announced that an initial standard will be published in 2022, but I
expect that the field will continue to move quickly, at least as long as post-quantum
computers continue to be seen as a legitimate threat. While there’s still a lot of
unknowns, it also means that there’s a lot of exciting room for research. If this is interest-
ing to you, I recommend taking a look at the NIST reports (https://nist.gov/pqcrypto).

Do I need to panic?

To summarize, quantum computers are a huge deal for cryptography if they are real-
ized. What’s the take away here? Do you need to throw everything you’re doing and
transition to post-quantum algorithms? Well, it’s not that simple.

Ask any expert and you’ll receive different kinds of answers. For some, it’s 5 to 50
years away; for others, it’'ll never happen. Michele Mosca, the director of the Institute
for Quantum Computing, estimated “a 1/7 chance of breaking RSA-2048 by 2026 and
a 1/2 chance by 2031,” while Mikhail Dyakonov, a researcher at the CNRS in France,
stated publicly “Could we ever learn to control the more than 10" continuously vari-
able parameters defining the quantum state of such a system? My answer is simple.
No, never.” While physicists, not cryptographers, know better, they can still be incen-
tivized to hype their own research in order to get funding. As I am no physicist, I will
simply say that we should remain skeptical of extraordinary claims, while preparing
for the worst. The question is not “Will it work?”; rather, it’s “Will it scale?”

There exist many challenges for scalable quantum computers (which can destroy
cryptography) to become a reality; the biggest ones seem to be about the amount of
noise and errors that is difficult to reduce or correct. Scott Aaronson, a computer sci-
entist at the University of Texas, puts it as “You're trying to build a ship that remains
the same ship, even as every plank in it rots and has to be replaced.”

But what about what the NSA said? One needs to remember that the government’s
need for confidentiality most often exceeds the needs of individuals and private com-
panies. It is not crazy to think that the government might want to keep some top
secret data classified for more than 50 years. Nevertheless, this has puzzled many cryp-
tographers (see, for example, “A Riddle Wrapped In An Enigma” by Neal Koblitz and

https://nist.gov/pqcrypto

Summary 319

Alfred J. Menezes), who have been wondering why we would protect ourselves against
something that doesn’t exist yet or might never exist.

In any case, if you’re really worried and the confidentiality of your assets needs to
remain for long periods of time, it is not crazy and relatively easy to increase the
parameters of every symmetric cryptographic algorithm you’re using. That being said,
if you’re doing a key exchange in order to obtain an AES-256-GCM key, that asymmet-
ric cryptography part is still vulnerable to quantum computers, and protecting the
symmetric cryptography alone won’t be enough.

For asymmetric cryptography, it is too early to really know what is safe to use. Best
wait for the end of the NIST competition in order to obtain more cryptanalysis, and in
turn, more confidence in these novel algorithms.

At present, there are several post-quantum cryptosystems that have been proposed,
ncluding lattice-based cryptosystems, code-based cryptosystems, multivariate cryptosystems,
hash-based signatures, and others. However, for most of these proposals, further research
1s needed in order to gain more confidence in their security (particularly against adversaries
with quantum computers) and to improve their performance.

—NIST Post-Quantum Cryptography Call for Proposals (2017)

If you're too impatient and can’t wait for the result of the NIST competition, one
thing you can do is to use both a current scheme and a post-quantum scheme in your
protocol. For example, you could cross-sign messages using Ed25519 and Dilithium
or, in other words, attach a message with two signatures from two different signature
schemes. If it turns out that Dilithium is broken, an attacker would still have to break
Ed25519, and if it turns out that quantum computers are real, then the attacker would
still have the Dilithium signature that they can’t forge.

NOTE This is what Google did in 2018, and then again in 2019, with Cloud-
flare, experimenting with a hybrid key exchange scheme in TLS connections
between a small percentage of Google Chrome users and servers from both
Google and Cloudflare. The hybrid scheme was a mix of X25519 and one
post-quantum key exchange (New Hope in 2018, HRSS and SIKE in 2019),
where both the output of the current key exchange and the post-quantum key
exchange were mixed together into HKDF to produce a single shared secret.

Finally, I will re-emphasize that hash-based signatures are well studied and well under-
stood. Even though they present some overhead, schemes like XMSS and SPHINCS+ can
be used now, and XMSS has ready-to-use standards (RFC 8391 and NIST SP 800-208).

Summary
Quantum computers are based on quantum physics and can provide a non-
negligible speed up for specific computations.
Not all algorithms can run on a quantum computer, and not all algorithms can
compete with a classical computer. Two notable algorithms that worry cryptog-
raphers are

320

CHAPTER 14 Post-quantum cryptography

— Shor’s algorithm, which can efficiently solve the discrete logarithm prob-
lem and the factorization problem. It breaks most of today’s asymmetric
cryptography.

— Grover’s algorithm, which can efficiently search for a key or value in a space
of 2'% values, impacts most symmetric algorithms with 128-bit security. Boost-
ing a symmetric algorithm’s parameters to provide 256-bit security is enough
to thwart quantum attacks.

The field of post-quantum cryptography aims at finding novel cryptographic

algorithms to replace today’s asymmetric cryptographic primitives (for exam-

ple, asymmetric encryption, key exchanges, and digital signatures).

NIST started a post-quantum cryptography standardization effort in 2016. There

are currently seven finalists and the effort is now entering its final round of selec-

tion.

Hash-based signatures are signature schemes that are only based on hash func-

tions. The two main standards are XMSS (a stateful signature scheme) and

SPHINCS+ (a stateless signature scheme).

Lattice-based cryptography is promising as it provides shorter keys and signa-

tures. Two of the most promising candidates are based on the LWE problem:

Kyber is an asymmetric encryption and key exchange primitive, and Dilithium

is a signature scheme.

Other post-quantum schemes exist and are being proposed as part of the NIST

post-quantum cryptography competition. These include schemes based on code

theory, isogenies, symmetric-key cryptography, and multivariate polynomials.

NIST’s competition is scheduled to end in 2022, which still leaves a lot of room

for new attacks or optimizations to be discovered.

It is not clear when quantum computers will be efficient enough to destroy

cryptography, or if it is possible for them to get there.

If you have requirements to protect data for a long period of time, you should

consider transitioning to post-quantum cryptography:

— Upgrade all usage of symmetric cryptographic algorithms to use parameters
that provide 256-bit security (for example, move from AES-128-GCM to AES-
256-GCM, and from SHA-3-256 to SHA-3-512).

— Use hybrid schemes that mix post-quantum algorithms with pre-quantum
algorithms. For example, always sign messages with both Ed25519 and Dilith-
ium, or always perform a key exchange with both X25519 and Kyber (deriv-
ing a shared secret from the two key exchange outputs obtained).

— Use hash-based signatures like XMSS and SPHINCS+, which are well-studied
and well-understood. XMSS has the advantage of having already been stan-
dardized and approved by the NIST.

Is thas it ?
Next-generation

cryptography

This chapter covers

= Getting rid of trusted third parties via secure
multi-party computation (MPC)

= Allowing others to act on encrypted data via fully
homomorphic encryption (FHE)

= Hiding parts of a program execution via zero-
knowledge proofs (ZKPs)

I started this book with the idea that readers who would get through most of the
chapters would also be interested in the future of real-world cryptography. While
you’re reading an applied and practical book with a focus on what is in use today,
the field of cryptography is rapidly changing (as we saw in recent years with crypto-
currencies, for example).

As you’re reading this book, a number of theoretical cryptographic primitives
and protocols are making their ways into the applied cryptography world—maybe
because these theoretical primitives are finally finding a use case or because they’re
finally becoming efficient enough to be used in real-world applications. Whatever
the reason, the real world of cryptography is definitely growing and getting
more exciting. In this chapter, I give you a taste of what the future of real-world

321

322

15.1

CHAPTER 15 Is this it? Next-generation cryptography

cryptography might look like (perhaps in the next 10 to 20 years) by briefly intro-
ducing three primitives:

Secure multi-party computation (MPC)—A subfield of cryptography that allows dif-
ferent participants to execute a program together without necessarily revealing
their own input to the program.

Fully homomorphic encryption (FHE)—The holy grail of cryptography, a primitive
used to allow arbitrary computations on encrypted data.

General-purpose zero-knowledge proofs (ZKPs)—The primitive you learned about
in chapter 7 that allows you to prove that you know something without reveal-
ing that something, but this time, applied more generally to more complex
programs.

This chapter contains the most advanced and complicated concepts in the book. For
this reason, I recommend that you glance at it and then move on to chapter 16 to read
the conclusion. When you are motivated to learn more about the inners of these more
advanced concepts, come back to this chapter. Let’s get started!

The more the merrier: Secure multi-party
computation (MPC)

Secure multi-party computation (MPC) is a field of cryptography that came into exis-
tence in 1982 with the famous Millionaires” problem. In his 1982 paper “Protocols for
Secure Computations,” Andrew C. Yao wrote, “T'wo millionaires wish to know who is
richer; however, they do not want to find out inadvertently any additional information
about each other’s wealth. How can they carry out such a conversation?” Simply put,
MPC is a way for multiple participants to compute a program together. But before
learning more about this new primitive, let’s see why it’s useful.

We know that with the help of a trusted third party, any distributed computation
can easily be worked out. This trusted third party can perhaps maintain the privacy of
each participant’s input, as well as possibly restricting the amount of information
revealed by the computation to specific participants. In the real world, though, we
don’t like trusted third parties too much; we know that they are pretty hard to come
by, and they don’t always respect their commitments.

MPC allows us to completely remove trusted third parties from a distributed com-
putation and enables participants to compute the computation by themselves without
revealing their respective inputs to one another. This is done through a cryptographic
protocol. With that in mind, using MPC in a system is pretty much the equivalent to
using a trusted third party (see figure 15.1).

Note that you already saw some MPC protocols. Threshold signatures and distrib-
uted key generations, covered in chapter 8, are examples of MPC. More specifically,
these examples are part of a subfield of MPC called threshold cryptography, which has
been receiving a lot of love in more recent years with, for example, NIST in mid-2019
kicking off a standardization process for threshold cryptography.

The more the merrier: Secure multi-party computation (MPC)

323

I HAVE
13 BILLION
POLLARS IN
THE BANK,

Trusted third party

She’s the richest

ol

I HAVE

34 BILLION
POLLARS
THE BANI

IN
K,

LOOKS LIKE
ALICE HAS
MORE MONEY
THAN ME,

I'M THE
RICHEST!

MPC protocol

o o
A

Figure 15.1 A secure multi-party computation (MPC) protocol turns a distributed computation that can be
calculated via a trusted third party (image on the left) into a computation that doesn’t need the help of a trusted

third party (image on the right).

15.1.1 Private set intersection (PSI)

Another well-known subfield of MPC is the field of private set intersection (PSI), which
poses the following problem: Alice and Bob have a list of words, and they want to

know which words (or perhaps just how many) they have in common without reveal-

ing their respective list of words. One way to solve this problem is to use the oblivious
pseudorandom function (OPFR) construction you learned about in chapter 11. (I
illustrate this protocol in figure 15.2.) If you recall

Bob generates a key for the OPRF.
Alice obtains the random values, PRF(key, word), for every word in her list using
the OPRF protocol (so she doesn’t learn the PRF key and Bob doesn’t learn the

words).
wee | AN AN
R o,
apple -
car Blinded(book)
book Blinded(phone)
L [1
- L

— Blinded(PRF(key, book)) ||
! Blinded(PRF(key, phone)) ||

»
»

[]

PRF(key, tree)

PRF(key, apple)

v

[

book
phone

tray

apple

-=% PRF(key, ...)

- =% PRF(key, book)

- =% PRF(key, phone)

Figure 15.2 Private set intersection (PSI)
allows Alice to learn what words she has in
common with Bob. First, she blinds every
word she has in her list and uses the OPRF
protocol with Bob to apply a PRF using
Bob’s key on each of her words. Finally, Bob
sends her the PRF of his key with his words.
Alice can then see if anything matches to
learn what words they have in common.

324

15.1.2

CHAPTER 15 Is this it? Next-generation cryptography

Bob then can compute the list of PRI’ (key, word) values for his own words and
send it to Alice, who is then able to compare it with her own PRF outputs to see
if any of Bob’s PRF outputs matches.

PSI is a promising field that is starting to see more and more adoption in recent years,
as it has shown to be much more practical than it used to be. For example, Google’s
Password Checkup feature integrated into the Chrome browser uses PSI to warn you
when some of your passwords have been detected in password dumps following pass-
word breaches without actually seeing your passwords. Interestingly, Microsoft also
does this for its Edge browser but uses fully homomorphic encryption (which I'll
introduce in the next section) to perform the private set intersection. On the other
hand, the developers of the Signal messaging application (discussed in chapter 10)
decided that PSI was too slow to perform contact discovery in order to figure out who
you can talk to based on your phone’s contact list, and instead, used SGX (covered in
chapter 13) as a trusted third party.

General-purpose MPC

More generally, MPC has many different solutions aiming at the computation of
arbitrary programs. General-purpose MPC solutions all provide different levels of
efficiency (from hours to milliseconds) and types of properties. For example, how
many dishonest participants can the protocol tolerate? Are participants malicious or
just honest but curious (also called semi-honest, a type of participant in MPC proto-
cols that is willing to execute the protocol correctly but might attempt to learn the
other participants’ inputs)? Is it fair to all participants if some of them terminate the
protocol early?

Before a program can be securely computed with MPC, it needs to be translated
into an arithmetic circuit. Arithmetic circuits are successions of additions and multipli-
cations, and because they are Turing complete, they can represent any program! For
an illustration of an arithmetic circuit, see figure 15.3.

Alice’s input (@ Figure 15.3 An arithmetic circuit is a
number of addition or multiplication
- » d gates linking inputs to outputs. In the
figure, values travel from left to right.
For example, d = a + b. Here, the
+ —»(f Output circuit only outputs one value f=a + b
+ bc, but it can in theory have multiple
output values. Notice that different
x —>{ e inputs to the circuit are provided by
different participants, but they could
also be public inputs (known to
everyone).

Bob’s input b

N/

Public input c

The more the merrier: Secure multi-party computation (MPC) 325

Before taking a look at the next primitive, let me give you a simplified example of an
(honest-majority) general-purpose MPC built via Shamir’s secret sharing. Many more
schemes exist, but this one is simple enough to fit here in a three-step explanation:
share enough information on each input in the circuit, evaluate every gate in the cir-
cuit, and reconstruct the output. Let’s look at each step in more detail.

The first step is for every participant to have enough information about each input
of the circuit. Public inputs are shared publicly, while private inputs are shared via
Shamir’s secret sharing (covered in chapter 8). I illustrate this in figure 15.4.

o, .A.
= Alice’s input a
a b \
* * + —» d \
Split Split Bob'sinput (b + —»(f) Output
VARRN VARRN ™~ 7
a, a, b1 b2 X —) e
I I 7

AN A AN é Public input (¢

Figure 15.4 The first step of a general-purpose MPC with secret sharing is to have participants split their
respective secret inputs (using Shamir’s secret sharing scheme) and distribute the parts to all participants. For
example, here Alice splits her input a into a;, and a,. Because there are only two participants in this example, she
gives the first share to herself and gives Bob the second one.

The second step is to evaluate every gate of the circuit. For technical reasons I'll omit
here, addition gates can be computed locally, while multiplication gates must be com-
puted interactively (participants must exchange some messages). For an addition
gate, simply add the input shares you have; for a multiplication gate, multiply the
input shares. What you get is a share of the result as figure 15.5 illustrates. At this
point, the shares can be exchanged (in order to reconstruct the output) or kept sepa-
rate to continue the computation (if they represent an intermediate value).

The final step is to reconstruct the output. At this point, the participants should all
own a share of the output, which they can use to reconstruct the final output using the
final step of Shamir’s secret sharing scheme.

326

15.1.3

15.2

CHAPTER 15 Is this it? Next-generation cryptography

Alice’s input a '
\).‘.\ e,
+ —» d ‘ -
/ N a b, a b,
Bob’s input | b + —»(f Output v ¥ X ¥
\ / + +
X —» e * *
o 4 «

Public input | €

Figure 15.5 The second step of a general-purpose MPC with secret sharing is to have
participants compute each gate in the circuit. For example, a participant can compute an
addition gate by adding the two input Shamir shares that they have, which produces a Shamir
share of the output.

The state of MPC

There’s been huge progress in the last decade to make MPC practical. It is a field of
many different use cases, and one should be on the lookout for the potential applica-
tions that can benefit from this newish primitive. Note that, unfortunately, no real
standardization effort exists, and while several MPC implementations can be consid-
ered practical for many use cases today, they are not easy to use.

Incidentally, the general-purpose MPC construction I explained earlier in this sec-
tion is based on secret sharing, but there are more ways to construct MPC protocols. A
well-known alternative is called garbled circuits, which is a type of construction first pro-
posed by Yao in his 1982 paper introducing MPC. Another alternative is based on fully
homomorphic encryption, a primitive you’ll learn about in the next section.

Fully homomorphic encryption (FHE) and the promises
of an encrypted cloud

For a long time in cryptography, a question has troubled many cryptographers: is it
possible to compute arbitrary programs on encrypted data? Imagine that you could
encrypt the values a, b, and ¢ separately, send the ciphertexts to a service, and ask that
service to return the encryption of a x 36+ 2¢ + 3, which you could then decrypt. The
important idea here is that the service never learns about your values and always deals
with ciphertexts. This calculation might not be too useful, but with additions and mul-
tiplications, one can compute actual programs on the encrypted data.

This interesting concept, originally proposed in 1978 by Rivest, Adleman, and Der-
touzos, is what we call fully homomorphic encryption (FHE) (or as it used to be called, the
holy grail of cryptography). I illustrate this cryptographic primitive in figure 15.6.

15.2.1

15.2.2

Fully homomorphic encryption (FHE) and the promises of an encrypted cloud 327

Encryption of m

)\ Some
sz S program
°.° l Other
ciphertexts

D — Encryption of
program(m, plaintexts)

Program(m, plaintexts)

Figure 15.6 Fully homomorphic encryption (FHE) is an encryption scheme that allows for
arbitrary computations over encrypted content. Only the owner of the key can decrypt the result
of the computation.

An example of homomorphic encryption with RSA encryption

By the way, you already saw some cryptographic schemes that should make you feel
like you know what I'm talking about. Think of RSA (covered in chapter 6): given a
ciphertext = message’ mod N, someone can easily compute some restricted function of
the ciphertext

n’x ciphertext = (n x message) mod N

for any number » they want (although it can’t be too big). The result is a ciphertext
that decrypts to

n X message

Of course, this is not a desired behavior for RSA, and it has led to some attacks (for
example, Bleichenbacher’s attack mentioned in chapter 6). In practice, RSA breaks
the homomorphism property by using a padding scheme. Note that RSA is homomor-
phic only for the multiplication, which is not enough to compute arbitrary functions,
as both multiplication and addition are needed for those. Due to this limitation, we
say that RSA is partially homomorphic.

The different types of homomorphic encryption
Other types of homomorphic encryptions include

= Somewhat homomorphic—Which means partially homomorphic for one opera-
tion (addition or multiplication) and homomorphic for the other operation in

328

15.2.3

CHAPTER 15 Is this it? Next-generation cryptography

limited ways. For example, additions are unlimited up to a certain number but
only a few multiplications can be done.

Leveled homomorphic—Both addition and multiplication are possible up to a cer-
tain number of times.

Fully homomorphic—Addition and multiplication are unlimited (it’s the real deal).

Before the invention of FHE, several types of homomorphic encryption schemes were
proposed, but none could achieve what fully homomorphic encryption promised.
The reason is that by evaluating circuits on encrypted data, some noise grows; after a
point, the noise has reached a threshold that makes decryption impossible. And, for
many years, some researchers tried to prove that perhaps there was some information
theory that could show that fully homomorphic encryption was impossible; that is,
until it was shown to be possible.

Bootstrapping, the key to fully homomorphic encryption

One night, Alice dreams of immense riches, caverns piled high with silver, gold and
diamonds. Then, a giant dragon devours the riches and begins to eat its own tail! She
awakes with a feeling of peace. As she tries to make sense of her dream, she realizes that
she has the solution to her problem.

—~Craig Gentry (“Computing Arbitrary Functions
of Encrypted Data,” 2009)

In 2009, Craig Gentry, a PhD student of Dan Boneh, proposed the first-ever fully
homomorphic encryption construction. Gentry’s solution was called bootstrapping,
which in effect was to evaluate a decryption circuit on the ciphertext every so often in
order to reduce the noise to a manageable threshold. Interestingly, the decryption cir-
cuit itself does not reveal the private key and can be computed by the untrusted party.
Bootstrapping allowed turning a leveled FHE scheme into an FHE scheme. Gentry’s
construction was slow and quite impractical, reporting about 30 minutes per basic bit
operation, but as with any breakthrough, it only got better with time. It also showed
that fully homomorphic encryption was possible.

How does bootstrapping work? Let’s see if we can gain some insight. First, I need
to mention that we’ll need not a symmetric encryption system, but a public key
encryption system, where a public key can be used to encrypt and a private key can be
used to decrypt. Now, imagine that you execute a certain number of additions and
multiplications on a ciphertext and reach some level of noise. The noise is low
enough to still allow you to decrypt the ciphertext correctly, but too high that it won’t
let you perform more homomorphic operations without destroying the encrypted
content. I illustrate this in figure 15.7.

Fully homomorphic encryption (FHE) and the promises of an encrypted cloud

Message Ciphertext

| — Encrypt _

Homomorphic
evaluation

l

l

é e/'r
The new ciphertext | <" = o
is getting -
dangerously noisy. S
error Q}‘

«—f

Figure 15.7 After
encrypting a message
with a fully homomorphic
encryption algorithm,
operating on it increases
its noise to dangerous
thresholds, where
decryption becomes
impossible.

329

You could think that you’re stuck, but bootstrapping unsticks you by removing the
noise out of that ciphertext. To do that, you re-encrypt the noisy ciphertext under
another public key (usually called the bootstrapping key) to obtain an encryption of
that noisy ciphertext. Notice that the new ciphertext has no noise. I illustrate this in

figure 15.8.

g
The new ciphertext

is getting too noisy.

S &
Q "o,
Q& 4

— Encrypt —

N
S
Q
error o

Ciphertext of a
ciphertext

Figure 15.8 Building on figure
15.7, to eliminate the noise of
the ciphertext, you can decrypt
it. But because you don’t have
the secret key, instead you re-
encrypt the noisy ciphertext
under another public key (called
the bootstrapping key) to obtain
a new ciphertext of a noisy
ciphertext without error.

Now comes the magic: you are provided with the initial private key, not in cleartext,
but encrypted under that bootstrapping key. This means that you can use it with a
decryption circuit to homomorphically decrypt the inner noisy ciphertext. If the
decryption circuit produces an acceptable amount of noise, then it works, and you will
end up with the result of the first homomorphic operation encrypted under the boot-
strapping key. I illustrate this in figure 15.9.

330

is getting too noisy.

CHAPTER 15 Is this it? Next-generation cryptography

ciphertext

acceptable noise

l () decrypt with
The new ciphertext ¢ CipherteXt ofa l Ciphertext with

Iy
O
[5)

€rro, r

@f,-o,_

—yp Encrypt —)

N
O
A\
&

Main key
r)—n encrypted with
bootstrapping key

Figure 15.9 Building on figure 15.9, you use the initial secret key encrypted to the bootstrapping key to apply
the decryption circuit to that new ciphertext. This effectively decrypts the noisy ciphertext in place, removing
the errors. There will be some amount of errors due to the decryption circuit.

15.24

If the remaining amount of errors allows you to do at least one more homomorphic
operation (+ or x), then you are gold: you have a fully homomorphic encryption algo-
rithm because you can always, in practice, run the bootstrapping after or before every
operation. Note that you can set the bootstrapping key pair to be the same as the ini-
tial key pair. It’s a bit weird as you get some circular security oddity, but it seems to
work and no security issues are known.

An FHE scheme based on the learning with errors problem

Before moving on, let’s see one example of an FHE scheme based on the learning
with errors problem we saw in chapter 14. I'll explain a simplified version of the GSW
scheme, named after the authors Craig Gentry, Amit Sahai, and Brent Waters. To keep
things simple, I'll introduce a secret key version of the algorithm, but just keep in
mind that it is relatively straightforward to transform such a scheme into a public key
variant, which we need for bootstrapping. Take a look at the following equation where
C is a square matrix, s is a vector, and m is a scalar (a number):

Cs = ms

In this equation, s is called an eigenvector and m is an eigenvalue. If these words are for-
eign to you, don’t worry about it; they don’t matter much here.

The first intuition in our FHE scheme is obtained by looking at the eigenvectors
and eigenvalues. The observation is that if we set m to a single bit we want to encrypt,
C to be the ciphertext, and s to be the secret key, then we have an (insecure) homo-
morphic encryption scheme to encrypt one bit. (Of course, we assume there is a way

Fully homomorphic encryption (FHE) and the promises of an encrypted cloud 331

to obtain a random ciphertext C from a fixed bit m and a fixed secret key s.) I illus-
trate this in figure 15.10 in a Lego kind of way.

¢ x - = mx - Figure 15.10 We can produce an insecure
homomorphic encryption scheme to encrypt a
\ \ single bit m with a secret vector s by interpreting

m as an eigenvalue and s as an eigenvector and
then finding the associated matrix C, which will
Ciphertext Secret key Message be the ciphertext.

To decrypt a ciphertext, you multiply the matrix with the secret vector s and see if
you obtain the secret vector back or 0. You can verify that the scheme is fully homo-
morphic by checking that the decryption of two ciphertexts added together (C; + Co)
results in the associated bits added together:

(Cl + CQ)S = Cls + CQS = bls + bQS = (bl + bQ)S

Also, the decryption of two ciphertexts multiplied together (C; x Co) results in the
associated bits multiplied together:

(C1 x Cg)s = Cy (Cos) = Cy (bos) = boCys= (b x by) s

Unfortunately, that scheme is insecure as it is trivial to retrieve the eigenvector (the
secret vector s) from C. What about adding a bit of noise? We can change this equa-
tion a bit to make it look like our learning with errors problem:

Cs=ms+e

This should look more familiar. Again, we can verify that the addition is still
homomorphic:

(Cy + CQ)S =Cis+ CQS =bhs+e+ bQS + €9 = (b + bQ)S + (e1+e2)

Here, notice that the error is growing (e; + e9), which is what we expected. We can
also verify that the multiplication is still working as well:

(C1 x Cg)s = Cq (Cgs) = Cy (bgs + eg) = boCys + Creg = bo (bys + e1) + Cieg
= (b2 X bl) S+ b2e1 + C162

Here, boe; is small (as itis either e; or 0), but Cyes is potentially large. This is obviously
a problem, which I'm going to ignore to avoid digging too much into the details. If
you’re interested in learning more, make sure to read Shai Halevi’s “Homomorphic

332

15.2.5

15.3

CHAPTER 15 Is this it? Next-generation cryptography

Encryption” report (2017), which does an excellent job at explaining all of these
things and more.

Where is it used?

The most touted use case of FHE has always been the cloud. What if I could continue
to store my data in the cloud without having it seen? And, additionally, what if the
cloud could provide useful computations on that encrypted data? Indeed, one can
think of many applications where FHE could be useful. A few examples include

A spam detector could scan your emails without looking at those.

Genetic research could be performed on your DNA without actually having to
store and protect your privacy-sensitive human code.

A database could be stored encrypted and queried on the server side without
revealing any data.

Yet Phillip Rogaway, in his seminal 2015 paper on “The Moral Character of Cryp-
tographic Work,” notes that “FHE [. . .] have engendered a new wave of exuberance.
In grant proposals, media interviews, and talks, leading theorists speak of FHE [. . .] as
game-changing indications of where we have come. Nobody seems to emphasize just
how speculative it is that any of this will ever have any impact on practice.”

While Rogaway is not wrong, FHE is still quite slow, advances in the field have been
exciting. At the time of this writing (2021), operations are about one billion times
slower than normal operations, yet since 2009, there has been a 10? speed-up. We are
undoubtedly moving towards a future where FHE will be possible for at least some lim-
ited applications.

Furthermore, not every application needs the full-blown primitive; somewhat
homomorphic encryption can also be used in a wide range of applications and is much
more efficient than FHE. A good indicator that a theoretical cryptography primitive is
entering the real world is standardization, and indeed, FHE is no foreigner to that. The
https://homomorphicencryption.org standardization effort includes many large com-
panies and universities. It is still unclear exactly when, where, and in what form homo-
morphic encryption will make its entry into the real world. What’s clear is that it will
happen, so stay tuned!

General-purpose zero-knowledge proofs (ZKPs)

I talked about zero-knowledge proofs (ZKPs) in chapter 7 on signatures. There, I
pointed out that signatures are similar to non-interactive ZKPs of knowledge for dis-
crete logarithms. These kinds of ZKPs were invented in the mid-1980s by Professors
Shafi Goldwasser, Silvio Micali, and Charles Rackoff. Shortly after, Goldreich, Micali,
and Wigderson found that we could prove much more than just discrete logarithms or
other types of hard problems; we could also prove the correct execution of any pro-
gram even if we removed some of the inputs or outputs (see figure 15.11 for an exam-
ple). This section focuses on this general-purpose type of ZKP.

https://homomorphicencryption.org

General-purpose zero-knowledge proofs (ZKPs) 333

IWILL HIPE
THIS INPUT
FROM THE EXECUTION
TRANSCRIPT,

I EXECUTED THE
FOLLOWING
FUNCTION.

A

.,
Some In N Some
function i Output

Input2 —»

FOR EXAMPLE,
THIS COULD BE A
PROOF THAT BOB HAS
AVALID SOLUTION TO
MY SUDOKL.

I CAN VERIFY A
PROOF THAT THIS IS A
CORRECT TRANSCRIPT

WITHOUT KNOWING WHAT

WAS THE FIRST INPUT.

Valid
sudoku
solution?

Ingf 1
L Output

function

Input 2

Figure 15.11 General-purpose ZKPs allow a prover to convince a verifier about the integrity of an
execution trace (the inputs of a program and the outputs obtained after its execution) while hiding
some of the inputs or outputs involved in the computation. An example of this is a prover trying to
prove that a sudoku can be solved.

ZKP as a field has grown tremendously since its early years. One major reason for this
growth is the cryptocurrency boom and the need to provide more confidentiality to
on-chain transactions as well as optimize on space. The field of ZKP is still growing
extremely fast as of the time of this writing, and it is quite hard to follow what are all
the modern schemes that exist and what types of general-purpose ZKPs there are.

Fortunately for us, this problem was getting large enough that it tripped the stan-
dardization threshold, an imaginary line that, when reached, almost always ends up moti-
vating some people to work together towards a clarification of the field. In 2018,
actors from the industry and academia joined together to form the ZKProof Standard-
ization effort with the goal to “standardize the use of cryptographic zero-knowledge
proofs.” To this day, it is still an ongoing effort. You can read more about it at
https://zkproof.org.

You can use general-purpose ZKPs in quite a lot of different situations, but to my
knowledge, they have mostly been used in the cryptocurrency space so far, probably due
to the high number of people interested in cryptography and willing to experiment with
the bleeding edge stuff. Nonetheless, general-purpose ZKPs have potential applications
in a lot of fields: identity management (being able to prove your own age without reveal-
ing it), compression (being able to hide most of a computation), confidentiality (being

https://zkproof.org

334

CHAPTER 15 Is this it? Next-generation cryptography

able to hide parts of a protocol), and so on. The biggest blockers for more applica-
tions to adopt general-purpose ZKPs seem to be the following:

The large number of ZKP schemes and the fact that every year more schemes
are being proposed.

The difficulty of grasping how these systems work and how to use them for spe-
cific use cases.

Distinctions between the different proposed schemes are quite important. Because it
is a great source of confusion, here is how some of these schemes are divided:

Zero-knowledge or not—If some of the information needs to remain secret from
some of the participants, then we need zero-knowledgeness. Note that proofs
without secrets can be useful as well. For example, you might want to delegate
some intensive computation to a service that, in turn, has to prove to you that
the result they provide is correct.

Interactive or noi—Most ZKP schemes can be made non-interactive (sometimes

using the Fiat-Shamir transformation I talked about in chapter 7), and protocol

designers seem most interested in the non-interactive version of the scheme.

This is because back-and-forth’s can be time consuming in protocols, but also

because interactivity is sometimes not possible. So-called non-interactive proofs

are often referred to as NIZKs for non-interactive ZKPs.

Succinct proofs or not—Most of the ZKP schemes in the spotlight are often referred

to as zk-SNARK:s for Zero-Knowledge Succinct Non-Interactive Argument of Knowledge.

While the definition can vary, it focuses on the size of the proofs produced by

such systems (usually in the order of hundreds of bytes), and the amount of

time needed to verify them (within the range of milliseconds). zk-SNARKs

are, thus, short and easy to use to verify ZKPs. Note that a scheme not being a

zk-SNARK does not disqualify it for the real world as often different properties

might be useful in different use cases.

Transparent setup or not—Like every cryptographic primitive, ZKPs need a setup

to agree on a set of parameters and common values. This is called a common ref-

erence string (CRS). But setups for ZKPs can be much more limiting or danger-
ous than initially thought. There are three types of setup:

— Trusted—Means that whoever created the CRS also has access to secrets that
allow them to forge proofs (hence, it’s why these secrets are sometimes called
“toxic waste”). This is quite an issue as we are back to having a trusted third
party, yet schemes that exhibit this property are often the most efficient and
have the shortest proof size. To decrease the risk, MPC can be use to have many
participants help create these dangerous parameters. If a single participant is
honest and deletes their keys after the ceremony, the toxic waste gets flushed.

— Universal—A trusted setup is said to be universal if you can use it to prove the
execution of any circuit (bounded by some size). Otherwise it is specific to a
single circuit.

15.3.1

General-purpose zero-knowledge proofs (ZKPs) 335

— Transparent—Fortunately for us, many schemes also offer transparent setups,
meaning that no trusted third party needs to be present to create the param-
eters of the system. Transparent schemes are by design universal.

Quantum-resistant or not—Some ZKPs make use of public key cryptography and

advanced primitives like bilinear pairings (which I'll explain later), while others

only rely on symmetric cryptography (like hash functions), which makes them
naturally resistant to quantum computers (usually at the expense of much
larger proofs).

Because zk-SNARKSs are what’s up at the time of this writing, let me give you my per-
ception as to how they work.

How zk-SNARKs work

First and foremost, there are many, many zk-SNARK schemes—too many of them,
really. Most build on this type of construction:

A proving system, allowing a prover to prove something to a verifier.
A translation or compilation of a program to something the proving system
can prove.

The first part is not too hard to understand, while the second part sort of requires a
graduate course in the subject. To begin, let’s take a look at the first part.

The main idea of zk-SNARKS is that they are all about proving that you know some
polynomial f{x) that has some roots. By roots I mean that the verifier has some values
in mind (for example, 1 and 2) and the prover must prove that the secret polynomial
they have in mind evaluates to 0 for these values (for example, f(1) = f(2) = 0). By the
way, a polynomial that has 1 and 2 as roots (as in our example) can be written as f{(x) =
(x—1)(x—2)h(x) for some polynomial A(x). (If you're not convinced, try to evaluate
that at x=1 and x = 2.) We say that the prover must prove that they know an f{x) and
h(x) such that f{x) = {(x)h(x) for some target polynomial ¢(x) = (x— 1) (x— 2). In this
example, 1 and 2 are the roots that the verifier wants to check.

But that’s it! That’s what zk-SNARKSs proving systems usually provide: something to
prove that you know some polynomial. I'm repeating this because the first time I
learned about that it made no sense to me. How can you prove that you know some
secret input to a program if all you can prove is that you know a polynomial? Well,
that’s why the second part of a zk-SNARK is so difficult. It’s about translating a pro-
gram into a polynomial. But more on that later.

Back to our proving system, how does one prove that they know such a function
f(x)? They have to prove that they know an k(x) such that you can write f(x) as f(x) =
{(x)h(x). Ugh, . . . not so fast here. We’re talking about zero-knowledge proofs right? How
can we prove this without giving out f(x)? The answer is in the following three tricks:

Homomorphic commitments—A commitment scheme similar to the ones we used
in other ZKPs (covered in chapter 7)

336

15.3.2

15.3.3

CHAPTER 15 Is this it? Next-generation cryptography

Bilinear pairings—A mathematical construction that has some interesting prop-
erties; more on that later
The fact that different polynomials evaluate to different values most of the time

So let’s go through each of these, shall we?

Homomorphic commitments to hide parts of the proof

The first trick is to use commitments to hide the values that we’re sending to the prover.
But not only do we hide them, we also want to allow the verifier to perform some
operations on them so that they can verify the proof. Specifically, they need to verify
that if the prover commits on their polynomial f{x) as well as A(x), then we have

com(f(x)) = com(t(x)) com(h(x)) = com(¢(x)h(x))

where the commitment com(¢(x)) is computed by the verifier as the agreed constraint
on the polynomial. These operations are called homomorphic operations, and we couldn’t
have performed them if we had used hash functions as commitment mechanisms (as
mentioned in chapter 2). Thanks to these homomorphic commitments, we can “hide
values in the exponent” (for example, for a value v, send the commitment g” mod p)
and perform useful identity checks:

The equality of commitments—The equality g“ = g’ means that a= b
The addition of commitments—The equality g“ = g’g° means that a= b+ ¢
The scaling of commitments—The equality g“ = (g”)° means that a = b¢

Notice that the last check only works if ¢is a public value and not a commitment (g").
With homomorphic commitments alone we can’t check the multiplication of commit-
ments, which is what we needed. Fortunately, cryptography has another tool to get
such equations hidden in the exponent—abilinear pairings.

Bilinear pairings to improve our homomorphic commitments

Bilinear pairings can be used to unblock us, and this is the sole reason why we use bilin-
ear pairings in a zk-SNARK (really, just to be able to multiply the values inside the
commitments). I don’t want to go too deep into what bilinear pairings are, but just
know that it is another tool in our toolkit that allows us to multiply elements that
couldn’t be multiplied previously by moving them from one group to another.

Using e as the typical way of writing a bilinear pairing, we have e(g;, g) = hs, where
g1, &, and hg are generators for different groups. Here, we’ll use the same generator
on the left (g = &) which makes the pairing symmetric. We can use a bilinear pairing
to perform multiplications hidden in the exponent via this equation:

e(gb’ gc) — e(g)br

Again, we use bilinear pairings to make our commitments not only homomorphic for
the addition, but also for the multiplication. (Note that this is not a fully homomorphic

15.34

General-purpose zero-knowledge proofs (ZKPs) 337

scheme as multiplication is limited to a single one.) Bilinear pairings are also used in
other places in cryptography and are slowly becoming a more common building block.
They can be seen in homomorphic encryption schemes and also signatures schemes
like BLS (which I mentioned in chapter 8).

Where does the succinctness come from?

Finally, the succinctness of zk-SNARKs comes from the fact that two functions that differ
evaluate to different points most of the time. What does this mean for us? Let’s say
that I don’t have a polynomial f{x) that really has the roots we’ve chosen with the veri-
fier, this means that f(x) is not equal to #(x)2(x). Then, evaluating f(x) and #(x)2(x) at
a random point r won’t return the same result most of the time. For almost all », f(r)#
{(r) k(7). This is known as the Schwartz-Zippel lemma, which I illustrate in figure 15.12.

Schwartz-Zippel lemma

Two different polynomials of Two different polynomials of Two different polynomials of
degree 1 intersect in at degree 2 intersect in at degree 3 intersect in at
most 1 point. most 2 points. most 3 points.

Figure 15.12 The Schwartz-Zippel lemma says that two different polynomials of degree n can intersect
in at most n points. In other words, two different polynomials will differ in most points.

Knowing this, it is enough to prove that com(f(r)) = com(i(r)h(r)) for some random
point r. This is why zk-SNARK proofs are so small: by comparing points in a group, you
end up comparing much larger polynomials. But this is also the reason behind the
trusted setup needed in most zk-SNARK constructions. If a prover knows the random
point r that will be used to check the equality, then they can forge an invalid poly-
nomial that will still verify the equality. So a trusted setup is about

Creating a random value r

Committing different exponentiations of r (for example, g, g', g, g, . . .) s0
that these values can be used by the prover to compute their polynomial with-
out knowing the point r

Destroying the value »

338

15.3.5

15.3.6

CHAPTER 15 Is this it? Next-generation cryptography

Does the second point make sense? If my polynomial as the prover is f(x) = 3x% + x + 2,
then all I have to do is compute (gr2)3 g g% to obtain a commitment of my polynomial
evaluated at that random point r (without knowing 7).

From programs to polynomials

So far, the constraints on the polynomial that the prover must find is that it needs to
have some roots: some values that evaluate to 0 with our polynomial. But how do we
translate a more general statement into a polynomial knowledge proof? Typical state-
ments in cryptocurrencies, which are the applications currently making the most use
of zk-SNARKs these days, are of the form:

= Prove that a value is in the range [0, 2%4] (this is called a range proof)

= Prove that a (secret) value is included in some given (public) Merkle tree
= Prove that the sum of some values is equal to the sum of some other values
= And so on

And herein lies the difficult part. As I said earlier, converting a program execution
into the knowledge of a polynomial is really hard. The good news is that 'm not going
to tell you all about the details, but I'll tell you enough to give you a sense of how
things work. From there, you should be able to understand what are the parts that are
missing from my explanation and fill in the gaps as you wish. What is going to happen
next is the following:

1 Our program will first get converted into an arithmetic circuit, like the ones we
saw in the section on MPC.

2 That arithmetic circuit will be converted into a system of equations that are of a
certain form (called a rank-1 constraint system or R1CS).

32 We then use a trick to convert our system of equations into a polynomial.

Programs are for computers; we need arithmetic circuits instead

First, let’s assume that almost any program can be rewritten more or less easily in
math. The reason why we would want to do that should be obvious: we can’t prove
code, but we can prove math. For example, the following listing provides a function
where every input is public except for a, which is our secret input.

Listing 15.1 A simple function

fn my function(w, a, b) {
if w == true {
return a * (b + 3);
} else {
return a + b;

}

15.3.7

General-purpose zero-knowledge proofs (ZKPs) 339

In this simple example, if every input and output is public except for a, one can still
deduce what a is. This listing also serves as an example of what you shouldn’t try to
prove in zero-knowledge. Anyway, the program can be rewritten in math with this
equation:

wx (ax (b+3)+(1-w) x (a+b) =v

Where v is the output and wis either 0 (false) or 1 (true). Notice that this equation
is not really a program or a circuit, it just looks like a constraint. If you execute the
program correctly and then fill in the inputs and outputs obtained in the equation,
the equality should be correct. If the equality is not correct, then your inputs and out-
puts don’t correspond to a valid execution of the program.

This is how you have to think about these general-purpose ZKPs. Instead of execut-
ing a function in zero-knowledge (which doesn’t mean much really), we use zk-SNARKs
to prove that some given inputs and outputs correctly match the execution of a pro-
gram, even when some of the inputs or outputs are omitted.

An arithmetic circuit to a rank-1 constraint system (R1CS)

In any case, we’re only one step into the process of converting our execution to some-
thing we can prove with zk-SNARKs. The next step is to convert that into a series of
constraints, which then can be converted into proving the knowledge of some polyno-
mial. What zk-SNARKs want is a rank-1 constraint system (R1CS). An R1CS is really just a
series of equations that are of the form L x R= O, where L, R, and O can only be the
addition of some variables, thus the only multiplication is between L and R. It really
doesn’t matter why we need to transform our arithmetic circuit into such a system of
equations except that it helps when doing the conversion to the final stuff we can
prove. Try to do this with the equation we have and we obtain something like

ax (b+3)=m
wx (m—a—->0)=v—a-">

We actually forgot the constraint that w is either 0 or 1, which we can add to our sys-
tem via a clever trick:

ax (b+3)=m
wx (m—a—->0)=v—a-">

wXw=w

Does that make sense? You should really see this system as a set of constraints: if you
give me a set of values that you claim match the inputs and outputs of the execution of
my program, then I should be able to validate that the values also correctly verify the
equalities. If one of the equalities is wrong, then it must mean that the program does
not output the value you gave me for the inputs you gave me. Another way to think
about it is that zk-SNARKs allow you to verifiably remove inputs or outputs of the tran-
script of the correct execution of a program.

340

CHAPTER 15 Is this it? Next-generation cryptography

15.3.8 From R1CS to a polynomial

15.3.9

The question is still: how do we transform this system into a polynomial? We’re almost
there, and as always the answer is with a series of tricks! Because we have three dif-
ferent equations in our system, the first step is to agree on three roots for our poly-
nomial. We can simply choose 1, 2, 3 as roots, meaning that our polynomial solves
fix) =0 for x=1, x= 2, and x = 3. Why do that? By doing so, we can make our polyno-
mial represent all the equations in our system simultaneously by representing the first
equation when evaluated at 1, and representing the second equation when evaluated
at 2, and so on. The prover’s job is now to create a polynomial f{x) such that:

J)=ax (b+3)—-m
f2)=wx (m—a-0b) — (v—a-">)
f8)=wxw-w

Notice that all these equations should evaluate to 0 if the values correctly match the
execution of our original program. In other words, our polynomial f{x) has roots 1, 2,
3 only if we create it correctly. Remember, this is what zk-SNARKs are all about: we
have the protocol to prove that, indeed, our polynomial f{(x) has these roots (known
by both the prover and the verifier).

It would be too simple if this was the end of my explanation because now the prob-
lem is that the prover has too much freedom in choosing their polynomial f(x). They
can simply find a polynomial that has roots 1, 2, 3 without caring about the values a, b,
m, v, and w. They can do pretty much whatever they want! What we want instead, is a
system that locks every part of the polynomial except for the secret values that the ver-
ifier must nof learn about.

It takes two to evaluate a polynomial hiding in the exponent

Let’s recap, we want a prover that has to correctly execute the program with their
secret value ¢ and the public values b and wand obtain the output v that they can pub-
lish. The prover then must create a polynomial by only filling the parts that the veri-
fier must not learn about: the values @ and m. Thus, in a real zk-SNARK protocol you
want the prover to have the least amount of freedom possible when they create their
polynomials and then evaluate it to a random point.

To do this, the polynomial is created somewhat dynamically by having the prover
only fill in their part, then having the verifier fill in the other parts. For example, let’s
take the first equation, f{1) = ax (b+ 3) — m, and represent it as

N(x) = aly(x) x (b+ 3) Ry (x) — mO (x)

where L;(x), R)(x), O;(x) are polynomials that evaluate to 1 for x=1 and to 0 for x=2
and x = 3. This is necessary so that they only influence our first equation. (Note that it
is easy to find such polynomials via algorithms like Lagrange interpolation.) Now,
notice two more things:

General-purpose zero-knowledge proofs (ZKPs) 341

We have the inputs, intermediate values, and outputs as coefficients of our
polynomials.

The polynomial f(x) is the sum f;(x) + fo(x) + f3(x), where we can define f;(x)
and f3(x) to represent equations 2 and 3, similarly to f;(x).

As you can see, our first equation is still represented at the point x = 1:

S = A1) + fo(1) + f5(1)
=N(1)
= aly(1) x (b+3)Ry (1) = mO; (1)
—ax (b+3)-m

With this new way of representing our equations (which remember, represent the exe-
cution of our program), the prover can now evaluate parts of the polynomial that are
relevant to them by:

Taking the exponentiation of the random point r hidden in the exponent to
reconstruct the polynomials L; (7) and O;(r)

Exponentiating g™ with the secret value a to obtain (gh®)?* = g*®, which
represents a x L;(x) that is evaluated at an unknown and random point x = r
and hidden in the exponent

Exponentiating g% with the secret intermediate value m to obtain (g%1®)™ =
g™ which represents the evaluation of mO;(x) at the random point r and

hidden in the exponent

The verifier can then fill in the missing parts by reconstructing (g"®)® and (g®)?
for some agreed on value 6 with the same techniques the prover used. Adding the two
together the verifier obtains g"™1® + g®i® which represents the (hidden) evaluation
of (b + 3) x Ry(x) at an unknown and random point x = . Finally, the verifier can
reconstruct f (), which is hidden in the exponent, by using a bilinear pairing:

e(g, gt Ih) —e(g, g"N1®) = e(g, g™ x (b + 3)Ry(r) —mO; (1)

If you extrapolate these techniques to the whole polynomial f{x), you can figure out
the final protocol. Of course, this is still a gross simplification of a real zk-SNARK pro-
tocol; this still leaves way too much power to the prover.

All the other tricks used in zk-SNARKs are meant to further restrict what the
prover can do, ensuring that they correctly and consistently fill in the missing parts as
well as optimizing what can be optimized. By the way, the best explanation I've read is
the paper, “Why and How zk-SNARK Works: Definitive Explanation” by Maksym Pet-
kus, which goes much more in depth and explains all of the parts that I've overlooked.

And that’s it for zk-SNARKs. This is really just an introduction; in practice,
zk-SNARKs are much more complicated to understand and use! Not only is the amount

342

CHAPTER 15 Is this it? Next-generation cryptography

of work to convert a program into something that can be proven nontrivial, it some-
times adds new constraints on a cryptography protocol. For example, the mainstream
hash functions and signature schemes are often too heavy-duty for general-purpose ZKP
systems, which has led many protocol designers to investigate different ZKP-friendly
schemes. Furthermore, as I said earlier, there are many different zk-SNARKs construc-
tions, and there are also many different non-zk-SNARKs constructions, which might be
more relevant as general-purpose ZKP constructions depending on your use case.

But, unfortunately, no one-size-fits-all ZKP scheme seems to exist (for example, a
ZKP scheme with a transparent setup, succinct, universal, and quantum-resistant), and
it is not clear which one to use in which cases. The field is still young, and every year
new and better schemes are being published. It might be that a few years down the
line better standards and easy-to-use libraries will surface, so if you’re interested in this
space, keep watching!

Summary

In the last decade, many theoretical cryptographic primitives have made huge
progress in terms of efficiency and practicality; some are making their way into
the real world.

Secure multi-party computation (MPC) is a primitive that allows multiple par-
ticipants to correctly execute a program together, without revealing their
respective inputs. Threshold signatures are starting to be adopted in cryptocur-
rencies, while private set intersection (PSI) protocols are being used in modern
and large-scale protocols like Google’s Password Checkup.

Fully homomorphic encryption (FHE) allows one to compute arbitrary func-
tions on encrypted data without decrypting it. It has potential applications in
the cloud, where it could prevent access to the data to anyone but the user
while still allowing the cloud platform to perform useful computation on the
data for the user.

General-purpose zero-knowledge proofs (ZKPs) have found many use cases,
and have had recent breakthroughs with small proofs that are fast to verify.
They are mostly used in cryptocurrencies to add privacy to or to compress the
size of the blockchain. Their use cases seem broader, though, and as better stan-
dards and easier-to-use libraries make their way into the real world, we might
see them being used more and more.

When and where

cryptography fails

This chapter covers

= General issues you can run into when using
cryptography
= The mantras to follow to bake good cryptography

= The dangers and responsibilities of a
cryptography practitioner

Greetings, traveler; you've come a long way. While this is the last chapter, it’s all
about the journey, not the end. You're now equipped with the gear and skills
required to step into the real world of cryptography. What'’s left is for you to apply
what you’ve learned.

Before parting ways, I'd like to give you a few hints and tools that’ll be useful for
what follows. The quests you’ll face often follow the same pattern: it starts with a
challenge, launching you on a pursuit for an existing cryptographic primitive or
protocol. From there, you’ll look for a standard and a good implementation, and
then you’ll make use of it in the best way you can. That’s if everything goes accord-
ing to plan. . ..

343

344

16.1

CHAPTER 16 When and where cryptography fails

Before we part

Someone who seeks to bridge the gap between theory and practice will have to slay
many dragons. Here's your sword—take it.

Finding the right cryptographic primitive

or protocol is a boring job

You're facing unencrypted traffic, or a number of servers that need to authenticate
one another, or some secrets that need to be stored without becoming single points of
failure. What do you do?

You could use TLS or Noise (mentioned in chapter 9) to encrypt your traffic. You
could set up a public key infrastructure (mentioned in chapter 9) to authenticate serv-
ers via the signature of some certificate authority, and you could distribute a secret
using a threshold scheme (covered in chapter 8) to avoid the compromise of one
secret to lead to the compromise of the whole system. These would be fine answers.

If the problem you’re facing is a common one to have, chances are that you can
simply find an existing cryptographic primitive or protocol that directly solves your
use case. This book gives you a good idea of what the standard primitives and com-
mon protocols are, so at this point, you should have a good idea of what’s at your dis-
posal when faced with a cryptographic problem.

Cryptography is quite an interesting field, going all over the place as new discover-
ies and primitives are invented and proposed. While you might be tempted to explore
exotic cryptography to solve your problem, your responsibility is to remain conserva-
tive. The reason is that complexity is the enemy of security. Whenever you do something, it
is much easier to do it as simply as possible. Too many vulnerabilities have been intro-
duced by trying to be extravagant. This concept has been dubbed boring cryptography
by Bernstein in 2015, and has been the inspiration behind the naming of Google’s
TLS library, BoringSSL.

How do I use a cryptographic primitive or protocol? Polite standards and formal verification 345

Cryptographic proposals need to withstand many years of careful scrutiny before they
become plausible candidates for field use. This is especially when the proposal is based on
novel mathematical problems.

—Rivest et al. (“Responses to NIST's proposal,” 1992)

What if you can’t find a cryptographic primitive or protocol that solves your problem?
This is where you must step into the world of theoretical cryptography, which is obvi-
ously not the subject of this book. I can merely give you recommendations.

The first recommendation I will give you is the free book A Graduate Course in
Applied Cryptography, written by Dan Boneh and Victor Shoup, and available at https://
cryptobook.us. This book provides excellent support that covers everything I've cov-
ered in this book but in much more depth. Dan Boneh also has an amazing online
course, “Cryptography I,” also available for free at https://www.coursera.org/learn/
crypto. It is a much more gentle introduction to theoretical cryptography. If you’d like
to read something halfway between this book and the world of theoretical cryptogra-
phy, I can’t recommend enough the book, Serious Cryptography: A Practical Introduction
to Modern Encryption (No Starch Press, 2017) by Jean-Philippe Aumasson.

Now, let’s imagine that you do have an existing cryptographic primitive or protocol
that solves your solution. A cryptographic primitive or protocol is still very much of a
theoretical thing. Wouldn’t it be great if it had a practical standard that you could use
right away?

[<
/A Crypto primitive
o . or protocol
—

o———o—

16.2 How do I use a cryptographic primitive or protocol?
Polite standards and formal verification

You realize that a solution exists that meets your needs, now does it have a standard?
Without a standard, a primitive is often proposed without consideration for its real-
world use. Cryptographers often don’t think about the different pitfalls of using their
primitive or protocol and the details of implementing them. Polite cryptography is what

https://cryptobook.us
https://cryptobook.us
https://cryptobook.us
https://www.coursera.org/learn/crypto
https://www.coursera.org/learn/crypto
https://www.coursera.org/learn/crypto

346

CHAPTER 16 When and where cryptography fails

Riad S. Wahby once called standards that care about their implementation and leave
little room for implementers to shoot themselves in the foot.

The poor user is given enough rope with which to hang himself—something a standard
should not do.

—Rivest et al. (“Responses to NIST's proposal,” 1992)

A polite standard is a specification that aims to address all edge cases and potential
security issues by providing safe and easy-to-use interfaces to implement, as well as
good guidance on how to use the primitive or protocol. In addition, good standards
have accompanying test vectors: lists of matching inputs and outputs that you can feed
to your implementation to test its correctness.

Unfortunately, not all standards are “polite,” and the cryptographic pitfalls they
create are what make most of the vulnerabilities I talk about in this book. Sometimes
standards are too vague, lack test vectors, or try to do too much at the same time. For
example, cryptography agility is the term used to specify the flexibility of a protocol in
terms of cryptographic algorithms it supports. Supporting different cryptographic
algorithms can give a standard an edge because sometimes one algorithm gets broken
and deprecated while others don’t. In such a situation, an inflexible protocol prevents
clients and services from easily moving on. On the other hand, too much agility can
also strongly affect the complexity of a standard, sometimes even leading to vulnera-
bilities, as the many downgrade attacks on TLS can attest.

Unfortunately, more often than cryptographers are willing to admit, you will run
into trouble when your problem either meets an edge case that the mainstream prim-
itives or protocols don’t address, or when your problem doesn’t match a standardized
solution. For this reason, it is extremely common to see developers creating their own
mini-protocols or mini-standards. This is when trouble starts.

When wrong assumptions are made about the primitive’s threat model (what it
protects against) or about its composability (how it can be used within a protocol),
breakage happens. These context-specific issues are amplified by the fact that cryp-
tographic primitives are often built in a silo, where the designer did not necessarily
think about all the problems that could arise once the primitive is used in a number of
different ways or within another primitive or protocol. I gave many examples of this:
X25519 breaking in edge cases protocols (chapter 11), signatures assumed to be
unique (chapter 7), and ambiguity in who is communicating to whom (chapter 10).
It’s not necessarily your fault! The developers have outsmarted the cryptographers,
revealing pitfalls that no one knew existed. That’s what happened.

If you ever find yourself in this type of situation, the go-to tool of a cryptographer
is pen-and-paper proof. This is not quite helpful for us, the practitioners, as we
either don’t have the time to do that work (it really takes a lot of time) or even the
expertise. We’re not helpless, though. We can use computers to facilitate the task of
analyzing a mini-protocol. This is called formal verification, and it can be a wonderful
use of your time.

How do I use a cryptographic primitive or protocol? Polite standards and formal verification 347

Formal verification allows you to write your protocol in some intermediate lan-
guage and test some properties on it. For example, the Tamarin protocol prover (see fig-
ure 16.1) is a formal verification tool that has been (and is) used in order to find
subtle attacks in many different protocols. To learn more about this, see the papers
“Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on Proto-
cols using Diffie-Hellman” (2019) and “Seems Legit: Automated Analysis of Subtle

Attacks on Protocols that Use Signatures” (2019).

Running Tasaris 1.2.1

Index Download |Actions » 'Opuom-]
e

Proof scripts
sessionkeyL) & #1) A
(ServerCreateSession(server, client,
sessionkey2) @ #3)) A
(# < #)) A
(~(client = server))) =
(~(3 #k1 #k2.
(K(sessionkeyl) @ #k1) a (K(
sessionkey2) @ #k2)))"
simplify
solve(!Identity(Sclient, ~clientprivkey,
clientpubkey) Po #i)
case create_identities
solve(!Identity(S$server, ~serverprivkey,
serverpubkey.1) Pe #j)
case create_identities
solve(splitEqs(@))
case split_case_1
solve(!KU(serverpubkeyA~clientprivkey) @
#vk.12)
case client_hello
solve(splitEqs(l))
case split_case_1
solve(!KU(clientpubkeyr~serverprivkey) @
#vk.13)
case client_hello
SOLVED // trace found
qed

ged
qed
qed
qed
qed

Visualization display

)

Fr(~serverpriviey |

b1 - croate_Gentties(] @
ey, g) | Out g™)

poy | o>

)

o_send_server_| - [ServerCroateSession($sarver. Schent.

Fri ~sorverprivkey 1)

#e6 - croate_identties(]

Jony Soarvec, ~sucverpiihey | Yesucverpriin.

X

- Qq'(-'n_hm’. Sserver, Schent, C
by 3 A~serverpriviey>
P—
>—<’ o Skt —chokoniy. | Boeriy(Seovc | sarverpeider
) ey : T
#ve2 - chent_hetol]
Out(<chent_hello’, Schent, Sserver. 1, 'g*~clientprivkey>)

#K1 :isend[K('g'\~chentpriviey)]

Figure 16.1 The Tamarin protocol prover is a free formal verification tool that you can use to model a
cryptographic protocol and find attacks on it.

The other side of the coin is that it is often hard to use formal verification tools. The
first step is to understand how to translate a protocol into the language and the con-
cepts used by the tool, which is often not straightforward. After having described a
protocol in a formal language, you still need to figure out what you want to prove and
how to express it in the formal language.

It is not uncommon to see a proof that actually proved the wrong things, so one
can even ask who verifies the formal verification? Some promising research in this
area is aimed at making it easier for developers to formally verify their protocols. For
example, the tool Verifpal (https://verifpal.com) trades off soundness (being able to
find all attacks) for ease of use.

You can also use formal verification to verify a cryptographic primitive’s security
proofs using formal verification tools like Coq, CryptoVerif, and ProVerif, and even to
generate “formally verified” implementations in different languages (see projects like

https://verifpal.com

348

16.3

CHAPTER 16 When and where cryptography fails

The KRACK attack

It does happen that critical differences are made when writing a formal description of
a protocol as compared to the actual protocol being implemented, which then leads
to gaps and real-world attacks. This is what happened in 2017, when the KRACK
attack (https://krackattacks.com) broke the Wi-Fi protocol WPA2, even though it had
been previously formally verified.

HACL*, Vale, and fiat-crypto, which implement mainstream cryptographic primitives
with verified properties like correctness, memory safety, and so on). That being said,
formal verification is not a foolproof technique; gaps between the paper protocol and
its formal description or between the formal description and the implementation will
always exist and appear innocuous until found to be fatal.

Studying how other protocols fail is an excellent way of avoiding the same mis-
takes. The cryptopals.com or cryptohack.org challenges are a great way to learn about
what can go wrong in using and composing cryptographic primitives and protocols.
Bottom line—you need to thoroughly understand what you’re using! If you are build-
ing a mini-protocol, then you need to be careful and either formally verify that proto-
col or ask experts for help. OK, we have a standard, or something that looks like it,
now who’s in charge of implementing that?

A Crypto primitive
@ or protocol ‘ ' I
A e

M\

Where are the good libraries?

You're one step closer to solving your problem. You know the primitive or protocol
you want to use, and you have a standard for it. At the same time, you're also one step
further away from the specification, which means you might create bugs. But first,
where’s the code?

You look around, and you see that there are many libraries or frameworks available
for you to use. That’s a good problem to have. But still, which library do you pick? Which

https://krackattacks.com
http://cryptohack.org
http://cryptopals.com

16.4

Misusing cryptography: Developers are the enemy 349

is most secure? This is a hard question to answer. Some libraries are well-respected, and
I've listed some in this book: Google’s Tink, libsodium, cryptography.io, etc.

Sometimes, though, it is hard to find a good library to use. Perhaps the program-
ming language you’re using doesn’t have that much support for cryptography, or per-
haps the primitive or protocol you want to use doesn’t have that many implementations.
In these situations, it is good to be cautious and ask the cryptography community for
advice, look at the authors behind the library, and perhaps even ask experts for a code
review. For example, the r/crypto community on Reddit is pretty helpful and welcom-
ing; emailing authors directly sometimes works; asking the audience during open-mic
sessions at conferences can also have its effect.

If you're in a desperate situation, you might even have to implement the cryp-
tographic primitive or protocol yourself. There are many issues that can arise at this
point, and it is a good idea to check for common issues that arise in cryptographic
implementations. Fortunately, if you are following a good standard, then mistakes are
less easy to make. But still, implementing cryptography is an art, and it is not some-
thing you should get yourself into if you can avoid it.

One interesting way to test a cryptographic implementation is to use tooling. While
no single tooling can cater to all cryptographic algorithms, Google’s Wycheproof
deserves a mention. Wycheproof is a suite of test vectors that you can use to look for
tricky bugs in common cryptographic algorithms like ECDSA, AES-GCM, and so on.
The framework has been used to find an impressive number of bugs in different cryp-
tographic implementations. Next, let’s pretend that you did not implement cryptogra-
phy yourself and found a cryptography library.

Crypto primitive
or protocol ’ '

03
2 [ercar]

oee en]
04

3 e
A
28

Misusing cryptography: Developers are the enemy

You found some code you can use, you’re one step further, yet you find there are
more opportunities to create bugs. This is where most bugs in applied cryptography
happen. We’ve seen examples of misusing cryptography in this book again and again:
reusing nonces is bad in algorithms like ECDSA (chapter 7) and AES-GCM (chapter 4),

350

CHAPTER 16 When and where cryptography fails

collisions can arise when the misuse of hash functions happen (chapter 2), parties can
be impersonated due to lack of origin authentication (chapter 9), and so on.

The results show that just 17% of the bugs are in cryptographic libraries (which often
have devastating consequences), and the remaining 83 % are misuses of cryptographic
libraries by individual applications.

—David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich
(“Why does cryptographic software fail? A case study
and open problems,” 2014)

In general, the more a primitive or protocol is abstracted, the safer it is to use. For
example, AWS offers a Key Management Service (KMS) to host your keys in HSMs and
to perform cryptographic computations on-demand. This way, cryptography is abstracted
at the application level. Another example is programming languages that provide
cryptography within their standard libraries, which are often more trusted than third-
party libraries. For example, Golang’s standard library is excellent.

The care given to the usability of a cryptographic library can often be summarized
as “treating the developer as the enemy.” This is the approach taken by many cryp-
tographic libraries. For example, Google’s Tink doesn’t let you choose the nonce/IV
value in AES-GCM (see chapter 4) in order to avoid accidental nonce reuse. The libso-
dium library, in order to avoid complexity, only offers a fixed set of primitives without
giving you any freedom. Some signature libraries wrap messages within a signature,
forcing you to verify the signature before releasing the message, and the list goes on.
In this sense, cryptographic protocols and libraries have a responsibility to make their
interfaces as misuse resistant as possible.

I've said it before, I'll say it again—make sure you understand the fine print (all of
it) for what you’re using. As you’ve seen in this book, misusing cryptographic primi-
tives or protocols can fail in catastrophic ways. Read the standards, read the security
considerations, and read the manual and the documentation for your cryptographic
library. Is this it? Well, not really. . . . You’re not the only user here.

Crypto primitive

or protocol ’ '

02 03

R [siancard E

92 uread

VR (=
’ 04

16.5

You’re doing it wrong: Usable security 351

You’re doing it wrong: Usable security

Using cryptography solves problems that applications have in often transparent ways but
not always! Sometimes, the use of cryptography leaks to the users of the applications.

Usually, education can only help so much. It is, hence, never a good idea to blame
the user when something bad happens. The relevant field of research is called usable
security, in which solutions are sought to make security and cryptography-related fea-
tures as transparent as possible to users, removing as many opportunities for misuse
as possible. One good example is how browsers gradually shifted from simple warn-
ings when SSL/TLS certificates were invalid to making it harder for users to accept
the risk.

We observed behavior that is consistent with the theory of warning fatigue. In Google
Chrome, users click through the most common SSL error faster and more frequently than
other errors. [. . .] We also find clickthrough rates as high as 70.2% for Google Chrome
SSL warnings, indicating that the user experience of a warning can have a tremendous
impact on user behavior.

—Devdatta Akhawe and Adrienne Porter Felt
(“Alice in Warningland: A Large-Scale Field Study
of Browser Security Warning Effectiveness,” 2013)

Another good example is how security-sensitive services have moved on from pass-
words to supporting second-factor authentication (covered in chapter 11). Because it
was too hard to force users to use strong per-service passwords, another solution was
found to eliminate the risk of password compromise. End-to-end encryption is also a
good example because it is always hard for users to understand what it means to have
their conversations end-to-end encrypted and how much of the security comes from
them actively verifying fingerprints (covered in chapter 10). Whenever cryptography
is pushed to users, great effort must be taken to reduce the risk of user mistakes.

Story time

Years ago | was asked to review the end-to-end encryption proposal of a widely-used
messaging application. The proposal included the usual state-of-the-art protocol, the
Signal protocol (covered in chapter 10), yet it didn’t offer a functionality for users to
verify the public keys of (or the session keys with) other users. This meant that while
your communications were end-to-end encrypted in the presence of a passive adver-
sary, a rogue employee could have easily updated a user’s public key (or some users'
session keys), and you would have not been able to detect the man-in-the-middle
attack.

352 CHAPTER 16 When and where cryptography fails

Crypto primitive
or protocol

W] 03

Standard i
TRfli el

Good library |

04 05

Crypto
usage

06

Application’s security usability

16.6 Cryptography is not an island

Cryptography is often used as part of a more complex system that can also have bugs.
Actually, most of the bugs live in those parts that have nothing to do with the cryptog-
raphy itself. An attacker often looks for the weakest link in the chain, the lowest hang-
ing fruit, and it so happens that cryptography often does a good job at raising the bar.
Encompassing systems can be much larger and complex and often end up creating
more accessible attack vectors. Adi Shamir famously said, “Cryptography is typically
bypassed, not penetrated.”

While it is good to put some effort into making sure that the cryptography in your
system is conservative, well-implemented, and well-tested, it is also beneficial to ensure
that the same level of scrutiny is applied to the rest of the system. Otherwise, you
might have done all of that for nothing.

Your responsibilities as a cryptography practitioner, don’t roll your own crypto 353

Crypto primitive

or protocol ’ a

BBl

oosrors]
04

IAppIication’s security usability I

|\ J

16.7 Your responsibilities as a cryptography practitioner,
don’t roll your own crypto

That’s it, this is the end of the book, you are now free to gallop in the wilderness. But
I have to warn you, having read this book gives you no superpowers; it should only give
you a sense of fragility. A sense that cryptography can easily be misused and that the
simplest mistake can lead to devastating consequences. Proceed with caution!

You now have a big crypto toolset at your belt. You should be able to recognize
what type of cryptography is being used around you, perhaps even identify what seems
fishy. You should be able to make some design decisions, know how to use cryptogra-
phy in your application, and understand when you or someone is starting to do some-
thing dangerous that might require more attention. Never hesitate to ask for an
expert’s point of view.

“Don’t roll your own crypto” must be the most overused cryptography line in
software engineering. Yet, these folks are somewhat right. While you should feel
empowered to implement or even create your own cryptographic primitives and
protocols, you should not use it in a production environment. Producing cryptogra-
phy takes years to get right: years of learning about the ins and outs of the field, not
only from a design perspective but from a cryptanalysis perspective as well. Even
experts who have studied cryptography all their lives build broken cryptosystems.
Bruce Schneier once famously said, “Anyone, from the most clueless amateur to the
best cryptographer, can create an algorithm that he himself can’t break.” At this

354

CHAPTER 16 When and where cryptography fails

point, it is up to you to continue studying cryptography. These final pages are not
the end of the journey.

I want you to realize that you are in a privileged position. Cryptography started as
a field behind closed doors, restricted only to members of the government or aca-
demics kept under secrecy, and it slowly became what it is today: a science openly
studied throughout the world. But for some people, we are still very much in a time
of (cold) war.

In 2015, Rogaway drew an interesting comparison between the research fields of
cryptography and physics. He pointed out that physics had turned into a highly politi-
cal field shortly after the nuclear bombing of Japan at the end of World War II
Researchers began to feel a deep responsibility because physics was starting to be
clearly and directly correlated to the deaths of many and the deaths of potentially
many more. Not much later, the Chernobyl disaster would amplify this feeling.

On the other hand, cryptography is a field where privacy is often talked about as
though it were a different subject, making cryptography research apolitical. Yet, deci-
sions that you and I take can have a long-lasting impact on our societies. The next
time you design or implement a system using cryptography, think about the threat
model you’ll use. Are you treating yourself as a trusted party or are you designing
things in a way where even you cannot access your users’ data or affect their secu-
rity? How do you empower users through cryptography? What do you encrypt? “We
kill people based on metadata,” said former NSA chief Michael Hayden (http://mng
.bz/PX19).

Crypto primitive

or protocol ’ ']

rofkfl
[y |5

Goce o]
04

I Application’s security usability I

\ J

http://mng.bz/PX19
http://mng.bz/PX19
http://mng.bz/PX19

Summary

In 2012, near the coast of Santa Barbara, hundreds of cryptographers gathered around
Jonathan Zittrain in a dark lecture hall to attend his talk, “The End of Crypto” (https://
www.youtube.com/watch?v=3ijjHZHNIbU). This was at Crypto, the most respected
cryptography conference in the world. Jonathan played a clip from the television series

Game of Thrones to the room. In the video, Varys, a eunuch, poses a riddle to the hand

of the king, Tyrion. This is the riddle:

Three great men sit in a room: a king, a priest, and a rich man. Between them stands a
common sellsword. Each great man bids the sellsword kill the other two. Who lives, who
dies? Tyrion promptly answers, “Depends on the sellsword,” to which the eunuch
responds, “If it’s the swordsman who rules, why do we pretend kings hold all the power?”

Jonathan then stopped the clip and pointed to the audience, yelling at them, “You get

that you guys are the sellswords, right?”

Summary

Real-world cryptography tends to fail mostly in how it is applied. We already
know good primitives and good protocols to use in most use cases, which leaves
their misuse as the source of most bugs.

Alot of typical use cases are already addressed by cryptographic primitives and
protocols. Most of the time, all you’ll have to do is find a respected implementa-
tion that addresses your problem. Make sure to read the manual and to under-
stand in what cases you can use a primitive or a protocol.

Real-world protocols are constructed with cryptographic primitives by combin-
ing them like Lego. When no well-respected protocols address your problem,
you’ll have to assemble the pieces yourself. This is extremely dangerous as cryp-
tographic primitives sometimes break when used in specific situations or when
combined with other primitives or protocols. In these cases, formal verification
is an excellent tool to find issues, although it can be hard to use.

Implementing cryptography is not just difficult; you also have to think about
hard-to-misuse interfaces (in the sense that good cryptographic code leaves lit-
tle room for the user to shoot themselves in the foot).

Staying conservative and using tried-and-tested cryptography is a good way to
avoid issues down the line. Issues stemming from complexity (for example, sup-
porting too many cryptographic algorithms) is a big topic in the community,
and steering away from over-engineered systems has been dubbed “boring cryp-
tography.” Be as boring as you can.

Both cryptographic primitives and standards can be responsible for bugs in
implementations due to being to complicated to implement or to vague about
what implementers should be wary of. Polite cryptography is the idea of a cryp-
tographic primitive or standard that is hard to badly implement. Be polite.

https://www.youtube.com/watch?v=3ijjHZHNIbU
https://www.youtube.com/watch?v=3ijjHZHNIbU
https://www.youtube.com/watch?v=3ijjHZHNIbU

356

CHAPTER 16 When and where cryptography fails

The use of cryptography in an application sometimes leaks to the users. Usable
security is about making sure that users understand how to handle cryptogra-
phy and cannot misuse it.

Cryptography is not an island. If you follow all of the advice this book gives you,
chances are that most of your bugs will happen in the noncryptographic parts
of your system. Don’t overlook these!

With what you have learned in this book, make sure to be responsible, and
think hard about the consequences of your work.

appendix

Answers to exercises

Chapter 2

Can you tell if a hash function provides hiding and binding if used as a commitment
scheme?

A hash function is hiding thanks to the pre-image resistance property; that is, if your
input is random enough so that no one can guess it. To fix that, you can generate a
random number and hash it with your input, and later, you can reveal both your
input and the random number to open your commitment. A hash function is bind-
ing thanks to the second pre-image resistance property.

By the way, there is no way this string represents 256 bits (32 bytes), right? How is this
secure then?

We don’t care about collision resistance. We only care about second pre-image
resistance. Thus, we can truncate the digest to reduce its size.

Can you guess how the Dread Pirate Roberts (the pseudonym of Silk Road’s webmaster)
managed to obtain a hash that contains the name of the website?

Dread Pirate Roberts created a lot of keys until one ended up hashing to that cool
base32 representation. Facebook did the same and is accessible from facebookcore-
wwwi.onion (https://facebook.com/notes/protect-the-graph/making-connections-
to-facebook-more-secure/1526085754298237). These are called vanity addresses.

357

https://facebook.com/notes/protect-the-graph/making-connections-to-facebook-more-secure/1526085754298237
https://facebook.com/notes/protect-the-graph/making-connections-to-facebook-more-secure/1526085754298237

358

APPENDIX Answers to exercises

Chapter 3

Can you figure out how a variable-length counter could possibly allow an attacker to forge
an authentication tag?

By observing the following message, where | | represents string concatenation, MAC (k,
"1" || "1 is my favorite number"), an attacker can forge a valid authentication tag
for the eleventh message, MAC (k, "11" | " is my favorite number").

Caution: not all MACs are PRFs. Can you see why?

Imagine that the following function is a valid MAC and PRF: MAC (key, input), then is
the following function a valid MAC? NEW_MAC = MAC (key, input) || 0x01? Is it a valid
PRF? It is a valid MAC as it prevents forgery, but it’s not a valid PRF, as you can easily
distinguish the output from a totally random string (because the last byte is always
setto 1).

Chapter 6

Using the same shared secret with everyone would be very bad; can you see why?

If I can encrypt messages to you with this shared secret, I can also decrypt messages
from other people.

Do you see why you can’t use the key exchange output right away?

Remember what you’ve learned in chapter 5 on key exchanges. In (FF)DH, calcula-
tions happen modulo a large prime number p. Let’s take a small prime number as
example, 65,537. In hexadecimal, our p is written as 0x010001, and in binary, it is writ-
ten as 0000 0001 0000 0000 0000 0001. In binary, notice the zeros preceding the first
one because we represent our number in bytes (multiple of 8 bits).

If you understand modular arithmetic, you know that numbers modulo this prime
p will never be larger, meaning that the first 7 bits will always be set to 0. In addition,
the eighth bit will most often be set to 0 rather than 1. This is not uniformly random.
Ideally, every bit should have the same probability of being set to 1 or to 0.

Chapter 7

As you saw in chapter 3, authentication tags produced by MACs must be verified in
constant time to avoid timing attacks. Do you think we need to do the same for verifying
signatures?

No. This is because the verification of an authentication tag involves a secret key. Veri-
fying a signature only involves a public key and, thus, does not need to be verified in
constant time.

Ansuwers to exercises 359

Chapter 8

Imagine for a minute that mixing different sources of entropy was done by simply XORing
them together. Can you see how this might fail to be contributory?

A backdoored source of entropy could set its output as the XOR of all the other
sources of entropy, effectively canceling all entropy to 0.

Signature schemes like BLS (mentioned in figure 8.5 and in chapter 7) produce unique
signatures, but this is not true for ECDSA and EdDSA. Do you see why?

In ECDSA, the signer can choose different nonces to produce different signatures for
the same key pair and message. While EADSA is a signature algorithm that determinis-
tically derives the nonce based on the message to be signed, this does not mean that
the signer cannot use any nonce if they so choose.

Chapter 9

A compromise of the server’s private key at some point in time would be devastating as
MITM attackers would then be able to decrypt all previously recorded conversations. Do
you understand how this can happen?

The attacker would then be able to rewind history and impersonate the server at the
time the handshake was performed. Indeed, the attacker now has the server’s private
key. All the other information to perform the key exchange and derive the posthand-
shake symmetric keys is public.

The values signatureAlgorithm and signatureValue are not contained in the
actual certificate, tbsCertificate. Do you know why?

The Certificate Authority (CA) needs to sign the certificate, which leads to a paradox:
the signature cannot be part of the signature itself. The CA must, thus, append the
signature to the certificate. Other standards and protocols might use different tech-
niques. For example, you could include the signature as part of tbsCertificate and
pretend that it is made of all Os when you sign or verify the certificate.

Chapter 10

Do you know why the email’s content is compressed before it is encrypted and not after?

A ciphertext is indistinguishable from a random string according to the definition of a
cipher. Due to this, compression algorithms are incapable of finding patterns to effi-
ciently compress encrypted data. For this reason, compression is always applied before
encryption.

360

APPENDIX Answers to exercises

Can you think of an unambiguous way of signing a message?

One line: authenticate the context. A way to do this is to include both the sender and
the recipient’s names and their public keys in the signature and then encrypt that.

Chapter 11

Sometimes applications attempt to fix the issue of the server learning about the user
passwords at registration by having the client hash (perhaps with a password hash) the
password before sending it to the server. Can you determine if this really works?

Client-side hashing alone does not work as the infamous pass-the-hash attack showed
(https://en.wikipedia.org/wiki/Pass_the_hash); if the server stores Alice’s hashed
password directly, then anyone who steals it can also use it as a password to authenti-
cate as Alice. Some applications perform both clientside hashing and server-side
hashing, which, in this case, can perhaps prevent an active attacker from knowing the
original password (although an active attacker might be able to disable client-side
hashing by updating the code of the client application).

Imagine a protocol where you have to enter the correct 4-digit PIN to securely connect to a
device. What are the chances to pick a correct PIN by just guessing?

That’s 1 out of 10,000 chances to correctly guess something. You’d be happy if you
were playing Lotto with these odds.

https://en.wikipedia.org/wiki/Pass_the_hash

Numerics

0-RTT (zero round trip time) 194
3DES (triple-DES) symmetric key 281
51% attack 265

A

absorbing 41
abstracting cryptography 17-18
additive groups 99
AddRoundKey function 69
AEAD (authenticated encryption with associated
data) 75-76
AES (Advanced Encryption Standard) block
cipher 66-70
amount of security provided by 67
interface of 67-68
internals of 68-70
AES-CBC-HMAC construction 73-74
AES-GCM AEAD 76-80
AES-NI (AES New Instructions) 70
append-only ledger 259
applied cryptography 19
Argon2 45
arithmetic circuits 324, 338-339
ASLR (address space layout randomization)
155
ASN.1 (Abstract Syntax Notation One) 190
associativity 92
asymmetric cryptographic primitive 113
asymmetric cryptography 10-16, 87, 303
digital signatures 15-16
key exchanges 10-12
vs. symmetric 13
asymmetric encryption
in practice 111-117

361

mdex

overview 110-111
with RSA 117-126
why not to use RSA PKCS#1 v1.5
121-123
with RSA-OAEP 123-126
asymmetric keys 239-241
asymmetric password-authenticated key
exchange 232-236
OPAQUE 234-236
OPREFs (oblivious pseudorandom functions)
233-234
mutual authentication in key exchanges
239-240
post-handshake user authentication with
FIDO2 240-241
asynchronous network 270
attestation 289
authenticated channels 244
authenticated encryption 84
AFEAD (authenticated encryption with associated
data) 75-76
AES (Advanced Encryption Standard) block
cipher 66-70
amount of security provided by 67
interface of 67-68
internals of 68-70
AES-CBC-HMAC construction 73-74
AES-GCM AEAD 76-80
CBC (cipher block chainging) mode of
operation 70-73
ChaCha20-Poly1305 81-84
ciphers, overview of 65-66
encrypted penguin illustration 70-73
authenticated key exchanges 89, 132-133
authenticated strings 245
authentication 182, 186
authentication property 18

362

authentication tags 50
forgery of 53
lengths of 53-54
verifying in constant time
55-57
avalanche effect 70

backdoors 20
backward secrecy 157
base blinding 294
BCryptGenRandom system call 159
BEAST (Browser Exploit Against SSL./TLS)
attack 73
Bell’s theorem 301
beyond birthday-bound security 80
BFT (Byzantine fault-tolerant) consensus
algorithms 252-257
decentralization 254-255
distributed protocols 252-254
permissionless and censorship-resistant
networks 255-257
bilinear pairings 336-337
binding 32
birthday paradox 31
bit attack 42
Bitcoin 257-267
mining 259-265
reducing block’s size by using Merkle trees
265-267
user balances and transactions 257-259
bitflip attacks 85
bit security 67
BitTorrent 32-33
blinding 294-295
blockchain 261
blockchain explorers 259
blockchain size 268
block cipher 36, 68
block function 81
blocks, Bitcoin 260
bootstrapping 328
boring cryptography 344
broken cryptographic algorithm 8
buffer overread 196

Cc

CA/Browser Forum (Certification Authority
Browser Forum) 187

cache attacks 292

CAs (certificate authorities) 187, 201, 284

CBC (cipher block chaining) 71

CCA2 (adaptive chosen ciphertext attack)
122

INDEX

CDNs (Content Delivery Networks) 32
certificate chain 188
Certificate message 239
certificate monitoring 195
CertificateRequest message 239
certificate revocation 195
certificates 188, 239
Certificate Transparency 197
CertificateVerify message 188, 239
ChaCha20-Poly1305 81-84
ChaCha20 stream cipher 81
chaos theory 153
checksum 26
ciphers, 65-66
ciphertext 65
ck (chaining key) 199
classifying cryptography 17-18
cleaning and mixing 159
clients 179
clientside fanout 223
closure 91
coinbase 262
collision resistance 29
collisions 53
commitments 32
commitment scheme 32
commit rule 273
committed changes to database 254
complexity of cryptography 24, 344
compression function 36
compromises 279
confidential computing 289
confidentiality 18, 268
confirmation blocks 264
consensus algorithms 253
constant-time programming 293-294
content integrity 33
contiguous rounds 273
contributory behavior 107
cookies 49, 58
correlation 301
counters 79
CPace (Composable Password Authenticated Con-
nection Establishment) 233, 245
CRLs (Certificate Revocation Lists) 195
CRS (common reference string) 334
cryptanalysts 8
cryptocurrency
BFT (Byzantine fault-tolerant) consensus
algorithms 252-257
decentralization 254-255
distributed protocols 252-254
permissionless and censorship-resistant
networks 255-257
Bitcoin 257-267
mining BTCs 259-262
mining conflicts 263-265

cryptocurrency (continued)
reducing block’s size by using Merkle
trees 265-267
user balances and transactions 257-259
DiemBFT 269-275
dishonesty toleration 270-271
rules of voting 271-272
safety and liveness 269-270
safety of 273-275
transactions, when considered finalized 273
issues researched 267-269
blockchain size 268
confidentiality 268
energy efficiency 268-269
latency 267-268
volatility 267
cryptographers 8
cryptographic library 76
cryptography
asymmetric 10-16
digital signatures 15-16
key exchanges 10-12
vs. symmetric 13
classifying and abstracting 17-18
complexity of 24
Kerckhoff’s principle 7-9
practical 19-23
security protocols and 4-5
symmetric 5-6
theoretical vs. real-world 18-19
where and when fails
cryptography not an island 352
finding right cryptographic primitive or proto-
col is a boring job 344-345
good libraries 348-349
misusing cryptography 349-350
polite standards and formal verification
345-348
responsibilities as cryptography
practitioner 353-355
usable security 351
cryptography agility 346
CRYSTALS (Cryptographic Suite for Algebraic
Lattices) 314
cSHAKE (customizable SHAKE) 42-44, 59
CSPRNGs (cryptographically secure PRNGs) 155
CTAP (Client to Authenticator Protocol) 241
CTR (Counter) mode 76
customization strings 42, 148
CVP (closest vector problem) 313
cyclic subgroups 94

D

INDEX

dd command-line tool 159
decentralized randomness beacons 164
decentralized trust 169-172, 208, 255
decryption algorithm 65
defense in depth 45, 279
DEK (data-encryption key) 287
DEM (data encapsulation mechanism)
116
DER (Distinguished Encoding Rules) 191
DES (Data Encryption Standard) 66, 281
deserializing input 44
deterministic consensus protocol 270
deterministic ECDSA 144
deterministic operations 68
deterministic output 27
DFA (differential fault analysis) 282
DH (Diffie-Hellman) key exchange 91-98
discrete logarithm problem 95-97
group theory 91-95
standards 97-98
DH (Diffie-Hellman) key pairs 215
DH (Diffie-Hellman) ratchet 212, 220
DiemBFT 269-275
dishonesty toleration 270-271
rules of voting 271-272
safety and liveness 269-270
safety of 273-275
transactions, when considered finalized
273
digests 26, 37
digital currency 251
digital signatures 15-16, 90
Dilithium signature scheme 316-318
discrete logarithm problem 95-97
disk encryption 85
distributed database 252
distributed systems 252
DKG (distributed key generation) 171
domain separation 42, 167
DOS (denial of service) attacks 58
dot product 313
Double Ratchet protocol 218-222
DPA (differential power analysis) 282, 291
drand 164
DRBGs (deterministic random bit generators)
155
DRM (digital rights management) 280
DSA (Digital Signature Algorithm) 22, 139
DSKS (duplicate signature key selection) 149
DUF (difference unpredictable function) 78

E

363

database encryption 85-86
Davies-Meyer method 36

early boot entropy 162
early data 194
ECB (electronic codebook) 71

364

ECDH (Elliptic Curve Diffie-Hellman) key
exchange 97-105, 113, 125
elliptic curve overview 98-101
how works 102-103
standards for 103-105
ECDLP (elliptic curve discrete logarithm
problem) 101
ECDSA (Elliptic Curve Digital Signature
Algorithm) 139, 143-145, 257
ECIES (Elliptic Curve Integrated Encryption
Scheme) 116, 126-128
Ed25519 algorithm 146
Ed25519ctx algorithm 148
Ed25519ph algorithm 148
EdDSA (Edwards-curve Digital Signature
Algorithm) 139, 145-149
eigenvalue 330
eigenvector 330
encrypted email 110, 205-211
GPG 205-207
key discovery 208-210
PGP 205-207, 210-211
scaling trust between users with web of trust 208
encrypted penguin illustration 70-73
encryption algorithm 65
Encrypt-then-MAC 74
end-to-end encryption
encrypted email, failure of 205-211
GPG 205-207
key discovery 208-210
PGP 205-207, 210-211
scaling trust between users with web of
trust 208
reasons for using 202-203
Signal app 211-222
Double Ratchet protocol 218-222
more user-friendly than WOT 212-215
X3DH 215-217
state of 222-224
energy efficiency 268-269
ephemeral keys 144, 185
error range 314
Euclidian division 93
EUF-CMA model 149
eventual consistency 253
exfiltration attacks 209

F

factorization problem 120

fault attacks 295-296

FBE (file-based encryption) 286
FDE (full-disk encryption) 286
FDH (Full Domain Hash) 143
federated protocols 212

fee field 44

INDEX

FFDH (Finite Field Diffie-Hellman) 94
FHE (fully homomorphic encryption) 326-332
bootstrapping as key to fully homomorphic
encryption 328-330
FHE scheme based on learning with errors
problem 330-332
homomorphic encryption with RSA
encryption 327
types of homomorphic encryption 327-328
where used 332
FIB (focused ion beam) 279
FIDO2 (Fast IDentity Online 2) 240-241
fingerprints 213, 246
Finished message 189
finite field 94
FIPS (Federal Information Processing
Standards) 20, 67
fixed-sized compression function 37
forgery of authentication tags 53
forking processes 161
forks 254
formal verification 346
forward secrecy 156, 185, 207
FTS (few-time signatures) 308, 310
fully homomorphic encryptions 328
future secrecy 157

G

Galois/Counter Mode 76

garbled circuits 326

Gaussian elimination algorithm 313

GDPR (General Data Protection Regulation) 203
general-purpose ZKPs (zero-knowledge proofs) 322
generators 94

getrandom system call 159

GPG (GNU Privacy Guard) 205-207

group messaging 223

group theory 91-95

Grover and Shor’s algorithms 303-304

H

handshake patterns 198
handshake phase 181
hardware attacks 279
hardware authenticators 240
hardware cryptography
choosing 289-290
HSMs (hardware security modules) 283-285
leakage-resilient cryptography 291-296
constant-time programming 293-294
fault attacks 295-296
masking and blinding 294-295
modern cryptography attacker model 278-279
smart cards and secure elements 281-283

hardware cryptography (continued)
TEE (trusted execution environment) 288-289
TPMs (Trusted Platform Modules) 285-288
white box cryptography 280
hash-based signatures 305-311
many-times signatures with XMSS and
SPHINCS+ 308-311
OTS (one-time signatures) with Lamport
signatures 305-306
WOTS (Winternitz one-time signatures) 307
hash functions 167
hashing passwords 44-46
in practice 31-33
BitTorrent 32-33
commitments 32
subresource integrity 32
Tor 33
overview 25-28
security considerations for 30-31
security properties of 28-30
standardized hash functions 34-44
avoiding ambiguous hashing with
TupleHash 43-44
SHA-2 hash function 35-38
SHA-3 hash function 38-41
SHAKE and ¢cSHAKE 42-43
hash tables 58
HelloRetryRequest 184
heuristic-based constructions 17
hexadecimal 27
hidden variables 301
hiding 32
high availability 252
HKDF (HMAGC-based key derivation function) 57,
164-168
HKDF-Expand function 165
HKDF-Extract function 165
HMAC (hash-based message authentication
code) 51, 58-59, 74
homomorphic commitments 335
homomorphic operations 336
HOTP (HMAC-based one-time password)
algorithm 237
HSMs (hardware security modules) 283-285, 289
HSTS (HTTP Strict Transport Security) 195
HTTP (Hypertext Transfer Protocol) 178
https 254
HTTPS (Hypertext Transfer Protocol Secure) 178
HVZK (honest verifier zero-knowledge) model 137
hybrid encryption 112-117
hypertrees 309

idempotent GET queries 194
identity authentication 227

INDEX 365

identity element property 92

identity keys 215

IETF (Internet Engineering Task Force) 21, 178
imperfect cryptography 279
indistinguishable from random 156

info parameters 185

insecure channels 244

integrated security 288

interactive protocols 136

interactive ZKP systems 136

Internet protocol suite 178

invalid curve attack 106

invasive attacks 282

inverse element 92

iO (indistinguishability obfuscation) 280
IoT (Internet of Things) 282

IPSec 197

ISO/IEC 19790:2012 283

1SO 24759:2017 283

IVs (initialization vectors) 71

J

JavaCard 281

K

KDF (key derivation function) 125, 165, 217, 234
keccak-f permutation 38
KEK (key encryption key) 287
KEM (key encapsulation mechanism) 116
Kerckhoff’s principle 7-9
key chains 169
key discovery 208-210
key distribution 10
key encapsulation 112-113
key exchanges 10-12, 112-113, 182
authenticated, as use case for signatures
132-133
DH (Diffie-Hellman) key exchange 91-98
discrete logarithm problem 95-97
group theory 91-95
standards 97-98
ECDH (Elliptic Curve Diffie-Hellman) key
exchange 98-105
elliptic curve overview 98-101
how works 102-103
standards for 103-105
forward-secure key exchanges and TLS 184-185
overview 88-91
security considerations 108
small subgroup attacks 105-108
key-extraction attack 291
key generation algorithm 110
key management 168
key pairs 11, 88

366

key registries 208

key revocation 169

key rotation technique 169
key-signing ceremony 212
key stores 169

keystreams 77

key substitution attacks 149
key wrapping 84-85

KMAC 59

KMS (Key Management Service) 350
Koblitz curves 145

Kyber key exchange 314-316

L

latency 267-268

lattice-based cryptography 311-318
Dilithium signature scheme 316-318
Kyber key exchange 314-316
LWE (learning with errors) 313-314
overview 311-313

layer 2 protocols 268

leader election 254

leakage-resilient cryptography 291-296
constant-time programming 293-294
fault attacks 295-296
masking and blinding 294-295

length-extension attacks 58

leveled homomorphic 328

local attestation 289

LWE (learning with errors) 313-314

M

MACs (message authentication codes) 74, 90, 131
example in code 51-52
in practice 58-59
HMAC 58-59
KMAC 59
in real world 57-58
deriving keys 57
hash tables 58
integrity of cookies 58
message authentication 57
security properties of 52-57
forgery of authentication tag 53
lengths of authentication tag 53-54
replay attacks 54-55
verifying authentication tags in constant
time 55-57
SHA-2 and length-extension attacks 60-62
stateless cookies and 48-51
MA-DH (Manually Authenticated Diffie-
Hellman) 247
malleable ciphertexts 122
many time MAC 79

INDEX

many-times signatures, with XMSS and
SPHINCS+ 308-311
masking 294-295
math-based constructions 17
medium-term public keys 215
membership proofs 266
memory hard 46
Merkle-Damgard construction 36
Merkle trees 265-267, 308
message/payload authentication 227
message authentication 131
message authenticity 227
message key substitution attacks 149
MFA (multi-factor authentication) 241
MGF (mask generation function) 124
million message attack 121
minimum output size 31
mining Bitcoin 259-265
MITM (man-in-the-middle) attacks 12, 43, 89, 132,
278, 301
MixColumns function 69
MLS (Messaging Layer Security) 224
modular arithmetic 92
modular multiplication 92
modulus 93
Montgomery ladder’s algorithm 294
MPC (multi-party computation), secure 322-326
general-purpose 324-325
PSI (private set intersection) 323-324
state of 326
mTLS (mutually-authenticated TLS) 186
multiplicative groups 91
multi-signature systems 171
mutually authenticated connections 242
mutually-authenticated key exchanges 90, 133

N

next-generation cryptography
FHE (fully homomorphic encryption) 326-332
bootstrapping as key to fully homomorphic
encryption 328-330
FHE scheme based on learning with errors
problem 330-332
homomorphic encryption with RSA
encryption 327
types of homomorphic encryption 327-328
where used 332
MPC (multi-party computation), secure
322-326
general-purpose 324-325
PSI (private set intersection) 323-324
state of 326
ZKPs (zero-knowledge proofs), general-
purpose 332-342
arithmetic circuits 338-339

INDEX 367

next-generation cryptography (continued)
bilinear pairings to improve homomorphic
commitments 336-337
from programs to polynomials 338
homomorphic commitments to hide parts of
proof 336
polynomials 340-342
R1CS (rank-1 constraint system) 339
succinctness 337-338
zk-SNARKs 335-336
no-cloning theorem 301
Noise protocol framework 197-200
noise sources 158
non-authenticated encryption 84
nonce misuse-resistant authenticated encryption 85
nonces 144
nondeterministic padding 121
non-interactive key exchanges 215
non-invasive attacks 282
not-perfect replacement 239

0

OAEP (Optimal Asymmetric Encryption
Padding) 123, 142

OCSP (Online Certificate Status Protocol) 196

OCSP stapling 196

OIDC (OpenID Connect) 232

one-time MAC 79

one-time prekeys 215

OPAQUE 234-236

OpenPGP 205

OPREFs (oblivious pseudorandom functions)
233-234, 323

orders 94

origin/entity/identity authentication 227

origin authentication 131

OTPs (one-time passwords) 236

OTR (Off-The-Record) communication 211

OTS (one-time signatures) with Lamport
signatures 305-306

P

padding 37, 70
padding bytes 70
padding section 61
partially homomorphic 327
password hashes 45
password hashing algorithm 229
passwords, replacing 228-241
asymmetric keys 239-241
mutual authentication in key exchanges
239-240
post-handshake user authentication with
FIDO2 240-241

asymmetric password-authenticated key
exchange 232-236
OPAQUE 234-236
OPRFs (oblivious pseudorandom
functions) 233-234
SSO (single sign-on) and password
managers 231-232
symmetric keys 236-239
PBFT (Practical BFT) algorithm 255
PCS (post-compromise security) 157, 212
pending changes to database 254
permissionless networks 256
permutations 38, 68
PGP (Pretty Good Privacy) 205-207, 210-211
physical unclonable functions 287
PKCS (Public Key Cryptography Standards) 22
PKCS#7 padding 71
PKCS#11 (Public Key Cryptography Standard
11) 284
PKI (public key infrastructure) 228, 254
plaintext-awareness property 124
platform authenticators 241
PoA (Proof of authority) 255
polite cryptography 345
Poly1305 core function 83
polynomials 338, 340-342
poor man’s authentication 85
PoS (Proof of stake) 255
post-handshake 181, 246
post-quantum cryptography
hash-based signatures 305-311
many-times signatures with XMSS and
SPHINCS+ 308-311
OTS (one-time signatures) with Lamport
signatures 305-306
WOTS (Winternitz one-time signatures) 307
lattice-based cryptography 311-318
Dilithium signature scheme 316-318
Kyber key exchange 314-316
LWE (learning with errors) 313-314
overview 311-313
overview 304
PoW (proof of work) 256
precomputation attacks 235
preferred rounds 271
pre-image resistance property 28
primitives 5
private exponentd 118
private keys 10
private randomness 163
PRNGs (pseudorandom number generators)
155-159
proof of knowledge 134
pseudo-anonymity 268
pseudo-primes 92
PSI (private set intersection) 323-324
PSKs (pre-shared keys) 193

368

public key cryptography 10
public_keyEl 248

public key infrastructures 133
public keys 11, 88

public randomness 163

Q

QC (quorum certificate) 270
QKD (quantum key distribution) 301
OR (Quarter Round) function 82
QR codes 214
QRNGs (quantum random number
generators) 300
quantum bit 300
quantum computers 299-304
history of 302-303
impact of Grover and Shor’s algorithms on
cryptography 303-304
overview 299-302
quantum entanglement 301
quantum gates 302
quantum mechanics 299
quantum-resistant algorithms 298
quantum-resistant cryptography 304
quantum superposition 300

R

RICS (rank-1 constraint system) 339

randomness
decentralizing trust with threshold

cryptography 169-172
generation of 161-163
key derivation with HKDF 164-168
managing keys and secrets 168-169
obtaining in practice 158-160
overview 153-155
PRNG (pseudorandom number generator) for
slow randomness 155-158

public 163-164
security considerations 161-163

randomness extractors 155

random nonces 79

random oracle model 30

RDRAND 162

real-world cryptography 19

record padding 194

rekeying 80

related outputs 167

remainder of number 93

remote attestation 289

replay attacks 54-55

rewards, in Bitcoin mining 262

RFCs (Request For Comments) 22, 178

ROM (read-only memory) 287

INDEX

root of trust 204, 287

round function 69

round keys 69

RSA 13, 327
asymmetric encryption with 117-126
RSA-OAEP 123-126
RSA PKCS#1 v1.5 121-123, 139-142
RSA-PSS 142-143

RSA-OAEP 117

S

S/MIME (Secure/Multipurpose Internet Mail
Extensions) 209
saltpack 210
salts 45, 165
SAML (Security Assertion Markup Language
2.0) 232
SAS (short authenticated strings) 246
scalar blinding 295
scalar multiplication 293
scaling to groups of larger membership 224
Schnorr identification protocol 134, 136-137
Schnorr signature scheme 138
Schrodinger’s cat experiment 300
Schwartz-Zippel lemma 337
searchable encryption 86
second pre-image resistance 26
secret keys 6, 65
secrets, managing 168-169
secret sharing 169
secure boot 287
secure cryptographic algorithms 7
secure elements 282
secure messaging 211
secure transport
Noise protocol framework 197-200
SSL secure transport protocol 178-179
state of encrypted web today 194-197
TLS secure transport protocol 181-194
authentication and web public key
infrastructure 186-189
authentication via X.509 certificates 190-193
avoiding key exchanges 193-194
forward-secure key exchanges and 184-185
from SSL. to 178-179
how TLS 1.3 encrypts application data 194
negotiation in 182-184
pre-shared keys and session resumption
in 193-194
using in practice 179-180
security claims 17
security protocols 4-5
security through obfuscation 280
security through obscurity 8, 280
seeds 155, 218

semi-invasive attacks 282
sending chain key 219
sending key 219
serializing inputs 44
server parameters 186
servers 179
server-side fanout 224
session resumption 182
session tickets 193
SHA-1 (Secure Hash Algorithm 1) 35
SHA-2 hash function 35-38
SHA-3 hash function 38-41
SHAKE 42-43
ShiftRows function 69
Shor and Grover’s algorithms 303-304
short Weierstrass equation 98
Sigma protocols 136
Signal app 211-222
Double Ratchet protocol 218-222
more user-friendly than WOT 212-215
X38DH 215-217
signature aggregation 171
signatureAlgorithm 190
signature forgeries 141, 307
signatures
malleability of 150
origin of 134-138
overview 130-133
public key infrastructures and 133
signature algorithms 138-149
ECDSA (Elliptic Curve Digital Signature
Algorithm) 143-145
EdDSA (Edwards-curve Digital Signature
Algorithm) 145-149
RSA PKCS#1 v1.5 standard 139-142
RSA-PSS standard 142-143
signing and verifying in practice 131
substitution attacks on 149
use case for 132-133

ZKPs (zero-knowledge proofs) and 134-138

Schnorr identification protocol 134-137

signatures as non-interactive zero-knowledge

proofs 137-138
signature schemes 130
signatureValue 190
signed prekeys 215
signing key 130
signing signatures 131
single point of failure 171, 252
single-use public keys 215
SipHash 58
SIV (synthetic initialization vector) 85
skimmers 278
small subgroup attacks 105-108
smart cards and secure elements 281-283
SMTP (Simple Mail Transfer Protocol) 209
software attacks 279

INDEX

somewhat homomorphic 327

SPA (simple power analysis) attack 291
SPHINCS+ signature scheme 308, 310-311
sponge construction 38

square and multiply 96

squeezing 41

SRP (Secure Remote Password) 232

SSH (Secure Shell) protocol 197, 213, 240

SSL (Secure Sockets Layer) protocol 178-179

SSO (single sign-on) 231-232

SSS (Shamir’s Secret Sharing) 170
stablecoin 267

standardization threshold 333
standardized hash functions 34-44

avoiding ambiguous hashing with TupleHash

43-44
SHA-2 hash function 35-38
SHA-3 hash function 38-41
SHAKE and cSHAKE 42-43
state 40, 68
stateless cookies 48-51
static keys 199
SubBytes function 69
subgroups 94, 117
subresource integrity 32
substitution attacks 149
sum 26
SVP (shortest vector problem) 312
sybil attacks 263
symmetric cryptographic primitives 113
symmetric cryptography 5-6, 303
symmetric encryption 5, 84-86
database encryption 85-86
disk encryption 85
key wrapping 84-85
nonce misuse-resistant authenticated
encryption 85
vs. asymmetric 13
symmetric keys 236-239
symmetric ratchet 219

T

Tamarin protocol prover 347
thsCertificate field 190

TCG (Trusted® Computing Group) 285
TCP (Transmission Control Protocol) 178
TCP frames 178

TDE (transparent data encryption) 86

369

TEEs (trusted execution environments) 288-290

theoretical cryptography 18, 345
threat model 203

threshold cryptography 169-172, 322
threshold distributed keys 164
timing attacks 55

tls13 ¢ hs traffic 185

370

tls13 s ap traffic 185
TLS secure transport protocol 181-194
authentication and web public key
infrastructure 186-189
authentication via X.509 certificates 190-193
avoiding key exchanges 193-194
forward-secure key exchanges and 184-185
from SSL to 178-179
how TLS 1.3 encrypts application data 194
negotiation in 182-184
pre-shared keys and session resumption in
193-194
using in practice 179-180
TOFU (trust on first use) 212, 227
tooling 349
Tor 33
total breaks 70, 144
TOTP (time-based one-time password)
algorithm 237
TPMs (Trusted Platform Modules) 285-288
transcript consistency 224
TRNGs (true random number generators) 155
truncating digests 31
trust
decentralizing with threshold cryptography
169-172
scaling trust between users with web of trust 208
TupleHash 43-44
twisted Edwards curves 146

U

unauthenticated key exchanges 89, 185
unencrypted protocols 205
uniform distribution 153
unique IV 73
unpredictable IV 73
unpredictable secrets 158
user-aided authentication 227
user authentication 227
passwords, replacing 228-241
asymmetric keys 239-241
asymmetric password-authenticated key
exchange 232-236
SSO (single sign-on) and password
managers 231-232
symmetric keys 236-239
user-aided authentication 242-248
pre-shared keys 244-245
SAS (short authenticated string) 246-248
symmetric password-authenticated key
exchanges with CPace 245-246
userland PRNGs 161
UTXOs (Unspent Transaction Outputs) 258

INDEX

'

vector space 311

verifying key 130

verifying signatures 131

VMs (virtual machines) 162

volatility 267

VRFs (verifiable random functions) 163

w

WebAuthn (Web Authentication) 241

web PKI (web public key infrastructure) 133, 187
white box cryptography 280

wide-block ciphers 85

WOT (web of trust) 208, 227

WOTS (Winternitz one-time signatures) 307
WPA (Wi-Fi Protected Access) 197

X

X25519 key exchange algorithm 91

X3DH (Extended Triple Diffie-Hellman) 212,
215-217

X.509 certificates 190-193

XML (Extensible Markup Language) 232

XMPP (Extensible Messaging and Presence
Protocol) 211

XMSS (extended Merkle signature scheme)
308-311

XOFs (extendable output functions) 42-43, 124,
168

Y4

Zcash 268
zeroization 283
ZKPs (zero-knowledge proofs) 134-138, 268,
332-342
arithmetic circuits 338-339
bilinear pairings to improve homomorphic
commitments 336-337
homomorphic commitments to hide parts of
proof 336
polynomials 338, 340-342
RICS (rank-1 constraint system) 339
Schnorr identification protocol 134-137
signatures as non-interactive zero-knowledge
proofs 137-138
succinctness 337-338
zk-SNARKSs (Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge)
334-336

CRYPTOGRAPHY/SECURITY

Real-World Cryptography
David Wong

ryptography is the essential foundation of IT security. To

stay ahead of the bad actors attacking your systems, you

need to understand the tools, frameworks, and protocols
that protect your networks and applications. This book intro-
duces authentication, encryption, signatures, secret-keeping,
and other cryptography concepts in plain language and beau-
tiful illustrations.

teaches practical techniques for day-
to-day work as a developer, sysadmin, or security practitioner.
There’s no complex math or jargon: Modern cryptography
methods are explored through clever graphics and real-world
use-cases. You'll learn building blocks like hash functions and
signatures; cryptographic protocols like HTTPS and secure
messaging; and cutting-edge advances like post-quantum
cryptography and cryptocurrencies. This book is a joy to
read—and it might just save your bacon the next time you're
targeted by an adversary after your data.

e Implementing digital signatures and zero-knowledge
proofs

e Specialized hardware for attacks and highly adversarial
environments

e Identifying and fixing bad practices
¢ Choosing the right cryptographic tool for any problem

For cryptography beginners with no previous experience in

the field.

is a cryptography engineer. He is an active
contributor to internet standards including Transport Layer

Security.

Register this print book to get free access to all ebook formats.
Visit https: //www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

CCA staggeringly
comprehensive review of
the state of modern crypto-
graphy. Essential for anyone
getting up to speed in
information security.??

—Thomas Doylend
Green Rocket Security

¢ Covers all the important
parts of applied cryptography.
A must read for every
Java developer.??
—Harald Kuhn, TurnFriendly

¢€An in-depth introduction
to cryptography, covering hot
topics like blockchain and
quantum computing.’?
—Gdbor Liszl6 Hajba, ProLion

¢CA best-in-category book

that takes you all the way
from curious novice to
confident practitioner.??

—William Rudenmalm
Creandum

Seefksipoﬁe

ISBN: 978-1-61729-671-0

781617 " 296710

55999

9

	Real-World Cryptography
	contents
	preface
	A book, years in the making
	The real-world cryptographer curriculum
	Where most of the bugs are
	A need for a new book?

	acknowledgments
	about this book
	Who should read this book
	Students
	Security practitioners
	Developers who use cryptography directly or indirectly
	Cryptographers curious about other fields
	Engineering and product managers who want to understand more
	Curious people who want to know what real-world crypto is about
	Assumed knowledge, the long version

	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1—Primitives: The ingredients of cryptography
	1 Introduction
	1.1 Cryptography is about securing protocols
	1.2 Symmetric cryptography: What is symmetric encryption?
	1.3 Kerckhoff’s principle: Only the key is kept secret
	1.4 Asymmetric cryptography: Two keys are better than one
	1.4.1 Key exchanges or how to get a shared secret
	1.4.2 Asymmetric encryption, not like the symmetric one
	1.4.3 Digital signatures, just like your pen-and-paper signatures

	1.5 Classifying and abstracting cryptography
	1.6 Theoretical cryptography vs. real-world cryptography
	1.7 From theoretical to practical: Choose your own adventure
	1.8 A word of warning
	Summary

	2 Hash functions
	2.1 What is a hash function?
	2.2 Security properties of a hash function
	2.3 Security considerations for hash functions
	2.4 Hash functions in practice
	2.4.1 Commitments
	2.4.2 Subresource integrity
	2.4.3 BitTorrent
	2.4.4 Tor

	2.5 Standardized hash functions
	2.5.1 The SHA-2 hash function
	2.5.2 The SHA-3 hash function
	2.5.3 SHAKE and cSHAKE: Two extendable output functions (XOF)
	2.5.4 Avoid ambiguous hashing with TupleHash

	2.6 Hashing passwords
	Summary

	3 Message authentication codes
	3.1 Stateless cookies, a motivating example for MACs
	3.2 An example in code
	3.3 Security properties of a MAC
	3.3.1 Forgery of authentication tag
	3.3.2 Lengths of authentication tag
	3.3.3 Replay attacks
	3.3.4 Verifying authentication tags in constant time

	3.4 MAC in the real world
	3.4.1 Message authentication
	3.4.2 Deriving keys
	3.4.3 Integrity of cookies
	3.4.4 Hash tables

	3.5 Message authentication codes (MACs) in practice
	3.5.1 HMAC, a hash-based MAC
	3.5.2 KMAC, a MAC based on cSHAKE

	3.6 SHA-2 and length-extension attacks
	Summary

	4 Authenticated encryption
	4.1 What’s a cipher?
	4.2 The Advanced Encryption Standard (AES) block cipher
	4.2.1 How much security does AES provide?
	4.2.2 The interface of AES
	4.2.3 The internals of AES

	4.3 The encrypted penguin and the CBC mode of operation
	4.4 A lack of authenticity, hence AES-CBC-HMAC
	4.5 All-in-one constructions: Authenticated encryption
	4.5.1 What’s authenticated encryption with associated data (AEAD)?
	4.5.2 The AES-GCM AEAD
	4.5.3 ChaCha20-Poly1305

	4.6 Other kinds of symmetric encryption
	4.6.1 Key wrapping
	4.6.2 Nonce misuse-resistant authenticated encryption
	4.6.3 Disk encryption
	4.6.4 Database encryption

	Summary

	5 Key exchanges
	5.1 What are key exchanges?
	5.2 The Diffie-Hellman (DH) key exchange
	5.2.1 Group theory
	5.2.2 The discrete logarithm problem: The basis of Diffie-Hellman
	5.2.3 The Diffie-Hellman standards

	5.3 The Elliptic Curve Diffie-Hellman (ECDH) key exchange
	5.3.1 What’s an elliptic curve?
	5.3.2 How does the Elliptic Curve Diffie-Hellman (ECDH) key exchange work?
	5.3.3 The standards for Elliptic Curve Diffie-Hellman

	5.4 Small subgroup attacks and other security considerations
	Summary

	6 Asymmetric encryption and hybrid encryption
	6.1 What is asymmetric encryption?
	6.2 Asymmetric encryption in practice and hybrid encryption
	6.2.1 Key exchanges and key encapsulation
	6.2.2 Hybrid encryption

	6.3 Asymmetric encryption with RSA: The bad and the less bad
	6.3.1 Textbook RSA
	6.3.2 Why not to use RSA PKCS#1 v1.5
	6.3.3 Asymmetric encryption with RSA-OAEP

	6.4 Hybrid encryption with ECIES
	Summary

	7 Signatures and zero-knowledge proofs
	7.1 What is a signature?
	7.1.1 How to sign and verify signatures in practice
	7.1.2 A prime use case for signatures: Authenticated key exchanges
	7.1.3 A real-world usage: Public key infrastructures

	7.2 Zero-knowledge proofs (ZKPs): The origin of signatures
	7.2.1 Schnorr identification protocol: An interactive zero-knowledge proof
	7.2.2 Signatures as non-interactive zero-knowledge proofs

	7.3 The signature algorithms you should use (or not)
	7.3.1 RSA PKCS#1 v1.5: A bad standard
	7.3.2 RSA-PSS: A better standard
	7.3.3 The Elliptic Curve Digital Signature Algorithm (ECDSA)
	7.3.4 The Edwards-curve Digital Signature Algorithm (EdDSA)

	7.4 Subtle behaviors of signature schemes
	7.4.1 Substitution attacks on signatures
	7.4.2 Signature malleability

	Summary

	8 Randomness and secrets
	8.1 What’s randomness?
	8.2 Slow randomness? Use a pseudorandom number generator (PRNG)
	8.3 Obtaining randomness in practice
	8.4 Randomness generation and security considerations
	8.5 Public randomness
	8.6 Key derivation with HKDF
	8.7 Managing keys and secrets
	8.8 Decentralize trust with threshold cryptography
	Summary

	Part 2—Protocols: The recipes of cryptography
	9 Secure transport
	9.1 The SSL and TLS secure transport protocols
	9.1.1 From SSL to TLS
	9.1.2 Using TLS in practice

	9.2 How does the TLS protocol work?
	9.2.1 The TLS handshake
	9.2.2 How TLS 1.3 encrypts application data

	9.3 The state of the encrypted web today
	9.4 Other secure transport protocols
	9.5 The Noise protocol framework: A modern alternative to TLS
	9.5.1 The many handshakes of Noise
	9.5.2 A handshake with Noise

	Summary

	10 End-to-end encryption
	10.1 Why end-to-end encryption?
	10.2 A root of trust nowhere to be found
	10.3 The failure of encrypted email
	10.3.1 PGP or GPG? And how does it work?
	10.3.2 Scaling trust between users with the web of trust
	10.3.3 Key discovery is a real issue
	10.3.4 If not PGP, then what?

	10.4 Secure messaging: A modern look at end-to-end encryption with Signal
	10.4.1 More user-friendly than the WOT: Trust but verify
	10.4.2 X3DH: the Signal protocol’s handshake
	10.4.3 Double Ratchet: Signal’s post-handshake protocol

	10.5 The state of end-to-end encryption
	Summary

	11 User authentication
	11.1 A recap of authentication
	11.2 User authentication, or the quest to get rid of passwords
	11.2.1 One password to rule them all: Single sign-on (SSO) and password managers
	11.2.2 Don’t want to see their passwords? Use an asymmetric password-authenticated key exchange
	11.2.3 One-time passwords aren’t really passwords: Going passwordless with symmetric keys
	11.2.4 Replacing passwords with asymmetric keys

	11.3 User-aided authentication: Pairing devices using some human help
	11.3.1 Pre-shared keys
	11.3.2 Symmetric password-authenticated key exchanges with CPace
	11.3.3 Was my key exchange MITM’d? Just check a short authenticated string (SAS)

	Summary

	12 Crypto as in cryptocurrency?
	12.1 A gentle introduction to Byzantine fault-tolerant (BFT) consensus algorithms
	12.1.1 A problem of resilience: Distributed protocols to the rescue
	12.1.2 A problem of trust? Decentralization helps
	12.1.3 A problem of scale: Permissionless and censorship-resistant networks

	12.2 How does Bitcoin work?
	12.2.1 How Bitcoin handles user balances and transactions
	12.2.2 Mining BTCs in the digital age of gold
	12.2.3 Forking hell! Solving conflicts in mining
	12.2.4 Reducing a block’s size by using Merkle trees

	12.3 A tour of cryptocurrencies
	12.3.1 Volatility
	12.3.2 Latency
	12.3.3 Blockchain size
	12.3.4 Confidentiality
	12.3.5 Energy efficiency

	12.4 DiemBFT: A Byzantine fault-tolerant (BFT) consensus protocol
	12.4.1 Safety and liveness: The two properties of a BFT consensus protocol
	12.4.2 A round in the DiemBFT protocol
	12.4.3 How much dishonesty can the protocol tolerate?
	12.4.4 The DiemBFT rules of voting
	12.4.5 When are transactions considered finalized?
	12.4.6 The intuitions behind the safety of DiemBFT

	Summary

	13 Hardware cryptography
	13.1 Modern cryptography attacker model
	13.2 Untrusted environments: Hardware to the rescue
	13.2.1 White box cryptography, a bad idea
	13.2.2 They’re in your wallet: Smart cards and secure elements
	13.2.3 Banks love them: Hardware security modules (HSMs)
	13.2.4 Trusted Platform Modules (TPMs): A useful standardization of secure elements
	13.2.5 Confidential computing with a trusted execution environment (TEE)

	13.3 What solution is good for me?
	13.4 Leakage-resilient cryptography or how to mitigate side-channel attacks in software
	13.4.1 Constant-time programming
	13.4.2 Don’t use the secret! Masking and blinding
	13.4.3 What about fault attacks?

	Summary

	14 Post-quantum cryptography
	14.1 What are quantum computers and why are they scaring cryptographers?
	14.1.1 Quantum mechanics, the study of the small
	14.1.2 From the birth of quantum computers to quantum supremacy
	14.1.3 The impact of Grover and Shor’s algorithms on cryptography
	14.1.4 Post-quantum cryptography, the defense against quantum computers

	14.2 Hash-based signatures: Don’t need anything but a hash function
	14.2.1 One-time signatures (OTS) with Lamport signatures
	14.2.2 Smaller keys with Winternitz one-time signatures (WOTS)
	14.2.3 Many-times signatures with XMSS and SPHINCS+

	14.3 Shorter keys and signatures with lattice-based cryptography
	14.3.1 What’s a lattice?
	14.3.2 Learning with errors (LWE), a basis for cryptography?
	14.3.3 Kyber, a lattice-based key exchange
	14.3.4 Dilithium, a lattice-based signature scheme

	14.4 Do I need to panic?
	Summary

	15 Is this it? Next-generation cryptography
	15.1 The more the merrier: Secure multi-party computation (MPC)
	15.1.1 Private set intersection (PSI)
	15.1.2 General-purpose MPC
	15.1.3 The state of MPC

	15.2 Fully homomorphic encryption (FHE) and the promises of an encrypted cloud
	15.2.1 An example of homomorphic encryption with RSA encryption
	15.2.2 The different types of homomorphic encryption
	15.2.3 Bootstrapping, the key to fully homomorphic encryption
	15.2.4 An FHE scheme based on the learning with errors problem
	15.2.5 Where is it used?

	15.3 General-purpose zero-knowledge proofs (ZKPs)
	15.3.1 How zk-SNARKs work
	15.3.2 Homomorphic commitments to hide parts of the proof
	15.3.3 Bilinear pairings to improve our homomorphic commitments
	15.3.4 Where does the succinctness come from?
	15.3.5 From programs to polynomials
	15.3.6 Programs are for computers; we need arithmetic circuits instead
	15.3.7 An arithmetic circuit to a rank-1 constraint system (R1CS)
	15.3.8 From R1CS to a polynomial
	15.3.9 It takes two to evaluate a polynomial hiding in the exponent

	Summary

	16 When and where cryptography fails
	16.1 Finding the right cryptographic primitive or protocol is a boring job
	16.2 How do I use a cryptographic primitive or protocol? Polite standards and formal verification
	16.3 Where are the good libraries?
	16.4 Misusing cryptography: Developers are the enemy
	16.5 You’re doing it wrong: Usable security
	16.6 Cryptography is not an island
	16.7 Your responsibilities as a cryptography practitioner, don’t roll your own crypto
	Summary

	Appendix—Answers to exercises
	Chapter 2
	Chapter 3
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

