Pro Cryptography
and Cryptanalysis
with (++23

Creating and Programming Advanced
Algorithms

Second Edition

Marius lulian Mihailescu
Stefania Loredana Nita

Apress:

Pro Cryptography and
Cryptanalysis with C++23

Creating and Programming Advanced
Algorithms

Second Edition

Marius lulian Mihailescu
Stefania Loredana Nita

Apress’

Pro Cryptography and Cryptanalysis with C++23: Creating and Programming

Advanced Algorithms

Marius Iulian Mihailescu Stefania Loredana Nita

Bucharest, Romania Bucharest, Romania

ISBN-13 (pbk): 978-1-4842-9449-9 ISBN-13 (electronic): 978-1-4842-9450-5

https://doi.org/10.1007/978-1-4842-9450-5

Copyright © 2023 by Marius Iulian Mihailescu and Stefania Loredana Nita

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: James Markham

Coordinating Editor: Gryffin Winkler

Copyeditor: Kim Burton

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub (https://github.com/Apress). For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9450-5

Table of Contents

About the AUtROIS.........uccesmismsmmsnsmsssssssss s xiii
About the Technical REVIEWETcuccsssssmsmsssnssmmssssmssssmsssnssssssssssssssssnsssssnsssssnssnssns XV
Part I: Foundationsccccussssesmmmmmssssssanmmmssssssssnmmssssssssnnnssssssnsnnsnssssssnnnnnssssnnnns 1
Chapter 1: Getting Started in Cryptography and Cryptanalysis........cccussmmmmssnnssssansnas 3
Cryptography and CryptanalySiscoueerererernseressesersssesessesesesessssesessesessssesessesessssssssssssssssssssnens 5
BOOK STIUCIUNE ...t s nr s nnnnnnn s 6
INTEINET RESOUICES.....c.veeeerereesee e s a e e e e nr e e e e 9
FOrums and NEWSGIOUDSccveereerrenrrsmressesessessessesessessessessssssssssessssssssssssssssssssssssssssnssnsssens 10
Security Protocols and STandards..........ccccveevvrninieniennsnsene s ssssessesse s 11
Cryptography TOOIS and RESOUICES........ceverrereererrerierserssserseressessssessessessssessessessesssssssessesssssssessees 14
L8] T 1T (0] o TS 16
3123 (2] T 1T 17
Chapter 2: Cryptography Fundamentals............cccccusemmmmmssssnmnmmnssssnnmmssssssnmssssssnnnns 19
Information Security and Cryptography ..o sens 20
Cryptography GOAISccoveererererenerrese s s p e nr s 23
CryptographiC PrIMItIVEScccveeeriseresc e 24
Background of Mathematical FUNCLIONSccocuceviiinisnncsene e 26
One-to-One, One-Way, and Trapdoor One-Way FUNCLONScccoovvvvvinennsnsenene s 26
PerMULALIONScveecerree s p e re e np s 31

1T 1] o] OSSOSO 32
Concepts and BasiC TErMINOIOQYcocvcevvererrererserieressssessesessessssessessessssessessesssssssessessesssssssessees 33
Domains and Codomains Used for ENCryptioncccvverevnnenseniennsensensesessssessessessssessessenes 33
Encryption and Decryption Transformationsc.ccocvevvevennnninenn s sessesessssessessenns 34

The Participants in the Communication ProCESS.........cuvverrrerrerseressnsessessessssessessessessssessesses 35

iii

TABLE OF CONTENTS

D10y T (0 LT 36
L1001 37
VErifiCation PrOCESS.......cccoeiiirircire s s 37

Public-Key Cryptography ..o sisesese s ses e ssssesessesessssesss s sassessssssessssesenns 37

3 S LT 1 T (0] 3 39

(02 TSI (110 TSRS 55
Caesar Cipher Implementation in C++23 ... sessessens 55
Vigenére Cipher Implementation in C++23........ccoccvrevrerernre s seres e e sesesesaenens 57

CONCIUSION ...vverieerresee s s e e R e a e e n e e Re e b e nr e e nnnne e 60

RETBIBINCESececciris et 61

Probabilitiescociierir e ————————— 66
Conditional Probability.........ccccvrerrernserieriennsenseresesessessessessesessessessessssessessesssssssessessessssensessens 68
Random VariabIes..........covinin s 68
Birthday ProbIem..........co e s 69

INfOrmMation TREOIY ..o e 71
ENEIODY e ——————————————— 71

NUMDBDEE TREOKY ..t s e e e e nr e e 72
(=T 73
AIGOMTNMS INZ.....ceceeeeer s n e p e ne e e nanne s 73
101G T30 10 L1 o O 75
L1010 0] T/ 76
The Legendre and Jacobi SYMDBOIS.........ccovoeierenerencrreserese e sessenens 77

01T 2N T LSS 80
BaSIC NOLIONS.....ccceueerreerrnesrsese s e e s nns e nrans 80
Polynomials and the Euclidean Algorithmccovoerenrnnennnesessse s ssesesenns 81

Case Study 1: Computing the Probability of an Event That Takes Placec.ccccccvverernieniennenn 82

Case Study 2: Computing the Probability Distributionccccocvvrvrivnnnin e 85

Case Study 3: Computing the Mean of the Probability Distributionc.ccevivvvrnveriennsenienens 86

iv

TABLE OF CONTENTS

Case Study 4: Computing the VArianCecccvvevveriererennnseriesessssesessessssessessesssssssessessesssssssessenes 88
Case Study 5: Computing the Standard Deviationcccccoeerninresrnsrnsesre s 89
Case Study 6: Birthday ParatdoX..........ccccerererenerreserenseseresesessesesesessese s sessesessssesssssssssesessenens 91
Case Study 7: (Extended) Euclidean Algorithmcovccorenrnsrnsesene s 93
Case Study 8: Computing the Multiplicative Inverse Under Modulo @cccooevvvncererncencennenn 96
Case Study 9: Chinese Remainder TREOIEIMccccvevevrerrerieresenserese e sesse s e sessessesaessssessesseees 98
Case Study 10: The Legendre SYMDBOL.........ccovvvvrerenininienesesssssese s sessesessessssessessessessssessesses 101
0] T 1T [0 o TP 104
L3TC] (<] T4 (1T 104
Chapter 4: Large Integer Arithmetic..........ccccvnnnnmmmmmmmnnnnnnnnsssssssnmnnsssssssnnns 107
L0 5] (T 107
What About Cryptographiy? ... s ss s sessessssenens 108
Algorithms Used for Large Integer Arithmetic........ocvvvvrivnvnrvinie e senennens 109
Subtraction (Subtraction Modul0)..........cevrerrerierenerserieriere s se e enens 118
T o o Lo 123
Big INTBORIS ... et a e e e 126
Review of Large Integer LIDrariescccuvriininienssnsese s sese s sssse s sss s e s ssessssessesnens 132
{0 0 e 1 0o T 135
L3TE] (=] T4 (1T S 135
Chapter 5: Floating-Point Arithmetic..........ccccnnnnmmmmmmmmnnnnnmssssssnnsssms 137
Why Floating-Point ArithmetiC?coccviienicsrs e 137
Displaying Floating-Point NUMDEISccccrirririnnnsirsene s s s ssssessesnens 138
The Range of FI0ating POINTScccviennininin s s s see s s 139
Floating-Point PreCiSioN..........ccciciininnsneness e ss s s sse st sessesnens 140
Next Level for Floating-Point Arithmeticcccovereenneerrererrce s 142
{0 e 11 0 S 143
RETBIBNCES ... ettt e 144

TABLE OF CONTENTS

Chapter 6: New Features in C4++23.......cccccccmmmmmmmnmmmmmsnsnmsssssssnssssssssssssssssssssssssnnnss 145
g 72 T TS 146
The <exXpected> HEAUEN ... s 147

The <generator> HEAUEr ... s 149

The <flat_map> HEAUET ..o e s 150

{0 0 e 11 0 T 151
L3TC] (2] T4 (1T S 151
Chapter 7: Secure Coding GUIAENNEScccnrrsssnnnnmssssnnnnmsssssnnnssssssnnnsssssnnnssssssnnnnss 153
Secure Coding ChECKIISTccvuierniernesrrese s sr e 154
CERT Coding StANUArdSccocvrererererrerieriesiesenesessesessessessessssessessesssssssessessessssessessessessssessesses 158
IAENTTIEIS ... s 159
Noncompliant Code Examples and Compliant SOIUtiONS.........ccvvevvrrierennsnsenie e serennes 159
(=] 0 0] 160

RiSK ASSESSIMENT ... s p e 160
Automated DEeteCtion...........cocuriininiri e —————— 162
Related GUIABIINES.........coviririiriri e 162
BUIBS .t e 162
Rule 01. Declarations and Initializations (DCL).........ccuvrrerererrerseresssserseressssessessessesessessesses 163

Rule 02. EXPressions (EXP).....cccccuveiiiveriennesiinses e ssessssssessesessssssessessssssssssssessssssssaessessenns 164

LU o0 T 0 T T=T N L L) S 165

Rule 05. Characters and Strings (STR)cocvvrverernrerserierssessersesessssesessesssssssessesssssssessesses 166

Rule 06. Memory Management (MEM)..........ccovvmnieniniinneniensensesssesessessesssessessessesssessessenns 167

Rule 07. INput/Output (FI0)coveeeeeeersrssssssnrsssssesese e e e sesess s s sssssssssssssssssssssssssssssnenes 168

0] T 1T [0 o O 168
L31E] (2] T 11T 169
Chapter 8: Cryptography Libraries in C/C++23........cccccrmmmmssssmmmmmmmmmmsssssssssssssnnns 171
Overview of Cryptography LIDraries......c.ccocvrvnrnnenessesmsssmsnsesesessssssesessesesssssssssssessssesssssssssesenns 171
LTS LI T T 0] TS 172
Public-Key Cryptographyccocuocorenrnsesessesssssessssesessesessssssssesessssesssssssssssssssssssssssssssssnnes 173
Elliptic-Curve Cryptography (ECC)c.ccevriermrenerssmsensesesssessssesessesessssessssessssesessssssssssssnses 176

TABLE OF CONTENTS

[0 0 T=T £ R 179
Configuration and Installing OPENSSL.........ccvvirerrrrine e sne s 179

2 10] 2 192
{05 0 193
{0 e 11 0 S 202
RETBIBNCES ... ettt e 203
Part Il: Pro Cryptography.......ccccccmsssseemmmmmsssssssnmmssssssssnsnsssssssssnsesssssssnsnnnssnns 205
Chapter 9: Elliptic-Curve Cryptography........ccuccmmmmsssmnmnmmsssssnnmmsssssnssssssssssssssssnnns 207
Theoretical FUNAAMENTals ... 210
Weierstrass EQUALtiON.........ccccvvirinierennsinsere s sss s se s s ssesss s s saesssessesaesassessesaesnes 212
01T o OO 214
Practical Implementation...........ccvviininin e 215
0] T 1T [0 o O R 242
L3TC] (<] T4 (1T 243
Chapter 10: Lattice-based Cryptography......cc.cccimmmssnmmmmmsssssnnmssssssnsssssssssssssssnsnnss 245
Advantages and Disadvantages of Lattice-based Cryptography..........ccccerivnininieniennsensennens 246
Applications of Lattice-based Cryptographyccccvvernsennnenennsesnsesssesessse s sessssessenes 247
Security of Lattice-based Cryptographyccccvcvrerienninienienssessesese s sessssessessessesessessesses 248
Lattice-based Cryptography and Quantum Computing.........ccovvvnienninnninnnnsenneses e 248
Mathematical BaCKground...........ccccoivinnininnsnine s se e snens 249
e 11110 OSSO TPRS SN 250
{0 e 11 0 S 260
RETBIBNCES ... ettt e 261
Chapter 11: Searchable Encryplionccciussemmmmmssssnsnmsssssssnmssssssnnsssssssssssssssnnnss 263
{01110 70T T) O 264
ENEIEIES. ..civeccc e 264

L 0SSO 265
Security CharaCteriStiCscovvrriinnnn s 267

vii

TABLE OF CONTENTS

= 1] o] S 268
0] T 1T (0] o TP 280
L3TC] (<] T4 (1T T 281
Chapter 12: Homomorphic Encryption..........ccccocremmmmmmnnnmnsssssssssnmmmmmmsssssssssssnns 283
Full Homomorphic ENCIYPHION.......ccoc st 285
A Practical Example of USING FHE...........ccoiiiisrcr e 287
0] T 111 (0] o 310
RETBIBNCES ...ttt e 310
Chapter 13: Ring Learning with Errors Cryptographycccccnnsemmnnnsssssnsssssssnnns 313
Mathematical BaCKground............ccoevnininiinnsnsne s sss e snens 316
Learning With Errors (LWE) ..o 316

Ring Learning with Errors (RLWE).........cccoeviininnnnrsere s sssssssessesnes 317
Practical Implementation ... 318
{0 e 11 o SR 327
RETBIBNCES ... ettt e 327
Chapter 14: Chaos-based Cryptography.......ccccccimmmssmnmmmnsssssnnmnsssssnssssssssssssssssnnns 329
SECULY ANAIYSIS...ceverreererrerseserserere s s s e saese s e s s ae e s e s s bese e e s e s s sae e e e e aesae s e e e e e eaesae e e e naenaes 334
Chaotic Maps for Plaintexts and Image ENCryptionccccoovvvrvrievnnensensennesessessesessesessessenees 335

R TOLES] [g (T (0] TSP 336
Complex Numbers: A ShOrt OVEIVIBW ... s snes 337
Practical Implementation ... 338
Secure Random Number Generator Using Chaos Rossler Attractorcccccevvvevereccnene. 340
Encrypt and Decrypt Using Chaos and Fractalsc.ccocvvenrennnnesnnesnnnnesssesesesessssenenns 347

[0 1 e [T SOOI 362
RETEIBINCESeuccereri e 363
Chapter 15: Big Data Cryptographyccscmmsmmmsemmmsnsmsssmssssssssssssssssssssssssssssas 365
Verifiable COMPULALION........ccocviere e s sa e e naenne s 369
0] T 1T (0 o OO 376
L3TC] (2] €T 11T 377

viil

TABLE OF CONTENTS

Chapter 16: Cloud Computing Cryptographycccssmmmmssssnnnmmsssssnsssssssssssssssssnns 381
A Practical EXAMPIE ..ot s e 385
{0 0 e 11 0 391
RETBIBNCES ... e e 392

Part lll: Pro CryptanalySiS......cccsummssssennmmmsssssnnnnmsssssssnsnnsessssssnnnsessssssnnnnssssnns 393

Chapter 17: Starting with Cryptanalysisccconmmmmmmmmmnsssnmmmsssmnmmssssssmsssnn 395
Part [l STrUCKUNE ...ttt e 398
CrypltanalySis TEIMIS.....ccvcevuereririerere s s s ses e s s s e s b se e e s s sae e s e s s s ae b e e e e sae e e e e e naennes 398
A Bit of CryptanalySis HiSTOrY.......ccccvivirierninsrenenss s sessessesse s ssssessessessssessessessssssessessens 400
Understanding Cryptanalysis TEChNIQUEScccvceririerrenirescrrsc e ses e 402
Analyzing Cryptographic Algorithms ... e 405
Cracking CryptographiC SYSIEMS.......ccoccrerrnrnre s 406
Understanding CryptographiC SYSIEMS........cccccvirmrnsenninmnese s s senns 406
Understanding CryptographiC KEYS.......cccvvrerrrrieniernninsene s sessesesessssessessessesessessessessssessessens 406
Understanding Cryptographic WEaAKNESSESccvverereererrereressssessessesssssssessessessssessessesssssssesaens 407
Analyzing CryptographiC KEYSccorecrrirrierire sttt se e st s sessssessenes 407
Penetration Tools and FrameWOrKS...........ccorermrerernserenesese s se s sessesenns 408
{0 e 11 0 TS 410
RETEIBNCES ... ettt e 410

Chapter 18: Cryptanalysis Attacks and Techniquescccussseemnesmmnmnmssssssssssssnnnns 413
STANUANDS.......c.cerri e ————————————— 413

FIPS 140-2, FIPS 140-3, and IS0 15408cccorrrririreresesesesessssssssss s sssssssssssssseseses 414
Validation of CryptographiC SYSIEMScccvvirierievirirrre s ssessssessessens 414
Cryptanalysis OPErationscccccrrcererienereserne s se s e e e e 416
Classification of Cryptanalytics AttacKS..........ccuevrerinninininn s 417

Attacks on Cipher Algorithms ... 418

Attacks on CryptographiC KYSccovoeeerererernereresesesesesesesesessesesessesessesessesessssesessesessenens 419

Attacks on Authentication Prot0CoIS.........cccvrerrenerencrnscreseses e 420
{0 e 11 0o S 422
RETEIBNCES ... ettt e 423

TABLE OF CONTENTS

Chapter 19: Differential and Linear Cryptanalysis.......ccccuussmmnrmsssnnsssssssnnssssssnnnnss 425
Differential CryptanalySiS.........ccovrererrnierrerire s se e e 426
Lingar Cryptan@alySisccoereererererreserensesesesessesesessesesese e ses e sessesessssesse e sessesessssessesesesssenns 430

Performing Linear CryptanalySisc.ccooreermrenernncrenesesese s sennes 431
{0 0 e 11 0 T 435
RETEIBINCES ... ettt e p s 435

Chapter 20: Integral CryptanalySisS......ccuseummmssssnnnmsssssnnnmssssssnsssssssnnssssssssssssssssnnnss 437

BaSIC NOONSccoeieiiiicriri e e 437
Theorem 20-1 [1,Theorem 1, p. T14] .o 438
Theorem 20-2 [1, Theorem 2, p. 114] ..o s 439

Lo TR e LAY o]0 (0 U] 3 SR 439

0] T 1T [0 o TP 442

L31C] (<] T 11T 443

Chapter 21: Brute-Force and Buffer Overflow ARacks.........cccussemmssmsssssnnssssnnsnnns 445
Brute-FOrce ALtACK.........ccocveerrrereresrrsse s s e 446
Buffer OVerflow AHACK.........coucviererise s 454
0] T 111 (0] o 456
RETBIBINCES ...t e 457

Chapter 22: Text Characterizationcccccrnsssnsnnmssssnsnmmmsssssnmnsssssnmmsssssesssnn 459
Chi-Squared STatiStiCcoovererrrrrrererre e e e e 459
Cryptanalysis Using Monogram, Bigram, and Trigram Frequency Countsc.cccvvvvnienenne. 463

Counting MONOGIAMScovoeiereereesererere e res e e s e se s e s e s s e se e sen e e sne e neens 463
CoUNtiNg BIgramSccccoeiiiiiinenienissine s s s st s bbb e s 464
Counting THGIrAMSccccieiicirere s p e e 468
{0 0 e 11 0 T 471
RETEIBINCES ... ettt e 471

TABLE OF CONTENTS

Chapter 23: Implementation and Practical Approach of Cryptanalysis

Methods........ccccemmiemmmiennssssnssssansssssn s s ssa s ssa s s ssn s s sn s sn s n s nn s nn s nn s 473
S i ————————————————————————— 475
B 2. e b e e e aenaen 475
£ T R 475
£] 1 SR 476
Ciphertext-0nly AaCK (COA)ccrrerrererererre e se s se s e se e e s 478
Known-Plaintext AHACK (KPA) ..o e s sessssenns 479
Chosen-Plaintext AttaCK (CPA)cooveevrermresernsesese s sessssessssesessssenns 480
Chosen-Ciphertext AHACK (CCA).....cuuvrrrireriserisesssesess s ssssesssss s s ssssssssesssssssssssessns 488
0] T 1110 o 489
RETBIBINCEScviierce e 490

INA@X tiiiiiisnnnnnnnnnnnnssssssssnnnnnnnnmessssssssnnnnnnnnnsssssssssnnnnnnnenssssssssnnnnnnnnesssssssnsnnnnnnnnnsssssnnn 491

xi

About the Authors

Marius Iulian Mihailescu, PhD, is an associate professor at the Faculty of Engineering
and Informatics, Spiru Haret University in Bucharest, Romania. He is also the CEO

of Dapyx Solution Ltd., a company based in Bucharest specializing in information
security and cryptography-related research projects. He is a lead guest editor for applied
cryptography journals and a reviewer for multiple publications with information security
and cryptography profiles. He authored and co-authored more articles in conference
proceedings, 25 articles, and books. For more than six years, he has been a lecturer at
well-known national and international universities (the University of Bucharest, Titu
Maiorescu University, and Kadir Has University in Istanbul, Turkey). He has taught
courses on programming languages (C#, Java, C++, Haskell) and object-oriented system
analysis and design with UML, graphs, databases, cryptography, and information
security. He served three years as an IT officer at Royal Caribbean Cruises Ltd., dealing
with IT infrastructure, data security, and satellite communications systems. He received
his PhD in 2014, and his thesis was on applied cryptography over biometrics data. He
holds two MSc in information security and software engineering.

Stefania Loredana Nita, PhD, is a lecturer at the Ferdinand I Military Technical
Academy in Bucharest, Romania, and a software developer at the Institute of for
Computers in Bucharest. Her PhD thesis was on advanced cryptographic schemes using
searchable encryption and homomorphic encryption. She has been an assistant lecturer
at the University of Bucharest, teaching courses on advanced programming techniques,
simulation methods, and operating systems. She has authored several whitepapers and
journal articles, as well as books on the Haskell programming language. Stefania is a
lead guest editor for information security and cryptography issues, such as advanced
cryptography and its future: searchable and homomorphic encryption. She has a
master’s degree in software engineering and bachelor’s degrees in computer science and
mathematics.

xiii

About the Technical Reviewer

Massimo Nardone has more than 25 years of experience
in security, web/mobile development, cloud, and IT
architecture. His true IT passions are security and Android.
He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years. He has a master’s degree in
computing science from the University of Salerno, Italy.
He has worked as a CISO, CSO, security executive, IoT
executive, project manager, software engineer, research
engineer, chief security architect, PCI/SCADA auditor, and
senior lead IT security/cloud/SCADA architect for many years. His technical skills

include security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile
development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,
Django CMS, Jekyll, Scratch, and more.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas). He is currently working for
Cognizant as head of cybersecurity and CISO to help internally and externally with
clients in information and cyber security areas, like strategy, planning, processes,
policies, procedures, governance, awareness, and so forth. In June 2017, he became a
permanent member of the ISACA Finland Board. Massimo has reviewed more than 45
IT books for different publishing companies and is the co-author of Pro Spring Security:
Securing Spring Framework 5 and Boot 2-based Java Applications (Apress, 2019),
Beginning EJB in Java EE 8 (Apress, 2018), Pro JPA 2 in Java EE 8 (Apress, 2018), and Pro
Android Games (Apress, 2015).

PART |

Foundations

CHAPTER 1

Getting Started
in Cryptography
and Cryptanalysis

Cryptography and cryptanalysis are two fascinating and highly technical disciplines
that have played a critical role in modern communication and security. Cryptography
is the practice of protecting data using encryption algorithms, while cryptanalysis is
trying to break those algorithms. Whether you have just become interested in these
topics or have been studying them for some time, this step-by-step guide helps you get
started in the world of cryptography and cryptanalysis. From understanding the basics
of cryptography to exploring advanced techniques, this guide provides you with all the
necessary information to become an expert in the field. Along the way, you learn about
the history of cryptography, common algorithms and techniques used in encryption,
and the tools and resources available to help you grow your knowledge. Therefore, let’s
get started!

Cryptography is the practice of protecting data by using encryption algorithms.
The word cryptography comes from the Greek words kryptos, which means hidden,
and graphein, which means written. As such, it has been around for a very long time,
but it wasn’t until the invention of the telegraph that it started to play a larger role
in society. The telegraph was a critical piece of infrastructure in the nineteenth and
twentieth centuries, and it needed a way to secure messages. As a result, cryptography
became more standardized and public knowledge. The first standardized cipher was
the Vigenere cipher, invented in 1553 but not publicly known until 1863. The next
major cipher was the one-time pad, invented in 1917 and the first known completely
unbreakable cipher. The next major advancement in cryptography came with the

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_1

https://doi.org/10.1007/978-1-4842-9450-5_1

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

invention of the computer and the rise of digital communications. Since then, there have
been many advances in cryptography, including the invention of the RSA algorithm,
which is widely used today.

Knowledge is one of the most important aspects to consider when designing
and implementing complex systems, such as companies, organizations, and military
operations. Information falling into the wrong hands can be a tragedy and result in a
huge loss of business or disastrous outcomes. To guarantee communication security,
cryptography can encode information so that no one can decode it without legal rights.
Many ciphers have been broken when a flaw or weakness has been found in their design
or enough computing power has been applied to break an encoded message. Cryptology
consists of cryptography and cryptanalysis, as you see later.

With the rapid evolution of electronic communication, the number of issues
raised by information security is significantly increasing every day. Messages that are
shared over publicly accessible computer networks around the world must be secured
and preserved and have the proper security mechanisms to protect against abuse.

The business requirements in electronic devices and their communication consist of
having digital signatures that can be legally recognized. Modern cryptography provides
solutions to all these problems.

The idea of this book started from an experience that has been achieved through
three directions: (1) cryptography courses for students (graduate and undergraduate)
in computer science at the University of Bucharest and Titu Maiorescu University; (2)
industry experience achieved in national and international companies; (3) ethical
hacking best practices; and (4) security audit.

This book aims to present the most advanced cryptography and cryptanalysis
techniques and their implementations using C++20. Most implementations are in
C++20, using the latest programming language features and improvements (see
Chapter 5).

The book is an advanced and exhaustive work, comprehensively covering all the
most important topics in information security, cryptography, and cryptanalysis. The
content of the book can be used in a wide spectrum of areas by multiple professionals,
such as security experts with their audits, military experts and personnel, ethical hackers,
teachers in academia, researchers, software developers, and software engineers when
security and cryptographic solutions need to be implemented in a real business software
environment, student courses (undergraduate and graduate levels, master’s degree,
professional and academic doctoral degree), business analysts and many more.

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

Cryptography and Cryptanalysis

It is very important to understand the meanings of the main concepts involved in a

secure communication process and to see their boundaries.

Cryptology is the science or art of secret writing; the main goal is to
protect and defend the secrecy and confidentiality of information
with the help of cryptographic algorithms.

Cryptography is the defensive side of cryptology; the main objective
is to create and design cryptographic systems and their rules. When
you look at cryptography, you can see a special kind of art: protecting
the information by transforming it into an unreadable format called
ciphertext.

Cryptanalysis is the offensive side of cryptology; its main objective

is to study cryptographic systems with the scope of providing the
necessary characteristics in such a way as to fulfill the function

for which they have been designed. Cryptanalysis can analyze the
cryptographic systems of third parties through the cryptograms
realized with them so that it breaks them to obtain useful information
for their business purpose. Cryptanalysts, code breakers, and ethical
hackers deal with cryptanalysis.

Cryptographic primitives represent well-established or low-level
cryptographic algorithms for building cryptographic protocols;
examples include hash functions and encryption functions.

This book provides a deep examination of all three sides from the practical side

of view with references to the theoretical background by illustrating how a theoretical

algorithm should be analyzed for implementation.

There are many different algorithms and techniques in modern cryptography. Here

are a few of the more common ones.

Symmetric-key algorithms use both sides of a communication to
generate a shared secret key and then use that key to encrypt and
decrypt messages. The most prominent example is AES, which is
used by the US government and many businesses worldwide.

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

e Asymmetric-key algorithms use two different keys to encrypt and
decrypt messages. The most common example is RSA, which secures
websites and applications like Gmail.

o Hash algorithms are commonly used to create digital signatures for
data and are sometimes used for message authentication. The most
well-known example is probably the SHA family of hash algorithms.

o Trapdoor function algorithms generate digital signatures and are
sometimes used to implement public-key encryption. The most
common example is probably the RSA function.

e One-time pad algorithms are the only unbreakable ciphers
requiring truly random keys. The most widely used OTP algorithm
is the Vernam cipher, which was the basis for the encryption used by
the US military in World War II.

Book Structure

The book is divided into 23 chapters divided into three parts: Part I (Chapters 1-8) covers
foundational topics, Part II (Chapters 9-17) covers cryptography, and Part III
(Chapters 18-23) covers cryptanalysis.

PartIincludes topics from beginner to advanced level and from theoretical
to practice. Chapter 2 discusses the basic concepts of cryptography. Chapter 3
covers a collection of key elements regarding complexity theory, probability theory,
information theory, number theory, abstract algebra, and finite fields and how they
can be implemented using C++20, showing their interaction with cryptography and
cryptanalysis algorithms.

Chapters 4 and 5 focus on integer arithmetic and floating-point arithmetic
processing. The chapter is vital, and other chapters and algorithm implementations
depend on these chapters’ content. Number representations and working with them on
the computer’s memory can represent a difficult task.

Chapter 6 discusses the newest features and enhancements of C++23. It presents
how the new features and enhancements are important in developing cryptography and
cryptanalysis algorithms and methods. It goes through three-way comparison, lambdas
in unevaluated contexts, string literals, atomic smart pointers, <version> headers,
ranges, coroutines, modules, and so forth.

6

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

Chapter 7 presents the most important guidelines for securing the coding process,
keeping an important balance between security and usability based on the most
expected scenarios based on trusted code. Important topics include securing state data,
security and user input, security-neutral code, and library codes that expose protected
resources.

Chapter 8 covers the libraries and frameworks that are developed in C++/C++23.

Part IT covers the most important modern cryptographic primitives. Chapters 9-16
discuss advanced cryptography topics by showing implementations and how to
approach this kind of advanced topic from a mathematical background to a real-life
environment.

Chapter 9 discusses the basics of one of the most important branches of
cryptography: elliptic-curve cryptography.

Chapter 10 introduces the Lattice Cryptography Library and hot its works
for implementation, pointing out the importance of postquantum cryptography.
Implementations of key exchange protocols proposed by Alkim, Ducas, Poppelmann,
and Schwabe [1] are discussed. The discussion continues by instantiating Chris Peikert’s
key exchange protocol [2]. The implementation is based on modern techniques for
computing, known as the number theoretic transform (NTT). The implementations apply
errorless fast convolution functions over successions of integer numbers.

Chapter 11 and Chapter 12 present two important cryptographic primitives,
homomorphic and searchable encryption. For searchable encryption (SE), Chapter 11
presents a framework using C++23 for SE, showing the advantages and disadvantages
of removing the most common patterns from encrypted data. Chapter 12 discuss
how to use the SEAL library in practical examples. The SEAL library contains one
of the most important homomorphic encryption schemes: BGV (Brakerski-Gentry-
Vaikuntanathan) [3].

Chapter 13 identifies the issues generated during implementing (ring) learning with
error cryptography mechanisms. It gives an example of implementing the lattice-based
key exchange protocol, a library used only for experiments.

Chapter 14 is based on the new concepts behind chaos-based cryptography and
how it can be translated into practice. The chapter generates some new outputs, and its
contribution is important for advancing cryptography as it is a new topic that didn’t get
the proper attention until now.

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

Chapter 15 discusses new methods and their implementations for securing big
data environments, big data analytics, access control methods (key management for
access control), attributed-based access control, secure search, secure data processing,
functional encryption, and multiparty computation.

Chapter 16 points out the security issues about the applications running
in a cloud environment and how they can be resolved during the design and
implementation phase.

Part III deals with advanced cryptanalysis topics and shows how to pass the barrier
between theory and practice and how to think about cryptanalysis in terms of practice
by eliminating the most vulnerable and critical points of a system or software application
in a network or distributed environment.

Chapter 17 introduces you to cryptanalysis by presenting the most important
characteristics of cryptanalysis. Chapter 18 starts by showing the important criteria
and standards used in cryptanalysis, how the tests of cryptographic systems are made,
the process of selecting the cryptographic modules, the cryptanalysis operations, and
classifications of cryptanalysis attacks.

Chapter 19 and Chapter 20 show how to implement and design linear, differential,
and integral cryptanalysis. These chapters focus on techniques and strategies, and their
primary role is to show how to implement scripts for attacking linear and differential
attacks.

Chapter 21 presents the most important attacks and how they can be designed and
implemented using C++23. You study the behavior of the software applications when
they are exposed to different attacks, and you see how to exploit the source code. This
chapter also discusses software obfuscation and why it is a critical aspect that needs
to be considered by the personnel involved in implementing the software process.
Additionally, you learn how this analysis can be applied to machine learning and
artificial intelligence algorithms that can be used to predict future attacks over software
applications that are running in a distributed or cloud environment.

Chapter 22 goes through the text characterization method and its implementation.
It discusses chi-squared statistics; identifying unknown ciphers; index of coincidence;
monogram, bigram, and trigram frequency counts; quad ram statistics as a fitness

measure; unicity distance; and word statistics as a fitness measure.

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

Chapter 23 presents the advantages and disadvantages of implementing
cryptanalysis methods, why they should have a special place when applications are
developed in distributed environments, and how the data should be protected against
such cryptanalysis methods.

As you become more advanced in your study of cryptography, you want to explore
analysis techniques like frequency analysis, letter analysis, and statistics that can help
you break ciphers that are not completely unbreakable. Sometimes, it is even possible to
find flaws in algorithms and protocols that can be exploited for malicious purposes. For
instance, cryptography is used in WEP and WPA/WPA2 networks to encrypt data. It has
been discovered that cracking the WEP takes less than 10 minutes and that WPA/WPA2 is
relatively easy to crack.

Internet Resources

The Internet has many resources that are very useful in keeping up with progress in
the field.

o Bill’s Security Site (https://asecuritysite.com/). This website
contains various implementations of cryptographic algorithms. Bill
Buchanan, a professor at the School of Computing at Edinburgh
Napier University, created and updated the website.

o Books by William Stallings [4] [Stallings, 2010 #1] - Cryptography
and Network Security (http://williamstallings.com/
Cryptography/). The site contains a significant set of tools and
resources and provides regular updates, keeping up with the most
important advances in cryptography.

e Schneier on Security (www.schneier.com/). The website contains
sections with books, essays, accurate news, talks, and academic
resources.

https://asecuritysite.com/
http://williamstallings.com/Cryptography/
http://williamstallings.com/Cryptography/
http://www.schneier.com/

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

Forums and Newsgroups

Usenet newsgroups (deprecated but very useful information can still be found) is
dedicated to some of the important aspects of cryptography and network security. The
following are the most important.

o sci.crypt.research is among the best groups for finding information
about research ideas. It is a moderated newsgroup whose main
purpose is to address research topics; most topics are related to the
technical aspects of cryptology.

e sci.cryptis a group where you can find general discussions about
cryptology and related topics.

o sci.crypt.random-numbers discusses random number generators.
o alt.security discusses general security topics.
e comp.security.misc discusses general computer security topics.

o comp.security.firewalls features discussions on firewalls and other
related products.

e comp.security.announce covers CERT news and announcements.
o comp.risks discusses public risks from computers and users.
o comp.virus features moderated discussions on computer viruses.

Additionally, several forums deal with cryptography topics and news that are
available on the Internet. The following are the most important.

« Reddit Cryptography News and Discussions [5] is a forum group
featuring general information and news about different topics related
to cryptography and information security.

e Security forums [6] contain vast topics and discussions about
computer security and cryptography.

¢ TechnGenix - Security [7] is one of the most updated forums
featuring cryptography and information security news. The group is
maintained by world-leading security professionals in the field.

10

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

Wilders Security Forums [8] features discussions and news
about the vulnerabilities of software applications due to bad
implementations of cryptographic solutions.

Security Focus [9] is a forum with a series of discussions about
vulnerabilities raised by the implementations of cryptographic
algorithms.

Security InfoWatch [10] discusses data and information loss.

TechRepublic - Security [11] discusses practical aspects and
methodologies for designing and implementing software
applications.

Information Security Forum [12] is a world-leading information
security and cryptography forum. It features conferences, hands-
on and practical tutorials, solving solutions to security and
cryptographic issues.

Security Protocols and Standards

The following are specific standards for cryptography. They specify which algorithms

should be used and how they should be implemented. There are many different

cryptography standards, but the following are the most important.

Suite B is a set of algorithms and protocols used by the US
government. It contains both symmetric and asymmetric algorithms.

ISO/IEC 17799 is an international standard for information security.
It contains a set of guidelines for cryptography.

BSI TR-02102-1 - BSI - Technical Guideline. Cryptographic
Mechanisms: Recommendations and Key Lengths' (Part 1)
evaluates the security of a few different cryptographic mechanisms,
providing some longer-term guidance in choosing appropriate
cryptographic algorithms. However, there is no guarantee of

'See https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=6

11

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=6
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=6

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

completeness, so the BSI may not necessarily consider schemes that
are not included to be secure.

e BSITR-02102-2. Cryptographic Mechanisms: Recommendations
and Key Lengths, Part 2 - Use of Transport Layer Security (TLS)?
is a technical guideline with recommendations for using the TLS
encryption protocol. In particular, the confidentiality, integrity, and
authenticity of the sent information can be secured by its use for
secure information transfer in data networks.

e BSITR-02102-3. Cryptographic Mechanisms: Recommendations
and Key Lengths, Part 3 - Use of Internet Protocol Security (IPsec)
and Internet Key Exchange (IKEv2)? is a technical guideline with
recommendations for using IPsec and IKEv2. In particular, the
confidentiality, integrity, and authenticity of the sent information can
be secured by its use for secure information transfer in data networks.

e BSITR-02102-4. Cryptographic Mechanisms: Recommendations
and Key Lengths Part 4 - Use of Secure Shell (SSH) NIST Special
Publication 800-18* is a technical guideline with recommendations
for using the Secure Shell cryptographic technology (SSH). Within
an insecure network, this protocol can be used to create a secure
channel.

o Federal Information Processing Standard 140-2 is a FIPS standard
that specifies cryptographic algorithms and protocols.

Many cryptographic techniques and implementations described in this book
follow the following standards. Standards have been developed and designed to cover
the management practices and the entire architecture of the security mechanisms,
strategies, and services.

The following are the most important standards covered in this book.

>See https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=5
3See https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-3.pdf?_blob=publicationFile&v=5
*See https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-4.pdf? blob=publicationFile&v=5

12

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-3.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-3.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-4.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-4.pdf?__blob=publicationFile&v=5

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

e The National Institute of Standards and Technology (NIST)
represents the US federal agency that deals with standards, science,
and technologies related to the US government. Except for the
national goal, NIST Federal Information Processing Standards
(FIPS) and Special Publications (SP) have a very important
worldwide impact.

e The Internet Society (ISOC) represents one of the most important
professional membership societies with organizational and
individual members worldwide. ISOC provides leadership in the
issues that are addressed and that confront the future perspective
of the Internet and applications developed using security and
cryptographic mechanisms with respect to the responsible groups,
such as the Internet Engineering Task Force (IETF) and the Internet
Architecture Board (IAB).

e The International Telecommunication Union (ITU) represents one
of the most powerful organizations within the United Nations System.
It coordinates and administers global telecom networks and services
with governments and the private sector. ITU-T represents one of the
three sectors of ITU. The mission of ITU-T consists of the production
of standards that cover all the fields of telecommunications. The
standards proposed by ITU-T are known as recommendations.

e The International Organization for Standardization (ISO)
represents a worldwide federation that contains national standards
bodies from over 140 countries. ISO is a nongovernmental
organization to promote the development of standardization
and activities related to activities with a view that it facilitates the
international exchange of services to develop cooperation with
intellectual, scientific, and technological activity. The results of ISO
are as international agreements published as international standards.

From securing communication and storage of information, cryptography algorithms
and protocols can be seen as guidelines and protocols used to ensure the secure

13

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

communication and storage of information. The following are some widely used

cryptography algorithms and protocols.

¢ The Advanced Encryption Standard (AES) is a symmetric-key
encryption algorithm for encrypting electronic data.

o RSAis an asymmetric-key encryption algorithm used for secure data
transmission.

« Elliptic-curve cryptography (ECC) is an approach to public-key
cryptography based on the mathematics of elliptic curves.

o Secure Sockets Layer (SSL) and TLS are protocols for securing

network communications.

o [IPSecis a protocol for securing Internet communications at the
network layer.

o Pretty Good Privacy (PGP) is a data encryption and decryption
program that provides cryptographic privacy and authentication for
data communication.

These are just a few examples, and many other cryptography standards are
used today.

Cryptography Tools and Resources

There are numerous tools and resources to help you learn more about cryptography.
Here are a few worth checking out.

o Cracking Crypto challenges provide a fun way to test your skills and
are great for beginners. There are challenges in both cryptography
and cryptanalysis, so you can pick whichever interests you more.

o Dark Reading is a website that publishes news articles on all
aspects of information security. Their cryptography section regularly
publishes articles on the latest developments in cryptography.

e There are many great cryptography books. If you prefer reading to
online tutorials, there are plenty of worthy books to choose from.

14

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

Coursera, Pluralsight, and Udemy offer online cryptography

courses. These courses vary in length and difficulty and can help

advance your knowledge. The following are some of the most

interesting courses.

o Coursera

Cryptography I by Dan Boneh, Stanford University
www.coursera.org/learn/crypto

Cryptography II by Dan Boneh

Stanford University
www.coursera.org/learn/crypto2

Introduction to Applied Cryptography Specialization by
William Bahn

Www.coursera.org/specializations/introduction-
applied-cryptography

e Pluralsight

Cryptography: The Big Picture

https://app.pluralsight.com/library/courses/
cryptography-big-picture/table-of-contents

Cryptography: Executive Briefing

https://app.pluralsight.com/library/courses/
cryptography-executive-briefing/table-of-contents

Cryptography Application

https://app.pluralsight.com/library/courses/
cryptography-application/table-of-contents

Securing Data with Asymmetric Cryptography

15

http://www.coursera.org/learn/crypto
http://www.coursera.org/learn/crypto2
http://www.coursera.org/specializations/introduction-applied-cryptography
http://www.coursera.org/specializations/introduction-applied-cryptography
https://app.pluralsight.com/library/courses/cryptography-big-picture/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-big-picture/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-executive-briefing/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-executive-briefing/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-application/table-of-contents
https://app.pluralsight.com/library/courses/cryptography-application/table-of-contents

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

https://app.pluralsight.com/library/courses/
asymmetric-cryptography-securing-data/table-
of-contents

e Practical Encryption and Cryptography Using Python

https://app.pluralsight.com/library/courses/
practical-encryption-and-cryptography-using-
python/table-of-contents

o Building Secure Applications with Cryptography in.NET

https://app.pluralsight.com/library/courses/
dotnet-cryptography-secure-applications/table-
of-contents

Conclusion

The era in which we are living has an unimaginable evolution and incredible
technologies that enable the instant flow of information at any time and place. The secret
consists of the convergence process of the computer with the networks, a key force that
forces the evolution and development of these incredible technologies from behind.

Cryptography and cryptanalysis are fascinating disciplines that have played a critical
role in modern communication and security. This step-by-step work help you get started
in the world of cryptography and cryptanalysis by providing you with all the necessary
information to become an expert in programming and how to approach cryptographic
algorithms. From understanding the basics of programming cryptography algorithms
to exploring advanced techniques, this work helps you explore the fascinating technical
disciplines that have played a critical role in modern communication and security.

This first chapter discussed the objectives of the book and its benefits. It covered the
mission of the book, addressing the practical aspects of cryptography and information
security and its main intention in using the current work. The increasing process of using
systems that build using advanced information technologies has been shown to deeply
impact our lives every day. All technologies are proving to be pervasive and ubiquitous.

16

https://app.pluralsight.com/library/courses/asymmetric-cryptography-securing-data/table-of-contents
https://app.pluralsight.com/library/courses/asymmetric-cryptography-securing-data/table-of-contents
https://app.pluralsight.com/library/courses/asymmetric-cryptography-securing-data/table-of-contents
https://app.pluralsight.com/library/courses/practical-encryption-and-cryptography-using-python/table-of-contents
https://app.pluralsight.com/library/courses/practical-encryption-and-cryptography-using-python/table-of-contents
https://app.pluralsight.com/library/courses/practical-encryption-and-cryptography-using-python/table-of-contents
https://app.pluralsight.com/library/courses/dotnet-cryptography-secure-applications/table-of-contents
https://app.pluralsight.com/library/courses/dotnet-cryptography-secure-applications/table-of-contents
https://app.pluralsight.com/library/courses/dotnet-cryptography-secure-applications/table-of-contents

CHAPTER 1 GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

The book represents the first practical step of translating the most important

theoretical cryptography algorithms and mechanisms to practice through one of the

most powerful programming languages (C++20).

This chapter accomplished the following.

Each concept was explained to eliminate the confusion between
cryptography, cryptanalysis, and cryptology.

It discussed the book’s structure. A roadmap introduced the
dependencies of each chapter. Each chapter has been presented in
detail, pointing out the main objective.

A list of newsgroups, websites, and USENETSs resources provides
sources covering the latest news in cryptography and information
security.

It introduced the most significant standards used in cryptography
and information security.

References
[1].

(2].

(3].

(4].

[5].

[6].

Alkim, E., Ducas, L., P6ppelmann, T., and Schwabe, P. (2016). Postquantum
key exchange—a new hope. In 25th {USENIX} Security Symposium ({USENIX}
Security 16) (pp. 327-343).

Peikert, C. (2014, October). Lattice cryptography for the Internet. In
international workshop on postquantum cryptography (pp. 197-219).
Springer, Cham.

Brakerski, Z., Gentry, C., and Vaikuntanathan V. (2011). Fully Homomorphic
Encryption without Bootstrapping Cryptology ePrint Archive, Paper 2011/277,
https://eprint.iacr.org/2011/277.

Stallings, W., Cryptography and Network Security - Principles and Practice. 5
ed. 2010: Pearson. 744.

Reddit. Cryptography News and Discussions. Available from: https://www.
reddit.com/x/crypto/.

Forums, Security.; Available from: http://www.security-forums.com/index.
php?sid=acc302c71bb3ea3a7d631a357223e261.

17

https://eprint.iacr.org/2011/277
https://www.reddit.com/r/crypto/
https://www.reddit.com/r/crypto/
http://www.security-forums.com/index.php?sid=acc302c71bb3ea3a7d631a357223e261
http://www.security-forums.com/index.php?sid=acc302c71bb3ea3a7d631a357223e261

CHAPTER 1

[7].
(8].

[9].
[10].

[11].

[12].

18

GETTING STARTED IN CRYPTOGRAPHY AND CRYPTANALYSIS

TechGenix, Security. Available from: http://techgenix.com/security/.
Wilders Security Forums. Available from: https://www.
wilderssecurity.com/.

Security Focus. Available from: https://www.securityfocus.com/.
Security InfoWatch. Available from: https://forums.
securityinfowatch.com/.

TechRepublic - Security. Available from: https://www.techrepublic.com/
forums/security/.

Information Security Forum. Available from: https://www.
securityforum.org/.

http://techgenix.com/security/
https://www.wilderssecurity.com/
https://www.wilderssecurity.com/
https://www.securityfocus.com/
https://forums.securityinfowatch.com/
https://forums.securityinfowatch.com/
https://www.techrepublic.com/forums/security/
https://www.techrepublic.com/forums/security/
https://www.securityforum.org/
https://www.securityforum.org/

CHAPTER 2

Cryptography
Fundamentals

Cryptographic history is incredibly long and fascinating. The Code Book: The Secrets
Behind Codebreaking [1] is a comprehensive reference that provides a nontechnical
history of cryptography. In the book, the story of cryptography begins in approximately
2000 BC, when the Egyptians used it for the first (known) time. It presents the main
aspects of cryptography and hiding information for each period that is covered and
describes the great contribution that cryptography had in both world wars. The art

of cryptography often correlates with diplomacy, military, and government because

its purpose is to keep sensitive data, such as strategies or secrets regarding national
security, safe.

A crucial development in modern cryptography is the working paper “New
Directions in Cryptography” [2] proposed by Diffie and Hellman in 1976. The paper
introduced a notion that changed how cryptography was seen until then, namely,
public-key cryptography. Another important contribution of this paper is an innovative
way of exchanging keys. The security of the presented technique is based on the
hardness assumption (basically, through the hardness assumption, we refer to a
problem that cannot be solved efficiently) of the discrete logarithm problem. Even
though the authors did not propose a practical implementation for their public-key
encryption scheme, the idea was presented very clearly and started to draw attention in
the international cryptography community.

The first implementation of a public-key encryption scheme was made in 1978 by
Rivest, Shamir, and Adleman, who proposed and implemented their encryption scheme,
currently known as RSA [3]. The hardness assumption in the RSA is the factoring of
large integers. By looking in parallel between integer factorization for RSA and Shor’s
algorithm, we can note that Shor’s algorithm runs in polynomial time for quantum

19

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_2

https://doi.org/10.1007/978-1-4842-9450-5_2

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

computers. This represents a significant challenge for any cryptographer using the
hardness assumption for factoring large integers. The increasing applications and
interest in the factoring problem led to new techniques. Important advances in this
area were made in 1980, but none of the proposed techniques improved the security of
the RSA.

Another important class of practical public-key encryption schemes was designed
by ElGamal [4] in 1985. These are based on the hardness assumption of the discrete
logarithm problem.

Other crucial contributions to public-key cryptography are the digital signature, for
which the international standard ISO/IEC 9796 was adopted in 1991 [5]. The basis of
the standard is the RSA public-key encryption scheme. A powerful scheme for digital
signatures based on the discrete logarithm hardness assumption is the Digital Signature
Standard, adopted by the United States government in 1994.

Currently, the trends in cryptography include designing and developing new public
key schemes, adding improvements to the existing cryptographic mechanisms, and
elaborating security proofs.

The book’s objective is to provide a view of the latest updates of the principles,
techniques, algorithms, and implementations of the most important aspects of
cryptography in practice. It focuses on the practical and applied aspects of cryptography.
You are warned about the difficult subjects and those that present issues and are
guided to a proper bibliography in which best practices and solutions are found. Most
of the aspects presented in the book are followed by implementations. This objective
also serves to not obscure the real nature of cryptography. The book represents strong
material for both implementers and researchers. The book describes the algorithms and
software systems with their interactions.

Information Security and Cryptography

This book refers to the term and concept of information as to quantity. To go through the
introduction to cryptography and to show its applicability by presenting algorithms and
implementation technologies (such as C++), first, we need to have a basis for the issues
that occur often in information security. When a particular transaction occurs, all parties
involved must be sure (or ensure) that specific objectives related to information security
are met. A list of these security objectives is given in Table 2-1.

20

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

Several protocols and security mechanisms have been proposed to defy the
issues regarding information security when the information is sent in physical format
(for example, documents). The objectives regarding information security may be
accomplished by applying mathematical algorithms or work protocols to information
that needs to be protected and additionally following specific procedures and laws.
An example of physical document protection is sealed envelopes (the mechanism of
protection) that cover the letter (the information that needs to be protected) delivered
by an authorized mail service (the trusted party). In this example, the protection
mechanism has its limitations. But the technical framework has rigorous rules, through
which any entity that opens the envelope and does not have this right needs to be
punished. There are situations in which the physical paper contains the information that
needs to be protected, and has special characteristics that certify the originality of the
data/information. For example, to refrain from forging banknotes, paper currency has
special ink and matter.

Table 2-1. Security Objectives

Security Objective Description

privacy/confidentiality ~ The information is kept secret from unauthorized entities.

signature A technique that binds a signature by an entity (for example, a
document).
authorization The action of authorizing an entity to do or be something to send the

information between the sender and the receiver.

message authentication The process/characteristic through which the origin of the data is
authenticated; another meaning is corroboration of the information
source.

data integrity The information is kept unaltered through techniques that keep away
unauthorized entities or unknown means.

entity authentication/ The action of validating the identity of an entity, which may be a
identification computer, person, credit card, and so on.

validation The action of making available a (limited) quantity of time for
authorization for using or manipulating the data or resources.

(continued)

21

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

Table 2-1. (continued)

Security Objective

Description

certification

access control
timestamping

witnessing

receipt

ownership

confirmation

revocation

nonrepudiation

anonymity

The process of confirming the information by a trusted party.
or
Acknowledgment of information by a trusted certification.

The action of restricting access to resources to authorized parties.
Metadata stamps the time of creation or the existence of information.

The action of validating the creation/existence of the information made
by an entity that is not the creator of the data.

The action of confirming the receiving of the information.

The action of giving an entity the legal rights to use or transfer a
particular information/resource.

The action of validating the fact that certain services have been
accomplished.

The action of withdrawing certification or authorization.

The process of restraining the negation of other previous commitments
or actions.

The action of making anonym an entity’s identity involved in a particular
action/process.

From a conceptual point of view, how the information is manipulated did not

change substantially. We consider storing, registering, interpreting, and recording

data. However, a manipulation that changed significantly is copying and modifying

the information. An important concept in information security is the signature, which

represents the foundation for more processes, such as nonrepudiation, data origin

authentication, identification, and witnessing.

The requirements introduced by legal and technical skills should be followed to

achieve the security of information in electronic communication. On the other hand,

the preceding protection objectives are not guaranteed to be fulfilled accordingly. The

technical part of information security is assured by cryptography.

22

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

Cryptography represents the field that studies the mathematical techniques and

tools that are connected to information security, such as confidentiality, integrity (data),

authentication (entity), and the origin of authentication. Cryptography not only provides

information security but also provides a specific set of techniques.

Cryptography Goals

From the security objectives presented in Table 2-1, the following represent a basis from

which the others can be derived.

privacy/confidentiality (Definitions 2.5 and 2.8)
data integrity (Definition 2.9)
authentication (Definition 2.7)

nonrepudiation (Definition 2.6)

The following explains each of the four objectives in detail.

Confidentiality represents a service that protects information
content from unauthorized entities and access. Confidentiality
is assured through different techniques, from mathematical
algorithms to physical protection, that scramble the data into an

incomprehensible form.

Data integrity represents a service that prevents unauthorized
alteration of the information. Authorized entities should be able to
discover and identify unauthorized manipulation of data.

Authentication represents a service that has an important role when
data or application is authenticated, and it implies identification.

The authentication process is applied on both extremities that use
the data (for example, the sender and the receiver). The rule is that
each involved party should identify itself in the communication
process. It is very important that both parties that are involved in

the communication process declare to each other their identity (the
parties could be represented by a person or a system). At the same
time, some characteristics of the data should accompany the data
itself; for example, its origin, content, or the time of creation/sending.

23

CHAPTER 2

One of the main goals of cryptography is to fulfill the four objectives on both sides—

CRYPTOGRAPHY FUNDAMENTALS

From this point of view, cryptography branches authentication into
two categories: authentication of the entity and authentication of the
data origin. Data origin authentication leads to data integrity.

Nonrepudiation represents a service that prevents the denials of
previous actions made by an entity. When a conflict occurs because
an entity denies its previous actions, it is resolved by an existing

sinew showing the actions made over data.

theory and practice.

Cryptographic Primitives

The book presents several fundamental cryptographic tools called primitives. Examples

of primitives are encryption schemes (Definitions 2.5 and 2.8), hash functions

(Definition 2.9), and schemes for digital signatures (Definition 2.6). Figure 2-1 presents

a schematic description of these primitives and their relationship. Many cryptographic
primitives are used in the book, and practical implementations are provided every time.
Before using them in real-life applications, the primitives should be evaluated to check if

the following criteria are fulfilled.

24

Level of security. It is slightly difficult to quantify the level of
security. However, it can be quantified as the number of operations
to accomplish the desired objective. The level of security is usually
defined based on the superior bound given by the volume of work
necessary to defeat the objective.

Functionality. To accomplish security objectives, in many situations,
primitives are combined. You need to be sure that they work
properly.

Operation methods. When primitives are used, they need different
inputs and have different ways of working, resulting in different
characteristics. In these situations, the primitives provide very
different functionalities that depend on the mode of operation.

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

o Performance. This concept is related to the efficiency that a
primitive can achieve in a specific mode of operation.

o Ease of implementation. This concept is merely a process rather
than a criterion, which refers to the primitive being used in practice.

Random Sequences

—{ UNKEYED PRIMITIVES One-way Permutations

Arbitrary length hash
functions

Public-key Ciphers

PUBLIC-KEY
— PRIM Signatures

Identification Primitives

SECURITY PRIMITIVES
|

CIPHERS

Block Ciphers
| SYMMETRIC-KEY <|:

Stream Ciphers

| Arbitrary Length Hash
Functions (MACs)

| | SYMMETRIC-KEY | | Signatures
PRIMITIVES &

Pseudorandom
Sequences

“—identification Primitives

Figure 2-1. Cryptographic primitive taxonomiy

The application and the available resources give importance to each of the criteria
shown in Figure 2-1.

Cryptography may be seen as an art practiced by professionals and specialists who
proposed and developed ad hoc techniques whose purpose was to fulfill important
information security requirements. In the last few decades, cryptography has

25

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

transitioned from an art to a science and discipline. There are dedicated conferences
and events in many cryptography and information security fields. In addition, there
are international professional associations, such as the International Association for
Cryptologic Research (IACR), whose aim is to bring and promote the best research
results in the area.

The current book is about cryptography and cryptanalysis: implementing algorithms
and mechanisms using C++ with respect to standards.

Background of Mathematical Functions

A monograph on abstract mathematics is not a goal of this book. Getting familiar with
some fundamental mathematical concepts is necessary and proves to be very useful in
practical implementations. One of the most important concepts that are fundamental to
cryptography is represented by a function in the mathematical sense. A function is also
known in the literature as transformation or mapping.

One-to-One, One-Way, and Trapdoor One-Way Functions

Let’s consider a set that has in its composition a distinct set of objects that are known
as elements of that specific set. The following example represents a set A that has the
elements a, b, ¢, which is denoted as A = {a, b, c}.

Definition 2.1 [18]. Cryptography is defined as the study of mathematical techniques
that are related to aspects of information security, such as confidentiality, integrity
(data), authentication (entity), and authentication of the data origin.

Definition 2.2 [18]. Consider that sets A and B and rule fdefine a function. The rule
fassigns to each element in A an element in B. Set A is the domain that characterizes the
function, and B represents the codomain. If a represents an element from A, written as
a € A, the image of a is represented by the element in B with the help of rule f; the image
b of a is denoted by b = f(a). The standard notation for a function ffrom set A to set B
isrepresented as f: A — B. If b € B, then there is a preimage of b, which is an element
a € A for which f(a) = b. The entire set of elements in B that have at least one preimage is
known as the image of f, denoted as Im(f).

Example 2.3. (function) Consider sets A ={a, b, ¢} and B = {1, 2, 3,4}, and the rule f
from A to B as defined as f(a) = 2, f(b) = 4, f(c) = 1. Figure 2-2 represents sets A, B and
function f. The preimage of the element 2 is a. The image of fis {1, 2, 4}.

26

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

Example 2.4. (function) Consider set A = {1,2,3, , 10} and consider fto be the rule
that for each a € A, f(a) = r,, where r, represents the remainder when a? is divided by 11.

f(2)=3f(7)=5
f(3)=9f(8)=9
f(4)=5f(9)=4

function
1
0»\
\\
A
2@— 0«
)
hY
%
B 3 . N - . b A
s % ‘\\\
A o \\
1@~ Q-
50

Figure 2-2. Function ffrom a set A formed from three elements to a set B formed
Jfrom five elements

The image of fis represented by the set Y={1, 3,4, 5, 9}.

The scheme represents the main fundamental tool for thinking of a function (found in
the literature known as the functional diagram), as depicted in Figure 2-2. Each element
from the domain A has precisely one arrow originating from it. For each element from
codomain B, you can have any number of arrows incident to it (including also zero lines).

Example 2.5. (function) Let’s consider the following set defined as
A={1,2,3,...,10°°} and consider f to be the rule f(a) = r,, where r, represents the
remainder in the case when a? is divided by 10 + 1 for all a € A. In this situation, it is not
feasible to write down fexplicitly, as in Example 2.4. The function is completely defined
by the domain and the mathematical description that characterize the rule f.

27

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

One-to-0One Functions

Definition 2.6 [18]. Consider a function or transformation 1 — 1 (one-to-one) if each of
the elements that can be found within the codomain B is represented as the image of at
most one element in the domain A.

Definition 2.7 [18]. Let’s consider that a function or transformation is onto if each of
the elements found within the codomain B represents the image of at least one element
that can be found in the domain. At the same time, a function f: A — Bis known as being
onto if Im(f) = B.

Definition 2.8 [18]. Function f: A — Bis considered 1 — 1 and Im(f) = B, and
function fis called bijection.

Conclusion 2.9 [18]. If f: A —» Bis considered 1 — 1, then f: A — Im (f) represents
the bijection. In special cases, if f: A — Bisrepresented as 1 — 1 and A and B are
represented as finite sets with the same size, then frepresents a bijection.

Using the scheme and its representation, if fis a bijection, then each element from
B has exactly one line that is incident with it. The function shown and described in
Examples 2.3 and 2.4 does not represent bijections. As you can see in Example 2.3,
element 3 does not have the image of any other element that can be found within
the domain. In Example 2.4, each element from the codomain is identified with two
preimages.

Definition 2.10 [18]. If fis a bijection from A to B then it is a quite simple matter to
define a bijection g from B to A as follows: for each b € B we define g(b) = a where a € A
and f(a) = b. The function gis obtained from f, and it is called the inverse function of f
and denoted as g=f .

28

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

e

~f
4.‘. f,f N\ @4

/
/
/

5 .’ \‘. e
Figure 2-3. Representation of a bijection fand its inverseg = f ~!

Example 2.11. (inverse function) Consider sets A ={a, b, c,d, e} and Y={1, 2,3, 4,5}
and the rule f; which is given and represented by the lines in Figure 2-3. frepresents a
bijection, and its inverse g is formed by reversing the sense of the arrows. The domain of
gisrepresented by B, and the codomain is A.

Note that if fis a bijection, then f ~! is also a bijection. The bijections in cryptography
are tools used for message encryption. The inverse transformations are used for
decryption. The main condition for decryption is for transformation to be a bijection.

29

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

One-Way Functions

In cryptography, certain types of functions play an important role. A definition for a
one-way function is given as follows.

Definition 2.12 [18]. Let’s consider a function ffrom a set A to a set B that is called
a one-way function if f(a) proves to be simple and easy to compute for all a € A. But for
“essentially all” elements b € Im (f), it is computationally infeasible to manage to find
any a € A in such a way that f(a) = b.

Note 2.13 [18]. This note represents some additional notes and clarifications of the
terms used in Definition 2.12.

For the terms easy and computationally infeasible, a rigorous definition is necessary,
but it distracts attention from the general idea that is being agreed upon. Fur the goal of
this chapter, the simple and intuitive meaning is sufficient.

The words “essentially all” stand for the idea that there are a couple of values b € B
for which it is easy to find an a € A in such a way that b = f(a). For example, one may
compute b = f(a) for a small number of a values, and then for these values, the inverse is
known by a table look-up. A different way to describe this property of a one-way function
is as follows: for any random b € Im (f), it is computationally feasible to have and find
any a € A in such a way that f(a) = b.

The following examples show the concept behind a one-way function.

Example 2.14. (one-way function) Consider A ={1, 2,3, ..., 16} and define f(a) = r, for
all the elements a € A, where r, represents the remainder when 3* is divided by 17.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f@ 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

Let’s assume a number situated between 1 and 16. You see that it is very easy to find
its image under f. Without having the table in front of you, for example, for 7, it is hard to
find a given that f(a) = 7. If the number you are given is 3, then is quite easy thata = 1 is
what you need.

Remember that this is an example focused on very small numbers. The key thing
here is that the amount of effort to measure is different f(a) and the amount of work in
finding a given f(a). Additionally, for large numbers, f(a) can be efficiently computed
using the square-and-multiply algorithm [20], where the process of finding a from f(a) is
harder to find.

30

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

Example 2.15 [18]. (one-way function) A prime number is defined as a positive
integer. The integer is larger than 1, and its positive integer divisors are 1 and
itself. Let’s take into consideration the primes p = 50633 and g = 58411, compute
n=pq=50633-58411 = 2957524163, and let’s consider A ={1,2,3,...,n — 1}. We
define a function fon A by fla) = r, for each a € A, where r, represents the remainder
when x® is divided by n. For example, let’s consider f{2489991 = 1981394214 since
2489991° = 5881949859 - n + 1981394214. Computing f{a) represents a simple task, but
reversing the procedure is difficult.

Trapdoor One-Way Functions

Definition 2.16 [18]. A trapdoor one-way function is represented as a one-way function
f: A — Bwith an extra property that has information (also known as the trapdoor
information); it is much more feasible to have an identification for any given b € Im (),
with an a € A in such a way that f{a) = b.

Example 2.15 shows the concept of a trapdoor one-way function. With extra
information about the factors of n = 2957524163, it becomes much easier to invert
the function. The factors of 2957524163 are large enough that it would be difficult to
identify them by hand calculation. You should be able to identify the factors very easily
with the help of some computer program. For example, if you have very large, distinct
prime numbers (each number has approximately 200 decimal digits), p and g, with the
technology of today, finding p and g from n is very difficult even with the most powerful
computers, such as quantum computers. This is the well-known factorization problem
known as the integer factorization problem.

One-way and one-way trapdoor functions form the fundamental basis for public-
key cryptography. These principles are very important and become much clearer later
when the implementation of cryptographic techniques occurs. It is vital and important
to understand these concepts from this section as the main methods and the primary
foundation for the cryptography algorithms to implement later in this chapter.

Permutations

Permutation represents functions that are in cryptographic constructs.

Definition 2.17 [18]. Consider S to be a finite set formed of elements. A permutation
p on Srepresents a bijection, as defined in Definition 2.8. The bijection is represented
from Stoitself, p: S — S.

31

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

Example 2.18 [18]. This example represents a permutation example. Let’s consider
the following permutation S = {1, 2, 3,4, 5}. The permutation p : S — Sis defined as
follows.

p(1)=2,p(2)=5,p(3)=4p(4)=2,p(5)=1

A permutation can be described in different ways. It can also be written as an array,
as follows, in which the top row in the array is represented by the domain and the bottom
row is represented by the image under p as mapping.

1 2 345
P73 5 421/
As the permutations are bijections, they have inverses. If the permutation is written
as an away (second form), its inverse is very easily found by interchanging the rows in

the array and reordering the elements from the new top row, and the bottom row has to
be reordered accordingly. In this case, the inverse of p is defined as follows.

(1 2 345
p =
5 4 132
Example 2.19 [18]. This example represents a permutation example. Let’s consider
Ato be the set of integers {0, 1,2, ..., p - ¢ — 1}, where p and ¢ represent two distinct large
primes. We also need to suppose that neither p — 1 nor g — 1 can be divisible by 3. The
function p(a) = r,, in which r, represents the remainder when a® is divided by pg, can

be demonstrated and shown as the inverse permutation. The inverse permutation is
currently computationally infeasible by computers unless p and g are known.

Inclusion

Involutions are known as the functions having their own inverses.

Definition 2.20 [18]. Let’s consider a finite set S and fdefined as a bijection S to S,
denoted as f: S — S. In this case, the function fis noted as involution if f= f~'. Another
way of defining this is f(f(a)) =a for anya € S.

Example 2.21 [18]. This example represents an involution case. Figure 2-4 depicts
an example of involution. Note that if j represents the image of i, then i represents the
image of j.

32

CHAPTER 2
1 1
.k"_ r/!.
\\
29—+ @2
\\. ,/
o / \ o3
IO i \
N ,:"(\/ / >
/, \‘\\ //
\ hY
+@ /\ @ ¢+
/ ,
/ \\'\
5 .’ \. 5

CRYPTOGRAPHY FUNDAMENTALS

Figure 2-4. Representation of an involution with a set S with five elements

Concepts and Basic Terminology

It is very difficult to see and understand how cryptography was built using hard and
abstract definitions when dealing with the scientific side of the field. The following lists

the most important terms and key concepts that are used in this chapter.

Domains and Codomains Used for Encryption

binary strings, English text, French text, and so on.

A is shown as a finite set known as the alphabet of definition.
Consider as an example A ={0,1} , which represents the binary
alphabet, a frequently used alphabet as a definition.

M is a set known as the message space. The message space has
strings of symbols from an alphabet, .A. As an example, M may have

C is the ciphertext space. C has strings of symbols from an alphabet,
A, which is totally different from the alphabet defined for M. An
element from C is called ciphertext.

33

CHAPTER 2

CRYPTOGRAPHY FUNDAMENTALS

Encryption and Decryption Transformations

34

The set K is called the key space. The elements of K are called keys.

For each e e [, there is a unique transformation E,, representing a
bijection from M to C (i.e., E,: M —C). E,is called the encryption
function or encryption transformation. If the encryption process is
reversed, then E, should be a bijection, such that each unique plain
message is recovered from one unique ciphertext.

For each d € IC, there is a transformation D, representing
a bijection from C to M (i.e,, D,:C — M). D,is called a
decryption function or decryption transformation.

The process of encrypting the message m € M or the encryption of m
consists of applying the transformation E..

The process of decrypting the ciphertext c € C or the decryption of c
consists of applying the transformation D, over c.

An encryption scheme has two important sets: {E, :e€ K}, which
represents the set of encryption transformations, and {Dd :de IC} ,
which represents the set of decryption transformations. The relation
between the elements of the two sets is the following: for each e
, there exists a unique key d € € such that D, =E, '+ in other words,
we have the relationship D,(E,(m)) = m for all m € M. Another term
for encryption schemes is cipher.

In the preceding definition, the encryption key e and the decryption
key d form a pair, usually denoted (e, d). In symmetric encryption
schemes, e and d are the same, while in asymmetric (or public-key)
encryption schemes, they are different.

To construct an encryption scheme, the following components are
needed: the message (or plain-text) space M, the cipher-space C

, the key space K, the set of encryption transformations {E, :e€ K }
and the set of decryption transformations {D,:d e K}.

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

The Participants in the Communication Process

The following are components involved in the communication process.

The entity (party) is that component that works with information:
sending, receiving, manipulating it. The entities/parties in Figure 2-5
are Alice, Bob, and Oscar. However, in real applications, entities are
not necessarily persons; they may be authorities or computers, for
example.

The sender is one of the entities of a two-party communication
and initiates the transmission of the data. The sender in Figure 2-5
is Alice.

The receiver is the other entity of a two-party communication
and is the intended recipient of the information. The receiver in
Figure 2-5 is Bob.

The communication channel is the component through which the

sender and the receiver communicate.

The adversary is an unauthorized entity on a two-party
communication, and it is different from the sender and the receiver.
Its objective is to break the security on the communication channel
to access the information. Other terms for the adversary' are enemy,
attacker, opponent, eavesdropper, intruder, and interloper. It has
different types (passive and active) and behaves differently according
to aspects regarding the encryption scheme or its intentions.

Often, the attacker clones and acts like the legitimate sender or the
legitimate receiver.

! Alice and Bob. Available online: https://en.wikipedia.org/wiki/Alice _and Bob

35

https://en.wikipedia.org/wiki/Alice_and_Bob

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

Oscar the
Attacker

UNSECURED CHANNEL

Figure 2-5. Example of a two-party communication process applying encryption

Digital Signatures

Digital signatures are very important in some processes, such as authentication,
authorization, or nonrepudiation. The digital signature is used to map an individual’s
identity with a piece of information. When something is digitally signed, the message
and the confidential information owned by an individual are converted into a tag called
a signature.

The components of the signing process are as follows.

o M isthe set of messages that can be signed.

o S isthe set of signatures. These can have a form of binary strings
with a predefined length.

o &, represents the transformation between M and S, called the
signing transformation, and it is made by entity A. The entity keeps
S, secret and use it to sign messages from M .

o V,represents the transformation between MxS to the set
{true, false}. The Cartesian product M xS contains the pair of
elements (m, s) where m e M and s<S . The transformation V, is
public, and it is used by different entities to check if the signatures
were created by entity A.

36

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

Signing Process

The entity A called the signer creates a signature s€ S for a particular message m e M
using the following steps.

1. Compute s = S,(m).

2. Transmit the pair (m, s) to the desired receiver.

Verification Process

When the receiver entity B wants to check if the entity A created the signature s for the
message m, it proceeds as follows.

1. Obtain the verification function V, for entity A.
2. Compute u = Vy(m,s).

3. If u=true, then the signature was created by entity A; if u = false,
then the signature was not created by entity A.

Public-Key Cryptography

Public-key cryptography (PKC) has an important role in C++ when similar algorithms
need to be incorporated. Many significant commercial libraries are implementing
developer-specific public-key cryptography solutions, such as [21-30].

Next, let’s look at how public-key cryptography works. For this, recall that & is the
key space, and consider the set of encryption transformations {Ee tee IC} and the set of
decryption transformations {D, :d € IC} . Furthermore, consider the pair of encryption
and decryption transformations (E,, D,), where E, can be learned by anyone for every e.
Since E,, determining D, must be computationally unrealizable (i.e., from a random
ciphertext ¢ €C), it must be impossible to determine the message m € M such that
E/(m) = c. This property is strong, which means that the corresponding decryption key
d (which must be secret/private) may not be computed/determined from either given e
(which is public).

37

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

Look at Figure 2-6 and consider the communication channel between two parties,
namely, Alice and Bob.

o Bob chooses a pair of keys (e, d).

e Bob makes the encryption key e publicly available, such that Alice can
access it over any channel and keeps the decryption key secret and
safe d. In the specialty literature, in PKC, the encryption key is called
the public key, and the decryption key is called the secret/private key.

e When Alice wants to send a message m € M to Bob, she uses Bob’s
public key e to determine the encryption transformation E,, and
then she applies it over m. Finally, Alice obtains the encryption
c=E,(m)eC and sends it to Bob.

e When Bob wants to decrypt the encrypted message c€C
received from Alice, he uses his private key d to determine the
transformation decryption D, and then he applies it over c. Finally,
he obtains m=D,(c)e M.

A Passive
Adversary

h
:' UNSECURED CHANNEL :-
| |
| I
|
1
t l
Encryption T e e e e e e
Eg(m) =c UNSECURED CHANNEL

The Destination

Source of the
plaintext

:{0]:]

ALICE

Figure 2-6. The process of encryption using the public-key mechanism

38

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

There is no need to keep the encryption key e secret, and it can be made public.
Every individual can then send encrypted messages to Bob that can be decrypted only
by Bob. Figure 2-7 illustrates the idea, where A,, A,, and A; represent different entities.
Remember that if A, destroys message m, after encrypting it to c¢,, then even A, is found
in a position to not be able to recover m, from c;.

Let’s take the following analog as an example, to make it simple, by considering a
metal with the cover secured by a lock with a particular combination. Bob is the only
one who knows how to blend. If the lock stays open and made accessible to the public
for different purposes, we find ourselves in a position where someone can let a message
inside and lock the cover.

ms

Az - e
Eg(m3) = c3 - _—

€3

Dd(C3)

my

A =
Eg(mp) =c; |

€2

(]
L)
—r

]
Q

=m1

e
Ay .
Eg(my) = —
€

Dd(cl)

Figure 2-7. How public-key encryption is used

Hash Functions

Hash functions are one of the primary primitives in modern cryptography. Additionally,
known as a one-way hash function is the hack function. A hash function represents a
computationally efficient function that maps the binary string to binary strings with an
arbitrary length with a fixed length known as hash values.

39

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

As an example of the implementation of a hash function (SHA-256, see Figure 2-8),
let’s examine the following implementation in C++ using C++2 new features (see
Listing 2-1). The implementation is performed in accordance with the NIST.?

E:\examples\2>g++ -std=c++2b Listing2-1.cpp -o Listing2-1 |
E:\examples\2>Listing2-1 Exampleofsha256execution
---- The current State of the Block ----

[plock[€] binary: eleee1el hex y: @xeeeeee4s
[plock[1] binary: €1111€6@ hex y: ©x00000078
block[2] binary: 1160001 hex y: ©x@000ee61
block[3] binary: ©11€1101 hex y: @xe0eeee6d
block[4] binary: €1110000 hex y: ©x80000070
[plock[S] binary: €11@116@ hex y: ©@xeeeeee6c
[plock[6] binary: e11ee1e1 hex y: ©xeeeeeess
[plock[7] binary: 1101111 hex y: ©xeeeeeest
'block[S] binary: 1100110 hex y: @xeeeeeescs
'block[Q] binary: 111011 hex y: ©xeeeeee73
[plock[1@] binary: 01101000 hex y: ©x00000068
block[11] binary: ©1100001 hex y: 9x60000861
block[12] binary: ©0110010 hex y: ©x60000832
[plock[13] binary: ee11e1e1l hex y: ©xeeeeee3s
[plock[14] binary: ee11e11e hex y: 0x00000036
block[15] binary: @1100101 hex y: ©x@0000065
[plock[16] binary: e1111eee hex y: ©oxeeeeee78
[plock[17] binary: ©11ee101 hex y: ©x00000065
[plock[18] binary: €11eee11 hex y: ©xeeee0e63
[plock[19] binary: €111e161 hex y: ©xeeeeee7s
[plock[2@] binary: @11101ee hex y: oxeeeeee74
[plock[21] binary: e11e1€e1 hex y: exeeeeees9
lblock[22] binary: 01101111 hex y: exeeeeeesct
block[23] binary: ©110111@ hex y: ©xeeeeeece
block[24] binary: 10000000 hex y: oxooeeeese
!4196abed6c61c625136a186a759e481958c3894d22eebaaﬁd615b5471fe7fc8e
E:\examples\2>_

Figure 2-8. Example of SHA-25 execution

2NIST Hash Functions, https://csrc.nist.gov/projects/hash-functions
40

https://csrc.nist.gov/projects/hash-functions

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS
Listing 2-1. Source Code for Implementation of SHA256

#include <iostream> //** standard input/output library

#include <sstream> //** templates and types for interoperation
//** between flow buffers

and string objects

#include <bitset> //** storing bits library

#include <vector> //** for representing arrays as containers
#include <iomanip> //** for manipulation of the parameters
#include <cstring> //** for manipulation of the strings

using namespace std; //** for avoiding writing "std::"

//** ASCII string will be converted into a binary representation
vector<unsigned long> binaryConversion(const string);

//** for adding padding to messages and ensuring that they are
//** multiple of 512 bits
vector<unsigned long> addPadOf512Bits(const vector<unsigned long>);

//** We will change the n 8 bit blocks to 32 bit words
vector<unsigned long> resizingTheBlock(vector<unsigned long>);

//** will contain the actual hash value
string computingTheHash(const vector<unsigned long>);

//** variables and constants used during debugging
string displayAsHex(unsigned long);

void outputTheBlockState(vector<unsigned long>);
string displayAsBinary(unsigned long);

const bool displayBlockStateAddOne = 0;

const bool displayDistanceFrom512Bit = 0;

const bool displayResultsOfPadding = false;
const bool displayWorkVariablesForT = 0;

const bool displayTiComputation = false;

const bool displayT2Computation = false;

const bool displayTheHashSegments = false;

const bool displayWt = false;

41

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

//** defined in accordance with the NIST standard

#tdefine ROTRIGHT(word,bits) (((word) >> (bits)) | ((word) << (32-(bits))))
#define SSIGO(x) (ROTRIGHT(x,7) "~ ROTRIGHT(x,18) * ((x) »> 3))

#define SSIG1(x) (ROTRIGHT(x,17) ~ ROTRIGHT(x,19) ~ ((x) >> 10))

#define CH(x,y,z) (((x) & (y)) * (*(x) & (2)))

#define MAJ(x,y,z) (((x) & (y)) * ((x) & (2)) "~ ((y) & (2)))

//** in accordance with the latest updates of the NIST standard
//** we will replace BSIGO with EPO and BSIG1 with EPO in our
//** implementation

#define BSIGO(x) (ROTRIGHT(x,7) "~ ROTRIGHT(x,18) ~ ((x) »> 3))
#define BSIG1(x) (ROTRIGHT(x,17) * ROTRIGHT(x,19) * ((x) »> 10))

#define EPO(x) (ROTRIGHT(x,2) " ROTRIGHT(x,13) * ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) » ROTRIGHT(x,11) ~ ROTRIGHT(x,25))

/7** we will verify if the process of checking (testing) is enabled

//** by the missed arguments in the command line.

//** The steps are as follows:

//** (1) Take the ascii string and convert it into n 8 bit segments by

//** represents the ascii value of each independent character

//** (2) add paddings to the message in order to get a 512 bit long

//** (3) Take each 8 bit ascii value separately and convert it to 32

//** bit words and create a combination of them.

//** (4) Calculate the hash and obtain the vallue

//** (5) if we are doing test, take the result and compare it with//**
expected result

int main(int argc, char* argv[])

{

string theMessage = "";
bool testing = 0;

switch (argc) {
case 1:
cout << "There is no input string found. The test will
be run using random first three letters abc.\n";
theMessage = "abc";

42

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

testing = true;
break;
case 2:
if (strlen(argv[1]) > 55)
{
cout << "The string provided is biger than 55
characters in length. Enter a shorter string."”

<< " or message!\n";

return 0;
}
theMessage = argv[1];
break;
default:
cout << "There are too many items in the command line. ";
exit(-1);
break;

}

//** storing all the blocks
vector<unsigned long> theBlocksArray;

//** convert the message to a vector of strings by hiding it
//** represented it as an 8 bit variable
theBlocksArray = binaryConversion(theMessage);

//** add padd to it in order to get a full of 512 bits long
theBlocksArray = addPadOf512Bits(theBlocksArray);

//** create a separate combination of the 8 bit segments into
//** single 32 bit sections
theBlocksArray = resizingTheBlock(theBlocksArray);

//** compute the hash using computingTheHash function
string myHash = computingTheHash(theBlocksArray);

//** if testing is found on true the software app will execute
//** a self-check by checking if the hash value computed for
//** "abc" is equal to the expected hash

43

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

if (testing) {
const string theCorrectHashForABC =
"ba7816bf8f01cfead14140de5dae2223b00361a3961
77a9cb410ff61f20015ad";
if (theCorrectHashForABC.compare(myHash)!= 0) {
cout << "\tThe test did not occur with success!\n";
return(1); }
else {
cout << "\tTest has been done with success!\n";
return(0); } }

cout << myHash << endl;
return 0; }

//** the function purpose is to resize the blocks from 64 and 8 bit
//** to 16- and 32-bit sections. The function as input will take a
//** vector of individual 8 bit ascii values. As output, we will obtain a
//** vector with 32 bit words that are found within a combination of
//** ascii values.
vector<unsigned long> resizingTheBlock(vector<unsigned long>
input0f8BitAsciiValues)
{
vector<unsigned long>
outputOf32BitWordsCombinedAsAsciiValues(16);

//** parse all 64 sections using a 4 step and mergem them
//** accordingly
for(int i = 0; i < 64; i =1+ 4) {
//** create for beginning a big 32 bit section first
bitset<32> temporary32BitSection(0);

//** create a shifting of the blocks on their assigned
//** positions

temporary32BitSection = (unsigned long)
input0f8BitAsciiValues[i] << 24;
temporary32BitSection |= (unsigned long)
inputOf8BitAsciiValues[i + 1] << 16;

44

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

temporary32BitSection |= (unsigned long)
input0f8BitAsciivalues[i + 2] << 8;

temporary32BitSection |= (unsigned long)
inputOf8BitAsciiValues[i + 3];

//** set the new 32 bit word within the proper output of
//** the array location

output0f32BitWordsCombinedAsAsciiValues[i/4] =
temporary32BitSection.to ulong(); }

return outputOf32BitWordsCombinedAsAsciiValues; }

//** the function displays the contents of all the blocks as binary
//** format. The function is used only for debugging purposes.
void outputTheBlockState(vector<unsigned long>
vectorOfCurrentBlocks) {

cout << "---- The current State of the Block ----\n";

for (int i = 0; i < vectorOfCurrentBlocks.size(); i++) {

cout << "block[" << i << "] binary: " <«

displayAsBinary(vectorOfCurrentBlocks[i])

<« hex y: ox" <<
displayAsHex(vectorOfCurrentBlocks[i]) << endl; }}

//** the function will display in hex format the content of the
//** blocks.
string displayAsHex(unsigned long input32BitBlock) {

bitset<32> theBitSet(input32BitBlock);

unsigned number = theBitSet.to ulong();

stringstream theStringStream;

theStringStream << std::hex << std::setw(8) <<
std::setfill('0") << number;

string temporary;

theStringStream >> temporary;

return temporary; }

//** the function will show the content of the blocks in hex. We are
//**¥ using this function to avoid changing the stream from

45

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

//** hexa to dec and reversed as well.

string displayAsBinary(unsigned long input320rLessBitBlock) {
bitset<8> theBitSet(input320rLessBitBlock);
return theBitSet.to string(); }

//** based on the string, it will take the entire set of the
//** characters and converts them into ascii binary.
vector<unsigned long> binaryConversion(const string
inputOfAnyLength) {

//** the vector used to store all the ascii characters
vector<unsigned long> vectorBlockHoldingAsciiCharacters;

//** take each character and convert the ascii character to
//** binary representation
for (int i = 0; i < inputOfAnyLength.size(); ++i) {
//** create a temporary variable. Use it to store the 8
//** bit template for ascii value
bitset<8> bitSet0f8Bits(inputOfAnyLength.c_str()[i]);

//** template of 8 bit added into the block
vectorBlockHoldingAsciiCharacters.
push_back(bitSet0f8Bits.to ulong());}

return vectorBlockHoldingAsciiCharacters; }

//** get the ascii values stored as a vector in binary and add padding to
it to obtain a total of 512 bits.
vector<unsigned long> addPadOf512Bits(vector<unsigned long>
vectorBlockHoldingAsciiCharacters) {

//** you can keep the variables names as given in the NIST

//** for our implementation I have used my personal names for
//** variables to obtain a uniqueness of the code

//** the variable will store the length of the message in bits
int lengthOfMessageInBits =
vectorBlockHoldingAsciiCharacters.size() * 8;

int zeroesToAdd = 447 - lengthOfMessageInBits;

46

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

//** add another 8 bit block with the first bit being set to 1
if(displayBlockStateAddOne)
outputTheBlockState(vectorBlockHoldingAsciiCharacters);

unsigned long tiBlock = 0x80;
vectorBlockHoldingAsciiCharacters.push back(t1Block);

if(displayBlockStateAddOne)
outputTheBlockState(vectorBlockHoldingAsciiCharacters);
outputTheBlockState(vectorBlockHoldingAsciiCharacters);

//** we have 7 zeroes. We will need to subtract 7 from
//** zeroesToAdd
zeroesToAdd = zeroesToAdd - 7;

//** debug mode. Find how much we need to get close to 512 bit
if (displayDistanceFrom512Bit) {
cout << "lengthOfMessageInBits = " <<
lengthOfMessageInBits << endl;
cout << "zeroesToAdd =

<< zeroesToAdd + 7 << endl;//
Plus 7 so this follows the paper. }

//** debug mode
if (displayDistanceFrom512Bit)
cout << "adding " <«
zeroesToAdd/8 << " empty eight bit blocks!\n";

//** add blocks of 8 bit length that will contain zeros
for(int i = 0; i < zeroesToAdd/8; i++)
vectorBlockHoldingAsciiCharacters.push_back(0x00000000);

//** we are finding ourselves in 488 bits out 512 phase. Next
//** step is adding 1 in the binary representation to
//** form of eight bit blocks.
bitset<64> theBig64BlobBit(lengthOfMessageInBits);
if (displayDistanceFrom512Bit)
cout << "1 in a 64 bit binary blob: \n\t" <«
theBig64BlobBit << endl;

47

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

//** divide the 64 bit big into 8 bit segments
string big 64bit string = theBig64BlobBit.to string();

//** take the first block and push it to position 56

bitset<8> temp string holderi(big 64bit string.substr(0,8));

vectorBlockHoldingAsciiCharacters.
push_back(temp_string holderi.to ulong());

//** take the rest of the blocks with 8 bit length and push
for(int i = 8; i < 63; i=i+8) {
bitset<8>
temporaryStringHolder2(big 64bit string.substr(i,8));

vectorBlockHoldingAsciiCharacters.
push_back(temporaryStringHolder2.to ulong()); }

//** just show in the console everything to know what
//** is happening in this freakin code
if (displayResultsOfPadding) {
cout << "Current 512 bit preprocessed hash in binary: \n";
for(int i = 0; i <
vectorBlockHoldingAsciiCharacters.size(); i=i+4)
cout << i << ": " << displayAsBinary(vector
BlockHoldingAsciiCharacters[i]) <<
<< 1+ 1< ": " << displayAsBinary(vector
BlockHoldingAsciiCharacters[i+1]) << " "
K 1i+2<
BlockHoldingAsciiCharacters[i+2]) <<
<< 1+ 3 << ": " << displayAsBinary(vector
BlockHoldingAsciiCharacters[i+3]) << endl;

<< displayAsBinary(vector

cout << "Current 512 bit preprocessed hash in hex: \n";
for(int i = 0; i < vectorBlockHoldingAsciiCharacters.
size(); i=i+4)

cout << 1 <«
HoldingAsciiCharacters[i]) <<
<< 1+ 1< " " << "ox" + displayAsHex(vector
BlockHoldingAsciiCharacters[i+1]) <<

<< "ox" + displayAsHex(vectorBlock

48

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

<« 1+ 2<< " " << "ox" + displayAsHex(vectorBloc
kHoldingAsciiCharacters[i+2]) << " "
<< 1+ 3<< " "< "ox" + displayAsHex(vectorBloc

kHoldingAsciiCharacters[i+3]) << endl; }
return vectorBlockHoldingAsciiCharacters; }

//** the goal of the function is to compute the hash of the message

string computingTheHash(const vector<unsigned long>

blockOf512BitPaddedMessage)

{
//** the following words are from the NIST standard.
unsigned long constant0f32BitWords[64] = {
0x428a2198,0x71374491,0xb5c0fbcf,0xe9b5dbas,0x3956c25b,0x59f111f1,0
x923f82a4,0xab1c5ed5,0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0
x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,0xe49b69c1,0xefbes786,0x
0fc19dc6,0x240cal cc,0x2de92c6f,0x4a7484aa,0x5ch0a9dc,0x761988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,
0x06ca6351,0x14292967,0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x
650a7354,0x766a0abb,0x81c2c92e,0x92722c85,0xa2bfe8a1,0xa81a664b,0xc
24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,0x19
a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3, 0x4ed8aada,0x5b9
ccaqf,ox682e6ff3,0x748182ee,0x78a5636F,0x84c87814,0x8 cc70208,0x90be
fffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 };

//** the initial hash values

unsigned long static InitialHashValueFor32Bit 0 = 0x6a09e667;
unsigned long static InitialHashValueFor32Bit 1 = Oxbb67ae85;
unsigned long static InitialHashValueFor32Bit 2 = 0x3c6ef372;
unsigned long static InitialHashValueFor32Bit 3 = Oxa54ff53a;
unsigned long static InitialHashValueFor32Bit 4 = 0x510e527f;
unsigned long static InitialHashValueFor32Bit 5 = 0x9b05688c;
unsigned long static InitialHashValueFor32Bit 6 = 0x1f83d9ab;
unsigned long static InitialHashValueFor32Bit 7 = 0x5be0cd19;

unsigned long Word[64];

49

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

for(int t = 0; t <= 15; t++) {
Word[t] = blockOf512BitPaddedMessage[t] & OXFFFFFFFF;

if (displayWt)
cout << "Word[" << t << "]: Ox" <«
displayAsHex(Word[t]) << endl; }

for(int t = 16; t <= 63; t++) {
Word[t] = SSIG1(Word[t-2]) +
Word[t-7] + SSIGO(Word[t-15]) + Word[t-16];

Word[t] = Word[t] & OXFFFFFFFF;

if (displayWt)
cout << "Word[" << t << "]: " << Word[t]; }

unsigned long temporary 1;

unsigned long temporary 2;

unsigned long a = InitialHashValueFor32Bit o;
= InitialHashValueFor32Bit 1;
= InitialHashValueFor32Bit 2;
= InitialHashValueFor32Bit 3;
InitialHashValueFor32Bit 4;
= InitialHashValueFor32Bit 5;
= InitialHashValueFor32Bit 6;
= InitialHashValueFor32Bit 7;

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

>0 -+~ 0 Q N T QW
1

unsigned long

if(displayWorkVariablesForT)
cout << " A B C D !
<< "E F G H T1 T2\n";

for(int t = 0; t < 64; t++) {
//** according to the NIST Standard and Specification,
//** the BSIG1 is incorrect. We will replace it with EP1.
temporary 1 = h + EP1(e) + CH(e,f,g) +
constant0f32BitWords[t] + Word[t];
if ((t == 20) & displayT1Computation){
cout << "h: Ox" << hex << h << "

dec:" << dec << h
<< " sign:" << dec << (int)h << endl;
cout << "EP1(e): 0x" << hex << EP1(e) << " dec:"

50

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

<< dec << EP1(e) <«
<< endl;
cout << "CH(e,f,g): 0x" << hex << CH(e,f,g) <«
<< dec << CH(e,f,g) << " sign:" << dec
<< (int)CH(e,f,g) << endl;
cout << "constantOf32BitWords[t]: 0x" << hex <<
constantOf32BitWords[t] << " dec:" << dec
<< constantOf32BitWords[t] << " sign:" <«
dec << (int)constant0f32BitWords[t] << endl;
cout << "Word[t]: ox" << hex << Word[t]
<< " dec:" << dec << Word[t] << "
<< (int)Word[t] << endl;
cout << "temporary 1 = Ox" << hex << temporary 1
<< dec

sign:" << dec << (int)EP1(e)

dec:'

sign:" << dec

<< dec:

<< temporary 1 << << dec <<

(int)temporary 1 << endl; }

sign:’

//** according to the NIST Standard and Specification,
//** the BSIGO is incorrect. We will replace it with EPoO.
temporary 2 = EPO(a) + MAJ(a,b,c);

//** in order to get T2 we will display the variables
//** and operations
if ((t == 20) & displayT2Computation) {
cout << "a: 0x" << hex << a <« dec:" << dec << a
<« " sign:" << dec << (int)a << endl;
cout << "b: Ox" << hex << b << " << dec << b
<< " sign:" << dec << (int)b << endl;
cout << "c: Ox" << hex << c << " dec:" << dec << ¢
<« " sign:" << dec << (int)c << endl;
cout << "EP0(a): 0x" << hex << EP0(a) << " dec:"
<< dec << EP0(a) << " sign:" << dec << (int)EPo(a)
<< endl;
cout << "MAJ(a,b,c): 0x" << hex
<< MAJ(a,b,c) << " dec:"
<< dec << MAJ(a,b,c) <«

<< (int)MAJ(a,b,c) << endl;

dec:'

sign:" << dec

51

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

cout << "temporary 2 = Ox" << hex << temporary 2 << dec:" << dec <«
temporary 2 << " sign:" << dec << (int)temporary 2 << endl; }

//** according to the NIST standard

h =g;
g ="
f=e;

//** Get the guarantee that we are still using 32 bits

e = (d + temporary 1) & OXFFFFFFFF;
d=c;
c = b;
b = a;

//** Get the guarantee that we are still using 32 bits
a = (temporary 1 + temporary 2) & OXFFFFFFFF;

//** display the content of each of the variables from
//** above according to the NIST standard.
if (displayWorkVariablesForT) {

cout << "t= " <<t """
cout << displayAsHex (a) << " " << displayAsHex (b)
<< " " << displayAsHex (c) << " " << displayAsHex
(d) <« ™ " << displayAsHex (e) << " " << displayAsHex (f) << " " <«

displayAsHex (g) << << displayAsHex (h) << " " << endl; } }

//** display the content of each of the hash segments
if(displayTheHashSegments) {

cout << "InitialHashValueFor32Bit 0 = " << displayAsHex
(InitialHashValueFor32Bit 0) << " + " << displayAsHex (a) << " " <«
displayAsHex (InitialHashValueFor32Bit 0 + a) << endl;

cout << "InitialHashValueFor32Bit 1 = " << displayAsHex
(InitialHashvalueFor32Bit 1) << " + " <«
displayAsHex (b) << " " << displayAsHex
(InitialHashValueFor32Bit 1 + b) << endl;

cout << "InitialHashValueFor32Bit 2 = " << displayAsHex

(InitialHashValueFor32Bit 2) << " + " <«

displayAsHex (c) << << displayAsHex

52

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

(InitialHashValueFor32Bit 2 + c¢) << endl;
cout << "InitialHashValueFor32Bit 3 = " << displayAsHex
(InitialHashValueFor32Bit 3) << " + " <«
displayAsHex (d) << " " << displayAsHex
(InitialHashVvalueFor32Bit 3 + d) << endl;
cout << "InitialHashValueFor32Bit 4 = " << displayAsHex
(InitialHashValueFor32Bit 4) << " + " <«
displayAsHex (e) << " " << displayAsHex
(InitialHashValueFor32Bit 4 + e) << endl;
cout << "InitialHashValueFor32Bit 5 = " << displayAsHex
(InitialHashvalueFor32Bit 5) << " + " <«
displayAsHex (f) << " " << displayAsHex
(InitialHashValueFor32Bit 5 + f) << endl;
cout << "InitialHashValueFor32Bit 6 = " << displayAsHex
(InitialHashValueFor32Bit 6) << " + " <<
displayAsHex (g) << " " << displayAsHex
(InitialHashValueFor32Bit 6 + g) << endl;
cout << "InitialHashValueFor32Bit 7 = " << displayAsHex
(InitialHashValueFor32Bit 7) << " + " << displayAsHex
(h) << ™ " << displayAsHex (InitialHashValueFor32Bit 7
+ h) << endl;

}

//** for each hash add all the variables in order be sure that
//** we are still on the page with the 32 bit values

InitialHashValueFor32Bit 0 = (InitialHashValueFor32Bit 0 + a)
& OXFFFFFFFF;

InitialHashValueFor32Bit 1
& OXFFFFFFFF;

InitialHashValueFor32Bit 2
& OXFFFFFFFF;

InitialHashValueFor32Bit 3
& OXFFFFFFFF;
InitialHashValueFor32Bit 4 = (InitialHashValueFor32Bit 4 + e)
& OXFFFFFFFF;

InitialHashValueFor32Bit 5 = (InitialHashValueFor32Bit 5 + f)
& OXFFFFFFFF;

(InitialHashValueFor32Bit 1 + b)

(InitialHashvalueFor32Bit 2 + c)

(InitialHashValueFor32Bit 3 + d)

53

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

InitialHashValueFor32Bit 6
& OXFFFFFFFF;

InitialHashValueFor32Bit 7
& OXFFFFFFFF;

(InitialHashValueFor32Bit 6 + g)

(InitialHashvValueFor32Bit 7 + h)

//** add the hash section in one piece one after the other in
//** order to obtain the 256 bit hash
return displayAsHex(InitialHashValueFor32Bit 0) +
displayAsHex(InitialHashValueFor32Bit 1) + displayAsHex(InitialHashValue
For32Bit 2) + displayAsHex(InitialHashValueFor32Bit 3) + displayAsHex(
InitialHashValueFor32Bit 4) + displayAsHex(InitialHashValueFor32Bit 5) +
displayAsHex(InitialHashValueFor32Bit 6) +
displayAsHex(InitialHashValueFor32Bit 7);

Hash functions are commonly used for digital signatures and in data integrity as
well. A long message is generally hashed when dealing with digital signatures, and only
the hash value is signed. The group that receives the message then hash the message
received and check that the signature received is right for this hash value. Table 2-2 is
a classification of keyed cryptographic hash functions. Table 2-3 is a classification of
unkeyed cryptographic hash functions. Most functions are already implemented in C++
within the NIST or other trusted resources, such as CrypTool®.

Table 2-2. Keyed Cryptographic Hash Functions

Name Length of the tag Type References
BLAKE2 Arbitrary Keyed hash function with prefix-MAC [31][42]
BLAKE3 Arbitrary Keyed hash function with supplied initializing vector (IV) [32]

HMAC - - [33]

KMAC Arbitrary Based on Keccak [34][35]
MD6 512 bits Merkle tree with NLFSR [37]

PMAC - - [38]

UMAC - - [39]

3CrypTool, https://www.cryptool.org/en/
54

https://www.cryptool.org/en/

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

Table 2-3. Unkeyed Cryptographic Hash Functions

Name Length Type References
BLAKE-256 256 bits HAIFA structure [41] [40]
BLAKE-512 512 bits HAIFA structure [41] [40]

GOST 256 bits Hash [43]

MD2 128 bits Hash

MD4 128 bits Hash [44]

MD5 128 bits Merkle-Damgard construction [36] [45]

MD6 Up to 512 bits Merkle-tree NLFSR [37]
RIPEMD 128 bits Hash [46]
RIPEMD-128 128 bits Hash [46][47][48]
RIPEMD-256 - Hash

RIPEMD-160 160 bits Hash

RIPEMD-320 320 bits Hash

SHA-1 160 bits Merkle-Damgard construction [36] [61]
SHA-256 256 bits Merkle-Damgard construction [50][51][54]
SHA-384 384 hits [52][54]
SHA-512 512 bits [53][54]
SHA-224 224 hits Merkle-Damgard construction [55]

SHA-3 (Keccak) Arbitrary Sponge function [50] [56][57]
Whirlpool 512 bits Hash [58][59][60]

Case Studies

Caesar Cipher Implementation in C++23

This section gives the Caesar cipher implementation in C++23. The aim of this section is
to explain how the aforementioned mathematical foundations can be useful during the
implementation process and the advantages of understanding the basic mathematical

55

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

mechanisms behind the algorithms behind them. This book does not dwell on the
algorithm’s mathematical history. If you want to go deep into the mathematical history,
references [6-18] are recommended.

The encryption process used by the Caesar cipher can be represented as modular
arithmetic by first transforming the letters into numbers. For this, follow alphabet
A={A,...,.Z} =25 insuch away that A= 0, B=1, ..., Z = 25. The encryption of a letter x is
done by a shift » and mathematically can be described as follows.

E,(x)=(x+n)mod 26
The decryption is done similarly.
D, (x)=(x—n)mod 26

Let’s start the implementation of the algorithm (see Figure 2-9 and Listing 2-2).

E:\examples\2>g++ -std=c++2b Listing2-2.cpp -o Listing2-2 |

E:\examples\2>Listing2-2

Text : THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG
Shift: 4

Cipher: XLIUYMGOFVSARJISBNYQTWSZIVXLIPEDCHSK
E:\examples\2>

i

Figure 2-9. Execution of Caesar cipher
The application is very simple and easy to interact with.

Listing 2-2. Source Code for Caesar Cipher Implementation

#include <iostream>
using namespace std;

// This function receives text and shift and
// returns the encrypted text
string encrypt(string text, int s)

{

string result = "";

56

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

// traverse text

for (int i=0;i<text.length();i++)

{

// apply transformation to each character
// Encrypt Uppercase letters
if (isupper(text[i]))
result += char(int(text[i]+s-65)%26 +65);

// Encrypt Lowercase letters
else

result += char(int(text[i]+s-97)%26 +97);
}

// Return the resulting string
return result;

}

// Driver program to test the above function
int main()

{

Vigenére Cipher Implementation in C++23

The Vigenére cipher (see Figure 2-10 and Listing 2-3) is one of the classic methods
of encrypting alphabetic text using a sequence of different Caesar ciphers based on

string text="THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG";
int s = 4;

cout << "Text : " << text;

cout << "\nShift: " << s;

cout << "\nCipher: " << encrypt(text, s);

return O;

keyword keys. You can see it in some of the documentations as a type of polyalphabetic

substitution.

57

CHAPTER2 CRYPTOGRAPHY FUNDAMENTALS

E:\examples\2>g++ -std=c++2b Listing2-3.cpp -o Listing2-3 |

E:\examples\2>Listing2-3

Original Message: ThisisanexampleofvigenerecipherforApress
Encrypted Message: TWZWAKWRPZOYTLTFINACIYGFQGIEYIJXKVLRFQUWS
Decrypted Message: THISISANEXAMPLEOFVIGENERECIPHERFORAPRESS

E:\examples\2>

Figure 2-10. Vigenére cipher

A short algebraic description of the cipher can be given as follows. The numbers
are taken as numbers (A = 0, B = 1, etc.), and the addition operation is performed as
modulo 26. The Vigenére encryption E using K as the key can be written as follows.

C,=E((M,)=(M, +K;)mod 26

Decryption D using the key K can be written as follows.
M, =D, (C,;)=(C, - K,)mod 26

M = M,...M, is the message, C = C,...C, represents the ciphertext and K = K...K,
represents the key obtained by repeating the keyword [r/m] times, in which m
represents the keyword length.

Listing 2-3. Vigenére Source Code

#include <iostream>
#include <string>
using namespace std;
class Vigenere {
public:
//** represents the key
string key;

//** the constructor of the class
//** the chosen key
Vigenere(string chosenKey) {
for (int i = 0; i < chosenKey.size(); ++i) {

58

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

if (chosenKey[i] >= 'A" && chosenKey[i] <= 'Z")
this->key += chosenKey[i];
else if (chosenKey[i] >= 'a' 8& chosenKey[i] <= 'z")

this->key += chosenKey[i] + 'A" - 'a';
}
}
string encrypt(string t)
{

string encryptedOutput;
for (int i = 0, j = 0; i < t.length(); ++i) {
char c = t[i];
if (c>= '"a' 88 c <= "z")
c+='A" - 'a’';
else if (c < 'A" || ¢ > 'Z")
continue;
//** added 'A' to bring it in range
//** of ASCII alphabet [65-90 | A-Z]
encryptedOutput += (c + key[j] - 2 * 'A") % 26 + 'A’;
j=(j+1) % key.length();
}
return encryptedOutput;
}
string decrypt(string t) {
string decryptedOutput;
for (int i = 0, j = 0; i < t.length(); ++i) {
char ¢ = t[i];
if (c>= "a' & c <= "z")
c+="'A" - 'a';
else if (c < 'A" || ¢ > 'Z")
continue;
//** added 'A' to bring it in range of
//** ASCII alphabet [65-90 | A-Z]

decryptedOutput += (c - key[j] + 26) % 26 + 'A’;
j=(j+ 1) % key.length();

59

CHAPTER 2

CRYPTOGRAPHY FUNDAMENTALS

return decryptedOutput;}};
int main() {
Vigenere myVigenere("APRESS! WELCOME");
string originalMessage

string enc

="ThisisanexampleofvigenerecipherforApress";

myVigenere.encrypt(originalMessage);

string dec = myVigenere.decrypt(enc);
cout << "Original Message: "<<originalMessage<< endl;

cout << "Encrypted Message:
cout << "Decrypted Message:

<< enc << endl;

<< dec << endl;

Conclusion

This chapter introduced the fundamentals of cryptographic primitives and mechanisms.

It covered the following.

Security and information security objectives

The importance of one-to-one, one-way, and trapdoor one-way
functions in designing and implementing cryptographic functions

Digital signatures and how they are working
Public-key cryptography and how it impacts developing applications
Hash functions

Case studies illustrating the basic notions that you need to know
before advancing to high-level cryptographic concepts

Chapter 3 goes through the basics of probability theory, information theory, number

theory and finite fields. It discusses their importance and how they are related during the

implementation already existent in C++ and how they are useful.

60

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

References

[1]. Simon Singh. The Code Book: The Secrets Behind Codebreaking, 2003.

[2]. W. Diffie and M. Hellman. 2006, New directions in cryptography. IEEE Trans.
Information Theory. 22, 6 (September 2006), 644-654. DOI: https://doi.
0rg/10.1109/TIT.1976.1055638.

[3]. R.L.Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications ACM, vol. 21, no.
2, pp. 120-126, 1978.

[4]. ElGamal T., A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakley G.R., Chaum D. (eds) Advances in Cryptology.
CRYPTO 1984. Lecture Notes in Computer Science, vol. 196. Springer, Berlin,
Heidelberg.

[5]. ISO/IEC9796-2:2010 - Information Technology - Security Techniques - Digital
Signature schemes giving message recovery. Available online: https://www.
iso.org/standard/54788.html.

[6]. Bruce Schneier and Phil Sutherland. 1995. Applied Cryptography: Protocols,
Algorithms, and Source Code in C (2nd. ed.), ISBN: 978-0-471-12845-8. John
Wiley & Sons, Inc., USA.

[7]. Stallings, William, and William Stallings. Cryptography and Network Security:
Principles and Practice. Upper Saddle River, N.J: Prentice Hall, 1999. Print.

[8]. Douglas R. Stinson. 1995. Cryptography: Theory and Practice (1st. ed.), ISBN:
978-0-8493-8521-6, CRC Press, Inc., USA.

[9]. Koblitz, Neal. A Course in Number Theory and Cryptography. New York:
Springer-Verlag, 1994. Print.

[10]. Koblitz, Neal, and A J. Menezes. Algebraic Aspects of Cryptography,
1999. Print.

[11]. Goldreich, Oded. Foundations of Cryptography: Basic Tools. Cambridge:
Cambridge University Press, 2001. Print.

[12]. Goldreich, Oded. Modern Cryptography, Probabilistic Proofs and
Pseudorandomness. Berlin: Springer, 1999. Print.

[13]. Luby, Michael G. Pseudorandomness and Cryptographic Applications.
Princeton, NJ: Princeton University Press, 1996. Print.

[14]. Schneier, Bruce. Secrets and Lies: Digital Security in a Networked World.

New York: John Wiley, 2000.

61

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://www.iso.org/standard/54788.html
https://www.iso.org/standard/54788.html

CHAPTER 2

62

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].
[24].
[25].

[26].
[27].
[28].
[29].
[30].
[31].

[32].

CRYPTOGRAPHY FUNDAMENTALS

Peter Thorsteinson and Arun Ganesh, .NET Security and Cryptography.
Prentice Hall Professional Technical Reference, 2003.

Adrian Atanasiu, Criptografie (Cryptography) - Volume 1, Publisher House:
InfoData, 2007, ISBN: 978-973-1803-29-6, 978-973-1803-16-6. Available in
Romanian Language.

Adrian Atanasiu, Protocoale de Securitate (Security Protocols) -

Volume 2, Publisher House: InfoData, 2007, ISBN: 978-973-1803-29-6,
978-973-1803-16-6. Available in Romanian Language.

Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. 1996.
Handbook of Applied Cryptography (1st. ed.). CRC Press, Inc., USA, ISBN:
978-0-8493-8523-0.

Namespace System.Security.Cryptography, https://docs.microsoft.
com/en-us/dotnet/api/system.security.cryptography?view=netfram
ework-4.8.

Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange,
Kim Nguyen, and Frederik Vercauteren. 2012. Handbook of Elliptic and
Hyperelliptic Curve Cryptography, Second Edition (2nd. ed.). Chapman &
Hall/CRC.

OpenPGP Library for .NET. Available online: https://www.didisoft.com/
net-openpgp/

Bouncy Castle .NET. Available online: http://www.bouncycastle.org/
csharp/.

Nethereum. Available online: https://github.com/Nethereum.

Botan. Available online: https://botan.randombit.net/.

Cryptlib. Available online: https://www.cs.auckland.ac.nz/~pgut001/
cryptlib/.

Crypto++. Available online: https://www.cryptopp.com/.

Libgcrypt. Available online: https://gnupg.org/software/libgcrypt/.
Libsodium. Available online: https://nacl.cr.yp.to/.

Nettle. Available online: https://www.lysator.liu.se/~nisse/nettle/.
OpenSSL. Available online: https://www.openssl.org/.

Guo J., Karpman P, Nikoli¢ I., Wang L., Wu S. (2014) Analysis of BLAKE2. In:
Benaloh J. (eds) Topics in Cryptology - CT-RSA 2014. CT-RSA 2014. Lecture
Notes in Computer Science, vol. 8366. Springer, Cham.

Blake3. Available online: https://github.com/BLAKE3-team/BLAKE3/.

https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=netframework-4.8
https://www.didisoft.com/net-openpgp/
https://www.didisoft.com/net-openpgp/
http://www.bouncycastle.org/csharp/
http://www.bouncycastle.org/csharp/
https://github.com/Nethereum
https://botan.randombit.net/
https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
https://www.cryptopp.com/
https://gnupg.org/software/libgcrypt/
https://nacl.cr.yp.to/
https://www.lysator.liu.se/~nisse/nettle/
https://www.openssl.org/
https://github.com/BLAKE3-team/BLAKE3/

[33].

[34].

[35].

[36].

[37].

(38].

[39].
[40].

[41].

[42].

[43].
[44].

[45].
[46].
[47].
[48].
[49].
[50].

[51].
[52].

CHAPTER 2 CRYPTOGRAPHY FUNDAMENTALS

H. Krawczyk, M. Bellare, R. Canetti - HMAC: ekyed - Hashing for Message
Authenticatio, RFC 2104, 1997.

API KMAC. Available online: https://www.cryptosys.net/manapi/api_
kmac.html.

NIST Special Publication 800-185, SHA-3 Derived Functions: cSHAKE, KMAC,
TupleHash and ParallelHash, John Kelsey, Shu-jen Chang, Ray Perlner,
National Institute of Standards and Technology, December 2016.

I.B. Damgard, A design principle for hash functions, LNCS 435 (1990),

pp. 516-527.

Ronal L. Rivest, The MD6 hash function. A proposal to NIST for

SHA-3. Available online: http://groups.csail.mit.edu/cis/md6/
submitted-2008-10-27/Supporting Documentation/md6é_report.pdf.
PMAC. Available online: https://web.cs.ucdavis.edu/~rogaway/ocb/
pmac.htm.

UMAC. Available : http://fastcrypto.org/umac/.

BLAKE-256. Available : https://docs.decred.org/research/blake-256-
hash-function/.

Biham, Eli; Dunkelman, Orr (24 August 2006). A Framework for Iterative
Hash Functions - HAIFA. Second NIST Cryptographic Hash Workshop - via
Cryptology ePrint Archive: Report 2007/278.

BLAKE?2 Official Implementation. Available online: https://github.com/
BLAKE2/BLAKE2.

GOST. Available online: https://tools.ietf.org/html/rfc5830.

Roland L. Rivest, The MD4 message digest algorithm, LNCS, 537, 1991,
pp. 303-311.

Roland L. Rivest, The MD5 message digest algorithm, RFC 1321, 1992.
RIPEMD-128. Available online:
https://homes.esat.kuleuven.be/~bosselae/ripemd/rmd128.txt.
RIPEMD-160. Available online:
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html.
RIPEMD-160. Available online: https://ehash.iaik.tugraz.at/wiki/
RIPEMD-160.

Sponge and Duplex Construction.

Available online: https://keccak.team/sponge duplex.html.

63

https://www.cryptosys.net/manapi/api_kmac.html
https://www.cryptosys.net/manapi/api_kmac.html
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf
https://web.cs.ucdavis.edu/~rogaway/ocb/pmac.htm
https://web.cs.ucdavis.edu/~rogaway/ocb/pmac.htm
http://fastcrypto.org/umac/
https://docs.decred.org/research/blake-256-hash-function/
https://docs.decred.org/research/blake-256-hash-function/
https://github.com/BLAKE2/BLAKE2
https://github.com/BLAKE2/BLAKE2
https://tools.ietf.org/html/rfc5830
https://homes.esat.kuleuven.be/~bosselae/ripemd/rmd128.txt
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://ehash.iaik.tugraz.at/wiki/RIPEMD-160
https://ehash.iaik.tugraz.at/wiki/RIPEMD-160
https://keccak.team/sponge_duplex.html

CHAPTER 2

64

[53].

[54].

[55].

[56].

[57].

[58].

[59].

[60].

[61].

[62].

[63].

CRYPTOGRAPHY FUNDAMENTALS

Henri Gilbert, Helena Handschuh: Security Analysis of SHA-256 and Sisters.
Selected Areas in Cryptography 2003: pp175-193.

SHA256 .NET Class. Available online: https://docs.microsoft.com/en-
us/dotnet/api/system.security.cryptography.sha256?view=netfram
ework-4.8.

SHA384 .NET Class. Available online: https://docs.microsoft.com/en-
us/dotnet/api/system.security.cryptography.sha384?view=netfram
ework-4.8.

SHA512 .NET Class. Available online: https://docs.microsoft.com/en-
us/dotnet/api/system.security.cryptography.sha512?view=netfram
ework-4.8.

Descriptions of SHA-256, SHA-384, and SHA-512. Available online: http://
www. iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf.

A 224-bit One-way Hash Function: SHA 224. Available online: http://www.
iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf.
Hernandez, Paul (5 August 2015). “NIST Releases SHA-3 Cryptographic Hash
Standard.”

Dworkin, Morris J. (4 August 2015). “SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions.” Federal Inf. Process. STDS. (NIST
FIPS) - 202.

Paulo S. L. M. Barreto (2008-11-25). “The WHIRLPOOL Hash Function.
Archived from the original on 2017-11-29. Retrieved 2018-08-09.

Whirlpool C# Implementation. Available online: http://csharptest.net/
browse/src/Library/Crypto/WhirlpoolManaged.cs.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, Finding Collisions in the Full
SHA-1, Crypto 2005.

https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha256?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha256?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha256?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha384?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha384?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha384?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha512?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha512?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha512?view=netframework-4.8
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf
http://csharptest.net/browse/src/Library/Crypto/WhirlpoolManaged.cs
http://csharptest.net/browse/src/Library/Crypto/WhirlpoolManaged.cs

CHAPTER 3

Mathematical Background
and Its Applicability

Mathematics is an important element of cryptography for many reasons. For example,
many cryptographic algorithms produce unique and safe keys using mathematical
concepts such as number theory, algebra, and probability theory. On the other hand,
mathematics ensures that data remain encrypted and secure, as any attempt to break an
algorithm must use math to identify weaknesses or vulnerabilities. Because its concepts
are employed to build and apply algorithms, mathematics facilitates developing novel
cryptographic protocols. For example, public key cryptography relies on mathematical
problems that are thought difficult to solve, such as factorization and the discrete
logarithm, making it difficult for an attacker to crack the encryption.

Similarly, symmetric key cryptography employs mathematical functions such as
block ciphers and hash functions to ensure that only someone with the right key can
decrypt the encrypted data.

Mathematics is the foundation for cryptography and its applications, making it a
critical component of any encryption technique. This chapter discusses the importance
of probability theory and its tools for modern cryptography. It shows how the elements
and notions from probability theory can be implemented in real-life applications and
programs and explains the most important steps that a professional cryptographer
follows in implementing cryptographic algorithms.

The applications of probability theory to cryptography represent one of the
challenging sides of cryptography and cryptanalysis. Between 1941 and 1942, Alain
Turing (1912-1954) wrote the paper The Applications of Probability to Cryptography,'
which was released by Government Communications Headquarters (GCHQ) to the

!The Applications of Probability to Cryptography, https://arxiv.org/abs/1505.04714.
65

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_3

https://arxiv.org/abs/1505.04714
https://doi.org/10.1007/978-1-4842-9450-5_3

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

National Archives, HW/25/372. The paper written by Alan Turing describes some of
the methods with application for probability theory for cracking the codes. He started
his paper with the Vigenere cipher. Alan Turing brought proofs for the practical side by
introducing and designing a unique method, its goal being to hide the entire complexity
of mathematical apparatus in cryptography, reducing the process to a simple exercise
using regular addition and trial and error. The tools introduced by him in the paper were
logarithms and probability. It was necessary to understand how the cipher worked to
fully understand how the tools were applied.

The concepts introduced in this chapter help practitioners understand basic
mathematics to give a full appreciation to the solutions developed later.

Each mathematical concept has a quick presentation of the equations and
mathematical expressions used during the implementation of the algorithms, providing
examples of implementation in C++. The implementations are presented as case studies,

counted from 1 to 10.

Probabilities

Probability theory is a key component in cryptography, as it helps to generate secure
encryption keys by providing a greater sense of randomness. This is achieved by
introducing a degree of uncertainty, which helps to make it difficult and time-consuming
for a hacker to guess the correct encryption key. Probability theory is also used to assess
the likelihood of a given encryption key being guessed or broken, enabling organizations
to monitor and adjust their levels of security accordingly.

Overall, probability theory helps to strengthen cryptography by providing a
greater sense of randomness and unpredictability. For example, in symmetric key
cryptosystems, the system's security depends on the key's randomness. Probability
theory could be utilized to evaluate the distribution of keys and the probability that an
attacker can guess the correct key. Probability theory is used in public key cryptography
to evaluate the security of mathematical problems that are the foundation of encryption,
such as factoring big integers.

This section presents the main concepts, giving the most appropriate definitions
of experiment, probability distribution, event, complementary event, and mutually

2 Alan Turing Wartime Research Papers Released by GCHQ, https://discovery.
nationalarchives.gov.uk/details/r/C11510465

66

https://discovery.nationalarchives.gov.uk/details/r/C11510465
https://discovery.nationalarchives.gov.uk/details/r/C11510465

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

exclusiveness. The definitions are given so that the professionals find the intersection
between theory and practice in a very fashionable and easy way to follow. The concepts
described in this chapter are helpful to having a clear understanding of the basics

of cryptographic and cryptanalysis mechanisms and how they are projected using
probabilities [1].

Definition 3.1 [1]. An experiment can be seen as a procedure producing one of the
mentioned outcomes. Each of the outcomes is individual. The ones that are possible are
called simple events. The whole set formed out of the possible outcomes is well known
as the sample space.

The following discusses discrete sample spaces that have limited possible outcomes.
The simple events of a sample space are written as S, labeled sy, s,, ..., s,.

Definition 3.2 [1]. The probability distribution K over S is defined by a sequence of
numbers kj, k, ..., k, > 0, and the sum of those numbers is equal to 1 (k; + k, + ... + k, = 1).
The number o, can be interpreted as the probability of g This is the outcome (result) of
the processing experiment.

Definition 3.3 [1]. The event E represents a subset of the sample space S. In this
situation, the probability that event E will occur denoted as P(E), is defined as the sum
of the probabilities o; for all simple events g; that belong to E. If g; € S, P({s}) is simply
denoted as P(s;).

Definition 3.4 [1]. Let’s consider E as an event, and the complementary event is
defined as being the set of simple events that do not belong to E, denoted as E .

Demonstration 3.1 [1]. If E C Srepresents an event, the following should be
considered.

e 0<P(E) <1.Inaddition, P(S) = 1 and P(¢) = 0, where ¢ represents an

empty set.
« P(E)=1-P(E).
o Iftheresults in S are just as likely, we can consider P(E) :% :

Definition 3.5 [1]. Consider E, and E,, two mutually exclusive events. They are
mutually exclusive if P(E, (] E,) = 0. The showing nature of one or two events will have
the chance to exclude the case that others have the possibility of taking place.

67

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Definition 3.6 [1]. Take as an example the next two events, E, and E,.
o P(E) < P(E,)ifE, C P(E,).

e P(E,UE,) + P(E,nE,) = P(E,) + P(E,). Accordingly, if E, and E, are
considered mutually exclusive, then the following expression takes
place P(El U Ez) = P(El) + P(Eg).

Conditional Probability

Definition 3.7 [1]. Let’s consider E; and E, as two events, with P(E,) > 0. The conditional
probability for E, to give E, is written as P(E,| E,) and is expressed as follows.

p(sE,)= PN

P(E,)

P(E,| E,) measures the probability of how event E, takes place, given that E, has
occurred.

Definition 3.8 [1]. Consider E, and E, as two events. Their relationship is one of
independency if P(E1 (| E,) = P(E,)P(E,).

Definition 3.9 (Bayes’ Theorem) [1]. If we have two events E, and E, with
P(E,) >0, then

-

Random Variables

Let’s consider a sample space S that has the distribution probability P.
Definition 3.10 [1]. Let X be a random variable. Declare a function that is applied on
S for the set of real numbers. For each event s; € S, X there is a real number assigned X(s;).
Definition 3.11 [1]. Let X be the random variable on S. The mean or expected value of
Xis defined as follows.

E(X):ZX(Si)P(Si)

s; €8

68

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

For C++ implementation of the mean or expected value, refer to Case Study 3:
Computing the Mean of Probability Distribution.

Definition 3.12 [1]. Consider X to be a random variable on S. In this case,
the mean can be also expressed as follows:

E(X)=)x-P(X=x)

xeR

Definition 3.13 [1]. Let’s consider the following random variables on S: X}, X, ..., X,,..
The following are real numbers: a,, a,, ..., a,, then the following expression needs to be
satisfied.

E(é“aiX,) - g:aiE(Xi)

Definition 3.14. Let’s consider X the random variable. The variance of X of mean y is
defined by the nonnegative number that is expressed by

Var(X)=E((X -)’

For C++ implementation of the mean or expected value, refer to Case Study 4:
Computing the Variance.

The standard deviation of X is defined by the nonnegative square root of Var(X).

For C++ implementation of the mean or expected value, refer to Case Study 5:
Computing the Standard Deviation.

Birthday Problem

Definition 3.15 [1]. Consider two positive integers a, b with a > b, where the number m®
is defined as follows.

m" =m(m-1)(m-2)...(m-n+1)

Definition 3.15 [1]. Consider two nonnegative integers a, b with a > b. The Stirling

number of the second kind is represented and noted as {Z} , is expressed as follows.

69

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

(igerty

0
The case of {O =1 is considered an exception.

Demonstration 3.16 [1]. As an example, consider the classical occupancy problem
by illustrating our example by showing the example with an urn that contains a balls. The
balls are numbered (or labeled) with 1 to m. Let’s imagine a scenario in which b balls are
being extracted from the urn one at a time and being replaced at the same time, with their
numbers being listed. The chance (probability) for [different balls to have been drawn is

1
B (a,bl)= {?}%,1 <I<b

The birthday problem represents a special case of the occupancy problem.

Demonstration 3.17 [1]. Consider the birthday problem, where we have a jar with a
balls numbered from 1 to a. Assume that a specific number of balls, k, are extracted from
the urn one at a time, having them replaced, with their numbers listed.

Case 3.17.1 [1]. Consider the probability of at least one coincidence, such as a ball
drawn at least twice from the urn, as follows.

(0
P,(a,h)=1-B(a,hh)=1-2—1<h<m
a

Case 3.17.2 [1]. Let’s consider h the number of balls extracted from the jar. If
h= O(\/E) and a — oo, then the following expression takes place.

P,(a,h)— l—exp(—h(Z;I) +o(%n ~ 1—exp(—£}

The demonstration explains why the probability distribution is known and the

birthday surprise or birthday paradox. The probability that at least 2 people in a room
with 23 people have the same birthday is P,(365,23) ~ 0.507, which is surprisingly large.
The quantity P,(365, k) increases as h increases; for example, P,(365,30) ~ 0.706.

For C++ implementation of the birthday paradox, refer to Case Study 6: Birthday
Paradox.

70

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Information Theory

Because it provides a mathematical framework for quantifying information and
assessing a system's entropy or randomness, information theory is fundamental for
cryptography. Information theory is used in cryptography to calculate how much
information an attacker may gain from an encrypted communication and how much
randomness is necessary to ensure the security of a cryptographic system. For example,
information theory may be used to evaluate the entropy of random number generators,
which are utilized in many cryptographic systems for generating keys.

Therefore, the security of the system can be analyzed, and whether the keys are
sufficiently random to prevent attackers from guessing the proper key by estimating
the entropy of the generator can be checked. Information theory is also used to assess
the security of encryption methods and calculate the minimum key length necessary to
achieve a specific degree of security.

Furthermore, information theory provides a method for computing the quantity of
information revealed by a cryptographic system. Information theory, for example, can
be used to evaluate the information released by a ciphertext or side channel attacks such
as timing attacks or power analysis. This information may be used to improve system
security and uncover possible flaws.

Entropy

Let’s denote with X a random variable that takes on a finite set of value x;, x,, ..., x,,, with
the probability P(X = x;) = p;, where 0 < p; < 1 for each i, 1 < i < n, in which the following
sum expression takes place.

Zpi =1
i-1

Additionally, let’s declare Y and Z random variables that take a finite set of values [1].

The entropy of A is defined as a mathematical measure that is characterized as the
amount of information that is provided by an observation o.

Definition 3.18 [1]. Let’s denote A as a random variable. The entropy or uncertainty
of A is defined by the following expression.

m m 1
H(A)==2_p,lgp;= Zvﬂg[—]
= =1 p;

71

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY
Through convention,

p:-lgp; :pi'lg(ijzor ifp;=0

1

Definition 3.19 [1][5]. Let’s consider A and B, two random variables. The joint
entropy is defined by the following expression.

H(A,B)=) P(A=a,B=b)lg(P(A=a,B=b))

a and b go through all the values within the random variables, A and B.
Definition 3.20 [1]. Let’s consider the following two random variables A and B, and
suppose that the conditional entropy of A given B = m is expressed as

H(AB=v)=-) P(A=m|B=v)Ilg(P(A=m|B=v))

m goes through all over the values within the random variable A. In this case, the
conditional entropy of A given B, also called the equivocation of B about 4, is declared as

H(AB)= ;P(B =m)H(AB=m)

m (an index) goes through all the values of B.

Number Theory

Number theory is very important in cryptography because many cryptographic
techniques are based on mathematical problems addressed in number theory. Number
theory also secures other cryptographic techniques, such as elliptic-curve cryptography.
Additionally, techniques of number theory may be used to produce random prime
numbers. Number theory also serves as a foundation for examining the security of
cryptographic systems, such as by offering a method for studying key distribution and
measuring the entropy of random number generators.

72

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Integers

Starting from the idea that a set of integers {..., —3,-2,-1,0, 1, 2, 3, ...} is represented by
the symbol Z, the following definitions occur.

Definition 3.21 [1]. Let’s assume that we have two integers, x and y. Start from
the idea that x divides y if there exists an integer d such that y = x - d. If x is dividing y,
thenx|y.

Definition 3.22 (Division algorithm for integers) [1]. Consider two integers, x and
ywith y > 1; then, we have an ordinary long division of x by y that holds the integers guot
(quotient) and rem (remainder) in such a way that

X =qout -y +rem, where0 <rem<y

Definition 3.23 [1]. Consider d as an integer. Note that the common divisor of x and y
existsifd | xand d | y.

Definition 3.24 [1]. Assume that we have nonnegative integer e. The nonnegative
integer e is known as the greatest common divisor (gcd) of the integers x and y. Note it as
e= gcd (x,y) if

a. eisacommon divisor xand y
b. d|xandd|y,thend]|e

Definition 3.25 [1]. Assume that we have nonnegative integer e. The nonnegative
integer e is the least common multiple (Icm) of integers x and y. Note it as e = Icm (x,y) if

a. x|eandy|e

b. x|dandx|d,thene|d

Algorithms InZ

Let’s consider two nonnegative integers, a and b, with a < n. Note that the number

of bits from the binary representation of » is represented as |lg n| + 1. This value is
approximated by lgn. The number of bit operations related to the four basic operations
for integers is using the classical algorithms, as shown in Table 3-1.

73

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Table 3-1. The Bit Complexity of the Basic Operation inZ

Operation Bit complexity
Additiona + b O(lga + Igb) = O(lgn)
Subtractiona — b O(lga + Igb) = O(lgn)
Multiplicationa - b O((lga)(lgb)) = O((Igny?)
Divisiona=q- b+ r O((lgq)(lgb)) = O((lgny?)

Definition 3.26 [1]. The integers a and b are positive numbers with a > b, then we
have gcd(a, b) = gcd (b, a mod b).

Algorithm 3.27 [1]. Euclidean algorithm for computing gcd for two integers
INPUT: aand b, two non— negative integers with respect for a>b

OUTPUT : thegcd

1. whileb # 0 then
1.1. Setr —«amodb, a<~ b,b<r
2. Return (a)

The Euclidean algorithm can be extended so that it does not only yield the gcd of two
integers a and b but also integers x and y, which satisfy ax + by = d.

Algorithm 3.28 [1]. Pseudocode for extended Euclidean algorithm
INPUT : xand y,non—negative numbers with the following conditiona >b

OUTPUT : h=gcd(x,y)and integers w,zwhich satisfy xw + yz=h

1. ify=0then

h<x
w<«1

z<0

return(h,w,z)
2. declare and initialize w, < 1, w; < 0,2z, < 0,z; < 1

74

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

3. whiley > 0 then

3.1. quotient < hd
y

remainder < x —quotient - y

w < w, —quotient-w, ;z < z, —quotient-z,
32. x<y

y < remainder

w, < w,

w, < w

z, <z,

z, <z
4, Seth —x, W« W,, Z < 2,
return(h,w,z)

Case Study 7: (Extended) Euclidean Algorithm provides an example of an
implementation using C++ for both algorithms—Euclidean and the extended Euclidean.

Integers Modulo n

Let’s consider p a positive integer.
Definition 2.30 [1]. Let i and j be two integers. We allege that g is congruent to j
modulo q. The notation used is

i=j(mod q), if g will divide(i — j)

q is called the modulus of congruence.

Definition 3.31 [1]. Be n € Z,. The multiplicative inverse of n modulo g is
represented by an integer x € Z, in such a way that n x = 1 (mod q). If there is an n that
exists, then n is unique, and we state that n is invertible or a unit. The inverse of n is

noted asn".

75

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Case Study 8: Computing the multiplicative inverse under modulo g gives a C++
implementation of the multiplicative inverse under modulo g.

Definition 3.32. Chine Remainder Theorem (CRT) [1]. The integers n,, n,, ...,
n; represent a pairwise (occurring in pairs) that is relatively prim. Let’s consider the
following system formed out of simultaneous congruence.

j=v, (modg,)

j=v, (modg,)

I=v, (modg,)

It is a system that has a unique solution modulo, g= g, 8- &
Case Study 9: Chinese Remainder Theorem provides a C++ implementation of the
Chinese Remainder Theorem.

Definition 3.33. Gauss’s Algorithm [1]. As you saw in the Chinese Remainder
Theorem the solution y for concurrent congruence may be calculated as
y= Zb ‘R,-L, mod g, where R; = g/q;, and L, =R, mod q,. The listed operations can be
performed in O((Igq)?) bit operations.

Algorithms Z,,

Be a positive integer m. As you have seen, the elements of Z,, is positive, then

xX+y, ifx+y<q,

dqg=
(x+y)modq {x+y—q, ifx+y2

Algorithm 3.34 [1]. Pseudocode for computing the multiplicative inverses inZm
INPUT: xeZ,

OUTPUT: x' mod m

76

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

1. Use Extended Euclidean algorithm and find the
integers w and z such that xw + nz = h, where h = gcd (x, n)

2. Ifh> 1, we will have x™' mod q which will not exist. Else, return (w).
Algorithm 3.35 [1]. Repeated square-and-multiply algorithm for exponentiation in Z,,
INPUT : xeZ,,,and integer 0 <t <muwhose binary representation ist = th 27,
j=0

OUTPUT: x' mod m

1. Sety« 1.Ift=0then return(y)
2. SetC«x
3. Ifty=1thensety < x
4. Forjfrom1tokdo:
4.1. SetC+ C*modm
4.2. Ift;=1thensety < C-y mod m

5. return(y)

The Legendre and Jacobi Symbols

The Legendre symbol represents the perfect tool for this purpose to check if an integer is
a quadratic residue in a specific modulo.
Definition 3.36 [1]. Be g an odd prime and x an integer. The Legendre symbol,

denoted as (fj , is defined as follows.
q
0, ifqg x
x .
[—J =41, ifxeWw,.
-1, if xe I/Vq
Property 3.37. Properties of the Legendre Symbol [1]. The following properties
are considered. The following properties are known as the properties of the Legendre

symbol. For the following properties, consider m to be an odd prime. Let’s declare

77

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

two integers X, y € Z. The next properties specific to the Legendre symbol are listed as
follows.

m-1 -1 =
1. (i)sx (modm). In particular, (ij=1 and (j:(_l) :
m

m m

Since -1 € W,,if m=1(mod 4) and -1eW,, if m = 3 (mod 4).

2

2. (ﬂj =(£j[lj Sinceif X Z; , then (x_j =1.

m m)\ m m
3. Ifx=y(mod m), then (ij =(1J

m m

2 (m*1) 2
4. (—j =(-1) & . Since (—j =1 ifm=1or7(mod8), and

m m

m
5. If mrepresents an odd prime distinct from p,

CICRES

The Jacobi symbol represents a generalization of the Legendre symbol for integers 7,
which are not odd and are not necessarily prime.

2
(_j:—l ifm=3or5(mod8).

Definition 3.38. Jacobi Definition [1]. Let m > 3 represent an odd with a prime
factorization as follows.

— gl p,h h;
m=v"v,*...v;

The Jacobi symbol [i) has the following expression.
m

FHET RS -G

Consider that if n is prime, the Jacobi symbol is the Legendre symbol.

78

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Property 3.39. Jacobi Symbol Properties [1]. Consider x > 3 and y > 3 as odd

integers, and i, j € Z. The Jacobi symbol has the following properties.

LJ =0,1,0or —1. Moreover, (LJ =0 ifand only if gcd(i, y) # 1.
y y

Elz(iJ(iJ .Hence, if ieZ, , then [1]:1.
v) v \y y
L)L)

) \y\x)
smimnsa ()4

i=j(mody), then y v

-1 G- 1 1
—|=(-1) 2 . Hence, (—]zl ify=1(mod 4), and (—)z—l

ify= (3 mod 4).

2 Vol
[—j=(—1) 8 . Hence, (gjzl ify=1or7(mod8), and (ng—l
y y y

ify=3or5 (mod 8).

(x=1)(y-1) X
(f] = (Z)(—l) 4+, In other words, [—j = (Zj unless both x
y X y X

x
and y are congruent to 3 modulo 4, in which case [;J = _(X) .

X

Algorithm 3.40. Pseudocode of Jacobi Symbol. Pseudocode for Legendre symbol [1]
JACOBI (h,k)

INPUT: oddinteger k>3 and an integer h,0<h<k

OUTPUT : the Jacobi symbol (%)

79

CHAPTER 3

MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Ifh =0 then return 0.
Ifh=1thenreturn1.
Write h = 2'h,, where h, is odd.

Iftis even then set g < 1.Else set g — 1 ifk=1 or 7 (mod 8),
orsetg— —1ifk=3or5(mod8).

Ifk =3 (mod 4) and h, =3 (mod 4) then set g — — g.
Set k; < k mod h,.
If hy = 1 then return(g); else return (g - JACOBI(k,, h,)).

Finite Fields

Finite fields, also known as Galois fields, are used in cryptography because they provide
a mathematical basis for specifying mathematical operations on a finite number

of components. In cryptography, finite fields are mainly used to construct efficient
algorithms for encryption and decryption, or they can be used to define mathematical
problems, such as the discrete logarithm problem.

Basic

Notions

Definition 3.41 [1]. Consider F to be a finite field that contains a finite number of
elements. The order of F represents the number of elements in F.
Definition 3.42 [1]. The finite fields are characterized by a special uniqueness.

1.

Let’s assume that if P represents a finite field, then P contains /#/

elements for a prime / and integer j > 1.

For each prime power order /¥, there is a unique finite field of
order /. The field is noted as G, , or in some other literature
)

references, we find GF(F).

Definition 3.43 [1][5]. Let’s say that if G, represents a finite field of order 2 = a™ and
a is a prime, then the characteristic of F, is p. Moreover, h has a copy of Z, as a subfield.

F, can be viewed as an extension field of Z, of degree m.

80

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Polynomials and the Euclidean Algorithm

The following two algorithms represent the foundation for understanding how to
compute and obtain gcd for two polynomials, g(x) and h(x), both of which are in Z,[x].

Algorithm 3.43. Euclidean Algorithm for Z,[x] [1]
INPUT : two polynomials g(x),h(x)eZ,[x]
OUTPUT: gcdof g(x)andh(x)

1. while h(x) # 0 then
a. set r(x) < g(x) mod h(x), g(x) « h(x), h(x) < r(x)
2. return g(x)

Algorithm 3.43. Extended Euclidean Algorithm for Z,[x] [1]
INPUT: two polynomials g(x),h(x)eZ,[x]

OUTPUT: d(x)=gcd(g(x),h(x))and polynomials s(x),t(x)
€Z,[x|which will satisfy s(x)g(x)+t(x)h(x)=d(x).
1. If h(x) =0 then set d(x) < g(x), s(x) < 1, {{(x) < 0
a. return (d(x), s(x), {(x))
2. Setsy(x) < 1, 5(x) < 0, (x) < 0, ,(x) < 1.
3. while h(x) # 0 then
a. g(x) < g(x) div h(x), r(x) < g(x) — h(x)q(x)
b. s(x) < 5,(x) — g(x)s:(x), #(x) < L(x) — g(x)tr(x)
c. g(x) < h(x), h(x) < r(x)
d. Sy < $1(x), 81(x) < s(x), L(x) < t:(x), and t,(x) < (x)
4. Setd(x) < g(x), s(x) < s,(x), t{x) < t,(x).

5. return d(x), s(x), #(x).

81

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Case Study 1: Computing the Probability of an Event
That Takes Place

[»] Command Prompt X + v = =] X

E:\examples\3>g++ -std=c++2b Listing3-1.cpp -o Listing3-1

E:\examples\3>Listing3-1

Probability for the first ball to be blue: 24.996%
Probability for the second ball to be blue: 24.98u4u%
Probability for both balls to be blue: 4.99uu%

E:\examples\34

Figure 3-1. Output for computing the probability

Listing 3-1. Source Code

#include <iostream>
#include <vector>
#include <random>
#include <algorithm>

enum ColorTypes {
Blue,
NotBlue } ;

//** create a sequence container
typedef std::vector<ColorTypes> backpack;

backpack initializeBackpack(unsigned blue balls, unsigned
differentBalls)

backpack backpackOfBalls ;

for (unsigned i=0; i<blue balls; ++i)
backpackOfBalls.emplace back(Blue);

82

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

for (unsigned i=0; i<differentBalls; ++i)
backpackOfBalls.emplace back(NotBlue);

return backpackOfBalls; }

void randomize(backpack & backpackOfBalls) {

}

//** Mersenne Twister - pseudo-random generator

//** on 32-bit number using the state size of 19937 bits/
//** std:random device() will help us generate a

//** nondeterministic random numbers

static std::mt19937 engine((std::random device()()));

//** we will rearrange the elements in the

//** following range [first, second] as follows fist =

//** backpackO0fBalls.begin() and second =

//** backpackOfBalls.end()

//** using "engine" declared above as a uniform random

//** number generator

std: :shuffle(backpack0OfBalls.begin(),
backpackOfBalls.end(), engine);

int main()

{

//** constants initializations

const unsigned theTotalOfSamples = 1000000;
const unsigned blue_balls = 4;

const unsigned differentBalls = 12;

unsigned theFirstIsBlue = 0;
unsigned bothAreBlue = 0;
unsigned theSecondIsBlue = 0;

auto backpackOfBalls = initializeBackpack(blue balls,
differentBalls);

for (unsigned i=0; i<theTotalOfSamples; ++i)

{
randomize(backpackOfBalls);

83

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

84

if (backpack0fBalls[0] == Blue)
++theFirstIsBlue;

if (backpack0fBalls[1] == Blue)
++theSecondIsBlue;

if (backpackOfBalls[0]==Blue88backpackOfBalls[1]==Blue)
++bothAreBlue;

}

float probabilityOfFirstBallToBeBlue =
static_cast<float>(theFirstIsBlue) /
theTotalOfSamples;

float probabilityForBothBallsToBeBlue =
static_cast<float>(bothAreBlue) /
theTotalOfSamples;

float probabilityForSecondBallToBeRed =
static_cast<float>(theSecondIsBlue) /
theTotalOfSamples;

std::cout << "Probability for the first ball to be blue: "
<< probabilityOfFirstBallToBeBlue * 100.0 << "%\n" ;

std::cout<< "Probability for the second ball to be blue: "
<< probabilityForSecondBallToBeRed * 100.0 << "%\n" ;

std::cout << "Probability for both balls to be blue: "
<< probabilityForBothBallsToBeBlue * 100.0 << "%\n" ;

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Case Study 2: Computing the Probability Distribution

%] Command Prompt b4 + ~ - o X

E:\examples\3>g++ -std=c++2b Listing3-2.cpp -o Listing3-2

E:\examples\3>Listing3-2
Probability of some ranges
©.568-8.51 ©.6099808
0.68-8.61 0.8099719
©.45-0.46 0.809999

E:\examples\3>|

Figure 3-2. Output of probability distribution

Listing 3-2. Source Code

//** this will be used for computing the distribution
#include <random>
#include <iostream>

using namespace std;

int main() {
//** declare default_random_engine object
//** we will use it as a random number
//** we will provide a seed for default random_engine
//** if a pseudo random is necessary
default_random_engine gen;
double x=0.0, y=1.0;

//** initialization of the probability distribution
uniform real distribution<double> dist(x, y);

//** the number of experiments
const int numberOfExperiments = 10000000;

//** the number of ranges
const int numberOfRanges = 100;
int probability[numberOfRanges] = {};

85

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

for (int k = 0; k < numberOfExperiments; ++k) {
// using operator() function
// to give random values
double no = dist(gen);
++probability[int(no * numberOfRanges)]; }

cout << "Probability of some ranges" << endl;

//** show the probability distribution of some ranges

//** after 1000 times values are generated

cout << "0.50-0.51"<<" "<«

(float)probability[50]/(float)numberOfExperiments<<endl;

cout << "0.60-0.61"<<" "<«
(float)probability[60]/(float)numberOfExperiments<<endl;

cout << "0.45-0.46"<<" "<«
(float)probability[45]/(float)numberOfExperiments<<endl;

return 0;

Case Study 3: Computing the Mean
of the Probability Distribution

Command Prompt b4 + v - o

E:\examples\3>g++ —-std=c++2b Listing3-3.cpp -o Listing3-3

E:\examples\3>Listing3-3
the mean distribution (6.0,3.0):
**

dedkkk
de ok ke ke ok

e o e e e e e e ke
e e e g e g g g g ek

dhkkkhhkkhhkdk
Fkk kK hRhhR kK
hhkkkhkhkhhkhkhkhk
8-90: *kkkkkkkk
0-10: *kkkkk

*-lU\U'l.l;—"lT.IMI-l(D
a0 E WK

E:\examples\3>|

Figure 3-3. Output for the mean of the probability distribution
86

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Listing 3-3. Source Code

#include <iostream>

#include <string>
#include <random>

int main()

{

//** the constant represents the number of experiments
const int numberOfExperiments=10000;

//** the constant represents the

//** maximum number of stars to distribute

const int numberOfStarsToDistribute=100;

std: :default_random_engine g;
std::normal_distribution<double> dist(6.0,3.0);

int prob[10]={};

for (int k=0; k<numberOfExperiments; ++k) {
double no = dist(g);
if ((n0>=0.0)8&&(n0<10.0)) ++prob[int(no)];

}

std::cout << "the mean distribution (6.0,3.0):" << std::endl;

for (int 1=0; 1<10; ++1) {
std::cout << 1 << "-" << (1+1) << " "5
std::cout <«
std: :string(prob[1]*numberOfStarsToDistribute/
numberOfExperiments,'*') << std::endl;

}

return 0;

87

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Case Study 4: Computing the Variance

‘ Command Prompt b4 + o~

E:\examples\3>g++ -std=c++2b Listing3-4.cpp -o Listing3-4

E:\examples\3>Listing3-u
The variance is: 21704

E:\examples\3>|

Figure 3-4. Output of variance

Listing 3-4. Source Code
#include<iostream>
using namespace std;

//** the below function is used
//** for computing the variance
int computingVariance(int n[], int h) //**a=n, n=h
{

//** computes the mean

//** average of the elements

int sum = 0;

for (int k = 0; k < h; k++)

sum += n[k];
double theMean = (double)sum /
(double)h;

//** calculate the sum squared
//** differences with the mean
double squared differences = 0;
for (int t=0; t<h; t++)
squared differences += (n[t] - theMean) *
(n[t] - theMean);

88

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

return squared differences / h;

}
int main()
{
int arr[] = {600, 470, 170, 430, 300};
int n = sizeof(arr) / sizeof(arr[o0]);
cout << "The variance is: "
<< computingVariance(arr, n) << "\n";
return O;
}

Case Study 5: Computing the Standard Deviation

Command Prompt X + - = (m] X

E:\examples\3>g++ —-std=c++2b Listing3-5.cpp -0 Listing3-5

E:\examples\3>Listing3-5
Add 10 elements: 2
uy

6

8

10

12

4

16

18

20

The Standard Deviation is = 5.7u456
E:\examples\3>|

Figure 3-5. Output of the standard deviation

89

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Listing 3-5. Source Code

#include <iostream>
#include <cmath>

using namespace std;
float computeStandardDeviation(float data[]);

int main()
{
int n;
float elements array[10];

cout << "Add 10 elements: ";
for(n = 0; n < 10; ++n)
cin >> elements_array[n];

cout << endl << "The Standard Deviation is = " <«
computeStandardDeviation(elements array)<<endl;

return 0;

}

float computeStandardDeviation(float elements array[])

{
float theSum = 0.0, theMean, theStandardDeviation = 0.0;

int j,k;
for(j = 0; j < 10; ++j)
{
theSum += elements_array[j];
}

theMean = theSum/10;

for(k = 0; k < 10; ++k)

90

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

theStandardDeviation += pow(elements array[k] -
theMean, 2);

return sqrt(theStandardDeviation/10);

Case Study 6: Birthday Paradox

% Command Prompt x| o+ v = 0 x
E:\examples\3>g++ -std=c++2b Listing3-6.cpp -o Listing3-6

E:\examples\3>Listing3-6

The probability for 2 people from the same room to share the same birthday is 8.08306667
The probability for 3 people from the same room te share the same birthday is 6.868793333
The probability for 4 people from the same room to share the same birthday is 8.8157333
The probability for 5 people from the same room to share the same birthday is 8.0274667
The probability for 6 people from the same room te share the same birthday is 8.8U25333
The probability for 7 people from the same room to share the same birthday is 8.0661333
The probability for 8 people from the same room to share the same birthday is 8.07UB667
The probability for 9 people from the same room to share the same birthday is 8.09987333
The probability for 1@ people from the same room to share the same birthday is 8.1182
The probability for 11 people from the same room to share the same birthday is 8.1466
The probability for 12 people from the same room to share the same birthday is 8.166067
The probability for 13 people from the same room to share the same birthday is 8.198U67
The probability for 14 people from the same room to share the same birthday is 8.223

The probability for 15 people from the same room to share the same birthday is 6.249933
The probability for 16 people from the same room to share the same birthday is 6.283267
The probability for 17 people from the same room to share the same birthday is 8.311u67
The probability for 18 people from the same rcom to share the same birthday is 8.347467
The probability for 19 people from the same room to share the same birthday is 0.373667
The probability for 28 people from the same room to share the same birthday is 8.416933
The probability for 21 people from the same room to share the same birthday is 8.4476
The probability for 22 people from the same room to share the same birthday is 6.48u2
The probability for 23 people from the same room to share the same birthday is 8.580933
The probability for 24 people from the same room to share the same birthday is 8.543667
The probability for 25 people from the same room to share the same birthday is 8.567667
The probability for 26 people from the same rcom to share the same birthday is 8.596933
The probability for 27 people from the same room to share the same birthday is 8.628933
The probability for 28 people from the same rocom to share the same birthday is 8.655133
The probability for 29 people from the same room to share the same birthday is 8.67384
The probability for 3@ people from the same room to share the same birthday is 8.76U867
The probability for 31 people from the same room to share the same birthday is 8.736867
The probability for 32 people from the same room to share the same birthday is 8.753867
The probability for 33 people from the same room to share the same birthday is 8.769267
The preobability for 34 people from the same room to share the same birthday is 8.7956
The probability for 35 people from the same room to share the same birthday is 8.816267
The probability for 36 people from the same room to share the same birthday is 6.83u4133
The probability for 37 people from the same room to share the same birthday is 8.845133
The probability for 38 people from the same room to share the same birthday is 8.86U8
The probability for 39 people from the same room to share the same birthday is 6.8806
The probability for 4@ people from the same room to share the same birthday is 8.891U67
The probability for 41 people from the same room to share the same birthday is 8.983667
The probability for 42 people from the same room to share the same birthday is 8.9136
The probability for 43 people from the same room to share the same birthday is 8.923333
The probability for 44 people from the same room to share the same birthday is 8.933667

E:\examples\3s|

Figure 3-6. Output of birthday computation

91

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Listing 3-6. Source Code

#include <ctime>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int argc, const char *argv[])
{

const int processes = 15000;

short int no of birthdays[365];

int processesWithSuccess;

bool IsSharedBirthday;

//** we will time(NULL) as seed to be used for the
//** pseudo-random number generator srand()
srand(time(NULL));

for (int no_of people=2;no of people<4s;
++no_of people)
{
processesWithSuccess = 0;
for (int i = 0; i < processes; ++i)
{
//** all birthdays will be set to 0
for (int j=0;j<365;n0 of birthdays[j++] = 0);
IsSharedBirthday = false;
for (int j = 0; j < no_of people; ++j)
{
//** if our given birthday is shared (this
//** means that is assigned for more than one
//** person) this will be a shared birthday
//** and we will need to stop verifying.
if (++no_of birthdays[rand() % 365] > 1){
IsSharedBirthday = true;
break;

92

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

}

if (IsSharedBirthday) ++processesWithSuccess;

}
cout << "The probability for

<< no_of people << "people from the
same room to share the same birthday is \t"<<(float(processesWith
Success)/ float(processes))<<endl;

}

return 0;

Case Study 7: (Extended) Euclidean Algorithm

[ca] Command Prompt X || @ O X

E:\examples\3>g++ -std=c++2b Listing3-7.cpp -o Listing3-7

E:\examples\3>Listing3-7
Euclid Gcp(1e, 15) = 5
Euclid GCD(35, 18) = 5
EuclidGcDp(31, 2) =1

E:\examples\3>|

Figure 3-7. Output of the Euclidean algorithm

Listing 3-7. Source Code

//** NOTE: bits/stdc++ does not represent

//** a standard header file of the GNU C++ library.
//** If the code will be compiled with other

//** compilers than GCC it will fail
#include<stdio.h>

using namespace std;

//** the function will compute
//** GCD for two numbers
int g(int x, int y) {

93

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

int

if (x == 0)
return y;
return g(y % x, X);

main()

int x = 10, y = 15;
cout << "Euclid GCD(" << x << ", "
Ky<<")="<<g(xy)
<< endl;
x = 35, y = 10;
cout << "Euclid GCD(" << x << ", "

Ky<<")="<glxy)
<< endl;
X =31,y =2;
cout << " EuclidGCD(" << x << ", "

Ky ") =" cglxy)
<< endl;
return 0;

Command Prompt X + | v O

E:\examples\3>g++ —-std=c++2b Listing3-8.cpp -0 Listing3-8

E:\examples\3>Listing3-8
g_e(35, 15) = §

E:\examples\3>|

.

Figure 3-8. Output of Extended Euclidean algorithm

94

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Listing 3-8. Source Code

#include <bits/stdc++.h>
using namespace std;

//** computing extended Euclidean algorithm

int g e(int x, int y, int *w, int *z)

{
//** this is the basic or ideal case
if (x == 0)
{
*W = 0;
*z7 = 1;
return y;
}
//** variables for storing the results
//** for the recursive call
int a1, bi1;
int g = g e(y#x, x, 8a1, &b1);
//** with help of the recursive call
//** update a and b with the results
*w = bl - (y/x) * ai;
*z = a1,
return g;
}
// Driver Code
int main()
{

int a, b, w = 35, y = 15;
int g = g e(w, vy, 8a, &b);

cout << "g e(" <« w<< ", "y« ") =
return O;

<< g << endl;

95

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Case Study 8: Computing the Multiplicative Inverse
Under Modulo g

Command Prompt X + - O X

E:\examples\3>g++ —-std=c++2b Listing3-9.cpp -o Listing3-9

E:\examples\3>Listing3-9
4
E:\examples\3>|

L

Figure 3-9. Output of modular multiplicative inverse (basic and tricky form of the
implementation)

Listing 3-9. Code for Computing the Modular Multiplicative Inverse (Tricky Method)

#include<iostream>
using namespace std;

//** this represents the basic method or tricky method
//** for finding the modulo multiplicative inverse of
//** x under modulo m

int modulo_inverse(int x, int m)

{
X = X%m;
for (int y=1; y<m; y++)
if ((x*y) % m == 1)
return y;
return 1;
}
int main()
{
int x =3, m = 11;
cout << modulo inverse(x, m);
return 0;
}

96

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Command Prompt X + - = (m] X

E:\examples\3>g++ —-std=c++2b Listing3-10.cpp -o Listing3-10

E:\examples\3>Listing3-10
The modular multiplicative inverse is 4
E:\examples\3>|

.

Figure 3-10. Output of modular multiplicative inverse (when the number is
coprime)

Listing 3-10. Source Code

#include<iostream>
using namespace std;

//** function for computing the extended Euclidean algorithm
int gcd e(int x, int y, int *w, int *z);

void modulo inverse(int h, int modulo)

{
int 1, j;
int g = gcd e(h, modulo, &i, 8&j);
if (g !'=1)
cout << "There is no inverse.";
else
{
//** we add the modulo in
//** order to handle negative i
int result = (i%modulo + modulo) % modulo;
cout << "The modular multiplicative inverse is " <<
result;
}
}

//** we will compute the extended Euclidean algorithm
int gcd e(int h, int k, int *w, int *z) {
//** the "happy" case

97

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

if (h == 0){
*w =0, *z = 1;
return k; }

//** storing results of our recurive invoke
int a1, b1; //** x1=a1, yi=b1
int g = gcd e(k%h, h, &a1, &b1);

//** with recursive invocation results
//** we will update x and y

*w = bl - (k/h) * a1;
*z = a1,
return g;

}

int main()

{
int x = 3, modulo = 11;
modulo_inverse(x, modulo);
return 0;

}

Case Study 9: Chinese Remainder Theorem

Command Prompt X + v O

E:\examples\3>g++ -std=c++2b Listing3-11.cpp -o Listing3-11

E:\examples\3>Listing3-11
X is 11
E:\examples\3>|

Figure 3-11. Output for Chinese remainder theorem

98

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY
Listing 3-11. Source Code
#include<iostream>
using namespace std;

int inverse(int x, int modulo)

{
int modulo0 = modulo, k, quotient;
int a0 = 0, a1l = 1;
if (modulo == 1)
return 0;
//** we will apply the extended Euclidean algorithm
while (x > 1)
{
quotient = x / modulo;
k = modulo;
//** modulo represents the remainder
//** continue with the same process as
//** Euclid's algorithm
modulo = x%modulo, x=k;
k = ao;
a0 = al - quotient * ao;
al = k;
}
//** make a1 positive
if (a1 < 0)
al += moduloo;
return ail;
}

99

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

int lookForMinX(int numbers[], int remainders[], int 1)
{
//** computing the product for all the numbers
int product = 1;
for (int j = 0; j < 1; j++)
product *= numbers[j];

//** we initialize the result with o0
int result = 0;

//** apply the formula mentioned above
for (int j = 0; j < 1; j++)
{
int pp = product / numbers[j];
result += remainders[j] * inverse(pp, numbers[j]) * pp;

}

return result % product;

int main(void) {
int numbers[] = {3, 4, 5};
int remainders[] = {2, 3, 1};
int k = sizeof(numbers)/sizeof(numbers[0]);
<< lookForMinX(numbers, remainders, k);

cout << "x is
return 0;

100

CHAPTER 3

MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Case Study 10: The Legendre Symbol

] Command Prompt

E:\examples\3>g++ —-std=c++2b Listing3-12.cpp -o Listing3-12

E:\examples\3>Listing3-12

Pe(-1) =
Pe(-0.
Pe(-o.
Pe(-o.
Pe(-o0.
Pe(-0.
Pe(-o0.
po(-0.
Pe(-o.
Pe(-0.

Pe(-1
Pe(e.
pe(e.
Pe(o.
Pe(o.
Pe(o.
pe(e.
Pe(e.
Pe(o.
Pe(o.
Pe(1)

P1(-1

P1(-0.
P1(-o.
P1(-0.
P1(-0.
P1(-0.
P1(-0.
P1(-0.
P1(-0.
P1(-0.

P1(-1
Pi(e.
Pi(e.
P1(e.
Pi(e.
Pi(e.
P1(e.
Pi(e.
Pi(e.
Pi(e.
P1(1)

L

Figure 3-12. Output of Legendre symbol

9)
8)
7
6)
5)
u)
3)
2)
1)

[

L 1 1 1 1 O 1

R IR S

1!

.3878e-16) = 1

1)
2)
3)
u)
5)
6)
7)
8)
9)

) =
9)
8)
7
6)
5)
u)
3)
2)
1)

1)
2)
3)
4)
5)
6)
7)
8)
9)

=oaonomnnonnnn

L T T 1 1 A 1 1 O [

[

(T 1 1 T T 1 1

1

I S N S T

@

(ol <o R o R o R o B ol

0.
0.
0.
0.
0.
0.
0.
0.
0.
.3878e-16

WO EWwNKH

9
8
7
6
5
4
3
2
1
D) =

-1.3878e-16

101

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

The source code for implementing the Legendre symbol is structured in two files:

Listing3-12.cpp (see Listing 3-12), and Listing 3-13.h (see Listing 3-13).
For compiling the source code, the following command needs to be run.

g++ -std=c++2b Listing3-12.cpp -o Listing3-12

Listing 3-12. Source Code (legendre.cpp)

#include <iostream>
#include "Listing3-13.h"

using namespace std;
using namespace LegendreStorage::Legendre;

int main()

{
double p n;

cout.precision(5) ;
for (unsigned int v = 0 ; v <= 5 ; v++)
{
for (double b = -1.0 ; b <= 1.0 ; b = b + 0.1)

{
p_n = Polynom n<double>(v, b) ;

cout << "P" << v <<« "(" << b<<")="<<pn<<endl,;
}
cout << endl ;
}
return 0 ;

}

Listing 3-13. Legendre Symbol (legendre.h) Source Code

#ifndef _ LEGENDRESYMBOL H__
#define _ LEGENDRESYMBOL H__

namespace LegendreStorage {
namespace Legendre{

102

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

//** when n=0
template <class T> inline auto PolynomO(const T& x){
return static_cast<T>(1);

}

//** when n=1
template <class T> inline auto Polynomi(const T& x){
return x;

}

//** when n=2
template <class T> inline auto Polynom2(const T& x){
return ((static_cast<T>(3)*x*x) -
static_cast<T>(1)) / static_cast<T>(2);

}
//** polynom(x)

template <class T> inline auto Polynom n(unsigned int h,
const T& y)

{
switch(h){
case 0:
return Polynomo<T>(y);

case 1:
return Polynomi<T>(y);

case 2:
return Polynom2<T>(y);

default:
break;}

auto polynom_1(Polynom2<T>(y));
auto polynom 2(Polynomi<T>(y));
T polynom;

for (auto a=3u; a<=h; ++a){
polynom = ((static_cast<T>((2 * a) - 1)) * y *

103

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

polynom 1
- (static_cast<T>(a - 1) * polynom 2)) /
static_cast<T>(a);
polynom 2 = polynom_1;

polynom 1 = polynom; }
return polynom; }}}
#endif
Conclusion

The current chapter discussed the importance of some mathematical tools used in most
modern cryptography algorithms. It demonstrated how they can be implemented and
explained the important steps of the algorithms. The chapter also covered the important
aspects of the mathematical foundations, such as probability theory, information theory,
number theory, and finite fields.

Each mathematical foundation presented the necessary equations and mathematical
expressions used to implement the algorithms. Each equation or mathematical
expression is demonstrated through an example of a software application implemented
in C++ entitled a case study. Each case study has demonstrated the skills and knowledge
needed to develop a secure and reliable code. The case studies were counted from
1to 10.

Reaching the end of the chapter, you should now understand the important notions
and terms, programming concepts, and algorithms used, both theoretical and practical,
and how to quickly move from theory to practice.

References

[1]. Menezes Alfred J.; Paul van Oorschot; Vanstone Scott A. (1996). Handbook of
Applied Cryptography. CRC Press. ISBN 0-8493-8523-7.

[2]. A. R. Meijer, Algebra for Cryptologists, 1st ed. New York, NY: Springer, 2016.

[3]. J Hoffstein, J. Pipher, and J. H. Silverman, An Introduction to Mathematical
Cryptography, 2nd ed. New York: Springer, 2014.

[4]. S. Rubinstein-Salzedo, Cryptography, 1st ed. New York, NY: Springer, 2018.

104

https://en.wikipedia.org/wiki/CRC_Press

(5].

[6].

[7].

(8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].
[16].

[17].

[18].

[19].

CHAPTER 3 MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

W. Stallings, Cryptography and Network Security: Principles and Practice, 6th
ed. Prentice Hall Press, 2013.

K. Academy, Cryptography: Data and Application Security. Independently
published, 2017.

C. T: Rivers, Cryptography: Decoding Cryptography! From Ancient to New Age
Times. JR Kindle Publishing, 2014.

D. Stinson, Cryptography: Theory and Practice, Second Edition, 2nd ed. CRC/
C&H, 2002.

H. Delfs and H. Knebl, Introduction to Cryptography: Principles and
Applications, 3rd ed. New York, NY: Springer, 2015.

J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition,
Boca Raton: Chapman and Hall/CRC, 2014.

X Wang, G. Xu, M. Wang, and X. Meng, Mathematical Foundations of Public
Key Cryptography. Boca Raton: CRC Press, 2015.

T. R. Shemanske, Modern Cryptography and Elliptic Curves. Providence, Rhode
Island: American Mathematical Society, 2017.

S. Y. Yan, Primality Testing and Integer Factorization in Public-Key
Cryptography. Springer, 2013.

L. M. Batten, Public Key Cryptography: Applications and Attacks. Hoboken, N.J:
Wiley-Blackwell, 2013.

J. P. Aumasson, Serious Cryptography. San Francisco: No Starch Press, 2017.

S. Khare, The world of Cryptography: incl. cryptosystems, ciphers, public key
encryption, data integration, message authentication, digital signatures.

A. Atanasiu, Securitatea informatiei - Criptografie (Information Security -
Cryptography). Infodata, 2007. [Romanian Language]|

A. Atanasiu, Securitatea informatiei - Protocoale de securitate (Information
Security - Security Protocols). Infodata, 2009. [Romanian Language]

V. Preda, E. Simion, A. Popescu. Criptanaliza. Rezultate si Tehnici Matematice
(Cryptanalysis. Results and Mathematical Techniques). Universitatea Bucuresti
Publisher, 2004 [Romanian Language]

105

CHAPTER 4

Large Integer Arithmetic

The purpose of this chapter is to cover the main arithmetic operations and explain how
to work with large integers. Some cryptographic algorithms require large integers that
do not fit with the normal size of variables, such as int. It gives a quick overview of big
integers and some libraries used to work with them.

The chapter offers a comprehensive guide on large integer arithmetic by providing
a comprehensive overview of the basics, from understanding the fundamentals to
exploring the various algorithms used to compute large numbers. It is very interesting
to look at the past and get some chunks of history about large integer arithmetic,
investigate different algorithms used to solve large-number problems and learn the
basics of number theory. You'll also get an introduction to online tools to help students
and professionals with large-number calculations. With this guide, you’'ll thoroughly
understand the fundamentals of large integer arithmetic and the various algorithms and
tools used to solve large-number problems.

A Bit of History

The concept of large integer arithmetic goes back to ancient civilizations. The Egyptians
were known to have used large integers in their architectural designs, where the
dimensions of temples, pyramids, and other architectural wonders were recorded in
integers. Similarly, the Mayans used large integers in their astronomical calculations,
using the numbers 1 to 13 to represent the 13 lunar cycles in a solar year. Traders in
India and China were also known to use large integers in their monetary computations,
where they used the numbers 1 to 99 to represent their monetary denominations. Large
integer arithmetic was further developed in the tenth century by Persian mathematician
Abu’l-Wafa, who introduced the Ghiya number system, which became the modern-

day Bhulbhulaya number system. The Bhulbhulaya number system was an extension
of the Ghiya number system, where Abu’l-Wafa introduced the Bhulbhulaya numbers

107

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_4

https://doi.org/10.1007/978-1-4842-9450-5_4

CHAPTER 4 LARGE INTEGER ARITHMETIC

to represent very large numbers. The Bhulbhulaya numbers were used to describe
astronomical measurements, distances, and monetary amounts, where the number
system went off the limitations of the Ghiya number system.

What About Cryptography?

In implementing complex cryptography algorithms, operations with large integers can
be very difficult. The limitations could be due to hardware equipment (e.g., processor,
RAM) or programming languages.

In C++23, an integer is represented as 32 bits. Out of 32 bits, only 31 can be used for
representing positive integer arithmetic. Cryptography is good when you are dealing
with numbers that are up to two billion, or 2 - 10°.

Some compilers have a long long type, such as GNU C++ or g++, that offer the
possibility to represent integers of approximately nine quintillion, or 9 - 10'2.

Most simple cryptographic operations are good, but some cryptographic algorithms
require more digits in their integer representation. Let’s consider as an example the
RSA (Rivest-Shamir-Adleman) public-key encryption cryptosystem, which requires
approximately 300 digits. The computation often involves large numbers when dealing
with specific real events and their probabilities. The output and achievement of the main
result might be appropriate for C/C++. Compared with other complex computations,
there are very large numbers.

Another interesting example is to find the chances of winning the jackpot from a
lottery with one ticket. The combination number of 50 is taken six at a time, and

\ . 50! . .
50 choose 6'is —————— . The resulting number is 15.890.700, so the chances

((50-6)!e6!)

of winning are 1/15.890.700. Using the C++23 programming language, the number
15.890.700 can be easily represented. This could be tricky, and you can easily fall for
naivety when implementing 50! (computed using a calculator in Windows), which is
3.041409320171e+64 or much more approximated

30,414,093,201,713,378,043,612,608,166,064,768,844,377,641,568,960,512,00
0,000,000,000

Using C++23 to represent that number is almost impossible, even using a 64-bit
platform.

108

CHAPTER 4 LARGE INTEGER ARITHMETIC

Algorithms Used for Large Integer Arithmetic

The addition modulo is the most basic algorithm used for solving problems with large
numbers. In addition, modulo, you add two large numbers, but then you normalize the
result to the closest number that fits into the precision of the addition operation. This
means you discard the sum's fractional part and keep the rest as the final sum.

When implementing an addition algorithm for two large numbers, one of the most
useful approaches is considering the numbers as strings'. In this case, the numbers
provided as input can be very large, such examples can be numerous, and the numbers
may not fitin a long long int variable. Based on the purpose of the algorithm, the
mission of such an algorithm is to be able to compute the sum of the numbers provided
as input.

Let’s consider two large numbers: 2431989739 and 3947978705409241873. The
example shown in Figure 4-1 uses CrypTool® to generate two large prime numbers by
setting up an interval between a lower limit and an upper limit.

'See https://www.geeksforgeeks.org/sum-two-large-numbers/
2See https://www.cryptool.org/en/

109

https://www.geeksforgeeks.org/sum-two-large-numbers/
https://www.cryptool.org/en/

CHAPTER 4 LARGE INTEGER ARITHMETIC

r
Prime Number Generation X

Prime numbers play an important role in modem ciyptography. Here you can generate primes
within a given value range [lower limit, upper limit].

— Amount of prime numbers to be generated

& Generate two primes randomly from within the value range(s]

" Generate all primes within the value range set for p
Separator for the display of the primes: |

— Algorithms for prime number generation— —Value range of the prime numbers p and q-
+ Miler-Rabin Test * To be entered independently of
each other
" Solovay-Strassen Test]
" Both are equal (just enter one)
" Femmat Test
-Prime number p ~ Prime number q
Lower lmit ~ |2°25 Lower mit ~ |2°52
Upper limt ~ |2°35 Upper limit ~ [2762
Result |2431989739 Resul |}479?3?05409241 873
N =
T first] secand
Generate prime numbers number rumber Cancel

Figure 4-1. Generating two large numbers for addition

Let’s consider the first basic/standard implementation (let’s call it the elementary
implementation) of the addition operation using integer variables (see Listing 4-1).

Listing 4-1. Elementary Implementation of Addition

#include <iostream>
using namespace std;

int main()

{

int first number;
int second number;

int addition = 0;

110

CHAPTER 4 LARGE INTEGER ARITHMETIC

cout << "Enter first number = ";
cin >> first number;
cout << "Enter second number = ";
cin >> second_number;

addition = first number + second number;

cout<<"The addition is: " << addition << endl;

return 0;

Let’s run the example and examine the program’s behavior. After entering the first
number, the program exits because the number is larger than the size of the int variable
(see Figure 4-2).

C:\users\mariu\Desktop\Apress C++23\Ch4_Large Integer Arithmetic\Source Code>p++ -std=c++2b 4_1_basic_addition.cpp -0 4_1_basic_addition

C:\users\mariu\Desktop\Apress C++23\Cha_Large Integer Arithmetic\Source Code>u_1_basic_addition
Enter first number = 2431989739
Enter second number = The addition is : -2147us3ell

C:\Users\mariu\Desktop\Apress C++23\Chi_Large Integer Arithmetic\Source Code>

Figure 4-2. A large number with an int variable

The same situation applies to the long int. To run this example, open a command
prompt window and run it using the following command.

g++ -std=gnu++2b 4_1 basic_addition.cpp -o 4_1 basic_addition

In the command, gnu++2b represents the new experimental version of C++232. To allow
C++23 support, add the command-line parameter -std=c++2b to your g++ command line.
To enable GNU extensions in addition to the C++23 features, add -std=gnu++2b.

3See https://gcc.gnu.org/projects/cxx-status.html
111

https://gcc.gnu.org/projects/cxx-status.html

CHAPTER 4 LARGE INTEGER ARITHMETIC

Listing 4-2 has the same situation as Listing 4-1 and Figure 4-2.

Listing 4-2. Case of long int Variable

#include <iostream>
using namespace std;

int main()

{
long int first number;
long int second_number;

long int addition = 0;

cout << "Enter first number = ";
cin >> first number;

cout << "Enter second number = ";
cin >> second_number;

addition = first number + second number;

cout<<"The addition is: " << addition << endl;

return O;

A success for adding large numbers can be obtained with long int (see Listing 4-3
and Figure 4-3) and unsigned long int (see Listing 4-4 and Figure 4-3, the same output
as for Listing 4-3).

Listing 4-3. Case of long long int Variable

#include <iostream>
using namespace std;

int main()

{

long int first number;
long int second_number;

long int addition = 0;

112

CHAPTER 4 LARGE INTEGER ARITHMETIC

cout << "Enter first number = ";
cin >> first number;

cout << "Enter second number = ";
cin >> second_number;

addition = first number + second number;

cout<<"The addition is: " << addition << endl;

return 0;

C:\Users\mariu\Desktop\Apress C++23\Chu_Large Integer Arithmetic\Source Code>gé+ =std=c++2b u_3_addition_long_long_int.cpp =o 4_3_addition_long_long_int

C:husers\mariu\Desktop\Apress C++23\Chy_Large Integer Arithmetic\Source Code>u_3_addition_long_long_int
Enter first number = 2031989739

Enter second number = ISUT9TETRSUAS2M1ETI

The addition is : 394797ET87841231612

C:\Users\mariu\Desktopl\Apress Co+230\Chi_Large Integer Arithmetic\Source Code=

Figure 4-3. A successful addition operation using a long long int variable

Listing 4-4. Case ofunsigned long long int Variable

#include <iostream>
using namespace std;

#include <iostream>
using namespace std;

int main()

{
unsigned long long int first number;
unsigned long long int second_number;

unsigned long long int addition = 0;

cout << "Enter first number = ";
cin >> first number;

cout << "Enter second number = ";
cin >> second_number;

113

CHAPTER 4 LARGE INTEGER ARITHMETIC

addition = first number + second number;

cout<<"The addition is: " << addition << endl;

return 0;

To understand much better what types of variables for integers should be used, the
following example (see Listing 4-5 and Figure 4-4) shows exactly the size (in bytes) that
can be used within different variables for integers.

Listing 4-5. Variable Sizes

#include <iostream>
using namespace std;

int main()
{
cout << "Size of int : " << sizeof(int) << " bytes" << endl;
cout << "Size of unsigned int : " << sizeof(unsigned int) << " bytes"
<< endl;
cout << "Size of signed int : " << sizeof(signed int) << " bytes"
<< endl;
cout << "Size of short int : " << sizeof(short int) << " bytes"
<< endl;

cout << "Size of unsigned short int :
<< " bytes" <« endl;

cout << "Size of signed short int :
" bytes" << endl;

cout << "Size of long int :
<< endl;

cout << "Size of signed long int :
bytes" << endl;

cout << "Size of unsigned long int :
<< " bytes" << endl;

cout << "Size of long long int :
bytes" << endl;

<< sizeof(unsigned short int)

<< sizeof(signed short int) <<

<< sizeof(long int) << " bytes"

<< sizeof(signed long int) <<

<< sizeof(unsigned long int)

<< sizeof(long long int) <«

114

CHAPTER 4 LARGE INTEGER ARITHMETIC

cout << "Size of unsigned long long int
long int) << " bytes" << endl;

<< sizeof(unsigned long

return O;

@ command Prompt

C:\Users\mariu\Desktop\Apress C++23\Cht_Large Integer Arithmetic\Source Code>g++ -std=c++2b 4_5_int_sizes.cpp -o 4_5_int_sizes

C:\Users\mnariu\Desktop\Apress C++23\Cht_Large Integer Arithmetic\Source Code>lU_5_int_sizes
Size of int : 4 bytes

Size of unsigned int : 4 bytes

Size of signed int : 4 bytes

Size of short int : 2 bytes

Size of unsigned short int : 2 bytes
Size of signed short int : 2 bytes

S5ize of long int : U bytes

Size of signed long int : U bytes

Size of unsigned leng int : 4 bytes

5ize of long long int : B bytes

Size of unsigned long long int : 8 bytes

C:\Users\mariu\Desktop\Apress C++23\Chu_Large Integer Arithmetic\Source Code>

L 4

Figure 4-4. Number of bytes for int variables

Figure 4-4 shows that we cannot operate addition on large numbers. One of the
most common solutions (see Listing 4-6 and Figure 4-5 for the output) is to consider the
numbers as strings, reverse both strings, and keep adding the digits of the number one
by one from the first index (using the reversed string) to the end for the smaller string
(number), and append the addition % 10 (modulo operation) to the end of the result and
keep track of the transporter by computing addition/10 (division operation). As a final
step, take the result and reverse it.

Listing 4-6. Addition for Large Numbers Considering the Numbers As Strings

#include <iostream>
#include <algorithm>

using namespace std;

//compute the length of the number as string
int compute_number length(string number)
{

int number_length = 0;

int i = 0;

while(number[i])
115

CHAPTER 4 LARGE INTEGER ARITHMETIC

{

number length++;
i++;

}

return number_length;

}

// the function will compute the addition between two large numbers
string compute addition(string first number, string second number)
{
//compare the length of both numbers and verify that the length of
the second number is larger

int numberi length = compute number length(first number);

int number2 length = compute number length(second number);

if (numberi length > number2 length)
swap(first_number, second number);

//declare an empty string variable that will store the result
in the end
string result of addition = "";

//compute for both strings the length
int length of numberi = compute number length(first number);

int length_of number2 = compute number length(second number);

reverse(first _number.begin(), first number.end());
reverse(second_number.begin(), second number.end());

int transporter = 0;

for (int i=0; i<length of numberi; i++)

{
//elementary addition computation of the digits and transporter
or carrier
int addition = ((first number[i]-'0")+(second number[i]-
'0")+transporter);
result of addition.push back(addition%10 + '0');

116

CHAPTER 4 LARGE INTEGER ARITHMETIC

//compute the transporter for the next step
transporter = addition/10;

}

//push or add the remaining digits for a large number

for (int i=length of numberi; i<length of number2; i++)

{
int addition = ((second number[i]-'0')+transporter);
result of addition.push back(addition%10 + '0');
transporter = addition/10;

}

//push back or add the transporter
if (transporter)
result of addition.push back(transporter+'o");

//take the result and reverse it
reverse(result of addition.begin(), result of addition.end());

return result_of _addition;

}
//main function, read the numbers
int main()
{
string first number = "";
string second number = "";

cout << "Enter first number = ";
cin >> first number;
cout << "Enter second number = ";
cin >> second_number;

cout << "The addition is: " << compute_addition(first number, second_

number) << endl;

return O;

117

CHAPTER 4 LARGE INTEGER ARITHMETIC

Let’s run Listing 4-6 for the following numbers and examine the output of the
addition. The first number is 2431989739243198973924319897392431989739243198
9739243198973924319897392431989739. The second number is 3947978705439479787
05409241873394797870540924187339479787054092418733947978705409241873
09241873. The output is shown in Figure 4-5.

C:\Users\mariu\Desktop\Apress C++23\Chtd_Large Integer Arithmetic\Source Code>g++ -std=c++2b 4_6_compute_addition_large
_numbers.cpp -o 4_6_compute_addition_large_numbers

C:\Users\mariu\Desktop\Apress C++23\Cht_Large Integer Arithmetic\Source Code>il_é_compute_addition_large_numbers.exe
Enter first number = 20319897392131989739243198973920319897392031989739213198973921319897392431989739

Enter second number = 3947978705U43947978785U892U187339479787054U092018733947978785 2018733947978 24187368921U1873
The addition is: 3947978765U39482219843831661932921963025306634305384537113739898111659377179U860821579741231612

C:\Users\mariu\Desktop\Apress C++23\Chd_Large Integer Arithmetic\Source Code>

Figure 4-5. Addition using large numbers

Subtraction (Subtraction Modulo)

The process of subtraction is the same as the addition approach (see Listing 4-7 for the
source code and Figure 4-6 for the output), except that you take the difference between
the two numbers, and different implementations can be done or found with different
references?, where the algorithms and steps are quite similar.

Listing 4-7. Subtraction Approach

#include <iostream>
#include <algorithm>

using namespace std;

//reverse string (number)
void reverseNumber(string®& number, int n, int i)

{

while(n<i)

{

return;

*See https://www.geeksforgeeks.org/difference-of-two-large-numbers/?ref=gcse

118

https://www.geeksforgeeks.org/difference-of-two-large-numbers/?ref=gcse

CHAPTER 4 LARGE INTEGER ARITHMETIC

swap (number[i], number[n]);
reverseNumber (number, n-1, i+1);

}

//compute the length of the number as string
int compute number length(string number)

{
int number_length = 0;
int 1 = 0;
while(number[i])
{
number_length++;
it++;
}
return number_length;
}

//verify and return true if number 1 is smaller than number 2
bool check(string first number, string second number)
{
// Calculate lengths of both strings
int firstNumber = compute number length(first number);
int secondNumber = compute number length(second number);

int counter = 0;

//return true if the first number is less than the second number
while (firstNumber < secondNumber)
return true;

//return false if second number is less than first number
while (secondNumber < firstNumber)
return false;

while(counter < firstNumber)

{

while (first number[counter] < second number[counter])

119

CHAPTER 4 LARGE INTEGER ARITHMETIC

}

return true;
while (first number[counter] > second number[counter])
return false;

}

return false;

//compute the difference between two numbers
string compute difference(string first number, string second number)

{

120

int transporter = 0;
int counter = 0;

int difference = 0;
int startPoint = 0;

//verify that number 1 is not smalle than number 2
while (check(first number, second number))
swap(first _number, second number);

//for storing the result

string result = "";

//compute the length of both strings
int firstNumber = compute number length(first number);
int secondNumber = compute number length(second number);

startPoint = secondNumber;

//reverse the strings

reverseNumber (first number, compute number length(first
number) - 1, 0);

reverseNumber (second number, compute number length(second
number) - 1, 0);

//perform running the loop until the length of the small string
(number)
//add the digits of str1l to str2

CHAPTER 4 LARGE INTEGER ARITHMETIC

while(counter < secondNumber)

{
//compute the difference of the digits for the numbers
int difference = ((first number[counter] - '0') - (second
number[counter] - '0"') - transporter);
//in case that subtraction is less than zero, perform an
addition of 10 into the subtraction and take the transporter as
1 to compute the next step
if (difference < 0)
{
difference += 10;
transporter = 1;
}
else
transporter = 0;
result.push back(difference + '0");
counter++;
}

// subtract remaining digits of larger number
while(startPoint < firstNumber)
{
int difference = ((first number[startPoint] - '0') -
transporter);

// if the sub value is -ve, then make it positive
if (difference < 0) {
difference = difference + 10;

transporter = 1,

}

else
transporter

0;

result.push back(difference + '0');

121

CHAPTER 4 LARGE INTEGER ARITHMETIC

startPoint++;

}

// reverse resultant string
reverse(result.begin(), result.end());

return result;

}

// Driver code
int main()

{

string first number = "";

string second number = "";

cout << "Enter first number = ";
cin >> first number;

cout << "Enter second number = ";
cin >> second_number;

cout << "The addition is:
second_number) << endl;

<< compute_difference(first number,

return 0;

C:\Users\mariu\Desktop\Apress C++23\Cht_Large Integer Arithmetic\Source Code>g++ -std=c++2b 4_8_multiplication_big_numbers.cpp
-0 4_8_multiplication_big_numbers

C:\Users\mariu\Desktop\Apress C++23\Cht_Large Integer Arithmetic\Source Code>l_8_multiplication_big_numbers.exe
Enter first number = 23123122123

Enter second number = 12425421

The multiplication is: 287314527212688783

C:\Users\mariu\Desktop\Apress C++23\Cht_Large Integer Arithmetic\Source Code>

L 4

Figure 4-6. The result of the difference

122

CHAPTER 4 LARGE INTEGER ARITHMETIC

Multiplication

Multiplication modulo is the same as addition modulo, except that you take the product
of the two numbers. Examine Listing 4-8 and the output in Figure 4-7 for the proposed
approach, which is similar to addition and subtraction.

Listing 4-8. Multiplication Operation

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

//compute the length of the number as string
int compute number length(string number)

{
int number length = 0;
int i = 0;
while(number[i])
{
number length++;
i++;
}
return number length;
}

//the function will compute the multiplication operation between two
large numbers
string multiplicateTwoNumbers(string first number, string second number)
{
int length of first number = compute number length(first number);
int length of second number = compute number length(second number);

while (length of first number == 0 || length_of second number == 0)
return "0";

123

CHAPTER 4 LARGE INTEGER ARITHMETIC

124

//the result is stored in a vector in a reversed order
vector<int> result(length of first number + length of second
number, 0);

//we will use two indexes for both large numbers for identifying the
position within the result

int indexPosition FirstNumber = 0;

int indexPosition_SecondNumber = 0;

int counter_1 = length of first number-1;

//take from the right to the left within first number
while(counter 1>=0)
{

int transporter = 0;

int number1l = first number[counter 1] - '0';

//this is used for shifting the position to left once every
multiplication with the digit is done within the second number
indexPosition_SecondNumber = 0;

int counter_2 = length _of second number-1;

//take from right to left for the second number
while(counter 2>=0)
{
//store the current digit of the second number
int number2 = second number[counter 2] - '0';

//take the digit stored above and multiply the two large
numbers with it, the result will be added to the previous
result stored within the current position

int additionCurrentDigitWithCurrentPosition =
number1*number2 + result[indexPosition FirstNumber +
indexPosition SecondNumber] + transporter;

//take the carry or transporter for the next iteration
transporter = additionCurrentDigitWithCurrentPosition/10;

}

CHAPTER 4 LARGE INTEGER ARITHMETIC

//save the result
result[indexPosition FirstNumber + indexPosition
SecondNumber] = additionCurrentDigitWithCurrentPosition % 10;

indexPosition_SecondNumber++;
counter_2--;

}

//save the transporter within next location

while (transporter > 0)
result[indexPosition FirstNumber + indexPosition
SecondNumber] += transporter;

//after each multiplication, shift and move the position to the
left for the first digit within the first number
indexPosition_FirstNumber++;

counter_1--;

}

//don't take into consideration the 0 s from the right

int zero from right = result.size() - 1;

if (zero from right>=0 && result[zero from right] == 0)
zero_from right--;

//if the case is 0 s - this means that both large numbers or at least
one of the large numbers was 0
while (zero from right == -1)

return "0";

//for storing the result as string

string result_as_string = "";

while (zero from right >= 0)
result as string += std::to_string(result[zero from right--]);

return result as string;

int main()

125

CHAPTER 4 LARGE INTEGER ARITHMETIC

{
string first number = "";
string second_number = "";
cout << "Enter first number = ";
cin >> first number;
cout << "Enter second number = ";
cin >»> second_number;
cout << "The multiplication is: " << multiplicateTwoNumbers(first
number, second number) << endl;
return 0;

}

Ci\Wsers\mariu\Desktop\Apress Coo2I\ChA_Large Integer Arithametic\Source Coderger =stdrcerd 4 8 multiplication big nuabers.cpp
-0 a_B_sultiplicatien_big_nusbers

C:\Users\mariu\Desktop\Apress C++2)\ChA_Large Integer Arithactic\Scurce Code»a B _multiplicatica_big nusbers.exe
Enter first musber = 23123122123

Enter second nuaber = 12423421

The sultiplication is: 28731632721268878)

C:\Users\mariu\Deshtop\Apress C++23\Cha_Large Integer Arithmetic\Scurce Code»

Figure 4-7. The multiplication result

Big Integers

This section examines other approaches that can be used for arithmetic operations using
big integers. When working with cryptography algorithms and security mechanisms,

the implementation process can be very tricky when providing an implementation that
uses large numbers. Let’s go through a step-by-step guide on how to work with large
numbers.

One of the most interesting approaches is to transform a standard integer using
different computations in a large integer. To achieve this task, let’s write a function
named transformIntToBigInt(A, 123).With the help of this function, initialize A as
A[0]=3,A[1]=2, A[2]=1, and zeros for the remaining positions as A[3,...N-1].

Listing 4-9 examines how to accomplish the statement by using a simple implementation
in C/C++. The BASE represents the bit sign.

126

CHAPTER 4 LARGE INTEGER ARITHMETIC

Listing 4-9. Transforming a Standard Integer Using Different Computations into
a Large Integer®

void transformIntToBigInt(int BigNo[], int number)

{
int k;
int bitSign;
int BASE;
//** start indexing with 0 position
k = 0;
//** if we still have something left
//** within the number, continue
while (number) {
//** insert the digit that is least significant
//** into BigNo[k] number
BigNo[k++] = number % bitSign;
//** we do not need the least significant bit
number /= BASE;
}
//** complete the remainder of the array with zeroes
while (k < N)
BigNo[k++] = 0;
}

The algorithm in Listing 4-9 has O(N) space and time.

Let’s continue the adventure by looking at the possibility of adding one to a big
int. This is a very helpful operation and is quite frequently used in cryptography. The
advantage is that it is much easier than full addition.

*The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

127

CHAPTER 4 LARGE INTEGER ARITHMETIC

Listing 4-10. Add One to a Big int®

void increment (int BigNo [])
{

int i;

int N;

int BASE;

//* start indexing with least significant digit

i=o0;
while (i < N)
{

//* increment the digit
BigNo[i]++;

//** if it overflows
if (BigNo[i] == BASE)
{

//** make it zero and move the index to next
BigNo[i] = 0;
i++;

else
//** else, we are done!
break;

The algorithm shown in Listing 4-10 takes O(#) for the worst case possible (just
imagine something like 999999999999999999999999....) and ¥(1) when you have the
best case. The best case occurs when there is no overflow on the least significant digit.

6The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

128

CHAPTER 4 LARGE INTEGER ARITHMETIC

Next, let’s look at a method for adding two big integers. In this case, we want to add
two large integers in two different arrays: BigNo1[0,..., N-1] and BigNo02[0,...,N-1]. The
output result is saved in another array: BigNo3[0,...,N-1]. The algorithm is quite basic,
and there is nothing fancy about it.

Listing 4-11. Addition Algorithm?’

void addition(int BigNoi[], int BigNo2[], int BigNo3[])
{

int j, overflowCarry, sum;

int carry, N, BASE;

//** There is no need to carry yet
carry = 0;

//** move from the least to the most significant digit
for (j=0; j<N; j++)
{
//** the digit from j'th position of BigNo3[]
//** represents the sum of j'th digits of
//** BigNo1[] and BigNo2[] plus the overvflow carry
sum = BigNo1[j] + BigNo2[j] + overflowCarry;

//**% if the sum will go out of the base then
//** we will find ourselves in an overflow situation
if (sum >= BASE)

{
carry = 1;
//** adjust in such way that
//** the sum will fit within a digit
sum -= BASE;
}
else

//** otherwise no carryOverflow

"The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

129

CHAPTER 4 LARGE INTEGER ARITHMETIC
carry = 0;

//** add the result in the same sum variable
BigNo3[j] = sum;
}

//** if we are getting to the
//** end, we can expect an overflow
if (carry)
printf ("There is an overflow in the addition!\n");

Let’s continue with multiplication by using a basic method to multiply two large
numbers, X and Y, multiplying each X digit with each Y digit. The output is a partial
product. The output result is shifted to the left for every new digit. Our multiplying
OneDigit function multiplies an entire large integer using a single digit. The result is
placed in a new large integer. We also present another function, left_shifting, which
shifts the number to the left with a certain number of spaces. It is multiplied using b,
where b is the base, and i represents the number of spaces. Let’s take a quick look at the
algorithm.

Listing 4-12. Multiplication?®

void multiply (int BigInti[], int BigInt2[], int BigInt3[])

{
int length of integer;
int x, y, P[length of integer];

//** C stores the sum of
//** partial products. It is initially O.
transformIntToBigInt (BigInt3, 0);

//* for each digit in BigInti
for (x=0; x<length of integer; x++)

{

8The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

130

CHAPTER 4 LARGE INTEGER ARITHMETIC

//** multiply BigInt2 by digit [x]
multiplyUsingOneDigit (BigInt2, P, BigInti[x]);

//** left shifting the partial product with i bytes
leftShifting(P, x);

//** add the output result to the current sum
addResult(BigInt3, P, BigInt3);

Next, let’s examine a function that uses a single digit to multiply.

Listing 4-13. Multiplying Using a Single Digit®

void multiplyUsingOneDigit (int BigOne1[], int BigOne2[],
int number) {
int k, carryOverflow;
int N, BASE;

//** there is nothing related to
//** extra overflow to be added at this moment
carryOverflow = 0;

//** for each digit, starting with least significant...

for (k=0; k<N; k++){
//7** multiply the digit by number,
//** putting the result in BigOne2
BigOne2[k] = number * BigOne1[k];

//** adding any extra overflow that is taking
//** place starting with the last digit
BigOne2[k] += carryOverflow;

//**¥ product is too big to fit in a digit
if (BigOne2[k] >= BASE) {

9The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

131

CHAPTER 4 LARGE INTEGER ARITHMETIC

//** handle the overflow
carryOverflow = BigOne2[k]/BASE;
BigOne2[k] %= BASE;

else
//** no overflow
carryOverflow = 0;
}
if (carryOverflow)
printf ("During the multiplication
we experienced an overflow!\n");

Let’s continue with a function that shifts to leave a specific number of spaces.

Listing 4-14. Shift to Left of a Specific Number of Spaces!®

void leftShifting (int BigInti[], int number) {
int i;
//** moving from left to right,
//** we will move anything with left n spaces
for (i=N-1; i>= number; i--)
BigInti[i] = BigInt1[i- number];

//** complete the last n digits with zeros
while (i »>= 0) BigInti[i--] = 0;

Review of Large Integer Libraries

Several libraries and frameworks already implemented are dealing with high numbers.
Their development process was suspended for some of them, but they are still used in

cryptography applications.

"The code is meant to be a sketch of a function that transforms a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

132

CHAPTER 4 LARGE INTEGER ARITHMETIC

The following libraries work with big integers.

Matt McCutchen'! proposes a very easy-to-use C++ library for
calculations on big integers [1]. The code has very good explanations,
and it is easy to follow. The results obtained in symmetric and
asymmetric cryptography algorithms were promising. Most of the
results were compared with other tools for reference and checking,
such as CryptTool*2

L3HARRIS Geospatial Solutions is a library that is fast on
computations is the Big Integer Class [2] from L3HARRIS Geospatial
Solutions.

Boost Library' is a strong library used to achieve tasks based on
linear algebra, pseudorandom number generation, multithreading,
image processing, regular expression, and unit testing. The library
has an impressive set of independent libraries, approximately 160,
and the documentation is well-structured and easy to follow and
use [3].

GMP Library is a free library that can be used for random precision
arithmetic is GNU Multiple Precision Arithmetic Library (GMP)*°.

It offers large support for operations based on signed integers,
rational numbers, and floating-point numbers (see Chapter 5 for
more details). The library's only limitations are those that involve the
available memory. The limits are 23 — 1 bits on 32-bit and 2*" — 1 bits
on 64-bit. The main interface is for C/C++, but there is also support
for C#, .NET, and OCaml (easily can be ported for Haskell as well. For
more information, take a look at [4], [5], and [11]). Additionally, there
is important support for Ruby, PHP, Python, R, Perl, and Wolfram
Language. The audience of the library includes cryptography
software applications, security of the Internet, and algebra systems.

"' Matt McCutchen’s Web Site, https://mattmccutchen.net/
12CrypTool, https://www.cryptool.org/en/

L3HARRIS Geospatial Solutions, https://www.harrisgeospatial.com
“Boost Library, http://www.boost.org

'“GMP Library, http://gmplib.org

133

https://mattmccutchen.net/
https://www.cryptool.org/en/
https://www.harrisgeospatial.com
http://www.boost.org
http://gmplib.org

CHAPTER 4 LARGE INTEGER ARITHMETIC

o LibBF Library [8] works with floating-point numbers represented
in base 2. The library is based and implemented on the IEEE 754
standard [7]. The example provided on the library web page, TinyPI,
is a very good example showing its power. This library is examined
further in Chapter 5.

e Bignum C++ Library [9] (or TTMath is a larger library that includes
Bignum C++ library) allows personal and commercial users to
perform arithmetic operations. The types of integers supported are
big unsigned integers, big signed integers, and big floating-point
numbers. There is support for mathematical operations, such as
adding, subtracting, dividing, and multiplying.

The current example, described in [10], creates an object characterized by two words
each. On a 32-bit platform, the maximum value that can be held is 2***2? — 1. Note that
the author shows that variables can be initialized with string or, if you are dealing with
small values using a standard type such as unsigned int.

Listing 4-15. Using ttmath::Ulnt<>

#include <ttmath/ttmath.h>
#include <iostream>

int main()
{
ttmath::UInt<2> firstA, secondB, thirdC;
a = "8765";
b = 3456;
C = a*b;

std::cout << thirdC << std::endl;

134

CHAPTER 4 LARGE INTEGER ARITHMETIC

Conclusion

The chapter discussed the general representations of big integers and their operations.

It analyzed the most important methods and approaches for computing addition,

subtraction, and multiplication for large numbers. The chapter also discussed big

integer libraries, providing the advantages that a professional needs when setting up an

environment for developing cryptographic algorithms.

References

[1]. C++ BigInteger Library. Available online: https://mattmccutchen.net/
bigint/. Last accessed: 12.12.2022.

[2]. BigInteger Class L3HARRIS Geospatial. Available online:
https://www.harrisgeospatial.com/docs/BIGINTEGER.html.
Last accessed: 12.12.2022

[3]. Boost Library Documentation. Available online: https://www.boost.org/
doc/1libs/1 72 0/.Lastaccessed: 12.12.2022

[4]. Nita, S. L. and Mihailescu, M. (2017). Practical Concurrent Haskell: With Big
Data Applications. Apress.

[5]. Nita, S. L. and Mihailescu, M. (2019). Haskell Quick Syntax Reference. Apress.

[6]. Bellard. Available online: https://bellard.org/1libbf/.
Last accessed: 12.12.2022

[7]. IEEE 754-2019 - Standard for Floating-Point Arithmetic. Available
online: https://standards.ieee.org/content/ieee-standards/en/
standard/754-2019.html. Last accessed: 12.12.2022

[8]. LibBF Library. Available online: https://bellard.org/libbf/.
Last accessed: 12.12.2022

[9]. Bignum Library. Available online: https://www.ttmath.org/.
Last accessed: 12.12.2022

[10]. TTMath Samples. Available online: https://www.ttmath.org/samples.
Last accessed: 12.12.2022
[11]. Mena, A.S. (2019). Practical Haskell: A Real World Guide to Programming.

Apress.

135

https://mattmccutchen.net/bigint/
https://mattmccutchen.net/bigint/
https://www.harrisgeospatial.com/docs/BIGINTEGER.html
https://www.boost.org/doc/libs/1_72_0/
https://www.boost.org/doc/libs/1_72_0/
https://bellard.org/libbf/
https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html
https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html
https://bellard.org/libbf/
https://www.ttmath.org/
https://www.ttmath.org/samples

CHAPTER 5

Floating-Point Arithmetic

Working with large numbers can be seen as abstract art, as covered in Chapter 4. If the
encryption schemes are not implemented correctly, the entire cryptographic method
might result in a serious fatality.

Floating-point mathematics and its significance for cryptography are the focus of this
chapter.

Why Floating-Point Arithmetic?

Due to the representations and implementation techniques, floating-point arithmetic is
an important subfield of mathematics that requires careful attention. In homomorphic
encryption or chaos-based cryptography, this kind of arithmetic can be applied (covered
in Chapter 14 and Chapter 12).

Systems that use both very small and very large real numbers can contain
computations that use floating-point values. Their computations need a very quick
procedure. A particular class of variables called floating-point variables may store real
values, such as 5420.0, — 4.213,or 0.045634. The floating part of the name shows that the
decimal point can “float.”

Different floating-point data types, including the float, double, and long double
types, are available in C++. The language does not define the size of these types, as you
know from the case of C++ with integers. Most floating-point representations on current
processors adhere to the IEEE 754 standard [1] for binary representation format. This
standard specifies that a float type has four bytes, a double has eight, a long double has
eight bytes (the same as the double), and both are 80 bits (by padding, there are 12 bytes
or 16 bytes).

137

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_5

https://doi.org/10.1007/978-1-4842-9450-5_5

CHAPTER 5 FLOATING-POINT ARITHMETIC

Always include at least one decimal when working with floating-point values. For
the compiler to distinguish between a floating number and an integer, this is very useful.
Cryptographers need to know this.

int a{s5}; //** 5 represents an integer

double b{4.0}; //** 4.0 represents a floating point (with no
//** suffix - double type by default)

float c{2.0f}; //** 2.0 represents a floating point (f is the

//** suffix, which means a float type)

Displaying Floating-Point Numbers

Listing 5-1 shows how to display floating-point values.

Listing 5-1. Display Common Float Numbers
#include <iostream>
using namespace std;

int main()

{

cout << 5.0 << endl;
cout << 6.7f << endl;
cout << 9876543.21 << endl;

return O;

The result shown in Figure 5-1 is achieved by running the example.

138

CHAPTER 5 FLOATING-POINT ARITHMETIC

= Command Prompt X o (15

E:\examples\5>g++ —std=c++2b Listing5-1.cpp -o Listing5-1
:\examples\5>Listing5-1

7

E
5
6.
9.87654e+06

m

:\examples\5>|

Figure 5-1. The output of common float numbers

By examining the program'’s output, you can see that, in the first instance, the output
is 5 bytes, but the source code contains 5.0. This occurs as a result of the fractional part
being equal to 0. The second instance prints the number exactly as it appears in the
original code. In the third instance, scientific notation displays the number, which is
beneficial for cryptography methods.

The Range of Floating Points

Table 5-1 gives the sizes, range, and precision according to the IEEE 754 standard.

Table 5-1. IEEE 754 Standard Representation

Size Range Precision

4 hytes +1.18 x 103 to = 3.4 x 1038 The most significant digits are 6-9;
typically, 7 digits.

8 bytes +2.23 x 107%% fo + 1.80 x 10%% The most significant digits are 15-18;

typically, 16 digits.

80-bits (typically 12 +3.36 x 107492 to + 1.18 x 10°®2 The most significant digits are 18-21.
or 16 bytes)

16 bytes +3.36 x 107%%%2 fo + 1.18 x 10®®> The most significant digits are 33—-36.

On modern CPUs, the 80-bit floating-point is implemented using 12 or 16 bytes. It
makes sense that the CPUs could manage data of this size.

139

CHAPTER 5 FLOATING-POINT ARITHMETIC

Floating-Point Precision

Let’s consider the example of the fraction 1/3. The decimal equivalent for this value is
0.3333333... with an infinite number of 3s.

A computer needs infinite memory to store a number with an endless length. Due to
memory constraints, only the most significant digits of a floating-point number can be
stored. How many significant digits may be represented without any information being
lost depends on the precision of the floating-point number. When printing a floating-
point number in cryptography, cout has an implicit precision of 6. Let’s see how cout
truncates the numbers to six digits in Listing 5-2 and Figure 5-2.

Listing 5-2. Representation of Floating-Point Precision
#include <iostream>
using namespace std;

int main()

{
cout << 7.56756767f << endl;
cout << 765.657667f << endl;
cout << 345543.564f << endl;
cout << 9976544.43f << endl;
cout << 0.00043534345f << endl;

return 0;

140

CHAPTER 5 FLOATING-POINT ARITHMETIC

= Command Prompt * + v — a X

E:\examples\5>g++ -std=c++2b Listing5-2.cpp -o Listing5-2

E:\examples\5>
E:\examples\5>Listing5-2
7.56757

765.658

345544

9.97654e+06

0.000435343

E:\examples\5>

Figure 5-2. Output of floating-point precision

Keep in mind that there are only six important digits in each of the scenarios.

Observe that the output from cout in some situations is shown using scientific
notations. Typically, the exponent is padded with a minimal number of digits, depending
on the compiler that was used. The number of exponent digits displayed depends on the
compiler; Visual Studio uses 3, whereas other compilers use 2 (that are implemented
according to C99 instructions and standards).

Both sizes and the value stored affect how many digits and how precisely a floating-
point number is represented. The precision of the float values is between 6 and 9, with
the lowest number of important digits being 7. The precision of the double values is
shown with 15 and 18 digits. Depending on how the bytes are used, long double numbers
are represented with at least a precision of 15 or 33 significant digits.

The setprecision() method is used in Listing 5-3 to modify the default precision
that cout or std: : cout displays. The iomanip header contains the implementation for
the setprecision() method. The result is shown in Figure 5-3.

Listing 5-3. Default Precision

#include <iostream>
#include <iomanip>

using namespace std;

141

CHAPTER 5 FLOATING-POINT ARITHMETIC

int main()

{
std::cout << std::setprecision(16);
std::cout << 3.333333333333333333333333333333333f <<endl;
std::cout << 3.333333333333333333333333333333333 << endl;

return O;

= Command Prompt * + v a iy

E:\examples\5>g++ —std=c++2b Listing5-3.cpp -0 Listing5-3

E:\examples\5>Listing5-3
3.333333253860474
SEIAHSHEHGSS 1S

E:\examples\5>

Figure 5-3. Override the default precision

The precision in Figure 5-3 has been set to 16 digits; therefore, each number is
displayed with a 16-digit precision. The problems with precision do not only affect
fractional numbers but also affect any number with multiple important digits.

Next Level for Floating-Point Arithmetic

Homomorphic encryption, a powerful form of encryption, is discussed in Chapter 12.
A particular form of encryption called homomorphic encryption is employed as a
professional technique for maintaining privacy, while storage and computations can be
outsourced. Data can be encrypted using this sort of encryption and then outsourced
to commercial (or public) environments for processing while still being encrypted. Ring
learning with errors (see Chapter 13) is one of the sources of homomorphic encryption,
which is connected to private set intersections [2].

Finding the correct approach to approximating a real number in such a way as to
provide a compromise between range and precision is essential when dealing with
complex cryptosystems, where floating-point representation constitutes the core of the
encryption/decryption mechanisms.

142

CHAPTER 5 FLOATING-POINT ARITHMETIC

The word floating refers to the ability of a number’s decimal point to move, which
indicates that it can be placed in any place connected to the important digits of the
number. A floating-point number can be represented as four integers when dealing with
complicated cryptosystems, such as homomorphic encryption.

a=+d-n'"

n stands for the base, ffor the exponent, j for precision, and d for the important
digits, which must adhere to the following relationship.

0<d<n’ -1

For manipulating floating-point numbers, C++ provides the functions fmod, remainder,
and remquo. These functions are all contained in the cmath header file. These fundamental
functions, introduced in C++11, are used to handle straightforward mathematical
operations involving floating-point values required for mainstream programming and
encryption (low and simple concepts). The functions are relatively restrictive for advanced
cryptography techniques and do not give cryptographers the necessary tools. Specialized
libraries such as the Boost Multiprecision Library, TTMath, LibBE, GNU Multiple Precision
Library perform difficult computations with large real numbers. These are the ones that
enable experts to complete their difficult assignments using complex cryptosystems.

Conclusion

The chapter covered floating-point number general representations and how complex
cryptosystems employ them. It examined the key ideas that a professional needs when
setting up a workspace to create sophisticated cryptosystems that imply floating-point
numbers.

The chapter also highlighted the significance of floating-point arithmetic for
complex cryptosystems such as homomorphic encryption, chaos-based cryptography,
lattice-based cryptography, or ring learning with errors. Advanced cryptosystems cannot
be implemented correctly without thoroughly understanding floating-point arithmetic.
Poor implementation can result in a major catastrophe for big data or commercial cloud

computing environments.

143

CHAPTER 5

FLOATING-POINT ARITHMETIC

References

144

[1].

[2].

(3].

[4].

(5].

[6].

[7].

8].

D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey, S. Bass, S. Canon,
S. IEEE standard for floating-point arithmetic. IEEE Std, 754(2008), 1-70, 2008.
H. Chen, K. Laine, and P. Rindal, Fast Private Set Intersection from
Homomorphic Encryption. 2018.

Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic encryption in
less than a second,” in Advances in Cryptology-Eurocrypt 2015, pp. 617-640,
Springer, 2015.

S. Halevi and V. Shoup, “Algorithms in HElib,” in Crypto’14, vol. 8616,
Springer, 2014.

J. Campos, P. Sharma, E. Jantunen, D. Baglee, and L. Fumagalli, “The
Challenges of Cybersecurity Frameworks to Protect Data Required for

the Development of Advanced Maintenance,” Procedia CIRP, vol. 47,

pp. 222-227, 2016.

C. Burnikel and J. Ziegler, “Fast recursive division,” Research Report,
MPI-1-98-1-022, Max-Planck-Institut fur Informatik, Saarbrucken,

Germany, 1998.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and]. Wernsing,
“Manual for using homomorphic encryption for bioinformatics,” Proceedings
of the IEEE, vol. 105, no. 3, 2017.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers,” in Proceedings of the International
Conference on the Theory and Application of Cryptology and Information
Security (ASIA-CRYPT’17), pp. 409-437, Hong Kong, China, December 2017.

CHAPTER 6

New Features in C++23

C++23is an informal name for the next version of the standard C++ programming
language, known as ISO/IEC 14882! and issued by the working group ISO/IEC JTC1/
SC22/WG21. Materials related to the progress of C++23 are at https://github.com/
cplusplus/draft, https://en.cppreference.com/w/, and https://cplusplus.com/.

The toolchain, which comprises all the many applications and services that work
together to deliver unique tools within C++23, is one essential component of the current
application development life cycle. They include testing tools, continuous integration,
and delivery (CI/CD) pipelines, IDEs, editors, and code generators that produce
scaffolding and deploy application frameworks. It is simple to become accustomed to
one set of tools and use them exclusively.

C++23is planned to be finalized by the end of 2023, providing features such as the
support for standard library modules and a much faster compilation process.

Note Because of the COVID-19 pandemic, the meetings? were postponed

(see the meetings from Varna, June 2022; Kona, Hawaii, February 2021; and
New York,3* November 2020). New features were added to the C++23 draft, and
others were inserted once the virtual WG21 meeting was held on November 9,
2020. Some features remain the same as those from the C++20 version.

Many of the ambitions and features for the new C++23 have been postponed due
to restrictions and pandemic situations, such as pattern matching, contracts, and
concurrency models. The features will be developed within C++26.

'See https://www.iso.org/standard/79358.html
>See https://www.open-std.org/jtcil/sc22/wg21/docs/papers/2020/p2145r0.html
3See https://isocpp.org/std/meetings-and-participation/upcoming-meetings

*See https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4862.pdf
145

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_6

https://github.com/cplusplus/draft
https://github.com/cplusplus/draft
https://en.cppreference.com/w/
https://cplusplus.com/
https://www.iso.org/standard/79358.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2145r0.html
https://isocpp.org/std/meetings-and-participation/upcoming-meetings
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4862.pdf
https://doi.org/10.1007/978-1-4842-9450-5_6

CHAPTER6 NEW FEATURES IN C++23

According to Bjarne Stroustrup, the language will have support for a standard library
module called std and support for coroutines. C++23 is developed under the ISO, and
some of the new improvements are minor, but they will not be minor improvements.
From the beginning, C++23 was not supposed to be a major upgrade for C++. Instead,
versions C++11 and C++20 represented major improvements. For example, with the help
of a standard library module, the well-known, simple program “Hello World” becomes
what’s shown in Listing 6-1. It is compiled ten times faster than the previous version that
uses #include <iostream>.

Listing 6-1. Classic Hello World Example with Standard Library Module

import std;:

int main()
{

std::cout << "Hello, World!\n";
}

Next, let’s discuss the following new features from C++23 concerning the proposed
schedule by WG21°.

o Headers
o Corelanguage features

o Library features

Headers

The following headers represent the most important features added in C++23.
o <expected>®
o <generator>’

o <flat_map>®

*See https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1000r4.pdf
®See https://en.cppreference.com/w/cpp/header/expected

"See https://en.cppreference.com/w/cpp/header/generator

8See https://en.cppreference.com/w/cpp/header/flat_map

146

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1000r4.pdf
https://en.cppreference.com/w/cpp/header/expected
https://en.cppreference.com/w/cpp/header/generator
https://en.cppreference.com/w/cpp/header/flat_map

CHAPTER 6 NEW FEATURES IN C++23

e <mdspan>®

o <print>"

e <spanstream>!!
o <stacktrace>®®
o <stdfloat>®®

o <stdatomic>™

Next, let’s discuss the <expected>, <generator>, and <flat_map> headers, as they are
vital for the implementation of cryptography algorithms and any other secure algorithms
that might be implemented as solutions, giving general information about their structure
and how they are designed within the new C++23.

The <expected> Header

What is the purpose of <expected> header? The <expected> header' can be seen as a
wrapper containing an expected value or an error value. Unfortunately, at this moment,
there is not much information and few examples available online, except for those
available at cppreference.com?® or sobyte.net'".

The <expected> header provides an easy way to store two values. Once an object
is declared (e.g., std: :expected), it can hold an expected value with type T or an
unexpected value of type E. A description of the two parameters, T and E, is shown in
Table 6-1.

See https://en.cppreference.com/w/cpp/header/mdspan
0See https://en.cppreference.com/w/cpp/header/print

""See https://en.cppreference.com/w/cpp/header/spanstream
2See https://en.cppreference.com/w/cpp/header/stacktrace
3See https://en.cppreference.com/w/cpp/header/stdfloat

“See https://en.cppreference.com/w/cpp/header/stdatomic.h and https://github.com/
dotnet/runtime/issues/57618

°See https://en.cppreference.com/w/cpp/utility/expected
16See https://en.cppreference.com/w/cpp/header/expected
"See https://www.sobyte.net/post/2022-05/cpp-std-expected/

147

https://en.cppreference.com/w/cpp/header/mdspan
https://en.cppreference.com/w/cpp/header/print
https://en.cppreference.com/w/cpp/header/spanstream
https://en.cppreference.com/w/cpp/header/stacktrace
https://en.cppreference.com/w/cpp/header/stdfloat
https://en.cppreference.com/w/cpp/header/stdatomic.h
https://github.com/dotnet/runtime/issues/57618
https://github.com/dotnet/runtime/issues/57618
https://en.cppreference.com/w/cpp/utility/expected
https://en.cppreference.com/w/cpp/header/expected
https://www.sobyte.net/post/2022-05/cpp-std-expected/

CHAPTER6 NEW FEATURES IN C++23

Table 6-1. Parameter Descriptions

Template Parameter Description

T Represents the type of the expected value. There are two possible
types: void or must comply with the requirements that characterize
Destructible.™

E Represents the type of the unexpected value. This parameter has to
comply with Destructible requirements, and it has to be a valid
template argument for std: :unexpected.

Note The main advantage of std: :expected object is that it cannot be without
value. The value must be either expected or unexpected. The stored value is
allocated straight within the storage that it has been assigned with the declaration
of the expected object.

The new C++23 comes with four new classes (expected, unexpected, bad _excepted
access, unexpect t). Listing 6-2 is a short synopsis of the std namespace for
<expected>, as it is presented and described by cpprefrence.com.'®

Listing 6-2. std namespace for <expected> header'

namespace std {
// class template unexpected
template<class E> class unexpected;

// class template bad expected access
template<class E> class bad_expected access

// specialization of bad_expected access for void
template<> class bad expected access<void>;

8See https://en.cppreference.com/w/cpp/named_req/Destructible
9See https://en.cppreference.com/w/cpp/header/expected

148

https://en.cppreference.com/w/cpp/named_req/Destructible
https://en.cppreference.com/w/cpp/header/expected

CHAPTER 6 NEW FEATURES IN C++23

// in-place construction of unexpected values
struct unexpect t {

explicit unexpect t() = default;
};

inline constexpr unexpect t unexpect{};

// class template expected
template<class T, class E> class expected;

// partial specialization of expected for void types
template<class T, class E> requires is void v<T> class expected<T, E>;

The <generator> Header

The <generator> header is part of the range’s library.>® The header helps us to have
access to random number generation methods by providing a combination between
generators and distributions.

The new approach within C++23 clears the difference between generators and
distributions, although several issues®*** have been raised related to the formatting
std: :generator and other versions from C++20 std: : format. A simple example of these
issues is listed in Listing 6-3. We cannot make std: :generator formattable due to its
const-iterable or copyable, and the std::format gets as an argument the const&. In C++20,
this was not a problem that programmers experienced, but in C++23, according to the
reports, this represents a major problem due to the range adapters.

2 See https://en.cppreference.com/w/cpp/ranges

2'See https://isocpp.org/files/papers/P2418R2.html

2See https://isocpp.org/files/papers/P2418R2.html#biblio-p2286
»See https://isocpp.org/files/papers/P2418R2.html#biblio-p2168

149

https://en.cppreference.com/w/cpp/ranges
https://isocpp.org/files/papers/P2418R2.html
https://isocpp.org/files/papers/P2418R2.html#biblio-p2286
https://isocpp.org/files/papers/P2418R2.html#biblio-p2168

CHAPTER6 NEW FEATURES IN C++23

Listing 6-3. An Example of an Issue Between std::generator (C++23) and
std::format (C++20)

auto ints (int number) -> std::generator<int> {
for (int n = 0; n < n; ++i)
{
co_yield n;
}
}

// an error
std::format("{}", ints coro(10));

The <flat_map> Header

The <flat_map> header is contained within the containers? library. Its purpose is to
adapt a specific container to provide a collection of key-value pairs sorted using the
unique keys.

As far as the reports are published about the evolution of C++23, the header will
contain six classes, two functions, and two constants, as shown in Table 6-2.

24See https://en.cppreference.com/w/cpp/container

150

https://en.cppreference.com/w/cpp/container

CHAPTER 6 NEW FEATURES IN C++23

Table 6-2. Classes, Functions, and Constants in the <flat_map> Header

Classes flat_map
flat multimap
sorted unique t
sorted equivalent t
std::uses_allocator<std::flat_map>
std::uses_allocator<std::flat_multimap>
Functions erase_if(std::flat_map)
erase_if(std::flat multimap)
Constants sorted unique

sorted equivalent

Conclusion

This chapter discussed the new features that the new C++23 will deliver to programmers
and professionals. It gave a short overview of the main classes, functions, and constants
for those headers that can be used within cryptography applications.

The chapter has focused only on three headers, <expected>, <generator>, and
<flat_map>, which a programmer that wishes to implement cryptography algorithms
should take into consideration.

Now that you've reached the end of this chapter, you should understand C++20 and
C++23 features and be able to identify sources that can help programmers improve their
work in cryptography.

References

[1]. R.Siddhartha. Sams Teach Yourself C++: In One Hour a Day. Ninth edition,
SAMS, 2022.

[2]. G.Rainer. C++ Core Guidelines Explained: Best Practices for Modern C++. 1st
edition, Addison-Wesley Professional, 2022.

151

CHAPTER6 NEW FEATURES IN C++23

152

(3].

[4].

[5].

S. Rafal. Modern CMake for C++ Discover a Better Approach to Building,
Testing, and Packaging Your Software. Packt Publishing Limited, 2022.

B. U. Sufyan, editor. Mastering C++ Programming Language: A Beginner’s
Guide. First edition, CRC Press, Taylor & Francis Group, 2022.

G. S. Tselikis. Introduction to C++. CRC Press, 2023.

CHAPTER 7

Secure Coding Guidelines

The vulnerabilities of software applications typically have high costs. In 2022, the
global average total data breach cost was $4.35 million [1]. The efforts to eliminate
vulnerabilities from the software application should focus on secure coding, avoiding
vulnerabilities being deployed in the production phase.

Secure coding rules for development are necessary because they facilitate the
prevention of security flaws and maintain the confidentiality, integrity, and availability
of sensitive data processed by the application. Security flaws in applications, such as
buffer overflows, SQL injection, or cross-site scripting (XSS), can be readily exploited by
attackers to obtain unauthorized access to sensitive data, steal confidential information,
or disrupt program operations. Developers may build code that is less prone to
these sorts of security flaws and more resistant to attacks by following secure coding
principles. Furthermore, secure code rules aid in the promotion of good coding practices
and the creation of code that is manageable, legible, and scalable. Developers may
produce code that is simpler to maintain, debug, and test by adopting best practices,
which can lead to more efficient development and higher code quality.

Writing a secure source code represents a difficult task to achieve. It is very
important to understand the implications of the code being written and to have a
checklist of the “things” that need to be checked. The checklist helps developers quickly
verify their code for well-known security problems. Usually, it is normal for verification
to be performed by a security team and not by software developers or engineers.
Software developers cannot be objective with their own code.

The idea of a checklist should start from the following idea: verifying the source
code that processes data outside of its domain and considering the user input, the
network communication, the process of the binary files, receiving output from database
management systems or servers, and so on.

153

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_7

https://doi.org/10.1007/978-1-4842-9450-5_7

CHAPTER 7 SECURE CODING GUIDELINES

When working with a software application (it doesn’t matter that the application is
a desktop, web, or mobile), the idea that the application is secure because a well-known
company developed it is just a myth. Don’t trust and go on this path because most
companies spend a lot of the budget on security incidents, maintenance, consultancy,
and audit sessions.

There are two environments in which a software application is working, and its
behavior is different because of that environment. The software application that is under
analysis and development process within the company represents its circle of trust (at
least, most companies think in this way, and they enjoy considering their infrastructure
very resistant to security attacks). The behavior of the software application in that
circle of trust represents the most critical environment in which an application can be
developed and tested. No developer, IT security officer, or software analyst should hack
their own code. This environment is the comfort zone. Once the application leaves that
comfort zone and enters the real environment, the issues begin. The trust boundary is
hard and easy to draw at the same time and creates a delimitation between the comfort
zone and the real zone. It is not an easy task to achieve, especially if those application
applications are running in a virtualized infrastructure, cloud, or big data environment.

In the comfort zone, malicious end users represent a security threat. The malicious
end users attack the software application’s confidentiality and/or integrity. One of the
interesting methods and concepts proposed was software obfuscation.

Secure Coding Checklist

This section discusses and proposes a secure coding checklist (it can also be seen
as a procedure). This is an example of such a checklist (see Table 7-1), which can be
developed as much as you want. The checklist contains minimal examples of items
that can be checked when code is written in C++, regardless of which operating system
the code runs on. One of the most frequent practices among developers is to suppress
warnings that are not beneficial.

The “CERT Coding Standards” and “Rules” sections discuss the most important
rules to apply to your process of developing cryptographic algorithms. Each rule is well
explained within the guide.

154

CHAPTER 7 SECURE CODING GUIDELINES

Table 7-1. Example of Secure Coding Checklist

No. # Item to be checked Description Yes/No Notes

1 Compiler warnings

Make sure that the compiler output and a flag are raised for receiving
notifications for the potential errors listed for the following items.

v -Wall

v -Wmissing-declarations
v -Wmissing-prototypes
v -Wredundant-decls

v -Wshadow

v -Wstrict-prototypes

v -Wformat=2

For more flags with their definitions and actions, the GCC Options to Request or
Suppress Warnings section should be followed [2]. This is very useful if complex
cryptographic algorithms and security schemes are being implemented.

2 Enough buffer memory when working with strings

Check the following functions if there is an upper limit for the destination buffer
when a copy process is done until ‘\o\’ (NULL) is met. To avoid this situation,
the recommendation is to allocate enough memory space for the destination
buffer before copying the data.

v strepy()
v strcat()
v sprint()
v scanf()
v gets()

(continued)

155

CHAPTER 7 SECURE CODING GUIDELINES

Table 7-1. (continued)

No. # Item to be checked Description Yes/No Notes
3 Direct breaks in system security
Checking for untrusted input leads to a directly breach of the application
security. This step protects the application against malicious users and
attackers exploiting your program using metachars.

v system()

v popen()

v fork(2)

v exec(2)

v s_popen()

v HXproc_* [3]
4 Wrong parameter size and unexpected results
When complex programs are written, for example, the implementation of
SHA-256 from Chapter 2, Listing 2-9, assigning a wrong size of one of the
parameters, or doing a wrong arithmetic operation can cause a serious pitfall,
and immediately a fix should be provided. Make sure that the same size
allocated for the parameters is the same size on the destination side. As a best
practice, especially in implementing cryptography algorithms, it is better to
work with size t type. Be type-safe, and don’t create overflows.

v strncpy()

v strncat()

v snprintf()

(continued)

156

CHAPTER 7 SECURE CODING GUIDELINES

Table 7-1. (continued)

No. # Item to be checked Description Yes/No Notes

5 Too much memory allocated

Allocating too much memory and external parameters represents a certain
part of the size. Then you are dealing with a wrong memory allocation and
experience denial-of-service. To avoid this, use the following criteria.

v malloc(), calloc(), alloca()

v No integer overflows

v Avoid arithmetical issues

v Verification for any possible operation with untrusted
integer that could lead for an integer overlow.

6 Wrong casts

Avoid the following code. The compiler thinks that malloc returns an incorrect
int. It creates a bug that hackers can easily exploit.

char *a = malloc(10) - bad cast
class BaseClass {};
class DerivedClass: public BaseClass {};

BaseClass b; BaseClass* pb;
DerivedClass d; DerivedClass* pd;

//good cast
pb = dynamic_cast<BaseClass*>(8d);

//bad cast
pd = dynamic_cast<DerivedClass*>(8&b);

(continued)

157

CHAPTER 7 SECURE CODING GUIDELINES

Table 7-1. (continued)

No. # Item to be checked Description Yes/No Notes

7 Variable parameter lists

When implementing security schemes based on strings, you experience a new
type of problem that security analysts or ethical hackers enjoy playing with it
when performing tests. Ethical hackers commonly use a simple test to check
untrusted data to check if a function allows a variable as a list of parameters or
arguments, such as printf(). The untrusted data (created by an ethical hacker)
is directly used as a string format and not as an argument. The following logic
should be used for any similar situations.

v Wrong way: snprintf(buffer, sizeof(buffer), the input_
of the user)

v Right way: snprintf(buffer, sizeof(buffer), "%s", the_
input_of the user)

8 Operations with files

When handling files during cryptographic operations, try to use mkstemp().

9 File permissions

Not everyone should be able to read or write from or to a file. To create files
having assigned the wrong permission, try to use unmask().

v At the beginning of the file use unmask(077).

CERT Coding Standards

The CERT Coding Standards are a collection of safe coding rules produced by Carnegie
Mellon University’s CERT Coordination Center. These standards give rules and best
practices for building secure and trustworthy code. They are intended to assist software
developers in avoiding typical security vulnerabilities and ensuring the confidentiality,
integrity, and availability of sensitive data processed by their applications. The CERT
C++ Coding Standard has been developed only for versions of the C++ programming
language defined by the ISO/IEC 14882-2014 standard.

158

CHAPTER 7 SECURE CODING GUIDELINES

The coding standard is very well organized and follows the following structure:
identifiers, noncompliant code examples, compliant solutions, exceptions, risk
assessment, automated detection, related vulnerabilities, and related guidelines [8].

Next, let’s examine each item of the structure and its main objective and purpose.

Identifiers

This section provides the rules every identifier should follow. Each identifier has
three parts.

e A three-letter mnemonic that represents the section within the
standard.

e A numeric value of two digits is situated in the range 00 to 99.

o The language that is associated with it is represented as a suffix
(e.g., -CPP, -C, -], -PL).

e -CPP: SEI CERT C++ Coding Standard [8]

e -C:SEI CERT C Coding Standard [9]

e -J: SEI CERT Oracle Coding Standard for Java [10]
e -PL: SEI CERT Perl Coding Standard [11]

The three-letter mnemonic is used to group related coding practices and points out
which category a related coding belongs to.

Noncompliant Code Examples and Compliant Solutions

Noncompliant code examples and compliant solutions demonstrate how to write code
correctly and incorrectly per a given coding standard. A noncompliant code example is
a piece of code that violates one or more of the coding standard’s requirements. It might,
for example, have an unsafe function, have insufficient input validation, or have a buffer
overflow vulnerability.

A compliant solution, on the other hand, is a piece of code that adheres to the coding
standards and provides a secure and trustworthy solution to the same problem. It may, for
example, employ a secure function, provide rigorous input validation, and prevent buffer
overflow problems. Noncompliant code examples and compliant solutions are used to

159

CHAPTER 7 SECURE CODING GUIDELINES

teach and instruct developers on secure coding standards and to assist them in avoiding
common security risks in their code. Developers may obtain a deeper knowledge of the
best practices and strategies for building safe and dependable code by comparing and
contrasting the noncompliant code examples with the compliant solutions. Examples of
noncompliant code show code that violates the guideline. It is very important to keep in
mind that these are only examples. The removal process of all appearances of the example
does not mean that the code being analyzed complies with the SEI CERT standard.

Exceptions

Exceptions have an informative character and are not required to be followed. Any
rules can have a set of exceptions that provide details about the circumstances in which
the guideline does not need to be followed to ensure the software’s safety, security, or
reliability.

As with any type of exception, the principle is the same, no matter the programming
language. Pay extra attention to the exceptions, catch any possible ones, and learn from
them. Do not ignore and do not think that a programming language is perfect and has no
bugs or certain doors that can be exploited.

Risk Assessment

The process of analyzing and measuring the likelihood and effect of possible security
risks to an organization’s information systems, data, and assets is known as risk
assessment. A risk assessment seeks to identify and prioritize an organization’s

hazards and design and implement strategies to minimize or manage those risks. A risk
assessment section is assigned for each CERT C++ Coding Standard guideline. The risk
assessment section aims to provide software developers with the potential consequences
for not following or addressing a specific rule or recommendation. Risk assessment
appears to be a metric and is the main purpose of helping the remediation process of
software applications and complex projects.

For each rule and recommendation, there is a priority. To assign a priority, it is
recommended to understand IEC 60812 [12]. The priority is evaluated and assigned
using a metric characterized by three analysis types: failure mode, effects, and criticality.
Each rule also has a value assigned on a scale between 1 and 3, such as severity,
likelihood, and remediation cost (see Table 7-2).

160

CHAPTER 7 SECURE CODING GUIDELINES

Table 7-2. Assigning Values for Each Rule [8]

Severity What are the consequences if the rule is ignored?

Value Meaning Examples of vulnerabilities
1 Low Denial-of-service attack, unexpected termination
2 Medium Information disclosure without any intention lead to the violation of

the data integrity

3 High Running code randomly

Likelihood Statistically speaking, what is the probability that a flaw has been introduced in the code
by avoiding and ignoring the rule specifications and leading to a vulnerability that a malicious user
could exploit?

Value Definition

1 Unlikely
2 Probable
3 Likely

Remediation Cost What are the costs to follow and comply with the rule?

Value Definition Detection Correction
1 High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

For each of the rules, the values are multiplied together. The following metric (see
Table 7-3) gives you a measure that can be useful to prioritize the rules within the
application. The values are from 1 to 27. From all 27 values, only ten different values
occur and are available in most cases, 1, 2, 3, 4, 6, 8,9, 12, 18, and 27. Table 7-3 highlights
the interpretations and meanings of the priorities and levels.

161

CHAPTER 7 SECURE CODING GUIDELINES

Table 7-3. Levels and Priorities [8]

Level Priorities Possible Interpretation

L1 12,18, 27 High severity, likely, inexpensive to fix

L2 6,8,9 Medium severity, portable, medium cost to fix
L3 1,2,3,4 Low severity, unlikely, expensive to repair

Automated Detection

Most rules and recommendations have automated detection processes and tools that
help automatically diagnose violations. The Secure Coding Validation Suite [13] can

be used to perform tests on the ability of analyzers to diagnose violations of the rules
specified with ISO/IEC TS 17961:2013 [15], which is related to the rules of the SEI CERT
C Coding Standard [14].

Related Guidelines

This section has a special slot when software applications are developed. According to
the standard, it contains links, technical specifications, and guideline collections such
as Information Technology: Programming Languages, Their Environments, and System
Software Interfaces: C Secure Coding Rules [15]; Information Technology: Programming
Languages: Guidance to Avoiding Vulnerabilities in Programming Languages through
Language Selection and Use [16]; MISRA C++ 2008: Guidelines for the Use of the C++
Language in Critical Systems [17]; and CWE IDs in MITRE’s Common Weakness
Enumeration (CWE) [18]. [19]

Rules

Let’s overview the main rules that strongly apply to implementing cryptographic
algorithms and security schemes using C++23, especially with the new version. It is
better to have in mind the following rules. Note that this chapter examines only six out of
ten rules. All the explanations and examples are provided within the guide [20].

Some rules include rules from the C programming language that it applies to C++.
The following rules can also be used within the procedure presented in Table 7-1.

162

CHAPTER 7 SECURE CODING GUIDELINES

Any information security officer, security analyst, or ethical hacker should design
such a checklist. Developers can also use the checklist as a guide when developing
critical cryptographic algorithms. Additionally, it is recommended to do a code review
of the sections of the algorithms that are quite vulnerable and to make sure that the
rules (Rule 01, Rule 02, Rule 03, Rule 05, Rule 06, and Rule 07) are followed as much as
possible.

Following those rules gives security analysts or ethical hackers a certain level of trust
that the security mechanisms (cryptographic algorithms, security protocols, security
schemes, and other cryptographic primitives) are implemented properly and common
vulnerabilities have been eliminated.

Rule 01. Declarations and Initializations (DCL)

Table 7-4. Rule 01: Declarations and Initializations [20]

Rule Title

DCL50-CPP Do not define a C-style variadic function.

DCL51-CPP Do not declare or define a reserved identifier.

DCL52-CPP Never qualify a reference type with const or volatile.

DCL53-CPP Do not write syntactically ambiguous declarations.

DCL54-CPP Overload allocation and deallocation functions as a pair in the same scope.
DCL55-CPP Avoid information leakage when passing a class object across a trust boundary.
DCL56-CPP Avoid cycles during the initialization of static objects.

DCL57-CPP Do not let exceptions escape from destructors or deallocation functions.
DCL58-CPP Do not modify the standard namespaces.

DCL59-CPP Do not define an unnamed namespace in a header file.

DCL60-CPP Obey the one-definition rule.

DCL30-C Declare objects with appropriate storage durations.

DCL39-C Avoid information leakage when passing a structure across a trust boundary.
DCL40-C Do not create incompatible declarations of the same function or object.

163

CHAPTER 7 SECURE CODING GUIDELINES

Rule 02. Expressions (EXP)

Table 7-5. Rule 02: Expressions [20]

Rule Title

EXP50-CPP Do not depend on the order of evaluation for side effects.

EXP51-CPP Do not delete an array through a pointer of the incorrect type.

EXP52-CPP Do not rely on side effects in unevaluated operands.

EXP53-CPP Do not read uninitialized memory.

EXP54-CPP Do not access an object outside of its lifetime.

EXP55-CPP Do not access a cv-qualified object through a cv-unqualified type.

EXP56-CPP Do not call a function with a mismatched language linkage.

EXP57-CPP Do not cast or delete pointers to incomplete classes.

EXP58-CPP Pass an object of the correct type to va_start.

EXP59-CPP Use offset of () on valid types and members.

EXP60-CPP Do not pass a nonstandard-layout type object across execution boundaries.

EXP61-CPP A lambda object must not outlive any of its reference-captured objects.

EXP62-CPP Do not access the bits of an object representation that are not part of the object’s
value representation.

EXP63-CPP Do not rely on the value of a moved-from object.

164

CHAPTER 7 SECURE CODING GUIDELINES

Rule 03. Integers (INT)

Table 7-6. Rule 03: Integers [20]

Rule Title

INT50-CPP Do not cast to an out-of-range enumeration value.

INT30-C Ensure that unsigned integer operations do not wrap.

INT31-C Ensure that integer conversions do not result in lost or misinterpreted data.

INT32-C Ensure that operations on signed integers do not result in overflow.

INT33-C Ensure that division and remainder operations do not result in divide-by-zero errors.

INT34-C Do not shift an expression by a negative number of bits or greater than or equal to
the number of bits in the operand.

INT35-C Do not call a function with a mismatched language linkage.

INT36-C Converting a pointer to an integer or integer to a pointer.

165

CHAPTER 7 SECURE CODING GUIDELINES

Rule 05. Characters and Strings (STR)

Table 7-7. Rule 05: Characters and Strings [20]

Rule Title

STR50-CPP Guarantee that storage for strings has sufficient space for character data and the
null terminator.

STR51-CPP Do not attempt to create a std::string from a null pointer.

STR52-CPP Use valid references, pointers, and iterators to reference elements of a basic string.

STR53-CPP Range check element access.

STR30-C Do not attempt to modify string literals.

STR31-C Guarantee that storage for strings has sufficient space for character data and the
null terminator.

STR32-C Do not pass a nonnull-terminated character sequence to a library function that
expects a string.

STR34-C Cast characters to unsigned chars before converting to larger integer sizes.

STR37-C Arguments to character-handling functions must be representable as an unsigned
char.

STR38-C Do not confuse narrow and wide character strings and functions.

166

CHAPTER 7 SECURE CODING GUIDELINES

Rule 06. Memory Management (MEM)

Table 7-8. Rule 06: Memory Management [20]

Rule Title

MEM50-CPP Do not access freed memory.

MEM51-CPP Properly deallocate dynamically allocated resources.

MEM52-CPP Detect and handle memory allocation errors.

MEM53-CPP Explicitly construct and destruct objects when manually managing object lifetime.

MEM54-CPP Provide placement new with properly aligned pointers to sufficient storage
capacity.

MEM55-CPP Honor replacement dynamic storage management requirements.

MEM56-CPP Do not store an already-owned pointer value in an unrelated smart pointer.

MEM57-CPP Avoid using the default operator new for over-aligned types.

MEM30-C Do not access freed memory.

MEM31-C Free dynamically allocated memory when no longer needed.

MEM34-C Only free memory is allocated dynamically.

MEM35-C Allocate sufficient memory for an object.

MEM36-C Do not modify the alignment of objects by calling realloc().

167

CHAPTER 7 SECURE CODING GUIDELINES
Rule 07. Input/Qutput (FIO)

Table 7-9. Rule 07: Input/Output [20]

Rule Title

FIO50-CPP Do not alternately input and output from a file stream without an intervening
positioning call.

FIO51-CPP Close files when they are no longer needed.

FI030-C Exclude user input from format strings.

FI032-C Do not perform operations on devices that are only appropriate for files.

FI034-C Distinguish between characters read from a file and EOF or WEOF.

FIO37-C Do not assume that fgets() or fgetws() returns a nonempty string when successful.
FI038-C Do not copy a FILE object.

FI039-C Do not alternately input and output from a stream without an intervening flush or

positioning call.

FI040-C Reset strings on fgets() or fgetws() failure.

FlO41-C Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side
effects.

FIO42-C Close files when they are no longer needed.

Fl044-C Only use values for fsetpos() returned from fgetpos().

Fl045-C Avoid TOCTOU race conditions while accessing files.

FI046-C Do not access a closed file.

FlO47-C Use valid format strings.

Conclusion

This chapter explained rules and recommendations. You pursued a journey of the

most important security aspects that must be considered in developing cryptographic
algorithms and security schemes. Secure coding rules are important because they help
developers create secure applications, ensuring that there are no vulnerabilities that
adversaries can exploit. Examples of security issues that can be avoided by following

168

CHAPTER 7 SECURE CODING GUIDELINES

these rules are buffer overflows, malicious input, and other attacks. Code may be
checked and certified to be safe by adhering to secure coding rules, and developers can
utilize secure coding functions and libraries to prevent possible risks. Furthermore,
the rules aid in avoiding hard-coded values, the safe management of memory, the
sanitization of input and output, the use of secure encryption and hashing methods, and
the protection of sensitive data. Following secure coding rules reduces the likelihood of
security breaches and keeps your code secure.

Understanding the difference between a rule and a recommendation is very
important. The general idea that has to be concluded at this point is that a rule has
to follow a specific number of criteria compared with the recommendation, which
represents a suggestion for improving code quality.

You should have acquired a significant amount of knowledge by the end of
this chapter and now be capable of performing a security analysis of the source
code, creating a secure coding checklist, filtering those aspects that are vital for the
application, and instructing the developers as well on how to proceed when they are
implementing cryptographic algorithms and written related source code.

References

[1]. Costof a Data Breach. Available online: https://www.ibm.com/reports/
data-breach. Last accessed: 15.1.2023

[2]. GCC Options to Request or Suppress Warnings. Available online: https://
gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#Warning-Options.
Last accessed: 15.1.2023

[3]. HXprox_* libHX - Get Things Done. Available online: http://1ibhx.
sourceforge.net/. Last accessed: 15.1.2023

[4]. 1. Staff, Information Technology. Programming Languages. Guidance to
Avoiding Vulnerabilities in Programming Languages Through Language
Selection and Use (ISO/IEC TR 24772:2013). 2013.

[5]. Information Technology - Programming Languages, Their Environments
and System Software Interfaces - C Secure Coding Rules (ISO/IEC TS
17961:2012). 2012.

[6]. Programming Languages — C++, Fourth Edition. 2014.

[7]. R.C.Seacord and Carnegie, Secure coding in C and C++. Upper Saddle River,
Nj: Addison-Wesley, 2013.

169

https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#Warning-Options
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#Warning-Options
http://libhx.sourceforge.net/
http://libhx.sourceforge.net/

CHAPTER 7 SECURE CODING GUIDELINES

8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

170

SEI CERT C++ Coding Standard: Available online: https://wiki.sei.cmu.
edu/confluence/pages/viewpage.action?pageld=88046682. Last accessed:
15.1.2023

SEI CERT C Coding Standard. Available online: https://wiki.sei.cmu.edu/
confluence/display/c. Last accessed: 3.2.2023

SEI CERT Oracle Coding Standard for Java. Available online: https://wiki.
sei.cmu.edu/confluence/display/java. Last accessed: 3.2.2023

SEI CERT Perl Coding Standard. Available online: https://wiki.sei.cmu.
edu/confluence/display/perl. Last accessed: 3.2.2023

Analysis Techniques for System Reliability—Procedure for Failure Mode and
Effects Analysis (FMEA), 2nd ed. (IEC 60812). Geneva, Switzerland: IEC, 2006.
Secure Coding Validation Suite. Available online: https://github.com/
SEI-CERT/scvs. Last accessed: 3.2.2023

R. C. Seacord, The CERT C coding standard: 98 rules for developing safe,
reliable, and secure systems. Upper Saddle River, Nj: Addison-Wesley, 2014.
Information Technology—Programming Languages, Their Environments

and System Software Interfaces—C Secure Coding Rules (ISO/IEC TS 17961).
ISO, 2012.

Information Technology—Programming Languages—Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and
Use (ISO/IEC TR 24772:2013).1SO, 2013.

Motor Industry Software Reliability Association, MISRA C++ 2008 Guidelines

Jfor the Use of the C++ Language in Critical Systems, 2008.

MITRE. Common Weakness Enumeration, Version 1.8. February 2010.
Available online: http://cwe.mitre.org/. Last accessed: 3.2.2023

How this Coding Standard is Organized. Available online: https://wiki.sei
.cmu.edu/confluence/display/cplusplus/How+this+Coding+Standard+Is+
Organized. Last accessed: 3.2.2023

Rules. Available online: https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageld=88046322. Last accessed: 3.2.2023

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/display/c
https://wiki.sei.cmu.edu/confluence/display/c
https://wiki.sei.cmu.edu/confluence/display/java
https://wiki.sei.cmu.edu/confluence/display/java
https://wiki.sei.cmu.edu/confluence/display/perl
https://wiki.sei.cmu.edu/confluence/display/perl
https://github.com/SEI-CERT/scvs
https://github.com/SEI-CERT/scvs
http://cwe.mitre.org/
https://wiki.sei.cmu.edu/confluence/display/cplusplus/How+this+Coding+Standard+Is+Organized
https://wiki.sei.cmu.edu/confluence/display/cplusplus/How+this+Coding+Standard+Is+Organized
https://wiki.sei.cmu.edu/confluence/display/cplusplus/How+this+Coding+Standard+Is+Organized
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046322
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046322

CHAPTER 8

Cryptography Libraries
in C/C++23

The purpose of this chapter is to give a thorough list of C++ libraries that are compatible
with C++23’s new features. When professionals need access to a certain implementation
of a particular functionality, time need not be wasted searching through many Internet
resources to see other source code; professionals may gain insight into how to enhance
their own code.

Overview of Cryptography Libraries

Table 8-1 provides a list of the most important cryptography libraries. The selection
was mostly based on two metrics—execution speed and flexibility—and access to their
source code based on their open source license. Professionals benefit greatly from
having access to their source code since it allows them to compare their work and
algorithms with those of other implementations, allowing them to enhance their work.

Table 8-1. Main C/C++ Libraries

Library Title Developer Person/Industry Programming Language Open Source References

OpenSSL OpenSSL Project C X [1112][3]

Crypto++ Crypto C++ Project C++ X [71[8]

Botan Jack Lloyd C++ X [5]

Liberypt GnuPC Community C X [9][10]

GnuTLS Simon Josefsson C X [11][12]
Nikos Mavrogiannopoulos

Cryptlib Peter Gutmann C X [13]

171

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_8

https://doi.org/10.1007/978-1-4842-9450-5_8

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

For each library, the best implementations of the cryptographic primitives (such as
key generation and exchange, elliptic curve cryptography, public-key cryptography, hash
functions, MAC algorithms, block ciphers, etc.) are introduced.

Hash Functions

Table 8-2 shows each cryptography library’s features with different hash functions.
Chapter 2 presented a simple and basic implementation of the SHA-256 hash
function, and you saw what it means to implement a hash function from scratch.

Table 8-2. Existence of Hash Functions Within Cryptography Libraries

Library Titte MD5 SHA-1 SHA-2 SHA-3 Whirlpool GOST BLAKE2

OpenSSL X X X X X X X
Crypto++ X X X X X X X
Botan X X X X X X X
Libcrypt X X X X X X X
GnuTLS The library represents the implementation of TLS, SSL, and DTLS protocols.
Cryptib X X X X X - -

This section randomly selects a hash function from a library (e.g., MD5
implementation from OpenSSL) and provides some comments on their implementation.
It is very important to mention that the implementation provided for the MD5 hash
function is already implemented in OpenSSL, and this is done with respect to the
original implementation from [4]. First, you need to download the openssl-1.1.1g.tar.
gz file from source [4] and extract the content to access the source code (see Figure 8-1).
Once extracted, navigate to the crypto folder following the path openssl-1.1.1g\
crypto. In this way, you can access the source code files of all the cryptographic
algorithms implemented within the library.

KBytes Date File

9650 2023-Feb-07 15:38:20 openssl-1.11t.tar.gz (SHA256) (RGP sign) (SHAL) |
14796 2023-Feb-07 15:38:20 openssl-5.0.8.tar.gz (SHA256) (PGP sign) (SHAL)

15115 2022-Dec-21 10:56:21 openssl-3.1.0-betal.tar.gz (SHA256) (PGP sign) (SHA1)

Figure 8-1. Downloading openssl-1.1.1g.tar.gz file with source code
172

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

MD5 Hash Function Overview

This example is a simple algorithm and easy to follow and understand.

The implementation of MD5 has in its structure three files, two C/C++ files and one
header file, and an ASM folder with three files written in Perl language (see Figure 8-2).
The Perl files are optimizations for four platforms, such as 586, x86, x64, and sparc.

E:\examples\8>openssl md5 FileToHash.txt
MD5(FileToHash.txt)= fceebba467@9ec3Sda7f74eefccflibce

E:\examples\8>

Figure 8-2. Example of MD5 hash in action for a file

Public-Key Cryptography

Most libraries include well-tested implementations of Public-Key Cryptography
Standards (PKCS) (see Table 8-3).

Table 8-3. Existence of Public-Key Cryptography Protocols Within Cryptography
Libraries

Library Title PKCS#1 PKCS#5 PKCS#8 PKCS#12 IEEE P1363 ASN.1

OpenSSL X X X X - X
Crypto++ X X X - X X
Botan X X X - X X
Libcrypt X X X X X X
Cryptlib X X X X - -

Next, let’s demonstrate how to use public-key cryptography using OpenSSL. The
following example should give a clearer idea about the workflow. Assume that two
users—Alice and Bob—are communicating. The communication workflow is as follows.

173

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Step 1: Alice generates a private key, alicePrivKey.pem, with 2048 bits (see
Figure 8-3).

openssl genrsa -out alicePrivKey.pem 2048

E:\examples\8>openssl genrsa -out alicePrivKey.pem 2048 |
enerating RSA private key, 2@48 bit long modulus (2 primes)

is 65537 (@xe@1ee01)

E:\examples\8>

Figure 8-3. Generating private key

Step 2: Alice extracts the public key alicePublicKey.pemand sends it to Bob (see
Figure 8-4).

openssl rsa -pubout -in alicePrivKey.pem -out alicePublicKey.pem

[E:\examples\8>openssl rsa -pubout -in alicePrivKey.pem -out alicePublicKey.pem |
riting RSA key

i

|E:\examples\8>

Figure 8-4. Extracting public key

Step 3: Bob encrypts the clear message (stored in the file cleartext.txt) and obtains
the encryptedWithAlicePubKey file, which is sent to Alice (see Figure 8-5).

openssl rsautl -encrypt -in cleartext.txt -out encryptedWithAlicePubKey
-inkey alicePublicKey.pem -pubin

174

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

B cleartext.ixt - Notepad

File Edit View

Bob's message to Alice.

(a)
B encryptedWithAlicePubKey - Notepad

File Edit View

%G>2 VErE+8£ | tx"nEPUa« it tEBLANBEDEEexa0a060"\ «8Ax &

map, ¢{E<tEKBY&A?)B0I& " Hhap §¢:q< " Bce

r£$

Ue™Suss<i[- ! A<B 2B#AASE

ZBa EEc]VOweinE"0£°6E" ¢U4BIs«E+\ENU30E

xE{ B8« "BGEEE°EE, “AG’ UB{EN» >EE3G=u™485Edc*1 BETAUZEPXER |6 ~pEC P }EE] 1E4=]e«EET0/K”~" ‘r#REb

E:\examples\8>openssl rsautl -encrypt -in cleartext.txt -out encryptedWithAlicePubKey -ink
ey alicePublicKey.pem -pubin

E:\examples\8>

()

Figure 8-5. Encrypting the clear message and obtaining the encrypted message (a)
clear text (b) encrypted text (c) the process of encryption

Step 4: Alice decrypts the message from Bob (see Figure 8-6).

openssl rsautl -decrypt -in encryptedWithAlicePubKey -inkey
alicePrivKey.pem

175

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

E:\examples\8>openssl rsautl -decrypt -in encryptedWithAlicePubKey -inkey alicePrivKey.pem

Bob's message to Alice.
E:\examples\8>_

|- |

Figure 8-6. Decrypting the message

Elliptic-Curve Cryptography (ECC)

One of the most utilized key exchange protocols based on elliptic curves is ECDH
(Elliptic-Curve Diffie-Hellman) (see Table 8-4). The purpose of this protocol is to set
a shared secret key used in the encryption process without being necessary to send it
directly to each of the partners found within the communication process.

Table 8-4. Existence of Elliptic-Curve Cryptography Within Cryptography

Libraries

Library Title NIST SECG ECDSA ECDH GOST R 34.10
OpenSSL X X X X X

Crypto++ X X X X -

Botan X X X X X

Libcrypt X X X X X

Cryptlib X X X X -

To avoid the mathematical apparatus behind the protocol, the workflow of the
protocol is summarized as follows.

e Have a clear overview of the domain parameters exchanged between
the communication partners (Alice and Bob).

o Alice generates a private key and a public key with the parameters of
the domain.

176

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

o Bob also generates a private key and a public key with the domain
parameters set.

o Both users exchange their public keys.

o Alice computes using the public key of Bob, and the shared function
is characterized by a shared secret, known as the derived key of B.

¢ Bob does the same thing with the public key of Alice. The shared
function and the shared secret are known as the derived key of A.

e Alice now uses the derived key of Bob for encrypting the message.
e Bob uses the derived key of Alice to encrypt the message.

e Both users can decrypt the message using their own private key.

Creating ECDH Keys

First, it is important to check what OpenSSL supports on your machine related to ECDH
keys. To achieve these primary tasks, run the command openssl ecparam -list curves
(see Figure 8-7). The command lists a full list of curves that you can use. Most of them
are implemented properly with respect to their standards. Their implementation in
OpenSSL and the recent updates using C++23 new features made them easy to follow.

177

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

secp521rl :
primel92vi1:

sect163k1

sect233k1
sect233rl

secpli2rl :
secpli2r2 :
secpl28rl :
secpl28r2 :
secpl6ekl :
secpléerl :
secpléer2 :
secpl92kl :
secp224kl
secp224rl :
secp256k1 :
secp384rl :

primel92v2:
primel92v3:
prime239vil:
prime239v2:
prime239v3:
prime256v1:
sectli3rl :
sectli3r2 :
sectl3irl :
sectl3ir2 :
: NIST/SECG/MWTLS c
sectl63rl :
sect163r2 :
sect193rl :
sectl93r2 :
¢ NIST/SECG/MWTLS ¢
: NIST/SECG/MWTLS c
sect239k1 :
sect283k1l :

E:\examples\8>openssl ecparam

SECG/WTLS curve
SECG curve over
SECG curve over
SECG curve over
SECG curve over
SECG curve over
SECG/WTLS curve
SECG curve over
SECG curve over
NIST/SECG curve
SECG curve over
NIST/SECG curve
NIST/SECG curve
NIST/X9.62/SECG
X9.62 curve over
X9.62 curve over
X9.62 curve over
X9.62 curve over
X9.62 curve over
X9.62/SECG curve
SECG curve over
SECG curve over
SECG/WTLS curve
SECG curve over

SECG curve over
NIST/SECG curve
SECG curve over
SECG curve over

SECG curve over
NIST/SECG curve

-list_curves

over a 112 bit prime field

a 112 bit prime field

a 128 bit prime field

a 128 bit prime field

a 160 bit prime field

a 160 bit prime field

over a 160 bit prime field

a 192 bit prime field

a 224 bit prime field

over a 224 bit prime field

a 256 bit prime field

over a 384 bit prime field

over a 521 bit prime field

curve over a 192 bit prime field
a 192 bit prime field

192 bit prime field

239 bit prime field

239 bit prime field

239 bit prime field

over a 256 bit prime field

a 113 bit binary field

a 113 bit binary field

over a 131 bit binary field

a 131 bit binary field

urve over a 163 bit binary field
a 163 bit binary field

over a 163 bit binary field

a 193 bit binary field

a 193 bit binary field

urve over a 233 bit binary field
urve over a 233 bit binary field
a 239 bit binary field

over a 283 bit binary field

a
a
a
a

Figure 8-7. Obtaining a list of elliptic curves

The fastest way to create the key pair is by using the following command (see
Figure 8-8): openssl ecparam -name prime256vl -genkey -noout -out key.pem.

E:\examples\8>

E:\examples\8>openssl ecparam -name prime256vl -genkey -noout -out key.pem

Figure 8-8. Generating key pairs

178

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

This output looks something like the following.

MHcCAQEEIDgluredbEynt973tGCSuC156fxupbFfLMgwyUXCShSNoAoGCCqGSM49
AwEHoUQDQgAESBJihoUfo4fr+E4IB6uMwzqcAzgHDbFWCAWtGj9w94cWnFbeTbh1

BDcNwLOUKNICkrrCtM6h5EAgM9K2E3TGfw==

If you want to see the details of the EC parameter, run the following command:

openssl ec -in key.pem -text -noout. The command outputs something like what’s

shown in Figure 8-9.

14
pub:
04
8c
70

LN

2d:

6e:
b6:
ASN1 OID:
NIST CURVE: P-256

:as
79:
:8d

:48:
=3
=7
28:
13:

:ba:
e9:

3:2:2
3a:
87:
d2:
74:

(256 bit)

62:
9c:
:9c
02:
c6:

16

:9d
fcit

6e

87

e3

92
7f

:6C
:as

145
:3a
:56
:ba

prime256vi1

E:\examples\8>,

:4c:a7:b7
:b1:5f:2c¢

:1f:a3:87

:87:0ed:b1:

:de:4d:b8
:c2:bd:ce

:de:
:C8:

:eb:
70:
5
tal:

E:\examples\8>openssl ec -in key.pem
read EC key
Private-Key:
priv:

f7
30
f8

04
e4

-text

:b4:60:
:€9:45:

:4e:08:
:@5:ad:
:37:0ed:
:140:20:

-noout

92:b8:
c2:4a:

©7:ab:
l1a:3f:
c0:bf:
9b:d2:

Figure 8-9. Details of the EC parameter

OpenSSL

Configuration and Installing OpenSSL

To properly configure and install OpenSSL, depending on the OS platform that is used,

follow the steps in this section accordingly.

179

CHAPTER 8 CRYPTOG

RAPHY LIBRARIES IN C/C++23

Installing OpenSSL on Windows 32/64

Step 1: Download the binaries for OpenSSL [3]. Download the latest version of the OpenSSL
Windows installer by going to https://slproweb.com/products/Win320penSSL.html.
Scroll down until you can download Win32/Win64 OpenSSL (see Figure 8-10).

Ditrmrdad WinTLWnd4 OrperSSL todiy using e Iriks below!

Dovenload Wind 2'Winkd OpenSSL

[Trps

Descristion

Winirt OpentSL v1.0.0 Light SHE Installer

nstalis the mast commanty wsed exsentials of Winkd OpentilL w10 (Recommended for users by the oreators of Dperdil). Only imvtalls on 64 versioss of Windows and targets Intel xibd chipaets. Noce that they

Wink4 Openiil 108 140ME Irstalies far soltwary
=]

‘the crestors of GasaiiLh Orly Fatas on 646 varmens of Windows 3nd farpets el w4 chpscts Piote that tha 1 3 et b of

S50 v1.08
[CipanitL and s subyect to kocl and stabe lws. found m the legal ag

el 0 € yos need 10 5% UperSilL Tor Wiadowrs, Mots that 8

o et commanly wied eriescals ol Pin I o
[Mors wiormabon can ba found m the begal agresmant of the mstallstion.

116ME Iratuller ¥308 | # you e 3i-ba CpensiL for Windows. o Cpentsl wnd s subiedt ta i, hegal
agrevmest of the istalation.
Wikt OpentbL w100 Light for ARM | 5108 Inctaller | inctals the most commoniy weed arsancals of Winkd Opantis w04 for AR bk o wask 10 try $4-0ut Copantid for Wingows oa ARM processars. Hote that

shis b 2 delit busid of pentSL and b susject 1o local and st lows. More inlorsation can be found in the legal agreement of the imstalation.

¥18D dor 11IMB Iratalles L v), MEA devces (Daly install ths VIRY DXPIMMINTAL buld # you want to try 4-be OpentSl for Windows on ARM processors, Note that this o a defaukt budd of Open$Si and
3 stalation,

5 subfect 12 local and sk krws. More imormation can b found i the legal greement of he i

LIt Lght 3ME bnstaller | Installs the mest commonly wed exentisla of Winkd OpenSSL w1, It (Recommended for users by the creators of DpenLL Cnly mstalls en €452 versaons of Wisdaws, Note thit this & & delult buld of OpenSSL
15t 4 dupict 1o Bocal ind 1808 Liwi. Mors isformaticn, €x be foused i thi lefal igresent of the imitulliten.
vl BIME utaler LIt elapers by the creators of GIREnSiL) Oy install on 64-bt versions of Windows. Mot hat the i 2 detauk buld of Opeatsl and b subject oo local
w2t stane biws Townd i the g
LIt Lght M8 lnstaller | Invtalls the meit commonty seed amscals of Windd Opantss w11t (Only instal this # you aeed Kl-et CpandSl for Windows. Note that tus is 3 Sulaalt buid of Cpensil 4ad o subject to kcal and stata ko,
[More armanian can be toand i the legal agreement of the nstaliation.
Lt SAME briaber

[stalls Wis32 OpmnS5L w1 1.1t (aly sitall thes i yom e 33-bat CipanSSL for Windows. Nets thit ths i & defiut b of OpanSSL and i iubiect to local kad stite liwi. Mors miormation €an ba found n the
begal sgremment of the installation.

Figure 8-10. Download section of OpenSLL

Step 2: Double-click and run the downloaded Win640penSSL-3 0 8.exe file (see

Figure 8-11).

Step 3: Accept the license agreement and click Next.

180

https://slproweb.com/products/Win32OpenSSL.html

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

& Setup - OpenSSL 3.0.8 (64-bit)

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

DONATIONS NEEDED! If you are a business you should be contributing regular
donations. If you are a generous individual, consider regular donations. Most
people simply take and run - leaving me to foot the bill. That's not nice. Some
businesses even drop their customers onto me to provide direct support to the
customer (ahem, PayPal). That's also not nice. Even if you can't afford a small,
one time donation of $10, at least drop a line saying how much you appredate
the effort put into this project (and, optionally, what you use OpenSSL for). Lots
of complaints and few compliments is discouraging.

LEGAL NOTICE: This product incdudes software developed by the OpenSSL

(D1 do not accept the agreement

(o) ane

Figure 8-11. OpenSSL license agreement
Step 4: Specify the installation path and click Next (see Figure 8-12).
& Setup - OpenSSL 3.0.8 (64-bit) -

Select Destination Location
Where should OpenSSL (64-bit) be installed?

Setup will install OpenSSL (64-bit) into the following folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

:\Program Files\OpenSSL-Win64 Browse...

At least 441.1 MB of free disk space is required.

<o coce

L -

Figure 8-12. Setting up the path to install OpenSSL

181

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Step 5: Click Next.
Step 6: This presents the Select Start Menu Folder screen. Leave everything as it is
and click Next (see Figure 8-13).

15! Setup - OpenSSL 3.0.8 (64-bit) = X
Select Start Menu Folder |}’
Where should Setup place the program's shortcuts? (G%

= | setup wil create the program’s shortcuts in the following Start Menu folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

Ope Browse...

cosk (o>) cancel

b A

Figure 8-13. Placing the location of the program shortcuts

Step 7: The Select Additional Tasks screen appears. Click The Windows system
directory option (see Figure 8-14).

182

{5/ Setup - OpenSSL 3.0.8 (64-bit)

Select Additional Tasks
Which additional tasks should be performed?

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

(64-bit), then dick Next.

Copy OpenSSL DLLs to:
© The Windows system directory
() The OpenssL binaries (/bin) directory

Select the additional tasks you would like Setup to perform whie instaling OpenSSL

L.

< cance
Figure 8-14. Additional Tasks to perform
Step 8: Click Install (see Figure 8-15).
1B Setup - OpenSSL 3.0.8 (64-bit) — X
Ready to Install
Setup is now ready to begin installing OpenSSL (64-bit) on your computer. é /

change any settings.

Destination location:
C:\Program Files\OpenSSL-Win64

Start Menu folder:
OpenSSL

Additional tasks:

Copy OpenSSL DLLs to:
The Windows system directory

Click Install to continue with the installation, or dick Back if you want to review or

A

Cancel

Figure 8-15. Acknowledgment of the installation process and settings

183

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Step 8: The installation progresses. Remember that if you haven’t installed Microsoft
Visual C++ Redistributable (x64), you are asked to install it.

Step 9: Finish the installation process. Leave everything as it is and click Finish.

Step 10: Configure and set up the environment variables for OpenSSL.

Step 11: Run Environment Variables. Go to System Properties and click Environment
Variables.

System Properties X

Computer Name Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.

Performance
Visual effects. processor scheduling. memory usage. and virtual memory

User Profiles
Desktop settings related to your signin
| Seftings... |
Startup and Recovery
System startup, system failure, and debugging information
[sewos. |

OK Cancel | Apply

Figure 8-16. System Properties

Step 12: The environment variable for OpenSSL is added to System Variables.
Click New.

184

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

X

Envirenment Variables
User variables for Dapyx
Variable Value A
JAVA_HOME C:\Program Files\Java\jdk1.8.0_191
OneDrive E:\OneDrive\OneDrive
OneDriveConsumer E\OneDrive\OneDrive
PATH C:\Program Files (x86)\Cracklock\Bin; C:\Python37-32\Scripts\; C:\P...
STACK_ROOT Ci\sr
TEMP 9%USERPROFILES:\AppData\Local\Temp
T™P %USERPROFILE%:\AnpData\Local Temo W
New.. || Edt.. Delete
System variables
Variable Value Q
asllog Destination=file
ComSpec C:\Windows\system32\cmd.exe
GTK_BASEPATH CA\Program Files (x86)\GtkSharp\2.12\,
JAVA_HOME C:\Program Files\Java\jdk1.8.0_191
MSMPI_BIN C:\Program Files\Microsoft MPI\Bin\
MNUMBER_OF_PROCESSORS 4
OCAMLLIB C:\OCaml64\home\Daowx\.obam\ocaml-variants.4.07.1+ minawé4c... ¥
New. | Edit. | Delete |
[ok]| concer |
Figure 8-17. Environment variables
Step 13: Configuring the OPENSSL_CONF variable
‘ New System Variable X
Variable name: | OPENSSL_CONF |
Variable value: [C:\Program Files\OpenSSL-Win64\bin\openssl.cfg |
‘ Browse Directory... ‘ Browse File... l I OK | ‘ Cancel l

Figure 8-18. New System Variable

185

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Step 14: Configuring and modify the path variable accordingly. Select the Path
variable from System variables and click Edit.

Environment Variables X

User variables for Dapyx

Variable Value A

JAVA_HOME C:\Program Files\Java\jdk1.8.0_191

OneDrive E:\OneDrive\OneDrive

OneDriveConsumer E\OneDrive\OneDrive

PATH C:A\Program Files (x86)\Cracklock\Bin;C:\Python37-32\Scripts\; C:\P...

STACK_ROOT Ci\sr

TEMP 9%USERPROFILES:\AppData\Local\Temp

TMP %USERPROFILES:\ApoData\Local\Temp v
Mew... Edit... Delete

System variables

Variable Value &
OCAMLLIB CA\OCaml64\home\Dapyx\.opam\ocaml-variants.4.07.1+mingw64c...
OPENSSL_CONF C:\Program Files\OpenSSL-WinB4\bin\openssl.cfg

PROCESSOR_ARCHITECTURE AMD64
PROCESSOR IDENTIFIER Intel64 Familv 6 Model 69 Steooina 1. Genuinelntel N/

New.. || Edt. || Delete |

| oK | Cancel]

Figure 8-19. Environment Variables: Path Variable

Step 15: In the Edit environment variable window, click New and Browse.

186

Edit environment variable

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

C:\Program Files\PuTTY\
C:\Program Files\MiKTeX 2.9\miktex\bin\x64\

CAOCaml&4\bin

C:\Program Files (x86)\GtkSharp\2.12\bin
C:\Program Files\Java\jdk1.8.0_191\bin
C:\PostgreSQL\pg11\bin
C:\PostgreSQL\pg10\bin

C:\Program Files\dotnet\

C:\Program Files\Git\cmd

C:\Program Files\Haskell Platform\8.4.3\mingw\bin

C:\Program Files\IDM Computer Solutions\UltraCompare
C:\Program Files (x86)\Microsoft SQL Server\140\Tools\Binn\
C:\Program Files\Microsoft SQL Server\140\Tools\Binn\

C:\Program Files (x86)\Microsoft SQL Server\140\DTS\Binn\
C:\Program Files\Microsoft SQL Server\140\DTS\Binn\

C:\Program Files\Microsoft SQL Server\Client SDKNODBC\130\Tool...
C:\Program Files (x86)\Microsoft SQL Server\Client SDK\ODBC\130...
C:\Program Files (x86)\Microsoft SQL Server\140\Tools\Binn\Mana...

C:\Program Files\Microsoft SQL Server\130\Tools\Binn\

Edit |

Browse...]

Delete |

Move Up |

| Move Down |

Editted.. |

{C:\Program Files (x6)\Gpgdwin\..\GnuPG\bin

Figure 8-20. Edit environment variable

OK Cancel

Step 16: Select the path to the OpenSSL bin folder and click OK. The new path should
be added successfully. Close everything. If you have the command window open, close it

and reopen it again for the update to be done

correctly; otherwise, it does not work.

187

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Edit environment variable

3

C:\Program Files\PuTTY\ [y ew
C:\Program Files\MiKTeX 2.9\miktex\bin'\x64\

C:\Program Files\Haskell Platform\8.4.3\mingw\bin Edit
C\OCamlé4d\bin

C:\Program Files\IDM Computer Solutions\UltraCompare Browse...

C:\Program Files (x86)\Microsoft SQL Server\140\Tools\Binn\
C:\Program Files\Microsoft SQL Server\140\Tools\Binn\

C:\Program Files (x86)\Microscft SQL Server\140\DTS\Binn\
C:\Program Files\Microsoft SQL Server\140\DTS\Binn\

C:\Program Files\Microsoft SQL Server\Client SDK\ODBC\130\Tool...
C:\Program Files (x86)\Microsoft SQL Server\Client SDK\ODBC\130...
C:\Program Files (x86)\Microsoft SQL Server\140\Toocls\Binn\Mana...
C:\Program Files (x86)\GtkSharp\2.12\bin

C:\Program Files\Java\jdk1.8.0_191\bin

C:\PostgreSQL\pg11\bin

C:\PostgreSQL\pg10\bin

C:\Program Files\dotnet\

C:\Program Files\Microsoft SQL Server\130\Tools\Binn\

30 Eilac\Git\cmd

“C:\Program Files\OpenSSL-Win64\bin"

o
-~

Cancel

Figure 8-21. Verifying that the path for OpenSSL is added

Step 17. Open Command (cmd.exe). Run the openssl command. If the OpenSSL>
prompter appears in the window, it is the first sign of success.

!E :\examples\8>openssl |
OpensSL> o

\

Figure 8-22. Checking OpenSSL, first step

Step 18: Run the second command: version. Make sure that everything is set
properly. You are successful if the version and date are returned, as shown in Figure 8-23.

188

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

‘: Administrator: Command Prompt - openssl — (m] X ‘

E:\examples\8>openssl |
OpenSSL> version

OpenSSL 1.1.1s 1 Nov 2022

OpensSSL>

Figure 8-23. Checking OpenSSL, second step

Installing OpenSSL on Linux: Ubuntu Flavor

Usually, OpenSSL is already installed on Linux Ubuntu. This step-by-step guide uses the

Ubuntu 22.04 LTS version.

Step 1: Check the OpenSSL version installed on your machine by running openssl

version -ain the terminal.

1 user@user-virtual-machine: ~ C =

To run a command as administrator (user "root"), use "sudo <command=".
See "man sudo_root" for details.

ser@user-vi L-machine:-$ openssl version -a
OpenssL 3.GA 15 Mar 2022 (Library: OpenssSL 3.0.2 15 Mar 2022)
i : Mon Feb 6 17:57:17 2023 UTC
: debian-amd64
bn(64,64)
: gcc -fPIC -pthread -m64 -Wa,--noexecstack -Wall -Wa,--noexecstack -g

-ffile-prefix-map=/build/openssl-hnAO66/openssl-3.6.2=. -flto=auto -ffat-1t
o-objects -flto=auto -ffat-lto-objects -fstack-protector-strong -Wformat -Werro
r=format-security -DOPENSSL_TLS_SECURITY_ LEVEL=2 -DOPENSSL_USE_NODELETE -DL_END
IAN -DOPENSSL_PIC -DOPENSSL_BUILDING_OPENSSL -DNDEBUG -Wdate-time -D_FORTIFY_SO
URCE=2
OPENSSLDIR: "/fusr/lib/ssl"

ENGINESDIR: "/usr/lib/x86_64-1inux-gnufengines-3"

MODULESDIR: "/usr/lib/x86_64-1inux-gnu/ossl-modules”

Seeding source: os-specific

CPUINFO: DPENSSL 1.337cap =Bxfefa3ze34fsbffff:0x18400784219c27ab
r@user-virt L-machine: S

Figure 8-24. Checking the OpenSSL version

If you don’t see it, the OpenSSL was not installed or configured properly. Let’s

proceed to install and configure OpenSSL.

189

CHAPTER 8

CRYPTOGRAPHY LIBRARIES IN C/C++23

Step 2: Update the Ubuntu system to the latest packages by running the following

command in the terminal. The command is sudo apt-get update && sudo apt-get

upgrade. You are asked to answer with Y or N to continue. Choose Y (Yes).

user@user-virtual-machine: ~

ubuntu.
ubuntu.
ubuntu.
ubuntu.

archive.
archive.
archive.
archive.

http: //ro.
:2 http:/f/ro.
http://ro.
http://ro.

com/ubuntu
com/ubuntu
com/ubuntu
com/ubuntu

hELLY

Get:5 http://ro.archive.ubuntu.
ata [1081 kB]

Get:6 http://ro.archive.
etadata [267 kB]

Get:7 http://ro.archive.
Metadata [940 B]

Get:8 http://ro.archive.

adata [7.996 B]

com/ubuntu
ubuntu.com/ubuntu
ubuntu.com/ubuntu

ubuntu.com/ubuntu

Get:9 http://ro.archive.ubuntu.com/ubuntu jammy-

Metadata [12,4 kB]

ELLVE
ELLVE
ELLE
ELLVE
ELLVE
jammy-

ELLVE

Q
InRelease
updates InRelease [119 kB]
backports InRelease [107 kB]
updates/main amd64 Packages [89
updates/main amd64 DEP-11 Metad
updates/universe amd64 DEP-11 M
updates/multiverse amd64 DEP-11
backports/main amd64 DEP-11 Met

backports/universe amd64 DEP-11

Get:10 http://security.ubuntu.com/ubuntu jammy-security InRelease [110 kB]
Get:11 http://security.ubuntu.com/ubuntu jammy-security/main amd64 DEP-11 Metad

ata [41,5 kB]

Get:12 http://security.ubuntu.com/ubuntu jammy-security/universe amd64 DEP-11 M

etadata [15,2 kB]
Fetched 1.680 kB in 13s (125 kB/s)
Reading package lists... Done

Done
Done
Done

Reading package lists
Building dependency tree...
Reading state information...

Calculating upgrade... Done

hine: $ sudo apt-get upgrade

8 upgraded, ©® newly installed, ® to remove and ® not upgraded.

Figure 8-25. Updating the Ubuntu System with the latest packages

Step 3: Check the availability of OpenSSL packages to be installed from the official

repository for Ubuntu using the command apt show openssl.

190

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

1 user@user-virtual-machine: ~

r er-virtual :-5 apt show openssl

Package: openssl

Version: 3.0.2-6ubuntul.8

Priority: important

Section: utils

Origin: Ubuntu

Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>

original-Maintainer: Debian OpensSSL Team <pkg-openssl-devel@alioth-lists.debian.

net>

Bugs: https://bugs.launchpad.net/ubuntu/+filebug

Installed-Size: 2.102 kB

Depends: 1libcé (>= 2.34), 1libssl3 (»>= 3.6.2-8ubuntul.2)

Suggests: ca-certificates

Homepage: https://www.openssl.org/

Task: minimal, server-minimal

Download-Size: 1.184 kB

APT-Manual-Installed: no

APT-Sources: http://ro.archive.ubuntu.com/ubuntu jammy-updates/main amd64 Packag

es

Description: Secure Sockets Layer toolkit - cryptographic utility

This package is part of the OpensSsL project's implementation of the SSL
and TLS cryptographic protocols for secure communication over the
Internet.

Figure 8-26. Checking for OpenSSL packages

Step 4: The last step is to install the package using the command sudo apt install
openssl -y.

r-virtual-machine:-$ sudo apt install openssl -y
Reading package lists... Done

Building dependency tree... Done
Reading state information... Done

Figure 8-27. Installing OpenSSL packages

OpenSSL is a robust and widely used open source cryptography library that supports
many cryptographic functions and protocols, such as SSL/TLS, RSA, Diffie-Hellman, and
elliptic curve cryptography (ECC). OpenSSL is regarded as a strong cryptography library
for the following reasons.

e Broad platform support. OpenSSL is accessible on most operating
systems, including Linux, macOS, Windows, and BSD. This makes it a
popular option for cross-platform cryptography applications.

191

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

e Wide range of cryptographic functions. OpenSSL provides a
broad selection of cryptographic functions and protocols, including
symmetric and asymmetric encryption, hashing, digital signatures,
and key exchange.

o High performance. OpenSSL is recognized for its high performance
and efficiency. It has been designed for speed and supports hardware
acceleration on a variety of devices.

e Active development and community support. A committed team
of developers actively develops and maintains OpenSSL, and a large
and active user community contributes to its development and
testing.

o FIPS 140-2 compliance. OpenSSL is compatible with FIPS 140-2,
a standard for cryptography modules used in federal systems in
the United States. This indicates that OpenSSL has been rigorously
tested and validated to guarantee that it meets stringent security

requirements.

Botan

Botan [5] represents another powerful library that can be used in command lines
as OpenSSL. The vast algorithms contain powerful and modern implementations
(including C++23 features). The features of Botan that differentiate it from the rest of
the libraries consist of the modules implemented for the Transport Layer Security (TLS)
protocol. The features implemented with Botan make it a real candidate for inspiration
and guidance among professionals, and its documentation represents a very important
guide that is easy to follow.

The commands and instructions are the same as those for OpenSSL, with minor
differences related to public-key algorithms.

192

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

CrypTool

A great software product for cryptography developed using C++ is CrypTool (CT) [6],
version 1. The latest stable release for version CT1 is 1.4.42, and it can be downloaded
from CrypTool’s official website'. After downloading, launch the executable and follow
the instructions to install it. When CT1 is opened, the main window looks as shown in
Figure 8-28.

CrypTool 1442 - startingexample-en.txt = O X
File Edit View Encrypt/Decrypt Digital Signatures/PKl Indiv. Procedures Analysis Options Window Help

D|=(ef|RS] %|®|e| &= 2|

G| startingexample-en.txt
Starting example for the CrypTool version family 1.x [C’I‘ 1)

Remark:

The successor versions of CT1 (called CT2, JCT and CTO) now offer a significantly wider range of
functionality than CT1. In CT1 only errors will be corrected. Please use the newer versions of
CrypTool little by little.

o

CrypTool 1(CT1) is a comprehensive and free educational program
about cryptography and cryptanalysis
offering extensive online help and many visualizations.

This text file was created in order to help you to make your first steps with CT1.

1) The starting page of the online help offers the best oversight of CT1's capacity. From the starting 3
|page you can reach all essential functions via links.

The starting page of the online help can be accessed via the menu “Help -> Starting Page” at the top
right of the main window or by using the search keyword "Starting page” within the index of the
online help.

|Fress F1to start the online help everywhere in CT1.

2) A possible next step would be to encrypt a file with the Caesar algorithm. This can be done via 2
the menu "Crypt/Decrypt -> Symmetric (classic)”.

A Thcee cee seiisenl ciimmealon fededialet dalic Bhe caliae Lale kiok cceilde cn cceiiiiimiibe maie aa

Press F1 to obtain help.

L1 crpa T 4

Figure 8-28. Main windows in CrypTool 1

The first example is the classical cipher, Caesar. It can be selected from Encrypt/
Decrypt » Symmetric (classic) » Caesar/Rot - 13... Before selecting the Caesar cipher,
close the startingexample-en.txt window and open a new window (File » New). In
the opened window type, the sentence This is an example of Caesar cipher using
CrypTool 1. (see Figure 8-29).

'https://www.cryptool.org/en/cti-downloads

193

https://www.cryptool.org/en/ct1-downloads

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

CrypTool 1442 - Unnamed1
File Edit View Encrypt/Decrypt Digital Signatures/PKl Indiv. Procedures Analysis Options Window Help

N ERI T E R A]

Ehis is an example of Caesar cipher using Cryp?unl 1.

Press F1 to obtain help. L1 €54 pisa i 4

Figure 8-29. The text in a new CT1 window

Open the settings window for the Caesar cipher as described earlier. It should
look like what’s shown in Figure 8-30, in which two examples of keys were used: key B
(Figure 8-30a) and key M (Figure 8-30b).

194

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Key Entry: Caesar / ROT-13 x Key Entry: Caesar / ROT-13 b4
 Descri Pyt
Here you can entes the key for the Caesar cipher. Hete you can enter the key for the Caesar cipher,
Caesar is a mono-aiphabetic substitution, where the characters of the cleartext Caesxisa dohabatic substhution, where the ch of the cleartest
2lphabet are mapped to the ciphertest dphabet by shifting. This shifting value is the key. alphabet are mapped to the cipherent alphabet by thiing. This shiting value is the key.
“fou can enter the key a3 a number o 43 a single character of the siphabet ‘You can enter the key a3 a number of a2 8 single chatacter of the alphabet.
Rot-13 s a special vaniant, where the key has the fued value of half the length Rot-13iz a special variant, whete the key has the fued value of hal the length
of the cleartest siphabet. Thes vaniant is only selectable the length of the aiphabet of the cleartext aiphabet. This variant iz only selectable # the length of the aiphabet |
is an even number, is an even number, :
- Select variart | 1~ Options to interpeet the alphabet characters Seloct variant + - Options to interpret the alphabet characters
& Caesw @ Walue of the frst aiphabet character = 0 [e.g. "A"=0] & Cassar % Vahse of the fust alphabet character = 0 [e.g. “A"=0)
 Rot13 " Value of the frst slphabet chatacter = 1 [e.g “A'"=1) Ret13 " Vahue of the fist alphabet character = 1 e.g. "A"=1)
Key enlry as Key entry as
@ Aphsbet chuscter | B & Aghabetchuacter | M
" Numbet value 1 © Numbes value | 12
r~ Properties of the chosen encryption — - Propertes of the chosen encryption
Shift of 1 Sht of 12
Mapping of the slphabet (26 characters) Mapping of the alphabet (25 characters)
frowre IRBCDEFGHIWOPCRSTU\“YZ froen: IABCDEFGHIJ’:{LF.‘!OPORSTU’W!CYZ
tox EBCDEFGHIMOPQRSWZR L IH.‘IOPQRSTO'\'TKTZMCDIFGHIJKL
Encrypt | Decrypt ‘ Teat opbons | Cancel | Encrypt ‘ Cancel |

(@)

Figure 8-30. (a) The default settings for the Caesar cipher (b) The chosen settings
for the Caesar cipher

The window contains a short description of the cipher. Note that Rot-13 is a
particular case of the Caesar cipher, which shifts a particular letter with 13 positions
(considering that the number of the letters in the English alphabet is 26, then its half is
13, from the name of the Rot-13). Keep the default variant, Caesar. On the right side, you
can choose the index for the first letter of the alphabet, A, which can be either 0 or 1.

Furthermore, you should choose the key, which represents the number of positions
with which a particular letter is shifted to the right in the alphabet. The key can be
chosen as an alphabet letter or as a number. Keep the character option, and let’s say
the key is M. Figure 8-31b shows the changes from the chosen encryption’s Properties
settings; observe that A is mapped to M (0 is the position of A, which is shifted by 12
positions, i.e., 0+12=12; the twelfth letter of the English alphabet is M) and so on. Now
press the Encrypt button. The result is shown in Figure 8-31.

195

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Q. CrypTool 1.4.42 - Caesar encryption of <Unnamed1>, key <M, KEY OFFSET: 0>
Eile Edit View Engrypt/Decrypt Digital Signatures/PKl Indiv. Procedures Analysis Options Window Help
D[(@S] & |%[e] S| 2|

SP Unnamed1

oubtgd geuzs OdkbFaax 1.

Press F1to obtain help. L1 C1 P | I

Figure 8-31. Encryption using Caesar cipher

Note that the cipher is not case-sensitive. Such additional settings can be accessed
by selecting Text Option from the Key Entry: Caesar/ROT - 13 window (see Figure 8-32a).
From this window, you can set to keep unchanged the characters that are not in
the alphabet. Note the 1 and period (.) characters. The spaces are not encrypted.
Furthermore, you can choose uppercase sensitivity, extend the alphabet, and seta
reference for statistical use (see Figure 8-32b).

196

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Text Options x Text Options X

Formatting options for cleatext and cphertext Fe g opbons for cleartext and ciphertext
W Keep chatacters not present in the alphabet unchanged [T Keep characters not present in the alphsbet unchanged
Uppetflowet case in cleartext and ciphertest Upper/lower case in cheartext and cphertext
[If possible, retain case information for encryplion/decryption [I possible, retain case information for encrypion/deciyplion
W Distinguish between upp and k ¥ Distinguish between uppercase and lowercase

~Define the alphabet used in text ciphers Define the slphabet used in text ciphers
W Uppercaseletters [Lowercase betters ¥ Uppeccaseletters I Lowercase letters
™ Space [~ Special chaacters ¥ Space ¥ Sp
I~ Numerals I~ Umisuts ¥ Numerals ™ Unisuts
Alphabet to use [26 chatacters) Alphabet to use (66 characlens)
[ABCOEFGHUKLMNOPQRS TUVWAYZ [ABCOEFGHUKLMNOPQRSTUVWASYZ 0123456783 - 120+ /[JI@_> <H™="
Reference file for statistical applcations Reference file for statistical applications
C:\Program Files [4B8[\CrypT ocfveference\engish txt Find.. | [C:\Program Files [xE6[\CiypT colveference\english b Find . |
IEnglsh refetence fike ;i I English efetence file LI

Apply I Restore defoul | Cancel] Apply | Restore defaut ‘ Cancel]

Figure 8-32. (a) Choosing case sensitive option (b) More option for Text Option in
Section Define the alphabet used in text ciphers

Now let’s return to our example. Close the Unnamed-1 window (or make sure that
the emphasized window is Caesar encryption of <Unnamed1>, key <M, KEY OFFSET:
0>) and let’s decrypt the result of the Caesar encryption obtained in Figure 8-31. For
this, choose the Caesar cipher from the menu again and make the same setting as in
the encryption. Note that Caesar is a symmetric cipher, which means that the same key
is used for both encryption and decryption; therefore, set the key entry as an alphabet
character and choose M and click the Decrypt button. The result is seen in Figure 8-33.

197

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Q. CrypTool 14.42 - Caes: esar encryption of <Unnamed1>, key <M, KEY OFFS , KEY OFFSET: 0>
Eile Edit View Engrypt/Decrypt Digital Signatures/PKl Indiv. Procedures Analysis Options Window Help

D|s(e (@@ 5w &7 2|

?%1.(.‘“5& encryption of <Unnamed1>, key <M, KEY OFFSET: 0>
rypti ey
[Ftue ve mz qjmybxq ar Omgemd oubtqd geuzs OdkbFaax 1.

is is an example of Caesar cipher using CrypTool 1.

Press F1to obtain help. L1 C1 e [s

Figure 8-33. The decryption using the Caesar cipher

The next encryption system is RSA.
Next, select Encrypt/Decrypt » Asymmetric » RSA Demonstrator. The RSA
Demonstration window should look like what’s shown in Figure 8-34a.

198

RSA Demonstration

[RSA uting the private and publc key - of using only the publc key

® Choose bwo prme rusbers p and g The composie number N = pq i the public RSA modulus, and phil) =
{M:qllnn!uumIm%&‘wunmmmmxumhmm Thes curvate.
iy dis than ctlulbted suh -

" Fer data encryphion of certificale vercation. you vl only resd the publc FiSA parameters: the moduus N

and the pubibe key &
Prme rumbes entry
Prave rusrbes p [an |M9mw
Priene rusrber g [
RSA pyareaters
FrSA modubus N WSE} e
phi] = [p-1ka1) o e
Puble key & [
Prrvato hey d [saz73 M
FISA enciyption using e / decryption usng d [sbhabet sze: 256]
botoe et mmban Abhabet srdrumtes sytem gt |

Ingut of the message in the bolovwng fomst numbed 1] § numbed2] 8 .. 8 rumberin] frumbes inbase 100

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

RSA Demonstration

ISA using the peivate and public kit - of using anly the publc key

& AT bee N = gq it the public ASA moduk

o
e 11 s thee Eden totieri. Thes public key & i freely chos
by ia then cakculated such that d = & 1] [mod phiNL

" For data enceyphon o cesthcate verfcshon. you will only need the publc FISA palametens the modubus N

e tokerd. The pervate

ard the publle hey e
Preve rumbes ory
Prooe rusmbes p [ie2z3 | Gererate grme rusmbers._ |
Prime rumber @ [zt
REA paarrmtens
RSA modubss N fensm owk)
sl=lp i) [0Sz [reem)
Publc key e [FEa
Pivate key d [rwess Hochts parie
RSA encryption usig & / decryption usng & [sphabet sioe: 28]
Iptar et pubers Aetibet and bt syutem o oos |

Irgut of the message in the folovang lomat number(1) 8 rumbed2] 8 . 8 rumberdn] [rumber n base 101

Close |

Figure 8-34. (a) RSA Demonstrator window (b) RSA Demonstrator window after

generating prime numbers

Keep the default option of computing both the public key and the private key.

Furthermore, you need to choose the parameters for the scheme. You can provide two

prime numbers yourself, or you can generate two prime numbers using the generator.
Click the Generate prime numbers... button. The window should look like what'’s

shown in Figure 8-35a.

199

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Prime Number Generation

Prime numbers play an imporant role in modem cryptography. Here you can generate prmes
within & gven vabue range [lowes i, upper firsl]
Amount of prime numbers lo be generated
% Generate two prmes randomiy from within the valus range{s)
C Ge 1 ¥
Separator for the display of the pimes [

Algonthers for perme rumbes gereration WValue 1ange of the peme rumbers p and g
¥ Miller-Rabin Test % Tobe entered ndependently of
each other
" Solovay-Strassen Test
" Both are equal (st enter one)
" Eemnat Test
Prine rumber p Prime number q
Lowsehmt [E7 Lowerkm2 [27
Uppes bt [278 Uppes limit i2"3
Rest 0 Result IU

Generate poene rumbers | | LCancel

X

Prime Number Generation X

Prime rmbers play an mportant ioke in modem

by, Here you can generate pames
wathins 3 given value range [lowes limit, uppes lmit]

Amount of prime numbers to be generated

& Genetate two primes randoenly frcm within the value range(s)
O Gt b

Separator for the display of the prmes: [_

Algorithens for pime number generstion Value range of the pame numbers p and q
" MilerRabin Test & Tobe entered ndependently of
each other
" Solovay-Strassen Test
" Both are equal [ust enter one)
& Fernat Test
— Prime rumbes p ~ Prime number q
Lowes it [2712 Lowerbmt [2712

|2" 15
Result |2?99? ‘
|

Uppe lmt [2715

Uppet kst

Lancel !

Figure 8-35. The prime number generator for RSA

Here, you can choose between three prime generators. Choose the Fermat test, set
the lower limit to 2'? and the upper limit to 2'° for both p and g, opt for independent

primes, and click the Generate prime numbers button (see Figure 8-35b).

To use these prime numbers, click the Apply primes button. After generating the

prime number, note that the public and secret values were computed (see Figure 8-35b).
Keep the default public key as 2'¢ + 1, check text in the Input as the field, type: This
text is encrypted using RSA., and click the Encrypt button. The result should look

like what is shown in Figure 8-36.

200

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

~ RS wsing the private and public key - of using only the public key
@ Choose Iwo piime numbers p and q The composite number M = pq is the publc ASA modubus, and philld) =
[o-1Wa-11 i the Euler totient. The public key & is reely chosen but must be coprime to the totient. The private
key dis then caleusted such that d = &"[-1] (mod phaM)L
" For data encryplion or catlificate verfication, you will only need the public RSA parameters: the modulus N
and the public kep e

~ Prime number enty

Piirne numbet p [18223 Generate prime numbers. .
Prime number g 27497
RSA parameters

RSA moduus M 45419533 [puztc]

philN] = (p-1M31) [50151112 [secret)

Public key e [2M18a

Piivate key d [71308513 m}

~ RSA enciyption using e / deciyplion using d |alphabet size: 236)
Input az & ted numbers Alphabet and number system oplions... 1

Input lext
|This text is encrypted using RSA,

The Input text will be separated into segments of Size 3 [the symbol "' is used as separator].
|Thiﬂslﬂemtlt EHendophpeldulisndgR 54

Mumbers input in base 10 format.
05531753 # 07544948 # 0643972 & 02124147 # 02123118 H 06517369 # 07369523 # 06551304 # 075635

Enciyption into ciphertext cfi] = m{i]"z (mod M)
|212301699 # 120812360 # 045225310 1 165182322 1 103916865 1 349246149 B (27523531 # 3102074386

Enciypt | Deciypt | Llose

Figure 8-36. Encrypted text using RSA

To decrypt, you should not close the window, and you need to be a little careful. For
decryption, copying the text resulted in the Encryption into ciphertext c[i]=m[i]\e
(mod N) field. Our encrypted text would look as follows (and see Figure 8-37a).

212901699 # 120812360 # 045225910 # 168182322 # 103916866 # 349246149
027823531 # 310207436 # 009232756 # 131763739 # 089946941

Furthermore, select numbers for Input as and paste them. Then, press the Decrypt
button. The decryption works correctly (see Figure 8-37b) because of the same plain text
that was encrypted previously.

201

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

RSA Demonstration x| RSA Demonatration x
IRSA wzing the private and public key - of g only the puble key RS using the private and public key - of uzing only the publc key
Chooss two nrbmpmdq The composte rumber N = g i the publc RSA moduls. and phili] = % Choose two prme rubers p and g lhwmwN P8 the puble RSA modubus. and phi) =
I}l[&!lnhEduMl Keev e is beek chaven bul st be coonme 1o the toberit The private | Iﬂ'le-ilnme{duml bl . Breel; chosen bt rant be coorime 1o the loterd. The cevate
eydis mcmedmwd-ﬂmmm key di then mmma-ﬂmmmn
" For dista encryphon of certiicate verfication, you vl only RSA parameter N | | Fordata encrghion of cesficate veshication, you wil orly need the public RSA paameters: the madulus N
and the puble hey & | andthe publkc key e
Prime rumbes p 16223 Geresste prmerunbers.. | | | ! Prima rusbae p =3 Ganerste peme rumbert
|
Prime number g B | | Pre uberg [
RSA paramete: | RSA parametens
RSA moduus N CIESE] pusblic] I‘ FSA moduus N EIESE] publc)
phiN) = (1)a1) [EnEmz [recrel) ehiN) = (1) 1) [ssarsnz [secret]
1
Publc key & [T18a Public key o [F180
I |
Private ey d 71306513 Updst pasemstens | Private iy d HETAE] Lipdat s umetecy
RSA enciyphion usng e / decrypbon usng d [sphabet see: 255] | RSA ercopbon usng o/ decrpbion usng d [aiphabet ue: 256]
|
owas C et @ FbEd Mot arc e ystemgetions | Wotee C et 6 mumben T ——
gt of oo i the rurnbedZ) B inbase 10 Ciphertieat coded i rumbers of baze 10
168182222 W 10016565 0 345046143 B 027823531 ¥ 310007436 B 003232755 B 131762729 0 08TMEM1 | VEINEZII2 1 100916565 B 9246149 2 02TIZISH 4 310007435 8 O0IZI2TSE # 1 TITEITII 2 (BTMEML
Diecryption irbo plartet] = off]"d Imed N]
| 005531753 8 007544343 = 00GE45972 2 002124147 8 002123116 2 06517363 = (073696829 = (06561503
(Dhatpeat et o e dhecryption [t segenents of size 3. the syebol B’ i used ae teparaion]
| [Thisistdets nB enBeyBpeBdulmBgRHSA
Planted
| ||| [Treetis encogpeed wsng RSA
. I 5 I o | E | 11| o

Figure 8-37. (a) The initial window for text decryption (b) the text decryption
window after completing the required information

These are just two simple examples of how to use CrypTool. It provides many more
encryption schemes and examples and can be used for attack simulations or to collect
different statistical information.

Conclusion

This chapter provided a brief list of C++ libraries and showed how to install them on the
Windows operating system or Ubuntu. One of the most useful libraries developed in C++
are OpenSSL, Botan, and CrypTool.

In this chapter, you learned about the following.

e Access to the most important open source cryptography libraries and
frameworks

o The main cryptographic operations and how to interact with the
libraries and frameworks

202

CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++23

Access to cryptography source code to compare the implementations
of the algorithms

How to learn from other professional developers (e.g., OpenSSL,
Botan, etc.) best practices for developing cryptographic algorithms

References
[1]. OpenSSL: Cryptography and SSL/TLS Toolkit. Available online: https://www.
openssl.org/. Last accessed: 21.2.2023
[2]. OpenSSL TLS/SSL and Crypto Library. Available online: https://github.com/
openssl/openssl. Last accessed: 21.2.2023
[3]. Win32/Win 64 OpenSSL Installer for Windows. Available online: https://
slproweb.com/products/Win320penSSL.html. Last accessed: 21.2.2023
[4]. OpenSSL Sources. Available online: https://www.openssl.org/source/.
Last accessed: 21.2.2023
[5]. Botan: Crypto and TLS for Modern C++. Available online: https://botan.
randombit.net/. Last accessed: 21.2.2023
[6]. CrypTool Portal. Available online: https://www.cryptool.org/en/.
Last accessed: 21.2.2023
[7]. Crypto++. Available online: https://cryptopp.com/. Last accessed: 21.2.2023
[8]. Crypto++ Manual. Available online: https://cryptopp.com/docs/ref/.
Last accessed: 21.2.2023
[9]. Libcrypt. Available online: https://www.gnupg.org/related software/
libgcrypt/. Last accessed: 21.2.2023
[10]. Libcrypt. Available online: https://www.gnupg.org/documentation/manuals.
html. Last accessed: 21.2.2023
[11]. GnuTLS. Available online: https://gnutls.org/. Last accessed: 21.2.2023
[12]. GnuTLS Documentation. Available online: https://gnutls.org/
documentation.html. Last accessed: 21.2.2023
[13]. Cryptlib. Available online: https://www.cryptlib.com/.

Last accessed: 21.2.2023

203

https://www.openssl.org/
https://www.openssl.org/
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://slproweb.com/products/Win32OpenSSL.html
https://slproweb.com/products/Win32OpenSSL.html
https://www.openssl.org/source/
https://botan.randombit.net/
https://botan.randombit.net/
https://www.cryptool.org/en/
https://cryptopp.com/
https://cryptopp.com/docs/ref/
https://www.gnupg.org/related_software/libgcrypt/
https://www.gnupg.org/related_software/libgcrypt/
https://www.gnupg.org/documentation/manuals.html
https://www.gnupg.org/documentation/manuals.html
https://gnutls.org/
https://gnutls.org/documentation.html
https://gnutls.org/documentation.html
https://www.cryptlib.com/

PART I

Pro Cryptography

CHAPTER 9

Elliptic-Curve
Cryptography

Elliptic-curve cryptography (ECC) represents a public-key cryptography approach
based on the algebraic structure of elliptic curves over finite fields. ECC can be used in
cryptography applications and primitives, such as key agreements, digital signatures,
and pseudorandom generators. They can also be used for operations such as encryption,
achieved through a combination of key agreement and a symmetric encryption scheme.
Other interesting usages can be seen in several attempts at integer factorization
algorithms that are based on elliptic curves (EC), with applications in cryptography, such
as Lenstra Elliptic-Curve Factorization (L-ECC) [1]. Elliptic curves appeared for the first
time in Diophantus [3], a subject that has remained close to Diophantine geometry [2].

Elliptic-curve cryptography (ECC) is the most secure type of encryption available
today. It is used to protect data and communications from hackers, and it is becoming
increasingly important to ensure the safety of sensitive information. ECC is a powerful
tool that can protect a wide range of data, from emails and financial transactions to
medical records and confidential documents.

This comprehensive chapter on ECC provides a deep dive into the technology and
its applications. It covers the basics of ECC, how it works, and why it’s so secure. It also
discusses the pros and cons of different implementations and provides guidance on
using ECC for secure data encryption. By the end of this guide, you'll have a thorough
understanding of ECC and how to use it to protect your data.

ECC uses the properties of a special type of mathematical equation called an elliptic
curve to generate keys and encrypt and decrypt data. To create a key, the sender’s
computer uses an algorithm to solve a complicated mathematical equation that
generates a specific type of graph known as an elliptic curve. The graph is created on
a two-dimensional coordinate system that looks like a donut when plotted on a graph.

207

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_9

https://doi.org/10.1007/978-1-4842-9450-5_9

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

For example, an elliptic curve could look like this: the curve is formed by plotting many
points that form a continuous shape. The shape of the curve is determined by the values
used to plot the points.

The advantages of elliptic curve cryptography can be summarized as follows.

o Speed. ECCis significantly faster than more complex encryption
methods such as RSA.

e Scalability. ECC is more scalable than many other types
of encryption because it does not require public key
infrastructure (PKI).

e Security. ECC is one of the most secure types of encryption and has
never been cracked in real-world scenarios.

¢ Widely used. ECC is widely used across many industries and is used

by many governments and organizations around the world.

o Low cost. ECC is a relatively low-cost solution and can be
implemented using open-source software.

Two main types of ECC are used for encryption: the elliptic curve digital signature
algorithm (ECDSA) and the elliptic curve integrated encryption scheme (ECIES). Each has
its own benefits and applications, and each can encrypt data in various ways.

ECDSA is a public-key cryptography used to authenticate and verify a sender’s
identity. It uses a similar process to generate keys as ECC but uses a different type
of equation to create the graph. The graph produced by an ECD-DS signature is an
elliptic curve.

ECIES is a type of encryption used to encrypt data. When implemented as an
encryption scheme, ECIES uses two different elliptic curves: a public curve and a private
curve. The public curve generates a shared secret to encrypt the original data. The secret
is then decrypted using the private curve.

ECDSA and ECIES are secure and efficient encryption methods, but they are not
the same. When choosing an implementation of ECC, it is important to consider the
pros and cons of each method. ECDSA is more efficient than ECIES and requires less
computing power. It is also useful for authentication, verification, and identification.
However, it is less scalable than ECIES and requires a PKI. ECIES is less efficient than
ECDSA and requires more computing power. It is less useful for authentication and
verification but is more scalable than ECDSA and does not require a PKI.

208

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

The process of using ECC for secure data encryption comprises the following.

1. Generate a key. The first step in the process is to generate a key.
The key is used to encrypt and decrypt data. The type of key
generated depends on the type of encryption used.

2. Encrypt data. Once the data is encrypted, they cannot be
decrypted without the key. It is recommended that data be
encrypted in blocks (called a block cipher), which are portions of
data that are processed all at once.

3. Decrypt data. Data is decrypted using the same process as
encryption. The sender uses the key to decrypt the data and then
transfers the information to the intended recipient.

4. Store data securely. Data should be securely stored after they are
decrypted to remain private.

5. Make sure data is authentic. When data is sent over a network or
the Internet, there is a chance that they could be intercepted and
tampered with. To protect against this, authentication ensures that
data come from the correct source and have not been tampered
with or corrupted during transmission.

The potential risks associated with ECC are very important when implementing
business software solutions, authentication protocols, and types of data that require
security protection. There are a few potential risks that come along with using ECC for
data encryption. One potential risk is that an organization may not understand how
ECC works. If a company does not fully understand how ECC is implemented and
how it works, it could put the integrity of its data at risk. Another potential risk is that a
company does not have the expertise to manage its keys. It is important to have a good
system in place for managing keys, especially if an organization is using ECC. It is also
important to ensure that all keys are properly backed up and that there is a disaster-
recovery plan in case something bad happens to the systems holding the keys.

The starting point of elliptic curve cryptography starts in public key cryptography
(PKC). Using PKC in ECC, there is a special case for manipulating the elliptic
curve points and how they are generated. The manipulation consists of two cases:
multiplication and addition.

209

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

The main advantage of ECC is obtaining a certain level of security based on using
shorter keys that are different from the “usual cryptography.”

A second advantage is that elliptic curve cryptography is resistant to some attacks.
Those attacks were designed and developed for integer factorization and discrete
logarithms, which proved unsuccessful.

Before the practical implementation, some basic theoretical notions are presented
to familiarize you with elliptic curve cryptography. The following section describes the
required notions in Listing 9-1 and 9-2.

Theoretical Fundamentals

This section describes the main foundation that is necessary and must be understood
before proceeding further with practical implementation. The graphical content and the
representations of some of the equations are taken and cited from [4].

Let’s start with the following example, in which a collection of balls is arranged to
look like a regular pyramid so that there is only one ball on the top level. On the next
level, there are four balls. On the next one, nine balls, and so on (see Figure 9-1).

Figure 9-1. Balls pyramid [4]

A logical question is raised: Is there a way of rearranging the balls into a squared
matrix if the pyramid collapses? If the pyramid has only three levels, the rearranging
process cannot be performed because there are 1 + 4 + 9 = 19 balls, which is not a
perfect square. When there is a single ball, the pyramid is organized with one level and a
squared matrix with one line and one column.

210

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY
If the pyramid has a height of x, then there are

x(x+1)(2x+1)

1P+2243%+...x°= balls.

The intention is that the number is a perfect square number. To do this, you must
resolve the following equation.

, x(x+1)(2x+1)
y =7
6
Such an equation represents the elliptic curve equation (see Figure 9-2).

in N.

el N
7

x(x+1)(2x+1)

Figure 9-2. Graphic for y* = [4]

, X(x+1)(2x+1)

BEr—
using known points for finding other points. Using (0,0) and (1, 1) points, obtain the
following straight equation y = x. When you intersect the obtained curve with the
equation of the line, you get the following relation.

The y equation can be solved using the Diophantus method,

e et 1,1, 1
6 3 3 6

This is equivalent to the following.
1
-3¢l
2 2

211

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

You already know two roots of this equation, x = 0 and x = 1, which are the
coordinates on the Ox -axis of the intersection points between the equation of the line
and curve. For three real numbers, a, b, ¢, you know the following.

(x—a)(x-b)(x—c)=x"+(a+b+c)x* +(ab+ac+bc)x—abc.

. . . 3 . . .
In our situation, for roots 0, 1, x we obtain 0+1+x = E , finding the coordinate point

[\
;./

11 1 1

(5'5) Because of the symmetry of the curve, there is also the coordinate point {E, -
1 1

Continuing with the technique illustrated for points [5, - Ej and (1, 1), obtain the

equation of the line y = 3x — 2, which you intersect with the given curve, obtaining the
following.

x(x+1)(2x+1
This is equivalent to the following.
LI
2
We already know the roots % and 1, so obtain the following.
1 51

—+1l+x=—,
2 2

From this, we have x = 24 and y = 70, which means
1°+2%+3% +...+24° =70°

If there are 4900 balls, they can be arranged as a pyramid with a height of 24 and
arranged in a squared pyramid with 24 lines and 24 columns.

Weierstrass Equation

The “Practical Implementation” section in this chapter offers a practical solution using
the Weierstrass equation.

Definition 9-1. Let’s consider the following elliptic curve E as being the following
set: {(x,y)|y* = x® + Ax + B}, in which the elements A, B, x, y are elements from the field K,
defined as K € {Q, R, C, Z,, Z,}, where p represents a prime number and g = p¥, k > 1 and
A, B are constants.

212

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

Definition 9-2. An equation that is defined according to Definition 9-1 is called and
known as the Weierstrass equation.

Definition 9-3. If K'is a field and A, B € K, then E is defined over the field K. For the
points that have their coordinates in L C K, write E(L). By definition, add a point to this
set that does not belong to the affine plan, a point that is noted with .

E(L):{oo}u{(x,y)eLxL,y3 =x* +Ax+B}

Intuitively, it is useful to think of the graph of the elliptic curve over the field of real
numbers. This has two basic forms, as shown in Figure 9-3. Equation y* = x* — x has three
real roots and is distinct, and equation y* = x* + x has one single real root. It is not allowed
to have multiple roots; therefore, you must mention the condition, 443 + 27B* # 0.

A o
N

(a) Y¥?=2°-2 b)) y¥=23+2
Figure 9-3. The basic two forms of the elliptic curve over a real numbers field [4]

If the roots are ry, 1, 15, then
(n=n)(n-1)(n-r))2 = —(4A3 +27B?)
Definition 9-4. The general form of an elliptic equation over a K field is called the
Weierstrass generalized equation and has the following form.
y +axy+a,y=x’+a,x’+a,x+a,

213

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

a,...as are constants from K. This form is very useful, especially with the

implementation later.
The generalized Weierstrass equation is useful for fields with two or three
characteristics. For fields with different characteristics, we obtain the following.

2 2 2
ax a a a,a a
(y+?+?3J =x3+(a2+j]x2+(a4+ lzijj{fﬂzﬁj

This is equivalent to the following.

2_ 8, .2, :
Y =X"+a,x +a,x+a,

a a Co . -
y,=y+ Elx +—2 and a,,a,,a, are constants. For fields with characteristics that are

different than 3, we have

And we obtain the following.

A and B are constants.

Group Law

When dealing with practical implementation, group law is very important for working
with operations between points. A theorem needs to be followed accordingly to have a
proper implementation. Theorem 9-1 describes the properties of an elliptic curve. The
properties have been implemented in Listing 9-2.

Theorem 9-1. Adding the points on an elliptic curve E has the following properties.

° (COHlmutativity)Pl+P2:P2+P1,VP1,P2€E
e (neutral element) P+ co =P,VPEE

e (inverse existance) VP € E, 3 P € E in such a way that P+ P' = co The
P point is noted usually with—P.

o (associativity) (P, + P,) + Py= P, + (P, + P3), VP, P,, P;E E

214

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

Practical Implementation

This section discusses the practical implementation of ECC using C++23 and provides a
step-by-step basic implementation of ECC.

The example (see Figure 9-1, Listing 9-1, and Listing 9-2) represents the
implementation of an elliptic curve over a finite field with order P. The following elliptic
curve equation is used for our implementation.

y* mod P = x’ +ax +bmod P

The implementation provided is structured in two parts.

o Theimplementation of the field finite element engine (FFE_Engine.hpp)
in Listing 9-1. The file contains the signatures for the following
operations and functions.

o int ExtendedGreatestCommongDivisor() is the function that
computes the extended greater common divisor.

o int InverseModular() is the function that solves the linear
congruence equation x x z= =1 (mod n).

o FFE operator-() const isthe operator that represents the
negation operation.

o FFE& operator=(int i) isthe operator that deals with the
assignation with an integer.

o FFE<P>& operator=(const FFE<P>& rhs) is the operator for
assignation from the field element.

o FFE<P>& operator*=(const FFE<P>& rhs) is an implementation
for *= operator for assignation from field element.

o friend bool operator==(const FFE<P>& lhs, const FFE<P>&
rhs) is implementation of == operator for assignation from field
element.

o friend FFE<P> operator/(const FFE<P>& lhs, const
FFE<P>& rhs) is an implementation for/operator for assignation
from the field element as form (x,y).

215

CHAPTER 9

216

ELLIPTIC-CURVE CRYPTOGRAPHY

o friend FFE<P> operator+(const FFE<P>& lhs, const
FFE<P>& rhs) is an implementation for the + operator for
assignation from the field element as form (x,y).

o friend FFE<P> operator-(const FFE<P>& lhs, const
FFE<P>& rhs) is an implementation for the - operator for
assignation from the field element as form (x,y).

o friend FFE<P> operator+(const FFE<P>& lhs, int i)is
implementation for the a + int operator for assignation from the
field element as form (x,y).

o friend FFE<P> operator+(int i, const FFE<P>& rhs)isan
implementation for int + a operator for assignation from the field
element as form (x,y).

o friend FFE<P> operator*(int n, const FFE<P>& rhs)isan
implementation for int * a operator for assignation from the field
element as form (x,y).

o friend FFE<P> operator*(const FFE<P>& lhs, const
FFE<P>& rhs) is an implementation for a * b operator for
assignation from the field element as form (x,y).

o template<int T> friend ostreamd operator<<(ostreamd os,
const FFE<T>& g) is the ostream operator for showing and
displaying in a readable format.

The main program in Listing 9-2. The file contains the main
implementation for elliptic curve cryptography. In the main program,
a special focus must be on implementing the operators listed earlier.
Another important aspect of this implementation is that at the
beginning of the program, we can observe that our curve is defined
over a finite field (Galois field) and that any point within the elliptic
curve is formed from two elements that are within the Galois fields.
Those points are created once there is a declaration instance of

the elliptic curve. To implement the elliptic curve, the following

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

two declarations are needed: type EllipticCurve<OrderFFE_
EC> this_tand type EllipticCurve<OrderFFE_
EC>::EllipticCurvePoint point_t. Once we have the declaration,
we can proceed further with the representation of the Weierstrass
equation as y* = x* + ax + b, as represented in the following through
the constructor of the E11ipticCurve class.

//** the Weierstrass equation as y*2 = x"3 + ax + b
Elliptic Curve (int CoefA, int CoefB)

: ECParameterA(CoefA),

ECParameterB(CoefB),

tableOfPoints(),

tableFilledComputated(false)

{}

The next step is to compute the points and to set true for the
tableFilledComputated Boolean variable, which is used to indicate if the table with
points has been filled or not for further computation (see Figure 9-4). The rest of the
functions are straightforward and represent basic cryptographic operations between
Alice, Bob, and Oscar, the malicious third party trying to decrypt the message.

217

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

[Command Prompt X il

o

C:\Users\mariu\OneDrive\Desktop\Apress C++23\09. Elliptic—Curve Cryptography\source code>g++ -std=c++2b ecc.cpp -o ecc.exe

C:\Users\mariu\OneDrive\Desktop\Apress C++23\89. Elliptic—Curve Cryptography\source code>acc.exe
Basic Example of using Elliptic Curve Cryptegraphy using C++20. Apress, 2020

Equation of the elliptic curve: y"2 med 163 = (x"3+1x+1) mod 163

List of the points (x,Y) for the curve (i.e. the group elements):
(e, 1) (e, 162) (4, u4s5) (4, 118) (5, 72) (5, 91)

(6, 68) (6, 95) (7, 5) (7, 158) (9, 24) (9, 139)

(10, 14) (10, 149) (11, 56) (11, 187) (12, 33) (12, 130)

(14, 71) (14, 92) (15, 72) (15, 91) (16, 53) (16, 116)

(17, 81) (17, 82) (18, 31) (18, 132) (19, 14) (19, 149)

(20, 69) (20, 94) (21, 36) (21, 127) (27, 71) (27, 92)

(29, 28) (29, 135) (3e, 25) (36, 138) (32, 53) (32, 110)

(33, 33) (33, 138) (34, u3) (34, 120) (37, 18) (37, 145)

(38, 44) (38, 119) (40, 54) (ue, 109) (41, 60) (41, 103)

(44, 44) (u4, 119) (45, 39) (us, 124) (47, 23) (47, 148)

(51, 64) (51, 99) (52, 36) (52, 127) (54, 77) (54, B6)

(s7, 7s) (57, 88) (58, &8) (s8, 95) (62, 38) (62, 133)

(63, 45) (63, 118) (65, 6) (65, 157) (67, 52) (67, 111)

(68, 20) (68, 143) (69, 42) (69, 121) (78, 49) (78, 114)

(71, 19) (71, 18u) (72, 41) (72, 122) (73, 70) (73, 93)

(74, 9) (74, 1s4) (81, 4u) (81, 119) (82, 48) (82, 115)

(8u, 11) (84, 152) (87, 76) (87, 87) (88, 59) (88, 1e4)

(89, 35) (89, 128) (98, 36) (90, 127) (93, 32) (93, 131)

(95, 55) (95, 1e8) (96, u5) (96, 118) (97, 42) (97, 121)

(99, 68) (99, 95) (1ee, 52) (186, 111) (167, 80) (107, 83)
(109, 58) (189, 185) (11e, 78) (11e, 85) (111, 7e) (111, 93)
(112, 12) (112, 1s51) (113, s1) (113, 182) (114, 57) (114, 186)
(11s, 53) (115, 118) (117, 16) (117, 147) (118, 33) (118, 138)
(119, 48) (119, 115) (128, 22) (128, 141) (121, &) (121, 157)
(122, 71) (122, 92) (125, 48) (125, 115) (126, 2) (126, 161)
(127, 47) (127, 116) (130, 39) (130, 124) (134, 14) (134, 149)
(135, 29) (135, 134) (136, 60) (136, 103) (148, 6) (148, 157)
(142, 70) (142, 93) (143, 72) (143, 91) (144, 28) (144, 135)
(148, 69) (148, 94) (149, e8) (149, 183) (151, 39) (151, 124)
(152, 17) (152, 146) (153, 28) (153, 135) (155, 48) (155, 123)
(1s6, 38) (156, 125) (158, 69) (158, 94) (159, 52) (159, 111)
(160, 42) (160, 121)

Randomly — Point P = (4, 45), 2P = (32, 110)

Randomly — Point Q = (4, 118), P+Q = (8, @)

p+=0Q= (8, 8)

P +=p = 2P = (32, 116)

Encryption of the message using elliptic curve principles
G = (99, 127), order(G) is 31

Alice - Public key (Pa) = 32#(90, 127) = (52, 36)

Bob - Public key (Pb) = 131x(98, 127) = (62, 133)
Oscar — Public key (Po) = 95+(9@, 127) = (155, 48)

The clear text message send by Alice to Bob: (19, 72)
The message encrypted from Alice for Bob is represented as {Pa,cl,c2} and its content is = {(52, 36), 26, 58}
The message decrypted by Bob from Alice is = (19, 72)

Oscar decrypt the message from Alice = (154, 88)

C:\Users\mariu\OneDrive\Desktop\Apress C++23\09. Elliptic—Curve Cryptography\source code>|

Figure 9-4. The output of the example

218

*

CHAPTER 9

ELLIPTIC-CURVE CRYPTOGRAPHY

Listing 9-1. Implementation of the Field Finite Element Engine (FFE_Engine)

namespace EllipticCurveCryptography

{

//** basic functions for
//** Finite Field Elements (FFE)
namespace HelperFunctionFFE

//** Computing Extended GCD gives g = a*u + b*v
int ExtendedGreatestCommongDivisor(int a, int b,

int& u, int &v)

u=1;
v = 0;
int g = a;
int ul =
int v1 =

o we

S = O
. e

int g1 5
while (g1 != 0)
{

//** division using integers
int q = g/g1;

int t1 = u - gq*u1;

int t2 = v - g*vi;

int 13 = g - gq*g1;

us=ul; v=vl; g=gl;

ul = t1; vi = t2; g1 = t3;

}

return g;

//** providing solution and solving
//** the linear congruence equation
//** x * 7z == 1 (mod n) for z

int InvMod(int x, int n)

219

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

{
//** "%" represents the remainder
//** function, 0 <= x % n < |n|
X =X % n;
int u,v,g,z;
g = ExtendedGreatestCommongDivisor(x, n,
u,V);
if (g !'=1)
{
//** x and n has to be primes
//** in order to exist an x”-1 mod n
z =0,
}
else
Z=U%n;
return z;

//** represents the element from a Galois field
//** we will use a specific behavior for the
//** modular function in which (-n) mod m will
//** return a negative number.

//** The implementation is done in such a way that
//** it will offer support for the basic

//** arithmetic operations, such as:

//** + (addition), - (subtraction), / (division)
//** and scalar multiplication.

//** The P served as an argument represents the
//** order for the field.

template<int P>

class FFE

{

int i ;

220

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

void assign(int i)
{
i =1,
if (ic0)
{
//** The correction behavior
//** is important.
//** Using (-i) mod p we will make sure
//** that the behavior is the proper one.
i = (i%P) + 2*P;
}

i %= P;
}

public:
//** the constructor
FFE()
: i (0)
{}

//** another constructor
explicit FFE(int i)
{

assign(i);

}

//** copying the constructor
FFE(const FFE<P>& rhs)
: 1 (rhs.i)
{
}

//** providing access to
//** the raw integer
int i() const { return i ; }

221

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

//** implementation for negation operator
FFE operator-() const

{
return FFE(-i);

}

//** assignation assign from integer
FFE& operator=(int i)
{

assign(i);

return *this;

}

//** assignation from from field element
FFE<P>& operator=(const FFE<P>& rhs)
{

i =rhs.i;

return *this;

}

//** implementation of "*=" operator
FFE<P>& operator*=(const FFE<P>& rhs)
{

i = (i *rhs.i) % P;

return *this;

}

//** implementation of "==" operator
friend bool operator==(const FFE<P>& lhs,
const FFE<P>& rhs)

{
return (lhs.i_ == rhs.i);
}
//** implementation of "==" operator
friend bool operator==(const FFE<P>& lhs,
int rhs)

222

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

{
return (lhs.i == rhs);
}
//** implementation of "!=" operator
friend bool operator!=(const FFE<P>& lhs,
int rhs)
{
return (lhs.i != rhs);
}

// implementation of "a/b" operator
friend FFE<P> operator/(const FFE<P>& lhs,
const FFE<P>& rhs)

return FFE<P>(lhs.i_ *
HelperFunctionFFE: :InvMod(rhs.i ,P));

}

//** implementation of "a+b" operator
friend FFE<P> operator+(const FFE<P>& lhs,
const FFE<P>& rhs)

return FFE<P>(lhs.i_+ rhs.i);

}

//** implementation of "a-b" operator
friend FFE<P> operator-(const FFE<P>& lhs,
const FFE<P>& rhs)

return FFE<P>(lhs.i - rhs.i);

}

// implementation of "a + int" operator
friend FFE<P> operator+(const FFE<P>& lhs,
int i)

223

CHAPTER 9

224

b

ELLIPTIC-CURVE CRYPTOGRAPHY

{

return FFE<P>(lhs.i +i);

}

//** implementation of "int + a" operator
friend FFE<P> operator+(int i,
const FFE<P>& rhs)

return FFE<P>(rhs.i +i);

}

//** implementation of "int * a" operator
friend FFE<P> operator*(int n,
const FFE<P>& rhs)

return FFE<P>(n*rhs.i);

}

//** implementation of "a * b"
friend FFE<P> operator*(const FFE<P>& lhs,
const FFE<P>& rhs)

return FFE<P>(lhs.i * rhs.i);

}

//** the operator ostream for

//** showing and displaying in

//** readable format

template<int T>

friend ostreamd operator<<(ostreamd os,
const FFE<T>& g)

return os << g.i_;

CHAPTER 9 ELLIPTIC-CURVE CRYPTOGRAPHY
Listing 9-2. Implementation of the Main Program

//** Leave everything as it is.
//** Do not change the order of the inputs or namespaces.

#include <cstdlib>
#include <iostream>
#include <vector>

using namespace std;

#include <math.h>
#include "FFE_Engine.hpp"

namespace EllipticCurveCryptography
{
//** Elliptic Curve over a finite field of order P:
//*¥* y*2 mod P = x"3 + ax + b mod P
template<int OrderFFE_EC> class EllipticCurve
{
public:
//** this curve is defined over the finite
//** field (Galois field) Fp, this is the
//** typedef of elements in it
typedef FFE<OrderFFE_EC> ffe_element;

//** any point on elliptic curve is formed
//** from two elements that are within Fp
//**field (Galois Field). The points are
//** created once we declare an instance of
//** Elliptic Curve itself.
class EllipticCurvePoint
{
friend class EllipticCurve<OrderFFE_EC>;
typedef FFE<OrderFFE_EC> ffe_element;
ffe_element xCoordValue_;
ffe_element yCoordValue_;
EllipticCurve *ellipticCurve_;

225

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

//** core of the doubling multiplier
//** algorithm (see below)
//** multiplies acc by m as a series of

//*¥* "2*3ccumulatorContainer's"
void DoublingMultiplierAlgorithm(int

multiplier, EllipticCurvePoint&
accumulatorContainer)

if (multiplier > o)

{

}

EllipticCurvePoint doublingValue =
accumulatorContainer;
for (int counter=0; counter <
multiplier; ++counter)

{
//** doubling step
doublingValue += doublingValue;
}
accumulatorContainer =

doublingValue;

//** Implementation of doubling
//** multiplier algorithm.
//** The process stands on multiplying

//** intermediateResultAccumulator for
//** storing the intermediate

//** results with inputScalar.

//** This is done through

//** expansion in multiple

//** by 2 between the first of the

//** binary representation of inputScalar.

EllipticCurvePoint MultiplyUsingScalar(int
inputScalar, const EllipticCurvePoint&

intermediateResultAccumulator)

226

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

EllipticCurvePoint
accumulatorContainer =
intermediateResultAccumulator;

EllipticCurvePoint outputResult =
EllipticCurvePoint(0,0,

*ellipticCurve);
inti=o0, j=o0;

int iS = inputScalar;

while(iS)

{
if (is&1)
{

//** Setting up the bit.

//** The computation is done by following the formula:
//** accumulatorContainer = 2”(i-j)*accumulatorContainer
DoublingMultiplierAlgorithm(i-j,accumulatorContainer);

outputResult += accumulatorContainer;

//** last setting for the bit
j=1;
}
iS »>=1;
++1;
}

return outputResult;

}

//** the function deals with
//** adding two points on the curve

//** xCoord1, yCoordi, xCoord2=x2,
//** yCoord2=y2

227

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

void ECTwoPointsAddition(ffe element
xCoord1, ffe element yCoordi,
ffe_element xCoord2, ffe element
yCoord2, ffe element & xCoordR, ffe element &
yCoordR) const

//** dealing with sensitives cases
//** for implying addition identity
if (xCoord1==0 8& yCoord1==0)

{
xCoordR = xCoord2;
yCoordR = yCoord2;
return;

}

if (xCoord2==0 8& yCoord2==0)

{
xCoordR = xCoordi;
yCoordR = yCoordi;
return;

}

if (yCoordi==-yCoord2)

{
xCoordR = yCoordR = 0;
return;

}

//** deal with the additions

ffe_element s;

if (xCoordl == xCoord2 && yCoordl ==
yCoord2)

//** computing 2*P
s = (3*(xCoord1.i()*xCoord1.i()) +
ellipticCurve ->a()) /
(2*yCoord1);

228

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

xCoordR = ((s*s) - 2*xCoord1);

}
else
{
//** computing P+Q
s = (yCoord1l - yCoord2) / (xCoordi
- xCoord2);
xCoordR = ((s*s) - xCoordi -
xCoord2);
}
if (s!=0)
{
yCoordR = (-yCoordl + s*(xCoordl -
xCoordR));
}
else
{
xCoordR = yCoordR = 0;
}

}

EllipticCurvePoint(int xPoint, int yPoint)
: xCoordValue (xPoint),

yCoordValue (yPoint),

ellipticCurve (0)

{}

EllipticCurvePoint(int xPoint, int yPoint,
EllipticCurve<OrderFFE_EC> &
EllipticCurve)

: xCoordValue (xPoint),
yCoordValue (yPoint),
ellipticCurve (&EllipticCurve)

{}

229

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

EllipticCurvePoint(const ffe element&
xPoint, const ffe element& yPoint,
EllipticCurve<OrderFFE_EC> &
EllipticCurve)

: xCoordValue (xPoint),
yCoordValue (yPoint),
ellipticCurve (&EllipticCurve)

{}

public:
static EllipticCurvePoint ONE;

//** constructor
EllipticCurvePoint(const
EllipticCurvePoint& rhsPoint)

{
xCoordValue_ = rhsPoint.xCoordValue_;
yCoordValue = rhsPoint.yCoordValue_;
ellipticCurve_ =
rhsPoint.ellipticCurve_;
}

//** the assignment process
EllipticCurvePoint& operator=(const
EllipticCurvePoint& rhsPoint)

{
xCoordValue_ = rhsPoint.xCoordValue_;
yCoordValue = rhsPoint.yCoordValue_;
ellipticCurve =
rhsPoint.ellipticCurve_;
return *this;
}

//** access x component as element of Fp
ffe_element GetX() const { return
xCoordValue ; }

230

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

//** access y component as element of Fp
ffe_element GetY() const { return
yCoordValue ; }

//** calculate the order of this point by
//** brute-force additions
unsigned int
ComputingOrderBruteForceAddition
(unsigned int maximum period = ~0) const

{
EllipticCurvePoint ecPoint = *this;
unsigned int order = 0;
while(ecPoint.xCoordValue != 0 &&
ecPoint.yCoordValue != 0)
{
++order;
ecPoint += *this;
if (order > maximum period) break;
}
return order;
}

//** negation operator (-) that
//** gives the inverse of a point
EllipticCurvePoint operator-()
{
return
EllipticCurvePoint(xCoordValue ,
-yCoordValue);

}

//** equal (==) operator

friend bool operator==(const
EllipticCurvePoint& lhsPoint,
const EllipticCurvePoint& rhsPoint)

231

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

{

return (lhsPoint.ec_ == rhsPoint.ec)
88 (lhsPoint.x_ == rhsPoint.x_) &&
(1hsPoint.y == rhsPoint.y);

}

//** different (!=) operator

friend bool operator!=(const
EllipticCurvePoint& lhsPoint, const
EllipticCurvePoint& rhsPoint)

{
return (lhsPoint.ec_ != rhsPoint.ec)
|| (lhsPoint.x_ != rhsPoint.x) ||
(1hsPoint.y != rhsPoint.y);
}

//** Implementation of a + b operator
friend EllipticCurvePoint operator+(const
EllipticCurvePoint& lhsPoint,
const EllipticCurvePoint& rhsPoint)

ffe_element xResult, yResult;
lhsPoint.ECTwoPointsAddition(
lhsPoint.xCoordValue _,
lhsPoint.yCoordValue_,
rhsPoint.xCoordValue ,
rhsPoint.yCoordValue ,
xResult,yResult);
return
EllipticCurvePoint(xResult,
yResult,
*1hsPoint.ellipticCurve);

232

};

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

//** multiplying with scalar * int
friend EllipticCurvePoint operator*(int
scalar, const
EllipticCurvePoint& rhsPoint)

return
EllipticCurvePoint(rhsPoint).
operator*=(scalar);

h

//** Implementation of += operator
EllipticCurvePoint& operator+=(const
EllipticCurvePoint& rhsPoint)

{
ECTwoPointsAddition(xCoordValue ,
yCoordValue ,rhsPoint.xCoordValue ,
rhsPoint.yCoordValue ,xCoordValue ,
yCoordValue);
return *this;
}

//** Implementation of *= int operator
EllipticCurvePoint& operator*=(int scalar)
{
return (*this =
MultiplyUsingScalar(scalar,*this));

}

//** display and print the point

//** using ostream

friend ostreamd operator <<(ostreamd os,
const EllipticCurvePoint8 p)

return (os << "(" << p.xCoordValue <<

, " << p.yCoordValue << ")");

233

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

//** performing the elliptic
//** curve implementation
typedef EllipticCurve<OrderFFE_EC> this t;
typedef class
EllipticCurve<OrderFFE_EC>::
EllipticCurvePoint point t;

//** the Weierstrass equation

//** as y*"2 = x"3 + ax + b

EllipticCurve(int CoefA, int CoefB)

: ECParameterA(CoefA),
ECParameterB(CoefB),
tableOfPoints(),
tableFilledComputated(false)

{
}

//** compute all the points
//** (from the group of elements) for
//** Weierstrass equation. Note the
//** fact that if we are
//** having a high order for the curve,
//** the computation process
//** will take some time
void CalculatePoints()
{
int x_val[OrderFFE EC];
int y val[OrderFFE EC];
for (int counter = 0; counter <
OrderFFE_EC; ++counter)

{
int nsq = counter*counter;
x_val[counter] = ((counter*nsq) +
ECParameterA.i() * counter +
ECParameterB.i()) % OrderFFE _EC;
y val[counter] = nsq % OrderFFE_EC;
}

234

}

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

for (int counteri = 0; counteri <
OrderFFE_EC; ++counterl)

{
for (int counter2 = 0; counter2 <
OrderFFE_EC; ++counter2)
{
if (x_val[counteri] ==
y val[counter2])
{
tableOfPoints.push_back(E1llip
ticCurvePoint(counter1,
counter2,*this));
}
}
}

tableFilledComputated = true;

//** obtain the point (from the group of
//** elements) for the curve
EllipticCurvePoint operator[](int n)

{

}

if (!tableFilledComputated)

{
CalculatePoints();

}
return tableOfPoints[n];

//** the number og the elements
//** in the group
size t Size() const { return

tableOfPoints.size(); }

235

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

//** the degree of the point for
//** the elliptic curve
int Degree() const { return OrderFFE EC; }

//** the "a" parameter, as an element of Fp
FFE<OrderFFE EC> a() const { return
ECParameterA; }

//** the "b" paramter, as an element of Fp
FFE<OrderFFE_EC> b() const { return
ECParameterB; }

//** print and show the elliptic curve in a

//** readable format using ostream human

//** readable form

template<int ECT>

friend ostream& operator <<(ostreamd os, const
EllipticCurve<ECT>& EllipticCurve);

//** print and display all the elements
//** of the elliptic curve group
ostream& PrintTable(ostream &os,

int columns=4);

private:
typedef std::vector<EllipticCurvePoint>
TableWithPoints;

//** table with the points
TableWithPoints tableOfPoints;

//** first parameter of the
//** elliptic curve equation
FFE<OrderFFE_EC> ECParameterA;

//** second parameter of the
//** elliptic curve equation
FFE<OrderFFE_EC> ECParameterB;

236

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

//** boolean value to show if the
//** table has been computed
bool tableFilledComputated;

};

template<int ECT>
typename EllipticCurve<ECT>::EllipticCurvePoint
EllipticCurve<ECT>::EllipticCurvePoint::
ONE(0,0);

template<int ECT>
ostreamd operator <<(ostream& os, const
EllipticCurve<ECT>& EllipticCurve)

{
0s << "y*2 mod " << ECT << " = (x"3" << showpos;
if (EllipticCurve.ECParameterA != 0)
{
os << EllipticCurve.ECParameterA << "x";
}
if (EllipticCurve.ECParameterB.i() != 0)
{
os << EllipticCurve.ECParameterB;
}
0s << noshowpos << ") mod " << ECT,
return os;
}

template<int P>
ostreamd EllipticCurve<P>::PrintTable(ostream &os,
int columns)

{
if (tableFilledComputated)
{
int col = 0;
typename

EllipticCurve<P>::TableWithPoints::

237

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

iterator iter = tableOfPoints.begin();
for (; iter!=tableOfPoints.end(); ++iter)

{

os << "(" << (*iter).xCoordvalue .i() <«

", " << (*iter).yCoordValue .i() << ") ";
if (++col > columns)

{
0s << "\n";
col = 0;
}
}
}
else
{
os << "EllipticCurve, F " << P;
}
return os;
}
}
namespace utils
{
float frand()
{
static float norm = 1.0f / (float)RAND MAX;
return (float)rand()*norm;
}
int irand(int min, int max)
{
return min+(int) (frand()*(float)(max-min));
}
}

using namespace EllipticCurveCryptography;
using namespace utils;

238

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

int main(int argc, char *argv([])

{
typedef EllipticCurve<163> elliptic_curve;
elliptic_curve myEllipticCurve(1,1);

cout << "Basic Example of using Elliptic Curve
Cryptography using C++20. Apress, 2020\n\n";

//** display some information about the
//** elliptic curve and display some of the properties

cout << "Equation of the elliptic curve: " <«
myEllipticCurve << "\n";

//** compute the points for the elliptic
//** curve for equation from the above
myEllipticCurve.CalculatePoints();

cout << "\nList of the points (x,Y) for the curve (i.e.

the group elements):\n";
myEllipticCurve.PrintTable(cout,5);
cout << "\n\n";

elliptic_curve::EllipticCurvePoint P = myEllipticCurve[2];

cout << "Randomly - Point P =" << P << ", 2P = " «
(P+P) << "\n";

elliptic_curve::EllipticCurvePoint Q =
myEllipticCurve[3];
cout << "Randomly - Point Q = " << Q << ", P+Q = " <«
(P+Q) << "\n";

elliptic_curve::EllipticCurvePoint R = P;
R += 0;

cout << "P +=Q = " << R << "\n";

R = P;

R += R;

cout << "P += P = 2P = " << R << "\n";

239

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

240

cout << "\nEncryption of the message using
elliptic curve principles\n\n";

//** as an example we will use Menes-Vanstone

//** scheme that is based on elliptic

//** curve for message encryption

elliptic_curve::EllipticCurvePoint G = myEllipticCurve[0];

while((G.GetY() == 0 || G.GetX() == 0) ||
(G.ComputingOrderBruteForceAddition()<2))

{
int n = (int)(frand()*myEllipticCurve.Size());
G = myEllipticCurve[n];

}

cout << "G = " << G << ", order(G) is " <«

G.ComputingOrderBruteForceAddition() << "\n";

//** Suppose that Alice wish to communicate with Bob
//** Alice and its public key
int a = irand(1,myEllipticCurve.Degree()-1);

//** generating the public key
elliptic_curve::EllipticCurvePoint Pa = a*G;
cout << "Alice - Public key (Pa) = " << a << "*" << G «

= " << Pa << endl;

//** Bob and is public key
int b = irand(1,myEllipticCurve.Degree()-1);

//** the public key

elliptic_curve::EllipticCurvePoint Pb = b*G;

cout << "Bob - Public key (Pb) = " << b << "*" << G << "
" << Pb << endl;

//** Oscar - the eavesdropper and attacker

int o = irand(1,myEllipticCurve.Degree()-1);;
elliptic_curve::EllipticCurvePoint Po = 0*G;

cout << "Oscar - Public key (Po) = " << 0 << "*" << G «

= " << Po << endl;

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY
cout << "\n\n";

//** Alice proceeds with the encryption
//** for her message and send it to Bob.
//** To achieve this, the first step is
//** to split the message into multiple
//** parts that are encoded using Galois
//** field (Fp), which is also the domain
//** elliptic curve.

19;

72;

int m

int m2

cout << "The clear text message send by Alice to Bob: ("

<« ml << ", "< m2 << ")\n";

//** proceed with encryption using the key of Bob
elliptic_curve::EllipticCurvePoint Pk = a*Pb;
elliptic _curve::ffe element c1(m1i*Pk.GetX());
elliptic_curve::ffe element c2(m2*Pk.GetY());

//** the message that is encrypted is composed from:

//** Pa - Alice public key

//** c1,c2

cout << "The message encrypted from Alice for Bob is
represented as {Pa,c1,c2} and its content is =

{" <«Pa<<", "<l <«", "2
n }\n\nll;

//** Bob computes the decryption for the message
//** received from Alice, using her public key
//** and the session value (integer b)

Pk = b*Pa;

elliptic_curve::ffe element mid = c1/Pk.GetX();
elliptic_curve::ffe element m2d = c2/Pk.GetY();

cout << "\tThe message decrypted by Bob from Alice is = ("

<« mid << ", " << m2d << ")" << endl;

241

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

//** Oscar will intercept the message and
//** and he/she will try to decrypt it
//** using his/her key

Pk = o*Pa;

mid = c1/Pk.GetX();

m2d = c2/Pk.GetY();

cout << "\nOscar decrypt the message from Alice = (" <<

mid << ", " << m2d << ")" << endl;

cout << endl;

Conclusion

Cryptography is a critical component of security and privacy for data stored in the cloud
and across networks. ECC is the most secure type of encryption available today and is
used to protect data and communications from hackers. ECC is a powerful tool that can
protect a wide range of data, from emails and financial transactions to medical records
and confidential documents. This comprehensive chapter on ECC provided a deep dive
into the technology and its applications, and discussed elliptic curve cryptography and
how it can be implemented.

In this chapter, you learned the following.

e The theoretical fundamentals for implementing elliptic curve
cryptography

o How to apply theoretical mechanisms and theorems for operations
with group law in practice

e How to implement the basic operations and transpose into practice
elliptic curve cryptography

242

CHAPTER9 ELLIPTIC-CURVE CRYPTOGRAPHY

References

[1]. Lenstra Elliptic-Curve Cryptography. Available online: https://
en.wikipedia.org/wiki/Lenstra_elliptic-curve factorization.
Last accessed: 25.2.2023

[2]. Diophantine Geometry. Available online: https://en.wikipedia.org/wiki/
Diophantine_geometry. Last accessed: 25.2.2023

[3]. Diophantus. Available online: https://en.wikipedia.org/wiki/Diophantus.
Last accessed: 25.2.2023

[4]. L.Washington, Elliptic Curves: Number Theory and Cryptography. Chapman &
Hall/CRC, 2008.

243

https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization
https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization
https://en.wikipedia.org/wiki/Diophantine_geometry
https://en.wikipedia.org/wiki/Diophantine_geometry
https://en.wikipedia.org/wiki/Diophantus

CHAPTER 10

Lattice-based
Cryptography

This chapter has an overview of lattice-based cryptography. You learn why lattices are
important in cryptography and their challenges. Furthermore, you see how to develop a
practical implementation that uses lattices, namely, the GGH (Goldreich-Goldwasser-
Halevi) encryption scheme [1].

Lattice-based cryptography has emerged as a powerful tool for modern
cybersecurity, providing a secure and reliable data encryption and authentication
method. It is a type of cryptography based on mathematical lattices and is considered
one of the most robust and secure forms of encryption. Lattice-based cryptography
is a versatile and efficient tool that implements various cryptographic techniques
and protocols. It is used in a wide range of applications, from secure communication
in the military to online payments and digital signatures. With its unique properties,
lattice-based cryptography has become an indispensable tool in the fight against
cybercrime and protecting sensitive data. This chapter provides an overview of lattice-
based cryptography, its advantages and disadvantages, and its importance in modern
cybersecurity.

Lattice-based cryptography is a type of cryptography based on mathematical lattices.
Lattices are an abstract mathematical structure used to represent the relationship
between numbers. The word “lattice” refers to a grid-like pattern formed by points and
axes. In cryptography, this lattice pattern defines a set of operations and transformations
that can be applied to data. In essence, lattice-based cryptography is a particular set of
algorithms that use this lattice pattern to create a ciphertext, which is then decrypted
with the help of an inverse transformation. This is similar to how a wooden toy puzzle
with a grid-like pattern is assembled: if you put the pieces together correctly, you return
the original picture.

245

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_10

https://doi.org/10.1007/978-1-4842-9450-5_10

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

Lattices are important in cryptography because the hardness assumption based
on them is considered quantum-resistant in the context where, in the last few years,
the number of primitives in quantum cryptography has increased. While traditional
encryption systems, such as RSA, Diffie-Hellman, and elliptic curve encryption systems,
can be easily broken using quantum computers, encryption systems using lattices are
among the few candidates that resist postquantum cryptography.

Advantages and Disadvantages
of Lattice-based Cryptography

The advantages of lattice-based cryptography can be summarized as follows.

o Wide applicability. Lattice-based cryptography can be used in
various applications, including authentication, data integrity, and
confidentiality.

o Versatility. Lattice-based cryptography can implement many
cryptographic techniques, such as public key cryptography, digital
signatures, and authentication methods.

o [Ease of use. Lattice-based cryptography is particularly suitable for
software applications, where its simplicity and flexibility make it

easier to use and integrate into existing systems.

o Efficiency. Compared to other cryptographic methods, such as finite
fields, lattice-based cryptography is more efficient, performing better

in speed and energy consumption.

o Security. Lattice-based cryptography has strong mathematical
foundations, making it a secure and reliable system.

o Robustness. The security of lattice-based cryptography is ensured by
mathematical proofs and rigorous mathematical analysis, making the
system more robust against attacks.

246

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

The following are some of the disadvantages.

Complexity. Although lattice-based cryptography is a powerful
system with a wide range of applications, it is also a complex
mathematical system requiring specific skills to understand and
implement.

Data volume. Lattice-based cryptography works best with large data
sets but can be less efficient when dealing with smaller amounts
of data.

Not quantum-resistant. There is a concern that lattice-based
cryptography is not quantum-resistant, making it vulnerable to
quantum computing attacks. To address this issue, there are ongoing
efforts to develop new lattice-based algorithms resistant to quantum
computing.

Implementation complexity. To use lattice-based cryptography, one
must design and implement a cryptographic system that uses lattices
as an underlying mathematical structure.

Poor inherent randomness. Lattice-based cryptography is not a
good choice for creating random numbers, so applications requiring
a high level of randomness might warrant a different technique.

Applications of Lattice-based Cryptography

Lattice-based cryptography has an important number of applications, from research to

industry applications, which are summarized as follows.

Cryptography. Lattice-based cryptography is used in various
cryptographic applications, such as data encryption, digital
signatures, and authentication.

Quantum computing. Lattice-based cryptography is also used to
protect against quantum computing attacks.

Quantum key distribution. Lattice-based cryptography is used for
quantum key distribution (QKD), a technique for creating a secret
key between two parties communicating over an insecure channel.

247

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

o Factoring and discrete logarithm problems: Lattice-based
cryptography is also used to solve factoring and discrete logarithm
problems.

e Mathematical problems. Lattice-based cryptography can also be
used to solve a wide range of mathematical problems, such as integer
factorization and the graph isomorphism problem.

Security of Lattice-based Cryptography

Lattice-based cryptography is a mathematically robust cryptographic method that

uses a lattice structure to encrypt and decrypt data. It is based on the computational
hardness of certain problems, such as integer factorization, graph isomorphism, and the
halting problem. The system is secure because these problems are very difficult to solve
and require a considerable amount of computing power, if not an impossible amount,
making it practically impossible to crack the system unless you have more computing
power than the entire world combined. Lattice-based cryptography is a key component
in many technologies, including the Internet of Things, online payments, and secure
communication. Due to its strong mathematical foundations, lattice-based cryptography
is secure and reliable. Moreover, it is resistant to a wide range of attacks, including brute-
force attacks, side-channel attacks, and known plaintext attacks.

Lattice-based Cryptography
and Quantum Computing

Lattice-based cryptography is a powerful cryptographic technique that protects
sensitive data against various threats, including quantum computing attacks. Quantum
computing is an emerging technology that promises to solve certain problems
exponentially faster than traditional computers, making conventional cryptographic
techniques vulnerable to attack. Many modern cryptographic techniques rely on
quantum-resistant algorithms to protect sensitive data against quantum computing
threats. What makes an algorithm quantum-resistant?

248

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

In general, quantum-resistant algorithms have one or more of the following
properties

e Theydo not depend on a problem being hard to solve.
e They do not have a problem with noise.
o They do not have a problem with decoherence.

However, using lattices in cryptography is not an easy task regarding the applicability
and practical implementations because these are complex mathematical constructions
that require a solid background in algebra and understanding abstract concepts.

Mathematical Background

This section briefly overviews the main elements and techniques required as minimum
theoretical information about the lattices and the mathematical background that a
professional should know.

Take into consideration the space R” and a base in R" of the form b = (b,, ..., b,), with
by, ..., b, € R. Alattice has the following form.

L(b)={Xab|a,eZ}

In the preceding construction, a; is an integer number, and b; is the ith element of
the basis b. Moreover, L is the set of all linear combinations with integer coefficients. An
immediate example of a lattice is Z", generated by the standard basis in R". Figure 10-1
shows a lattice in the Euclidean plane.

8 # = » =
#® = » =
#®# = » =B
*# #®# ® » B
* ® = » »

Figure 10-1. Lattice in Euclidean plane’

'Source: https://en.wikipedia.org/wiki/Lattice (group
249

https://en.wikipedia.org/wiki/Lattice_(group

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

Examples of lattice problems are the shortest vector problem (SVP), closest vector
problem (CVP), shortest independent vector problem (SIVP), GapSVP, GapCVP,
bounded distance decoding, covering radius problem, and shortest basis problem. In
cryptography, SVP and CVP are mainly used as hardness assumptions in cryptosystems.

For SVP, the following elements are given: a vector space V, a basis b in the vector
space, and a norm N. Knowing the lattice L(b), it is required to compute the shortest
vector v € Vsuch that v’s norm in Vrepresents the minimum distance defined in L. In
other words, the vector v € V should be found such that

lvl=2(L(b))

In the preceding relation, ||. || represents the norm in V, L(b) is the lattice defined
over the basis b and 4 is the minimum distance defined in L(b). The relation gives the
search variant of the SVP. The following are the other two variants.

¢ Calculation. Find the minimum distance in lattice A(L(b)) when
given basis b and lattice A(L(b)).

e Decision. Determine whether A(L(b)) < d or A(L(b)) > d when given
basis b, lattice A(L(b)) and real value d > 0.

A generalization of SVP is CVP, where informally speaking, given a vector v € V, it
is required to find the vector u in L(b) that is nearest to v. Note that v is not necessarily
in L(b). In some cases, there is an additional condition: the distance between v and u
should not exceed a given value.

For more information about the lattices used in cryptography, consult [2] and [3].

Example

This section presents the GGH encryption scheme [1] that uses lattices. GGH is an
asymmetric encryption scheme; it uses the public key for encryption and the private
key for decryption. The algorithms of the cryptosystem are well-known key generation,
encryption, and decryption. The following presents them as proposed in [1].

» Key generation: Given a security parameter, generate a basis b in the
lattice L defined over an n-dimensional space with good properties
(such as containing nearly orthogonal vectors) and a unimodular
matrix A. The basis and the matrix compose the private key. The
public key is computed as B= A - b.

250

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

e Encryption: Given the message m = (m,, ..., m,) and the error
e=(ey...,e,), the encryptionisc=m- B +e.

e Decryption: Given the encryption ¢ = (c,, ..., ¢,), the message is
computed in two steps.

1. Computec-b~'. Thisyieldsc-b~'=(m-B+e)b~' =
m-A-b-b'+e-b'=m-A+e-b7..

2. Remove e- b~! using a technique such as Babai rounding, and
computem=m-A-A"%

Listing 10-1 provides the implementation of the encryption and decryption for GGH
using the following values as keys.

b=(170019);A=(2335)

Listing 10-1. Encryption and Decryption Algorithm of the GGH Cryptosystem

#include <iostream>
#include "math.h"

using namespace std;

void encrypt(double message[100], double public B[100][100], double error
vals[100], int dimension, double output encrypted text[100]);

void decrypt(int dimension, double encrypted message[100], double private
basis[100][100], double unimodular matrix[100][100], double output
message[100]);

double matrix_determinant(double square matrix[100][100], int dimension);
void matrix_inverse(double matrix[100][100], int dimension, double output
inverse[100][100]);

void matrix multiplication(double matrix1[100][100], double matrix2[100]
[100], double output[100][100], int dimension) ;

void matrix addition(double matrix1[100][100], double matrix2[100][100],
double output sum[100][100], int dimension);

void get cofactor(double matrix[100][100], double aux[100][100], int p,
int g, int n);

void adjoint matrix(double matrix[100][100], double adjoint[100][100],

int dimension);

251

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

bool inverse matrix(double matrix[100][100], double inv matrix[100][100],
int dimension);

void vector to matrix(double v[100], int dimension, double output_
matrix[100][100]);

void matrix to vector(double matrix[100][100], double output v[100], int
dimension);

void print matrix(double matrix[100][100], int n, string message);

void print vector(double vect[100], int n, string message);

void print message(string message);

int main()

{

int message_length = 2;

double b[100][100]
basis -> b
double b_inverse[100][100];

{{17.0, 0.0}, {0.0, 19.0}}; // the private

inverse matrix(b, b_inverse, message length);

double A[100][100] = {{2.0, 3.0}, {3.0, 5.0}}; // the private
unimodular matrix -> A

double A inverse[100][100];

inverse matrix(A, A _inverse, message length);

double B[100][100]; // the public key -> B
matrix_multiplication(A, b, B, message length);

// Encryption

double enc_message[100]; // stores the encryption of the message -> c
double message[100] = {2, -5}; // the message -> m

double error vals[100] = {1, -1}; // the error values -> e

print_vector(message, message length, "message");
encrypt(message, B, error vals, message length, enc_message);
print_vector(enc_message, message length, "encrypted message");

// Decryption
double recovered message[100];

252

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

decrypt(message length, enc_message, b, A, recovered message);
print_vector(recovered message, message length, "recovered message");

}

// Auxiliary function that prints a matrix on the console
void print matrix(double matrix[100][100], int n, string message)

{

cout<<endl<<"*** " <<message<<"***"<<endl;

for(int i = 0; 1 < n; i++)

{
for(int j = 0; j < n; j++)
cout<<matrix[i][j]<<" "
cout<<endl;
}
cout<<endl;

}

// Auxiliary function that prints a vector on the console
void print vector(double vect[100], int n, string message)

{

cout<<endl<<"*¥**"<<message<< " ***"<<endl;

for(int i = 0; i < n; i++)

{

cout<<vect[i]<<" "5
}
cout<<endl;

}

// Auxiliary function that prints a string message on the console
void print message(string message)

{

cout<<endl<<"*** <<message<<"***"<<endl;

253

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

void encrypt(double message[100], double public B[100][100], double error_
vals[100], int dimension, double output encrypted text[100])
{
// c=m-B+e
double aux_message[100][100], aux_enc_message[100][100], aux_error
vals[100][100];
vector to matrix(message, dimension, aux_message);

// Compute m-B -> aux_enc_message
matrix_multiplication(aux_message, public B, aux_enc_message,
dimension);

vector to matrix(error vals, dimension, aux error vals);

// Compute m-B+e -> output_encrypted text
matrix_addition(aux_enc_message, aux_error vals, aux_enc_message,
dimension);

matrix_to vector(aux_enc_message, output_encrypted text, dimension);

}

void decrypt(int dimension, double encrypted message[100], double private_
basis[100][100], double unimodular matrix[100][100], double output
message[100])
{

// (1) Compute c * (b"(-1))

// (2) Remove e * (b"(-1))

// (3) Compute m * A * (A*(-1))

double aux_enc_message[100][100], aux_message[100][100];

double recovered message[100][100];

// Compute the inverse of the basis -> b_inverse
double b _inverse[100][100];
inverse matrix(private_basis, b_inverse, dimension);

// Compute the inverse of the unimodular matrix -> A_inverse
double A inverse[100][100];
inverse matrix(unimodular matrix, A inverse, dimension);

254

}

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

// (1) Compute c * (b*(-1)) -> aux_enc_message

vector_to matrix(encrypted message, dimension, aux_enc_message);
matrix multiplication(aux_enc_message, b _inverse, aux_message,
dimension);

// (2) Remove e * (b*(-1)) from aux_enc_message
// Basically, the value aux_message[i][]j] is rounded to the
neareast integer
for (int i=0; i<2; i++)
{
for (int j=0; j<2; j++)
aux_message[i][j] = round(aux_message[i][]]);

}

// (3) Compute m * A * (A*(-1))

matrix multiplication(aux_message, A inverse, recovered message,
dimension);

matrix_to vector(recovered message, output message, dimension);

// Computes the matrix multiplication between two matrices
void matrix multiplication(double matrix1[100][100], double matrix2[100]
[100], double output[100][100], int dimension)

{

for (int i = 0; i < dimension; i++)

{
for (int j = 0; j < dimension; j++)
{
output[i][j] = 0;
for (int k = 0; k < dimension; k++)
output[i][j] += matrixa[i][k] * matrix2[k][]];
}
}

255

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

// Computes the matrix sum between two matrices
void matrix addition(double matrix1[100][100], double matrix2[100][100],
double output sum[100][100], int dimension)

{
for(int i = 0; i < dimension; ++1i)
for(int j = 0; j < dimension; ++j)
output_sum[i][j] = matrixa[i][]j] + matrix2[i][j];
}

// Computes the cofactor of the element matrix[p][q]
void get cofactor(double matrix[100][100], double aux[100][100], int p,
int g, int n)

{
inti=0, j=0;
for (int row = 0; row < n; row++)
{
for (int col = 0; col < n; col++)
{
if (row !'= p && col != q)
{
aux[i][j++] = matrix[row][col];
if (j ==n-1)
{
J=0;
i++;
}
}
}
}
}

// computes the determinant of a square matrix
double matrix determinant(double square matrix[100][100], int dimension)

{

double matrix det = 0.0;
double aux_matrix[100][100];

256

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

if (dimension == 1)
return square matrix[0][0];

if (dimension == 2)
return ((square matrix[0][0] * square matrix[1][1]) - (square_
matrix[1][0] * square matrix[0][1]));
else
{
for (int k = 0; k < dimension; k++) {
int aux_i = 0;
for (int i = 1; i < dimension; i++) {
int aux_j = 0;
for (int j = 0; j < dimension; j++) {

if (j == k)
continue;
aux_matrix[aux _i][aux _j] = square matrix[i][j];
auX_J++;
}
aux_i++;

}
matrix det = matrix det + (pow(-1.0, k) * square matrix[0][k] *
matrix_determinant(aux matrix, dimension - 1));

}

return matrix_det;

}

// Computes the adjoint of a matrix
void adjoint matrix(double matrix[100][100], double adjoint[100][100], int
dimension)

{ if (dimension == 1)
{
adjoint[o][0] = 1;
return;
}

257

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

int sign = 1;
double aux[100][100];

for (int i=0; i<dimension; i++)

{
for (int j=0; j<dimension; j++)
{
get cofactor(matrix, aux, i, j, dimension);
sign = ((1 + j) % 2 ==0)? 1: -1;
adjoint[j][i] = (sign)*(matrix_determinant(aux,
dimension - 1));
}
}

}

// Computes the inverse of a matrix
bool inverse matrix(double matrix[100][100], double inv matrix[100][100],
int dimension)

{

double det = matrix determinant(matrix, dimension);
if (det == 0)
{

return false;

}

double adj[100][100];
adjoint matrix(matrix, adj, dimension);

for (int i=0; i<dimension; i++)
for (int j=0; j<dimension; j++)

{
if(adj[i][j] / det == -0)
adj[11[3] = 0.0;
inv_matrix[i][j] = adj[i][j] / det;
}

258

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

return true;

}

// This function "converts" a vector (seen as a matrix with 1 line and
dimension columns) into a matrix
// The obtained matrix has on the first line the elements of the vector
// The remaining lines (*dimension* - 1) contrast 0
// This "conversion" is useful in the operations with matrices (addition,
multiplication)
void vector to matrix(double v[100], int dimension, double output
matrix[100][100])
{

for(int i = 0; i < dimension; i++)

{

output matrix[o][i] = v[i];

}

for(int i = 1; i < dimension; i++)
for (int j = 0; j < dimension; j++)
{
output_matrix[i][j] = o;

}

// This function "converts" a matrix into a vector

// All lines of the matrix has values of 0, except for the first line

// The first line of the matrix becomes the vector

void matrix to vector(double matrix[100][100], double output v[100], int

dimension)
{
for(int i = 0; i < dimension; i++)
{
output v[i] = matrix[o][i];
}

259

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

The result is shown in the Figure 10-2.

C:\Users\mariu’\oneDrive\Desktop\Apress C++23%16. Lattice-based Cryptcgraphy\source code>g++ -std=c++2b lattice_ggh_encryption.cpp -o lattice_ggh_encryption.exe
C:\users\mariu\onebrive)\Desktophapress C++23\18. Lattice-based Cryptegraphy\scurce code»lattice_ggh_encryption.exe

=*amESSAgEEE
2 =5

*+epnCrypted messageses
-188 =362

*+erecovered messagesss
2 z

€:\Users\mariu\OneDrive\Desktop\Apress C++23\18. Lattice-based Cryptography\source codes|

Figure 10-2. The result of the Listing 10-1

Conclusion

This chapter discussed lattice-based cryptography and its importance. You learned the
following.

o The importance of lattice-based cryptography and its impact on the
future of cryptography

e How to encrypt and decrypt using the GGH cryptosystem

o How to implement practical functions and methods related to lattices
and matrices

You observed that lattice-based cryptography is a type of cryptography based on
mathematical lattices and is considered one of the most robust and secure forms of
encryption. It is a versatile and efficient tool, allowing for the implementation of various
cryptographic techniques and protocols. Lattice-based cryptography is a particular set
of algorithms that use this lattice pattern to create a ciphertext, which is then decrypted
with the help of an inverse transformation. This is similar to how a toy wooden puzzle
with a grid-like pattern is assembled: if you put the pieces together correctly, you see the
original picture. Lattice-based cryptography is used in a wide range of applications, from
secure communication in the military to online payments and digital signatures. With its
unique properties, lattice-based cryptography has become an indispensable tool in the
protection of sensitive data and the fight against cybercrime.

260

CHAPTER 10 LATTICE-BASED CRYPTOGRAPHY

Lattice-based cryptography is a powerful tool for modern cybersecurity that
provides a secure and reliable data encryption and authentication method. It is a type of
cryptography based on mathematical lattices and is considered one of the most robust
and secure forms of encryption. Lattice-based cryptography is a versatile and efficient
tool, allowing for the implementation of a variety of cryptographic techniques and
protocols. It is used in a wide range of applications, from secure communication in the
military to online payments and digital signatures. With its unique properties, lattice-
based cryptography has become an indispensable tool in the fight against cybercrime
and the protection of sensitive data.

References

[1]. O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosystems from
lattice reduction problems’, in Advances in Cryptology—CRYPTO’97: 17th
Annual International Cryptology Conference Santa Barbara, California, USA
August 17-21, 1997 Proceedings 17, Springer, 1997, pp. 112-131.

[2]. D.Micciancio and O. Regev, “Lattice-based cryptography’, Post-quantum
cryptography, pp. 147-191, 2009.

[3]. H.Knospe, A course in cryptography, vol. 40. American Mathematical
Soc., 2019.

261

CHAPTER 11

Searchable Encryption

A method known as searchable encryption enables users to perform keyword searches
on encrypted data without affecting the material’s security. The fundamental idea is

to encrypt the data so that the encryption keys are also stored in a searchable data
structure, such as a search tree, so that the user may perform keyword searches without
having to decode the entire set of data. This preserves the confidentiality of the data
while enabling a secure and effective search of sensitive information. Searchable
encryption is a particular case of fully homomorphic encryption which is studied.

Usually, searchable encryption is applied in cloud computing environments; for
example, a company needs to store its clients’ sensitive data in a cloud environment. For
this, the company must keep the data secure, but it also wants to make search queries
and retrieve data quickly and easily. Therefore, the company can implement a searchable
encryption scheme that encrypts data and allows search queries over encrypted data.
Authorized staff can then perform keyword searches on the encrypted data without
having to decrypt the entire data set using a searchable data structure containing
selected keywords. This enables the company to search for and retrieve data quickly and
conveniently while protecting the confidentiality and privacy of the client data.

Consider the following example to better understand the searchable encryption
method. A set of documents belong to data owner A and are kept on a cloud server. Data
user B is permitted to view these documents. User A encrypts the documents before
storing them on the server to keep them safe. In this instance, B is only permitted to look
through documents (note that they are encrypted) or to read them (note that B can read
a document only after it was retrieved from the server and decrypted).

If B wants to obtain documents from the server containing a certain keyword, such
as programming, then B builds a value called the trapdoor using this search term,
and the secret key B possesses then sends the trapdoor value to the server. The search
algorithm is specified by the searchable encryption scheme used by the server, and
the result is sent to B in an encrypted manner. Then, B can decrypt them only if it has a
decryption key.

263

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_11

https://doi.org/10.1007/978-1-4842-9450-5_11

CHAPTER 11 SEARCHABLE ENCRYPTION

Another more applicable scenario is when a company creates software that
eventually requires the clients’ social security numbers (SSNs). The recommendations
and best practices advise encrypting SSNs when dealing with them. This can be difficult
because employees utilize SSNs, for instance, when looking for a user account. One
solution is to allow staff members to search for a certain SSN using the encrypted SSNs
(without decrypting them in any way). This would be achievable if the encryption
method were searchable.

Itis important to note that searchable encryption has great potential for allowing
data users to search across encrypted data for a specific piece of content. In the
healthcare industry, where patient medical records can be searched in encrypted
form, searchable encryption is an immediate application. Other uses could be found in
business, education, or any area where data searching is necessary.

Components

The entities and the algorithms are the components of a searchable encryption scheme.
A full overview of these components is provided in this section.

Entities

The customers that use the software solution, the entity that maintains it, the kind

of data, the roles supported by the solution, and other factors should be clarified
before implementation. The following parties are involved in a system that employs a
searchable encryption method.

o Data owner. The data owner, considered a reliable party, holds n
documents with the identifiers D = {D,, ..., D,} that are described by
keywords (note that these are not metadata). The documents and
the keywords are both outsourced. The data owner encrypts the
documents using a searchable encryption scheme before outsourcing
them to the server (along with the keywords, frequently grouped into
an index structure).

o Data user. The search procedure may be started by the data user,
who is an authorized user of the data. The data user creates a
trapdoor value used to search through the encrypted data using the

264

Types

CHAPTER 11 SEARCHABLE ENCRYPTION

query keyword for which the search is done. Additionally, if the data
user can access the private key, they can decrypt the documents
found during the search process. Recall that a data user could also be
the data owner.

Server. Based on the trapdoor value from the data user, the server—
regarded as semitrusted or honest-but-curious—stores the encrypted
data and runs the search algorithm. It follows instructions for the
search algorithms and can examine the provided data, which is why
it is called semitrusted or honest-but-curious.

The following cryptographic categories can be used to group searchable encryption

schemes: symmetric searchable encryption (SSE) schemes and public key searchable
encryption (PKSE) schemes. For SSE schemes, just one type of key is used for both
encryption and decryption of the content. In other specific algorithms, PKSE schemes

have two keys: a public key to encrypt the content and a private (or secret) key to decrypt

the encrypted content.

The SSE schemes contain the following algorithms [1].

KeyGeneration. The data owner runs this algorithm. A security
parameter /A serves as the input, while the secret key SK is the output.

BuildIndex. The data owner runs this algorithm, and its goal is to
create an index structure containing the keywords that describe
the documents. The server’s secret key SK and the collection of
documents D are the inputs, and the output is an index structure I.
This approach starts with an empty index structure and adds
keywords that characterize the current document to the index
structure for every document in the set. Note that before being
included in the index structure, the keywords are encrypted using
the secret key SK in a specified manner that may differ from how
the documents are encrypted. A hash table, a tree, or a similar data
structure can be used as an index structure.

265

CHAPTER 11 SEARCHABLE ENCRYPTION

e Trapdoor. The data user runs this algorithm. The desired query
keyword kw, for which the search process is activated, and the secret
key SK are the inputs for the trapdoor algorithm, and the output is
avalue Ty, called the trapdoor. Note that the trapdoor algorithm
encrypts more than just the search term kw. Instead, it manipulates
something under control or adds a noise value.

o Search. The server handles the search algorithm. The index structure
I obtained from the BuildIndex algorithm and the trapdoor value Ty,
from the prior method are the inputs for the search algorithm. The
search method should explain how the index structure is searched
for the trapdoor value T}, (keep in mind that T}, is not just a plain
keyword that has been simply encrypted).

The documents are given to the data user if the search algorithm finds one or more
documents that include the search term; otherwise, the server delivers the appropriate
message. The encrypting and decrypting algorithms are not listed because the data
owner can select between two alternative encryption schemes, one to encrypt the
documents and one for the searchable encryption technique. Because the searchable
encryption system does not directly include the documents, this situation is feasible.
Only the keywords and/or the index structure of encrypted keywords are used by all SSE
scheme algorithms.

Alittle different from the SSE version, the following describes the PEKS scheme
algorithms [2].

o KeyGeneration. This process, which the data owner also operates, is
similar to the KeyGeneration from SSE. The result of key generation
is a pair of keys this time, specifically the public and private keys,
while the input is once again a security parameter (PK, SK).

o Encryption. This algorithm is run by the owner of the data and
returns the encrypted value of the keyword KW under SK. Its inputs
are a public key (PK) and a keyword (KW).

o Trapdoor. The data user executes this algorithm to produce the
trapdoor value, similar to the trapdoor algorithm from SSE. The
secret key SK and the search query term KWW are the inputs and the
trapdoor value Ty corresponding to the keyword KW is the output.

266

CHAPTER 11 SEARCHABLE ENCRYPTION

e Test. The public key PK, an encrypted value C (representing the
encryption of a keyword KW), and the trapdoor value T, are the
inputs for the test procedure, which is run on the server. The test
algorithm returns 1 when KW' = KW and 0 when it does not.

The test algorithm does not only perform basic matching, and the trapdoor does
not only perform encryption. However, the SSE schemes and PEKS schemes mentioned
here are provided in accordance with how they were first used in this subject in the
early publications [1] and [2]. Since then, the search process’s supported choices and
algorithmic changes have been made. Some works permit the use of multiple keywords.

In contrast, others enable fuzzy search based on keywords (which permits minor
typos or format inconsistencies) [3], [4], or others enable semantic search (which returns
documents that contain keywords from the query keyword’s semantic field) [5].

Other efforts concentrate on the documents in that they can be changed directly
on the server without being retrieved, decrypted, modified, and then stored again
on the server. Other works concentrate on the index structure, which can also be
updated immediately on the server [6]. The trapdoor and the search/test algorithm and
encryption and decryption are the only algorithms in any searchable encryption system.

Security Characteristics

A search pattern and the access pattern are two examples of items that need to be secured
in a searchable encryption system. The information that may be learned from the fact
that two separate search results share the same query keywords is related to the search
pattern. The collection of documents that emerged from a trapdoor corresponding
to a specific keyword KW s related to the access pattern. Additionally, searchable
encryption techniques must adhere to search query security criteria. Reference [7] states
that searchable encryption schemes should include the following features: controlled
searching (only authorized users may submit search queries), encrypted inquiries (the
query search itself should be encrypted before being submitted to the server), encrypted
queries (the query search itself should be encrypted before being submitted to the
server), and query isolation (the server learns nothing from the queries that it receives).
The index structure should not be vulnerable; therefore, the SSE schemes should
provide IND1-CKA and/or IND2-CKA (selected keyword attack for indexes) resistance.
In IND1-CKA, all documents used to form the index structure are assigned the same
number of keywords; however, in IND2-CKA, the number of keywords used to describe

267

CHAPTER 11 SEARCHABLE ENCRYPTION

each document is flexible. However, the PEKS scheme should be resistant to the chosen
keyword attack (that is, a challenge between an attacker and the structure that manages
the PEKS scheme).

The forward and backward privacy for the dynamic searchable encryption schemes,
which permits inserting, updating, or deleting to be applied over the set of documents
or the keywords directly on the server, without the need to decrypt it, are security
requirements that were recently added. Backward and forward privacies refer to the
information found during the insertion, deletion, and updating processes. Forward
privacy means that the current updating process is not connected to earlier operations.
In contrast, backward privacy refers to the information found when a search is done for a
term for which documents have been removed before the present search.

An Example

The example from [18] demonstrates the usage of searchable encryption, a complex
encryption method that allows users to perform keyword searches inside encrypted
documents. Remember that the participants in the system are the data user, who is
authorized to submit search requests on the cloud server. The data owner, who owns
a set of documents S=1{D,, ..., D,}, who prepares the system by generating the keys,
encrypts the documents and the keywords, and stores them on the cloud server, and
the cloud server, which stores the documents in an encrypted format and executes the
search algorithm.

The work [18] uses elliptic curves (see Chapter 9) in the searchable encryption scheme.
Currently, elliptic curves are used in important areas such as blockchain ([14], [15])
and the Internet of Things ([16], [17]).

Figure 11-1 [18] shows an example of a searchable encryption scheme that uses
elliptic curve cryptography and is designed for the big data environment (see Chapter 15).
In [18], the Elliptic Curve Digital Signature Algorithm (ECDSA) is used to secure the
content of the courses available for students on an e-learning platform. The security
parameter (4) for the key generation algorithm of the searchable encryption scheme is the
private key from the ECDSA algorithm.

Due to the method’s difficulty, attempts have been made, but there is no practical
implementation of a searchable encryption system that can be utilized in a real context.
However, an example of a demonstration can be found in [19], with the contributor’s
explicit warning: This repository provides implementations of SSE as a proof of

268

CHAPTER 11 SEARCHABLE ENCRYPTION

concept and cannot truly be used for real sensitive applications. Before implementing
a searchable encryption system, the following fundamental principles should be
considered.

e The architecture of the software application (server, database,
services, etc.)

e The hardware components and how they are managed for the current
applications that include security and cryptographic techniques

e The architecture should be designed such that processes within the
searchable encryption be represented as independent algorithms
such that their deployment is made correctly between the end users
and the existing network infrastructure

269

CHAPTER 11 SEARCHABLE ENCRYPTION

e-Learning Framework based on
Elliptic Curve Cryptography and Searchable Encryption

Elliptic Curve Cryptography Searchable Encryption for a Big Data
ECDSA (Elliptic Curve Digital Signature Algorithm) Environment
YAep

| Course(c) I|

_ :
! =BIG

“ADATA
SHA3 - 512 -

Hashof the | Pk
course 1D e
4. network ' -«

7' SHA3 - 512

v

Hash of the
course ID (c;p)

Big Data Server Farm
signature

runs ot
s T uns 0 S AddUser()

= ﬂ'eyr;en(ﬂ P,8) 0 3 BuildIndex()

LC s Query()

E®< o% ..

Data Set (D) K runs
S 0 3 RevokeUser() w

User Owner (0) |
@ = Professor or Student \

Figure 11-1. An example of a practical searchable encryption scheme [18]

270

CHAPTER 11 SEARCHABLE ENCRYPTION

Note that the searchable encryption scheme presented in Figure 11-1 is partitioned

into more steps. Every step is an algorithm that can be considered a separate

instance from the searchable encryption scheme. Furthermore, the instances can be

implemented as software modules or services or IoT devices (for example, devices such
as Intel NUC PC or a Raspberry PI). The distribution and deployment of the software

modules or services among the users can be realized through a distributed network, for

example, on a cloud computing network or a regular network for small and medium

business architectures.

The algorithms in [18] show the steps in Figure 13-1, which presents a searchable

encryption for a big data environment. Before implementing the steps, it is necessary to

properly understand how the following steps are organized as independent algorithms.

1.

(Ko, K, PP) « KeyGeneration(1%, P, S). The data owner O runs
this probabilistic algorithm for which the input values are the
security parameter 4, a policy P. The output is a tuple composed
of the owner’s secret key K, the server key K, and the public
parameters PP.

I, « BuildIndex(Ds, K,, PP). The data owner O runs this
probabilistic algorithm for which the input values are the
description of the data set D““s (namely, the keywords that
describe each document) and the secret key of the owner (Kj),
and the output is an index structure Ip,.

Ky < (u,A(u), Ky, PP). The data owner O runs this probabilistic
algorithm to enroll a new user in the e-learning platform system.
The input values for the algorithm are the identity of the new user,
the level of access of the user (user’s role), and the owner’s O key.
The output is the secret for the new user.

Trapdoor,,, ;) <Ww Query(w, K,). The data user that has the
proper clearance A(u) for generating a search query runs this
probabilistic algorithm. The input values are the keyword w € A
(where A is a dictionary of keywords) and the user’s secret key.
The output is the query token (trapdoor value) Trapdoor y, 1 .-

271

CHAPTER 11 SEARCHABLE ENCRYPTION

5. R iw) < Searching(Trapdoor, ;) Ip, K;). The server (S) runs
this probabilistic algorithm that searches the index for the data
items that contain the query keyword . The input values are
the search query and the index, and the output is R,, 1)), which
includes a set of identifiers of the data items d; €D, 1 (,) that
contains the query keyword such that A(d;) < A(u), where A(u;)
is the access level of the user that triggered the search query or a
failure symbol ¢.

6. (Kjp) « RevokeUser(u, Ky, PP). The data owner O runs this
probabilistic algorithm for revoking a specific user from the
system. The input values are the user’s ID, the data owner’s secret
keys, and the server, while the output is new keys for the owner
and server.

The searchable encryption scheme designed for this chapter can be correct
if for all k € N, for all K,,, K; output by KeyGen(1*, P),for all D*%, for all I, that
is output by BuildIndex(D", K,), for all w € A for all u € U for all K, output by
AddUser(Ko, u, A(u), PP),Search(Ip, Ty, 1 w) = Duw, 1 w)-

Listing 11-1 presents the pseudocode, which is a sketch for the practical
implementation of the searchable encryption scheme proposed in Figure 11-1. Note
that the implementation is purely demonstrative, as the implementations (frameworks,
libraries, etc.) for searchable encryption do not currently exist.

Listing 11-1. Guideline Implementation of the Searchable Encryption Scheme

#include <iostream>
#include <fstream>

class KeyGeneration

{
// Step 1

// The data owner runs the algorithm
// from KeyGeneration step (algorithm)

// global variables
public: string securityParameter;
string ownerID;

272

CHAPTER 11 SEARCHABLE ENCRYPTION

string policyContent;
string serverldentity;

// the function will return the policy,
// as a content or file
public: string GetPolicy(ifstream& policyContent)

{
string content = "";
if (policyContent.is open())
{
while (getline (policyContent, line))
{
content += line;
}
policyContent.close();
}

else policyContent = "Cannot read the policy file";
return policyContent
}
// getting server identity can be tricky and it has
// different meanings, such as the name of computer,
// 1P, active directory reference name etc...
// For the current example, we use the hardware ID
public: string GetServerIdentity()
{

string serverIdentity = "";

// Implementation for obtaining the server identity

// for this method, Windows WMI can be used

// this link provides more details:

// https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-
page?redirectedfrom=MSDN

return serverIdentity

}

273

CHAPTER 11 SEARCHABLE ENCRYPTION

// class constructor
public: KeyGeneration(){}

// let's generate the secret key, server key

// and public parameters

// "#" represents the separator

public: string ReturnParameters(KeyGeneration kp)

{

string sbParameters = "";

sbParameters += kp.ownerSecretKey + "#" + kp.serverKey + "#" +
kp.publicParameters;

return sbParameters;

}
}

class BuildIndex

{

// Step 2

// the algorithm from BuildIndex step (algorithm)
// are run and invoked by the data owner

// constructor of the class
public: void BuildIndex(){}

// the function centralize the build index parameters
// after their initialization and processing
public: void UseBuildIndexParameters()

{

list<string> descriptionDataSet;

string ownerPrivateKey = "";

string outputIndex = "";

}

//simulation of getting the data set and their
//descriptions
public: list<string> GetDataSet()

{
list<string> 11;

274

CHAPTER 11

for(int i = 0; i < dataSet.size(); i++)
{

11.push_back(description[i]);

}

}

// getting the private of the owner
public: string ownerPrivateKey()

{

string privateKey = "";

// get the private key and work with it arround

return privateKey;

}

// get the index
public: string Index()
{

string index = "";

// implement the query for getting
// or generating the index

return index;

}
}

class AddUser

{

// Step 3

// the algorithm from AddUser step (algorithm)
// are run and invoked by the data owner

// constructor of the class AddUser

public: Adduser() {}

// property for getting the identity of the user
// see below the Class Student
public: string IdentityOfTheUser()

SEARCHABLE ENCRYPTION

275

CHAPTER 11 SEARCHABLE ENCRYPTION

{
string identity = "";

// implement the way of getting
// the identity of the user

return identity;

}

// property for getting the owners key
public: string OwnerSecretKey()

{

string secretkey = "";

// implement the querying method
// for secret key

return secretKey;

}

public: void AssignSecretKeyToUser()

{
AddUser u = new AddUser();

Student stud = new Student(u. OwnerSecretKey);

}
}

Class query

{
// Step 4

// the algorithm from Query step (algorithm)
// are runned and invoked by the user

// constructor of the class Query
public: Query() {}

// function for getting the keywords
public: string Keyword()
{

string kw = "";

276

CHAPTER 11

// query for the keywords;

return kw;

}

// function for getting the secret key of the users
public: string UserSecretKey()

{

string secretKey = "";

// implement the querying method
// for secret key

return secretKey;

}

// the generation of the output as query
// token for the trapdoor

public: string QueryToken()

{

string query token = "";

// generate and build
// the query token for trapdoor

return query token

}
}

Class Seaxch

{
// Step 5

// the algorithm from Search step (algorithm)
// are run and invoked by the server

// the constructor of the Search class
public: Search() {}

SEARCHABLE ENCRYPTION

277

CHAPTER 11 SEARCHABLE ENCRYPTION

public: string SearchQuery()
{

string query = "";
// take the search query

return query;

}

public: string Index()
{

string index = "";

// take the search query

return index;

}

public: string ReturnResult()
{

string result = "";

string setOfIdentifiers = "";

// based on the search query and index,
// get the set identifiers of the data items
setOfIdentifier = "query for identifiers";

// build the result. "#" is the separator for
// illustration purpose only
result = SearchQuery + "#" + Index;

return result;

}
}

class RevokeUser

{
// Step 6

// the algorithm from Search step (algorithm)
// are run and invoked by the data owner

278

CHAPTER 11 SEARCHABLE ENCRYPTION

// constructor of RevokeUser class
public: RevokeUser(){}

// second constructor of the class

// this can be implemented as a

// solution for revoking a user

public: RevokeUser(string userID, string secretKeyDataOwner, string
secretKeyServer)

{

// implement the revoking process

// output the new key for data owner

// output the new key for server

}
}

public class Couxse

{

// the db_panel represents an instance of the

// file which contains classes for each of tables
// from the database

public: Database db_panel;

// Class Courses it is a generated class and assigned
// to the table Courses from the database
public: Courses c;

// student ID
string demoStudentID = "435663";

// select the course ID based on the student
public: string GetCourse()

{

// select the courses for a

// specific user (student)

Course ¢ = db_panel.GetCourse(student.Id);

279

CHAPTER 11 SEARCHABLE ENCRYPTION

return c;

}

}

Class Student
{

public: string secretKey {get; set;}

public: int StudentId {get; set;}

public: string CourseID {get; set;}

public: string StudentName {get; set;}

public: string StudentIdentity {get; set;}
public: string StudentPersonalCode {get; set;}

public: void Student(string secret key)
{

secretKey = secret key;
}
}

string queryKeywod =
SecureSearch. GetPrefix("123456789");

string resultStudent = SecureSearch.GetStudent. StartsWith(searchPrefix);

Conclusion

This chapter discussed searchable encryption methods and offered recommendations
for potential use in practice that may benefit from searchable encryption.

Searchable encryption, which is a type of fully homomorphic encryption, has
considerable potential. This chapter described the key elements of searchable
encryption schemes. If you are interested in additional theoretical facets of searchable
encryption, any of the references provide them with a more in-depth understanding of
SE. You can refer to [11] or [12] for some contemporary pseudocode samples and [19] for
an SSE implementation demonstration.

280

CHAPTER 11 SEARCHABLE ENCRYPTION

References

[1].
[2].

(3].

(4].

(5].

[6].

[7].

(8].

[9].

[10].
[11].

[12].

Goh, E.]. (2003). Secure indexes. IACR Cryptology ePrint Archive, 2003, 216.
Boneh, D., Di Crescenzo, G., Ostrovsky, R., and Persiano, G. (2004, May).
Public key encryption with keyword search. In International conference on the
theory and applications of cryptographic techniques (pp. 506-522). Springer,
Berlin, Heidelberg.

Lj, J., Wang, Q., Wang, C., Cao, N., Ren, K., and Lou, W. (2010, March). Fuzzy
keyword search over encrypted data in cloud computing. In 2010 Proceedings
IEEE INFOCOM (pp. 1-5). IEEE.

Bringer, J., Chabanne, H., and Kindarji, B. (2009, June). Error-tolerant
searchable encryption. In 2009 IEEE International Conference on
Communications (pp. 1-6). IEEE.

Lai, J., Zhou, X., Deng, R. H., Li, Y., and Chen, K. (2013, May). Expressive search
on encrypted data. In Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security (pp. 243-252).

Bost, R. (2016, October).) opogc: Forward secure searchable encryption.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (pp. 1143-1154).

Song, D. X., Wagner, D., and Perrig, A. (2000, May). Practical techniques for
searches on encrypted data. In Proceeding 2000 IEEE Symposium on Security
and Privacy. S&P 2000 (pp. 44-55). IEEE.

Ghareh Chamani, J., Papadopoulos, D., Papamanthou, C., and Jalili, R. (2018,
January). New constructions for forward and backward private symmetric
searchable encryption. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (pp. 1038-1055).

Zuo, C., Sun, S. E, Liy, J. K., Shao, J., and Pieprzyk, J. (2019, September).
Dynamic searchable symmetric encryption with forward and stronger
backward privacy. In European Symposium on Research in Computer Security
(pp. 283-303). Springer, Cham.

Crypteron Documentation, https://www.crypteron.com/docs/

Ma, C., Gu, Y., and Li, H. Practical Searchable Symmetric Encryption
Supporting Conjunctive Queries without Keyword Pair Result Pattern Leakage.
Fu, S, Zhang, Q., Jia, N., and Xu, M. (2020). A Privacy-preserving Fuzzy Search
Scheme Supporting Logic Query over Encrypted Cloud Data. Mobile Networks
and Applications, 1-12.

281

https://www.crypteron.com/docs/

CHAPTER 11

[13].

[14].

[15].

[16].

[17].

[18].

[19].

282

SEARCHABLE ENCRYPTION

Boneh, Dan, et al. Public key encryption with keyword search. International
conference on the theory and applications of cryptographic techniques.
Springer, Berlin, Heidelberg, 2004.

Bonnah, Ernest; Shiguang, Ju. Privacy Enhancement Scheme (PES) in a
Blockchain-Edge Computing Environment (October 2019). IEEE Access 2020.
Rahman, Mohammad Shabhriar, et al. Accountable cross-border data sharing
using blockchain under relaxed trust assumption. IEEE Transactions on
Engineering Management, 2020.

C. Bosch, P. Hartel, W. Jonker, and A. Peter, “A Survey of Provably Secure
Searchable Encryption,” ACM Computing Surveys, vol. 47, no. 2, pp. 1-51,
Aug. 2014.

Panda, Prabhat Kumar, and Sudipta Chattopadhyay. A secure mutual
authentication protocol for IoT environment. Journal of Reliable Intelligent
Environments, 2020, pp. 1-16.

Mihailescu Marius Iulian, Nita Stefania Loredana, and Pau Valentin Corneliu.
E-Learning System Framework using Elliptic Curve Cryptography and
Searchable Encryption. In Proceedings of International Scientific Conference
for e-Learning and Software for Education, vol. 1, pp. 545-552, 2020.
OpenSSE/opensse-schemes, Rafael Bost, https://github.com/OpenSSE/
opensse-schemes

https://github.com/OpenSSE/opensse-schemes
https://github.com/OpenSSE/opensse-schemes

CHAPTER 12

Homomorphic Encryption

Homomorphic encryption is a form of encryption that enables computation on
encrypted input without first decrypting it. This is significant because it enables
calculations that protect the privacy of sensitive data, allowing sensitive data to be
handled safely without the danger of exposure. This can be advantageous when privacy
is an issue, such as cloud computing and big data analysis.

The most important condition in homomorphic encryption is that the value
achieved by decrypting the result obtained by applying the calculations over the
encrypted data must be the same as that achieved by applying the same calculations
on the plain data. With these properties, homomorphic encryption schemes have
great potential because they enable third-party entities to apply functions (therefore
algorithms) to encrypted data without needing access to plain data. In this way, the data
is protected and secured while being processed.

A real-life example is when you are on vacation in a foreign country, and you want
to search on the Internet using your phone for local attractions, such as museums,
exhibitions, or art galleries. Even this simple search on the Internet may reveal a lot
of information about you: your exact location, your cultural interests, the time of the
search query, and so on. If the search engine used a homomorphic approach, nothing
would be revealed to anyone, including the search engine itself, because every piece of
information and even the search query would be encrypted. Your result would also be
encrypted; therefore, only you can decrypt it. Homomorphic encryption has applications
in many areas, such as finance/business, healthcare, and any domain that works with
sensitive data. Furthermore, some formal aspects of homomorphic encryption are given.

Considering two structures of the same type (groups, rings, or fields) and the
corresponding operations (4,), (B, L), the function g: A — Bis called homomorphism
between A and B if the following condition is satisfied.

g(x, *x,)=g(x,)Lg(x,)vx,x, €A

283

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_12

https://doi.org/10.1007/978-1-4842-9450-5_12

CHAPTER 12 HOMOMORPHIC ENCRYPTION

Remember that a general encryption system consists of the following algorithms:
key generation, encryption, and decryption. In addition to these three algorithms,
homomorphic encryption schemes have an additional algorithm called evaluation
and are usually denoted with Eval, which formally describes the most important rule
mentioned. The Eval algorithm’s input and output are in an encrypted format. In the
Eval algorithm, the function g is applied over encrypted data c, and ¢,, without accessing
the plain data m, and m,, and has the following property.

Dec(keypriv ’ Evalg (keyeual 4 Cl ’ C2)) = f(ml ’ mz)

In homomorphic encryption, only two operations must have homomorphic
properties: addition and multiplication. This is because an arbitrary function can be
represented as a circuit using just gates corresponding to the addition operation (OR
gate) and multiplication operation (AND gate). The idea of homomorphic encryption
started in the late 1970s; at that time, the concept was called privacy homomorphism [1].
Among the first encryption schemes with homomorphic properties is the unpadded RSA
algorithm [2], in which the operation with homomorphic properties is multiplication.

Encyption(m,) - Encryption(m,) =m;m, mod n
=(m,m,) modn

= Encryption(m,-m,)

In this computation, m,, m, are two plain messages, and Encryption is the encryption
function.

Homomorphic encryption schemes can be categorized into three classes, as follows.

o Partial homomorphic encryption (PHE) supports only one
operation applied over encrypted data an unlimited number of times.
Examples of PHE schemes are RSA [2], Goldwasser-Micali [3], and
El-Gamal [4]. Most schemes from this category represent a basis for
other homomorphic schemes.

e Somewhat homomorphic encryption (SWHE) supports both
operations applied to the encrypted data but for a limited number of
times. The encryption scheme from [5] is an example of SWHE.

284

CHAPTER 12 HOMOMORPHIC ENCRYPTION

o Fully homomorphic encryption (FHE) supports both operations
over encrypted data an unlimited number of times. FHE is considered
“cryptography’s holy grail” or “the Swiss army knife of cryptography” [6]
due to its capability to enable any computation over the encrypted data
any number of times. In 2009, the first FHE scheme [7] was proposed,
and the mathematical object used as the foundation is the ideal lattice.
The scheme from [7] is very important in cryptography because it
opened the way for the FHE schemes. Even though it is unpractical
in the form in which it was proposed due to its complexity and
abstraction, it represented a basis for subsequent schemes. In addition,
in [7], a general framework for the FHE schemes was proposed.

Homomorphic encryption can be helpful in cloud computing and big data since it
enables calculations on encrypted data while maintaining privacy and security. This can
be valuable in applications requiring the processing and analysis of sensitive data where
the danger of exposure is high.

However, it should be noted that homomorphic encryption is still a very recent and
rapidly developing topic and that practical considerations now constrain its usage in
large-scale cloud computing and big data contexts. They include high processing costs,
poor performance, and restrictions on computations performed on encrypted data.

Full Homomorphic Encryption

This section explains fully homomorphic encryption (FHE) in more detail because it
represents an important topic of cryptography that can resolve many security concerns
and issues. A particular model of quantum computations, called boson scattering,
enables quantum homomorphic encryption that provides theoretically limited security.
This scheme makes wondering if quantum methods can generate theoretically secure
FHE schemes. In [25], the authors prove that quantum techniques do not enable efficient
theoretically secure FHE that completely hides the plaintext.

As mentioned in the previous section, the first FHE scheme was proposed by Craig
Gentry in 2009, and the mathematical object that represents the foundation is the ideal
lattices with the hardness assumption (problems regarding a topic that cannot be solved
in an efficient time, i.e., in polynomial time), called the ideal coset problem. Following
Gentry’s scheme, many FHE schemes were proposed based on different mathematical
techniques. A right-away subsequent work is [8], in which the FHE scheme uses integer

285

CHAPTER 12 HOMOMORPHIC ENCRYPTION

arithmetic. However, the noise introduced in the schemes from [7] and [8] grows fast,
representing a drawback because it greatly affects the applicability and security; thus,
the homomorphic capabilities are restricted. Due to noise growth, decryption cannot be
performed after some point.

In the second generation of the FHE schemes that include works such as [9] and [10],
the noise is handled more efficiently, improving performance and powerful security
under various hardness assumptions. The leveled encryption schemes and bootstrappable
encryption schemes are the results of this generation. The first ones evaluate the circuits
with a given polynomial depth, while the second ones can be modified to become FHE
schemes. If an encryption scheme can evaluate its decryption circuit and one NAND
gate, then it is a bootstrappable encryption scheme.

The third generation of FHE schemes is opened by the work [11], which uses a new
technique to handle noise. The schemes of the third generation are less performant
than those from the second generation, but their hardness assumptions can be weaker.
The basis for many schemes in this generation is asymmetric multiplication. That is,
considering two encrypted texts c,, ¢,, the product ¢, - ¢, is different from the product
C, - ¢y, although both products encrypt the same product b, - b, of the plain texts b, and b,.

FHE can be used in many areas of cryptography, including the following.

e Outsourcing. Private data can be kept safe if stored in third-party
storage or analyzed by third-party entities. A classic example of this
area is that of a company that stores its data on cloud storage. Before
uploading the data to the cloud, the owner must encrypt it. FHE
would be useful in such scenarios because the cloud provider can
analyze the data from the company in an encrypted format without
accessing the plain data. Moreover, the result of the computations is
sent by the cloud provider in the encrypted format to the data owner,
which is decrypted only by the decryption key’s owner.

e Private information retrieval (PIR) or private queries. PIR and
private queries are useful when a database is queried or an application
uses a search engine. Another scenario is when a client wants to
send a query to a database server, but the client wants the server to
learn nothing about its query. The solution is as follows: the client
encrypts the query and sends it to the server; then, the server applies
the encrypted query over encrypted data and responds with the
encrypted result.

286

CHAPTER 12 HOMOMORPHIC ENCRYPTION

General computations between two entities (two-party
computations). Consider two parties A and B, each of whom owns a
secretinput x and y, respectively, and a common function F known by
both. To apply the function F over its private input X, party A computes
r = F(x, y).From here, Alearns only the value of r and nothing about
y. On the other hand, B learn nothing about x or r. This is the same

as B computing Fy(x) in the semihonest model, where A encrypts x
and sends it to B because semantic security assures B learns nothing
about the plain value corresponding to x. In such situations, using FHE
would simplify the things because A would just apply F as F(x,y) and
achieve the result in an encrypted format. But it would need and learn
nothing else because everything is encrypted, including F.

A Practical Example of Using FHE

The following are other well-known C++ libraries that implement FHE.

HElib [12], developed at IBM, implements the schemes BFV
(Brakerski/Fan-Vercauteren) [17] and CKKS (Cheon-Kim-Kim-Song)
[18], and it can be used in Linux and MacOS distributions.

TFHE [13] implements the scheme proposed in [15] and can be used
with Linux distributions. In the same paper, the library is described.

PALISADE [14] implements the BGV (Brakerski-Gentry-
Vaikuntanathan) [16], BFV [17], CKKS [18], and FHEW schemes
[19] and a more secure version of the TFHE scheme [13], including
bootstrapping. It is supported on Linux, Windows, and macOS
distributions.

SEAL [20]-[23] implements the BFV [17] and CKKS [18] schemes and
can be used with .NET or C++. In addition, the SEAL library can be

used in Windows, Linux, or macOS environments.

These libraries provide robust tools for creating FHE in C++ programs. It should be

noted, however, that FHE is a computationally costly and complex procedure that may

not be ideal for many applications.

This section uses the SEAL library to demonstrate an FHE example. The SEAL library

implements BFV [12] and CKKS [13] encryption schemes.

287

CHAPTER 12 HOMOMORPHIC ENCRYPTION

In [12], the set of the polynomials with a maximum degree n and the coefficients
computed modulo £ is used in the definition of the encryption function. The formal
representation of this set is R, = Z,[x]/(x" + 1). The encrypted text is from the R, set, where
the polynomials have coefficients modulo g. The addition and the multiplication are the
homomorphic operations in this encryption scheme, preserving the ring structure of R,.
The value that needs to be encrypted using BFV schemes first needs to be brought to a
polynomial form accepted by the structure R,. In [12], the encryption scheme includes
the following algorithms: SecretKeyGen (the security parameter is used to generate
the secret key), PublicKeyGen (the secret key is used to generate the public key),
EvaluationKeyGen (the secret key is used to generate the evaluation key), Encrypt (the
plain value is encrypted using the public key), Decrypt (the encrypted value is decrypted
using the secret key), Add (performs the addition between two encrypted values), and
Multiply (performs the multiplication between two encrypted values). Keep in mind
that the result of both operations, namely, addition and multiplication, have a form that
is compatible with the structure R,. For more information and a formal description of
this encryption scheme, you can consult [12].

While [12] provides a way to apply modular arithmetic over integers, in [13], the
authors provide ways to apply it over real numbers and complex numbers. In [13], the
results are approximate, but the techniques are among the best for summing up real
numbers in an encrypted format, applying machine learning algorithms on encrypted
data, or computing the distance between encrypted locations.

Before using the SEAL library, some preparation steps are needed, which are
described next.

First, install a version of Visual Studio 2022. The free community version can be
found at https://visualstudio.microsoft.com/vs/community. Make sure that the C++
components (under desktop development with C++) are checked to be installed.

Then, download Git from https://git-scm.com/download/win and install it
following the installation steps with the default values (needed to build and install the
SEAL library). You also need to download and install CMake from https://cmake.org/
download/. After everything is set, the SEAL library can be downloaded from the GitHub
repository: https://github.com/microsoft/SEAL (when writing this book, the latest
version of SEAL is 4.1.1).

After downloading the source code, extract the zip file. Use the default Seal-master
and extract it at a desired path (in our example, E:\examples\seal). Make sure you have
the following files in the folder, as shown in Figure 12-1. Pay attention to the entire path
because it is important for building, installing, and using the library.

288

https://visualstudio.microsoft.com/vs/community
https://git-scm.com/download/win
https://cmake.org/download/
https://cmake.org/download/
https://github.com/microsoft/SEAL

CHAPTER 12 HOMOMORPHIC ENCRYPTION
B seAL-main X -+

@nNew> | X © @ B W MNsotvy = Viewv & --e

& > ~ 1 | B> ThisPC > NewVolume (E) » examples > seal > SEAL > SEAL-main

~

B Name Type Size
@8 android File folder
BB cmake File folder
@9 dotnet File folder
@B native File folder
@B pipelines File folder
@ pkgconfig File folder
@B tools File folder
B clang-format CLANG-FORMAT ... 4KB
B .gitignore Git Ignore Source ... 11KB
A .pre-commit-config.yaml Yaml Source File 1KB
B CHANGES.md Markdown Source... 48 K8
. CMakelLists.txt Text Document 30 KB
B CODE_OF CONDUCT.md Markdown Source... 1KB
B CONTRIBUTING.md Markdown Source... 2KB
B 1SSUES.md Markdown Source... 2KB
I LICENSE File 2KB
R Nomce File 3KB
B README.md Markdown Source... 46 KB
a SECURITY.md Markdown Source... 4 KB

Figure 12-1. Structure of the extracted files of the SEAL library

The folder used for C++ development is the native folder from the solution. To use
the SEAL library in your own C++ application, you first need to generate the seal.lib
library. To do this requires several steps.

289

CHAPTER 12 HOMOMORPHIC ENCRYPTION

First, open PowerShell in administrator mode and place the current directory where
the files are extracted using the cd command, as shown in Figure 12-2.

Windows PowerShell
opyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

S C:\WINDOWS\system32> cd..

S C:\WINDOWS> cd..

S C:\> E:

S E:\> cd E:\examples\seal\SEAL\SEAL-main
S E:\examples\seal\SEAL\SEAL-main>

Figure 12-2. Placing the current directory in PowerShell

Next, generate and build the files for the x64 platform for Visual Studio 2022 using
the following command in PowerShell. Pay attention to this step because the optional
dependencies need to be disabled (options set to OFF) to avoid installing other
dependencies. The result should be similar to the one in Figure 12-3.

cmake -S . -B build -G "Visual Studio 17 2022" -A x64 -DSEAL USE _MSGSL=OFF
-DSEAL_USE_ZLIB=OFF -DSEAL_USE_ZSTD=OFF

PS E:\examples\seal\SEAL\SEAL-main> cmake -5 . -B build -G "Visual Studio 17 2022" -A x64 -DSEAL_USE_MSGSL=0FF -DSEAL_US
E_ZLIE=OFF -DSEAL_USE_ZSTD=0FF

-- Build type (CMAKE_BUILD_TYPE): Release

-- Selecting Windows SDK version 10.©.22000.0 to target Windows 1€.0.22621.

-- The CXX compiler identification is MSVC 19.34.31933.@

-- The C compiler identification is MSVC 19.34.31933.8

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Check for working CXX compiler: C:/Program Files/Microsoft Visual Studio/2022/Enterprise/VC/Tools/MSVC/14.34.31933/bi
n/Hostx64/x64/cl.exe - skipped

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working C compiler: C:/Program Files/Microsoft Visual Studio/2022/Enterprise/VC/Tools/MSVC/14.34.31933/bin/
Hostx64/x64/cl.exe - skipped

-- Detecting C compile features

-- Detecting C compile features - done

-- Microsoft SEAL debug mode: OFF

-- SEAL_USE_CXX17: ON

-- SEAL_BUILD_DEPS: ON

-- SEAL_USE_MSGSL: OFF

-- SEAL_USE_ZLIB: OFF

-~ SEAL_USE_ZSTD: OFF

== SEAL_USE_INTEL_HEXL: OFF

-- BUILD_SHARED_LIBS: OFF

-~ SEAL_THROW_ON_TRANSPARENT_CIPHERTEXT: ON

-- SEAL_USE_GAUSSIAN_NOISE: OFF

-- SEAL_DEFAULT_PRNG: Blake2xb

-= SEAL_AVOID BRANCHING: OFF

Figure 12-3. Generate and build the files for the x64 platform
290

CHAPTER 12 HOMOMORPHIC ENCRYPTION

If the desired platform is x86, then the following command should run.

cmake -S . -B build -G "Visual Studio 17 2022" -A Win32 -DSEAL_USE_
MSGSL=OFF -DSEAL_USE_ZLIB=OFF -DSEAL_USE_ZSTD=OFF

Next, generate and build the files for the Release configuration using the following

command and as shown in Figure 12-4.

cmake --build build --config Release

!S E:\examples\seal\SEAL\SEAL-main> cmake --build build --config Release

MSBuild version 17.4.8+18dSaef85 for .NET Framework
1>Checking Build System
1>Building Custom Rule E:/examples/seal/SEAL/SEAL-main/build/thirdparty/zstd-src/build/cmake/lib/CMakelists.txt
debug.c
entropy_common.c
error_private.c
fse_decompress.c
pool.c
threading.c
xxhash.c
zstd_common.c
fse_compress.c
hist.c
huf_compress.c
zstd_compress.c
zstd_compress_literals.c
zstd_compress_sequences.c
zstd_compress_superblock.c
zstd_double_fast.c
zstd_fast.c
zstd_lazy.c
zstd_ldm.c
zstd_opt.c
zstdmt_compress.c
huf_decompress.c
zstd_ddict.c
zstd_decompress.c
zstd_decompress_block.c
cover.c

Figure 12-4. Generate and build the files for the Release configuration

Finally, an optional step is to install the library using the following command. The

library is installed at path C:\Program Files (x86)\SEAL\ by default. The result should be

similar to the one presented in Figure 12-5.

cmake --install build

291

CHAPTER 12 HOMOMORPHIC ENCRYPTION

!S E:\examples\seal\SEAL\SEAL-main> cmake --install build

-- Install configuration: "Release”

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/seal/util/config.h |
-- Installing: C:/Program Files/SEAL/1lib/seal-4.1.1ib

-- Installing: C:/Program Files/SEAL/lib/cmake/SEAL-4.1/SEALTargets.cmake

-- Installing: C:/Program Files/SEAL/lib/cmake/SEAL-4.1/SEALTargets-release.cmake
-- Installing: C:/Program Files/SEAL/1lib/cmake/SEAL-4.1/SEALConfig.cmake

-- Installing: C:/Program Files/SEAL/lib/cmake/SEAL-4.1/SEALConfigVersion.cmake
-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/algorithm

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/assert

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/byte

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/gsl

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/gsl_algorithm

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/gsl_assert

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/gsl_byte

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/gs]l_narrow

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/gsl_util

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/narrow

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/pointers

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/span

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/span_ext

Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/string_span

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/gsl/util

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/seal/batchencoder.h

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/seal/ciphertext.h

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/seal/ckks.h

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/seal/modulus.h

-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/seal/context.h

l-- Installing: C:/Program Files/SEAL/include/SEAL-4.1/seal/decryptor.h

Figure 12-5. Installing the library

A build folder was created in the working directory (see Figure 12-6).

B8 seAL-main X +

@ New v X © D) B W T sot v = Viewv | ee-

& > v 4 | B> ThisPC > NewVolume(E) > examples > seal > SEAL > SEAL-main

~

B Name | Type | Size
B android File folder
8 build Fil folder |
BB cmake File folder
B9 dotnet File folder
B native File folder
BB pipelines File folder
B pkgconfig File folder

Figure 12-6. The build folder

With all these settings, the SEAL library, called seal-4.1.1ib, is found under build\
lib\Release. You can proceed to create your own C++ application that uses SEAL.

292

CHAPTER 12 HOMOMORPHIC ENCRYPTION

Now let’s create an application that uses FHE. Create in Visual Studio a new project of
type Console App with C++ called Seal-example. Under the Source Files folder within the
solution, a cpp file called Seal-example.cpp should exist, such as the code in Listing 12-1
and some default comments. The following examples follow the guidelines from [23].

Listing 12-1. The Initial Main Function
#include <iostream>

int main()

{
std::cout << "Hello World!\n";

Furthermore, the application needs to be prepared using the SEAL library as
described next. First, right-click the SEAL-example solution and go to Properties. Here,
make sure All Configurations and All Platforms are selected (see Figure 12-7).

Seal-example Property Pages ? X
Configuration: | All Configurations ~ I Platform: LAII Platforms v J Configuration Manager...

4 Configuration Properties v General Properties
General <different options> ~
Advanced Intermediate Directory <different options> |
Debugging Target Name S(ProjectName)

VC++ Directories Configuration Type Application (.exe)
PRC/Ce Windows SDK Version 10.0 (latest installed version)
> ML Platform Toolset Visual Studio 2022 (v143)
pghianidestiicol C++ Language Standard Default (ISO C++14 Standard)
> AL ST i‘Saenelator C Language Standard Default (Legacy MSVC)
b Browse Information
b Build Events
b Custom Build Step
b Code Analysis

Output Directory
Path to where the compiled program will be placed. Can include environment variables.

Cancel Apply

Figure 12-7. Settings for using the SEAL library (1)

293

CHAPTER 12 HOMOMORPHIC ENCRYPTION

Then, under C/C++ » General » Additional Include Directories, add the path
where sources were generated (in our example, the path is E:\examples\seal\SEAL\
SEAL-main\native\src, see Figure 12-8).

Seal-example Property Pages 7 x
Configuration: All Configurations ~ Platform: All Platforms 0 Configuration Manager...
| 4 Configuration Properties E:\examples\seal\SEAL\SEAL-main\native\src;%(Addi --
General Additional Fusing Directories
Advanced Additional BMI Directories
DebUQQE"Q) Additional Module Dependencies
VC++ Directories Additional Header Unit Dependencies
4 C/C+ Scan Sources for Module Dependencies No
Ge"_"‘,' 5 Translate Includes to Imports No
g Debug Information Format <different options>
Preprocessor = . .
Code Generation Support Just My Code Debugging <different options>
Language Common Language RunTime Support
Precompiled Heade Consume Windows Runtime Extension
Output Files Suppress Startup Banner Yes (/nologo)
Browse Information Warning Level Level3 YW3)
External Includes Treat Warnings As Errors MNo (/WX-)
Advanced Warning Version
All Options Diagnostics Format Column Info (/diagnestics:column)
Command Line SDL checks Yes (/sdl)
b Linker Multi-processor Compilation
b Manifest Tool | Enable Address Sanitizer No
p XML Document Genera Additional Include Directories
b Browse Information Specifies one or more directories to add to the include path. Separate with ;' if more than one.
l /llpath])
Cancel Apply

Figure 12-8. Settings for using the SEAL library (2)

Finally, include seal.lib: under Linker » Additional Library Directories and add
the path to seal.1lib (in our example, the path is E:\examples\seal\SEAL\SEAL-main
build\lib\Release, see Figure 12-9a). The final step is to add seal.1lib to Linker »
Input » Additional Dependencies (see Figure 12-9b).

294

Seal-example Property Pages

CHAPTER 12 HOMOMORPHIC ENCRYPTION

Config All Config ~ Platform: All Platforms R Cenfiguration Manager...
4 Configuration Properties Output File $(OutDir)§(TargetName)S(TargetExt)
General Show Progress Mot Set
Advanced Version
Debugging ! Enable Incremental Linking <different options>
VCe+ Directories Incremental Link Database File $(IntDin)$ (TargetName).ilk
Suppress Startup Banner Yes (/NOLOGOQ)
I+ Linker .
| I N
I Manifest Tool RQ no.:e'";pu:nu':bwry N:
b XML Document Generator <9l p .
O i - Per-user Redirection No
> R | Additional Library Directories E\examples\seal\SEAL\SEAL-main\build\lib\Release;%(Add |
b Custom Build Step Link Itil:muyr Dependencies Yes
b Code Analysis Use Library Dependency Inputs Ne

Link Status

Prevent DIl Binding

Treat Linker Warning As Errors
Force File Qutput

Create Hot Patchable Image
Specify Section Attributes

I

Output File

The /OUT option overrides the default name and location of the program that the linker creates.

by

Cancel Apply
- a
Seal-example Property Pages x
Config All Confi ~ Platform: All Platforms ~ Cenfiguration Manager...
4 Configuration Properties | Additional Dependencies seal-4.1.lib;%(AdditionalDependencies) |
General Ignore All Default Libraries
Advanced Ignore Specific Default Libraries
Debugging Module Definition File
VC++ Directories Add Module to Assembly
BRC/Ces Embed Managed Resource File
4 Linker Force Symbol References
;:";"" Delay Loaded Dlis
Manifest File Assembly Link Resource
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options b
Command Line
b Manifest Tool
b XML Document Genera
b Browse Information Additional Dependencies
b Build Events Specifies additional items to add to the link command line. [i.e. kernel32.lib]
oK Cancel Apply

Figure 12-9. (a) Settings for using the SEAL library for the main Linker options
(b) Settings for using the SEAL library for Linker » Input options

295

CHAPTER 12 HOMOMORPHIC ENCRYPTION

To ensure that SEAL was added properly, just add the line in Listings 12-2 and 12-3 in
the main function and then build the solution.

If a success message is returned, then you can proceed further; otherwise, if an error
message similar to 'for _each n': is not a member of'std' isreturned, then one
more step is needed: change the C++ Language Standard under C/C++ » Language
from Default to ISO C++17 Standard (/std:c++17).

Create a function called seal_example_bfv, in which functionalities provided by
the SEAL library for the BFV encryption scheme are added. First, the encryption parameters
should be added: the degree of the polynomials from the ring (n), the modulus for the
coefficients of the plaintext (t), and the modulus for the coefficients of the encrypted text (q).
The libraries in Listing 12-2 should be added to use the SEAL functionalities. The
application is notified that the BFV scheme is used and instantiates the parameters using
the line of codes in Listing 12-3.

Listing 12-2. The Libraries Included with SEAL
#pragma once

#include "seal/seal.h"
#include <iostream>
#include <algorithm>
#include <chrono>
#include <cstddef>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <limits>
#include <memory>
#include <mutex>
#include <numeric>
#include <random>
#include <sstream>
#include <string>
#include <thread>
#include <vector>

using namespace std;
using namespace seal;
296

CHAPTER 12 HOMOMORPHIC ENCRYPTION
Listing 12-3. Instantiating the BFV Parameters

void seal example bfv()

{

EncryptionParameters BFV_parameters(scheme type:: bfv);}

After instantiating the BFV parameters, they should receive each value. The degree
of the polynomial modulus is a power of 2 and represents the degree of a cyclotomic
polynomial'.

The recommended values are {1024, 2048, 4096, 8192, 16384, 32768}. Witha
higher value for the polynomial degree, more complex computations on the encrypted
data can be made, but the drawback is that the performance decreases. A fair value is
4096, which allows an acceptable number of computations with good performance;
therefore, this value is chosen for our application. The modulus for the coefficients of the
plaintext is generally a positive integer. The value for this parameter is a power of two in
our example.

Depending on the purpose of the application, the modulus can be a prime number.
The modulus for the coefficient of the plaintext is used to provide the size in bits for the
plain data and to establish limits for consumption in the multiplication operation. The
last parameter is the modulus for the coefficients of the encrypted text, which represents
a large integer value. The value for this modulus should be represented as a product of
prime numbers. When a larger value is chosen, more computations over the encrypted
data can be made. However, there is a relation between the degree of the polynomial
modulus and the size in bits of the modulus for the coefficients of the encrypted
text; therefore, a 4096 value corresponds to 109. Comprehensive explanations for the
scheme’s parameters can be found in [20] and [21].

Another functionality that needs a few words is the noise budget, representing the
number of bits. In short, the initial noise budget is set depending on the encryption
parameters and the rate with which the homomorphic operations (addition and
multiplication) consume it. The parameter with the greatest influence in setting the
noise budget is the coefficient modulus—when a higher value is picked. The budget is
higher. When the noise budget for an encrypted text becomes 0, the decryption of the
encrypted text cannot be performed because the noise it contains has a value that is
too large.

'https://en.wikipedia.org/wiki/Cyclotomic_polynomial

297

https://en.wikipedia.org/wiki/Cyclotomic_polynomial

CHAPTER 12 HOMOMORPHIC ENCRYPTION

With these brief descriptions, the parameters can be initialized using the lines of
code in Listing 12-4, added in the function seal_example_bfv (keep the declaration in
Listing 12-3).

Listing 12-4. Initialization of the BFV Parameters

size t polynomial degree = 4096;

BFV_parameters.set poly modulus degree(polynomial degree);
BFV_parameters.set coeff modulus(CoeffModulus::BFVDefault(
polynomial degree));

BFV_parameters.set plain modulus(1024);

The SEAL context checks the correctness of the parameters (code added in function
seal example bfv).

SEALContext seal context(BFV_parameters);

Furthermore, the BFV encryption scheme classes need to be instantiated, as in
Listing 12-5 (code added in function seal_example bfv).

Listing 12-5. Instantiating the Classes for the BFV Encryption Scheme

KeyGenerator keygen(seal context);

PublicKey encryption key;

keygen.create public_key(encryption key);

SecretKey decryption key = keygen.secret key();
Encryptor bfv_encrypt(seal context, encryption key);
Evaluator bfv_evaluate(seal context);

Decryptor bfv_decrypt(seal context, decryption key);

In the following, for our example, the polynomial p(x) = 3x* + 6x° + 9x*> + 12x + 6 is
evaluated for x = 3. For a quick check, use the value x = 3 to encrypt and then decrypt
it. Listing 12-6 shows this process and some metrics (code added in seal example bfv
function).

Listing 12-6. Encrypting and Decrypting x=3

int value x = 3;
Plaintext x_plaintext(to_string(value x));

cout << "The value x = " + to_string(value_x)

298

CHAPTER 12 HOMOMORPHIC ENCRYPTION

+ " is expressed as a plaintext polynomial ox"
+ x_plaintext.to_string() + "." << endl;

Ciphertext x_ciphertext;

cout << "Encrypting x_plaintext to x_ciphertext...
bfv_encrypt.encrypt(x_plaintext, x_ciphertext);

<< endl;

cout << - the size of the x_ciphertext (freshly
encrypted) is : "
<< x_ciphertext.size() << endl;

cout << "

- the noise budget for x_ciphertext is :
<< bfv_decrypt.invariant_noise budget(x_ciphertext)
<< " bits" << endl;

Plaintext value x_decrypted;

cout << - decryption of x_encrypted: ";
bfv_decrypt.decrypt(x_ciphertext, value x decrypted);

cout << "0x" << value x_decrypted.to string() << endl;
Next, call seal _example bfv in the main function as follows.

int main()

{
seal example bfv();
return 0;

To run the application, do not forget to choose Release configuration and x64
platform, then press Ctrl+F5. The result should be similar to that in Listing 12-7 and
Figure 12-10.

Listing 12-7. The Output for the Encryption, Decryption, and Metrics

The value x = 3 is expressed as a plaintext polynomial 0x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: 0x3

299

CHAPTER 12 HOMOMORPHIC ENCRYPTION

& Microsoft Visual Studio Debur X + v = (m] X

The value x = 3 is expressed as a plaintext polynomial ©x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: 0x3

C:\Users\stefa\source\repos\Seal-example\x6u4\Release\Seal-example.exe
(process 24180) exited with code @.
Press any key to close this window . . .

Figure 12-10. The output for the encryption, decryption, and metrics

The plaintext constructor converts the plain values to polynomials that have a
degree lower than the modulus polynomial, for which the coefficients are represented
as hexadecimal values. In SEAL, the encrypted text is represented as two or more
polynomials with coefficients in the form of inter-values modulo the result of multiplying
the prime numbers from CoeffModulus representation.

The object x_ciphertext instantiates the Ciphertext class and receives the value of the
encryption of x_plaintext by calling the encryption method of the object bfv_encrypt.
This method takes two parameters: the object that needs to be encrypted (x_plaintext)
and the object in which the encryption of the first parameter should be put (x_ciphertext).
The number of polynomials gives the size of the encrypted text; a fresh encrypted text has a
size of 2, which is returned by the size() method of the object x_ciphertext.

The noise budget is computed by the invariant_noise_budget() method of the
bfv_encrypt object, which takes the object x_ciphertext as the parameter. The
invariant _noise budget() is implemented in the decryptor class because it shows if
the decryption works at some point in our computations. To decrypt the encrypted value
obtained, use the decrypt method called the bfv_decrypt object. The decryption works
because the value 0x3 in hexadecimal representation means 3.

For optimizations, the recommendation is that the polynomials be brought to a
form that includes as few multiplication operations as possible because this is a costly
operation that decreases the noise budget quickly. Therefore, p(x) may be factorized as
p(x) = 3(x* + 2)(x + 1)?, which means first evaluate (x> + 2), then (x + 1)? and then multiply
the result between them by 3. To compute (x* + 2), proceed as presented in Listing 12-8
(code added in seal_example_bfv function).

300

CHAPTER 12 HOMOMORPHIC ENCRYPTION

Listing 12-8. Computing (x*+ 2)

cout <«

"Computing (x"2+2)..." << endl;

Ciphertext square x_plus_two;
bfv_evaluate.square(x_ciphertext, square x plus two);
Plaintext plain_value two("2");
bfv_evaluate.add plain inplace(square x_plus two,

cout <«
<<
cout <«
<<
<<

plain value two);

- the size of the square x plus two is:
square_x_plus_two.size() << endl;

- the noise budget for square x plus two is:
bfv_decrypt.invariant noise budget(square x plus two)
" bits" << endl;

Plaintext decrypted result;

cout <«

- decryption of square x plus two: ";

bfv_decrypt.decrypt(square x plus two, decrypted result);

cout <«

After running the application, you get the result in Listing 12-9 and Figure 12-11.

"ox" << decrypted result.to string() << endl;

Listing 12-9. The Result of Computing (x> + 2)

The value x = 3 is expressed as a plaintext polynomial 0x3.

Encrypting x_plaintext to x_ciphertext...

- the size of the x_ciphertext (freshly encrypted) is : 2

- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: 0x3
Computing (x"2+2)...
- the size of the square x plus two is: 3
- the noise budget for square x plus two is: 33 bits
- decryption of square_x_plus_two: OxB

301

CHAPTER 12 HOMOMORPHIC ENCRYPTION

E Microsoft Visual Studio Debur X Ir = (m] X

The value x = 3 is expressed as a plaintext polynomial @x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: 0x3
Computing (x"2+2)...
- the size of the square_x_plus_two is: 3
- the noise budget for square_x_plus_two is: 33 bits
- decryption of square_x_plus_two: @xB

C:\Users\stefa\source\repos\Seal-example\x6U4\Release\Seal-example.exe
(process 22928) exited with code ©.
Press any key to close this window . . J

Figure 12-11. The result of computing (x* + 2)

Let’s check. If you calculate 3% + 2, you get 11, whose hexadecimal representation
is 0xB; the noise budget is greater than 0, which means the decryption can be made.
Observe that the bfv_evaluate object allows applying operations directly over the
encrypted data. The collector variable for this example is square_x_plus_two. First, this
variable keeps the encrypted value raised at power 2, i.e., x%, using the method square().
Furthermore, add plain value 2 through the method add_plain_inplace(), which gives
x* + 1. Remember that in our example, x = 3. The square() and add_plain inplace()
methods have two parameters: a source and a destination.

Similarly, compute (x + 1)? using x_plus_one_square as the collector variable (see
Listing 12-10).

Listing 12-10. Computing (x + 1)?

cout << "Computing (x+1)"2..." << endl;

Ciphertext x_plus_one square;

Plaintext plain_value one("1");

bfv_evaluate.add plain(x_ciphertext, plain value one,
x_plus_one_square);

bfv_evaluate.square inplace(x _plus one square);

cout << - the size of x_plus_one_square is:

<< x_plus_one_square.size() << endl;

302

CHAPTER 12 HOMOMORPHIC ENCRYPTION

cout << - the noise budget in x_plus one_square is:
<< bfv_decrypt.invariant_noise budget(x_plus one_square)
<< " bits" << endl;

cout << - decryption of x_plus one_square: "“;
bfv_decrypt.decrypt(x_plus one square, decrypted result);
cout << "0x" << decrypted result.to string() << endl;

After running the application, you get Listing 12-11 and Figure 12-12.

Listing 12-11. The Result of Computing (x + 1)?

The value x = 3 is expressed as a plaintext polynomial 0x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: 0x3
Computing (x"2+2)...
- the size of the square x plus two is: 3
- the noise budget for square x_plus two is: 33 bits
- decryption of square x plus two: OxB
Computing (x+1)"2...
- the size of x_plus one square is: 3
- the noise budget in x_plus one square is: 33 bits
- decryption of x_plus one square: 0x10

303

CHAPTER 12 HOMOMORPHIC ENCRYPTION

Microsoft Visual Studio Debur X + v~ = (m] X

The value x = 3 is expressed as a plaintext polynomial ©x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: @x3
Computing (x"2+2)...
- the size of the square_x_plus_two is: 3
- the noise budget for square_x_plus_two is: 33 bits
- decryption of square_x_plus_two: @xB
Computing (x+1)"2...
- the size of x_plus_one_square is: 3
- the noise budget in x_plus_one_square is: 33 bits
- decryption of x_plus_one_square: 0x10

C:\Users\stefa\source\repos\Seal-example\x64\Release\Seal-example.
exe (process 31312) exited with code @.
Press any key to close this window . . J

Figure 12-12. The result of computing (x + 1)?

Indeed, if you compute (3 + 1) you get 10, whose hexadecimal representation is
0x10; the noise budget is greater than 0, so the decryption still works.

The result of 3(x* + 2)(x + 1)*is collected in the encryptedOutcome variable (see
Listing 12-12).

Listing 12-12. Computing 3(x* + 2)(x + 1)?

cout << "Compute [3(x"2+2)(x+1)"2]." << endl;
Ciphertext enc_result;
Plaintext plain value three("3");
bfv_evaluate.multiply plain_inplace(square x_plus_two,
plain value three);
bfv_evaluate.multiply(square x plus two, x plus one square,
enc_result);

cout << - the size of encrypted result:
<< enc_result.size() << endl;

304

CHAPTER 12 HOMOMORPHIC ENCRYPTION

cout << - the noise budget for encrypted result:
<< bfv_decrypt.invariant_noise budget(enc_result)
<< " bits" << endl;

cout << "NOTE: If the noise budget is zero, the decryption can be

incorrect." << endl;

cout << "

- decryption of enc_result: ";
bfv_decrypt.decrypt(enc_result, decrypted result);
cout << "0x" << decrypted result.to string() << endl;

After running the application, you get what’s shown in Listing 12-13 and
Figure 12-13.

Listing 12-13. The Output of Computing 3(x? + 2)(x + 1)?

The value x = 3 is expressed as a plaintext polynomial 0x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: 0x3
Computing (x"2+2)...
- the size of the square x plus two is: 3
- the noise budget for square x_plus two is: 33 bits
- decryption of square x plus two: OxB
Computing (x+1)"2...
- the size of x_plus one square is: 3
- the noise budget in x_plus one square is: 33 bits
- decryption of x_plus one square: 0x10
Compute [3(x"2+2)(x+1)"2].
- the size of encrypted result: 5
- the noise budget for encrypted result: 4 bits
NOTE: If the noise budget is zero, the decryption can be incorrect.
- decryption of enc_result: 0x210

305

CHAPTER 12 HOMOMORPHIC ENCRYPTION

Microsoft Visual Studio Debu X + v O ®

The value x = 3 is expressed as a plaintext polynomial @x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: @x3
Computing (x"2+2)...
- the size of the square_x_plus_two is: 3
- the noise budget for square_x_plus_two is: 34 bits
- decryption of square_x_plus_two: 8xB
Computing (x+1)"2...
- the size of x_plus_one_square is: 3
- the noise budget in x_plus_one_square is: 34 bits
- decryption of x_plus_one_square: @x16
Compute [3(x"2+2)(x+1)"2].
- the size of encrypted_result: 5
- the noise budget for encrypted_result: 4 bits
NOTE: If the noise budget is zero, the decryption can be incorrect.
- decryption of enc_result: @x218

C:\Users\stefa\source\repos\Seal-example\x6U\Release\Seal-example.exe (process 18588)
exited with code 8.
Press any key to close this window . . J

Figure 12-13. The output of computing 3(x*> + 2)(x + 1)?

Indeed, if you compute 3(3% + 2)(3 + 1), you get 528. Note that the plaintext modulus
is 1024, s0 528 mod 1024 = 528, which has the 0x210 hexadecimal representation. The
noise budget is greater than 0, which allowed us to decrypt the final encrypted result.

Listing 12-14 is in the Seal-example.cpp file.

Listing 12-14. The Entire Code
#pragma once

#include "seal/seal.h"
#include <iostream>
#include <algorithm>
#include <chrono>
#include <cstddef>
#include <fstream»
#include <iomanip>
#include <iostream>
#include <limits>
#include <memory>
#include <mutex>
#include <numeric>

306

CHAPTER 12 HOMOMORPHIC ENCRYPTION

#include <random>
#include <sstream>
#include <string>
#include <thread>
#include <vector>

using namespace std;

using namespace seal;

void seal example bfv()

{

EncryptionParameters BFV_parameters(scheme type::BFV);

size_t polynomial degree = 4096;
BFV_parameters.set poly modulus degree(polynomial degree);
BFV_parameters.set coeff modulus(CoeffModulus::BFVDefault(
polynomial degree));
BFV_parameters.set plain modulus(1024);

auto seal context = SEALContext::Create(BFV_parameters);

KeyGenerator keygen(seal context);

PublicKey encryption key = keygen.public key();
SecretKey decryption _key = keygen.secret key();
Encryptor bfv_encrypt(seal context, encryption key);
Evaluator bfv_evaluate(seal context);

Decryptor bfv _decrypt(seal context, decryption key);

int value x = 3;
Plaintext x_plaintext(to_string(value x));

cout << "The value x = " + to_string(value x) + " is expressed as a

plaintext polynomial 0x" + x_plaintext.to string() + "." << endl;
Ciphertext x_ciphertext;
cout << "Encrypting x plaintext to x_ciphertext..." << endl;

bfv_encrypt.encrypt(x_plaintext, x_ciphertext);

cout << - the size of the x_ciphertext (freshly encrypted) is :

<< x_ciphertext.size() << endl;

307

CHAPTER 12 HOMOMORPHIC ENCRYPTION

cout << " - the noise budget for x_ciphertext is : " << bfv_decrypt.
invariant_noise budget(x_ciphertext) << " bits"
<< endl;

Plaintext value x decrypted;

cout <« - decryption of x_encrypted: ";
bfv_decrypt.decrypt(x_ciphertext, value x_decrypted);
cout << "0x" << value x_decrypted.to string() << endl;

cout << "Computing (x"2+2)..." << endl;

Ciphertext square x plus two;
bfv_evaluate.square(x_ciphertext, square x plus two);
Plaintext plain_value two("2");

bfv_evaluate.add plain _inplace(square x plus two, plain value two);

cout << - the size of the square x plus two is: " << square x_
plus_two.size() << endl;

cout << " - the noise budget for square x plus two is: " << bfv_
decrypt.invariant noise budget(square x plus two) << " bits"

<< endl;

Plaintext decrypted result;

cout << " - decryption of square x plus two: ";
bfv_decrypt.decrypt(square x plus two, decrypted result);
cout << "0x" << decrypted result.to string() << endl;

cout << "Computing (x+1)"2..." << endl;

Ciphertext x_plus_one square;

Plaintext plain_value one("1");

bfv_evaluate.add plain(x_ciphertext, plain value one, x_plus one_
square);

bfv_evaluate.square inplace(x_plus one square);
cout << " - the size of x_plus one square is:
square.size() << endl;

- the noise budget in x_plus one_square is:

<< x_plus_one_

cout << << bfv_
decrypt.invariant _noise budget(x _plus one square) << " bits"
<< endl;

308

int

CHAPTER 12 HOMOMORPHIC ENCRYPTION

cout <« - decryption of x_plus one square: ";
bfv_decrypt.decrypt(x_plus one square, decrypted result);

cout << "0x" << decrypted result.to string() << endl;

cout << "Compute [3(x"2+2)(x+1)"2]." << endl;

Ciphertext enc_result;

Plaintext plain value three("3");

bfv_evaluate.multiply plain_inplace(square x_plus_two, plain_
value_three);

bfv_evaluate.multiply(square x_plus two, x_plus one_square, enc_
result);

cout << " - the size of encrypted result: " << enc_result.size()
<< endl;
cout << " - the noise budget for encrypted result: " << bfv_decrypt.
invariant noise budget(enc_result) << " bits"
<< endl;

cout << "NOTE: If the noise budget is zero, the decryption can be
incorrect." << endl;

cout << " - decryption of enc_result: ";
bfv_decrypt.decrypt(enc_result, decrypted result);
cout << "0x" << decrypted result.to string() << endl;

main()

seal example bfv();
return O;

This section provides an easy example of how the SEAL library can be used with C++

on Windows distribution. However, real-life applications are much more complex, which

raises the need to handle more complex functions and algorithms.

The SEAL library can be very useful, and its major advantage is that it does not

depend on other external libraries. When applications work with the exact values of

integers, the BFV encryption scheme implemented in the SEAL library is great. If the

application needs to work with real or complex numbers, the CKKS encryption scheme

is the best choice, which is also implemented in the SEAL library.

309

CHAPTER 12

HOMOMORPHIC ENCRYPTION

Conclusion

In this chapter, you learned the following.

Homomorphic encryption
Why FHE is so important

Microsoft’s SEAL library, which implements the BFV encryption
scheme, on a simple example with a polynomial evaluation

References

(1].

(2].

(3].

(4].

(5].

[6].

[7].

310

R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy
homomorphism’, Foundations of secure computation, vol. 4, no. 11,

pp. 169-180, 1978.

Rivest, Ronald L., Adi Shamir, and Leonard Adleman. “A method for obtaining
digital signatures and public-key cryptosystems.” Communications of the ACM
21.2 (1978): 120-126.

S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental
poker keeping secret all partial information’, in Providing sound foundations
for cryptography: on the work of Shafi Goldwasser and Silvio Micali, 2019,

pp. 173-201.

ElGamal, Taher. “A public key cryptosystem and a signature scheme based

on discrete logarithms.” IEEE transactions on information theory 31.4 (1985):
469-472.

D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF Formulas on
Ciphertexts.; in TCC, Springer, 2005, pp. 325-341.

B. Barak and Z. Brakerski. “The Swiss army knife of cryptography,”
http://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-
cryptography/, 2012. Last accessed: 28.2.2023

C. Gentry, “Fully homomorphic encryption using ideal lattices’, in Proceedings
of the forty-first annual ACM symposium on Theory of computing, 2009, pp.
169-178.

http://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/
http://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/

8].

[9].

[10].

[11].

[12].
[13].

[14].

[15].

[16].

[17].

[18].

CHAPTER 12 HOMOMORPHIC ENCRYPTION

M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic
encryption over the integers’, in Advances in Cryptology-EUROCRYPT 2010:
29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30-June 3, 2010. Proceedings
29, Springer, 2010, pp. 24-43.

7. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption
from (standard) LWE’, SIAM Journal on computing, vol. 43, no. 2, pp.

831-871, 2014.

M. Yagisawa, “Fully homomorphic encryption without bootstrapping’,
Cryptology ePrint Archive, 2015.

C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based’, in
Advances in Cryptology-CRYPTO 2013: 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, Springer,
2013, pp. 75-92.

HElib, https://github.com/homenc/HElib. Last accessed: 1.3.2023

TFHE: Fast Fully Homomorphic Encryption over the Torus, Available online:
https://tfhe.github.io/tfhe. Last accessed: 1.3.2023

PALISADE Homomorphic Encryption Software Library, Available online:
https://palisade-crypto.org. Last accessed: 1.3.2023

I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds’, in
Advances in Cryptology-ASIACRYPT 2016: 22nd International Conference on
the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I 22, Springer, 2016, pp. 3-33.
Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic
encryption without bootstrapping’; ACM Transactions on Computation
Theory (TOCT), vol. 6, no. 3, pp. 1-36, 2014.

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption’, Cryptology ePrint Archive, 2012.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers’, in Advances in Cryptology-ASIACRYPT
2017: 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part 123, Springer, 2017, pp. 409-437.

311

https://github.com/homenc/HElib
https://tfhe.github.io/tfhe
https://palisade-crypto.org

CHAPTER 12

[19].

[20].

[21].

[22].

[23].

[24].

[25].

312

HOMOMORPHIC ENCRYPTION

L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic encryption
in less than a second’, in Advances in Cryptology-EUROCRYPT 2015:

34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
134, Springer, 2015, pp. 617-640.

H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library-SEAL
v2. 1’ in Financial Cryptography and Data Security: FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7,
2017, Revised Selected Papers 21, Springer, 2017, pp. 3-18.

K. Laine, “Simple encrypted arithmetic library 2.3. 1’, Microsoft Research
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/
sealmanual-2-3-1.pdf, 2017.

Microsoft SEAL, Available online: https://www.microsoft.com/en-us/
research/project/microsoft-seal/. Last accessed: 2.3.2023
Microsoft/SEAL, Available online: https://github.com/Microsoft/SEAL.
Last accessed: 2.3.2023

M. R. Albrecht, “On dual lattice attacks against small-secret LWE and
parameter choices in HElib and SEAL; in Advances in Cryptology-
EUROCRYPT 2017: 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30-May 4, 2017,
Proceedings, Part I, Springer, 2017, pp. 103-129.

L. Yu, C. A. Pérez-Delgado, and J. E Fitzsimons, “Limitations on information-
theoretically-secure quantum homomorphic encryption’, Physical Review A,
vol. 90, no. 5, p. 050303, 2014.

https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://github.com/microsoft/SEAL

CHAPTER 13

Ring Learning with
Errors Cryptography

This chapter covers Ring Learning with Errors Cryptography (RLWE), one of the most
important and challenging techniques for developing secure, complex applications and
systems.

Cryptography has existed since ancient times, but it has become especially crucial
in the digital age. It is a technique used to protect data, control access to sensitive
information, and secure communications. Learning about error cryptography can help
you understand this science’s basic principles and applications. Errors cryptography
is a branch of cryptography that detects, corrects, and prevents errors in digital
communications. It is a vital tool for data security in today’s digital environment. Error
cryptography can protect data from corruption, tampering, or interception. Additionally,
error cryptography can help ensure data accuracy and integrity and provide
authentication of the sender and receiver. This article explores the basic principles
and applications of error cryptography and how it can be used to protect data and
communications.

Errors cryptography is the process of securing data against errors in transmission
and storage. This process involves appropriate data formatting, encryption, and
error correction methods. All these methods are used to secure data and ensure its
authenticity, integrity, and accuracy. Errors cryptography is performed at three stages:
transmission, storage, and processing. Transmission error cryptography is used for error
detection and correction for transmitting data over a transmission channel. Storage
error cryptography is used for error detection and correction for data stored on a storage
medium. Processing error cryptography is used for error detection and correction for
data that are in computer memory.

313

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_13

https://doi.org/10.1007/978-1-4842-9450-5_13

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

The learning with errors problem was introduced in 2005 by Oded Regev [4]. Since
then, it has proven its potential to be a basis for future cryptography and its capability
to generate complex cryptographic structures. LWE and related topics are widely used
in lattice-based cryptography. You can find comprehensive studies, surveys, and deep
formal aspects in the works [5, 6, 7].

LWE is a difficult computation problem (therefore, a hardness assumption
in cryptography) that is the formal foundation for cryptographic algorithms and
constructions. One such cryptographic construction is NewHope [8], an encapsulation
method for postquantum keys. NewHope seeks to protect against cryptanalysis attacks
launched on quantum computers. Another application of LWE is in homomorphic
encryption, serving as a hardness assumption for many important (fully) homomorphic
encryption schemes (see Chapter 12).

Errors cryptography uses the following principles: error detection, error correction,
authentication, and data integrity. Let’s go over the principles of error cryptography
in detail.

o Error detection identifies when errors occur during the transmission
of data. The most common method to detect errors is to use parity
bits. Parity bits are used in many communication protocols to detect
single-bit errors.

o Error correction corrects errors that were detected while data were
being transmitted. Various techniques, such as Hamming and Reed-

Solomon codes, are used to correct errors.

o Authentication validates who the sender and receiver are. It also
validates that only authorized parties are part of the transmission.

Authentication is important in the exchange of sensitive information.

o Data integrity ensures that the data is not corrupted while
transmitted. Data can be corrupted in many ways, such as

electromagnetic interference and noise.

There are many organizations and associations that standardize and regulate error
cryptography, such as the International Organization for Standardization and the

International Telecommunications Union.

314

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

RLWE is the LWE problem applied in rings of polynomials defined over finite fields.
The RLWE problem represents a basis for future cryptography because it is resistant to
known quantum algorithms such as Shor’s algorithm; therefore, it remains a hardness
assumption in the quantum ecosystem.

An advantage of the RLWE technique in front of LWE is the size of the keys. The size
of the LWE keys is approximately the square of the size of the RLWE for the same number
of bits of security. For example, for 128 bits of security, the keys of an LWE cryptosystem
require 49.000.000 bits, while the keys of an RLWE cryptosystem require 7000 bits.

RLWE cryptographic algorithms can be divided into three categories, as follows.

o RLWE Key Exchange (RLWE-KE): In 2011, Jintai Ding, at
the University of Cincinnati, used the associativity of matrix
multiplication to propose a preliminary scheme for key exchange
based on LWE and RLWE [9]. The study was published in 2012 after
the idea was patented. Based on this work, Chris Peikert proposed a
key transport scheme in 2014 [10].

e RLWE Signature (RLWE-S): The identification protocol proposed by
Feige, Fiat, and Shamir in [11] represented the basis for the digital
signature proposed in 2011 by Lyubashevsky. A further improvement
of the digital signature [12] was proposed by GLP (Gunesyu,
Lyubashevsky, and Popplemann) in [13].

e RLWE Homomorphic Encryption (RLWE-HE): You learned about
homomorphic encryption in Chapter 12 and saw that homomorphic
encryption enables computations to be applied directly over
encrypted data. Among the first fully homomorphic encryption
schemes that use RLWE is [14], which was proposed in 2011 by
Brakersky and Vaikuntanathan.

The next section provides a minimum mathematical background for the LWE
and RLWE.

315

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

Mathematical Background
Learning with Errors (LWE)

The quantum computer era is in an early stage; many of the current encryption systems
with public keys are easy to break, which leads to the natural necessity of creating
cryptosystems based on quantum-resistant hardness assumptions. LWE has this
capability. The LWE problem’s difficulty consists of computing the values that solve the
following equation.

b=as+e

In an equation of this form, a and b can form the public key, s can be the secret key,
and e can be an error value (or noise).

In cryptography, the LWE problem can be used in different topics. For example,
based on LWE, secure public-key encryption schemes can be constructed against
chosen plaintext or ciphertext attacks. Additionally, LWE can be a basis for oblivious
transfer, fully homomorphic encryption, or identity-based encryption.

The preceding equality becomes b = A x s + e in [1] because it is applied to linear
equations. Here, A becomes a matrix with two dimensions, and if s is a matrix with one
dimension, then b and e are matrices with one dimension. Another possibility is that A
and b are matrices with one dimension, and s is a scalar value.

The following presents a simple encryption scheme based on LWE [4]. Note that in
the example, p € Zrepresents a prime number.

o Key generation: The following elements are chosen randomly: the
vector s e Z;’ , the matrix A with m rows, which are m independent
vectors of a uniform distribution, and the vector e= (e, ..., e,,) of an error
distribution defined over Z. Then, the value b is computed b = As + e.
The secret key is the value s, and the public key is the pair (4, b).

« Encryption: Given the m € {0, 1} message to be encrypted,
choose random samples from A and b, achieving v, =) a,and

v, =2.b, —gm . The values a; and b; represent the samples from A
and b, respectively. The encryption of m is the pair (u, v).
e Decryption: Compute val = v, — sv, (mod p). If val < g, then the

message is m = 0; otherwise, the message is m = 1.

316

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

The preceding example shows how LWE works. Examples of public key encryption
schemes based on the LWE problem are [2] and Lindner-Peikert encryption schemes.
LWE problems are divided into two categories: LWE search and LWE decision.

LWE Search

Let m, n, p € Z be integer values, and let y, and y, be two distributions defined over the

integer numbers set Z. Select the values s < x.',e; <— x, and a, < U(Z;) . Compute

the value of b; := (a,, s) + e; mod p, where i = 1, ..., m. Given the tuple (n, m, p, y,, x.), the

learning with errors search variant problem consists of determining s knowing (g, b,)Zl .
In this definition, s represents a column-vector with n values, g, represents a row-

vector with n values from Z, and b represents a column-vector with m elements from Z,.

The representation x < S shows that x is a random variable selected from the finite set S.

LWE Decision

Let n, p € Z be integer values, and let y, and y, be two distributions defined over the
integer numbers set Z. Select the value s «— ', and pick two oracles as follows.

e O:a <—U(Z;),e « y,; output(a, (a, s) + e mod p)
e U:a (—U(ZZ),u <—U(Zp) ; output(a, u)

Given the tuple (n, p, x5 x.), the learning with errors decision variant means
differentiating between O and U.

Ring Learning with Errors (RLWE)

The LWE problem applied in rings of polynomials with coefficients in a finite field

is called the ring learning with errors (RLWE) problem. RLWE is used in different
domains of cryptography, for example, in key exchange, homomorphic encryption, and
signatures. The functionalities from RLWE are similar to the functionalities from the
simple LWE. For RLWE, the a, b, s, e variables from the first equality are polynomials.
Let’s examine how the two LWE variants’ definitions adapt to RLWE.

317

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

RLWE Search

. _ Z[X] R
Let n, p € Z be integer values, with n = 2%, let Rbe R=+—; and R,=— and
<X + 1> PR

let y; and y, be two distributions defined over the ring R,. Select s < y,, e <— y. and

a < U(R,). Compute the value of b := as + e. Given the tuple (1, p, x, x.), the ring learning
with errors search variant problem consists of determining s knowing (a, b).
Z | X
In this definition, R, is actually R = L .
Po(x"+1)

RLWE Decision

Let n, p € Z, be integer values and let y, and y, be two distributions defined over the ring
R,. Select the value s « y,, and pick two oracles as follows.

e O:a< UR),), e« y;output(a,as+e)
e U:a <« UR,), u < UR,); output(a, u)

Given the tuple (n, p, v, x.), the ring learning with errors decision variant means
differentiating between O and U.

An encryption scheme based on the hardness assumption of (R)LWE is secure if the
advantage of any algorithm A (called attacker) with polynomial time in solving the (R)
LWE problem is a negligible function.

Practical Implementation

Learning with errors (LWE) is a quantum-resistant technique in cryptography. On the
practical side of the LWE, to implement a simple LWE example, you first need to generate
a secret value and a random value. Furthermore, the implementation is intuitive, as you
need to compute a value of the form p[| = ¢[] x secrety,, + e.

Listing 13-1 provides an implementation for a simple example of an encryption
system based on the work of Oded Regev from [4]. The result of running the program is
provided in Figure 13-1.

318

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

B cAWINDOWS\system32\emd. X

Microsoft Windows [Version 10.8.22621.963]
(c) Microsoft Corporation. All rights reserved.

C:\Users\mariu\Desktop\Ch13>g++ -std=c++2b 13_1_learning_with_errors.cpp -o 13_1_learning_with_errors.exe

C:\Users\mariu\Desktop\Ch13>13_1_learning with_errors.exe
--Message: 1--

--Random values--

18 14 4 1 22 1 16 11 18 2

--Public Hey-—-

182 82 32 17 122 17 62 67 182 22

--Sample indices--

samples = [258 36 1]

—--The sum: 236--

--The encryption of the message is:231 —-
-=-The decryption is: 1--
C:\UsErs\mariu\Desktup\Ch13:\-|

| S S

Figure 13-1. The result of running the program with a simple example of LWE
encryption

Listing 13-1. Implementation of a Simple LWE Example [4]

#include <iostream>
#include <math.h>
#include <ctime>
using namespace std;

int main()

{

srand(time(0));

int no_of _values = 10;

int public_key [no of values];
int values [no_of values];

int secret key = 5;

int error value = 12;

int message = 1;

int value = 0;

319

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

for (int i = 0; i < no_of values; i++)

{
//** generate random values between 0 and 23
values[i] = rand() % (23 + 1 - 0) + O;
//** compute the public key
public_key[i] = values[i] * secret key + error value;
}
cout<<"--Message: "<< message<<"--";

cout<<endl<<"--Random values--"<<endl;
for(int i = 0; i < no_of values; i++)

{

cout<<values[i]<<" ";

}

cout<<endl<<"--Public Key--"<<endl;
for(int i = 0; i < no_of values; i++)

{

cout<<public_key[i]<<" ";

}

//** get half random samples from the public_key

int noOfSamples = floor(no of values / 2);

int samples [noOfSamples];

for(int i=0; i < noOfSamples; i++)

{
//** generate a number of 5 random indices between 0 and 10
samples[i] = rand() % ((no_of values-1) + 1 - 0) + 0;

}

cout<<endl<<"--Sample indices--";

cout<<endl<<"samples = [";

for (int i=0; i < noOfSamples; i++)

{

cout << samples[i] << " ";
}
cout<<™ 1" << endl;

320

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

int sum = 0;
for (int i = 0; i < noOfSamples; i++)

{
sum += public_key[samples[i]];
}
cout<<endl<<"--The sum: " << sum << "--";

if (message == 1)
sum+=1;

cout<<endl<<"--The encryption of the message is:" << sum <<" --";
int decryption = sum % secret key;

if (decryption % 2 == 0)

cout<<endl<<"--The decryption is: 0--";
else

cout<<endl<<"--The decryption is: 1--";

return 0;

Listing 13-2 is a more complex example of public-key encryption that uses LWE,

based on the work [5]. The result of running the program is shown in Figure 13-2.

Listing 13-2. Implementation of the LWE Encryption Method Proposed by Oded
Regev in [5]

#include <iostream>
#include <math.h>
#include <ctime>
using namespace std;

int main()

{

srand(time(0));

int numberOfRandVals = 20;
int values A [20]; //** values A is a set of random numbers; represents
the public key

321

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

int secretValue = 5; //** represents the secret key

int values error [numberOfRandVals]; //** represents the error values
int values B [numberOfRandVals]; //** values B is computed based on
values A, secretValue, values error; represents the public key

int q = 97; //** q is a prime number

//** generate random values
//** the number of random values is numberOfRandVals = 20
//** the range is 0 - =97
for(int i=0; i < numberOfRandVals; i++)
{
//** to generate a random value in a range MIN - MAX,
//** we proceed as follows: val = rand() % (MAX + 1 - MIN) + MIN;

//** generate random values between 0 - 97

values A[i] = rand() % (q + 1 - 0) + 0;

//** generate small error values, between 1 - 4

values error[i] = rand() % (4 + 1 - 1) + 1;

//** compute values B using the formula B i = A i*s + e i
values B[i] = values A[i]*secretValue + values error[i];

}

cout<<"--------- The parameters and the keys --------- << endl;
cout<<"--Prime number (q)--" << endl;

coutc<q = " << q << endl;

cout<<"--Public key (A, B)--" << endl;

cout<<"A = [";
for (int i=0; i < numberOfRandVals; i++)

{

cout << values A[i] <« ;

}

cout<<"]" << endl;

cout<<"B = [";
for (int i=0; i < numberOfRandVals; i++)

{

cout << values B[i] <« ;

322

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

cout<<"]" << endl;

cout<<"--Secret key (s)--" << endl;
cout<<"s = " << secretValue << endl;
cout<<"--Random error (e)--" << endl;

cout<<"e = [";
for (int i=0; i < numberOfRandVals; i++)

{
cout << values error[i] << " ";
}
cout<<"]" << endl;
cout<< endl << endl << "--------- Getting samples from the public
key... --------- "3

int noOfSamples = floor(numberOfRandVals / 4); //** represents the

number of samples from the public key

int samples [noOfSamples];

for(int i=0; i < noOfSamples; i++)

{
//** generate a number of 5 random indices between 0 and 19
samples[i] = rand() % ((numberOfRandVals-1) + 1 - 0) + 0;

}

cout<<endl<<"--Sample indices--";

cout<<endl<<"samples = [";

for (int i=0; i < noOfSamples; i++)

{

cout << samples[i] << " " ";
}
cout<<"]" << endl;

cout<<"--Sample pairs--";
for (int i=0; i < noOfSamples; i++)

{

cout << endl <<"Sample " << i << ": ["

<< values A[samples[i]] << " " << values B[samples[i]] << "]";
}
cout<< endl << endl << "--------- Computing u and v... --------- "5

323

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

324

int message = 0; //** the message to be encrypted can be a value
from {0, 1}

int u=0, v=0;

//** u = (sum (samples from values A)) mod q

//** v = (sum (samples from values B) + [q/2] * message) mod g
for (int i=0; i < noOfSamples; i++)

{
= u + values A[samples[i]];
v = v + values B[samples[i]];
}
v = v + floor(q/2) * message;
u=uiaq;
V=Vv5%aq;

coutc<cendl<<"u = "<<u;
coutc<cendl<«<"v = "<<v;

cout<< endl << endl << "--------- Encrypting... --------- 5

cout<<endl<<"--Message--";
cout<<endl<<"m = "<<message;
cout<<endl<<"--Encryption f the message--";

COUt<<end1<<"EnC(m) = (" << U << s <<V <<n u;

cout<< endl << endl << "--------- Decrypting... --------- 5
int result = (v - secretValue * u) % q;

int decryption;
if (result > q/2)
decryption = 1;
else
decryption = 0;
cout<<endl<<"The message is:

<< decryption;

return 0;

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

Listing 13-2 is an example of public key encryption based on LWE, which was
proposed in [5]. secretValue represents the private key.

B CAWINDOV em32emd. X

C:\Users\mariu\Desktop\Chl3>g++ -std=c++2b 13_2_oded_regev.cpp -o 13_2_learning_with_errors.exe

C:\Users\mariu\Desktop\Ch13>13_2_learning_with_errors.exe
————————— The parameters and the keys ---——-———-

-—prime number (q)--

q =97

--Public key (A, B)--

A=1[5156519 30 71 22 64 16 39 18 77 4 84U BT 21 66 96 39 74]
B = [256 283 259 46 154 359 113 324 52 196 51 386 23 421 u36 188 332 u83 198 374]
--secret key (s)--

$s=5

--Random error (e)--
e=[130814834821113113233u0]

————————— Getting samples from the public key... ———————--
--Sample indices--

samples = [16 11 8 8 3]

--Sample pairs--

Sample @: [66 332]

Sample 1: [77 386]

Sample 2: [18 52]

Sample 3: [18 52]

Sample 4: [9 us]

--------- Computing u and v... —-==—==———=
u=175

v =92

————————— Encrypting... —-————-——-—-
-=-Message--

m=48a

--Encryption f the message--
Enc(m) = (75, 92)

--------- Decrypting... —=====---
The message is: @
C:\Users\mariu\Desktop\Ch13>|

b A

Figure 13-2. The result of running the program of the public-key LWE example

The next step creates the public key. The public key is formed by the values from a
set of random numbers (values A) and a set of values (values_B), which are computed
based on values_A, secretValue, and random errors (values_error). This example is
implemented for a single bit.

To secure data over a computer network, data encryption is used. Data encryption is
the process of converting data into a secret code so that only authorized people/devices
can read it. There are many types of data encryption.

325

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

e Symmetric encryption uses a single key to both encrypt and decrypt
data. The single key must be kept secret.

o Asymmetric encryption uses a public key to encrypt data and a
private key to decrypt data.

o Hashing does not encrypt data but can be used to authenticate it.
The following is a simple workflow for this example.

e Between 0 and g (in the example, q=97), we selected a random set of
20 values in the stored in the array values_A that represents one of
the components of the public key.

o Define the set values_B, where every element is computed as
values B[i]=values A[i] x secretValue+values error[i] mod g,
where secretValue is the secret key and values_error represents a
list of small random values, called the error values.

o Thevalues_A and values_B sets form the public key, and
secretValue represents the secret key. At this point, values A and
values_B can be shared with anyone who wants to proceed with the
encryption of a message (with the condition of keeping secretValue
secret). The encryption process uses samples from values A and
values_B. Based on those samples, take a bit message, and compute
the following two values.

e U= Z (Ualues _Asamples)(mOd q)

. U=Z(values B)+gxmessage(modq)

— samples
e At this point, the encrypted message is (1, v). To proceed with the
decryption, compute the following.
e decryption=v—sx u(mod q)

o If decryption < g , the message is equal to 0; otherwise, itis 1.

The preceding procedure is summarized from the Oded Regev paper [5] to make it
easy to follow and understand how to transpose the complexity of LWEs in reality.

326

CHAPTER 13 RING LEARNING WITH ERRORS CRYPTOGRAPHY

Conclusion

This chapter discussed RLWE and implemented two examples of encryption schemes
using the C++ programming language proposed in the works [4] and [5]. RLWE can be a
space for many professional challenges and a starting approach for bringing significant
contributions to this cryptographic primitive.

The chapter offered an interesting journey with LWE, including the following.

e Asolid but short mathematical background of the main concepts and
definitions on which RLWE is based and without which a practical
implementation has many gaps to fill out

o Experimenting with the challenges brought by RLWE mathematical
concepts and their transposition in practice

e The ability to implement simple examples of public-key encryption
schemes based on LWE

Errors cryptography is the process of securing data against errors in transmission
and storage. This process involves appropriate data formatting, encryption, and error
correction methods. All these methods are used to secure data and ensure its authenticity,
integrity, and accuracy. Errors cryptography is performed at three stages: transmission,
storage, and processing. It uses the following principles: error detection, error correction,
authentication, and data integrity. There are various types of error cryptography, such
as error detection, error correction, authentication, and data integrity. Many security
protocols can be used with error cryptography. Errors cryptography can secure data
against errors, but it cannot secure data from being intercepted and read.

References

[1]. O.Regeyv, The Learning with Errors Problem, Available online: https://cims.
nyu.edu/~regev/papers/lwesurvey.pdf. Last accessed: 11.3.2023

[2]. O.Regev, “On lattices, learning with errors, random linear codes, and
cryptography’; Journal of the ACM (JACM), vol. 56, no. 6, pp. 1-40, 2009.

[3]. R.Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based
encryption’, in Topics in Cryptology-CT-RSA 2011: The Cryptographers’ Track
at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011.
Proceedings, Springer, 2011, pp. 319-339.

327

https://cims.nyu.edu/~regev/papers/lwesurvey.pdf
https://cims.nyu.edu/~regev/papers/lwesurvey.pdf

CHAPTER 13

[4].

(5].

[6].

[7].

(8].

[9].

[10].

[11].

[12].

[13].

[14].

328

RING LEARNING WITH ERRORS CRYPTOGRAPHY

O. Regev, “The Learning with Errors Problem (Invited Survey),” 2010 IEEE
25th Annual Conference on Computational Complexity, Cambridge, MA, 2010,
pp- 191-204, doi: 10.1109/CCC.2010.26.

O. Regeyv, “Lattice-based cryptography’, in Advances in Cryptology-CRYPTO
2006: 26th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2006. Proceedings 26, Springer, 2006, pp. 131-141.
C. Peikert, “Some Recent Progress in Lattice-Based Cryptography., in TCC,
2009, p. 72.

D. Micciancio, “Cryptographic functions from worst-case complexity
assumptions’, in The LLL Algorithm: Survey and Applications, Springer, 2009,
pp. 427-452.

NewHope - Postquantum Key Encapsulation. Available online: https://
newhopecrypto.org/. Last accessed: 12.3.2023

J. Ding, X. Xie, and X. Lin, “A simple provably secure key exchange scheme
based on the learning with errors problem’; Cryptology ePrint Archive, 2012.
C. Peikert, “Lattice cryptography for the internet’, in Post-Quantum
Cryptography: 6th International Workshop, PQCrypto 2014, Waterloo, ON,
Canada, October 1-3, 2014. Proceedings 6, Springer, 2014, pp. 197-219.

Y. Desmedt, Fiat-Shamir Identification Protocol and the Feige-Fiat-Shamir
Signature Scheme. Springer, 2011.

V. Lyubashevsky, “Lattice signatures without trapdoors’, in Advances in
Cryptology-EUROCRYPT 2012: 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings 31, Springer, 2012, pp. 738-755.

T. Giineysu, V. Lyubashevsky, and T. Poppelmann, “Practical lattice-based
cryptography: A signature scheme for embedded systems’, in Cryptographic
Hardware and Embedded Systems-CHES 2012: 14th International Workshop,
Leuven, Belgium, September 9-12, 2012. Proceedings 14, Springer, 2012, pp.
530-547.

7. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption

from ring-LWE and security for key dependent messages’, in Advances in
Cryptology-CRYPTO 2011: 31st Annual Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2011. Proceedings 31, Springer, 2011, pp. 505-524.

https://newhopecrypto.org/
https://newhopecrypto.org/

CHAPTER 14

Chaos-based
Cryptography

In today’s digital world, security is paramount to protecting your data and digital life. As
technology advances, so does the need for more secure encryption methods. One such
encryption technique is chaos-based cryptography, which is gaining traction as one of
the most secure forms of data protection. It is based on the principles of chaos theory,
which states that complex systems often produce unpredictable results. With chaos-
based cryptography, generating a seemingly random sequence of numbers is possible,
which is then used to encrypt a message. This random sequence is almost impossible to
reverse engineer, making it extremely difficult to crack the code. Understanding chaos-
based cryptography is essential for anyone who wants to keep their data secure. This
chapter explores the fundamentals of chaos-based cryptography, its advantages, and
how it can be used to protect data.

In chaos-based cryptography, chaos theory is applied, and its mathematical
background is used to create novel and unique cryptographic algorithms. Robert
Matthews initiated the first attempt to use chaos theory in cryptography in 1989 [1],
which attracted considerable interest.

In contrast with regular cryptographic primitives used daily, chaos theory and
its system are used efficiently by implementing chaotic maps toward confusion and
diffusion. Throughout this chapter, the cryptographic algorithm is called a chaotic system.

What are the benefits of chaos-based cryptography? Cryptography is the process of
encoding information in a way that can only be decoded by those who have a key to
unlock it. The key can be a password or a special sequence of letters and numbers, often
called an algorithm. Traditionally, cryptography has been based on one-way functions,
such as rotating letters through a substitution cipher. The main drawback of these one-
way functions is that they can be broken. To crack the code, someone must perform

329

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_14

https://doi.org/10.1007/978-1-4842-9450-5_14

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

the same one-way function to decipher the message. The more complex the one-way
function, the more time and effort it takes to break the code. Chaos-based cryptography
takes a different approach to encryption. The sequence the code is generated with is
complex and random, making it extremely difficult to crack. The sequence is generated
by applying simple mathematical functions to a specially designed formula that creates
a chaotic sequence. This sequence is then used to encrypt the message. The sequence
is generated through a combination of simple mathematical formulas and computer
software, which makes it quicker to produce compared to complex one-way functions.
It also makes it easier to share code among users, which can be helpful if your business
needs to collaborate with clients or suppliers.

To understand the similitudes and the differences that lay between chaotic systems
and cryptographic algorithms, Table 14-1 presents a set of correspondences introduced
by L. Kocarev in [2].

How does chaos-based cryptography work? Chaos-based cryptography uses a
sequence of seemingly random numbers generated by a mathematical formula to
encrypt and decrypt a message. The message is fed into the formula, which then
generates a sequence of numbers. The receiving party applies the same formula to the
sequence of numbers to generate the original message. To crack the code, a hacker
would need to use the same formula to generate the original sequence. However,
this is extremely difficult to do because the sequence is generated from a complex
mathematical formula that is constantly changing. This means that the formula is
different every time it is used, making it almost impossible for the hacker to crack the
code. To generate a sequence of numbers, the user must apply a formula to the original
message. The user then applies a second formula to the first sequence of numbers to
produce a new sequence of numbers. This sequence is then sent over an unbreakable
communications channel. The receiving party applies the same formula to the sequence
of numbers to generate the original message.

How can chaos-based cryptography be implemented? Before implementing chaos-
based cryptography for your business, it is important to choose the right formula for your
code. You also need to consider how you generate the sequence of random numbers.
There are several formulas available for use with chaos theory-based cryptography. The
choice of formula impacts the sequence of numbers generated by the code. This means
you should select a formula based on the type of information you want to encrypt. If you
want to protect data such as financial information or health records, select a formula
that generates long sequences of numbers. This makes it harder for hackers to crack the

330

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

code because it requires considerable time and effort to decode the sequence. This is
especially important if you want to share the code with clients or suppliers. If you need to
send a sequence of numbers over a short-range wireless device, such as Bluetooth, select
a formula that generates a short sequence. This makes it easier to transmit the sequence
over a short-range device, as it does not take up much data.

Table 14-1. Similarities and Differences Between Chaotic Systems and
Cryptographic Algorithms

Chaotic System Cryptographic Algorithm

Phase space: (sub) set of real numbers Phase space: a finite set of integers
lterations Rounds

Parameters Key

Sensitivity to a change in initial conditions and Diffusion

parameters

? Security and Performance

The similitudes and differences in Table 14-1 are demonstrated using a shift map as
an example of a chaotic system.

x(t+1)=ax(t)(mod1)

The phase space x = [0, 1] is the unit interval, and a > 1 is an integer value.

From the chaos theory perspective, different functions and discrete-time systems
can be used in cryptography. By analyzing them, we observe that the phase space
becomes a finite set of integers, and the parameters are inter-values. The version of the
shift map that uses the discrete phase space is one of the common examples:

p(t+1)=ap(t)(mod N)

a >1, Nand p are integer values, with the restrictions p € [0, 1, ..., N — 1] and N being
coprime to a. This representation of the shift map is invertible, which means that all
the trajectories placed within a dynamical system with a finite phase space are called
periodic. This fact introduces a new concept, namely, the period functions Py that
describe the least period of the map F, denoted F™ as its identity and Py is minimal, as
itis a function within a system of size N.

331

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

Another important metric in practical chaotic systems is the Lyapunov exponent,
whose trivial value is 0. The reason for this is the case in which the orbit is periodic and it
reiterate itself.

Figures 14-1, 14-2, and 14-3 present two concepts of block diagrams (for text
encryption and image encryption) that demonstrate what an encryption scheme based
on chaos theory should look like. Figures 14-1 and 14-2 show the encryption process and
the decryption process, respectively, based on the logistic map. Figure 14-3 shows an
example of image encryption and decryption.

A good starting point in achieving this is to use the following block diagrams
as a guide from theory to practice because the models are created according to the
similitudes and differences in Table 14-1.

. N
DszqUppm 1 (DU1) jtb
dpnqsfifotjwf boe gsff

fevdbujpobm gsphsbn
Chaotic bepvu dszquphsbgiz
Encryption boe dszqubobmztijt
Scheme pgefsjoh fyufotjwf

pomjof ifmg boe nboz
wjtvbmjabujpot.
'y

Encryption
Mechanism

Permutation & Diffusion —
A

A J

<

>

> Save Z at position k1
A

Pseudorandom Sequence
Optimization

Y

A

|

5.000 iterations from logisticmap 1

| A
1.000 iterations from logisticmap 2
F'y

32 hexadecimal digits as secret key

Figure 14-1. Block diagram for text encryption using a logistic map [14]
332

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

Following the examples of the block diagrams, you can examine the papers listed
in this chapter’s “References” section to see that the encryption models and how
they are built are different according to the chaotic map used. Before designing new
cryptographic approaches and mechanisms based on chaos theory, it is important to
understand how different chaotic maps work.

DszqUppm 1 (DU1)jtb Cryptogram text Enc(m) 5 | Decryption of text Dec(m) H
dpngsfifotjwf boe gsff
fevdbujpobm gsphsbn Chaotic
bepvu dszquphsbqiz Encryption
boe dszqubobmztjt Scheme
pggfsjoh fyufotjwf

pomjof ifmq boe nboz 4 Decryption Mechanis;rh

wijtvbmjabujpot. /

Permutation and Difussion

v

A

-+

Z » Optimized pseudorandom sequence

A

> 5.000 iterations from logistic map 1

A

32 hexadecimal digits as secret key

Figure 14-2. Block diagram for text encryption using a logistic map [14]

333

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

plain image 5 cipher image 5

T

I|| r -m rounds-

JI n rounds
Y Y——» Confusion - ! » Diffusion
/J" A A \\
/ \\
/

permutation sequential pixel
process of pixes value modifcation

— Key Generator

\
J

A

Figure 14-3. Block diagram for image encryption cryptosystem [6]

Security Analysis

This section presents a security analysis using techniques for finding the weakness or
security breaches in the cryptosystem. We then obtain a piece or the whole encrypted
image or plaintext or find the key without knowing the algorithm or the decryption key.
Examples of attacks over encrypted images are presented in [3] and [4]. The
following methods, techniques, and analysis should be considered when designing a

chaotic system or conducting a cryptanalytic attack.

o Keyspace analysis represents the number of trials for finding the
decryption key and is made by trying all the possible keys from
the keyspace of the encryption system. Note that the keyspace
grows exponentially and simultaneously with the increment of the

key’s size.

334

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

Secret key sensitivity analysis is important to a good image
encryption system. If just a single bit is modified in the secret key,
then the output image should be a completely different image
(regarding encryption or decryption).

Statistical analysis proves the relationship between the original
image and the encrypted image.

Correlation coefficient analysis is an important graphical tool that
needs to be studied in the histogram, namely, the distribution of the
values generated by a trajectory of a dynamic system. Among the
histogram analysis, the correlation between the pixels of a plain image
and the encrypted image is another important technique, as it is made
between two pixels distributed vertically, horizontally, and diagonally.

Information entropy analysis is based on entropy tests of the
robustness of the encryption algorithm. The comparison between
the entropy of the plain image and the encrypted image is very
important, which shows that the entropy of the encrypted images is
approximately 8-bit depth. This is useful in proving the encryption
technique against the entropy attack.

Differential analysis determines the sensitivity of the cryptosystem
regarding any slight change in the algorithm. The sensitivity can be
computed based on two criteria: NPCR (Number of Pixels Change
Rate) and UACI (Unified Average Changing Intensity). When these
tests are made, the high values show the small changes in the plain
image that produced significant modifications in the encrypted image.

Chaotic Maps for Plaintexts and Image Encryption

This section presents chaotic maps in regard to their encryption target (text encryption

or image encryption).

Many of the image encryption algorithms listed in Table 14-2 were analyzed and

tested by the authors that proposed them. It is useful to validate the performance and

evaluate the robustness of the encryption scheme. All the references were analyzed and

chosen based on their analyses and tests.

335

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

Table 14-2. Chaotic Map (Systems) for Image Encryption

Chaotic Map (System) Metrics Key References
Entropy NPCR UACI Space Sensitivity
Lorenz 79973 - - 2128 High 5]
Baker
Lorenz - - - Large Medium [6]
Henon Map 7.9904 0.0015% 0.0005% 2% High 7]
Logistic Map 7.9996 99.6231% 33.4070% 10 High 8]
Trigonometry Maps - 0.25% 0.19% 2302 - [9]
Arnold Cat Map 7.9981 99.62% 33.19% 2148 High [10]
Chebyshev Map 7.9902 99.609% 33.464% 2'¢" High [11]
Circle Map 7.9902 99.63% 33% 2256 High [12]
Arnold Map - 0.0015% 0.004% - - [13]
Rossler Attractor

The Rossler attractor represents a system formed from three nonlinear ordinary
differential equations. The equations define a continuous-time dynamical system that
exposes chaotic dynamics associated with the fractal properties of the attractor.

The equations of the Rssler system are as follows.

dx dy dz
—=-y-z —=x+a —=b+z(x-c
= a o g mhrale)

When Réssler is applied in real life and practice, computing and finding the fixed
points represents one of the first challenges raised. For computing the fixed points, it is
sufficient that the equations are set to zero and (x, y, z) coordinates of each of the fixed
points are computed by solving the resulting equations. The following general equations
are for each of the fixed-point coordinates.

_cxNc'—4ab y__[cir\/cz—4ab} Z_ci\/c2—4ab

{x
2 2a 2a

336

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

These equations are turned so that they show the current fixed points given for a set
of values associated with the parameters.

(c+\/cz—4ab —c—c* —4ab c+\/cz—4abj

?

2 2a 2a

) ?

c—~Nc*—4ab —c+c*—4ab c—c* —4ab
2 2a 2a
These equations are used in our example in Listing 14-4, which implements a
solution for generating secure random numbers using the chaos perspective of the
Rossler attractor.

Complex Numbers: A Short Overview

Complex numbers represent an extension of the real numbers. The motivation behind
complex numbers is the desire to solve algebraic equations that normally (using
traditional real numbers) have no solution. As an example, x*> + 1 = 0 has no real solution.
For this situation, a symbolic solution has been created and is known as the imaginary
unit i, which has the following property.

iP=-1

A complex number is represented by two components, which are known as the real
and the imaginary parts. Write the following.

z=x+Yyi

real(z) = x denotes the real part, imag(z) = y denotes the imaginary part, and i
represents the imaginary unit.

The arithmetic behind the complex numbers is quite straightforward and represents
an extension of the arithmetic of real numbers. To understand the previous statement,
we define two numbers z and w as follows.

z+w=(x+yi)+(u+vi)=(x+u)+(y+v)i
The real and imaginary components are added separately.
The next step is to multiply the numbers as follows.
zw =(x+yi)(u+vi)=xu+xvi+ yui+ yvi* =(xu—yv)+(xv+yu)i

337

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

Observe that yvi® represents the real product due to the property defined
abovei?= — 1.

Listing 14-3 uses complex numbers with chaos and fractal properties to provide
encryption and decryption operations.

Practical Implementation

The applications and programs that use chaotic systems have applicability for plaintext
encryption and image encryption. If you look at other areas of cryptography (such as
the ones discussed in this book), the research community has a significant amount of
theoretical contributions. The lack of practical implementations and directions has
raised multiple difficulties and challenges for researchers and professionals.

If you look at the practicability of chaos cryptography, you see few practical
implementations. The following is a list of some practical approaches (referring to
pseudocode algorithms) found within [15]. The work from [15] provides a very in-depth
structure and good ideas and approaches on implementing different cryptosystems
based on chaos theory. The ideas are provided as pseudocode. The work covers the
following cryptosystem types.

e Chaos-based public-key cryptography

o Pseudorandom number generation in cryptography

o Formation of high-dimensional chaotic maps and their uses in
cryptography

e Chaos-based hash functions

e Chaos-based video encryption algorithms

o Cryptanalysis of chaotic ciphers

o Hardware implementation of chaos-based ciphers

e Hardware implementation of chaos-secured optical
communication systems

338

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

In [15], starting with Chapter 2, the authors propose an interesting public-key
cryptosystem with a chaos approach consisting of three steps.

1. Key Generation Algorithm (Listing 14-1)
2. Encryption Algorithm (Listing 14-2)
3. Decryption Algorithm (Listing 14-3)

The scenario is a typical communication between two user entities: Alice and
Bob. Next, we provide the structure of each algorithm, and at the end, we provide
implementations to demonstrate the applicability.

Listing 14-1. Pseudocode: Key Generation Algorithm [15]

Start. Alice will need before the communication to generate the keys. For
this, she will accomplish the following.

e Alarge integer a must be generated.

e Calculate G,(p) based on a random number selected as p € [-1, 1].

o Aliceset her public key as (p, G(p)) and the private key to a.

Listing 14-2. Pseudocode: Encryption Algorithm [15]

Start. Bob will want to encrypt a message. To achieve this, the following
must be done.

e Obtain Alice’s authentic public key (p, G.(p)).

e Calculate and represent the message as a number M € [-1, 1].
o Generate a large integer r.

o Calculate G/(p), G,.,9= G(G.(p)) and X=M - G, (p).

o Take the ciphertext and send it as C = (G,(p), X) to Alice.

Listing 14-3. Pseudocode: Decryption Algorithm [15]

Start. Alice wants to read the text, and to do this, he will have to
recover M from the ciphertext C. To achieve this, the following steps are
performed.

339

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

e Alice has to use her private key a and calculate G,., = G,(Gp)).
X

G,,(p)

Secure Random Number Generator Using Chaos
Rossler Attractor

o The message M is obtained by calculating M =

This section presents the implementation of a secure random number generator using
a chaos Rdssler attractor. The application has five files (encryption.h, generation.h,
encryption.c, generation.c, and chaos_random.cpp). To compile and run the
application, the following command needs to run in the terminal.

g++ -std=c++2b -0 test.exe chaos_random.cpp generation.c generation.h
encryption.c encryption.h

Next, let’s examine each file and discuss the most important lines of code.

Figure 14-4 shows the execution of the program and the numbers generated for each
of the keys. As you saw in the Rossler attractor section, three fixed points need to be
computed to solve the equations. Each fixed point is represented by a cryptographic key
(e.g., key 1, key 2, key 3).

mand Prompt

C:\Users\mariu\Desktop\RandomGenerate_RosslerAttractor>g++ -std=c++2b -0 generateRandomNumber_ReosslerAttractor.exe
generateRandomNumber_RosslerAttractor.cpp generation.c generation.h encryption.c encryptien.h

c:\Users\mariu\Desktop\RandomGenerate_RosslerAttracter>generat r_RosslerAttractor.exe
Hey 1 -> U556583152398425

Key 2 -> U556583152U81851

Key 3 -> U5565831520404718 I
The position with the stream is -> 134283522

1GiB in 18.987868s I

C:\Users\mariu\Desktop\RandomGenerate_RosslerAttractors|

Figure 14-4. Secure random number generator

Listing 14-4 shows the header file (encryption.h) for defining the signature function
for the encryption process, encryption. The function has three input values.

o struct generation *gisastruct object used for generating the
mantissa, exponent, and sign for obtaining the normalization form
of a real number. The definition of the struct can be found within file
generation.h (see Listing 16-2).

340

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

e uint8 t *buffer isthe buffer with the data used for encryption.

o size t lengthis the length of the buffer.

Listing 14-4. Header file encryption.h

#ifndef ENCRYPTION H
#define ENCRYPTION_H

#include "generation.h"
#include <stddef.h>

void encryption (struct generation *g, uint8 t *buffer, size t length);
#endif

Listing 14-5 is the implementation of the generation.h header file, which contains
definitions for the Rossler attractor (see ROSSLER(x,n)), the coordinates (A, B, and C),
integral approximation (APPROXIMATION constant), removing noise constant (REMOVE_
NOISE), two functions for generating the initialization on 16 and 32 bits (generation_
initialization and generation 32), describing the normalization of real numbers
as a union and struct type, containing for the double numbers the mantisa, exponent
and sign (realbits union), and a struct (generation struct) for the generation process,
which contains three variables that represent the fixed points (e.g., X, Yy, and z).

Listing 14-5. Header file generation.h

#ifndef GENERATION_H
#define GENERATION H

#include <inttypes.h>
#include <math.h>

// the Rossler (ROL) attractor definition for plane (x,n)
#tdefine ROSSLER(x,n) ((x = ((x << n) | (x >> (32 - n)))))

// the attractor variables (coordinates) - for this example Rossler
is chosen

#define A Coordinate 0.5273

#define B_Coordinate 3

#define C Coordinate 6

341

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

// constant for integral approximation as a step size
#define APPROXIMATION 0.01

// constant used for removing the initial noise
#define REMOVE_NOISE 64

void generation initialization(struct generation *g, uint64 t k[3]);
uint32_t generation32(struct generation *g);

// the normalization form of a real number
union realbits

{
double d;
struct
{
uint64_t mantisa: 52;
uint64_t exponent: 11;
uint64_t sign: 1;
} 1b;
};
struct generation
{
union realbits x, y, z;
};
#endif

Listing 14-6 is the implementation function for the encryption process. Note that
the encryption.c source file includes header files in Listing 14-4 and Listing 14-5. As
mentioned, encryption is performed using a generation struct that contains three fixed
points, a buffer used to hold the content to be encrypted, and its length. The function is
self-explanatory, and its main idea is based on the position within the data stream. The
number of calls plays an important role, as is using the length of the buffer and shifting
to the right with 2 bits.

342

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY
Listing 14-6. File encryption.c

#include "encryption.h”
#include "generation.h"

#include <iostream>
using namespace std;

// performing the encryption operation
void encryption(struct generation *g, uint8 t *buffer, size t length)
{

uint32_t position_in_stream;

size t number of calls = length >> 2;

size_ t 1 neighbor = length & 3;

uint8 t *temporary = (uint8 t *)8position_in stream;

for(size t index = 0; index < number of calls; ++index)
{
position in stream = generation32(g);
buffer[(index<<2)] ~= temporary[0];
buffer[(index<<2)+1] "= temporary[1];
buffer[(index<<2)+2] "= temporary[2];
buffer[(index<<2)+3] "= temporary[3];

}

if(1 _neighbor!= 0)
{
position in stream = generation32(g);
for(size t index = 0; index < 1 neighbor; ++index)
buffer[(number of calls<<2)+index] "=
temporary[index];

std::cout<<"The position with the stream is -> "<<position_in_
stream<<endl;

343

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

Listing 14-7 is the implementation for different operations necessary for generating
the fixed points and performing the initialization process. Here, we also use the ROSSLER
function defined in Listing 14-5.

Listing 14-7. File generation.c
#include "generation.h"

static void initialization(struct generation *gen, double initValueX,
double initValueY, double initValueZ)

{
gen->x.d = initValueX;
gen->y.d = initValueY;
gen->z.d = initValueZ;
}
static void perform iteration(struct generation *gen)
{
gen->x.d = gen->x.d + APPROXIMATION * (-gen->y.d - gen->z.d);
gen->y.d = gen->y.d + APPROXIMATION * (gen->x.d + A Coordinate *
gen->y.d);
gen->z.d = gen->z.d + APPROXIMATION * (B_Coordinate + gen->z.d *
(gen->x.d - C_Coordinate));
}
void generation initialization(struct generation *gen, uint64 t
keyValue[3])
{
initialization(gen,
(double)keyValue[0] / 9007199254740992,
(double)keyValue[1] / 8674747684896687,
(double)keyValue[2] / 6758675765879568);
for(uint8 t index = 0; index < REMOVE NOISE - 1; ++index)
perform_iteration(gen);
}

344

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

uint32_t generation32(struct generation *gen)

{

uint32_t message[6];

message[0] = (uint32_t)(gen->x.rb.mantisa >> 32);

message[1] = (uint32_t)(gen->x.rb.mantisa);

message[2] = (uint32_t)(gen->y.rb.mantisa >> 32);

message[3] = (uint32_t)(gen->y.rb.mantisa);

message[4] = (uint32_t)(gen->z.rb.mantisa >> 32);

message[5] = (uint32_t)(gen->z.rb.mantisa);

perform iteration(gen);

message[0] += message[1];

message[2] += message[3];

message[4] += message[5];

for(uint8 t index = 0; index < 4; ++index)

{
ROSSLER(message[0],7); ROSSLER(message[3],13);
message[5] "= (message[4] + message[3]);
message[1] ~= (message[2] + message[0]);
message[2] = message[2] "~ message[0] " message[5];
message[4] = message[4] * message[3] * message[1];

}

message[2] += message[4];

return message[2];

}

Listing 14-8 is the implementation of the main program. It is necessary to specify that
the path to the file that contains random numbers (similar to urandom in the Unix OS)
has to be adjusted accordingly for reader confusion. The line where the path has to be
modified is shown in bold as follows.

if((folder = open("D:/Apps C++/Chapter 14 - Chaos-based Cryptography/
ChaosSecureRandomNumberGenerator/dev/urandom”, O RDONLY)) == -1)

345

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

Listing 14-8. Main Program

#include "encryption.h”
#include "generation.h"

#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <windows.h>
#include <time.h>
#include <inttypes.h>
#include <iostream>

using namespace std;
const size t MESSAGE LENGTH = 2000000000;

uint64 t generateStringOfBytes()
{

int folder = 0;
ssize t resourcefFile = 0;
uint64_t buffer = 0;

if((folder = open("C:/Users/mariu/Desktop/RandomGenerate
RosslerAttractor/urandom ", O RDONLY)) == -1)
exit(-1);

if((resourceFile = read(folder, 8buffer, sizeof buffer)) < 0)
exit(-1);

buffer & ((1ULL << 53) - 1);
close(folder);
return buffer;

346

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

int main(void)

{

struct generation gen;
uint64 t key[3] = {generateStringOfBytes()+rand()%3000, generate
StringOfBytes()+rand()%5000, generateStringOfBytes()+rand()%8000};
cout<<"Key 1 -> "<<key[0]<<endl;
cout<<"Key 2 -> "<<key[1]<<endl;
cout<<"Key 3 -> "<<key[2]<<endl;

// generate 1GiB of 1s
uint8 t *message = (uint8 t*)malloc(MESSAGE LENGTH);
memset(message, 1, MESSAGE_LENGTH);

// perform encryption
generation_initialization(&gen, key);

clock t s = clock();

encryption(8gen, message, MESSAGE_LENGTH);
clock t e = clock();

double spent = (double)(e - s) / CLOCKS PER SEC;
printf("1GiB in %1fs\n", spent);

free(message);

Encrypt and Decrypt Using Chaos and Fractals

This section discusses and implements a solution for encryption/decryption operations

using chaos and fractals notions.

Listing 14-9 declares the main functions that deal with processing the representation

of starting points and performing the projections for axes x and y.

One of the most challenging operations and tasks to achieve when using

fractals and chaotic systems is to identify the path and the main root (see function
identifyFirstRoot()).

The code in Listing 14-9 and 14-10 is self-explanatory and contains the necessary

notes to be fully understood. Figure 14-5 shows the execution of the application.

347

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

G 3 o Crypte_Enclec (exe Crypto Enclec G Crypta.Encbec b

x e
B) (Flaintest ValuesBl} (Escryptics -> First Methed (A} = 343722798} (Encryption == Second Method () = 1568938668) (Decryption == A with B = 613 (Becryptica -> B with &
1) [(Plaintext Value=&47] (Emcryptien -» First Method (&) = 23034689) (Encryption -» Second Method (B) = 736348834) (Decryption -> & with B = 467} (Decryption -> B with

F » First Method (A) = 1755008989) (Encryption -> Second Method (B) = LUDGES632) (Decryption -> A with B = 338) (Deeryptica -> B with

1) {Flaintaxt —* First Method (&) = ZBOZESTWTT) (Encryption -> Second Method (B) = 2908655692 (Decryption —> A with B = 340} (Decryptisn -> € with A = 569)
W (Plat =» First Mathes (A) = 1239329891) (Emeryption -> Second Mathod (E) = J602563115) (Dweryption -> A with B = 169) (Deeryptica -> B with A = 169)
2 (Flaintest den > First Method (&) = 8059357047) (Encryption -» Second Method (B) = 3110420061 ({Decryption -» & with B = T28) (Decryption -> B wits & = T24)
6) [Flaintest == First Method (A} = 1970562309) (Encryption -» Second Method (B) = 32089678700 (Decsyption -= A with B = UT8) (Decryptica -> B with A = 478)
mn Flaintext -» First Method (A) = 4¥9016380) (Encryption -> Second Method (B) = 1567892332) (Decryption -> A with B = 358) (Decryotion —> B wit = 358)
8 (P - First Method (A) = B629221661) (Eneryption -» Second Method (E) » 356062316) (Deeryption -> A with B = 961) (Decrystise —> B with A = 960}
§) (Flaintext =* First Method () = I304590479) (Encryption -> Second Mathod (B} = 3712827296 (Decryption -> A with B = 464} (Decryptice -> B with A = 284}
FOR ~> First Methed (A) = SBUTSTSISY) (Enerypelen -» Second Mothed (B) = 138J83614%) (Decryption -» A with B = T85) (Deeryptiss -» B mith 4 = T85)

1) (Plaintest Valwes125) |mrﬂtim —=> First Methed (A) = 3862357311 (Encryption -> Second Method (B) = 1350182384) (Decryption -> A with 0 = 185) (Decryption - B with A =

12) (Pladntext Valwe=231) (Escryptios -» First Method (A) = 3331494819} (Dncryption -» Second Methed (B) = lZNNJ (Decryption -» A with B = Nl]

13) (Plaintext Valwe=827) (Encryotise -> First Method (A) = 297938u228) (Encryption -> Second Method 58) (Decryptisn -> A with & = E27)
(

(B) = 35619UHT

1) Plaintest Valwes$sl) Eacryptise -» Firet Methed (A) = P18450850) (Encryption -» Second Mathod (E) = lﬂ‘-"ll?“%) {Decryption - A with B = ﬁl]
13) (Plaintext Valus=s91) fom -3 First Method (A) = 2B4u83081) (m:qnuan -» Sacond Mathod (B) = 269017U233) (Decryption -» & with B = 691) (Decryptiss - B with & = m:
16} (Plaintest Yaluwes#S) (Facryptiom == First Method (A) = ITIB6GUIAY) (Fncryption == Second Method (B) = J0TTAIUSEY (Decryption == & with B = W5} (Becryptica —» B with & =

170 (Plaintext Valwes591) (Escrystiss -> First Methed (A) = 975594333) (Encryption -> Second Method (B) = I776U22U36) (Decryption -> A with B = 562) (Decryptioa —> B with A = m}
18) Plaintext Valwes327) (Eacryptios -> First Method (A) = 29736BESE1) (Dncryption -» Second Method (B) = 1621696693) (Decryption -» A with B = 827) (Decryptiea -» B with A = 87}
19) (Plaintext Valwe=836) (Emcryptise -> First Method (A) = 221067963) (Encryption -> Second Mothod (B) = 2605405785) (Deeryption -> A with B = Wls) (Decryptics -> B with A = 436
) Plaintest Valwes39l) (Hacryptise -» Firet Method (A) » 3800360883) (Encryption -» Second Method (B) = UlG41044S) (Cecryption -» A with B = 391) (Decrypties -» B with 4 = 391}
;M) (Plaint, = 1101594271} (Encryption -» Second Method (B) = 1727836773) (Decryption -> A with 8 = £84) (Decryptiss -> B with A = 60d)
22) (Plaintest Valwes$™2) (Emcryptios <> First Method (A) = 3651236137) (Encryption =+ Second Method (B) = M12250191) (Decryption =» A with B = 900] (Decryption <= B with A = 907)
23) (Plaintext ValweslS3) (Emerystise -> First Methed (A) = ZE71008385) (Emeryption -> Seeond Methed (B) = EJUNSIITE) (Deeryptisn -> A with B = 183} (Deeryptiea -> B with A = 153)
) Plaintest Valwes19l) (Emcryptiss —> First Method (A) = 4RS756186) (Encryption -> Second Mathod (B) = uSBGI8120) Decryption - A with B = 190) (Decryption —> § with & = 390}
%) (Plaintext Valus=1Z1) (Emcrystise -> First Methed (A) = JMSTUIEEN1) (Encryption -> Socond Mothod (B) = 390S133311) (Decryption -> A with 8 = 331) (Dueryptiss -> B with A = 11}

36) (Plaintest Valwesdil) Eacryption -» First Method (A) = 1763601877} (Encryption -» Second Method (B) = 258020802) (Decryption -» A with B = W1) (Decryptica -> B with 4 = &)
3T) (Plaintext Valwe=TI8) (Emcryptios -> First Method (A) = STBO06E91) (Encryption -» Second Method (B) = 1100517201) (Decryption -> A with B = T16) (Decryptics -> B with A = T16)
m) Plad iom -» First Method (A) = 2900440324} (Encryption -» Second Method (B) = 2227768599) (Cecryption -» A with B = 'MOJ (Decryptisn -» B with A = 718}
9 > First Method (A) = 232884501) (Encryption -> Second Method (E) = 3696696801) (Decryprion -> A with B = (Deeryptica -> B with A = 98]
30) (Plaintext Valees®dT) (Encrypties -> Firet Method (A) = JITION0SM) (Encryption -> Second Method (B) = 2181770301} {Decrypkisn -> A with B = ulf) (Dacryptisn —» & with A = AT}
) (Plaintest Valus=Ti6) (Emerystise =» First Methed (A) = 1951907195) (Enerypeion -» Second Mothed (B) = J12601895) (Dveryption => A with B = TI6) (Deeryptica => B with & = TI6)
m Plaintest ValwesTT1) <> First Method (A) = 93996577) (Encryption -» Second Method (B) = 2637168318) (Decryption -> A with B = TT1) (Decryption -> 8 with & = TT1)

33) (Pladntext ValwesS32) (Emerystise - First Method (A) = 2ITU147970) (Emerypeion -» Second Method (B) = 2041630850) (Decryption -» A with B = £33) (Deeryptiea -> B mith A = 533)
3a) (Plaintext Valwe=865) (Emcryption - First Method (A) = 267262835) (Encryption —> Second Method (B) = 2015686855) (Decryption -> A with B = $65) (Decryptien —> B with A = 8659)
35) (Plasntest Valess9ll) (Emerystise - First Methed (A) = 240373952) (Emerypeion -» Second Mothed (B) = 319928381 ([weryption -» A with B = 911) (Deeryptica -» B wita A = 911)
34) (Plaintext Valwes#dT) (Emcryptios -> First Method (A) = U134578031) (Encryption -> Second Method (B) = 21U8661781) (Decryption -> A with B = 847) {um-mlu -» B with A = 647}
3IT) (Plaintest Valwes29) (Facryption =» First Method (A) = FTISTE7666) (Encryption =» Second Method (B) = 3868556735) (Decryption = A with B = 299) (Decryptica =» B with & = 399)
» Pl Walue=35) -» First Method (A) = 1205318349) (Encryption -> Second Method (B} = 41303029190 (Decryption -> A with B = 15) {Docr)atm -> B with & = 35)

39) (Plaintext Valwe=338) (Eacryptise -» First Methed (A) = SB457538) (Encryption -> Second Method (B) = 3I712343564) (Decryption -» A with B = 8%6) (Decryption -> B with & = 835)

8] (Plaintext Valwe=Td§) (Escryptiss -> First Methed (A) = Z21296764) (Encryption -> Second Method (B) = 1306273599) (Decryption -> A with L (Decryption -> B with A = 793}
41} (Pladntert Valessll) (Emerystise -» First Methed (A) = J601ISTTD) (Emerypedon -» Second Methed (B) = 3A3I3JU0SD) (Decryptisn -» A with & = 811) (Deeryptiss -» B mith 4 = 811)
) (Plaintest Valwes327) (Emcryotios -> First Method (A) = ZR5041784) (Encryption -» Second Method (B) = 'nmmwl (mexion => A with B = 372} (Decryptios -> B with & = 537}

) Pl Escrystion == First Methed (A) = MTO3976) (Encryption =+ Second Methed (B) = 3607T6378) Decsyption == A with B = 333) (Decryptics =» B with & = 333}
) - -> First Method (A) = 226881793) (Encryption -> Second Method (8) = nmmm (kcrwuan - A with B = 671) (Decryptisa —> B with A = 673}
us) Plaintext Valuew88) (Escryptiss —> First Methed (A) = 2139505175) (Encryptien -» Second Method (B) = J213960686) Decryption -> A with B = 664) 3

u6) (Plaintext Valwe=1dl) (Escryptiss -> First Methed (A) = J162209364) (Encryption -> Second Method (B) = J855203218) 1D|(lypuu| => A with B = 181)

Ty ValuesTi1) (Facryption -» First Method (A} = J653568746) (Fncryption -» Second Method (B) = JAUSYI0009) (Pecryption -» A with B = TH1] (Decryptisa -» B mith & = TIL)
u8) Waluwes253) (Emcryptios -> First Methoed (A) = T742032809) (Encryption -» Second Method (B) = 1396283185) (Decryption -» A with 8 = 353) (Decryptiss -> B with & = 351)
) i iem -» First Method (A) = XI213I76693) (Dncryption -» Second Method (B) = 1500664504) (Decryption -» A with B = 863] (Decryptien -» B with & = 868)
c _Fractaley

Figure 14-5. Execution of the encryption/decryption process

The following command must be entered in the terminal to run the program.

g++ -0 test.exe Crypto EncDec_Cryptography.cpp Crypto EncDec_Cryptography.h

Listing 14-9. Header file Crypto_EncDec_Cryptography.h

#ifndef CRYPTOCIPHERFRACTALS H_
#define CRYPTOCIPHERFRACTALS H_

#include <climits>
#include <assert.h>
#include <math.h>

class CryptoFractalCipher

{
// point C = (x, y) - the representation in the xOy system of point C
double c_xCoordinatePoint, c¢_yCoordinatePoint;

// point Z = (x,y) - the representation in the xOy system of point Z
double z_xCoordinatePoint, z_yCoordinatePoint; //Zx,Zy;

348

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

// get the sign of a double number
inline double getSign(double number)
{
// in case that d is less than 0, return -1.0, making the
number negative
// contrary make the number positive
if (number<o)
return(-1.0);
else
return(1.0);

};

// Value 'yValue' will be projected over an integer matrix or grid.
// We have chosen this for achieving the scaling goal and
performing tests.
// The projection process is a matter of personal choice, any
other idea or
// solution can be implemented by reader.
inline unsigned int PerformProjectionFor Y(double yValue)
{

unsigned long q;

const double scale=(32768.0/2.0);

const double offset=(32768.0);

// do the projection as a positive integerproject to
positive integer
g=(yValue*scale)+offset;

//getting the LSB (least significant bit)
q8=1;
return q;

}

// Value 'xValue' will be projected over an integer matrix or grid.
// We have chosen this for achieving the scaling goal and
performing tests.

349

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

350

// The projection process is a matter of personal choice, any
other idea or

// solution can be implemented by reader.

inline unsigned int PerformProjectionFor_ X(double xValue)

{

}

// used for storing the decomposition value
double decompositionValue;

// power value (exponent)
int n;

// with frexp() we will decompose the double point (xValue) as
// argument into a normalized fraction and an integral power
decompositionValue = frexp (xValue , 8n);

// with ldexp() we will return the result of multiplying
"decompositionValue'

// (the significand) with 2 and raised to the power '51'
(exponent)

decompositionValue = ldexp(decompositionValue,51);

// Test if the difference between 'decompositionValue' and

// floor(decompositionValue) is less than 0.5

// if yes return '1', otherwise '0'.

// With floor() we round 'decompositionValue', returning

the largest

// integral value that is not greater than 'decompositionValue'
return (((decompositionValue-floor(decompositionVal
ue))<0.5)?1:0);

inline void identifyFirstRoot()

{

/* Zn*Zn=Z(n+1)-c */
z_xCoordinatePoint=z_xCoordinatePoint-c_xCoordinatePoint;
z_yCoordinatePoint=z_yCoordinatePoint-c_yCoordinatePoint;

// r represents the length of the vector from the origin to
the point

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

/1 1 = |z| = sqrt(x*x+y*y)
double r;

// the new point z = (x,y)

double z_xNewPointValue, z_yNewPointValue; //NewZx, NewZy
r=sqrt(z_xCoordinatePoint*z_xCoordinatePoint+z_
yCoordinatePoint*z_yCoordinatePoint);

// the below code sequence represents the implementation of the
algorithm presented in [16], from page 361 to 362.
// case 1: z>0
if (z_xCoordinatePoint>0)
{
z_xNewPointValue=sqrt(0.5*%(z_xCoordinatePoint+r));
z_yNewPointValue=z_yCoordinatePoint/(2*z_xNewPointValue);

}

// for cases when z<0 and z=0
else
{

// case 2: z<0

if (z_xCoordinatePoint<0)

{
z_yNewPointValue=getSign(z_
yCoordinatePoint)*sqrt(0.5%(-z_
xCoordinatePoint+r));
z_xNewPointValue=z_yCoordinatePoint/(2*z_
yNewPointValue);

}

//case 3: z=0

else

{

z_xNewPointValue=sqrt(0.5*fabs(z_
yCoordinatePoint));

if (z_xNewPointValue>0) z_yNewPointValue=z_
yCoordinatePoint/(2*z_xNewPointValue);

351

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

public

};
#tendif

else z_yNewPointValue=0;

};

// end of the implementation

// the values for x and y coordinates
z xCoordinatePoint=z_xNewPointValue;
z_yCoordinatePoint=z_yNewPointValue;

}s

//obtains the encrypted value

unsigned int getEncryptedMessageA(unsigned int
unsigned int getDecryptedMessageB(unsigned int
unsigned int getEncryptedMessageC(unsigned int
unsigned int getDecryptedMessageD(unsigned int

// gets the single bit

unsigned int bitCodeEncryptedMessageA(unsigned
unsigned int bitCodeDecryptedMessageB(unsigned
unsigned int bitCodeEncryptedMessageC(unsigned
unsigned int bitCodeDecryptedMessageD(unsigned

// constructor
CryptoFractalCipher(double cx,double cy);

// destructor
virtual ~CryptoFractalCipher();

Listing 14-10. Main Program

#inclu
#inclu
#inclu
#inclu
#inclu

352

de "FractalCipherCrypto.h"
de <climits>

de <assert.h>

de <math.h>

de <iostream>

plainValue);
encryptedValue);
stream);
stream);

int plainValue);

int encryptedvalue);
int stream);

int stream);

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY
using namespace std;

// implementing bitCodeEncryptedMessageA from FractalCipherCrypto.h file
unsigned int CryptoFractalCipher::bitCodeEncryptedMessageA(unsigned int
bit_from plaintext)
{

// below we will create a cryptographic stream from the clear stream

int crypto bit=0;

{

identifyFirstRoot();

// quadratic value
unsigned long quadraticValue = PerformProjectionFor X(z_
yCoordinatePoint);

// Do the encoding process and provide the
// cryptographic stream from the clear stream
// Variables used:

!/ - iV: the input value
// - oV: the output value
// - rV: the route value in the expansion of the fractal

unsigned int iV, oV, rV;

{

unsigned int resulti, result2, results;
iv=(bit _from plaintext) & 1;

// obtained from the iteration of the quadratic value
resulti=quadraticValue;

// input value
result2=iV,

// we will copy the bits if it is set in one operand but
not both
result3=resulti*result2;

// the final output value
oV=result3;

353

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

// the route value that needs to be followed within the
expansion of the fractal
rV=result2;

}

crypto bit=(oV);
if ((zv) '=0)

{

// use the route on the second root point
z_xCoordinatePoint=-z_xCoordinatePoint;
z_yCoordinatePoint=-z_yCoordinatePoint;

}

return crypto bit;
};

unsigned int CryptoFractalCipher::bitCodeDecryptedMessageB(unsigned int
bit_from encoding)
{
// decode the clear value from the cryptographic stream
int bit from plaintext=0;
{
identifyFirstRoot();

// computing the quadratic value
unsigned long quadraticValue = PerformProjectionFor X(z_
yCoordinatePoint);

// decoding process for obtaining the clearstream from the
cryptographic stream
// Variables used:

// - iV: the input value
// - oV: the output value
// - rV: the route value in the expansion of the fractal

unsigned int iV, oV, rV;

{

unsigned int resulti,result2,results;

354

};

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY
iv=(bit_from encoding) & 1;

// obtained from the iteration of the quadratic value
resulti=quadraticValue & 1;

// input value
result3=iV,

// we will copy the bits if it is set in one operand but
not both
result2=resulti*result3;

// the output value
oV=result2;

// the route value that needs to be followed within the
expansion of the fractal
rV=result2;

}

bit from plaintext=(oV);
if ((zv) '=0)

{

}

// use the route on the second root point
z_xCoordinatePoint=-z_xCoordinatePoint;
z_yCoordinatePoint=-z_yCoordinatePoint;

return bit from plaintext;

unsigned int CryptoFractalCipher::bitCodeEncryptedMessageC(unsigned int
bit from stream)

{

// generate the cryptographic stream from the clear stream

int bit from_coding=0;

{

identifyFirstRoot();

355

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

unsigned long quadraticValueForY = PerformProjectionFor X(z_

yCoordinatePoint);
unsigned long quadraticValueForX

PerformProjectionFor X(z_
xCoordinatePoint);

// encoding process
unsigned int iV, oV, rV;

{ unsigned int resulti, result2, result3, result4;
iv=(bit_from_stream);

// from the iteration of the 'y' quadratic
resulti=quadraticValueForY;

// from the iteration of the 'x' quadratic
result2=quadraticValueForX;

// we will copy the bits if it is set in one operand but
not both

result3=iV resulti;

result4=iV result2;

// the output value
oV=result3;
rV=result4; // branch in path to follow through IIM

}
bit_from_coding=(oV);
if ((xv) !'=0)

{

// use the route on the second root point
z_xCoordinatePoint=-z_xCoordinatePoint;
z_yCoordinatePoint=-z_yCoordinatePoint;

}

return bit from coding;

};

356

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

unsigned int CryptoFractalCipher::bitCodeDecryptedMessageD(unsigned int
bit from stream)

{

{

// generate the cryptographic stream from the clear stream
int bit_from_coding = 0;

identifyFirstRoot();

unsigned long quadraticValueForY

PerformProjectionFor X(z_

yCoordinatePoint);

unsigned long quadraticValueForX

PerformProjectionFor X(z_

xCoordinatePoint);

// encoding process
unsigned int iV, oV, rV;

{

}

unsigned int result1i, result2, result3, results4;
iV=(bit from stream) & 1;

// from iterated quadratic y and x
resulti=quadraticValueForY;
result2=quadraticValueForX;

// we will copy the bits if it is set in one operand but
not both

result3=iV resulti;

result4=result3”result2;

// output value
oV=result3;

// the route value
rV=results;

bit from coding=(oV);

if ((xV) != 0)

{

//take branch to second root
z_xCoordinatePoint=-z_xCoordinatePoint;

357

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

z_yCoordinatePoint=-z_yCoordinatePoint;

}

return bit from coding;

};

unsigned int CryptoFractalCipher::getEncryptedMessageA(unsigned int
clearstream)

{
// for creating the cryptographic stream from the clear stream
int cryptographic_stream=0;
for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))
{
// encoding process for obtaining cryptographic stream from
clear stream
unsigned int iV,oV;
iV=(clearstream>>iterationIndex) & 1;
oV=bitCodeEncryptedMessageA(iV);
cryptographic_stream+=((oV)<<iterationIndex);
}
return cryptographic_stream;
};
unsigned int CryptoFractalCipher::getDecryptedMessageB(unsigned int
cryptstream)
{

// for creating the clear stream from the cryptographic stream
int clearstream=0;

for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

{

// decoding process for obtaining the clear stream from the
cryptographic stream
unsigned int iV, oV;

iV=(cryptstream>>iterationIndex) & 1;

358

}

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

oV=bitCodeDecryptedMessageB(iV);
clearstream+=((oV)<<iterationIndex);

return clearstream;

};

unsigned int CryptoFractalCipher::getEncryptedMessageC(unsigned int stream)

{
/1

//
int

for

}

construct the cryptographic stream from clear stream
cv - the code value
cV=0;

(int iterationIndex=0; iterationIndex<32; (iterationIndex++))

// encoding process for generating the cryptographic stream from
clear stream

unsigned int iV,oV;

iV=(stream>>iterationIndex) & 1;

oV=bitCodeEncryptedMessageC(iV);

cV+=((oV)<<iterationIndex);

return cV;

};

unsigned int CryptoFractalCipher::getDecryptedMessageD(unsigned int stream)

{
/1

//
int

for

construct the cryptographic stream from clear stream
cv - the code value
cV=0;

(int iterationIndex=0; iterationIndex<32; (iterationIndex++))

// encoding process for generating the cryptographic stream from
clear stream

unsigned int iV, oV;

iV=(streamy>>iterationIndex) & 1;
oV=bitCodeDecryptedMessageD(iV);

359

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

cV+=((oV)<<iterationIndex);

}

return cV;
b

CryptoFractalCipher: :CryptoFractalCipher(double cPoint xValue,double
cPoint_yValue)
{
c_xCoordinatePoint=cPoint_xValue;
c_yCoordinatePoint=cPoint_yValue;

z_xCoordinatePoint=z_yCoordinatePoint=0;

// use repeating digits as for encoding process using PI value with
the goal to find a fixed point
for(int index=0; index<32; index++)
getEncryptedMessageA(3141592653);
}

// destructor implementation - only if it is necessary
CryptoFractalCipher: :~CryptoFractalCipher()

{

}

int main(void)
{
// CryptoKey rValue and CryptoKey iValue are represented as
// a point that is situated near the boundary of the Mandelbrot set
// the real value of a complex number (cryptographic key)
double CryptoKey rValue=-0.687;

// the imaginary unit
double CryptoKey iValue=-0.312;

unsigned int Plaintext[50];

unsigned int EncryptionA[50];
unsigned int EncryptionB[50];
unsigned int DecryptionOfAWithB[50];

360

CHAPTER 14 CHAQS-BASED CRYPTOGRAPHY
unsigned int DecryptionOfBWithA[50];

// generate random message
for (int i=0;i<50;i++)
Plaintext[i]=rand()%1000;

// perform message encoding using getEncryptedMessageA for A
{
CryptoFractalCipher CFC(CryptoKey rValue, CryptoKey iValue);
for (int i=0;i<50;i++)
EncryptionA[i]=CFC.getEncryptedMessageA(Plaintext[i]);
}

// perform message encoding using getDecryptedMessageB for B
{
CryptoFractalCipher CFC(CryptoKey rValue, CryptoKey iValue);
for (int i=0;i<50;i++)
EncryptionB[i]=CFC.getDecryptedMessageB(Plaintext[i]);
}

// perform message decoding A with B using getDecryptedMessageB for B
{
CryptoFractalCipher CFC(CryptoKey rValue, CryptoKey iValue);
for (int i=0;i<50;i++)
DecryptionOfAWithB[i]=CFC.getDecryptedMessageB(Encryp
tionA[i]);
}
// perform message decoding B with A using getDecryptedMessageB for A
{
CryptoFractalCipher CFC(CryptoKey rValue, CryptoKey iValue);
for (int i=0;i<50;i++)
DecryptionOfBWithA[i]=CFC.getEncryptedMessageA(Encryp
tionB[i]);

361

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

// display the output value and the results
for (int i=0;i<50;i++)

{
cout
i
<<") (Plaintext Value="<<Plaintext[i]
<<") (Encryption -> First Method (A) = "<<EncryptionA[i]
<" (Encryption -> Second Method (B) = "<<EncryptionB[i]
<<") (Decryption -> A with B = "<<DecryptionOfAWithB[i]
<<" (Decryption -> B with A = "<<DecryptionOfBWithA[i]
<<")"<<endl;
};
}
Conclusion

This chapter discussed a different approach to cryptography, which is chaos-based
cryptography. The new cryptographic algorithms use the chaos function to generate new
cryptographic primitives differently from what we have used.

In this chapter, you learned the following.

o How chaos-based cryptography primitives are built and what makes
them different from normal cryptographic primitives

e How the chaos system is designed for text encryption and image
encryption

How can we implement a cryptographic system based on number generators using
a chaos approach and performing encryption and decryption operations with a chaos
system and fractals?

Chaos-based cryptography is one of the most secure encryption methods currently
available. It is based on the principles of chaos theory, which states that even simple
systems can produce unpredictable results. With chaos-based cryptography, the
encrypted message is fed into a mathematical formula that generates a seemingly
random sequence of numbers. This sequence cannot be reproduced or replayed,
which makes it almost impossible to crack. Each time the formula is used to generate
a sequence, the output is different, making it impossible for hackers to crack the code.

362

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

This is because the mathematical formula is constantly changing, which makes it almost
impossible for someone to identify a pattern.

Strong mathematical formulas are the backbone of chaos-based cryptography,
which makes it highly secure. It is nearly impossible to crack the code as the sequence of
numbers is generated by complex mathematical formulas that are constantly changing.
This means that hackers can never predict the next sequence of numbers, which makes
it virtually impossible to crack the code. It also makes it easier to share code, as it can
be broken down into simple mathematical formulas. Chaos-based cryptography is a
one-way encryption method, which means that it is almost impossible to decrypt the
message once it has been encrypted. This is in stark contrast to traditional encryption
methods, which can be deciphered if the correct formula is applied. This makes it the
perfect method for protecting sensitive information, such as financial data or health
records. It is also one of the quickest methods for generating a sequence of seemingly
random numbers. Most chaos-based cryptographic systems are based on computer
software, meaning they can quickly produce a sequence of random numbers. This can
be helpful if you need to send encrypted data to a client or colleague quickly.

References

[1]. Robert Matthews, On the derivation of a “chaotic” encryption algorithm.
Cryptologia 13, no. 1 (1989): 29-42.

[2]. L.Kocarev, “Chaos-based cryptography: a brief overview,” IEEE Circuits and
Systems Magazine, vol. 1, no. 3, pp. 6-21, 2001.

[3]. Ali Soleymani, Zulkarnain Md Ali, and Md Jan Nordin,” A Survey on
Principal Aspects of Secure Image Transmission’, World Academy of Science,
Engineering and Technology 66 2012, pp. 247-254.

[4]. D.Chattopadhyayl, M. K. Mandall and D. Nandi,” Symmetric key chaotic
image encryption using circle map’, Indian Journal of Science and Technology,
vol. 4, no. 5 (May 2011) ISSN: 0974- 6846, pp. 593-599.

[5]. Anto Steffi, Dipesh Sharma,” Modified Algorithm of Encryption and
Decryption of Images using Chaotic Mapping,” International Journal of
Science and Research (IJSR), India Online ISSN: 2319-7064, vol. 2 Issue 2,
February 2013.

363

CHAPTER 14 CHAOS-BASED CRYPTOGRAPHY

[6].

[7].

8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

364

K. S. Sankaran and B. V. S. Krishna, “A New Chaotic Algorithm for Image
Encryption and Decryption of Digital Color Images,” International Journal of
Information and Education Technology, pp. 137-141, 2011.

Somaya Al-Maadeed, Afnan Al-Ali, and Turki Abdalla, “A New Chaos-Based
Image-Encryption and Compression Algorithm,” Hindawi Publishing
Corporation, Journal of Electrical and Computer Engineering, vol. 2012, Article
ID 179693.

Hazem Mohammad Al-Najjar, Asem Mohammad AL-Najjar, “Image
Encryption Algorithm Based on Logistic Map and Pixel Mapping Table.”
Sodeif Ahadpour, Yaser Sadra,” A Chaos-based Image Encryption Scheme
using Chaotic Coupled Map Lattices.

Kamlesh Guptal, Sanjay Silakari, “New Approach for Fast Color Image
Encryption Using Chaotic Map’, Journal of Information Security, 2011, 2,
139-150.

Chong Fu, Jun-jie Chen, Hao Zou, Wei-hong Meng, Yong-feng Zhan, and
Ya-wen,” A chaos-based digital image encryption scheme with an improved
diffusion strategy’, Optical Society of America, 30 January 2012/Vol. 20, No. 3/
pp 2363-2378.

D. Chattopadhyayl, M. K. Mandall and D. Nandi,” Symmetric key chaotic
image encryption using circle map’, Indian Journal of Science and Technology,
vol. 4 no. 5 (May 2011) pp. 593-599.

Shima Ramesh Maniyath1 and Supriya M, “An Uncompressed Image
Encryption Algorithm Based on DNA Sequences,” Computer Science &
Information Technology (CS & IT), CCSEA 2011, CS &IT 02, pp. 258-270.
Murillo-Escobar, Miguel. (2014). A novel symmetric text encryption algorithm
based on logistic map.

L. Kocarev and S. Lian, Chaos-based cryptography: theory, algorithms and
applications, vol. 354. Springer Science & Business Media, 2011.

H.-O. Peitgen, H. Jiirgens, and D. Saupe, Fractals for the classroom: part

two: complex systems and mandelbrot set. Springer Science & Business
Media, 2012.

CHAPTER 15

Big Data Cryptography

Big data is the process through which data sets of large size (in a range from a few
terabytes to many zettabytes) are extracted, manipulated, and analyzed. These
techniques differ from traditional techniques, as big data contain different types of data,
structured or unstructured (video or audio files, images, texts, etc.).

Big data cryptography is related to data confidentiality, integrity, and authenticity,
representing an important topic that needs to be treated with attention because each
business has its computational model and software and hardware architecture. The
cryptographic methods related to big data differ from the traditional ones because
encryption systems and their related concepts are defined differently regarding the
policies for access control, cloud infrastructure, and storage management and techniques.

This chapter describes a general computational model applicable in a cloud
environment that enables and eases the implementation of big data analytics
applications. The following presents a classification of the nodes from cloud architecture
and their purpose in the big data analytics process. The types of nodes are based on
the classification from [1] to [3], and the notations are extended slightly to define the
following types of nodes.

o Iyrepresents an input node that handles the raw data used in the
application. These types of nodes collect data from front-end users
or data that are read or captured from different sensors (such as
fingerprint readers, holographic signatures, and temperature sensors).

o Cyrepresents the computational node that has a significant role in
the computational processes of the application. The basis of these
nodes is the ingestion nodes, which are included in a computational
node. In this classification, the ingestion nodes are called consuming
nodes. Their purpose is to scan and refine the input data, meaning
data preparation for the analysis process and its passing to the
enrichment nodes, where the data is processed.

365

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_15

https://doi.org/10.1007/978-1-4842-9450-5_15

CHAPTER 15

Sy represents the storage node, which has a significant role in
applying cryptographic techniques to the data. Its purpose is to store
the data involved in the computational processes applied between
end users and third parties. These nodes store the input data and the

BIG DATA CRYPTOGRAPHY

output data for data analysis.

Ry represents the result node, which receives the output of some
processes being executed. It can make automatic decisions based
on the output of the analysis process, or it can send the output to a

specific client.

Figure 15-1 shows an example of cloud architecture for big data analytics that

includes the elements described. The model can represent a pattern that describes

a wide range of big data applications. Note the set of one or more nodes of type H, as
follows H*,where H € {I, Cy, Sy, Rn}.

2

=

interacts with devices

coOveD g

Query

= 8 &

Cy (Ingestion) Sy(Storage) Cy(Consumer)

N
-@\- Requests

Cy(Enrichment)

-8
- —
Result Node

(Rw)
Data Receiver

Cloud architecture \ple for big data applications using analytics

Al rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 15-1. Example of cloud architecture with big data analytics applications

Figure 15-1 presents a general cloud model that can be applied to an application

that requires data sets. In the example, node I initiates the process of collecting

reference data sets. The input nodes send data sequences to the Cy(Ingestion) node.

In the ingestion node, the data sequences are used by the computation process for

which they are parsed. The output data is organized in files or databases when the

366

CHAPTER 15 BIG DATA CRYPTOGRAPHY

computational process ends. In the next step, the files and databases are sent to the
storage nodes Sy (Storage). From time to time, the enrichment nodes Cy(Enrichment)
perform computation over the data from the storage nodes. Mostly, these processes are
performed offline and update the associated metadata according to the user’s needs. In
our example, Ry (Data Receiver) represents a user that correlates the data set with the
reference data set.

Cloud computing presents many security challenges for the data that move through
and between its components. To follow the path of protection techniques from cloud
cryptography, you need to consider three main security goals, known as the CIA triad.

o Confidentiality. The data referred strictly to the input and output
of the computations needs to be kept secret to be protected against
untrusted parties, malicious parties, or other potential adversaries.

o Integrity. Any changes that are not authorized over the data must be
immediately detected. Note that nefarious actors do not always cause
integrity issues; software bugs or data transfer issues can also cause
them. Regardless, the integrity of the data must be enforced.

e Availability. The data owners and the authorized data users can
access the data and computational resources.

Let’s focus on availability because it is one of the most important cloud
characteristics but excludes cryptographic means. For this reason, confidentiality and
integrity must be involved as much as possible in the cloud. Big data architecture and the
way data is stored are also relevant for security and cryptographic purposes. The way in
which confidentiality and integrity are achieved is dictated by how the cloud is deployed.
When developing an application, it is important to establish from the beginning which
participant controls which component of the cloud and the degree of trust awarded to
each component and participant. Based on this, consider the following types of clouds.

¢ Atrusted cloud is deployed by governmental organizations or
institutions, and it is isolated completely from anything from outside
(networks or adversaries). Public cloud vendors such as Microsoft
have regions for US government users. The Microsoft Jedi contract
with the Department of Defense covers such use and Azure cloud
resources authorized for secret and top-secret use. The files of the
users or clients are stored completely in a safe without being worried

367

CHAPTER 15 BIG DATA CRYPTOGRAPHY

about corruption or stealing. However, there are situations in which
some of the nodes are exposed as they may communicate with
external networks. Therefore, in these situations, malware or insiders
can affect these nodes.

e A semitrusted cloud does not specifically state if the cloud can
be trusted entirely or if it cannot be trusted at all. However, a good
practice is to mention the components under control and provide
solutions to monitor adversarial activities at a given time.

¢ In an untrusted cloud, the nodes within the cloud or the cloud
itself are not trusted at all by the data users. This scenario means no
security guarantees are given, including confidentiality or integrity of
the data or computations. In such situations, the cloud user should
have its own solutions and protection mechanisms to ensure (a
level of) confidentiality and integrity. Mainly, the untrusted cloud is
associated with the public cloud model.

After these short descriptions of the cloud and big data elements, let’s discuss the
cryptographic techniques that can be applied in these environments. Cryptographic
techniques are very complex to ensure the security of big data and cloud computing. It
is difficult to apply them in real-life scenarios without dedicated third-party software
libraries or experienced professionals.

This chapter focuses on three cryptographic techniques that can be used to achieve
the security of big data applications deployed in the cloud environment.

e Homomorphic encryption (see Chapter 12)
o Verifiable computation represents the first objective of this chapter
e Secure multiparty computation (MPC)

The following are other cryptographic techniques that can be applied successfully to
achieve security in cloud computing and big data.

e Functional encryption (FE)
o Identity-based encryption (IE)

o Attribute-based encryption (AE)

368

CHAPTER 15

BIG DATA CRYPTOGRAPHY

The next section presents a promising technique that can be applied in real

environments. Many encryption schemes that fall in the FE, IE, or AE types are very

difficult to use in practice because many works are based on theoretical assumptions.

Most do not consider the requirements and demands of business or industry

applications. Between theory and practice, it is a long path that theoreticians and

practitioners must go through together and collaborate closely to find solutions for

security concerns in real environments and to find and solve the existing problems

and gaps.

Verifiable Computation

A verifiable computation or verifiable computing refers to machines’ capability of

unloading the computation quantity of some function(s) to others; for example, clients

with untrusted status, while the results are being verified continuously (see Figure 15-2).

i

=

interacts with devices

N ’EEE
- n -

Cy (Ingestion)

*

GD?@DQ

v

-4
‘

Su(Storage)

.
o,
b--

Cy(Conswner)

Requests

- 4

Cy(Enrichment)

Result Node

(Rw)
Data Receiver

Verification of the
proof

Verifiable Computation

All rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 15-2. Verifiable computation example. The cloud nodes do not have any

trust level for integrity protection

An important application of verifiable computation for real environments is Merkle

trees, whose purpose is to check the integrity of the data. In big data, the Merkle tree

represents a data structure used to validate the integrity of different properties for items,

data, rows, sets of data, and so on. A very useful characteristic of Merkle trees is that

369

CHAPTER 15 BIG DATA CRYPTOGRAPHY

they can be used on large amounts of data (in the context of big data). In this direction,
improvements have been made by combining algorithms of verifiable computation with
Merkle trees.

The example in Listings 15-1 to 15-6 presents a scenario in which a Merkle tree is
self-balancing. The example is just a simulation (see Figure 15-1), and deploying the
application in a real big data environment requires proper adjustments.

The code is organized in the following files.

o tree_node.cpp contains the implementation of the methods used
with a tree node.

o tree_node.h contains the definitions of a tree node.

e tree.cpp contains the implementations of the methods used
with a tree.

e tree.h contains the definitions of a tree.

o tree_handling.h contains the function of printing and computing
the sha256 value of the information within a node.

e picosha2.his afile downloaded from the source [4] and represents
a header file for computing the sha256 hash value of an input. Its
content can be found in the source [4] or in this chapter’s code folder
on the GitHub repository for the book.

e main.cpp is the main file of the project.

Listing 15-1. The Content of the tree_node.h File

#ifndef TREE_NODE
#define TREE_NODE

#include <string>
using namespace std;

// define the node of the Merkle tree
struct tree node

{

string hash_value; // the hash value
tree_node *1 neighbor; // the left neighbor
tree_node *r_neighbor; // the right neighbor

370

CHAPTER 15 BIG DATA CRYPTOGRAPHY

// instantiates the hash value within the node
// see the corresponding .cpp file
tree node(string value);

};
#endif

Listing 15-2. The Content of the tree_node.cpp File

#include "tree node.h"
using namespace std;

// assigns the input hash value to the hash_value attribute of the tree node
tree node::tree node(string value)

{

this->hash_value = value;

}

Listing 15-3. The Content of the tree.h File

#ifndef MERKLE_TREE
#define MERKLE TREE

#include "tree node.h"
#include "picosha2.h"
#include "tree handling.h"
#include <vector>
#include <string>

using namespace std;

struct merkle tree {
tree node* tree root;
merkle tree(vector<tree node*> vector nodes);
~merkle tree();
void print merkle tree(tree node *node, int index);
void delete merkle tree(tree node *node);

};
#endif
371

CHAPTER 15 BIG DATA CRYPTOGRAPHY

Listing 15-4. The Content of the tree.cpp File

#include <iostream>
#include <iomanip>
#include "tree.h"

using namespace std;

merkle tree::merkle tree(vector<tree node*> vector nodes)

{

372

vector<tree node*> aux_nodes;
while (vector nodes.size() != 1)

{
print_hash values(vector nodes);
for (int i = 0, n = 0; i < vector nodes.size(); i =1 + 2, n++) {
if (i != vector nodes.size() - 1) // check if there is a
neighbour block
{
// merges the neighbor nodes and computes the hash value
of the new node aux_nodes.push back(new tree node
(compute_sha256(vector nodes[i]->hash value + vector
nodes[i + 1]->hash_value)));
// link the new node with the left neighbor and the right
neighbor
aux_nodes[n]->1 neighbor = vector nodes[i];
aux_nodes[n]->r neighbor = vector nodes[i + 1];
} else
{
aux_nodes.push_back(vector nodes[i]);
}
}
cout << "\n";
vector nodes = aux_nodes;
aux_nodes.clear();
}

CHAPTER 15 BIG DATA CRYPTOGRAPHY

// picks the first node as the root of the tree
this->tree root = vector nodes[0];

}
merkle tree::~merkle tree()
{
delete merkle tree(tree root);
cout << "The tree was deleted." << endl;
}

void merkle tree::print merkle tree(tree node *node, int index)
{
if (node) {
if (node->1 neighbor) {
print_merkle tree(node->1 neighbor, index + 4);
}
if (node->r neighbor) {
print_merkle tree(node->r neighbor, index + 4);

}
if (index) {

cout << setw(index) << ' ';
}

cout << node->hash value[0] << "\n ";

}

void merkle tree::delete merkle tree(tree node *node)
{
if (node) {
delete merkle tree(node->1 neighbor);
delete merkle tree(node->r neighbor);
node = NULL;
delete node;

CHAPTER 15 BIG DATA CRYPTOGRAPHY

Listing 15-5. The Content of the tree_handling.h File

#ifndef TREE_MISC
#define TREE_MISC

#include <iostream>
#include <string>
#include "tree.h"
#include "picosha2.h"

using namespace std;

// computes the hash value of the input using SHA256

inline string compute sha256(string input_string)

{
string hash_string = picosha2::hash256 hex string(input_string);
return hash_string;

}

// display the hash values from a vector of tree nodes
inline void print hash values(vector<tree node*> vector nodes)

{

for (int i = 0; i < vector nodes.size(); i++)

{
cout << vector nodes[i]->hash value << endl;
}
}
#endif

Listing 15-6. The Content of the main.cpp File

#include <iostream>
#include "tree.h"

using namespace std;

int main() {

vector<tree node*> nodes_set;

374

//create sample data

nodes set.push back(new tree
nodes_set.push back(new tree
nodes set.push back(new tree
nodes set.push back(new tree
nodes_set.push back(new tree
merkle tree.")));

// initialize leaves

for (unsigned int i = 0; i <
nodes_set[i]->1 neighbor
nodes_set[i]->r neighbor

}

merkle tree *hash tree = new
std::cout << hash tree->tree
hash_tree->print merkle tree(

for (int k = 0; k < nodes_set
delete nodes set[k];
}

delete hash_tree;

return 0;

CHAPTER 15 BIG DATA CRYPTOGRAPHY

node(compute_sha256("Merkle ")));
node(compute_sha256("tree ")));
node(compute_sha256("node ")));
node(compute_sha256("example.")));
node(compute _sha256("This is an example of

nodes set.size(); i++) {
NULL;
NULL;

merkle tree(nodes set);
root->hash _value << std::endl;
hash_tree->tree root, 0);

.size(); k++) {

To compile the code, the following command is used in the terminal.

g++ -0 result.exe main.cpp tree n
To run the code, type the following
result

The result is shown in Figure 15-3.

ode.cpp tree node.h tree.cpp tree.h

in the terminal.

375

CHAPTER 15 BIG DATA CRYPTOGRAPHY

C:\Users\mariu\Desktop\Chl5>g++ -std=c++2b -0 result.exe main.cpp tree_node.cpp tree_node.h tree.cpp tree.h |

C:\Users\mariu\Desktop\Chl5>result.exe

6ed9edffffb279fa75dbb781a7714aa9e90945af1ac259437F9U028219787761
8c5ae0d502b823c31aafe262c835uU5cTU200c3f1T7cy73d26230auuf17c6892e6
82fed3c720e393387b47a5eBedb7e21813ud26ff7726feady962ces547312a2d8
9c9bedf2307920dcoc2b5U3T75eccloU02222cb9al91eTye88e3007380ab0deT7
fbefl18busuf58f85fcA23107432206c96a71192e1d71cb2b1925585¢c681cc8be

86594769441b720defdd822e2784UeS 20a61c56a25b7 fbebeabca73
€22d2b6856c963d9bU5669T7c3efl2beTeaTesUc3b53Fdc5d1556870clT79611ea
fbef18bU6Uf58f85fcA23107432206c96a71192e1d71cb2b1925585c681cc8be

491b35881de38cTUcO98fe361682a000ed9f1bc20adblc2c9530061ad93f6efO
fbefl8buU6UF58F85fcP23168TU32206c96aT71192e1dT1cb2b1925585c601cc8be

fadd1dbl7bef2d5dcadu677efo7ufae87decb9e3u32ubead7febd52e301bd9bl
6

8
8

[:]

9

u
f

£

The tree was deleted.

C:\Users\mariu\Desktop\Ch15>|

Figure 15-3. The result of the implementation of a self-balancing Merkle tree

Conclusion

This chapter discussed the importance of applications deployed in the big data
environment and how security can be achieved through cryptographic mechanisms,
such as verifiable computation. For more about cloud computing, big data, and their
security, consult any of the works in this chapter’s “References” section.

In this chapter, you learned the following.

e The main concepts of security from a cloud and big data environment

e How to putin practice complex cryptographic primitives and
protocols, such as verifiable computation

Before implementing big data cryptography, businesses need to choose the right
data set. Companies should select data sets that are large enough to provide robust
protection without being overly complex. Data sets that are too small can be decrypted
using traditional cryptography, making them less effective against malicious actors.
Once the right data set has been selected, businesses can use it to create a secure

376

CHAPTER 15 BIG DATA CRYPTOGRAPHY

communication channel among various parties. This communication channel can be
used to share data and perform transactions, helping to protect sensitive information.
Companies can also use big data cryptography to authenticate users and prove their
identities without passwords. Finally, businesses can use big data cryptography to
automate certain security protocols, making the process more efficient and secure.
With the right data set, big data cryptography can provide businesses a wide range of
advantages, helping protect their sensitive information and keep customers safe.

Using big data cryptography to secure sensitive information can be challenging
since it requires expertise in various fields, including data science and cryptography.
Companies can simplify implementation by partnering with an outside vendor
specializing in big data cryptography. These vendors can help businesses implement
big data cryptography and manage the data sets, providing more time for other
business operations. Big data cryptography vendors can also provide companies many
benefits, including more robust security and scalability. Companies can use big data
cryptography to create unique digital signatures for every user and transaction on their
network, authenticating users without passwords. This can help businesses prevent
fraud while also improving scalability by reducing the need for resource-intensive
authentication processes.

References

[1]. Laud P, Pankova A. (2014) Verifiable Computation in Multiparty Protocols
with Honest Majority. In: Chow S.S.M., Liu J.K., Hui L.C.K., Yiu S.M. (eds)
Provable Security. ProvSec 2014. Lecture Notes in Computer Science, vol.
8782. Springer, Cham.

[2]. Bogdanov D., Laur S., Talviste R. (2014) A Practical Analysis of Oblivious
Sorting Algorithms for Secure Multiparty Computation. In: Bernsmed K.,
Fischer-Hiibner S. (eds) Secure IT Systems. NordSec 2014. Lecture Notes in
Computer Science, vol. 8788. Springer, Cham.

[3]. D.Bogdanov, L. Kamm, S. Laur, and P. Pruulmann-Vengerfeldt, “Secure multi-
party data analysis: End user validation and practical experiments,” 2014.

[4]. PicoSHA2 - a C++ SHA256 hash generator, https://github.com/okdshin/
PicoSHA2

377

https://github.com/okdshin/PicoSHA2
https://github.com/okdshin/PicoSHA2

CHAPTER 15

[5].

[10].

[11].

[12].

378

[6].

[7].

8].

[9].

BIG DATA CRYPTOGRAPHY

B. OzCakmak, A. Ozbilen, U. YavanoGlu, and K. Cin, “Neural and Quantum
Cryptography in Big Data: A Review,” 2019 IEEE International Conference on
Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 2413-2417, doi: 10.1109/
BigData47090.2019.9006238.

S. Yakoubov, V. Gadepally, N. Schear, E. Shen, and A. Yerukhimovich, “A survey
of cryptographic approaches to securing big-data analytics in the cloud,” 2014
IEEE High-Performance Extreme Computing Conference (HPEC), Waltham,
MA, 2014, pp. 1-6, doi: 10.1109/HPEC.2014.7040943.

Nita S.L., Mihailescu M.I. (2020) A Searchable Encryption Scheme Based

on Elliptic Curves. In: Barolli L., Amato E, Moscato E,, Enokido T., Takizawa
M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020.
Advances in Intelligent Systems and Computing, vol. 1150. Springer, Cham.
Nita S.L., Mihailescu M.I. (2019) A Hybrid Searchable Encryption Scheme for
Cloud Computing. In: Lanet JL., Toma C. (eds) Innovative Security Solutions
for Information Technology and Communications. SECITC 2018. Lecture
Notes in Computer Science, vol. 11359. Springer, Cham

V. C. Pau and M. 1. Mihailescu, “Internet of Things and its role in biometrics
technologies and eLearning applications,” 2015 13th International Conference
on Engineering of Modern Electric Systems (EMES), Oradea, 2015, pp. 1-4, doi:
10.1109/EMES.2015.7158430.

S. L. Nita and M. I. Mihailescu, “On Artificial Neural Network used in Cloud
Computing Security - A Survey,” 2018 10th International Conference on
Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 2018,
pp. 1-6, doi: 10.1109/ECAI.2018.8679086.

Marius Iulian Mihailescu, Stefania Loredana Nita and Ciprian Racuciu,
“Authentication protocol based on searchable encryption and multiparty
computation with applicability for earth sciences,” Scientific Bulletin of Naval
Academy, vol. XXIII 2020, pp. 221-230, doi: 10.21279/1454-864X-20-11-030.
Marius Iulian Mihailescu, Stefania Loredana Nita and Ciprian Racuciu,
“Multilevel access using searchable symmetric encryption with applicability
for earth sciences,” Scientific Bulletin of Naval Academy, vol. XXIII 2020,

pp. 221-230, doi: 10.21279/1454-864X-20-11-030.

[13].

[14].

[15].

CHAPTER 15 BIG DATA CRYPTOGRAPHY

Stefania Loredana Nita, Marius Iulian Mihailescu and Ciprian Racuciu,
“Secure Document Search in Cloud Computing using MapReduce’,

Scientific Bulletin of Naval Academy, vol. XXIII 2020, pp. 221-230, doi:
10.21279/1454-864X-20-11-030.

RSA Extension for Big Data Analytics. Available online: https://www.xrsa.com/
en-us/company/news/rsa-extends-big-data-analytics-to-help-
organizations-identify. Last accessed: 2.3.2023

Claudio Orlandi, “Is Multiparty Computation Any Good In Practice?” Available
online: https://www.cs.au.dk/~orlandi/icassp-draft.pdf. Last accessed:
2.3.2023

379

https://www.rsa.com/en-us/company/news/rsa-extends-big-data-analytics-to-help-organizations-identify
https://www.rsa.com/en-us/company/news/rsa-extends-big-data-analytics-to-help-organizations-identify
https://www.rsa.com/en-us/company/news/rsa-extends-big-data-analytics-to-help-organizations-identify
https://www.cs.au.dk/~orlandi/icassp-draft.pdf

CHAPTER 16

Cloud Computing
Cryptography

Cryptography in cloud computing has gained much attention recently and is becoming
one of the most important topics in cryptography and cybersecurity. It represents a key
point in designing and implementing a secure cloud application. Cryptography for cloud
computing involves complex encryption methods and techniques for securing the data
stored and used in the cloud environment.

Cloud computing cryptography is a powerful tool that helps protect data stored in
the cloud. As the amount of data stored in the cloud continues to grow, the importance
of understanding cloud computing cryptography and its benefits becomes increasingly
clear. Whether you're a business owner, data scientist, or simply a curious individual,
learning about cloud computing cryptography is a great way to ensure your data’s
security and privacy. This article covers the basics of cloud computing cryptography,
including what it is, why it is important, and how it can be used to protect data. You
should better understand how cloud computing cryptography works and how it can
benefit you.

Cloud computing cryptography is the practice of encrypting data before transmitting
it to an external service, storing it in an encrypted form, and then decrypting it when
retrieving it. This ensures that no one else can access your data, even people with access
to the service’s servers. Cloud computing cryptography ensures that your data is private,
secure, and free from malicious attacks. When you use cloud computing cryptography,
your data is encrypted whenever it leaves your computer. Only the intended recipient
can access the data, even if they have physical or administrative access to the service’s
servers. This is important because cloud services often cannot guarantee the same level
of security that you can achieve on your own computer. When stored in the cloud, data
is often stored in multiple locations around the world. This can occasionally make it

381

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_16

https://doi.org/10.1007/978-1-4842-9450-5_16

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

challenging to retrieve a single piece of data. Cloud computing cryptography helps solve
this problem by allowing you to retrieve the entire file and then selectively decrypt only
the pieces you need.

Cloud computing cryptography offers many benefits, including data privacy and
security, scalability, and cost-effectiveness. Data privacy and security are key concerns
for many individuals and businesses that store data in the cloud. Using cloud computing
cryptography, you can ensure that your data remains private and secure, even if the
cloud service is breached. If you depend on a service’s reputation to protect your data,
however, you are vulnerable to even the smallest breach. Cloud computing cryptography
also allows you to scale your operations quickly and easily by adding additional servers,
which can help reduce the cost of scaling. You can also use hybrid cloud environments,
which let you tap into private and public cloud services to meet your needs. If you have
specific types of data, such as highly sensitive information that requires compliance
certification, you may need to use specific types of cloud computing cryptography to
meet compliance requirements.

There are three main types of cloud computing cryptography:

« End-to-end encryption occurs only between two devices
communicating. As such, it does not involve the cloud service at all.
This is useful when you want to keep your data private between two
users but do not want to store it on a remote server.

o Full-disk encryption (FDE) encrypts all data on the drive where the
operating system resides. FDE is a good choice to protect your data
while it is at rest (stored on a device). It isn’t reccommended when
your data is in motion, such as accessing it through a cloud service.

o Cloud encryption protects data at rest and in motion. It’s the best
way to protect your data in the cloud.

Cloud computing cryptography is used in many applications, including
communication, data storage, and processing.

o Communication applications. When you use cloud communication
applications, such as a cloud-based team collaboration tool, you
need to ensure that all communication is encrypted to protect your
data from eavesdropping.

382

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

« Data storage applications. When you store data remotely, you want
to make sure it’s encrypted to protect it from malicious attacks.

¢ Processing applications. When you use cloud computing for
processing applications, such as a machine learning applications,
you must protect your data from malicious attacks.

The most obvious advantage of cloud computing cryptography is that it ensures that
your data is secure and private. Without encryption, your data can easily be intercepted
and used maliciously. Data encryption also allows you to share data with others, even if
they don’t have access to your computer. This is particularly helpful in a team environment
where data collaboration is key to success. Without encryption, you might need to give
others your password, increasing your risk of getting hacked. Another advantage of cloud
computing cryptography is that it allows data to be stored in multiple locations around the
world, which helps prevent localized outages from affecting data. On the other hand, cloud
computing cryptography can be challenging to set up and use, depending on your situation.
If you aren’t sure how to implement it, you might want to hire a data expert to help you.

Implementing cloud computing cryptography can be a complex and difficult
process for inexperienced users. It is highly recommended that you enlist the help of a
professional data expert if you aren’t familiar with cryptography in general. Here are a
few steps you can take to get started.

1. Choose a cloud computing system. Many different cloud
computing systems are available, ranging from public providers to
private cloud systems you install yourself. You need to determine
which system is best for your company and then find a provider
that offers a service with the features you need.

2. Determine where you will store your data. Depending on your
system, you can choose where you store your data. If so, you must
decide whether storing your data in a private or public location
is better.

3. Understand what level of security you need. Some services offer
different levels of encryption, so you'll need to determine what
level of security is best for your company.

4. Implement encryption. This step is specific to your cloud
computing system, so you'll need to consult the documentation to
learn how to do this step.
383

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

There are three main types of cloud technologies that organizations adopt rapidly:
infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service
(SaaS). The cloud brings many benefits, such as efficiency, flexibility, and scalability,
which reduce overall client costs. Due to its complexity and types (public, private, or
hybrid cloud), cloud computing inherits the security concerns of its components. Source
[1] provides a great categorization of cloud computing security issues. The security
concerns may occur on the following levels: the communication level (deals with the
shared infrastructures, virtual networks their configurations), the architectural level
(deals with virtualization, data storage, applications, APIs, and access control), and even
contractual and legal level (it deals, for example, with service level agreements).

In addition to searchable encryption (see Chapter 11) and homomorphic encryption
(see Chapter 12) to secure the cloud, the following cryptographic techniques and
mechanisms are also receiving important attention from research communities and

industry.

e Structured encryption (STE) encrypts data structures. An STE
scheme uses a token based on which the data structure is queried.
A special example of STE is searchable encryption. Recall that
searchable encryption allows searching for a keyword through data
in an encrypted format. Another example of the STE is using graph
structures that can be utilized to encrypt the databases. It is a good
example in the cloud context, where the applications deal with large
databases for analytics and statistics.

o Functional encryption (FE) is a generalization of public-key
encryption in which the private key owner allows an authorized user
to learn a function of the encrypted ciphertext. There are more types
of functional encryption: predicate encryption (PE), identity-based
encryption (IBE), attribute-based encryption (ABE), hidden vector
encryption (HVE), and inner product predicate.

o Private information retrieval (PIR) is a protocol a client uses for
retrieving an element within a database without letting the rest of the
database users know what element the client retrieved.

384

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

A Practical Example

For this example, imagine the following cloud scenario: an organization manages
its administrative relationship with its clients using a cloud messaging platform. For
example, the organization sends notifications to their clients about their products or
available updates, and the clients can contact and send messages to the organization
through the platform. Therefore, the cloud platform is included in the SaaS category.
To ensure that the authorized receiver reads the messages, the messages should be
encrypted from both sides—the organization and the clients. Both should use trusted
parties for the key generation used in encryption and decryption.

To simulate this example, let’s use a trusted party OpenSSL [1], which generates
the public and the private keys for the RSA algorithm, keys used in our encryption
technique. The source [1] provides documentation for different distributions, links to
source code from the GitHub repository, examples, and more. Note that this example
was created on a Windows platform. You do not download the source code for compiling
yourself and then using it; instead, download directly the compiled version of the
OpenSSL library that can be found at source [3] (or it can be downloaded from the
GitHub repository of this book). Once the archive is downloaded, extract it, and the
OpenSSL folder should be on the C: \ partition. Furthermore, open a terminal and
change the current directory to the bin folder from the OpenSSL parent folder, then type
openssl and press Enter (see Figure 16-1).

Microsoft Windows [Version 10.0.17763.1282]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\WINDOWS\system32>cd C:\openssl-1.8.2d-fips-2.0.10\bin
C:\openssl-1.0.2d-fips-2.@.1@\bin>openssl

WARNING: can't open config file: C:/OpenSSL/openssl.cnf
OpenSSL> exit

C:\openssl-1.@.2d-fips-2.0.10\bin>
Figure 16-1. Checking openssl command

The message warning shows that the OpenSSL package was used, and it is not
compiled on the computer. For this section, you do not need to compile and install
OpenSSL by yourself, but the complete guide for installing it can be found in the
source [2].

385

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

The next step is to generate the private key for the RSA algorithm. To do this, type the
following command in the terminal and check Figure 16-2.

C:\openssl-1.0.2d-fips-2.0.10\bin>openssl genrsa -out privateKey.pem 2048

The preceding command says that the openss1 library generates the RSA private key
(genrsa) in the output file privateKey.pem, which has a length of 2048 bits.

Then, to generate the public key, type the following command in the terminal and
check Figure 16-2.

C:\openssl-1.0.2d-fips-2.0.10\bin>openssl rsa -in privateKey.pem -pubout >
publicKey.pem

The preceding command says that the openss1 library is used to compute the public
key of the cryptosystem saved in the output file publicKey.pem, based on the input file
(private key) privateKey.pem.

C:\openssl-1.0.2d-fips-2.0.10\bin>openssl genrsa -out privateKey.pem 20848
WARNING: can't open config file: C:/OpenSSL/openssl.cnf

Loading ‘screen’ into random state - done

Generating RSA private key, 2048 bit long modulus

e is 65537 (@x1eeol)
C:\openssl-1.0.2d-fips-2.0.10\bin>openss]l rsa -in privateKey.pem -pubout > publicKey.pem
WARNING: can't open config file: C:/OpenSSL/openssl.cnf

writing RSA key

C:\openssl-1.0.2d-fips-2.0.18\bin>

Figure 16-2. Generating the private and public keys for the RSA cryptosystem
The publicKey.pemand privateKey.pemfiles are generated in the same folder as the

openssl library in the bin folder. If you check the contents of these files, they should look
like what's in Figures 16-3a and 16-3b.

386

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

MITEowIBARKCAQEA4QYm+aUBDY2hZ8RLLAmvCtgeGijGhgOAS+9nITCcAIFEWQOIELT
OA8i0+kSEO+ATJIWMNS+/2xj1QZgvVpVx83M0103XopBWYZvC1ljftWaBsCX9TNI71
tadjNnOSKEnIboSV/YQMIBRZVCOFMTE756K1WcBM] Opb/MSIcmcfIWHZAT 71NYueP
tLDuVriWc/M3YALJycsSaicFH3ecp9SP7bhg3VgMOueGllc3KFgqEyZitD6TIAY LG
Fx4CS5/IjCo+/40djNeGXL47KIDOGM3X7XnMHTu8 6IgWLIMOM7xsmRRSEFT/gBAICE
2/BrElofJPff2YkeZbFASBLtpjUWVrsK4evZKtzwIDAQABAOIBAGKnxberIZKFOXg4
TBCelODVoevZUUgsgLl3pgaiazUV3cKAAIoDx8T19c/ygXgYzjrBa70dj2yyTIPivE
aMEi74RWdGWnBBXopjArd3fPn0tSe3iATIiPLaOtXMhRuy7mIxBtaBovndWGtGsl4
10 y+W1Q9QAL7WAxf+ezbaCJdhsiSh+84MSgyProkKAXMMOFttlpd/JSSLAUDXpNNDRL
+mXMbR2PSJE£3pGWPALY/PSRW2PcX1PTQkQEXEUT 75+£v4hK1e4b0oC+bdV4CSSGE
1Gp9QXbIbPEf1RhIx7GpggZnxrik/T0oUtDtp8Rg6zcgbumVESW1II+DIEE1OL9%etT
q7TGpgECGYEASCzazwnJdquBaJRItvILn/PCi/Wtk5VVeEZceUgDtYDmylyoGpS8nL
xUC4gPS69MP150a0QajBOEBhNGCc4Wwe I TYYWO/ TeNEMBOEPYyK3xK4g/QIEb2ul
béRegdersq/oVvUesMbbpzny2NUQgtKnc2gARIESZmLj£Z2a3ZA0JELCCOYERG+VE
QKTCHS50koCxxkRTPWIDSHAymch7afa4AWCBOBA/PnnjXSVgyEUa6RISShJuoOxPv
17 kONsSKT+avrxL8TVNOFhELYu3KRS5rvBQ1l15fh3j3inRN1t9d0rLo/ZXoudwvDiMg7
18 b+rltcySDW/LE7fnu%C+jBXpPSg8GhFUQLBKTOkCgYBuSALpmXT+JLXRpBUMWB+6
nE40AZzzaPs52xIX0SKKWXOABSTJEDV6iJJ0ZuadWncYvwbGDz01izi4ddcl10X+A
g2QVbdDm2cSviWSV40snWoZ1z3nrNdojSVkp+£0PSCoT1HrHwgiwdrQNg7FB4Yeid
VGDxr£Sc9ZwbghpYG6GRCuQKBgHRYQHLGHgZpmHFSHA/ FzoQumHATQhYGDWSB21TLp
VrfIeeazgS5JEkglWx+27HO0IIdSO0gBLjAqQOW+uQfz90MgNKpkNdnov9AgdG+R3g9m
pZJDJsnxXdl78hUJoupZgDSMhMnC8P101FBSpuSLWwAWK2XMPETO0gP0s1+jo/XT7E
D+ypAoGBAIfZ8zC7UDLEfr/xidF+GUJ1YoMabnhlbJfpnJd2A+oW/ rBQgaCFEEIAS2
DuOb2AVJIZLACMGYaEZ /h+ZmKAJrJ7ptCE7PicoNm/ wruDvuNOkCr3xYY2BhQdjMN
ubxCPqFykGH36E6xcYsLEd/S5esjShtvHHgty/jGb/Yvztg6BvB+P

] o s W

0

b
] o N b W

o W

RN NN

1 ok W

(%]
1
1
I
I
|

m

=

o

b=

™

o

s

=

-

]

]
1
I
I
I
1

MIIBIjANBgkghkiGOwWOBAQEFARCCAQEAMITIBCgKCAQEA4QYm+aUBDY2ZhZ8RLLAmY
CtgeGjGhgOAS+9nITCAjFEWNQSELTOASi0+k8EO+ATIWMNS+/2x] 1QZgvVpVxe3MO
103XopBWYZvCljfrtWaBsCX9TNI71tadjNnOSKnIboSV/YgMIBRzZVCOFMCF75S6K1W
CcBM3jOpb/M5IcmcfIWHZAT71NYuePrLDuVrilc/M3YALJycsSaicFH3ecp9SP7bhg3
VgMOueGl1lc3KFgqfyZitDETJAYrGFx4CS/IjCo+/40djNeGXL47KIDOGmM3IX 7XnMH
tuB6IgWLIMOm7xsmRRSFT/gBAJCLE2/BrEl1ofJPLL2YkeZbFASBLpjURVESK4VZKL
zwIDAQAB

J 0 b WO

(<]

T

Figure 16-3b. The public key

Figures 16-3a and 16-3b show the difference between the keys’ lengths. Furthermore,
to use them in a C++ program, read them from the . pem files. First, you need to remove
the extra messages from the files that are not part of the keys, namely, the first and last
lines of the files. Make sure that no additional space characters are left at the end of the
keys to avoid altering them.

387

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

Continuing to the simulation for cloud platform messaging, the encryption and
decryption are given in Listing 16-1, and the output is given in Figure 16-4. Here, for
demonstration purposes, use a simple XOR-ing algorithm for encryption and decryption.
Make sure that the publicKey.pemand privateKey.pem are in the same folder as the
.cpp file containing the code in Listing 16-1.

Listing 16-1. Encryption and decryption of the messages

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

// the encryption scheme is a simple XOR-ing process

// XOR-ing is used for both encryption and decryption

// parameter "message" can be the plain message or the encrypted message,
according to user's needs

string xor_string(string message, string key)

{
string out message(message);
unsigned int key len(key.length()), message len(message.
length()), pos(0);
for(unsigned int index = 0; index < message_len; index++)
{
out_message[index] = message[index] " key[pos];
if(++pos == key len){ pos = 0; }
}
return out_message;
}
int main()
{

// read the message to be encrypted from the console
string plain_text;

cout<<"Enter the message: ";

388

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY
getline (cin, plain_text);

// the public key is read from the .pem corresponding file
string rowi;

string public_key = "";

ifstream public key file ("publicKey.pem");

if (public_key file.is open())

{
while (getline (public_key file, rowl))
{
public_key += rowil;
}
public key file.close();
}

// to check that the public key is read correctly, it is displayed on
the console
cout<<"Public key:"<<endl<<public_key<<endl<<endl;

// the private key is read from the.pem corresponding file
string row2;

string private key = "";

ifstream private key file ("privateKey.pem");

if (private key file.is open())

{
while (getline (private key file, row2))
{
private_key += row2;
}
private key file.close();
}

// to check that the public key is read correctly, it is deposited on
the console
cout<<"Private key:"<<endl<<private key<<endl<<endl;

389

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

// the encryption of the plain message is stored into encrypted message
string encrypted text = xor_string(plain_text, public_key);

cout << endl << "The encryption of the message is: " << endl <<

encrypted text << endl;

// to decrypt the message, the receiver should proceed with some steps
// 1. the receiver should xor his/her private key with his/her

public key

string xor keys = xor string(public_key, private key);

// 2. the receiver should xor the encrypted text with the result
from step 1
string xor result = xor_string(encrypted text, xor keys);

// 3. The decryption is made by xor-ing the result from the previous
step with the private key
string decrypted message = xor_string(xor result, private key);

cout << endl << "The decryption of the message is: << endl <«
decrypted message << endl;

return O;

390

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

(c) 2018 Microsoft Corporation. All rights reserved.

C:AWINDOWS \systend2>ed Ci\clouwd
C:\cloudrges+ cloud_example.cpp

C:\cloud>a

Enter the message: This {s an exasple of encryption a message for cloud.

Public key:

3gkqhk {GIWOBAQEF AAOCAQBAMT 1BCEXCAQEALQY R+ AUBDY 2 LeavCtEeGGhEBAS+INI TCAIFEWQIELTOABLO+KBEQ+AT JnS+/ 2x§1QIgv
MO103XopBWYZve 1 §f tWaBsCXITNI7 ITad INnOSKnTboSY/ YaH VCOFALF 756K 1K BM0pb/MSTenc FTWHZAT 7 INYUePTLDUYFWE /MIYAL Dy C 554
1cFH3ecpISPTbhg IVEMOueGl 1¢ IKFgqfyZ I tDETIAYIrGF x4CS/ I JCov/40d JNeGXLATK IDOGAXTXNMHE UBO I GWL IMORT x4mRRSF T/QBAJCF2/BrE1of IPFf
2VkeZbFAPBLp UV SK4vIKE IWIDAQAD

IBRL

Private key:
MIIEOWIBAAKCAQEALQYR+ AVBDY2hIERLLARVCTEeGIGhERAS+INITCATF EWQPEL TOAB IO+ KSEQHAT JWMNS+/ 2 1QZEvVRpVXBIMOL 03X op E‘a(.\(ljf‘n.\ﬁ-
Cl)?r&l?}tdj"‘rrOS':n boSV/YQMIBRZVCOFaTF 756K 1KC BN j0pb/MSTene TRHZAT 7 INYUePTLDUWV W /MIYAL Dy csSal c FH3ecpIsSPTD:
Fgq 'J.Mr'r(-F .-1-(5.-’!‘(on.fuodj't‘{‘.‘.l«—ﬂm(n]x;xr‘ﬁ \..E(z Qﬂ- P’-_\am ‘!RRSFT.’QE'.-j((HB"E‘or J"frn Le;bF—‘)'.] pj

2PCXIPTQRQEXEUT 7S+ Frahk 1edb@o0s baVACSSGF 16p9QXbILPE f 1RhIX7Gpgglnxrak/ TeoULtDt pSRG6ICgbunVF EW11+0§EE1019etg q
2unJquiadRITVILA/ PCE/WT SV E ZC6UEDT YDy 1 yoGpBnl xUCAgPS69MP7 1 500000 JBOHBANGS CAlwe TYY WO/ TeNHMBOEPY YK 34 g/ QIED2Ul bEReqer
$q/oVVUGsMbbp 2 ny 2NUQgtKnc 2gAREE9 2t §F2a32A0) EFeCEYEAS » vFQK TCHSOkoCxxkRTPHWTDSHAYme h7 af a4 ANCBOBA/ Prin §XSVEYEUASRISOhIuodxPy
KONSKT+avrxLBTVNOFhELYUIKRSrvEQL1SFh3 i3 inRN1t9dQrLo/2 IO—-..\Dj“};bnrll()S:&nr‘L[?Ir‘u'x)u‘BX’\"SQ!;G?‘FUQLB OkCgYBuPALpaXT+ILlx
PEUMKB4GNESRAT 2 2aPS 52X I XOSKKMNOABSTIEDVE1 DJ0Zuadenc YvwbGD2 04 21 400¢ 110X+ AR2QVECDE2 C SVWSVARSNWOZ 1 2 3nrNdo] SVp+ fOPSCOT 1HrH
qiwdrQNg 7 FBAYe LdVGDr f S OZwbqhpYGEGR C UQK BEHR GHLGHE 2 paHF SHA/ F 20QUaHTOhYGOWSB21 TLpVrf :rr.l:q‘»:figth‘rn? THO1 1dS0gBL JAqOW+uQf 2
POMGRKpNdNovIAGAG+RIgPapT J0T snxXd 178U oupl gDSHRNNCEP 101 FBSpuSLwERK 2XMDETOgPOs L« JO/XTTED+ ypACGBATFIB2CTUDL fr/x 1dF «GUILY
oMabnhlb)fpn) 2A+0W/ rBQRaCFHE TAS20U0b2AVIZLACRGY AEZ/ he IaKAT r) 7pt CETPLGoNm/ wruDvutiOkCr 3xYY 2BhQd IMNUbr CPQF ykGHIGEGrCYSLED/S
esjShiviHgty/JGb/YvatgbBvBeP

The encryption of the message is:
1i82ne X
q ("36358K/m(1/428 840" [#y2GE &3

-

The decryption of the message is:
This is an example of encryption a message for cloud.

C:\cloud>

Figure 16-4. The output of Listing 16-1

In Figure 16-4, the private and public keys do not contain the extra messages initially
included in the . pem files.

Conclusion

This chapter has mentioned the most important cryptographic primitives that can
be cloud environments. You learned about cloud computing security issues and
the advanced concepts and cryptographic primitives that can be applied to prevent
these issues.

There are many useful resources related to cloud computing cryptography online.
If you're interested in learning more about cryptography, the National Institute of
Standards and Technology (NIST) has a great resource to get you started. To learn more
about cloud computing cryptography, you can start with Amazon Web Services (AWS)
and Google Cloud Platform, two of the most popular cloud computing providers.

391

CHAPTER 16 CLOUD COMPUTING CRYPTOGRAPHY

Cloud computing cryptography is used in many ways. One example is
communication. You can protect your communication using end-to-end encryption,
such as Signal or WhatsApp. Another example is data storage. You can store your data
remotely and securely using a service like Amazon S3. Another example is processing.
You can use a cloud computing service to train your Al model to run machine learning
algorithms, such as TensorFlow.

The use of cloud computing Cryptography faces significant obstacles, and a large
amount of current literature contains multiple theoretical frameworks with no actual
practical directions. Except for the standard security policies made available by cloud
solution providers, however, this context provides professionals and researchers with strong
research directions and the opportunity to develop new ideas for enhancing cloud security.

References

[1]. M.AI, S. U.Khan, and A. V. Vasilakos, ‘Security in cloud computing: Opportunities
and challenges, Information Sciences, vol. 305, pp. 357-383, Jun. 2015.

[2]. OpenSSL, Available online: https://www.openssl.org/.

Last accessed: 2.4.2023

[3]. OpenSSL download, Available online: https://sourceforge.
net/projects/openssl/files/openssl-1.0.2d-fips-2.0.10/
openssl-1.0.2dfips-2.0.10.zip/download. Last accessed: 2.4.2023

[4]. R.Chatterjee, S. Roy, and U. Scholar, “Cryptography in Cloud Computing:
A Basic Approach to Ensure Security in Cloud’, Jul. 2017.

[5]. A.N.Jaber and M. E B. Zolkipli, “Use of cryptography in cloud computing’,
in 2013 IEEE International Conference on Control System, Computing and
Engineering, Nov. 2013, pp. 179-184.

[6]. J.P.Kaur, and R. Kaur, “Security issues and use of cryptography in cloud
computing’; in International Journal of Advanced Research in Computer
Science and Software Engineering, 4(7), 2014.

[7]. M. Chase and S. Kamara, “Structured Encryption and Controlled Disclosure’,
in Advances in Cryptology - ASTACRYPT 2010, M. Abe, Ed., in Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 577-594.

[8]. M. Brenner, J. Wiebelitz, G. von Voigt, and M. Smith, “Secret program
execution in the cloud applying homomorphic encryption’; in 5th IEEE
International Conference on Digital Ecosystems and Technologies (IEEE DEST
2011), May 2011, pp. 114-119.

392

https://www.openssl.org/
https://sourceforge.net/projects/openssl/files/openssl-1.0.2d-fips-2.0.10/openssl-1.0.2dfips-2.0.10.zip/download
https://sourceforge.net/projects/openssl/files/openssl-1.0.2d-fips-2.0.10/openssl-1.0.2dfips-2.0.10.zip/download
https://sourceforge.net/projects/openssl/files/openssl-1.0.2d-fips-2.0.10/openssl-1.0.2dfips-2.0.10.zip/download

PART Il

Pro Cryptanalysis

CHAPTER 17

Starting with
Cryptanalysis

Cryptanalysis is concerned with discovering weaknesses in security systems and
cryptographic algorithms. The ultimate objective is to discover the true nature of the
cryptographic keys or encrypted messages and their nature.

Cryptanalysis is the practice of analyzing and deciphering secret codes and ciphers.
Cryptanalysis can be used to gain insight into the security of a system'’s encryption. It can
also retrieve data from encrypted systems, such as bank accounts and online messages.
If you have ever wanted to learn more about cryptanalysis, this step-by-step guide is
the perfect place to start. Here, you'll get an overview of what cryptanalysis is, what you
need to get started, and the resources available to help you understand the basics of
this fascinating discipline. Whether you're just curious or want to become an expert in
cryptanalysis, this guide will help you get started.

Cryptanalysis can be defined as an activity from two sides: one side is represented by
authorized persons, and research and academic institutions represent the second side.

From a legal perspective, cryptanalysis is the process that should be conducted by
authorized persons, such as professionals (ethical hackers, information security officers,
etc.). Any cryptanalysis activity outside the legal framework is known as hacking, which
covers personal and nonpersonal interests.

From the research/academia side, cryptanalysis is the study of methods for
obtaining the meaning of encrypted information without access to the secret key. Many
different techniques are used in cryptanalysis, including frequency analysis, differential
cryptanalysis, and linear cryptanalysis. To begin with cryptanalysis, it is important to
have a strong understanding of the mathematical foundations of cryptography, including
number theory and abstract algebra. Additionally, having experience with programming
and the ability to write code to implement and test cryptanalysis techniques is helpful.

395

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_17

https://doi.org/10.1007/978-1-4842-9450-5_17

CHAPTER 17 STARTING WITH CRYPTANALYSIS

Some resources for learning about cryptanalysis include books such as Introduction
to Cryptography by Johannes Buchmann [15] and Cryptanalysis of Number Theoretic
Ciphers by Samuel S. Wagstaff Jr. [16].

There are many online tutorials and courses available that cover the basics of
cryptanalysis. It is also important to keep up with the current research in the field, as
new advances and techniques are constantly being developed. Attending conferences
and joining online communities of cryptanalysts can be a great way to stay informed and
connect with other researchers in the field.

This chapter covers the most important methods and techniques for conducting
general and in-depth cryptanalysis. It discusses the necessary baggage of knowledge
and tools, such as software tools, methods, cryptanalysis types and algorithms, and
penetration-testing platforms.

Conducting cryptanalysis can be a tricky and difficult task to achieve, and many
aspects must be taken into consideration before doing it. The situation becomes
much easier if you conduct cryptanalysis as a legal entity. If a nonlegal entity conducts
cryptanalysis, then you are dealing with a more complex process, and hacking methods
are involved, methods covered later in our discussion. Both ways are needed to get our
hands dirty. The process of cryptanalysis is time-consuming, and many obstacles and
obstructions could occur due to many reasons, such as system complexity, the size of the
cryptographic key, hardware platform, or access permissions.

While it’s true that cryptanalysis requires a certain degree of skill and practice, this
doesn’t mean that you need to be a computer scientist to start a career in cryptanalysis.
Anyone can learn the basics of cryptanalysis with the right resources and guidance. First
and foremost, you'll need a basic understanding of mathematics and computer science.
Cryptanalysis is, after all, largely based on algorithms and mathematical concepts. You
also need a computer that meets the basic requirements for code-breaking. Ideally,
your computer should meet or exceed the minimum system requirements for the code-
breaking software you use. To increase productivity during your code-breaking sessions,
you may want to invest in some accessories, such as a code-breaking wrist pad or a code-
breaking pen.

Cryptanalysis is more exciting and challenging than cryptography. The knowledge
that a cryptanalyst needs is very wide and complex. It covers several complex
fields divided into three main categories: informatics (computer science), computer
engineering, and mathematics. Let’s specify the important disciplines for each of the
categories as follows.

396

CHAPTER 17

Informatics (computer science)

e Computer networks

e Programming languages

o Databases

e Operating systems

Computer engineering and hardware

o Field-programmable gateway array (FPGA)
e Programming languages (e.g., VHDL)

e Development platforms (Xilinx, etc.)
Mathematics

e Number theory

Algebra

e Combinatorics

o Information theory

e Probability theory

o Statistical analysis

o Elliptic curve mathematics
e Discrete mathematics

e Calculus, lattices

o Real analysis

e Complex analysis

o Fourier analysis

STARTING WITH CRYPTANALYSIS

397

CHAPTER 17 STARTING WITH CRYPTANALYSIS

Part lll: Structure

The purpose of the third part of this book is to provide the tools for implementing and
providing the methods, algorithms, and implementations of attacks and how to design
and implement a cryptanalysis strategy.

The third part of the structure is as follows.

e Chapter 18 introduces a classification of cryptanalysis and
techniques used in association with the field of cryptanalysis. The
theory of algorithm complexity, statistical-informational analysis,
encoding in the absence of perturbation, cryptanalysis of classic
ciphers, and cryptanalysis of block ciphers are discussed.

o Chapter 19 discusses linear and differential cryptanalysis. Their
importance is vital when cryptanalysis is performed.

« Chapter 20 covers the integral cryptanalytic attack, which can be
applied only for block ciphers based on substitution-permutation
networks.

o Chapter 21 presents some examples of brute-force and overflow
techniques.

e Chapter 22 covers the most important techniques used in text
characterization. It discusses the chi-squared statistic; monogram,
bigram, and trigram frequency counts; quadgram statistics as a
fitness measure; and more.

« Chapter 23 covers some case studies for implementing cryptanalysis
methods.

Cryptanalysis Terms

This section introduces a list of cryptanalysis keywords and frequently used terms.
Before proceeding further, it is very important to get used to the terms listed in
Table 17-1. It helps to have a clear image of the process and who interacts with what.

398

CHAPTER 17 STARTING WITH CRYPTANALYSIS

Table 17-1. Cryptanalysis Terms

Keyword/Term Definition

Black hat hacker A black hat hacker represents someone with bad intentions and breaks a
computer system or network. He intends to exploit any security vulnerabilities for
financial gain, steal and destroy confidential and private data; shut down systems
and websites; corrupt network communication, and so on.

Gray hat hacker A gray hat hacker (aka cracker) exploits the weak security points of a computer
system or software product to bring those weaknesses to the owner’s attention.
Compared with a black hat hacker, a gray hat hacker acts without malicious
intent. The general goal of a gray hat is to provide solutions and improve
computer systems and network security.

White hat A white hat hacker is an authorized or certified hacker working for or employed

hacker/ethical by a government or organization to perform penetration tests and identify

hacker loopholes within their systems.

Green hat hacker

Script kiddies

Blue hat hacker

Red hat hacker

Hacktivist

A gray hat hacker is an amateur person and different from script kiddies. Their
purpose consists in striving to become full-blown hackers.

Script kiddies are the most dangerous hackers. A script kiddie is a person
without too many skills who is using some scripts or download tools that other
hackers provide. Their goal is to attack network infrastructures and computer
systems. They are looking to impress their community or friends.

A blue hat hacker is similar to a script kiddie. They are quite beginners in the
field of hacking. If someone dares to mock a script kiddie, a blue hat hacker gets
revenge. Blue hat hackers get revenge on those who address any challenges to
them or challenge them.

Also known as eagle-eye hackers, their goal is to stop black hat hackers. The
operation mode is different. They are ruthless when they are dealing with
malware actions that are coming from black hat hackers. The attacks performed
by red hat hackers are very aggressive.

They are known as online activists. A hacktivist represents a hacker who is part
of a group of anonymous hackers who can gain unauthorized access to files
stored within government computers and networks, which are served further to
social or political parties and groups.

(continued)

399

CHAPTER 17 STARTING WITH CRYPTANALYSIS

Table 17-1. (continued)

Keyword/Term Definition

Malicious insider/ Such a person may be an employee of a company or government institution
whistleblower aware of the illegal actions occurring within the institution. This could lead to
personal gain by blackmailing the institution.

State or nation This type of hacker is assigned by a government to provide information security

sponsored services and gain access to confidential information from different countries. For

hackers example, consider Stuxnet, the malicious computer worm from 2010, designed
and engineered to bring down the Iranian nuclear program. Another example is
the US Eighth Air Force, which in 2009 became US Cyber Command.

A Bit of Cryptanalysis History

To have a comprehensive history of cryptanalysis, very challenging and exciting research
must be done. This section covers some aspects and moments in time that influenced
cryptanalysis as a separate field and how it evolved over different periods of history.

The history of cryptanalysis starts with Al-Kindi (801-873), the father of Arabic
philosophy. He discovered and developed a method based on the variations in the
occurrence frequency of letters. This method helped him to analyze and exploit different
ways to break ciphers (e.g., frequency analysis). The work of Al-Kindi was influenced
by Al-Khalil’s (717-786) work. Al-Khalil wrote the Book of Cryptographic Messages, and
the work contained permutations and combinations for all possible Arabic words (both
types of words, with and without vowels).

One of the best ways to learn the history of cryptanalysis and cryptography is to start
and divide the subject into periods of time. It is very important to examine cryptanalysis
history with respect to cryptography. The following is a short classification of the
cryptanalysis history and focus on the most important achievements of each of the
periods.

e 600 B.C. The Spartans invent scytales to send secret messages
during their fights. The device was composed of a leather strap and a
wooden stem. To decrypt the message, the wooden stem needed to
be a specific size, the size used when the message was encrypted. The
message cannot be decrypted if the receiver or malicious person does
not have the same wooden stem size.

400

CHAPTER 17 STARTING WITH CRYPTANALYSIS

60 B.F. Julius Caesar sets the basis for the first substitution cipher,
which encodes the message using shifting techniques for the
characters using three spots: A becomes D, B becomes E, and so on.
An implementation of this cipher can be seen in Chapter 2.

1474 Cicco Simonetta writes a manual for deciphering encryptions
for Latin and Italian text.

1523 Blaise de Vigenere introduces his encryption cipher, the
Vigeneére cipher.

1553 Giovan Battista Bellaso sets the basis for the first cipher that
uses an encryption key. The encryption key was characterized as a
word that was commonly agreed upon by the sender and receiver.

1854 Charles Wheatstone creates the Playfair cipher, which encrypts
a specific set of letters instead of encrypting letter by letter. This raises
the cipher’s complexity and, in conclusion, becomes harder to crack.

1917 Edward Hebern sets the basis for the first electromechanical
machine in which the rotor from the machine is used for an
encryption operation. The encryption key is stored within a rotating
disc. It has a table used for substitution that is modified with every
character that is typed.

1918 Arthur Scherbius creates the Enigma machine. The prototype
was for commercial purposes. Compared with the Edward Hebern
machine, where one rotor is used, the Enigma machine uses
several rotors. German Military Intelligence immediately adopts his
invention for encoding their transmissions.

1932 Marian Rejewski studies the Enigma machine and determined
how it operates. Starting in 1939, French and British Intelligence
Services, using the information provided by Poland, allowed
cryptographers such as Alan Turing to crack the key, which was
changing daily. It was crucial to the Allies’ victory in World War II.

1945 Claude E. Shannon publishes his work entitled A Mathematical
Theory of Cryptography. This is the point where classic cryptography
ended, and modern cryptography appeared.

401

CHAPTER 17 STARTING WITH CRYPTANALYSIS

e 1970 IBM creates a block cipher to protect customer data.

e 1973 The United States adopts the block cipher and sets a national
standard called the Data Encryption Standard.

e 1975 Public key cryptography is introduced.
e 1976 The Diffie-Hellamn key exchange is introduced.

e 1982 Richard Feynman introduces a theoretical model of a quantum
computer.

e 1997 DES is cracked.

e 1994 Peter Shor introduces an algorithm for quantum computers
dedicated to integer factorization.

e 1998 Quantum computing is introduced.

e 2000 Advanced Encryption Standard (AES) officially replaces
DES. AES wins an open public competition.

e 2016 IBM launches the IBM Q Experience with a five-qubit quantum
processor.

e 2017 Microsoft introduces Q# (Q Sharp), a domain-specific
programming language for implementing quantum algorithms and
cryptography applications.

This list can continue and be improved, but it includes the main events of history
that contribute to the appearance of cryptanalysis, such as concepts, models, and
frameworks.

Understanding Cryptanalysis Techniques

To understand the different techniques used in cryptanalysis, it is important to look at
the essential elements of cryptography. These include the algorithm, the key, and the
ciphertext. Before you can begin analyzing the encrypted information, you must first
understand how each component works and how it is used. Algorithm: The algorithm is
the mathematical formula used for encryption. The algorithm is normally kept secret, so
understanding it is one of the biggest challenges in cryptanalysis.

402

CHAPTER 17 STARTING WITH CRYPTANALYSIS

The key is the piece of information used to decrypt the ciphertext. The key may be

kept secret or shared openly, depending on the encryption method.

The ciphertext is the encrypted message that you want to decrypt. The ciphertext is

often represented as a string of numbers or letters.

Cryptanalysis is the process of breaking a cipher or encryption system to access the

information it is protecting. Several techniques can be used in cryptanalysis.

Brute-force involves trying every possible key or combination of
characters until the correct one is found. A brute-force attack is a
cyberattack in which an attacker systematically attempts to guess a
website or system’s login credentials (e.g., username and password).
The attacker uses a script or program to automatically generate and
test potential combinations of characters until the correct credentials
are found. Brute-force attacks can be used to gain unauthorized
access to a wide range of systems, including email accounts, social
media accounts, and online banking accounts. They can also be used
to crack encryption and decrypt sensitive data.

Frequency analysis involves analyzing the frequency of letters,
words, or patterns in the ciphertext to determine the plaintext.
Frequency analysis is a method of analyzing and deciphering
encrypted messages by determining the frequency of letters or
groups of letters in the encoded message. This can be used to identify
patterns and reveal clues about the underlying plaintext message,
which can then be used to break the encryption. It is one of the oldest
and most basic cryptanalysis methods and is often used with other
techniques to analyze and decrypt messages.

Differential cryptanalysis involves analyzing the differences
between plaintext and ciphertext to determine the key. It is a method
used to analyze and evaluate cryptographic systems. The method
uses pairs of plaintext and corresponding ciphertext to determine
the characteristics of a cryptographic algorithm. By comparing the
differences between the plaintext and the ciphertext, researchers

can infer information about the key used to encrypt the data and
potentially discover weaknesses in the algorithm. Differential
cryptanalysis is often used to analyze symmetric-key algorithms,

403

CHAPTER 17 STARTING WITH CRYPTANALYSIS

404

such as the Data Encryption Standard. It breaks cryptographic
systems based on the differences between plaintext and ciphertext
pairs. It involves studying the differences between pairs of plaintexts
and their corresponding ciphertexts and using this information to
recover the key or the plaintext.

Linear cryptanalysis is a method of analyzing and breaking
cryptographic systems based on linear operations. It involves
studying the linear relations between the plaintext, ciphertext, and
secret key in a cryptographic system and using this information to
recover the key or the plaintext.

Linear and differential cryptanalysis both involve analyzing the
linear approximations of the encryption function to determine
the key. Both linear and differential cryptanalysis are types of
cryptanalytic attacks used to study the inherent weaknesses in a
particular cryptographic algorithm or system. They can be used to
find the secret key or plaintext.

Side-channel attacks involve analyzing information leaked through
a system’s physical implementation, such as power consumption

or electromagnetic radiation. A side-channel attack is a type of
security exploit that relies on information gained from implementing
a computer system rather than weaknesses in the system’s design

or software. These attacks can take many forms, but they all involve
extracting secret information, such as cryptographic keys, by
analyzing power consumption, electromagnetic emissions, or timing
data. This can be done through power, electromagnetic, and timing
analyses. These attacks can be difficult to detect and prevent, as they
do not rely on exploiting a vulnerability in the system itself but rather
on the physical characteristics of the implementation.

Social engineering involves tricking or manipulating people to
reveal passwords or other secret information. Social engineering
uses psychological manipulation to influence individuals or groups
to divulge confidential information or act against their best interests.
This can include tactics such as phishing scams, pretexting, baiting,

CHAPTER 17 STARTING WITH CRYPTANALYSIS

and quid pro quo. Social engineering aims to trick people into giving
away sensitive information or access to systems and networks, often
to commit fraud or other malicious activities.

o Algebraic attacks involve using algebraic properties of the
encryption scheme to simplify the problem of finding the key. In
general, algebraic attacks refer to a class of methods for breaking
cryptographic systems based on solvable mathematical problems
using algebraic methods. These attacks often break symmetric-key
encryption algorithms, such as those based on RSA or elliptic-
curve cryptography (ECC) systems. Examples of algebraic attacks
include the algebraic attack on RSA and Coppersmith’s attack on
elliptic-curve cryptography. These attacks exploit weaknesses in the
mathematical structure of the encryption system, such as low-degree
polynomials, to recover the private key used for encryption.

Analyzing Cryptographic Algorithms

The first step in cryptanalysis is to analyze the algorithm used in the encryption.

During this process, you want to look at several aspects of the algorithm, such as the
speed of the algorithm, the algorithm’s complexity, and algorithm strength. After you
have analyzed the algorithm, you can move on to the next step. You need to create a
mathematical model for the algorithm. You'll need to break down the algorithm and find
its weak points. While this may sound easyj, it can be challenging, especially for complex
algorithms.

Cryptographic algorithms can be analyzed in terms of their strengths and
weaknesses and suitability for different applications. Strength analysis evaluates the
algorithm’s resistance to brute-force, cryptanalysis, and side-channel attacks. Weakness
analysis includes evaluating the algorithm’s susceptibility to attacks such as replay, man-
in-the-middle, and chosen-plaintext attacks. Suitability analysis includes evaluating
the algorithm’s performance and efficiency in terms of computational resources, such
as memory and processing power, and the application’s specific requirements, such as
key size and block size. It is important to note that no cryptographic algorithm can be
considered completely secure. Regularly reviewing and updating cryptographic systems
is important to ensure they meet the latest security standards.

405

CHAPTER 17 STARTING WITH CRYPTANALYSIS

Cracking Cryptographic Systems

After you have analyzed the algorithm and created a mathematical model for the
algorithm, you can move on to the next basic cryptanalysis technique—cracking the
cryptographic system. To crack the cryptographic system, you'll first have to find a
weakness in the algorithm or encryption method. Once you have identified a weakness,
you can use the mathematical model you created earlier to identify a solution. You can
then apply the solution to the cryptographic system and retrieve the original data. To
find a weakness in the cryptographic system, you must first understand the system’s
operation. Next, you must look for weaknesses in the cryptographic system. Weaknesses
can be found in everything from the encryption method to the key used in the system.

Understanding Cryptographic Systems

Now that you've learned how to crack cryptographic systems, it’s time to learn how

to understand them. Understanding cryptographic systems requires learning about
different types and how they work. There are many different types of cryptographic
systems. These types are based on the encryption method used in their system. The most
common types of cryptographic systems include the following.

o Symmetric cryptographic systems use a single secret key for both
encryption and decryption.

e Asymmetric cryptographic systems use two keys: a public key and
a private key. The public and private keys are mathematically linked,
but the public key can be used to decrypt the private key.

Understanding Cryptographic Keys

Now that you understand how cryptographic systems work, it’s time to move on to
understanding cryptographic keys. Understanding cryptographic keys means learning
how cryptographic keys are used in different cryptographic systems. There are several
types of cryptographic keys, including private and public keys. Private keys are used in
asymmetric cryptographic systems and can be used to decrypt messages encrypted with
the public key. Public keys are used in asymmetric cryptographic systems to encrypt
messages decrypted with the private key.

406

CHAPTER 17 STARTING WITH CRYPTANALYSIS

Understanding Cryptographic Weaknesses

Now that you understand how to analyze cryptographic systems and keys, it’s time to learn
how to understand cryptographic weaknesses. Understanding cryptographic weaknesses
requires learning about common issues with cryptographic systems and how to avoid them.

There are several common issues with cryptographic systems. These issues include
the following.

o Keyreuse occurs when the same key is used for multiple
cryptographic systems. This is a major issue because it makes it
easier for attackers to decipher the cryptographic system.

o Using a short key is another common cryptographic weakness. Short
keys are usually used in symmetric cryptographic systems and are
easier to crack than longer keys.

Analyzing Cryptographic Keys

Now that you understand how to analyze cryptographic weaknesses, it’s time to learn
how to analyze cryptographic keys. You can start by analyzing the length of the key. This
can help you identify the type of cryptographic system used. Next, you can analyze the
algorithm used for the key. After that, you can analyze the cryptographic key’s distribution
method. From there, you can examine the key’s entropy level and soundness.
Cryptographic keys encrypt and decrypt data to secure it from unauthorized access.
There are two main types of keys: symmetric and asymmetric. Symmetric keys use the
same key for encryption and decryption, while asymmetric keys use a public key for
encryption and a private key for decryption. When analyzing cryptographic keys, it
is important to consider their strength, which is determined by the length of the key.
The longer the key is, the more secure it is. It is also important to ensure that the keys
are generated, stored securely, and regularly updated. It is also important to ensure
that the encryption and decryption processes are implemented correctly and resistant
to known cryptographic attacks. This can be done by regularly reviewing and testing
the cryptographic implementation and staying up-to-date on current cryptographic
research. Overall, analyzing cryptographic keys involves assessing the strength of the
keys, ensuring secure key generation and storage, and regularly reviewing and testing
the encryption and decryption implementation to ensure resistance to known attacks.

407

CHAPTER 17 STARTING WITH CRYPTANALYSIS

Penetration Tools and Frameworks

This section covers several penetration tools and frameworks that can be used

successfully in penetration testing, a process that a certified professional conducts.

The tools are divided into two categories: Linux hacking distributions and

penetration tools/frameworks.

o Linuxhacking distributions

408

Kali Linux is the most advanced platform for penetration testing.
It has support for different devices and hardware platforms.

BackBox is a Linux distribution for penetration testing and also
includes security assessment.

Parrot Security OS is new in this sphere. Its target is the cloud
environment, which provides online anonymity and a strong
encryption system.

BlackArch specializes in penetration testing platforms and
security research. It is built on top of Arch Linux.

Bugtragq is an impressive platform with forensic and
penetration tools.

DEFT (Digital Evidence & Forensics Toolkit) Linux is a very
important distribution for computer forensics, with the possibility
of running it as a live system.

Samurai Web Testing Framework is a powerful collection of
tools that can be used in penetration testing on the web. Notably,
it is a virtual machine file supported by VirtualBox and VMWare.

Pentoo Linux is a distribution intended for security and
penetration testing. It is available live and is based on Gentoo.

CAINE (Computer Aided Investigative Environment) is a
powerful distribution with a serious set of system forensics
modules and analysis in its own tools.

CHAPTER 17 STARTING WITH CRYPTANALYSIS

Network Security Toolkit is a favorite distribution tool and live
ISO built on Fedora. It contains a very important set of open
source network security tools. It provides a professional web user
interface for network and system administration, monitoring
tools, and analysis.

Fedora Security Spin is a professional distro for security audits
and tests. Various professionals use it in industry and academia.

ArchStrike, also known as ArchAssault, is a distro built on Arch
Linux for professionals in the field of security and penetration
testers.

Cyborg Hawk contains more than 750 tools for security
professionals and performing penetration tests.

Matriux is promising and can be used for penetration tests,
ethical hacking, forensic investigations, vulnerability analysis,
and more.

Wealkerth4n is not well known in hacking or cryptanalysis, but it
is an interesting approach for penetration tests and is built using
Debian (Squeeze).

Penetration tools/frameworks (Windows and Linux platforms)

Wireshark is a well-known packet sniffer. It provides a powerful
set of tools for network package and protocol analysis.

Metasploit is one of the most important frameworks for
penetration testing, framework development, and executing
exploits.

Nmap (Network mapper) is a powerful network discovery and
security auditing tool for security professionals. Its goal is to
exploit its targets. For each port you scan, you can see which
operating system is installed, what services are running, and what
firewall is installed and used.

409

CHAPTER 17 STARTING WITH CRYPTANALYSIS

Conclusion

This chapter discussed cryptanalysis in general and covered the foundation of
cryptanalysis, its tools, and working methods. You learned about the following.

o Cryptanalysis

e The main events during history and how the appearance of different
ciphers and algorithms influenced the cryptanalysis discipline

¢ Common terms and how to make the difference between different
types of hackers

o Hacking and penetration platform distributions

e The most important frameworks and penetration tools that can be
used independently, according to the user flavor/OS platform

References

[1]. Cohen, F (1990). A short history of cryptography. Retrieved May 4, 2009,
from Available online: http://www.all.net/books/ip/Chap2-1.html.
New World Encyclopedia (2007). Last accessed: 28.3.2023

[2]. Cryptography. Retrieved May 4, 2009, Available online: http://www.
newworldencyclopedia.org/entry/Cryptography. Last accessed 28.3.2023

[3]. M. Pawlan, “Cryptography: the ancient art of secret messages’, 1998. Retrieved
May 4, 2009, Available online: http://www.pawlan.com/Monica/crypto/.
Last accessed: 28.3.2023

[4]. . Rubin, “Vigenere Cipher’, 2008. Retrieved May 4, 2009, Available online:
http://www.juliantrubin.com/encyclopedia/mathematics/vigenere_
cipher.html. Last accessed: 28.3.2023

[5]. K. Taylor, “Number theory 1, 2002. Retrieved May 4, 2009, Available online:
http://math.usask.ca/encryption/lessons/lesson00/pagel.html.
Last accessed: 28.3.2023

[6]. M.E.Whitman and H. J. Mattord, Principles of Information Security.
Cengage Learning, 2021.

[7]. S.Singh, The Code Book: The Secret History of Codes and Code-Breaking,
HarperCollins, 2010.

410

http://www.all.net/books/ip/Chap2-1.html
http://www.newworldencyclopedia.org/entry/Cryptography
http://www.newworldencyclopedia.org/entry/Cryptography
http://www.pawlan.com/Monica/crypto/
http://www.juliantrubin.com/encyclopedia/mathematics/vigenere_cipher.html
http://www.juliantrubin.com/encyclopedia/mathematics/vigenere_cipher.html
http://math.usask.ca/encryption/lessons/lesson00/page1.html

8].

[9].

[10].

[11].

[12].

[13].
[14].

CHAPTER 17 STARTING WITH CRYPTANALYSIS

A. Ibraham, “Al-Kindi: The origins of cryptology: The Arab contributions,’
Crypto logia, vol. 16, no 2 (April 1992) pp. 97-126. Available online:
https://www.history.mcs.st-andrews.ac.uk/history/Mathematicians/
Al-Kindi.html. Last accessed: 28.3.2023

Philosophers: Yaqub Ibn Ishaq al-Kindi Kennedy-Day, K. al-Kindi, Abu
Yusuf Ya‘qub ibn Ishaq (d.c. 866-73), Available online: https://www.
muslimphilosophy.com/ip/kin.html. Last accessed: 28.3.2023

S. H. Nasr and O. Leaman, History of Islamic Philosophy. Routledge,

pp. 421-434, 2001.

Al-Faruqi, R. Ismail R. and L. L. al-Farugqi, Lois Lamya. Cultural Atlas of Islam.
Macmillan Publishing Company. pp. 305-306, 1986.

Encyclopaedia Britannica, Inc. Encyclopaedia Britannica. Chicago: William
Benton. pp. 352, 1969.

Buchmann, Johannes A. Introduction to Cryptography. Springer US, 2001.
Wagstaff, Samuel S. Cryptanalysis of Number Theoretic Ciphers. CRC Press/
Chapman & Hall, 2003.

411

https://www.history.mcs.st-andrews.ac.uk/history/Mathematicians/Al-Kindi.html
https://www.history.mcs.st-andrews.ac.uk/history/Mathematicians/Al-Kindi.html
https://www.muslimphilosophy.com/ip/kin.html
https://www.muslimphilosophy.com/ip/kin.html

CHAPTER 18

Cryptanalysis Attacks
and Techniques

This chapter covers the most important and useful cryptanalytic and cryptanalysis
standards, validation methods, classification, and operations of cryptanalysis attacks.

The cryptanalysis discipline is very wide, and writing about it requires hundreds and
thousands of pages. The following sections go through all the elements necessary for
practitioners to use in their daily activities.

Standards

It is very important to understand the importance of standards when conducting
cryptanalysis attacks for business purposes only to test the security within an
organization.

The following are the main institutes and organizations that provide high standards
for cryptography and cryptanalysis methods, frameworks, and algorithms.

o IEFT Public-Key Infrastructure (X.509) is the organization that
deals with standardizing protocols used on the Internet, which are
based on public key systems.

e The National Institute of Standards and Technologies (NIST) deals
with the elaboration of standards FIPS for the US government.

¢ The American National Standards Institute (ANSI) administers the
standards from the private sector.

o Internet Engineering Task Force (IEFT) is an international
community of networks, operators, and traders of services and
researchers that deals with the evolution of Internet architecture.

413

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_18

https://doi.org/10.1007/978-1-4842-9450-5_18

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

o The Institute of Electrical and Electronical Engineering (IEEE)
elaborates on theories and advanced techniques from different fields,
such as electronics, computer sciences, and informatics.

e The International Organization for Standardization (ISO)
represents a nongovernmental organization with more than 100
countries. Its main purpose is to promote the development of
standardization to facilitate the international exchange of services.

FIPS 140-2, FIPS 140-3, and 1SO 15408

ISO 15408 represents the evaluation of IT security and is used in the international
community as a reference system. The standard defines a set of rules and requirements
from the IT field to validate the product’s security and cryptographic systems.

FIPS 140-2/140-3 represents a set of guidelines that must be followed to fulfill a
specific set of technical requirements exposed on four levels.

You must consider both standards when developing a specification or criteria for a
certain application or cryptographic module.

The products that are developed with respect to these standards need to be tested to
obtain validation and to confirm that the criteria were followed and respected properly.

Validation of Cryptographic Systems

If the business requires cryptanalysis and cryptography operations to be implemented
within the software and communication systems, then cryptographic and cryptanalysis
services are needed. Certification organizations authorize these services, including
functionalities such as digital signature generation and verification, encryption and
decryption, key generation, key distribution, and key exchange.

Validation of cryptographic systems is the process of testing and evaluating the
security and functionality of a cryptographic system to ensure that it meets the required
security standards and specifications. This process typically includes a combination
of theoretical analysis, testing, and implementation reviews to assess the strength and
robustness of the system. Validation ensures that the system is secure against known and
potential attacks and functions correctly in the intended environment. Some examples
of validation techniques include penetration testing, formal verification, and side-
channel analysis.

414

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

The model shown in Figure 18-1 depicts a general model for testing the security
based on cryptographic and cryptanalysis modules.

Software Product

Figure 18-1. Verification and testing framework

A proper testing and verification process requires only two steps—the cryptographic/
cryptanalysis algorithm and the cryptographic module. For example, if you are
developing a cryptographic product or a desktop or web software application, it is
necessary for the company/institute/developer to perform the tests and to send them
to CMVP! (Cryptographic Module Validation Program) to be tested with respect to FIPS
140-2% and FIPS 140-33.

A cryptographic module represents a combination of specialized software and
hardware processes. The main advantages of using validated cryptographic and
cryptanalysis modules are as follows.

e The modules should satisfy the requirements.

e Making sure that the authorized and technical personnel are
informed and instructed within a stand that is commonly agreed
upon and that it was tested.

o Ensuring that the final user (end user) is aware that the cryptographic
module was verified and tested in accordance with some well-
defined security requirements.

'CMVP, https://csrc.nist.gov/projects/cryptographic-module-validation-program
2FIPS 140-2, https://csrc.nist.gov/publications/detail/fips/140/2/final
3FIPS 140-3, https://csrc.nist.gov/publications/detail/fips/140/3/final

415

https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://csrc.nist.gov/publications/detail/fips/140/3/final

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

o Ahigh level of reliability for security needs to be fulfilled to develop
similar and specific applications.

The security requirements of FIPS 140-2 contain 11 metrics and criteria for designing
and implementing the cryptographic module. For each cryptographic module validated,
the following requirements need to be fulfilled. During the validation process, the
cryptographic modules receive a mark from 1 to 4, proportional to the guaranteed
security level.

Once the cryptographic modules are validated, they contain information such as the
name of the manufacturer, address, name of the module, version of the module, type of
module (software or hardware), validation date, validation level, and module description.

Cryptanalysis Operations

Designing a cryptographic system must be done using the following simple principles.
e The opponent should not be underestimated.
e A cryptanalyst can evaluate the security of a cryptographic system.

o Before the evaluation of the cryptographic system is performed, the
knowledge of the adversary is taken into consideration.

o The secret of the cryptographic system must rely on the key.

o Inthe process of cryptographic system evaluation, all the elements
within the system, such as key distribution and cryptographic
content, must be considered.

According to the father of information theory, Claude Elwood Shannon,* the
following criteria must be considered when performing cryptosystem evaluation.

¢ One of the winnings of the cryptanalyst is gained once a message is
decrypted with success

o The keylength and complexity

o The level of complexity of performing an encryption-
decryption process

*Claude Elwood Shannon, https://www.itsoc.org/about/shannon

416

https://www.itsoc.org/about/shannon

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

The size of the encrypted text in accordance with the text size

The error propagation method

The basic operations for having a solution for each cryptogram are as follows.

Finding and determining the language used
Determining the cryptographic system

Reconstructing a specific key for a cryptographic system or partial or
complete reconstructing for a stream cryptographic system

Reconstruction of such a system or establishing complete plaintext

Classification of Cryptanalytics Attacks

This section covers the types of attacks on cipher algorithms, cryptographic keys,

authentication protocols, protocols and systems, and hardware attacks.

Cryptanalytic attacks can be broadly classified into two categories.

Ciphertext-only attacks involve only the ciphertext and no
information about the plaintext or the key used. Examples
include frequency analysis, differential cryptanalysis, and linear
cryptanalysis.

Known-plaintext attacks involve both the ciphertext and a known
plaintext-ciphertext pair. Examples include the chosen-plaintext
attack and the related-key attack.

Another way to classify cryptanalytic attacks is based on the amount of

computational resources required to carry out the attack.

Brute-force attacks involve trying all possible keys until the correct
one is found.

Statistical attacks involve analyzing patterns in the ciphertext to try
to determine the key.

Side-channel attacks involve analyzing information leaked
during the encryption process, such as power consumption or
electromagnetic radiation, to extract information about the key.

417

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

Attacks on Cipher Algorithms

Table 18-1. Attacks on Ciphering Algorithms

Types of Attacks on Ciphering Algorithms

Attack Title

Attack Description

Known-plaintext
attack

Chosen text
attack

Cipher-cipher
text attack

Divide et Impera
attack

Linear syndrome
attack

Consistency
linear attack

Stochastic
attack

Informational
linear attack

Virus attack

The cryptanalyst has an encrypted text, and his correspondent has the plaintext.
The goal is to separate the encryption key from the information.

The cryptanalyst can indicate the plaintext, which is encrypted. By using this
type of attack, the cryptanalyst tries to separate the information of the text from
the encryption key, having the possibility to obtain the encryption algorithm or
the key through specific methods.

The cryptanalyst holds a plaintext and his correspondent the same text, which is
encrypted with two or more different keys.

The cryptanalyst may realize a series of correlations between different inputs
and outputs of the algorithm to separate different inputs in the algorithm, which
makes him break the problem into two or more problems that are easy to solve.

The cryptanalysis method consists of designing and creating a linear equation
system specific for the pseudorandom generator and verifying the equation
system with the encrypted text, obtaining the plaintext with a high probability.

The cryptanalytic method consists of elaborating a linear equation system
specific to the pseudorandom generator starting from an equivalent
cryptographic key and verifying the system by the pseudorandom generator with
the probability of 1, obtaining in this way the plaintext with a high probability.

Also known as a forecasting attack, this attack is possible if the generator’s
output is autocorrelated, the cryptanalyst managing to obtain the output of the
pseudorandom generator and the encrypted text as input data. In this way, the
clear text is obtained.

Also known as a linear complexity attack, this attack is possible if there is any
chance to equalize the generator with a Fibonacci algorithm. It is possible if
the linear complexity is equivalent to the generator is low. With this attack, it is
possible to build a similar algorithm and cryptographic key.

This attack is possible if the encryption algorithm is implemented on a
vulnerable, unprotected PC.

418

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

Attacks on Cryptographic Keys

The most frequent attacks that occur on cryptographic keys are listed in Table 18-2.

Table 18-2. Attacks on Cryptographic Keys

Type

Attacks on Keys
Description

Brute-force attack

Intelligent brute-force
attack

Backtracking attack

Greedy attack

Dictionary attack

Hybrid dictionary
attack

Virus attack

Password hash attack/
cryptographic key

Substitution attack

Storing encryption key

The attack consists of the exhaustive verification of the keys and
passwords, and it is possible if: the encryption key size is small and the
encryption key space is small.

The level of key randomness of the encryption key is small (the entropy
is small) and allows finding the password, similar to the words from the
utilized language.

The attack is based on implementing the backtracking type method,
which consists of conditions for continuing the search in the desired
direction.

The attack provides the optimal local key, different from the optimal
global key.

The attack consists of searching for passwords or keys using a
dictionary.

This attack is made by modifying the words from the dictionary and
initializing the brute-force attack with the help of the words from the
dictionary.

This attack is possible if the keys are stored on an unprotected PC.

This attack occurs if the password hash is short or wrong elaborated.

The original key is substituted by a third party and replaced in the entire
network. It can be done with the help of viruses.

If this is done incorrectly (together with the encryption data) in plaintext
without any physical protection measures or cryptographic software or
hardware, it can lead to an attack on the encrypted message.

(continued)

419

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

Table 18-2. (continued)

Attacks on Keys
Type Description

Storing old encryption This attack leads to the compromise of the old documents that are
keys encrypted.

Key compromise Only the documents assigned with that key are compromised if the
symmetric key is compromised. If the public key is compromised, which can
be found stored on different servers, the attacker can be substituted with the
legal owner of the data having a bad and negative impact on the network.

Master keys Represents different phases in the cryptographic system.

Key lifetime It is an essential component that excludes the possibility of a successful
attack being undetected.

Attacks on Authentication Protocols

The authentication protocols are exposed to different types of attacks. Table 18-3 covers

the most important ones, which are frequently used. It is very important to consider that
an authentication protocol of a system is very important and vital. Once corrupted, vital
information can be exposed, and attackers can gain many personal, financial, and other
benefits.

Table 18-3. Attacks on Authentication Protocols

Attacks on Authentication Protocols

Type Description

Attack on the public The attack takes place on the signature within the protocol. This is

key available only for systems with public keys.

Attack on the The attack takes place on the signature within the authentication

symmetric algorithm protocol. This is available only if a symmetric key is used.

Passive attack The attacker intercepts and monitors the communication on the channel
without intervention.

Attack using third A third party actively intercepts the communication of two partners

person within a communication channel.

Fail-stop signature It is a cryptographic protocol in which the sender can bring evidence of

whether his signature was forged.

420

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

Authentication protocols are methods used to verify the identity of a user before they
are allowed access to a service. Authentication is the process of determining whether a
user attempting to access a system is who they claim to be. Authentication protocols can
be implemented on both wired and wireless networks and control access to the network
and any resources connected to it. Authentication protocols protect against unauthorized
access to systems and networks by verifying the user’s identity. Each protocol has its
own specific way of doing this, but some commonalities exist. The first step is always
to ask the user to provide some sort of identifier. This could be a code generated by a
token, a passphrase, or a biometric identifier such as a fingerprint or an eye scan. The
authentication protocol then examines this identifier to see if it corresponds to the user.

With the ever-growing presence of the Internet and its services, it is essential to
understand the various types of attacks on authentication protocols and how to protect
your data. Authentication protocols are used to verify the identity of a user before
access to a service is granted. However, these protocols are vulnerable to various types
of attacks, such as man-in-the-middle attacks, brute-force attacks, and replay attacks.
Understanding the different types of attacks and how to prevent them is essential for any
individual or organization wanting to protect their data from unauthorized access. With
proper knowledge and implementation of security measures, organizations can protect
their data from cybercriminals and malicious actors.

The following summarizes several types of attacks on authentication protocols.

o A password-guessing attack is a man-in-the-middle attack in
which an attacker tries to log into a system using different passwords
until they find the correct one. This is done either manually or with
automated software. Sometimes this attack is made by recording
authentication sessions, trying to log in with a random password, and
then replaying the recording to the real server.

o A brute-force attack occurs when an attacker tries to enter a system
by trying passwords or passphrases until they find the correct one.
They do this by trying different combinations of letters, digits, or
symbols until they find a code that works. With a network protocol,
an attacker could use a software program to log into a system using
a large number of passwords until they find the correct one. Brute-
force attacks are difficult to protect against. The best way is to set a
strong password and try to avoid reusing the same password across
multiple systems.

421

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

o Areplay attack occurs when an attacker obtains hold of a valid
authentication session and replays it to access a system. This is
possible because authentication protocols typically use a single-
use session identifier. There are a few ways to protect against replay
attacks. One way is to use a Public Key Infrastructure (or PKI) with
digital signatures. With PKI, the server and client generate a pair of
keys—one public and one private. The server publishes its public key
and marks it as “private” so it cannot be accessed. The client looks up
the server’s public key and uses it to encrypt a message.

e A man-in-the-middle attack occurs when an attacker puts themselves
between two communicating parties and pretends to be each of
them. To do this, the attacker must first obtain control of a network
connection and then place themselves between the two parties. When
a user tries to log into an account using an authentication protocol, the
attacker would first need to obtain control of the network connection
between the user and the authentication server. They would then have
to forward the user’s authentication request to the authentication
server and send their own authentication request to the server.
When the authentication server responds to the attacker, the attacker
forwards the response to the user. Because the attacker is in the middle
of the two parties, they can see both sides of the conversation.

Conclusion

Authentication protocols are designed to verify the identity of a user before they are
allowed access to a network or system. However, they are vulnerable to different types of
attacks, such as man-in-the-middle attacks, brute-force attacks, and replay attacks. It is
important to understand the different types of attacks on authentication protocols and
how to protect against them. The best ways to protect against these attacks are to use
strong passwords, establish two-factor authentication, implement proper encryption,
and monitor user activity.

The chapter covered the most important and useful cryptanalytic and cryptanalysis
guidelines and methods. After reading, you should now be capable of managing the
standards to test and verify the implementation of cryptographic and cryptanalytic
algorithms and methods. In summary, you learned about the following.

422

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

Cryptanalysis attack classification
Cryptanalysis operations

Standards FIPS 140-2 and FIPS 140-3
Standard 15408

Validation of cryptographic systems

References

(1].

(2].

(3].

(4].

(5].

[6].

[7].

A. Atanasiu, Matematici in criptografie. Universul Stiintific, 2015. [Romanian
Language]

A. Atanasiu, Securitatea Informatiei, vol. 1 (Criptografie), InfoData, 2007.
[Romanian Language]

A. Atanasiu, Securitatea Informatiei, vol. 2 (Protocoale de securitate), InfoData,
2009. [Romanian Language]

S.J. Knapskog, “Formal specification and verification of secure
communication protocols’, in Advances in Cryptology — AUSCRYPT '90,

J. Seberry and J. Pieprzyk, Eds., in Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1990, pp. 58-73.

K. Koyama, “Direct demonstration of the power to break public-key
cryptosystems’, in Advances in Cryptology — AUSCRYPT '90, J. Seberry and

J. Pieprzyk, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 1990, pp. 14-21.

P.J. Lee, “Secure user access control for public networks’, in Advances in
Cryptology — AUSCRYPT '90, J. Seberry and J. Pieprzyk, Eds., in Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 1990, pp. 45-57.

R. Lidl and W. B. Miiller, “A note on strong Fibonacci pseudoprimes’, in
Advances in Cryptology — AUSCRYPT '90, J. Seberry and J. Pieprzyk, Eds., in
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1990, pp.
311-317. doi: 10.1007/BFb0030371.

423

CHAPTER 18 CRYPTANALYSIS ATTACKS AND TECHNIQUES

424

8].

[9].

A.J. Menezes and S. A. Vanstone, “Elliptic curve cryptosystems and their
implementation’, J. Cryptology, vol. 6, no. 4, pp. 209-224, Sep. 1993, doi:
10.1007/BF00203817.

M. J. Mihaljevic and J. Dj. Golic, ‘A fast iterative algorithm for a shift register
initial state reconstruction given the noisy output sequence, in Advances in
Cryptology — AUSCRYPT '90, J. Seberry and J. Pieprzyk, Eds., in Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 1990, pp. 165-175.

CHAPTER 19

Differential and Linear
Cryptanalysis

This chapter covers two important cryptanalysis types: linear and differential. To
understand how to merge theoretical and practical concepts, basic concepts and
advanced techniques on how professionals implement them are discussed first.

Despite some of the differential and linear mechanisms being outdated, there is
plenty of room to find new challenges that could be exploited to obtain new results. The
research literature about linear and differential cryptanalysis provides many theoretical
approaches and mechanisms. But only a few theories could be applied in practice,
developing professional solutions for differential and linear cryptanalysis attacks.

The difference between theoretical and applied cryptanalysis is significantly
large and has its own differences. The results published in the last 12 years, such as
algorithms, methods, and game theory aspects, led researchers and professionals on
different paths. Most of them were whimsical, chimeras (complex mathematical systems
without real applicability), fancy algorithms, and others being applicable with success in
practice.

Conducting research in cryptanalysis and increasing its potential value for being
applied in practice and for different scenarios requires time, experience, and continuous
cross-collaboration between theoreticians and practitioners, without isolation between
these two types of categories.

Carrying out cryptanalysis work and increasing its potential value to be implemented
in practice for various scenarios involves time, expertise, and ongoing cross-
collaboration between theoreticians and practitioners without separating these two
groups. Their importance is crucial in the field of cryptanalysis, providing the necessary
tools and mechanisms to construct cryptanalysis attack schemes for block and stream
ciphers.

425

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_19

https://doi.org/10.1007/978-1-4842-9450-5_19

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

Differential Cryptanalysis

E. Biham and A. Shamir implemented differential cryptanalysis in the early 1990s.
Usually, differential cryptanalysis is designed for block ciphers, but it can also be used
for stream ciphers or hash functions. Differential cryptanalysis checks whether the
cryptogram traces some locations from the key with a probability greater than others.
The checking process can be carried out with any order with grade 1. The test represents
a complicated approximation of order 2 of a test cycle.

Differential cryptanalysis exposes the weak points of the cryptography algorithm.
The following example of differential cryptanalysis is illustrated for stream cryptography
algorithms. The pseudocode of the algorithm is as follows.

INPUT: the key is chosen as K = (ky, .., k,) with k; € {0, 1}

OUTPUT: the weak points of the cryptography
algorithm together with the resistance decision for
differential cryptanalysis.

1. a<rejection rate value
2. choose n sets of keys with perturbation property sets, starting

from key K.
fori=1tondo K" =(5, ®k,,...,5,, ®k,):

1i

L j#

o, if j=i.

fori,j=1,...,n. Here, the i® key is obtained from the base key by
changing the bit from the i® position.

3. Constructing the cryptograms. The first step is to build n + 1
cryptograms using the basic key, perturbed keys and clear text
M. We denote the obtained cryptograms with C?,i=1, ..., n+ 1. As
plaintext M, we can choose for text 0 - everywhere.

4. Constructing the correlation matrix. Here, we build the matrix
(n+1) x (n + 1) for the correlation values C:

c; = corellation(cryptogrami,cryptogram j),

426

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

corelation c; denotes the value of the statistical test applied to the
sequence (cryptogram i @ cryptogram j). The matrix C is represented
as a symmetrical matrix having 1 on the main diagonal.

The computational process for the significant value. It counts the
values of significant correlation that are situated above the main
diagonal. A value is called significant if

2 2

Consider T the number of significant values that
represents the number of rejects of the correlation test.

Decision and result interpretation. If

\/:(la).:("zm .|

once computed, we can decide the nonresistance to differential
cryptanalysis (u, and u , represents the quantiles of the normal

el 1-=

2

o o . s s .
distribution of order % and 1 — and fixes the (i,) elements with
2

n>i>j>1, for which c;is significant. These elements represent weak

points for the algorithms. Otherwise, we cannot mention anything
about the resistance to this type of attack.

In this section, a very simple cipher that shifts the plain message with the secret

key and then inverts it to obtain the encrypted message is presented. Then, differential

cryptanalysis is applied to break the cipher. The code is presented in Listing 19-1. The

output is shown in Figure 19-1.

Listing 19-1. Simple Differential Attack

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

427

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

//helper function that inverts the input value
unsigned char invert(unsigned char value) {
return ~value;

}

//helper function that shifts the input value to left
unsigned char shift left(unsigned char value) {
return ((value << 1) & 0xOF) | ((value >> 3) & 0x01);

}

//simple encryption function that shifts the message to left then

inverts it

unsigned char cipher(unsigned char message, unsigned char key) {
return shift left(invert(message " key));

}

int main() {
//declare two plain messages and the secret key
0x02;
unsigned char message2 = 0x03;
unsigned char key = 0x06;

unsigned char messagel

//compute the corresponding encrypted messages
unsigned char encrypted messagel = cipher(messagel, key);
unsigned char encrypted message2 = cipher(message2, key);

int pairs no = 10000;
int total_ok_pairs = 0; //total number of pairs that satisfy the
condition

//threshold for success of probability
double threshold = 0;

//cryptanalysis attack

for (int k = 0; k < 16; k++) {
unsigned char computed key = k;
int different pairs = 0;
int ok _pairs = 0;

428

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

//compute the number of differential pairs that satisfy the condition
for (int j = 0; j < pairs_no; j++) {

//randomly generate two plain messages

unsigned char aux messagel = rand() % 16;

unsigned char aux_message2 = aux_messagel " messagel;

//compute the corresponding ciphertexts using the computed key
unsigned char aux_encrypted messagel = cipher(aux_messagei,
computed key);

unsigned char aux_encrypted message2 = cipher(aux_message2,
computed key);

//check if the pairs satisfy the condition
if ((aux_encrypted messagel " aux_encrypted message2) ==
(encrypted messagel ~ encrypted message2)) {

ok _pairs++;

}

different pairs++;

}

//compute the probability of correctly guessing the computed key
double probability = (double)ok pairs / different pairs;

if (probability > threshold) {
total ok pairs++;
cout << "Computed key:

<< hex << (int)computed_key << ",
<< probability << endl;

probability of success:

}

//verify if the computed key is the same as the correct key
if (total ok pairs > 0) {
cout << "Correct key:
} else {
cout << "Correct key not found." << endl;

<< hex << (int)key << " found." << endl;

}

return 0;

429

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

-
o Command Prompt X + v - o x W

E:\examples\19>g++ -std=c++2b Listingl9-1.cpp -o Listingl9-1

E:\examples\19>Listing19-1
Correct key not found.

E:\examples\19>

Figure 19-1. The output for differential attack

This example produces a pair of plain messages that differ by a single bit and use a
fixed key to compute the corresponding encrypted messages. A differential cryptanalysis
attack is conducted by guessing each potential key value and counting the number
of differential pairings satisfying the condition (aux_encrypted messagel " aux_
encrypted message2) == (encrypted messagel " encrypted message2), where
aux_messagel and aux_message2 are random plain message values.

This method is continued for a large number of random plain message pair iterations
and calculates the likelihood of success for each key guess. If the success probability
of a key estimate exceeds a specific threshold (in this example, 0.10), it’s considered
a possible candidate for the actual key. Finally, let’s determine if the estimated key
matches the actual key.

Linear Cryptanalysis

Linear cryptanalysis was developed as a theoretical framework for the Data Encryption
System (DES) and implemented in 1993. Linear cryptanalysis is commonly used inside
block ciphers and is a good starting point for designing and executing complex attacks.

Linear cryptanalysis is a linear relationship between the key, the plaintext structure,
and the ciphertext structure. The plaintext is structured and represented as characters
or bits. It is required to have the structure as a chain of operations characterized by
exclusive-or, as the following describes.

A A .. .OA OB, ©®B, ©...®B; =Key, ®Key, ®...Key,

430

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

€ represents the XOR operation as a binary operation, A, represents the bit from

the i position of the input structure A = [A,, A,, ...], B; represents the bit from the j*

position of the output structure B = [B,, B,, ...] and Key, represents the k" bit of the key

Key = [Key,, Key,, ...].

Performing Linear Cryptanalysis

Usually, in the most important cases, performing linear cryptanalysis starts from the idea

that we acknowledge the encryption algorithm except the private key. As the following

describes, executing linear cryptanalysis against a block cipher is represented as a

framework.

The first step is based on identifying the linear approximation for
nonlinear components. The goal is to characterize the encryption
algorithm (e.g., S-boxes).

Computing a combination of linear approximations of substitution
boxes, including the operations executed against the encryption
algorithm. Professionals should focus on linear approximation
because it represents a special function that contains and deals with
the clear text and cipher text bits and those from the private key.

Computing and designing the linear approximation should be

a guideline for the cryptographic keys used for the first time.

The guideline proves its power and helps professionals save
important computational resources for all the possible values of the
cryptographic keys. Using multiple linear approximations, you have a
very powerful process of computation to eliminate the key numbers
necessary for trying.

In this section, a very simple cipher is presented that XORes the plain message with

the secret key to obtain the encrypted message. Then, linear cryptanalysis is applied

to break the cipher [10]. The code is presented in Listing 19-2. The output is shown in
Figure 19-2.

431

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

Listing 19-2. Simple Linear Cryptanalysis Example

#include <iostream>
#include <bitset>
#include <random>

using namespace std;

// a very simple cipher that XORes the message with the key
bitset<4> cipher(bitset<4> message, bitset<4> key) {
bitset<4> encrypted message = message " key;
return encrypted message;

int main() {
//set the parameters to generate random messages and keys
random_device rand value;
default random engine generate(rand value());
uniform int distribution<int> distance(0, 15); //generates random
numbers between 0 and 15

bitset<16> messages; //stores messages
bitset<16> encrypted messages; //stores encrypted messages

//generate randomly 16 messages, the keys, each of them on 4-bit then
compute the corresponding encrypted messages
for (int i = 0; i < 16; i++) {

bitset<4> message(distance(generate));

bitset<4> private key(distance(generate));

bitset<4> encrypted message = cipher(message, private key);

messages[i] = message.to ulong();
encrypted messages[i] = encrypted message.to ulong();

}

//applying linear cryptanalysis to compute the key
////first, the compued key and the maximum bias are set to 0
bitset<4> key compute(0);

int maximum_bias = 0;

432

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

//all possible key are computed
//for each key the bias value is computed using linear approximation
for (int k = 0; k < 16; k++) {

bitset<4> local key(k);

int local bias = 0;

//compute the bias value for each pair of message -
encrypted message
for (int i = 0; 1 < 16; i++) {

bitset<4> aux_message(messages[i]);

bitset<4> aux_encrypted message(encrypted messages[i]);

bitset<4> auxi(aux_message " local key); // XOR the message
with the local key

bitset<4> aux2(aux_encrypted message " local key); // XOR the
encrypted message with the local key

//compute the linear approximation

//update bias value

if ((auxi.count() + aux2.count()) % 2 == 0) {
local bias++; //the bias value is increased if the linear
approximation occurs

} else {
local bias--; //the bias value is decreased if the linear
approximation does not occur

}

//verify if the computed key is the same as local (real) key
if (key compute == local key) {
cout << "The key was correctly computed:
« "/
} else {
cout << "The key was not correctly computed:
compute << " / ";

<< key_compute

<< key_

}

cout << "The correct key:

<< local key << endl;

433

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

if (abs(local bias) > abs(maximum bias)) {
maximum bias = local bias;
key compute = local key;

}

// Output the key guess and maximum bias
cout << "Computed key: " << key compute.to ulong() << endl;
cout << "Bias value: " << maximum_bias << endl;

return 0;
55 Command Prompt X A @ - o x

E:\examples\19>g++ -std=c++2b Listingl9-2.cpp -o Listingl9-2 |

E:\examples\19>Listing19-2

The key was correctly computed: 8068
The key was correctly computed: e0ee
The key was correctly computed: 8668
The key was correctly computed: 86688
The key was correctly computed: €868
The key was correctly computed: 0808
The key was correctly computed: €868
The key was correctly computed: €068
The key was correctly computed: 6668
The key was correctly computed: €668
The key was correctly computed: €068
The key was correctly computed: €068
The key was correctly computed: 0000
The key was correctly computed: €068
The key was correctly computed: 0000 / The correct key: 0068

The key was correctly computed: 8868 / The correct key: 86e8

The key was not correctly computed: €086 / The correct key: €861
The key was not correctly computed: 6686 / The correct key: 6861
The key was not correctly computed: €808 / The correct key: @81
The key was not correctly computed: €6ee The correct key: 8861
The key was not correctly computed: 0086 / The correct key: €801
The key was not correctly computed: 6686 The correct key: 8861
The key was not correctly computed: €808 / The correct key: 6801

The correct key: 8660
The correct key: oeee
The correct key: 9888
The correct key: eeee
The correct key: eeee
The correct key: ©8e@
The correct key: 8668
The correct key: ©eee
The correct key: 0668
The correct key: ©€e@
The correct key: eeee
The correct key: 6eee
The correct key: 8668
The correct key: ©eee

e e R e e e e e e e e

/
/
/
/
/
/

Figure 19-2. The output for linear cryptanalysis

This code creates 16 random plain messages and keys and then uses a simple
cipher function to encrypt each message with a random key to produce the appropriate
encrypted message. The cipher is then exposed to a linear cryptanalysis attack by testing
all possible keys and computing the bias of each key using the linear approximation.
Eventually, the highest-biased key is chosen as the correct guessed key.

434

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

Conclusion

The chapter has discussed differential and linear cryptanalysis attacks and how these

kinds of attacks can be designed and implemented in real practice. It introduced the

theoretical background elements and main foundations that must be known before

designing such cryptanalysis attacks.

You learned the following.

How to identify theoretically the main components on which a
cryptanalyst should focus

How vulnerable those components are and how they can be
exploited

How to implement linear and differential cryptanalysis attacks

References

[1].

(2].

(3].

[4].

[5].

[6].

J. Daemen, L. Knudsen, and V. Rijmen, “The block cipher Square’, in Fast
Software Encryption, E. Biham, Ed., in Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 1997, pp. 149-165.

H. Heys, “A Tutorial on Linear and Differential Cryptanalysis,” Cryptologia, vol.
XXVI, no. 3, pp. 189-221, 2002.

M. Matsui, “Linear Cryptanalysis Method for DES Cipher’, Advances in
Cryptology - EUROCRYPT '93, Springer-Verlag, pp. 386-397, 1994.

E. Biham, “On Matsui’s linear cryptanalysis’, in Advances in Cryptology —
EUROCRYPT'94, A. De Santis, Ed., in Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 1995, pp. 341-355.

A. Biryukov, C. De Canniére, and M. Quisquater, “On Multiple Linear
Approximations’, in Advances in Cryptology - CRYPTO 2004, M. Franklin,
Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2004,
pp. 1-22.

L. Keliher, H. Meijer, and S. Tavares, “New Method for Upper Bounding

the Maximum Average Linear Hull Probability for SPNs’, in Advances in
Cryptology — EUROCRYPT 2001, B. Pfitzmann, Ed., in Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2001, pp. 420-436.

435

CHAPTER 19 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

[7].

8].

[9].

[10].

436

L. R. Knudsen and J. E. Mathiassen, “A Chosen-Plaintext Linear Attack on
DES’, in Fast Software Encryption, G. Goos,]. Hartmanis, J. van Leeuwen, and
B. Schneier, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2001, pp. 262-272.

M. Matsui and A. Yamagishi, “A New Method for Known Plaintext Attack of
FEAL Cipher’, in Advances in Cryptology — EUROCRYPT’ 92, R. A. Rueppel,
Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1993,
pp. 81-91.

M. Matsui, “The First Experimental Cryptanalysis of the Data Encryption
Standard’; in Advances in Cryptology — CRYPTO "94, Y. G. Desmedt, Ed.,

in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1994,

pp. 1-11.

N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering: Design
Principles and Practical Applications. John Wiley & Sons, 2011.

CHAPTER 20

Integral Cryptanalysis

Integral cryptanalysis is a technique designed for block ciphers constructed on
substitution-permutation networks. Since an integral cryptanalysis attack can be
launched against a Square block cipher [1], it is also known as a Square attack and was
designed by Lars Knudsen.

An exposed point of the block ciphers is the network of substitution-permutation.
When the networks can be discovered (intuitively), the exploitation of the vulnerabilities
of the block cipher has a high negative impact on the entire cryptosystem. Another
exposed point of the block ciphers is the key itself and the table involved in the
permutation of the key. The system can be broken when a false key is similar (or
identical) to the correct one.

The next section presents the formal basis regarding block ciphers, which can be
implemented, and the elements that are required to focus on initiating an integral
cryptanalysis attack, for example, building Feistel networks and generating permutation
tables for cryptographic keys. Once there is a clear understanding of these two phases, it
is very clear how integral cryptanalysis must be conducted.

Basic Notions

For implementing and designing the integral cryptanalytic attack, it is very important
to have the formal elements before implementing it. Moving further, let’s look at the
following concepts as the main starting point for designing and implementing such an
attack for education purposes.

Consider (G, +) as a finite abelian group with the order k. The following product
group G" = G x ... x G is the group with elements with the structure v = (v, ..., v,), where
v; € G. The addition within G” is defined as component-wise; therefore, u + v = w holds
for u, v, w € G* when u; + v; = w; for all i.

437

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_20

https://doi.org/10.1007/978-1-4842-9450-5_20

CHAPTER 20 INTEGRAL CRYPTANALYSIS

Let’s denote with B the set with multiple vectors and define the integral over B. This
integral represents the sum of all vectors S. The integral is defined as [S = Zv , and the
addition operation is defined in terms of the group operation for G". veb

When the integral cryptanalytic is designed, an important thing that should be
known is the number of words in the plain text and the encrypted text. In the example
from this chapter, this number is denoted with n. Another important number that should
be known is the number of clear texts and encrypted texts, denoted with m. In general,

m =k (i.e., k=|G]), the vectors v € B denote the plain text and the encrypted text, and
G=GF(28) or G=Z/kZ.

Going further to the attack, it is because one of the involved entities predicts the
values placed in the integrals after a particular number of rounds of encryption. Keeping
this in mind, three cases can be distinguished: (1) when the words have the same length
(e.g., i), (2) when the words have different lengths, and (3) the sum of a particular value
that is predicted in advance.

Furthermore, consider B C G" as described and a fixed index i. The following three
cases can be distinguished.

e v=cforallveB
e {v:veB}=G

° Zvi =c'

veB

¢, ¢ € G are some values known and fixed in advance.

The next example is a common situation in which m = k, the number of vectors from B,
is the same as the number of elements in the considered group. From Lagrange’s theorem, it
results that if all words, a general word placed at the i position, have the same length, then
itis intuitive that the i word from the integral has the value of the neutral element from G.

The following two theorems are necessary and represent a must for any practical
developer that wants to translate into practice integral cryptanalysis.

Theorem 20-1 [1, Theorem 1, p. 114]

Let’s consider (G, +) a finite abelian additive group. The subgroup of elements of order 1

or2is denoted as L = {g € G: g+ g=0}. Let’s consider writing s(G) as the sum Zg of all
geG
the elements found within G. Next, consider s(G) = ZH. Moreover, it is very important
heH

to understand the following analogy s(G) € H: s(G) + s(G) = 0.

438

CHAPTER 20 INTEGRAL CRYPTANALYSIS

According to Theorem 1, for G = GF(25) there is the value s(G) = 0 and for Z/mZ there
is the value s(Z/mZ) = m/2 when m is an even value, or it is 0. The following theorem
represents the multiplicative case for written groups (see Theorem 20-2).

Theorem 20-2 [1, Theorem 2, p. 114]

Let’s consider (G,) a finite abelian multiplicative group. The subgroup of elements
of order 1 or 2 is denoted as H={g € G : g *« g = 1}. Consider writing p(G) as being the
product Hg of all the elements of G. Next, consider p(G)= Hh . Moreover, it is very

geG heH

important to understand the following analogy p(G) € H, or p(G) * p(G) = 1.
As an example, if G = (Z/pZ)* where p is prime, p(G) is —1, p(G) = — 1. This is proven
using Wilson'’s theorem.

Practical Approach

This section presents a very simple cipher that shifts the plain message with the secret
key and then inverts it to obtain the encrypted message. Then, integral cryptanalysis
is applied to break the cipher [2]. The code is presented in Listing 20-1. The output is
shown in Figure 20-1.

Listing 20-1. The Main Program
#include <iostream>
using namespace std;

//helper function that inverts the input value
unsigned char invert(unsigned char value) {
return ~value;

}

//helper function that shifts the input value to left
unsigned char shift left(unsigned char value) {
return ((value << 1) & oxoF) | ((value >> 3) & 0x01);

439

CHAPTER 20 INTEGRAL CRYPTANALYSIS

//simple encryption function that shifts the message to left then

inverts it

unsigned char cipher(unsigned char message, unsigned char key) {
return shift left(invert(message " key));

}

int main() {
//declare the plain message and the secret key
unsigned char message = 0x02;
unsigned char key = 0x06;

//compute the corresponding encrypted message
unsigned char encrypted message = cipher(message, key);

int pairs_no = 10000;
int total ok pairs = 0; //total number of pairs that satisfy the
condition

//threshold for success of probability
double threshold = 0;

//integral analysis attack

for (int k = 0; k < 16; k++) {
unsigned char computed key = k;
int ok _pairs = 0;

//compute the number of pairs that satisfy the condition
for (int i = 0; 1 < 16; i++) {
for (int j = 0; j < 16; j++) {
//compute the corresponding encrypted messages using the
computed key

unsigned char aux_encrypted messagel = cipher(i,
computed key);
unsigned char aux_encrypted message2 = cipher(j,

computed key);

//check if the condition is met
if ((aux_encrypted messagel " aux_encrypted message2) ==
encrypted message) {

440

CHAPTER 20 INTEGRAL CRYPTANALYSIS

ok_pairs++;

}

//compute the probability of correctly guessing the computed key
double probability = (double)ok pairs / (16 * 16);

if (probability > threshold) {
total ok pairs++;

<< hex << (int)computed key << ",
" << probability << endl;

cout << "Computed key:
probability of success:

}

//verify if the computed key is the same as the correct key
if (total ok _pairs > 0) {
cout << "Correct key:
} else {
cout << "Correct key not found." << endl;

<< hex << (int)key << " found." << endl;

}

return 0;

441

CHAPTER 20 INTEGRAL CRYPTANALYSIS

Command Prompt x P || & = 0 X
E:\examples\20>g++ —-std=c++2b Listing26-1.cpp -o Listing26-1
E:\examples\20>Listing20-1
Computed key: ©, probability of success: 0.0625
Computed key: 1, probability of success: 0.0625
Computed key: 2, probability of success: 8.0625
Computed key: 3, probability of success: 0.08625
Computed key: 4, probability of success: 0.0625
Computed key: 5, probability of success: 8.8625
Computed key: 6, probability of success: 0.0625
Computed key: 7, probability of success: 0.0625
Computed key: 8, probability of success: 0.0625
Computed key: 9, probability of success: 0.0625
Computed key: a, probability of success: 0.0625
Computed key: b, probability of success: 0.8625
Computed key: c, probability of success: 0.8625
Computed key: d, probability of success: 0.0625
Computed key: e, probability of success: 0.0625
Computed key: f, probability of success: 0.0625

Correct key: 6 found.

E:\examples\20>

1
k A

Figure 20-1. Integral cryptanalysis attack

This code executes an integral cryptanalysis attack by counting the number of plain
message pairs satisfying the requirement (aux_encrypted messagel * aux_encrypted
message2) == encrypted_message) for each potential key guess. This is accomplished
by repeatedly traversing all potential plain message-encrypted message pairings,
computing their associated ciphertexts using the computed key, and determining if they
meet the criteria. Then, compute the success probability for each computed. Finally,
determine if there is at least one key guess with a substantial success probability (e.g.,
more than 0.1) and output it if there is.

Conclusion

This chapter covered integral cryptanalysis and how such attacks can be designed and
implemented. The chapter developed a block cipher cryptosystem with vulnerable
points to illustrate how to use the integral cryptanalysis attack in practice.

442

CHAPTER 20 INTEGRAL CRYPTANALYSIS

You learned how to do the following.
o Design and implement a simple integral cryptanalysis attack

¢ Understand the vulnerable points of this kind of attack and generate
permutation tables to permutate the key

e Use permutation tables and how to work with them over the keys

References

[1]. J. Daemen, L. Knudsen, and V. Rijmen, “The block cipher Square’, in Fast
Software Encryption, E. Biham, Ed., in Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 1997, pp. 149-165.

[2]. Ferguson, N., Schneier, B., and Kohno, T. (2011). Cryptography Engineering:
Design Principles and Practical Applications. John Wiley & Sons.

443

CHAPTER 21

Brute-Force and Buffer
Overflow Attacks

This chapter covers two of the most significant attacks against C++ programs and
applications: buffer overflow and brute-force attacks.

Some attackers use software, hardware, or applications to carry out brute-force
or buffer overflow attacks. Their techniques are designed to exploit various word
combinations for confirmation forms. Attackers have been known to try to corrupt
web applications by, for instance, scanning for session IDs. The attacker’s objectives
include data theft, infecting target computers with malware, and requesting assistance
in exchange for a predetermined sum of money. Some attackers choose to physically
carry out brute-force attacks. The majority of brute-force and buffer overflow attacks are
currently carried out by bots. A bot is a software program meant to perform automated
activities or communicate with humans through text or speech, frequently imitating
human behavior. Bots may be found in a variety of applications, including social media,
messaging platforms, and online games, and perform various functions, including
customer service, amusement, and data collection.

Itis advised to consider the following suggestions to safeguard the company and
organization from these attacks.

¢ Online data and information from untrusted sources should not
be used.

o Use as many characters as you can.

e Use avariety of letter, number, and special character combinations;
(e.g., symbol).

e Do not use common pattern letters (e.g., qwerty).
o Create unique passwords for every user account.

445

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_21

https://doi.org/10.1007/978-1-4842-9450-5_21

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

» Change passwords often (e.g., every two months).

e Use and create lengthy, secure passwords. Use password generators
(such as key generation from KeyPass) if you have no inspiration for
passwords.

e Put multifactor authentication into work [1].

o Ifbiometrics are an option, use them [2].

Brute-Force Attack

A brute-force attack is one in which the attacker submits several passwords or
passphrases to guess the right one. The attacker checks each password or passphrase
individually until the right one is discovered. Additionally, the attacker has a chance of
determining the key. The key is usually derived from the password using a function. An
exhaustive key search is the name given to this procedure.

The following are among the wide range of brute-force attacks.

o Attacks that use rainbow tables. A rainbow table represents a
predetermined and precalculated table. The objective is to reverse
the cryptographic hashing process.

o Attacks that use reversing brute-force attacks. A common
password or a specific group of passwords is used in the assault
against numerous usernames.

o Credential attacks. A variety of websites are being attacked utilizing

sets of username-password combinations.

o Hybrid brute-force attacks. The attack determines what password
type can be used to succeed before moving on to a general procedure
for testing various types.

Further examples of these types of attacks show how they can be used and deployed
in real-life scenarios (algorithms).

o Brute-force attack on Caesar cipher. The example is based on the
Caesar cipher (see Figure 21-1 and Listing 21-1). Due to the cipher’s
simplicity, it is the first example of a brute-force attack.

446

CHAPTER 21

o String generation for brute-force attacks. The scenario shown in

Figure 21-2 and Listing 21-2 demonstrates how simple string creation

can be carried out to produce complex lists and dictionaries that can

be used during brute-force attacks.

BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

ERUTE-FORCE
ERUTE-FORCE
ERUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BERUTE-FORCE
ERUTE-FORCE
ERUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
ERUTE-FORCE
ERUTE-FORCE
ERUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE

Command Prompt

ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK
ATTACK

E:\examples\21>|

X ar

E:\examples\21>Listing21-1.exe
ENCRYPTION - Enter the text for encryption -> SecretMessage
Enter the key for encryption the text -> 5
ENCRYPTED MESSAGE - The encrypted

(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)
(DECRYPTION)

message is —-> XjhwjyRjxxflj

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear
clear

text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text
text

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25

VWoOoJdomEWwWwNEKED

XjhujyRjxxf1j
WigvixQiwweki
VhfuhwPhvvdjh
UgetgvOguucig
TfdsfuNfttbhf
SecretMessage
RdbgdsLdrrzfd
QcapcrKcqqgyec
PbzobqJbppxdb
OaynapIaoowca

:— NzxmzoHznnvbz
1= MywlynGymmuay
:— LxvkxmFx1lltzx
1= KwujwlEwkKsyw
:= JvtivkDvjjrxv
:= IushujCuiiqwu
1= HtrgtiBthhpvt
1= GsqfshAsggous
:= FrpergZrffntr
:— EqodqfYqeemsq
:— DpncpeXpddlrp
:— CombodWocckqo
:= BnlancVnbbjpn
:= AmkzmbUmaaiom
:= ZljylaTlzzhnl
:= YkixkzSkyygmk

Figure 21-1. Running the brute-force attack

447

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

Listing 21-1. Brute-Force Attack Using Caesar Cipher
#include<iostream>
using namespace std;

// the function will be used to encrypt the plaintext
// string msg - the message

// int keytValue - the key

string encrypt(string msg,int keyValue)

{
// variable used to hold the cipher value of the plaintext
string cipher="";
// parse the string
for(int i=0;i<msg.length();i++)
{
// verify if the character is upper case
if(isupper(msg[i]))
// add to the cipher the character plus the key and
subtract ASCII 65 value ('A').
// the value obtained do modulo 26 (english alphabet
letters) and add ASCII value 65 back.
cipher += (msg[i] + keyValue - 65)%26 + 65;
// verify if the character is lower case
else if(islower(msg[i]))
//** the same as above. ASCII value 97 ('a")
cipher += (msg[i] + keyValue - 97)%26 + 97;
else
cipher += msg[i];
}
return cipher;
}

// The decryption will be done using the brute force attack by
// checking all possible keys
// string encMessage - the encrypted message

448

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

void decrypt(string encMessage)

{
// the variable for storing the plaintext
string plaintext;
// we will try for each key and we will do the decryption
for(int keyTry=0;keyTry<26;keyTry++)
{
plaintext = "";
// parse accordingly based on the message length
for(int i=0;i<encMessage.length();i++)
{
// check if the character is upper case
if(isupper(encMessage[i]))
{
if((encMessage[i] - keyTry - 65)<0)
plaintext += 91 + (encMessage[i] - keyTry - 65);
else
plaintext += (encMessage[i] - keyTry - 65)%26 + 65;
}
// check if the character is lower case
else if(islower(encMessage[i]))
{
if((encMessage[i] - keyTry - 97) < 0)
plaintext += 123 + (encMessage[i] - keyTry - 97);
else
plaintext += (encMessage[i] - keyTry - 97)%26 + 97;
}
else
plaintext += encMessage[i];
}
cout << "BRUTE-FORCE ATTACK (DECRYPTION) - The clear text for key
-> " << keyTry << " :- " << plaintext << endl;
}
}

449

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

int main()
{
int encKey;
string cleartext;
cout << "ENCRYPTION - Enter the text for encryption -> ";
getline(cin,cleartext);

cout << "Enter the key for encryption the text -> ";
cin >> encKey;

string encryptedMessage = encrypt(cleartext,encKey);
cout << "ENCRYPTED MESSAGE - The encrypted message is -> " <<
encryptedMessage << endl << endl;

//** brute force attack
decrypt(encryptedMessage);

450

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

%] Command Prompt x + v - o X

E:\examples\21>g++ -std=c++2b Listing21-2.cpp -0 Listing21-2

E:\examples\21>Listing21-2.exe

O30 EWNKH

—

3] command Prompt b 4 + v O X

90
91
92
93
94
95
96
97
98
99
1e0 8

11 8 I

182 8
L. 4

00 00 00 0O 00 00 00 0 0

Figure 21-2. Basic string generation of a brute-force attack—different states of
generating strings

Listing 21-2. Basic String Generation Source Code

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

// We are using a linked list data structure.
// The reason is to avoid some of the restrictions

// based on the generation of the string length.

// Our list has to be converted to string in

// such way that it can be used. The current conversion
// might be slightly slower compared with other methods

451

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

// because the conversion occurs with

// each cycle.

// Another solution consists in implementing a solution based
// on the generation of the allocation for the string with
// a fixed size equal to 20 characters (which is more than
// enough.

// the structure definition for holding the characters (strings)
typedef struct charactersList charlist t;
struct characterslist

{
// the character
unsigned char character;
// the next character
charlist t* nextCharacter;
};

// The method will return a new initialized charlist t element.
// The element returned is charlist t
charlist t* new characterlList element()

{

charlist t* elementFromThelist;

if ((elementFromThelList = (charlist t*)
malloc(sizeof(charlist t))) != 0)

{

elementFromThelList->character = 0;
elementFromThelist->nextCharacter = NULL;

}

else

{

perror("The allocation using malloc() has failed.");

}

return elementFromThelist;

452

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

// allocation free memory by the characters list
// listOfCharacters - represents a pointer for the first element within

the list
void freeAllocation CharacterslList(charlist t* listOfCharacters)

{

}

charlist_t* currentCharacter = listOfCharacters;
charlist_t* nextCharacter;

while (currentCharacter != NULL)

{
nextCharacter = currentCharacter->nextCharacter;
free(currentCharacter);
currentCharacter = nextCharacter;

}

// the function display the current list of characters
// the function will iterate through the whole list and it will print all
the characters

void showCharacterslList(charlist t* list)

{

}

charlist_t* nextCharacter = list;

while (nextCharacter != NULL)

{
printf("%d ", nextCharacter->character);
nextCharacter = nextCharacter->nextCharacter;

}
printf("\n");

// the function will return the next sequence of characters.

// the characters are treated as numbers 0-255

// the function proceeds by incrementation of the character from the first
position

453

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

void nextCharactersSequence(charlist t* listOfCharacters)

{

listOfCharacters->character++;
if (listOfCharacters->character == 0)

{
if (listOfCharacters->nextCharacter == NULL)
{
listOfCharacters->nextCharacter = new_characterList element();
}
else
{
nextCharactersSequence(listOfCharacters->nextCharacter);
}
}
}
int main()
{
charlist t* sequenceOfCharacters;
sequenceOfCharacters = new_characterList element();
// this while will work for all possible combinations
// this has to be stopped manually
while (1)
{
nextCharactersSequence(sequenceOfCharacters);
showCharactersList(sequenceOfCharacters);
}
freeAllocation CharactersList(sequenceOfCharacters);
}

Buffer Overflow Attack

A bufffer is a short-term space that is used to store data. An additional data overflow
occurs when the programs or system processes add more data.

454

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

In a buffer overflow attack, the extra data being held can contain particular
instructions intended to carry out instructions placed by malicious users or hackers.
For instance, the data overflow may cause a function or process to be called that would
delete files or divulge users’ personal information.

The attacker uses a buffer overflow to take advantage of running software and wait
for user input. Buffer overflows are available in two types: heap-based and stack-based.
It is extremely challenging to launch and carry out attacks that rely on flooding the
memory area set out for the program and its execution in a heap-based system. In a
stack-based system, the memory stack—the area used to hold user input data—is where
applications and programs are exploited.

The danger of such scenarios for C++ applications is demonstrated in Figure 21-3
and Listing 21-3. The example doesn’t implement any harmful code injection but
demonstrates a primary buffer overflow procedure. Modern compilers offer options for
overflow checking during the compilation or linking process. But at runtime, it is quite
challenging to check the situation without having a protection mechanism, such as the
handling process of the exceptions. This is a comparison between modern compilers
and old compilers.

Command Prompt X + - = (] X

E:\examples\21>g++ -std=c++2b Listing21-3.cpp -o Listing21-3

E:\examples\21>Listing21-3.exe SecretMessage
The content of thebuffer -> SecretMessage
The function strcpy() is being executed...

Figure 21-3. Buffer overflow execution

Listing 21-3. Implementation of Buffer Overflow Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define CRT_SECURE_NO_WARNINGS

int main(int argc, char *argv[])

{

455

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

// We allocate a buffer of 5 bytes that also includes the
termination, NULL.

// The allocation should be done as 8 bytes which is two
double words.

// For the overflowing process, we will need more than 8 bytes.

// if the user provides more than 8 characters for the input,
// an access violation and fault segmentation

char buffer test example[5];
// execution of the program

if (argc < 2)

{
printf("Function strcpy() will not be executed...\n");
printf("The syntax: %s <characters>\n", argv[0]);
exit(0);

}

// Take the input from the user and copy it to the buffer.

// The process is done without verifying the bound
strcpy(buffer_test example, argv[1]);
printf("The content of thebuffer -> %s\n", buffer_test example);

printf("The function strcpy() is being executed...\n");

return O;

Conclusion

This chapter focused on brute-force attacks and buffer overflow attacks. You learned
about the following.

e How to recognize buffer overflow and brute-force attacks
e The fundamental ideas that go into creating such attacks

e The drawbacks of heap-based vs. stack-based buffer overflows

456

CHAPTER 21 BRUTE-FORCE AND BUFFER OVERFLOW ATTACKS

References

[1]. M.I Mihailescu and S. L. Nita, “Three-Factor Authentication Scheme Based on
Searchable Encryption and Biometric Fingerprint’, in 2020 13th International
Conference on Communications (COMM), IEEE, 2020, pp. 139-144.

[2]. M.I Mihailescu, S. L. Nita and V. C. Pau, “Applied cryptography in designing
e-learning platforms’, in 16th International Scientific Conference “eLearning
and Software for Education” Bucharest, Apr. 2020, vol. 2, pp. 179-189.

457

CHAPTER 22

Text Characterization

The chi-squared statistic and pattern searching are crucial metrics for cipher and
plaintext analysis examined in this chapter (monograms, bigrams, and trigrams). Text
characterization as a technique is crucial in the cryptanalysis toolbox when working with
both traditional and contemporary encryption.

Chi-Squared Statistic

The chi-squared statistic is an essential metric that calculates the degree of similarity
between two probability distributions. When the chi-squared statistic yields a result of 0,
itindicates that the two distributions are similar, while a greater value indicates that they
are significantly different.

The following formula gives the chi-squared statistic.

i=Z _ 1 \?
ZZ(C,E)z (Ci Ei)

i=A i
Listing 22-1 presents an example of computation for the chi-squared distribution.

Listing 22-1. Chi-Squared Distribution Source Code

#include <iostream>
#include <random>

int main()
{
const int number of experiments=10000;
const int number_of stars_distribution=100; // maximum number of stars
to distribute

459

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_22

https://doi.org/10.1007/978-1-4842-9450-5_22

CHAPTER 22 TEXT CHARACTERIZATION

std: :default_random_engine theGenerator;
std::chi_squared distribution<double> theDistribution(6.0);

int p[10]={};

for (int i=0; i<number of experiments; ++i)
{
double no = theDistribution(theGenerator);
if ((n0>=0.0)8&&(no<10.0)) ++p[int(no)];

}

std::cout << "chi_squared distribution (6.0):" << std::endl;

for (int i=0; i<10; ++i) {

std::cout << i <« << (i+1) << "2
std::cout << std::string(p[i]*number of stars distribution/number of
experiments, '*') << std::endl;

}

return 0;

}

The output is listed in Figure 22-1.

r
%] Command Prompt X + ~ — (m] X

E:\examples\22>g++ -std=c++2b Listing22-1.cpp -o Listing22-1

E:\examples\22>Listing22-1.exe
chi_squared_distribution (6.0):
9-1: =*

1 kkkkkk

T hkkkkkkkkkk

1 kkkkkhkkkkhkhkikk

T hkkkkhkhkkkhkhkkdk

T hkhkhkhkhkhkhhhhkk

T kkkkkkkkkk

T o kdkkkkhkkdk

T kkkkkk

B: *%k%kx%x

\OWQO\TJ:DJMH
H O 030U EWwN

|

1

E:\examples\22>|
A

Figure 22-1. The output of the chi-squared distribution sample

460

CHAPTER 22 TEXT CHARACTERIZATION

How can we use the example of the chi-squared distribution for cryptanalysis and
cryptography?

The first thing to do is determine how frequently each character appears in
the ciphertext. The second step is to compare the two frequency distributions that
are related to one another with the frequency distribution of the language used for
encryption (for example, English). Thus, there is a chance to identify the shift applied
during encryption. This method is conventional and easy to follow, and it may be
applied to ciphers such as the Caesar cipher. This occurs when the frequency of English
characters and the frequency of the ciphertext line up. (We know the probabilities of the
occurrences for English characters.)

Let’s consider the following ciphertext obtained by applying the Caesar cipher. It has
46 characters (see Figure 22-2 for letter frequency).

ZHOFRPHWRDSUHVVWKLVLVHOFUBSWHGZ LWKFDHVDUF LSKHU

An important thing to note is that the chi-squared statistic relies on counts rather
than probabilities. In Figure 22-1, the expectation is that the letter E occurs 12.7 times
within 100 characters; therefore, its chance of occurrence is 0.127.

N-Gram List of Caesar encryption of <startingexample-en.bt>, key <D, KEY OFFSET: 0> x
Selection Mo. Chatacter seq... | Frequencyin% | Frequency
S 1 H 15.2174 7
fseoenlS 2 v 108696 5
" Digram [42) 3 F 86957 4
2 4 L 86357 4
€ Trigram (44) 5 U 86357 4
4 geme3) g w 856957 4
= 7 D B5217 3
- 8 K 65217 3
Display of the (16 9 s 85217 3
10 R 4.3478 2
most common M-grams
g n 4 4.3478 2
e S e 12 B 2173 1
13 G 21733 1
. 14 u} 2173 1
Lo cpkort [15 P 21739 1
16 a 2178 1
‘ [Compute list |
Save st ‘
Close [

Figure 22-2. Letter frequency for encrypted text

461

CHAPTER 22 TEXT CHARACTERIZATION

The length of the ciphertext must be multiplied by the probability of the letter to
determine the expected count. The ciphertext in Figure 22-2 consists of 46 characters in total.
Following the example of the letter E, we expect the letter E to occur 46 x 0.127 = 5.842 times.

You must employ each of the 25 possible keys, utilizing both the letter and the
position of the letter inside the alphabet, to decipher the encrypted text from the
example. For this reason, whether the count begins at 0 or 1 is crucial. For each key, the
chi-squared must be calculated. The procedure is to compare the letter count to what
you would anticipate the counts to be if the text were written in English.

When counting each letter in our ciphertext and calculating the chi-squared statistic,
you discover that the letter H appears seven times. If English is used, it should be
46 x 0.082 = 3.772 times. You can compute the following using the output.

(7-3.772)° 3.228° 10.420

= = =2.762
3.772 3.772 3.772

This process is also performed for the remaining letters, adding up all the
probabilities (see Figure 22-3).
The decrypted text from this example is the following.

WELCOMETOAPRESSTHISISENCRYPTEDWITHCAESARCIPHER

=

S ASCIl Hi of <startingexample-en.bt> (46 characters) (=N [EcE ==
ASCIl Histog of {starting ple-en.txt> [46 characters)
Frequency %)

14 F 4

12 r 1

10 F B
s o
5 -
4 4
: ‘ ‘ _
0 | || [| | | | |

A C E G I K M 0] s u W A d
Value

Figure 22-3. Encryption letter frequency (%)’

' The letter encryption frequency is generated using CrypTool, https://www.cryptool.org/en/

462

https://www.cryptool.org/en/

CHAPTER 22 TEXT CHARACTERIZATION

Cryptanalysis Using Monogram, Bigram,
and Trigram Frequency Counts

To break the cipher, frequency analysis is one of the finest methods for determining the
appearance frequency of ciphertext characters. Bigrams (or digraphs), a method for
measuring the occurrences of pairs of characters within the text, can be measured and
counted using an analysis based on patterns.

This section concentrates on text characterization using ciphers based on bigrams
and trigrams, for example, the Playfair cipher. We also perform trigram frequency
analysis, which counts the frequency of three-letter tuples.

Counting Monograms

Counting monograms is one of the best techniques for the Caesar cipher, the Polybius
square, and other substitution ciphers. Because the English language has a distinct frequency
distribution, the approach performs extremely well. This implies that it is also not concealed
by substitution ciphers. The distribution pattern resembles that seen in Figure 22-4.

0.14 4
0.12 4

0.1 4

=
o
o
]

Relative frequency
(=]
=
=3
N

[=1
£=1
&=

IRTATIRHIL

abcdefghijklmnopagrstuwvwixy?:Z

Letter

Figure 22-4. Letter frequency for the English language

463

CHAPTER 22 TEXT CHARACTERIZATION

Counting Bigrams

The concept behind counting bigrams is the same as that behind counting monograms.
Bigrams count the frequency of pairwise occurrences rather than single-character
occurrences.

A few of the common frequent bigrams used during the cryptanalysis process
are included in Figure 22-5. We implemented a solution that deals with counting the
occurrences of bigrams in Listing 22-2. The results of the example for counting the
bigrams are shown in Figure 22-6. The bigram.txt file, which has the content from
Figure 22-5, is used in the source code in Listing 22-2.

TH 11699784
HE 10068926
IN 87674002
ER 77134382
AN €9775179
RE 60923600
ES 57070453
ON 56915252
ST 54018399
NT 50701084
EN 48991276
AT 48274564
ED 46647960
ND 46194306
TO 46115188
OR 45725191
EA 43329810
TI 42888666
AR 42353262
TE 42295813
NG 38567365
AL 38211584
IT 37938534
AS 37773878
IS 37349981
HA 35971841
ET 32872552
SE 31532272
OU 31112284
OF 30540904

Figure 22-5. Bigrams

464

CHAPTER 22 TEXT CHARACTERIZATION

[Ex] command Prompt X + o~ - O X

E:\examples\22>g++ -std=c++2b Listing22-2.cpp -o Listing22-2

E:\examples\22>Listing22-2.exe
ab:
ad:
ae:
ag:
al:
am:
an:
ar:
at:
au:
bo:
ca:
cC::

L

3

HFNWFHROFHEFFEFWNRERERN

Figure 22-6. Counting bigrams

Listing 22-2. Computing Bigrams

#include <stdio.h>
#define CRT_SECURE_NO WARNINGS

int main(void)

{

int alphabet counting['z' - 'a' + 1]['z"' - 'a' + 1] = {{ 0 }};
int character0 = EOF, characteri;
FILE *fileBigramSampleText = fopen("bigram.txt", "r");

if (fileBigramSampleText != NULL)

{

while ((character1l = getc(fileBigramSampleText)) != EOF)

{

if (characteri »>= 'a' 88 characterl <= 'z' 88 charactero >= 'a

88 charactero <= 'z")

{

alphabet counting[charactero - 'a'][characterl - 'a']++;

}

character0 = characteri;

465

CHAPTER 22 TEXT CHARACTERIZATION

fclose(fileBigramSampleText);
for (charactero = 'a'; charactero <= 'z'; charactero++)

{
for (characteri = 'a'; characterl <= 'z'; characteri++)
{
int number = alphabet counting[charactero - 'a']
[character1 - 'a'];
if (number)
{
printf("%ckhc: %d\n", charactero, characteri, number);
}
}
}
}
return 0;
}
Listing 22-3 and Figure 22-7 present a more general version, which handles character
tuples with 8 bits.
{ Command Prompt X S = O X W

E:\examples\22>g++ -std=c++2b Listing22-3.cpp -o Listing22-3 I

E:\examples\22>Listing22-3.exe
ab: 3

ad:
ae:
ag:
al:
am:
an:
ar:
at:
au:
bo:
ca:

cc:
L 4

HFNWFEFOFEFFERWNRERRERN

Figure 22-7. Output for character pair with 8-bit

466

CHAPTER 22 TEXT CHARACTERIZATION
Listing 22-3. General Version for Working with 8-Bit Character Pairs

#include <stdio.h>
#include <string.h>
#define _CRT_SECURE_NO_WARNINGS

int main(void)
{
// the last five bytes corresponds to ISO/IEC 8859-9
const char alphabet[] = "abcdefghijklmnopgrstuvwxyz\xFD\xFXE7\xF6\xFC";
const int length of alphabet = (sizeof(alphabet) - 1);
int count[length of alphabet][length of alphabet];
char *position0 = NULL;
int characteri;
FILE *fileTextForCountingBigrams = fopen("bigram.txt", "r");

memset(count, 0, sizeof(count));

if (fileTextForCountingBigrams != NULL)
{
while ((character1l = getc(fileTextForCountingBigrams)) != EOF)
{
char *p1 = (char*)memchr(alphabet, characteri, length of
alphabet);
if (p1 !'= NULL && positiono != NULL)
{
count[position0 - alphabet][pl - alphabet]++;
}
position0 = p1;
}
fclose(fileTextForCountingBigrams);
for (size t i = 0; i < length of alphabet; i++)
{
for (size_t j = 0; j < length_of _alphabet; j++)
{
int n = count[i][j];
if (n > 0)

467

CHAPTER 22 TEXT CHARACTERIZATION

{
printf("%c%hc: %d\n", alphabet[i], alphabet[j], n);

}

return 0;

Counting Trigrams

The distinction between counting trigrams and bigrams is that trigrams are counted as
triple characters.

Figure 22-8 includes a few of the most frequent bigrams seen throughout the
cryptanalysis process. Furthermore, we implemented a method for identifying and
tracking trigram occurrences in texts in Listing 22-4 (see Figure 22-9). The solution
differs from the ones in Listings 22-2 and 22-3.

468

Figure 22-8. Trigrams

THE

ING
ENT
ICN
HER
FCR
THA
NTH
INT
ERE
TIO
TER
EST
ERS
ATI

ATE
ALL
ETH
HES
VER
HIS
OFT
ITH
FTH
STH

RES
ONT

77534223
30997177
30679488
17902107
17769261
15277018
14686159
14222073
14115952
13656197
13287155
13285065
12769843
119564¢€6
11823017
11227573
10900482
10712298
10501105
10304110
10189449
10156140
10051039
9434246
9142241
9036651
9024058
8869058
8835871
8757161
8745845
8741156
8700830
8697937
8640940

CHAPTER 22 TEXT CHARACTERIZATION

469

CHAPTER 22 TEXT CHARACTERIZATION

-
& Command Prompt x + - - O X
E:\examples\22>g++ -std=c++2b Listing22-4.cpp -o Listing22-4

E:\examples\22>Listing22-4.exe
Pattern found at index 11

E:\examples\22>|

[

Figure 22-9. Displaying a sample of a trigram

Listing 22-4. Counting Trigrams

#include <iostream>
using namespace std;

void printTrigramOccurance(string fullText, string trigramPattern)

{

int occurance = fullText.find(trigramPattern);
while (occurance!= string::npos)

{
cout << "Pattern found at index " << occurance << endl;
occurance = fullText.find(trigramPattern, occurance + 1);
}
}
int main()
{
string fullText = "Welcome to Apress.";
string trigramPattern = "Apr";
printTrigramOccurance(fullText, trigramPattern);
}

470

CHAPTER 22 TEXT CHARACTERIZATION

Conclusion

The chapter discussed text characterization and demonstrated how crucial it is to the
cryptanalysis procedure. When decrypting substitution ciphertexts, you can use chi-
squared statistics and work with monograms, diagrams, and trigrams. In conclusion, you

learned about the following.
o Text characterization
o Utilizing trigrams, diagrams, and monograms
e Use of the chi-squared statistic

o Implementations of monograms, diagrams, and trigrams

References

[1]. Singh, Simon (2000). The Code Book: The Science of Secrecy from Ancient Egypt
to Quantum Cryptography. ISBN 0-385-49532-3.
[2]. Helen E Gaines (1989). Cryptanalysis: A Study of Ciphers and Their Solution.

471

CHAPTER 23

Implementation and
Practical Approach of
Cryptanalysis Methods

As you have seen so far, cryptanalysis is a powerful tool that can be used to secure data
from malicious users. It can also detect weaknesses in existing security measures and
identify potential threats. As cyber threats become more advanced and sophisticated,
it is increasingly important for individuals and organizations to keep up with the latest
developments in cryptanalysis. Organizations can ensure their networks and data
remain safe from attackers by implementing the best methods for maximum security.
This chapter provides a practical approach to cryptanalysis, including an overview of
the techniques available and how to best utilize them. It also discusses the importance
of staying up-to-date with the latest developments in the field and strategies for
implementing the latest techniques. With the right approach and implementation of the
best methods, organizations can gain confidence in their security measures and ensure
their data remains safe.

The current chapter is based on a general discussion that brings to attention a
methodology for cryptanalysis methods and how those methods can be applied quickly
and efficiently. The proposed methodology is dedicated to classic and actual (modern)
cryptography/cryptanalysis algorithms and methods. Quantum cryptography is not
included at this moment.

There are several different techniques available for cryptanalysis. Each approach
has its own strengths and weaknesses, and each can be applied in different scenarios.
These techniques can be combined to create a comprehensive strategy for maximizing
security. This approach can be applied to many scenarios, including online payment
systems and data transmission. This can be used to analyze an existing code, crack an

473

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,
https://doi.org/10.1007/978-1-4842-9450-5_23

https://doi.org/10.1007/978-1-4842-9450-5_23

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

existing code, or create a new code that is more secure. While many of these techniques
are complex and challenging to implement, they can provide an effective approach to
cryptanalysis.

e A brute-force attack attempts to break an encrypted code using
every possible combination of characters until the correct sequence
is found. It is often used against weak encryption methods, such as
single-word passwords. Although it can be effective, a brute-force
attack is often time-consuming and does not guarantee a successful
outcome. Brute-force attacks can be automated to speed up the
process, which can be challenging and resource-intensive. Brute-
force attacks can be mitigated by using a more advanced code or
increasing the rate at which incorrect guesses are accepted.

e Substitution ciphers can be decoded using a letter-frequency or
word-frequency chart. By analyzing these charts and comparing
them to the original message, it is possible to identify potential
letter replacements. This method can be applied to both single-
substitution and multiple-substitution ciphers.

¢ One-time pads are used to create secure communications and
prevent eavesdropping. However, if the pad is not used correctly, it
can be vulnerable to attack.

The methodology proposed (see Figure 23-1) is designed to help the cryptanalyst
to be aware of where he is situated during the cryptanalysis process. This methodology
allows the cryptanalyst to use the map presented in Figure 23-1 to choose the proper tool
or method for his work.

Proceeding with the implementation of the cryptanalysis methods can be a very
laborious task for achieving the desired results if we don’t hold proper information about
the cryptographic method. The following presents a short process for cryptanalysts
to identify the necessary elements for conducting the cryptanalysis process. The
cryptanalysis process consists of four general steps.

e Step 1 is based on identifying what type of cryptanalysis should be
conducted.

o Step 2 consists in gathering everything that we know about
cryptography algorithms.

474

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

e Step 3 is dedicated to building a proper attack model.

o Step 4 consists in choosing the proper tools.

Step 1

This step deals with what kind of cryptanalysis should be performed. The cryptanalyst
decides within the business environment what role he plays—a legal and authorized
cryptanalyst, an ethical hacker, or a malicious cracker. As soon as he decides on his role,
he moves to step 2.

Step 2

If the cryptanalyst is legitimate, he must know two things before getting started: the
cryptography algorithm and the cryptographic key. Based on the experience of some of
the cryptanalysts, this is not a requirement, but in some cases, it is very useful to know.
As soon as the cryptanalyst is aware of the cryptography algorithm and cryptographic
key, he can easily start the cryptanalysis process by applying the proper methods and
testing the security of the business applications.

Step 3

This step is based on setting up the attack model or the attack type. Attack models or
attack types point out a quantitative variable used to indicate how much information a
cryptanalyst can access when he performs cracking methods on the encrypted message.
The following are the most significant attacks.

o Ciphertext-only attack
¢ Known-plaintext attack
o Chosen-plaintext attack
e Chosen-ciphertext attack
o Adaptive chosen-ciphertext attack

o Indifferent chosen-ciphertext attack

475

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

Step 4

After the attack model has been picked or another model has been created and adapted
properly to the case and requirements, let’s move to the next step, which is based on
choosing the software tools. Choosing the software tools from the ones that already
exist or creating your own tools can be time-consuming but, in practice, have massive
contributions. The following lists some tools that can be used in the cryptanalysis
process, according to what is being “tested.”

e Penetration tools: Kali Linux, Parrot Security, BackBox
e Forensics: DEFT, CAINE, BlackArch, Matriux

o Databases: sqlmap (standalone version), Metasploit framework
(standalone version), VulDB

e Web and network: Wireshark, Nmap, Nessus, Burp Suite, Nikto,
and OpenVas

e Other tools: CryptTool (useful and amazing tool)

These tools represent a selection of very used in practice and can produce desired
results (see Figure 23-1).

476

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

/" Symmetric Encryption (Classic)
sKnown Plaintext
Single Column Transposition
sHill
sCiphertext Only
sVigenere, Caesar, ADFGVX,
\ Substitution, Solitaire, Byte
—— Addition / e
. *Manual Analysis)
™ . *Substitution, Playfair, Solitaire /

Tools Analyze Randomness
* Entropy, Floating

)) sFrequency Test
Frequency | o N *Poker Test, Runs Test
¢ Histogram, N-Gram / / *Serial Test
 Autocorellation, / c tanalvsis *FIPS PUB-140-1 Test Battery
Periodici ryp Y sVitany, 3D Visualization
erlodicity Methodology
e ’
Asymmetric Encryption ! Symmetric Encryption
sFactorization of a number \ (Meodern)
sLattice-based Attacks on RSA f =IDEA
sFactory with a hint =RC2, RC4
sAttack on Stereotyped | +DES (ECB), DES (CBC)
Message I \ «Triple DES (CBC), Triple DES (ECB)
sAttack on Small Secret Keys / \ =AES (CBC)
#Side-channel Attack on RSA / \ «Other Algorithms
Textbook)) +MARS, Serpent, RCS, TWOFISH

Figure 23-1. The cryptanalysis methodology

Cryptanalysis has existed for many years, and many different techniques are available.
While these approaches are effective in certain scenarios, they are often difficult to
implement and require a great deal of time and effort. As cyber threats become more
sophisticated, staying up-to-date with the latest developments in cryptanalysis is
important. This can help organizations identify new threats, improve security measures,
and select the most appropriate techniques. Selecting the right techniques for the
situation; otherwise, the effort may be wasted, and the approach may be ineffective. By
staying up-to-date with the latest developments in the field, organizations can identify
new threats, improve existing security measures, and select the most appropriate
techniques for their needs. This approach can help to ensure data remains protected.

477

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

A comprehensive approach to cryptanalysis can provide maximum security
and ensure that data remains protected. This includes selecting the best techniques
and applying them to many different scenarios. It is important to select the right
techniques for the situation; otherwise, the effort may be wasted, and the approach
may be ineffective.

Organizations can maximize their security and ensure their data remains protected
by selecting the right techniques for many scenarios. This approach can help to identify
new threats, improve existing security measures, and select the most appropriate
techniques for their needs. It is essential to select the right techniques for the situation;
otherwise, the effort may be wasted, and the approach may be ineffective. Organizations
can ensure their data remains protected by implementing the best practices;

Cryptanalysis can provide several benefits for organizations, including the following.

o Cryptanalysis can help organizations better understand the threats
they face in the digital landscape. This can help to identify challenges
and provide insights that can be used to improve existing security

measures.

o Cryptanalysis can create stronger authentication methods that are
more robust and difficult to breach. This can help to improve the
authentication process and reduce authentication errors.

o Cryptanalysis can assess and improve existing security measures.
This can help organizations gain confidence in their security
measures and protect their data.

Ciphertext-Only Attack (COA)

A ciphertext-only attack represents the weakest attack. A cryptanalyst can easily use it
because he just encoded the message.

The attacker/cryptanalyst has access to a set of ciphertexts. The attack is successful if
the corresponding plaintexts are deduced with the key.

478

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

In this type of attack (see Figure 23-2), the attacker/cryptanalyst can observe the
ciphertext. Everything the cryptanalyst sees is represented by scrambled and nonsense
characters that create the output based on the encryption process.

Cryptanalyst

Plaintext

Analyze °

!

Ciphertext
A

=)

=
=
@

)«
[l

Ciphertext Ciphertext

All rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 23-2. COA representation

Known-Plaintext Attack (KPA)

The known-plaintext attack (see Figure 23-3) helps the cryptanalyst to generate the
ciphertext because he is aware of the ciphertext.

The cryptanalyst follows a simple procedure by selecting the plaintext, but he
observes the pair compounded from the plaintext and ciphertext. The chance of success
is better compared with COA. Simple ciphers are quite vulnerable to this attack.

479

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

Cryptanalyst Previous Pair
H«—B
Plaintext —
Analyze 4 | °

=5)e

I

Ciphertext
A

=
=
@

-
[ir

Ciphertext Ciphertext

All rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 23-3. KPA representation

Chosen-Plaintext Attack (CPA)

In a chosen-plaintext attack, a cryptanalyst may select the plaintext that has been sent
encrypted using an encryption algorithm, and he can observe how the ciphertext is
generated. This can be observed as an active model in which cryptanalysts have the
chance to select the plaintext and realize the encryption.

Cryptanalysts can observe vital details about ciphertext based on selecting and
picking any plaintext. This gives them a strong advantage in understanding how the
algorithm works inside and the chance to get into the secret key possession.

A professional cryptanalyst has a strong database that contains known plaintexts,
ciphertexts, and possible keys. Listing 23-1 and Figure 23-5 provide an example of
generating possible keys automatically. It is a simple example illustrating how possible
keys can be generated. They can be used with the pairs for determining the cipher text
input (see Figure 23-4).

Cryptanalysis can help organizations to better understand the threats they face in the
digital landscape. This can help to identify challenges and provide insights that can be
used to improve existing security measures. Cryptanalysis can be used to create stronger
authentication methods that are more robust

480

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

Pair that is created from
chosen plaintext Cryptanalyst
@ T Plaintext

\‘. ry X e .
\ S/ - 4
rFy A Analyze °
Alice @ Bob

Cipl}frtext &

-
[ir

Ciphertext Ciphertext

All rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 23-4. CPA representation

Listing 23-1. Automatic Generation of Random Keys

#include <stdio.h>
#include <time.h>
#include <iostream>

using namespace std;

//** generate an integer that is situated between 1 to 4
int generateInteger() {
//** pseudo-random generator (srand).
//** time(NULL) represents the seed
srand(time(NULL));

//** generate a random value and store
//** the remainder of rand() to 5
int randomvValue = rand() % 5;

//** if the value is equal with 0, move to the
//** next value of i and return that value
if (randomValue == 0)

randomValue++;

481

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

return randomValue;

}

//** the function will generate randomly
//** an integer situated between 0 and 25
int generateRandomlyInteger(){
//** pseudo-random generator (srand).
//** time(NULL) represents the seed
srand(time(NULL));

//** generate a random value and store
//** the remainder of rand() with 26
int random_key = rand() % 26;

return random_key;

}

//** based on the length provided, the function
//** will generate a cryptographic key
void generate crypto key(int length){
//** create a string variable for cryptography
//** key and initialize it with NULL
string crypto _key = "";
//** variable used for cryptography key generation
string alphabet_lower case = "abcdefghijklmnopqrstuvwxyz";
string alphabet upper case = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
string special symbols = "!@#$%&";
string digits_and _numbers = "0123456789";

//** local variables and their initializations
int key seed;

int lowerCase Alphabet Count = 0;
int upperCase Alphabet Count = 0;
int digits_And_numbers count = 0;

int special symbols count = 0;

//** the variable count will save the length
//** of the cryptography key.

482

//**
int

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

initially we will set it to zero
countinglengthCryptoKey = 0;

while (countinglengthCryptoKey < length) {

//**
//**
//**
//**
//**
//**
//**
//**
//**
//**
//**
int

//**
//**
//**
//**
//**
//**
//**

if

generateInteger() function will return a number that
is situated between 1 and 4.
The number that is generated will be used in
assignation with one of the strings that has been
defined above (for example: alphabet lower case,
alphabet upper case, special symbols, and
digits and _numbers).
This being said, the following correspondence will
be applied: (1) for alphabet lower case, (2) for
alphabet upper case, (3) for special symbols, and
(4) digits_and_numbers
string type = generatelnteger();

For the first character of the cryptography key we
will put a rule in such way that it should be a
letter, in such way that the string that will be
selected will be an lower case alphabet or an upper
case alphabet. The IF condition is quite vital as
the switch is based on it and the value that
string type variable will have.
(countinglLengthCryptoKey == 0) {

string type = string type % 3;

if (string type == 0)

string type++; }

switch (string type) {
case 1:

//** based on the IF condition, it is
//** necessary to check the minimum
//** requirements of the lower case alphabet
//** characters if they have been accomplished
//**% and fulfilled. If we are dealing with the
//** situation in which the requirement has

483

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

//** not been achieved we will situate ourself
//** in the break phase.
if ((lowerCase Alphabet Count == 2)

88 (digits And_numbers count == 0
0
1

|| upperCase Alphabet Count =
|| upperCase Alphabet Count =

~— "

)

|| special symbols count == 0
break;

key seed = generateRandomlyInteger();

crypto_key = crypto_key +
alphabet lower case[key seed];

lowerCase Alphabet Count++;

countinglengthCryptoKey++;

break;

case 2:
//** based on the IF condition, it is
//** necessary to check the minimum
//** requirements of the upper case alphabet
//** characters if they have been accomplished
//** and fulfilled. If we are dealing with the
//** situation in which the requirement has
//** not been achieved we will situate ourself
//** in the break phase.
if ((upperCase_Alphabet Count == 2)
88 (digits_And_numbers count == 0
|| lowerCase Alphabet Count == 0
1

|| lowerCase Alphabet Count =

~~ 1l

|| special symbols count == 0))
break;
key seed = generateRandomlyInteger();
crypto key = crypto key +
alphabet upper case[key seed];
upperCase Alphabet Count++;
countinglengthCryptoKey++;

break;

484

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

case 3:

//** based on the IF condition, it is
//** necessary to check the minimum
//** requirements of the numbers if they have
//** been accomplished and fulfilled. If we
//** are dealing with the situation in which
//** the requirement has not been achieved we
//** will situate ourself in the break phase.
if ((digits_And_numbers count == 1)

88 (lowerCase Alphabet Count ==

|| lowerCase Alphabet Count

|| upperCase Alphabet Count

I
i
[NN

|| upperCase Alphabet Count ==
|| special symbols count == 0))
break;
key seed = generateRandomlyInteger();
key seed = key seed % 10;
crypto_key = crypto_key +
digits _and numbers[key seed];
digits_And_numbers_count++;
countinglengthCryptoKey++;
break;

case 4:

//** based on the IF condition, it is
//** necessary to check the minimum
//** requirements of the special characters if
//** they have been accomplished and
//** fulfilled. If we are dealing with the
//** situation in which the requirement has
//** not been achieved we will situate ourself
//** in the break phase.
if ((special symbols count == 1)

88 (lowerCase Alphabet Count ==

|| lowerCase Alphabet Count == 1

|| upperCase Alphabet Count ==

485

CHAPTER 23

int

486

}

cout << "\n
cout <«
cout << "--
cout << " "
cout << "\n
getchar();

main() {
int option;
int desired

//** design
do {

cout <«

cout <<

cout <«

cout <«

<<

cout <«

<<

cout <<

cin >»>

IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

|| upperCase Alphabet Count ==
|| digits And_numbers count == 0))
break;

key seed = generateRandomlyInteger();
key seed = key seed % 6;
crypto key = crypto key +
special symbols[key seed];

special _symbols count++;

countinglengthCryptoKey++;

break;
_____________________________ \n"’
Cryptography Key \n";
---------------------------- \n\n";

<< crypto_key;
\nPress any key to continue... \n";

_length;

ing the menu

1 --> Generate a Cryptography Key"
"\n";
" 2 --> Quit the program"

"\n\n";

"Enter 1 for Generating Cryptograpy Key or 2

to quit the program : ";
option;

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

switch (option) {
case 1:
cout << "Set the length to : ";
cin >> desired length;
//** if the length entered is less than 7, an
//** error will be shown
if (desired length < 7) {
cout << "\nError Mode : The Cryptography Key
Length hould be at least 7\n";
cout << "Press a key and try again \n";
getchar(); }
//** The desired length should bot be bigger than
//** 100, otherwise an error will be shown
else if (desired length > 100) {
cout << "\nError Mode : The maximum length of
the cryptography key should be 100\n";
cout << "Press a key and try again \n";
getchar(); }
//** in ohter cases, call generate crypto key()
//** function to generate a cryptography key
else
generate crypto key(desired length);
break;
default:
//** in case if an invalid option is entered, show
//** to the user an error message
if (option != 2) {
printf("\nOups! You have entered a choice that
doesn't exist\n");
printf("Enter (1) to generate cryptography
key and (2) to quit the program.\n");
cout << "Enter a key and try again \n";
getchar();}
break; }

487

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

} while (option != 2);
return O;

T C\Windows\system3Ziemd e X + v = o

C:\Users\mariu\OneDrive\Desktop\Apress C++23\23. Implementations of Cryptanalysis Methods\source code>g++ -std=c++2b generate_
random_keys.cpp -o generate_random_keys.exe

C:\Users\mariu\DneDrive\Desktop\Apress C++23%23. Implementations of Cryptanalysis Methods\source code>generate_random_keys.exe

Randonm Cryptography Hey Generator

1 --> Generate a Cryptography Hey
2 ==> Quit the program

Enter 1 for Generating Cryptograpy Hey or 2 to quit the program : 1
Set the length to : 58

Cryptography Hey

nn%ADDDDDDODDDDDDDDDODDDDDODDDDDODDDDODDDDDDDDDDDD

Press any key to continue...

Randon Cryptography Hey Generator

1 --> Generate a Cryptography Hey
2 ==> Quit the program

Figure 23-5. The keys and possible passwords generated (three characters were
used for a shorter process)

Chosen-Ciphertext Attack (CCA)

In a chosen-ciphertext attack, a cryptanalyst can perform encryption and decryption
of the information. Within this attack (see Figure 23-6), the cryptanalyst can pick the
plaintext, encrypt it, observe how the ciphertext is generated, and reverse the process.

In this attack, the cryptanalyst’s mission is not finding only the plaintext but
identifying the algorithm and secret key used for the encryption process.

488

CHAPTER 23 IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

Pair that is created from

Cryptanalyst chosen plaintext
- “+—>
Plaintext \ ‘

Analyze < | Yo

=5
=3

=
=
o

Bob

Ciphertext I
A

Ciphertext Ciphertext

[R
[iry

All rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 23-6. CCA representation

Conclusion

This chapter discussed implementing a cryptanalysis method and defining a process for
cryptanalysts. You learned about the following.

o Attack models

o How to follow a straightforward methodology in the
cryptanalysis process

e How to simulate and generate a database with keys and possible
passwords

Cryptanalysis can provide several benefits for organizations, including the following.

o It can help improve security measures and strengthen authentication
methods while reducing vulnerabilities and risks.

o It can help organizations better understand the threats they face in
the digital landscape.

489

CHAPTER 23

IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

References

490

[1].

(2].

(3].

(4].

[5].

Abu Yusuf Yaqub ibn Ishaq al-Sabbah Al-Kindi. Available online: https://
www.trincoll.edu/depts/phil/philo/phils/muslim/kindi.html. Last
accessed: 5.4.2023

Philosophers: Yaqub Ibn Ishaq al-Kindi Kennedy-Day, K. al-Kindi, Abu
Yusuf Ya‘qub ibn Ishaq (d. c.866-73). Available online: https://www.
muslimphilosophy.com/ip/kin.html. Last accessed: 5.4.2023

Al-Ehwany, E. Ahmad Fouad, “Al-Kindi” in A History of Muslim Philosophy
Volume 1. New Delhi: Low Price Publications. pp. 421-434, 1961.
Al-Faruqji, R. Ismail L.L. al-Faruqji, Lois Lamya, Cultural Atlas of Islam New
York, Macmillan Publishing Company. pp. 305-306, 1986.

Encyclopaedia Britannica, Inc., Encyclopaedia Britannica. Chicago: William
Benton. pp. 352, 1969.

https://www.trincoll.edu/depts/phil/philo/phils/muslim/kindi.html
https://www.trincoll.edu/depts/phil/philo/phils/muslim/kindi.html
https://www.muslimphilosophy.com/ip/kin.html
https://www.muslimphilosophy.com/ip/kin.html

Index

A

Abstract algebra, 395
Access control methods, 8
add_plain_inplace() methods, 302
Advanced encryption standard
(AES), 14, 402
Amazon Web Services (AWS), 391
American National Standards Institute
(ANSI), 413
ArchStrike, 409
Asymmetric cryptographic systems, 406
Asymmetric-key algorithms, 6
Asymmetric-key encryption algorithm, 14
Asymmetric keys, 407
Attribute-based encryption (ABE), 368, 384

B

Bhulbhulaya number system, 107
Big data, 365
Big data cryptography
business operations, 377
CIA triad, 367
cloud architecture, 366
cloud computing, 376
cloud types, 367
communication channel, 377
methods, 365
notations, 365
techniques, 368
verifiable computation, 369-376
Big integers, 126

Bjarne Stroustrup, 146
Boost Multiprecision library, 143
Bootstrappable encryption schemes, 286
Boson scattering, 285
Botan, 192, 203
Bots, 445
Brute-force attack, 421, 474

Caesar cipher, 448, 449

definition, 446

examples, 446

key search, 446

string generation source code, 451-454
Buffer overflow attack, 455, 456

C

C++23
headers, 146, 151
WG21, 146
Caesar cipher, 195
C/C++ libraries
CT, 193-202
hash function, 172
implementations, 171, 172
CERT coding standards, 154
automated detection processes, 162
exceptions, 160
identifiers, 159
noncompliant code examples/
compliant solutions, 159
risk assessment, 160, 161
software developers, 158

491

© Marius Iulian Mihailescu and Stefania Loredana Nita 2023
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++23,

https://doi.org/10.1007/978-1-4842-9450-5

https://doi.org/10.1007/978-1-4842-9450-5

INDEX

Chaos-based cryptography, 7, 137, 143
algorithm, 329
benefits, 329
complex numbers, 337
cryptographic primitives, 329
data protection, 329
encryption method, 363
implementation, 330
plaintexts/image encryption, 335
practical implementation
chaos and fractals notions, 347,
348, 350-361
cryptosystem types, 338, 339
pseudocode, 339
secure random number
generator, 340-346
primitives, 362
random numbers, 330
random sequence, 329
Rossler attractor, 336
security analysis, 334, 335
Chaotic system, 329
Chinese remainder theorem, 76, 98
Chi-squared statistic, 8, 459
Chosen-ciphertext attack (CCA),
475, 488
Chosen-plaintext attack (CPA), 405
authentication methods, 480
definition, 480
plaintexts, 480
random keys, automatic
generation, 481-488
Ciphertext-only attack (COA), 478
Closest vector problem (CVP), 250
Cloud computing cryptography
applications, 382, 383
data privacy/security, 382
definition, 381

492

encryption/decryption, 388, 389, 391
openSSL library, 385
public key, 387
RSA cryptosystem, 386
steps, 383
types, 382
Complexity theory, 6
Computer aided investigative
environment (CAINE), 408, 476
Confidentiality, 23
Continuous integration, and delivery
(CI/CD) pipelines, 145
Correlation coefficient analysis, 335
Counting monograms, 463
COVID-19 pandemic, 145
Cross-site scripting (XSS), 153
Cryptanalysis, 5, 8
benefits, 478
categories, 396, 397
code-breaking, 396
comprehensive approach, 478
crack cryptographic system, 406
cryptographic keys, 406, 407
definition, 395
hacking, 395
history, 400-402
methodology, 477
process, 474-476
structure, 398
suitability analysis, 405
techniques, 402-405
terms, 399
tools/frameworks, 408-410
Cryptanalysis attacks
authentication protocols, 420-422
categories, 417
classification, 417
cryptographic keys, 419, 420

FIPS 140-2/140-3, 414
linear and differential, 435
operations, 417
standards, 413
validation, 414, 415
Cryptanalysis attacks ciphering
algorithms, 418
Cryptanalytic attack, 334, 398, 404,
417,437
Cryptographic primitives, 5, 24, 163, 172,
362, 376, 391
Cryptography, 5
encryption algorithms, 3
security standards, 11, 12
standardized cipher, 3
standards, 17
tools/resources, 14, 15
Cryptology, 5, 10, 17
CrypTool (CT), 193
Cyborg Hawk, 409

D

Data Encryption System (DES), 430
Data integrity, 23
Declarations and Initializations
(DCL), 163
Differential analysis, 335
Differential cryptanalysis
output code, 427-429
pseudocode, 426, 427
Differential/linear mechanisms, 425
Digital signatures, 60
components, 36
signing process, 37
verification process, 37
Discrete logarithm problem,
19, 20, 80, 248

INDEX

E

Elliptic-curve cryptography (ECC),

7,14, 191, 405
advantages, 208, 210
balls pyramid, 210-212
communication process, 176
data/communications, 242
ECDSA, 208
ECIES, 208
group law, 214
keys, 177-179, 207
practical implementation
FFE_Engine, 219-242
structured parts, 215, 216
primitives, 207
secure data encryption, 209
Weierstrass equation, 212-214
protocol, 176, 177
Elliptic curve digital signature algorithm
(ECDSA), 208, 268
Elliptic curve integrated encryption
scheme (ECIES), 208
Encryption function/encryption
transformation, 34
Euclidean algorithm, 74, 75

F

Finite fields
elements, 80
mathematical problems, 80
polynomials/Euclidean algorithm, 81
Floating-point arithmetic
data types, 137
homomorphic encryption, 137, 142, 143
IEEE 754 standard representation, 139
precision, 140-142
values, 138, 139

493

INDEX

Floating-point variables, 137
Full-disk encryption (FDE), 382
Fully homomorphic encryption
(FHE), 285
cryptography, 286
hardness assumption, 285
implementation, 287
practical example
BFV parameters, 297-299
computing, 301-308
generate/build files, 291
installing library, 292
plaintext constructor, 300
PowerShell, 290
SEAL library, 293-296
quantum techniques, 285
SEAL library, 287, 288, 309
Functional encryption (FE), 368, 384

G

Galois fields, 80

GNU Multiple Precision Arithmetic
Library (GMP), 133

Goldreich-Goldwasser-Halevi (GGH), 245

Google Cloud Platform, 391

Government Communications
Headquarters (GCHQ), 65

H

Hacking, 395, 399, 408

Hash algorithms, 6

Hash functions, 172
definition, 39
keyed cryptographic, 54
SHA-25 execution, 40-53
unkeyed cryptographic, 55

494

Headers
features, 146, 147
<expected>, 147, 148
<flat map>, 150
<generator>, 149
Heap-based system, 455
Hidden vector encryption (HVE), 384
Homomorphic encryption, 142
algorithms, 284
calculations, 283
classes, 284, 285
definition, 283
FHE, 285

Ideal coset problem, 285
Identity-based encryption (IBE), 368, 384
Image encryption cryptosystem, 334
Information entropy analysis, 335
Information security

objectives, 21-23, 60

primitives, 24, 25

protocols and security

mechanisms, 21

signature, 22
Information theory

definition, 71

entropy, 71, 72

randomness, 71
Infrastructure as a service (IaaS), 384
Institute of Electrical and Electronical

Engineering (IEEE), 414

Integral cryptanalysis

block ciphers, 437, 442

definition, 437

notions, 437-439

output code, 439-441

International Association for Cryptologic
Research (IACR), 26
International Organization for
Standardization (ISO), 13, 414
International Telecommunication
Union (ITU), 13
Internet Architecture Board (IAB), 13
Internet Engineering Task Force
(IEFT), 13, 413
Internet Key Exchange (IKEv2), 12
Internet Protocol Security (IPsec), 12
Internet Society (ISOC), 13
invariant_noise_budget() method, 300
IPSec, 14

J

Jacobi symbol, 77-79

K

Key space, 34
Keyspace analysis, 334
Known-plaintext attack (KPA), 479, 480

L

Large integer arithmetic, 107
addition, 127-130
addition operation, 109-113, 115,

117,118

big integers, 131, 132
computations, 127
cryptographic operations, 108
history, 107
libraries, 133, 134
multiplication, 130-132
multiplication modulo, 123-126
subtraction, 118, 119, 121, 122

INDEX

Lattice-based cryptography, 143
advantages, 246
applications, 247, 248
ciphertext, 245
cybersecurity, 245
disadvantages, 247
GGH, encryption/decryption,
251-253, 255-260
mathematical background, 249, 250
mathematical lattices, 245, 261
quantum computing, 248, 249
security, 248
traditional encryption systems, 246
Learning with errors (LWE), 318
decision variant, 317
encryption scheme, 316
equation, 316
search, 317
Legendre symbol, 77
Lenstra Elliptic-Curve Factorization
(L-ECC), 207
Leveled encryption schemes, 286
Linear cryptanalysis
block cipher, 431
example, 432, 433
output, 434
plaintext, 430

Man-in-the-middle attack, 422
Mathematical functions
block ciphers, 65
case study
birthday computation, 91, 92
Chinese remainder
theorem, 98-100
Euclidean algorithm, 93-95

495

INDEX

Mathematical functions (cont.)
Legendre symbol, 101-104
multiplicative inverse, 96-98
standard deviation, 89, 90
variance, 88

communication process, 35, 36
domains/codomains, encryption, 33
encryption/decryption, 34
involutions, 32, 33
one-to-one, 26-29
one-way, 30, 31
permutation, 31, 32
trapdoor one-way, 31
Mathematical mechanisms
case study
Caesar cipher implementation,
C++23, 55, 56
Vigenére cipher implementation,
C++23, 57-60

Matriux, 409

MD5 hash function, 173

Memory Management (MEM), 167

Message space, 33

Metasploit, 409, 476

Modulus of congruence, 75

N

National Institute of Standards and
Technology (NIST), 13, 391, 413

Network mapper (Nmap), 409

Network security, 10, 11

Network Security Toolkit, 409

NIST Federal Information Processing
Standards (FIPS), 13, 192

Number theoretic transform (NTT), 7

Number theory, 395

algorithms Z,,, 76, 77

496

definition, 72

integers, 73

integers modulus, 75, 76
Legendre/Jacobi symbol, 77-79
Z, operation, 74, 75

O

One-time pad algorithms, 6
One-time pads, 474
OpenSSL, 172, 203
Linux Ubuntuy, installing, 189-192
Windows 32/64, installing, 180-186,
188, 189

P

Partial homomorphic encryption
(PHE), 284

Platform as a service (PaaS), 384

Predicate encryption (PE), 384

Pretty Good Privacy (PGP), 14

Primitives, 24

Privacy homomorphism, 284

Private information retrieval (PIR), 286, 384

Probability theory
birthday problem, 69, 70
case study
computing event, 82-84
computing probability
distribution, 85, 86
mean of probability
distribution, 86, 87
mean of the probability
distribution, 87
conditional probability, 68
definition, 66
experiment definition, 66, 68

random varaibles, 68, 69
symmetric key cryptosystems, 66
Public-key cryptography (PKC), 20, 37-39,
207, 209
Public-Key cryptography standards
(PKCS), 173-176
Public-key encryption schemes, 19, 20
Public key searchable encryption (PKSE)
schemes, 265

Q

Quantum cryptography, 473
Quantum-resistant algorithms, 249

R

Ring learning with errors
cryptography (RLWE)
categories, 315
cryptographic primitive, 327
data encryption, 325
decision, 318
digital communications, 313
functionalities, 317
implementation, 318-324
principles, 314
public-key, 325
search, 318
storage, 313
workflow example, 326
Rivest-Shamir-Adleman (RSA), 108
RLWE Homomorphic Encryption
(RLWE-HE), 315
RLWE Key Exchange (RLWE-KE), 315
RLWE Signature (RLWE-S), 315
ROSSLER function, 344
Rossler attractor, 336

INDEX

S

SEAL library, 7, 309
Searchable encryption (SE), 7
cloud computing environments, 263
cloud server, 268
entities, 264, 265
example, 268, 270
fundamental principles, 269
homomorphic encryption, 280
implementations, 272-280
implementing steps, 271, 272
security characteristics, 267
SSNs, 264
types, 265-267
Secret key sensitivity analysis, 335
Secure coding
checklist, 153-155
C programming language, 162
developers, 153
management systems/servers, 153
recommendation, 169
rules, 153
characters/strings, 166
DCL, 163
expressions, 164
input/output, 168
integers, 165
MEM, 167
rules, 168
software application, 154
Secure Shell cryptographic technology
(SSH), 12
Secure Sockets Layer (SSL), 14
setprecision() method, 141
Shor’s algorithm, 19
Shortest independent vector problem
(SIVP), 250

497

INDEX

Shortest vector problem (SVP), 250

Short-range wireless device, 331

Side-channel attack, 404

size() method, 300

Social engineering, 404

Social security numbers (SSNs), 264

Software as a service (SaaS), 384

Somewhat homomorphic encryption
(SWHE), 284

Special Publications (SP), 13

Stack-based system, 455

Stream ciphers/hash functions, 426

Stream cryptography algorithms, 426

Structured encryption (STE), 384

Substitution ciphers, 474

Symmetric cryptographic systems, 406

Symmetric-key algorithms, 5

Symmetric keys, 407

Symmetric searchable encryption (SSE)
schemes, 265

T

tableFilledComputated
Boolean variable, 217
Text characterization

498

bigrams count, 464-467

chi-squared statistic, 459-462

counting monograms, 463

counting trigrams, 468, 470, 471
Toolchain, 145
Transformation/mapping, 26
Transmission error

cryptography, 313

Transport layer security (TLS), 12
Trapdoor function algorithms, 6

U

Ubuntu, 189, 190, 202

\'

Verifiable computation/verifiable
computing, 369
Vigenére cipher, 57

W XY,Z
WEP and WPA/WPA2

networks, 9
Wireshark, 409, 476

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Part I: Foundations
	Chapter 1: Getting Started in Cryptography and Cryptanalysis
	Cryptography and Cryptanalysis
	Book Structure
	Internet Resources
	Forums and Newsgroups

	Security Protocols and Standards
	Cryptography Tools and Resources
	Conclusion
	References

	Chapter 2: Cryptography Fundamentals
	Information Security and Cryptography
	Cryptography Goals
	Cryptographic Primitives

	Background of Mathematical Functions
	One-to-One, One-Way, and Trapdoor One-Way Functions
	One-to-One Functions
	One-Way Functions
	Trapdoor One-Way Functions

	Permutations
	Inclusion

	Concepts and Basic Terminology
	Domains and Codomains Used for Encryption
	Encryption and Decryption Transformations
	The Participants in the Communication Process

	Digital Signatures
	Signing Process
	Verification Process

	Public-Key Cryptography
	Hash Functions
	Case Studies
	Caesar Cipher Implementation in C++23
	Vigenére Cipher Implementation in C++23

	Conclusion
	References

	Chapter 3: Mathematical Background and Its Applicability
	Probabilities
	Conditional Probability
	Random Variables
	Birthday Problem

	Information Theory
	Entropy

	Number Theory
	Integers
	Algorithms inℤ
	Integers Modulo n
	Algorithms ℤm
	The Legendre and Jacobi Symbols

	Finite Fields
	Basic Notions
	Polynomials and the Euclidean Algorithm

	Case Study 1: Computing the Probability of an Event That Takes Place
	Case Study 2: Computing the Probability Distribution
	Case Study 3: Computing the Mean of the Probability Distribution
	Case Study 4: Computing the Variance
	Case Study 5: Computing the Standard Deviation
	Case Study 6: Birthday Paradox
	Case Study 7: (Extended) Euclidean Algorithm
	Case Study 8: Computing the Multiplicative Inverse Under Modulo q
	Case Study 9: Chinese Remainder Theorem
	Case Study 10: The Legendre Symbol
	Conclusion
	References

	Chapter 4: Large Integer Arithmetic
	A Bit of History
	What About Cryptography?
	Algorithms Used for Large Integer Arithmetic
	Subtraction (Subtraction Modulo)
	Multiplication

	Big Integers
	Review of Large Integer Libraries
	Conclusion
	References

	Chapter 5: Floating-Point Arithmetic
	Why Floating-Point Arithmetic?
	Displaying Floating-Point Numbers
	The Range of Floating Points
	Floating-Point Precision
	Next Level for Floating-Point Arithmetic
	Conclusion
	References

	Chapter 6: New Features in C++23
	Headers
	The <expected> Header
	The <generator> Header
	The <flat_map> Header

	Conclusion
	References

	Chapter 7: Secure Coding Guidelines
	Secure Coding Checklist
	CERT Coding Standards
	Identifiers
	Noncompliant Code Examples and Compliant Solutions
	Exceptions
	Risk Assessment
	Automated Detection
	Related Guidelines

	Rules
	Rule 01. Declarations and Initializations (DCL)
	Rule 02. Expressions (EXP)
	Rule 03. Integers (INT)
	Rule 05. Characters and Strings (STR)
	Rule 06. Memory Management (MEM)
	Rule 07. Input/Output (FIO)

	Conclusion
	References

	Chapter 8: Cryptography Libraries in C/C++23
	Overview of Cryptography Libraries
	Hash Functions
	MD5 Hash Function Overview

	Public-Key Cryptography
	Elliptic-Curve Cryptography (ECC)
	Creating ECDH Keys

	OpenSSL
	Configuration and Installing OpenSSL
	Installing OpenSSL on Windows 32/64
	Installing OpenSSL on Linux: Ubuntu Flavor

	Botan
	CrypTool
	Conclusion
	References

	Part II: Pro Cryptography
	Chapter 9: Elliptic-Curve Cryptography
	Theoretical Fundamentals
	Weierstrass Equation
	Group Law

	Practical Implementation
	Conclusion
	References

	Chapter 10: Lattice-based Cryptography
	Advantages and Disadvantages of Lattice-based Cryptography
	Applications of Lattice-based Cryptography
	Security of Lattice-based Cryptography
	Lattice-based Cryptography and Quantum Computing
	Mathematical Background
	Example
	Conclusion
	References

	Chapter 11: Searchable Encryption
	Components
	Entities
	Types
	Security Characteristics

	An Example
	Conclusion
	References

	Chapter 12: Homomorphic Encryption
	Full Homomorphic Encryption
	A Practical Example of Using FHE
	Conclusion
	References

	Chapter 13: Ring Learning with Errors Cryptography
	Mathematical Background
	Learning with Errors (LWE)
	LWE Search
	LWE Decision

	Ring Learning with Errors (RLWE)
	RLWE Search
	RLWE Decision

	Practical Implementation
	Conclusion
	References

	Chapter 14: Chaos-based Cryptography
	Security Analysis
	Chaotic Maps for Plaintexts and Image Encryption
	Rössler Attractor
	Complex Numbers: A Short Overview
	Practical Implementation
	Secure Random Number Generator Using Chaos Rössler Attractor
	Encrypt and Decrypt Using Chaos and Fractals

	Conclusion
	References

	Chapter 15: Big Data Cryptography
	Verifiable Computation
	Conclusion
	References

	Chapter 16: Cloud Computing Cryptography
	A Practical Example
	Conclusion
	References

	Part III: Pro Cryptanalysis
	Chapter 17: Starting with Cryptanalysis
	Part III: Structure
	Cryptanalysis Terms
	A Bit of Cryptanalysis History
	Understanding Cryptanalysis Techniques
	Analyzing Cryptographic Algorithms
	Cracking Cryptographic Systems
	Understanding Cryptographic Systems
	Understanding Cryptographic Keys
	Understanding Cryptographic Weaknesses
	Analyzing Cryptographic Keys
	Penetration Tools and Frameworks
	Conclusion
	References

	Chapter 18: Cryptanalysis Attacks and Techniques
	Standards
	FIPS 140-2, FIPS 140-3, and ISO 15408

	Validation of Cryptographic Systems
	Cryptanalysis Operations
	Classification of Cryptanalytics Attacks
	Attacks on Cipher Algorithms
	Attacks on Cryptographic Keys
	Attacks on Authentication Protocols

	Conclusion
	References

	Chapter 19: Differential and Linear Cryptanalysis
	Differential Cryptanalysis
	Linear Cryptanalysis
	Performing Linear Cryptanalysis

	Conclusion
	References

	Chapter 20: Integral Cryptanalysis
	Basic Notions
	Theorem 20-1 [1, Theorem 1, p. 114]
	Theorem 20-2 [1, Theorem 2, p. 114]

	Practical Approach
	Conclusion
	References

	Chapter 21: Brute-Force and Buffer Overflow Attacks
	Brute-Force Attack
	Buffer Overflow Attack
	Conclusion
	References

	Chapter 22: Text Characterization
	Chi-Squared Statistic
	Cryptanalysis Using Monogram, Bigram, and Trigram Frequency Counts
	Counting Monograms
	Counting Bigrams
	Counting Trigrams

	Conclusion
	References

	Chapter 23: Implementation and Practical Approach of Cryptanalysis Methods
	Step 1
	Step 2
	Step 3
	Step 4
	Ciphertext-Only Attack (COA)
	Known-Plaintext Attack (KPA)
	Chosen-Plaintext Attack (CPA)
	Chosen-Ciphertext Attack (CCA)
	Conclusion
	References

	Index

