
Pro Cryptography
and Cryptanalysis
with C++23

Creating and Programming Advanced
Algorithms
—
Second Edition
—
Marius Iulian Mihailescu
Stefania Loredana Nita

Pro Cryptography and
Cryptanalysis with C++23

Creating and Programming Advanced
Algorithms

Second Edition

Marius Iulian Mihailescu
Stefania Loredana Nita

Pro Cryptography and Cryptanalysis with C++23: Creating and Programming
Advanced Algorithms

ISBN-13 (pbk): 978-1-4842-9449-9		 ISBN-13 (electronic): 978-1-4842-9450-5
https://doi.org/10.1007/978-1-4842-9450-5

Copyright © 2023 by Marius Iulian Mihailescu and Stefania Loredana Nita

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler
Copyeditor: Kim Burton

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub (https://github.com/Apress). For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Marius Iulian Mihailescu
Bucharest, Romania

Stefania Loredana Nita
Bucharest, Romania

https://doi.org/10.1007/978-1-4842-9450-5

iii

Table of Contents

About the Authors��� xiii

About the Technical Reviewer��xv

Part I: �Foundations�� 1

Chapter 1: �Getting Started in Cryptography and Cryptanalysis��������������������������������� 3

Cryptography and Cryptanalysis�� 5

Book Structure��� 6

Internet Resources��� 9

Forums and Newsgroups��� 10

Security Protocols and Standards�� 11

Cryptography Tools and Resources�� 14

Conclusion��� 16

References��� 17

Chapter 2: �Cryptography Fundamentals�� 19

Information Security and Cryptography��� 20

Cryptography Goals�� 23

Cryptographic Primitives�� 24

Background of Mathematical Functions�� 26

One-to-One, One-Way, and Trapdoor One-Way Functions�� 26

Permutations�� 31

Inclusion��� 32

Concepts and Basic Terminology��� 33

Domains and Codomains Used for Encryption��� 33

Encryption and Decryption Transformations�� 34

The Participants in the Communication Process�� 35

iv

Digital Signatures��� 36

Signing Process�� 37

Verification Process�� 37

Public-Key Cryptography��� 37

Hash Functions�� 39

Case Studies�� 55

Caesar Cipher Implementation in C++23��� 55

Vigenére Cipher Implementation in C++23�� 57

Conclusion��� 60

References��� 61

Chapter 3: �Mathematical Background and Its Applicability������������������������������������ 65

Probabilities��� 66

Conditional Probability�� 68

Random Variables��� 68

Birthday Problem�� 69

Information Theory��� 71

Entropy��� 71

Number Theory�� 72

Integers�� 73

Algorithms inℤ�� 73

Integers Modulo n��� 75

Algorithms ℤm��� 76

The Legendre and Jacobi Symbols��� 77

Finite Fields�� 80

Basic Notions�� 80

Polynomials and the Euclidean Algorithm�� 81

Case Study 1: Computing the Probability of an Event That Takes Place�������������������������������������� 82

Case Study 2: Computing the Probability Distribution��� 85

Case Study 3: Computing the Mean of the Probability Distribution��� 86

Table of Contents

v

Case Study 4: Computing the Variance�� 88

Case Study 5: Computing the Standard Deviation��� 89

Case Study 6: Birthday Paradox��� 91

Case Study 7: (Extended) Euclidean Algorithm�� 93

Case Study 8: Computing the Multiplicative Inverse Under Modulo q��� 96

Case Study 9: Chinese Remainder Theorem�� 98

Case Study 10: The Legendre Symbol�� 101

Conclusion��� 104

References��� 104

Chapter 4: �Large Integer Arithmetic�� 107

A Bit of History��� 107

What About Cryptography?�� 108

Algorithms Used for Large Integer Arithmetic�� 109

Subtraction (Subtraction Modulo)��� 118

Multiplication�� 123

Big Integers�� 126

Review of Large Integer Libraries�� 132

Conclusion��� 135

References��� 135

Chapter 5: �Floating-Point Arithmetic��� 137

Why Floating-Point Arithmetic?��� 137

Displaying Floating-Point Numbers��� 138

The Range of Floating Points��� 139

Floating-Point Precision��� 140

Next Level for Floating-Point Arithmetic�� 142

Conclusion��� 143

References��� 144

Table of Contents

vi

Chapter 6: �New Features in C++23�� 145

Headers�� 146

The <expected> Header��� 147

The <generator> Header�� 149

The <flat_map> Header��� 150

Conclusion��� 151

References��� 151

Chapter 7: �Secure Coding Guidelines�� 153

Secure Coding Checklist�� 154

CERT Coding Standards��� 158

Identifiers��� 159

Noncompliant Code Examples and Compliant Solutions�� 159

Exceptions�� 160

Risk Assessment�� 160

Automated Detection�� 162

Related Guidelines�� 162

Rules�� 162

Rule 01. Declarations and Initializations (DCL)��� 163

Rule 02. Expressions (EXP)��� 164

Rule 03. Integers (INT)�� 165

Rule 05. Characters and Strings (STR)��� 166

Rule 06. Memory Management (MEM)��� 167

Rule 07. Input/Output (FIO)��� 168

Conclusion��� 168

References��� 169

Chapter 8: �Cryptography Libraries in C/C++23��� 171

Overview of Cryptography Libraries��� 171

Hash Functions��� 172

Public-Key Cryptography�� 173

Elliptic-Curve Cryptography (ECC)�� 176

Table of Contents

vii

OpenSSL�� 179

Configuration and Installing OpenSSL�� 179

Botan�� 192

CrypTool��� 193

Conclusion��� 202

References��� 203

Part II: �Pro Cryptography��� 205

Chapter 9: �Elliptic-Curve Cryptography��� 207

Theoretical Fundamentals��� 210

Weierstrass Equation�� 212

Group Law�� 214

Practical Implementation��� 215

Conclusion��� 242

References��� 243

Chapter 10: �Lattice-based Cryptography��� 245

Advantages and Disadvantages of Lattice-based Cryptography�� 246

Applications of Lattice-based Cryptography�� 247

Security of Lattice-based Cryptography�� 248

Lattice-based Cryptography and Quantum Computing�� 248

Mathematical Background��� 249

Example��� 250

Conclusion��� 260

References��� 261

Chapter 11: �Searchable Encryption��� 263

Components��� 264

Entities�� 264

Types�� 265

Security Characteristics��� 267

Table of Contents

viii

An Example�� 268

Conclusion��� 280

References��� 281

Chapter 12: �Homomorphic Encryption�� 283

Full Homomorphic Encryption�� 285

A Practical Example of Using FHE�� 287

Conclusion��� 310

References��� 310

Chapter 13: �Ring Learning with Errors Cryptography��� 313

Mathematical Background��� 316

Learning with Errors (LWE)��� 316

Ring Learning with Errors (RLWE)��� 317

Practical Implementation��� 318

Conclusion��� 327

References��� 327

Chapter 14: �Chaos-based Cryptography�� 329

Security Analysis�� 334

Chaotic Maps for Plaintexts and Image Encryption��� 335

Rössler Attractor�� 336

Complex Numbers: A Short Overview�� 337

Practical Implementation��� 338

Secure Random Number Generator Using Chaos Rössler Attractor������������������������������������� 340

Encrypt and Decrypt Using Chaos and Fractals��� 347

Conclusion��� 362

References��� 363

Chapter 15: �Big Data Cryptography��� 365

Verifiable Computation��� 369

Conclusion��� 376

References��� 377

Table of Contents

ix

Chapter 16: �Cloud Computing Cryptography��� 381

A Practical Example��� 385

Conclusion��� 391

References��� 392

Part III: �Pro Cryptanalysis��� 393

Chapter 17: �Starting with Cryptanalysis��� 395

Part III: Structure�� 398

Cryptanalysis Terms��� 398

A Bit of Cryptanalysis History��� 400

Understanding Cryptanalysis Techniques�� 402

Analyzing Cryptographic Algorithms�� 405

Cracking Cryptographic Systems��� 406

Understanding Cryptographic Systems�� 406

Understanding Cryptographic Keys�� 406

Understanding Cryptographic Weaknesses��� 407

Analyzing Cryptographic Keys��� 407

Penetration Tools and Frameworks�� 408

Conclusion��� 410

References��� 410

Chapter 18: �Cryptanalysis Attacks and Techniques�� 413

Standards��� 413

FIPS 140-2, FIPS 140-3, and ISO 15408��� 414

Validation of Cryptographic Systems��� 414

Cryptanalysis Operations��� 416

Classification of Cryptanalytics Attacks��� 417

Attacks on Cipher Algorithms��� 418

Attacks on Cryptographic Keys�� 419

Attacks on Authentication Protocols��� 420

Conclusion��� 422

References��� 423

Table of Contents

x

Chapter 19: �Differential and Linear Cryptanalysis��� 425

Differential Cryptanalysis��� 426

Linear Cryptanalysis�� 430

Performing Linear Cryptanalysis�� 431

Conclusion��� 435

References��� 435

Chapter 20: �Integral Cryptanalysis�� 437

Basic Notions��� 437

Theorem 20-1 [1, Theorem 1, p. 114]��� 438

Theorem 20-2 [1, Theorem 2, p. 114]��� 439

Practical Approach��� 439

Conclusion��� 442

References��� 443

Chapter 21: �Brute-Force and Buffer Overflow Attacks�� 445

Brute-Force Attack��� 446

Buffer Overflow Attack��� 454

Conclusion��� 456

References��� 457

Chapter 22: �Text Characterization��� 459

Chi-Squared Statistic��� 459

Cryptanalysis Using Monogram, Bigram, and Trigram Frequency Counts��������������������������������� 463

Counting Monograms��� 463

Counting Bigrams��� 464

Counting Trigrams�� 468

Conclusion��� 471

References��� 471

Table of Contents

xi

Chapter 23: Implementation and Practical Approach of Cryptanalysis
Methods��� 473

Step 1��� 475

Step 2��� 475

Step 3��� 475

Step 4��� 476

Ciphertext-Only Attack (COA)��� 478

Known-Plaintext Attack (KPA)�� 479

Chosen-Plaintext Attack (CPA)��� 480

Chosen-Ciphertext Attack (CCA)��� 488

Conclusion��� 489

References��� 490

�Index�� 491

Table of Contents

xiii

About the Authors

Marius Iulian Mihailescu, PhD, is an associate professor at the Faculty of Engineering

and Informatics, Spiru Haret University in Bucharest, Romania. He is also the CEO

of Dapyx Solution Ltd., a company based in Bucharest specializing in information

security and cryptography-related research projects. He is a lead guest editor for applied

cryptography journals and a reviewer for multiple publications with information security

and cryptography profiles. He authored and co-authored more articles in conference

proceedings, 25 articles, and books. For more than six years, he has been a lecturer at

well-known national and international universities (the University of Bucharest, Titu

Maiorescu University, and Kadir Has University in Istanbul, Turkey). He has taught

courses on programming languages (C#, Java, C++, Haskell) and object-oriented system

analysis and design with UML, graphs, databases, cryptography, and information

security. He served three years as an IT officer at Royal Caribbean Cruises Ltd., dealing

with IT infrastructure, data security, and satellite communications systems. He received

his PhD in 2014, and his thesis was on applied cryptography over biometrics data. He

holds two MSc in information security and software engineering.

Stefania Loredana Nita, PhD, is a lecturer at the Ferdinand I Military Technical

Academy in Bucharest, Romania, and a software developer at the Institute of for

Computers in Bucharest. Her PhD thesis was on advanced cryptographic schemes using

searchable encryption and homomorphic encryption. She has been an assistant lecturer

at the University of Bucharest, teaching courses on advanced programming techniques,

simulation methods, and operating systems. She has authored several whitepapers and

journal articles, as well as books on the Haskell programming language. Stefania is a

lead guest editor for information security and cryptography issues, such as advanced

cryptography and its future: searchable and homomorphic encryption. She has a

master’s degree in software engineering and bachelor’s degrees in computer science and

mathematics.

xv

About the Technical Reviewer

Massimo Nardone has more than 25 years of experience

in security, web/mobile development, cloud, and IT

architecture. His true IT passions are security and Android.

He has been programming and teaching how to program

with Android, Perl, PHP, Java, VB, Python, C/C++, and

MySQL for more than 20 years. He has a master’s degree in

computing science from the University of Salerno, Italy.

He has worked as a CISO, CSO, security executive, IoT

executive, project manager, software engineer, research

engineer, chief security architect, PCI/SCADA auditor, and

senior lead IT security/cloud/SCADA architect for many years. His technical skills

include security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile

development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,

Django CMS, Jekyll, Scratch, and more.

He worked as visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (PKI, SIP, SAML, and Proxy areas). He is currently working for

Cognizant as head of cybersecurity and CISO to help internally and externally with

clients in information and cyber security areas, like strategy, planning, processes,

policies, procedures, governance, awareness, and so forth. In June 2017, he became a

permanent member of the ISACA Finland Board. Massimo has reviewed more than 45

IT books for different publishing companies and is the co-author of Pro Spring Security:

Securing Spring Framework 5 and Boot 2-based Java Applications (Apress, 2019),

Beginning EJB in Java EE 8 (Apress, 2018), Pro JPA 2 in Java EE 8 (Apress, 2018), and Pro

Android Games (Apress, 2015).

PART I

Foundations

3

CHAPTER 1

Getting Started
in Cryptography
and Cryptanalysis
Cryptography and cryptanalysis are two fascinating and highly technical disciplines

that have played a critical role in modern communication and security. Cryptography

is the practice of protecting data using encryption algorithms, while cryptanalysis is

trying to break those algorithms. Whether you have just become interested in these

topics or have been studying them for some time, this step-by-step guide helps you get

started in the world of cryptography and cryptanalysis. From understanding the basics

of cryptography to exploring advanced techniques, this guide provides you with all the

necessary information to become an expert in the field. Along the way, you learn about

the history of cryptography, common algorithms and techniques used in encryption,

and the tools and resources available to help you grow your knowledge. Therefore, let’s

get started!

Cryptography is the practice of protecting data by using encryption algorithms.

The word cryptography comes from the Greek words kryptos, which means hidden,

and graphein, which means written. As such, it has been around for a very long time,

but it wasn’t until the invention of the telegraph that it started to play a larger role

in society. The telegraph was a critical piece of infrastructure in the nineteenth and

twentieth centuries, and it needed a way to secure messages. As a result, cryptography

became more standardized and public knowledge. The first standardized cipher was

the Vigenère cipher, invented in 1553 but not publicly known until 1863. The next

major cipher was the one-time pad, invented in 1917 and the first known completely

unbreakable cipher. The next major advancement in cryptography came with the

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_1

https://doi.org/10.1007/978-1-4842-9450-5_1

4

invention of the computer and the rise of digital communications. Since then, there have

been many advances in cryptography, including the invention of the RSA algorithm,

which is widely used today.

Knowledge is one of the most important aspects to consider when designing

and implementing complex systems, such as companies, organizations, and military

operations. Information falling into the wrong hands can be a tragedy and result in a

huge loss of business or disastrous outcomes. To guarantee communication security,

cryptography can encode information so that no one can decode it without legal rights.

Many ciphers have been broken when a flaw or weakness has been found in their design

or enough computing power has been applied to break an encoded message. Cryptology

consists of cryptography and cryptanalysis, as you see later.

With the rapid evolution of electronic communication, the number of issues

raised by information security is significantly increasing every day. Messages that are

shared over publicly accessible computer networks around the world must be secured

and preserved and have the proper security mechanisms to protect against abuse.

The business requirements in electronic devices and their communication consist of

having digital signatures that can be legally recognized. Modern cryptography provides

solutions to all these problems.

The idea of this book started from an experience that has been achieved through

three directions: (1) cryptography courses for students (graduate and undergraduate)

in computer science at the University of Bucharest and Titu Maiorescu University; (2)

industry experience achieved in national and international companies; (3) ethical

hacking best practices; and (4) security audit.

This book aims to present the most advanced cryptography and cryptanalysis

techniques and their implementations using C++20. Most implementations are in

C++20, using the latest programming language features and improvements (see

Chapter 5).

The book is an advanced and exhaustive work, comprehensively covering all the

most important topics in information security, cryptography, and cryptanalysis. The

content of the book can be used in a wide spectrum of areas by multiple professionals,

such as security experts with their audits, military experts and personnel, ethical hackers,

teachers in academia, researchers, software developers, and software engineers when

security and cryptographic solutions need to be implemented in a real business software

environment, student courses (undergraduate and graduate levels, master’s degree,

professional and academic doctoral degree), business analysts and many more.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

5

�Cryptography and Cryptanalysis
It is very important to understand the meanings of the main concepts involved in a

secure communication process and to see their boundaries.

•	 Cryptology is the science or art of secret writing; the main goal is to

protect and defend the secrecy and confidentiality of information

with the help of cryptographic algorithms.

•	 Cryptography is the defensive side of cryptology; the main objective

is to create and design cryptographic systems and their rules. When

you look at cryptography, you can see a special kind of art: protecting

the information by transforming it into an unreadable format called

ciphertext.

•	 Cryptanalysis is the offensive side of cryptology; its main objective

is to study cryptographic systems with the scope of providing the

necessary characteristics in such a way as to fulfill the function

for which they have been designed. Cryptanalysis can analyze the

cryptographic systems of third parties through the cryptograms

realized with them so that it breaks them to obtain useful information

for their business purpose. Cryptanalysts, code breakers, and ethical

hackers deal with cryptanalysis.

•	 Cryptographic primitives represent well-established or low-level

cryptographic algorithms for building cryptographic protocols;

examples include hash functions and encryption functions.

This book provides a deep examination of all three sides from the practical side

of view with references to the theoretical background by illustrating how a theoretical

algorithm should be analyzed for implementation.

There are many different algorithms and techniques in modern cryptography. Here

are a few of the more common ones.

•	 Symmetric-key algorithms use both sides of a communication to

generate a shared secret key and then use that key to encrypt and

decrypt messages. The most prominent example is AES, which is

used by the US government and many businesses worldwide.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

6

•	 Asymmetric-key algorithms use two different keys to encrypt and

decrypt messages. The most common example is RSA, which secures

websites and applications like Gmail.

•	 Hash algorithms are commonly used to create digital signatures for

data and are sometimes used for message authentication. The most

well-known example is probably the SHA family of hash algorithms.

•	 Trapdoor function algorithms generate digital signatures and are

sometimes used to implement public-key encryption. The most

common example is probably the RSA function.

•	 One-time pad algorithms are the only unbreakable ciphers

requiring truly random keys. The most widely used OTP algorithm

is the Vernam cipher, which was the basis for the encryption used by

the US military in World War II.

�Book Structure
The book is divided into 23 chapters divided into three parts: Part I (Chapters 1–8) covers

foundational topics, Part II (Chapters 9–17) covers cryptography, and Part III

(Chapters 18–23) covers cryptanalysis.

Part I includes topics from beginner to advanced level and from theoretical

to practice. Chapter 2 discusses the basic concepts of cryptography. Chapter 3

covers a collection of key elements regarding complexity theory, probability theory,

information theory, number theory, abstract algebra, and finite fields and how they

can be implemented using C++20, showing their interaction with cryptography and

cryptanalysis algorithms.

Chapters 4 and 5 focus on integer arithmetic and floating-point arithmetic

processing. The chapter is vital, and other chapters and algorithm implementations

depend on these chapters’ content. Number representations and working with them on

the computer’s memory can represent a difficult task.

Chapter 6 discusses the newest features and enhancements of C++23. It presents

how the new features and enhancements are important in developing cryptography and

cryptanalysis algorithms and methods. It goes through three-way comparison, lambdas

in unevaluated contexts, string literals, atomic smart pointers, <version> headers,

ranges, coroutines, modules, and so forth.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

7

Chapter 7 presents the most important guidelines for securing the coding process,

keeping an important balance between security and usability based on the most

expected scenarios based on trusted code. Important topics include securing state data,

security and user input, security-neutral code, and library codes that expose protected

resources.

Chapter 8 covers the libraries and frameworks that are developed in C++/C++23.

Part II covers the most important modern cryptographic primitives. Chapters 9–16

discuss advanced cryptography topics by showing implementations and how to

approach this kind of advanced topic from a mathematical background to a real-life

environment.

Chapter 9 discusses the basics of one of the most important branches of

cryptography: elliptic-curve cryptography.

Chapter 10 introduces the Lattice Cryptography Library and hot its works

for implementation, pointing out the importance of postquantum cryptography.

Implementations of key exchange protocols proposed by Alkim, Ducas, Poppelmann,

and Schwabe [1] are discussed. The discussion continues by instantiating Chris Peikert’s

key exchange protocol [2]. The implementation is based on modern techniques for

computing, known as the number theoretic transform (NTT). The implementations apply

errorless fast convolution functions over successions of integer numbers.

Chapter 11 and Chapter 12 present two important cryptographic primitives,

homomorphic and searchable encryption. For searchable encryption (SE), Chapter 11

presents a framework using C++23 for SE, showing the advantages and disadvantages

of removing the most common patterns from encrypted data. Chapter 12 discuss

how to use the SEAL library in practical examples. The SEAL library contains one

of the most important homomorphic encryption schemes: BGV (Brakerski-Gentry-

Vaikuntanathan) [3].

Chapter 13 identifies the issues generated during implementing (ring) learning with

error cryptography mechanisms. It gives an example of implementing the lattice-based

key exchange protocol, a library used only for experiments.

Chapter 14 is based on the new concepts behind chaos-based cryptography and

how it can be translated into practice. The chapter generates some new outputs, and its

contribution is important for advancing cryptography as it is a new topic that didn’t get

the proper attention until now.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

8

Chapter 15 discusses new methods and their implementations for securing big

data environments, big data analytics, access control methods (key management for

access control), attributed-based access control, secure search, secure data processing,

functional encryption, and multiparty computation.

Chapter 16 points out the security issues about the applications running

in a cloud environment and how they can be resolved during the design and

implementation phase.

Part III deals with advanced cryptanalysis topics and shows how to pass the barrier

between theory and practice and how to think about cryptanalysis in terms of practice

by eliminating the most vulnerable and critical points of a system or software application

in a network or distributed environment.

Chapter 17 introduces you to cryptanalysis by presenting the most important

characteristics of cryptanalysis. Chapter 18 starts by showing the important criteria

and standards used in cryptanalysis, how the tests of cryptographic systems are made,

the process of selecting the cryptographic modules, the cryptanalysis operations, and

classifications of cryptanalysis attacks.

Chapter 19 and Chapter 20 show how to implement and design linear, differential,

and integral cryptanalysis. These chapters focus on techniques and strategies, and their

primary role is to show how to implement scripts for attacking linear and differential

attacks.

Chapter 21 presents the most important attacks and how they can be designed and

implemented using C++23. You study the behavior of the software applications when

they are exposed to different attacks, and you see how to exploit the source code. This

chapter also discusses software obfuscation and why it is a critical aspect that needs

to be considered by the personnel involved in implementing the software process.

Additionally, you learn how this analysis can be applied to machine learning and

artificial intelligence algorithms that can be used to predict future attacks over software

applications that are running in a distributed or cloud environment.

Chapter 22 goes through the text characterization method and its implementation.

It discusses chi-squared statistics; identifying unknown ciphers; index of coincidence;

monogram, bigram, and trigram frequency counts; quad ram statistics as a fitness

measure; unicity distance; and word statistics as a fitness measure.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

9

Chapter 23 presents the advantages and disadvantages of implementing

cryptanalysis methods, why they should have a special place when applications are

developed in distributed environments, and how the data should be protected against

such cryptanalysis methods.

As you become more advanced in your study of cryptography, you want to explore

analysis techniques like frequency analysis, letter analysis, and statistics that can help

you break ciphers that are not completely unbreakable. Sometimes, it is even possible to

find flaws in algorithms and protocols that can be exploited for malicious purposes. For

instance, cryptography is used in WEP and WPA/WPA2 networks to encrypt data. It has

been discovered that cracking the WEP takes less than 10 minutes and that WPA/WPA2 is

relatively easy to crack.

�Internet Resources
The Internet has many resources that are very useful in keeping up with progress in

the field.

•	 Bill’s Security Site (https://asecuritysite.com/). This website

contains various implementations of cryptographic algorithms. Bill

Buchanan, a professor at the School of Computing at Edinburgh

Napier University, created and updated the website.

•	 Books by William Stallings [4] [Stallings, 2010 #1] – Cryptography

and Network Security (http://williamstallings.com/

Cryptography/). The site contains a significant set of tools and

resources and provides regular updates, keeping up with the most

important advances in cryptography.

•	 Schneier on Security (www.schneier.com/). The website contains

sections with books, essays, accurate news, talks, and academic

resources.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

https://asecuritysite.com/
http://williamstallings.com/Cryptography/
http://williamstallings.com/Cryptography/
http://www.schneier.com/

10

�Forums and Newsgroups
Usenet newsgroups (deprecated but very useful information can still be found) is

dedicated to some of the important aspects of cryptography and network security. The

following are the most important.

•	 sci.crypt.research is among the best groups for finding information

about research ideas. It is a moderated newsgroup whose main

purpose is to address research topics; most topics are related to the

technical aspects of cryptology.

•	 sci.crypt is a group where you can find general discussions about

cryptology and related topics.

•	 sci.crypt.random-numbers discusses random number generators.

•	 alt.security discusses general security topics.

•	 comp.security.misc discusses general computer security topics.

•	 comp.security.firewalls features discussions on firewalls and other

related products.

•	 comp.security.announce covers CERT news and announcements.

•	 comp.risks discusses public risks from computers and users.

•	 comp.virus features moderated discussions on computer viruses.

Additionally, several forums deal with cryptography topics and news that are

available on the Internet. The following are the most important.

•	 Reddit Cryptography News and Discussions [5] is a forum group

featuring general information and news about different topics related

to cryptography and information security.

•	 Security forums [6] contain vast topics and discussions about

computer security and cryptography.

•	 TechnGenix – Security [7] is one of the most updated forums

featuring cryptography and information security news. The group is

maintained by world-leading security professionals in the field.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

11

•	 Wilders Security Forums [8] features discussions and news

about the vulnerabilities of software applications due to bad

implementations of cryptographic solutions.

•	 Security Focus [9] is a forum with a series of discussions about

vulnerabilities raised by the implementations of cryptographic

algorithms.

•	 Security InfoWatch [10] discusses data and information loss.

•	 TechRepublic – Security [11] discusses practical aspects and

methodologies for designing and implementing software

applications.

•	 Information Security Forum [12] is a world-leading information

security and cryptography forum. It features conferences, hands-

on and practical tutorials, solving solutions to security and

cryptographic issues.

�Security Protocols and Standards
The following are specific standards for cryptography. They specify which algorithms

should be used and how they should be implemented. There are many different

cryptography standards, but the following are the most important.

•	 Suite B is a set of algorithms and protocols used by the US

government. It contains both symmetric and asymmetric algorithms.

•	 ISO/IEC 17799 is an international standard for information security.

It contains a set of guidelines for cryptography.

•	 BSI TR-02102-1 - BSI – Technical Guideline. Cryptographic
Mechanisms: Recommendations and Key Lengths1 (Part 1)

evaluates the security of a few different cryptographic mechanisms,

providing some longer-term guidance in choosing appropriate

cryptographic algorithms. However, there is no guarantee of

1 See https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=6

Chapter 1 Getting Started in Cryptography and Cryptanalysis

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=6
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=6

12

completeness, so the BSI may not necessarily consider schemes that

are not included to be secure.

•	 BSI TR-02102-2. Cryptographic Mechanisms: Recommendations
and Key Lengths, Part 2 – Use of Transport Layer Security (TLS)2

is a technical guideline with recommendations for using the TLS

encryption protocol. In particular, the confidentiality, integrity, and

authenticity of the sent information can be secured by its use for

secure information transfer in data networks.

•	 BSI TR-02102-3. Cryptographic Mechanisms: Recommendations
and Key Lengths, Part 3 – Use of Internet Protocol Security (IPsec)

and Internet Key Exchange (IKEv2)3 is a technical guideline with

recommendations for using IPsec and IKEv2. In particular, the

confidentiality, integrity, and authenticity of the sent information can

be secured by its use for secure information transfer in data networks.

•	 BSI TR-02102-4. Cryptographic Mechanisms: Recommendations
and Key Lengths Part 4 – Use of Secure Shell (SSH) NIST Special
Publication 800-184 is a technical guideline with recommendations

for using the Secure Shell cryptographic technology (SSH). Within

an insecure network, this protocol can be used to create a secure

channel.

•	 Federal Information Processing Standard 140-2 is a FIPS standard

that specifies cryptographic algorithms and protocols.

Many cryptographic techniques and implementations described in this book

follow the following standards. Standards have been developed and designed to cover

the management practices and the entire architecture of the security mechanisms,

strategies, and services.

The following are the most important standards covered in this book.

2 See https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=5
3 See https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-3.pdf?__blob=publicationFile&v=5
4 See https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-4.pdf?__blob=publicationFile&v=5

Chapter 1 Getting Started in Cryptography and Cryptanalysis

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-3.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-3.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-4.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-4.pdf?__blob=publicationFile&v=5

13

•	 The National Institute of Standards and Technology (NIST)

represents the US federal agency that deals with standards, science,

and technologies related to the US government. Except for the

national goal, NIST Federal Information Processing Standards

(FIPS) and Special Publications (SP) have a very important

worldwide impact.

•	 The Internet Society (ISOC) represents one of the most important

professional membership societies with organizational and

individual members worldwide. ISOC provides leadership in the

issues that are addressed and that confront the future perspective

of the Internet and applications developed using security and

cryptographic mechanisms with respect to the responsible groups,

such as the Internet Engineering Task Force (IETF) and the Internet

Architecture Board (IAB).

•	 The International Telecommunication Union (ITU) represents one

of the most powerful organizations within the United Nations System.

It coordinates and administers global telecom networks and services

with governments and the private sector. ITU-T represents one of the

three sectors of ITU. The mission of ITU-T consists of the production

of standards that cover all the fields of telecommunications. The

standards proposed by ITU-T are known as recommendations.

•	 The International Organization for Standardization (ISO)

represents a worldwide federation that contains national standards

bodies from over 140 countries. ISO is a nongovernmental

organization to promote the development of standardization

and activities related to activities with a view that it facilitates the

international exchange of services to develop cooperation with

intellectual, scientific, and technological activity. The results of ISO

are as international agreements published as international standards.

From securing communication and storage of information, cryptography algorithms

and protocols can be seen as guidelines and protocols used to ensure the secure

Chapter 1 Getting Started in Cryptography and Cryptanalysis

14

communication and storage of information. The following are some widely used

cryptography algorithms and protocols.

•	 The Advanced Encryption Standard (AES) is a symmetric-key

encryption algorithm for encrypting electronic data.

•	 RSA is an asymmetric-key encryption algorithm used for secure data

transmission.

•	 Elliptic-curve cryptography (ECC) is an approach to public-key

cryptography based on the mathematics of elliptic curves.

•	 Secure Sockets Layer (SSL) and TLS are protocols for securing

network communications.

•	 IPSec is a protocol for securing Internet communications at the

network layer.

•	 Pretty Good Privacy (PGP) is a data encryption and decryption

program that provides cryptographic privacy and authentication for

data communication.

These are just a few examples, and many other cryptography standards are

used today.

�Cryptography Tools and Resources
There are numerous tools and resources to help you learn more about cryptography.

Here are a few worth checking out.

•	 Cracking Crypto challenges provide a fun way to test your skills and

are great for beginners. There are challenges in both cryptography

and cryptanalysis, so you can pick whichever interests you more.

•	 Dark Reading is a website that publishes news articles on all

aspects of information security. Their cryptography section regularly

publishes articles on the latest developments in cryptography.

•	 There are many great cryptography books. If you prefer reading to

online tutorials, there are plenty of worthy books to choose from.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

15

•	 Coursera, Pluralsight, and Udemy offer online cryptography

courses. These courses vary in length and difficulty and can help

advance your knowledge. The following are some of the most

interesting courses.

•	 Coursera

•	 Cryptography I by Dan Boneh, Stanford University

www.coursera.org/learn/crypto

•	 Cryptography II by Dan Boneh

	 Stanford University

www.coursera.org/learn/crypto2

•	 Introduction to Applied Cryptography Specialization by

William Bahn

www.coursera.org/specializations/introduction-

applied-cryptography

•	 Pluralsight

•	 Cryptography: The Big Picture

https://app.pluralsight.com/library/courses/

cryptography-big-picture/table-of-contents

•	 Cryptography: Executive Briefing

https://app.pluralsight.com/library/courses/

cryptography-executive-briefing/table-of-contents

•	 Cryptography Application

https://app.pluralsight.com/library/courses/

cryptography-application/table-of-contents

•	 Securing Data with Asymmetric Cryptography

Chapter 1 Getting Started in Cryptography and Cryptanalysis

http://www.coursera.org/learn/crypto
http://www.coursera.org/learn/crypto2
http://www.coursera.org/specializations/introduction-applied-cryptography
http://www.coursera.org/specializations/introduction-applied-cryptography
https://app.pluralsight.com/library/courses/cryptography-big-picture/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-big-picture/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-executive-briefing/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-executive-briefing/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-application/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-application/table-of-contents

16

https://app.pluralsight.com/library/courses/

asymmetric-cryptography-securing-data/table-

of-contents

•	 Practical Encryption and Cryptography Using Python

https://app.pluralsight.com/library/courses/

practical-encryption-and-cryptography-using-

python/table-of-contents

•	 Building Secure Applications with Cryptography in.NET

https://app.pluralsight.com/library/courses/

dotnet-cryptography-secure-applications/table-

of-contents

�Conclusion
The era in which we are living has an unimaginable evolution and incredible

technologies that enable the instant flow of information at any time and place. The secret

consists of the convergence process of the computer with the networks, a key force that

forces the evolution and development of these incredible technologies from behind.

Cryptography and cryptanalysis are fascinating disciplines that have played a critical

role in modern communication and security. This step-by-step work help you get started

in the world of cryptography and cryptanalysis by providing you with all the necessary

information to become an expert in programming and how to approach cryptographic

algorithms. From understanding the basics of programming cryptography algorithms

to exploring advanced techniques, this work helps you explore the fascinating technical

disciplines that have played a critical role in modern communication and security.

This first chapter discussed the objectives of the book and its benefits. It covered the

mission of the book, addressing the practical aspects of cryptography and information

security and its main intention in using the current work. The increasing process of using

systems that build using advanced information technologies has been shown to deeply

impact our lives every day. All technologies are proving to be pervasive and ubiquitous.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

https://app.pluralsight.com/library/courses/asymmetric-cryptography-securing-data/table-of-contents
https://app.pluralsight.com/library/courses/asymmetric-cryptography-securing-data/table-of-contents
https://app.pluralsight.com/library/courses/asymmetric-cryptography-securing-data/table-of-contents
https://app.pluralsight.com/library/courses/practical-encryption-and-cryptography-using-python/table-of-contents
https://app.pluralsight.com/library/courses/practical-encryption-and-cryptography-using-python/table-of-contents
https://app.pluralsight.com/library/courses/practical-encryption-and-cryptography-using-python/table-of-contents
https://app.pluralsight.com/library/courses/dotnet-cryptography-secure-applications/table-of-contents
https://app.pluralsight.com/library/courses/dotnet-cryptography-secure-applications/table-of-contents
https://app.pluralsight.com/library/courses/dotnet-cryptography-secure-applications/table-of-contents

17

The book represents the first practical step of translating the most important

theoretical cryptography algorithms and mechanisms to practice through one of the

most powerful programming languages (C++20).

This chapter accomplished the following.

•	 Each concept was explained to eliminate the confusion between

cryptography, cryptanalysis, and cryptology.

•	 It discussed the book’s structure. A roadmap introduced the

dependencies of each chapter. Each chapter has been presented in

detail, pointing out the main objective.

•	 A list of newsgroups, websites, and USENETs resources provides

sources covering the latest news in cryptography and information

security.

•	 It introduced the most significant standards used in cryptography

and information security.

References
[1].	 Alkim, E., Ducas, L., Pöppelmann, T., and Schwabe, P. (2016). Postquantum

key exchange—a new hope. In 25th {USENIX} Security Symposium ({USENIX}

Security 16) (pp. 327–343).

[2].	 Peikert, C. (2014, October). Lattice cryptography for the Internet. In

international workshop on postquantum cryptography (pp. 197–219).

Springer, Cham.

[3].	 Brakerski, Z., Gentry, C., and Vaikuntanathan V. (2011). Fully Homomorphic

Encryption without Bootstrapping Cryptology ePrint Archive, Paper 2011/277,

https://eprint.iacr.org/2011/277.

[4].	 Stallings, W., Cryptography and Network Security - Principles and Practice. 5

ed. 2010: Pearson. 744.

[5].	 Reddit. Cryptography News and Discussions. Available from: https://www.

reddit.com/r/crypto/.

[6].	 Forums, Security.; Available from: http://www.security-forums.com/index.

php?sid=acc302c71bb3ea3a7d631a357223e261.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

https://eprint.iacr.org/2011/277
https://www.reddit.com/r/crypto/
https://www.reddit.com/r/crypto/
http://www.security-forums.com/index.php?sid=acc302c71bb3ea3a7d631a357223e261
http://www.security-forums.com/index.php?sid=acc302c71bb3ea3a7d631a357223e261

18

[7].	 TechGenix, Security. Available from: http://techgenix.com/security/.

[8].	 Wilders Security Forums. Available from: https://www.

wilderssecurity.com/.

[9].	 Security Focus. Available from: https://www.securityfocus.com/.

[10].	 Security InfoWatch. Available from: https://forums.

securityinfowatch.com/ .

[11].	 TechRepublic – Security. Available from: https://www.techrepublic.com/

forums/security/.

[12].	 Information Security Forum. Available from: https://www.

securityforum.org/.

Chapter 1 Getting Started in Cryptography and Cryptanalysis

http://techgenix.com/security/
https://www.wilderssecurity.com/
https://www.wilderssecurity.com/
https://www.securityfocus.com/
https://forums.securityinfowatch.com/
https://forums.securityinfowatch.com/
https://www.techrepublic.com/forums/security/
https://www.techrepublic.com/forums/security/
https://www.securityforum.org/
https://www.securityforum.org/

19

CHAPTER 2

Cryptography
Fundamentals
Cryptographic history is incredibly long and fascinating. The Code Book: The Secrets

Behind Codebreaking [1] is a comprehensive reference that provides a nontechnical

history of cryptography. In the book, the story of cryptography begins in approximately

2000 BC, when the Egyptians used it for the first (known) time. It presents the main

aspects of cryptography and hiding information for each period that is covered and

describes the great contribution that cryptography had in both world wars. The art

of cryptography often correlates with diplomacy, military, and government because

its purpose is to keep sensitive data, such as strategies or secrets regarding national

security, safe.

A crucial development in modern cryptography is the working paper “New

Directions in Cryptography” [2] proposed by Diffie and Hellman in 1976. The paper

introduced a notion that changed how cryptography was seen until then, namely,

public-key cryptography. Another important contribution of this paper is an innovative

way of exchanging keys. The security of the presented technique is based on the

hardness assumption (basically, through the hardness assumption, we refer to a

problem that cannot be solved efficiently) of the discrete logarithm problem. Even

though the authors did not propose a practical implementation for their public-key

encryption scheme, the idea was presented very clearly and started to draw attention in

the international cryptography community.

The first implementation of a public-key encryption scheme was made in 1978 by

Rivest, Shamir, and Adleman, who proposed and implemented their encryption scheme,

currently known as RSA [3]. The hardness assumption in the RSA is the factoring of

large integers. By looking in parallel between integer factorization for RSA and Shor’s

algorithm, we can note that Shor’s algorithm runs in polynomial time for quantum

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_2

https://doi.org/10.1007/978-1-4842-9450-5_2

20

computers. This represents a significant challenge for any cryptographer using the

hardness assumption for factoring large integers. The increasing applications and

interest in the factoring problem led to new techniques. Important advances in this

area were made in 1980, but none of the proposed techniques improved the security of

the RSA.

Another important class of practical public-key encryption schemes was designed

by ElGamal [4] in 1985. These are based on the hardness assumption of the discrete

logarithm problem.

Other crucial contributions to public-key cryptography are the digital signature, for

which the international standard ISO/IEC 9796 was adopted in 1991 [5]. The basis of

the standard is the RSA public-key encryption scheme. A powerful scheme for digital

signatures based on the discrete logarithm hardness assumption is the Digital Signature

Standard, adopted by the United States government in 1994.

Currently, the trends in cryptography include designing and developing new public

key schemes, adding improvements to the existing cryptographic mechanisms, and

elaborating security proofs.

The book’s objective is to provide a view of the latest updates of the principles,

techniques, algorithms, and implementations of the most important aspects of

cryptography in practice. It focuses on the practical and applied aspects of cryptography.

You are warned about the difficult subjects and those that present issues and are

guided to a proper bibliography in which best practices and solutions are found. Most

of the aspects presented in the book are followed by implementations. This objective

also serves to not obscure the real nature of cryptography. The book represents strong

material for both implementers and researchers. The book describes the algorithms and

software systems with their interactions.

�Information Security and Cryptography
This book refers to the term and concept of information as to quantity. To go through the

introduction to cryptography and to show its applicability by presenting algorithms and

implementation technologies (such as C++), first, we need to have a basis for the issues

that occur often in information security. When a particular transaction occurs, all parties

involved must be sure (or ensure) that specific objectives related to information security

are met. A list of these security objectives is given in Table 2-1.

Chapter 2 Cryptography Fundamentals

21

Several protocols and security mechanisms have been proposed to defy the

issues regarding information security when the information is sent in physical format

(for example, documents). The objectives regarding information security may be

accomplished by applying mathematical algorithms or work protocols to information

that needs to be protected and additionally following specific procedures and laws.

An example of physical document protection is sealed envelopes (the mechanism of

protection) that cover the letter (the information that needs to be protected) delivered

by an authorized mail service (the trusted party). In this example, the protection

mechanism has its limitations. But the technical framework has rigorous rules, through

which any entity that opens the envelope and does not have this right needs to be

punished. There are situations in which the physical paper contains the information that

needs to be protected, and has special characteristics that certify the originality of the

data/information. For example, to refrain from forging banknotes, paper currency has

special ink and matter.

Table 2-1.  Security Objectives

Security Objective Description

privacy/confidentiality The information is kept secret from unauthorized entities.

signature A technique that binds a signature by an entity (for example, a

document).

authorization The action of authorizing an entity to do or be something to send the

information between the sender and the receiver.

message authentication The process/characteristic through which the origin of the data is

authenticated; another meaning is corroboration of the information

source.

data integrity The information is kept unaltered through techniques that keep away

unauthorized entities or unknown means.

entity authentication/
identification

The action of validating the identity of an entity, which may be a

computer, person, credit card, and so on.

validation The action of making available a (limited) quantity of time for

authorization for using or manipulating the data or resources.

(continued)

Chapter 2 Cryptography Fundamentals

22

Table 2-1.  (continued)

Security Objective Description

certification The process of confirming the information by a trusted party.

or

Acknowledgment of information by a trusted certification.

access control The action of restricting access to resources to authorized parties.

timestamping Metadata stamps the time of creation or the existence of information.

witnessing The action of validating the creation/existence of the information made

by an entity that is not the creator of the data.

receipt The action of confirming the receiving of the information.

ownership The action of giving an entity the legal rights to use or transfer a

particular information/resource.

confirmation The action of validating the fact that certain services have been

accomplished.

revocation The action of withdrawing certification or authorization.

nonrepudiation The process of restraining the negation of other previous commitments

or actions.

anonymity The action of making anonym an entity’s identity involved in a particular

action/process.

From a conceptual point of view, how the information is manipulated did not

change substantially. We consider storing, registering, interpreting, and recording

data. However, a manipulation that changed significantly is copying and modifying

the information. An important concept in information security is the signature, which

represents the foundation for more processes, such as nonrepudiation, data origin

authentication, identification, and witnessing.

The requirements introduced by legal and technical skills should be followed to

achieve the security of information in electronic communication. On the other hand,

the preceding protection objectives are not guaranteed to be fulfilled accordingly. The

technical part of information security is assured by cryptography.

Chapter 2 Cryptography Fundamentals

23

Cryptography represents the field that studies the mathematical techniques and

tools that are connected to information security, such as confidentiality, integrity (data),

authentication (entity), and the origin of authentication. Cryptography not only provides

information security but also provides a specific set of techniques.

�Cryptography Goals
From the security objectives presented in Table 2-1, the following represent a basis from

which the others can be derived.

•	 privacy/confidentiality (Definitions 2.5 and 2.8)

•	 data integrity (Definition 2.9)

•	 authentication (Definition 2.7)

•	 nonrepudiation (Definition 2.6)

The following explains each of the four objectives in detail.

•	 Confidentiality represents a service that protects information

content from unauthorized entities and access. Confidentiality

is assured through different techniques, from mathematical

algorithms to physical protection, that scramble the data into an

incomprehensible form.

•	 Data integrity represents a service that prevents unauthorized

alteration of the information. Authorized entities should be able to

discover and identify unauthorized manipulation of data.

•	 Authentication represents a service that has an important role when

data or application is authenticated, and it implies identification.

The authentication process is applied on both extremities that use

the data (for example, the sender and the receiver). The rule is that

each involved party should identify itself in the communication

process. It is very important that both parties that are involved in

the communication process declare to each other their identity (the

parties could be represented by a person or a system). At the same

time, some characteristics of the data should accompany the data

itself; for example, its origin, content, or the time of creation/sending.

Chapter 2 Cryptography Fundamentals

24

From this point of view, cryptography branches authentication into

two categories: authentication of the entity and authentication of the

data origin. Data origin authentication leads to data integrity.

•	 Nonrepudiation represents a service that prevents the denials of

previous actions made by an entity. When a conflict occurs because

an entity denies its previous actions, it is resolved by an existing

sinew showing the actions made over data.

One of the main goals of cryptography is to fulfill the four objectives on both sides—

theory and practice.

�Cryptographic Primitives
The book presents several fundamental cryptographic tools called primitives. Examples

of primitives are encryption schemes (Definitions 2.5 and 2.8), hash functions

(Definition 2.9), and schemes for digital signatures (Definition 2.6). Figure 2-1 presents

a schematic description of these primitives and their relationship. Many cryptographic

primitives are used in the book, and practical implementations are provided every time.

Before using them in real-life applications, the primitives should be evaluated to check if

the following criteria are fulfilled.

•	 Level of security. It is slightly difficult to quantify the level of

security. However, it can be quantified as the number of operations

to accomplish the desired objective. The level of security is usually

defined based on the superior bound given by the volume of work

necessary to defeat the objective.

•	 Functionality. To accomplish security objectives, in many situations,

primitives are combined. You need to be sure that they work

properly.

•	 Operation methods. When primitives are used, they need different

inputs and have different ways of working, resulting in different

characteristics. In these situations, the primitives provide very

different functionalities that depend on the mode of operation.

Chapter 2 Cryptography Fundamentals

25

•	 Performance. This concept is related to the efficiency that a

primitive can achieve in a specific mode of operation.

•	 Ease of implementation. This concept is merely a process rather

than a criterion, which refers to the primitive being used in practice.

Figure 2-1.  Cryptographic primitive taxonomy

The application and the available resources give importance to each of the criteria

shown in Figure 2-1.

Cryptography may be seen as an art practiced by professionals and specialists who

proposed and developed ad hoc techniques whose purpose was to fulfill important

information security requirements. In the last few decades, cryptography has

Chapter 2 Cryptography Fundamentals

26

transitioned from an art to a science and discipline. There are dedicated conferences

and events in many cryptography and information security fields. In addition, there

are international professional associations, such as the International Association for

Cryptologic Research (IACR), whose aim is to bring and promote the best research

results in the area.

The current book is about cryptography and cryptanalysis: implementing algorithms

and mechanisms using C++ with respect to standards.

�Background of Mathematical Functions
A monograph on abstract mathematics is not a goal of this book. Getting familiar with

some fundamental mathematical concepts is necessary and proves to be very useful in

practical implementations. One of the most important concepts that are fundamental to

cryptography is represented by a function in the mathematical sense. A function is also

known in the literature as transformation or mapping.

�One-to-One, One-Way, and Trapdoor One-Way Functions
Let’s consider a set that has in its composition a distinct set of objects that are known

as elements of that specific set. The following example represents a set A that has the

elements a, b, c, which is denoted as A = {a, b, c}.

Definition 2.1 [18]. Cryptography is defined as the study of mathematical techniques

that are related to aspects of information security, such as confidentiality, integrity

(data), authentication (entity), and authentication of the data origin.

Definition 2.2 [18]. Consider that sets A and B and rule f define a function. The rule

f assigns to each element in A an element in B. Set A is the domain that characterizes the

function, and B represents the codomain. If a represents an element from A, written as

a ∈ A, the image of a is represented by the element in B with the help of rule f; the image

b of a is denoted by b = f (a). The standard notation for a function f from set A to set B

is represented as f : A → B. If b ∈ B, then there is a preimage of b, which is an element

a ∈ A for which f (a) = b. The entire set of elements in B that have at least one preimage is

known as the image of f, denoted as Im(f).

Example 2.3. (function) Consider sets A = {a, b, c} and B = {1, 2, 3, 4}, and the rule f

from A to B as defined as f (a) = 2, f (b) = 4, f (c) = 1. Figure 2-2 represents sets A, B and

function f. The preimage of the element 2 is a. The image of f is {1, 2, 4}.

Chapter 2 Cryptography Fundamentals

27

Example 2.4. (function) Consider set A = {1, 2, 3, ……, 10} and consider f to be the rule

that for each a ∈ A, f (a) = ra, where ra represents the remainder when a2 is divided by 11.

	 f f1 1 6 3� � � � � � 	

	 f f2 3 7 5� � � � � � 	

	 f f3 9 8 9� � � � � � 	

	 f f4 5 9 4� � � � � � 	

	 f f5 3 10 1� � � � � � 	

The image of f is represented by the set Y = {1, 3, 4, 5, 9}.

The scheme represents the main fundamental tool for thinking of a function (found in

the literature known as the functional diagram), as depicted in Figure 2-2. Each element

from the domain A has precisely one arrow originating from it. For each element from

codomain B, you can have any number of arrows incident to it (including also zero lines).

Example 2.5. (function) Let’s consider the following set defined as

A = {1, 2, 3, …, 1050} and consider f to be the rule f (a) = ra, where ra represents the

remainder in the case when a2 is divided by 1050 + 1 for all a ∈ A. In this situation, it is not

feasible to write down f explicitly, as in Example 2.4. The function is completely defined

by the domain and the mathematical description that characterize the rule f.

Figure 2-2.  Function f from a set A formed from three elements to a set B formed
from five elements

Chapter 2 Cryptography Fundamentals

28

�One-to-One Functions

Definition 2.6 [18]. Consider a function or transformation 1 − 1 (one-to-one) if each of

the elements that can be found within the codomain B is represented as the image of at

most one element in the domain A.

Definition 2.7 [18]. Let’s consider that a function or transformation is onto if each of

the elements found within the codomain B represents the image of at least one element

that can be found in the domain. At the same time, a function f : A → B is known as being

onto if Im(f) = B.

Definition 2.8 [18]. Function f : A → B is considered 1 − 1 and Im(f) = B, and

function f is called bijection.

Conclusion 2.9 [18]. If f : A → B is considered 1 − 1, then f : A → Im (f) represents

the bijection. In special cases, if f : A → B is represented as 1 − 1 and A and B are

represented as finite sets with the same size, then f represents a bijection.

Using the scheme and its representation, if f is a bijection, then each element from

B has exactly one line that is incident with it. The function shown and described in

Examples 2.3 and 2.4 does not represent bijections. As you can see in Example 2.3,

element 3 does not have the image of any other element that can be found within

the domain. In Example 2.4, each element from the codomain is identified with two

preimages.

Definition 2.10 [18]. If f is a bijection from A to B then it is a quite simple matter to

define a bijection g from B to A as follows: for each b ∈ B we define g(b) = a where a ∈ A

and f (a) = b. The function g is obtained from f, and it is called the inverse function of f

and denoted as g = f −1.

Chapter 2 Cryptography Fundamentals

29

Figure 2-3.  Representation of a bijection f and its inverseg = f −1

Example 2.11. (inverse function) Consider sets A = {a, b, c, d, e} and Y = {1, 2, 3, 4, 5}

and the rule f, which is given and represented by the lines in Figure 2-3. f represents a

bijection, and its inverse g is formed by reversing the sense of the arrows. The domain of

g is represented by B, and the codomain is A.

Note that if f is a bijection, then f −1 is also a bijection. The bijections in cryptography

are tools used for message encryption. The inverse transformations are used for

decryption. The main condition for decryption is for transformation to be a bijection.

Chapter 2 Cryptography Fundamentals

30

�One-Way Functions

In cryptography, certain types of functions play an important role. A definition for a

one-way function is given as follows.

Definition 2.12 [18]. Let’s consider a function f from a set A to a set B that is called

a one-way function if f (a) proves to be simple and easy to compute for all a ∈ A. But for

“essentially all” elements b ∈ Im (f), it is computationally infeasible to manage to find

any a ∈ A in such a way that f (a) = b.

Note 2.13 [18]. This note represents some additional notes and clarifications of the

terms used in Definition 2.12.

For the terms easy and computationally infeasible, a rigorous definition is necessary,

but it distracts attention from the general idea that is being agreed upon. Fur the goal of

this chapter, the simple and intuitive meaning is sufficient.

The words “essentially all” stand for the idea that there are a couple of values b ∈ B

for which it is easy to find an a ∈ A in such a way that b = f (a). For example, one may

compute b = f (a) for a small number of a values, and then for these values, the inverse is

known by a table look-up. A different way to describe this property of a one-way function

is as follows: for any random b ∈ Im (f), it is computationally feasible to have and find

any a ∈ A in such a way that f (a) = b.

The following examples show the concept behind a one-way function.

Example 2.14. (one-way function) Consider A = {1, 2, 3, …, 16} and define f (a) = ra for

all the elements a ∈ A, where ra represents the remainder when 3x is divided by 17.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f (a) 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

Let’s assume a number situated between 1 and 16. You see that it is very easy to find

its image under f. Without having the table in front of you, for example, for 7, it is hard to

find a given that f (a) = 7. If the number you are given is 3, then is quite easy that a = 1 is

what you need.

Remember that this is an example focused on very small numbers. The key thing

here is that the amount of effort to measure is different f (a) and the amount of work in

finding a given f (a). Additionally, for large numbers, f (a) can be efficiently computed

using the square-and-multiply algorithm [20], where the process of finding a from f (a) is

harder to find.

Chapter 2 Cryptography Fundamentals

31

Example 2.15 [18]. (one-way function) A prime number is defined as a positive

integer. The integer is larger than 1, and its positive integer divisors are 1 and

itself. Let’s take into consideration the primes p = 50633 and q = 58411, compute

n = pq = 50633 · 58411 = 2957524163, and let’s consider A = {1, 2, 3, …, n − 1}. We

define a function f on A by f(a) = ra for each a ∈ A, where ra represents the remainder

when x3 is divided by n. For example, let’s consider f(2489991 = 1981394214 since

24899913 = 5881949859 · n + 1981394214. Computing f(a) represents a simple task, but

reversing the procedure is difficult.

�Trapdoor One-Way Functions

Definition 2.16 [18]. A trapdoor one-way function is represented as a one-way function

f : A → B with an extra property that has information (also known as the trapdoor

information); it is much more feasible to have an identification for any given b ∈ Im (f),

with an a ∈ A in such a way that f(a) = b.

Example 2.15 shows the concept of a trapdoor one-way function. With extra

information about the factors of n = 2957524163, it becomes much easier to invert

the function. The factors of 2957524163 are large enough that it would be difficult to

identify them by hand calculation. You should be able to identify the factors very easily

with the help of some computer program. For example, if you have very large, distinct

prime numbers (each number has approximately 200 decimal digits), p and q, with the

technology of today, finding p and q from n is very difficult even with the most powerful

computers, such as quantum computers. This is the well-known factorization problem

known as the integer factorization problem.

One-way and one-way trapdoor functions form the fundamental basis for public-

key cryptography. These principles are very important and become much clearer later

when the implementation of cryptographic techniques occurs. It is vital and important

to understand these concepts from this section as the main methods and the primary

foundation for the cryptography algorithms to implement later in this chapter.

�Permutations
Permutation represents functions that are in cryptographic constructs.

Definition 2.17 [18]. Consider S to be a finite set formed of elements. A permutation

p on S represents a bijection, as defined in Definition 2.8. The bijection is represented

from S to itself, p : S → S.

Chapter 2 Cryptography Fundamentals

32

Example 2.18 [18]. This example represents a permutation example. Let’s consider

the following permutation S = {1, 2, 3, 4, 5}. The permutation p : S → S is defined as

follows.

	 p p p p p1 2 2 5 3 4 4 2 5 1� � � � � � � � � � � � � � �, , , , 	

A permutation can be described in different ways. It can also be written as an array,

as follows, in which the top row in the array is represented by the domain and the bottom

row is represented by the image under p as mapping.

	
p �

�

�
�

�

�
�

1 2 345

3 5 421
,
	

As the permutations are bijections, they have inverses. If the permutation is written

as an away (second form), its inverse is very easily found by interchanging the rows in

the array and reordering the elements from the new top row, and the bottom row has to

be reordered accordingly. In this case, the inverse of p is defined as follows.

	
p� �

�

�
�

�

�
�

1 1 2 345

5 4 132 	

Example 2.19 [18]. This example represents a permutation example. Let’s consider

A to be the set of integers {0, 1, 2, …, p · q − 1}, where p and q represent two distinct large

primes. We also need to suppose that neither p − 1 nor q − 1 can be divisible by 3. The

function p(a) = ra, in which ra represents the remainder when a3 is divided by pq, can

be demonstrated and shown as the inverse permutation. The inverse permutation is

currently computationally infeasible by computers unless p and q are known.

�Inclusion
Involutions are known as the functions having their own inverses.

Definition 2.20 [18]. Let’s consider a finite set S and f defined as a bijection S to S,

denoted as f : S → S. In this case, the function f is noted as involution if f = f −1. Another

way of defining this is f (f (a)) = a for any a ∈ S.

Example 2.21 [18]. This example represents an involution case. Figure 2-4 depicts

an example of involution. Note that if j represents the image of i, then i represents the

image of j.

Chapter 2 Cryptography Fundamentals

33

Figure 2-4.  Representation of an involution with a set S with five elements

�Concepts and Basic Terminology
It is very difficult to see and understand how cryptography was built using hard and

abstract definitions when dealing with the scientific side of the field. The following lists

the most important terms and key concepts that are used in this chapter.

�Domains and Codomains Used for Encryption
•	  is shown as a finite set known as the alphabet of definition.

Consider as an example  �� �0 1, , which represents the binary

alphabet, a frequently used alphabet as a definition.

•	  is a set known as the message space. The message space has

strings of symbols from an alphabet, . As an example,  may have

binary strings, English text, French text, and so on.

•	  is the ciphertext space.  has strings of symbols from an alphabet,
 , which is totally different from the alphabet defined for . An

element from  is called ciphertext.

Chapter 2 Cryptography Fundamentals

34

�Encryption and Decryption Transformations
•	 The set  is called the key space. The elements of  are called keys.

•	 For each e∈ , there is a unique transformation Ee, representing a

bijection from  to  (i.e., Ee :M C→). Ee is called the encryption

function or encryption transformation. If the encryption process is

reversed, then Ee should be a bijection, such that each unique plain

message is recovered from one unique ciphertext.

For each d∈ , there is a transformation Dd, representing

a bijection from  to  (i.e., Dd :C M→). Dd is called a

decryption function or decryption transformation.

•	 The process of encrypting the message m∈ or the encryption of m

consists of applying the transformation Ee.

•	 The process of decrypting the ciphertext c∈ or the decryption of c

consists of applying the transformation Dd over c.

•	 An encryption scheme has two important sets: E ee : �� � , which

represents the set of encryption transformations, and D dd : �� � ,

which represents the set of decryption transformations. The relation

between the elements of the two sets is the following: for each e∈
, there exists a unique key d∈ such that D Ed e� �1 ; in other words,

we have the relationship Dd(Ee(m)) = m for all m∈ . Another term

for encryption schemes is cipher.

•	 In the preceding definition, the encryption key e and the decryption

key d form a pair, usually denoted (e, d). In symmetric encryption

schemes, e and d are the same, while in asymmetric (or public-key)

encryption schemes, they are different.

•	 To construct an encryption scheme, the following components are

needed: the message (or plain-text) space  , the cipher-space 
, the key space  , the set of encryption transformations E ee : �� �

and the set of decryption transformations D dd : �� � .

Chapter 2 Cryptography Fundamentals

35

�The Participants in the Communication Process
The following are components involved in the communication process.

•	 The entity (party) is that component that works with information:

sending, receiving, manipulating it. The entities/parties in Figure 2-5

are Alice, Bob, and Oscar. However, in real applications, entities are

not necessarily persons; they may be authorities or computers, for

example.

•	 The sender is one of the entities of a two-party communication

and initiates the transmission of the data. The sender in Figure 2-5

is Alice.

•	 The receiver is the other entity of a two-party communication

and is the intended recipient of the information. The receiver in

Figure 2-5 is Bob.

•	 The communication channel is the component through which the

sender and the receiver communicate.

•	 The adversary is an unauthorized entity on a two-party

communication, and it is different from the sender and the receiver.

Its objective is to break the security on the communication channel

to access the information. Other terms for the adversary1 are enemy,

attacker, opponent, eavesdropper, intruder, and interloper. It has

different types (passive and active) and behaves differently according

to aspects regarding the encryption scheme or its intentions.

Often, the attacker clones and acts like the legitimate sender or the

legitimate receiver.

1 Alice and Bob. Available online: https://en.wikipedia.org/wiki/Alice_and_Bob

Chapter 2 Cryptography Fundamentals

https://en.wikipedia.org/wiki/Alice_and_Bob

36

Figure 2-5.  Example of a two-party communication process applying encryption

�Digital Signatures
Digital signatures are very important in some processes, such as authentication,

authorization, or nonrepudiation. The digital signature is used to map an individual’s

identity with a piece of information. When something is digitally signed, the message

and the confidential information owned by an individual are converted into a tag called

a signature.

The components of the signing process are as follows.

•	  is the set of messages that can be signed.

•	  is the set of signatures. These can have a form of binary strings

with a predefined length.

•	 A represents the transformation between  and  , called the

signing transformation, and it is made by entity A. The entity keeps
A secret and use it to sign messages from  .

•	 VA represents the transformation between M S× to the set

{true, false}. The Cartesian product M S× contains the pair of

elements (m, s) where m∈ and s∈ . The transformation VA is

public, and it is used by different entities to check if the signatures

were created by entity A.

Chapter 2 Cryptography Fundamentals

37

�Signing Process
The entity A called the signer creates a signature s∈ for a particular message m∈

using the following steps.

	 1.	 Compute s = SA(m).

	 2.	 Transmit the pair (m, s) to the desired receiver.

�Verification Process
When the receiver entity B wants to check if the entity A created the signature s for the

message m, it proceeds as follows.

	 1.	 Obtain the verification function VA for entity A.

	 2.	 Compute u = VA(m, s).

	 3.	 If u = true, then the signature was created by entity A; if u = false,

then the signature was not created by entity A.

�Public-Key Cryptography
Public-key cryptography (PKC) has an important role in C++ when similar algorithms

need to be incorporated. Many significant commercial libraries are implementing

developer-specific public-key cryptography solutions, such as [21–30].

Next, let’s look at how public-key cryptography works. For this, recall that  is the

key space, and consider the set of encryption transformations E ee : �� � and the set of

decryption transformations D dd : �� � . Furthermore, consider the pair of encryption

and decryption transformations (Ee, Dd), where Ee can be learned by anyone for every e.

Since Ee, determining Dd must be computationally unrealizable (i.e., from a random

ciphertext c∈), it must be impossible to determine the message m∈ such that

Ee(m) = c. This property is strong, which means that the corresponding decryption key

d (which must be secret/private) may not be computed/determined from either given e

(which is public).

Chapter 2 Cryptography Fundamentals

38

Look at Figure 2-6 and consider the communication channel between two parties,

namely, Alice and Bob.

•	 Bob chooses a pair of keys (e, d).

•	 Bob makes the encryption key e publicly available, such that Alice can

access it over any channel and keeps the decryption key secret and

safe d. In the specialty literature, in PKC, the encryption key is called

the public key, and the decryption key is called the secret/private key.

•	 When Alice wants to send a message m∈ to Bob, she uses Bob’s

public key e to determine the encryption transformation Ee, and

then she applies it over m. Finally, Alice obtains the encryption

c E me� � �� and sends it to Bob.

•	 When Bob wants to decrypt the encrypted message c∈

received from Alice, he uses his private key d to determine the

transformation decryption Dd, and then he applies it over c. Finally,

he obtains m D cd� � �� .

Figure 2-6.  The process of encryption using the public-key mechanism

Chapter 2 Cryptography Fundamentals

39

There is no need to keep the encryption key e secret, and it can be made public.

Every individual can then send encrypted messages to Bob that can be decrypted only

by Bob. Figure 2-7 illustrates the idea, where A1, A2, and A3 represent different entities.

Remember that if A1 destroys message m1 after encrypting it to c1, then even A1 is found

in a position to not be able to recover m1 from c1.

Let’s take the following analog as an example, to make it simple, by considering a

metal with the cover secured by a lock with a particular combination. Bob is the only

one who knows how to blend. If the lock stays open and made accessible to the public

for different purposes, we find ourselves in a position where someone can let a message

inside and lock the cover.

�Hash Functions
Hash functions are one of the primary primitives in modern cryptography. Additionally,

known as a one-way hash function is the hack function. A hash function represents a

computationally efficient function that maps the binary string to binary strings with an

arbitrary length with a fixed length known as hash values.

Figure 2-7.  How public-key encryption is used

Chapter 2 Cryptography Fundamentals

40

As an example of the implementation of a hash function (SHA-256, see Figure 2-8),

let’s examine the following implementation in C++ using C++2 new features (see

Listing 2-1). The implementation is performed in accordance with the NIST.2

Figure 2-8.  Example of SHA-25 execution

2 NIST Hash Functions, https://csrc.nist.gov/projects/hash-functions

Chapter 2 Cryptography Fundamentals

https://csrc.nist.gov/projects/hash-functions

41

Listing 2-1.  Source Code for Implementation of SHA256

#include <iostream> //** standard input/output library

#include <sstream> //** templates and types for interoperation

 //** between flow buffers

and string objects

#include <bitset> //** storing bits library

#include <vector> //** for representing arrays as containers

#include <iomanip> //** for manipulation of the parameters

#include <cstring> //** for manipulation of the strings

using namespace std; //** for avoiding writing "std::"

//** ASCII string will be converted into a binary representation

vector<unsigned long> binaryConversion(const string);

//** for adding padding to messages and ensuring that they are

//** multiple of 512 bits

vector<unsigned long> addPadOf512Bits(const vector<unsigned long>);

//** We will change the n 8 bit blocks to 32 bit words

vector<unsigned long> resizingTheBlock(vector<unsigned long>);

//** will contain the actual hash value

string computingTheHash(const vector<unsigned long>);

//** variables and constants used during debugging

string displayAsHex(unsigned long);

void outputTheBlockState(vector<unsigned long>);

string displayAsBinary(unsigned long);

const bool displayBlockStateAddOne = 0;

const bool displayDistanceFrom512Bit = 0;

const bool displayResultsOfPadding = false;

const bool displayWorkVariablesForT = 0;

const bool displayT1Computation = false;

const bool displayT2Computation = false;

const bool displayTheHashSegments = false;

const bool displayWt = false;

Chapter 2 Cryptography Fundamentals

42

//** defined in accordance with the NIST standard

#define ROTRIGHT(word,bits) (((word) >> (bits)) | ((word) << (32-(bits))))

#define SSIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))

#define SSIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))

#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

//** in accordance with the latest updates of the NIST standard

//** we will replace BSIG0 with EP0 and BSIG1 with EP0 in our

//** implementation

#define BSIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))

#define BSIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))

#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))

//** we will verify if the process of checking (testing) is enabled

//** by the missed arguments in the command line.

//** The steps are as follows:

//** (1) Take the ascii string and convert it into n 8 bit segments by

//** represents the ascii value of each independent character

//** (2) add paddings to the message in order to get a 512 bit long

//** (3) Take each 8 bit ascii value separately and convert it to 32

//** bit words and create a combination of them.

//** (4) Calculate the hash and obtain the vallue

//** �(5) if we are doing test, take the result and compare it with//**

expected result

int main(int argc, char* argv[])

{

 string theMessage = "";

 bool testing = 0;

 switch (argc) {

 case 1:

 �cout << "There is no input string found. The test will

be run using random first three letters abc.\n";

 theMessage = "abc";

Chapter 2 Cryptography Fundamentals

43

 testing = true;

 break;

 case 2:

 if (strlen(argv[1]) > 55)

 {

 cout << "The string provided is biger than 55

characters in length. Enter a shorter string."

 << " or message!\n";

 return 0;

 }

 theMessage = argv[1];

 break;

 default:

 cout << "There are too many items in the command line. ";

 exit(-1);

 break;

 }

//** storing all the blocks

 vector<unsigned long> theBlocksArray;

 //** convert the message to a vector of strings by hiding it

//** represented it as an 8 bit variable

 theBlocksArray = binaryConversion(theMessage);

 //** add padd to it in order to get a full of 512 bits long

 theBlocksArray = addPadOf512Bits(theBlocksArray);

 //** create a separate combination of the 8 bit segments into

 //** single 32 bit sections

 theBlocksArray = resizingTheBlock(theBlocksArray);

 //** compute the hash using computingTheHash function

 string myHash = computingTheHash(theBlocksArray);

 //** if testing is found on true the software app will execute

//** a self-check by checking if the hash value computed for

//** "abc" is equal to the expected hash

Chapter 2 Cryptography Fundamentals

44

 if (testing) {

 const string theCorrectHashForABC =

"ba7816bf8f01cfea414140de5dae2223b00361a3961

77a9cb410ff61f20015ad";

 if (theCorrectHashForABC.compare(myHash)!= 0) {

 cout << "\tThe test did not occur with success!\n";

 return(1); }

 else {

 cout << "\tTest has been done with success!\n";

 return(0); } }

 cout << myHash << endl;

 return 0; }

//** the function purpose is to resize the blocks from 64 and 8 bit

//** to 16- and 32-bit sections. The function as input will take a

//** vector of individual 8 bit ascii values. As output, we will obtain a

//** vector with 32 bit words that are found within a combination of

//** ascii values.

vector<unsigned long> resizingTheBlock(vector<unsigned long>

inputOf8BitAsciiValues)

{

 vector<unsigned long>

outputOf32BitWordsCombinedAsAsciiValues(16);

 //** parse all 64 sections using a 4 step and mergem them

//** accordingly

 for(int i = 0; i < 64; i = i + 4) {

 //** create for beginning a big 32 bit section first

 bitset<32> temporary32BitSection(0);

 //** create a shifting of the blocks on their assigned

//** positions

 temporary32BitSection = (unsigned long)

inputOf8BitAsciiValues[i] << 24;

temporary32BitSection |= (unsigned long)

inputOf8BitAsciiValues[i + 1] << 16;

Chapter 2 Cryptography Fundamentals

45

 temporary32BitSection |= (unsigned long)

inputOf8BitAsciiValues[i + 2] << 8;

 temporary32BitSection |= (unsigned long)

inputOf8BitAsciiValues[i + 3];

 //** set the new 32 bit word within the proper output of

//** the array location

 outputOf32BitWordsCombinedAsAsciiValues[i/4] =

temporary32BitSection.to_ulong(); }

 return outputOf32BitWordsCombinedAsAsciiValues; }

//** the function displays the contents of all the blocks as binary

//** format. The function is used only for debugging purposes.

void outputTheBlockState(vector<unsigned long>

vectorOfCurrentBlocks) {

 cout << "---- The current State of the Block ----\n";

 for (int i = 0; i < vectorOfCurrentBlocks.size(); i++) {

 cout << "block[" << i << "] binary: " <<

displayAsBinary(vectorOfCurrentBlocks[i])

 << " hex y: 0x" <<

displayAsHex(vectorOfCurrentBlocks[i]) << endl; }}

//** the function will display in hex format the content of the

//** blocks.

string displayAsHex(unsigned long input32BitBlock) {

 bitset<32> theBitSet(input32BitBlock);

 unsigned number = theBitSet.to_ulong();

 stringstream theStringStream;

 theStringStream << std::hex << std::setw(8) <<

std::setfill('0') << number;

 string temporary;

 theStringStream >> temporary;

 return temporary; }

//** the function will show the content of the blocks in hex. We are

//** using this function to avoid changing the stream from

Chapter 2 Cryptography Fundamentals

46

//** hexa to dec and reversed as well.

string displayAsBinary(unsigned long input32OrLessBitBlock) {

 bitset<8> theBitSet(input32OrLessBitBlock);

 return theBitSet.to_string(); }

//** based on the string, it will take the entire set of the

//** characters and converts them into ascii binary.

vector<unsigned long> binaryConversion(const string

inputOfAnyLength) {

 //** the vector used to store all the ascii characters

vector<unsigned long> vectorBlockHoldingAsciiCharacters;

 //** take each character and convert the ascii character to

//** binary representation

 for (int i = 0; i < inputOfAnyLength.size(); ++i) {

 //** create a temporary variable. Use it to store the 8

//** bit template for ascii value

bitset<8> bitSetOf8Bits(inputOfAnyLength.c_str()[i]);

 //** template of 8 bit added into the block

vectorBlockHoldingAsciiCharacters.

push_back(bitSetOf8Bits.to_ulong());}

 return vectorBlockHoldingAsciiCharacters; }

//** get the ascii values stored as a vector in binary and add padding to

it to obtain a total of 512 bits.

vector<unsigned long> addPadOf512Bits(vector<unsigned long>

vectorBlockHoldingAsciiCharacters) {

 //** you can keep the variables names as given in the NIST

 //** for our implementation I have used my personal names for

//** variables to obtain a uniqueness of the code

//** the variable will store the length of the message in bits

int lengthOfMessageInBits =

vectorBlockHoldingAsciiCharacters.size() * 8;

 int zeroesToAdd = 447 - lengthOfMessageInBits;

Chapter 2 Cryptography Fundamentals

47

//** add another 8 bit block with the first bit being set to 1

 if(displayBlockStateAddOne)

 outputTheBlockState(vectorBlockHoldingAsciiCharacters);

 unsigned long t1Block = 0x80;

 vectorBlockHoldingAsciiCharacters.push_back(t1Block);

 if(displayBlockStateAddOne)

 outputTheBlockState(vectorBlockHoldingAsciiCharacters);

 outputTheBlockState(vectorBlockHoldingAsciiCharacters);

 //** we have 7 zeroes. We will need to subtract 7 from

//** zeroesToAdd

 zeroesToAdd = zeroesToAdd - 7;

 //** debug mode. Find how much we need to get close to 512 bit

 if (displayDistanceFrom512Bit) {

 cout << "lengthOfMessageInBits = " <<

lengthOfMessageInBits << endl;

 cout << "zeroesToAdd = " << zeroesToAdd + 7 << endl;//

Plus 7 so this follows the paper. }

 //** debug mode

 if (displayDistanceFrom512Bit)

 cout << "adding " <<

zeroesToAdd/8 << " empty eight bit blocks!\n";

//** add blocks of 8 bit length that will contain zeros

 for(int i = 0; i < zeroesToAdd/8; i++)

 vectorBlockHoldingAsciiCharacters.push_back(0x00000000);

 //** we are finding ourselves in 488 bits out 512 phase. Next

//** step is adding 1 in the binary representation to

//** form of eight bit blocks.

 bitset<64> theBig64BlobBit(lengthOfMessageInBits);

 if (displayDistanceFrom512Bit)

 cout << "l in a 64 bit binary blob: \n\t" <<

theBig64BlobBit << endl;

Chapter 2 Cryptography Fundamentals

48

 //** divide the 64 bit big into 8 bit segments

 string big_64bit_string = theBig64BlobBit.to_string();

 //** take the first block and push it to position 56

 bitset<8> temp_string_holder1(big_64bit_string.substr(0,8));

 vectorBlockHoldingAsciiCharacters.

push_back(temp_string_holder1.to_ulong());

 //** take the rest of the blocks with 8 bit length and push

 for(int i = 8; i < 63; i=i+8) {

 bitset<8>

temporaryStringHolder2(big_64bit_string.substr(i,8));

vectorBlockHoldingAsciiCharacters.

push_back(temporaryStringHolder2.to_ulong()); }

 //** just show in the console everything to know what

//** is happening in this freakin code

 if (displayResultsOfPadding) {

 cout << "Current 512 bit preprocessed hash in binary: \n";

 for(int i = 0; i <

vectorBlockHoldingAsciiCharacters.size(); i=i+4)

 �cout << i << ": " << displayAsBinary(vector

BlockHoldingAsciiCharacters[i]) << " "

 �<< i + 1 << ": " << displayAsBinary(vector

BlockHoldingAsciiCharacters[i+1]) << " "

 �<< i + 2 << ": " << displayAsBinary(vector

BlockHoldingAsciiCharacters[i+2]) << " "

 �<< i + 3 << ": " << displayAsBinary(vector

BlockHoldingAsciiCharacters[i+3]) << endl;

 cout << "Current 512 bit preprocessed hash in hex: \n";

 �for(int i = 0; i < vectorBlockHoldingAsciiCharacters.

size(); i=i+4)

 �cout << i << ": " << "0x" + displayAsHex(vectorBlock

HoldingAsciiCharacters[i]) << " "

 �<< i + 1 << ": " << "0x" + displayAsHex(vector

BlockHoldingAsciiCharacters[i+1]) << " "

Chapter 2 Cryptography Fundamentals

49

 << i + 2 << ": " << "0x" + displayAsHex(vectorBloc

kHoldingAsciiCharacters[i+2]) << " "

 << i + 3 << ": " << "0x" + displayAsHex(vectorBloc

kHoldingAsciiCharacters[i+3]) << endl; }

 return vectorBlockHoldingAsciiCharacters; }

//** the goal of the function is to compute the hash of the message

string computingTheHash(const vector<unsigned long>

blockOf512BitPaddedMessage)

{

 //** the following words are from the NIST standard.

 unsigned long constantOf32BitWords[64] = {

 �0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0

x923f82a4,0xab1c5ed5,0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0

x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,0xe49b69c1,0xefbe4786,0x

0fc19dc6,0x240ca1 cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,

0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,

0x06ca6351,0x14292967,0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x

650a7354,0x766a0abb,0x81c2c92e,0x92722c85,0xa2bfe8a1,0xa81a664b,0xc

24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,0x19

a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9

cca4f,0x682e6ff3,0x748f82ee,0x78a5636f,0x84c87814,0x8 cc70208,0x90be

fffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 };

 //** the initial hash values

 unsigned long static InitialHashValueFor32Bit_0 = 0x6a09e667;

 unsigned long static InitialHashValueFor32Bit_1 = 0xbb67ae85;

 unsigned long static InitialHashValueFor32Bit_2 = 0x3c6ef372;

 unsigned long static InitialHashValueFor32Bit_3 = 0xa54ff53a;

 unsigned long static InitialHashValueFor32Bit_4 = 0x510e527f;

 unsigned long static InitialHashValueFor32Bit_5 = 0x9b05688c;

 unsigned long static InitialHashValueFor32Bit_6 = 0x1f83d9ab;

 unsigned long static InitialHashValueFor32Bit_7 = 0x5be0cd19;

 unsigned long Word[64];

Chapter 2 Cryptography Fundamentals

50

 for(int t = 0; t <= 15; t++) {

 Word[t] = blockOf512BitPaddedMessage[t] & 0xFFFFFFFF;

 if (displayWt)

 cout << "Word[" << t << "]: 0x" <<

displayAsHex(Word[t]) << endl; }

 for(int t = 16; t <= 63; t++) {

 Word[t] = SSIG1(Word[t-2]) +

Word[t-7] + SSIG0(Word[t-15]) + Word[t-16];

 Word[t] = Word[t] & 0xFFFFFFFF;

 if (displayWt)

 cout << "Word[" << t << "]: " << Word[t]; }

 unsigned long temporary_1;

 unsigned long temporary_2;

 unsigned long a = InitialHashValueFor32Bit_0;

 unsigned long b = InitialHashValueFor32Bit_1;

 unsigned long c = InitialHashValueFor32Bit_2;

 unsigned long d = InitialHashValueFor32Bit_3;

 unsigned long e = InitialHashValueFor32Bit_4;

 unsigned long f = InitialHashValueFor32Bit_5;

 unsigned long g = InitialHashValueFor32Bit_6;

 unsigned long h = InitialHashValueFor32Bit_7;

 if(displayWorkVariablesForT)

 cout << " A B C D "

 << "E F G H T1 T2\n";

 for(int t = 0; t < 64; t++) {

 //** according to the NIST Standard and Specification,

//** the BSIG1 is incorrect. We will replace it with EP1.

 temporary_1 = h + EP1(e) + CH(e,f,g) +

constantOf32BitWords[t] + Word[t];

 if ((t == 20) & displayT1Computation){

 cout << "h: 0x" << hex << h << " dec:" << dec << h

 << " sign:" << dec << (int)h << endl;

 cout << "EP1(e): 0x" << hex << EP1(e) << " dec:"

Chapter 2 Cryptography Fundamentals

51

 << dec << EP1(e) << " sign:" << dec << (int)EP1(e)

 << endl;

 cout << "CH(e,f,g): 0x" << hex << CH(e,f,g) << " dec:"

 << dec << CH(e,f,g) << " sign:" << dec

 << (int)CH(e,f,g) << endl;

 cout << "constantOf32BitWords[t]: 0x" << hex <<

constantOf32BitWords[t] << " dec:" << dec

 << constantOf32BitWords[t] << " sign:" <<

 dec << (int)constantOf32BitWords[t] << endl;

 cout << "Word[t]: 0x" << hex << Word[t]

<< " dec:" << dec << Word[t] << " sign:" << dec

<< (int)Word[t] << endl;

 cout << "temporary_1 = 0x" << hex << temporary_1

<< " dec:" << dec

 << temporary_1 << " sign:" << dec <<

(int)temporary_1 << endl; }

 //** according to the NIST Standard and Specification,

//** the BSIG0 is incorrect. We will replace it with EP0.

 temporary_2 = EP0(a) + MAJ(a,b,c);

 //** in order to get T2 we will display the variables

//** and operations

 if ((t == 20) & displayT2Computation) {

 cout << "a: 0x" << hex << a << " dec:" << dec << a

 << " sign:" << dec << (int)a << endl;

 cout << "b: 0x" << hex << b << " dec:" << dec << b

 << " sign:" << dec << (int)b << endl;

 cout << "c: 0x" << hex << c << " dec:" << dec << c

 << " sign:" << dec << (int)c << endl;

 cout << "EP0(a): 0x" << hex << EP0(a) << " dec:"

 << dec << EP0(a) << " sign:" << dec << (int)EP0(a)

 << endl;

 cout << "MAJ(a,b,c): 0x" << hex

 << MAJ(a,b,c) << " dec:"

 << dec << MAJ(a,b,c) << " sign:" << dec

 << (int)MAJ(a,b,c) << endl;

Chapter 2 Cryptography Fundamentals

52

 �cout << "temporary_2 = 0x" << hex << temporary_2 << " dec:" << dec <<

temporary_2 << " sign:" << dec << (int)temporary_2 << endl; }

 //** according to the NIST standard

 h = g;

 g = f;

 f = e;

//** Get the guarantee that we are still using 32 bits

 e = (d + temporary_1) & 0xFFFFFFFF;

 d = c;

 c = b;

 b = a;

//** Get the guarantee that we are still using 32 bits

 a = (temporary_1 + temporary_2) & 0xFFFFFFFF;

 //** display the content of each of the variables from

//** above according to the NIST standard.

 if (displayWorkVariablesForT) {

 cout << "t= " << t << " " ";

 cout << displayAsHex (a) << " " << displayAsHex (b)

 << " " << displayAsHex (c) << " " << displayAsHex

(d) << " " << displayAsHex (e) << " " << displayAsHex (f) << " " <<

displayAsHex (g) << " " << displayAsHex (h) << " " << endl; } }

//** display the content of each of the hash segments

 if(displayTheHashSegments) {

 cout << "InitialHashValueFor32Bit_0 = " << displayAsHex

(InitialHashValueFor32Bit_0) << " + " << displayAsHex (a) << " " <<

displayAsHex (InitialHashValueFor32Bit_0 + a) << endl;

 cout << "InitialHashValueFor32Bit_1 = " << displayAsHex

(InitialHashValueFor32Bit_1) << " + " <<

displayAsHex (b) << " " << displayAsHex

(InitialHashValueFor32Bit_1 + b) << endl;

 cout << "InitialHashValueFor32Bit_2 = " << displayAsHex

 (InitialHashValueFor32Bit_2) << " + " <<

 displayAsHex (c) << " " << displayAsHex

Chapter 2 Cryptography Fundamentals

53

 (InitialHashValueFor32Bit_2 + c) << endl;

 cout << "InitialHashValueFor32Bit_3 = " << displayAsHex

 (InitialHashValueFor32Bit_3) << " + " <<

 displayAsHex (d) << " " << displayAsHex

 (InitialHashValueFor32Bit_3 + d) << endl;

 cout << "InitialHashValueFor32Bit_4 = " << displayAsHex

 (InitialHashValueFor32Bit_4) << " + " <<

 displayAsHex (e) << " " << displayAsHex

 (InitialHashValueFor32Bit_4 + e) << endl;

 cout << "InitialHashValueFor32Bit_5 = " << displayAsHex

 (InitialHashValueFor32Bit_5) << " + " <<

 displayAsHex (f) << " " << displayAsHex

 (InitialHashValueFor32Bit_5 + f) << endl;

 cout << "InitialHashValueFor32Bit_6 = " << displayAsHex

 (InitialHashValueFor32Bit_6) << " + " <<

 displayAsHex (g) << " " << displayAsHex

 (InitialHashValueFor32Bit_6 + g) << endl;

cout << "InitialHashValueFor32Bit_7 = " << displayAsHex

 (InitialHashValueFor32Bit_7) << " + " << displayAsHex

 (h) << " " << displayAsHex (InitialHashValueFor32Bit_7

 + h) << endl;

 }

 //** for each hash add all the variables in order be sure that

//** we are still on the page with the 32 bit values

 InitialHashValueFor32Bit_0 = (InitialHashValueFor32Bit_0 + a)

& 0xFFFFFFFF;

 InitialHashValueFor32Bit_1 = (InitialHashValueFor32Bit_1 + b)

& 0xFFFFFFFF;

 InitialHashValueFor32Bit_2 = (InitialHashValueFor32Bit_2 + c)

& 0xFFFFFFFF;

 InitialHashValueFor32Bit_3 = (InitialHashValueFor32Bit_3 + d)

& 0xFFFFFFFF;

InitialHashValueFor32Bit_4 = (InitialHashValueFor32Bit_4 + e)

& 0xFFFFFFFF;

 InitialHashValueFor32Bit_5 = (InitialHashValueFor32Bit_5 + f)

& 0xFFFFFFFF;

Chapter 2 Cryptography Fundamentals

54

 InitialHashValueFor32Bit_6 = (InitialHashValueFor32Bit_6 + g)

& 0xFFFFFFFF;

 InitialHashValueFor32Bit_7 = (InitialHashValueFor32Bit_7 + h)

& 0xFFFFFFFF;

 //** add the hash section in one piece one after the other in

//** order to obtain the 256 bit hash

 return displayAsHex(InitialHashValueFor32Bit_0) +

displayAsHex(InitialHashValueFor32Bit_1) + displayAsHex(InitialHashValue

For32Bit_2) + displayAsHex(InitialHashValueFor32Bit_3) + displayAsHex(

InitialHashValueFor32Bit_4) + displayAsHex(InitialHashValueFor32Bit_5) +

 displayAsHex(InitialHashValueFor32Bit_6) +

 displayAsHex(InitialHashValueFor32Bit_7);

}

Hash functions are commonly used for digital signatures and in data integrity as

well. A long message is generally hashed when dealing with digital signatures, and only

the hash value is signed. The group that receives the message then hash the message

received and check that the signature received is right for this hash value. Table 2-2 is

a classification of keyed cryptographic hash functions. Table 2-3 is a classification of

unkeyed cryptographic hash functions. Most functions are already implemented in C++

within the NIST or other trusted resources, such as CrypTool3.

Table 2-2.  Keyed Cryptographic Hash Functions

Name Length of the tag Type References

BLAKE2 Arbitrary Keyed hash function with prefix-MAC [31][42]

BLAKE3 Arbitrary Keyed hash function with supplied initializing vector (IV) [32]

HMAC - - [33]

KMAC Arbitrary Based on Keccak [34][35]

MD6 512 bits Merkle tree with NLFSR [37]

PMAC - - [38]

UMAC - - [39]

3 CrypTool, https://www.cryptool.org/en/

Chapter 2 Cryptography Fundamentals

https://www.cryptool.org/en/

55

Table 2-3.  Unkeyed Cryptographic Hash Functions

Name Length Type References

BLAKE-256 256 bits HAIFA structure [41] [40]

BLAKE-512 512 bits HAIFA structure [41] [40]

GOST 256 bits Hash [43]

MD2 128 bits Hash

MD4 128 bits Hash [44]

MD5 128 bits Merkle-Damgard construction [36] [45]

MD6 Up to 512 bits Merkle-tree NLFSR [37]

RIPEMD 128 bits Hash [46]

RIPEMD-128
RIPEMD-256
RIPEMD-160
RIPEMD-320

128 bits

-

160 bits

320 bits

Hash

Hash

Hash

Hash

[46][47][48]

SHA-1 160 bits Merkle-Damgard construction [36] [61]

SHA-256
SHA-384
SHA-512

256 bits

384 bits

512 bits

Merkle-Damgard construction [50][51][54]

[52][54]

[53][54]

SHA-224 224 bits Merkle-Damgard construction [55]

SHA-3 (Keccak) Arbitrary Sponge function [50] [56][57]

Whirlpool 512 bits Hash [58][59][60]

�Case Studies
�Caesar Cipher Implementation in C++23
This section gives the Caesar cipher implementation in C++23. The aim of this section is

to explain how the aforementioned mathematical foundations can be useful during the

implementation process and the advantages of understanding the basic mathematical

Chapter 2 Cryptography Fundamentals

56

mechanisms behind the algorithms behind them. This book does not dwell on the

algorithm’s mathematical history. If you want to go deep into the mathematical history,

references [6–18] are recommended.

The encryption process used by the Caesar cipher can be represented as modular

arithmetic by first transforming the letters into numbers. For this, follow alphabet

 � �� ��A Z, , 25 in such a way that A = 0, B = 1, …, Z = 25. The encryption of a letter x is

done by a shift n and mathematically can be described as follows.

	 E x x nn � � � �� �mod 26 	

The decryption is done similarly.

	 D x x nn � � � �� �mod 26 	

Let’s start the implementation of the algorithm (see Figure 2-9 and Listing 2-2).

Figure 2-9.  Execution of Caesar cipher

The application is very simple and easy to interact with.

Listing 2-2.  Source Code for Caesar Cipher Implementation

#include <iostream>

using namespace std;

// This function receives text and shift and

// returns the encrypted text

string encrypt(string text, int s)

{

 string result = "";

Chapter 2 Cryptography Fundamentals

57

 // traverse text

 for (int i=0;i<text.length();i++)

 {

 // apply transformation to each character

 // Encrypt Uppercase letters

 if (isupper(text[i]))

 result += char(int(text[i]+s-65)%26 +65);

 // Encrypt Lowercase letters

 else

 result += char(int(text[i]+s-97)%26 +97);

 }

 // Return the resulting string

 return result;

}

// Driver program to test the above function

int main()

{

 string text="THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG";

 int s = 4;

 cout << "Text : " << text;

 cout << "\nShift: " << s;

 cout << "\nCipher: " << encrypt(text, s);

 return 0;

}

�Vigenére Cipher Implementation in C++23
The Vigenére cipher (see Figure 2-10 and Listing 2-3) is one of the classic methods

of encrypting alphabetic text using a sequence of different Caesar ciphers based on

keyword keys. You can see it in some of the documentations as a type of polyalphabetic

substitution.

Chapter 2 Cryptography Fundamentals

58

Figure 2-10.  Vigenére cipher

A short algebraic description of the cipher can be given as follows. The numbers

are taken as numbers (A = 0, B = 1, etc.), and the addition operation is performed as

modulo 26. The Vigenére encryption E using K as the key can be written as follows.

	 C E M M Ki K i i i� � � � �� �mod 26 	

Decryption D using the key K can be written as follows.

	 M D C C Ki K i i i� � � � �� �mod 26 	

M = M1…Mn is the message, C = C1…Cn represents the ciphertext and K = K1…Kn

represents the key obtained by repeating the keyword [n/m] times, in which m

represents the keyword length.

Listing 2-3.  Vigenére Source Code

#include <iostream>

#include <string>

using namespace std;

class Vigenere {

 public:

 //** represents the key

 string key;

 //** the constructor of the class

 //** the chosen key

 Vigenere(string chosenKey) {

 for (int i = 0; i < chosenKey.size(); ++i) {

Chapter 2 Cryptography Fundamentals

59

 if (chosenKey[i] >= 'A' && chosenKey[i] <= 'Z')

 this->key += chosenKey[i];

 else if (chosenKey[i] >= 'a' && chosenKey[i] <= 'z')

 this->key += chosenKey[i] + 'A' - 'a';

 }

 }

 string encrypt(string t)

 {

 string encryptedOutput;

 for (int i = 0, j = 0; i < t.length(); ++i) {

 char c = t[i];

 if (c >= 'a' && c <= 'z')

 c += 'A' - 'a';

 else if (c < 'A' || c > 'Z')

 continue;

 //** added 'A' to bring it in range

 //** of ASCII alphabet [65-90 | A-Z]

 encryptedOutput += (c + key[j] - 2 * 'A') % 26 + 'A';

 j = (j + 1) % key.length();

 }

 return encryptedOutput;

 }

 string decrypt(string t) {

 string decryptedOutput;

 for (int i = 0, j = 0; i < t.length(); ++i) {

 char c = t[i];

 if (c >= 'a' && c <= 'z')

 c += 'A' - 'a';

 else if (c < 'A' || c > 'Z')

 continue;

 //** added 'A' to bring it in range of

 //** ASCII alphabet [65-90 | A-Z]

 decryptedOutput += (c - key[j] + 26) % 26 + 'A';

 j = (j + 1) % key.length();

 }

Chapter 2 Cryptography Fundamentals

60

 return decryptedOutput;}};

int main() {

 Vigenere myVigenere("APRESS! WELCOME");

 string originalMessage

 ="ThisisanexampleofvigenerecipherforApress";

 string enc = myVigenere.encrypt(originalMessage);

 string dec = myVigenere.decrypt(enc);

 cout << "Original Message: "<<originalMessage<< endl;

 cout << "Encrypted Message: " << enc << endl;

 cout << "Decrypted Message: " << dec << endl;

}

�Conclusion
This chapter introduced the fundamentals of cryptographic primitives and mechanisms.

It covered the following.

•	 Security and information security objectives

•	 The importance of one-to-one, one-way, and trapdoor one-way

functions in designing and implementing cryptographic functions

•	 Digital signatures and how they are working

•	 Public-key cryptography and how it impacts developing applications

•	 Hash functions

•	 Case studies illustrating the basic notions that you need to know

before advancing to high-level cryptographic concepts

Chapter 3 goes through the basics of probability theory, information theory, number

theory and finite fields. It discusses their importance and how they are related during the

implementation already existent in C++ and how they are useful.

Chapter 2 Cryptography Fundamentals

61

References
[1].	 Simon Singh. The Code Book: The Secrets Behind Codebreaking, 2003.

[2].	 W. Diffie and M. Hellman. 2006, New directions in cryptography. IEEE Trans.

Information Theory. 22, 6 (September 2006), 644–654. DOI: https://doi.

org/10.1109/TIT.1976.1055638.

[3].	 R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital

signatures and public-key cryptosystems, Communications ACM, vol. 21, no.

2, pp. 120–126, 1978.

[4].	 ElGamal T., A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms. In: Blakley G.R., Chaum D. (eds) Advances in Cryptology.

CRYPTO 1984. Lecture Notes in Computer Science, vol. 196. Springer, Berlin,

Heidelberg.

[5].	 ISO/IEC 9796-2:2010 – Information Technology – Security Techniques – Digital

Signature schemes giving message recovery. Available online: https://www.

iso.org/standard/54788.html.

[6].	 Bruce Schneier and Phil Sutherland. 1995. Applied Cryptography: Protocols,

Algorithms, and Source Code in C (2nd. ed.), ISBN: 978-0-471-12845-8. John

Wiley & Sons, Inc., USA.

[7].	 Stallings, William, and William Stallings. Cryptography and Network Security:

Principles and Practice. Upper Saddle River, N.J: Prentice Hall, 1999. Print.

[8].	 Douglas R. Stinson. 1995. Cryptography: Theory and Practice (1st. ed.), ISBN:

978-0-8493-8521-6, CRC Press, Inc., USA.

[9].	 Koblitz, Neal. A Course in Number Theory and Cryptography. New York:

Springer-Verlag, 1994. Print.

[10].	 Koblitz, Neal, and A J. Menezes. Algebraic Aspects of Cryptography,

1999. Print.

[11].	 Goldreich, Oded. Foundations of Cryptography: Basic Tools. Cambridge:

Cambridge University Press, 2001. Print.

[12].	 Goldreich, Oded. Modern Cryptography, Probabilistic Proofs and

Pseudorandomness. Berlin: Springer, 1999. Print.

[13].	 Luby, Michael G. Pseudorandomness and Cryptographic Applications.

Princeton, NJ: Princeton University Press, 1996. Print.

[14].	 Schneier, Bruce. Secrets and Lies: Digital Security in a Networked World.

New York: John Wiley, 2000.

Chapter 2 Cryptography Fundamentals

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://www.iso.org/standard/54788.html
https://www.iso.org/standard/54788.html

62

[15].	 Peter Thorsteinson and Arun Ganesh, .NET Security and Cryptography.

Prentice Hall Professional Technical Reference, 2003.

[16].	 Adrian Atanasiu, Criptografie (Cryptography) – Volume 1, Publisher House:

InfoData, 2007, ISBN: 978-973-1803-29-6, 978-973-1803-16-6. Available in

Romanian Language.

[17].	 Adrian Atanasiu, Protocoale de Securitate (Security Protocols) –

Volume 2, Publisher House: InfoData, 2007, ISBN: 978-973-1803-29-6,

978-973-1803-16-6. Available in Romanian Language.

[18].	 Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. 1996.

Handbook of Applied Cryptography (1st. ed.). CRC Press, Inc., USA, ISBN:

978-0-8493-8523-0.

[19].	 Namespace System.Security.Cryptography, https://docs.microsoft.

com/en-us/dotnet/api/system.security.cryptography?view=netfram

ework-4.8.

[20].	 Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange,

Kim Nguyen, and Frederik Vercauteren. 2012. Handbook of Elliptic and

Hyperelliptic Curve Cryptography, Second Edition (2nd. ed.). Chapman &

Hall/CRC.

[21].	 OpenPGP Library for .NET. Available online: https://www.didisoft.com/

net-openpgp/

[22].	 Bouncy Castle .NET. Available online: http://www.bouncycastle.org/

csharp/.

[23].	 Nethereum. Available online: https://github.com/Nethereum.

[24].	 Botan. Available online: https://botan.randombit.net/.

[25].	 Cryptlib. Available online: https://www.cs.auckland.ac.nz/~pgut001/

cryptlib/.

[26].	 Crypto++. Available online: https://www.cryptopp.com/.

[27].	 Libgcrypt. Available online: https://gnupg.org/software/libgcrypt/.

[28].	 Libsodium. Available online: https://nacl.cr.yp.to/.

[29].	 Nettle. Available online: https://www.lysator.liu.se/~nisse/nettle/.

[30].	 OpenSSL. Available online: https://www.openssl.org/.

[31].	 Guo J., Karpman P., Nikolić I., Wang L., Wu S. (2014) Analysis of BLAKE2. In:

Benaloh J. (eds) Topics in Cryptology – CT-RSA 2014. CT-RSA 2014. Lecture

Notes in Computer Science, vol. 8366. Springer, Cham.

[32].	 Blake3. Available online: https://github.com/BLAKE3-team/BLAKE3/.

Chapter 2 Cryptography Fundamentals

https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=netframework-4.8
https://www.didisoft.com/net-openpgp/
https://www.didisoft.com/net-openpgp/
http://www.bouncycastle.org/csharp/
http://www.bouncycastle.org/csharp/
https://github.com/Nethereum
https://botan.randombit.net/
https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
https://www.cryptopp.com/
https://gnupg.org/software/libgcrypt/
https://nacl.cr.yp.to/
https://www.lysator.liu.se/~nisse/nettle/
https://www.openssl.org/
https://github.com/BLAKE3-team/BLAKE3/

63

[33].	 H. Krawczyk, M. Bellare, R. Canetti – HMAC: ekyed – Hashing for Message

Authenticatio, RFC 2104, 1997.

[34].	 API KMAC. Available online: https://www.cryptosys.net/manapi/api_

kmac.html.

[35].	 NIST Special Publication 800-185, SHA-3 Derived Functions: cSHAKE, KMAC,

TupleHash and ParallelHash, John Kelsey, Shu-jen Chang, Ray Perlner,

National Institute of Standards and Technology, December 2016.

[36].	 I.B. Damgard, A design principle for hash functions, LNCS 435 (1990),

pp. 516-527.

[37].	 Ronal L. Rivest, The MD6 hash function. A proposal to NIST for

SHA-3. Available online: http://groups.csail.mit.edu/cis/md6/

submitted-2008-10-27/Supporting_Documentation/md6_report.pdf.

[38].	 PMAC. Available online: https://web.cs.ucdavis.edu/~rogaway/ocb/

pmac.htm.

[39].	 UMAC. Available : http://fastcrypto.org/umac/.

[40].	 BLAKE-256. Available : https://docs.decred.org/research/blake-256-

hash-function/.

[41].	 Biham, Eli; Dunkelman, Orr (24 August 2006). A Framework for Iterative

Hash Functions - HAIFA. Second NIST Cryptographic Hash Workshop – via

Cryptology ePrint Archive: Report 2007/278.

[42].	 BLAKE2 Official Implementation. Available online: https://github.com/

BLAKE2/BLAKE2.

[43].	 GOST. Available online: https://tools.ietf.org/html/rfc5830.

[44].	 Roland L. Rivest, The MD4 message digest algorithm, LNCS, 537, 1991,

pp. 303-311.

[45].	 Roland L. Rivest, The MD5 message digest algorithm, RFC 1321, 1992.

[46].	 RIPEMD-128. Available online:

[47].	 https://homes.esat.kuleuven.be/~bosselae/ripemd/rmd128.txt.

[48].	 RIPEMD-160. Available online:

[49].	 https://homes.esat.kuleuven.be/~bosselae/ripemd160.html.

[50].	 RIPEMD-160. Available online: https://ehash.iaik.tugraz.at/wiki/

RIPEMD-160.

[51].	 Sponge and Duplex Construction.

[52].	 Available online: https://keccak.team/sponge_duplex.html.

Chapter 2 Cryptography Fundamentals

https://www.cryptosys.net/manapi/api_kmac.html
https://www.cryptosys.net/manapi/api_kmac.html
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf
https://web.cs.ucdavis.edu/~rogaway/ocb/pmac.htm
https://web.cs.ucdavis.edu/~rogaway/ocb/pmac.htm
http://fastcrypto.org/umac/
https://docs.decred.org/research/blake-256-hash-function/
https://docs.decred.org/research/blake-256-hash-function/
https://github.com/BLAKE2/BLAKE2
https://github.com/BLAKE2/BLAKE2
https://tools.ietf.org/html/rfc5830
https://homes.esat.kuleuven.be/~bosselae/ripemd/rmd128.txt
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://ehash.iaik.tugraz.at/wiki/RIPEMD-160
https://ehash.iaik.tugraz.at/wiki/RIPEMD-160
https://keccak.team/sponge_duplex.html

64

[53].	 Henri Gilbert, Helena Handschuh: Security Analysis of SHA-256 and Sisters.

Selected Areas in Cryptography 2003: pp175–193.

[54].	 SHA256 .NET Class. Available online: https://docs.microsoft.com/en-

us/dotnet/api/system.security.cryptography.sha256?view=netfram

ework-4.8.

[55].	 SHA384 .NET Class. Available online: https://docs.microsoft.com/en-

us/dotnet/api/system.security.cryptography.sha384?view=netfram

ework-4.8.

[56].	 SHA512 .NET Class. Available online: https://docs.microsoft.com/en-

us/dotnet/api/system.security.cryptography.sha512?view=netfram

ework-4.8.

[57].	 Descriptions of SHA-256, SHA-384, and SHA-512. Available online: http://

www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf.

[58].	 A 224-bit One-way Hash Function: SHA 224. Available online: http://www.

iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf.

[59].	 Hernandez, Paul (5 August 2015). “NIST Releases SHA-3 Cryptographic Hash

Standard.”

[60].	 Dworkin, Morris J. (4 August 2015). “SHA-3 Standard: Permutation-Based

Hash and Extendable-Output Functions.” Federal Inf. Process. STDS. (NIST

FIPS) – 202.

[61].	 Paulo S. L. M. Barreto (2008-11-25). “The WHIRLPOOL Hash Function.”

Archived from the original on 2017-11-29. Retrieved 2018-08-09.

[62].	 Whirlpool C# Implementation. Available online: http://csharptest.net/

browse/src/Library/Crypto/WhirlpoolManaged.cs.

[63].	 Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, Finding Collisions in the Full

SHA-1, Crypto 2005.

Chapter 2 Cryptography Fundamentals

https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha256?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha256?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha256?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha384?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha384?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha384?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha512?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha512?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha512?view=netframework-4.8
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf
http://csharptest.net/browse/src/Library/Crypto/WhirlpoolManaged.cs
http://csharptest.net/browse/src/Library/Crypto/WhirlpoolManaged.cs

65

CHAPTER 3

Mathematical Background
and Its Applicability
Mathematics is an important element of cryptography for many reasons. For example,

many cryptographic algorithms produce unique and safe keys using mathematical

concepts such as number theory, algebra, and probability theory. On the other hand,

mathematics ensures that data remain encrypted and secure, as any attempt to break an

algorithm must use math to identify weaknesses or vulnerabilities. Because its concepts

are employed to build and apply algorithms, mathematics facilitates developing novel

cryptographic protocols. For example, public key cryptography relies on mathematical

problems that are thought difficult to solve, such as factorization and the discrete

logarithm, making it difficult for an attacker to crack the encryption.

Similarly, symmetric key cryptography employs mathematical functions such as

block ciphers and hash functions to ensure that only someone with the right key can

decrypt the encrypted data.

Mathematics is the foundation for cryptography and its applications, making it a

critical component of any encryption technique. This chapter discusses the importance

of probability theory and its tools for modern cryptography. It shows how the elements

and notions from probability theory can be implemented in real-life applications and

programs and explains the most important steps that a professional cryptographer

follows in implementing cryptographic algorithms.

The applications of probability theory to cryptography represent one of the

challenging sides of cryptography and cryptanalysis. Between 1941 and 1942, Alain

Turing (1912–1954) wrote the paper The Applications of Probability to Cryptography,1

which was released by Government Communications Headquarters (GCHQ) to the

1 The Applications of Probability to Cryptography, https://arxiv.org/abs/1505.04714.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_3

https://arxiv.org/abs/1505.04714
https://doi.org/10.1007/978-1-4842-9450-5_3

66

National Archives, HW/25/372. The paper written by Alan Turing describes some of

the methods with application for probability theory for cracking the codes. He started

his paper with the Vigenère cipher. Alan Turing brought proofs for the practical side by

introducing and designing a unique method, its goal being to hide the entire complexity

of mathematical apparatus in cryptography, reducing the process to a simple exercise

using regular addition and trial and error. The tools introduced by him in the paper were

logarithms and probability. It was necessary to understand how the cipher worked to

fully understand how the tools were applied.

The concepts introduced in this chapter help practitioners understand basic

mathematics to give a full appreciation to the solutions developed later.

Each mathematical concept has a quick presentation of the equations and

mathematical expressions used during the implementation of the algorithms, providing

examples of implementation in C++. The implementations are presented as case studies,

counted from 1 to 10.

�Probabilities
Probability theory is a key component in cryptography, as it helps to generate secure

encryption keys by providing a greater sense of randomness. This is achieved by

introducing a degree of uncertainty, which helps to make it difficult and time-consuming

for a hacker to guess the correct encryption key. Probability theory is also used to assess

the likelihood of a given encryption key being guessed or broken, enabling organizations

to monitor and adjust their levels of security accordingly.

Overall, probability theory helps to strengthen cryptography by providing a

greater sense of randomness and unpredictability. For example, in symmetric key

cryptosystems, the system's security depends on the key's randomness. Probability

theory could be utilized to evaluate the distribution of keys and the probability that an

attacker can guess the correct key. Probability theory is used in public key cryptography

to evaluate the security of mathematical problems that are the foundation of encryption,

such as factoring big integers.

This section presents the main concepts, giving the most appropriate definitions

of experiment, probability distribution, event, complementary event, and mutually

2 Alan Turing Wartime Research Papers Released by GCHQ, https://discovery.
nationalarchives.gov.uk/details/r/C11510465

Chapter 3 Mathematical Background and Its Applicability

https://discovery.nationalarchives.gov.uk/details/r/C11510465
https://discovery.nationalarchives.gov.uk/details/r/C11510465

67

exclusiveness. The definitions are given so that the professionals find the intersection

between theory and practice in a very fashionable and easy way to follow. The concepts

described in this chapter are helpful to having a clear understanding of the basics

of cryptographic and cryptanalysis mechanisms and how they are projected using

probabilities [1].

Definition 3.1 [1]. An experiment can be seen as a procedure producing one of the

mentioned outcomes. Each of the outcomes is individual. The ones that are possible are

called simple events. The whole set formed out of the possible outcomes is well known

as the sample space.

The following discusses discrete sample spaces that have limited possible outcomes.

The simple events of a sample space are written as S, labeled s1, s2, …, sn.

Definition 3.2 [1]. The probability distribution K over S is defined by a sequence of

numbers k1, k2, …, kn ≥ 0, and the sum of those numbers is equal to 1 (k1 + k2 + … + kn = 1).

The number oi can be interpreted as the probability of gi. This is the outcome (result) of

the processing experiment.

Definition 3.3 [1]. The event E represents a subset of the sample space S. In this

situation, the probability that event E will occur denoted as P(E), is defined as the sum

of the probabilities oi for all simple events gi that belong to E. If gi ∈ S, P({si}) is simply

denoted as P(si).

Definition 3.4 [1]. Let’s consider E as an event, and the complementary event is

defined as being the set of simple events that do not belong to E, denoted as E .

Demonstration 3.1 [1]. If E ⊆ S represents an event, the following should be

considered.

•	 0 ≤ P(E) ≤ 1. In addition, P(S) = 1 and P(ϕ) = 0, where ϕ represents an

empty set.

•	 P E P E� � � � � �1 .

•	 If the results in S are just as likely, we can consider P E
E

S
� � � .

Definition 3.5 [1]. Consider E1 and E2, two mutually exclusive events. They are

mutually exclusive if P(E1 ⋂ E2) = 0. The showing nature of one or two events will have

the chance to exclude the case that others have the possibility of taking place.

Chapter 3 Mathematical Background and Its Applicability

68

Definition 3.6 [1]. Take as an example the next two events, E1 and E2.

•	 P(E1) ≤ P(E2) if E1 ⊆ P(E2).

•	 P(E1 ∪ E2) + P(E1 ∩ E2) = P(E1) + P(E2). Accordingly, if E1 and E2 are

considered mutually exclusive, then the following expression takes

place P(E1 ∪ E2) = P(E1) + P(E2).

�Conditional Probability
Definition 3.7 [1]. Let’s consider E1 and E2 as two events, with P(E2) > 0. The conditional

probability for E1 to give E2 is written as P(E1| E2) and is expressed as follows.

	
P E E

P E E

P E1 2
1 2

2

|� � � � �
� �


	

P(E1| E2) measures the probability of how event E1 takes place, given that E2 has

occurred.

Definition 3.8 [1]. Consider E1 and E2 as two events. Their relationship is one of

independency if P(E1 ⋂ E2) = P(E1)P(E2).

Definition 3.9 (Bayes’ Theorem) [1]. If we have two events E1 and E2 with

P(E2) > 0, then

	
P E E

P E P E E

P E1 2
1 2 1

2

|
|

� � � � � � �
� � 	

�Random Variables
Let’s consider a sample space S that has the distribution probability P.

Definition 3.10 [1]. Let X be a random variable. Declare a function that is applied on

S for the set of real numbers. For each event si ∈ S, X there is a real number assigned X(si).

Definition 3.11 [1]. Let X be the random variable on S. The mean or expected value of

X is defined as follows.

	
E X X s P s

s S
i i

i

� � � � � � �
�
�

	

Chapter 3 Mathematical Background and Its Applicability

69

For C++ implementation of the mean or expected value, refer to Case Study 3:

Computing the Mean of Probability Distribution.

Definition 3.12 [1]. Consider X to be a random variable on S. In this case,

the mean can be also expressed as follows:

	
E X x P X x

x

� � � � �� �
�
�


	

Definition 3.13 [1]. Let’s consider the following random variables on S: X1, X2, …, Xm.

The following are real numbers: a1, a2, …, am, then the following expression needs to be

satisfied.

	
E a X a E X

i

m

i i
i

m

i i
� �
� ��

�
�

�

�
� � � �

1 1 	

Definition 3.14. Let’s consider X the random variable. The variance of X of mean μ is

defined by the nonnegative number that is expressed by

	
Var X E X� � � �� �� �� 2

	

For C++ implementation of the mean or expected value, refer to Case Study 4:

Computing the Variance.

The standard deviation of X is defined by the nonnegative square root of Var(X).

For C++ implementation of the mean or expected value, refer to Case Study 5:

Computing the Standard Deviation.

�Birthday Problem
Definition 3.15 [1]. Consider two positive integers a, b with a ≥ b, where the number m(n)

is defined as follows.

	 m m m m m nn� � � �� � �� �� � �� �1 2 1 	

Definition 3.15 [1]. Consider two nonnegative integers a, b with a ≥ b. The Stirling

number of the second kind is represented and noted as
a

b

�
�
�

�
�
�

, is expressed as follows.

Chapter 3 Mathematical Background and Its Applicability

70

	

a

b b

b

i
i

i

n
b i a�

�
�

�
�
�
� �� � �

�
�

�

�
�

�

��1
1

0! 	

The case of
0

0
1

�
�
�

�
�
�
� is considered an exception.

Demonstration 3.16 [1]. As an example, consider the classical occupancy problem

by illustrating our example by showing the example with an urn that contains a balls. The

balls are numbered (or labeled) with 1 to m. Let’s imagine a scenario in which b balls are

being extracted from the urn one at a time and being replaced at the same time, with their

numbers being listed. The chance (probability) for l different balls to have been drawn is

	
P a b l

b

l
a

a
l b

l

b1 1, ,� � � ��
�

�
�
�

� �
� �
,

	

The birthday problem represents a special case of the occupancy problem.

Demonstration 3.17 [1]. Consider the birthday problem, where we have a jar with a

balls numbered from 1 to a. Assume that a specific number of balls, h, are extracted from

the urn one at a time, having them replaced, with their numbers listed.

Case 3.17.1 [1]. Consider the probability of at least one coincidence, such as a ball

drawn at least twice from the urn, as follows.

	
P a h P a h h

a

a
h m

h

h2 11 1 1, , ,� � � � � � � � � �
� �

, 	

Case 3.17.2 [1]. Let’s consider h the number of balls extracted from the jar. If

h O a� � � and a → ∞, then the following expression takes place.

	
P a h

h h

a
O

a

h

a2

2

1
1

2

1
1

2
,� �� � �

�� �
� �

�
�

�

�
�

�

�
�

�

�
� � � �

�

�
�

�

�
�exp .exp

	

The demonstration explains why the probability distribution is known and the

birthday surprise or birthday paradox. The probability that at least 2 people in a room

with 23 people have the same birthday is P2(365, 23) ≈ 0.507, which is surprisingly large.

The quantity P2(365, h) increases as h increases; for example, P2(365, 30) ≈ 0.706.

For C++ implementation of the birthday paradox, refer to Case Study 6: Birthday

Paradox.

Chapter 3 Mathematical Background and Its Applicability

71

�Information Theory
Because it provides a mathematical framework for quantifying information and

assessing a system's entropy or randomness, information theory is fundamental for

cryptography. Information theory is used in cryptography to calculate how much

information an attacker may gain from an encrypted communication and how much

randomness is necessary to ensure the security of a cryptographic system. For example,

information theory may be used to evaluate the entropy of random number generators,

which are utilized in many cryptographic systems for generating keys.

Therefore, the security of the system can be analyzed, and whether the keys are

sufficiently random to prevent attackers from guessing the proper key by estimating

the entropy of the generator can be checked. Information theory is also used to assess

the security of encryption methods and calculate the minimum key length necessary to

achieve a specific degree of security.

Furthermore, information theory provides a method for computing the quantity of

information revealed by a cryptographic system. Information theory, for example, can

be used to evaluate the information released by a ciphertext or side channel attacks such

as timing attacks or power analysis. This information may be used to improve system

security and uncover possible flaws.

�Entropy
Let’s denote with X a random variable that takes on a finite set of value x1, x2, …, xn, with

the probability P(X = xi) = pi, where 0 ≤ pi ≤ 1 for each i, 1 ≤ i ≤ n, in which the following

sum expression takes place.

	 i

n

ip
�
� �

1

1
	

Additionally, let’s declare Y and Z random variables that take a finite set of values [1].

The entropy of A is defined as a mathematical measure that is characterized as the

amount of information that is provided by an observation o.

Definition 3.18 [1]. Let’s denote A as a random variable. The entropy or uncertainty

of A is defined by the following expression.

	

H A p p p
pj

m

j j
j

m

j
j

� � � � �
�

�
��

�

�
��

� �
� �

1 1

1
lg lg

	

Chapter 3 Mathematical Background and Its Applicability

72

Through convention,

p p p
pi i i
i

· ·lg lg�
�

�
�

�

�
� �

1
0 , if pi = 0

Definition 3.19 [1][5]. Let’s consider A and B, two random variables. The joint

entropy is defined by the following expression.

	
H A B P A a B b P A a B b

a b

, , ,� � � � �� � � �� �� ��
,

lg
	

a and b go through all the values within the random variables, A and B.

Definition 3.20 [1]. Let’s consider the following two random variables A and B, and

suppose that the conditional entropy of A given B = m is expressed as

	
H AB v P A m B v P A m B v

m

| | |�� � � � � �� � � �� �� �� lg
	

m goes through all over the values within the random variable A. In this case, the

conditional entropy of A given B, also called the equivocation of B about A, is declared as

	
H AB P B m H AB m

m

| |� � � �� � �� �� 	

m (an index) goes through all the values of B.

�Number Theory
Number theory is very important in cryptography because many cryptographic

techniques are based on mathematical problems addressed in number theory. Number

theory also secures other cryptographic techniques, such as elliptic-curve cryptography.

Additionally, techniques of number theory may be used to produce random prime

numbers. Number theory also serves as a foundation for examining the security of

cryptographic systems, such as by offering a method for studying key distribution and

measuring the entropy of random number generators.

Chapter 3 Mathematical Background and Its Applicability

73

�Integers
Starting from the idea that a set of integers {…, −3, −2, −1, 0, 1, 2, 3, …} is represented by

the symbol ℤ, the following definitions occur.

Definition 3.21 [1]. Let’s assume that we have two integers, x and y. Start from

the idea that x divides y if there exists an integer d such that y = x ⋅ d. If x is dividing y,

then x ∣ y.

Definition 3.22 (Division algorithm for integers) [1]. Consider two integers, x and

y with y ≥ 1; then, we have an ordinary long division of x by y that holds the integers quot

(quotient) and rem (remainder) in such a way that

x = qout ⋅ y + rem, where0 ≤ rem < y

Definition 3.23 [1]. Consider d as an integer. Note that the common divisor of x and y

exists if d ∣ x and d ∣ y.

Definition 3.24 [1]. Assume that we have nonnegative integer e. The nonnegative

integer e is known as the greatest common divisor (gcd) of the integers x and y. Note it as

e = gcd (x, y) if

	 a.	 e is a common divisor x and y

	 b.	 d ∣ x and d ∣ y, then d ∣ e

Definition 3.25 [1]. Assume that we have nonnegative integer e. The nonnegative

integer e is the least common multiple (lcm) of integers x and y. Note it as e = lcm (x, y) if

	 a.	 x ∣ e and y ∣ e

	 b.	 x ∣ d and x ∣ d, then e ∣ d

�Algorithms inℤ
Let’s consider two nonnegative integers, a and b, with a ≤ n. Note that the number

of bits from the binary representation of n is represented as ⌊lg n⌋ + 1. This value is

approximated by lgn. The number of bit operations related to the four basic operations

for integers is using the classical algorithms, as shown in Table 3-1.

Chapter 3 Mathematical Background and Its Applicability

74

Table 3-1.  The Bit Complexity of the Basic Operation inℤ

Operation Bit complexity

Additiona + b O(lga + lgb) = O(lgn)

Subtractiona − b O(lga + lgb) = O(lgn)

Multiplicationa ⋅ b O((lga)(lgb)) = O((lgn)2)

Divisiona = q ⋅ b + r O((lgq)(lgb)) = O((lgn)2)

Definition 3.26 [1]. The integers a and b are positive numbers with a > b, then we

have gcd(a, b) = gcd (b, a mod b).

Algorithm 3.27 [1]. Euclidean algorithm for computing gcd for two integers

INPUT a and b twonon negative integers with respect for a b: , � �

OUTPUT the: gcd

	 1.	 while b ≠ 0 then

1.1. Set r ← a mod b,  a ← b, b ← r

	 2.	 Return (a)

The Euclidean algorithm can be extended so that it does not only yield the gcd of two

integers a and b but also integers x and y, which satisfy ax + by = d.

Algorithm 3.28 [1]. Pseudocode for extended Euclidean algorithm

INPUT x and y non negative numbers with the following condit: , � iion a b�

OUTPUT h x y and integersw zwhich satisfy xw yz h: gcd ,� � � � �,

	 1.	 if y = 0 then

h x←

w←1

z←0

return h w z, ,� �

	 2.	 declare and initialize w2 ← 1, w1 ← 0, z2 ← 0, z1 ← 1

Chapter 3 Mathematical Background and Its Applicability

75

	 3.	 while y > 0 then

3.1.	 quotient
x

y
←

remainder x quotient y� � �

w w quotient w z z quotient z� � � �2 1 2 1· ; ·

3.2.	 x ← y
y remainder←

w w2 1←

w w1 ←

z z2 1←

z z1 ←

	 4.	 Set h ← x, w ← w2, z ← z2

	 return h w z, ,� � 	

Case Study 7: (Extended) Euclidean Algorithm provides an example of an

implementation using C++ for both algorithms—Euclidean and the extended Euclidean.

�Integers Modulo n
Let’s consider p a positive integer.

Definition 2.30 [1]. Let i and j be two integers. We allege that g is congruent to j

modulo q. The notation used is

i ≡ j (mod q), if q will divide(i − j)

q is called the modulus of congruence.

Definition 3.31 [1]. Be n ∈ ℤq. The multiplicative inverse of n modulo q is

represented by an integer x ∈ ℤq in such a way that n x ≡ 1 (mod q). If there is an n that

exists, then n is unique, and we state that n is invertible or a unit. The inverse of n is

noted asn−1.

Chapter 3 Mathematical Background and Its Applicability

76

Case Study 8: Computing the multiplicative inverse under modulo q gives a C++

implementation of the multiplicative inverse under modulo q.

Definition 3.32. Chine Remainder Theorem (CRT) [1]. The integers n1, n2, …,

nk represent a pairwise (occurring in pairs) that is relatively prim. Let’s consider the

following system formed out of simultaneous congruence.

	 j v g� � �1 1mod 	

	 j v g� � �2 2mod 	

	 

	

	
l v gn k� � �mod 	

It is a system that has a unique solution modulo, g = g1 g2⋯gk.

Case Study 9: Chinese Remainder Theorem provides a C++ implementation of the

Chinese Remainder Theorem.

Definition 3.33. Gauss’s Algorithm [1]. As you saw in the Chinese Remainder

Theorem, the solution y for concurrent congruence may be calculated as

y b R L q
h

l

h h h�
�
�

1

· · mod , where Ri = q/qh and L R qh h i� �1 mod . The listed operations can be

performed in O((lgq)2) bit operations.

�Algorithms ℤm

Be a positive integer m. As you have seen, the elements of ℤm is positive, then

	
x y q

x y if x y q

x y q if x y
�� � �

� � �
� � � �

�
�
�

mod
, ,

, 	

Algorithm 3.34 [1]. Pseudocode for computing the multiplicative inverses inℤm

INPUT x m: ∈

OUTPUT x m: −1 mod

Chapter 3 Mathematical Background and Its Applicability

77

	 1.	 Use Extended Euclidean algorithm and find the

integers w and z such that xw + nz = h, where h = gcd (x, n)

	 2.	 If h > 1, we will have x−1 mod q which will not exist. Else, return (w).

Algorithm 3.35 [1]. Repeated square-and-multiply algorithm for exponentiation in ℤm

INPUT x and integer t mwhose binary representation is tm: ,� � � 0 ��
�
�
j

o

j
jt

0

2 .

OUTPUT x ml: mod

	 1.	 Set y ← 1. If t = 0 then return(y)

	 2.	 Set C ← x

	 3.	 If t0 = 1 then set y ← x

	 4.	 For j from 1 to k do:

	 4.1.	 Set C ← C2 mod m

	 4.2.	 If tj = 1 then set y ← C ⋅ y  mod  m

	 5.	 return(y)

�The Legendre and Jacobi Symbols
The Legendre symbol represents the perfect tool for this purpose to check if an integer is

a quadratic residue in a specific modulo.

Definition 3.36 [1]. Be q an odd prime and x an integer. The Legendre symbol,

denoted as x

q

�

�
�

�

�
� , is defined as follows.

	

x

q

if q x

if x W

if x W

q

q

�

�
�

�

�
� � �

� �

�

�
��

�
�
�

0

1

1

,

,

,

.

	

Property 3.37. Properties of the Legendre Symbol [1]. The following properties

are considered. The following properties are known as the properties of the Legendre

symbol. For the following properties, consider m to be an odd prime. Let’s declare

Chapter 3 Mathematical Background and Its Applicability

78

two integers x, y ∈ ℤ. The next properties specific to the Legendre symbol are listed as

follows.

	 1.	
x

m
x m

m�
�
�

�
�
� � � �

�1
2 mod . In particular,

1
1

m
�
�
�

�
�
� � and

��
�
�

�
�
� � �� �

�1
1

1

2

m

m

.

Since −1 ∈ Wm if m ≡ 1 (mod 4) and � �1 Wm if m ≡ 3 (mod 4).

	 2.	
xy

m

x

m

y

m
�
�
�

�
�
� �

�
�
�

�
�
�
�
�
�

�
�
�. Since if x q� �

 , then
x

m

2

1
�

�
�

�

�
� � .

	 3.	 If x ≡ y (mod m), then
x

m

y

m
�
�
�

�
�
� �

�
�
�

�
�
�.

	 4.	
2

1

2 1

8

m

m�
�
�

�
�
� � �� �

�� �
. Since

2
1

m
�
�
�

�
�
� � if m ≡ 1 or 7 (mod 8), and

2
1

m
�
�
�

�
�
� � � if m ≡ 3 or 5 (mod 8).

	 5.	 If m represents an odd prime distinct from p,

	

t

m

m

t

t m�
�
�

�
�
� �

�
�
�

�
�
� �� �

�� � �� �
1

1 1

4 .
	

The Jacobi symbol represents a generalization of the Legendre symbol for integers n,

which are not odd and are not necessarily prime.

Definition 3.38. Jacobi Definition [1]. Let m ≥ 3 represent an odd with a prime

factorization as follows.

	
m v v vh h

j
hj� �1 2

1 2 	

The Jacobi symbol
x

m
�
�
�

�
�
� has the following expression.

	

x

m

x

m

x

m

x

m

h h

j

hj

�
�
�

�
�
� �

�

�
�

�

�
�

�

�
�

�

�
� �

�

�
��

�

�
��

1 2

1 2

	

Consider that if n is prime, the Jacobi symbol is the Legendre symbol.

Chapter 3 Mathematical Background and Its Applicability

79

Property 3.39. Jacobi Symbol Properties [1]. Consider x ≥ 3 and y ≥ 3 as odd

integers, and i, j ∈ ℤ. The Jacobi symbol has the following properties.

	 1.	
i

y
or

�

�
�

�

�
� � �0 1 1, , . Moreover,

i

y

�

�
�

�

�
� � 0 if and only if gcd(i, y) ≠ 1.

	 2.	
ij

y

i

y

j

y

�

�
�

�

�
� �

�

�
�

�

�
�
�

�
�

�

�
� . Hence, if i m� �

 , then
i

y

�

�
�

�

�
� �1 .

	 3.	
i

yx

i

y

i

x

�

�
�

�

�
� �

�

�
�

�

�
�
�
�
�

�
�
�.

	 4.	 If i ≡ j (mod y), then
i

y

j

y

�

�
�

�

�
� �

�

�
�

�

�
�.

	 5.	
1

1
y

�

�
�

�

�
� � .

	 6.	
��

�
�

�

�
� � �� �

�� �1
1

1

2

y

y

. Hence,
��

�
�

�

�
� �

1
1

y
 if y ≡ 1 (mod 4), and

��

�
�

�

�
� � �

1
1

y

if y ≡ (3 mod 4).

	 7.	
2

1
2 1

8

y

y�

�
�

�

�
� � �� �

�

. Hence,
2

1
y

�

�
�

�

�
� � if y ≡ 1 or 7 (mod 8), and

2
1

y

�

�
�

�

�
� � �

if y ≡ 3 or 5 (mod 8).

	 8.	
x

y

y

x

x y�

�
�

�

�
� �

�
�
�

�
�
� �� �

�� � �� �
1

1 1

4 . In other words,
x

y

y

x

�

�
�

�

�
� �

�
�
�

�
�
� unless both x

and y are congruent to 3 modulo 4, in which case
x

y

y

x

�

�
�

�

�
� � �

�
�
�

�
�
� .

Algorithm 3.40. Pseudocode of Jacobi Symbol. Pseudocode for Legendre symbol [1]

JACOBI h k,� �

INPUT odd integer k and an integer h h k: ,� � �3 0

OUTPUT the Jacobi symbol
h

k
: �

�
�

�
�
�

Chapter 3 Mathematical Background and Its Applicability

80

	 1.	 If h = 0 then return 0.

	 2.	 If h = 1 then return 1.

	 3.	 Write h = 2th1, where h1 is odd.

	 4.	 If t is even then set g ← 1.Else set g ← 1 if k ≡ 1 or 7 (mod 8),

or set g ← − 1 if k ≡ 3 or 5 (mod 8).

	 5.	 If k ≡ 3 (mod 4) and h1 ≡ 3 (mod 4) then set g ← − g.

	 6.	 Set k1 ← k mod h1.

	 7.	 If h1 = 1 then return(g); else return (g ⋅ JACOBI(k1, h1)).

�Finite Fields
Finite fields, also known as Galois fields, are used in cryptography because they provide

a mathematical basis for specifying mathematical operations on a finite number

of components. In cryptography, finite fields are mainly used to construct efficient

algorithms for encryption and decryption, or they can be used to define mathematical

problems, such as the discrete logarithm problem.

�Basic Notions
Definition 3.41 [1]. Consider F to be a finite field that contains a finite number of

elements. The order of F represents the number of elements in F.

Definition 3.42 [1]. The finite fields are characterized by a special uniqueness.

	 1.	 Let’s assume that if P represents a finite field, then P contains hj

elements for a prime h and integer j ≥ 1.

	 2.	 For each prime power order hj, there is a unique finite field of

order hj. The field is noted as hj
, or in some other literature

references, we find GF(hj).

Definition 3.43 [1][5]. Let’s say that if Gh represents a finite field of order h = am and

a is a prime, then the characteristic of h is p. Moreover, h has a copy of ℤa as a subfield.

h can be viewed as an extension field of ℤa of degree m.

Chapter 3 Mathematical Background and Its Applicability

81

�Polynomials and the Euclidean Algorithm
The following two algorithms represent the foundation for understanding how to

compute and obtain gcd for two polynomials, g(x) and h(x), both of which are in ℤp[x].

Algorithm 3.43. Euclidean Algorithm for ℤp[x] [1]

INPUT two polynomials g x h x xp: ,� � � �� � �

OUTPUT of g x and h x: gcd � � � �

	 1.	 while h(x) ≠ 0 then

	 a.	 set r(x) ← g(x) mod h(x), g(x) ← h(x), h(x) ← r(x)

	 2.	 return g(x)

Algorithm 3.43. Extended Euclidean Algorithm for ℤp[x] [1]

INPUT two polynomials g x h x xp: ,� � � �� � �

OUTPUT d x g x h x and polynomials s x t x

x whp

: gcd ,� � � � � � �� � � � � �
� � �

,

 iich will satisfy s x g x t x h x d x � � � � � � � � � � � �.

	 1.	 If h(x) = 0 then set d(x) ← g(x), s(x) ← 1, t(x) ← 0

	 a.	 return (d(x), s(x), t(x))

	 2.	 Set s2(x) ← 1, s1(x) ← 0, t2(x) ← 0, t1(x) ← 1.

	 3.	 while h(x) ≠ 0 then

	 a.	 g(x) ← g(x) div h(x), r(x) ← g(x) − h(x)q(x)

	 b.	 s(x) ← s2(x) − q(x)s1(x), t(x) ← t2(x) − q(x)t1(x)

	 c.	 g(x) ← h(x), h(x) ← r(x)

	 d.	 s2(x) ← s1(x), s1(x) ← s(x), t2(x) ← t1(x), and t1(x) ← t(x)

	 4.	 Set d(x) ← g(x), s(x) ← s2(x), t(x) ← t2(x).

	 5.	 return d(x), s(x), t(x).

Chapter 3 Mathematical Background and Its Applicability

82

�Case Study 1: Computing the Probability of an Event
That Takes Place

Listing 3-1.  Source Code

#include <iostream>

#include <vector>

#include <random>

#include <algorithm>

enum ColorTypes {

 Blue,

 NotBlue } ;

//** create a sequence container

typedef std::vector<ColorTypes> backpack;

backpack initializeBackpack(unsigned blue_balls, unsigned

 differentBalls)

{

 backpack backpackOfBalls ;

 for (unsigned i=0; i<blue_balls; ++i)

 backpackOfBalls.emplace_back(Blue);

Figure 3-1.  Output for computing the probability

Chapter 3 Mathematical Background and Its Applicability

83

 for (unsigned i=0; i<differentBalls; ++i)

 backpackOfBalls.emplace_back(NotBlue);

 return backpackOfBalls; }

void randomize(backpack & backpackOfBalls) {

 //** Mersenne Twister - pseudo-random generator

 //** on 32-bit number using the state size of 19937 bits/

 //** std:random_device() will help us generate a

 //** nondeterministic random numbers

 static std::mt19937 engine((std::random_device()()));

 //** we will rearrange the elements in the

 //** following range [first, second] as follows fist =

 //** backpackOfBalls.begin() and second =

 //** backpackOfBalls.end()

 //** using "engine" declared above as a uniform random

 //** number generator

 std::shuffle(backpackOfBalls.begin(),

 backpackOfBalls.end(), engine);

}

int main()

{

 //** constants initializations

 const unsigned theTotalOfSamples = 1000000;

 const unsigned blue_balls = 4;

 const unsigned differentBalls = 12;

 unsigned theFirstIsBlue = 0;

 unsigned bothAreBlue = 0;

 unsigned theSecondIsBlue = 0;

 auto backpackOfBalls = initializeBackpack(blue_balls,

 differentBalls);

 for (unsigned i=0; i<theTotalOfSamples; ++i)

 {

 randomize(backpackOfBalls);

Chapter 3 Mathematical Background and Its Applicability

84

 if (backpackOfBalls[0] == Blue)

 ++theFirstIsBlue;

 if (backpackOfBalls[1] == Blue)

 ++theSecondIsBlue;

 if (backpackOfBalls[0]==Blue&&backpackOfBalls[1]==Blue)

 ++bothAreBlue;

 }

 float probabilityOfFirstBallToBeBlue =

 static_cast<float>(theFirstIsBlue) /

 theTotalOfSamples;

 float probabilityForBothBallsToBeBlue =

 static_cast<float>(bothAreBlue) /

 theTotalOfSamples;

 float probabilityForSecondBallToBeRed =

 static_cast<float>(theSecondIsBlue) /

 theTotalOfSamples;

 std::cout << "Probability for the first ball to be blue: "

 << probabilityOfFirstBallToBeBlue * 100.0 << "%\n" ;

 std::cout<< "Probability for the second ball to be blue: "

 << probabilityForSecondBallToBeRed * 100.0 << "%\n" ;

 std::cout << "Probability for both balls to be blue: "

 << probabilityForBothBallsToBeBlue * 100.0 << "%\n" ;

}

Chapter 3 Mathematical Background and Its Applicability

85

�Case Study 2: Computing the Probability Distribution

Listing 3-2.  Source Code

//** this will be used for computing the distribution

#include <random>

#include <iostream>

using namespace std;

int main() {

 //** declare default_random_engine object

 //** we will use it as a random number

 //** we will provide a seed for default_random_engine

 //** if a pseudo random is necessary

 default_random_engine gen;

 double x=0.0, y=1.0;

 //** initialization of the probability distribution

 uniform_real_distribution<double> dist(x, y);

 //** the number of experiments

 const int numberOfExperiments = 10000000;

 //** the number of ranges

 const int numberOfRanges = 100;

 int probability[numberOfRanges] = {};

Figure 3-2.  Output of probability distribution

Chapter 3 Mathematical Background and Its Applicability

86

 for (int k = 0; k < numberOfExperiments; ++k) {

 // using operator() function

 // to give random values

 double no = dist(gen);

 ++probability[int(no * numberOfRanges)]; }

 cout << "Probability of some ranges" << endl;

 //** show the probability distribution of some ranges

 //** after 1000 times values are generated

 cout << "0.50-0.51"<<" "<<

 (float)probability[50]/(float)numberOfExperiments<<endl;

 cout << "0.60-0.61"<<" "<<

 (float)probability[60]/(float)numberOfExperiments<<endl;

 cout << "0.45-0.46"<<" "<<

 (float)probability[45]/(float)numberOfExperiments<<endl;

 return 0;

}

�Case Study 3: Computing the Mean
of the Probability Distribution

Figure 3-3.  Output for the mean of the probability distribution

Chapter 3 Mathematical Background and Its Applicability

87

Listing 3-3.  Source Code

#include <iostream>

#include <string>

#include <random>

int main()

{

 //** the constant represents the number of experiments

 const int numberOfExperiments=10000;

 //** the constant represents the

 //** maximum number of stars to distribute

 const int numberOfStarsToDistribute=100;

 std::default_random_engine g;

 std::normal_distribution<double> dist(6.0,3.0);

 int prob[10]={};

 for (int k=0; k<numberOfExperiments; ++k) {

 double no = dist(g);

 if ((no>=0.0)&&(no<10.0)) ++prob[int(no)];

 }

 std::cout << "the mean distribution (6.0,3.0):" << std::endl;

 for (int l=0; l<10; ++l) {

 std::cout << l << "-" << (l+1) << ": ";

 std::cout <<

 �std::string(prob[l]*numberOfStarsToDistribute/

numberOfExperiments,'*') << std::endl;

 }

 return 0;

}

Chapter 3 Mathematical Background and Its Applicability

88

�Case Study 4: Computing the Variance

Listing 3-4.  Source Code

#include<iostream>

using namespace std;

//** the below function is used

//** for computing the variance

int computingVariance(int n[], int h) //**a=n, n=h

{

 //** computes the mean

 //** average of the elements

 int sum = 0;

 for (int k = 0; k < h; k++)

 sum += n[k];

 double theMean = (double)sum /

 (double)h;

 //** calculate the sum squared

 //** differences with the mean

 double squared_differences = 0;

 for (int t=0; t<h; t++)

 squared_differences += (n[t] - theMean) *

 (n[t] - theMean);

Figure 3-4.  Output of variance

Chapter 3 Mathematical Background and Its Applicability

89

 return squared_differences / h;

}

int main()

{

 int arr[] = {600, 470, 170, 430, 300};

 int n = sizeof(arr) / sizeof(arr[0]);

 cout << "The variance is: "

 << computingVariance(arr, n) << "\n";

 return 0;

}

�Case Study 5: Computing the Standard Deviation

Figure 3-5.  Output of the standard deviation

Chapter 3 Mathematical Background and Its Applicability

90

Listing 3-5.  Source Code

#include <iostream>

#include <cmath>

using namespace std;

float computeStandardDeviation(float data[]);

int main()

{

 int n;

 float elements_array[10];

 cout << "Add 10 elements: ";

 for(n = 0; n < 10; ++n)

 cin >> elements_array[n];

 cout << endl << "The Standard Deviation is = " <<

 computeStandardDeviation(elements_array)<<endl;

 return 0;

}

float computeStandardDeviation(float elements_array[])

{

 float theSum = 0.0, theMean, theStandardDeviation = 0.0;

 int j,k;

 for(j = 0; j < 10; ++j)

 {

 theSum += elements_array[j];

 }

 theMean = theSum/10;

 for(k = 0; k < 10; ++k)

Chapter 3 Mathematical Background and Its Applicability

91

 theStandardDeviation += pow(elements_array[k] –

 theMean, 2);

 return sqrt(theStandardDeviation/10);

}

�Case Study 6: Birthday Paradox

Figure 3-6.  Output of birthday computation

Chapter 3 Mathematical Background and Its Applicability

92

Listing 3-6.  Source Code

#include <ctime>

#include <cstdlib>

#include <iostream>

using namespace std;

int main(int argc, const char *argv[])

{

 const int processes = 15000;

 short int no_of_birthdays[365];

 int processesWithSuccess;

 bool IsSharedBirthday;

 //** we will time(NULL) as seed to be used for the

 //** pseudo-random number generator srand()

 srand(time(NULL));

 for (int no_of_people=2;no_of_people<45;

++no_of_people)

 {

 processesWithSuccess = 0;

 for (int i = 0; i < processes; ++i)

 {

 //** all birthdays will be set to 0

 for (int j=0;j<365;no_of_birthdays[j++] = 0);

 IsSharedBirthday = false;

 for (int j = 0; j < no_of_people; ++j)

 {

 //** if our given birthday is shared (this

 //** means that is assigned for more than one

 //** person) this will be a shared birthday

 //** and we will need to stop verifying.

 if (++no_of_birthdays[rand() % 365] > 1){

 IsSharedBirthday = true;

 break;

 }

Chapter 3 Mathematical Background and Its Applicability

93

 }

 if (IsSharedBirthday) ++processesWithSuccess;

 }

 �cout << "The probability for " << no_of_people << "people from the

same room to share the same birthday is \t"<<(float(processesWith

Success)/ float(processes))<<endl;

 }

 return 0;

}

�Case Study 7: (Extended) Euclidean Algorithm

Listing 3-7.  Source Code

//** NOTE: bits/stdc++ does not represent

//** a standard header file of the GNU C++ library.

//** If the code will be compiled with other

//** compilers than GCC it will fail

#include<stdio.h>

using namespace std;

//** the function will compute

//** GCD for two numbers

int g(int x, int y) {

Figure 3-7.  Output of the Euclidean algorithm

Chapter 3 Mathematical Background and Its Applicability

94

 if (x == 0)

 return y;

 return g(y % x, x);

}

int main()

{

 int x = 10, y = 15;

 cout << "Euclid GCD(" << x << ", "

 << y << ") = " << g(x, y)

 << endl;

 x = 35, y = 10;

 cout << "Euclid GCD(" << x << ", "

 << y << ") = " << g(x, y)

 << endl;

 x = 31, y = 2;

 cout << " EuclidGCD(" << x << ", "

 << y << ") = " << g(x, y)

 << endl;

 return 0;

}

Figure 3-8.  Output of Extended Euclidean algorithm

Chapter 3 Mathematical Background and Its Applicability

95

Listing 3-8.  Source Code

#include <bits/stdc++.h>

using namespace std;

//** computing extended Euclidean algorithm

int g_e(int x, int y, int *w, int *z)

{

 //** this is the basic or ideal case

 if (x == 0)

 {

 *w = 0;

 *z = 1;

 return y;

 }

 //** variables for storing the results

 //** for the recursive call

 int a1, b1;

 int g = g_e(y%x, x, &a1, &b1);

 //** with help of the recursive call

 //** update a and b with the results

 *w = b1 - (y/x) * a1;

 *z = a1;

 return g;

}

// Driver Code

int main()

{

 int a, b, w = 35, y = 15;

 int g = g_e(w, y, &a, &b);

 cout << "g_e(" << w << ", " << y<< ") = " << g << endl;

 return 0;

}

Chapter 3 Mathematical Background and Its Applicability

96

�Case Study 8: Computing the Multiplicative Inverse
Under Modulo q

Listing 3-9.  Code for Computing the Modular Multiplicative Inverse (Tricky Method)

#include<iostream>

using namespace std;

//** this represents the basic method or tricky method

//** for finding the modulo multiplicative inverse of

//** x under modulo m

int modulo_inverse(int x, int m)

{

 x = x%m;

 for (int y=1; y<m; y++)

 if ((x*y) % m == 1)

 return y;

 return 1;

}

int main()

{

 int x = 3, m = 11;

 cout << modulo_inverse(x, m);

 return 0;

}

Figure 3-9.  Output of modular multiplicative inverse (basic and tricky form of the
implementation)

Chapter 3 Mathematical Background and Its Applicability

97

Figure 3-10.  Output of modular multiplicative inverse (when the number is
coprime)

Listing 3-10.  Source Code

#include<iostream>

using namespace std;

//** function for computing the extended Euclidean algorithm

int gcd_e(int x, int y, int *w, int *z);

void modulo_inverse(int h, int modulo)

{

 int i, j;

 int g = gcd_e(h, modulo, &i, &j);

 if (g != 1)

 cout << "There is no inverse.";

 else

 {

 //** we add the modulo in

 //** order to handle negative i

 int result = (i%modulo + modulo) % modulo;

 cout << "The modular multiplicative inverse is " <<

 result;

 }

}

//** we will compute the extended Euclidean algorithm

int gcd_e(int h, int k, int *w, int *z) {

 //** the "happy" case

Chapter 3 Mathematical Background and Its Applicability

98

 if (h == 0){

 *w = 0, *z = 1;

 return k; }

 //** storing results of our recurive invoke

 int a1, b1; //** x1=a1, y1=b1

 int g = gcd_e(k%h, h, &a1, &b1);

 //** with recursive invocation results

 //** we will update x and y

 *w = b1 - (k/h) * a1;

 *z = a1;

 return g;

}

int main()

{

 int x = 3, modulo = 11;

 modulo_inverse(x, modulo);

 return 0;

}

�Case Study 9: Chinese Remainder Theorem

Figure 3-11.  Output for Chinese remainder theorem

Chapter 3 Mathematical Background and Its Applicability

99

Listing 3-11.  Source Code

#include<iostream>

using namespace std;

int inverse(int x, int modulo)

{

 int modulo0 = modulo, k, quotient;

 int a0 = 0, a1 = 1;

 if (modulo == 1)

 return 0;

 //** we will apply the extended Euclidean algorithm

 while (x > 1)

 {

 quotient = x / modulo;

 k = modulo;

 //** modulo represents the remainder

 //** continue with the same process as

 //** Euclid's algorithm

 modulo = x%modulo, x=k;

 k = a0;

 a0 = a1 - quotient * a0;

 a1 = k;

 }

 //** make a1 positive

 if (a1 < 0)

 a1 += modulo0;

 return a1;

}

Chapter 3 Mathematical Background and Its Applicability

100

int lookForMinX(int numbers[], int remainders[], int l)

{

 //** computing the product for all the numbers

 int product = 1;

 for (int j = 0; j < l; j++)

 product *= numbers[j];

 //** we initialize the result with 0

 int result = 0;

 //** apply the formula mentioned above

 for (int j = 0; j < l; j++)

 {

 int pp = product / numbers[j];

 result += remainders[j] * inverse(pp, numbers[j]) * pp;

 }

 return result % product;

}

int main(void) {

 int numbers[] = {3, 4, 5};

 int remainders[] = {2, 3, 1};

 int k = sizeof(numbers)/sizeof(numbers[0]);

 cout << "x is " << lookForMinX(numbers, remainders, k);

 return 0;

}

Chapter 3 Mathematical Background and Its Applicability

101

�Case Study 10: The Legendre Symbol

Figure 3-12.  Output of Legendre symbol

Chapter 3 Mathematical Background and Its Applicability

102

The source code for implementing the Legendre symbol is structured in two files:

Listing3-12.cpp (see Listing 3-12), and Listing 3-13.h (see Listing 3-13).

For compiling the source code, the following command needs to be run.

g++ -std=c++2b Listing3-12.cpp –o Listing3-12

Listing 3-12.  Source Code (legendre.cpp)

#include <iostream>

#include "Listing3-13.h"

using namespace std;

using namespace LegendreStorage::Legendre;

int main()

{

 double p_n;

 cout.precision(5) ;

 for (unsigned int v = 0 ; v <= 5 ; v++)

 {

 for (double b = -1.0 ; b <= 1.0 ; b = b + 0.1)

 {

 p_n = Polynom_n<double>(v, b) ;

 cout << "P" << v << "(" << b << ") = " << p_n << endl ;

 }

 cout << endl ;

 }

 return 0 ;

}

Listing 3-13.  Legendre Symbol (legendre.h) Source Code

#ifndef __LEGENDRESYMBOL_H__

#define __LEGENDRESYMBOL_H__

namespace LegendreStorage {

 namespace Legendre{

Chapter 3 Mathematical Background and Its Applicability

103

 //** when n=0

 template <class T> inline auto Polynom0(const T& x){

 return static_cast<T>(1);

 }

 //** when n=1

 template <class T> inline auto Polynom1(const T& x){

 return x;

 }

 //** when n=2

 template <class T> inline auto Polynom2(const T& x){

 return ((static_cast<T>(3)*x*x) -

 static_cast<T>(1)) / static_cast<T>(2);

 }

 //** polynom(x)

 template <class T> inline auto Polynom_n(unsigned int h,

 const T& y)

 {

 switch(h){

 case 0:

 return Polynom0<T>(y);

 case 1:

 return Polynom1<T>(y);

 case 2:

 return Polynom2<T>(y);

 default:

 break;}

 auto polynom_1(Polynom2<T>(y));

 auto polynom_2(Polynom1<T>(y));

 T polynom;

 for (auto a=3u; a<=h; ++a){

 polynom = ((static_cast<T>((2 * a) - 1)) * y *

Chapter 3 Mathematical Background and Its Applicability

104

 polynom_1

 - (static_cast<T>(a - 1) * polynom_2)) /

 static_cast<T>(a);

 polynom_2 = polynom_1;

 polynom_1 = polynom; }

 return polynom; }}}

#endif

�Conclusion
The current chapter discussed the importance of some mathematical tools used in most

modern cryptography algorithms. It demonstrated how they can be implemented and

explained the important steps of the algorithms. The chapter also covered the important

aspects of the mathematical foundations, such as probability theory, information theory,

number theory, and finite fields.

Each mathematical foundation presented the necessary equations and mathematical

expressions used to implement the algorithms. Each equation or mathematical

expression is demonstrated through an example of a software application implemented

in C++ entitled a case study. Each case study has demonstrated the skills and knowledge

needed to develop a secure and reliable code. The case studies were counted from

1 to 10.

Reaching the end of the chapter, you should now understand the important notions

and terms, programming concepts, and algorithms used, both theoretical and practical,

and how to quickly move from theory to practice.

References
[1].	 Menezes Alfred J.; Paul van Oorschot; Vanstone Scott A. (1996). Handbook of

Applied Cryptography. CRC Press. ISBN 0-8493-8523-7.

[2].	 A. R. Meijer, Algebra for Cryptologists, 1st ed. New York, NY: Springer, 2016.

[3].	 J. Hoffstein, J. Pipher, and J. H. Silverman, An Introduction to Mathematical

Cryptography, 2nd ed. New York: Springer, 2014.

[4].	 S. Rubinstein-Salzedo, Cryptography, 1st ed. New York, NY: Springer, 2018.

Chapter 3 Mathematical Background and Its Applicability

https://en.wikipedia.org/wiki/CRC_Press

105

[5].	 W. Stallings, Cryptography and Network Security: Principles and Practice, 6th

ed. Prentice Hall Press, 2013.

[6].	 K. Academy, Cryptography: Data and Application Security. Independently

published, 2017.

[7].	 C. T. Rivers, Cryptography: Decoding Cryptography! From Ancient to New Age

Times. JR Kindle Publishing, 2014.

[8].	 D. Stinson, Cryptography: Theory and Practice, Second Edition, 2nd ed. CRC/

C&H, 2002.

[9].	 H. Delfs and H. Knebl, Introduction to Cryptography: Principles and

Applications, 3rd ed. New York, NY: Springer, 2015.

[10].	 J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition,

Boca Raton: Chapman and Hall/CRC, 2014.

[11].	 X. Wang, G. Xu, M. Wang, and X. Meng, Mathematical Foundations of Public

Key Cryptography. Boca Raton: CRC Press, 2015.

[12].	 T. R. Shemanske, Modern Cryptography and Elliptic Curves. Providence, Rhode

Island: American Mathematical Society, 2017.

[13].	 S. Y. Yan, Primality Testing and Integer Factorization in Public-Key

Cryptography. Springer, 2013.

[14].	 L. M. Batten, Public Key Cryptography: Applications and Attacks. Hoboken, N.J:

Wiley-Blackwell, 2013.

[15].	 J. P. Aumasson, Serious Cryptography. San Francisco: No Starch Press, 2017.

[16].	 S. Khare, The world of Cryptography: incl. cryptosystems, ciphers, public key

encryption, data integration, message authentication, digital signatures.

[17].	 A. Atanasiu, Securitatea informaţiei - Criptografie (Information Security -

Cryptography). Infodata, 2007. [Romanian Language]

[18].	 A. Atanasiu, Securitatea informaţiei - Protocoale de securitate (Information

Security - Security Protocols). Infodata, 2009. [Romanian Language]

[19].	 V. Preda, E. Simion, A. Popescu. Criptanaliza. Rezultate şi Tehnici Matematice

(Cryptanalysis. Results and Mathematical Techniques). Universitatea Bucuresti

Publisher, 2004 [Romanian Language]

Chapter 3 Mathematical Background and Its Applicability

107

CHAPTER 4

Large Integer Arithmetic
The purpose of this chapter is to cover the main arithmetic operations and explain how

to work with large integers. Some cryptographic algorithms require large integers that

do not fit with the normal size of variables, such as int. It gives a quick overview of big

integers and some libraries used to work with them.

The chapter offers a comprehensive guide on large integer arithmetic by providing

a comprehensive overview of the basics, from understanding the fundamentals to

exploring the various algorithms used to compute large numbers. It is very interesting

to look at the past and get some chunks of history about large integer arithmetic,

investigate different algorithms used to solve large-number problems and learn the

basics of number theory. You’ll also get an introduction to online tools to help students

and professionals with large-number calculations. With this guide, you’ll thoroughly

understand the fundamentals of large integer arithmetic and the various algorithms and

tools used to solve large-number problems.

�A Bit of History
The concept of large integer arithmetic goes back to ancient civilizations. The Egyptians

were known to have used large integers in their architectural designs, where the

dimensions of temples, pyramids, and other architectural wonders were recorded in

integers. Similarly, the Mayans used large integers in their astronomical calculations,

using the numbers 1 to 13 to represent the 13 lunar cycles in a solar year. Traders in

India and China were also known to use large integers in their monetary computations,

where they used the numbers 1 to 99 to represent their monetary denominations. Large

integer arithmetic was further developed in the tenth century by Persian mathematician

Abu’l-Wafa, who introduced the Ghiya number system, which became the modern-

day Bhulbhulaya number system. The Bhulbhulaya number system was an extension

of the Ghiya number system, where Abu’l-Wafa introduced the Bhulbhulaya numbers

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_4

https://doi.org/10.1007/978-1-4842-9450-5_4

108

to represent very large numbers. The Bhulbhulaya numbers were used to describe

astronomical measurements, distances, and monetary amounts, where the number

system went off the limitations of the Ghiya number system.

�What About Cryptography?
In implementing complex cryptography algorithms, operations with large integers can

be very difficult. The limitations could be due to hardware equipment (e.g., processor,

RAM) or programming languages.

In C++23, an integer is represented as 32 bits. Out of 32 bits, only 31 can be used for

representing positive integer arithmetic. Cryptography is good when you are dealing

with numbers that are up to two billion, or 2 ⋅ 109.

Some compilers have a long long type, such as GNU C++ or g++, that offer the

possibility to represent integers of approximately nine quintillion, or 9 ⋅ 1018.

Most simple cryptographic operations are good, but some cryptographic algorithms

require more digits in their integer representation. Let’s consider as an example the

RSA (Rivest-Shamir-Adleman) public-key encryption cryptosystem, which requires

approximately 300 digits. The computation often involves large numbers when dealing

with specific real events and their probabilities. The output and achievement of the main

result might be appropriate for C/C++. Compared with other complex computations,

there are very large numbers.

Another interesting example is to find the chances of winning the jackpot from a

lottery with one ticket. The combination number of 50 is taken six at a time, and

"50 choose 6" is
50

50 6 6

!

! • !�� �� �
. The resulting number is 15.890.700, so the chances

of winning are 1/15.890.700. Using the C++23 programming language, the number

15.890.700 can be easily represented. This could be tricky, and you can easily fall for

naivety when implementing 50! (computed using a calculator in Windows), which is

3.041409320171e+64 or much more approximated

30,414,093,201,713,378,043,612,608,166,064,768,844,377,641,568,960,512,00

0,000,000,000

Using C++23 to represent that number is almost impossible, even using a 64-bit

platform.

Chapter 4 Large Integer Arithmetic

109

�Algorithms Used for Large Integer Arithmetic
The addition modulo is the most basic algorithm used for solving problems with large

numbers. In addition, modulo, you add two large numbers, but then you normalize the

result to the closest number that fits into the precision of the addition operation. This

means you discard the sum's fractional part and keep the rest as the final sum.

When implementing an addition algorithm for two large numbers, one of the most

useful approaches is considering the numbers as strings1. In this case, the numbers

provided as input can be very large, such examples can be numerous, and the numbers

may not fit in a long long int variable. Based on the purpose of the algorithm, the

mission of such an algorithm is to be able to compute the sum of the numbers provided

as input.

Let’s consider two large numbers: 2431989739 and 3947978705409241873. The

example shown in Figure 4-1 uses CrypTool2 to generate two large prime numbers by

setting up an interval between a lower limit and an upper limit.

1 See https://www.geeksforgeeks.org/sum-two-large-numbers/
2 See https://www.cryptool.org/en/

Chapter 4 Large Integer Arithmetic

https://www.geeksforgeeks.org/sum-two-large-numbers/
https://www.cryptool.org/en/

110

Figure 4-1.  Generating two large numbers for addition

Let’s consider the first basic/standard implementation (let’s call it the elementary

implementation) of the addition operation using integer variables (see Listing 4-1).

Listing 4-1.  Elementary Implementation of Addition

#include <iostream>

using namespace std;

int main()

{

 int first_number;

 int second_number;

 int addition = 0;

Chapter 4 Large Integer Arithmetic

111

 cout << "Enter first number = ";

 cin >> first_number;

 cout << "Enter second number = ";

 cin >> second_number;

 addition = first_number + second_number;

 cout<<"The addition is: " << addition << endl;

 return 0;

}

Let’s run the example and examine the program’s behavior. After entering the first

number, the program exits because the number is larger than the size of the int variable

(see Figure 4-2).

Figure 4-2.  A large number with an int variable

The same situation applies to the long int. To run this example, open a command

prompt window and run it using the following command.

g++ -std=gnu++2b 4_1_basic_addition.cpp -o 4_1_basic_addition

In the command, gnu++2b represents the new experimental version of C++233. To allow

C++23 support, add the command-line parameter -std=c++2b to your g++ command line.

To enable GNU extensions in addition to the C++23 features, add -std=gnu++2b.

3 See https://gcc.gnu.org/projects/cxx-status.html

Chapter 4 Large Integer Arithmetic

https://gcc.gnu.org/projects/cxx-status.html

112

Listing 4-2 has the same situation as Listing 4-1 and Figure 4-2.

Listing 4-2.  Case of long int Variable

#include <iostream>

using namespace std;

int main()

{

 long int first_number;

 long int second_number;

 long int addition = 0;

 cout << "Enter first number = ";

 cin >> first_number;

 cout << "Enter second number = ";

 cin >> second_number;

 addition = first_number + second_number;

 cout<<"The addition is: " << addition << endl;

 return 0;

}

A success for adding large numbers can be obtained with long int (see Listing 4-3

and Figure 4-3) and unsigned long int (see Listing 4-4 and Figure 4-3, the same output

as for Listing 4-3).

Listing 4-3.  Case of long long int Variable

#include <iostream>

using namespace std;

int main()

{

 long int first_number;

 long int second_number;

 long int addition = 0;

Chapter 4 Large Integer Arithmetic

113

 cout << "Enter first number = ";

 cin >> first_number;

 cout << "Enter second number = ";

 cin >> second_number;

 addition = first_number + second_number;

 cout<<"The addition is: " << addition << endl;

 return 0;

}

Figure 4-3.  A successful addition operation using a long long int variable

Listing 4-4.  Case of unsigned long long int Variable

#include <iostream>

using namespace std;

#include <iostream>

using namespace std;

int main()

{

 unsigned long long int first_number;

 unsigned long long int second_number;

 unsigned long long int addition = 0;

 cout << "Enter first number = ";

 cin >> first_number;

 cout << "Enter second number = ";

 cin >> second_number;

Chapter 4 Large Integer Arithmetic

114

 addition = first_number + second_number;

 cout<<"The addition is: " << addition << endl;

 return 0;

}

To understand much better what types of variables for integers should be used, the

following example (see Listing 4-5 and Figure 4-4) shows exactly the size (in bytes) that

can be used within different variables for integers.

Listing 4-5.  Variable Sizes

#include <iostream>

using namespace std;

int main()

{

 cout << "Size of int : " << sizeof(int) << " bytes" << endl;

 �cout << "Size of unsigned int : " << sizeof(unsigned int) << " bytes"

<< endl;

 �cout << "Size of signed int : " << sizeof(signed int) << " bytes"

<< endl;

 �cout << "Size of short int : " << sizeof(short int) << " bytes"

<< endl;

 �cout << "Size of unsigned short int : " << sizeof(unsigned short int)

<< " bytes" << endl;

 �cout << "Size of signed short int : " << sizeof(signed short int) <<

" bytes" << endl;

 �cout << "Size of long int : " << sizeof(long int) << " bytes"

<< endl;

 �cout << "Size of signed long int : " << sizeof(signed long int) << "

bytes" << endl;

 �cout << "Size of unsigned long int : " << sizeof(unsigned long int)

<< " bytes" << endl;

 �cout << "Size of long long int : " << sizeof(long long int) << "

bytes" << endl;

Chapter 4 Large Integer Arithmetic

115

 �cout << "Size of unsigned long long int : " << sizeof(unsigned long

long int) << " bytes" << endl;

 return 0;

}

Figure 4-4.  Number of bytes for int variables

Figure 4-4 shows that we cannot operate addition on large numbers. One of the

most common solutions (see Listing 4-6 and Figure 4-5 for the output) is to consider the

numbers as strings, reverse both strings, and keep adding the digits of the number one

by one from the first index (using the reversed string) to the end for the smaller string

(number), and append the addition % 10 (modulo operation) to the end of the result and

keep track of the transporter by computing addition/10 (division operation). As a final

step, take the result and reverse it.

Listing 4-6.  Addition for Large Numbers Considering the Numbers As Strings

#include <iostream>

#include <algorithm>

using namespace std;

//compute the length of the number as string

int compute_number_length(string number)

{

 int number_length = 0;

 int i = 0;

 while(number[i])

Chapter 4 Large Integer Arithmetic

116

 {

 number_length++;

 i++;

 }

 return number_length;

}

// the function will compute the addition between two large numbers

string compute_addition(string first_number, string second_number)

{

 �//compare the length of both numbers and verify that the length of

the second number is larger

 int number1_length = compute_number_length(first_number);

 int number2_length = compute_number_length(second_number);

 if (number1_length > number2_length)

 swap(first_number, second_number);

 �//declare an empty string variable that will store the result

in the end

 string result_of_addition = "";

 //compute for both strings the length

 int length_of_number1 = compute_number_length(first_number);

 int length_of_number2 = compute_number_length(second_number);

 reverse(first_number.begin(), first_number.end());

 reverse(second_number.begin(), second_number.end());

 int transporter = 0;

 for (int i=0; i<length_of_number1; i++)

 {

 �//elementary addition computation of the digits and transporter

or carrier

 �int addition = ((first_number[i]-'0')+(second_number[i]-

'0')+transporter);

 result_of_addition.push_back(addition%10 + '0');

Chapter 4 Large Integer Arithmetic

117

 //compute the transporter for the next step

 transporter = addition/10;

 }

 //push or add the remaining digits for a large number

 for (int i=length_of_number1; i<length_of_number2; i++)

 {

 int addition = ((second_number[i]-'0')+transporter);

 result_of_addition.push_back(addition%10 + '0');

 transporter = addition/10;

 }

 //push back or add the transporter

 if (transporter)

 result_of_addition.push_back(transporter+'0');

 //take the result and reverse it

 reverse(result_of_addition.begin(), result_of_addition.end());

 return result_of_addition;

}

//main function, read the numbers

int main()

{

 string first_number = "";

 string second_number = "";

 cout << "Enter first number = ";

 cin >> first_number;

 cout << "Enter second number = ";

 cin >> second_number;

 �cout << "The addition is: " << compute_addition(first_number, second_

number) << endl;

 return 0;

}

Chapter 4 Large Integer Arithmetic

118

Let’s run Listing 4-6 for the following numbers and examine the output of the

addition. The first number is 2431989739243198973924319897392431989739243198

9739243198973924319897392431989739. The second number is 3947978705439479787

05409241873394797870540924187339479787054092418733947978705409241873

09241873. The output is shown in Figure 4-5.

Figure 4-5.  Addition using large numbers

�Subtraction (Subtraction Modulo)
The process of subtraction is the same as the addition approach (see Listing 4-7 for the

source code and Figure 4-6 for the output), except that you take the difference between

the two numbers, and different implementations can be done or found with different

references4, where the algorithms and steps are quite similar.

Listing 4-7.  Subtraction Approach

#include <iostream>

#include <algorithm>

using namespace std;

//reverse string (number)

void reverseNumber(string& number, int n, int i)

{

 while(n<i)

 {

 return;

 }

4 See https://www.geeksforgeeks.org/difference-of-two-large-numbers/?ref=gcse

Chapter 4 Large Integer Arithmetic

https://www.geeksforgeeks.org/difference-of-two-large-numbers/?ref=gcse

119

 swap(number[i], number[n]);

 reverseNumber(number, n-1, i+1);

}

//compute the length of the number as string

int compute_number_length(string number)

{

 int number_length = 0;

 int i = 0;

 while(number[i])

 {

 number_length++;

 i++;

 }

 return number_length;

}

//verify and return true if number 1 is smaller than number 2

bool check(string first_number, string second_number)

{

 // Calculate lengths of both strings

 int firstNumber = compute_number_length(first_number);

 int secondNumber = compute_number_length(second_number);

 int counter = 0;

 //return true if the first number is less than the second number

 while (firstNumber < secondNumber)

 return true;

 //return false if second number is less than first number

 while (secondNumber < firstNumber)

 return false;

 while(counter < firstNumber)

 {

 while (first_number[counter] < second_number[counter])

Chapter 4 Large Integer Arithmetic

120

 return true;

 while (first_number[counter] > second_number[counter])

 return false;

 }

 return false;

}

//compute the difference between two numbers

string compute_difference(string first_number, string second_number)

{

 int transporter = 0;

 int counter = 0;

 int difference = 0;

 int startPoint = 0;

 //verify that number 1 is not smalle than number 2

 while (check(first_number, second_number))

 swap(first_number, second_number);

 //for storing the result

 string result = "";

 //compute the length of both strings

 int firstNumber = compute_number_length(first_number);

 int secondNumber = compute_number_length(second_number);

 startPoint = secondNumber;

 //reverse the strings

 �reverseNumber(first_number, compute_number_length(first_

number) - 1, 0);

 �reverseNumber(second_number, compute_number_length(second_

number) - 1, 0);

 �//perform running the loop until the length of the small string

(number)

 //add the digits of str1 to str2

Chapter 4 Large Integer Arithmetic

121

 while(counter < secondNumber)

 {

 //compute the difference of the digits for the numbers

 �int difference = ((first_number[counter] - '0') - (second_

number[counter] - '0') - transporter);

 �//in case that subtraction is less than zero, perform an

addition of 10 into the subtraction and take the transporter as

1 to compute the next step

 if (difference < 0)

 {

 difference += 10;

 transporter = 1;

 }

 else

 transporter = 0;

 result.push_back(difference + '0');

 counter++;

 }

 // subtract remaining digits of larger number

 while(startPoint < firstNumber)

 {

 �int difference = ((first_number[startPoint] - '0') -

transporter);

 // if the sub value is -ve, then make it positive

 if (difference < 0) {

 difference = difference + 10;

 transporter = 1;

 }

 else

 transporter = 0;

 result.push_back(difference + '0');

Chapter 4 Large Integer Arithmetic

122

 startPoint++;

 }

 // reverse resultant string

 reverse(result.begin(), result.end());

 return result;

}

// Driver code

int main()

{

 string first_number = "";

 string second_number = "";

 cout << "Enter first number = ";

 cin >> first_number;

 cout << "Enter second number = ";

 cin >> second_number;

 �cout << "The addition is: " << compute_difference(first_number,

second_number) << endl;

 return 0;

}

Figure 4-6.  The result of the difference

Chapter 4 Large Integer Arithmetic

123

�Multiplication
Multiplication modulo is the same as addition modulo, except that you take the product

of the two numbers. Examine Listing 4-8 and the output in Figure 4-7 for the proposed

approach, which is similar to addition and subtraction.

Listing 4-8.  Multiplication Operation

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

//compute the length of the number as string

int compute_number_length(string number)

{

 int number_length = 0;

 int i = 0;

 while(number[i])

 {

 number_length++;

 i++;

 }

 return number_length;

}

//the function will compute the multiplication operation between two

large numbers

string multiplicateTwoNumbers(string first_number, string second_number)

{

 int length_of_first_number = compute_number_length(first_number);

 int length_of_second_number = compute_number_length(second_number);

 while (length_of_first_number == 0 || length_of_second_number == 0)

 return "0";

Chapter 4 Large Integer Arithmetic

124

 //the result is stored in a vector in a reversed order

 �vector<int> result(length_of_first_number + length_of_second_

number, 0);

 �//we will use two indexes for both large numbers for identifying the

position within the result

 int indexPosition_FirstNumber = 0;

 int indexPosition_SecondNumber = 0;

 int counter_1 = length_of_first_number-1;

 //take from the right to the left within first number

 while(counter_1>=0)

 {

 int transporter = 0;

 int number1 = first_number[counter_1] - '0';

 �//this is used for shifting the position to left once every

multiplication with the digit is done within the second number

 indexPosition_SecondNumber = 0;

 int counter_2 = length_of_second_number-1;

 //take from right to left for the second number

 while(counter_2>=0)

 {

 //store the current digit of the second number

 int number2 = second_number[counter_2] - '0';

 �//take the digit stored above and multiply the two large

numbers with it, the result will be added to the previous

result stored within the current position

 �int additionCurrentDigitWithCurrentPosition =

number1*number2 + result[indexPosition_FirstNumber +

indexPosition_SecondNumber] + transporter;

 //take the carry or transporter for the next iteration

 transporter = additionCurrentDigitWithCurrentPosition/10;

Chapter 4 Large Integer Arithmetic

125

 //save the result

 �result[indexPosition_FirstNumber + indexPosition_

SecondNumber] = additionCurrentDigitWithCurrentPosition % 10;

 indexPosition_SecondNumber++;

 counter_2--;

 }

 //save the transporter within next location

 while (transporter > 0)

 �result[indexPosition_FirstNumber + indexPosition_

SecondNumber] += transporter;

 �//after each multiplication, shift and move the position to the

left for the first digit within the first number

 indexPosition_FirstNumber++;

 counter_1--;

 }

 //don't take into consideration the 0 s from the right

 int zero_from_right = result.size() - 1;

 if (zero_from_right>=0 && result[zero_from_right] == 0)

 zero_from_right--;

 �//if the case is 0 s - this means that both large numbers or at least

one of the large numbers was 0

 while (zero_from_right == -1)

 return "0";

 //for storing the result as string

 string result_as_string = "";

 while (zero_from_right >= 0)

 result_as_string += std::to_string(result[zero_from_right--]);

 return result_as_string;

}

int main()

Chapter 4 Large Integer Arithmetic

126

{

 string first_number = "";

 string second_number = "";

 cout << "Enter first number = ";

 cin >> first_number;

 cout << "Enter second number = ";

 cin >> second_number;

 �cout << "The multiplication is: " << multiplicateTwoNumbers(first_

number, second_number) << endl;

 return 0;

}

Figure 4-7.  The multiplication result

�Big Integers
This section examines other approaches that can be used for arithmetic operations using

big integers. When working with cryptography algorithms and security mechanisms,

the implementation process can be very tricky when providing an implementation that

uses large numbers. Let’s go through a step-by-step guide on how to work with large

numbers.

One of the most interesting approaches is to transform a standard integer using

different computations in a large integer. To achieve this task, let’s write a function

named transformIntToBigInt(A, 123). With the help of this function, initialize A as

A[0]=3, A[1]=2, A[2]=1, and zeros for the remaining positions as A[3,...N-1].

Listing 4-9 examines how to accomplish the statement by using a simple implementation

in C/C++. The BASE represents the bit sign.

Chapter 4 Large Integer Arithmetic

127

Listing 4-9.  Transforming a Standard Integer Using Different Computations into

a Large Integer5

void transformIntToBigInt(int BigNo[], int number)

{

 int k;

 int bitSign;

 int BASE;

 //** start indexing with 0 position

 k = 0;

 //** if we still have something left

 //** within the number, continue

 while (number) {

 //** insert the digit that is least significant

 //** into BigNo[k] number

 BigNo[k++] = number % bitSign;

 //** we do not need the least significant bit

 number /= BASE;

 }

 //** complete the remainder of the array with zeroes

 while (k < N)

 BigNo[k++] = 0;

}

The algorithm in Listing 4-9 has O(N) space and time.

Let’s continue the adventure by looking at the possibility of adding one to a big

int. This is a very helpful operation and is quite frequently used in cryptography. The

advantage is that it is much easier than full addition.

5 The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

Chapter 4 Large Integer Arithmetic

128

Listing 4-10.  Add One to a Big int6

void increment (int BigNo [])

{

 int i;

 int N;

 int BASE;

 //* start indexing with least significant digit

 i = 0;

 while (i < N)

 {

 //* increment the digit

 BigNo[i]++;

 //** if it overflows

 if (BigNo[i] == BASE)

 {

 //** make it zero and move the index to next

 BigNo[i] = 0;

 i++;

 }

 else

 //** else, we are done!

 break;

 }

}

The algorithm shown in Listing 4-10 takes O(n) for the worst case possible (just

imagine something like 999999999999999999999999….) and Ψ(1) when you have the

best case. The best case occurs when there is no overflow on the least significant digit.

6 The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

Chapter 4 Large Integer Arithmetic

129

Next, let’s look at a method for adding two big integers. In this case, we want to add

two large integers in two different arrays: BigNo1[0,…, N-1] and BigNo2[0,…,N-1]. The

output result is saved in another array: BigNo3[0,…,N-1]. The algorithm is quite basic,

and there is nothing fancy about it.

Listing 4-11.  Addition Algorithm7

void addition(int BigNo1[], int BigNo2[], int BigNo3[])

{

 int j, overflowCarry, sum;

 int carry, N, BASE;

 //** There is no need to carry yet

 carry = 0;

 //** move from the least to the most significant digit

 for (j=0; j<N; j++)

 {

 //** the digit from j'th position of BigNo3[]

 //** represents the sum of j'th digits of

 //** BigNo1[] and BigNo2[] plus the overvflow carry

 sum = BigNo1[j] + BigNo2[j] + overflowCarry;

 //** if the sum will go out of the base then

 //** we will find ourselves in an overflow situation

 if (sum >= BASE)

 {

 carry = 1;

 //** adjust in such way that

 //** the sum will fit within a digit

 sum -= BASE;

 }

 else

 //** otherwise no carryOverflow

7 The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

Chapter 4 Large Integer Arithmetic

130

 carry = 0;

 //** add the result in the same sum variable

 BigNo3[j] = sum;

 }

 //** if we are getting to the

 //** end, we can expect an overflow

 if (carry)

 printf ("There is an overflow in the addition!\n");

}

Let’s continue with multiplication by using a basic method to multiply two large

numbers, X and Y, multiplying each X digit with each Y digit. The output is a partial

product. The output result is shifted to the left for every new digit. Our multiplying

OneDigit function multiplies an entire large integer using a single digit. The result is

placed in a new large integer. We also present another function, left_shifting, which

shifts the number to the left with a certain number of spaces. It is multiplied using bi,

where b is the base, and i represents the number of spaces. Let’s take a quick look at the

algorithm.

Listing 4-12.  Multiplication8

void multiply (int BigInt1[], int BigInt2[], int BigInt3[])

{

 int length_of_integer;

 int x, y, P[length_of_integer];

 //** C stores the sum of

 //** partial products. It is initially 0.

 transformIntToBigInt (BigInt3, 0);

 //* for each digit in BigInt1

 for (x=0; x<length_of_integer; x++)

 {

8 The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

Chapter 4 Large Integer Arithmetic

131

 //** multiply BigInt2 by digit [x]

 multiplyUsingOneDigit (BigInt2, P, BigInt1[x]);

 //** left shifting the partial product with i bytes

 leftShifting(P, x);

 //** add the output result to the current sum

 addResult(BigInt3, P, BigInt3);

 }

}

Next, let’s examine a function that uses a single digit to multiply.

Listing 4-13.  Multiplying Using a Single Digit9

void multiplyUsingOneDigit (int BigOne1[], int BigOne2[],

 int number) {

 int k, carryOverflow;

 int N, BASE;

 //** there is nothing related to

 //** extra overflow to be added at this moment

 carryOverflow = 0;

 //** for each digit, starting with least significant...

 for (k=0; k<N; k++){

 //** multiply the digit by number,

 //** putting the result in BigOne2

 BigOne2[k] = number * BigOne1[k];

 //** adding any extra overflow that is taking

 //** place starting with the last digit

 BigOne2[k] += carryOverflow;

 //** product is too big to fit in a digit

 if (BigOne2[k] >= BASE) {

9 The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

Chapter 4 Large Integer Arithmetic

132

 //** handle the overflow

 carryOverflow = BigOne2[k]/BASE;

 BigOne2[k] %= BASE;

 }

 else

 //** no overflow

 carryOverflow = 0;

 }

 if (carryOverflow)

 printf ("During the multiplication

 we experienced an overflow!\n");

}

Let’s continue with a function that shifts to leave a specific number of spaces.

Listing 4-14.  Shift to Left of a Specific Number of Spaces10

void leftShifting (int BigInt1[], int number) {

 int i;

 //** moving from left to right,

 //** we will move anything with left n spaces

 for (i=N-1; i>= number; i--)

 BigInt1[i] = BigInt1[i- number];

 //** complete the last n digits with zeros

 while (i >= 0) BigInt1[i--] = 0;

}

�Review of Large Integer Libraries
Several libraries and frameworks already implemented are dealing with high numbers.

Their development process was suspended for some of them, but they are still used in

cryptography applications.

10 The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

Chapter 4 Large Integer Arithmetic

133

The following libraries work with big integers.

•	 Matt McCutchen11 proposes a very easy-to-use C++ library for

calculations on big integers [1]. The code has very good explanations,

and it is easy to follow. The results obtained in symmetric and

asymmetric cryptography algorithms were promising. Most of the

results were compared with other tools for reference and checking,

such as CryptTool12.

•	 L3HARRIS Geospatial Solutions is a library that is fast on

computations is the Big Integer Class [2] from L3HARRIS Geospatial

Solutions13.

•	 Boost Library14 is a strong library used to achieve tasks based on

linear algebra, pseudorandom number generation, multithreading,

image processing, regular expression, and unit testing. The library

has an impressive set of independent libraries, approximately 160,

and the documentation is well-structured and easy to follow and

use [3].

•	 GMP Library is a free library that can be used for random precision

arithmetic is GNU Multiple Precision Arithmetic Library (GMP)15.

It offers large support for operations based on signed integers,

rational numbers, and floating-point numbers (see Chapter 5 for

more details). The library's only limitations are those that involve the

available memory. The limits are 232 − 1 bits on 32-bit and 237 − 1 bits

on 64-bit. The main interface is for C/C++, but there is also support

for C#, .NET, and OCaml (easily can be ported for Haskell as well. For

more information, take a look at [4], [5], and [11]). Additionally, there

is important support for Ruby, PHP, Python, R, Perl, and Wolfram

Language. The audience of the library includes cryptography

software applications, security of the Internet, and algebra systems.

11 Matt McCutchen’s Web Site, https://mattmccutchen.net/
12 CrypTool, https://www.cryptool.org/en/
13 L3HARRIS Geospatial Solutions, https://www.harrisgeospatial.com
14 Boost Library, http://www.boost.org
15 GMP Library, http://gmplib.org

Chapter 4 Large Integer Arithmetic

https://mattmccutchen.net/
https://www.cryptool.org/en/
https://www.harrisgeospatial.com
http://www.boost.org
http://gmplib.org

134

•	 LibBF Library [8] works with floating-point numbers represented

in base 2. The library is based and implemented on the IEEE 754

standard [7]. The example provided on the library web page, TinyPI,

is a very good example showing its power. This library is examined

further in Chapter 5.

•	 Bignum C++ Library [9] (or TTMath is a larger library that includes

Bignum C++ library) allows personal and commercial users to

perform arithmetic operations. The types of integers supported are

big unsigned integers, big signed integers, and big floating-point

numbers. There is support for mathematical operations, such as

adding, subtracting, dividing, and multiplying.

The current example, described in [10], creates an object characterized by two words

each. On a 32-bit platform, the maximum value that can be held is 232 ∗ 2 − 1. Note that

the author shows that variables can be initialized with string or, if you are dealing with

small values using a standard type such as unsigned int.

Listing 4-15.  Using ttmath::UInt<>

#include <ttmath/ttmath.h>

#include <iostream>

int main()

{

 ttmath::UInt<2> firstA, secondB, thirdC;

 a = "8765";

 b = 3456;

 c = a*b;

 std::cout << thirdC << std::endl;

}

Chapter 4 Large Integer Arithmetic

135

�Conclusion
The chapter discussed the general representations of big integers and their operations.

It analyzed the most important methods and approaches for computing addition,

subtraction, and multiplication for large numbers. The chapter also discussed big

integer libraries, providing the advantages that a professional needs when setting up an

environment for developing cryptographic algorithms.

References
[1].	 C++ Big Integer Library. Available online: https://mattmccutchen.net/

bigint/. Last accessed: 12.12.2022.

[2].	 BigInteger Class L3HARRIS Geospatial. Available online:

https://www.harrisgeospatial.com/docs/BIGINTEGER.html.

Last accessed: 12.12.2022

[3].	 Boost Library Documentation. Available online: https://www.boost.org/

doc/libs/1_72_0/. Last accessed: 12.12.2022

[4].	 Nita, S. L. and Mihailescu, M. (2017). Practical Concurrent Haskell: With Big

Data Applications. Apress.

[5].	 Nita, S. L. and Mihailescu, M. (2019). Haskell Quick Syntax Reference. Apress.

[6].	 Bellard. Available online: https://bellard.org/libbf/.

Last accessed: 12.12.2022

[7].	 IEEE 754-2019 – Standard for Floating-Point Arithmetic. Available

online: https://standards.ieee.org/content/ieee-standards/en/

standard/754-2019.html. Last accessed: 12.12.2022

[8].	 LibBF Library. Available online: https://bellard.org/libbf/.

Last accessed: 12.12.2022

[9].	 Bignum Library. Available online: https://www.ttmath.org/.

Last accessed: 12.12.2022

[10].	 TTMath Samples. Available online: https://www.ttmath.org/samples.

Last accessed: 12.12.2022

[11].	 Mena, A. S. (2019). Practical Haskell: A Real World Guide to Programming.

Apress.

Chapter 4 Large Integer Arithmetic

https://mattmccutchen.net/bigint/
https://mattmccutchen.net/bigint/
https://www.harrisgeospatial.com/docs/BIGINTEGER.html
https://www.boost.org/doc/libs/1_72_0/
https://www.boost.org/doc/libs/1_72_0/
https://bellard.org/libbf/
https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html
https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html
https://bellard.org/libbf/
https://www.ttmath.org/
https://www.ttmath.org/samples

137

CHAPTER 5

Floating-Point Arithmetic
Working with large numbers can be seen as abstract art, as covered in Chapter 4. If the

encryption schemes are not implemented correctly, the entire cryptographic method

might result in a serious fatality.

Floating-point mathematics and its significance for cryptography are the focus of this

chapter.

�Why Floating-Point Arithmetic?
Due to the representations and implementation techniques, floating-point arithmetic is

an important subfield of mathematics that requires careful attention. In homomorphic

encryption or chaos-based cryptography, this kind of arithmetic can be applied (covered

in Chapter 14 and Chapter 12).

Systems that use both very small and very large real numbers can contain

computations that use floating-point values. Their computations need a very quick

procedure. A particular class of variables called floating-point variables may store real

values, such as 5420.0, − 4.213,or 0.045634. The floating part of the name shows that the

decimal point can “float.”

Different floating-point data types, including the float, double, and long double

types, are available in C++. The language does not define the size of these types, as you

know from the case of C++ with integers. Most floating-point representations on current

processors adhere to the IEEE 754 standard [1] for binary representation format. This

standard specifies that a float type has four bytes, a double has eight, a long double has

eight bytes (the same as the double), and both are 80 bits (by padding, there are 12 bytes

or 16 bytes).

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_5

https://doi.org/10.1007/978-1-4842-9450-5_5

138

Always include at least one decimal when working with floating-point values. For

the compiler to distinguish between a floating number and an integer, this is very useful.

Cryptographers need to know this.

int a{5}; //** 5 represents an integer

double b{4.0}; //** 4.0 represents a floating point (with no

 //** suffix – double type by default)

float c{2.0f}; //** 2.0 represents a floating point (f is the

 //** suffix, which means a float type)

�Displaying Floating-Point Numbers
Listing 5-1 shows how to display floating-point values.

Listing 5-1.  Display Common Float Numbers

#include <iostream>

using namespace std;

int main()

{

 cout << 5.0 << endl;

 cout << 6.7f << endl;

 cout << 9876543.21 << endl;

 return 0;

}

The result shown in Figure 5-1 is achieved by running the example.

Chapter 5 Floating-Point Arithmetic

139

Figure 5-1.  The output of common float numbers

By examining the program’s output, you can see that, in the first instance, the output

is 5 bytes, but the source code contains 5.0. This occurs as a result of the fractional part

being equal to 0. The second instance prints the number exactly as it appears in the

original code. In the third instance, scientific notation displays the number, which is

beneficial for cryptography methods.

�The Range of Floating Points
Table 5-1 gives the sizes, range, and precision according to the IEEE 754 standard.

Table 5-1.  IEEE 754 Standard Representation

Size Range Precision

4 bytes ±1.18 × 10−38 to ± 3.4 × 1038 The most significant digits are 6–9;

typically, 7 digits.

8 bytes ±2.23 × 10−308 to ± 1.80 × 10308 The most significant digits are 15–18;

typically, 16 digits.

80-bits (typically 12
or 16 bytes)

±3.36 × 10−4932 to ± 1.18 × 104932 The most significant digits are 18–21.

16 bytes ±3.36 × 10−4932 to ± 1.18 × 104932 The most significant digits are 33–36.

On modern CPUs, the 80-bit floating-point is implemented using 12 or 16 bytes. It

makes sense that the CPUs could manage data of this size.

Chapter 5 Floating-Point Arithmetic

140

�Floating-Point Precision
Let’s consider the example of the fraction 1/3. The decimal equivalent for this value is

0.3333333... with an infinite number of 3s.

A computer needs infinite memory to store a number with an endless length. Due to

memory constraints, only the most significant digits of a floating-point number can be

stored. How many significant digits may be represented without any information being

lost depends on the precision of the floating-point number. When printing a floating-

point number in cryptography, cout has an implicit precision of 6. Let’s see how cout

truncates the numbers to six digits in Listing 5-2 and Figure 5-2.

Listing 5-2.  Representation of Floating-Point Precision

#include <iostream>

using namespace std;

int main()

{

 cout << 7.56756767f << endl;

 cout << 765.657667f << endl;

 cout << 345543.564f << endl;

 cout << 9976544.43f << endl;

 cout << 0.00043534345f << endl;

 return 0;

}

Chapter 5 Floating-Point Arithmetic

141

Figure 5-2.  Output of floating-point precision

Keep in mind that there are only six important digits in each of the scenarios.

Observe that the output from cout in some situations is shown using scientific

notations. Typically, the exponent is padded with a minimal number of digits, depending

on the compiler that was used. The number of exponent digits displayed depends on the

compiler; Visual Studio uses 3, whereas other compilers use 2 (that are implemented

according to C99 instructions and standards).

Both sizes and the value stored affect how many digits and how precisely a floating-

point number is represented. The precision of the float values is between 6 and 9, with

the lowest number of important digits being 7. The precision of the double values is

shown with 15 and 18 digits. Depending on how the bytes are used, long double numbers

are represented with at least a precision of 15 or 33 significant digits.

The setprecision() method is used in Listing 5-3 to modify the default precision

that cout or std::cout displays. The iomanip header contains the implementation for

the setprecision() method. The result is shown in Figure 5-3.

Listing 5-3.  Default Precision

#include <iostream>

#include <iomanip>

using namespace std;

Chapter 5 Floating-Point Arithmetic

142

int main()

{

 std::cout << std::setprecision(16);

 std::cout << 3.333333333333333333333333333333333f <<endl;

 std::cout << 3.333333333333333333333333333333333 << endl;

 return 0;

}

Figure 5-3.  Override the default precision

The precision in Figure 5-3 has been set to 16 digits; therefore, each number is

displayed with a 16-digit precision. The problems with precision do not only affect

fractional numbers but also affect any number with multiple important digits.

�Next Level for Floating-Point Arithmetic
Homomorphic encryption, a powerful form of encryption, is discussed in Chapter 12.

A particular form of encryption called homomorphic encryption is employed as a

professional technique for maintaining privacy, while storage and computations can be

outsourced. Data can be encrypted using this sort of encryption and then outsourced

to commercial (or public) environments for processing while still being encrypted. Ring

learning with errors (see Chapter 13) is one of the sources of homomorphic encryption,

which is connected to private set intersections [2].

Finding the correct approach to approximating a real number in such a way as to

provide a compromise between range and precision is essential when dealing with

complex cryptosystems, where floating-point representation constitutes the core of the

encryption/decryption mechanisms.

Chapter 5 Floating-Point Arithmetic

143

The word floating refers to the ability of a number’s decimal point to move, which

indicates that it can be placed in any place connected to the important digits of the

number. A floating-point number can be represented as four integers when dealing with

complicated cryptosystems, such as homomorphic encryption.

	 a d n f j� � � � 	

n stands for the base, f for the exponent, j for precision, and d for the important

digits, which must adhere to the following relationship.

	 0 1� � �d n f 	

For manipulating floating-point numbers, C++ provides the functions fmod, remainder,

and remquo. These functions are all contained in the cmath header file. These fundamental

functions, introduced in C++11, are used to handle straightforward mathematical

operations involving floating-point values required for mainstream programming and

encryption (low and simple concepts). The functions are relatively restrictive for advanced

cryptography techniques and do not give cryptographers the necessary tools. Specialized

libraries such as the Boost Multiprecision Library, TTMath, LibBF, GNU Multiple Precision

Library perform difficult computations with large real numbers. These are the ones that

enable experts to complete their difficult assignments using complex cryptosystems.

�Conclusion
The chapter covered floating-point number general representations and how complex

cryptosystems employ them. It examined the key ideas that a professional needs when

setting up a workspace to create sophisticated cryptosystems that imply floating-point

numbers.

The chapter also highlighted the significance of floating-point arithmetic for

complex cryptosystems such as homomorphic encryption, chaos-based cryptography,

lattice-based cryptography, or ring learning with errors. Advanced cryptosystems cannot

be implemented correctly without thoroughly understanding floating-point arithmetic.

Poor implementation can result in a major catastrophe for big data or commercial cloud

computing environments.

Chapter 5 Floating-Point Arithmetic

144

References
[1].	 D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey, S. Bass, S. Canon,

S. IEEE standard for floating-point arithmetic. IEEE Std, 754(2008), 1-70, 2008.

[2].	 H. Chen, K. Laine, and P. Rindal, Fast Private Set Intersection from

Homomorphic Encryption. 2018.

[3].	 Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic encryption in

less than a second,” in Advances in Cryptology–Eurocrypt 2015, pp. 617–640,

Springer, 2015.

[4].	 S. Halevi and V. Shoup, “Algorithms in HElib,” in Crypto’14, vol. 8616,

Springer, 2014.

[5].	 J. Campos, P. Sharma, E. Jantunen, D. Baglee, and L. Fumagalli, “The

Challenges of Cybersecurity Frameworks to Protect Data Required for

the Development of Advanced Maintenance,” Procedia CIRP, vol. 47,

pp. 222–227, 2016.

[6].	 C. Burnikel and J. Ziegler, “Fast recursive division,” Research Report,

MPI-I-98-1-022, Max–Planck–Institut fur Informatik, Saarbrucken,

Germany, 1998.

[7].	 N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,

“Manual for using homomorphic encryption for bioinformatics,” Proceedings

of the IEEE, vol. 105, no. 3, 2017.

[8].	 J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for

arithmetic of approximate numbers,” in Proceedings of the International

Conference on the Theory and Application of Cryptology and Information

Security (ASIA-CRYPT’17), pp. 409–437, Hong Kong, China, December 2017.

Chapter 5 Floating-Point Arithmetic

145

CHAPTER 6

New Features in C++23
C++23 is an informal name for the next version of the standard C++ programming

language, known as ISO/IEC 148821 and issued by the working group ISO/IEC JTC1/

SC22/WG21. Materials related to the progress of C++23 are at https://github.com/

cplusplus/draft, https://en.cppreference.com/w/, and https://cplusplus.com/.

The toolchain, which comprises all the many applications and services that work

together to deliver unique tools within C++23, is one essential component of the current

application development life cycle. They include testing tools, continuous integration,

and delivery (CI/CD) pipelines, IDEs, editors, and code generators that produce

scaffolding and deploy application frameworks. It is simple to become accustomed to

one set of tools and use them exclusively.

C++23 is planned to be finalized by the end of 2023, providing features such as the

support for standard library modules and a much faster compilation process.

Note  Because of the COVID-19 pandemic, the meetings2 were postponed
(see the meetings from Varna, June 2022; Kona, Hawaii, February 2021; and
New York,3,4 November 2020). New features were added to the C++23 draft, and
others were inserted once the virtual WG21 meeting was held on November 9,
2020. Some features remain the same as those from the C++20 version.

Many of the ambitions and features for the new C++23 have been postponed due

to restrictions and pandemic situations, such as pattern matching, contracts, and

concurrency models. The features will be developed within C++26.

1 See https://www.iso.org/standard/79358.html
2 See https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2145r0.html
3 See https://isocpp.org/std/meetings-and-participation/upcoming-meetings
4 See https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4862.pdf

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_6

https://github.com/cplusplus/draft
https://github.com/cplusplus/draft
https://en.cppreference.com/w/
https://cplusplus.com/
https://www.iso.org/standard/79358.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2145r0.html
https://isocpp.org/std/meetings-and-participation/upcoming-meetings
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4862.pdf
https://doi.org/10.1007/978-1-4842-9450-5_6

146

According to Bjarne Stroustrup, the language will have support for a standard library

module called std and support for coroutines. C++23 is developed under the ISO, and

some of the new improvements are minor, but they will not be minor improvements.

From the beginning, C++23 was not supposed to be a major upgrade for C++. Instead,

versions C++11 and C++20 represented major improvements. For example, with the help

of a standard library module, the well-known, simple program “Hello World” becomes

what’s shown in Listing 6-1. It is compiled ten times faster than the previous version that

uses #include <iostream>.

Listing 6-1.  Classic Hello World Example with Standard Library Module

import std;:

int main()

{

 std::cout << "Hello, World!\n";

}

Next, let’s discuss the following new features from C++23 concerning the proposed

schedule by WG215.

•	 Headers

•	 Core language features

•	 Library features

�Headers
The following headers represent the most important features added in C++23.

•	 <expected>6

•	 <generator>7

•	 <flat_map>8

5 See https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1000r4.pdf
6 See https://en.cppreference.com/w/cpp/header/expected
7 See https://en.cppreference.com/w/cpp/header/generator
8 See https://en.cppreference.com/w/cpp/header/flat_map

Chapter 6 New Features in C++23

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1000r4.pdf
https://en.cppreference.com/w/cpp/header/expected
https://en.cppreference.com/w/cpp/header/generator
https://en.cppreference.com/w/cpp/header/flat_map

147

•	 <mdspan>9

•	 <print>10

•	 <spanstream>11

•	 <stacktrace>12

•	 <stdfloat>13

•	 <stdatomic>14

Next, let’s discuss the <expected>, <generator>, and <flat_map> headers, as they are

vital for the implementation of cryptography algorithms and any other secure algorithms

that might be implemented as solutions, giving general information about their structure

and how they are designed within the new C++23.

�The <expected> Header
What is the purpose of <expected> header? The <expected> header15 can be seen as a

wrapper containing an expected value or an error value. Unfortunately, at this moment,

there is not much information and few examples available online, except for those

available at cppreference.com16 or sobyte.net17.

The <expected> header provides an easy way to store two values. Once an object

is declared (e.g., std::expected), it can hold an expected value with type T or an

unexpected value of type E. A description of the two parameters, T and E, is shown in

Table 6-1.

9 See https://en.cppreference.com/w/cpp/header/mdspan
10 See https://en.cppreference.com/w/cpp/header/print
11 See https://en.cppreference.com/w/cpp/header/spanstream
12 See https://en.cppreference.com/w/cpp/header/stacktrace
13 See https://en.cppreference.com/w/cpp/header/stdfloat
14 See https://en.cppreference.com/w/cpp/header/stdatomic.h and https://github.com/
dotnet/runtime/issues/57618
15 See https://en.cppreference.com/w/cpp/utility/expected
16 See https://en.cppreference.com/w/cpp/header/expected
17 See https://www.sobyte.net/post/2022-05/cpp-std-expected/

Chapter 6 New Features in C++23

https://en.cppreference.com/w/cpp/header/mdspan
https://en.cppreference.com/w/cpp/header/print
https://en.cppreference.com/w/cpp/header/spanstream
https://en.cppreference.com/w/cpp/header/stacktrace
https://en.cppreference.com/w/cpp/header/stdfloat
https://en.cppreference.com/w/cpp/header/stdatomic.h
https://github.com/dotnet/runtime/issues/57618
https://github.com/dotnet/runtime/issues/57618
https://en.cppreference.com/w/cpp/utility/expected
https://en.cppreference.com/w/cpp/header/expected
https://www.sobyte.net/post/2022-05/cpp-std-expected/

148

18 See https://en.cppreference.com/w/cpp/named_req/Destructible
19 See https://en.cppreference.com/w/cpp/header/expected

Table 6-1.  Parameter Descriptions

Template Parameter Description

T Represents the type of the expected value. There are two possible

types: void or must comply with the requirements that characterize

Destructible.18

E Represents the type of the unexpected value. This parameter has to

comply with Destructible requirements, and it has to be a valid

template argument for std::unexpected.

Note T he main advantage of std::expected object is that it cannot be without
value. The value must be either expected or unexpected. The stored value is
allocated straight within the storage that it has been assigned with the declaration
of the expected object.

The new C++23 comes with four new classes (expected, unexpected, bad_excepted_

access, unexpect_t). Listing 6-2 is a short synopsis of the std namespace for

<expected>, as it is presented and described by cpprefrence.com.19

Listing 6-2.  std namespace for <expected> header10

namespace std {

 // class template unexpected

 template<class E> class unexpected;

 // class template bad_expected_access

 template<class E> class bad_expected_access

 // specialization of bad_expected_access for void

 template<> class bad_expected_access<void>;

Chapter 6 New Features in C++23

https://en.cppreference.com/w/cpp/named_req/Destructible
https://en.cppreference.com/w/cpp/header/expected

149

 // in-place construction of unexpected values

 struct unexpect_t {

 explicit unexpect_t() = default;

 };

 inline constexpr unexpect_t unexpect{};

 // class template expected

 template<class T, class E> class expected;

 // partial specialization of expected for void types

 template<class T, class E> requires is_void_v<T> class expected<T, E>;

}

�The <generator> Header
The <generator> header is part of the range’s library.20 The header helps us to have

access to random number generation methods by providing a combination between

generators and distributions.

The new approach within C++23 clears the difference between generators and

distributions, although several issues21,22,23 have been raised related to the formatting

std::generator and other versions from C++20 std::format. A simple example of these

issues is listed in Listing 6-3. We cannot make std::generator formattable due to its

const-iterable or copyable, and the std::format gets as an argument the const&. In C++20,

this was not a problem that programmers experienced, but in C++23, according to the

reports, this represents a major problem due to the range adapters.

20 See https://en.cppreference.com/w/cpp/ranges
21 See https://isocpp.org/files/papers/P2418R2.html
22 See https://isocpp.org/files/papers/P2418R2.html#biblio-p2286
23 See https://isocpp.org/files/papers/P2418R2.html#biblio-p2168

Chapter 6 New Features in C++23

https://en.cppreference.com/w/cpp/ranges
https://isocpp.org/files/papers/P2418R2.html
https://isocpp.org/files/papers/P2418R2.html#biblio-p2286
https://isocpp.org/files/papers/P2418R2.html#biblio-p2168

150

Listing 6-3.  An Example of an Issue Between std::generator (C++23) and

std::format (C++20)

auto ints (int number) -> std::generator<int> {

 for (int n = 0; n < n; ++i)

 {

 co_yield n;

 }

}

// an error

std::format("{}", ints_coro(10));

�The <flat_map> Header
The <flat_map> header is contained within the containers24 library. Its purpose is to

adapt a specific container to provide a collection of key-value pairs sorted using the

unique keys.

As far as the reports are published about the evolution of C++23, the header will

contain six classes, two functions, and two constants, as shown in Table 6-2.

24 See https://en.cppreference.com/w/cpp/container

Chapter 6 New Features in C++23

https://en.cppreference.com/w/cpp/container

151

Table 6-2.  Classes, Functions, and Constants in the <flat_map> Header

Classes flat_map

flat_multimap

sorted_unique_t

sorted_equivalent_t

std::uses_allocator<std::flat_map>

std::uses_allocator<std::flat_multimap>

Functions erase_if(std::flat_map)

erase_if(std::flat_multimap)

Constants sorted_unique

sorted_equivalent

�Conclusion
This chapter discussed the new features that the new C++23 will deliver to programmers

and professionals. It gave a short overview of the main classes, functions, and constants

for those headers that can be used within cryptography applications.

The chapter has focused only on three headers, <expected>, <generator>, and

<flat_map>, which a programmer that wishes to implement cryptography algorithms

should take into consideration.

Now that you’ve reached the end of this chapter, you should understand C++20 and

C++23 features and be able to identify sources that can help programmers improve their

work in cryptography.

References
[1].	 R. Siddhartha. Sams Teach Yourself C++: In One Hour a Day. Ninth edition,

SAMS, 2022.

[2].	 G. Rainer. C++ Core Guidelines Explained: Best Practices for Modern C++. 1st

edition, Addison-Wesley Professional, 2022.

Chapter 6 New Features in C++23

152

[3].	 Ś. Rafał. Modern CMake for C++ Discover a Better Approach to Building,

Testing, and Packaging Your Software. Packt Publishing Limited, 2022.

[4].	 B. U. Sufyan, editor. Mastering C++ Programming Language: A Beginner’s

Guide. First edition, CRC Press, Taylor & Francis Group, 2022.

[5].	 G. S. Tselikis. Introduction to C++. CRC Press, 2023.

Chapter 6 New Features in C++23

153

CHAPTER 7

Secure Coding Guidelines
The vulnerabilities of software applications typically have high costs. In 2022, the

global average total data breach cost was $4.35 million [1]. The efforts to eliminate

vulnerabilities from the software application should focus on secure coding, avoiding

vulnerabilities being deployed in the production phase.

Secure coding rules for development are necessary because they facilitate the

prevention of security flaws and maintain the confidentiality, integrity, and availability

of sensitive data processed by the application. Security flaws in applications, such as

buffer overflows, SQL injection, or cross-site scripting (XSS), can be readily exploited by

attackers to obtain unauthorized access to sensitive data, steal confidential information,

or disrupt program operations. Developers may build code that is less prone to

these sorts of security flaws and more resistant to attacks by following secure coding

principles. Furthermore, secure code rules aid in the promotion of good coding practices

and the creation of code that is manageable, legible, and scalable. Developers may

produce code that is simpler to maintain, debug, and test by adopting best practices,

which can lead to more efficient development and higher code quality.

Writing a secure source code represents a difficult task to achieve. It is very

important to understand the implications of the code being written and to have a

checklist of the “things” that need to be checked. The checklist helps developers quickly

verify their code for well-known security problems. Usually, it is normal for verification

to be performed by a security team and not by software developers or engineers.

Software developers cannot be objective with their own code.

The idea of a checklist should start from the following idea: verifying the source

code that processes data outside of its domain and considering the user input, the

network communication, the process of the binary files, receiving output from database

management systems or servers, and so on.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_7

https://doi.org/10.1007/978-1-4842-9450-5_7

154

When working with a software application (it doesn’t matter that the application is

a desktop, web, or mobile), the idea that the application is secure because a well-known

company developed it is just a myth. Don’t trust and go on this path because most

companies spend a lot of the budget on security incidents, maintenance, consultancy,

and audit sessions.

There are two environments in which a software application is working, and its

behavior is different because of that environment. The software application that is under

analysis and development process within the company represents its circle of trust (at

least, most companies think in this way, and they enjoy considering their infrastructure

very resistant to security attacks). The behavior of the software application in that

circle of trust represents the most critical environment in which an application can be

developed and tested. No developer, IT security officer, or software analyst should hack

their own code. This environment is the comfort zone. Once the application leaves that

comfort zone and enters the real environment, the issues begin. The trust boundary is

hard and easy to draw at the same time and creates a delimitation between the comfort

zone and the real zone. It is not an easy task to achieve, especially if those application

applications are running in a virtualized infrastructure, cloud, or big data environment.

In the comfort zone, malicious end users represent a security threat. The malicious

end users attack the software application’s confidentiality and/or integrity. One of the

interesting methods and concepts proposed was software obfuscation.

�Secure Coding Checklist
This section discusses and proposes a secure coding checklist (it can also be seen

as a procedure). This is an example of such a checklist (see Table 7-1), which can be

developed as much as you want. The checklist contains minimal examples of items

that can be checked when code is written in C++, regardless of which operating system

the code runs on. One of the most frequent practices among developers is to suppress

warnings that are not beneficial.

The “CERT Coding Standards” and “Rules” sections discuss the most important

rules to apply to your process of developing cryptographic algorithms. Each rule is well

explained within the guide.

Chapter 7 Secure Coding Guidelines

155

Table 7-1.  Example of Secure Coding Checklist

No. # Item to be checked Description Yes/No Notes

1 Compiler warnings

Make sure that the compiler output and a flag are raised for receiving

notifications for the potential errors listed for the following items.

 ✓ -Wall

 ✓ -Wmissing-declarations

 ✓ -Wmissing-prototypes

 ✓ -Wredundant-decls

 ✓ -Wshadow

 ✓ -Wstrict-prototypes

 ✓ -Wformat=2

For more flags with their definitions and actions, the GCC Options to Request or

Suppress Warnings section should be followed [2]. This is very useful if complex

cryptographic algorithms and security schemes are being implemented.

2 Enough buffer memory when working with strings

Check the following functions if there is an upper limit for the destination buffer

when a copy process is done until ‘\0\’ (NULL) is met. To avoid this situation,

the recommendation is to allocate enough memory space for the destination

buffer before copying the data.

 ✓ strcpy()

 ✓ strcat()

 ✓ sprint()

 ✓ scanf()

 ✓ gets()

(continued)

Chapter 7 Secure Coding Guidelines

156

No. # Item to be checked Description Yes/No Notes

3 Direct breaks in system security

Checking for untrusted input leads to a directly breach of the application

security. This step protects the application against malicious users and

attackers exploiting your program using metachars.

 ✓ system()

 ✓ popen()

 ✓ fork(2)

 ✓ exec(2)

 ✓ s_popen()

 ✓ HXproc_* [3]

4 Wrong parameter size and unexpected results

When complex programs are written, for example, the implementation of

SHA-256 from Chapter 2, Listing 2-9, assigning a wrong size of one of the

parameters, or doing a wrong arithmetic operation can cause a serious pitfall,

and immediately a fix should be provided. Make sure that the same size

allocated for the parameters is the same size on the destination side. As a best

practice, especially in implementing cryptography algorithms, it is better to

work with size_t type. Be type-safe, and don’t create overflows.

 ✓ strncpy()

 ✓ strncat()

 ✓ snprintf()

Table 7-1.  (continued)

(continued)

Chapter 7 Secure Coding Guidelines

157

No. # Item to be checked Description Yes/No Notes

5 Too much memory allocated

Allocating too much memory and external parameters represents a certain

part of the size. Then you are dealing with a wrong memory allocation and

experience denial-of-service. To avoid this, use the following criteria.

 ✓ malloc(), calloc(), alloca()

 ✓ No integer overflows

 ✓ Avoid arithmetical issues

 ✓ �Verification for any possible operation with untrusted

integer that could lead for an integer overlow.

6 Wrong casts

Avoid the following code. The compiler thinks that malloc returns an incorrect

int. It creates a bug that hackers can easily exploit.

char *a = malloc(10) – bad cast

class BaseClass {};

class DerivedClass: public BaseClass {};

BaseClass b; BaseClass* pb;

DerivedClass d; DerivedClass* pd;

//good cast

pb = dynamic_cast<BaseClass*>(&d);

//bad cast

pd = dynamic_cast<DerivedClass*>(&b);

Table 7-1.  (continued)

(continued)

Chapter 7 Secure Coding Guidelines

158

No. # Item to be checked Description Yes/No Notes

7 Variable parameter lists

When implementing security schemes based on strings, you experience a new

type of problem that security analysts or ethical hackers enjoy playing with it

when performing tests. Ethical hackers commonly use a simple test to check

untrusted data to check if a function allows a variable as a list of parameters or

arguments, such as printf(). The untrusted data (created by an ethical hacker)

is directly used as a string format and not as an argument. The following logic

should be used for any similar situations.

 ✓ �Wrong way: snprintf(buffer, sizeof(buffer), the_input_

of_the_user)

 ✓ �Right way: snprintf(buffer, sizeof(buffer), "%s", the_

input_of_the_user)

8 Operations with files

When handling files during cryptographic operations, try to use mkstemp().

9 File permissions

Not everyone should be able to read or write from or to a file. To create files

having assigned the wrong permission, try to use unmask().

 ✓ At the beginning of the file use unmask(077).

Table 7-1.  (continued)

�CERT Coding Standards
The CERT Coding Standards are a collection of safe coding rules produced by Carnegie

Mellon University’s CERT Coordination Center. These standards give rules and best

practices for building secure and trustworthy code. They are intended to assist software

developers in avoiding typical security vulnerabilities and ensuring the confidentiality,

integrity, and availability of sensitive data processed by their applications. The CERT

C++ Coding Standard has been developed only for versions of the C++ programming

language defined by the ISO/IEC 14882-2014 standard.

Chapter 7 Secure Coding Guidelines

159

The coding standard is very well organized and follows the following structure:

identifiers, noncompliant code examples, compliant solutions, exceptions, risk

assessment, automated detection, related vulnerabilities, and related guidelines [8].

Next, let’s examine each item of the structure and its main objective and purpose.

�Identifiers
This section provides the rules every identifier should follow. Each identifier has

three parts.

•	 A three-letter mnemonic that represents the section within the

standard.

•	 A numeric value of two digits is situated in the range 00 to 99.

•	 The language that is associated with it is represented as a suffix

(e.g., -CPP, -C, -J, -PL).

•	 -CPP: SEI CERT C++ Coding Standard [8]

•	 -C: SEI CERT C Coding Standard [9]

•	 -J: SEI CERT Oracle Coding Standard for Java [10]

•	 -PL: SEI CERT Perl Coding Standard [11]

The three-letter mnemonic is used to group related coding practices and points out

which category a related coding belongs to.

�Noncompliant Code Examples and Compliant Solutions
Noncompliant code examples and compliant solutions demonstrate how to write code

correctly and incorrectly per a given coding standard. A noncompliant code example is

a piece of code that violates one or more of the coding standard’s requirements. It might,

for example, have an unsafe function, have insufficient input validation, or have a buffer

overflow vulnerability.

A compliant solution, on the other hand, is a piece of code that adheres to the coding

standards and provides a secure and trustworthy solution to the same problem. It may, for

example, employ a secure function, provide rigorous input validation, and prevent buffer

overflow problems. Noncompliant code examples and compliant solutions are used to

Chapter 7 Secure Coding Guidelines

160

teach and instruct developers on secure coding standards and to assist them in avoiding

common security risks in their code. Developers may obtain a deeper knowledge of the

best practices and strategies for building safe and dependable code by comparing and

contrasting the noncompliant code examples with the compliant solutions. Examples of

noncompliant code show code that violates the guideline. It is very important to keep in

mind that these are only examples. The removal process of all appearances of the example

does not mean that the code being analyzed complies with the SEI CERT standard.

�Exceptions
Exceptions have an informative character and are not required to be followed. Any

rules can have a set of exceptions that provide details about the circumstances in which

the guideline does not need to be followed to ensure the software’s safety, security, or

reliability.

As with any type of exception, the principle is the same, no matter the programming

language. Pay extra attention to the exceptions, catch any possible ones, and learn from

them. Do not ignore and do not think that a programming language is perfect and has no

bugs or certain doors that can be exploited.

�Risk Assessment
The process of analyzing and measuring the likelihood and effect of possible security

risks to an organization’s information systems, data, and assets is known as risk

assessment. A risk assessment seeks to identify and prioritize an organization’s

hazards and design and implement strategies to minimize or manage those risks. A risk

assessment section is assigned for each CERT C++ Coding Standard guideline. The risk

assessment section aims to provide software developers with the potential consequences

for not following or addressing a specific rule or recommendation. Risk assessment

appears to be a metric and is the main purpose of helping the remediation process of

software applications and complex projects.

For each rule and recommendation, there is a priority. To assign a priority, it is

recommended to understand IEC 60812 [12]. The priority is evaluated and assigned

using a metric characterized by three analysis types: failure mode, effects, and criticality.

Each rule also has a value assigned on a scale between 1 and 3, such as severity,

likelihood, and remediation cost (see Table 7-2).

Chapter 7 Secure Coding Guidelines

161

Table 7-2.  Assigning Values for Each Rule [8]

Severity What are the consequences if the rule is ignored?

Value Meaning Examples of vulnerabilities

1 Low Denial-of-service attack, unexpected termination

2 Medium Information disclosure without any intention lead to the violation of

the data integrity

3 High Running code randomly

Likelihood Statistically speaking, what is the probability that a flaw has been introduced in the code

by avoiding and ignoring the rule specifications and leading to a vulnerability that a malicious user

could exploit?

Value Definition

1 Unlikely

2 Probable

3 Likely

Remediation Cost What are the costs to follow and comply with the rule?

Value Definition Detection Correction

1 High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

For each of the rules, the values are multiplied together. The following metric (see

Table 7-3) gives you a measure that can be useful to prioritize the rules within the

application. The values are from 1 to 27. From all 27 values, only ten different values

occur and are available in most cases, 1, 2, 3, 4, 6, 8, 9, 12, 18, and 27. Table 7-3 highlights

the interpretations and meanings of the priorities and levels.

Chapter 7 Secure Coding Guidelines

162

Table 7-3.  Levels and Priorities [8]

Level Priorities Possible Interpretation

L1 12, 18, 27 High severity, likely, inexpensive to fix

L2 6, 8, 9 Medium severity, portable, medium cost to fix

L3 1, 2, 3, 4 Low severity, unlikely, expensive to repair

�Automated Detection
Most rules and recommendations have automated detection processes and tools that

help automatically diagnose violations. The Secure Coding Validation Suite [13] can

be used to perform tests on the ability of analyzers to diagnose violations of the rules

specified with ISO/IEC TS 17961:2013 [15], which is related to the rules of the SEI CERT

C Coding Standard [14].

�Related Guidelines
This section has a special slot when software applications are developed. According to

the standard, it contains links, technical specifications, and guideline collections such

as Information Technology: Programming Languages, Their Environments, and System

Software Interfaces: C Secure Coding Rules [15]; Information Technology: Programming

Languages: Guidance to Avoiding Vulnerabilities in Programming Languages through

Language Selection and Use [16]; MISRA C++ 2008: Guidelines for the Use of the C++

Language in Critical Systems [17]; and CWE IDs in MITRE’s Common Weakness

Enumeration (CWE) [18]. [19]

�Rules
Let’s overview the main rules that strongly apply to implementing cryptographic

algorithms and security schemes using C++23, especially with the new version. It is

better to have in mind the following rules. Note that this chapter examines only six out of

ten rules. All the explanations and examples are provided within the guide [20].

Some rules include rules from the C programming language that it applies to C++.

The following rules can also be used within the procedure presented in Table 7-1.

Chapter 7 Secure Coding Guidelines

163

Any information security officer, security analyst, or ethical hacker should design

such a checklist. Developers can also use the checklist as a guide when developing

critical cryptographic algorithms. Additionally, it is recommended to do a code review

of the sections of the algorithms that are quite vulnerable and to make sure that the

rules (Rule 01, Rule 02, Rule 03, Rule 05, Rule 06, and Rule 07) are followed as much as

possible.

Following those rules gives security analysts or ethical hackers a certain level of trust

that the security mechanisms (cryptographic algorithms, security protocols, security

schemes, and other cryptographic primitives) are implemented properly and common

vulnerabilities have been eliminated.

�Rule 01. Declarations and Initializations (DCL)

Table 7-4.  Rule 01: Declarations and Initializations [20]

Rule Title

DCL50-CPP Do not define a C-style variadic function.

DCL51-CPP Do not declare or define a reserved identifier.

DCL52-CPP Never qualify a reference type with const or volatile.

DCL53-CPP Do not write syntactically ambiguous declarations.

DCL54-CPP Overload allocation and deallocation functions as a pair in the same scope.

DCL55-CPP Avoid information leakage when passing a class object across a trust boundary.

DCL56-CPP Avoid cycles during the initialization of static objects.

DCL57-CPP Do not let exceptions escape from destructors or deallocation functions.

DCL58-CPP Do not modify the standard namespaces.

DCL59-CPP Do not define an unnamed namespace in a header file.

DCL60-CPP Obey the one-definition rule.

DCL30-C Declare objects with appropriate storage durations.

DCL39-C Avoid information leakage when passing a structure across a trust boundary.

DCL40-C Do not create incompatible declarations of the same function or object.

Chapter 7 Secure Coding Guidelines

164

�Rule 02. Expressions (EXP)

Table 7-5.  Rule 02: Expressions [20]

Rule Title

EXP50-CPP Do not depend on the order of evaluation for side effects.

EXP51-CPP Do not delete an array through a pointer of the incorrect type.

EXP52-CPP Do not rely on side effects in unevaluated operands.

EXP53-CPP Do not read uninitialized memory.

EXP54-CPP Do not access an object outside of its lifetime.

EXP55-CPP Do not access a cv-qualified object through a cv-unqualified type.

EXP56-CPP Do not call a function with a mismatched language linkage.

EXP57-CPP Do not cast or delete pointers to incomplete classes.

EXP58-CPP Pass an object of the correct type to va_start.

EXP59-CPP Use offset of () on valid types and members.

EXP60-CPP Do not pass a nonstandard-layout type object across execution boundaries.

EXP61-CPP A lambda object must not outlive any of its reference-captured objects.

EXP62-CPP Do not access the bits of an object representation that are not part of the object’s

value representation.

EXP63-CPP Do not rely on the value of a moved-from object.

Chapter 7 Secure Coding Guidelines

165

�Rule 03. Integers (INT)

Table 7-6.  Rule 03: Integers [20]

Rule Title

INT50-CPP Do not cast to an out-of-range enumeration value.

INT30-C Ensure that unsigned integer operations do not wrap.

INT31-C Ensure that integer conversions do not result in lost or misinterpreted data.

INT32-C Ensure that operations on signed integers do not result in overflow.

INT33-C Ensure that division and remainder operations do not result in divide-by-zero errors.

INT34-C Do not shift an expression by a negative number of bits or greater than or equal to

the number of bits in the operand.

INT35-C Do not call a function with a mismatched language linkage.

INT36-C Converting a pointer to an integer or integer to a pointer.

Chapter 7 Secure Coding Guidelines

166

�Rule 05. Characters and Strings (STR)

Table 7-7.  Rule 05: Characters and Strings [20]

Rule Title

STR50-CPP Guarantee that storage for strings has sufficient space for character data and the

null terminator.

STR51-CPP Do not attempt to create a std::string from a null pointer.

STR52-CPP Use valid references, pointers, and iterators to reference elements of a basic string.

STR53-CPP Range check element access.

STR30-C Do not attempt to modify string literals.

STR31-C Guarantee that storage for strings has sufficient space for character data and the

null terminator.

STR32-C Do not pass a nonnull-terminated character sequence to a library function that

expects a string.

STR34-C Cast characters to unsigned chars before converting to larger integer sizes.

STR37-C Arguments to character-handling functions must be representable as an unsigned

char.

STR38-C Do not confuse narrow and wide character strings and functions.

Chapter 7 Secure Coding Guidelines

167

�Rule 06. Memory Management (MEM)

Table 7-8.  Rule 06: Memory Management [20]

Rule Title

MEM50-CPP Do not access freed memory.

MEM51-CPP Properly deallocate dynamically allocated resources.

MEM52-CPP Detect and handle memory allocation errors.

MEM53-CPP Explicitly construct and destruct objects when manually managing object lifetime.

MEM54-CPP Provide placement new with properly aligned pointers to sufficient storage

capacity.

MEM55-CPP Honor replacement dynamic storage management requirements.

MEM56-CPP Do not store an already-owned pointer value in an unrelated smart pointer.

MEM57-CPP Avoid using the default operator new for over-aligned types.

MEM30-C Do not access freed memory.

MEM31-C Free dynamically allocated memory when no longer needed.

MEM34-C Only free memory is allocated dynamically.

MEM35-C Allocate sufficient memory for an object.

MEM36-C Do not modify the alignment of objects by calling realloc( ).

Chapter 7 Secure Coding Guidelines

168

�Rule 07. Input/Output (FIO)

Table 7-9.  Rule 07: Input/Output [20]

Rule Title

FIO50-CPP Do not alternately input and output from a file stream without an intervening

positioning call.

FIO51-CPP Close files when they are no longer needed.

FIO30-C Exclude user input from format strings.

FIO32-C Do not perform operations on devices that are only appropriate for files.

FIO34-C Distinguish between characters read from a file and EOF or WEOF.

FIO37-C Do not assume that fgets() or fgetws() returns a nonempty string when successful.

FIO38-C Do not copy a FILE object.

FIO39-C Do not alternately input and output from a stream without an intervening flush or

positioning call.

FIO40-C Reset strings on fgets() or fgetws() failure.

FIO41-C Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side

effects.

FIO42-C Close files when they are no longer needed.

FIO44-C Only use values for fsetpos() returned from fgetpos().

FIO45-C Avoid TOCTOU race conditions while accessing files.

FIO46-C Do not access a closed file.

FIO47-C Use valid format strings.

�Conclusion
This chapter explained rules and recommendations. You pursued a journey of the

most important security aspects that must be considered in developing cryptographic

algorithms and security schemes. Secure coding rules are important because they help

developers create secure applications, ensuring that there are no vulnerabilities that

adversaries can exploit. Examples of security issues that can be avoided by following

Chapter 7 Secure Coding Guidelines

169

these rules are buffer overflows, malicious input, and other attacks. Code may be

checked and certified to be safe by adhering to secure coding rules, and developers can

utilize secure coding functions and libraries to prevent possible risks. Furthermore,

the rules aid in avoiding hard-coded values, the safe management of memory, the

sanitization of input and output, the use of secure encryption and hashing methods, and

the protection of sensitive data. Following secure coding rules reduces the likelihood of

security breaches and keeps your code secure.

Understanding the difference between a rule and a recommendation is very

important. The general idea that has to be concluded at this point is that a rule has

to follow a specific number of criteria compared with the recommendation, which

represents a suggestion for improving code quality.

You should have acquired a significant amount of knowledge by the end of

this chapter and now be capable of performing a security analysis of the source

code, creating a secure coding checklist, filtering those aspects that are vital for the

application, and instructing the developers as well on how to proceed when they are

implementing cryptographic algorithms and written related source code.

References
[1].	 Cost of a Data Breach. Available online: https://www.ibm.com/reports/

data-breach. Last accessed: 15.1.2023

[2].	 GCC Options to Request or Suppress Warnings. Available online: https://

gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#Warning-Options.

Last accessed: 15.1.2023

[3].	 HXprox_*, libHX – Get Things Done. Available online: http://libhx.

sourceforge.net/. Last accessed: 15.1.2023

[4].	 I. Staff, Information Technology. Programming Languages. Guidance to

Avoiding Vulnerabilities in Programming Languages Through Language

Selection and Use (ISO/IEC TR 24772:2013). 2013.

[5].	 Information Technology - Programming Languages, Their Environments

and System Software Interfaces - C Secure Coding Rules (ISO/IEC TS

17961:2012). 2012.

[6].	 Programming Languages — C++, Fourth Edition. 2014.

[7].	 R. C. Seacord and Carnegie, Secure coding in C and C++. Upper Saddle River,

Nj: Addison-Wesley, 2013.

Chapter 7 Secure Coding Guidelines

https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#Warning-Options
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#Warning-Options
http://libhx.sourceforge.net/
http://libhx.sourceforge.net/

170

[8].	 SEI CERT C++ Coding Standard: Available online: https://wiki.sei.cmu.

edu/confluence/pages/viewpage.action?pageId=88046682. Last accessed:

15.1.2023

[9].	 SEI CERT C Coding Standard. Available online: https://wiki.sei.cmu.edu/

confluence/display/c. Last accessed: 3.2.2023

[10].	 SEI CERT Oracle Coding Standard for Java. Available online: https://wiki.

sei.cmu.edu/confluence/display/java. Last accessed: 3.2.2023

[11].	 SEI CERT Perl Coding Standard. Available online: https://wiki.sei.cmu.

edu/confluence/display/perl. Last accessed: 3.2.2023

[12].	 Analysis Techniques for System Reliability—Procedure for Failure Mode and

Effects Analysis (FMEA), 2nd ed. (IEC 60812). Geneva, Switzerland: IEC, 2006.

[13].	 Secure Coding Validation Suite. Available online: https://github.com/

SEI-CERT/scvs. Last accessed: 3.2.2023

[14].	 R. C. Seacord, The CERT C coding standard: 98 rules for developing safe,

reliable, and secure systems. Upper Saddle River, Nj: Addison-Wesley, 2014.

[15].	 Information Technology—Programming Languages, Their Environments

and System Software Interfaces—C Secure Coding Rules (ISO/IEC TS 17961).

ISO, 2012.

[16].	 Information Technology—Programming Languages—Guidance to Avoiding

Vulnerabilities in Programming Languages through Language Selection and

Use (ISO/IEC TR 24772:2013). ISO, 2013.

[17].	 Motor Industry Software Reliability Association, MISRA C++ 2008 Guidelines

for the Use of the C++ Language in Critical Systems, 2008.

[18].	 MITRE. Common Weakness Enumeration, Version 1.8. February 2010.

Available online: http://cwe.mitre.org/. Last accessed: 3.2.2023

[19].	 How this Coding Standard is Organized. Available online: https://wiki.sei

.cmu.edu/confluence/display/cplusplus/How+this+Coding+Standard+Is+

Organized. Last accessed: 3.2.2023

[20].	 Rules. Available online: https://wiki.sei.cmu.edu/confluence/pages/

viewpage.action?pageId=88046322. Last accessed: 3.2.2023

Chapter 7 Secure Coding Guidelines

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/display/c
https://wiki.sei.cmu.edu/confluence/display/c
https://wiki.sei.cmu.edu/confluence/display/java
https://wiki.sei.cmu.edu/confluence/display/java
https://wiki.sei.cmu.edu/confluence/display/perl
https://wiki.sei.cmu.edu/confluence/display/perl
https://github.com/SEI-CERT/scvs
https://github.com/SEI-CERT/scvs
http://cwe.mitre.org/
https://wiki.sei.cmu.edu/confluence/display/cplusplus/How+this+Coding+Standard+Is+Organized
https://wiki.sei.cmu.edu/confluence/display/cplusplus/How+this+Coding+Standard+Is+Organized
https://wiki.sei.cmu.edu/confluence/display/cplusplus/How+this+Coding+Standard+Is+Organized
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046322
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046322

171

CHAPTER 8

Cryptography Libraries
in C/C++23
The purpose of this chapter is to give a thorough list of C++ libraries that are compatible

with C++23’s new features. When professionals need access to a certain implementation

of a particular functionality, time need not be wasted searching through many Internet

resources to see other source code; professionals may gain insight into how to enhance

their own code.

�Overview of Cryptography Libraries
Table 8-1 provides a list of the most important cryptography libraries. The selection

was mostly based on two metrics—execution speed and flexibility—and access to their

source code based on their open source license. Professionals benefit greatly from

having access to their source code since it allows them to compare their work and

algorithms with those of other implementations, allowing them to enhance their work.

Table 8-1.  Main C/C++ Libraries

Library Title Developer Person/Industry Programming Language Open Source References

OpenSSL OpenSSL Project C X [1][2][3]

Crypto++ Crypto C++ Project C++ X [7][8]

Botan Jack Lloyd C++ X [5]

Libcrypt GnuPC Community C X [9][10]

GnuTLS Simon Josefsson

Nikos Mavrogiannopoulos

C X [11][12]

Cryptlib Peter Gutmann C X [13]

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_8

https://doi.org/10.1007/978-1-4842-9450-5_8

172

For each library, the best implementations of the cryptographic primitives (such as

key generation and exchange, elliptic curve cryptography, public-key cryptography, hash

functions, MAC algorithms, block ciphers, etc.) are introduced.

�Hash Functions
Table 8-2 shows each cryptography library’s features with different hash functions.

Chapter 2 presented a simple and basic implementation of the SHA-256 hash

function, and you saw what it means to implement a hash function from scratch.

This section randomly selects a hash function from a library (e.g., MD5

implementation from OpenSSL) and provides some comments on their implementation.

It is very important to mention that the implementation provided for the MD5 hash

function is already implemented in OpenSSL, and this is done with respect to the

original implementation from [4]. First, you need to download the openssl-1.1.1g.tar.

gz file from source [4] and extract the content to access the source code (see Figure 8-1).

Once extracted, navigate to the crypto folder following the path openssl-1.1.1g\

crypto. In this way, you can access the source code files of all the cryptographic

algorithms implemented within the library.

Figure 8-1.  Downloading openssl-1.1.1g.tar.gz file with source code

Table 8-2.  Existence of Hash Functions Within Cryptography Libraries

Library Title MD5 SHA-1 SHA-2 SHA-3 Whirlpool GOST BLAKE2

OpenSSL X X X X X X X

Crypto++ X X X X X X X

Botan X X X X X X X

Libcrypt X X X X X X X

GnuTLS The library represents the implementation of TLS, SSL, and DTLS protocols.

Cryptlib X X X X X - -

Chapter 8 Cryptography Libraries in C/C++23

173

�MD5 Hash Function Overview

This example is a simple algorithm and easy to follow and understand.

The implementation of MD5 has in its structure three files, two C/C++ files and one

header file, and an ASM folder with three files written in Perl language (see Figure 8-2).

The Perl files are optimizations for four platforms, such as 586, x86, x64, and sparc.

Figure 8-2.  Example of MD5 hash in action for a file

�Public-Key Cryptography
Most libraries include well-tested implementations of Public-Key Cryptography

Standards (PKCS) (see Table 8-3).

Table 8-3.  Existence of Public-Key Cryptography Protocols Within Cryptography

Libraries

Library Title PKCS#1 PKCS#5 PKCS#8 PKCS#12 IEEE P1363 ASN.1

OpenSSL X X X X - X

Crypto++ X X X - X X

Botan X X X - X X

Libcrypt X X X X X X

Cryptlib X X X X - -

Next, let’s demonstrate how to use public-key cryptography using OpenSSL. The

following example should give a clearer idea about the workflow. Assume that two

users—Alice and Bob—are communicating. The communication workflow is as follows.

Chapter 8 Cryptography Libraries in C/C++23

174

Step 1: Alice generates a private key, alicePrivKey.pem, with 2048 bits (see

Figure 8-3).

openssl genrsa -out alicePrivKey.pem 2048

Figure 8-3.  Generating private key

Step 2: Alice extracts the public key alicePublicKey.pem and sends it to Bob (see

Figure 8-4).

openssl rsa -pubout -in alicePrivKey.pem -out alicePublicKey.pem

Figure 8-4.  Extracting public key

Step 3: Bob encrypts the clear message (stored in the file cleartext.txt) and obtains

the encryptedWithAlicePubKey file, which is sent to Alice (see Figure 8-5).

openssl rsautl -encrypt -in cleartext.txt -out encryptedWithAlicePubKey

 -inkey alicePublicKey.pem -pubin

Chapter 8 Cryptography Libraries in C/C++23

175

Figure 8-5.  Encrypting the clear message and obtaining the encrypted message (a)
clear text (b) encrypted text (c) the process of encryption

Step 4: Alice decrypts the message from Bob (see Figure 8-6).

openssl rsautl -decrypt -in encryptedWithAlicePubKey -inkey

alicePrivKey.pem

Chapter 8 Cryptography Libraries in C/C++23

176

Figure 8-6.  Decrypting the message

�Elliptic-Curve Cryptography (ECC)
One of the most utilized key exchange protocols based on elliptic curves is ECDH

(Elliptic-Curve Diffie-Hellman) (see Table 8-4). The purpose of this protocol is to set

a shared secret key used in the encryption process without being necessary to send it

directly to each of the partners found within the communication process.

Table 8-4.  Existence of Elliptic-Curve Cryptography Within Cryptography

Libraries

Library Title NIST SECG ECDSA ECDH GOST R 34.10

OpenSSL X X X X X

Crypto++ X X X X -

Botan X X X X X

Libcrypt X X X X X

Cryptlib X X X X -

To avoid the mathematical apparatus behind the protocol, the workflow of the

protocol is summarized as follows.

•	 Have a clear overview of the domain parameters exchanged between

the communication partners (Alice and Bob).

•	 Alice generates a private key and a public key with the parameters of

the domain.

Chapter 8 Cryptography Libraries in C/C++23

177

•	 Bob also generates a private key and a public key with the domain

parameters set.

•	 Both users exchange their public keys.

•	 Alice computes using the public key of Bob, and the shared function

is characterized by a shared secret, known as the derived key of B.

•	 Bob does the same thing with the public key of Alice. The shared

function and the shared secret are known as the derived key of A.

•	 Alice now uses the derived key of Bob for encrypting the message.

•	 Bob uses the derived key of Alice to encrypt the message.

•	 Both users can decrypt the message using their own private key.

�Creating ECDH Keys

First, it is important to check what OpenSSL supports on your machine related to ECDH

keys. To achieve these primary tasks, run the command openssl ecparam -list_curves

(see Figure 8-7). The command lists a full list of curves that you can use. Most of them

are implemented properly with respect to their standards. Their implementation in

OpenSSL and the recent updates using C++23 new features made them easy to follow.

Chapter 8 Cryptography Libraries in C/C++23

178

Figure 8-7.  Obtaining a list of elliptic curves

The fastest way to create the key pair is by using the following command (see

Figure 8-8): openssl ecparam -name prime256v1 -genkey -noout -out key.pem.

Figure 8-8.  Generating key pairs

Chapter 8 Cryptography Libraries in C/C++23

179

This output looks something like the following.

-----BEGIN EC PRIVATE KEY-----

MHcCAQEEIDqluredbEynt973tGCSuC156fxupbFfLMgwyUXCShSNoAoGCCqGSM49

AwEHoUQDQgAESBJih0Ufo4fr+E4IB6uMwzqcAzqHDbFwCAWtGj9w94cWnFbeTbh1

BDcNwL9uKNICkrrCtM6h5EAgm9K2E3TGfw==

-----END EC PRIVATE KEY-----

If you want to see the details of the EC parameter, run the following command:

openssl ec -in key.pem -text -noout. The command outputs something like what’s

shown in Figure 8-9.

Figure 8-9.  Details of the EC parameter

�OpenSSL
�Configuration and Installing OpenSSL
To properly configure and install OpenSSL, depending on the OS platform that is used,

follow the steps in this section accordingly.

Chapter 8 Cryptography Libraries in C/C++23

180

�Installing OpenSSL on Windows 32/64

Step 1: Download the binaries for OpenSSL [3]. Download the latest version of the OpenSSL

Windows installer by going to https://slproweb.com/products/Win32OpenSSL.html.

Scroll down until you can download Win32/Win64 OpenSSL (see Figure 8-10).

Figure 8-10.  Download section of OpenSLL

Step 2: Double-click and run the downloaded Win64OpenSSL-3_0_8.exe file (see

Figure 8-11).

Step 3: Accept the license agreement and click Next.

Chapter 8 Cryptography Libraries in C/C++23

https://slproweb.com/products/Win32OpenSSL.html

181

Figure 8-11.  OpenSSL license agreement

Step 4: Specify the installation path and click Next (see Figure 8-12).

Figure 8-12.  Setting up the path to install OpenSSL

Chapter 8 Cryptography Libraries in C/C++23

182

Step 5: Click Next.

Step 6: This presents the Select Start Menu Folder screen. Leave everything as it is

and click Next (see Figure 8-13).

Figure 8-13.  Placing the location of the program shortcuts

Step 7: The Select Additional Tasks screen appears. Click The Windows system
directory option (see Figure 8-14).

Chapter 8 Cryptography Libraries in C/C++23

183

Figure 8-14.  Additional Tasks to perform

Step 8: Click Install (see Figure 8-15).

Figure 8-15.  Acknowledgment of the installation process and settings

Chapter 8 Cryptography Libraries in C/C++23

184

Step 8: The installation progresses. Remember that if you haven’t installed Microsoft

Visual C++ Redistributable (x64), you are asked to install it.

Step 9: Finish the installation process. Leave everything as it is and click Finish.

Step 10: Configure and set up the environment variables for OpenSSL.

Step 11: Run Environment Variables. Go to System Properties and click Environment
Variables.

Step 12: The environment variable for OpenSSL is added to System Variables.

Click New.

Figure 8-16.  System Properties

Chapter 8 Cryptography Libraries in C/C++23

185

Figure 8-17.  Environment variables

Figure 8-18.  New System Variable

Step 13: Configuring the OPENSSL_CONF variable

Chapter 8 Cryptography Libraries in C/C++23

186

Step 14: Configuring and modify the path variable accordingly. Select the Path

variable from System variables and click Edit.

Step 15: In the Edit environment variable window, click New and Browse.

Figure 8-19.  Environment Variables: Path Variable

Chapter 8 Cryptography Libraries in C/C++23

187

Figure 8-20.  Edit environment variable

Step 16: Select the path to the OpenSSL bin folder and click OK. The new path should

be added successfully. Close everything. If you have the command window open, close it

and reopen it again for the update to be done correctly; otherwise, it does not work.

Chapter 8 Cryptography Libraries in C/C++23

188

Figure 8-21.  Verifying that the path for OpenSSL is added

Figure 8-22.  Checking OpenSSL, first step

Step 17. Open Command (cmd.exe). Run the openssl command. If the OpenSSL>

prompter appears in the window, it is the first sign of success.

Step 18: Run the second command: version. Make sure that everything is set

properly. You are successful if the version and date are returned, as shown in Figure 8-23.

Chapter 8 Cryptography Libraries in C/C++23

189

Figure 8-23.  Checking OpenSSL, second step

�Installing OpenSSL on Linux: Ubuntu Flavor

Usually, OpenSSL is already installed on Linux Ubuntu. This step-by-step guide uses the

Ubuntu 22.04 LTS version.

Step 1: Check the OpenSSL version installed on your machine by running openssl

version -a in the terminal.

If you don’t see it, the OpenSSL was not installed or configured properly. Let’s

proceed to install and configure OpenSSL.

Figure 8-24.  Checking the OpenSSL version

Chapter 8 Cryptography Libraries in C/C++23

190

Step 2: Update the Ubuntu system to the latest packages by running the following

command in the terminal. The command is sudo apt-get update && sudo apt-get

upgrade. You are asked to answer with Y or N to continue. Choose Y (Yes).

Step 3: Check the availability of OpenSSL packages to be installed from the official

repository for Ubuntu using the command apt show openssl.

Figure 8-25.  Updating the Ubuntu System with the latest packages

Chapter 8 Cryptography Libraries in C/C++23

191

Figure 8-27.  Installing OpenSSL packages

Figure 8-26.  Checking for OpenSSL packages

Step 4: The last step is to install the package using the command sudo apt install

openssl -y.

OpenSSL is a robust and widely used open source cryptography library that supports

many cryptographic functions and protocols, such as SSL/TLS, RSA, Diffie-Hellman, and

elliptic curve cryptography (ECC). OpenSSL is regarded as a strong cryptography library

for the following reasons.

•	 Broad platform support. OpenSSL is accessible on most operating

systems, including Linux, macOS, Windows, and BSD. This makes it a

popular option for cross-platform cryptography applications.

Chapter 8 Cryptography Libraries in C/C++23

192

•	 Wide range of cryptographic functions. OpenSSL provides a

broad selection of cryptographic functions and protocols, including

symmetric and asymmetric encryption, hashing, digital signatures,

and key exchange.

•	 High performance. OpenSSL is recognized for its high performance

and efficiency. It has been designed for speed and supports hardware

acceleration on a variety of devices.

•	 Active development and community support. A committed team

of developers actively develops and maintains OpenSSL, and a large

and active user community contributes to its development and

testing.

•	 FIPS 140-2 compliance. OpenSSL is compatible with FIPS 140-2,

a standard for cryptography modules used in federal systems in

the United States. This indicates that OpenSSL has been rigorously

tested and validated to guarantee that it meets stringent security

requirements.

�Botan
Botan [5] represents another powerful library that can be used in command lines

as OpenSSL. The vast algorithms contain powerful and modern implementations

(including C++23 features). The features of Botan that differentiate it from the rest of

the libraries consist of the modules implemented for the Transport Layer Security (TLS)

protocol. The features implemented with Botan make it a real candidate for inspiration

and guidance among professionals, and its documentation represents a very important

guide that is easy to follow.

The commands and instructions are the same as those for OpenSSL, with minor

differences related to public-key algorithms.

Chapter 8 Cryptography Libraries in C/C++23

193

�CrypTool
A great software product for cryptography developed using C++ is CrypTool (CT) [6],

version 1. The latest stable release for version CT1 is 1.4.42, and it can be downloaded

from CrypTool’s official website1. After downloading, launch the executable and follow

the instructions to install it. When CT1 is opened, the main window looks as shown in

Figure 8-28.

Figure 8-28.  Main windows in CrypTool 1

The first example is the classical cipher, Caesar. It can be selected from Encrypt/
Decrypt ➤ Symmetric (classic) ➤ Caesar/Rot - 13… Before selecting the Caesar cipher,

close the startingexample-en.txt window and open a new window (File ➤ New). In

the opened window type, the sentence This is an example of Caesar cipher using

CrypTool 1. (see Figure 8-29).

1 https://www.cryptool.org/en/ct1-downloads

Chapter 8 Cryptography Libraries in C/C++23

https://www.cryptool.org/en/ct1-downloads

194

Figure 8-29.  The text in a new CT1 window

Open the settings window for the Caesar cipher as described earlier. It should

look like what’s shown in Figure 8-30, in which two examples of keys were used: key B

(Figure 8-30a) and key M (Figure 8-30b).

Chapter 8 Cryptography Libraries in C/C++23

195

Figure 8-30.  (a) The default settings for the Caesar cipher (b) The chosen settings
for the Caesar cipher

The window contains a short description of the cipher. Note that Rot-13 is a

particular case of the Caesar cipher, which shifts a particular letter with 13 positions

(considering that the number of the letters in the English alphabet is 26, then its half is

13, from the name of the Rot-13). Keep the default variant, Caesar. On the right side, you

can choose the index for the first letter of the alphabet, A, which can be either 0 or 1.

Furthermore, you should choose the key, which represents the number of positions

with which a particular letter is shifted to the right in the alphabet. The key can be

chosen as an alphabet letter or as a number. Keep the character option, and let’s say

the key is M. Figure 8-31b shows the changes from the chosen encryption’s Properties

settings; observe that A is mapped to M (0 is the position of A, which is shifted by 12

positions, i.e., 0+12=12; the twelfth letter of the English alphabet is M) and so on. Now

press the Encrypt button. The result is shown in Figure 8-31.

Chapter 8 Cryptography Libraries in C/C++23

196

Figure 8-31.  Encryption using Caesar cipher

Note that the cipher is not case-sensitive. Such additional settings can be accessed

by selecting Text Option from the Key Entry: Caesar/ROT - 13 window (see Figure 8-32a).

From this window, you can set to keep unchanged the characters that are not in

the alphabet. Note the 1 and period (.) characters. The spaces are not encrypted.

Furthermore, you can choose uppercase sensitivity, extend the alphabet, and set a

reference for statistical use (see Figure 8-32b).

Chapter 8 Cryptography Libraries in C/C++23

197

Figure 8-32.  (a) Choosing case sensitive option (b) More option for Text Option in
Section Define the alphabet used in text ciphers

Now let’s return to our example. Close the Unnamed-1 window (or make sure that

the emphasized window is Caesar encryption of <Unnamed1>, key <M, KEY OFFSET:

0>) and let’s decrypt the result of the Caesar encryption obtained in Figure 8-31. For

this, choose the Caesar cipher from the menu again and make the same setting as in

the encryption. Note that Caesar is a symmetric cipher, which means that the same key

is used for both encryption and decryption; therefore, set the key entry as an alphabet

character and choose M and click the Decrypt button. The result is seen in Figure 8-33.

Chapter 8 Cryptography Libraries in C/C++23

198

Figure 8-33.  The decryption using the Caesar cipher

The next encryption system is RSA.

Next, select Encrypt/Decrypt ➤ Asymmetric ➤ RSA Demonstrator. The RSA

Demonstration window should look like what’s shown in Figure 8-34a.

Chapter 8 Cryptography Libraries in C/C++23

199

Figure 8-34.  (a) RSA Demonstrator window (b) RSA Demonstrator window after
generating prime numbers

Keep the default option of computing both the public key and the private key.

Furthermore, you need to choose the parameters for the scheme. You can provide two

prime numbers yourself, or you can generate two prime numbers using the generator.

Click the Generate prime numbers… button. The window should look like what’s

shown in Figure 8-35a.

Chapter 8 Cryptography Libraries in C/C++23

200

Figure 8-35.  The prime number generator for RSA

Here, you can choose between three prime generators. Choose the Fermat test, set

the lower limit to 212 and the upper limit to 215 for both p and q, opt for independent

primes, and click the Generate prime numbers button (see Figure 8-35b).

To use these prime numbers, click the Apply primes button. After generating the

prime number, note that the public and secret values were computed (see Figure 8-35b).

Keep the default public key as 216 + 1, check text in the Input as the field, type: This

text is encrypted using RSA., and click the Encrypt button. The result should look

like what is shown in Figure 8-36.

Chapter 8 Cryptography Libraries in C/C++23

201

Figure 8-36.  Encrypted text using RSA

To decrypt, you should not close the window, and you need to be a little careful. For

decryption, copying the text resulted in the Encryption into ciphertext c[i]=m[i]^e
(mod N) field. Our encrypted text would look as follows (and see Figure 8-37a).

212901699 # 120812360 # 045225910 # 168182322 # 103916866 # 349246149

027823531 # 310207436 # 009232756 # 131763739 # 089946941

Furthermore, select numbers for Input as and paste them. Then, press the Decrypt

button. The decryption works correctly (see Figure 8-37b) because of the same plain text

that was encrypted previously.

Chapter 8 Cryptography Libraries in C/C++23

202

Figure 8-37.  (a) The initial window for text decryption (b) the text decryption
window after completing the required information

These are just two simple examples of how to use CrypTool. It provides many more

encryption schemes and examples and can be used for attack simulations or to collect

different statistical information.

�Conclusion
This chapter provided a brief list of C++ libraries and showed how to install them on the

Windows operating system or Ubuntu. One of the most useful libraries developed in C++

are OpenSSL, Botan, and CrypTool.

In this chapter, you learned about the following.

•	 Access to the most important open source cryptography libraries and

frameworks

•	 The main cryptographic operations and how to interact with the

libraries and frameworks

Chapter 8 Cryptography Libraries in C/C++23

203

•	 Access to cryptography source code to compare the implementations

of the algorithms

•	 How to learn from other professional developers (e.g., OpenSSL,

Botan, etc.) best practices for developing cryptographic algorithms

References
[1].	 OpenSSL: Cryptography and SSL/TLS Toolkit. Available online: https://www.

openssl.org/. Last accessed: 21.2.2023

[2].	 OpenSSL TLS/SSL and Crypto Library. Available online: https://github.com/

openssl/openssl. Last accessed: 21.2.2023

[3].	 Win32/Win 64 OpenSSL Installer for Windows. Available online: https://

slproweb.com/products/Win32OpenSSL.html. Last accessed: 21.2.2023

[4].	 OpenSSL Sources. Available online: https://www.openssl.org/source/.

Last accessed: 21.2.2023

[5].	 Botan: Crypto and TLS for Modern C++. Available online: https://botan.

randombit.net/. Last accessed: 21.2.2023

[6].	 CrypTool Portal. Available online: https://www.cryptool.org/en/.

Last accessed: 21.2.2023

[7].	 Crypto++. Available online: https://cryptopp.com/. Last accessed: 21.2.2023

[8].	 Crypto++ Manual. Available online: https://cryptopp.com/docs/ref/.

Last accessed: 21.2.2023

[9].	 Libcrypt. Available online: https://www.gnupg.org/related_software/

libgcrypt/. Last accessed: 21.2.2023

[10].	 Libcrypt. Available online: https://www.gnupg.org/documentation/manuals.

html. Last accessed: 21.2.2023

[11].	 GnuTLS. Available online: https://gnutls.org/. Last accessed: 21.2.2023

[12].	 GnuTLS Documentation. Available online: https://gnutls.org/

documentation.html. Last accessed: 21.2.2023

[13].	 Cryptlib. Available online: https://www.cryptlib.com/.

Last accessed: 21.2.2023

Chapter 8 Cryptography Libraries in C/C++23

https://www.openssl.org/
https://www.openssl.org/
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://slproweb.com/products/Win32OpenSSL.html
https://slproweb.com/products/Win32OpenSSL.html
https://www.openssl.org/source/
https://botan.randombit.net/
https://botan.randombit.net/
https://www.cryptool.org/en/
https://cryptopp.com/
https://cryptopp.com/docs/ref/
https://www.gnupg.org/related_software/libgcrypt/
https://www.gnupg.org/related_software/libgcrypt/
https://www.gnupg.org/documentation/manuals.html
https://www.gnupg.org/documentation/manuals.html
https://gnutls.org/
https://gnutls.org/documentation.html
https://gnutls.org/documentation.html
https://www.cryptlib.com/

PART II

Pro Cryptography

207

CHAPTER 9

Elliptic-Curve
Cryptography
Elliptic-curve cryptography (ECC) represents a public-key cryptography approach

based on the algebraic structure of elliptic curves over finite fields. ECC can be used in

cryptography applications and primitives, such as key agreements, digital signatures,

and pseudorandom generators. They can also be used for operations such as encryption,

achieved through a combination of key agreement and a symmetric encryption scheme.

Other interesting usages can be seen in several attempts at integer factorization

algorithms that are based on elliptic curves (EC), with applications in cryptography, such

as Lenstra Elliptic-Curve Factorization (L-ECC) [1]. Elliptic curves appeared for the first

time in Diophantus [3], a subject that has remained close to Diophantine geometry [2].

Elliptic-curve cryptography (ECC) is the most secure type of encryption available

today. It is used to protect data and communications from hackers, and it is becoming

increasingly important to ensure the safety of sensitive information. ECC is a powerful

tool that can protect a wide range of data, from emails and financial transactions to

medical records and confidential documents.

This comprehensive chapter on ECC provides a deep dive into the technology and

its applications. It covers the basics of ECC, how it works, and why it’s so secure. It also

discusses the pros and cons of different implementations and provides guidance on

using ECC for secure data encryption. By the end of this guide, you’ll have a thorough

understanding of ECC and how to use it to protect your data.

ECC uses the properties of a special type of mathematical equation called an elliptic

curve to generate keys and encrypt and decrypt data. To create a key, the sender’s

computer uses an algorithm to solve a complicated mathematical equation that

generates a specific type of graph known as an elliptic curve. The graph is created on

a two-dimensional coordinate system that looks like a donut when plotted on a graph.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_9

https://doi.org/10.1007/978-1-4842-9450-5_9

208

For example, an elliptic curve could look like this: the curve is formed by plotting many

points that form a continuous shape. The shape of the curve is determined by the values

used to plot the points.

The advantages of elliptic curve cryptography can be summarized as follows.

•	 Speed. ECC is significantly faster than more complex encryption

methods such as RSA.

•	 Scalability. ECC is more scalable than many other types

of encryption because it does not require public key

infrastructure (PKI).

•	 Security. ECC is one of the most secure types of encryption and has

never been cracked in real-world scenarios.

•	 Widely used. ECC is widely used across many industries and is used

by many governments and organizations around the world.

•	 Low cost. ECC is a relatively low-cost solution and can be

implemented using open-source software.

Two main types of ECC are used for encryption: the elliptic curve digital signature

algorithm (ECDSA) and the elliptic curve integrated encryption scheme (ECIES). Each has

its own benefits and applications, and each can encrypt data in various ways.

ECDSA is a public-key cryptography used to authenticate and verify a sender’s

identity. It uses a similar process to generate keys as ECC but uses a different type

of equation to create the graph. The graph produced by an ECD-DS signature is an

elliptic curve.

ECIES is a type of encryption used to encrypt data. When implemented as an

encryption scheme, ECIES uses two different elliptic curves: a public curve and a private

curve. The public curve generates a shared secret to encrypt the original data. The secret

is then decrypted using the private curve.

ECDSA and ECIES are secure and efficient encryption methods, but they are not

the same. When choosing an implementation of ECC, it is important to consider the

pros and cons of each method. ECDSA is more efficient than ECIES and requires less

computing power. It is also useful for authentication, verification, and identification.

However, it is less scalable than ECIES and requires a PKI. ECIES is less efficient than

ECDSA and requires more computing power. It is less useful for authentication and

verification but is more scalable than ECDSA and does not require a PKI.

Chapter 9 Elliptic-Curve Cryptography

209

The process of using ECC for secure data encryption comprises the following.

	 1.	 Generate a key. The first step in the process is to generate a key.

The key is used to encrypt and decrypt data. The type of key

generated depends on the type of encryption used.

	 2.	 Encrypt data. Once the data is encrypted, they cannot be

decrypted without the key. It is recommended that data be

encrypted in blocks (called a block cipher), which are portions of

data that are processed all at once.

	 3.	 Decrypt data. Data is decrypted using the same process as

encryption. The sender uses the key to decrypt the data and then

transfers the information to the intended recipient.

	 4.	 Store data securely. Data should be securely stored after they are

decrypted to remain private.

	 5.	 Make sure data is authentic. When data is sent over a network or

the Internet, there is a chance that they could be intercepted and

tampered with. To protect against this, authentication ensures that

data come from the correct source and have not been tampered

with or corrupted during transmission.

The potential risks associated with ECC are very important when implementing

business software solutions, authentication protocols, and types of data that require

security protection. There are a few potential risks that come along with using ECC for

data encryption. One potential risk is that an organization may not understand how

ECC works. If a company does not fully understand how ECC is implemented and

how it works, it could put the integrity of its data at risk. Another potential risk is that a

company does not have the expertise to manage its keys. It is important to have a good

system in place for managing keys, especially if an organization is using ECC. It is also

important to ensure that all keys are properly backed up and that there is a disaster-

recovery plan in case something bad happens to the systems holding the keys.

The starting point of elliptic curve cryptography starts in public key cryptography

(PKC). Using PKC in ECC, there is a special case for manipulating the elliptic

curve points and how they are generated. The manipulation consists of two cases:

multiplication and addition.

Chapter 9 Elliptic-Curve Cryptography

210

The main advantage of ECC is obtaining a certain level of security based on using

shorter keys that are different from the “usual cryptography.”

A second advantage is that elliptic curve cryptography is resistant to some attacks.

Those attacks were designed and developed for integer factorization and discrete

logarithms, which proved unsuccessful.

Before the practical implementation, some basic theoretical notions are presented

to familiarize you with elliptic curve cryptography. The following section describes the

required notions in Listing 9-1 and 9-2.

�Theoretical Fundamentals
This section describes the main foundation that is necessary and must be understood

before proceeding further with practical implementation. The graphical content and the

representations of some of the equations are taken and cited from [4].

Let’s start with the following example, in which a collection of balls is arranged to

look like a regular pyramid so that there is only one ball on the top level. On the next

level, there are four balls. On the next one, nine balls, and so on (see Figure 9-1).

Figure 9-1.  Balls pyramid [4]

A logical question is raised: Is there a way of rearranging the balls into a squared

matrix if the pyramid collapses? If the pyramid has only three levels, the rearranging

process cannot be performed because there are 1 + 4 + 9 = 19 balls, which is not a

perfect square. When there is a single ball, the pyramid is organized with one level and a

squared matrix with one line and one column.

Chapter 9 Elliptic-Curve Cryptography

211

If the pyramid has a height of x, then there are

	 1 2 3
1 2 1

6
2 2 2 2� � �� �

�� � �� �
x

x x x
balls. 	

The intention is that the number is a perfect square number. To do this, you must

resolve the following equation.

y
x x x2 1 2 1

6
�

�� � �� �
 in N.

Such an equation represents the elliptic curve equation (see Figure 9-2).

Figure 9-2.  Graphic for y
x x x2 1 2 1

6
�

�� � �� �
 [4]

The y
x x x2 1 2 1

6
�

�� � �� �
 equation can be solved using the Diophantus method,

using known points for finding other points. Using (0, 0) and (1, 1) points, obtain the

following straight equation y = x. When you intersect the obtained curve with the

equation of the line, you get the following relation.

	
x

x x x
x x x2 3 21 2 1

6

1

3

1

3

1

6
�

�� � �� �
� � �

	

This is equivalent to the following.

	
x x x3 23

2

1

2
0� � �

	

Chapter 9 Elliptic-Curve Cryptography

212

You already know two roots of this equation, x = 0 and x = 1, which are the

coordinates on the Ox -axis of the intersection points between the equation of the line

and curve. For three real numbers, a, b, c, you know the following.

	 x a x b x c x a b c x ab ac bc x abc�� � �� � �� � � � � �� � � � �� � �3 2 . 	

In our situation, for roots 0, 1, x we obtain 0 1
3

2
� � �x , finding the coordinate point

1

2

1

2
,�

�
�

�
�
�. Because of the symmetry of the curve, there is also the coordinate point

1

2

1

2
,��

�
�

�
�
�.

Continuing with the technique illustrated for points
1

2

1

2
,��

�
�

�
�
� and (1, 1), obtain the

equation of the line y = 3x − 2, which you intersect with the given curve, obtaining the

following.

	
3 2

1 2 1

6
2

x
x x x

�� � �
�� � �� �

	

This is equivalent to the following.

	
x x3 251

2
0� ���

	

We already know the roots
1

2
 and 1, so obtain the following.

	

1

2
1

51

2
� � �x ,

	

From this, we have x = 24 and y = 70, which means

	 1 2 3 24 702 2 2 2 2� � ��� � 	

If there are 4900 balls, they can be arranged as a pyramid with a height of 24 and

arranged in a squared pyramid with 24 lines and 24 columns.

�Weierstrass Equation
The “Practical Implementation” section in this chapter offers a practical solution using

the Weierstrass equation.

Definition 9-1. Let’s consider the following elliptic curve E as being the following

set: {(x, y)| y2 = x3 + Ax + B}, in which the elements A, B, x, y are elements from the field K,

defined as K ∈ {Q, R, C, Zp, Zq}, where p represents a prime number and q = pk, k ≥ 1 and

A, B are constants.

Chapter 9 Elliptic-Curve Cryptography

213

Definition 9-2. An equation that is defined according to Definition 9-1 is called and

known as the Weierstrass equation.
Definition 9-3. If K is a field and A, B ∈ K, then E is defined over the field K. For the

points that have their coordinates in L ⊆ K, write E(L). By definition, add a point to this

set that does not belong to the affine plan, a point that is noted with ∞.

	
E L x y L L y x Ax B� � � �� �� � �� � � � �� �, , 3 3

	

Intuitively, it is useful to think of the graph of the elliptic curve over the field of real

numbers. This has two basic forms, as shown in Figure 9-3. Equation y2 = x3 − x has three

real roots and is distinct, and equation y2 = x3 + x has one single real root. It is not allowed

to have multiple roots; therefore, you must mention the condition, 4A3 + 27B2 ≠ 0.

Figure 9-3.  The basic two forms of the elliptic curve over a real numbers field [4]

If the roots are r1, r2, r3, then

	
r r r r r r A B1 2 1 3 2 3

2 3 24 27�� � �� � �� �� � � � �� �.
	

Definition 9-4. The general form of an elliptic equation over a K field is called the

Weierstrass generalized equation and has the following form.

	 y a xy a y x a x a x a2
1 3

3
2

2
4 6� � � � � � 	

Chapter 9 Elliptic-Curve Cryptography

214

a1...a6 are constants from K. This form is very useful, especially with the

implementation later.

The generalized Weierstrass equation is useful for fields with two or three

characteristics. For fields with different characteristics, we obtain the following.

	
y

a x a
x a

a
x a

a a
x

a
� ��

�
�

�
�
� � � �

�

�
�

�

�
� � ��

�
�

�
�
� � �1 3

2
3

2
1
2

2
4

1 3 3
2

2 2 4 2 4
aa6

�

�
�

�

�
�

	

This is equivalent to the following.

	 y x a x a x a1
2 3

2
2

4 6� � � �� � �

	

y y
a

x
a

1
1 3

2 2
� � � and a a a2 4 6

′ ′ ′, , are constants. For fields with characteristics that are

different than 3, we have

	
x x

a
1

2

3
� �

�

	

And we obtain the following.

	 y x Ax B1
2

1
3

1� � � 	

A and B are constants.

�Group Law
When dealing with practical implementation, group law is very important for working

with operations between points. A theorem needs to be followed accordingly to have a

proper implementation. Theorem 9-1 describes the properties of an elliptic curve. The

properties have been implemented in Listing 9-2.

Theorem 9-1. Adding the points on an elliptic curve E has the following properties.

•	 (commutativity) P1 + P2 = P2 + P1, ∀ P1, P2 ∈ E

•	 (neutral element) P + ∞ = P, ∀ P ∈ E

•	 (inverse existance) ∀P ∈ E, ∃ P′ ∈ E in such a way that P + P′ = ∞ The

P′ point is noted usually with−P.

•	 (associativity) (P1 + P2) + P3 = P1 + (P2 + P3), ∀P1, P2, P3 ∈ E

Chapter 9 Elliptic-Curve Cryptography

215

�Practical Implementation
This section discusses the practical implementation of ECC using C++23 and provides a

step-by-step basic implementation of ECC.

The example (see Figure 9-1, Listing 9-1, and Listing 9-2) represents the

implementation of an elliptic curve over a finite field with order P. The following elliptic

curve equation is used for our implementation.

	 y P x ax b P2 3mod mod� � � 	

The implementation provided is structured in two parts.

•	 The implementation of the field finite element engine (FFE_Engine.hpp)

in Listing 9-1. The file contains the signatures for the following

operations and functions.

•	 int ExtendedGreatestCommongDivisor() is the function that

computes the extended greater common divisor.

•	 int InverseModular() is the function that solves the linear

congruence equation x × z = = 1 (mod n).

•	 FFE operator-() const is the operator that represents the

negation operation.

•	 FFE& operator=(int i) is the operator that deals with the

assignation with an integer.

•	 FFE<P>& operator=(const FFE<P>& rhs) is the operator for

assignation from the field element.

•	 FFE<P>& operator*=(const FFE<P>& rhs) is an implementation

for *= operator for assignation from field element.

•	 friend bool operator==(const FFE<P>& lhs, const FFE<P>&

rhs) is implementation of == operator for assignation from field

element.

•	 friend FFE<P> operator/(const FFE<P>& lhs, const

FFE<P>& rhs) is an implementation for/operator for assignation

from the field element as form (x,y).

Chapter 9 Elliptic-Curve Cryptography

216

•	 friend FFE<P> operator+(const FFE<P>& lhs, const

FFE<P>& rhs) is an implementation for the + operator for

assignation from the field element as form (x,y).

•	 friend FFE<P> operator-(const FFE<P>& lhs, const

FFE<P>& rhs) is an implementation for the - operator for

assignation from the field element as form (x,y).

•	 friend FFE<P> operator+(const FFE<P>& lhs, int i) is

implementation for the a + int operator for assignation from the

field element as form (x,y).

•	 friend FFE<P> operator+(int i, const FFE<P>& rhs) is an

implementation for int + a operator for assignation from the field

element as form (x,y).

•	 friend FFE<P> operator*(int n, const FFE<P>& rhs) is an

implementation for int ∗ a operator for assignation from the field

element as form (x,y).

•	 friend FFE<P> operator*(const FFE<P>& lhs, const

FFE<P>& rhs) is an implementation for a ∗ b operator for

assignation from the field element as form (x,y).

•	 template<int T> friend ostream& operator<<(ostream& os,

const FFE<T>& g) is the ostream operator for showing and

displaying in a readable format.

•	 The main program in Listing 9-2. The file contains the main

implementation for elliptic curve cryptography. In the main program,

a special focus must be on implementing the operators listed earlier.

Another important aspect of this implementation is that at the

beginning of the program, we can observe that our curve is defined

over a finite field (Galois field) and that any point within the elliptic

curve is formed from two elements that are within the Galois fields.

Those points are created once there is a declaration instance of

the elliptic curve. To implement the elliptic curve, the following

Chapter 9 Elliptic-Curve Cryptography

217

two declarations are needed: type EllipticCurve<OrderFFE_

EC> this_t and type EllipticCurve<OrderFFE_

EC>::EllipticCurvePoint point_t. Once we have the declaration,

we can proceed further with the representation of the Weierstrass

equation as y2 = x3 + ax + b, as represented in the following through

the constructor of the EllipticCurve class.

//** the Weierstrass equation as y^2 = x^3 + ax + b

Elliptic Curve (int CoefA, int CoefB)

 : ECParameterA(CoefA),

 ECParameterB(CoefB),

 tableOfPoints(),

 tableFilledComputated(false)

{}

The next step is to compute the points and to set true for the

tableFilledComputated Boolean variable, which is used to indicate if the table with

points has been filled or not for further computation (see Figure 9-4). The rest of the

functions are straightforward and represent basic cryptographic operations between

Alice, Bob, and Oscar, the malicious third party trying to decrypt the message.

Chapter 9 Elliptic-Curve Cryptography

218

Figure 9-4.  The output of the example

Chapter 9 Elliptic-Curve Cryptography

219

Listing 9-1.  Implementation of the Field Finite Element Engine (FFE_Engine)

namespace EllipticCurveCryptography

{

 //** basic functions for

 //** Finite Field Elements (FFE)

 namespace HelperFunctionFFE

 {

 //** Computing Extended GCD gives g = a*u + b*v

 int ExtendedGreatestCommongDivisor(int a, int b,

 int& u, int &v)

 {

 u = 1;

 v = 0;

 int g = a;

 int u1 = 0;

 int v1 = 1;

 int g1 = b;

 while (g1 != 0)

 {

 //** division using integers

 int q = g/g1;

 int t1 = u - q*u1;

 int t2 = v - q*v1;

 int t3 = g - q*g1;

 u = u1; v = v1; g = g1;

 u1 = t1; v1 = t2; g1 = t3;

 }

 return g;

 }

 //** providing solution and solving

 //** the linear congruence equation

 //** x * z == 1 (mod n) for z

 int InvMod(int x, int n)

Chapter 9 Elliptic-Curve Cryptography

220

 {

 //** "%" represents the remainder

 //** function, 0 <= x % n < |n|

 x = x % n;

 int u,v,g,z;

 g = ExtendedGreatestCommongDivisor(x, n,

 u,v);

 if (g != 1)

 {

 //** x and n has to be primes

 //** in order to exist an x^-1 mod n

 z = 0;

 }

 else

 z = u % n;

 return z;

 }

 }

 //** represents the element from a Galois field

 //** we will use a specific behavior for the

 //** modular function in which (-n) mod m will

 //** return a negative number.

 //** The implementation is done in such a way that

 //** it will offer support for the basic

 //** arithmetic operations, such as:

 //** + (addition), - (subtraction), / (division)

 //** and scalar multiplication.

 //** The P served as an argument represents the

 //** order for the field.

 template<int P>

 class FFE

 {

 int i_;

Chapter 9 Elliptic-Curve Cryptography

221

 void assign(int i)

 {

 i_ = i;

 if (i<0)

 {

 //** The correction behavior

 //** is important.

 //** Using (-i) mod p we will make sure

 //** that the behavior is the proper one.

 i_ = (i%P) + 2*P;

 }

 i_ %= P;

 }

 public:

 //** the constructor

 FFE()

 : i_(0)

 {}

 //** another constructor

 explicit FFE(int i)

 {

 assign(i);

 }

 //** copying the constructor

 FFE(const FFE<P>& rhs)

 : i_(rhs.i_)

 {

 }

 //** providing access to

 //** the raw integer

 int i() const { return i_; }

Chapter 9 Elliptic-Curve Cryptography

222

 //** implementation for negation operator

 FFE operator-() const

 {

 return FFE(-i_);

 }

 //** assignation assign from integer

 FFE& operator=(int i)

 {

 assign(i);

 return *this;

 }

 //** assignation from from field element

 FFE<P>& operator=(const FFE<P>& rhs)

 {

 i_ = rhs.i_;

 return *this;

 }

 //** implementation of "*=" operator

 FFE<P>& operator*=(const FFE<P>& rhs)

 {

 i_ = (i_*rhs.i_) % P;

 return *this;

 }

 //** implementation of "==" operator

 friend bool operator==(const FFE<P>& lhs,

 const FFE<P>& rhs)

 {

 return (lhs.i_ == rhs.i_);

 }

 //** implementation of "==" operator

 friend bool operator==(const FFE<P>& lhs,

 int rhs)

Chapter 9 Elliptic-Curve Cryptography

223

 {

 return (lhs.i_ == rhs);

 }

 //** implementation of "!=" operator

 friend bool operator!=(const FFE<P>& lhs,

 int rhs)

 {

 return (lhs.i_ != rhs);

 }

 // implementation of "a/b" operator

 friend FFE<P> operator/(const FFE<P>& lhs,

 const FFE<P>& rhs)

 {

 return FFE<P>(lhs.i_ *

 HelperFunctionFFE::InvMod(rhs.i_,P));

 }

 //** implementation of "a+b" operator

 friend FFE<P> operator+(const FFE<P>& lhs,

 const FFE<P>& rhs)

 {

 return FFE<P>(lhs.i_ + rhs.i_);

 }

 //** implementation of "a-b" operator

 friend FFE<P> operator-(const FFE<P>& lhs,

 const FFE<P>& rhs)

 {

 return FFE<P>(lhs.i_ - rhs.i_);

 }

 // implementation of "a + int" operator

 friend FFE<P> operator+(const FFE<P>& lhs,

 int i)

Chapter 9 Elliptic-Curve Cryptography

224

 {

 return FFE<P>(lhs.i_+i);

 }

 //** implementation of "int + a" operator

 friend FFE<P> operator+(int i,

 const FFE<P>& rhs)

 {

 return FFE<P>(rhs.i_+i);

 }

 //** implementation of "int * a" operator

 friend FFE<P> operator*(int n,

 const FFE<P>& rhs)

 {

 return FFE<P>(n*rhs.i_);

 }

 //** implementation of "a * b"

 friend FFE<P> operator*(const FFE<P>& lhs,

 const FFE<P>& rhs)

 {

 return FFE<P>(lhs.i_ * rhs.i_);

 }

 //** the operator ostream for

 //** showing and displaying in

 //** readable format

 template<int T>

 friend ostream& operator<<(ostream& os,

 const FFE<T>& g)

 {

 return os << g.i_;

 }

 };

}

Chapter 9 Elliptic-Curve Cryptography

225

Listing 9-2.  Implementation of the Main Program

//** Leave everything as it is.

//** Do not change the order of the inputs or namespaces.

#include <cstdlib>

#include <iostream>

#include <vector>

using namespace std;

#include <math.h>

#include "FFE_Engine.hpp"

namespace EllipticCurveCryptography

{

 //** Elliptic Curve over a finite field of order P:

 //** y^2 mod P = x^3 + ax + b mod P

 template<int OrderFFE_EC> class EllipticCurve

 {

 public:

 //** this curve is defined over the finite

 //** field (Galois field) Fp, this is the

 //** typedef of elements in it

 typedef FFE<OrderFFE_EC> ffe_element;

 //** any point on elliptic curve is formed

 //** from two elements that are within Fp

 //**field (Galois Field). The points are

 //** created once we declare an instance of

 //** Elliptic Curve itself.

 class EllipticCurvePoint

 {

 friend class EllipticCurve<OrderFFE_EC>;

 typedef FFE<OrderFFE_EC> ffe_element;

 ffe_element xCoordValue_;

 ffe_element yCoordValue_;

 EllipticCurve *ellipticCurve_;

Chapter 9 Elliptic-Curve Cryptography

226

 //** core of the doubling multiplier

 //** algorithm (see below)

 //** multiplies acc by m as a series of

 //** "2*accumulatorContainer's"

 void DoublingMultiplierAlgorithm(int

 multiplier, EllipticCurvePoint&

 accumulatorContainer)

 {

 if (multiplier > 0)

 {

 EllipticCurvePoint doublingValue =

 accumulatorContainer;

 for (int counter=0; counter <

 multiplier; ++counter)

 {

 //** doubling step

 doublingValue += doublingValue;

 }

 accumulatorContainer =

 doublingValue;

 }

 }

 //** Implementation of doubling

 //** multiplier algorithm.

 //** The process stands on multiplying

 //** intermediateResultAccumulator for

 //** storing the intermediate

 //** results with inputScalar.

 //** This is done through

 //** expansion in multiple

 //** by 2 between the first of the

 //** binary representation of inputScalar.

 EllipticCurvePoint MultiplyUsingScalar(int

 �inputScalar, const EllipticCurvePoint&

intermediateResultAccumulator)

Chapter 9 Elliptic-Curve Cryptography

227

 {

 EllipticCurvePoint

 accumulatorContainer =

 intermediateResultAccumulator;

 EllipticCurvePoint outputResult =

 EllipticCurvePoint(0,0,

 *ellipticCurve_);

 int i = 0, j = 0;

 int iS = inputScalar;

 while(iS)

 {

 if (iS&1)

 {

 //** Setting up the bit.

 //** The computation is done by following the formula:

 //** accumulatorContainer = 2^(i-j)*accumulatorContainer

 DoublingMultiplierAlgorithm(i-j,accumulatorContainer);

 outputResult += accumulatorContainer;

 //** last setting for the bit

 j = i;

 }

 iS >>= 1;

 ++i;

 }

 return outputResult;

 }

 //** the function deals with

 //** adding two points on the curve

 //** xCoord1, yCoord1, xCoord2=x2,

 //** yCoord2=y2

Chapter 9 Elliptic-Curve Cryptography

228

 void ECTwoPointsAddition(ffe_element

 xCoord1, ffe_element yCoord1,

 ffe_element xCoord2, ffe_element

 �yCoord2, ffe_element & xCoordR, ffe_element &

yCoordR) const

 {

 //** dealing with sensitives cases

 //** for implying addition identity

 if (xCoord1==0 && yCoord1==0)

 {

 xCoordR = xCoord2;

 yCoordR = yCoord2;

 return;

 }

 if (xCoord2==0 && yCoord2==0)

 {

 xCoordR = xCoord1;

 yCoordR = yCoord1;

 return;

 }

 if (yCoord1==-yCoord2)

 {

 xCoordR = yCoordR = 0;

 return;

 }

 //** deal with the additions

 ffe_element s;

 if (xCoord1 == xCoord2 && yCoord1 ==

 yCoord2)

 {

 //** computing 2*P

 s = (3*(xCoord1.i()*xCoord1.i()) +

 ellipticCurve_->a()) /

 (2*yCoord1);

Chapter 9 Elliptic-Curve Cryptography

229

 xCoordR = ((s*s) - 2*xCoord1);

 }

 else

 {

 //** computing P+Q

 s = (yCoord1 - yCoord2) / (xCoord1

 - xCoord2);

 xCoordR = ((s*s) - xCoord1 –

 xCoord2);

 }

 if (s!=0)

 {

 yCoordR = (-yCoord1 + s*(xCoord1 –

 xCoordR));

 }

 else

 {

 xCoordR = yCoordR = 0;

 }

 }

 EllipticCurvePoint(int xPoint, int yPoint)

 : xCoordValue_(xPoint),

 yCoordValue_(yPoint),

 ellipticCurve_(0)

 {}

 EllipticCurvePoint(int xPoint, int yPoint,

 EllipticCurve<OrderFFE_EC> &

 EllipticCurve)

 : xCoordValue_(xPoint),

 yCoordValue_(yPoint),

 ellipticCurve_(&EllipticCurve)

 {}

Chapter 9 Elliptic-Curve Cryptography

230

 EllipticCurvePoint(const ffe_element&

 xPoint, const ffe_element& yPoint,

 EllipticCurve<OrderFFE_EC> &

 EllipticCurve)

 : xCoordValue_(xPoint),

 yCoordValue_(yPoint),

 ellipticCurve_(&EllipticCurve)

 {}

 public:

 static EllipticCurvePoint ONE;

 //** constructor

 EllipticCurvePoint(const

 EllipticCurvePoint& rhsPoint)

 {

 xCoordValue_ = rhsPoint.xCoordValue_;

 yCoordValue_ = rhsPoint.yCoordValue_;

 ellipticCurve_ =

 rhsPoint.ellipticCurve_;

 }

 //** the assignment process

 EllipticCurvePoint& operator=(const

 EllipticCurvePoint& rhsPoint)

 {

 xCoordValue_ = rhsPoint.xCoordValue_;

 yCoordValue_ = rhsPoint.yCoordValue_;

 ellipticCurve_ =

 rhsPoint.ellipticCurve_;

 return *this;

 }

 //** access x component as element of Fp

 ffe_element GetX() const { return

 xCoordValue_; }

Chapter 9 Elliptic-Curve Cryptography

231

 //** access y component as element of Fp

 ffe_element GetY() const { return

 yCoordValue_; }

 //** calculate the order of this point by

 //** brute-force additions

 unsigned int

 ComputingOrderBruteForceAddition

 (unsigned int maximum_period = ~0) const

 {

 EllipticCurvePoint ecPoint = *this;

 unsigned int order = 0;

 while(ecPoint.xCoordValue_ != 0 &&

 ecPoint.yCoordValue_ != 0)

 {

 ++order;

 ecPoint += *this;

 if (order > maximum_period) break;

 }

 return order;

 }

 //** negation operator (-) that

 //** gives the inverse of a point

 EllipticCurvePoint operator-()

 {

 return

 EllipticCurvePoint(xCoordValue_,

 -yCoordValue_);

 }

 //** equal (==) operator

 friend bool operator==(const

 EllipticCurvePoint& lhsPoint,

 const EllipticCurvePoint& rhsPoint)

Chapter 9 Elliptic-Curve Cryptography

232

 {

 return (lhsPoint.ec_ == rhsPoint.ec_)

 && (lhsPoint.x_ == rhsPoint.x_) &&

 (lhsPoint.y_ == rhsPoint.y_);

 }

 //** different (!=) operator

 friend bool operator!=(const

 EllipticCurvePoint& lhsPoint, const

 EllipticCurvePoint& rhsPoint)

 {

 return (lhsPoint.ec_ != rhsPoint.ec_)

 || (lhsPoint.x_ != rhsPoint.x_) ||

 (lhsPoint.y_ != rhsPoint.y_);

 }

 //** Implementation of a + b operator

 friend EllipticCurvePoint operator+(const

 EllipticCurvePoint& lhsPoint,

 const EllipticCurvePoint& rhsPoint)

 {

 ffe_element xResult, yResult;

 lhsPoint.ECTwoPointsAddition(

 lhsPoint.xCoordValue_,

 lhsPoint.yCoordValue_,

 rhsPoint.xCoordValue_,

 rhsPoint.yCoordValue_,

 xResult,yResult);

 return

 EllipticCurvePoint(xResult,

 yResult,

 *lhsPoint.ellipticCurve_);

 }

Chapter 9 Elliptic-Curve Cryptography

233

 //** multiplying with scalar * int

 friend EllipticCurvePoint operator*(int

 scalar, const

 EllipticCurvePoint& rhsPoint)

 {

 return

 EllipticCurvePoint(rhsPoint).

 operator*=(scalar);

 }

 //** Implementation of += operator

 EllipticCurvePoint& operator+=(const

 EllipticCurvePoint& rhsPoint)

 {

 ECTwoPointsAddition(xCoordValue_,

 yCoordValue_,rhsPoint.xCoordValue_,

 rhsPoint.yCoordValue_,xCoordValue_,

 yCoordValue_);

 return *this;

 }

 //** Implementation of *= int operator

 EllipticCurvePoint& operator*=(int scalar)

 {

 return (*this =

 MultiplyUsingScalar(scalar,*this));

 }

 //** display and print the point

 //** using ostream

 friend ostream& operator <<(ostream& os,

 const EllipticCurvePoint& p)

 {

 return (os << "(" << p.xCoordValue_ <<

 ", " << p.yCoordValue_ << ")");

 }

 };

Chapter 9 Elliptic-Curve Cryptography

234

 //** performing the elliptic

 //** curve implementation

 typedef EllipticCurve<OrderFFE_EC> this_t;

 typedef class

 EllipticCurve<OrderFFE_EC>::

 EllipticCurvePoint point_t;

 //** the Weierstrass equation

 //** as y^2 = x^3 + ax + b

 EllipticCurve(int CoefA, int CoefB)

 : ECParameterA(CoefA),

 ECParameterB(CoefB),

 tableOfPoints(),

 tableFilledComputated(false)

 {

 }

 //** compute all the points

 //** (from the group of elements) for

 //** Weierstrass equation. Note the

//** fact that if we are

 //** having a high order for the curve,

//** the computation process

 //** will take some time

 void CalculatePoints()

 {

 int x_val[OrderFFE_EC];

 int y_val[OrderFFE_EC];

 for (int counter = 0; counter <

 OrderFFE_EC; ++counter)

 {

 int nsq = counter*counter;

 x_val[counter] = ((counter*nsq) +

 ECParameterA.i() * counter +

 ECParameterB.i()) % OrderFFE_EC;

 y_val[counter] = nsq % OrderFFE_EC;

 }

Chapter 9 Elliptic-Curve Cryptography

235

 for (int counter1 = 0; counter1 <

 OrderFFE_EC; ++counter1)

 {

 for (int counter2 = 0; counter2 <

 OrderFFE_EC; ++counter2)

 {

 if (x_val[counter1] ==

 y_val[counter2])

 {

 tableOfPoints.push_back(Ellip

 ticCurvePoint(counter1,

 counter2,*this));

 }

 }

 }

 tableFilledComputated = true;

 }

 //** obtain the point (from the group of

 //** elements) for the curve

 EllipticCurvePoint operator[](int n)

 {

 if (!tableFilledComputated)

 {

 CalculatePoints();

 }

 return tableOfPoints[n];

 }

 //** the number og the elements

 //** in the group

 size_t Size() const { return

 tableOfPoints.size(); }

Chapter 9 Elliptic-Curve Cryptography

236

 //** the degree of the point for

 //** the elliptic curve

 int Degree() const { return OrderFFE_EC; }

 //** the "a" parameter, as an element of Fp

 FFE<OrderFFE_EC> a() const { return

 ECParameterA; }

 //** the "b" paramter, as an element of Fp

 FFE<OrderFFE_EC> b() const { return

 ECParameterB; }

 //** print and show the elliptic curve in a

 //** readable format using ostream human

 //** readable form

 template<int ECT>

 friend ostream& operator <<(ostream& os, const

 EllipticCurve<ECT>& EllipticCurve);

 //** print and display all the elements

 //** of the elliptic curve group

 ostream& PrintTable(ostream &os,

 int columns=4);

 private:

 typedef std::vector<EllipticCurvePoint>

 TableWithPoints;

 //** table with the points

 TableWithPoints tableOfPoints;

 //** first parameter of the

 //** elliptic curve equation

 FFE<OrderFFE_EC> ECParameterA;

 //** second parameter of the

 //** elliptic curve equation

 FFE<OrderFFE_EC> ECParameterB;

Chapter 9 Elliptic-Curve Cryptography

237

 //** boolean value to show if the

 //** table has been computed

 bool tableFilledComputated;

 };

 template<int ECT>

 typename EllipticCurve<ECT>::EllipticCurvePoint

 EllipticCurve<ECT>::EllipticCurvePoint::

 ONE(0,0);

 template<int ECT>

 ostream& operator <<(ostream& os, const

 EllipticCurve<ECT>& EllipticCurve)

 {

 os << "y^2 mod " << ECT << " = (x^3" << showpos;

 if (EllipticCurve.ECParameterA != 0)

 {

 os << EllipticCurve.ECParameterA << "x";

 }

 if (EllipticCurve.ECParameterB.i() != 0)

 {

 os << EllipticCurve.ECParameterB;

 }

 os << noshowpos << ") mod " << ECT;

 return os;

 }

 template<int P>

 ostream& EllipticCurve<P>::PrintTable(ostream &os,

 int columns)

 {

 if (tableFilledComputated)

 {

 int col = 0;

 typename

 EllipticCurve<P>::TableWithPoints::

Chapter 9 Elliptic-Curve Cryptography

238

 iterator iter = tableOfPoints.begin();

 for (; iter!=tableOfPoints.end(); ++iter)

 {

 os << "(" << (*iter).xCoordValue_.i() <<

 ", " << (*iter).yCoordValue_.i() << ") ";

 if (++col > columns)

 {

 os << "\n";

 col = 0;

 }

 }

 }

 else

 {

 os << "EllipticCurve, F_" << P;

 }

 return os;

 }

}

namespace utils

{

 float frand()

 {

 static float norm = 1.0f / (float)RAND_MAX;

 return (float)rand()*norm;

 }

 int irand(int min, int max)

 {

 return min+(int)(frand()*(float)(max-min));

 }

}

using namespace EllipticCurveCryptography;

using namespace utils;

Chapter 9 Elliptic-Curve Cryptography

239

int main(int argc, char *argv[])

{

 typedef EllipticCurve<163> elliptic_curve;

 elliptic_curve myEllipticCurve(1,1);

 cout << "Basic Example of using Elliptic Curve

 Cryptography using C++20. Apress, 2020\n\n";

 //** display some information about the

 //** elliptic curve and display some of the properties

 cout << "Equation of the elliptic curve: " <<

 myEllipticCurve << "\n";

 //** compute the points for the elliptic

 //** curve for equation from the above

 myEllipticCurve.CalculatePoints();

 cout << "\nList of the points (x,Y) for the curve (i.e.

 the group elements):\n";

 myEllipticCurve.PrintTable(cout,5);

 cout << "\n\n";

 elliptic_curve::EllipticCurvePoint P = myEllipticCurve[2];

 cout << "Randomly - Point P = " << P << ", 2P = " <<

 (P+P) << "\n";

 elliptic_curve::EllipticCurvePoint Q =

 myEllipticCurve[3];

 cout << "Randomly - Point Q = " << Q << ", P+Q = " <<

 (P+Q) << "\n";

 elliptic_curve::EllipticCurvePoint R = P;

 R += Q;

 cout << "P += Q = " << R << "\n";

 R = P;

 R += R;

 cout << "P += P = 2P = " << R << "\n";

Chapter 9 Elliptic-Curve Cryptography

240

 cout << "\nEncryption of the message using

 elliptic curve principles\n\n";

 //** as an example we will use Menes-Vanstone

 //** scheme that is based on elliptic

 //** curve for message encryption

 elliptic_curve::EllipticCurvePoint G = myEllipticCurve[0];

 while((G.GetY() == 0 || G.GetX() == 0) ||

 (G.ComputingOrderBruteForceAddition()<2))

 {

 int n = (int)(frand()*myEllipticCurve.Size());

 G = myEllipticCurve[n];

 }

 cout << "G = " << G << ", order(G) is " <<

 G.ComputingOrderBruteForceAddition() << "\n";

 //** Suppose that Alice wish to communicate with Bob

 //** Alice and its public key

 int a = irand(1,myEllipticCurve.Degree()-1);

 //** generating the public key

 elliptic_curve::EllipticCurvePoint Pa = a*G;

 cout << "Alice - Public key (Pa) = " << a << "*" << G << "

 = " << Pa << endl;

 //** Bob and is public key

 int b = irand(1,myEllipticCurve.Degree()-1);

 //** the public key

 elliptic_curve::EllipticCurvePoint Pb = b*G;

 cout << "Bob - Public key (Pb) = " << b << "*" << G << " =

 " << Pb << endl;

 //** Oscar - the eavesdropper and attacker

 int o = irand(1,myEllipticCurve.Degree()-1);;

 elliptic_curve::EllipticCurvePoint Po = o*G;

 cout << "Oscar - Public key (Po) = " << o << "*" << G << "

 = " << Po << endl;

Chapter 9 Elliptic-Curve Cryptography

241

 cout << "\n\n";

 //** Alice proceeds with the encryption

 //** for her message and send it to Bob.

 //** To achieve this, the first step is

 //** to split the message into multiple

 //** parts that are encoded using Galois

 //** field (Fp), which is also the domain

 //** elliptic curve.

 int m1 = 19;

 int m2 = 72;

 cout << "The clear text message send by Alice to Bob: ("

 << m1 << ", " << m2 << ")\n";

 //** proceed with encryption using the key of Bob

 elliptic_curve::EllipticCurvePoint Pk = a*Pb;

 elliptic_curve::ffe_element c1(m1*Pk.GetX());

 elliptic_curve::ffe_element c2(m2*Pk.GetY());

 //** the message that is encrypted is composed from:

 //** Pa - Alice public key

 //** c1,c2

 cout << "The message encrypted from Alice for Bob is

 represented as {Pa,c1,c2} and its content is =

 {" << Pa << ", " << c1 << ", " << c2 <<

 "}\n\n";

 //** Bob computes the decryption for the message

 //** received from Alice, using her public key

 //** and the session value (integer b)

 Pk = b*Pa;

 elliptic_curve::ffe_element m1d = c1/Pk.GetX();

 elliptic_curve::ffe_element m2d = c2/Pk.GetY();

 cout << "\tThe message decrypted by Bob from Alice is = ("

 << m1d << ", " << m2d << ")" << endl;

Chapter 9 Elliptic-Curve Cryptography

242

 //** Oscar will intercept the message and

 //** and he/she will try to decrypt it

 //** using his/her key

 Pk = o*Pa;

 m1d = c1/Pk.GetX();

 m2d = c2/Pk.GetY();

 cout << "\nOscar decrypt the message from Alice = (" <<

 m1d << ", " << m2d << ")" << endl;

 cout << endl;

}

�Conclusion
Cryptography is a critical component of security and privacy for data stored in the cloud

and across networks. ECC is the most secure type of encryption available today and is

used to protect data and communications from hackers. ECC is a powerful tool that can

protect a wide range of data, from emails and financial transactions to medical records

and confidential documents. This comprehensive chapter on ECC provided a deep dive

into the technology and its applications, and discussed elliptic curve cryptography and

how it can be implemented.

In this chapter, you learned the following.

•	 The theoretical fundamentals for implementing elliptic curve

cryptography

•	 How to apply theoretical mechanisms and theorems for operations

with group law in practice

•	 How to implement the basic operations and transpose into practice

elliptic curve cryptography

Chapter 9 Elliptic-Curve Cryptography

243

References
[1].	 Lenstra Elliptic-Curve Cryptography. Available online: https://

en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization.

Last accessed: 25.2.2023

[2].	 Diophantine Geometry. Available online: https://en.wikipedia.org/wiki/

Diophantine_geometry. Last accessed: 25.2.2023

[3].	 Diophantus. Available online: https://en.wikipedia.org/wiki/Diophantus.

Last accessed: 25.2.2023

[4].	 L. Washington, Elliptic Curves: Number Theory and Cryptography. Chapman &

Hall/CRC, 2008.

Chapter 9 Elliptic-Curve Cryptography

https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization
https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization
https://en.wikipedia.org/wiki/Diophantine_geometry
https://en.wikipedia.org/wiki/Diophantine_geometry
https://en.wikipedia.org/wiki/Diophantus

245

CHAPTER 10

Lattice-based
Cryptography
This chapter has an overview of lattice-based cryptography. You learn why lattices are

important in cryptography and their challenges. Furthermore, you see how to develop a

practical implementation that uses lattices, namely, the GGH (Goldreich–Goldwasser–

Halevi) encryption scheme [1].

Lattice-based cryptography has emerged as a powerful tool for modern

cybersecurity, providing a secure and reliable data encryption and authentication

method. It is a type of cryptography based on mathematical lattices and is considered

one of the most robust and secure forms of encryption. Lattice-based cryptography

is a versatile and efficient tool that implements various cryptographic techniques

and protocols. It is used in a wide range of applications, from secure communication

in the military to online payments and digital signatures. With its unique properties,

lattice-based cryptography has become an indispensable tool in the fight against

cybercrime and protecting sensitive data. This chapter provides an overview of lattice-

based cryptography, its advantages and disadvantages, and its importance in modern

cybersecurity.

Lattice-based cryptography is a type of cryptography based on mathematical lattices.

Lattices are an abstract mathematical structure used to represent the relationship

between numbers. The word “lattice” refers to a grid-like pattern formed by points and

axes. In cryptography, this lattice pattern defines a set of operations and transformations

that can be applied to data. In essence, lattice-based cryptography is a particular set of

algorithms that use this lattice pattern to create a ciphertext, which is then decrypted

with the help of an inverse transformation. This is similar to how a wooden toy puzzle

with a grid-like pattern is assembled: if you put the pieces together correctly, you return

the original picture.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_10

https://doi.org/10.1007/978-1-4842-9450-5_10

246

Lattices are important in cryptography because the hardness assumption based

on them is considered quantum-resistant in the context where, in the last few years,

the number of primitives in quantum cryptography has increased. While traditional

encryption systems, such as RSA, Diffie-Hellman, and elliptic curve encryption systems,

can be easily broken using quantum computers, encryption systems using lattices are

among the few candidates that resist postquantum cryptography.

�Advantages and Disadvantages
of Lattice-based Cryptography
The advantages of lattice-based cryptography can be summarized as follows.

•	 Wide applicability. Lattice-based cryptography can be used in

various applications, including authentication, data integrity, and

confidentiality.

•	 Versatility. Lattice-based cryptography can implement many

cryptographic techniques, such as public key cryptography, digital

signatures, and authentication methods.

•	 Ease of use. Lattice-based cryptography is particularly suitable for

software applications, where its simplicity and flexibility make it

easier to use and integrate into existing systems.

•	 Efficiency. Compared to other cryptographic methods, such as finite

fields, lattice-based cryptography is more efficient, performing better

in speed and energy consumption.

•	 Security. Lattice-based cryptography has strong mathematical

foundations, making it a secure and reliable system.

•	 Robustness. The security of lattice-based cryptography is ensured by

mathematical proofs and rigorous mathematical analysis, making the

system more robust against attacks.

Chapter 10 Lattice-based Cryptography

247

The following are some of the disadvantages.

•	 Complexity. Although lattice-based cryptography is a powerful

system with a wide range of applications, it is also a complex

mathematical system requiring specific skills to understand and

implement.

•	 Data volume. Lattice-based cryptography works best with large data

sets but can be less efficient when dealing with smaller amounts

of data.

•	 Not quantum-resistant. There is a concern that lattice-based

cryptography is not quantum-resistant, making it vulnerable to

quantum computing attacks. To address this issue, there are ongoing

efforts to develop new lattice-based algorithms resistant to quantum

computing.

•	 Implementation complexity. To use lattice-based cryptography, one

must design and implement a cryptographic system that uses lattices

as an underlying mathematical structure.

•	 Poor inherent randomness. Lattice-based cryptography is not a

good choice for creating random numbers, so applications requiring

a high level of randomness might warrant a different technique.

�Applications of Lattice-based Cryptography
Lattice-based cryptography has an important number of applications, from research to

industry applications, which are summarized as follows.

•	 Cryptography. Lattice-based cryptography is used in various

cryptographic applications, such as data encryption, digital

signatures, and authentication.

•	 Quantum computing. Lattice-based cryptography is also used to

protect against quantum computing attacks.

•	 Quantum key distribution. Lattice-based cryptography is used for

quantum key distribution (QKD), a technique for creating a secret

key between two parties communicating over an insecure channel.

Chapter 10 Lattice-based Cryptography

248

•	 Factoring and discrete logarithm problems: Lattice-based

cryptography is also used to solve factoring and discrete logarithm

problems.

•	 Mathematical problems. Lattice-based cryptography can also be

used to solve a wide range of mathematical problems, such as integer

factorization and the graph isomorphism problem.

�Security of Lattice-based Cryptography
Lattice-based cryptography is a mathematically robust cryptographic method that

uses a lattice structure to encrypt and decrypt data. It is based on the computational

hardness of certain problems, such as integer factorization, graph isomorphism, and the

halting problem. The system is secure because these problems are very difficult to solve

and require a considerable amount of computing power, if not an impossible amount,

making it practically impossible to crack the system unless you have more computing

power than the entire world combined. Lattice-based cryptography is a key component

in many technologies, including the Internet of Things, online payments, and secure

communication. Due to its strong mathematical foundations, lattice-based cryptography

is secure and reliable. Moreover, it is resistant to a wide range of attacks, including brute-

force attacks, side-channel attacks, and known plaintext attacks.

�Lattice-based Cryptography
and Quantum Computing
Lattice-based cryptography is a powerful cryptographic technique that protects

sensitive data against various threats, including quantum computing attacks. Quantum

computing is an emerging technology that promises to solve certain problems

exponentially faster than traditional computers, making conventional cryptographic

techniques vulnerable to attack. Many modern cryptographic techniques rely on

quantum-resistant algorithms to protect sensitive data against quantum computing

threats. What makes an algorithm quantum-resistant?

Chapter 10 Lattice-based Cryptography

249

In general, quantum-resistant algorithms have one or more of the following

properties

•	 They do not depend on a problem being hard to solve.

•	 They do not have a problem with noise.

•	 They do not have a problem with decoherence.

However, using lattices in cryptography is not an easy task regarding the applicability

and practical implementations because these are complex mathematical constructions

that require a solid background in algebra and understanding abstract concepts.

�Mathematical Background
This section briefly overviews the main elements and techniques required as minimum

theoretical information about the lattices and the mathematical background that a

professional should know.

Take into consideration the space Rn and a base in Rn of the form b = (b1, …, bn), with

b1, …, bn ∈ R. A lattice has the following form.

	 L b a b a Zi i i� � � � �� �| 	

In the preceding construction, ai is an integer number, and bi is the ith element of

the basis b. Moreover, L is the set of all linear combinations with integer coefficients. An

immediate example of a lattice is Zn, generated by the standard basis in Rn. Figure 10-1

shows a lattice in the Euclidean plane.

Figure 10-1.  Lattice in Euclidean plane1

1 Source: https://en.wikipedia.org/wiki/Lattice_(group

Chapter 10 Lattice-based Cryptography

https://en.wikipedia.org/wiki/Lattice_(group

250

Examples of lattice problems are the shortest vector problem (SVP), closest vector

problem (CVP), shortest independent vector problem (SIVP), GapSVP, GapCVP,

bounded distance decoding, covering radius problem, and shortest basis problem. In

cryptography, SVP and CVP are mainly used as hardness assumptions in cryptosystems.

For SVP, the following elements are given: a vector space V, a basis b in the vector

space, and a norm N. Knowing the lattice L(b), it is required to compute the shortest

vector v ∈ V such that v’s norm in V represents the minimum distance defined in L. In

other words, the vector v ∈ V should be found such that

	 || ||v L b� � �� �� 	

In the preceding relation, ∥. ∥ represents the norm in V, L(b) is the lattice defined

over the basis b and λ is the minimum distance defined in L(b). The relation gives the

search variant of the SVP. The following are the other two variants.

•	 Calculation. Find the minimum distance in lattice λ(L(b)) when

given basis b and lattice λ(L(b)).

•	 Decision. Determine whether λ(L(b)) ≤ d or λ(L(b)) > d when given

basis b, lattice λ(L(b)) and real value d > 0.

A generalization of SVP is CVP, where informally speaking, given a vector v ∈ V, it

is required to find the vector u in L(b) that is nearest to v. Note that v is not necessarily

in L(b). In some cases, there is an additional condition: the distance between v and u

should not exceed a given value.

For more information about the lattices used in cryptography, consult [2] and [3].

�Example
This section presents the GGH encryption scheme [1] that uses lattices. GGH is an

asymmetric encryption scheme; it uses the public key for encryption and the private

key for decryption. The algorithms of the cryptosystem are well-known key generation,

encryption, and decryption. The following presents them as proposed in [1].

•	 Key generation: Given a security parameter, generate a basis b in the

lattice L defined over an n-dimensional space with good properties

(such as containing nearly orthogonal vectors) and a unimodular

matrix A. The basis and the matrix compose the private key. The

public key is computed as B = A · b.

Chapter 10 Lattice-based Cryptography

251

•	 Encryption: Given the message m = (m1, …, mn) and the error

e = (e1, …, en), the encryption is c = m · B + e.

•	 Decryption: Given the encryption c = (c1, …, cn), the message is

computed in two steps.

	1.	 Compute c · b−1. This yields c · b −1 = (m · B + e)b −1 =

m · A · b · b−1 + e · b−1 = m · A + e · b−1.

	2.	 Remove e · b −1 using a technique such as Babai rounding, and

compute m = m · A · A−1.

Listing 10-1 provides the implementation of the encryption and decryption for GGH

using the following values as keys.

	 b A� � � � � �170019 2335; 	

Listing 10-1.  Encryption and Decryption Algorithm of the GGH Cryptosystem

#include <iostream>

#include "math.h"

using namespace std;

void encrypt(double message[100], double public_B[100][100], double error_

vals[100], int dimension, double output_encrypted_text[100]);

void decrypt(int dimension, double encrypted_message[100], double private_

basis[100][100], double unimodular_matrix[100][100], double output_

message[100]);

double matrix_determinant(double square_matrix[100][100], int dimension);

void matrix_inverse(double matrix[100][100], int dimension, double output_

inverse[100][100]);

void matrix_multiplication(double matrix1[100][100], double matrix2[100]

[100], double output[100][100], int dimension) ;

void matrix_addition(double matrix1[100][100], double matrix2[100][100],

double output_sum[100][100], int dimension);

void get_cofactor(double matrix[100][100], double aux[100][100], int p,

int q, int n);

void adjoint_matrix(double matrix[100][100], double adjoint[100][100],

int dimension);

Chapter 10 Lattice-based Cryptography

252

bool inverse_matrix(double matrix[100][100], double inv_matrix[100][100],

int dimension);

void vector_to_matrix(double v[100], int dimension, double output_

matrix[100][100]);

void matrix_to_vector(double matrix[100][100], double output_v[100], int

dimension);

void print_matrix(double matrix[100][100], int n, string message);

void print_vector(double vect[100], int n, string message);

void print_message(string message);

int main()

{

 int message_length = 2;

 �double b[100][100] = {{17.0, 0.0}, {0.0, 19.0}}; // the private

basis -> b

 double b_inverse[100][100];

 inverse_matrix(b, b_inverse, message_length);

 �double A[100][100] = {{2.0, 3.0}, {3.0, 5.0}}; // the private

unimodular matrix -> A

 double A_inverse[100][100];

 inverse_matrix(A, A_inverse, message_length);

 double B[100][100]; // the public key -> B

 matrix_multiplication(A, b, B, message_length);

 // Encryption

 double enc_message[100]; // stores the encryption of the message -> c

 double message[100] = {2, -5}; // the message -> m

 double error_vals[100] = {1, -1}; // the error values -> e

 print_vector(message, message_length, "message");

 encrypt(message, B, error_vals, message_length, enc_message);

 print_vector(enc_message, message_length, "encrypted message");

 // Decryption

 double recovered_message[100];

Chapter 10 Lattice-based Cryptography

253

 decrypt(message_length, enc_message, b, A, recovered_message);

 print_vector(recovered_message, message_length, "recovered message");

}

// Auxiliary function that prints a matrix on the console

void print_matrix(double matrix[100][100], int n, string message)

{

 cout<<endl<<"***"<<message<<"***"<<endl;

 for(int i = 0; i < n; i++)

 {

 for(int j = 0; j < n; j++)

 cout<<matrix[i][j]<<" ";

 cout<<endl;

 }

 cout<<endl;

}

// Auxiliary function that prints a vector on the console

void print_vector(double vect[100], int n, string message)

{

 cout<<endl<<"***"<<message<<"***"<<endl;

 for(int i = 0; i < n; i++)

 {

 cout<<vect[i]<<" ";

 }

 cout<<endl;

}

// Auxiliary function that prints a string message on the console

void print_message(string message)

{

 cout<<endl<<"***"<<message<<"***"<<endl;

}

Chapter 10 Lattice-based Cryptography

254

void encrypt(double message[100], double public_B[100][100], double error_

vals[100], int dimension, double output_encrypted_text[100])

{

 // c=m·B+e
 �double aux_message[100][100], aux_enc_message[100][100], aux_error_

vals[100][100];

 vector_to_matrix(message, dimension, aux_message);

 // Compute m·B -> aux_enc_message
 �matrix_multiplication(aux_message, public_B, aux_enc_message,

dimension);

 vector_to_matrix(error_vals, dimension, aux_error_vals);

 // Compute m·B+e -> output_encrypted_text
 �matrix_addition(aux_enc_message, aux_error_vals, aux_enc_message,

dimension);

 matrix_to_vector(aux_enc_message, output_encrypted_text, dimension);

}

void decrypt(int dimension, double encrypted_message[100], double private_

basis[100][100], double unimodular_matrix[100][100], double output_

message[100])

{

 // (1) Compute c * (b^(-1))

 // (2) Remove e * (b^(-1))

 // (3) Compute m * A * (A^(-1))

 double aux_enc_message[100][100], aux_message[100][100];

 double recovered_message[100][100];

 // Compute the inverse of the basis -> b_inverse

 double b_inverse[100][100];

 inverse_matrix(private_basis, b_inverse, dimension);

 // Compute the inverse of the unimodular matrix -> A_inverse

 double A_inverse[100][100];

 inverse_matrix(unimodular_matrix, A_inverse, dimension);

Chapter 10 Lattice-based Cryptography

255

 // (1) Compute c * (b^(-1)) -> aux_enc_message

 vector_to_matrix(encrypted_message, dimension, aux_enc_message);

 �matrix_multiplication(aux_enc_message, b_inverse, aux_message,

dimension);

 // (2) Remove e * (b^(-1)) from aux_enc_message

 �// Basically, the value aux_message[i][j] is rounded to the

neareast integer

 for (int i=0; i<2; i++)

 {

 for (int j=0; j<2; j++)

 aux_message[i][j] = round(aux_message[i][j]);

 }

 // (3) Compute m * A * (A^(-1))

 �matrix_multiplication(aux_message, A_inverse, recovered_message,

dimension);

 matrix_to_vector(recovered_message, output_message, dimension);

}

// Computes the matrix multiplication between two matrices

void matrix_multiplication(double matrix1[100][100], double matrix2[100]

[100], double output[100][100], int dimension)

{

 for (int i = 0; i < dimension; i++)

 {

 for (int j = 0; j < dimension; j++)

 {

 output[i][j] = 0;

 for (int k = 0; k < dimension; k++)

 output[i][j] += matrix1[i][k] * matrix2[k][j];

 }

 }

}

Chapter 10 Lattice-based Cryptography

256

// Computes the matrix sum between two matrices

void matrix_addition(double matrix1[100][100], double matrix2[100][100],

double output_sum[100][100], int dimension)

{

 for(int i = 0; i < dimension; ++i)

 for(int j = 0; j < dimension; ++j)

 output_sum[i][j] = matrix1[i][j] + matrix2[i][j];

}

// Computes the cofactor of the element matrix[p][q]

void get_cofactor(double matrix[100][100], double aux[100][100], int p,

int q, int n)

{

 int i = 0, j = 0;

 for (int row = 0; row < n; row++)

 {

 for (int col = 0; col < n; col++)

 {

 if (row != p && col != q)

 {

 aux[i][j++] = matrix[row][col];

 if (j == n - 1)

 {

 j = 0;

 i++;

 }

 }

 }

 }

}

// computes the determinant of a square matrix

double matrix_determinant(double square_matrix[100][100], int dimension)

{

 double matrix_det = 0.0;

 double aux_matrix[100][100];

Chapter 10 Lattice-based Cryptography

257

 if (dimension == 1)

 return square_matrix[0][0];

 if (dimension == 2)

 �return ((square_matrix[0][0] * square_matrix[1][1]) - (square_

matrix[1][0] * square_matrix[0][1]));

 else

 {

 for (int k = 0; k < dimension; k++) {

 int aux_i = 0;

 for (int i = 1; i < dimension; i++) {

 int aux_j = 0;

 for (int j = 0; j < dimension; j++) {

 if (j == k)

 continue;

 aux_matrix[aux_i][aux_j] = square_matrix[i][j];

 aux_j++;

 }

 aux_i++;

 }

 �matrix_det = matrix_det + (pow(-1.0, k) * square_matrix[0][k] *

matrix_determinant(aux_matrix, dimension - 1));

 }

 }

 return matrix_det;

}

// Computes the adjoint of a matrix

void adjoint_matrix(double matrix[100][100], double adjoint[100][100], int

dimension)

{

 if (dimension == 1)

 {

 adjoint[0][0] = 1;

 return;

 }

Chapter 10 Lattice-based Cryptography

258

 int sign = 1;

 double aux[100][100];

 for (int i=0; i<dimension; i++)

 {

 for (int j=0; j<dimension; j++)

 {

 get_cofactor(matrix, aux, i, j, dimension);

 sign = ((i + j) % 2 == 0)? 1: -1;

 �adjoint[j][i] = (sign)*(matrix_determinant(aux,

dimension - 1));

 }

 }

}

// Computes the inverse of a matrix

bool inverse_matrix(double matrix[100][100], double inv_matrix[100][100],

int dimension)

{

 double det = matrix_determinant(matrix, dimension);

 if (det == 0)

 {

 return false;

 }

 double adj[100][100];

 adjoint_matrix(matrix, adj, dimension);

 for (int i=0; i<dimension; i++)

 for (int j=0; j<dimension; j++)

 {

 if(adj[i][j] / det == -0)

 adj[i][j] = 0.0;

 inv_matrix[i][j] = adj[i][j] / det;

 }

Chapter 10 Lattice-based Cryptography

259

 return true;

}

// This function "converts" a vector (seen as a matrix with 1 line and

dimension columns) into a matrix

// The obtained matrix has on the first line the elements of the vector

// The remaining lines (*dimension* - 1) contrast 0

// This "conversion" is useful in the operations with matrices (addition,

multiplication)

void vector_to_matrix(double v[100], int dimension, double output_

matrix[100][100])

{

 for(int i = 0; i < dimension; i++)

 {

 output_matrix[0][i] = v[i];

 }

 for(int i = 1; i < dimension; i++)

 for (int j = 0; j < dimension; j++)

 {

 output_matrix[i][j] = 0;

 }

}

// This function "converts" a matrix into a vector

// All lines of the matrix has values of 0, except for the first line

// The first line of the matrix becomes the vector

void matrix_to_vector(double matrix[100][100], double output_v[100], int

dimension)

{

 for(int i = 0; i < dimension; i++)

 {

 output_v[i] = matrix[0][i];

 }

}

Chapter 10 Lattice-based Cryptography

260

The result is shown in the Figure 10-2.

Figure 10-2.  The result of the Listing 10-1

�Conclusion
This chapter discussed lattice-based cryptography and its importance. You learned the

following.

•	 The importance of lattice-based cryptography and its impact on the

future of cryptography

•	 How to encrypt and decrypt using the GGH cryptosystem

•	 How to implement practical functions and methods related to lattices

and matrices

You observed that lattice-based cryptography is a type of cryptography based on

mathematical lattices and is considered one of the most robust and secure forms of

encryption. It is a versatile and efficient tool, allowing for the implementation of various

cryptographic techniques and protocols. Lattice-based cryptography is a particular set

of algorithms that use this lattice pattern to create a ciphertext, which is then decrypted

with the help of an inverse transformation. This is similar to how a toy wooden puzzle

with a grid-like pattern is assembled: if you put the pieces together correctly, you see the

original picture. Lattice-based cryptography is used in a wide range of applications, from

secure communication in the military to online payments and digital signatures. With its

unique properties, lattice-based cryptography has become an indispensable tool in the

protection of sensitive data and the fight against cybercrime.

Chapter 10 Lattice-based Cryptography

261

Lattice-based cryptography is a powerful tool for modern cybersecurity that

provides a secure and reliable data encryption and authentication method. It is a type of

cryptography based on mathematical lattices and is considered one of the most robust

and secure forms of encryption. Lattice-based cryptography is a versatile and efficient

tool, allowing for the implementation of a variety of cryptographic techniques and

protocols. It is used in a wide range of applications, from secure communication in the

military to online payments and digital signatures. With its unique properties, lattice-

based cryptography has become an indispensable tool in the fight against cybercrime

and the protection of sensitive data.

References
[1].	 O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosystems from

lattice reduction problems”, in Advances in Cryptology—CRYPTO’97: 17th

Annual International Cryptology Conference Santa Barbara, California, USA

August 17–21, 1997 Proceedings 17, Springer, 1997, pp. 112–131.

[2].	 D. Micciancio and O. Regev, “Lattice-based cryptography”, Post-quantum

cryptography, pp. 147–191, 2009.

[3].	 H. Knospe, A course in cryptography, vol. 40. American Mathematical

Soc., 2019.

Chapter 10 Lattice-based Cryptography

263

CHAPTER 11

Searchable Encryption
A method known as searchable encryption enables users to perform keyword searches

on encrypted data without affecting the material’s security. The fundamental idea is

to encrypt the data so that the encryption keys are also stored in a searchable data

structure, such as a search tree, so that the user may perform keyword searches without

having to decode the entire set of data. This preserves the confidentiality of the data

while enabling a secure and effective search of sensitive information. Searchable

encryption is a particular case of fully homomorphic encryption which is studied.

Usually, searchable encryption is applied in cloud computing environments; for

example, a company needs to store its clients’ sensitive data in a cloud environment. For

this, the company must keep the data secure, but it also wants to make search queries

and retrieve data quickly and easily. Therefore, the company can implement a searchable

encryption scheme that encrypts data and allows search queries over encrypted data.

Authorized staff can then perform keyword searches on the encrypted data without

having to decrypt the entire data set using a searchable data structure containing

selected keywords. This enables the company to search for and retrieve data quickly and

conveniently while protecting the confidentiality and privacy of the client data.

Consider the following example to better understand the searchable encryption

method. A set of documents belong to data owner A and are kept on a cloud server. Data

user B is permitted to view these documents. User A encrypts the documents before

storing them on the server to keep them safe. In this instance, B is only permitted to look

through documents (note that they are encrypted) or to read them (note that B can read

a document only after it was retrieved from the server and decrypted).

If B wants to obtain documents from the server containing a certain keyword, such

as programming, then B builds a value called the trapdoor using this search term,

and the secret key B possesses then sends the trapdoor value to the server. The search

algorithm is specified by the searchable encryption scheme used by the server, and

the result is sent to B in an encrypted manner. Then, B can decrypt them only if it has a

decryption key.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_11

https://doi.org/10.1007/978-1-4842-9450-5_11

264

Another more applicable scenario is when a company creates software that

eventually requires the clients’ social security numbers (SSNs). The recommendations

and best practices advise encrypting SSNs when dealing with them. This can be difficult

because employees utilize SSNs, for instance, when looking for a user account. One

solution is to allow staff members to search for a certain SSN using the encrypted SSNs

(without decrypting them in any way). This would be achievable if the encryption

method were searchable.

It is important to note that searchable encryption has great potential for allowing

data users to search across encrypted data for a specific piece of content. In the

healthcare industry, where patient medical records can be searched in encrypted

form, searchable encryption is an immediate application. Other uses could be found in

business, education, or any area where data searching is necessary.

�Components
The entities and the algorithms are the components of a searchable encryption scheme.

A full overview of these components is provided in this section.

�Entities
The customers that use the software solution, the entity that maintains it, the kind

of data, the roles supported by the solution, and other factors should be clarified

before implementation. The following parties are involved in a system that employs a

searchable encryption method.

•	 Data owner. The data owner, considered a reliable party, holds n

documents with the identifiers D = {D1, …, Dn} that are described by

keywords (note that these are not metadata). The documents and

the keywords are both outsourced. The data owner encrypts the

documents using a searchable encryption scheme before outsourcing

them to the server (along with the keywords, frequently grouped into

an index structure).

•	 Data user. The search procedure may be started by the data user,

who is an authorized user of the data. The data user creates a

trapdoor value used to search through the encrypted data using the

Chapter 11 Searchable Encryption

265

query keyword for which the search is done. Additionally, if the data

user can access the private key, they can decrypt the documents

found during the search process. Recall that a data user could also be

the data owner.

•	 Server. Based on the trapdoor value from the data user, the server—

regarded as semitrusted or honest-but-curious—stores the encrypted

data and runs the search algorithm. It follows instructions for the

search algorithms and can examine the provided data, which is why

it is called semitrusted or honest-but-curious.

�Types
The following cryptographic categories can be used to group searchable encryption

schemes: symmetric searchable encryption (SSE) schemes and public key searchable

encryption (PKSE) schemes. For SSE schemes, just one type of key is used for both

encryption and decryption of the content. In other specific algorithms, PKSE schemes

have two keys: a public key to encrypt the content and a private (or secret) key to decrypt

the encrypted content.

The SSE schemes contain the following algorithms [1].

•	 KeyGeneration. The data owner runs this algorithm. A security

parameter λ serves as the input, while the secret key SK is the output.

•	 BuildIndex. The data owner runs this algorithm, and its goal is to

create an index structure containing the keywords that describe

the documents. The server’s secret key SK and the collection of

documents D are the inputs, and the output is an index structure I.

This approach starts with an empty index structure and adds

keywords that characterize the current document to the index

structure for every document in the set. Note that before being

included in the index structure, the keywords are encrypted using

the secret key SK in a specified manner that may differ from how

the documents are encrypted. A hash table, a tree, or a similar data

structure can be used as an index structure.

Chapter 11 Searchable Encryption

266

•	 Trapdoor. The data user runs this algorithm. The desired query

keyword kw, for which the search process is activated, and the secret

key SK are the inputs for the trapdoor algorithm, and the output is

a value Tkw called the trapdoor. Note that the trapdoor algorithm

encrypts more than just the search term kw. Instead, it manipulates

something under control or adds a noise value.

•	 Search. The server handles the search algorithm. The index structure

I obtained from the BuildIndex algorithm and the trapdoor value Tkw

from the prior method are the inputs for the search algorithm. The

search method should explain how the index structure is searched

for the trapdoor value Tkw (keep in mind that Tkw is not just a plain

keyword that has been simply encrypted).

The documents are given to the data user if the search algorithm finds one or more

documents that include the search term; otherwise, the server delivers the appropriate

message. The encrypting and decrypting algorithms are not listed because the data

owner can select between two alternative encryption schemes, one to encrypt the

documents and one for the searchable encryption technique. Because the searchable

encryption system does not directly include the documents, this situation is feasible.

Only the keywords and/or the index structure of encrypted keywords are used by all SSE

scheme algorithms.

A little different from the SSE version, the following describes the PEKS scheme

algorithms [2].

•	 KeyGeneration. This process, which the data owner also operates, is

similar to the KeyGeneration from SSE. The result of key generation

is a pair of keys this time, specifically the public and private keys,

while the input is once again a security parameter (PK, SK).

•	 Encryption. This algorithm is run by the owner of the data and

returns the encrypted value of the keyword KW under SK. Its inputs

are a public key (PK) and a keyword (KW).

•	 Trapdoor. The data user executes this algorithm to produce the

trapdoor value, similar to the trapdoor algorithm from SSE. The

secret key SK and the search query term KW are the inputs and the

trapdoor value TKW corresponding to the keyword KW is the output.

Chapter 11 Searchable Encryption

267

•	 Test. The public key PK, an encrypted value C (representing the

encryption of a keyword KW′), and the trapdoor value TKW are the

inputs for the test procedure, which is run on the server. The test

algorithm returns 1 when KW′ = KW and 0 when it does not.

The test algorithm does not only perform basic matching, and the trapdoor does

not only perform encryption. However, the SSE schemes and PEKS schemes mentioned

here are provided in accordance with how they were first used in this subject in the

early publications [1] and [2]. Since then, the search process’s supported choices and

algorithmic changes have been made. Some works permit the use of multiple keywords.

In contrast, others enable fuzzy search based on keywords (which permits minor

typos or format inconsistencies) [3], [4], or others enable semantic search (which returns

documents that contain keywords from the query keyword’s semantic field) [5].

Other efforts concentrate on the documents in that they can be changed directly

on the server without being retrieved, decrypted, modified, and then stored again

on the server. Other works concentrate on the index structure, which can also be

updated immediately on the server [6]. The trapdoor and the search/test algorithm and

encryption and decryption are the only algorithms in any searchable encryption system.

�Security Characteristics
A search pattern and the access pattern are two examples of items that need to be secured

in a searchable encryption system. The information that may be learned from the fact

that two separate search results share the same query keywords is related to the search

pattern. The collection of documents that emerged from a trapdoor corresponding

to a specific keyword KW is related to the access pattern. Additionally, searchable

encryption techniques must adhere to search query security criteria. Reference [7] states

that searchable encryption schemes should include the following features: controlled

searching (only authorized users may submit search queries), encrypted inquiries (the

query search itself should be encrypted before being submitted to the server), encrypted

queries (the query search itself should be encrypted before being submitted to the

server), and query isolation (the server learns nothing from the queries that it receives).

The index structure should not be vulnerable; therefore, the SSE schemes should

provide IND1-CKA and/or IND2-CKA (selected keyword attack for indexes) resistance.

In IND1-CKA, all documents used to form the index structure are assigned the same

number of keywords; however, in IND2-CKA, the number of keywords used to describe

Chapter 11 Searchable Encryption

268

each document is flexible. However, the PEKS scheme should be resistant to the chosen

keyword attack (that is, a challenge between an attacker and the structure that manages

the PEKS scheme).

The forward and backward privacy for the dynamic searchable encryption schemes,

which permits inserting, updating, or deleting to be applied over the set of documents

or the keywords directly on the server, without the need to decrypt it, are security

requirements that were recently added. Backward and forward privacies refer to the

information found during the insertion, deletion, and updating processes. Forward

privacy means that the current updating process is not connected to earlier operations.

In contrast, backward privacy refers to the information found when a search is done for a

term for which documents have been removed before the present search.

�An Example
The example from [18] demonstrates the usage of searchable encryption, a complex

encryption method that allows users to perform keyword searches inside encrypted

documents. Remember that the participants in the system are the data user, who is

authorized to submit search requests on the cloud server. The data owner, who owns

a set of documents S = {D1, …, Dn} , who prepares the system by generating the keys,

encrypts the documents and the keywords, and stores them on the cloud server, and

the cloud server, which stores the documents in an encrypted format and executes the

search algorithm.

The work [18] uses elliptic curves (see Chapter 9) in the searchable encryption scheme.

Currently, elliptic curves are used in important areas such as blockchain ([14], [15])

and the Internet of Things ([16], [17]).

Figure 11-1 [18] shows an example of a searchable encryption scheme that uses

elliptic curve cryptography and is designed for the big data environment (see Chapter 15).

In [18], the Elliptic Curve Digital Signature Algorithm (ECDSA) is used to secure the

content of the courses available for students on an e-learning platform. The security

parameter (λ) for the key generation algorithm of the searchable encryption scheme is the

private key from the ECDSA algorithm.

Due to the method’s difficulty, attempts have been made, but there is no practical

implementation of a searchable encryption system that can be utilized in a real context.

However, an example of a demonstration can be found in [19], with the contributor’s

explicit warning: This repository provides implementations of SSE as a proof of

Chapter 11 Searchable Encryption

269

concept and cannot truly be used for real sensitive applications. Before implementing

a searchable encryption system, the following fundamental principles should be

considered.

•	 The architecture of the software application (server, database,

services, etc.)

•	 The hardware components and how they are managed for the current

applications that include security and cryptographic techniques

•	 The architecture should be designed such that processes within the

searchable encryption be represented as independent algorithms

such that their deployment is made correctly between the end users

and the existing network infrastructure

Chapter 11 Searchable Encryption

270

Figure 11-1.  An example of a practical searchable encryption scheme [18]

Chapter 11 Searchable Encryption

271

Note that the searchable encryption scheme presented in Figure 11-1 is partitioned

into more steps. Every step is an algorithm that can be considered a separate

instance from the searchable encryption scheme. Furthermore, the instances can be

implemented as software modules or services or IoT devices (for example, devices such

as Intel NUC PC or a Raspberry PI). The distribution and deployment of the software

modules or services among the users can be realized through a distributed network, for

example, on a cloud computing network or a regular network for small and medium

business architectures.

The algorithms in [18] show the steps in Figure 13-1, which presents a searchable

encryption for a big data environment. Before implementing the steps, it is necessary to

properly understand how the following steps are organized as independent algorithms.

	 1.	 (KO, Ks, PP) ← KeyGeneration(1λ, P, S). The data owner O runs

this probabilistic algorithm for which the input values are the

security parameter λ, a policy P. The output is a tuple composed

of the owner’s secret key KO, the server key Ks, and the public

parameters PP.

	 2.	 ID ← BuildIndex(Daug, KO, PP). The data owner O runs this

probabilistic algorithm for which the input values are the

description of the data set Daug (namely, the keywords that

describe each document) and the secret key of the owner (KO),

and the output is an index structure ID.

	 3.	 KU ← (u, λ(u), KO, PP). The data owner O runs this probabilistic

algorithm to enroll a new user in the e-learning platform system.

The input values for the algorithm are the identity of the new user,

the level of access of the user (user’s role), and the owner’s O key.

The output is the secret for the new user.

	 4.	 Trapdoor(ω, λ(u)) ←ww Query(ω, Ku). The data user that has the

proper clearance λ(u) for generating a search query runs this

probabilistic algorithm. The input values are the keyword ω ∈ Δ

(where Δ is a dictionary of keywords) and the user’s secret key.

The output is the query token (trapdoor value) Trapdoor(ω, λ(u)).

Chapter 11 Searchable Encryption

272

	 5.	 R(ω, λ(u)) ← Searching(Trapdoor(ω, λ(u)), ID, Ks). The server (S) runs

this probabilistic algorithm that searches the index for the data

items that contain the query keyword ω. The input values are

the search query and the index, and the output is R(ω, λ(u)), which

includes a set of identifiers of the data items dj ∈Dω, λ(u) that

contains the query keyword ω such that λ(dj) ≤ λ(u), where λ(ui)

is the access level of the user that triggered the search query or a

failure symbol φ.

	 6.	 (KO) ← RevokeUser(u, KO, PP). The data owner O runs this

probabilistic algorithm for revoking a specific user from the

system. The input values are the user’s ID, the data owner’s secret

keys, and the server, while the output is new keys for the owner

and server.

The searchable encryption scheme designed for this chapter can be correct

if for all k ∈ ℕ, for all KO, KS output by KeyGen(1λ, P),for all Daug, for all ID that

is output by BuildIndex(Daug, KO), for all ω ∈ Δ,for all u ∈ U for all Ku output by

AddUser(KO, u, λ(u), PP),Search(ID, Tω, λ(u)) = Dω, λ(u).

Listing 11-1 presents the pseudocode, which is a sketch for the practical

implementation of the searchable encryption scheme proposed in Figure 11-1. Note

that the implementation is purely demonstrative, as the implementations (frameworks,

libraries, etc.) for searchable encryption do not currently exist.

Listing 11-1.  Guideline Implementation of the Searchable Encryption Scheme

#include <iostream>

#include <fstream>

class KeyGeneration

{

// Step 1

// The data owner runs the algorithm

// from KeyGeneration step (algorithm)

// global variables

public: string securityParameter;

 string ownerID;

Chapter 11 Searchable Encryption

273

 string policyContent;

 string serverIdentity;

// the function will return the policy,

// as a content or file

public: string GetPolicy(ifstream& policyContent)

{

string content = "";

if (policyContent.is_open())

{

 while (getline (policyContent, line))

 {

 content += line;

 }

 policyContent.close();

 }

 else policyContent = "Cannot read the policy file";

 return policyContent

}

// getting server identity can be tricky and it has

// different meanings, such as the name of computer,

// IP, active directory reference name etc...

// For the current example, we use the hardware ID

public: string GetServerIdentity()

{

string serverIdentity = "";

// Implementation for obtaining the server identity

// for this method, Windows WMI can be used

// this link provides more details:

// https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-

page?redirectedfrom=MSDN

return serverIdentity

}

Chapter 11 Searchable Encryption

274

// class constructor

public: KeyGeneration(){}

// let's generate the secret key, server key

// and public parameters

// "#" represents the separator

public: string ReturnParameters(KeyGeneration kp)

{

string sbParameters = "";

sbParameters += kp.ownerSecretKey + "#" + kp.serverKey + "#" +

kp.publicParameters;

return sbParameters;

}

}

class BuildIndex

{

// Step 2

// the algorithm from BuildIndex step (algorithm)

// are run and invoked by the data owner

// constructor of the class

public: void BuildIndex(){}

// the function centralize the build index parameters

// after their initialization and processing

public: void UseBuildIndexParameters()

{

list<string> descriptionDataSet;

string ownerPrivateKey = "";

string outputIndex = "";

}

//simulation of getting the data set and their

//descriptions

public: list<string> GetDataSet()

{

list<string> ll;

Chapter 11 Searchable Encryption

275

for(int i = 0; i < dataSet.size(); i++)

{

ll.push_back(description[i]);

}

}

// getting the private of the owner

public: string ownerPrivateKey()

{

string privateKey = "";

// get the private key and work with it arround

return privateKey;

}

// get the index

public: string Index()

{

string index = "";

// implement the query for getting

// or generating the index

return index;

}

}

class AddUser

{

// Step 3

// the algorithm from AddUser step (algorithm)

// are run and invoked by the data owner

// constructor of the class AddUser

public: AddUser() {}

// property for getting the identity of the user

// see below the Class Student

public: string IdentityOfTheUser()

Chapter 11 Searchable Encryption

276

{

string identity = "";

// implement the way of getting

// the identity of the user

return identity;

}

// property for getting the owners key

public: string OwnerSecretKey()

{

string secretKey = "";

// implement the querying method

// for secret key

return secretKey;

}

public: void AssignSecretKeyToUser()

{

AddUser u = new AddUser();

Student stud = new Student(u. OwnerSecretKey);

}

}

Class query

{

// Step 4

// the algorithm from Query step (algorithm)

// are runned and invoked by the user

// constructor of the class Query

public: Query() {}

// function for getting the keywords

public: string Keyword()

{

string kw = "";

Chapter 11 Searchable Encryption

277

// query for the keywords;

return kw;

}

// function for getting the secret key of the users

public: string UserSecretKey()

{

string secretKey = "";

// implement the querying method

// for secret key

return secretKey;

}

// the generation of the output as query

// token for the trapdoor

public: string QueryToken()

{

string query_token = "";

// generate and build

// the query token for trapdoor

return query_token

}

}

Class Search

{

// Step 5

// the algorithm from Search step (algorithm)

// are run and invoked by the server

// the constructor of the Search class

public: Search() {}

Chapter 11 Searchable Encryption

278

public: string SearchQuery()

{

string query = "";

// take the search query

return query;

}

public: string Index()

{

string index = "";

// take the search query

return index;

}

public: string ReturnResult()

{

string result = "";

string setOfIdentifiers = "";

// based on the search query and index,

// get the set identifiers of the data items

setOfIdentifier = "query for identifiers";

// build the result. "#" is the separator for

// illustration purpose only

result = SearchQuery + "#" + Index;

return result;

}

}

class RevokeUser

{

// Step 6

// the algorithm from Search step (algorithm)

// are run and invoked by the data owner

Chapter 11 Searchable Encryption

279

// constructor of RevokeUser class

public: RevokeUser(){}

// second constructor of the class

// this can be implemented as a

// solution for revoking a user

public: RevokeUser(string userID, string secretKeyDataOwner, string

secretKeyServer)

{

// implement the revoking process

// output the new key for data owner

// output the new key for server

}

}

public class Course

{

// the db_panel represents an instance of the

// file which contains classes for each of tables

// from the database

public: Database db_panel;

// Class Courses it is a generated class and assigned

// to the table Courses from the database

public: Courses c;

// student ID

string demoStudentID = "435663";

// select the course ID based on the student

public: string GetCourse()

{

// select the courses for a

// specific user (student)

Course c = db_panel.GetCourse(student.Id);

Chapter 11 Searchable Encryption

280

return c;

}

}

Class Student

{

public: string secretKey {get; set;}

public: int StudentId {get; set;}

public: string CourseID {get; set;}

public: string StudentName {get; set;}

public: string StudentIdentity {get; set;}

public: string StudentPersonalCode {get; set;}

public: void Student(string secret_key)

{

 secretKey = secret_key;

}

}

string queryKeywod =

 SecureSearch. GetPrefix("123456789");

string resultStudent = SecureSearch.GetStudent. StartsWith(searchPrefix);

�Conclusion
This chapter discussed searchable encryption methods and offered recommendations

for potential use in practice that may benefit from searchable encryption.

Searchable encryption, which is a type of fully homomorphic encryption, has

considerable potential. This chapter described the key elements of searchable

encryption schemes. If you are interested in additional theoretical facets of searchable

encryption, any of the references provide them with a more in-depth understanding of

SE. You can refer to [11] or [12] for some contemporary pseudocode samples and [19] for

an SSE implementation demonstration.

Chapter 11 Searchable Encryption

281

References
[1].	 Goh, E. J. (2003). Secure indexes. IACR Cryptology ePrint Archive, 2003, 216.

[2].	 Boneh, D., Di Crescenzo, G., Ostrovsky, R., and Persiano, G. (2004, May).

Public key encryption with keyword search. In International conference on the

theory and applications of cryptographic techniques (pp. 506–522). Springer,

Berlin, Heidelberg.

[3].	 Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., and Lou, W. (2010, March). Fuzzy

keyword search over encrypted data in cloud computing. In 2010 Proceedings

IEEE INFOCOM (pp. 1–5). IEEE.

[4].	 Bringer, J., Chabanne, H., and Kindarji, B. (2009, June). Error-tolerant

searchable encryption. In 2009 IEEE International Conference on

Communications (pp. 1–6). IEEE.

[5].	 Lai, J., Zhou, X., Deng, R. H., Li, Y., and Chen, K. (2013, May). Expressive search

on encrypted data. In Proceedings of the 8th ACM SIGSAC symposium on

Information, computer and communications security (pp. 243–252).

[6].	 Bost, R. (2016, October). ∑ oφoς: Forward secure searchable encryption.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security (pp. 1143–1154).

[7].	 Song, D. X., Wagner, D., and Perrig, A. (2000, May). Practical techniques for

searches on encrypted data. In Proceeding 2000 IEEE Symposium on Security

and Privacy. S&P 2000 (pp. 44–55). IEEE.

[8].	 Ghareh Chamani, J., Papadopoulos, D., Papamanthou, C., and Jalili, R. (2018,

January). New constructions for forward and backward private symmetric

searchable encryption. In Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security (pp. 1038–1055).

[9].	 Zuo, C., Sun, S. F., Liu, J. K., Shao, J., and Pieprzyk, J. (2019, September).

Dynamic searchable symmetric encryption with forward and stronger

backward privacy. In European Symposium on Research in Computer Security

(pp. 283–303). Springer, Cham.

[10].	 Crypteron Documentation, https://www.crypteron.com/docs/

[11].	 Ma, C., Gu, Y., and Li, H. Practical Searchable Symmetric Encryption

Supporting Conjunctive Queries without Keyword Pair Result Pattern Leakage.

[12].	 Fu, S., Zhang, Q., Jia, N., and Xu, M. (2020). A Privacy-preserving Fuzzy Search

Scheme Supporting Logic Query over Encrypted Cloud Data. Mobile Networks

and Applications, 1–12.

Chapter 11 Searchable Encryption

https://www.crypteron.com/docs/

282

[13].	 Boneh, Dan, et al. Public key encryption with keyword search. International

conference on the theory and applications of cryptographic techniques.

Springer, Berlin, Heidelberg, 2004.

[14].	 Bonnah, Ernest; Shiguang, Ju. Privacy Enhancement Scheme (PES) in a

Blockchain-Edge Computing Environment (October 2019). IEEE Access 2020.

[15].	 Rahman, Mohammad Shahriar, et al. Accountable cross-border data sharing

using blockchain under relaxed trust assumption. IEEE Transactions on

Engineering Management, 2020.

[16].	 C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A Survey of Provably Secure

Searchable Encryption,” ACM Computing Surveys, vol. 47, no. 2, pp. 1–51,

Aug. 2014.

[17].	 Panda, Prabhat Kumar, and Sudipta Chattopadhyay. A secure mutual

authentication protocol for IoT environment. Journal of Reliable Intelligent

Environments, 2020, pp. 1–16.

[18].	 Mihailescu Marius Iulian, Nita Stefania Loredana, and Pau Valentin Corneliu.

E-Learning System Framework using Elliptic Curve Cryptography and

Searchable Encryption. In Proceedings of International Scientific Conference

for e-Learning and Software for Education, vol. 1, pp. 545–552, 2020.

[19].	 OpenSSE/opensse-schemes, Rafael Bost, https://github.com/OpenSSE/

opensse-schemes

Chapter 11 Searchable Encryption

https://github.com/OpenSSE/opensse-schemes
https://github.com/OpenSSE/opensse-schemes

283

CHAPTER 12

Homomorphic Encryption
Homomorphic encryption is a form of encryption that enables computation on

encrypted input without first decrypting it. This is significant because it enables

calculations that protect the privacy of sensitive data, allowing sensitive data to be

handled safely without the danger of exposure. This can be advantageous when privacy

is an issue, such as cloud computing and big data analysis.

The most important condition in homomorphic encryption is that the value

achieved by decrypting the result obtained by applying the calculations over the

encrypted data must be the same as that achieved by applying the same calculations

on the plain data. With these properties, homomorphic encryption schemes have

great potential because they enable third-party entities to apply functions (therefore

algorithms) to encrypted data without needing access to plain data. In this way, the data

is protected and secured while being processed.

A real-life example is when you are on vacation in a foreign country, and you want

to search on the Internet using your phone for local attractions, such as museums,

exhibitions, or art galleries. Even this simple search on the Internet may reveal a lot

of information about you: your exact location, your cultural interests, the time of the

search query, and so on. If the search engine used a homomorphic approach, nothing

would be revealed to anyone, including the search engine itself, because every piece of

information and even the search query would be encrypted. Your result would also be

encrypted; therefore, only you can decrypt it. Homomorphic encryption has applications

in many areas, such as finance/business, healthcare, and any domain that works with

sensitive data. Furthermore, some formal aspects of homomorphic encryption are given.

Considering two structures of the same type (groups, rings, or fields) and the

corresponding operations (A, ∗), (B, ⊥), the function g : A → B is called homomorphism

between A and B if the following condition is satisfied.

	 g x x g x g x x x A1 2 1 2 1 2�� � � � � � � � � �, , 	

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_12

https://doi.org/10.1007/978-1-4842-9450-5_12

284

Remember that a general encryption system consists of the following algorithms:

key generation, encryption, and decryption. In addition to these three algorithms,

homomorphic encryption schemes have an additional algorithm called evaluation

and are usually denoted with Eval, which formally describes the most important rule

mentioned. The Eval algorithm’s input and output are in an encrypted format. In the

Eval algorithm, the function g is applied over encrypted data c1 and c2, without accessing

the plain data m1 and m2, and has the following property.

	
Dec key Eval key c c f m mpriv g eval, , , ,1 2 1 2� �� � � � �

	

In homomorphic encryption, only two operations must have homomorphic

properties: addition and multiplication. This is because an arbitrary function can be

represented as a circuit using just gates corresponding to the addition operation (OR

gate) and multiplication operation (AND gate). The idea of homomorphic encryption

started in the late 1970s; at that time, the concept was called privacy homomorphism [1].

Among the first encryption schemes with homomorphic properties is the unpadded RSA

algorithm [2], in which the operation with homomorphic properties is multiplication.

	 Encyption m Encryption m m m ne e
1 2 1 2� � � � � � mod 	

	 � � �mm n
e

1 2 mod 	

	 � � ��Encryption m m1 2 	

In this computation, m1, m2 are two plain messages, and Encryption is the encryption

function.

Homomorphic encryption schemes can be categorized into three classes, as follows.

•	 Partial homomorphic encryption (PHE) supports only one

operation applied over encrypted data an unlimited number of times.

Examples of PHE schemes are RSA [2], Goldwasser-Micali [3], and

El-Gamal [4]. Most schemes from this category represent a basis for

other homomorphic schemes.

•	 Somewhat homomorphic encryption (SWHE) supports both

operations applied to the encrypted data but for a limited number of

times. The encryption scheme from [5] is an example of SWHE.

Chapter 12 Homomorphic Encryption

285

•	 Fully homomorphic encryption (FHE) supports both operations

over encrypted data an unlimited number of times. FHE is considered

“cryptography’s holy grail” or “the Swiss army knife of cryptography” [6]

due to its capability to enable any computation over the encrypted data

any number of times. In 2009, the first FHE scheme [7] was proposed,

and the mathematical object used as the foundation is the ideal lattice.

The scheme from [7] is very important in cryptography because it

opened the way for the FHE schemes. Even though it is unpractical

in the form in which it was proposed due to its complexity and

abstraction, it represented a basis for subsequent schemes. In addition,

in [7], a general framework for the FHE schemes was proposed.

Homomorphic encryption can be helpful in cloud computing and big data since it

enables calculations on encrypted data while maintaining privacy and security. This can

be valuable in applications requiring the processing and analysis of sensitive data where

the danger of exposure is high.

However, it should be noted that homomorphic encryption is still a very recent and

rapidly developing topic and that practical considerations now constrain its usage in

large-scale cloud computing and big data contexts. They include high processing costs,

poor performance, and restrictions on computations performed on encrypted data.

�Full Homomorphic Encryption
This section explains fully homomorphic encryption (FHE) in more detail because it

represents an important topic of cryptography that can resolve many security concerns

and issues. A particular model of quantum computations, called boson scattering,

enables quantum homomorphic encryption that provides theoretically limited security.

This scheme makes wondering if quantum methods can generate theoretically secure

FHE schemes. In [25], the authors prove that quantum techniques do not enable efficient

theoretically secure FHE that completely hides the plaintext.

As mentioned in the previous section, the first FHE scheme was proposed by Craig

Gentry in 2009, and the mathematical object that represents the foundation is the ideal

lattices with the hardness assumption (problems regarding a topic that cannot be solved

in an efficient time, i.e., in polynomial time), called the ideal coset problem. Following

Gentry’s scheme, many FHE schemes were proposed based on different mathematical

techniques. A right-away subsequent work is [8], in which the FHE scheme uses integer

Chapter 12 Homomorphic Encryption

286

arithmetic. However, the noise introduced in the schemes from [7] and [8] grows fast,

representing a drawback because it greatly affects the applicability and security; thus,

the homomorphic capabilities are restricted. Due to noise growth, decryption cannot be

performed after some point.

In the second generation of the FHE schemes that include works such as [9] and [10],

the noise is handled more efficiently, improving performance and powerful security

under various hardness assumptions. The leveled encryption schemes and bootstrappable

encryption schemes are the results of this generation. The first ones evaluate the circuits

with a given polynomial depth, while the second ones can be modified to become FHE

schemes. If an encryption scheme can evaluate its decryption circuit and one NAND

gate, then it is a bootstrappable encryption scheme.

The third generation of FHE schemes is opened by the work [11], which uses a new

technique to handle noise. The schemes of the third generation are less performant

than those from the second generation, but their hardness assumptions can be weaker.

The basis for many schemes in this generation is asymmetric multiplication. That is,

considering two encrypted texts c1, c2, the product c1 · c2 is different from the product

c2 · c1, although both products encrypt the same product b1 · b2 of the plain texts b1 and b2.

FHE can be used in many areas of cryptography, including the following.

•	 Outsourcing. Private data can be kept safe if stored in third-party

storage or analyzed by third-party entities. A classic example of this

area is that of a company that stores its data on cloud storage. Before

uploading the data to the cloud, the owner must encrypt it. FHE

would be useful in such scenarios because the cloud provider can

analyze the data from the company in an encrypted format without

accessing the plain data. Moreover, the result of the computations is

sent by the cloud provider in the encrypted format to the data owner,

which is decrypted only by the decryption key’s owner.

•	 Private information retrieval (PIR) or private queries. PIR and

private queries are useful when a database is queried or an application

uses a search engine. Another scenario is when a client wants to

send a query to a database server, but the client wants the server to

learn nothing about its query. The solution is as follows: the client

encrypts the query and sends it to the server; then, the server applies

the encrypted query over encrypted data and responds with the

encrypted result.

Chapter 12 Homomorphic Encryption

287

•	 General computations between two entities (two-party

computations). Consider two parties A and B, each of whom owns a

secret input x and y, respectively, and a common function F known by

both. To apply the function F over its private input x, party A computes

r = F(x, y). From here, A learns only the value of r and nothing about

y. On the other hand, B learn nothing about x or r. This is the same

as B computing Fy(x) in the semihonest model, where A encrypts x

and sends it to B because semantic security assures B learns nothing

about the plain value corresponding to x. In such situations, using FHE

would simplify the things because A would just apply F as F(x,y) and

achieve the result in an encrypted format. But it would need and learn

nothing else because everything is encrypted, including F.

�A Practical Example of Using FHE
The following are other well-known C++ libraries that implement FHE.

•	 HElib [12], developed at IBM, implements the schemes BFV

(Brakerski/Fan-Vercauteren) [17] and CKKS (Cheon-Kim-Kim-Song)

[18], and it can be used in Linux and MacOS distributions.

•	 TFHE [13] implements the scheme proposed in [15] and can be used

with Linux distributions. In the same paper, the library is described.

•	 PALISADE [14] implements the BGV (Brakerski-Gentry-

Vaikuntanathan) [16], BFV [17], CKKS [18], and FHEW schemes

[19] and a more secure version of the TFHE scheme [13], including

bootstrapping. It is supported on Linux, Windows, and macOS

distributions.

•	 SEAL [20]–[23] implements the BFV [17] and CKKS [18] schemes and

can be used with .NET or C++. In addition, the SEAL library can be

used in Windows, Linux, or macOS environments.

These libraries provide robust tools for creating FHE in C++ programs. It should be

noted, however, that FHE is a computationally costly and complex procedure that may

not be ideal for many applications.

This section uses the SEAL library to demonstrate an FHE example. The SEAL library

implements BFV [12] and CKKS [13] encryption schemes.

Chapter 12 Homomorphic Encryption

288

In [12], the set of the polynomials with a maximum degree n and the coefficients

computed modulo t is used in the definition of the encryption function. The formal

representation of this set is Rt = ℤt[x]/(xn + 1). The encrypted text is from the Rq set, where

the polynomials have coefficients modulo q. The addition and the multiplication are the

homomorphic operations in this encryption scheme, preserving the ring structure of Rt.

The value that needs to be encrypted using BFV schemes first needs to be brought to a

polynomial form accepted by the structure Rt. In [12], the encryption scheme includes

the following algorithms: SecretKeyGen (the security parameter is used to generate

the secret key), PublicKeyGen (the secret key is used to generate the public key),

EvaluationKeyGen (the secret key is used to generate the evaluation key), Encrypt (the

plain value is encrypted using the public key), Decrypt (the encrypted value is decrypted

using the secret key), Add (performs the addition between two encrypted values), and

Multiply (performs the multiplication between two encrypted values). Keep in mind

that the result of both operations, namely, addition and multiplication, have a form that

is compatible with the structure Rq. For more information and a formal description of

this encryption scheme, you can consult [12].

While [12] provides a way to apply modular arithmetic over integers, in [13], the

authors provide ways to apply it over real numbers and complex numbers. In [13], the

results are approximate, but the techniques are among the best for summing up real

numbers in an encrypted format, applying machine learning algorithms on encrypted

data, or computing the distance between encrypted locations.

Before using the SEAL library, some preparation steps are needed, which are

described next.

First, install a version of Visual Studio 2022. The free community version can be

found at https://visualstudio.microsoft.com/vs/community. Make sure that the C++

components (under desktop development with C++) are checked to be installed.

Then, download Git from https://git-scm.com/download/win and install it

following the installation steps with the default values (needed to build and install the

SEAL library). You also need to download and install CMake from https://cmake.org/

download/. After everything is set, the SEAL library can be downloaded from the GitHub

repository: https://github.com/microsoft/SEAL (when writing this book, the latest

version of SEAL is 4.1.1).

After downloading the source code, extract the zip file. Use the default Seal-master

and extract it at a desired path (in our example, E:\examples\seal). Make sure you have

the following files in the folder, as shown in Figure 12-1. Pay attention to the entire path

because it is important for building, installing, and using the library.

Chapter 12 Homomorphic Encryption

https://visualstudio.microsoft.com/vs/community
https://git-scm.com/download/win
https://cmake.org/download/
https://cmake.org/download/
https://github.com/microsoft/SEAL

289

Figure 12-1.  Structure of the extracted files of the SEAL library

The folder used for C++ development is the native folder from the solution. To use

the SEAL library in your own C++ application, you first need to generate the seal.lib

library. To do this requires several steps.

Chapter 12 Homomorphic Encryption

290

First, open PowerShell in administrator mode and place the current directory where

the files are extracted using the cd command, as shown in Figure 12-2.

Figure 12-2.  Placing the current directory in PowerShell

Next, generate and build the files for the x64 platform for Visual Studio 2022 using

the following command in PowerShell. Pay attention to this step because the optional

dependencies need to be disabled (options set to OFF) to avoid installing other

dependencies. The result should be similar to the one in Figure 12-3.

cmake -S . -B build -G "Visual Studio 17 2022" -A x64 -DSEAL_USE_MSGSL=OFF

 -DSEAL_USE_ZLIB=OFF -DSEAL_USE_ZSTD=OFF

Figure 12-3.  Generate and build the files for the x64 platform

Chapter 12 Homomorphic Encryption

291

If the desired platform is x86, then the following command should run.

cmake -S . -B build -G "Visual Studio 17 2022" -A Win32 -DSEAL_USE_

MSGSL=OFF -DSEAL_USE_ZLIB=OFF -DSEAL_USE_ZSTD=OFF

Next, generate and build the files for the Release configuration using the following

command and as shown in Figure 12-4.

cmake --build build --config Release

Figure 12-4.  Generate and build the files for the Release configuration

Finally, an optional step is to install the library using the following command. The

library is installed at path C:\Program Files (x86)\SEAL\ by default. The result should be

similar to the one presented in Figure 12-5.

cmake --install build

Chapter 12 Homomorphic Encryption

292

Figure 12-5.  Installing the library

A build folder was created in the working directory (see Figure 12-6).

Figure 12-6.  The build folder

With all these settings, the SEAL library, called seal-4.1.lib, is found under build\

lib\Release. You can proceed to create your own C++ application that uses SEAL.

Chapter 12 Homomorphic Encryption

293

Now let’s create an application that uses FHE. Create in Visual Studio a new project of

type Console App with C++ called Seal-example. Under the Source Files folder within the

solution, a cpp file called Seal-example.cpp should exist, such as the code in Listing 12-1

and some default comments. The following examples follow the guidelines from [23].

Listing 12-1.  The Initial Main Function

#include <iostream>

int main()

{

 std::cout << "Hello World!\n";

}

Furthermore, the application needs to be prepared using the SEAL library as

described next. First, right-click the SEAL-example solution and go to Properties. Here,

make sure All Configurations and All Platforms are selected (see Figure 12-7).

Figure 12-7.  Settings for using the SEAL library (1)

Chapter 12 Homomorphic Encryption

294

Then, under C/C++ ➤ General ➤ Additional Include Directories, add the path

where sources were generated (in our example, the path is E:\examples\seal\SEAL\
SEAL-main\native\src, see Figure 12-8).

Figure 12-8.  Settings for using the SEAL library (2)

Finally, include seal.lib: under Linker ➤ Additional Library Directories and add

the path to seal.lib (in our example, the path is E:\examples\seal\SEAL\SEAL-main\
build\lib\Release, see Figure 12-9a). The final step is to add seal.lib to Linker ➤

Input ➤ Additional Dependencies (see Figure 12-9b).

Chapter 12 Homomorphic Encryption

295

Figure 12-9.  (a) Settings for using the SEAL library for the main Linker options
(b) Settings for using the SEAL library for Linker ➤ Input options

Chapter 12 Homomorphic Encryption

296

To ensure that SEAL was added properly, just add the line in Listings 12-2 and 12-3 in

the main function and then build the solution.

If a success message is returned, then you can proceed further; otherwise, if an error

message similar to 'for_each_n': is not a member of'std' is returned, then one

more step is needed: change the C++ Language Standard under C/C++ ➤ Language

from Default to ISO C++17 Standard (/std:c++17).

Create a function called seal_example_bfv, in which functionalities provided by

the SEAL library for the BFV encryption scheme are added. First, the encryption parameters

should be added: the degree of the polynomials from the ring (n), the modulus for the

coefficients of the plaintext (t), and the modulus for the coefficients of the encrypted text (q).

The libraries in Listing 12-2 should be added to use the SEAL functionalities. The

application is notified that the BFV scheme is used and instantiates the parameters using

the line of codes in Listing 12-3.

Listing 12-2.  The Libraries Included with SEAL

#pragma once

#include "seal/seal.h"

#include <iostream>

#include <algorithm>

#include <chrono>

#include <cstddef>

#include <fstream>

#include <iomanip>

#include <iostream>

#include <limits>

#include <memory>

#include <mutex>

#include <numeric>

#include <random>

#include <sstream>

#include <string>

#include <thread>

#include <vector>

using namespace std;

using namespace seal;

Chapter 12 Homomorphic Encryption

297

Listing 12-3.  Instantiating the BFV Parameters

void seal_example_bfv()

{

 EncryptionParameters BFV_parameters(scheme_type:: bfv);}

After instantiating the BFV parameters, they should receive each value. The degree

of the polynomial modulus is a power of 2 and represents the degree of a cyclotomic

polynomial1.

The recommended values are {1024, 2048, 4096, 8192, 16384, 32768}. With a

higher value for the polynomial degree, more complex computations on the encrypted

data can be made, but the drawback is that the performance decreases. A fair value is

4096, which allows an acceptable number of computations with good performance;

therefore, this value is chosen for our application. The modulus for the coefficients of the

plaintext is generally a positive integer. The value for this parameter is a power of two in

our example.

Depending on the purpose of the application, the modulus can be a prime number.

The modulus for the coefficient of the plaintext is used to provide the size in bits for the

plain data and to establish limits for consumption in the multiplication operation. The

last parameter is the modulus for the coefficients of the encrypted text, which represents

a large integer value. The value for this modulus should be represented as a product of

prime numbers. When a larger value is chosen, more computations over the encrypted

data can be made. However, there is a relation between the degree of the polynomial

modulus and the size in bits of the modulus for the coefficients of the encrypted

text; therefore, a 4096 value corresponds to 109. Comprehensive explanations for the

scheme’s parameters can be found in [20] and [21].

Another functionality that needs a few words is the noise budget, representing the

number of bits. In short, the initial noise budget is set depending on the encryption

parameters and the rate with which the homomorphic operations (addition and

multiplication) consume it. The parameter with the greatest influence in setting the

noise budget is the coefficient modulus—when a higher value is picked. The budget is

higher. When the noise budget for an encrypted text becomes 0, the decryption of the

encrypted text cannot be performed because the noise it contains has a value that is

too large.

1 https://en.wikipedia.org/wiki/Cyclotomic_polynomial

Chapter 12 Homomorphic Encryption

https://en.wikipedia.org/wiki/Cyclotomic_polynomial

298

With these brief descriptions, the parameters can be initialized using the lines of

code in Listing 12-4, added in the function seal_example_bfv (keep the declaration in

Listing 12-3).

Listing 12-4.  Initialization of the BFV Parameters

size_t polynomial_degree = 4096;

BFV_parameters.set_poly_modulus_degree(polynomial_degree);

 �BFV_parameters.set_coeff_modulus(CoeffModulus::BFVDefault(

polynomial_degree));

BFV_parameters.set_plain_modulus(1024);

The SEAL context checks the correctness of the parameters (code added in function

seal_example_bfv).

SEALContext seal_context(BFV_parameters);

Furthermore, the BFV encryption scheme classes need to be instantiated, as in

Listing 12-5 (code added in function seal_example_bfv).

Listing 12-5.  Instantiating the Classes for the BFV Encryption Scheme

KeyGenerator keygen(seal_context);

PublicKey encryption_key;

keygen.create_public_key(encryption_key);

SecretKey decryption_key = keygen.secret_key();

Encryptor bfv_encrypt(seal_context, encryption_key);

Evaluator bfv_evaluate(seal_context);

Decryptor bfv_decrypt(seal_context, decryption_key);

In the following, for our example, the polynomial p(x) = 3x4 + 6x3 + 9x2 + 12x + 6 is

evaluated for x = 3. For a quick check, use the value x = 3 to encrypt and then decrypt

it. Listing 12-6 shows this process and some metrics (code added in seal_example_bfv

function).

Listing 12-6.  Encrypting and Decrypting x=3

int value_x = 3;

Plaintext x_plaintext(to_string(value_x));

cout << "The value x = " + to_string(value_x)

Chapter 12 Homomorphic Encryption

299

 + " is expressed as a plaintext polynomial 0x"

 + x_plaintext.to_string() + "." << endl;

Ciphertext x_ciphertext;

cout << "Encrypting x_plaintext to x_ciphertext..." << endl;

bfv_encrypt.encrypt(x_plaintext, x_ciphertext);

cout << " - the size of the x_ciphertext (freshly

 encrypted) is : "

 << x_ciphertext.size() << endl;

cout << " - the noise budget for x_ciphertext is : "

 << bfv_decrypt.invariant_noise_budget(x_ciphertext)

 << " bits" << endl;

Plaintext value_x_decrypted;

cout << " - decryption of x_encrypted: ";

bfv_decrypt.decrypt(x_ciphertext, value_x_decrypted);

cout << "0x" << value_x_decrypted.to_string() << endl;

Next, call seal_example_bfv in the main function as follows.

int main()

{

 seal_example_bfv();

 return 0;

}

To run the application, do not forget to choose Release configuration and x64

platform, then press Ctrl+F5. The result should be similar to that in Listing 12-7 and

Figure 12-10.

Listing 12-7.  The Output for the Encryption, Decryption, and Metrics

The value x = 3 is expressed as a plaintext polynomial 0x3.

Encrypting x_plaintext to x_ciphertext...

 - the size of the x_ciphertext (freshly encrypted) is : 2

 - the noise budget for x_ciphertext is : 55 bits

 - decryption of x_encrypted: 0x3

Chapter 12 Homomorphic Encryption

300

Figure 12-10.  The output for the encryption, decryption, and metrics

The plaintext constructor converts the plain values to polynomials that have a

degree lower than the modulus polynomial, for which the coefficients are represented

as hexadecimal values. In SEAL, the encrypted text is represented as two or more

polynomials with coefficients in the form of inter-values modulo the result of multiplying

the prime numbers from CoeffModulus representation.

The object x_ciphertext instantiates the Ciphertext class and receives the value of the

encryption of x_plaintext by calling the encryption method of the object bfv_encrypt.

This method takes two parameters: the object that needs to be encrypted (x_plaintext)

and the object in which the encryption of the first parameter should be put (x_ciphertext).

The number of polynomials gives the size of the encrypted text; a fresh encrypted text has a

size of 2, which is returned by the size() method of the object x_ciphertext.

The noise budget is computed by the invariant_noise_budget() method of the

bfv_encrypt object, which takes the object x_ciphertext as the parameter. The

invariant_noise_budget() is implemented in the decryptor class because it shows if

the decryption works at some point in our computations. To decrypt the encrypted value

obtained, use the decrypt method called the bfv_decrypt object. The decryption works

because the value 0x3 in hexadecimal representation means 3.

For optimizations, the recommendation is that the polynomials be brought to a

form that includes as few multiplication operations as possible because this is a costly

operation that decreases the noise budget quickly. Therefore, p(x) may be factorized as

p(x) = 3(x2 + 2)(x + 1)2, which means first evaluate (x2 + 2), then (x + 1)2 and then multiply

the result between them by 3. To compute (x2 + 2), proceed as presented in Listing 12-8

(code added in seal_example_bfv function).

Chapter 12 Homomorphic Encryption

301

Listing 12-8.  Computing (x2 + 2)

cout << "Computing (x^2+2)..." << endl;

Ciphertext square_x_plus_two;

bfv_evaluate.square(x_ciphertext, square_x_plus_two);

Plaintext plain_value_two("2");

bfv_evaluate.add_plain_inplace(square_x_plus_two,

 plain_value_two);

cout << " - the size of the square_x_plus_two is: "

 << square_x_plus_two.size() << endl;

cout << " - the noise budget for square_x_plus_two is: "

 << bfv_decrypt.invariant_noise_budget(square_x_plus_two)

 << " bits" << endl;

Plaintext decrypted_result;

cout << " - decryption of square_x_plus_two: ";

bfv_decrypt.decrypt(square_x_plus_two, decrypted_result);

cout << "0x" << decrypted_result.to_string() << endl;

After running the application, you get the result in Listing 12-9 and Figure 12-11.

Listing 12-9.  The Result of Computing (x2 + 2)

The value x = 3 is expressed as a plaintext polynomial 0x3.

Encrypting x_plaintext to x_ciphertext...

 - the size of the x_ciphertext (freshly encrypted) is : 2

 - the noise budget for x_ciphertext is : 55 bits

 - decryption of x_encrypted: 0x3

Computing (x^2+2)...

 - the size of the square_x_plus_two is: 3

 - the noise budget for square_x_plus_two is: 33 bits

 - decryption of square_x_plus_two: 0xB

Chapter 12 Homomorphic Encryption

302

Figure 12-11.  The result of computing (x2 + 2)

Let’s check. If you calculate 32 + 2, you get 11, whose hexadecimal representation

is 0xB; the noise budget is greater than 0, which means the decryption can be made.

Observe that the bfv_evaluate object allows applying operations directly over the

encrypted data. The collector variable for this example is square_x_plus_two. First, this

variable keeps the encrypted value raised at power 2, i.e., x2, using the method square().

Furthermore, add plain value 2 through the method add_plain_inplace(), which gives

x2 + 1. Remember that in our example, x = 3. The square() and add_plain_inplace()

methods have two parameters: a source and a destination.

Similarly, compute (x + 1)2, using x_plus_one_square as the collector variable (see

Listing 12-10).

Listing 12-10.  Computing (x + 1)2

cout << "Computing (x+1)^2..." << endl;

Ciphertext x_plus_one_square;

Plaintext plain_value_one("1");

bfv_evaluate.add_plain(x_ciphertext, plain_value_one,

 x_plus_one_square);

bfv_evaluate.square_inplace(x_plus_one_square);

cout << " - the size of x_plus_one_square is: "

 << x_plus_one_square.size() << endl;

Chapter 12 Homomorphic Encryption

303

cout << " - the noise budget in x_plus_one_square is: "

 << bfv_decrypt.invariant_noise_budget(x_plus_one_square)

 << " bits" << endl;

cout << " - decryption of x_plus_one_square: ";

bfv_decrypt.decrypt(x_plus_one_square, decrypted_result);

cout << "0x" << decrypted_result.to_string() << endl;

After running the application, you get Listing 12-11 and Figure 12-12.

Listing 12-11.  The Result of Computing (x + 1)2

The value x = 3 is expressed as a plaintext polynomial 0x3.

Encrypting x_plaintext to x_ciphertext...

 - the size of the x_ciphertext (freshly encrypted) is : 2

 - the noise budget for x_ciphertext is : 55 bits

 - decryption of x_encrypted: 0x3

Computing (x^2+2)...

 - the size of the square_x_plus_two is: 3

 - the noise budget for square_x_plus_two is: 33 bits

 - decryption of square_x_plus_two: 0xB

Computing (x+1)^2...

 - the size of x_plus_one_square is: 3

 - the noise budget in x_plus_one_square is: 33 bits

 - decryption of x_plus_one_square: 0x10

Chapter 12 Homomorphic Encryption

304

Figure 12-12.  The result of computing (x + 1)2

Indeed, if you compute (3 + 1)2, you get 10, whose hexadecimal representation is

0×10; the noise budget is greater than 0, so the decryption still works.

The result of 3(x2 + 2)(x + 1)2 is collected in the encryptedOutcome variable (see

Listing 12-12).

Listing 12-12.  Computing 3(x2 + 2)(x + 1)2

cout << "Compute [3(x^2+2)(x+1)^2]." << endl;

Ciphertext enc_result;

Plaintext plain_value_three("3");

 bfv_evaluate.multiply_plain_inplace(square_x_plus_two,

 plain_value_three);

bfv_evaluate.multiply(square_x_plus_two, x_plus_one_square,

 enc_result);

cout << " - the size of encrypted_result: "

 << enc_result.size() << endl;

Chapter 12 Homomorphic Encryption

305

cout << " - the noise budget for encrypted_result: "

 << bfv_decrypt.invariant_noise_budget(enc_result)

 << " bits" << endl;

cout << "NOTE: If the noise budget is zero, the decryption can be

incorrect." << endl;

cout << " - decryption of enc_result: ";

bfv_decrypt.decrypt(enc_result, decrypted_result);

 cout << "0x" << decrypted_result.to_string() << endl;

After running the application, you get what’s shown in Listing 12-13 and

Figure 12-13.

Listing 12-13.  The Output of Computing 3(x2 + 2)(x + 1)2

The value x = 3 is expressed as a plaintext polynomial 0x3.

Encrypting x_plaintext to x_ciphertext...

 - the size of the x_ciphertext (freshly encrypted) is : 2

 - the noise budget for x_ciphertext is : 55 bits

 - decryption of x_encrypted: 0x3

Computing (x^2+2)...

 - the size of the square_x_plus_two is: 3

 - the noise budget for square_x_plus_two is: 33 bits

 - decryption of square_x_plus_two: 0xB

Computing (x+1)^2...

 - the size of x_plus_one_square is: 3

 - the noise budget in x_plus_one_square is: 33 bits

 - decryption of x_plus_one_square: 0x10

Compute [3(x^2+2)(x+1)^2].

 - the size of encrypted_result: 5

 - the noise budget for encrypted_result: 4 bits

NOTE: If the noise budget is zero, the decryption can be incorrect.

 - decryption of enc_result: 0x210

Chapter 12 Homomorphic Encryption

306

Figure 12-13.  The output of computing 3(x2 + 2)(x + 1)2

Indeed, if you compute 3(32 + 2)(3 + 1)2, you get 528. Note that the plaintext modulus

is 1024, so 528 mod 1024 = 528, which has the 0x210 hexadecimal representation. The

noise budget is greater than 0, which allowed us to decrypt the final encrypted result.

Listing 12-14 is in the Seal-example.cpp file.

Listing 12-14.  The Entire Code

#pragma once

#include "seal/seal.h"

#include <iostream>

#include <algorithm>

#include <chrono>

#include <cstddef>

#include <fstream>

#include <iomanip>

#include <iostream>

#include <limits>

#include <memory>

#include <mutex>

#include <numeric>

Chapter 12 Homomorphic Encryption

307

#include <random>

#include <sstream>

#include <string>

#include <thread>

#include <vector>

using namespace std;

using namespace seal;

void seal_example_bfv()

{

 EncryptionParameters BFV_parameters(scheme_type::BFV);

 size_t polynomial_degree = 4096;

 BFV_parameters.set_poly_modulus_degree(polynomial_degree);

 �BFV_parameters.set_coeff_modulus(CoeffModulus::BFVDefault(

polynomial_degree));

 BFV_parameters.set_plain_modulus(1024);

 auto seal_context = SEALContext::Create(BFV_parameters);

 KeyGenerator keygen(seal_context);

 PublicKey encryption_key = keygen.public_key();

 SecretKey decryption_key = keygen.secret_key();

 Encryptor bfv_encrypt(seal_context, encryption_key);

 Evaluator bfv_evaluate(seal_context);

 Decryptor bfv_decrypt(seal_context, decryption_key);

 int value_x = 3;

 Plaintext x_plaintext(to_string(value_x));

 �cout << "The value x = " + to_string(value_x) + " is expressed as a

plaintext polynomial 0x" + x_plaintext.to_string() + "." << endl;

 Ciphertext x_ciphertext;

 cout << "Encrypting x_plaintext to x_ciphertext..." << endl;

 bfv_encrypt.encrypt(x_plaintext, x_ciphertext);

 �cout << " - the size of the x_ciphertext (freshly encrypted) is : "

<< x_ciphertext.size() << endl;

Chapter 12 Homomorphic Encryption

308

 �cout << " - the noise budget for x_ciphertext is : " << bfv_decrypt.

invariant_noise_budget(x_ciphertext) << " bits"

 << endl;

 Plaintext value_x_decrypted;

 cout << " - decryption of x_encrypted: ";

 bfv_decrypt.decrypt(x_ciphertext, value_x_decrypted);

 cout << "0x" << value_x_decrypted.to_string() << endl;

 cout << "Computing (x^2+2)..." << endl;

 Ciphertext square_x_plus_two;

 bfv_evaluate.square(x_ciphertext, square_x_plus_two);

 Plaintext plain_value_two("2");

 bfv_evaluate.add_plain_inplace(square_x_plus_two, plain_value_two);

 �cout << " - the size of the square_x_plus_two is: " << square_x_

plus_two.size() << endl;

 �cout << " - the noise budget for square_x_plus_two is: " << bfv_

decrypt.invariant_noise_budget(square_x_plus_two) << " bits"

 << endl;

 Plaintext decrypted_result;

 cout << " - decryption of square_x_plus_two: ";

 bfv_decrypt.decrypt(square_x_plus_two, decrypted_result);

 cout << "0x" << decrypted_result.to_string() << endl;

 cout << "Computing (x+1)^2..." << endl;

 Ciphertext x_plus_one_square;

 Plaintext plain_value_one("1");

 �bfv_evaluate.add_plain(x_ciphertext, plain_value_one, x_plus_one_

square);

 bfv_evaluate.square_inplace(x_plus_one_square);

 �cout << " - the size of x_plus_one_square is: " << x_plus_one_

square.size() << endl;

 �cout << " - the noise budget in x_plus_one_square is: " << bfv_

decrypt.invariant_noise_budget(x_plus_one_square) << " bits"

 << endl;

Chapter 12 Homomorphic Encryption

309

 cout << " - decryption of x_plus_one_square: ";

 bfv_decrypt.decrypt(x_plus_one_square, decrypted_result);

 cout << "0x" << decrypted_result.to_string() << endl;

 cout << "Compute [3(x^2+2)(x+1)^2]." << endl;

 Ciphertext enc_result;

 Plaintext plain_value_three("3");

 �bfv_evaluate.multiply_plain_inplace(square_x_plus_two, plain_

value_three);

 �bfv_evaluate.multiply(square_x_plus_two, x_plus_one_square, enc_

result);

 �cout << " - the size of encrypted_result: " << enc_result.size()

<< endl;

 �cout << " - the noise budget for encrypted_result: " << bfv_decrypt.

invariant_noise_budget(enc_result) << " bits"

 << endl;

 �cout << "NOTE: If the noise budget is zero, the decryption can be

incorrect." << endl;

 cout << " - decryption of enc_result: ";

 bfv_decrypt.decrypt(enc_result, decrypted_result);

 cout << "0x" << decrypted_result.to_string() << endl;

}

int main()

{

 seal_example_bfv();

 return 0;

}

This section provides an easy example of how the SEAL library can be used with C++

on Windows distribution. However, real-life applications are much more complex, which

raises the need to handle more complex functions and algorithms.

The SEAL library can be very useful, and its major advantage is that it does not

depend on other external libraries. When applications work with the exact values of

integers, the BFV encryption scheme implemented in the SEAL library is great. If the

application needs to work with real or complex numbers, the CKKS encryption scheme

is the best choice, which is also implemented in the SEAL library.

Chapter 12 Homomorphic Encryption

310

�Conclusion
In this chapter, you learned the following.

•	 Homomorphic encryption

•	 Why FHE is so important

•	 Microsoft’s SEAL library, which implements the BFV encryption

scheme, on a simple example with a polynomial evaluation

References
[1].	 R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy

homomorphism”, Foundations of secure computation, vol. 4, no. 11,

pp. 169–180, 1978.

[2].	 Rivest, Ronald L., Adi Shamir, and Leonard Adleman. “A method for obtaining

digital signatures and public-key cryptosystems.” Communications of the ACM

21.2 (1978): 120–126.

[3].	 S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental

poker keeping secret all partial information”, in Providing sound foundations

for cryptography: on the work of Shafi Goldwasser and Silvio Micali, 2019,

pp. 173–201.

[4].	 ElGamal, Taher. “A public key cryptosystem and a signature scheme based

on discrete logarithms.” IEEE transactions on information theory 31.4 (1985):

469–472.

[5].	 D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF Formulas on

Ciphertexts.”, in TCC, Springer, 2005, pp. 325–341.

[6].	 B. Barak and Z. Brakerski. “The Swiss army knife of cryptography,”

http://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-

cryptography/, 2012. Last accessed: 28.2.2023

[7].	 C. Gentry, “Fully homomorphic encryption using ideal lattices”, in Proceedings

of the forty-first annual ACM symposium on Theory of computing, 2009, pp.

169–178.

Chapter 12 Homomorphic Encryption

http://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/
http://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/

311

[8].	 M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic

encryption over the integers”, in Advances in Cryptology–EUROCRYPT 2010:

29th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Proceedings

29, Springer, 2010, pp. 24–43.

[9].	 Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption

from (standard) LWE”, SIAM Journal on computing, vol. 43, no. 2, pp.

831–871, 2014.

[10].	 M. Yagisawa, “Fully homomorphic encryption without bootstrapping”,

Cryptology ePrint Archive, 2015.

[11].	 C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning

with errors: Conceptually-simpler, asymptotically-faster, attribute-based”, in

Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference,

Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, Springer,

2013, pp. 75–92.

[12].	 HElib, https://github.com/homenc/HElib. Last accessed: 1.3.2023

[13].	 TFHE: Fast Fully Homomorphic Encryption over the Torus, Available online:

https://tfhe.github.io/tfhe. Last accessed: 1.3.2023

[14].	 PALISADE Homomorphic Encryption Software Library, Available online:

https://palisade-crypto.org. Last accessed: 1.3.2023

[15].	 I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully

homomorphic encryption: Bootstrapping in less than 0.1 seconds”, in

Advances in Cryptology–ASIACRYPT 2016: 22nd International Conference on

the Theory and Application of Cryptology and Information Security, Hanoi,

Vietnam, December 4-8, 2016, Proceedings, Part I 22, Springer, 2016, pp. 3–33.

[16].	 Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic

encryption without bootstrapping”, ACM Transactions on Computation

Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[17].	 J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic

encryption”, Cryptology ePrint Archive, 2012.

[18].	 J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for

arithmetic of approximate numbers”, in Advances in Cryptology–ASIACRYPT

2017: 23rd International Conference on the Theory and Applications of

Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,

Proceedings, Part I 23, Springer, 2017, pp. 409–437.

Chapter 12 Homomorphic Encryption

https://github.com/homenc/HElib
https://tfhe.github.io/tfhe
https://palisade-crypto.org

312

[19].	 L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic encryption

in less than a second”, in Advances in Cryptology–EUROCRYPT 2015:

34th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part

I 34, Springer, 2015, pp. 617–640.

[20].	 H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library-SEAL

v2. 1”, in Financial Cryptography and Data Security: FC 2017 International

Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7,

2017, Revised Selected Papers 21, Springer, 2017, pp. 3–18.

[21].	 K. Laine, “Simple encrypted arithmetic library 2.3. 1”, Microsoft Research

https://www.microsoft.com/en-us/research/uploads/prod/2017/11/

sealmanual-2-3-1.pdf, 2017.

[22].	 Microsoft SEAL, Available online: https://www.microsoft.com/en-us/

research/project/microsoft-seal/. Last accessed: 2.3.2023

[23].	 Microsoft/SEAL, Available online: https://github.com/Microsoft/SEAL.

Last accessed: 2.3.2023

[24].	 M. R. Albrecht, “On dual lattice attacks against small-secret LWE and

parameter choices in HElib and SEAL”, in Advances in Cryptology–

EUROCRYPT 2017: 36th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Paris, France, April 30–May 4, 2017,

Proceedings, Part II, Springer, 2017, pp. 103–129.

[25].	 L. Yu, C. A. Pérez-Delgado, and J. F. Fitzsimons, “Limitations on information-

theoretically-secure quantum homomorphic encryption”, Physical Review A,

vol. 90, no. 5, p. 050303, 2014.

Chapter 12 Homomorphic Encryption

https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://github.com/microsoft/SEAL

313

CHAPTER 13

Ring Learning with
Errors Cryptography
This chapter covers Ring Learning with Errors Cryptography (RLWE), one of the most

important and challenging techniques for developing secure, complex applications and

systems.

Cryptography has existed since ancient times, but it has become especially crucial

in the digital age. It is a technique used to protect data, control access to sensitive

information, and secure communications. Learning about error cryptography can help

you understand this science’s basic principles and applications. Errors cryptography

is a branch of cryptography that detects, corrects, and prevents errors in digital

communications. It is a vital tool for data security in today’s digital environment. Error

cryptography can protect data from corruption, tampering, or interception. Additionally,

error cryptography can help ensure data accuracy and integrity and provide

authentication of the sender and receiver. This article explores the basic principles

and applications of error cryptography and how it can be used to protect data and

communications.

Errors cryptography is the process of securing data against errors in transmission

and storage. This process involves appropriate data formatting, encryption, and

error correction methods. All these methods are used to secure data and ensure its

authenticity, integrity, and accuracy. Errors cryptography is performed at three stages:

transmission, storage, and processing. Transmission error cryptography is used for error

detection and correction for transmitting data over a transmission channel. Storage

error cryptography is used for error detection and correction for data stored on a storage

medium. Processing error cryptography is used for error detection and correction for

data that are in computer memory.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_13

https://doi.org/10.1007/978-1-4842-9450-5_13

314

The learning with errors problem was introduced in 2005 by Oded Regev [4]. Since

then, it has proven its potential to be a basis for future cryptography and its capability

to generate complex cryptographic structures. LWE and related topics are widely used

in lattice-based cryptography. You can find comprehensive studies, surveys, and deep

formal aspects in the works [5, 6, 7].

LWE is a difficult computation problem (therefore, a hardness assumption

in cryptography) that is the formal foundation for cryptographic algorithms and

constructions. One such cryptographic construction is NewHope [8], an encapsulation

method for postquantum keys. NewHope seeks to protect against cryptanalysis attacks

launched on quantum computers. Another application of LWE is in homomorphic

encryption, serving as a hardness assumption for many important (fully) homomorphic

encryption schemes (see Chapter 12).

Errors cryptography uses the following principles: error detection, error correction,

authentication, and data integrity. Let’s go over the principles of error cryptography

in detail.

•	 Error detection identifies when errors occur during the transmission

of data. The most common method to detect errors is to use parity

bits. Parity bits are used in many communication protocols to detect

single-bit errors.

•	 Error correction corrects errors that were detected while data were

being transmitted. Various techniques, such as Hamming and Reed-

Solomon codes, are used to correct errors.

•	 Authentication validates who the sender and receiver are. It also

validates that only authorized parties are part of the transmission.

Authentication is important in the exchange of sensitive information.

•	 Data integrity ensures that the data is not corrupted while

transmitted. Data can be corrupted in many ways, such as

electromagnetic interference and noise.

There are many organizations and associations that standardize and regulate error

cryptography, such as the International Organization for Standardization and the

International Telecommunications Union.

Chapter 13 Ring Learning with Errors Cryptography

315

RLWE is the LWE problem applied in rings of polynomials defined over finite fields.

The RLWE problem represents a basis for future cryptography because it is resistant to

known quantum algorithms such as Shor’s algorithm; therefore, it remains a hardness

assumption in the quantum ecosystem.

An advantage of the RLWE technique in front of LWE is the size of the keys. The size

of the LWE keys is approximately the square of the size of the RLWE for the same number

of bits of security. For example, for 128 bits of security, the keys of an LWE cryptosystem

require 49.000.000 bits, while the keys of an RLWE cryptosystem require 7000 bits.

RLWE cryptographic algorithms can be divided into three categories, as follows.

•	 RLWE Key Exchange (RLWE-KE): In 2011, Jintai Ding, at

the University of Cincinnati, used the associativity of matrix

multiplication to propose a preliminary scheme for key exchange

based on LWE and RLWE [9]. The study was published in 2012 after

the idea was patented. Based on this work, Chris Peikert proposed a

key transport scheme in 2014 [10].

•	 RLWE Signature (RLWE-S): The identification protocol proposed by

Feige, Fiat, and Shamir in [11] represented the basis for the digital

signature proposed in 2011 by Lyubashevsky. A further improvement

of the digital signature [12] was proposed by GLP (Gunesyu,

Lyubashevsky, and Popplemann) in [13].

•	 RLWE Homomorphic Encryption (RLWE-HE): You learned about

homomorphic encryption in Chapter 12 and saw that homomorphic

encryption enables computations to be applied directly over

encrypted data. Among the first fully homomorphic encryption

schemes that use RLWE is [14], which was proposed in 2011 by

Brakersky and Vaikuntanathan.

The next section provides a minimum mathematical background for the LWE

and RLWE.

Chapter 13 Ring Learning with Errors Cryptography

316

�Mathematical Background
�Learning with Errors (LWE)
The quantum computer era is in an early stage; many of the current encryption systems

with public keys are easy to break, which leads to the natural necessity of creating

cryptosystems based on quantum-resistant hardness assumptions. LWE has this

capability. The LWE problem’s difficulty consists of computing the values that solve the

following equation.

	 b as e� � 	

In an equation of this form, a and b can form the public key, s can be the secret key,

and e can be an error value (or noise).

In cryptography, the LWE problem can be used in different topics. For example,

based on LWE, secure public-key encryption schemes can be constructed against

chosen plaintext or ciphertext attacks. Additionally, LWE can be a basis for oblivious

transfer, fully homomorphic encryption, or identity-based encryption.

The preceding equality becomes b = A × s + e in [1] because it is applied to linear

equations. Here, A becomes a matrix with two dimensions, and if s is a matrix with one

dimension, then b and e are matrices with one dimension. Another possibility is that A

and b are matrices with one dimension, and s is a scalar value.

The following presents a simple encryption scheme based on LWE [4]. Note that in

the example, p ∈ Z represents a prime number.

•	 Key generation: The following elements are chosen randomly: the

vector s Zp
n∈ , the matrix A with m rows, which are m independent

vectors of a uniform distribution, and the vector e = (e1, …, em) of an error

distribution defined over Z. Then, the value b is computed b = As + e.

The secret key is the value s, and the public key is the pair (A, b).

•	 Encryption: Given the m ∈ {0, 1} message to be encrypted,

choose random samples from A and b, achieving vA = ∑ ai and

v b
p
mb j� � �

2
. The values ai and bi represent the samples from A

and b, respectively. The encryption of m is the pair (u, v).

•	 Decryption: Compute val = vb − svA (mod p). If val
p

≤
2

, then the

message is m = 0; otherwise, the message is m = 1.

Chapter 13 Ring Learning with Errors Cryptography

317

The preceding example shows how LWE works. Examples of public key encryption

schemes based on the LWE problem are [2] and Lindner-Peikert encryption schemes.

LWE problems are divided into two categories: LWE search and LWE decision.

�LWE Search

Let m, n, p ∈ Z be integer values, and let χs and χe be two distributions defined over the

integer numbers set Z. Select the values s es
n

i e� �� �, and a U Zi p
n� � � . Compute

the value of bi ≔ 〈ai, s〉 + ei mod p, where i = 1, …, m. Given the tuple (n, m, p, χs, χe), the

learning with errors search variant problem consists of determining s knowing a bi i i

m
,� � �1

.

In this definition, s represents a column-vector with n values, ai represents a row-

vector with n values from Zp and b represents a column-vector with m elements from Zp.

The representation x ← S shows that x is a random variable selected from the finite set S.

�LWE Decision

Let n, p ∈ Z be integer values, and let χs and χe be two distributions defined over the

integer numbers set Z. Select the value s s
n�� , and pick two oracles as follows.

•	 O a U Z ep
n

e: ,� � � � � ; output(a, 〈a, s〉 + e mod p)

•	 U a U Z u U Zp
n

p: ,� � � � � � ; output(a, u)

Given the tuple (n, p, χs, χe), the learning with errors decision variant means

differentiating between O and U.

�Ring Learning with Errors (RLWE)
The LWE problem applied in rings of polynomials with coefficients in a finite field

is called the ring learning with errors (RLWE) problem. RLWE is used in different

domains of cryptography, for example, in key exchange, homomorphic encryption, and

signatures. The functionalities from RLWE are similar to the functionalities from the

simple LWE. For RLWE, the a, b, s, e variables from the first equality are polynomials.

Let’s examine how the two LWE variants’ definitions adapt to RLWE.

Chapter 13 Ring Learning with Errors Cryptography

318

�RLWE Search

Let n, p ∈ Z be integer values, with n = 2k, let R be R
Z X

X n
�

� �
�1

 and R
R

pRp = and

let χs and χe be two distributions defined over the ring Rp. Select s ← χs, e ⟵ χe and

a ← U(Rp). Compute the value of b ≔ as + e. Given the tuple (n, p, χs, χe), the ring learning

with errors search variant problem consists of determining s knowing (a, b).

In this definition, Rp is actually R
Z X

p
p

X n
�

� �
�1

.

�RLWE Decision

Let n, p ∈ Z+ be integer values and let χs and χe be two distributions defined over the ring

Rp. Select the value s ← χs, and pick two oracles as follows.

•	 O : a ← U(Rp), e ← χe; output(a, as + e)

•	 U : a ← U(Rp), u ← U(Rp); output(a, u)

Given the tuple (n, p, χs, χe), the ring learning with errors decision variant means

differentiating between O and U.

An encryption scheme based on the hardness assumption of (R)LWE is secure if the

advantage of any algorithm A (called attacker) with polynomial time in solving the (R)

LWE problem is a negligible function.

�Practical Implementation
Learning with errors (LWE) is a quantum-resistant technique in cryptography. On the

practical side of the LWE, to implement a simple LWE example, you first need to generate

a secret value and a random value. Furthermore, the implementation is intuitive, as you

need to compute a value of the form p[ ] = t[ ] × secretkey + e.

Listing 13-1 provides an implementation for a simple example of an encryption

system based on the work of Oded Regev from [4]. The result of running the program is

provided in Figure 13-1.

Chapter 13 Ring Learning with Errors Cryptography

319

Figure 13-1.  The result of running the program with a simple example of LWE
encryption

Listing 13-1.  Implementation of a Simple LWE Example [4]

#include <iostream>

#include <math.h>

#include <ctime>

using namespace std;

int main()

{

 srand(time(0));

 int no_of_values = 10;

 int public_key [no_of_values];

 int values [no_of_values];

 int secret_key = 5;

 int error_value = 12;

 int message = 1;

 int value = 0;

Chapter 13 Ring Learning with Errors Cryptography

320

 for (int i = 0; i < no_of_values; i++)

 {

 //** generate random values between 0 and 23

 values[i] = rand() % (23 + 1 - 0) + 0;

 //** compute the public key

 public_key[i] = values[i] * secret_key + error_value;

 }

 cout<<"--Message: "<< message<<"--";

 cout<<endl<<"--Random values--"<<endl;

 for(int i = 0; i < no_of_values; i++)

 {

 cout<<values[i]<<" ";

 }

 cout<<endl<<"--Public Key--"<<endl;

 for(int i = 0; i < no_of_values; i++)

 {

 cout<<public_key[i]<<" ";

 }

 //** get half random samples from the public_key

 int noOfSamples = floor(no_of_values / 2);

 int samples [noOfSamples];

 for(int i=0; i < noOfSamples; i++)

 {

 //** generate a number of 5 random indices between 0 and 10

 samples[i] = rand() % ((no_of_values-1) + 1 - 0) + 0;

 }

 cout<<endl<<"--Sample indices--";

 cout<<endl<<"samples = [";

 for (int i=0; i < noOfSamples; i++)

 {

 cout << samples[i] << " ";

 }

 cout<<"]" << endl;

Chapter 13 Ring Learning with Errors Cryptography

321

 int sum = 0;

 for (int i = 0; i < noOfSamples; i++)

 {

 sum += public_key[samples[i]];

 }

 cout<<endl<<"--The sum: " << sum << "--";

 if (message == 1)

 sum+=1;

 cout<<endl<<"--The encryption of the message is:" << sum <<" --";

 int decryption = sum % secret_key;

 if (decryption % 2 == 0)

 cout<<endl<<"--The decryption is: 0--";

 else

 cout<<endl<<"--The decryption is: 1--";

 return 0;

}

Listing 13-2 is a more complex example of public-key encryption that uses LWE,

based on the work [5]. The result of running the program is shown in Figure 13-2.

Listing 13-2.  Implementation of the LWE Encryption Method Proposed by Oded

Regev in [5]

#include <iostream>

#include <math.h>

#include <ctime>

using namespace std;

int main()

{

 srand(time(0));

 int numberOfRandVals = 20;

 �int values_A [20]; //** values_A is a set of random numbers; represents

the public key

Chapter 13 Ring Learning with Errors Cryptography

322

 int secretValue = 5; //** represents the secret key

 int values_error [numberOfRandVals]; //** represents the error values

 �int values_B [numberOfRandVals]; //** values_B is computed based on

values_A, secretValue, values_error; represents the public key

 int q = 97; //** q is a prime number

 //** generate random values

 //** the number of random values is numberOfRandVals = 20

 //** the range is 0 - q=97

 for(int i=0; i < numberOfRandVals; i++)

 {

 //** to generate a random value in a range MIN - MAX,

 //** we proceed as follows: val = rand() % (MAX + 1 - MIN) + MIN;

 //** generate random values between 0 - 97

 values_A[i] = rand() % (q + 1 - 0) + 0;

 //** generate small error values, between 1 - 4

 values_error[i] = rand() % (4 + 1 - 1) + 1;

 //** compute values_B using the formula B_i = A_i*s + e_i

 values_B[i] = values_A[i]*secretValue + values_error[i];

 }

 cout<<"--------- The parameters and the keys ---------" << endl;

 cout<<"--Prime number (q)--" << endl;

 cout<<"q = " << q << endl;

 cout<<"--Public key (A, B)--" << endl;

 cout<<"A = [";

 for (int i=0; i < numberOfRandVals; i++)

 {

 cout << values_A[i] << " ";

 }

 cout<<"]" << endl;

 cout<<"B = [";

 for (int i=0; i < numberOfRandVals; i++)

 {

 cout << values_B[i] << " ";

 }

Chapter 13 Ring Learning with Errors Cryptography

323

 cout<<"]" << endl;

 cout<<"--Secret key (s)--" << endl;

 cout<<"s = " << secretValue << endl;

 cout<<"--Random error (e)--" << endl;

 cout<<"e = [";

 for (int i=0; i < numberOfRandVals; i++)

 {

 cout << values_error[i] << " ";

 }

 cout<<"]" << endl;

 �cout<< endl << endl << "--------- Getting samples from the public

key... ---------";

 �int noOfSamples = floor(numberOfRandVals / 4); //** represents the

number of samples from the public key

 int samples [noOfSamples];

 for(int i=0; i < noOfSamples; i++)

 {

 //** generate a number of 5 random indices between 0 and 19

 samples[i] = rand() % ((numberOfRandVals-1) + 1 - 0) + 0;

 }

 cout<<endl<<"--Sample indices--";

 cout<<endl<<"samples = [";

 for (int i=0; i < noOfSamples; i++)

 {

 cout << samples[i] << " " ";

 }

 cout<<"]" << endl;

 cout<<"--Sample pairs--";

 for (int i=0; i < noOfSamples; i++)

 {

 cout << endl <<"Sample " << i << ": ["

 << values_A[samples[i]] << " " << values_B[samples[i]] << "]";

 }

 cout<< endl << endl << "--------- Computing u and v... ---------";

Chapter 13 Ring Learning with Errors Cryptography

324

 �int message = 0; //** the message to be encrypted can be a value

from {0, 1}

 int u = 0, v = 0;

 //** u = (sum (samples from values_A)) mod q

 //** v = (sum (samples from values_B) + [q/2] * message) mod q

 for (int i=0; i < noOfSamples; i++)

 {

 u = u + values_A[samples[i]];

 v = v + values_B[samples[i]];

 }

 v = v + floor(q/2) * message;

 u = u % q;

 v = v % q;

 cout<<endl<<"u = "<<u;

 cout<<endl<<"v = "<<v;

 cout<< endl << endl << "--------- Encrypting... ---------";

 cout<<endl<<"--Message--";

 cout<<endl<<"m = "<<message;

 cout<<endl<<"--Encryption f the message--";

 cout<<endl<<"Enc(m) = (" << u << ", " << v <<")";

 cout<< endl << endl << "--------- Decrypting... ---------";

 int result = (v - secretValue * u) % q;

 int decryption;

 if (result > q/2)

 decryption = 1;

 else

 decryption = 0;

 cout<<endl<<"The message is: " << decryption;

 return 0;

}

Chapter 13 Ring Learning with Errors Cryptography

325

Listing 13-2 is an example of public key encryption based on LWE, which was

proposed in [5]. secretValue represents the private key.

The next step creates the public key. The public key is formed by the values from a

set of random numbers (values_A) and a set of values (values_B), which are computed

based on values_A, secretValue, and random errors (values_error). This example is

implemented for a single bit.

To secure data over a computer network, data encryption is used. Data encryption is

the process of converting data into a secret code so that only authorized people/devices

can read it. There are many types of data encryption.

Figure 13-2.  The result of running the program of the public-key LWE example

Chapter 13 Ring Learning with Errors Cryptography

326

•	 Symmetric encryption uses a single key to both encrypt and decrypt

data. The single key must be kept secret.

•	 Asymmetric encryption uses a public key to encrypt data and a

private key to decrypt data.

•	 Hashing does not encrypt data but can be used to authenticate it.

The following is a simple workflow for this example.

•	 Between 0 and q (in the example, q=97), we selected a random set of

20 values in the stored in the array values_A that represents one of

the components of the public key.

•	 Define the set values_B, where every element is computed as

values_B[i]=values_A[i] x secretValue+values_error[i] mod q,

where secretValue is the secret key and values_error represents a

list of small random values, called the error values.

•	 The values_A and values_B sets form the public key, and

secretValue represents the secret key. At this point, values_A and

values_B can be shared with anyone who wants to proceed with the

encryption of a message (with the condition of keeping secretValue

secret). The encryption process uses samples from values_A and

values_B. Based on those samples, take a bit message, and compute

the following two values.

•	 u = ∑ (values _ Asamples)(mod q)

•	 v values B
q

message qsamples� �� �� � � �_
2

mod

•	 At this point, the encrypted message is (u, v). To proceed with the

decryption, compute the following.

•	 decryption = v − s × u (mod q)

•	 If decryption
q

<
2

, the message is equal to 0; otherwise, it is 1.

The preceding procedure is summarized from the Oded Regev paper [5] to make it

easy to follow and understand how to transpose the complexity of LWEs in reality.

Chapter 13 Ring Learning with Errors Cryptography

327

�Conclusion
This chapter discussed RLWE and implemented two examples of encryption schemes

using the C++ programming language proposed in the works [4] and [5]. RLWE can be a

space for many professional challenges and a starting approach for bringing significant

contributions to this cryptographic primitive.

The chapter offered an interesting journey with LWE, including the following.

•	 A solid but short mathematical background of the main concepts and

definitions on which RLWE is based and without which a practical

implementation has many gaps to fill out

•	 Experimenting with the challenges brought by RLWE mathematical

concepts and their transposition in practice

•	 The ability to implement simple examples of public-key encryption

schemes based on LWE

Errors cryptography is the process of securing data against errors in transmission

and storage. This process involves appropriate data formatting, encryption, and error

correction methods. All these methods are used to secure data and ensure its authenticity,

integrity, and accuracy. Errors cryptography is performed at three stages: transmission,

storage, and processing. It uses the following principles: error detection, error correction,

authentication, and data integrity. There are various types of error cryptography, such

as error detection, error correction, authentication, and data integrity. Many security

protocols can be used with error cryptography. Errors cryptography can secure data

against errors, but it cannot secure data from being intercepted and read.

References
[1].	 O. Regev, The Learning with Errors Problem, Available online: https://cims.

nyu.edu/~regev/papers/lwesurvey.pdf. Last accessed: 11.3.2023

[2].	 O. Regev, “On lattices, learning with errors, random linear codes, and

cryptography”, Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40, 2009.

[3].	 R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based

encryption”, in Topics in Cryptology–CT-RSA 2011: The Cryptographers’ Track

at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011.

Proceedings, Springer, 2011, pp. 319–339.

Chapter 13 Ring Learning with Errors Cryptography

https://cims.nyu.edu/~regev/papers/lwesurvey.pdf
https://cims.nyu.edu/~regev/papers/lwesurvey.pdf

328

[4].	 O. Regev, “The Learning with Errors Problem (Invited Survey),” 2010 IEEE

25th Annual Conference on Computational Complexity, Cambridge, MA, 2010,

pp. 191–204, doi: 10.1109/CCC.2010.26.

[5].	 O. Regev, “Lattice-based cryptography”, in Advances in Cryptology-CRYPTO

2006: 26th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 20-24, 2006. Proceedings 26, Springer, 2006, pp. 131–141.

[6].	 C. Peikert, “Some Recent Progress in Lattice-Based Cryptography.”, in TCC,

2009, p. 72.

[7].	 D. Micciancio, “Cryptographic functions from worst-case complexity

assumptions”, in The LLL Algorithm: Survey and Applications, Springer, 2009,

pp. 427–452.

[8].	 NewHope – Postquantum Key Encapsulation. Available online: https://

newhopecrypto.org/. Last accessed: 12.3.2023

[9].	 J. Ding, X. Xie, and X. Lin, “A simple provably secure key exchange scheme

based on the learning with errors problem”, Cryptology ePrint Archive, 2012.

[10].	 C. Peikert, “Lattice cryptography for the internet”, in Post-Quantum

Cryptography: 6th International Workshop, PQCrypto 2014, Waterloo, ON,

Canada, October 1-3, 2014. Proceedings 6, Springer, 2014, pp. 197–219.

[11].	 Y. Desmedt, Fiat-Shamir Identification Protocol and the Feige-Fiat-Shamir

Signature Scheme. Springer, 2011.

[12].	 V. Lyubashevsky, “Lattice signatures without trapdoors”, in Advances in

Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Cambridge, UK, April

15-19, 2012. Proceedings 31, Springer, 2012, pp. 738–755.

[13].	 T. Güneysu, V. Lyubashevsky, and T. Pöppelmann, “Practical lattice-based

cryptography: A signature scheme for embedded systems”, in Cryptographic

Hardware and Embedded Systems–CHES 2012: 14th International Workshop,

Leuven, Belgium, September 9-12, 2012. Proceedings 14, Springer, 2012, pp.

530–547.

[14].	 Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption

from ring-LWE and security for key dependent messages”, in Advances in

Cryptology–CRYPTO 2011: 31st Annual Cryptology Conference, Santa Barbara,

CA, USA, August 14-18, 2011. Proceedings 31, Springer, 2011, pp. 505–524.

Chapter 13 Ring Learning with Errors Cryptography

https://newhopecrypto.org/
https://newhopecrypto.org/

329

CHAPTER 14

Chaos-based
Cryptography
In today’s digital world, security is paramount to protecting your data and digital life. As

technology advances, so does the need for more secure encryption methods. One such

encryption technique is chaos-based cryptography, which is gaining traction as one of

the most secure forms of data protection. It is based on the principles of chaos theory,

which states that complex systems often produce unpredictable results. With chaos-

based cryptography, generating a seemingly random sequence of numbers is possible,

which is then used to encrypt a message. This random sequence is almost impossible to

reverse engineer, making it extremely difficult to crack the code. Understanding chaos-

based cryptography is essential for anyone who wants to keep their data secure. This

chapter explores the fundamentals of chaos-based cryptography, its advantages, and

how it can be used to protect data.

In chaos-based cryptography, chaos theory is applied, and its mathematical

background is used to create novel and unique cryptographic algorithms. Robert

Matthews initiated the first attempt to use chaos theory in cryptography in 1989 [1],

which attracted considerable interest.

In contrast with regular cryptographic primitives used daily, chaos theory and

its system are used efficiently by implementing chaotic maps toward confusion and

diffusion. Throughout this chapter, the cryptographic algorithm is called a chaotic system.

What are the benefits of chaos-based cryptography? Cryptography is the process of

encoding information in a way that can only be decoded by those who have a key to

unlock it. The key can be a password or a special sequence of letters and numbers, often

called an algorithm. Traditionally, cryptography has been based on one-way functions,

such as rotating letters through a substitution cipher. The main drawback of these one-

way functions is that they can be broken. To crack the code, someone must perform

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_14

https://doi.org/10.1007/978-1-4842-9450-5_14

330

the same one-way function to decipher the message. The more complex the one-way

function, the more time and effort it takes to break the code. Chaos-based cryptography

takes a different approach to encryption. The sequence the code is generated with is

complex and random, making it extremely difficult to crack. The sequence is generated

by applying simple mathematical functions to a specially designed formula that creates

a chaotic sequence. This sequence is then used to encrypt the message. The sequence

is generated through a combination of simple mathematical formulas and computer

software, which makes it quicker to produce compared to complex one-way functions.

It also makes it easier to share code among users, which can be helpful if your business

needs to collaborate with clients or suppliers.

To understand the similitudes and the differences that lay between chaotic systems

and cryptographic algorithms, Table 14-1 presents a set of correspondences introduced

by L. Kocarev in [2].

How does chaos-based cryptography work? Chaos-based cryptography uses a

sequence of seemingly random numbers generated by a mathematical formula to

encrypt and decrypt a message. The message is fed into the formula, which then

generates a sequence of numbers. The receiving party applies the same formula to the

sequence of numbers to generate the original message. To crack the code, a hacker

would need to use the same formula to generate the original sequence. However,

this is extremely difficult to do because the sequence is generated from a complex

mathematical formula that is constantly changing. This means that the formula is

different every time it is used, making it almost impossible for the hacker to crack the

code. To generate a sequence of numbers, the user must apply a formula to the original

message. The user then applies a second formula to the first sequence of numbers to

produce a new sequence of numbers. This sequence is then sent over an unbreakable

communications channel. The receiving party applies the same formula to the sequence

of numbers to generate the original message.

How can chaos-based cryptography be implemented? Before implementing chaos-

based cryptography for your business, it is important to choose the right formula for your

code. You also need to consider how you generate the sequence of random numbers.

There are several formulas available for use with chaos theory-based cryptography. The

choice of formula impacts the sequence of numbers generated by the code. This means

you should select a formula based on the type of information you want to encrypt. If you

want to protect data such as financial information or health records, select a formula

that generates long sequences of numbers. This makes it harder for hackers to crack the

Chapter 14 Chaos-based Cryptography

331

code because it requires considerable time and effort to decode the sequence. This is

especially important if you want to share the code with clients or suppliers. If you need to

send a sequence of numbers over a short-range wireless device, such as Bluetooth, select

a formula that generates a short sequence. This makes it easier to transmit the sequence

over a short-range device, as it does not take up much data.

The similitudes and differences in Table 14-1 are demonstrated using a shift map as

an example of a chaotic system.

	 x t ax t�� � � � � � �1 1mod 	

The phase space x = [0, 1] is the unit interval, and a > 1 is an integer value.

From the chaos theory perspective, different functions and discrete-time systems

can be used in cryptography. By analyzing them, we observe that the phase space

becomes a finite set of integers, and the parameters are inter-values. The version of the

shift map that uses the discrete phase space is one of the common examples:

	 p t ap t N�� � � � � � �1 mod 	

a > 1, N and p are integer values, with the restrictions p ∈ [0, 1, …, N − 1] and N being

coprime to a. This representation of the shift map is invertible, which means that all

the trajectories placed within a dynamical system with a finite phase space are called

periodic. This fact introduces a new concept, namely, the period functions PN that

describe the least period of the map F, denoted F PN as its identity and PN is minimal, as

it is a function within a system of size N.

Table 14-1.  Similarities and Differences Between Chaotic Systems and

Cryptographic Algorithms

Chaotic System Cryptographic Algorithm

Phase space: (sub) set of real numbers Phase space: a finite set of integers

Iterations Rounds

Parameters Key

Sensitivity to a change in initial conditions and

parameters

Diffusion

? Security and Performance

Chapter 14 Chaos-based Cryptography

332

Another important metric in practical chaotic systems is the Lyapunov exponent,

whose trivial value is 0. The reason for this is the case in which the orbit is periodic and it

reiterate itself.

Figures 14-1, 14-2, and 14-3 present two concepts of block diagrams (for text

encryption and image encryption) that demonstrate what an encryption scheme based

on chaos theory should look like. Figures 14-1 and 14-2 show the encryption process and

the decryption process, respectively, based on the logistic map. Figure 14-3 shows an

example of image encryption and decryption.

A good starting point in achieving this is to use the following block diagrams

as a guide from theory to practice because the models are created according to the

similitudes and differences in Table 14-1.

Figure 14-1.  Block diagram for text encryption using a logistic map [14]

Chapter 14 Chaos-based Cryptography

333

Following the examples of the block diagrams, you can examine the papers listed

in this chapter’s “References” section to see that the encryption models and how

they are built are different according to the chaotic map used. Before designing new

cryptographic approaches and mechanisms based on chaos theory, it is important to

understand how different chaotic maps work.

Figure 14-2.  Block diagram for text encryption using a logistic map [14]

Chapter 14 Chaos-based Cryptography

334

Figure 14-3.  Block diagram for image encryption cryptosystem [6]

�Security Analysis
This section presents a security analysis using techniques for finding the weakness or

security breaches in the cryptosystem. We then obtain a piece or the whole encrypted

image or plaintext or find the key without knowing the algorithm or the decryption key.

Examples of attacks over encrypted images are presented in [3] and [4]. The

following methods, techniques, and analysis should be considered when designing a

chaotic system or conducting a cryptanalytic attack.

•	 Keyspace analysis represents the number of trials for finding the

decryption key and is made by trying all the possible keys from

the keyspace of the encryption system. Note that the keyspace

grows exponentially and simultaneously with the increment of the

key’s size.

Chapter 14 Chaos-based Cryptography

335

•	 Secret key sensitivity analysis is important to a good image

encryption system. If just a single bit is modified in the secret key,

then the output image should be a completely different image

(regarding encryption or decryption).

•	 Statistical analysis proves the relationship between the original

image and the encrypted image.

•	 Correlation coefficient analysis is an important graphical tool that

needs to be studied in the histogram, namely, the distribution of the

values generated by a trajectory of a dynamic system. Among the

histogram analysis, the correlation between the pixels of a plain image

and the encrypted image is another important technique, as it is made

between two pixels distributed vertically, horizontally, and diagonally.

•	 Information entropy analysis is based on entropy tests of the

robustness of the encryption algorithm. The comparison between

the entropy of the plain image and the encrypted image is very

important, which shows that the entropy of the encrypted images is

approximately 8-bit depth. This is useful in proving the encryption

technique against the entropy attack.

•	 Differential analysis determines the sensitivity of the cryptosystem

regarding any slight change in the algorithm. The sensitivity can be

computed based on two criteria: NPCR (Number of Pixels Change

Rate) and UACI (Unified Average Changing Intensity). When these

tests are made, the high values show the small changes in the plain

image that produced significant modifications in the encrypted image.

�Chaotic Maps for Plaintexts and Image Encryption
This section presents chaotic maps in regard to their encryption target (text encryption

or image encryption).

Many of the image encryption algorithms listed in Table 14-2 were analyzed and

tested by the authors that proposed them. It is useful to validate the performance and

evaluate the robustness of the encryption scheme. All the references were analyzed and

chosen based on their analyses and tests.

Chapter 14 Chaos-based Cryptography

336

Table 14-2.  Chaotic Map (Systems) for Image Encryption

Chaotic Map (System) Metrics Key References
Entropy NPCR UACI Space Sensitivity

Lorenz

Baker

7.9973 - - 2128 High [5]

Lorenz - - - Large Medium [6]

Henon Map 7.9904 0.0015% 0.0005% 2128 High [7]

Logistic Map 7.9996 99.6231% 33.4070% 1045 High [8]

Trigonometry Maps - 0.25% 0.19% 2302 - [9]

Arnold Cat Map 7.9981 99.62% 33.19% 2148 High [10]

Chebyshev Map 7.9902 99.609% 33.464% 2167 High [11]

Circle Map 7.9902 99.63% 33% 2256 High [12]

Arnold Map - 0.0015% 0.004% - - [13]

�Rössler Attractor
The Rössler attractor represents a system formed from three nonlinear ordinary

differential equations. The equations define a continuous-time dynamical system that

exposes chaotic dynamics associated with the fractal properties of the attractor.

The equations of the Rössler system are as follows.

	
{
dx

dt
y z

dy

dt
x ay

dz

dt
b z x c� � � � � � � �� �

	

When Rössler is applied in real life and practice, computing and finding the fixed

points represents one of the first challenges raised. For computing the fixed points, it is

sufficient that the equations are set to zero and (x, y, z) coordinates of each of the fixed

points are computed by solving the resulting equations. The following general equations

are for each of the fixed-point coordinates.

	

{x
c c ab

y
c c ab

a
z

c c ab

a
�

� �
� �

� ��

�
��

�

�
�� �

� �2 2 24

2

4

2

4

2
	

Chapter 14 Chaos-based Cryptography

337

These equations are turned so that they show the current fixed points given for a set

of values associated with the parameters.

	

c c ab c c ab

a

c c ab

a

� � � � � � ��

�
��

�

�
��

2 2 24

2

4

2

4

2
, ,

	

	

c c ab c c ab

a

c c ab

a

� � � � � � ��

�
��

�

�
��

2 2 24

2

4

2

4

2
, ,

	

These equations are used in our example in Listing 14-4, which implements a

solution for generating secure random numbers using the chaos perspective of the

Rössler attractor.

�Complex Numbers: A Short Overview
Complex numbers represent an extension of the real numbers. The motivation behind

complex numbers is the desire to solve algebraic equations that normally (using

traditional real numbers) have no solution. As an example, x2 + 1 = 0 has no real solution.

For this situation, a symbolic solution has been created and is known as the imaginary

unit i, which has the following property.

	 i2 1� � 	

A complex number is represented by two components, which are known as the real

and the imaginary parts. Write the following.

	 z x yi� � 	

real(z) = x denotes the real part, imag(z) = y denotes the imaginary part, and i

represents the imaginary unit.

The arithmetic behind the complex numbers is quite straightforward and represents

an extension of the arithmetic of real numbers. To understand the previous statement,

we define two numbers z and w as follows.

	 z w x yi u vi x u y v i� � �� �� �� � � �� �� �� � 	

The real and imaginary components are added separately.

The next step is to multiply the numbers as follows.

	 z w x yi u vi xu xvi yui yvi xu yv xv yu i· � �� � �� � � � � � � �� �� �� �2

	

Chapter 14 Chaos-based Cryptography

338

Observe that yvi2 represents the real product due to the property defined

abovei 2 = − 1.

Listing 14-3 uses complex numbers with chaos and fractal properties to provide

encryption and decryption operations.

�Practical Implementation
The applications and programs that use chaotic systems have applicability for plaintext

encryption and image encryption. If you look at other areas of cryptography (such as

the ones discussed in this book), the research community has a significant amount of

theoretical contributions. The lack of practical implementations and directions has

raised multiple difficulties and challenges for researchers and professionals.

If you look at the practicability of chaos cryptography, you see few practical

implementations. The following is a list of some practical approaches (referring to

pseudocode algorithms) found within [15]. The work from [15] provides a very in-depth

structure and good ideas and approaches on implementing different cryptosystems

based on chaos theory. The ideas are provided as pseudocode. The work covers the

following cryptosystem types.

•	 Chaos-based public-key cryptography

•	 Pseudorandom number generation in cryptography

•	 Formation of high-dimensional chaotic maps and their uses in

cryptography

•	 Chaos-based hash functions

•	 Chaos-based video encryption algorithms

•	 Cryptanalysis of chaotic ciphers

•	 Hardware implementation of chaos-based ciphers

•	 Hardware implementation of chaos-secured optical

communication systems

Chapter 14 Chaos-based Cryptography

339

In [15], starting with Chapter 2, the authors propose an interesting public-key

cryptosystem with a chaos approach consisting of three steps.

	 1.	 Key Generation Algorithm (Listing 14-1)

	 2.	 Encryption Algorithm (Listing 14-2)

	 3.	 Decryption Algorithm (Listing 14-3)

The scenario is a typical communication between two user entities: Alice and

Bob. Next, we provide the structure of each algorithm, and at the end, we provide

implementations to demonstrate the applicability.

Listing 14-1.  Pseudocode: Key Generation Algorithm [15]

Start. Alice will need before the communication to generate the keys. For

this, she will accomplish the following.

•	 A large integer a must be generated.

•	 Calculate Ga(p) based on a random number selected as p ∈ [−1, 1].

•	 Alice set her public key as (p, G(p)) and the private key to a.

Listing 14-2.  Pseudocode: Encryption Algorithm [15]

Start. Bob will want to encrypt a message. To achieve this, the following

must be done.

•	 Obtain Alice’s authentic public key (p, Ga(p)).

•	 Calculate and represent the message as a number M ∈ [−1, 1].

•	 Generate a large integer r.

•	 Calculate Gr(p), Gr · a(x) = Gr(Ga(p)) and X = M · Gr · s(p).

•	 Take the ciphertext and send it as C = (Gr(p), X) to Alice.

Listing 14-3.  Pseudocode: Decryption Algorithm [15]

Start. Alice wants to read the text, and to do this, he will have to

recover M from the ciphertext C. To achieve this, the following steps are

performed.

Chapter 14 Chaos-based Cryptography

340

•	 Alice has to use her private key a and calculate Ga · t = Ga(Gr(p)).

•	 The message M is obtained by calculating M
X

G pa r

�
� �

�

.

�Secure Random Number Generator Using Chaos
Rössler Attractor
This section presents the implementation of a secure random number generator using

a chaos Rössler attractor. The application has five files (encryption.h, generation.h,

encryption.c, generation.c, and chaos_random.cpp). To compile and run the

application, the following command needs to run in the terminal.

g++ -std=c++2b -o test.exe chaos_random.cpp generation.c generation.h

encryption.c encryption.h

Next, let’s examine each file and discuss the most important lines of code.

Figure 14-4 shows the execution of the program and the numbers generated for each

of the keys. As you saw in the Rössler attractor section, three fixed points need to be

computed to solve the equations. Each fixed point is represented by a cryptographic key

(e.g., key 1, key 2, key 3).

Figure 14-4.  Secure random number generator

Listing 14-4 shows the header file (encryption.h) for defining the signature function

for the encryption process, encryption. The function has three input values.

•	 struct generation *g is a struct object used for generating the

mantissa, exponent, and sign for obtaining the normalization form

of a real number. The definition of the struct can be found within file

generation.h (see Listing 16-2).

Chapter 14 Chaos-based Cryptography

341

•	 uint8_t *buffer is the buffer with the data used for encryption.

•	 size_t length is the length of the buffer.

Listing 14-4.  Header file encryption.h

#ifndef ENCRYPTION_H

#define ENCRYPTION_H

#include "generation.h"

#include <stddef.h>

void encryption (struct generation *g, uint8_t *buffer, size_t length);

#endif

Listing 14-5 is the implementation of the generation.h header file, which contains

definitions for the Rössler attractor (see ROSSLER(x,n)), the coordinates (A, B, and C),

integral approximation (APPROXIMATION constant), removing noise constant (REMOVE_

NOISE), two functions for generating the initialization on 16 and 32 bits (generation_

initialization and generation 32), describing the normalization of real numbers

as a union and struct type, containing for the double numbers the mantisa, exponent

and sign (realbits union), and a struct (generation struct) for the generation process,

which contains three variables that represent the fixed points (e.g., x, y, and z).

Listing 14-5.  Header file generation.h

#ifndef GENERATION_H

#define GENERATION_H

#include <inttypes.h>

#include <math.h>

// the Rossler (ROL) attractor definition for plane (x,n)

#define ROSSLER(x,n) ((x = ((x << n) | (x >> (32 - n)))))

// the attractor variables (coordinates) - for this example Rossler

is chosen

#define A_Coordinate 0.5273

#define B_Coordinate 3

#define C_Coordinate 6

Chapter 14 Chaos-based Cryptography

342

// constant for integral approximation as a step size

#define APPROXIMATION 0.01

// constant used for removing the initial noise

#define REMOVE_NOISE 64

void generation_initialization(struct generation *g, uint64_t k[3]);

uint32_t generation32(struct generation *g);

// the normalization form of a real number

union realbits

{

 double d;

 struct

 {

 uint64_t mantisa: 52;

 uint64_t exponent: 11;

 uint64_t sign: 1;

 } rb;

};

struct generation

{

 union realbits x, y, z;

};

#endif

Listing 14-6 is the implementation function for the encryption process. Note that

the encryption.c source file includes header files in Listing 14-4 and Listing 14-5. As

mentioned, encryption is performed using a generation struct that contains three fixed

points, a buffer used to hold the content to be encrypted, and its length. The function is

self-explanatory, and its main idea is based on the position within the data stream. The

number of calls plays an important role, as is using the length of the buffer and shifting

to the right with 2 bits.

Chapter 14 Chaos-based Cryptography

343

Listing 14-6.  File encryption.c

#include "encryption.h"

#include "generation.h"

#include <iostream>

using namespace std;

// performing the encryption operation

void encryption(struct generation *g, uint8_t *buffer, size_t length)

{

 uint32_t position_in_stream;

 size_t number_of_calls = length >> 2;

 size_t l_neighbor = length & 3;

 uint8_t *temporary = (uint8_t *)&position_in_stream;

 for(size_t index = 0; index < number_of_calls; ++index)

 {

 position_in_stream = generation32(g);

 buffer[(index<<2)] ^= temporary[0];

 buffer[(index<<2)+1] ^= temporary[1];

 buffer[(index<<2)+2] ^= temporary[2];

 buffer[(index<<2)+3] ^= temporary[3];

 }

 if(l_neighbor!= 0)

 {

 position_in_stream = generation32(g);

 for(size_t index = 0; index < l_neighbor; ++index)

 �buffer[(number_of_calls<<2)+index] ^=

temporary[index];

 }

 �std::cout<<"The position with the stream is -> "<<position_in_

stream<<endl;

}

Chapter 14 Chaos-based Cryptography

344

Listing 14-7 is the implementation for different operations necessary for generating

the fixed points and performing the initialization process. Here, we also use the ROSSLER

function defined in Listing 14-5.

Listing 14-7.  File generation.c

#include "generation.h"

static void initialization(struct generation *gen, double initValueX,

double initValueY, double initValueZ)

{

 gen->x.d = initValueX;

 gen->y.d = initValueY;

 gen->z.d = initValueZ;

}

static void perform_iteration(struct generation *gen)

{

 gen->x.d = gen->x.d + APPROXIMATION * (-gen->y.d - gen->z.d);

 �gen->y.d = gen->y.d + APPROXIMATION * (gen->x.d + A_Coordinate *

gen->y.d);

 �gen->z.d = gen->z.d + APPROXIMATION * (B_Coordinate + gen->z.d *

(gen->x.d - C_Coordinate));

}

void generation_initialization(struct generation *gen, uint64_t

keyValue[3])

{

 initialization(gen,

 (double)keyValue[0] / 9007199254740992,

 (double)keyValue[1] / 8674747684896687,

 (double)keyValue[2] / 6758675765879568);

 for(uint8_t index = 0; index < REMOVE_NOISE - 1; ++index)

 perform_iteration(gen);

}

Chapter 14 Chaos-based Cryptography

345

uint32_t generation32(struct generation *gen)

{

 uint32_t message[6];

 message[0] = (uint32_t)(gen->x.rb.mantisa >> 32);

 message[1] = (uint32_t)(gen->x.rb.mantisa);

 message[2] = (uint32_t)(gen->y.rb.mantisa >> 32);

 message[3] = (uint32_t)(gen->y.rb.mantisa);

 message[4] = (uint32_t)(gen->z.rb.mantisa >> 32);

 message[5] = (uint32_t)(gen->z.rb.mantisa);

 perform_iteration(gen);

 message[0] += message[1];

 message[2] += message[3];

 message[4] += message[5];

 for(uint8_t index = 0; index < 4; ++index)

 {

 ROSSLER(message[0],7); ROSSLER(message[3],13);

 message[5] ^= (message[4] + message[3]);

 message[1] ^= (message[2] + message[0]);

 message[2] = message[2] ^ message[0] ^ message[5];

 message[4] = message[4] ^ message[3] ^ message[1];

 }

 message[2] += message[4];

 return message[2];

}

Listing 14-8 is the implementation of the main program. It is necessary to specify that

the path to the file that contains random numbers (similar to urandom in the Unix OS)

has to be adjusted accordingly for reader confusion. The line where the path has to be

modified is shown in bold as follows.

if((folder = open("D:/Apps C++/Chapter 14 - Chaos-based Cryptography/

ChaosSecureRandomNumberGenerator/dev/urandom", O_RDONLY)) == -1)

Chapter 14 Chaos-based Cryptography

346

Listing 14-8.  Main Program

#include "encryption.h"

#include "generation.h"

#include <fcntl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <windows.h>

#include <time.h>

#include <inttypes.h>

#include <iostream>

using namespace std;

const size_t MESSAGE_LENGTH = 2000000000;

uint64_t generateStringOfBytes()

{

 int folder = 0;

 ssize_t resourceFile = 0;

 uint64_t buffer = 0;

 �if((folder = open("C:/Users/mariu/Desktop/RandomGenerate_

RosslerAttractor/urandom ", O_RDONLY)) == -1)

 exit(-1);

 if((resourceFile = read(folder, &buffer, sizeof buffer)) < 0)

 exit(-1);

 buffer &= ((1ULL << 53) - 1);

 close(folder);

 return buffer;

}

Chapter 14 Chaos-based Cryptography

347

int main(void)

{

 struct generation gen;

 �uint64_t key[3] = {generateStringOfBytes()+rand()%3000, generate

StringOfBytes()+rand()%5000, generateStringOfBytes()+rand()%8000};

 cout<<"Key 1 -> "<<key[0]<<endl;

 cout<<"Key 2 -> "<<key[1]<<endl;

 cout<<"Key 3 -> "<<key[2]<<endl;

 // generate 1GiB of 1s

 uint8_t *message = (uint8_t*)malloc(MESSAGE_LENGTH);

 memset(message, 1, MESSAGE_LENGTH);

 // perform encryption

 generation_initialization(&gen, key);

 clock_t s = clock();

 encryption(&gen, message, MESSAGE_LENGTH);

 clock_t e = clock();

 double spent = (double)(e - s) / CLOCKS_PER_SEC;

 printf("1GiB in %lfs\n", spent);

 free(message);

}

�Encrypt and Decrypt Using Chaos and Fractals
This section discusses and implements a solution for encryption/decryption operations

using chaos and fractals notions.

Listing 14-9 declares the main functions that deal with processing the representation

of starting points and performing the projections for axes x and y.

One of the most challenging operations and tasks to achieve when using

fractals and chaotic systems is to identify the path and the main root (see function

identifyFirstRoot()).

The code in Listing 14-9 and 14-10 is self-explanatory and contains the necessary

notes to be fully understood. Figure 14-5 shows the execution of the application.

Chapter 14 Chaos-based Cryptography

348

Figure 14-5.  Execution of the encryption/decryption process

The following command must be entered in the terminal to run the program.

g++ -o test.exe Crypto_EncDec_Cryptography.cpp Crypto_EncDec_Cryptography.h

Listing 14-9.  Header file Crypto_EncDec_Cryptography.h

#ifndef CRYPTOCIPHERFRACTALS_H_

#define CRYPTOCIPHERFRACTALS_H_

#include <climits>

#include <assert.h>

#include <math.h>

class CryptoFractalCipher

{

 // point C = (x, y) - the representation in the xOy system of point C

 double c_xCoordinatePoint, c_yCoordinatePoint;

 // point Z = (x,y) - the representation in the xOy system of point Z

 double z_xCoordinatePoint, z_yCoordinatePoint; //Zx,Zy;

Chapter 14 Chaos-based Cryptography

349

 // get the sign of a double number

 inline double getSign(double number)

 {

 �// in case that d is less than 0, return -1.0, making the

number negative

 // contrary make the number positive

 if (number<0)

 return(-1.0);

 else

 return(1.0);

 };

 // Value 'yValue' will be projected over an integer matrix or grid.

 �// We have chosen this for achieving the scaling goal and

performing tests.

 �// The projection process is a matter of personal choice, any

other idea or

 // solution can be implemented by reader.

 inline unsigned int PerformProjectionFor_Y(double yValue)

 {

 unsigned long q;

 const double scale=(32768.0/2.0);

 const double offset=(32768.0);

 �// do the projection as a positive integerproject to

positive integer

 q=(yValue*scale)+offset;

 //getting the LSB (least significant bit)

 q&=1;

 return q;

 }

 // Value 'xValue' will be projected over an integer matrix or grid.

 �// We have chosen this for achieving the scaling goal and

performing tests.

Chapter 14 Chaos-based Cryptography

350

 �// The projection process is a matter of personal choice, any

other idea or

 // solution can be implemented by reader.

 inline unsigned int PerformProjectionFor_X(double xValue)

 {

 // used for storing the decomposition value

 double decompositionValue;

 // power value (exponent)

 int n;

 // with frexp() we will decompose the double point (xValue) as

 // argument into a normalized fraction and an integral power

 decompositionValue = frexp (xValue , &n);

 �// with ldexp() we will return the result of multiplying

'decompositionValue'

 �// (the significand) with 2 and raised to the power '51'

(exponent)

 decompositionValue = ldexp(decompositionValue,51);

 // Test if the difference between 'decompositionValue' and

 // floor(decompositionValue) is less than 0.5

 // if yes return '1', otherwise '0'.

 �// With floor() we round 'decompositionValue', returning

the largest

 // integral value that is not greater than 'decompositionValue'

 �return (((decompositionValue-floor(decompositionVal

ue))<0.5)?1:0);

 }

 inline void identifyFirstRoot()

 {

 /* Zn*Zn=Z(n+1)-c */

 z_xCoordinatePoint=z_xCoordinatePoint-c_xCoordinatePoint;

 z_yCoordinatePoint=z_yCoordinatePoint-c_yCoordinatePoint;

 �// r represents the length of the vector from the origin to

the point

Chapter 14 Chaos-based Cryptography

351

 // r = |z| = sqrt(x*x+y*y)

 double r;

 // the new point z = (x,y)

 double z_xNewPointValue, z_yNewPointValue; //NewZx, NewZy

 �r=sqrt(z_xCoordinatePoint*z_xCoordinatePoint+z_

yCoordinatePoint*z_yCoordinatePoint);

 �// the below code sequence represents the implementation of the

algorithm presented in [16], from page 361 to 362.

 // case 1: z>0

 if (z_xCoordinatePoint>0)

 {

 z_xNewPointValue=sqrt(0.5*(z_xCoordinatePoint+r));

 z_yNewPointValue=z_yCoordinatePoint/(2*z_xNewPointValue);

 }

 // for cases when z<0 and z=0

 else

 {

 // case 2: z<0

 if (z_xCoordinatePoint<0)

 {

 �z_yNewPointValue=getSign(z_

yCoordinatePoint)*sqrt(0.5*(-z_

xCoordinatePoint+r));

 �z_xNewPointValue=z_yCoordinatePoint/(2*z_

yNewPointValue);

 }

 //case 3: z=0

 else

 {

 �z_xNewPointValue=sqrt(0.5*fabs(z_

yCoordinatePoint));

 �if (z_xNewPointValue>0) z_yNewPointValue=z_

yCoordinatePoint/(2*z_xNewPointValue);

Chapter 14 Chaos-based Cryptography

352

 else z_yNewPointValue=0;

 }

 };

 // end of the implementation

 // the values for x and y coordinates

 z_xCoordinatePoint=z_xNewPointValue;

 z_yCoordinatePoint=z_yNewPointValue;

 };

public:

 //obtains the encrypted value

 unsigned int getEncryptedMessageA(unsigned int plainValue);

 unsigned int getDecryptedMessageB(unsigned int encryptedValue);

 unsigned int getEncryptedMessageC(unsigned int stream);

 unsigned int getDecryptedMessageD(unsigned int stream);

 // gets the single bit

 unsigned int bitCodeEncryptedMessageA(unsigned int plainValue);

 unsigned int bitCodeDecryptedMessageB(unsigned int encryptedValue);

 unsigned int bitCodeEncryptedMessageC(unsigned int stream);

 unsigned int bitCodeDecryptedMessageD(unsigned int stream);

 // constructor

 CryptoFractalCipher(double cx,double cy);

 // destructor

 virtual ~CryptoFractalCipher();

};

#endif

Listing 14-10.  Main Program

#include "FractalCipherCrypto.h"

#include <climits>

#include <assert.h>

#include <math.h>

#include <iostream>

Chapter 14 Chaos-based Cryptography

353

using namespace std;

// implementing bitCodeEncryptedMessageA from FractalCipherCrypto.h file

unsigned int CryptoFractalCipher::bitCodeEncryptedMessageA(unsigned int

bit_from_plaintext)

{

 // below we will create a cryptographic stream from the clear stream

 int crypto_bit=0;

 {

 identifyFirstRoot();

 // quadratic value

 �unsigned long quadraticValue = PerformProjectionFor_X(z_

yCoordinatePoint);

 // Do the encoding process and provide the

 // cryptographic stream from the clear stream

 // Variables used:

 // - iV: the input value

 // - oV: the output value

 // - rV: the route value in the expansion of the fractal

 unsigned int iV, oV, rV;

 {

 unsigned int result1, result2, result3;

 iV=(bit_from_plaintext) & 1;

 // obtained from the iteration of the quadratic value

 result1=quadraticValue;

 // input value

 result2=iV;

 �// we will copy the bits if it is set in one operand but

not both

 result3=result1^result2;

 // the final output value

 oV=result3;

Chapter 14 Chaos-based Cryptography

354

 �// the route value that needs to be followed within the

expansion of the fractal

 rV=result2;

 }

 crypto_bit=(oV);

 if ((rV) != 0)

 {

 // use the route on the second root point

 z_xCoordinatePoint=-z_xCoordinatePoint;

 z_yCoordinatePoint=-z_yCoordinatePoint;

 }

 }

 return crypto_bit;

};

unsigned int CryptoFractalCipher::bitCodeDecryptedMessageB(unsigned int

bit_from_encoding)

{

 // decode the clear value from the cryptographic stream

 int bit_from_plaintext=0;

 {

 identifyFirstRoot();

 // computing the quadratic value

 �unsigned long quadraticValue = PerformProjectionFor_X(z_

yCoordinatePoint);

 �// decoding process for obtaining the clearstream from the

cryptographic stream

 // Variables used:

 // - iV: the input value

 // - oV: the output value

 // - rV: the route value in the expansion of the fractal

 unsigned int iV, oV, rV;

 {

 unsigned int result1,result2,result3;

Chapter 14 Chaos-based Cryptography

355

 iV=(bit_from_encoding) & 1;

 // obtained from the iteration of the quadratic value

 result1=quadraticValue & 1;

 // input value

 result3=iV;

 �// we will copy the bits if it is set in one operand but

not both

 result2=result1^result3;

 // the output value

 oV=result2;

 �// the route value that needs to be followed within the

expansion of the fractal

 rV=result2;

 }

 bit_from_plaintext=(oV);

 if ((rV) != 0)

 {

 // use the route on the second root point

 z_xCoordinatePoint=-z_xCoordinatePoint;

 z_yCoordinatePoint=-z_yCoordinatePoint;

 }

 }

 return bit_from_plaintext;

};

unsigned int CryptoFractalCipher::bitCodeEncryptedMessageC(unsigned int

bit_from_stream)

{

 // generate the cryptographic stream from the clear stream

 int bit_from_coding=0;

 {

 identifyFirstRoot();

Chapter 14 Chaos-based Cryptography

356

 �unsigned long quadraticValueForY = PerformProjectionFor_X(z_

yCoordinatePoint);

 �unsigned long quadraticValueForX = PerformProjectionFor_X(z_

xCoordinatePoint);

 // encoding process

 unsigned int iV, oV, rV;

 { unsigned int result1, result2, result3, result4;

 iV=(bit_from_stream);

 // from the iteration of the 'y' quadratic

 result1=quadraticValueForY;

 // from the iteration of the 'x' quadratic

 result2=quadraticValueForX;

 �// we will copy the bits if it is set in one operand but

not both

 result3=iV^result1;

 result4=iV^result2;

 // the output value

 oV=result3;

 rV=result4; // branch in path to follow through IIM

 }

 bit_from_coding=(oV);

 if ((rV) != 0)

 {

 // use the route on the second root point

 z_xCoordinatePoint=-z_xCoordinatePoint;

 z_yCoordinatePoint=-z_yCoordinatePoint;

 }

 }

 return bit_from_coding;

};

Chapter 14 Chaos-based Cryptography

357

unsigned int CryptoFractalCipher::bitCodeDecryptedMessageD(unsigned int

bit_from_stream)

{

 // generate the cryptographic stream from the clear stream

 int bit_from_coding = 0;

 {

 identifyFirstRoot();

 �unsigned long quadraticValueForY = PerformProjectionFor_X(z_

yCoordinatePoint);

 �unsigned long quadraticValueForX = PerformProjectionFor_X(z_

xCoordinatePoint);

 // encoding process

 unsigned int iV, oV, rV;

 {

 unsigned int result1, result2, result3, result4;

 iV=(bit_from_stream) & 1;

 // from iterated quadratic y and x

 result1=quadraticValueForY;

 result2=quadraticValueForX;

 �// we will copy the bits if it is set in one operand but

not both

 result3=iV^result1;

 result4=result3^result2;

 // output value

 oV=result3;

 // the route value

 rV=result4;

 }

 bit_from_coding=(oV);

 if ((rV) != 0)

 { //take branch to second root

 z_xCoordinatePoint=-z_xCoordinatePoint;

Chapter 14 Chaos-based Cryptography

358

 z_yCoordinatePoint=-z_yCoordinatePoint;

 }

 }

 return bit_from_coding;

};

unsigned int CryptoFractalCipher::getEncryptedMessageA(unsigned int

clearstream)

{

 // for creating the cryptographic stream from the clear stream

 int cryptographic_stream=0;

 for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

 {

 �// encoding process for obtaining cryptographic stream from

clear stream

 unsigned int iV,oV;

 iV=(clearstream>>iterationIndex) & 1;

 oV=bitCodeEncryptedMessageA(iV);

 cryptographic_stream+=((oV)<<iterationIndex);

 }

 return cryptographic_stream;

};

unsigned int CryptoFractalCipher::getDecryptedMessageB(unsigned int

cryptstream)

{

 // for creating the clear stream from the cryptographic stream

 int clearstream=0;

 for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

 {

 �// decoding process for obtaining the clear stream from the

cryptographic stream

 unsigned int iV, oV;

 iV=(cryptstream>>iterationIndex) & 1;

Chapter 14 Chaos-based Cryptography

359

 oV=bitCodeDecryptedMessageB(iV);

 clearstream+=((oV)<<iterationIndex);

 }

 return clearstream;

};

unsigned int CryptoFractalCipher::getEncryptedMessageC(unsigned int stream)

{

 // construct the cryptographic stream from clear stream

 // cv - the code value

 int cV=0;

 for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

 {

 �// encoding process for generating the cryptographic stream from

clear stream

 unsigned int iV,oV;

 iV=(stream>>iterationIndex) & 1;

 oV=bitCodeEncryptedMessageC(iV);

 cV+=((oV)<<iterationIndex);

 }

 return cV;

};

unsigned int CryptoFractalCipher::getDecryptedMessageD(unsigned int stream)

{

 // construct the cryptographic stream from clear stream

 // cv - the code value

 int cV=0;

 for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

 {

 �// encoding process for generating the cryptographic stream from

clear stream

 unsigned int iV, oV;

 iV=(stream>>iterationIndex) & 1;

 oV=bitCodeDecryptedMessageD(iV);

Chapter 14 Chaos-based Cryptography

360

 cV+=((oV)<<iterationIndex);

 }

 return cV;

};

CryptoFractalCipher::CryptoFractalCipher(double cPoint_xValue,double

cPoint_yValue)

{

 c_xCoordinatePoint=cPoint_xValue;

 c_yCoordinatePoint=cPoint_yValue;

 z_xCoordinatePoint=z_yCoordinatePoint=0;

 �// use repeating digits as for encoding process using PI value with

the goal to find a fixed point

 for(int index=0; index<32; index++)

 getEncryptedMessageA(3141592653);

}

// destructor implementation - only if it is necessary

CryptoFractalCipher::~CryptoFractalCipher()

{

}

int main(void)

{

 // CryptoKey_rValue and CryptoKey_iValue are represented as

 // a point that is situated near the boundary of the Mandelbrot set

 // the real value of a complex number (cryptographic key)

 double CryptoKey_rValue=-0.687;

 // the imaginary unit

 double CryptoKey_iValue=-0.312;

 unsigned int Plaintext[50];

 unsigned int EncryptionA[50];

 unsigned int EncryptionB[50];

 unsigned int DecryptionOfAWithB[50];

Chapter 14 Chaos-based Cryptography

361

 unsigned int DecryptionOfBWithA[50];

 // generate random message

 for (int i=0;i<50;i++)

 Plaintext[i]=rand()%1000;

 // perform message encoding using getEncryptedMessageA for A

 {

 CryptoFractalCipher CFC(CryptoKey_rValue, CryptoKey_iValue);

 for (int i=0;i<50;i++)

 EncryptionA[i]=CFC.getEncryptedMessageA(Plaintext[i]);

 }

 // perform message encoding using getDecryptedMessageB for B

 {

 CryptoFractalCipher CFC(CryptoKey_rValue, CryptoKey_iValue);

 for (int i=0;i<50;i++)

 EncryptionB[i]=CFC.getDecryptedMessageB(Plaintext[i]);

 }

 // perform message decoding A with B using getDecryptedMessageB for B

 {

 CryptoFractalCipher CFC(CryptoKey_rValue, CryptoKey_iValue);

 for (int i=0;i<50;i++)

 �DecryptionOfAWithB[i]=CFC.getDecryptedMessageB(Encryp

tionA[i]);

 }

 // perform message decoding B with A using getDecryptedMessageB for A

 {

 CryptoFractalCipher CFC(CryptoKey_rValue, CryptoKey_iValue);

 for (int i=0;i<50;i++)

 �DecryptionOfBWithA[i]=CFC.getEncryptedMessageA(Encryp

tionB[i]);

 }

Chapter 14 Chaos-based Cryptography

362

 // display the output value and the results

 for (int i=0;i<50;i++)

 {

 cout

 <<i

 <<") (Plaintext Value="<<Plaintext[i]

 <<") (Encryption -> First Method (A) = "<<EncryptionA[i]

 <<") (Encryption -> Second Method (B) = "<<EncryptionB[i]

 <<") (Decryption -> A with B = "<<DecryptionOfAWithB[i]

 <<") (Decryption -> B with A = "<<DecryptionOfBWithA[i]

 <<")"<<endl;

 };

}

�Conclusion
This chapter discussed a different approach to cryptography, which is chaos-based

cryptography. The new cryptographic algorithms use the chaos function to generate new

cryptographic primitives differently from what we have used.

In this chapter, you learned the following.

•	 How chaos-based cryptography primitives are built and what makes

them different from normal cryptographic primitives

•	 How the chaos system is designed for text encryption and image

encryption

How can we implement a cryptographic system based on number generators using

a chaos approach and performing encryption and decryption operations with a chaos

system and fractals?

Chaos-based cryptography is one of the most secure encryption methods currently

available. It is based on the principles of chaos theory, which states that even simple

systems can produce unpredictable results. With chaos-based cryptography, the

encrypted message is fed into a mathematical formula that generates a seemingly

random sequence of numbers. This sequence cannot be reproduced or replayed,

which makes it almost impossible to crack. Each time the formula is used to generate

a sequence, the output is different, making it impossible for hackers to crack the code.

Chapter 14 Chaos-based Cryptography

363

This is because the mathematical formula is constantly changing, which makes it almost

impossible for someone to identify a pattern.

Strong mathematical formulas are the backbone of chaos-based cryptography,

which makes it highly secure. It is nearly impossible to crack the code as the sequence of

numbers is generated by complex mathematical formulas that are constantly changing.

This means that hackers can never predict the next sequence of numbers, which makes

it virtually impossible to crack the code. It also makes it easier to share code, as it can

be broken down into simple mathematical formulas. Chaos-based cryptography is a

one-way encryption method, which means that it is almost impossible to decrypt the

message once it has been encrypted. This is in stark contrast to traditional encryption

methods, which can be deciphered if the correct formula is applied. This makes it the

perfect method for protecting sensitive information, such as financial data or health

records. It is also one of the quickest methods for generating a sequence of seemingly

random numbers. Most chaos-based cryptographic systems are based on computer

software, meaning they can quickly produce a sequence of random numbers. This can

be helpful if you need to send encrypted data to a client or colleague quickly.

References
[1].	 Robert Matthews, On the derivation of a “chaotic” encryption algorithm.

Cryptologia 13, no. 1 (1989): 29–42.

[2].	 L. Kocarev, “Chaos-based cryptography: a brief overview,” IEEE Circuits and

Systems Magazine, vol. 1, no. 3, pp. 6–21, 2001.

[3].	 Ali Soleymani, Zulkarnain Md Ali, and Md Jan Nordin,” A Survey on

Principal Aspects of Secure Image Transmission”, World Academy of Science,

Engineering and Technology 66 2012, pp. 247–254.

[4].	 D. Chattopadhyay1, M. K. Mandal1 and D. Nandi,” Symmetric key chaotic

image encryption using circle map”, Indian Journal of Science and Technology,

vol. 4, no. 5 (May 2011) ISSN: 0974- 6846, pp. 593–599.

[5].	 Anto Steffi, Dipesh Sharma,” Modified Algorithm of Encryption and

Decryption of Images using Chaotic Mapping,” International Journal of

Science and Research (IJSR), India Online ISSN: 2319-7064, vol. 2 Issue 2,

February 2013.

Chapter 14 Chaos-based Cryptography

364

[6].	 K. S. Sankaran and B. V. S. Krishna, “A New Chaotic Algorithm for Image

Encryption and Decryption of Digital Color Images,” International Journal of

Information and Education Technology, pp. 137–141, 2011.

[7].	 Somaya Al-Maadeed, Afnan Al-Ali, and Turki Abdalla, “A New Chaos-Based

Image-Encryption and Compression Algorithm,” Hindawi Publishing

Corporation, Journal of Electrical and Computer Engineering, vol. 2012, Article

ID 179693.

[8].	 Hazem Mohammad Al-Najjar, Asem Mohammad AL-Najjar, “Image

Encryption Algorithm Based on Logistic Map and Pixel Mapping Table.”

[9].	 Sodeif Ahadpour, Yaser Sadra,” A Chaos-based Image Encryption Scheme

using Chaotic Coupled Map Lattices.

[10].	 Kamlesh Gupta1, Sanjay Silakari, “New Approach for Fast Color Image

Encryption Using Chaotic Map”, Journal of Information Security, 2011, 2,

139–150.

[11].	 Chong Fu, Jun-jie Chen, Hao Zou, Wei-hong Meng, Yong-feng Zhan, and

Ya-wen,” A chaos-based digital image encryption scheme with an improved

diffusion strategy”, Optical Society of America, 30 January 2012/Vol. 20, No. 3/

pp 2363–2378.

[12].	 D. Chattopadhyay1, M. K. Mandal1 and D. Nandi,” Symmetric key chaotic

image encryption using circle map”, Indian Journal of Science and Technology,

vol. 4 no. 5 (May 2011) pp. 593–599.

[13].	 Shima Ramesh Maniyath1 and Supriya M, “An Uncompressed Image

Encryption Algorithm Based on DNA Sequences,” Computer Science &

Information Technology (CS & IT), CCSEA 2011, CS & IT 02, pp. 258–270.

[14].	 Murillo-Escobar, Miguel. (2014). A novel symmetric text encryption algorithm

based on logistic map.

[15].	 L. Kocarev and S. Lian, Chaos-based cryptography: theory, algorithms and

applications, vol. 354. Springer Science & Business Media, 2011.

[16].	 H.-O. Peitgen, H. Jürgens, and D. Saupe, Fractals for the classroom: part

two: complex systems and mandelbrot set. Springer Science & Business

Media, 2012.

Chapter 14 Chaos-based Cryptography

365

CHAPTER 15

Big Data Cryptography
Big data is the process through which data sets of large size (in a range from a few

terabytes to many zettabytes) are extracted, manipulated, and analyzed. These

techniques differ from traditional techniques, as big data contain different types of data,

structured or unstructured (video or audio files, images, texts, etc.).

Big data cryptography is related to data confidentiality, integrity, and authenticity,

representing an important topic that needs to be treated with attention because each

business has its computational model and software and hardware architecture. The

cryptographic methods related to big data differ from the traditional ones because

encryption systems and their related concepts are defined differently regarding the

policies for access control, cloud infrastructure, and storage management and techniques.

This chapter describes a general computational model applicable in a cloud

environment that enables and eases the implementation of big data analytics

applications. The following presents a classification of the nodes from cloud architecture

and their purpose in the big data analytics process. The types of nodes are based on

the classification from [1] to [3], and the notations are extended slightly to define the

following types of nodes.

•	 IN represents an input node that handles the raw data used in the

application. These types of nodes collect data from front-end users

or data that are read or captured from different sensors (such as

fingerprint readers, holographic signatures, and temperature sensors).

•	 CN represents the computational node that has a significant role in

the computational processes of the application. The basis of these

nodes is the ingestion nodes, which are included in a computational

node. In this classification, the ingestion nodes are called consuming

nodes. Their purpose is to scan and refine the input data, meaning

data preparation for the analysis process and its passing to the

enrichment nodes, where the data is processed.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_15

https://doi.org/10.1007/978-1-4842-9450-5_15

366

•	 SN represents the storage node, which has a significant role in

applying cryptographic techniques to the data. Its purpose is to store

the data involved in the computational processes applied between

end users and third parties. These nodes store the input data and the

output data for data analysis.

•	 RN represents the result node, which receives the output of some

processes being executed. It can make automatic decisions based

on the output of the analysis process, or it can send the output to a

specific client.

Figure 15-1 shows an example of cloud architecture for big data analytics that

includes the elements described. The model can represent a pattern that describes

a wide range of big data applications. Note the set of one or more nodes of type H, as

follows H+,where H ∈ {IN, CN, SN, RN}.

Figure 15-1.  Example of cloud architecture with big data analytics applications

Figure 15-1 presents a general cloud model that can be applied to an application

that requires data sets. In the example, node IN initiates the process of collecting

reference data sets. The input nodes send data sequences to the CN(Ingestion) node.

In the ingestion node, the data sequences are used by the computation process for

which they are parsed. The output data is organized in files or databases when the

Chapter 15 Big Data Cryptography

367

computational process ends. In the next step, the files and databases are sent to the

storage nodes SN (Storage). From time to time, the enrichment nodes CN(Enrichment)

perform computation over the data from the storage nodes. Mostly, these processes are

performed offline and update the associated metadata according to the user’s needs. In

our example, RN (Data Receiver) represents a user that correlates the data set with the

reference data set.

Cloud computing presents many security challenges for the data that move through

and between its components. To follow the path of protection techniques from cloud

cryptography, you need to consider three main security goals, known as the CIA triad.

•	 Confidentiality. The data referred strictly to the input and output

of the computations needs to be kept secret to be protected against

untrusted parties, malicious parties, or other potential adversaries.

•	 Integrity. Any changes that are not authorized over the data must be

immediately detected. Note that nefarious actors do not always cause

integrity issues; software bugs or data transfer issues can also cause

them. Regardless, the integrity of the data must be enforced.

•	 Availability. The data owners and the authorized data users can

access the data and computational resources.

Let’s focus on availability because it is one of the most important cloud

characteristics but excludes cryptographic means. For this reason, confidentiality and

integrity must be involved as much as possible in the cloud. Big data architecture and the

way data is stored are also relevant for security and cryptographic purposes. The way in

which confidentiality and integrity are achieved is dictated by how the cloud is deployed.

When developing an application, it is important to establish from the beginning which

participant controls which component of the cloud and the degree of trust awarded to

each component and participant. Based on this, consider the following types of clouds.

•	 A trusted cloud is deployed by governmental organizations or

institutions, and it is isolated completely from anything from outside

(networks or adversaries). Public cloud vendors such as Microsoft

have regions for US government users. The Microsoft Jedi contract

with the Department of Defense covers such use and Azure cloud

resources authorized for secret and top-secret use. The files of the

users or clients are stored completely in a safe without being worried

Chapter 15 Big Data Cryptography

368

about corruption or stealing. However, there are situations in which

some of the nodes are exposed as they may communicate with

external networks. Therefore, in these situations, malware or insiders

can affect these nodes.

•	 A semitrusted cloud does not specifically state if the cloud can

be trusted entirely or if it cannot be trusted at all. However, a good

practice is to mention the components under control and provide

solutions to monitor adversarial activities at a given time.

•	 In an untrusted cloud, the nodes within the cloud or the cloud

itself are not trusted at all by the data users. This scenario means no

security guarantees are given, including confidentiality or integrity of

the data or computations. In such situations, the cloud user should

have its own solutions and protection mechanisms to ensure (a

level of) confidentiality and integrity. Mainly, the untrusted cloud is

associated with the public cloud model.

After these short descriptions of the cloud and big data elements, let’s discuss the

cryptographic techniques that can be applied in these environments. Cryptographic

techniques are very complex to ensure the security of big data and cloud computing. It

is difficult to apply them in real-life scenarios without dedicated third-party software

libraries or experienced professionals.

This chapter focuses on three cryptographic techniques that can be used to achieve

the security of big data applications deployed in the cloud environment.

•	 Homomorphic encryption (see Chapter 12)

•	 Verifiable computation represents the first objective of this chapter

•	 Secure multiparty computation (MPC)

The following are other cryptographic techniques that can be applied successfully to

achieve security in cloud computing and big data.

•	 Functional encryption (FE)

•	 Identity-based encryption (IE)

•	 Attribute-based encryption (AE)

Chapter 15 Big Data Cryptography

369

The next section presents a promising technique that can be applied in real

environments. Many encryption schemes that fall in the FE, IE, or AE types are very

difficult to use in practice because many works are based on theoretical assumptions.

Most do not consider the requirements and demands of business or industry

applications. Between theory and practice, it is a long path that theoreticians and

practitioners must go through together and collaborate closely to find solutions for

security concerns in real environments and to find and solve the existing problems

and gaps.

�Verifiable Computation
A verifiable computation or verifiable computing refers to machines’ capability of

unloading the computation quantity of some function(s) to others; for example, clients

with untrusted status, while the results are being verified continuously (see Figure 15-2).

Figure 15-2.  Verifiable computation example. The cloud nodes do not have any
trust level for integrity protection

An important application of verifiable computation for real environments is Merkle

trees, whose purpose is to check the integrity of the data. In big data, the Merkle tree

represents a data structure used to validate the integrity of different properties for items,

data, rows, sets of data, and so on. A very useful characteristic of Merkle trees is that

Chapter 15 Big Data Cryptography

370

they can be used on large amounts of data (in the context of big data). In this direction,

improvements have been made by combining algorithms of verifiable computation with

Merkle trees.

The example in Listings 15-1 to 15-6 presents a scenario in which a Merkle tree is

self-balancing. The example is just a simulation (see Figure 15-1), and deploying the

application in a real big data environment requires proper adjustments.

The code is organized in the following files.

•	 tree_node.cpp contains the implementation of the methods used

with a tree node.

•	 tree_node.h contains the definitions of a tree node.

•	 tree.cpp contains the implementations of the methods used

with a tree.

•	 tree.h contains the definitions of a tree.

•	 tree_handling.h contains the function of printing and computing

the sha256 value of the information within a node.

•	 picosha2.h is a file downloaded from the source [4] and represents

a header file for computing the sha256 hash value of an input. Its

content can be found in the source [4] or in this chapter’s code folder

on the GitHub repository for the book.

•	 main.cpp is the main file of the project.

Listing 15-1.  The Content of the tree_node.h File

#ifndef TREE_NODE

#define TREE_NODE

#include <string>

using namespace std;

// define the node of the Merkle tree

struct tree_node

{

 string hash_value; // the hash value

 tree_node *l_neighbor; // the left neighbor

 tree_node *r_neighbor; // the right neighbor

Chapter 15 Big Data Cryptography

371

// instantiates the hash value within the node

// see the corresponding .cpp file

 tree_node(string value);

};

#endif

Listing 15-2.  The Content of the tree_node.cpp File

#include "tree_node.h"

using namespace std;

// assigns the input hash value to the hash_value attribute of the tree node

tree_node::tree_node(string value)

{

 this->hash_value = value;

}

Listing 15-3.  The Content of the tree.h File

#ifndef MERKLE_TREE

#define MERKLE_TREE

#include "tree_node.h"

#include "picosha2.h"

#include "tree_handling.h"

#include <vector>

#include <string>

using namespace std;

struct merkle_tree {

 tree_node* tree_root;

 merkle_tree(vector<tree_node*> vector_nodes);

 ~merkle_tree();

 void print_merkle_tree(tree_node *node, int index);

 void delete_merkle_tree(tree_node *node);

};

#endif

Chapter 15 Big Data Cryptography

372

Listing 15-4.  The Content of the tree.cpp File

#include <iostream>

#include <iomanip>

#include "tree.h"

using namespace std;

merkle_tree::merkle_tree(vector<tree_node*> vector_nodes)

{

 vector<tree_node*> aux_nodes;

 while (vector_nodes.size() != 1)

 {

 print_hash_values(vector_nodes);

 for (int i = 0, n = 0; i < vector_nodes.size(); i = i + 2, n++) {

 �if (i != vector_nodes.size() - 1) // check if there is a

neighbour block

 {

 �// merges the neighbor nodes and computes the hash value

of the new node aux_nodes.push_back(new tree_node

 �(compute_sha256(vector_nodes[i]->hash_value + vector_

nodes[i + 1]->hash_value)));

 �// link the new node with the left neighbor and the right

neighbor

 aux_nodes[n]->l_neighbor = vector_nodes[i];

 aux_nodes[n]->r_neighbor = vector_nodes[i + 1];

 } else

 {

 aux_nodes.push_back(vector_nodes[i]);

 }

 }

 cout << "\n";

 vector_nodes = aux_nodes;

 aux_nodes.clear();

 }

Chapter 15 Big Data Cryptography

373

 // picks the first node as the root of the tree

 this->tree_root = vector_nodes[0];

}

merkle_tree::~merkle_tree()

{

 delete_merkle_tree(tree_root);

 cout << "The tree was deleted." << endl;

}

void merkle_tree::print_merkle_tree(tree_node *node, int index)

{

 if (node) {

 if (node->l_neighbor) {

 print_merkle_tree(node->l_neighbor, index + 4);

 }

 if (node->r_neighbor) {

 print_merkle_tree(node->r_neighbor, index + 4);

 }

 if (index) {

 cout << setw(index) << ' ';

 }

 cout << node->hash_value[0] << "\n ";

 }

}

void merkle_tree::delete_merkle_tree(tree_node *node)

{

 if (node) {

 delete_merkle_tree(node->l_neighbor);

 delete_merkle_tree(node->r_neighbor);

 node = NULL;

 delete node;

 }

}

Chapter 15 Big Data Cryptography

374

Listing 15-5.  The Content of the tree_handling.h File

#ifndef TREE_MISC

#define TREE_MISC

#include <iostream>

#include <string>

#include "tree.h"

#include "picosha2.h"

using namespace std;

// computes the hash value of the input using SHA256

inline string compute_sha256(string input_string)

{

 string hash_string = picosha2::hash256_hex_string(input_string);

 return hash_string;

}

// display the hash values from a vector of tree nodes

inline void print_hash_values(vector<tree_node*> vector_nodes)

{

 for (int i = 0; i < vector_nodes.size(); i++)

 {

 cout << vector_nodes[i]->hash_value << endl;

 }

}

#endif

Listing 15-6.  The Content of the main.cpp File

#include <iostream>

#include "tree.h"

using namespace std;

int main() {

 vector<tree_node*> nodes_set;

Chapter 15 Big Data Cryptography

375

 //create sample data

 nodes_set.push_back(new tree_node(compute_sha256("Merkle ")));

 nodes_set.push_back(new tree_node(compute_sha256("tree ")));

 nodes_set.push_back(new tree_node(compute_sha256("node ")));

 nodes_set.push_back(new tree_node(compute_sha256("example.")));

 �nodes_set.push_back(new tree_node(compute_sha256("This is an example of

merkle tree.")));

 // initialize leaves

 for (unsigned int i = 0; i < nodes_set.size(); i++) {

 nodes_set[i]->l_neighbor = NULL;

 nodes_set[i]->r_neighbor = NULL;

 }

 merkle_tree *hash_tree = new merkle_tree(nodes_set);

 std::cout << hash_tree->tree_root->hash_value << std::endl;

 hash_tree->print_merkle_tree(hash_tree->tree_root, 0);

 for (int k = 0; k < nodes_set.size(); k++) {

 delete nodes_set[k];

 }

 delete hash_tree;

 return 0;

}

To compile the code, the following command is used in the terminal.

g++ -o result.exe main.cpp tree_node.cpp tree_node.h tree.cpp tree.h

To run the code, type the following in the terminal.

result

The result is shown in Figure 15-3.

Chapter 15 Big Data Cryptography

376

Figure 15-3.  The result of the implementation of a self-balancing Merkle tree

�Conclusion
This chapter discussed the importance of applications deployed in the big data

environment and how security can be achieved through cryptographic mechanisms,

such as verifiable computation. For more about cloud computing, big data, and their

security, consult any of the works in this chapter’s “References” section.

In this chapter, you learned the following.

•	 The main concepts of security from a cloud and big data environment

•	 How to put in practice complex cryptographic primitives and

protocols, such as verifiable computation

Before implementing big data cryptography, businesses need to choose the right

data set. Companies should select data sets that are large enough to provide robust

protection without being overly complex. Data sets that are too small can be decrypted

using traditional cryptography, making them less effective against malicious actors.

Once the right data set has been selected, businesses can use it to create a secure

Chapter 15 Big Data Cryptography

377

communication channel among various parties. This communication channel can be

used to share data and perform transactions, helping to protect sensitive information.

Companies can also use big data cryptography to authenticate users and prove their

identities without passwords. Finally, businesses can use big data cryptography to

automate certain security protocols, making the process more efficient and secure.

With the right data set, big data cryptography can provide businesses a wide range of

advantages, helping protect their sensitive information and keep customers safe.

Using big data cryptography to secure sensitive information can be challenging

since it requires expertise in various fields, including data science and cryptography.

Companies can simplify implementation by partnering with an outside vendor

specializing in big data cryptography. These vendors can help businesses implement

big data cryptography and manage the data sets, providing more time for other

business operations. Big data cryptography vendors can also provide companies many

benefits, including more robust security and scalability. Companies can use big data

cryptography to create unique digital signatures for every user and transaction on their

network, authenticating users without passwords. This can help businesses prevent

fraud while also improving scalability by reducing the need for resource-intensive

authentication processes.

References
[1].	 Laud P., Pankova A. (2014) Verifiable Computation in Multiparty Protocols

with Honest Majority. In: Chow S.S.M., Liu J.K., Hui L.C.K., Yiu S.M. (eds)

Provable Security. ProvSec 2014. Lecture Notes in Computer Science, vol.

8782. Springer, Cham.

[2].	 Bogdanov D., Laur S., Talviste R. (2014) A Practical Analysis of Oblivious

Sorting Algorithms for Secure Multiparty Computation. In: Bernsmed K.,

Fischer-Hübner S. (eds) Secure IT Systems. NordSec 2014. Lecture Notes in

Computer Science, vol. 8788. Springer, Cham.

[3].	 D. Bogdanov, L. Kamm, S. Laur, and P. Pruulmann-Vengerfeldt, “Secure multi-

party data analysis: End user validation and practical experiments,” 2014.

[4].	 PicoSHA2 - a C++ SHA256 hash generator, https://github.com/okdshin/

PicoSHA2

Chapter 15 Big Data Cryptography

https://github.com/okdshin/PicoSHA2
https://github.com/okdshin/PicoSHA2

378

[5].	 B. ÖzÇakmak, A. Özbİlen, U. YavanoĞlu, and K. Cİn, “Neural and Quantum

Cryptography in Big Data: A Review,” 2019 IEEE International Conference on

Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 2413-2417, doi: 10.1109/

BigData47090.2019.9006238.

[6].	 S. Yakoubov, V. Gadepally, N. Schear, E. Shen, and A. Yerukhimovich, “A survey

of cryptographic approaches to securing big-data analytics in the cloud,” 2014

IEEE High-Performance Extreme Computing Conference (HPEC), Waltham,

MA, 2014, pp. 1–6, doi: 10.1109/HPEC.2014.7040943.

[7].	 Nita S.L., Mihailescu M.I. (2020) A Searchable Encryption Scheme Based

on Elliptic Curves. In: Barolli L., Amato F., Moscato F., Enokido T., Takizawa

M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020.

Advances in Intelligent Systems and Computing, vol. 1150. Springer, Cham.

[8].	 Nita S.L., Mihailescu M.I. (2019) A Hybrid Searchable Encryption Scheme for

Cloud Computing. In: Lanet JL., Toma C. (eds) Innovative Security Solutions

for Information Technology and Communications. SECITC 2018. Lecture

Notes in Computer Science, vol. 11359. Springer, Cham

[9].	 V. C. Pau and M. I. Mihailescu, “Internet of Things and its role in biometrics

technologies and eLearning applications,” 2015 13th International Conference

on Engineering of Modern Electric Systems (EMES), Oradea, 2015, pp. 1–4, doi:

10.1109/EMES.2015.7158430.

[10].	 S. L. Nita and M. I. Mihailescu, “On Artificial Neural Network used in Cloud

Computing Security - A Survey,” 2018 10th International Conference on

Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 2018,

pp. 1–6, doi: 10.1109/ECAI.2018.8679086.

[11].	 Marius Iulian Mihailescu, Stefania Loredana Nita and Ciprian Racuciu,

“Authentication protocol based on searchable encryption and multiparty

computation with applicability for earth sciences,” Scientific Bulletin of Naval

Academy, vol. XXIII 2020, pp. 221–230, doi: 10.21279/1454-864X-20-I1-030.

[12].	 Marius Iulian Mihailescu, Stefania Loredana Nita and Ciprian Racuciu,

“Multilevel access using searchable symmetric encryption with applicability

for earth sciences,” Scientific Bulletin of Naval Academy, vol. XXIII 2020,

pp. 221–230, doi: 10.21279/1454-864X-20-I1-030.

Chapter 15 Big Data Cryptography

379

[13].	 Stefania Loredana Nita, Marius Iulian Mihailescu and Ciprian Racuciu,

“Secure Document Search in Cloud Computing using MapReduce”,

Scientific Bulletin of Naval Academy, vol. XXIII 2020, pp. 221–230, doi:

10.21279/1454-864X-20-I1-030.

[14].	 RSA Extension for Big Data Analytics. Available online: https://www.rsa.com/

en-us/company/news/rsa-extends-big-data-analytics-to-help-

organizations-identify. Last accessed: 2.3.2023

[15].	 Claudio Orlandi, “Is Multiparty Computation Any Good In Practice?” Available

online: https://www.cs.au.dk/~orlandi/icassp-draft.pdf. Last accessed:

2.3.2023

Chapter 15 Big Data Cryptography

https://www.rsa.com/en-us/company/news/rsa-extends-big-data-analytics-to-help-organizations-identify
https://www.rsa.com/en-us/company/news/rsa-extends-big-data-analytics-to-help-organizations-identify
https://www.rsa.com/en-us/company/news/rsa-extends-big-data-analytics-to-help-organizations-identify
https://www.cs.au.dk/~orlandi/icassp-draft.pdf

381

CHAPTER 16

Cloud Computing
Cryptography
Cryptography in cloud computing has gained much attention recently and is becoming

one of the most important topics in cryptography and cybersecurity. It represents a key

point in designing and implementing a secure cloud application. Cryptography for cloud

computing involves complex encryption methods and techniques for securing the data

stored and used in the cloud environment.

Cloud computing cryptography is a powerful tool that helps protect data stored in

the cloud. As the amount of data stored in the cloud continues to grow, the importance

of understanding cloud computing cryptography and its benefits becomes increasingly

clear. Whether you’re a business owner, data scientist, or simply a curious individual,

learning about cloud computing cryptography is a great way to ensure your data’s

security and privacy. This article covers the basics of cloud computing cryptography,

including what it is, why it is important, and how it can be used to protect data. You

should better understand how cloud computing cryptography works and how it can

benefit you.

Cloud computing cryptography is the practice of encrypting data before transmitting

it to an external service, storing it in an encrypted form, and then decrypting it when

retrieving it. This ensures that no one else can access your data, even people with access

to the service’s servers. Cloud computing cryptography ensures that your data is private,

secure, and free from malicious attacks. When you use cloud computing cryptography,

your data is encrypted whenever it leaves your computer. Only the intended recipient

can access the data, even if they have physical or administrative access to the service’s

servers. This is important because cloud services often cannot guarantee the same level

of security that you can achieve on your own computer. When stored in the cloud, data

is often stored in multiple locations around the world. This can occasionally make it

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_16

https://doi.org/10.1007/978-1-4842-9450-5_16

382

challenging to retrieve a single piece of data. Cloud computing cryptography helps solve

this problem by allowing you to retrieve the entire file and then selectively decrypt only

the pieces you need.

Cloud computing cryptography offers many benefits, including data privacy and

security, scalability, and cost-effectiveness. Data privacy and security are key concerns

for many individuals and businesses that store data in the cloud. Using cloud computing

cryptography, you can ensure that your data remains private and secure, even if the

cloud service is breached. If you depend on a service’s reputation to protect your data,

however, you are vulnerable to even the smallest breach. Cloud computing cryptography

also allows you to scale your operations quickly and easily by adding additional servers,

which can help reduce the cost of scaling. You can also use hybrid cloud environments,

which let you tap into private and public cloud services to meet your needs. If you have

specific types of data, such as highly sensitive information that requires compliance

certification, you may need to use specific types of cloud computing cryptography to

meet compliance requirements.

There are three main types of cloud computing cryptography:

•	 End-to-end encryption occurs only between two devices

communicating. As such, it does not involve the cloud service at all.

This is useful when you want to keep your data private between two

users but do not want to store it on a remote server.

•	 Full-disk encryption (FDE) encrypts all data on the drive where the

operating system resides. FDE is a good choice to protect your data

while it is at rest (stored on a device). It isn’t recommended when

your data is in motion, such as accessing it through a cloud service.

•	 Cloud encryption protects data at rest and in motion. It’s the best

way to protect your data in the cloud.

Cloud computing cryptography is used in many applications, including

communication, data storage, and processing.

•	 Communication applications. When you use cloud communication

applications, such as a cloud-based team collaboration tool, you

need to ensure that all communication is encrypted to protect your

data from eavesdropping.

Chapter 16 Cloud Computing Cryptography

383

•	 Data storage applications. When you store data remotely, you want

to make sure it’s encrypted to protect it from malicious attacks.

•	 Processing applications. When you use cloud computing for

processing applications, such as a machine learning applications,

you must protect your data from malicious attacks.

The most obvious advantage of cloud computing cryptography is that it ensures that

your data is secure and private. Without encryption, your data can easily be intercepted

and used maliciously. Data encryption also allows you to share data with others, even if

they don’t have access to your computer. This is particularly helpful in a team environment

where data collaboration is key to success. Without encryption, you might need to give

others your password, increasing your risk of getting hacked. Another advantage of cloud

computing cryptography is that it allows data to be stored in multiple locations around the

world, which helps prevent localized outages from affecting data. On the other hand, cloud

computing cryptography can be challenging to set up and use, depending on your situation.

If you aren’t sure how to implement it, you might want to hire a data expert to help you.

Implementing cloud computing cryptography can be a complex and difficult

process for inexperienced users. It is highly recommended that you enlist the help of a

professional data expert if you aren’t familiar with cryptography in general. Here are a

few steps you can take to get started.

	 1.	 Choose a cloud computing system. Many different cloud

computing systems are available, ranging from public providers to

private cloud systems you install yourself. You need to determine

which system is best for your company and then find a provider

that offers a service with the features you need.

	 2.	 Determine where you will store your data. Depending on your

system, you can choose where you store your data. If so, you must

decide whether storing your data in a private or public location

is better.

	 3.	 Understand what level of security you need. Some services offer

different levels of encryption, so you’ll need to determine what

level of security is best for your company.

	 4.	 Implement encryption. This step is specific to your cloud

computing system, so you’ll need to consult the documentation to

learn how to do this step.

Chapter 16 Cloud Computing Cryptography

384

There are three main types of cloud technologies that organizations adopt rapidly:

infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service

(SaaS). The cloud brings many benefits, such as efficiency, flexibility, and scalability,

which reduce overall client costs. Due to its complexity and types (public, private, or

hybrid cloud), cloud computing inherits the security concerns of its components. Source

[1] provides a great categorization of cloud computing security issues. The security

concerns may occur on the following levels: the communication level (deals with the

shared infrastructures, virtual networks their configurations), the architectural level

(deals with virtualization, data storage, applications, APIs, and access control), and even

contractual and legal level (it deals, for example, with service level agreements).

In addition to searchable encryption (see Chapter 11) and homomorphic encryption

(see Chapter 12) to secure the cloud, the following cryptographic techniques and

mechanisms are also receiving important attention from research communities and

industry.

•	 Structured encryption (STE) encrypts data structures. An STE

scheme uses a token based on which the data structure is queried.

A special example of STE is searchable encryption. Recall that

searchable encryption allows searching for a keyword through data

in an encrypted format. Another example of the STE is using graph

structures that can be utilized to encrypt the databases. It is a good

example in the cloud context, where the applications deal with large

databases for analytics and statistics.

•	 Functional encryption (FE) is a generalization of public-key

encryption in which the private key owner allows an authorized user

to learn a function of the encrypted ciphertext. There are more types

of functional encryption: predicate encryption (PE), identity-based

encryption (IBE), attribute-based encryption (ABE), hidden vector

encryption (HVE), and inner product predicate.

•	 Private information retrieval (PIR) is a protocol a client uses for

retrieving an element within a database without letting the rest of the

database users know what element the client retrieved.

Chapter 16 Cloud Computing Cryptography

385

�A Practical Example
For this example, imagine the following cloud scenario: an organization manages

its administrative relationship with its clients using a cloud messaging platform. For

example, the organization sends notifications to their clients about their products or

available updates, and the clients can contact and send messages to the organization

through the platform. Therefore, the cloud platform is included in the SaaS category.

To ensure that the authorized receiver reads the messages, the messages should be

encrypted from both sides—the organization and the clients. Both should use trusted

parties for the key generation used in encryption and decryption.

To simulate this example, let’s use a trusted party OpenSSL [1], which generates

the public and the private keys for the RSA algorithm, keys used in our encryption

technique. The source [1] provides documentation for different distributions, links to

source code from the GitHub repository, examples, and more. Note that this example

was created on a Windows platform. You do not download the source code for compiling

yourself and then using it; instead, download directly the compiled version of the

OpenSSL library that can be found at source [3] (or it can be downloaded from the

GitHub repository of this book). Once the archive is downloaded, extract it, and the

OpenSSL folder should be on the C:\ partition. Furthermore, open a terminal and

change the current directory to the bin folder from the OpenSSL parent folder, then type

openssl and press Enter (see Figure 16-1).

Figure 16-1.  Checking openssl command

The message warning shows that the OpenSSL package was used, and it is not

compiled on the computer. For this section, you do not need to compile and install

OpenSSL by yourself, but the complete guide for installing it can be found in the

source [2].

Chapter 16 Cloud Computing Cryptography

386

The next step is to generate the private key for the RSA algorithm. To do this, type the

following command in the terminal and check Figure 16-2.

C:\openssl-1.0.2d-fips-2.0.10\bin>openssl genrsa -out privateKey.pem 2048

The preceding command says that the openssl library generates the RSA private key

(genrsa) in the output file privateKey.pem, which has a length of 2048 bits.

Then, to generate the public key, type the following command in the terminal and

check Figure 16-2.

C:\openssl-1.0.2d-fips-2.0.10\bin>openssl rsa -in privateKey.pem -pubout >

publicKey.pem

The preceding command says that the openssl library is used to compute the public

key of the cryptosystem saved in the output file publicKey.pem, based on the input file

(private key) privateKey.pem.

The publicKey.pem and privateKey.pem files are generated in the same folder as the

openssl library in the bin folder. If you check the contents of these files, they should look

like what’s in Figures 16-3a and 16-3b.

Figure 16-2.  Generating the private and public keys for the RSA cryptosystem

Chapter 16 Cloud Computing Cryptography

387

Figure 16-3a.  The private key

Figure 16-3b.  The public key

Figures 16-3a and 16-3b show the difference between the keys’ lengths. Furthermore,

to use them in a C++ program, read them from the .pem files. First, you need to remove

the extra messages from the files that are not part of the keys, namely, the first and last

lines of the files. Make sure that no additional space characters are left at the end of the

keys to avoid altering them.

Chapter 16 Cloud Computing Cryptography

388

Continuing to the simulation for cloud platform messaging, the encryption and

decryption are given in Listing 16-1, and the output is given in Figure 16-4. Here, for

demonstration purposes, use a simple XOR-ing algorithm for encryption and decryption.

Make sure that the publicKey.pem and privateKey.pem are in the same folder as the

.cpp file containing the code in Listing 16-1.

Listing 16-1.  Encryption and decryption of the messages

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

// the encryption scheme is a simple XOR-ing process

// XOR-ing is used for both encryption and decryption

// parameter "message" can be the plain message or the encrypted message,

according to user's needs

string xor_string(string message, string key)

{

 string out_message(message);

 �unsigned int key_len(key.length()), message_len(message.

length()), pos(0);

 for(unsigned int index = 0; index < message_len; index++)

 {

 out_message[index] = message[index] ^ key[pos];

 if(++pos == key_len){ pos = 0; }

 }

 return out_message;

}

int main()

{

 // read the message to be encrypted from the console

 string plain_text;

 cout<<"Enter the message: ";

Chapter 16 Cloud Computing Cryptography

389

 getline (cin, plain_text);

 // the public key is read from the .pem corresponding file

 string row1;

 string public_key = "";

 ifstream public_key_file ("publicKey.pem");

 if (public_key_file.is_open())

 {

 while (getline (public_key_file, row1))

 {

 public_key += row1;

 }

 public_key_file.close();

 }

 �// to check that the public key is read correctly, it is displayed on

the console

 cout<<"Public key:"<<endl<<public_key<<endl<<endl;

 // the private key is read from the.pem corresponding file

 string row2;

 string private_key = "";

 ifstream private_key_file ("privateKey.pem");

 if (private_key_file.is_open())

 {

 while (getline (private_key_file, row2))

 {

 private_key += row2;

 }

 private_key_file.close();

 }

 // to check that the public key is read correctly, it is deposited on

the console

 cout<<"Private key:"<<endl<<private_key<<endl<<endl;

Chapter 16 Cloud Computing Cryptography

390

 // the encryption of the plain message is stored into encrypted_message

 string encrypted_text = xor_string(plain_text, public_key);

 �cout << endl << "The encryption of the message is: " << endl <<

encrypted_text << endl;

 // to decrypt the message, the receiver should proceed with some steps

 �// 1. the receiver should xor his/her private key with his/her

public key

 string xor_keys = xor_string(public_key, private_key);

 �// 2. the receiver should xor the encrypted text with the result

from step 1

 string xor_result = xor_string(encrypted_text, xor_keys);

 �// 3. The decryption is made by xor-ing the result from the previous

step with the private key

 string decrypted_message = xor_string(xor_result, private_key);

 �cout << endl << "The decryption of the message is: << endl <<

decrypted_message << endl;

 return 0;

}

Chapter 16 Cloud Computing Cryptography

391

Figure 16-4.  The output of Listing 16-1

In Figure 16-4, the private and public keys do not contain the extra messages initially

included in the .pem files.

�Conclusion
This chapter has mentioned the most important cryptographic primitives that can

be cloud environments. You learned about cloud computing security issues and

the advanced concepts and cryptographic primitives that can be applied to prevent

these issues.

There are many useful resources related to cloud computing cryptography online.

If you’re interested in learning more about cryptography, the National Institute of

Standards and Technology (NIST) has a great resource to get you started. To learn more

about cloud computing cryptography, you can start with Amazon Web Services (AWS)

and Google Cloud Platform, two of the most popular cloud computing providers.

Chapter 16 Cloud Computing Cryptography

392

Cloud computing cryptography is used in many ways. One example is

communication. You can protect your communication using end-to-end encryption,

such as Signal or WhatsApp. Another example is data storage. You can store your data

remotely and securely using a service like Amazon S3. Another example is processing.

You can use a cloud computing service to train your AI model to run machine learning

algorithms, such as TensorFlow.

The use of cloud computing Cryptography faces significant obstacles, and a large

amount of current literature contains multiple theoretical frameworks with no actual

practical directions. Except for the standard security policies made available by cloud

solution providers, however, this context provides professionals and researchers with strong

research directions and the opportunity to develop new ideas for enhancing cloud security.

References
[1].	 M. Ali, S. U. Khan, and A. V. Vasilakos, ‘Security in cloud computing: Opportunities

and challenges’, Information Sciences, vol. 305, pp. 357–383, Jun. 2015.

[2].	 OpenSSL, Available online: https://www.openssl.org/.

Last accessed: 2.4.2023

[3].	 OpenSSL download, Available online: https://sourceforge.

net/projects/openssl/files/openssl-1.0.2d-fips-2.0.10/

openssl-1.0.2dfips-2.0.10.zip/download. Last accessed: 2.4.2023

[4].	 R. Chatterjee, S. Roy, and U. Scholar, “Cryptography in Cloud Computing:

A Basic Approach to Ensure Security in Cloud”, Jul. 2017.

[5].	 A. N. Jaber and M. F. B. Zolkipli, “Use of cryptography in cloud computing”,

in 2013 IEEE International Conference on Control System, Computing and

Engineering, Nov. 2013, pp. 179–184.

[6].	 J.P. Kaur, and R. Kaur, “Security issues and use of cryptography in cloud

computing”, in International Journal of Advanced Research in Computer

Science and Software Engineering, 4(7), 2014.

[7].	 M. Chase and S. Kamara, “Structured Encryption and Controlled Disclosure”,

in Advances in Cryptology - ASIACRYPT 2010, M. Abe, Ed., in Lecture Notes in

Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 577–594.

[8].	 M. Brenner, J. Wiebelitz, G. von Voigt, and M. Smith, “Secret program

execution in the cloud applying homomorphic encryption”, in 5th IEEE

International Conference on Digital Ecosystems and Technologies (IEEE DEST

2011), May 2011, pp. 114–119.

Chapter 16 Cloud Computing Cryptography

https://www.openssl.org/
https://sourceforge.net/projects/openssl/files/openssl-1.0.2d-fips-2.0.10/openssl-1.0.2dfips-2.0.10.zip/download
https://sourceforge.net/projects/openssl/files/openssl-1.0.2d-fips-2.0.10/openssl-1.0.2dfips-2.0.10.zip/download
https://sourceforge.net/projects/openssl/files/openssl-1.0.2d-fips-2.0.10/openssl-1.0.2dfips-2.0.10.zip/download

PART III

Pro Cryptanalysis

395

CHAPTER 17

Starting with
Cryptanalysis
Cryptanalysis is concerned with discovering weaknesses in security systems and

cryptographic algorithms. The ultimate objective is to discover the true nature of the

cryptographic keys or encrypted messages and their nature.

Cryptanalysis is the practice of analyzing and deciphering secret codes and ciphers.

Cryptanalysis can be used to gain insight into the security of a system’s encryption. It can

also retrieve data from encrypted systems, such as bank accounts and online messages.

If you have ever wanted to learn more about cryptanalysis, this step-by-step guide is

the perfect place to start. Here, you’ll get an overview of what cryptanalysis is, what you

need to get started, and the resources available to help you understand the basics of

this fascinating discipline. Whether you’re just curious or want to become an expert in

cryptanalysis, this guide will help you get started.

Cryptanalysis can be defined as an activity from two sides: one side is represented by

authorized persons, and research and academic institutions represent the second side.

From a legal perspective, cryptanalysis is the process that should be conducted by

authorized persons, such as professionals (ethical hackers, information security officers,

etc.). Any cryptanalysis activity outside the legal framework is known as hacking, which

covers personal and nonpersonal interests.

From the research/academia side, cryptanalysis is the study of methods for

obtaining the meaning of encrypted information without access to the secret key. Many

different techniques are used in cryptanalysis, including frequency analysis, differential

cryptanalysis, and linear cryptanalysis. To begin with cryptanalysis, it is important to

have a strong understanding of the mathematical foundations of cryptography, including

number theory and abstract algebra. Additionally, having experience with programming

and the ability to write code to implement and test cryptanalysis techniques is helpful.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_17

https://doi.org/10.1007/978-1-4842-9450-5_17

396

Some resources for learning about cryptanalysis include books such as Introduction

to Cryptography by Johannes Buchmann [15] and Cryptanalysis of Number Theoretic

Ciphers by Samuel S. Wagstaff Jr. [16].

There are many online tutorials and courses available that cover the basics of

cryptanalysis. It is also important to keep up with the current research in the field, as

new advances and techniques are constantly being developed. Attending conferences

and joining online communities of cryptanalysts can be a great way to stay informed and

connect with other researchers in the field.

This chapter covers the most important methods and techniques for conducting

general and in-depth cryptanalysis. It discusses the necessary baggage of knowledge

and tools, such as software tools, methods, cryptanalysis types and algorithms, and

penetration-testing platforms.

Conducting cryptanalysis can be a tricky and difficult task to achieve, and many

aspects must be taken into consideration before doing it. The situation becomes

much easier if you conduct cryptanalysis as a legal entity. If a nonlegal entity conducts

cryptanalysis, then you are dealing with a more complex process, and hacking methods

are involved, methods covered later in our discussion. Both ways are needed to get our

hands dirty. The process of cryptanalysis is time-consuming, and many obstacles and

obstructions could occur due to many reasons, such as system complexity, the size of the

cryptographic key, hardware platform, or access permissions.

While it’s true that cryptanalysis requires a certain degree of skill and practice, this

doesn’t mean that you need to be a computer scientist to start a career in cryptanalysis.

Anyone can learn the basics of cryptanalysis with the right resources and guidance. First

and foremost, you’ll need a basic understanding of mathematics and computer science.

Cryptanalysis is, after all, largely based on algorithms and mathematical concepts. You

also need a computer that meets the basic requirements for code-breaking. Ideally,

your computer should meet or exceed the minimum system requirements for the code-

breaking software you use. To increase productivity during your code-breaking sessions,

you may want to invest in some accessories, such as a code-breaking wrist pad or a code-

breaking pen.

Cryptanalysis is more exciting and challenging than cryptography. The knowledge

that a cryptanalyst needs is very wide and complex. It covers several complex

fields divided into three main categories: informatics (computer science), computer

engineering, and mathematics. Let’s specify the important disciplines for each of the

categories as follows.

Chapter 17 Starting with Cryptanalysis

397

•	 Informatics (computer science)

•	 Computer networks

•	 Programming languages

•	 Databases

•	 Operating systems

•	 Computer engineering and hardware

•	 Field-programmable gateway array (FPGA)

•	 Programming languages (e.g., VHDL)

•	 Development platforms (Xilinx, etc.)

•	 Mathematics

•	 Number theory

•	 Algebra

•	 Combinatorics

•	 Information theory

•	 Probability theory

•	 Statistical analysis

•	 Elliptic curve mathematics

•	 Discrete mathematics

•	 Calculus, lattices

•	 Real analysis

•	 Complex analysis

•	 Fourier analysis

Chapter 17 Starting with Cryptanalysis

398

�Part III: Structure
The purpose of the third part of this book is to provide the tools for implementing and

providing the methods, algorithms, and implementations of attacks and how to design

and implement a cryptanalysis strategy.

The third part of the structure is as follows.

•	 Chapter 18 introduces a classification of cryptanalysis and

techniques used in association with the field of cryptanalysis. The

theory of algorithm complexity, statistical-informational analysis,

encoding in the absence of perturbation, cryptanalysis of classic

ciphers, and cryptanalysis of block ciphers are discussed.

•	 Chapter 19 discusses linear and differential cryptanalysis. Their

importance is vital when cryptanalysis is performed.

•	 Chapter 20 covers the integral cryptanalytic attack, which can be

applied only for block ciphers based on substitution-permutation

networks.

•	 Chapter 21 presents some examples of brute-force and overflow

techniques.

•	 Chapter 22 covers the most important techniques used in text

characterization. It discusses the chi-squared statistic; monogram,

bigram, and trigram frequency counts; quadgram statistics as a

fitness measure; and more.

•	 Chapter 23 covers some case studies for implementing cryptanalysis

methods.

�Cryptanalysis Terms
This section introduces a list of cryptanalysis keywords and frequently used terms.

Before proceeding further, it is very important to get used to the terms listed in

Table 17-1. It helps to have a clear image of the process and who interacts with what.

Chapter 17 Starting with Cryptanalysis

399

Table 17-1.  Cryptanalysis Terms

Keyword/Term Definition

Black hat hacker A black hat hacker represents someone with bad intentions and breaks a

computer system or network. He intends to exploit any security vulnerabilities for

financial gain, steal and destroy confidential and private data; shut down systems

and websites; corrupt network communication, and so on.

Gray hat hacker A gray hat hacker (aka cracker) exploits the weak security points of a computer

system or software product to bring those weaknesses to the owner’s attention.

Compared with a black hat hacker, a gray hat hacker acts without malicious

intent. The general goal of a gray hat is to provide solutions and improve

computer systems and network security.

White hat

hacker/ethical

hacker

A white hat hacker is an authorized or certified hacker working for or employed

by a government or organization to perform penetration tests and identify

loopholes within their systems.

Green hat hacker A gray hat hacker is an amateur person and different from script kiddies. Their

purpose consists in striving to become full-blown hackers.

Script kiddies Script kiddies are the most dangerous hackers. A script kiddie is a person

without too many skills who is using some scripts or download tools that other

hackers provide. Their goal is to attack network infrastructures and computer

systems. They are looking to impress their community or friends.

Blue hat hacker A blue hat hacker is similar to a script kiddie. They are quite beginners in the

field of hacking. If someone dares to mock a script kiddie, a blue hat hacker gets

revenge. Blue hat hackers get revenge on those who address any challenges to

them or challenge them.

Red hat hacker Also known as eagle-eye hackers, their goal is to stop black hat hackers. The

operation mode is different. They are ruthless when they are dealing with

malware actions that are coming from black hat hackers. The attacks performed

by red hat hackers are very aggressive.

Hacktivist They are known as online activists. A hacktivist represents a hacker who is part

of a group of anonymous hackers who can gain unauthorized access to files

stored within government computers and networks, which are served further to

social or political parties and groups.

(continued)

Chapter 17 Starting with Cryptanalysis

400

Table 17-1.  (continued)

Keyword/Term Definition

Malicious insider/

whistleblower

Such a person may be an employee of a company or government institution

aware of the illegal actions occurring within the institution. This could lead to

personal gain by blackmailing the institution.

State or nation

sponsored

hackers

This type of hacker is assigned by a government to provide information security

services and gain access to confidential information from different countries. For

example, consider Stuxnet, the malicious computer worm from 2010, designed

and engineered to bring down the Iranian nuclear program. Another example is

the US Eighth Air Force, which in 2009 became US Cyber Command.

�A Bit of Cryptanalysis History
To have a comprehensive history of cryptanalysis, very challenging and exciting research

must be done. This section covers some aspects and moments in time that influenced

cryptanalysis as a separate field and how it evolved over different periods of history.

The history of cryptanalysis starts with Al-Kindi (801–873), the father of Arabic

philosophy. He discovered and developed a method based on the variations in the

occurrence frequency of letters. This method helped him to analyze and exploit different

ways to break ciphers (e.g., frequency analysis). The work of Al-Kindi was influenced

by Al-Khalil’s (717–786) work. Al-Khalil wrote the Book of Cryptographic Messages, and

the work contained permutations and combinations for all possible Arabic words (both

types of words, with and without vowels).

One of the best ways to learn the history of cryptanalysis and cryptography is to start

and divide the subject into periods of time. It is very important to examine cryptanalysis

history with respect to cryptography. The following is a short classification of the

cryptanalysis history and focus on the most important achievements of each of the

periods.

•	 600 B.C. The Spartans invent scytales to send secret messages

during their fights. The device was composed of a leather strap and a

wooden stem. To decrypt the message, the wooden stem needed to

be a specific size, the size used when the message was encrypted. The

message cannot be decrypted if the receiver or malicious person does

not have the same wooden stem size.

Chapter 17 Starting with Cryptanalysis

401

•	 60 B.F. Julius Caesar sets the basis for the first substitution cipher,

which encodes the message using shifting techniques for the

characters using three spots: A becomes D, B becomes E, and so on.

An implementation of this cipher can be seen in Chapter 2.

•	 1474 Cicco Simonetta writes a manual for deciphering encryptions

for Latin and Italian text.

•	 1523 Blaise de Vigenère introduces his encryption cipher, the

Vigenère cipher.

•	 1553 Giovan Battista Bellaso sets the basis for the first cipher that

uses an encryption key. The encryption key was characterized as a

word that was commonly agreed upon by the sender and receiver.

•	 1854 Charles Wheatstone creates the Playfair cipher, which encrypts

a specific set of letters instead of encrypting letter by letter. This raises

the cipher’s complexity and, in conclusion, becomes harder to crack.

•	 1917 Edward Hebern sets the basis for the first electromechanical

machine in which the rotor from the machine is used for an

encryption operation. The encryption key is stored within a rotating

disc. It has a table used for substitution that is modified with every

character that is typed.

•	 1918 Arthur Scherbius creates the Enigma machine. The prototype

was for commercial purposes. Compared with the Edward Hebern

machine, where one rotor is used, the Enigma machine uses

several rotors. German Military Intelligence immediately adopts his

invention for encoding their transmissions.

•	 1932 Marian Rejewski studies the Enigma machine and determined

how it operates. Starting in 1939, French and British Intelligence

Services, using the information provided by Poland, allowed

cryptographers such as Alan Turing to crack the key, which was

changing daily. It was crucial to the Allies’ victory in World War II.

•	 1945 Claude E. Shannon publishes his work entitled A Mathematical

Theory of Cryptography. This is the point where classic cryptography

ended, and modern cryptography appeared.

Chapter 17 Starting with Cryptanalysis

402

•	 1970 IBM creates a block cipher to protect customer data.

•	 1973 The United States adopts the block cipher and sets a national

standard called the Data Encryption Standard.

•	 1975 Public key cryptography is introduced.

•	 1976 The Diffie-Hellamn key exchange is introduced.

•	 1982 Richard Feynman introduces a theoretical model of a quantum

computer.

•	 1997 DES is cracked.

•	 1994 Peter Shor introduces an algorithm for quantum computers

dedicated to integer factorization.

•	 1998 Quantum computing is introduced.

•	 2000 Advanced Encryption Standard (AES) officially replaces

DES. AES wins an open public competition.

•	 2016 IBM launches the IBM Q Experience with a five-qubit quantum

processor.

•	 2017 Microsoft introduces Q# (Q Sharp), a domain-specific

programming language for implementing quantum algorithms and

cryptography applications.

This list can continue and be improved, but it includes the main events of history

that contribute to the appearance of cryptanalysis, such as concepts, models, and

frameworks.

�Understanding Cryptanalysis Techniques
To understand the different techniques used in cryptanalysis, it is important to look at

the essential elements of cryptography. These include the algorithm, the key, and the

ciphertext. Before you can begin analyzing the encrypted information, you must first

understand how each component works and how it is used. Algorithm: The algorithm is

the mathematical formula used for encryption. The algorithm is normally kept secret, so

understanding it is one of the biggest challenges in cryptanalysis.

Chapter 17 Starting with Cryptanalysis

403

The key is the piece of information used to decrypt the ciphertext. The key may be

kept secret or shared openly, depending on the encryption method.

The ciphertext is the encrypted message that you want to decrypt. The ciphertext is

often represented as a string of numbers or letters.

Cryptanalysis is the process of breaking a cipher or encryption system to access the

information it is protecting. Several techniques can be used in cryptanalysis.

•	 Brute-force involves trying every possible key or combination of

characters until the correct one is found. A brute-force attack is a

cyberattack in which an attacker systematically attempts to guess a

website or system’s login credentials (e.g., username and password).

The attacker uses a script or program to automatically generate and

test potential combinations of characters until the correct credentials

are found. Brute-force attacks can be used to gain unauthorized

access to a wide range of systems, including email accounts, social

media accounts, and online banking accounts. They can also be used

to crack encryption and decrypt sensitive data.

•	 Frequency analysis involves analyzing the frequency of letters,

words, or patterns in the ciphertext to determine the plaintext.

Frequency analysis is a method of analyzing and deciphering

encrypted messages by determining the frequency of letters or

groups of letters in the encoded message. This can be used to identify

patterns and reveal clues about the underlying plaintext message,

which can then be used to break the encryption. It is one of the oldest

and most basic cryptanalysis methods and is often used with other

techniques to analyze and decrypt messages.

•	 Differential cryptanalysis involves analyzing the differences

between plaintext and ciphertext to determine the key. It is a method

used to analyze and evaluate cryptographic systems. The method

uses pairs of plaintext and corresponding ciphertext to determine

the characteristics of a cryptographic algorithm. By comparing the

differences between the plaintext and the ciphertext, researchers

can infer information about the key used to encrypt the data and

potentially discover weaknesses in the algorithm. Differential

cryptanalysis is often used to analyze symmetric-key algorithms,

Chapter 17 Starting with Cryptanalysis

404

such as the Data Encryption Standard. It breaks cryptographic

systems based on the differences between plaintext and ciphertext

pairs. It involves studying the differences between pairs of plaintexts

and their corresponding ciphertexts and using this information to

recover the key or the plaintext.

•	 Linear cryptanalysis is a method of analyzing and breaking

cryptographic systems based on linear operations. It involves

studying the linear relations between the plaintext, ciphertext, and

secret key in a cryptographic system and using this information to

recover the key or the plaintext.

Linear and differential cryptanalysis both involve analyzing the

linear approximations of the encryption function to determine

the key. Both linear and differential cryptanalysis are types of

cryptanalytic attacks used to study the inherent weaknesses in a

particular cryptographic algorithm or system. They can be used to

find the secret key or plaintext.

•	 Side-channel attacks involve analyzing information leaked through

a system’s physical implementation, such as power consumption

or electromagnetic radiation. A side-channel attack is a type of

security exploit that relies on information gained from implementing

a computer system rather than weaknesses in the system’s design

or software. These attacks can take many forms, but they all involve

extracting secret information, such as cryptographic keys, by

analyzing power consumption, electromagnetic emissions, or timing

data. This can be done through power, electromagnetic, and timing

analyses. These attacks can be difficult to detect and prevent, as they

do not rely on exploiting a vulnerability in the system itself but rather

on the physical characteristics of the implementation.

•	 Social engineering involves tricking or manipulating people to

reveal passwords or other secret information. Social engineering

uses psychological manipulation to influence individuals or groups

to divulge confidential information or act against their best interests.

This can include tactics such as phishing scams, pretexting, baiting,

Chapter 17 Starting with Cryptanalysis

405

and quid pro quo. Social engineering aims to trick people into giving

away sensitive information or access to systems and networks, often

to commit fraud or other malicious activities.

•	 Algebraic attacks involve using algebraic properties of the

encryption scheme to simplify the problem of finding the key. In

general, algebraic attacks refer to a class of methods for breaking

cryptographic systems based on solvable mathematical problems

using algebraic methods. These attacks often break symmetric-key

encryption algorithms, such as those based on RSA or elliptic-

curve cryptography (ECC) systems. Examples of algebraic attacks

include the algebraic attack on RSA and Coppersmith’s attack on

elliptic-curve cryptography. These attacks exploit weaknesses in the

mathematical structure of the encryption system, such as low-degree

polynomials, to recover the private key used for encryption.

�Analyzing Cryptographic Algorithms
The first step in cryptanalysis is to analyze the algorithm used in the encryption.

During this process, you want to look at several aspects of the algorithm, such as the

speed of the algorithm, the algorithm’s complexity, and algorithm strength. After you

have analyzed the algorithm, you can move on to the next step. You need to create a

mathematical model for the algorithm. You’ll need to break down the algorithm and find

its weak points. While this may sound easy, it can be challenging, especially for complex

algorithms.

Cryptographic algorithms can be analyzed in terms of their strengths and

weaknesses and suitability for different applications. Strength analysis evaluates the

algorithm’s resistance to brute-force, cryptanalysis, and side-channel attacks. Weakness

analysis includes evaluating the algorithm’s susceptibility to attacks such as replay, man-

in-the-middle, and chosen-plaintext attacks. Suitability analysis includes evaluating

the algorithm’s performance and efficiency in terms of computational resources, such

as memory and processing power, and the application’s specific requirements, such as

key size and block size. It is important to note that no cryptographic algorithm can be

considered completely secure. Regularly reviewing and updating cryptographic systems

is important to ensure they meet the latest security standards.

Chapter 17 Starting with Cryptanalysis

406

�Cracking Cryptographic Systems
After you have analyzed the algorithm and created a mathematical model for the

algorithm, you can move on to the next basic cryptanalysis technique—cracking the

cryptographic system. To crack the cryptographic system, you’ll first have to find a

weakness in the algorithm or encryption method. Once you have identified a weakness,

you can use the mathematical model you created earlier to identify a solution. You can

then apply the solution to the cryptographic system and retrieve the original data. To

find a weakness in the cryptographic system, you must first understand the system’s

operation. Next, you must look for weaknesses in the cryptographic system. Weaknesses

can be found in everything from the encryption method to the key used in the system.

�Understanding Cryptographic Systems
Now that you’ve learned how to crack cryptographic systems, it’s time to learn how

to understand them. Understanding cryptographic systems requires learning about

different types and how they work. There are many different types of cryptographic

systems. These types are based on the encryption method used in their system. The most

common types of cryptographic systems include the following.

•	 Symmetric cryptographic systems use a single secret key for both

encryption and decryption.

•	 Asymmetric cryptographic systems use two keys: a public key and

a private key. The public and private keys are mathematically linked,

but the public key can be used to decrypt the private key.

�Understanding Cryptographic Keys
Now that you understand how cryptographic systems work, it’s time to move on to

understanding cryptographic keys. Understanding cryptographic keys means learning

how cryptographic keys are used in different cryptographic systems. There are several

types of cryptographic keys, including private and public keys. Private keys are used in

asymmetric cryptographic systems and can be used to decrypt messages encrypted with

the public key. Public keys are used in asymmetric cryptographic systems to encrypt

messages decrypted with the private key.

Chapter 17 Starting with Cryptanalysis

407

�Understanding Cryptographic Weaknesses
Now that you understand how to analyze cryptographic systems and keys, it’s time to learn

how to understand cryptographic weaknesses. Understanding cryptographic weaknesses

requires learning about common issues with cryptographic systems and how to avoid them.

There are several common issues with cryptographic systems. These issues include

the following.

•	 Key reuse occurs when the same key is used for multiple

cryptographic systems. This is a major issue because it makes it

easier for attackers to decipher the cryptographic system.

•	 Using a short key is another common cryptographic weakness. Short

keys are usually used in symmetric cryptographic systems and are

easier to crack than longer keys.

�Analyzing Cryptographic Keys
Now that you understand how to analyze cryptographic weaknesses, it’s time to learn

how to analyze cryptographic keys. You can start by analyzing the length of the key. This

can help you identify the type of cryptographic system used. Next, you can analyze the

algorithm used for the key. After that, you can analyze the cryptographic key’s distribution

method. From there, you can examine the key’s entropy level and soundness.

Cryptographic keys encrypt and decrypt data to secure it from unauthorized access.

There are two main types of keys: symmetric and asymmetric. Symmetric keys use the

same key for encryption and decryption, while asymmetric keys use a public key for

encryption and a private key for decryption. When analyzing cryptographic keys, it

is important to consider their strength, which is determined by the length of the key.

The longer the key is, the more secure it is. It is also important to ensure that the keys

are generated, stored securely, and regularly updated. It is also important to ensure

that the encryption and decryption processes are implemented correctly and resistant

to known cryptographic attacks. This can be done by regularly reviewing and testing

the cryptographic implementation and staying up-to-date on current cryptographic

research. Overall, analyzing cryptographic keys involves assessing the strength of the

keys, ensuring secure key generation and storage, and regularly reviewing and testing

the encryption and decryption implementation to ensure resistance to known attacks.

Chapter 17 Starting with Cryptanalysis

408

�Penetration Tools and Frameworks
This section covers several penetration tools and frameworks that can be used

successfully in penetration testing, a process that a certified professional conducts.

The tools are divided into two categories: Linux hacking distributions and

penetration tools/frameworks.

•	 Linux hacking distributions

•	 Kali Linux is the most advanced platform for penetration testing.

It has support for different devices and hardware platforms.

•	 BackBox is a Linux distribution for penetration testing and also

includes security assessment.

•	 Parrot Security OS is new in this sphere. Its target is the cloud

environment, which provides online anonymity and a strong

encryption system.

•	 BlackArch specializes in penetration testing platforms and

security research. It is built on top of Arch Linux.

•	 Bugtraq is an impressive platform with forensic and

penetration tools.

•	 DEFT (Digital Evidence & Forensics Toolkit) Linux is a very

important distribution for computer forensics, with the possibility

of running it as a live system.

•	 Samurai Web Testing Framework is a powerful collection of

tools that can be used in penetration testing on the web. Notably,

it is a virtual machine file supported by VirtualBox and VMWare.

•	 Pentoo Linux is a distribution intended for security and

penetration testing. It is available live and is based on Gentoo.

•	 CAINE (Computer Aided Investigative Environment) is a

powerful distribution with a serious set of system forensics

modules and analysis in its own tools.

Chapter 17 Starting with Cryptanalysis

409

•	 Network Security Toolkit is a favorite distribution tool and live

ISO built on Fedora. It contains a very important set of open

source network security tools. It provides a professional web user

interface for network and system administration, monitoring

tools, and analysis.

•	 Fedora Security Spin is a professional distro for security audits

and tests. Various professionals use it in industry and academia.

•	 ArchStrike, also known as ArchAssault, is a distro built on Arch

Linux for professionals in the field of security and penetration

testers.

•	 Cyborg Hawk contains more than 750 tools for security

professionals and performing penetration tests.

•	 Matriux is promising and can be used for penetration tests,

ethical hacking, forensic investigations, vulnerability analysis,

and more.

•	 Weakerth4n is not well known in hacking or cryptanalysis, but it

is an interesting approach for penetration tests and is built using

Debian (Squeeze).

•	 Penetration tools/frameworks (Windows and Linux platforms)

•	 Wireshark is a well-known packet sniffer. It provides a powerful

set of tools for network package and protocol analysis.

•	 Metasploit is one of the most important frameworks for

penetration testing, framework development, and executing

exploits.

•	 Nmap (Network mapper) is a powerful network discovery and

security auditing tool for security professionals. Its goal is to

exploit its targets. For each port you scan, you can see which

operating system is installed, what services are running, and what

firewall is installed and used.

Chapter 17 Starting with Cryptanalysis

410

�Conclusion
This chapter discussed cryptanalysis in general and covered the foundation of

cryptanalysis, its tools, and working methods. You learned about the following.

•	 Cryptanalysis

•	 The main events during history and how the appearance of different

ciphers and algorithms influenced the cryptanalysis discipline

•	 Common terms and how to make the difference between different

types of hackers

•	 Hacking and penetration platform distributions

•	 The most important frameworks and penetration tools that can be

used independently, according to the user flavor/OS platform

References
[1].	 Cohen, F (1990). A short history of cryptography. Retrieved May 4, 2009,

from Available online: http://www.all.net/books/ip/Chap2-1.html.

New World Encyclopedia (2007). Last accessed: 28.3.2023

[2].	 Cryptography. Retrieved May 4, 2009, Available online: http://www.

newworldencyclopedia.org/entry/Cryptography. Last accessed 28.3.2023

[3].	 M. Pawlan, “Cryptography: the ancient art of secret messages”, 1998. Retrieved

May 4, 2009, Available online: http://www.pawlan.com/Monica/crypto/.

Last accessed: 28.3.2023

[4].	 J. Rubin, “Vigenere Cipher”, 2008. Retrieved May 4, 2009, Available online:

http://www.juliantrubin.com/encyclopedia/mathematics/vigenere_

cipher.html. Last accessed: 28.3.2023

[5].	 K. Taylor, “Number theory 1”, 2002. Retrieved May 4, 2009, Available online:

http://math.usask.ca/encryption/lessons/lesson00/page1.html.

Last accessed: 28.3.2023

[6].	 M. E. Whitman and H. J. Mattord, Principles of Information Security.

Cengage Learning, 2021.

[7].	 S. Singh, The Code Book: The Secret History of Codes and Code-Breaking,

HarperCollins, 2010.

Chapter 17 Starting with Cryptanalysis

http://www.all.net/books/ip/Chap2-1.html
http://www.newworldencyclopedia.org/entry/Cryptography
http://www.newworldencyclopedia.org/entry/Cryptography
http://www.pawlan.com/Monica/crypto/
http://www.juliantrubin.com/encyclopedia/mathematics/vigenere_cipher.html
http://www.juliantrubin.com/encyclopedia/mathematics/vigenere_cipher.html
http://math.usask.ca/encryption/lessons/lesson00/page1.html

411

[8].	 A. Ibraham, “Al-Kindi: The origins of cryptology: The Arab contributions,”

Crypto logia, vol. 16, no 2 (April 1992) pp. 97–126. Available online:

https://www.history.mcs.st-andrews.ac.uk/history/Mathematicians/

Al-Kindi.html. Last accessed: 28.3.2023

[9].	 Philosophers: Yaqub Ibn Ishaq al-Kindi Kennedy-Day, K. al-Kindi, Abu

Yusuf Ya‘qub ibn Ishaq (d.c. 866–73), Available online: https://www.

muslimphilosophy.com/ip/kin.html. Last accessed: 28.3.2023

[10].	 S. H. Nasr and O. Leaman, History of Islamic Philosophy. Routledge,

pp. 421–434, 2001.

[11].	 Al-Faruqi, R. Ismail R. and L. L. al-Faruqi, Lois Lamya. Cultural Atlas of Islam.

Macmillan Publishing Company. pp. 305–306, 1986.

[12].	 Encyclopaedia Britannica, Inc. Encyclopaedia Britannica. Chicago: William

Benton. pp. 352, 1969.

[13].	 Buchmann, Johannes A. Introduction to Cryptography. Springer US, 2001.

[14].	 Wagstaff, Samuel S. Cryptanalysis of Number Theoretic Ciphers. CRC Press/

Chapman & Hall, 2003.

Chapter 17 Starting with Cryptanalysis

https://www.history.mcs.st-andrews.ac.uk/history/Mathematicians/Al-Kindi.html
https://www.history.mcs.st-andrews.ac.uk/history/Mathematicians/Al-Kindi.html
https://www.muslimphilosophy.com/ip/kin.html
https://www.muslimphilosophy.com/ip/kin.html

413

CHAPTER 18

Cryptanalysis Attacks
and Techniques
This chapter covers the most important and useful cryptanalytic and cryptanalysis

standards, validation methods, classification, and operations of cryptanalysis attacks.

The cryptanalysis discipline is very wide, and writing about it requires hundreds and

thousands of pages. The following sections go through all the elements necessary for

practitioners to use in their daily activities.

�Standards
It is very important to understand the importance of standards when conducting

cryptanalysis attacks for business purposes only to test the security within an

organization.

The following are the main institutes and organizations that provide high standards

for cryptography and cryptanalysis methods, frameworks, and algorithms.

•	 IEFT Public-Key Infrastructure (X.509) is the organization that

deals with standardizing protocols used on the Internet, which are

based on public key systems.

•	 The National Institute of Standards and Technologies (NIST) deals

with the elaboration of standards FIPS for the US government.

•	 The American National Standards Institute (ANSI) administers the

standards from the private sector.

•	 Internet Engineering Task Force (IEFT) is an international

community of networks, operators, and traders of services and

researchers that deals with the evolution of Internet architecture.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_18

https://doi.org/10.1007/978-1-4842-9450-5_18

414

•	 The Institute of Electrical and Electronical Engineering (IEEE)

elaborates on theories and advanced techniques from different fields,

such as electronics, computer sciences, and informatics.

•	 The International Organization for Standardization (ISO)

represents a nongovernmental organization with more than 100

countries. Its main purpose is to promote the development of

standardization to facilitate the international exchange of services.

�FIPS 140-2, FIPS 140-3, and ISO 15408
ISO 15408 represents the evaluation of IT security and is used in the international

community as a reference system. The standard defines a set of rules and requirements

from the IT field to validate the product’s security and cryptographic systems.

FIPS 140-2/140-3 represents a set of guidelines that must be followed to fulfill a

specific set of technical requirements exposed on four levels.

You must consider both standards when developing a specification or criteria for a

certain application or cryptographic module.

The products that are developed with respect to these standards need to be tested to

obtain validation and to confirm that the criteria were followed and respected properly.

�Validation of Cryptographic Systems
If the business requires cryptanalysis and cryptography operations to be implemented

within the software and communication systems, then cryptographic and cryptanalysis

services are needed. Certification organizations authorize these services, including

functionalities such as digital signature generation and verification, encryption and

decryption, key generation, key distribution, and key exchange.

Validation of cryptographic systems is the process of testing and evaluating the

security and functionality of a cryptographic system to ensure that it meets the required

security standards and specifications. This process typically includes a combination

of theoretical analysis, testing, and implementation reviews to assess the strength and

robustness of the system. Validation ensures that the system is secure against known and

potential attacks and functions correctly in the intended environment. Some examples

of validation techniques include penetration testing, formal verification, and side-

channel analysis.

Chapter 18 Cryptanalysis Attacks and Techniques

415

The model shown in Figure 18-1 depicts a general model for testing the security

based on cryptographic and cryptanalysis modules.

Application or System

So�ware Product

Cryptographic Module

Cryptographic/Cryptanalysis
Algorithm

Figure 18-1.  Verification and testing framework

A proper testing and verification process requires only two steps—the cryptographic/

cryptanalysis algorithm and the cryptographic module. For example, if you are

developing a cryptographic product or a desktop or web software application, it is

necessary for the company/institute/developer to perform the tests and to send them

to CMVP1 (Cryptographic Module Validation Program) to be tested with respect to FIPS

140-22 and FIPS 140-33.

A cryptographic module represents a combination of specialized software and

hardware processes. The main advantages of using validated cryptographic and

cryptanalysis modules are as follows.

•	 The modules should satisfy the requirements.

•	 Making sure that the authorized and technical personnel are

informed and instructed within a stand that is commonly agreed

upon and that it was tested.

•	 Ensuring that the final user (end user) is aware that the cryptographic

module was verified and tested in accordance with some well-

defined security requirements.

1 CMVP, https://csrc.nist.gov/projects/cryptographic-module-validation-program
2 FIPS 140-2, https://csrc.nist.gov/publications/detail/fips/140/2/final
3 FIPS 140-3, https://csrc.nist.gov/publications/detail/fips/140/3/final

Chapter 18 Cryptanalysis Attacks and Techniques

https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://csrc.nist.gov/publications/detail/fips/140/3/final

416

•	 A high level of reliability for security needs to be fulfilled to develop

similar and specific applications.

The security requirements of FIPS 140-2 contain 11 metrics and criteria for designing

and implementing the cryptographic module. For each cryptographic module validated,

the following requirements need to be fulfilled. During the validation process, the

cryptographic modules receive a mark from 1 to 4, proportional to the guaranteed

security level.

Once the cryptographic modules are validated, they contain information such as the

name of the manufacturer, address, name of the module, version of the module, type of

module (software or hardware), validation date, validation level, and module description.

�Cryptanalysis Operations
Designing a cryptographic system must be done using the following simple principles.

•	 The opponent should not be underestimated.

•	 A cryptanalyst can evaluate the security of a cryptographic system.

•	 Before the evaluation of the cryptographic system is performed, the

knowledge of the adversary is taken into consideration.

•	 The secret of the cryptographic system must rely on the key.

•	 In the process of cryptographic system evaluation, all the elements

within the system, such as key distribution and cryptographic

content, must be considered.

According to the father of information theory, Claude Elwood Shannon,4 the

following criteria must be considered when performing cryptosystem evaluation.

•	 One of the winnings of the cryptanalyst is gained once a message is

decrypted with success

•	 The key length and complexity

•	 The level of complexity of performing an encryption-

decryption process

4 Claude Elwood Shannon, https://www.itsoc.org/about/shannon

Chapter 18 Cryptanalysis Attacks and Techniques

https://www.itsoc.org/about/shannon

417

•	 The size of the encrypted text in accordance with the text size

•	 The error propagation method

The basic operations for having a solution for each cryptogram are as follows.

•	 Finding and determining the language used

•	 Determining the cryptographic system

•	 Reconstructing a specific key for a cryptographic system or partial or

complete reconstructing for a stream cryptographic system

•	 Reconstruction of such a system or establishing complete plaintext

�Classification of Cryptanalytics Attacks
This section covers the types of attacks on cipher algorithms, cryptographic keys,

authentication protocols, protocols and systems, and hardware attacks.

Cryptanalytic attacks can be broadly classified into two categories.

•	 Ciphertext-only attacks involve only the ciphertext and no

information about the plaintext or the key used. Examples

include frequency analysis, differential cryptanalysis, and linear

cryptanalysis.

•	 Known-plaintext attacks involve both the ciphertext and a known

plaintext-ciphertext pair. Examples include the chosen-plaintext

attack and the related-key attack.

Another way to classify cryptanalytic attacks is based on the amount of

computational resources required to carry out the attack.

•	 Brute-force attacks involve trying all possible keys until the correct

one is found.

•	 Statistical attacks involve analyzing patterns in the ciphertext to try

to determine the key.

•	 Side-channel attacks involve analyzing information leaked

during the encryption process, such as power consumption or

electromagnetic radiation, to extract information about the key.

Chapter 18 Cryptanalysis Attacks and Techniques

418

�Attacks on Cipher Algorithms

Table 18-1.  Attacks on Ciphering Algorithms

Types of Attacks on Ciphering Algorithms

Attack Title Attack Description

Known-plaintext
attack

The cryptanalyst has an encrypted text, and his correspondent has the plaintext.

The goal is to separate the encryption key from the information.

Chosen text
attack

The cryptanalyst can indicate the plaintext, which is encrypted. By using this

type of attack, the cryptanalyst tries to separate the information of the text from

the encryption key, having the possibility to obtain the encryption algorithm or

the key through specific methods.

Cipher-cipher
text attack

The cryptanalyst holds a plaintext and his correspondent the same text, which is

encrypted with two or more different keys.

Divide et Impera
attack

The cryptanalyst may realize a series of correlations between different inputs

and outputs of the algorithm to separate different inputs in the algorithm, which

makes him break the problem into two or more problems that are easy to solve.

Linear syndrome
attack

The cryptanalysis method consists of designing and creating a linear equation

system specific for the pseudorandom generator and verifying the equation

system with the encrypted text, obtaining the plaintext with a high probability.

Consistency
linear attack

The cryptanalytic method consists of elaborating a linear equation system

specific to the pseudorandom generator starting from an equivalent

cryptographic key and verifying the system by the pseudorandom generator with

the probability of 1, obtaining in this way the plaintext with a high probability.

Stochastic
attack

Also known as a forecasting attack, this attack is possible if the generator’s

output is autocorrelated, the cryptanalyst managing to obtain the output of the

pseudorandom generator and the encrypted text as input data. In this way, the

clear text is obtained.

Informational
linear attack

Also known as a linear complexity attack, this attack is possible if there is any

chance to equalize the generator with a Fibonacci algorithm. It is possible if

the linear complexity is equivalent to the generator is low. With this attack, it is

possible to build a similar algorithm and cryptographic key.

Virus attack This attack is possible if the encryption algorithm is implemented on a

vulnerable, unprotected PC.

Chapter 18 Cryptanalysis Attacks and Techniques

419

�Attacks on Cryptographic Keys
The most frequent attacks that occur on cryptographic keys are listed in Table 18-2.

Table 18-2.  Attacks on Cryptographic Keys

Attacks on Keys
Type Description

Brute-force attack The attack consists of the exhaustive verification of the keys and

passwords, and it is possible if: the encryption key size is small and the

encryption key space is small.

Intelligent brute-force
attack

The level of key randomness of the encryption key is small (the entropy

is small) and allows finding the password, similar to the words from the

utilized language.

Backtracking attack The attack is based on implementing the backtracking type method,

which consists of conditions for continuing the search in the desired

direction.

Greedy attack The attack provides the optimal local key, different from the optimal

global key.

Dictionary attack The attack consists of searching for passwords or keys using a

dictionary.

Hybrid dictionary
attack

This attack is made by modifying the words from the dictionary and

initializing the brute-force attack with the help of the words from the

dictionary.

Virus attack This attack is possible if the keys are stored on an unprotected PC.

Password hash attack/
cryptographic key

This attack occurs if the password hash is short or wrong elaborated.

Substitution attack The original key is substituted by a third party and replaced in the entire

network. It can be done with the help of viruses.

Storing encryption key If this is done incorrectly (together with the encryption data) in plaintext

without any physical protection measures or cryptographic software or

hardware, it can lead to an attack on the encrypted message.

(continued)

Chapter 18 Cryptanalysis Attacks and Techniques

420

Attacks on Keys
Type Description

Storing old encryption
keys

This attack leads to the compromise of the old documents that are

encrypted.

Key compromise Only the documents assigned with that key are compromised if the

symmetric key is compromised. If the public key is compromised, which can

be found stored on different servers, the attacker can be substituted with the

legal owner of the data having a bad and negative impact on the network.

Master keys Represents different phases in the cryptographic system.

Key lifetime It is an essential component that excludes the possibility of a successful

attack being undetected.

Table 18-2.  (continued)

�Attacks on Authentication Protocols
The authentication protocols are exposed to different types of attacks. Table 18-3 covers

the most important ones, which are frequently used. It is very important to consider that

an authentication protocol of a system is very important and vital. Once corrupted, vital

information can be exposed, and attackers can gain many personal, financial, and other

benefits.

Table 18-3.  Attacks on Authentication Protocols

Attacks on Authentication Protocols
Type Description

Attack on the public
key

The attack takes place on the signature within the protocol. This is

available only for systems with public keys.

Attack on the
symmetric algorithm

The attack takes place on the signature within the authentication

protocol. This is available only if a symmetric key is used.

Passive attack The attacker intercepts and monitors the communication on the channel

without intervention.

Attack using third
person

A third party actively intercepts the communication of two partners

within a communication channel.

Fail-stop signature It is a cryptographic protocol in which the sender can bring evidence of

whether his signature was forged.

Chapter 18 Cryptanalysis Attacks and Techniques

421

Authentication protocols are methods used to verify the identity of a user before they

are allowed access to a service. Authentication is the process of determining whether a

user attempting to access a system is who they claim to be. Authentication protocols can

be implemented on both wired and wireless networks and control access to the network

and any resources connected to it. Authentication protocols protect against unauthorized

access to systems and networks by verifying the user’s identity. Each protocol has its

own specific way of doing this, but some commonalities exist. The first step is always

to ask the user to provide some sort of identifier. This could be a code generated by a

token, a passphrase, or a biometric identifier such as a fingerprint or an eye scan. The

authentication protocol then examines this identifier to see if it corresponds to the user.

With the ever-growing presence of the Internet and its services, it is essential to

understand the various types of attacks on authentication protocols and how to protect

your data. Authentication protocols are used to verify the identity of a user before

access to a service is granted. However, these protocols are vulnerable to various types

of attacks, such as man-in-the-middle attacks, brute-force attacks, and replay attacks.

Understanding the different types of attacks and how to prevent them is essential for any

individual or organization wanting to protect their data from unauthorized access. With

proper knowledge and implementation of security measures, organizations can protect

their data from cybercriminals and malicious actors.

The following summarizes several types of attacks on authentication protocols.

•	 A password-guessing attack is a man-in-the-middle attack in

which an attacker tries to log into a system using different passwords

until they find the correct one. This is done either manually or with

automated software. Sometimes this attack is made by recording

authentication sessions, trying to log in with a random password, and

then replaying the recording to the real server.

•	 A brute-force attack occurs when an attacker tries to enter a system

by trying passwords or passphrases until they find the correct one.

They do this by trying different combinations of letters, digits, or

symbols until they find a code that works. With a network protocol,

an attacker could use a software program to log into a system using

a large number of passwords until they find the correct one. Brute-

force attacks are difficult to protect against. The best way is to set a

strong password and try to avoid reusing the same password across

multiple systems.

Chapter 18 Cryptanalysis Attacks and Techniques

422

•	 A replay attack occurs when an attacker obtains hold of a valid

authentication session and replays it to access a system. This is

possible because authentication protocols typically use a single-

use session identifier. There are a few ways to protect against replay

attacks. One way is to use a Public Key Infrastructure (or PKI) with

digital signatures. With PKI, the server and client generate a pair of

keys—one public and one private. The server publishes its public key

and marks it as “private” so it cannot be accessed. The client looks up

the server’s public key and uses it to encrypt a message.

•	 A man-in-the-middle attack occurs when an attacker puts themselves

between two communicating parties and pretends to be each of

them. To do this, the attacker must first obtain control of a network

connection and then place themselves between the two parties. When

a user tries to log into an account using an authentication protocol, the

attacker would first need to obtain control of the network connection

between the user and the authentication server. They would then have

to forward the user’s authentication request to the authentication

server and send their own authentication request to the server.

When the authentication server responds to the attacker, the attacker

forwards the response to the user. Because the attacker is in the middle

of the two parties, they can see both sides of the conversation.

�Conclusion
Authentication protocols are designed to verify the identity of a user before they are

allowed access to a network or system. However, they are vulnerable to different types of

attacks, such as man-in-the-middle attacks, brute-force attacks, and replay attacks. It is

important to understand the different types of attacks on authentication protocols and

how to protect against them. The best ways to protect against these attacks are to use

strong passwords, establish two-factor authentication, implement proper encryption,

and monitor user activity.

The chapter covered the most important and useful cryptanalytic and cryptanalysis

guidelines and methods. After reading, you should now be capable of managing the

standards to test and verify the implementation of cryptographic and cryptanalytic

algorithms and methods. In summary, you learned about the following.

Chapter 18 Cryptanalysis Attacks and Techniques

423

•	 Cryptanalysis attack classification

•	 Cryptanalysis operations

•	 Standards FIPS 140-2 and FIPS 140-3

•	 Standard 15408

•	 Validation of cryptographic systems

References
[1].	 A. Atanasiu, Matematici in criptografie. Universul Stiintific, 2015. [Romanian

Language]

[2].	 A. Atanasiu, Securitatea Informatiei, vol. 1 (Criptografie), InfoData, 2007.

[Romanian Language]

[3].	 A. Atanasiu, Securitatea Informatiei, vol. 2 (Protocoale de securitate), InfoData,

2009. [Romanian Language]

[4].	 S. J. Knapskog, “Formal specification and verification of secure

communication protocols”, in Advances in Cryptology — AUSCRYPT ’90,

J. Seberry and J. Pieprzyk, Eds., in Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, 1990, pp. 58–73.

[5].	 K. Koyama, “Direct demonstration of the power to break public-key

cryptosystems”, in Advances in Cryptology — AUSCRYPT ’90, J. Seberry and

J. Pieprzyk, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 1990, pp. 14–21.

[6].	 P. J. Lee, “Secure user access control for public networks”, in Advances in

Cryptology — AUSCRYPT ’90, J. Seberry and J. Pieprzyk, Eds., in Lecture Notes

in Computer Science. Berlin, Heidelberg: Springer, 1990, pp. 45–57.

[7].	 R. Lidl and W. B. Müller, “A note on strong Fibonacci pseudoprimes”, in

Advances in Cryptology — AUSCRYPT ’90, J. Seberry and J. Pieprzyk, Eds., in

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1990, pp.

311–317. doi: 10.1007/BFb0030371.

Chapter 18 Cryptanalysis Attacks and Techniques

424

[8].	 A. J. Menezes and S. A. Vanstone, “Elliptic curve cryptosystems and their

implementation”, J. Cryptology, vol. 6, no. 4, pp. 209–224, Sep. 1993, doi:

10.1007/BF00203817.

[9].	 M. J. Mihaljevic and J. Dj. Golic, ‘A fast iterative algorithm for a shift register

initial state reconstruction given the noisy output sequence’, in Advances in

Cryptology — AUSCRYPT ’90, J. Seberry and J. Pieprzyk, Eds., in Lecture Notes

in Computer Science. Berlin, Heidelberg: Springer, 1990, pp. 165–175.

Chapter 18 Cryptanalysis Attacks and Techniques

425

CHAPTER 19

Differential and Linear
Cryptanalysis
This chapter covers two important cryptanalysis types: linear and differential. To

understand how to merge theoretical and practical concepts, basic concepts and

advanced techniques on how professionals implement them are discussed first.

Despite some of the differential and linear mechanisms being outdated, there is

plenty of room to find new challenges that could be exploited to obtain new results. The

research literature about linear and differential cryptanalysis provides many theoretical

approaches and mechanisms. But only a few theories could be applied in practice,

developing professional solutions for differential and linear cryptanalysis attacks.

The difference between theoretical and applied cryptanalysis is significantly

large and has its own differences. The results published in the last 12 years, such as

algorithms, methods, and game theory aspects, led researchers and professionals on

different paths. Most of them were whimsical, chimeras (complex mathematical systems

without real applicability), fancy algorithms, and others being applicable with success in

practice.

Conducting research in cryptanalysis and increasing its potential value for being

applied in practice and for different scenarios requires time, experience, and continuous

cross-collaboration between theoreticians and practitioners, without isolation between

these two types of categories.

Carrying out cryptanalysis work and increasing its potential value to be implemented

in practice for various scenarios involves time, expertise, and ongoing cross-

collaboration between theoreticians and practitioners without separating these two

groups. Their importance is crucial in the field of cryptanalysis, providing the necessary

tools and mechanisms to construct cryptanalysis attack schemes for block and stream

ciphers.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_19

https://doi.org/10.1007/978-1-4842-9450-5_19

426

�Differential Cryptanalysis
E. Biham and A. Shamir implemented differential cryptanalysis in the early 1990s.

Usually, differential cryptanalysis is designed for block ciphers, but it can also be used

for stream ciphers or hash functions. Differential cryptanalysis checks whether the

cryptogram traces some locations from the key with a probability greater than others.

The checking process can be carried out with any order with grade 1. The test represents

a complicated approximation of order 2 of a test cycle.

Differential cryptanalysis exposes the weak points of the cryptography algorithm.

The following example of differential cryptanalysis is illustrated for stream cryptography

algorithms. The pseudocode of the algorithm is as follows.

INPUT: the key is chosen as K = (k1, …, kn) with ki ∈ {0, 1}

OUTPUT: the weak points of the cryptography

 algorithm together with the resistance decision for

 differential cryptanalysis.

	 1.	 α←rejection rate value

	 2.	 choose n sets of keys with perturbation property sets, starting

from key K.

	 for i ton do K k ki
i ni n� � � � �� �� �1 1 1� �, , : 	

	
�1

1

0i

if j i

if j i
�

�
�

�
�
�

, ,

, .
,
	

for i,j=1,…,n. Here, the ith key is obtained from the base key by

changing the bit from the ith position.

	 3.	 Constructing the cryptograms. The first step is to build n + 1

cryptograms using the basic key, perturbed keys and clear text

M. We denote the obtained cryptograms with C(i), i = 1, …, n + 1. As

plaintext M, we can choose for text 0 – everywhere.

	 4.	 Constructing the correlation matrix. Here, we build the matrix

(n + 1) × (n + 1) for the correlation values C:

	
c corellation cryptogrami cryptogram jij � � �, ,

	

Chapter 19 Differential and Linear Cryptanalysis

427

corelation cij denotes the value of the statistical test applied to the

sequence (cryptogram i ⊕ cryptogram j). The matrix C is represented

as a symmetrical matrix having 1 on the main diagonal.

	 5.	 The computational process for the significant value. It counts the

values of significant correlation that are situated above the main

diagonal. A value is called significant if

	
c u ui j, .�

�

�
�

�

�
�

�
� �
2

1
2

;
	

Consider T the number of significant values that

represents the number of rejects of the correlation test.

	 6.	 Decision and result interpretation. If

	

T
n n

n n
u u

�
�� �

�� � �� �
�
�

�
�

�

�
�

�

�

� �
� �

·

·

,

1

2

1
1

2
2

1
2

;

	

once computed, we can decide the nonresistance to differential

cryptanalysis (uα
2

 and u
1

2
�
� represents the quantiles of the normal

distribution of order
α
2

 and 1
2

�
�

 and fixes the (i, j) elements with

n ≥ i > j ≥ 1, for which cij is significant. These elements represent weak

points for the algorithms. Otherwise, we cannot mention anything

about the resistance to this type of attack.

In this section, a very simple cipher that shifts the plain message with the secret

key and then inverts it to obtain the encrypted message is presented. Then, differential

cryptanalysis is applied to break the cipher. The code is presented in Listing 19-1. The

output is shown in Figure 19-1.

Listing 19-1.  Simple Differential Attack

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

Chapter 19 Differential and Linear Cryptanalysis

428

//helper function that inverts the input value

unsigned char invert(unsigned char value) {

 return ~value;

}

//helper function that shifts the input value to left

unsigned char shift_left(unsigned char value) {

 return ((value << 1) & 0x0F) | ((value >> 3) & 0x01);

}

//simple encryption function that shifts the message to left then

inverts it

unsigned char cipher(unsigned char message, unsigned char key) {

 return shift_left(invert(message ^ key));

}

int main() {

 //declare two plain messages and the secret key

 unsigned char message1 = 0x02;

 unsigned char message2 = 0x03;

 unsigned char key = 0x06;

 //compute the corresponding encrypted messages

 unsigned char encrypted_message1 = cipher(message1, key);

 unsigned char encrypted_message2 = cipher(message2, key);

 int pairs_no = 10000;

 �int total_ok_pairs = 0; //total number of pairs that satisfy the

condition

 //threshold for success of probability

 double threshold = 0;

 //cryptanalysis attack

 for (int k = 0; k < 16; k++) {

 unsigned char computed_key = k;

 int different_pairs = 0;

 int ok_pairs = 0;

Chapter 19 Differential and Linear Cryptanalysis

429

 �//compute the number of differential pairs that satisfy the condition

 for (int j = 0; j < pairs_no; j++) {

 //randomly generate two plain messages

 unsigned char aux_message1 = rand() % 16;

 unsigned char aux_message2 = aux_message1 ^ message1;

 //compute the corresponding ciphertexts using the computed key

 �unsigned char aux_encrypted_message1 = cipher(aux_message1,

computed_key);

 �unsigned char aux_encrypted_message2 = cipher(aux_message2,

computed_key);

 //check if the pairs satisfy the condition

 �if ((aux_encrypted_message1 ^ aux_encrypted_message2) ==

(encrypted_message1 ^ encrypted_message2)) {

 ok_pairs++;

 }

 different_pairs++;

 }

 //compute the probability of correctly guessing the computed key

 double probability = (double)ok_pairs / different_pairs;

 if (probability > threshold) {

 total_ok_pairs++;

 �cout << "Computed key: " << hex << (int)computed_key << ",

probability of success: " << probability << endl;

 }

 }

 //verify if the computed key is the same as the correct key

 if (total_ok_pairs > 0) {

 cout << "Correct key: " << hex << (int)key << " found." << endl;

 } else {

 cout << "Correct key not found." << endl;

 }

 return 0;

}

Chapter 19 Differential and Linear Cryptanalysis

430

Figure 19-1.  The output for differential attack

This example produces a pair of plain messages that differ by a single bit and use a

fixed key to compute the corresponding encrypted messages. A differential cryptanalysis

attack is conducted by guessing each potential key value and counting the number

of differential pairings satisfying the condition (aux_encrypted_message1 ^ aux_

encrypted_message2) == (encrypted_message1 ^ encrypted_message2), where

aux_message1 and aux_message2 are random plain message values.

This method is continued for a large number of random plain message pair iterations

and calculates the likelihood of success for each key guess. If the success probability

of a key estimate exceeds a specific threshold (in this example, 0.10), it’s considered

a possible candidate for the actual key. Finally, let’s determine if the estimated key

matches the actual key.

�Linear Cryptanalysis
Linear cryptanalysis was developed as a theoretical framework for the Data Encryption

System (DES) and implemented in 1993. Linear cryptanalysis is commonly used inside

block ciphers and is a good starting point for designing and executing complex attacks.

Linear cryptanalysis is a linear relationship between the key, the plaintext structure,

and the ciphertext structure. The plaintext is structured and represented as characters

or bits. It is required to have the structure as a chain of operations characterized by

exclusive-or, as the following describes.

	
A A A B B B Key Key Keyi i i j j j k k ku v w1 2 1 2 1 2

� �� � � ��� � � ��
	

Chapter 19 Differential and Linear Cryptanalysis

431

⨁ represents the XOR operation as a binary operation, Ai represents the bit from

the ith position of the input structure A = [A1, A2, …], Bj represents the bit from the jth

position of the output structure B = [B1, B2, …] and Keyk represents the kth bit of the key

Key = [Key1, Key2, …].

�Performing Linear Cryptanalysis
Usually, in the most important cases, performing linear cryptanalysis starts from the idea

that we acknowledge the encryption algorithm except the private key. As the following

describes, executing linear cryptanalysis against a block cipher is represented as a

framework.

•	 The first step is based on identifying the linear approximation for

nonlinear components. The goal is to characterize the encryption

algorithm (e.g., S-boxes).

•	 Computing a combination of linear approximations of substitution

boxes, including the operations executed against the encryption

algorithm. Professionals should focus on linear approximation

because it represents a special function that contains and deals with

the clear text and cipher text bits and those from the private key.

•	 Computing and designing the linear approximation should be

a guideline for the cryptographic keys used for the first time.

The guideline proves its power and helps professionals save

important computational resources for all the possible values of the

cryptographic keys. Using multiple linear approximations, you have a

very powerful process of computation to eliminate the key numbers

necessary for trying.

In this section, a very simple cipher is presented that XORes the plain message with

the secret key to obtain the encrypted message. Then, linear cryptanalysis is applied

to break the cipher [10]. The code is presented in Listing 19-2. The output is shown in

Figure 19-2.

Chapter 19 Differential and Linear Cryptanalysis

432

Listing 19-2.  Simple Linear Cryptanalysis Example

#include <iostream>

#include <bitset>

#include <random>

using namespace std;

// a very simple cipher that XORes the message with the key

bitset<4> cipher(bitset<4> message, bitset<4> key) {

 bitset<4> encrypted_message = message ^ key;

 return encrypted_message;

}

int main() {

 //set the parameters to generate random messages and keys

 random_device rand_value;

 default_random_engine generate(rand_value());

 �uniform_int_distribution<int> distance(0, 15); //generates random

numbers between 0 and 15

 bitset<16> messages; //stores messages

 bitset<16> encrypted_messages; //stores encrypted messages

 �//generate randomly 16 messages, the keys, each of them on 4-bit then

compute the corresponding encrypted messages

 for (int i = 0; i < 16; i++) {

 bitset<4> message(distance(generate));

 bitset<4> private_key(distance(generate));

 bitset<4> encrypted_message = cipher(message, private_key);

 messages[i] = message.to_ulong();

 encrypted_messages[i] = encrypted_message.to_ulong();

 }

 //applying linear cryptanalysis to compute the key

 ////first, the compued key and the maximum bias are set to 0

 bitset<4> key_compute(0);

 int maximum_bias = 0;

Chapter 19 Differential and Linear Cryptanalysis

433

 //all possible key are computed

 //for each key the bias value is computed using linear approximation

 for (int k = 0; k < 16; k++) {

 bitset<4> local_key(k);

 int local_bias = 0;

 �//compute the bias value for each pair of message -

encrypted message

 for (int i = 0; i < 16; i++) {

 bitset<4> aux_message(messages[i]);

 bitset<4> aux_encrypted_message(encrypted_messages[i]);

 �bitset<4> aux1(aux_message ^ local_key); // XOR the message

with the local key

 �bitset<4> aux2(aux_encrypted_message ^ local_key); // XOR the

encrypted message with the local key

 //compute the linear approximation

 //update bias value

 if ((aux1.count() + aux2.count()) % 2 == 0) {

 �local_bias++; //the bias value is increased if the linear

approximation occurs

 } else {

 �local_bias--; //the bias value is decreased if the linear

approximation does not occur

 }

 //verify if the computed key is the same as local (real) key

 if (key_compute == local_key) {

 �cout << "The key was correctly computed: " << key_compute

<< " / ";

 } else {

 �cout << "The key was not correctly computed: " << key_

compute << " / ";

 }

 cout << "The correct key: " << local_key << endl;

 }

Chapter 19 Differential and Linear Cryptanalysis

434

 if (abs(local_bias) > abs(maximum_bias)) {

 maximum_bias = local_bias;

 key_compute = local_key;

 }

 }

 // Output the key guess and maximum bias

 cout << "Computed key: " << key_compute.to_ulong() << endl;

 cout << "Bias value: " << maximum_bias << endl;

 return 0;

}

Figure 19-2.  The output for linear cryptanalysis

This code creates 16 random plain messages and keys and then uses a simple

cipher function to encrypt each message with a random key to produce the appropriate

encrypted message. The cipher is then exposed to a linear cryptanalysis attack by testing

all possible keys and computing the bias of each key using the linear approximation.

Eventually, the highest-biased key is chosen as the correct guessed key.

Chapter 19 Differential and Linear Cryptanalysis

435

�Conclusion
The chapter has discussed differential and linear cryptanalysis attacks and how these

kinds of attacks can be designed and implemented in real practice. It introduced the

theoretical background elements and main foundations that must be known before

designing such cryptanalysis attacks.

You learned the following.

•	 How to identify theoretically the main components on which a

cryptanalyst should focus

•	 How vulnerable those components are and how they can be

exploited

•	 How to implement linear and differential cryptanalysis attacks

References
[1].	 J. Daemen, L. Knudsen, and V. Rijmen, “The block cipher Square”, in Fast

Software Encryption, E. Biham, Ed., in Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, 1997, pp. 149–165.

[2].	 H. Heys, “A Tutorial on Linear and Differential Cryptanalysis,” Cryptologia, vol.

XXVI, no. 3, pp. 189–221, 2002.

[3].	 M. Matsui, “Linear Cryptanalysis Method for DES Cipher”, Advances in

Cryptology - EUROCRYPT ’93, Springer-Verlag, pp. 386–397, 1994.

[4].	 E. Biham, “On Matsui’s linear cryptanalysis”, in Advances in Cryptology —

EUROCRYPT’94, A. De Santis, Ed., in Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, 1995, pp. 341–355.

[5].	 A. Biryukov, C. De Cannière, and M. Quisquater, “On Multiple Linear

Approximations”, in Advances in Cryptology – CRYPTO 2004, M. Franklin,

Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2004,

pp. 1–22.

[6].	 L. Keliher, H. Meijer, and S. Tavares, “New Method for Upper Bounding

the Maximum Average Linear Hull Probability for SPNs”, in Advances in

Cryptology — EUROCRYPT 2001, B. Pfitzmann, Ed., in Lecture Notes in

Computer Science. Berlin, Heidelberg: Springer, 2001, pp. 420–436.

Chapter 19 Differential and Linear Cryptanalysis

436

[7].	 L. R. Knudsen and J. E. Mathiassen, “A Chosen-Plaintext Linear Attack on

DES”, in Fast Software Encryption, G. Goos, J. Hartmanis, J. van Leeuwen, and

B. Schneier, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 2001, pp. 262–272.

[8].	 M. Matsui and A. Yamagishi, “A New Method for Known Plaintext Attack of

FEAL Cipher”, in Advances in Cryptology — EUROCRYPT’ 92, R. A. Rueppel,

Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1993,

pp. 81–91.

[9].	 M. Matsui, “The First Experimental Cryptanalysis of the Data Encryption

Standard”, in Advances in Cryptology — CRYPTO ’94, Y. G. Desmedt, Ed.,

in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1994,

pp. 1–11.

[10].	 N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering: Design

Principles and Practical Applications. John Wiley & Sons, 2011.

Chapter 19 Differential and Linear Cryptanalysis

437

CHAPTER 20

Integral Cryptanalysis
Integral cryptanalysis is a technique designed for block ciphers constructed on

substitution-permutation networks. Since an integral cryptanalysis attack can be

launched against a Square block cipher [1], it is also known as a Square attack and was

designed by Lars Knudsen.

An exposed point of the block ciphers is the network of substitution-permutation.

When the networks can be discovered (intuitively), the exploitation of the vulnerabilities

of the block cipher has a high negative impact on the entire cryptosystem. Another

exposed point of the block ciphers is the key itself and the table involved in the

permutation of the key. The system can be broken when a false key is similar (or

identical) to the correct one.

The next section presents the formal basis regarding block ciphers, which can be

implemented, and the elements that are required to focus on initiating an integral

cryptanalysis attack, for example, building Feistel networks and generating permutation

tables for cryptographic keys. Once there is a clear understanding of these two phases, it

is very clear how integral cryptanalysis must be conducted.

�Basic Notions
For implementing and designing the integral cryptanalytic attack, it is very important

to have the formal elements before implementing it. Moving further, let’s look at the

following concepts as the main starting point for designing and implementing such an

attack for education purposes.

Consider (G, +) as a finite abelian group with the order k. The following product

group Gn = G × … × G is the group with elements with the structure v = (v1, …, vn), where

vi ∈ G. The addition within Gn is defined as component-wise; therefore, u + v = w holds

for u, v, w ∈ Gn when ui + vi = wi for all i.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_20

https://doi.org/10.1007/978-1-4842-9450-5_20

438

Let’s denote with B the set with multiple vectors and define the integral over B. This

integral represents the sum of all vectors S. The integral is defined as � �
�
�S v
v B

, and the

addition operation is defined in terms of the group operation for Gn.

When the integral cryptanalytic is designed, an important thing that should be

known is the number of words in the plain text and the encrypted text. In the example

from this chapter, this number is denoted with n. Another important number that should

be known is the number of clear texts and encrypted texts, denoted with m. In general,

m = k (i.e., k = |G|), the vectors v ∈ B denote the plain text and the encrypted text, and

G = GF(2B) or G = Z/kZ.

Going further to the attack, it is because one of the involved entities predicts the

values placed in the integrals after a particular number of rounds of encryption. Keeping

this in mind, three cases can be distinguished: (1) when the words have the same length

(e.g., i), (2) when the words have different lengths, and (3) the sum of a particular value

that is predicted in advance.

Furthermore, consider B ⊆ Gn as described and a fixed index i. The following three

cases can be distinguished.

•	 vi = c, for all v ∈ B

•	 {vi : v ∈ B} = G

•	
v B

iv c
�
� � �

c, c′ ∈ G are some values known and fixed in advance.

The next example is a common situation in which m = k, the number of vectors from B,

is the same as the number of elements in the considered group. From Lagrange’s theorem, it

results that if all words, a general word placed at the ith position, have the same length, then

it is intuitive that the ith word from the integral has the value of the neutral element from G.

The following two theorems are necessary and represent a must for any practical

developer that wants to translate into practice integral cryptanalysis.

�Theorem 20-1 [1, Theorem 1, p. 114]
Let’s consider (G, +) a finite abelian additive group. The subgroup of elements of order 1

or 2 is denoted as L = {g ∈ G : g + g = 0}. Let’s consider writing s(G) as the sum
g G

g
�
� of all

the elements found within G. Next, consider s(G) =
h H

H
�
� . Moreover, it is very important

to understand the following analogy s(G) ∈ H: s(G) + s(G) = 0.

Chapter 20 Integral Cryptanalysis

439

According to Theorem 1, for G = GF(2B) there is the value s(G) = 0 and for Z/mZ there

is the value s(Z/mZ) = m/2 when m is an even value, or it is 0. The following theorem

represents the multiplicative case for written groups (see Theorem 20-2).

�Theorem 20-2 [1, Theorem 2, p. 114]
Let’s consider (G, ∗) a finite abelian multiplicative group. The subgroup of elements

of order 1 or 2 is denoted as H = {g ∈ G : g ∗ g = 1}. Consider writing p(G) as being the

product
g G

g
�
� of all the elements of G. Next, consider p G h

h H

� � �
�
� . Moreover, it is very

important to understand the following analogy p(G) ∈ H, or p(G) ∗ p(G) = 1.

As an example, if G = (Z/pZ)∗ where p is prime, p(G) is −1, p(G) = − 1. This is proven

using Wilson’s theorem.

�Practical Approach
This section presents a very simple cipher that shifts the plain message with the secret

key and then inverts it to obtain the encrypted message. Then, integral cryptanalysis

is applied to break the cipher [2]. The code is presented in Listing 20-1. The output is

shown in Figure 20-1.

Listing 20-1.  The Main Program

#include <iostream>

using namespace std;

//helper function that inverts the input value

unsigned char invert(unsigned char value) {

 return ~value;

}

//helper function that shifts the input value to left

unsigned char shift_left(unsigned char value) {

 return ((value << 1) & 0x0F) | ((value >> 3) & 0x01);

}

Chapter 20 Integral Cryptanalysis

440

//simple encryption function that shifts the message to left then

inverts it

unsigned char cipher(unsigned char message, unsigned char key) {

 return shift_left(invert(message ^ key));

}

int main() {

 //declare the plain message and the secret key

 unsigned char message = 0x02;

 unsigned char key = 0x06;

 //compute the corresponding encrypted message

 unsigned char encrypted_message = cipher(message, key);

 int pairs_no = 10000;

 �int total_ok_pairs = 0; //total number of pairs that satisfy the

condition

 //threshold for success of probability

 double threshold = 0;

 //integral analysis attack

 for (int k = 0; k < 16; k++) {

 unsigned char computed_key = k;

 int ok_pairs = 0;

 //compute the number of pairs that satisfy the condition

 for (int i = 0; i < 16; i++) {

 for (int j = 0; j < 16; j++) {

 �//compute the corresponding encrypted messages using the

computed key

 �unsigned char aux_encrypted_message1 = cipher(i,

computed_key);

 �unsigned char aux_encrypted_message2 = cipher(j,

computed_key);

 //check if the condition is met

 �if ((aux_encrypted_message1 ^ aux_encrypted_message2) ==

encrypted_message) {

Chapter 20 Integral Cryptanalysis

441

 ok_pairs++;

 }

 }

 }

 //compute the probability of correctly guessing the computed key

 double probability = (double)ok_pairs / (16 * 16);

 if (probability > threshold) {

 total_ok_pairs++;

 c�out << "Computed key: " << hex << (int)computed_key << ",

probability of success: " << probability << endl;

 }

 }

 //verify if the computed key is the same as the correct key

 if (total_ok_pairs > 0) {

 cout << "Correct key: " << hex << (int)key << " found." << endl;

 } else {

 cout << "Correct key not found." << endl;

 }

 return 0;

}

Chapter 20 Integral Cryptanalysis

442

Figure 20-1.  Integral cryptanalysis attack

This code executes an integral cryptanalysis attack by counting the number of plain

message pairs satisfying the requirement (aux_encrypted_message1 ^ aux_encrypted_

message2) == encrypted_message) for each potential key guess. This is accomplished

by repeatedly traversing all potential plain message-encrypted message pairings,

computing their associated ciphertexts using the computed key, and determining if they

meet the criteria. Then, compute the success probability for each computed. Finally,

determine if there is at least one key guess with a substantial success probability (e.g.,

more than 0.1) and output it if there is.

�Conclusion
This chapter covered integral cryptanalysis and how such attacks can be designed and

implemented. The chapter developed a block cipher cryptosystem with vulnerable

points to illustrate how to use the integral cryptanalysis attack in practice.

Chapter 20 Integral Cryptanalysis

443

You learned how to do the following.

•	 Design and implement a simple integral cryptanalysis attack

•	 Understand the vulnerable points of this kind of attack and generate

permutation tables to permutate the key

•	 Use permutation tables and how to work with them over the keys

References
[1].	 J. Daemen, L. Knudsen, and V. Rijmen, “The block cipher Square”, in Fast

Software Encryption, E. Biham, Ed., in Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, 1997, pp. 149–165.

[2].	 Ferguson, N., Schneier, B., and Kohno, T. (2011). Cryptography Engineering:

Design Principles and Practical Applications. John Wiley & Sons.

Chapter 20 Integral Cryptanalysis

445

CHAPTER 21

Brute-Force and Buffer
Overflow Attacks
This chapter covers two of the most significant attacks against C++ programs and

applications: buffer overflow and brute-force attacks.

Some attackers use software, hardware, or applications to carry out brute-force

or buffer overflow attacks. Their techniques are designed to exploit various word

combinations for confirmation forms. Attackers have been known to try to corrupt

web applications by, for instance, scanning for session IDs. The attacker’s objectives

include data theft, infecting target computers with malware, and requesting assistance

in exchange for a predetermined sum of money. Some attackers choose to physically

carry out brute-force attacks. The majority of brute-force and buffer overflow attacks are

currently carried out by bots. A bot is a software program meant to perform automated

activities or communicate with humans through text or speech, frequently imitating

human behavior. Bots may be found in a variety of applications, including social media,

messaging platforms, and online games, and perform various functions, including

customer service, amusement, and data collection.

It is advised to consider the following suggestions to safeguard the company and

organization from these attacks.

•	 Online data and information from untrusted sources should not

be used.

•	 Use as many characters as you can.

•	 Use a variety of letter, number, and special character combinations;

(e.g., symbol).

•	 Do not use common pattern letters (e.g., qwerty).

•	 Create unique passwords for every user account.

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_21

https://doi.org/10.1007/978-1-4842-9450-5_21

446

•	 Change passwords often (e.g., every two months).

•	 Use and create lengthy, secure passwords. Use password generators

(such as key generation from KeyPass) if you have no inspiration for

passwords.

•	 Put multifactor authentication into work [1].

•	 If biometrics are an option, use them [2].

�Brute-Force Attack
A brute-force attack is one in which the attacker submits several passwords or

passphrases to guess the right one. The attacker checks each password or passphrase

individually until the right one is discovered. Additionally, the attacker has a chance of

determining the key. The key is usually derived from the password using a function. An

exhaustive key search is the name given to this procedure.

The following are among the wide range of brute-force attacks.

•	 Attacks that use rainbow tables. A rainbow table represents a

predetermined and precalculated table. The objective is to reverse

the cryptographic hashing process.

•	 Attacks that use reversing brute-force attacks. A common

password or a specific group of passwords is used in the assault

against numerous usernames.

•	 Credential attacks. A variety of websites are being attacked utilizing

sets of username-password combinations.

•	 Hybrid brute-force attacks. The attack determines what password

type can be used to succeed before moving on to a general procedure

for testing various types.

Further examples of these types of attacks show how they can be used and deployed

in real-life scenarios (algorithms).

•	 Brute-force attack on Caesar cipher. The example is based on the

Caesar cipher (see Figure 21-1 and Listing 21-1). Due to the cipher’s

simplicity, it is the first example of a brute-force attack.

Chapter 21 Brute-Force and Buffer Overflow Attacks

447

•	 String generation for brute-force attacks. The scenario shown in

Figure 21-2 and Listing 21-2 demonstrates how simple string creation

can be carried out to produce complex lists and dictionaries that can

be used during brute-force attacks.

Figure 21-1.  Running the brute-force attack

Chapter 21 Brute-Force and Buffer Overflow Attacks

448

Listing 21-1.  Brute-Force Attack Using Caesar Cipher

#include<iostream>

using namespace std;

// the function will be used to encrypt the plaintext

// string msg - the message

// int keytValue - the key

string encrypt(string msg,int keyValue)

{

 // variable used to hold the cipher value of the plaintext

 string cipher="";

 // parse the string

 for(int i=0;i<msg.length();i++)

 {

 // verify if the character is upper case

 if(isupper(msg[i]))

 �// add to the cipher the character plus the key and

subtract ASCII 65 value ('A').

 �// the value obtained do modulo 26 (english alphabet

letters) and add ASCII value 65 back.

 cipher += (msg[i] + keyValue - 65)%26 + 65;

 // verify if the character is lower case

 else if(islower(msg[i]))

 //** the same as above. ASCII value 97 ('a')

 cipher += (msg[i] + keyValue - 97)%26 + 97;

 else

 cipher += msg[i];

 }

 return cipher;

}

// The decryption will be done using the brute force attack by

// checking all possible keys

// string encMessage - the encrypted message

Chapter 21 Brute-Force and Buffer Overflow Attacks

449

void decrypt(string encMessage)

{

 // the variable for storing the plaintext

 string plaintext;

 // we will try for each key and we will do the decryption

 for(int keyTry=0;keyTry<26;keyTry++)

 {

 plaintext = "";

 // parse accordingly based on the message length

 for(int i=0;i<encMessage.length();i++)

 {

 // check if the character is upper case

 if(isupper(encMessage[i]))

 {

 if((encMessage[i] - keyTry - 65)<0)

 plaintext += 91 + (encMessage[i] - keyTry - 65);

 else

 plaintext += (encMessage[i] - keyTry - 65)%26 + 65;

 }

 // check if the character is lower case

 else if(islower(encMessage[i]))

 {

 if((encMessage[i] - keyTry - 97) < 0)

 plaintext += 123 + (encMessage[i] - keyTry - 97);

 else

 plaintext += (encMessage[i] - keyTry - 97)%26 + 97;

 }

 else

 plaintext += encMessage[i];

 }

 �cout << "BRUTE-FORCE ATTACK (DECRYPTION) - The clear text for key

 -> " << keyTry << " :- " << plaintext << endl;

 }

}

Chapter 21 Brute-Force and Buffer Overflow Attacks

450

int main()

{

 int encKey;

 string cleartext;

 cout << "ENCRYPTION - Enter the text for encryption -> ";

 getline(cin,cleartext);

 cout << "Enter the key for encryption the text -> ";

 cin >> encKey;

 string encryptedMessage = encrypt(cleartext,encKey);

 �cout << "ENCRYPTED MESSAGE - The encrypted message is -> " <<

encryptedMessage << endl << endl;

 //** brute force attack

 decrypt(encryptedMessage);

}

Chapter 21 Brute-Force and Buffer Overflow Attacks

451

Figure 21-2.  Basic string generation of a brute-force attack—different states of
generating strings

Listing 21-2.  Basic String Generation Source Code

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

// We are using a linked list data structure.

// The reason is to avoid some of the restrictions

// based on the generation of the string length.

// Our list has to be converted to string in

// such way that it can be used. The current conversion

// might be slightly slower compared with other methods

Chapter 21 Brute-Force and Buffer Overflow Attacks

452

// because the conversion occurs with

// each cycle.

// Another solution consists in implementing a solution based

// on the generation of the allocation for the string with

// a fixed size equal to 20 characters (which is more than

// enough.

// the structure definition for holding the characters (strings)

typedef struct charactersList charlist_t;

struct charactersList

{

 // the character

 unsigned char character;

 // the next character

 charlist_t* nextCharacter;

};

// The method will return a new initialized charlist_t element.

// The element returned is charlist_t

charlist_t* new_characterList_element()

{

 charlist_t* elementFromTheList;

 �if ((elementFromTheList = (charlist_t*)

malloc(sizeof(charlist_t))) != 0)

 {

 elementFromTheList->character = 0;

 elementFromTheList->nextCharacter = NULL;

 }

 else

 {

 perror("The allocation using malloc() has failed.");

 }

 return elementFromTheList;

}

Chapter 21 Brute-Force and Buffer Overflow Attacks

453

 // allocation free memory by the characters list

 // listOfCharacters - represents a pointer for the first element within

the list

void freeAllocation_CharactersList(charlist_t* listOfCharacters)

{

 charlist_t* currentCharacter = listOfCharacters;

 charlist_t* nextCharacter;

 while (currentCharacter != NULL)

 {

 nextCharacter = currentCharacter->nextCharacter;

 free(currentCharacter);

 currentCharacter = nextCharacter;

 }

}

// the function display the current list of characters

// the function will iterate through the whole list and it will print all

the characters

void showCharactersList(charlist_t* list)

{

 charlist_t* nextCharacter = list;

 while (nextCharacter != NULL)

 {

 printf("%d ", nextCharacter->character);

 nextCharacter = nextCharacter->nextCharacter;

 }

 printf("\n");

}

// the function will return the next sequence of characters.

// the characters are treated as numbers 0-255

// the function proceeds by incrementation of the character from the first

position

Chapter 21 Brute-Force and Buffer Overflow Attacks

454

void nextCharactersSequence(charlist_t* listOfCharacters)

{

 listOfCharacters->character++;

 if (listOfCharacters->character == 0)

 {

 if (listOfCharacters->nextCharacter == NULL)

 {

 listOfCharacters->nextCharacter = new_characterList_element();

 }

 else

 {

 nextCharactersSequence(listOfCharacters->nextCharacter);

 }

 }

}

int main()

{

 charlist_t* sequenceOfCharacters;

 sequenceOfCharacters = new_characterList_element();

 // this while will work for all possible combinations

 // this has to be stopped manually

 while (1)

 {

 nextCharactersSequence(sequenceOfCharacters);

 showCharactersList(sequenceOfCharacters);

 }

 freeAllocation_CharactersList(sequenceOfCharacters);

}

�Buffer Overflow Attack
A buffer is a short-term space that is used to store data. An additional data overflow

occurs when the programs or system processes add more data.

Chapter 21 Brute-Force and Buffer Overflow Attacks

455

In a buffer overflow attack, the extra data being held can contain particular

instructions intended to carry out instructions placed by malicious users or hackers.

For instance, the data overflow may cause a function or process to be called that would

delete files or divulge users’ personal information.

The attacker uses a buffer overflow to take advantage of running software and wait

for user input. Buffer overflows are available in two types: heap-based and stack-based.

It is extremely challenging to launch and carry out attacks that rely on flooding the

memory area set out for the program and its execution in a heap-based system. In a

stack-based system, the memory stack—the area used to hold user input data—is where

applications and programs are exploited.

The danger of such scenarios for C++ applications is demonstrated in Figure 21-3

and Listing 21-3. The example doesn’t implement any harmful code injection but

demonstrates a primary buffer overflow procedure. Modern compilers offer options for

overflow checking during the compilation or linking process. But at runtime, it is quite

challenging to check the situation without having a protection mechanism, such as the

handling process of the exceptions. This is a comparison between modern compilers

and old compilers.

Figure 21-3.  Buffer overflow execution

Listing 21-3.  Implementation of Buffer Overflow Example

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define _CRT_SECURE_NO_WARNINGS

int main(int argc, char *argv[])

{

Chapter 21 Brute-Force and Buffer Overflow Attacks

456

 �// We allocate a buffer of 5 bytes that also includes the

termination, NULL.

 �// The allocation should be done as 8 bytes which is two

double words.

 // For the overflowing process, we will need more than 8 bytes.

 // if the user provides more than 8 characters for the input,

 // an access violation and fault segmentation

 char buffer_test_example[5];

 // execution of the program

 if (argc < 2)

 {

 printf("Function strcpy() will not be executed...\n");

 printf("The syntax: %s <characters>\n", argv[0]);

 exit(0);

 }

 // Take the input from the user and copy it to the buffer.

 // The process is done without verifying the bound

 strcpy(buffer_test_example, argv[1]);

 printf("The content of thebuffer -> %s\n", buffer_test_example);

 printf("The function strcpy() is being executed...\n");

 return 0;

}

�Conclusion
This chapter focused on brute-force attacks and buffer overflow attacks. You learned

about the following.

•	 How to recognize buffer overflow and brute-force attacks

•	 The fundamental ideas that go into creating such attacks

•	 The drawbacks of heap-based vs. stack-based buffer overflows

Chapter 21 Brute-Force and Buffer Overflow Attacks

457

References
[1].	 M. I. Mihailescu and S. L. Nita, “Three-Factor Authentication Scheme Based on

Searchable Encryption and Biometric Fingerprint”, in 2020 13th International

Conference on Communications (COMM), IEEE, 2020, pp. 139–144.

[2].	 M.I. Mihailescu, S. L. Nita and V. C. Pau, “Applied cryptography in designing

e-learning platforms”, in 16th International Scientific Conference “eLearning

and Software for Education” Bucharest, Apr. 2020, vol. 2, pp. 179–189.

Chapter 21 Brute-Force and Buffer Overflow Attacks

459

CHAPTER 22

Text Characterization
The chi-squared statistic and pattern searching are crucial metrics for cipher and

plaintext analysis examined in this chapter (monograms, bigrams, and trigrams). Text

characterization as a technique is crucial in the cryptanalysis toolbox when working with

both traditional and contemporary encryption.

�Chi-Squared Statistic
The chi-squared statistic is an essential metric that calculates the degree of similarity

between two probability distributions. When the chi-squared statistic yields a result of 0,

it indicates that the two distributions are similar, while a greater value indicates that they

are significantly different.

The following formula gives the chi-squared statistic.

	
� 2

2

C E
C E

Ei A

i Z
i i

i

,� � �
�� �

�

�

�
	

Listing 22-1 presents an example of computation for the chi-squared distribution.

Listing 22-1.  Chi-Squared Distribution Source Code

#include <iostream>

#include <random>

int main()

{

 const int number_of_experiments=10000;

 �const int number_of_stars_distribution=100; �// maximum number of stars

to distribute

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_22

https://doi.org/10.1007/978-1-4842-9450-5_22

460

 std::default_random_engine theGenerator;

 std::chi_squared_distribution<double> theDistribution(6.0);

 int p[10]={};

 for (int i=0; i<number_of_experiments; ++i)

 {

 double no = theDistribution(theGenerator);

 if ((no>=0.0)&&(no<10.0)) ++p[int(no)];

 }

 std::cout << "chi_squared_distribution (6.0):" << std::endl;

 for (int i=0; i<10; ++i) {

 std::cout << i << "-" << (i+1) << ": ";

 �std::cout << std::string(p[i]*number_of_stars_distribution/number_of_

experiments,'*') << std::endl;

 }

 return 0;

}

The output is listed in Figure 22-1.

Figure 22-1.  The output of the chi-squared distribution sample

Chapter 22 Text Characterization

461

How can we use the example of the chi-squared distribution for cryptanalysis and

cryptography?

The first thing to do is determine how frequently each character appears in

the ciphertext. The second step is to compare the two frequency distributions that

are related to one another with the frequency distribution of the language used for

encryption (for example, English). Thus, there is a chance to identify the shift applied

during encryption. This method is conventional and easy to follow, and it may be

applied to ciphers such as the Caesar cipher. This occurs when the frequency of English

characters and the frequency of the ciphertext line up. (We know the probabilities of the

occurrences for English characters.)

Let’s consider the following ciphertext obtained by applying the Caesar cipher. It has

46 characters (see Figure 22-2 for letter frequency).

ZHOFRPHWRDSUHVVWKLVLVHQFUBSWHGZLWKFDHVDUFLSKHU

An important thing to note is that the chi-squared statistic relies on counts rather

than probabilities. In Figure 22-1, the expectation is that the letter E occurs 12.7 times

within 100 characters; therefore, its chance of occurrence is 0.127.

Figure 22-2.  Letter frequency for encrypted text

Chapter 22 Text Characterization

462

The length of the ciphertext must be multiplied by the probability of the letter to

determine the expected count. The ciphertext in Figure 22-2 consists of 46 characters in total.

Following the example of the letter E, we expect the letter E to occur 46 × 0.127 = 5.842 times.

You must employ each of the 25 possible keys, utilizing both the letter and the

position of the letter inside the alphabet, to decipher the encrypted text from the

example. For this reason, whether the count begins at 0 or 1 is crucial. For each key, the

chi-squared must be calculated. The procedure is to compare the letter count to what

you would anticipate the counts to be if the text were written in English.

When counting each letter in our ciphertext and calculating the chi-squared statistic,

you discover that the letter H appears seven times. If English is used, it should be

46 × 0.082 = 3.772 times. You can compute the following using the output.

	

7 3 772

3 772

3 228

3 772

10 420

3 772
2 762

2 2�� �
� � �

.

.

.

.

.

.
. 	

This process is also performed for the remaining letters, adding up all the

probabilities (see Figure 22-3).

The decrypted text from this example is the following.

WELCOMETOAPRESSTHISISENCRYPTEDWITHCAESARCIPHER

1 The letter encryption frequency is generated using CrypTool, https://www.cryptool.org/en/

Figure 22-3.  Encryption letter frequency (%)1

Chapter 22 Text Characterization

https://www.cryptool.org/en/

463

�Cryptanalysis Using Monogram, Bigram,
and Trigram Frequency Counts
To break the cipher, frequency analysis is one of the finest methods for determining the

appearance frequency of ciphertext characters. Bigrams (or digraphs), a method for

measuring the occurrences of pairs of characters within the text, can be measured and

counted using an analysis based on patterns.

This section concentrates on text characterization using ciphers based on bigrams

and trigrams, for example, the Playfair cipher. We also perform trigram frequency

analysis, which counts the frequency of three-letter tuples.

�Counting Monograms
Counting monograms is one of the best techniques for the Caesar cipher, the Polybius

square, and other substitution ciphers. Because the English language has a distinct frequency

distribution, the approach performs extremely well. This implies that it is also not concealed

by substitution ciphers. The distribution pattern resembles that seen in Figure 22-4.

Figure 22-4.  Letter frequency for the English language

Chapter 22 Text Characterization

464

�Counting Bigrams
The concept behind counting bigrams is the same as that behind counting monograms.

Bigrams count the frequency of pairwise occurrences rather than single-character

occurrences.

A few of the common frequent bigrams used during the cryptanalysis process

are included in Figure 22-5. We implemented a solution that deals with counting the

occurrences of bigrams in Listing 22-2. The results of the example for counting the

bigrams are shown in Figure 22-6. The bigram.txt file, which has the content from

Figure 22-5, is used in the source code in Listing 22-2.

Figure 22-5.  Bigrams

Chapter 22 Text Characterization

465

Figure 22-6.  Counting bigrams

Listing 22-2.  Computing Bigrams

#include <stdio.h>

#define _CRT_SECURE_NO_WARNINGS

int main(void)

{

 int alphabet_counting['z' - 'a' + 1]['z' - 'a' + 1] = {{ 0 }};

 int character0 = EOF, character1;

 FILE *fileBigramSampleText = fopen("bigram.txt", "r");

 if (fileBigramSampleText != NULL)

 {

 while ((character1 = getc(fileBigramSampleText)) != EOF)

 {

 �if (character1 >= 'a' && character1 <= 'z' && character0 >= 'a'

&& character0 <= 'z')

 {

 alphabet_counting[character0 - 'a'][character1 - 'a']++;

 }

 character0 = character1;

 }

Chapter 22 Text Characterization

466

 fclose(fileBigramSampleText);

 for (character0 = 'a'; character0 <= 'z'; character0++)

 {

 for (character1 = 'a'; character1 <= 'z'; character1++)

 {

 �int number = alphabet_counting[character0 - 'a']

[character1 - 'a'];

 if (number)

 {

 printf("%c%c: %d\n", character0, character1, number);

 }

 }

 }

 }

 return 0;

}

Listing 22-3 and Figure 22-7 present a more general version, which handles character

tuples with 8 bits.

Figure 22-7.  Output for character pair with 8-bit

Chapter 22 Text Characterization

467

Listing 22-3.  General Version for Working with 8-Bit Character Pairs

#include <stdio.h>

#include <string.h>

#define _CRT_SECURE_NO_WARNINGS

int main(void)

{

 // the last five bytes corresponds to ISO/IEC 8859-9

 const char alphabet[] = "abcdefghijklmnopqrstuvwxyz\xFD\xFxE7\xF6\xFC";

 const int length_of_alphabet = (sizeof(alphabet) - 1);

 int count[length_of_alphabet][length_of_alphabet];

 char *position0 = NULL;

 int character1;

 FILE *fileTextForCountingBigrams = fopen("bigram.txt", "r");

 memset(count, 0, sizeof(count));

 if (fileTextForCountingBigrams != NULL)

 {

 while ((character1 = getc(fileTextForCountingBigrams)) != EOF)

 {

 �char *p1 = (char*)memchr(alphabet, character1, length_of_

alphabet);

 if (p1 != NULL && position0 != NULL)

 {

 count[position0 - alphabet][p1 - alphabet]++;

 }

 position0 = p1;

 }

 fclose(fileTextForCountingBigrams);

 for (size_t i = 0; i < length_of_alphabet; i++)

 {

 for (size_t j = 0; j < length_of_alphabet; j++)

 {

 int n = count[i][j];

 if (n > 0)

Chapter 22 Text Characterization

468

 {

 printf("%c%c: %d\n", alphabet[i], alphabet[j], n);

 }

 }

 }

 }

 return 0;

}

�Counting Trigrams
The distinction between counting trigrams and bigrams is that trigrams are counted as

triple characters.

Figure 22-8 includes a few of the most frequent bigrams seen throughout the

cryptanalysis process. Furthermore, we implemented a method for identifying and

tracking trigram occurrences in texts in Listing 22-4 (see Figure 22-9). The solution

differs from the ones in Listings 22-2 and 22-3.

Chapter 22 Text Characterization

469

Figure 22-8.  Trigrams

Chapter 22 Text Characterization

470

Figure 22-9.  Displaying a sample of a trigram

Listing 22-4.  Counting Trigrams

#include <iostream>

using namespace std;

void printTrigramOccurance(string fullText, string trigramPattern)

{

 int occurance = fullText.find(trigramPattern);

 while (occurance!= string::npos)

 {

 cout << "Pattern found at index " << occurance << endl;

 occurance = fullText.find(trigramPattern, occurance + 1);

 }

}

int main()

{

 string fullText = "Welcome to Apress.";

 string trigramPattern = "Apr";

 printTrigramOccurance(fullText, trigramPattern);

}

Chapter 22 Text Characterization

471

�Conclusion
The chapter discussed text characterization and demonstrated how crucial it is to the

cryptanalysis procedure. When decrypting substitution ciphertexts, you can use chi-

squared statistics and work with monograms, diagrams, and trigrams. In conclusion, you

learned about the following.

•	 Text characterization

•	 Utilizing trigrams, diagrams, and monograms

•	 Use of the chi-squared statistic

•	 Implementations of monograms, diagrams, and trigrams

References
[1].	 Singh, Simon (2000). The Code Book: The Science of Secrecy from Ancient Egypt

to Quantum Cryptography. ISBN 0-385-49532-3.

[2].	 Helen F. Gaines (1989). Cryptanalysis: A Study of Ciphers and Their Solution.

Chapter 22 Text Characterization

473

CHAPTER 23

Implementation and
Practical Approach of
Cryptanalysis Methods
As you have seen so far, cryptanalysis is a powerful tool that can be used to secure data

from malicious users. It can also detect weaknesses in existing security measures and

identify potential threats. As cyber threats become more advanced and sophisticated,

it is increasingly important for individuals and organizations to keep up with the latest

developments in cryptanalysis. Organizations can ensure their networks and data

remain safe from attackers by implementing the best methods for maximum security.

This chapter provides a practical approach to cryptanalysis, including an overview of

the techniques available and how to best utilize them. It also discusses the importance

of staying up-to-date with the latest developments in the field and strategies for

implementing the latest techniques. With the right approach and implementation of the

best methods, organizations can gain confidence in their security measures and ensure

their data remains safe.

The current chapter is based on a general discussion that brings to attention a

methodology for cryptanalysis methods and how those methods can be applied quickly

and efficiently. The proposed methodology is dedicated to classic and actual (modern)

cryptography/cryptanalysis algorithms and methods. Quantum cryptography is not

included at this moment.

There are several different techniques available for cryptanalysis. Each approach

has its own strengths and weaknesses, and each can be applied in different scenarios.

These techniques can be combined to create a comprehensive strategy for maximizing

security. This approach can be applied to many scenarios, including online payment

systems and data transmission. This can be used to analyze an existing code, crack an

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_23

https://doi.org/10.1007/978-1-4842-9450-5_23

474

existing code, or create a new code that is more secure. While many of these techniques

are complex and challenging to implement, they can provide an effective approach to

cryptanalysis.

•	 A brute-force attack attempts to break an encrypted code using

every possible combination of characters until the correct sequence

is found. It is often used against weak encryption methods, such as

single-word passwords. Although it can be effective, a brute-force

attack is often time-consuming and does not guarantee a successful

outcome. Brute-force attacks can be automated to speed up the

process, which can be challenging and resource-intensive. Brute-

force attacks can be mitigated by using a more advanced code or

increasing the rate at which incorrect guesses are accepted.

•	 Substitution ciphers can be decoded using a letter-frequency or

word-frequency chart. By analyzing these charts and comparing

them to the original message, it is possible to identify potential

letter replacements. This method can be applied to both single-

substitution and multiple-substitution ciphers.

•	 One-time pads are used to create secure communications and

prevent eavesdropping. However, if the pad is not used correctly, it

can be vulnerable to attack.

The methodology proposed (see Figure 23-1) is designed to help the cryptanalyst

to be aware of where he is situated during the cryptanalysis process. This methodology

allows the cryptanalyst to use the map presented in Figure 23-1 to choose the proper tool

or method for his work.

Proceeding with the implementation of the cryptanalysis methods can be a very

laborious task for achieving the desired results if we don’t hold proper information about

the cryptographic method. The following presents a short process for cryptanalysts

to identify the necessary elements for conducting the cryptanalysis process. The

cryptanalysis process consists of four general steps.

•	 Step 1 is based on identifying what type of cryptanalysis should be

conducted.

•	 Step 2 consists in gathering everything that we know about

cryptography algorithms.

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

475

•	 Step 3 is dedicated to building a proper attack model.

•	 Step 4 consists in choosing the proper tools.

�Step 1
This step deals with what kind of cryptanalysis should be performed. The cryptanalyst

decides within the business environment what role he plays—a legal and authorized

cryptanalyst, an ethical hacker, or a malicious cracker. As soon as he decides on his role,

he moves to step 2.

�Step 2
If the cryptanalyst is legitimate, he must know two things before getting started: the

cryptography algorithm and the cryptographic key. Based on the experience of some of

the cryptanalysts, this is not a requirement, but in some cases, it is very useful to know.

As soon as the cryptanalyst is aware of the cryptography algorithm and cryptographic

key, he can easily start the cryptanalysis process by applying the proper methods and

testing the security of the business applications.

�Step 3
This step is based on setting up the attack model or the attack type. Attack models or

attack types point out a quantitative variable used to indicate how much information a

cryptanalyst can access when he performs cracking methods on the encrypted message.

The following are the most significant attacks.

•	 Ciphertext-only attack

•	 Known-plaintext attack

•	 Chosen-plaintext attack

•	 Chosen-ciphertext attack

•	 Adaptive chosen-ciphertext attack

•	 Indifferent chosen-ciphertext attack

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

476

�Step 4
After the attack model has been picked or another model has been created and adapted

properly to the case and requirements, let’s move to the next step, which is based on

choosing the software tools. Choosing the software tools from the ones that already

exist or creating your own tools can be time-consuming but, in practice, have massive

contributions. The following lists some tools that can be used in the cryptanalysis

process, according to what is being “tested.”

•	 Penetration tools: Kali Linux, Parrot Security, BackBox

•	 Forensics: DEFT, CAINE, BlackArch, Matriux

•	 Databases: sqlmap (standalone version), Metasploit framework

(standalone version), VulDB

•	 Web and network: Wireshark, Nmap, Nessus, Burp Suite, Nikto,

and OpenVas

•	 Other tools: CryptTool (useful and amazing tool)

These tools represent a selection of very used in practice and can produce desired

results (see Figure 23-1).

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

477

Figure 23-1.  The cryptanalysis methodology

Cryptanalysis has existed for many years, and many different techniques are available.

While these approaches are effective in certain scenarios, they are often difficult to

implement and require a great deal of time and effort. As cyber threats become more

sophisticated, staying up-to-date with the latest developments in cryptanalysis is

important. This can help organizations identify new threats, improve security measures,

and select the most appropriate techniques. Selecting the right techniques for the

situation; otherwise, the effort may be wasted, and the approach may be ineffective. By

staying up-to-date with the latest developments in the field, organizations can identify

new threats, improve existing security measures, and select the most appropriate

techniques for their needs. This approach can help to ensure data remains protected.

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

478

A comprehensive approach to cryptanalysis can provide maximum security

and ensure that data remains protected. This includes selecting the best techniques

and applying them to many different scenarios. It is important to select the right

techniques for the situation; otherwise, the effort may be wasted, and the approach

may be ineffective.

Organizations can maximize their security and ensure their data remains protected

by selecting the right techniques for many scenarios. This approach can help to identify

new threats, improve existing security measures, and select the most appropriate

techniques for their needs. It is essential to select the right techniques for the situation;

otherwise, the effort may be wasted, and the approach may be ineffective. Organizations

can ensure their data remains protected by implementing the best practices;

Cryptanalysis can provide several benefits for organizations, including the following.

•	 Cryptanalysis can help organizations better understand the threats

they face in the digital landscape. This can help to identify challenges

and provide insights that can be used to improve existing security

measures.

•	 Cryptanalysis can create stronger authentication methods that are

more robust and difficult to breach. This can help to improve the

authentication process and reduce authentication errors.

•	 Cryptanalysis can assess and improve existing security measures.

This can help organizations gain confidence in their security

measures and protect their data.

�Ciphertext-Only Attack (COA)
A ciphertext-only attack represents the weakest attack. A cryptanalyst can easily use it

because he just encoded the message.

The attacker/cryptanalyst has access to a set of ciphertexts. The attack is successful if

the corresponding plaintexts are deduced with the key.

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

479

In this type of attack (see Figure 23-2), the attacker/cryptanalyst can observe the

ciphertext. Everything the cryptanalyst sees is represented by scrambled and nonsense

characters that create the output based on the encryption process.

Figure 23-2.  COA representation

�Known-Plaintext Attack (KPA)
The known-plaintext attack (see Figure 23-3) helps the cryptanalyst to generate the

ciphertext because he is aware of the ciphertext.

The cryptanalyst follows a simple procedure by selecting the plaintext, but he

observes the pair compounded from the plaintext and ciphertext. The chance of success

is better compared with COA. Simple ciphers are quite vulnerable to this attack.

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

480

Figure 23-3.  KPA representation

�Chosen-Plaintext Attack (CPA)
In a chosen-plaintext attack, a cryptanalyst may select the plaintext that has been sent

encrypted using an encryption algorithm, and he can observe how the ciphertext is

generated. This can be observed as an active model in which cryptanalysts have the

chance to select the plaintext and realize the encryption.

Cryptanalysts can observe vital details about ciphertext based on selecting and

picking any plaintext. This gives them a strong advantage in understanding how the

algorithm works inside and the chance to get into the secret key possession.

A professional cryptanalyst has a strong database that contains known plaintexts,

ciphertexts, and possible keys. Listing 23-1 and Figure 23-5 provide an example of

generating possible keys automatically. It is a simple example illustrating how possible

keys can be generated. They can be used with the pairs for determining the cipher text

input (see Figure 23-4).

Cryptanalysis can help organizations to better understand the threats they face in the

digital landscape. This can help to identify challenges and provide insights that can be

used to improve existing security measures. Cryptanalysis can be used to create stronger

authentication methods that are more robust

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

481

Figure 23-4.  CPA representation

Listing 23-1.  Automatic Generation of Random Keys

#include <stdio.h>

#include <time.h>

#include <iostream>

using namespace std;

//** generate an integer that is situated between 1 to 4

int generateInteger() {

 //** pseudo-random generator (srand).

 //** time(NULL) represents the seed

 srand(time(NULL));

 //** generate a random value and store

 //** the remainder of rand() to 5

 int randomValue = rand() % 5;

 //** if the value is equal with 0, move to the

 //** next value of i and return that value

 if (randomValue == 0)

 randomValue++;

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

482

 return randomValue;

}

//** the function will generate randomly

//** an integer situated between 0 and 25

int generateRandomlyInteger(){

 //** pseudo-random generator (srand).

 //** time(NULL) represents the seed

 srand(time(NULL));

 //** generate a random value and store

 //** the remainder of rand() with 26

 int random_key = rand() % 26;

 return random_key;

}

//** based on the length provided, the function

//** will generate a cryptographic key

void generate_crypto_key(int length){

 //** create a string variable for cryptography

 //** key and initialize it with NULL

 string crypto_key = "";

 //** variable used for cryptography key generation

 string alphabet_lower_case = "abcdefghijklmnopqrstuvwxyz";

 string alphabet_upper_case = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 string special_symbols = "!@#$%&";

 string digits_and_numbers = "0123456789";

 //** local variables and their initializations

 int key_seed;

 int lowerCase_Alphabet_Count = 0;

 int upperCase_Alphabet_Count = 0;

 int digits_And_numbers_count = 0;

 int special_symbols_count = 0;

 //** the variable count will save the length

 //** of the cryptography key.

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

483

 //** initially we will set it to zero

 int countingLengthCryptoKey = 0;

 while (countingLengthCryptoKey < length) {

 //** generateInteger() function will return a number that

 //** is situated between 1 and 4.

 //** The number that is generated will be used in

 //** assignation with one of the strings that has been

 //** defined above (for example: alphabet_lower_case,

 //** alphabet_upper_case, special_symbols, and

 //** digits_and_numbers).

 //** This being said, the following correspondence will

 //** be applied: (1) for alphabet_lower_case, (2) for

 //** alphabet_upper_case, (3) for special_symbols, and

 //** (4) digits_and_numbers

 int string_type = generateInteger();

 //** For the first character of the cryptography key we

 //** will put a rule in such way that it should be a

 //** letter, in such way that the string that will be

 //** selected will be an lower case alphabet or an upper

 //** case alphabet. The IF condition is quite vital as

 //** the switch is based on it and the value that

 //** string_type variable will have.

 if (countingLengthCryptoKey == 0) {

 string_type = string_type % 3;

 if (string_type == 0)

 string_type++; }

 switch (string_type) {

 case 1:

 //** based on the IF condition, it is

 //** necessary to check the minimum

 //** requirements of the lower case alphabet

 //** characters if they have been accomplished

 //** and fulfilled. If we are dealing with the

 //** situation in which the requirement has

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

484

 //** not been achieved we will situate ourself

 //** in the break phase.

 if ((lowerCase_Alphabet_Count == 2)

 && (digits_And_numbers_count == 0

 || upperCase_Alphabet_Count == 0

 || upperCase_Alphabet_Count == 1

 || special_symbols_count == 0))

 break;

 key_seed = generateRandomlyInteger();

 crypto_key = crypto_key +

 alphabet_lower_case[key_seed];

 lowerCase_Alphabet_Count++;

 countingLengthCryptoKey++;

 break;

 case 2:

 //** based on the IF condition, it is

 //** necessary to check the minimum

 //** requirements of the upper case alphabet

 //** characters if they have been accomplished

 //** and fulfilled. If we are dealing with the

 //** situation in which the requirement has

 //** not been achieved we will situate ourself

 //** in the break phase.

 if ((upperCase_Alphabet_Count == 2)

 && (digits_And_numbers_count == 0

 || lowerCase_Alphabet_Count == 0

 || lowerCase_Alphabet_Count == 1

 || special_symbols_count == 0))

 break;

 key_seed = generateRandomlyInteger();

 crypto_key = crypto_key +

 alphabet_upper_case[key_seed];

 upperCase_Alphabet_Count++;

 countingLengthCryptoKey++;

 break;

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

485

 case 3:

 //** based on the IF condition, it is

 //** necessary to check the minimum

 //** requirements of the numbers if they have

 //** been accomplished and fulfilled. If we

 //** are dealing with the situation in which

 //** the requirement has not been achieved we

 //** will situate ourself in the break phase.

 if ((digits_And_numbers_count == 1)

 && (lowerCase_Alphabet_Count == 0

 || lowerCase_Alphabet_Count == 1

 || upperCase_Alphabet_Count == 1

 || upperCase_Alphabet_Count == 0

 || special_symbols_count == 0))

 break;

 key_seed = generateRandomlyInteger();

 key_seed = key_seed % 10;

 crypto_key = crypto_key +

 digits_and_numbers[key_seed];

 digits_And_numbers_count++;

 countingLengthCryptoKey++;

 break;

 case 4:

 //** based on the IF condition, it is

 //** necessary to check the minimum

 //** requirements of the special characters if

 //** they have been accomplished and

 //** fulfilled. If we are dealing with the

 //** situation in which the requirement has

 //** not been achieved we will situate ourself

 //** in the break phase.

 if ((special_symbols_count == 1)

 && (lowerCase_Alphabet_Count == 0

 || lowerCase_Alphabet_Count == 1

 || upperCase_Alphabet_Count == 0

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

486

 || upperCase_Alphabet_Count == 1

 || digits_And_numbers_count == 0))

 break;

 key_seed = generateRandomlyInteger();

 key_seed = key_seed % 6;

 crypto_key = crypto_key +

 special_symbols[key_seed];

 special_symbols_count++;

 countingLengthCryptoKey++;

 break;

 }

 }

 cout << "\n-----------------------------\n";

 cout << " Cryptography Key \n";

 cout << "------------------------------\n\n";

 cout << " " << crypto_key;

 cout << "\n\nPress any key to continue... \n";

 getchar();

}

int main() {

 int option;

 int desired_length;

 //** designing the menu

 do {

 cout << "\n-------------------------------------\n";

 cout << " Random Cryptography Key Generator \n";

 cout << "-------------------------------------\n\n";

 cout << " 1 --> Generate a Cryptography Key"

 << "\n";

 cout << " 2 --> Quit the program"

 << "\n\n";

 cout << "Enter 1 for Generating Cryptograpy Key or 2

 to quit the program : ";

 cin >> option;

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

487

 switch (option) {

 case 1:

 cout << "Set the length to : ";

 cin >> desired_length;

 //** if the length entered is less than 7, an

 //** error will be shown

 if (desired_length < 7) {

 cout << "\nError Mode : The Cryptography Key

 Length hould be at least 7\n";

 cout << "Press a key and try again \n";

 getchar(); }

 //** The desired length should bot be bigger than

 //** 100, otherwise an error will be shown

 else if (desired_length > 100) {

 cout << "\nError Mode : The maximum length of

 the cryptography key should be 100\n";

 cout << "Press a key and try again \n";

 getchar(); }

 //** in ohter cases, call generate_crypto_key()

 //** function to generate a cryptography key

 else

 generate_crypto_key(desired_length);

 break;

 default:

 //** in case if an invalid option is entered, show

 //** to the user an error message

 if (option != 2) {

 printf("\nOups! You have entered a choice that

 doesn't exist\n");

 printf("Enter (1) to generate cryptography

 key and (2) to quit the program.\n");

 cout << "Enter a key and try again \n";

 getchar();}

 break; }

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

488

 } while (option != 2);

 return 0;

}

�Chosen-Ciphertext Attack (CCA)
In a chosen-ciphertext attack, a cryptanalyst can perform encryption and decryption

of the information. Within this attack (see Figure 23-6), the cryptanalyst can pick the

plaintext, encrypt it, observe how the ciphertext is generated, and reverse the process.

In this attack, the cryptanalyst’s mission is not finding only the plaintext but

identifying the algorithm and secret key used for the encryption process.

Figure 23-5.  The keys and possible passwords generated (three characters were
used for a shorter process)

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

489

Figure 23-6.  CCA representation

�Conclusion
This chapter discussed implementing a cryptanalysis method and defining a process for

cryptanalysts. You learned about the following.

•	 Attack models

•	 How to follow a straightforward methodology in the

cryptanalysis process

•	 How to simulate and generate a database with keys and possible

passwords

Cryptanalysis can provide several benefits for organizations, including the following.

•	 It can help improve security measures and strengthen authentication

methods while reducing vulnerabilities and risks.

•	 It can help organizations better understand the threats they face in

the digital landscape.

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

490

References
[1].	 Abu Yusuf Yaqub ibn Ishaq al-Sabbah Al-Kindi. Available online: https://

www.trincoll.edu/depts/phil/philo/phils/muslim/kindi.html. Last

accessed: 5.4.2023

[2].	 Philosophers: Yaqub Ibn Ishaq al-Kindi Kennedy-Day, K. al-Kindi, Abu

Yusuf Ya‘qub ibn Ishaq (d. c.866–73). Available online: https://www.

muslimphilosophy.com/ip/kin.html. Last accessed: 5.4.2023

[3].	 Al-Ehwany, F. Ahmad Fouad, “Al-Kindi” in A History of Muslim Philosophy

Volume 1. New Delhi: Low Price Publications. pp. 421-434, 1961.

[4].	 Al-Faruqi, R. Ismail L.L. al-Faruqi, Lois Lamya, Cultural Atlas of Islam New

York, Macmillan Publishing Company. pp. 305-306, 1986.

[5].	 Encyclopaedia Britannica, Inc., Encyclopaedia Britannica. Chicago: William

Benton. pp. 352, 1969.

Chapter 23 Implementation and Practical Approach of Cryptanalysis Methods

https://www.trincoll.edu/depts/phil/philo/phils/muslim/kindi.html
https://www.trincoll.edu/depts/phil/philo/phils/muslim/kindi.html
https://www.muslimphilosophy.com/ip/kin.html
https://www.muslimphilosophy.com/ip/kin.html

491

Index

A
Abstract algebra, 395
Access control methods, 8
add_plain_inplace() methods, 302
Advanced encryption standard

(AES), 14, 402
Amazon Web Services (AWS), 391
American National Standards Institute

(ANSI), 413
ArchStrike, 409
Asymmetric cryptographic systems, 406
Asymmetric-key algorithms, 6
Asymmetric-key encryption algorithm, 14
Asymmetric keys, 407
Attribute-based encryption (ABE), 368, 384

B
Bhulbhulaya number system, 107
Big data, 365
Big data cryptography

business operations, 377
CIA triad, 367
cloud architecture, 366
cloud computing, 376
cloud types, 367
communication channel, 377
methods, 365
notations, 365
techniques, 368
verifiable computation, 369–376

Big integers, 126

Bjarne Stroustrup, 146
Boost Multiprecision library, 143
Bootstrappable encryption schemes, 286
Boson scattering, 285
Botan, 192, 203
Bots, 445
Brute-force attack, 421, 474

Caesar cipher, 448, 449
definition, 446
examples, 446
key search, 446
string generation source code, 451–454

Buffer overflow attack, 455, 456

C
C++23

headers, 146, 151
WG21, 146

Caesar cipher, 195
C/C++ libraries

CT, 193–202
hash function, 172
implementations, 171, 172

CERT coding standards, 154
automated detection processes, 162
exceptions, 160
identifiers, 159
noncompliant code examples/

compliant solutions, 159
risk assessment, 160, 161
software developers, 158

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5

https://doi.org/10.1007/978-1-4842-9450-5

492

Chaos-based cryptography, 7, 137, 143
algorithm, 329
benefits, 329
complex numbers, 337
cryptographic primitives, 329
data protection, 329
encryption method, 363
implementation, 330
plaintexts/image encryption, 335
practical implementation

chaos and fractals notions, 347,
348, 350–361

cryptosystem types, 338, 339
pseudocode, 339
secure random number

generator, 340–346
primitives, 362
random numbers, 330
random sequence, 329
Rössler attractor, 336
security analysis, 334, 335

Chaotic system, 329
Chinese remainder theorem, 76, 98
Chi-squared statistic, 8, 459
Chosen-ciphertext attack (CCA),

475, 488
Chosen-plaintext attack (CPA), 405

authentication methods, 480
definition, 480
plaintexts, 480
random keys, automatic

generation, 481–488
Ciphertext-only attack (COA), 478
Closest vector problem (CVP), 250
Cloud computing cryptography

applications, 382, 383
data privacy/security, 382
definition, 381

encryption/decryption, 388, 389, 391
openSSL library, 385
public key, 387
RSA cryptosystem, 386
steps, 383
types, 382

Complexity theory, 6
Computer aided investigative

environment (CAINE), 408, 476
Confidentiality, 23
Continuous integration, and delivery

(CI/CD) pipelines, 145
Correlation coefficient analysis, 335
Counting monograms, 463
COVID-19 pandemic, 145
Cross-site scripting (XSS), 153
Cryptanalysis, 5, 8

benefits, 478
categories, 396, 397
code-breaking, 396
comprehensive approach, 478
crack cryptographic system, 406
cryptographic keys, 406, 407
definition, 395
hacking, 395
history, 400–402
methodology, 477
process, 474–476
structure, 398
suitability analysis, 405
techniques, 402–405
terms, 399
tools/frameworks, 408–410

Cryptanalysis attacks
authentication protocols, 420–422
categories, 417
classification, 417
cryptographic keys, 419, 420

INDEX

493

FIPS 140-2/140-3, 414
linear and differential, 435
operations, 417
standards, 413
validation, 414, 415

Cryptanalysis attacks ciphering
algorithms, 418

Cryptanalytic attack, 334, 398, 404,
417, 437

Cryptographic primitives, 5, 24, 163, 172,
362, 376, 391

Cryptography, 5
encryption algorithms, 3
security standards, 11, 12
standardized cipher, 3
standards, 17
tools/resources, 14, 15

Cryptology, 5, 10, 17
CrypTool (CT), 193
Cyborg Hawk, 409

D
Data Encryption System (DES), 430
Data integrity, 23
Declarations and Initializations

(DCL), 163
Differential analysis, 335
Differential cryptanalysis

output code, 427–429
pseudocode, 426, 427

Differential/linear mechanisms, 425
Digital signatures, 60

components, 36
signing process, 37
verification process, 37

Discrete logarithm problem,
19, 20, 80, 248

E
Elliptic-curve cryptography (ECC),

7, 14, 191, 405
advantages, 208, 210
balls pyramid, 210–212
communication process, 176
data/communications, 242
ECDSA, 208
ECIES, 208
group law, 214
keys, 177–179, 207
practical implementation

FFE_Engine, 219–242
structured parts, 215, 216

primitives, 207
secure data encryption, 209
Weierstrass equation, 212–214
protocol, 176, 177

Elliptic curve digital signature algorithm
(ECDSA), 208, 268

Elliptic curve integrated encryption
scheme (ECIES), 208

Encryption function/encryption
transformation, 34

Euclidean algorithm, 74, 75

F
Finite fields

elements, 80
mathematical problems, 80
polynomials/Euclidean algorithm, 81

Floating-point arithmetic
data types, 137
homomorphic encryption, 137, 142, 143
IEEE 754 standard representation, 139
precision, 140–142
values, 138, 139

INDEX

494

Floating-point variables, 137
Full-disk encryption (FDE), 382
Fully homomorphic encryption

(FHE), 285
cryptography, 286
hardness assumption, 285
implementation, 287
practical example

BFV parameters, 297–299
computing, 301–308
generate/build files, 291
installing library, 292
plaintext constructor, 300
PowerShell, 290
SEAL library, 293–296

quantum techniques, 285
SEAL library, 287, 288, 309

Functional encryption (FE), 368, 384

G
Galois fields, 80
GNU Multiple Precision Arithmetic

Library (GMP), 133
Goldreich–Goldwasser–Halevi (GGH), 245
Google Cloud Platform, 391
Government Communications

Headquarters (GCHQ), 65

H
Hacking, 395, 399, 408
Hash algorithms, 6
Hash functions, 172

definition, 39
keyed cryptographic, 54
SHA-25 execution, 40–53
unkeyed cryptographic, 55

Headers
features, 146, 147
<expected>, 147, 148
<flat map>, 150
<generator>, 149

Heap-based system, 455
Hidden vector encryption (HVE), 384
Homomorphic encryption, 142

algorithms, 284
calculations, 283
classes, 284, 285
definition, 283
FHE, 285

I
Ideal coset problem, 285
Identity-based encryption (IBE), 368, 384
Image encryption cryptosystem, 334
Information entropy analysis, 335
Information security

objectives, 21–23, 60
primitives, 24, 25
protocols and security

mechanisms, 21
signature, 22

Information theory
definition, 71
entropy, 71, 72
randomness, 71

Infrastructure as a service (IaaS), 384
Institute of Electrical and Electronical

Engineering (IEEE), 414
Integral cryptanalysis

block ciphers, 437, 442
definition, 437
notions, 437–439
output code, 439–441

INDEX

495

International Association for Cryptologic
Research (IACR), 26

International Organization for
Standardization (ISO), 13, 414

International Telecommunication
Union (ITU), 13

Internet Architecture Board (IAB), 13
Internet Engineering Task Force

(IEFT), 13, 413
Internet Key Exchange (IKEv2), 12
Internet Protocol Security (IPsec), 12
Internet Society (ISOC), 13
invariant_noise_budget() method, 300
IPSec, 14

J
Jacobi symbol, 77–79

K
Key space, 34
Keyspace analysis, 334
Known-plaintext attack (KPA), 479, 480

L
Large integer arithmetic, 107

addition, 127–130
addition operation, 109–113, 115,

117, 118
big integers, 131, 132
computations, 127
cryptographic operations, 108
history, 107
libraries, 133, 134
multiplication, 130–132
multiplication modulo, 123–126
subtraction, 118, 119, 121, 122

Lattice-based cryptography, 143
advantages, 246
applications, 247, 248
ciphertext, 245
cybersecurity, 245
disadvantages, 247
GGH, encryption/decryption,

251–253, 255–260
mathematical background, 249, 250
mathematical lattices, 245, 261
quantum computing, 248, 249
security, 248
traditional encryption systems, 246

Learning with errors (LWE), 318
decision variant, 317
encryption scheme, 316
equation, 316
search, 317

Legendre symbol, 77
Lenstra Elliptic-Curve Factorization

(L-ECC), 207
Leveled encryption schemes, 286
Linear cryptanalysis

block cipher, 431
example, 432, 433
output, 434
plaintext, 430

M
Man-in-the-middle attack, 422
Mathematical functions

block ciphers, 65
case study

birthday computation, 91, 92
Chinese remainder

theorem, 98–100
Euclidean algorithm, 93–95

INDEX

496

Legendre symbol, 101–104
multiplicative inverse, 96–98
standard deviation, 89, 90
variance, 88

communication process, 35, 36
domains/codomains, encryption, 33
encryption/decryption, 34
involutions, 32, 33
one-to-one, 26–29
one-way, 30, 31
permutation, 31, 32
trapdoor one-way, 31

Mathematical mechanisms
case study

Caesar cipher implementation,
C++23, 55, 56

Vigenére cipher implementation,
C++23, 57–60

Matriux, 409
MD5 hash function, 173
Memory Management (MEM), 167
Message space, 33
Metasploit, 409, 476
Modulus of congruence, 75

N
National Institute of Standards and

Technology (NIST), 13, 391, 413
Network mapper (Nmap), 409
Network security, 10, 11
Network Security Toolkit, 409
NIST Federal Information Processing

Standards (FIPS), 13, 192
Number theoretic transform (NTT), 7
Number theory, 395

algorithms Zm, 76, 77

definition, 72
integers, 73
integers modulus, 75, 76
Legendre/Jacobi symbol, 77–79
Z, operation, 74, 75

O
One-time pad algorithms, 6
One-time pads, 474
OpenSSL, 172, 203

Linux Ubuntu, installing, 189–192
Windows 32/64, installing, 180–186,

188, 189

P
Partial homomorphic encryption

(PHE), 284
Platform as a service (PaaS), 384
Predicate encryption (PE), 384
Pretty Good Privacy (PGP), 14
Primitives, 24
Privacy homomorphism, 284
Private information retrieval (PIR), 286, 384
Probability theory

birthday problem, 69, 70
case study

computing event, 82–84
computing probability

distribution, 85, 86
mean of probability

distribution, 86, 87
mean of the probability

distribution, 87
conditional probability, 68
definition, 66
experiment definition, 66, 68

Mathematical functions (cont.)

INDEX

497

random varaibles, 68, 69
symmetric key cryptosystems, 66

Public-key cryptography (PKC), 20, 37–39,
207, 209

Public-Key cryptography standards
(PKCS), 173–176

Public-key encryption schemes, 19, 20
Public key searchable encryption (PKSE)

schemes, 265

Q
Quantum cryptography, 473
Quantum-resistant algorithms, 249

R
Ring learning with errors

cryptography (RLWE)
categories, 315
cryptographic primitive, 327
data encryption, 325
decision, 318
digital communications, 313
functionalities, 317
implementation, 318–324
principles, 314
public-key, 325
search, 318
storage, 313
workflow example, 326

Rivest-Shamir-Adleman (RSA), 108
RLWE Homomorphic Encryption

(RLWE-HE), 315
RLWE Key Exchange (RLWE-KE), 315
RLWE Signature (RLWE-S), 315
ROSSLER function, 344
Rössler attractor, 336

S
SEAL library, 7, 309
Searchable encryption (SE), 7

cloud computing environments, 263
cloud server, 268
entities, 264, 265
example, 268, 270
fundamental principles, 269
homomorphic encryption, 280
implementations, 272–280
implementing steps, 271, 272
security characteristics, 267
SSNs, 264
types, 265–267

Secret key sensitivity analysis, 335
Secure coding

checklist, 153–155
C programming language, 162
developers, 153
management systems/servers, 153
recommendation, 169
rules, 153

characters/strings, 166
DCL, 163
expressions, 164
input/output, 168
integers, 165
MEM, 167
rules, 168

software application, 154
Secure Shell cryptographic technology

(SSH), 12
Secure Sockets Layer (SSL), 14
setprecision() method, 141
Shor’s algorithm, 19
Shortest independent vector problem

(SIVP), 250

INDEX

498

Shortest vector problem (SVP), 250
Short-range wireless device, 331
Side-channel attack, 404
size() method, 300
Social engineering, 404
Social security numbers (SSNs), 264
Software as a service (SaaS), 384
Somewhat homomorphic encryption

(SWHE), 284
Special Publications (SP), 13
Stack-based system, 455
Stream ciphers/hash functions, 426
Stream cryptography algorithms, 426
Structured encryption (STE), 384
Substitution ciphers, 474
Symmetric cryptographic systems, 406
Symmetric-key algorithms, 5
Symmetric keys, 407
Symmetric searchable encryption (SSE)

schemes, 265

T
tableFilledComputated

Boolean variable, 217
Text characterization

bigrams count, 464–467
chi-squared statistic, 459–462
counting monograms, 463
counting trigrams, 468, 470, 471

Toolchain, 145
Transformation/mapping, 26
Transmission error

cryptography, 313
Transport layer security (TLS), 12
Trapdoor function algorithms, 6

U
Ubuntu, 189, 190, 202

V
Verifiable computation/verifiable

computing, 369
Vigenére cipher, 57

W, X, Y, Z
WEP and WPA/WPA2

networks, 9
Wireshark, 409, 476

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Part I: Foundations
	Chapter 1: Getting Started in Cryptography and Cryptanalysis
	Cryptography and Cryptanalysis
	Book Structure
	Internet Resources
	Forums and Newsgroups

	Security Protocols and Standards
	Cryptography Tools and Resources
	Conclusion
	References

	Chapter 2: Cryptography Fundamentals
	Information Security and Cryptography
	Cryptography Goals
	Cryptographic Primitives

	Background of Mathematical Functions
	One-to-One, One-Way, and Trapdoor One-Way Functions
	One-to-One Functions
	One-Way Functions
	Trapdoor One-Way Functions

	Permutations
	Inclusion

	Concepts and Basic Terminology
	Domains and Codomains Used for Encryption
	Encryption and Decryption Transformations
	The Participants in the Communication Process

	Digital Signatures
	Signing Process
	Verification Process

	Public-Key Cryptography
	Hash Functions
	Case Studies
	Caesar Cipher Implementation in C++23
	Vigenére Cipher Implementation in C++23

	Conclusion
	References

	Chapter 3: Mathematical Background and Its Applicability
	Probabilities
	Conditional Probability
	Random Variables
	Birthday Problem

	Information Theory
	Entropy

	Number Theory
	Integers
	Algorithms inℤ
	Integers Modulo n
	Algorithms ℤm
	The Legendre and Jacobi Symbols

	Finite Fields
	Basic Notions
	Polynomials and the Euclidean Algorithm

	Case Study 1: Computing the Probability of an Event That Takes Place
	Case Study 2: Computing the Probability Distribution
	Case Study 3: Computing the Mean of the Probability Distribution
	Case Study 4: Computing the Variance
	Case Study 5: Computing the Standard Deviation
	Case Study 6: Birthday Paradox
	Case Study 7: (Extended) Euclidean Algorithm
	Case Study 8: Computing the Multiplicative Inverse Under Modulo q
	Case Study 9: Chinese Remainder Theorem
	Case Study 10: The Legendre Symbol
	Conclusion
	References

	Chapter 4: Large Integer Arithmetic
	A Bit of History
	What About Cryptography?
	Algorithms Used for Large Integer Arithmetic
	Subtraction (Subtraction Modulo)
	Multiplication

	Big Integers
	Review of Large Integer Libraries
	Conclusion
	References

	Chapter 5: Floating-Point Arithmetic
	Why Floating-Point Arithmetic?
	Displaying Floating-Point Numbers
	The Range of Floating Points
	Floating-Point Precision
	Next Level for Floating-Point Arithmetic
	Conclusion
	References

	Chapter 6: New Features in C++23
	Headers
	The <expected> Header
	The <generator> Header
	The <flat_map> Header

	Conclusion
	References

	Chapter 7: Secure Coding Guidelines
	Secure Coding Checklist
	CERT Coding Standards
	Identifiers
	Noncompliant Code Examples and Compliant Solutions
	Exceptions
	Risk Assessment
	Automated Detection
	Related Guidelines

	Rules
	Rule 01. Declarations and Initializations (DCL)
	Rule 02. Expressions (EXP)
	Rule 03. Integers (INT)
	Rule 05. Characters and Strings (STR)
	Rule 06. Memory Management (MEM)
	Rule 07. Input/Output (FIO)

	Conclusion
	References

	Chapter 8: Cryptography Libraries in C/C++23
	Overview of Cryptography Libraries
	Hash Functions
	MD5 Hash Function Overview

	Public-Key Cryptography
	Elliptic-Curve Cryptography (ECC)
	Creating ECDH Keys

	OpenSSL
	Configuration and Installing OpenSSL
	Installing OpenSSL on Windows 32/64
	Installing OpenSSL on Linux: Ubuntu Flavor

	Botan
	CrypTool
	Conclusion
	References

	Part II: Pro Cryptography
	Chapter 9: Elliptic-Curve Cryptography
	Theoretical Fundamentals
	Weierstrass Equation
	Group Law

	Practical Implementation
	Conclusion
	References

	Chapter 10: Lattice-based Cryptography
	Advantages and Disadvantages of Lattice-based Cryptography
	Applications of Lattice-based Cryptography
	Security of Lattice-based Cryptography
	Lattice-based Cryptography and Quantum Computing
	Mathematical Background
	Example
	Conclusion
	References

	Chapter 11: Searchable Encryption
	Components
	Entities
	Types
	Security Characteristics

	An Example
	Conclusion
	References

	Chapter 12: Homomorphic Encryption
	Full Homomorphic Encryption
	A Practical Example of Using FHE
	Conclusion
	References

	Chapter 13: Ring Learning with Errors Cryptography
	Mathematical Background
	Learning with Errors (LWE)
	LWE Search
	LWE Decision

	Ring Learning with Errors (RLWE)
	RLWE Search
	RLWE Decision

	Practical Implementation
	Conclusion
	References

	Chapter 14: Chaos-based Cryptography
	Security Analysis
	Chaotic Maps for Plaintexts and Image Encryption
	Rössler Attractor
	Complex Numbers: A Short Overview
	Practical Implementation
	Secure Random Number Generator Using Chaos Rössler Attractor
	Encrypt and Decrypt Using Chaos and Fractals

	Conclusion
	References

	Chapter 15: Big Data Cryptography
	Verifiable Computation
	Conclusion
	References

	Chapter 16: Cloud Computing Cryptography
	A Practical Example
	Conclusion
	References

	Part III: Pro Cryptanalysis
	Chapter 17: Starting with Cryptanalysis
	Part III: Structure
	Cryptanalysis Terms
	A Bit of Cryptanalysis History
	Understanding Cryptanalysis Techniques
	Analyzing Cryptographic Algorithms
	Cracking Cryptographic Systems
	Understanding Cryptographic Systems
	Understanding Cryptographic Keys
	Understanding Cryptographic Weaknesses
	Analyzing Cryptographic Keys
	Penetration Tools and Frameworks
	Conclusion
	References

	Chapter 18: Cryptanalysis Attacks and Techniques
	Standards
	FIPS 140-2, FIPS 140-3, and ISO 15408

	Validation of Cryptographic Systems
	Cryptanalysis Operations
	Classification of Cryptanalytics Attacks
	Attacks on Cipher Algorithms
	Attacks on Cryptographic Keys
	Attacks on Authentication Protocols

	Conclusion
	References

	Chapter 19: Differential and Linear Cryptanalysis
	Differential Cryptanalysis
	Linear Cryptanalysis
	Performing Linear Cryptanalysis

	Conclusion
	References

	Chapter 20: Integral Cryptanalysis
	Basic Notions
	Theorem 20-1 [1, Theorem 1, p. 114]
	Theorem 20-2 [1, Theorem 2, p. 114]

	Practical Approach
	Conclusion
	References

	Chapter 21: Brute-Force and Buffer Overflow Attacks
	Brute-Force Attack
	Buffer Overflow Attack
	Conclusion
	References

	Chapter 22: Text Characterization
	Chi-Squared Statistic
	Cryptanalysis Using Monogram, Bigram, and Trigram Frequency Counts
	Counting Monograms
	Counting Bigrams
	Counting Trigrams

	Conclusion
	References

	Chapter 23: Implementation and Practical Approach of Cryptanalysis Methods
	Step 1
	Step 2
	Step 3
	Step 4
	Ciphertext-Only Attack (COA)
	Known-Plaintext Attack (KPA)
	Chosen-Plaintext Attack (CPA)
	Chosen-Ciphertext Attack (CCA)
	Conclusion
	References

	Index

