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Preface

This book is about networks: monitoring them, studying them, and using the results
of those studies to improve them. “Improve” in this context hopefully means to make
more secure, but I don’t believe we have the vocabulary or knowledge to say that con‐
fidently—at least not yet. In order to implement security, we must know what deci‐
sions we can make to do so, which ones are most effective to apply, and the impact
that those decisions will have on our users. Underpinning these decisions is a need
for situational awareness.

Situational awareness, a term largely used in military circles, is exactly what it says on
the tin: an understanding of the environment you’re operating in. For our purposes,
situational awareness encompasses understanding the components that make up your
network and how those components are used. This awareness is often radically differ‐
ent from how the network is configured and how the network was originally
designed.

To understand the importance of situational awareness in information security, I
want you to think about your home, and I want you to count the number of web
servers in your house. Did you include your wireless router? Your cable modem?
Your printer? Did you consider the web interface to CUPS? How about your televi‐
sion set?

To many IT managers, several of the devices just listed won’t have registered as “web
servers.” However, most modern embedded devices have dropped specialized control
protocols in favor of a web interface—to an outside observer, they’re just web servers,
with known web server vulnerabilities. Attackers will often hit embedded systems
without realizing what they are—the SCADA system is a Windows server with a cou‐
ple of funny additional directories, and the MRI machine is a perfectly serviceable
spambot.

This was all an issue when I wrote the first edition of the book; at the time, we dis‐
cussed the risks of unpatched smart televisions and vulnerabilities in teleconferencing
systems. Since that time, the Internet of Things (IoT) has become even more of a
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thing, with millions of remotely accessible embedded devices using simple (and inse‐
cure) web interfaces.

This book is about collecting data and looking at networks in order to understand
how the network is used. The focus is on analysis, which is the process of taking secu‐
rity data and using it to make actionable decisions. I emphasize the word actionable
here because effectively, security decisions are restrictions on behavior. Security pol‐
icy involves telling people what they shouldn’t do (or, more onerously, telling people
what they must do). Don’t use a public file sharing service to hold company data,
don’t use 123456 as the password, and don’t copy the entire project server and sell it
to the competition. When we make security decisions, we interfere with how people
work, and we’d better have good, solid reasons for doing so.

All security systems ultimately depend on users recognizing and accepting the trade‐
offs—inconvenience in exchange for safety—but there are limits to both. Security
rests on people: it rests on the individual users of a system obeying the rules, and it
rests on analysts and monitors identifying when rules are broken. Security is only
marginally a technical problem—information security involves endlessly creative
people figuring out new ways to abuse technology, and against this constantly chang‐
ing threat profile, you need cooperation from both your defenders and your users.
Bad security policy will result in users increasingly evading detection in order to get
their jobs done or just to blow off steam, and that adds additional work for your
defenders.

The emphasis on actionability and the goal of achieving security is what differentiates
this book from a more general text on data science. The section on analysis proper
covers statistical and data analysis techniques borrowed from multiple other disci‐
plines, but the overall focus is on understanding the structure of a network and the
decisions that can be made to protect it. To that end, I have abridged the theory as
much as possible, and have also focused on mechanisms for identifying abusive
behavior. Security analysis has the unique problem that the targets of observation are
not only aware they’re being watched, but are actively interested in stopping it if at all
possible.

The MRI and the General’s Laptop
Several years ago, I talked with an analyst who focused primarily on a university hos‐
pital. He informed me that the most commonly occupied machine on his network
was the MRI. In retrospect, this is easy to understand.

“Think about it,” he told me. “It’s medical hardware, which means it’s certified to use a
specific version of Windows. So every week, somebody hits it with an exploit, roots it,
and installs a bot on it. Spam usually starts around Wednesday.” When I asked why he
didn’t just block the machine from the internet, he shrugged and told me the doctors
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1 Consider automatically locking out accounts after x number of failed password attempts, and combine it with
logins based on email addresses. Consider how many accounts an attacker can lock out that way.

wanted their scans. He was the first analyst I’d encountered with this problem, but he
wasn’t the last.

We see this problem a lot in any organization with strong hierarchical figures: doc‐
tors, senior partners, generals. You can build as many protections as you want, but if
the general wants to borrow the laptop over the weekend and let his granddaughter
play Neopets, you’ve got an infected laptop to fix on Monday.

I am a firm believer that the most effective way to defend networks is to secure and
defend only what you need to secure and defend. I believe this is the case because
information security will always require people to be involved in monitoring and
investigation—the attacks change too frequently, and when we automate defenses,
attackers figure out how to use them against us.1

I am convinced that security should be inconvenient, well defined, and constrained.
Security should be an artificial behavior extended to assets that must be protected. It
should be an artificial behavior because the final line of defense in any secure system
is the people in the system—and people who are fully engaged in security will be mis‐
trustful, paranoid, and looking for suspicious behavior. This is not a happy way to
live, so in order to make life bearable, we have to limit security to what must be pro‐
tected. By trying to watch everything, you lose the edge that helps you protect what’s
really important.

Because security is inconvenient, effective security analysts must be able to convince
people that they need to change their normal operations, jump through hoops, and
otherwise constrain their mission in order to prevent an abstract future attack from
happening. To that end, the analysts must be able to identify the decision, produce
information to back it up, and demonstrate the risk to their audience.

The process of data analysis, as described in this book, is focused on developing secu‐
rity knowledge in order to make effective security decisions. These decisions can be
forensic: reconstructing events after the fact in order to determine why an attack hap‐
pened, how it succeeded, or what damage was done. These decisions can also be pro‐
active: developing rate limiters, intrusion detection systems (IDSs), or policies that
can limit the impact of an attacker on a network.

Audience
The target audience for this book is network administrators and operational security
analysts, the personnel who work on NOC floors or who face an IDS console on a
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regular basis. Information security analysis is a young discipline, and there really is
no well-defined body of knowledge I can point to and say, “Know this.” This book is
intended to provide a snapshot of analytic techniques that I or other people have
thrown at the wall over the past 10 years and seen stick. My expectation is that you
have some familiarity with TCP/IP tools such as netstat, tcpdump, and wireshark.

In addition, I expect that you have some familiarity with scripting languages. In this
book, I use Python as my go-to language for combining tools. The Python code is
illustrative and might be understandable without a Python background, but it is
assumed that you possess the skills to create filters or other tools in the language of
your choice.

In the course of writing this book, I have incorporated techniques from a number of
different disciplines. Where possible, I’ve included references back to original sources
so that you can look through that material and find other approaches. Many of these
techniques involve mathematical or statistical reasoning that I have intentionally kept
at a functional level rather than going through the derivations of the approach. A
basic understanding of statistics will, however, be helpful.

Contents of This Book
This book is divided into three sections: Data, Tools, and Analytics. The Data section
discusses the process of collecting and organizing data. The Tools section discusses a
number of different tools to support analytical processes. The Analytics section dis‐
cusses different analytic scenarios and techniques. Here’s a bit more detail on what
you’ll find in each.

Part I discusses the collection, storage, and organization of data. Data storage and
logistics are critical problems in security analysis; it’s easy to collect data, but hard to
search through it and find actual phenomena. Data has a footprint, and it’s possible to
collect so much data that you can never meaningfully search through it. This section
is divided into the following chapters:

Chapter 1
This chapter discusses the general process of collecting data. It provides a frame‐
work for exploring how different sensors collect and report information and how
they interact with each other, and how the process of data collection affects the
data collected and the inferences made.

Chapter 2
This chapter expands on the discussion in the previous chapter by focusing on
sensor placement in networks. This includes points about how packets are trans‐
ferred around a network and the impact on collecting these packets, and how
various types of common network hardware affect data collection.
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Chapter 3
This chapter focuses on the data collected by network sensors including tcpdump
and NetFlow. This data provides a comprehensive view of network activity, but is
often hard to interpret because of difficulties in reconstructing network traffic.

Chapter 4
This chapter focuses on the process of data collection in the service domain—the
location of service log data, expected formats, and unique challenges in process‐
ing and managing service data.

Chapter 5
This chapter focuses on the data collected by service sensors and provides exam‐
ples of logfile formats for major services, particularly HTTP.

Chapter 6
This chapter discusses host-based data such as memory and disk information.
Given the operating system–specific requirements of host data, this is a high-
level overview.

Chapter 7
This chapter discusses data in the active domain, covering topics such as scan‐
ning hosts and creating web crawlers and other tools to probe a network’s assets
to find more information.

Part II discusses a number of different tools to use for analysis, visualization, and
reporting. The tools described in this section are referenced extensively in the third
section of the book when discussing how to conduct different analytics. There are
three chapters on tools:

Chapter 8
This chapter is a high-level discussion of how to collect and analyze security data,
and the type of infrastructure that should be put in place between sensor and
SIM.

Chapter 9
The System for Internet-Level Knowledge (SiLK) is a flow analysis toolkit devel‐
oped by Carnegie Mellon’s CERT Division. This chapter discusses SiLK and how
to use the tools to analyze NetFlow, IPFIX, and similar data.

Chapter 10
One of the more common and frustrating tasks in analysis is figuring out where
an IP address comes from. This chapter focuses on tools and investigation meth‐
ods that can be used to identify the ownership and provenance of addresses,
names, and other tags from network traffic.

Preface | xvii



Part III introduces analysis proper, covering how to apply the tools discussed
throughout the rest of the book to address various security tasks. The majority of this
section is composed of chapters on various constructs (graphs, distance metrics) and
security problems (DDoS, fumbling):

Chapter 11
Exploratory data analysis (EDA) is the process of examining data in order to
identify structure or unusual phenomena. Both attacks and networks are moving
targets, so EDA is a necessary skill for any analyst. This chapter provides a
grounding in the basic visualization and mathematical techniques used to
explore data.

Chapter 12
Log data, payload data—all of it is likely to include some forms of text. This chap‐
ter focuses on the encoding and analysis of semistructured text data.

Chapter 13
This chapter looks at mistakes in communications and how those mistakes can
be used to identify phenomena such as scanning.

Chapter 14
This chapter discusses analyses that can be done by examining traffic volume and
traffic behavior over time. This includes attacks such as DDoS and database
raids, as well as the impact of the workday on traffic volumes and mechanisms to
filter traffic volumes to produce more effective analyses.

Chapter 15
This chapter discusses the conversion of network traffic into graph data and the
use of graphs to identify significant structures in networks. Graph attributes such
as centrality can be used to identify significant hosts or aberrant behavior.

Chapter 16
This chapter discusses the unique problems involving insider threat data analysis.
For network security personnel, insider threat investigations often require col‐
lecting and comparing data from a diverse and usually poorly maintained set of
data sources. Understanding what to find and what’s relevant is critical to han‐
dling this trying process.

Chapter 17
Threat intelligence supports analysis by providing complementary and contex‐
tual information to alert data. However, there is a plethora of threat intelligence
available, of varying quality. This chapter discusses how to acquire threat intelli‐
gence, vet it, and incorporate it into operational analysis.
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Chapter 19
This chapter discusses a step-by-step process for inventorying a network and
identifying significant hosts within that network. Network mapping and inven‐
tory are critical steps in information security and should be done on a regular
basis.

Chapter 20
Operational security is stressful and time-consuming; this chapter discusses how
analysis teams can interact with operational teams to develop useful defenses and
analysis techniques.

Changes Between Editions
The second edition of this book takes cues from the feedback I’ve received from the
first edition and the changes that have occurred in security since the time I wrote it.
For readers of the first edition, I expect you’ll find about a third of the material is new.
These are the most significant changes:

• I have removed R from the examples, and am now using Python (and the Ana‐
conda stack) exclusively. Since the previous edition, Python has acquired signifi‐
cant and mature data analysis tools. This also saves space on language tutorials
which can be spent on analytics discussions.

• The discussions of host and active domain data have been expanded, with a spe‐
cific focus on the information that a network security analyst needs. Much of the
previous IDS material has been moved into those chapters.

• I have added new chapters on several topics, including text analysis, insider
threat, and interacting with operational communities.

Most of the new material is based around the idea of an analysis team that interacts
with and supports the operations team. Ideally, the analysis team has some degree of
separation from operational workflow in order to focus on longer-term and larger
issues such as tools support, data management, and optimization.

Tools of the Trade
So, given Python, R, and Excel, what should you learn? If you expect to focus purely
on statistical and numerical analysis, or you work heavily with statisticians, learn R
first. If you expect to integrate tightly with external data sources, use techniques that
aren’t available in CRAN, or expect to do something like direct packet manipulation
or server integration, learn Python (ideally iPython and Pandas) first. Then learn
Excel, whether you want to or not. Once you’ve learned Excel, take a nice vacation and
then learn whatever tool is left of these three.
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All of these data analysis environments provide common tools: some equivalent of a
data frame, visualization, and statistical functionality. Of the three, the Pandas stack
(that is, Python, NumPy, SciPy, Matplotlib, and supplements) provides the greatest
variety of tools, and if you’re looking for something outside of the statistical domain,
Python is going to have it. R, in comparison, is a tightly integrated statistical package
where you will always find the latest statistical analysis and machine learning tools.
The Pandas stack involves combining multiple toolsets developed in parallel, result‐
ing in both redundancy and valuable tools located all over the place. R, on the other
hand, inherits from this parallel development community (via S and SAS) and sits in
the developer equivalent of the Uncanny Valley.

So why Excel? Because operational analysts live and die off of Excel spreadsheets.
Excel integration (even if it’s just creating a button to download a CSV of your results)
will make your work relevant to the operational floor. Maybe you do all your work in
Python, but at the end, if you want analysts to use it, give them something they can
plunk into a spreadsheet.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords. Also used for commands and command-
line utilities, switches, and options.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mpcollins/nsda_examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
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the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Network Security Through Data
Analysis by Michael Collins (O’Reilly). Copyright 2017 Michael Collins,
978-1-491-96284-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
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We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/nstda2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART I

Data

This section discusses the collection and storage of data for use in analysis and
response. Effective security analysis requires collecting data from widely disparate
sources, each of which provides part of a picture about a particular event taking place
on a network.

To understand the need for hybrid data sources, consider that most modern bots are
general-purpose software systems. A single bot may use multiple techniques to infil‐
trate and attack other hosts on a network. These attacks may include buffer over‐
flows, spreading across network shares, and simple password cracking. A bot
attacking an SSH server with a password attempt may be logged by that host’s SSH
logfile, providing concrete evidence of an attack but no information on anything else
the bot did. Network traffic might not be able to reconstruct the sessions, but it can
tell you about other actions by the attacker—including, say, a successful long session
with a host that never reported such a session taking place, no siree.

The core challenge in data-driven analysis is to collect sufficient data to reconstruct
rare events without collecting so much data as to make queries impractical. Data col‐
lection is surprisingly easy, but making sense of what’s been collected is much harder.
In security, this problem is complicated by the rare actual security threats.

Attacks are common, threats are rare. The majority of network traffic is innocuous
and highly repetitive: mass emails, everyone watching the same YouTube video, file
accesses. Interspersed among this traffic are attacks, but the majority of the attacks
will be automated and unsubtle: scanning, spamming, and the like. Within those
attacks will be a minority, a tiny subset representing actual threats.



That security is driven by rare, small threats means that almost all security analysis is
I/O bound: to find phenomena, you have to search data, and the more data you col‐
lect, the more you have to search. To put some concrete numbers on this, consider an
OC-3: a single OC-3 can generate 5 terabytes of raw data per day. By comparison, an
eSATA interface can read about 0.3 gigabytes per second, requiring several hours to
perform one search across that data, assuming that you’re reading and writing data
across different disks. The need to collect data from multiple sources introduces
redundancy, which costs additional disk space and increases query times. It is com‐
pletely possible to instrument oneself blind.

A well-designed storage and query system enables analysts to conduct arbitrary quer‐
ies on data and expect a response within a reasonable time frame. A poorly designed
one takes longer to execute the query than it took to collect the data. Developing a
good design requires understanding how different sensors collect data; how they
complement, duplicate, and interfere with each other; and how to effectively store
this data to empower analysis. This section is focused on these problems.

This section is divided into seven chapters. Chapter 1 is an introduction to the gen‐
eral process of sensing and data collection, and introduces vocabulary to describe
how different sensors interact with each other. Chapter 2 discusses the collection of
network data—its value, points of collection, and the impact of vantage on network
data collection. Chapter 3 discusses sensors and outputs. Chapter 4 focuses on service
data collection and vantage. Chapter 5 focuses on the content of service data—logfile
data, its format, and converting it into useful forms. Chapter 6 is concerned with
host-based data, such as memory or filesystem state, and how that affects network
data analysis. Chapter 7 discusses active domain data, scanning and probing to find
out what a host is actually doing.



CHAPTER 1

Organizing Data: Vantage, Domain,
Action, and Validity

Security analysis is the process of applying data to make security decisions. Security
decisions are disruptive and restrictive—disruptive because you’re fixing something,
restrictive because you’re constraining behavior. Effective security analysis requires
making the right decision and convincing a skeptical audience that this is the right
decision. The foundations of these decisions are quality data and quality reasoning; in
this chapter, I address both.

Security monitoring on a modern network requires working with multiple sensors
that generate different kinds of data and are created by many different people for
many different purposes. A sensor can be anything from a network tap to a firewall
log; it is something that collects information about your network and can be used to
make judgment calls about your network’s security.

I want to pull out and emphasize a very important point here: quality source data is
integral to good security analysis. Furthermore, the effort spent acquiring a consistent
source of quality data will pay off further down the analysis pipeline—you can use
simpler (and faster) algorithms to identify phenomena, you’ll have an easier time ver‐
ifying results, and you’ll spend less time cross-correlating and double-checking infor‐
mation.

So, now that you’re raring to go get some quality data, the question obviously pops
up: what is quality data? The answer is that security data collection is a trade-off
between expressiveness and speed—packet capture (pcap) data collected from a span
port can tell you if someone is scanning your network, but it’s going to also produce
terabytes of unreadable traffic from the HTTPS server you’re watching. Logs from the
HTTPS server will tell you about file accesses, but nothing about the FTP interactions
going on as well. The questions you ask will also be situational—how you decide to
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deal with an advanced persistent threat (APT) is a function of how much risk you
face, and how much risk you face will change over time.

That said, there are some basic goals we can establish about security data. We would
like the data to express as much information with as small a footprint as possible—so
data should be in a compact format, and if different sensors report the same event, we
would like those descriptions to not be redundant. We want the data to be as accurate
as possible as to the time of observation, so information that is transient (such as the
relationships between IP addresses and domain names) should be recorded at the
time of collection. We also would like the data to be expressive; that is, we would like
to reduce the amount of time and effort an analyst needs to spend cross-referencing
information. Finally, we would like any inferences or decisions in the data to be
accountable; for example, if an alert is raised because of a rule, we want to know the
rule’s history and provenance.

While we can’t optimize for all of these criteria, we can use them as guidance for bal‐
ancing these requirements. Effective monitoring will require juggling multiple sen‐
sors of different types, which treat data differently. To aid with this, I classify sensors
along three attributes:

Vantage
The placement of sensors within a network. Sensors with different vantages will
see different parts of the same event.

Domain
The information the sensor provides, whether that’s at the host, a service on the
host, or the network. Sensors with the same vantage but different domains pro‐
vide complementary data about the same event. For some events, you might only
get information from one domain. For example, host monitoring is the only way
to find out if a host has been physically accessed.

Action
How the sensor decides to report information. It may just record the data, pro‐
vide events, or manipulate the traffic that produces the data. Sensors with differ‐
ent actions can potentially interfere with each other.

This categorization serves two purposes. First, it provides a way to break down and
classify sensors by how they deal with data. Domain is a broad characterization of
where and how the data is collected. Vantage informs us of how the sensor placement
affects collection. Action details how the sensor actually fiddles with data. Together,
these attributes provide a way to define the challenges data collection poses to the
validity of an analyst’s conclusions.

Validity is an idea from experimental design, and refers to the strength of an argu‐
ment. A valid argument is one where the conclusion follows logically from the prem‐
ise; weak arguments can be challenged on multiple axes, and experimental design
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1 And note that more and more network data is encrypted.

focuses on identifying those challenges. The reason security people should care about
it goes back to my point in the introduction: security analysis is about convincing an
unwilling audience to reasonably evaluate a security decision and choose whether or
not to make it. Understanding the validity and challenges to it produces better results
and more realistic analyses.

Domain
We will now examine domain, vantage, and action in more detail. A sensor’s domain
refers to the type of data that the sensor generates and reports. Because sensors
include antivirus (AV) and similar systems, where the line of reasoning leading to a
message may be opaque, the analyst needs to be aware that these tools import their
own biases.

Table 1-1 breaks down the four major domain classes used in this book. This table
divides domains by the event model and the sensor uses, with further description fol‐
lowing.

Table 1-1. The four domain classes

Domain Data sources Timing Identity
Network PCAP, NetFlow Real-time, packet-based IP, MAC

Service Logs Real-time, event-based IP, Service-based IDs

Host System state, signature alerts Asynchronous IP, MAC, UUID

Active Scanning User-driven IP, Service-based IDs

Sensors operating in the network domain derive all of their data from some form of
packet capture. This may be straight pcap, packet headers, or constructs such as Net‐
Flow. Network data gives the broadest view of a network, but it also has the smallest
amount of useful data relative to the volume of data collected. Network domain data
must be interpreted, it must be readable,1 and it must be meaningful; network traffic
contains a lot of garbage.

Sensors in the service domain derive their data from services. Examples of services
include server applications like nginx or apache (HTTP daemons), as well as internal
processes like syslog and the processes that are moderated by it. Service data pro‐
vides you with information on what actually happened, but this is done by interpret‐
ing data and providing an event model that may be only tangentially related to reality.
In addition, to collect service data, you need to know the service exists, which can be
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surprisingly difficult to find out, given the tendency for hardware manufacturers to
shop web servers into every open port.

Sensors in the host domain collect information on the host’s state. For our purposes,
these types of tools fit into two categories: systems that provide information on sys‐
tem state such as disk space, and host-based intrusion detection systems such as file
integrity monitoring or antivirus systems. These sensors will provide information on
the impact of actions on the host, but are also prone to timing issues—many of the
state-based systems provide alerts at fixed intervals, and the intrusion-based systems
often use huge signature libraries that get updated sporadically.

Finally, the active domain consists of sensing controlled by the analyst. This includes
scanning for vulnerabilities, mapping tools such as traceroute, or even something as
simple as opening a connection to a new web server to find out what the heck it does.
Active data also includes beaconing and other information that is sent out to ensure
that we know something is happening.

Vantage
A sensor’s vantage describes the packets that sensor will be able to observe. Vantage is
determined by an interaction between the sensor’s placement and the routing infra‐
structure of a network. In order to understand the phenomena that impact vantage,
look at Figure 1-1. This figure describes a number of unique potential sensors differ‐
entiated by capital letters. In order, they are:

A
Monitors the interface that connects the router to the internet.

B
Monitors the interface that connects the router to the switch.

C
Monitors the interface that connects the router to the host with IP address
128.2.1.1.

D
Monitors host 128.1.1.1.

E
Monitors a spanning port operated by the switch. A spanning port records all
traffic that passes the switch (see “Network Layers and Vantage” on page 22 for
more information on spanning ports).

F
Monitors the interface between the switch and the hub.
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G
Collects HTTP log data on host 128.1.1.2.

H
Sniffs all TCP traffic on the hub.

Figure 1-1. Vantage points of a simple network and a graph representation

Each of these sensors has a different vantage, and will see different traffic based on
that vantage. You can approximate the vantage of a network by converting it into a
simple node-and-link graph (as seen in the corner of Figure 1-1) and then tracing the
links crossed between nodes. A link will be able to record any traffic that crosses that
link en route to a destination. For example, in Figure 1-1:

• The sensor at position A sees only traffic that moves between the network and
the internet—it will not, for example, see traffic between 128.1.1.1 and 128.2.1.1.
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• The sensor at B sees any traffic that originates from or ends up at one of the
addresses “beneath it,” as long as the other address is 128.2.1.1 or the internet.

• The sensor at C sees only traffic that originates from or ends at 128.2.1.1.
• The sensor at D, like the sensor at C, only sees traffic that originates or ends at

128.1.1.1.
• The sensor at E sees any traffic that moves between the switches’ ports: traffic

from 128.1.1.1 to anything else, traffic from 128.1.1.2 to anything else, and any
traffic from 128.1.1.3 to 128.1.1.32 that communicates with anything outside that
hub.

• The sensor at F sees a subset of what the sensor at E sees, seeing only traffic from
128.1.1.3 to 128.1.1.32 that communicates with anything outside that hub.

• G is a special case because it is an HTTP log; it sees only HTTP/S traffic (port 80
and 443) where 128.1.1.2 is the server.

• Finally, H sees any traffic where one of the addresses between 128.1.1.3 and
128.1.1.32 is an origin or a destination, as well as traffic between those hosts.

Note that no single sensor provides complete coverage of this network. Furthermore,
instrumentation will require dealing with redundant traffic. For instance, if I instru‐
ment H and E, I will see any traffic from 128.1.1.3 to 128.1.1.1 twice. Choosing the
right vantage points requires striking a balance between complete coverage of traffic
and not drowning in redundant data.

Choosing Vantage
When instrumenting a network, determining vantage is a three-step process: acquir‐
ing a network map, determining the potential vantage points, and then determining
the optimal coverage.

The first step involves acquiring a map of the network and how it’s connected,
together as well as a list of potential instrumentation points. Figure 1-1 is a simplified
version of such a map.

The second step, determining the vantage of each point, involves identifying every
potentially instrumentable location on the network and then determining what that
location can see. This value can be expressed as a range of IP address/port combina‐
tions. Table 1-2 provides an example of such an inventory for Figure 1-1. A graph can
be used to make a first guess at what vantage points will see, but a truly accurate
model requires more in-depth information about the routing and networking hard‐
ware. For example, when dealing with routers it is possible to find points where the
vantage is asymmetric (note that the traffic in Table 1-2 is all symmetric). Refer to
“The Basics of Network Layering” on page 19 for more information.
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Table 1-2. A worksheet showing the vantage of Figure 1-1

Vantage point Source IP range Destination IP range
A internet 128.1, 2.1.1–32

128.1, 2.1.1–32 internet

B 128.1.1.1–32 128.2.1.1, internet

128.2.1.1, internet 128.1.1.1–32

C 128.2.1.1 128.1.1.1–32, internet

128.1.1.1–32, internet 128.2.1.1

D 128.1.1.1 128.1.1.2-32, 128.2.1.1, internet

128.1.1.2–32, 128.2.1.1, internet 128.1.1.1

E 128.1.1.1 128.1.1.2–32, 128.2.1.1, internet

128.1.1.2 128.1.1.1, 128.1.1.3–32, 128.2.1.1, internet

128.1.1.3–32 128.1.1.1-2, 128.2.1.1, internet

F 128.1.1.3–32 128.1.1.1-2, 128.2.1.1, internet

128.1.1.1–32, 128.2.1.1, internet 128.1.1.3–32

G 128.1, 2.1.1–32, internet 128.1.1.2:tcp/80

128.1.1.2:tcp/80 128.1, 2.1.1–32

H 128.1.1.3-32 128.1.1.1–32, 128.2.1.1, internet

128.1.1.1-32, 128.2.1.1, internet 128.1.1.3–32

The final step is to pick the optimal vantage points shown by the worksheet. The goal
is to choose a set of points that provide monitoring with minimal redundancy. For
example, sensor E provides a superset of the data provided by sensor F, meaning that
there is no reason to include both. Choosing vantage points almost always involves
dealing with some redundancy, which can sometimes be limited by using filtering
rules. For example, in order to instrument traffic between the hosts 128.1.1.3–32,
point H must be instrumented, and that traffic will pop up again and again at points
E, F, B, and A. If the sensors at those points are configured to not report traffic from
128.1.1.3–32, the redundancy problem is moot.

Actions: What a Sensor Does with Data
A sensor’s action describes how the sensor interacts with the data it collects. Depend‐
ing on the domain, there are a number of discrete actions a sensor may take, each of
which has different impacts on the validity of the output:

Report
A report sensor simply provides information on all phenomena that the sensor
observes. Report sensors are simple and important for baselining. They are also
useful for developing signatures and alerts for phenomena that control sensors
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haven’t yet been configured to recognize. Report sensors include NetFlow collec‐
tors, tcpdump, and server logs.

Event
An event sensor differs from a report sensor in that it consumes multiple data
sources to produce an event that summarizes some subset of that data. For exam‐
ple, a host-based intrusion detection system (IDS) might examine a memory
image, find a malware signature in memory, and send an event indicating that its
host was compromised by malware. At their most extreme, event sensors are
black boxes that produce events in response to internal processes developed by
experts. Event sensors include IDS and antivirus (AV) sensors.

Control
A control sensor, like an event sensor, consumes multiple data sources and makes
a judgment about that data before reacting. Unlike an event sensor, a control sen‐
sor modifies or blocks traffic when it sends an event. Control sensors include
intrusion prevention systems (IPSs), firewalls, antispam systems, and some anti‐
virus systems.

A sensor’s action not only affects how the sensor reports data, but also how it inter‐
acts with the data it’s observing. Control sensors can modify or block traffic.
Figure 1-2 shows how sensors with these three different types of action interact with
data. The figure shows the work of three sensors: R, a report sensor; E, an event sen‐
sor; and C, a control sensor. The event and control sensors are signature matching
systems that react to the string ATTACK. Each sensor is placed between the internet
and a single target.

R, the reporter, simply reports the traffic it observes. In this case, it reports both nor‐
mal and attack traffic without affecting the traffic and effectively summarizes the data
observed. E, the event sensor, does nothing in the presence of normal traffic but
raises an event when attack traffic is observed. E does not stop the traffic; it just sends
an event. C, the controller, sends an event when it sees attack traffic and does nothing
to normal traffic. In addition, however, C blocks the aberrant traffic from reaching the
target. If another sensor is further down the route from C, it will never see the traffic
that C blocks.
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Figure 1-2. Three different sensor actions

Validity and Action
Validity, as I’m going to discuss it, is a concept used in experimental design. The val‐
idity of an argument refers to the strength of that argument, of how reasonably the
premise of an argument leads to the conclusion. Valid arguments have a strong link,
weakly valid arguments are easily challenged.

For security analysts, validity is a good jumping-off point for identifying the chal‐
lenges your analysis will face (and you will be challenged). Are you sure the sensor’s
working? Is this a real threat? Why do we have to patch this mission-critical system?
Security in most enterprises is a cost center, and you have to be able to justify the
expenses you’re about to impose. If you can’t answer challenges internally, you won’t
be able to externally.
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This section is a brief overview of validity. I will return to this topic throughout the
book, identifying specific challenges within context. Initially, I want to establish a
working vocabulary, starting with the four major categories used in research. I will
introduce these briefly here, then explore them further in the subsections that follow.
The four types of validity we will consider are:

Internal
The internal validity of an argument refers to cause and effect. If we describe an
experiment as an “If I do A, then B happens” statement, then internal validity is
concerned with whether or not A is related to B, and whether or not there are
other things that might affect the relationship that I haven’t addressed.

External
The external validity of an argument refers to the generalizability of an experi‐
ment’s results to the outside world as a whole. An experiment has strong external
validity if the data and the treatment reflect the outside world.

Statistical
The statistical validity of an argument refers to the use of proper statistical meth‐
odology and technique in interpreting the gathered data.

Construct
A construct is a formal system used to describe a behavior, something that can be
tested or challenged. For example, if I want to establish that someone is transfer‐
ring files across a network, I might use the volume of data transferred as a con‐
struct. Construct validity is concerned with whether the constructs are
meaningful—if they are accurate, if they can be reproduced, if they can be chal‐
lenged.

In experimental construction, validity is not proven, but challenged. It’s incumbent
on the researcher to demonstrate that validity has been addressed. This is true
whether the researcher is a scientist conducting an experiment, or a security analyst
explaining a block decision. Figuring out the challenges to validity is a problem of
expertise—validity is a living problem, and different fields have identified different
threats to validity since the development of the concept.

For example, sociologists have expanded on the category of external validity to fur‐
ther subdivide it into population and ecological validity. Population validity refers to
the generalizability of a sampled population to the world as a whole, and ecological
validity refers to the generalizability of the testing environment to reality. As security
personnel, we must consider similar challenges to the validity of our data, imposed by
the perversity of attackers.
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Internal Validity
The internal validity of an argument refers to the cause/effect relationship in an
experiment. An experiment has strong internal validity if it is reasonable to believe
that the effect was caused by the experimenter’s hypothesized cause. In the case of
internal validity, the security analyst should particularly consider the following issues:

Timing
Timing, in this case, refers to the process of data collection and how it relates to
the observed phenomenon. Correlating security and event data requires a clear
understanding of how and when the data is collected. This is particularly prob‐
lematic when comparing data such as NetFlow (where the timing of a flow is
impacted by cache management issues for the flow collector), or sampled data
such as system state. Addressing these issues of timing begins with record-
keeping—not only understanding how the data is collected, but ensuring that
timing information is coordinated and consistent across the entire system.

Instrumentation
Proper analysis requires validating that the data collection systems are collecting
useful data (which is to say, data that can be meaningfully correlated with other
data), and that they’re collecting data at all. Regularly testing and auditing your
collection systems is necessary to differentiate actual attacks from glitches in data
collection.

Selection
Problems of selection refer to the impact that choosing the target of a test can
have on the entire test. For security analysts, this involves questions of the mis‐
sion of a system (is it for research? marketing?), the placement of the system on
the network (before a DMZ, outward facing, inward facing?), and questions of
mobility (desktop? laptop? embedded?).

History
Problems of history refer to events that affect an analysis while that analysis is
taking place. For example, if an analyst is studying the impact of spam filtering
when, at the same time, a major spam provider is taken down, then she has to
consider whether her results are due to the filter or a global effect.

Maturation
Maturation refers to the long-term effects a test has on the test subject. In partic‐
ular, when dealing with long-running analyses, the analyst has to consider the
impact that dynamic allocation has on identity—if you are analyzing data on a
DHCP network, you can expect IP addresses to change their relationship to
assets when leases expire. Round robin DNS allocation or content distribution
networks (CDNs) will result in different relationships between individual HTTP
requests.
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torate, including DETER (a testbed for security research) and PREDICT (the predecessor to IMPACT).

Natural Experiments
A natural experiment is a type of experiment where the researcher relies on a group
being exposed to some kind of natural phenomenon (across space or time) and com‐
pares groups based on this exposure. The McColo example mentioned in Chapter 15
is a good example of this kind of analysis—this analysis took advantage of a long-
term collection project, which happened to be running when the McColo shutdown
took place to study the impact. Long-term data collection lends itself to natural
experiments, so keeping an eye on the calendar for notable security events is a useful
way to study their impact (or lack thereof) on the data.

External Validity
External validity is concerned with the ability to draw general conclusions from the
results of an analysis. If a result has strong external validity, then the result is general‐
izable to broader classes than the sample group. For security analysis, external validity
is particularly problematic because we lack a good understanding of general network
behavior—a problem that has been ongoing for decades.

The basic mechanism for addressing external validity is to ensure that the data
selected is representative of the target population as a whole, and that the treatments
are consistent across the set (e.g., if you’re running a study on students, you have to
account for income, background, education, etc., and deliver the same test). However,
until the science of network traffic advances to develop quality models for describing
normal network behavior,2 determining whether models represent a realistic sample
is infeasible. The best mechanism for accommodating this right now is to rely on
additional corpora. There’s a long tradition in computer science of collecting datasets
for analyses; while they’re not necessarily representative, they’re better than nothing.

Information Security Datasets: A Brief Primer
Information security research is on a perpetual hunt for quality datasets. One of the
most important early research papers on intrusion detection, the 1999 Lincoln Labs
study (see “Further Reading” on page 16), is heavily focused on the problem of data
generation and resulted in a dataset that has been used by researchers for years. The 
United States Department of Homeland Security supports a program called IMPACT
that serves as a data catalog and marketplace for security data.3
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A number of research organizations also generate and share data. Notable sources
include CAIDA, UCSD’s Center for Applied Internet Data Analysis. CAIDA generates
and collects a number of different network-mapping data sources. The US Marine
Corps maintains a number of datasets from the annual Cyber Defense Exercise, and
CERT maintains a SiLK repository from a past exercise. VizSec, the security visualiza‐
tion conference, also maintains pointers to a number of interesting datasets. The best
single site for all of these sets is currently maintained by Mike Sconzo; his Security
Repo site manages links to datasets and pointers to multiple repositories for host, ser‐
vice, and network data.

These corpora are great for training and exploratory data analysis, but there are a
number of caveats I have to mention. First, simply by virtue of being collected and
published, they are out of date—be aware of when a dataset was published, because
the sensor(s), network, and internet may have substantially changed. Also, be aware
that information such as sensor placement is almost never available, which impacts
the data observed.

All of this is predicated on the assumption that you need a general result. If the
results can be constrained only to one network (e.g., the one you’re watching), then
external validity is much less problematic.

Construct Validity
When you conduct an analysis, you develop some formal structure to describe what
you’re looking for. That formal structure might be a survey (“Tell me on a scale of
1–10 how messed up your system is”), or it might be a measurement (bytes/second
going to http://www.evilland.com). This formal structure, the construct, is how you
evaluate your analysis.

Clear and well-defined constructs are critical for communicating the meaning of your
results. While this might seem simple, it’s amazing how quickly construct disagree‐
ments can turn into significant scientific or business decisions. For example, consider
the question of “how big is a botnet?” A network security person might decide that a
botnet consists of everything that communicates with a particular command and
control (C&C) server. A forensics person may argue that a botnet is characterized by
the same malware hash present on different machines. A law enforcement person
would say it’s all run by the same crime syndicate.

Statistical Validity
Statistical conclusion validity is about using statistical tools correctly. This will be cov‐
ered in depth in Chapter 11.
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Attacker and Attack Issues
Finally, we have to consider the unique impact of security experimentation. Security
experimentation and analysis has a distinct headache in that the subject of our analy‐
sis hates us and wants us to fail. To that end, we should consider challenges to the
validity of the system that come from the attacker. These include issues of currency,
resources and timing, and the detection system:

Currency
When evaluating a defensive system, you should be aware of whether the defense
is a reasonable defense against current or foreseeable attacker strategies. There
are an enormous number of vulnerabilities in the Common Vulnerability Enu‐
meration (CVE; see Chapter 7), but the majority of exploits in the wild draw
from a very small pool of those vulnerabilities. By maintaining a solid awareness
of the current threat environment (see Chapter 17), you can focus on the more
germane strategies.

Resources and timing
Questions of resources and timing are focused on whether or not a detection sys‐
tem or test can be evaded if the attacker slows down, speeds up, or otherwise
splits the attack among multiple hosts. For example, if your defensive system
assumes that the attacker communicates with one outside address, what happens
if the attacker rotates among a pool of addresses? If your defense assumes that
the attacker transfers a file quickly, what happens if the attacker takes his time—
hours, or maybe days?

Detection
Finally, questions about the detection system involve asking how an attacker can
attack or manipulate your detection system itself. For example, if you are using a
training set to calibrate a detector, have you accounted for attacks within the
training set? If your system is relying on some kind of trust (IP address, pass‐
words, credential files), what are the implications of that trust being compro‐
mised? Can the attacker launch a DDoS attack or otherwise overload your
detection system, and what are the implications if he does?

Further Reading
1. Two generally excellent resources for computer security experimentation are the

proceedings of the USENIX CSET (Computer Security Experimentation and
Test) and LASER (Learning from Authoritative Security Experiment Results)
workshops. Pointers to the CSET Workshop proceedings are at https://
www.usenix.org/conferences/byname/135, while LASER proceedings are accessible
at http://www.laser-workshop.org/workshops/.
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CHAPTER 2

Vantage: Understanding Sensor
Placement in Networks

This chapter is concerned with the practical problem of vantage when collecting data
on a network. At the conclusion of this chapter, you should have the necessary skills
to break an accurate network diagram into discrete domains for vantage analysis, and
to identify potential trouble spots.

As with any network, there are challenges involving proprietary hardware and soft‐
ware that must be addressed on a case-by-case basis. I have aimed, wherever possible,
to work out general cases, but in particular when dealing with load balancing hard‐
ware, expect that things will change rapidly in the field.

The remainder of this chapter is broken down as follows. The first section is a walk‐
through of TCP/IP layering to understand how the various layers relate to the prob‐
lem of vantage. The next section covers network vantage: how packets move through
a network and how to take advantage of that when instrumenting the network. Fol‐
lowing this section is a discussion of the data formats used by TCP/IP, including the
various addresses. The final section discusses mechanisms that will impact network
vantage.

The Basics of Network Layering
Computer networks are designed in layers. A layer is an abstraction of a set of net‐
work functionality intended to hide the mechanics and finer implementation details.
Ideally, each layer is a discrete entity; the implementation at one layer can be swapped
out with another implementation and not impact the higher layers. For example, the
Internet Protocol (IP) resides on layer 3 in the OSI model; an IP implementation can
run identically on different layer 2 protocols such as Ethernet or FDDI.
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There are a number of different layering models. The most common ones in use are
the OSI seven-layer model and TCP/IP’s four-layer model. Figure 2-1 shows these
two models, representative protocols, and their relationship to sensor domains as
defined in Chapter 1. As Figure 2-1 shows, the OSI model and TCP/IP model have a
rough correspondence. OSI uses the following seven layers:

1. The physical layer is composed of the mechanical components used to connect
the network together—the wires, cables, radio waves, and other mechanisms
used to transfer data from one location to the next.

2. The data link layer is concerned with managing information that is transferred
across the physical layer. Data link protocols, such as Ethernet, ensure that asyn‐
chronous communications are relayed correctly. In the IP model, the data link
and physical layers are grouped together as the link layer (layer 1).

3. The network layer is concerned with the routing of traffic from one data link to
another. In the IP model, the network layer directly corresponds to layer 2, the
internet layer.

4. The transport layer is concerned with managing information that is transferred
across the network layer. It has similar concerns to the data link layer, such as
flow control and reliable data transmission, albeit at a different scale. In the IP
model, the transport layer is layer 3.

5. The session layer is concerned with the establishment and maintenance of a ses‐
sion, and is focused on issues such as authentication. The most common example
of a session layer protocol today is SSL, the encryption and authentication layer
used by HTTP, SMTP, and many other services to secure communications.

6. The presentation layer encodes information for display at the application layer. A
common example of a presentation layer is MIME, the message encoding proto‐
col used in email.

7. The application layer is the service, such as HTTP, DNS, or SSH. OSI layers 5
through 7 correspond roughly to the application layer (layer 4) of the IP model.

The layering model is just that, a model rather than a specification, and models are
necessarily imperfect. The TCP/IP model, for example, eschews the finer details of
the OSI model, and there are a number of cases where protocols in the OSI model
might exist in multiple layers. Network interface controllers (NICs) dwell on layers 1
and 2 in this model. The layers do impact each other, in particular through how data
is transported (and is observable), and by introducing performance constraints into
higher levels.
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Figure 2-1. Layering models

The most common place where we encounter the impact of layering on network traf‐
fic is the maximum transmission unit (MTU). The MTU is an upper limit on the size
of a data frame, and impacts the maximum size of a packet that can be sent over that
medium. The MTU for Ethernet is 1,500 bytes, and this constraint means that IP
packets will almost never exceed that size.

The layering model also provides us with a clear difference between the network and
service-based sensor domains. As Figure 2-1 shows, network sensors are focused on
layers 2 through 4 in the OSI model, while service sensors are focused on layers 5 and
above.

Layering and the Role of Network Sensors
It’s logical to ask why network sensors can’t monitor everything; after all, we’re talking
about attacks that happen over a network. In addition, network sensors can’t be tam‐
pered with or deleted like host logs, and they will see things like scans or failed con‐
nection attempts that host logs won’t.

Network sensors provide extensive coverage, but recovering exactly what happened
from that coverage becomes more complex as you move higher up the OSI model. At
layer 5 and above, issues of protocol and packet interpretation become increasingly
prominent. Session encryption becomes an option at layer 5, and encrypted sessions
will be unreadable. At layer 6 and layer 7, you need to know the intricacies of the
actual protocol that’s being used in order to extract meaningful information.
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Protocol reconstruction from packet data is complex and ambiguous; TCP/IP is
designed on end-to-end principles, meaning that the server and client are the only
parties required to be able to construct a session from packets. Tools such as Wire‐
shark or NetWitness can reconstruct the contents of a session, but these are approxi‐
mations of what actually happened.

Network, host, and service sensors are best used to complement each other. Network
sensors provide information that the other sensors won’t record, while the host and
service sensors record the actual events.

Recall from Chapter 1 that a sensor’s vantage refers to the traffic that a particular sen‐
sor observes. In the case of computer networks, the vantage refers to the packets that
a sensor observes either by virtue of transmitting the packets itself (via a switch or a
router) or by eavesdropping (within a collision domain). Since correctly modeling
vantage is necessary to efficiently instrument networks, we need to dive a bit into the
mechanics of how networks operate.

Network Layers and Vantage
Network vantage is best described by considering how traffic travels at three different
layers of the OSI model. These layers are across a shared bus or collision domain
(layer 1), over network switches (layer 2), or using routing hardware (layer 3). Each
layer provides different forms of vantage and mechanisms for implementing the
same.

The most basic form of networking is across a collision domain. A collision domain is
a shared resource used by one or more networking interfaces to transmit data. Exam‐
ples of collision domains include a network hub or the channel used by a wireless
router. A collision domain is called such because the individual elements can poten‐
tially send data at the same time, resulting in a collision; layer 2 protocols include
mechanisms to compensate for or prevent collisions.

The net result is that layer 2 datagrams are broadcast across a common source, as
seen in Figure 2-2. Network interfaces on the same collision domain all see the same
datagrams; they elect to only interpret datagrams that are addressed to them. Network
capture tools like tcpdump can be placed in promiscuous mode and will then record
all the datagrams observed within the collision domain.

Figure 2-2 shows the vantage across collision domains. As seen in this figure, the ini‐
tial frame (A to B) is broadcast across the hub, which operates as a shared bus. Every
host connected to the hub can receive and react to the frames, but only B should do
so. C, a compliant host, ignores and drops the frame. D, a host operating in promis‐
cuous mode, records the frame. The vantage of a hub is consequently all the addresses
connected to that hub.
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Figure 2-2. Vantage across collision domains

Shared collision domains are inefficient, especially with asynchronous protocols such
as Ethernet. Consequently, layer 2 hardware such as Ethernet switches are commonly
used to ensure that each host connected to the network has its own dedicated Ether‐
net port. This is shown in Figure 2-3.

Figure 2-3. Vantage across a switch

A capture tool operating in promiscuous mode will copy every frame that is received
at the interface, but the layer 2 switch ensures that the only frames an interface
receives are the ones explicitly addressed to it. Consequently, as seen in Figure 2-3,
the A to B frame is received by B, while C and D receive nothing.

There is a hardware-based solution to this problem. Most switches implement some
form of port mirroring. Port mirroring configurations copy the frames sent between
different ports to common mirrored ports in addition to their original destination.
Using mirroring, you can configure the switch to send a copy of every frame received
by the switch to a common interface. Port mirroring can be an expensive operation,
however, and most switches limit the amount of interfaces or VLANs monitored.
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Switch vantage is a function of the port and the configuration of the switch. By
default, the vantage of any individual port will be exclusively traffic originating from
or going to the interface connected to the port. A mirrored port will have the vantage
of the ports it is configured to mirror.

Layer 3, when routing becomes a concern, is when vantage becomes messy. Routing
is a semiautonomous process that administrators can configure, but is designed to
provide some degree of localized automation in order to provide reliability. In addi‐
tion, routing has performance and reliability features, such as the TTL (described
shortly), which can also impact monitoring.

Layer 3 vantage at its simplest operates like layer 2 vantage. Like switches, routers
send traffic across specific ports. Routers can be configured with mirroring-like func‐
tionality, although the exact terminology differs based on the router manufacturer.
The primary difference is that while layer 2 is concerned with individual Ethernet
addresses, at layer 3 the interfaces are generally concerned with blocks of IP addresses
because the router interfaces are usually connected via switches or hubs to dozens of
hosts.

Layer 3 vantage becomes more complex when dealing with multihomed interfaces,
such as the example shown in Figure 2-4. Up until this point, all vantages discussed in
this book have been symmetric—if instrumenting a point enables you to see traffic
from A to B, it also enables you to see traffic from B to A. A multihomed host like a
router has multiple interfaces that traffic can enter or exit.

Figure 2-4 shows an example of multiple interfaces and their potential impact on
vantage at layer 3. In this example, A and B are communicating with each other: A
sends the packet {A→B} to B, B sends the packet {B→A} to A. C and D are monitor‐
ing at the routers: the top router is configured so that the shortest path from A to B is
through it. The bottom router is configured so that shortest path from B to A is
through it. The net effect of this configuration is that the vantages at C and D are
asymmetric. C will see traffic from A to B, and D will see traffic from B to A, but nei‐
ther of them will see both sides of the interaction. While this example is contrived,
this kind of configuration can appear due to business relationships and network
instabilities. It’s especially problematic when dealing with networks that have multiple
interfaces to the internet.
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1 A more comprehensive list of TTLs is maintained by Subin Siby at http://subinsb.com/default-device-ttl-values.

Figure 2-4. Vantage when dealing with multiple interfaces

IP packets have a built-in expiration function: a field called the time-to-live (TTL)
value. The TTL is decremented every time a packet crosses a router (not a layer 2
facility like a switch), until the TTL reaches 0 and the packet is dropped. In most
cases, the TTL should not be a problem—most modern stacks set the TTL to at least
64, which is considerably longer than the number of hops required to cross the entire
internet. However, the TTL is manually modifiable and there exist attacks that can
use the TTL for evasion purposes. Table 2-1 lists default TTLs by operating system.1

Table 2-1. Default TTLs by operating system

Operating system TTL value
Linux (2.4, 2.6) 64

FreeBSD 2.1 64

macOS 64

Windows XP 128

Windows 7, Vista 128

Windows 10 128

Solaris 255
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Figure 2-5 shows how the TTL operates. Assume that hosts C and D are operating on
monitoring ports and the packet is going from A to B. Furthermore, the TTL of the
packet is set to 2 initially. The first router receives the packet and passes it to the sec‐
ond router. The second router drops the packet; otherwise, it would decrement the
TTL to 0. TTL does not directly impact vantage, but instead introduces an erratic
type of blind spot—packets can be seen by one sensor, but not by another several
routers later as the TTL decrements.

Figure 2-5. Hopping and router vantage

The net result of this is that the packet is observed by C, never received by B, and
possibly (depending on the router configuration) observed at D.

Physical Taps
Instead of configuring the networking hardware to report data on a dedicated inter‐
face, you can monitor the cables themselves. This is done using network taps, which
are objects that physically connect to the cables and duplicate traffic for monitoring
purposes. Network taps have the advantage of moving the process of collecting and
copying data off the network hardware, but only have the vantage of the cables to
which they connect.

Network Layers and Addressing
To access anything on a network, you need an address. Most hosts end up with multi‐
ple addresses at multiple layers, which are then moderated through different lookup
protocols. For example, the host www.mysite.com may have the IP address 196.168.1.1
and the Ethernet address 0F:2A:32:AA:2B:14. These addresses are used to resolve the
identity of a host at different abstraction layers of the network. For the analyst, the
most common addresses encountered will be IPv4, IPv6, and MAC addresses.
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In this section, I will discuss addressing in a LAN and instrumentation context. Addi‐
tional information on addressing and lookup, primarily in the global context, is in
Chapter 10.

MAC Addresses
A media access control (MAC) address is what the majority of layer 2 protocols,
including Ethernet, FDDI, Token Ring, 802.11, Bluetooth, and ATM, use to identify a
host. MAC addresses are sometimes called “hardware addresses,” as they are usually
assigned as fixed values by hardware manufacturers.

MAC format and access
The most common MAC address format is MAC-48, a 48-bit integer. The canonical
format for a MAC-48 is six zero-added two-digit hexadecimal octets separated by
dashes (e.g., 01-23-45-67-89-AB), although colons and dropped padding are com‐
monly seen (e.g., 1:23:45:67:89:AB).

MAC addresses are divided into two parts: the organizationally unique identifier
(OUI), a 24-bit numeric ID assigned to the hardware manufacturer by the IEEE, fol‐
lowed by the NIC-specific element, assigned by the hardware manufacturer. The
IEEE manages the registry of OUIs on its website, and there are a number of sites that
will return a manufacturer ID if you pass them a MAC or full address.

Routing, Spoofing, and MAC Address Uniqueness
MAC address collisions are managed through the basic unscalability of local net‐
works. By the time you get up to a few hundred hosts, addresses should be managed
by routing, and as layer 2 addresses, MAC addresses don’t route. When a frame is
transferred across a router, the addressing information is replaced with the address‐
ing information of the router’s interface.

It is hilariously easy to spoof MAC addresses. Most network configuration tools will
provide you with some option for manually setting the MAC address, and as long as
it’s well formed, you should be able to set it to anything you like without a problem.

The routing escape hatch also deals with the risk of MAC collisions. Since manufac‐
turers are normally assigned 16 million or so addresses to play with, the odds of run‐
ning into an address overlap should be low.

IPv4-to-MAC lookup is managed using the Address Resolution Protocol (ARP).
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2 https://tools.ietf.org/html/rfc1918, updated by RFC 6761 at https://tools.ietf.org/html/rfc6761.
3 You will, of course, see them routed through the broader internet because nobody will follow BCP38 until the

mutant cockroaches rule the Earth. You can learn about BCP38 at http://www.bcp38.info/. Go learn about
BCP38, then go implement BCP38.

IPv4 Format and Addresses
An IPv4 address is a 32-bit integer value assigned to every routable host, with excep‐
tions made for reserved dynamic address spaces (see Chapter 10 for more informa‐
tion on these addresses). IPv4 addresses are most commonly represented in dotted
quad format: four integers between 0 and 255 separated by periods (e.g., 128.1.11.3).

Historically, addresses were grouped into four classes: A, B, C, and D. A class A
address (0.0.0.0–127.255.255.255) had the high order (leftmost) bit set to zero, the
next 7 assigned to an entity, and the remaining 24 bits under the owner’s control. This
gave the owner 224 addresses to work with. A class B address (128.0.0.0–
191.255.255.255) assigned 16 bits to the owner, and class C (192.0.0.0–
223.255.255.255) assigned 8 bits. This approach led rapidly to address exhaustion,
and in 1993, Classless Inter-Domain Routing (CIDR) was developed to replace the
naive class system.

Under the CIDR scheme, users are assigned a netblock via an address and a netmask.
The netmask indicates which bits in the address the user can manipulate, and by con‐
vention, those bits are set to zero. For example, a user who owns the addresses
192.28.3.0–192.28.3.255 will be given the block 192.28.3.0/24. The suffix /24 here
indicates that the high 24 bits are fixed, while the last 8 are open. /24s will contain 256
addresses, /27s 32, /16s 65,536, and so on.

A number of important IPv4 address blocks are reserved for special use. The IANA
IPv4 Address Register contains a list of the most important /8s and their ownership. 
More important for administration and management purposes are the addresses lis‐
ted in RFC 1918.2 The RFC 1918 local addresses define a set of IP addresses for local
use, meaning that they can be used for internal networks (such as DHCP or NATed
networks) that are not routed to the broader internet.3

IPv6 Format and Addresses
An IPv6 address is a 128-bit integer, solving the IPv4 address exhaustion problem by
increasing the space by a factor of about 4 billion. By default, these addresses are
described as a set of 16-bit hexadecimal groups separated by colons (e.g., 00AA:
2134:0000:0000:A13F:2099:0ABE:FAAF). Given their length, IPv6 addresses use a
number of conventions to shorten the representation. In particular:

• Initial zeros are trimmed (e.g., AA:2134:0:0:A13F:2099:ABE:FAAF).
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• A sequence of zero-value groups can be replaced by empty colons (e.g., AA:
2134:::A13F:2099:ABE:FAAF).

• Multiple colons are reduced to a single pair (e.g., AA:2134::A13F:
2099:ABE:FAAF).

As with IPv4, IPv6 blocks are grouped using CIDR notation. The IPv6 CIDR prefixes
can be up to the full length of an IPv6 address (i.e., up to /128).

All of these relationships are dynamic, and multiple addresses at one layer can be
associated with one address at another layer. As discussed earlier, a single DNS name
can be associated with multiple IP addresses through the agency of the DNS service.
Similarly, a single MAC address can support multiple IP addresses through the
agency of the ARP protocol. This type of dynamism can be used constructively (like
for tunneling) and destructively (like for spoofing).

Validity Challenges from Middlebox Network Data
Security analysts evaluating a network’s suitability for traffic analysis must consider
not just whether they can see an address, but if they can trust it. Network engineers
rely on a variety of tools and techniques to manage traffic, and the tools chosen can
also affect vantage in a number of different ways.

We can categorize the general problems these tools introduce by how they impact
analytics. In this section, I will discuss these effects and then relate them, in general
and kind of loosely, to different common networking tools. Challenges to the validity
of network data include threats to identity, causality, aggregation, consistency, and
encryption. Table 2-2 shows how these are associated with the technologies we’ll dis‐
cuss in the following subsections.

Table 2-2. Vantage risks from networking support technologies

Identity Causality Aggregation Consistency Encryption
NAT X X X

DHCP X X

Load balancer X X

Proxy X X X X

VPN X X X X

These technologies will impact vantage, and consequently analysis, in a number of
ways. Before we dig into the technologies themselves, let’s take a look at the different
ways analytic results can be challenged by them:
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Identity
In some situations, the identity of individuals is not discernible because the infor‐
mation used to identify them has been remapped across boundaries—for exam‐
ple, a network address translator (NAT) changing address X to address Y.
Identity problems are a significant challenge to internal validity, as it is difficult to
determine whether or not the same individual is using the same address.
Addressing identity problems generally requires collecting logs from the appli‐
ance implementing the identity mapping.

Causality
Information after the middlebox boundary does not necessarily follow the
sequence before the middlebox boundary. This is particularly a problem with
caching or load balancing, where multiple redundant requests before the middle‐
box may be converted into a single request managed by the middlebox. This
affects internal validity across the middlebox, as it is difficult to associate activity
between the events before and after the boundary. The best solution in most
cases is to attempt to collect data before the boundary.

Aggregation
The same identity may be used for multiple individuals simultaneously. Aggrega‐
tion problems are a particular problem for construct validity, as they affect vol‐
ume and traffic measurements (for example, one user may account for most of
the traffic).

Consistency
The same identity can change over the duration of the investigation. For exam‐
ple, we may see address A do something malicious on Monday, but on Tuesday
it’s innocent due to DHCP reallocation. This is a long-term problem for internal
validity.

Encryption
When traffic is contained within an encrypted envelope, deep packet inspection
and other tools that rely on payload examination will not work.

DHCP
On DHCP (RFC 2131) networks—which are, these days, most networks—IP
addresses are assigned dynamically from a pool of open addresses. Users lease an
address for some interval, returning it to the pool after use.

DHCP networks shuffle IP addresses, breaking the relationship between an IP
address and an individual user. The degree to which addresses are shuffled within a
DHCP network is a function of a number of qualitative factors, which can result in
anything from an effectively static network to one with short-term lifespans. For
example, in an enterprise network with long leases and desktops, the same host may
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keep the same address for weeks. Conversely, in a coffee shop with heavily used WiFi,
the same address may be used by a dozen machines in the course of a day.

While a DHCP network may operate as a de facto statically allocated network, there
are situations where everything gets shuffled en masse. Power outages, in particular,
can result in the entire network getting reshuffled.

When analyzing a network’s vantage, the analyst should identify DHCP networks,
their size, and lease time. I find it useful to keep track of a rough characterization of
the network—whether devices are mobile or desktops, whether the network is public
or private, and what authentication or trust mechanisms are used to access the net‐
work. Admins should configure the DHCP server to log all leases, with the expecta‐
tion that an analyst may need to query the logs to find out what asset was using what
host at a particular time.

Sysadmins and security admins should also ask what assets are being allocated via
DHCP. For critical assets or monitored users (high-value laptops, for example), it
may be preferable to statically allocate an address to enable that asset’s traffic to be
monitored via NetFlow or other network-level monitoring tools. Alternatively, criti‐
cal mobile assets should be more heavily instrumented with host-based monitoring.

NAT
NATing (network address translation) converts an IP address behind a NAT into an
external IP address/port combination outside the NAT. This results in a single IP
address serving the interests of multiple addresses simultaneously. There are a num‐
ber of different NATing techniques, which vary based on the number of addresses
assigned to the NAT, among other things. In this case, we are going to focus on Port
Address Translation (PAT), which is the most common form and the one that causes
the most significant problems.

NATed systems both shuffle addresses (meaning that there is no realistic relationship
between an IP address and a user) and multiplex them (meaning that the same
address:port combination will rapidly serve multiple hosts). The latter badly affects
any metrics or analyses depending on individual hosts, while the former confuses
user identity. For this reason, the most effective solution for NATing is instrumenta‐
tion behind the NAT.

Figure 2-6 shows this multiplexing in action. In this figure, you can see flow data as
recorded from two vantage points: before and after translation. As the figure shows,
traffic before the NAT has its own distinct IP addresses, while traffic after the NAT
has been remapped to the NAT’s address with different port assignments.
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Figure 2-6. NATing and proxies

Note that correlating NATing activity across both sides of the NAT requires the NAT
itself to log that translation; this is discussed in more depth in Chapter 3.

The Pain Trinity
A common and unpleasant network configuration involves multiple isolated net‐
works with addresses allocated via DHCP, using RFC 1918 addresses, sitting behind
NATs. As noted, generally when working with NATs, you’re going to need instrumen‐
tation behind the NAT in order to figure out what’s going on. The problem with this
fragmentation is that you’re going to end up with multiply redundant IP addresses.

This is basically a provenance problem, and it can be addressed in a number of differ‐
ent ways. When collecting the data behind the NAT, ensure it’s properly labeled so
you always know what subnetwork you’re dealing with.

An alternative approach, and one that saves a lot of pain in the long run, is to assign a
distinct set of IP addresses to each NATed subnetwork. That is, network A may use
10.0.0.0/24, network B may use 10.0.1.0/24, and so on. This way, even if the data is
globally collected and stored, you can still identify the distinct segments simply by the
IP addresses.
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Proxies
As with NATing, there are a number of different technologies (such as load balancing
and reverse proxying) that fall under the proxy banner. Proxies operate at a higher
layer than NATs—they are service-specific and, depending on the service in question,
may incorporate load balancing and caching functions that will further challenge the
validity of data collected across the proxy boundary.

Figure 2-6 shows how proxies remap traffic; as the figure shows, in a network with a
proxy server, hosts using the proxy will always communicate with the proxy address
first. This results in all communications with a particular service getting broken into
two flows: client to proxy, proxy to server. This, in turn, exacerbates the differentia‐
tion problems introduced by NATing—if you are visiting common servers with com‐
mon ports, they cannot be differentiated outside of the proxy, and you cannot relate
them to traffic inside the proxy except through timing.

Without logs from the proxy, correlating traffic across proxy boundaries has
extremely dubious validity. As with NATing, individual IP addresses and events are
not differentiable. At the same time, internal instrumentation is not valuable because
all the traffic goes to the same address. Finally, timing across proxies is always messy
—web proxies, in particular, usually incorporate some form of caching to improve
performance, and consequently the same page, fetched multiple times before the
proxy, may be fetched only once after the proxy.

Load balancing
Load balancing techniques split traffic to a heavily used target between multiple
servers and provide a common address to those servers. Load balancing can take
place at multiple layers—techniques exist to remap DNS, IP, and MAC addresses as
needed.

Load balancing primarily challenges identity and consistency, as the same address
will, often very quickly, point to multiple different targets.

VPNs
In a virtual private network (VPN), some process wraps traffic in one protocol within
the envelope of another protocol. Examples of these include classic VPN protocols
such as Generic Routing Encapsulation (GRE), ad-hoc VPN tools such as Secure
Shell (SSH), and transition protocols like Teredo or 6to4.

VPNs introduce two significant challenges. First, the encryption of the data in transit
obviates deep packet inspection and any technique that requires examining or inter‐
preting the payload. The other challenge is the identity problem—outside of the
VPN, the observer sees a single, long-lived flow between client and VPN. At the VPN
endpoint, the client will engage in multiple interactions with clients within the net‐
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work, which are returned to the VPN access point and delivered to the client. The
end result is a maze of IP address relationships across the VPN barrier.
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CHAPTER 3

Sensors in the Network Domain

This chapter is concerned with the data generated by network sensors. These are sen‐
sors that collect data directly from network traffic without the agency of an interme‐
diary application, making them service or host domain sensors. Examples include
NetFlow sensors on a router and sensors that collect traffic using packet capture,
most notably tcpdump. This also includes middlebox services such as VPNs or NATs,
which contain log data critical to identifying users.

The challenge of network traffic is the challenge you face with all log data: actual
security events are rare, and data costs analysis time and storage space. Where avail‐
able, log data is preferable because it’s clean (a high-level event is recorded in the log
data) and compact. The same event in network traffic would have to be extracted
from millions of packets, which can often be redundant, encrypted, or unreadable. At
the same time, it is very easy for an attacker to manipulate network traffic and pro‐
duce legitimate-looking but completely bogus sessions on the wire. An event summed
up in a 300-byte log record could easily be megabytes of packet data, wherein only
the first 10 packets have any analytic value.

That’s the bad news. The good news is that network traffic’s “protocol agnosticism,”
for lack of a better term, means that it is also your best source for identifying blind
spots in your auditing. Host-based collection systems require knowing that the host
exists in the first place, and there are numerous cases where you’re likely not to know
that a particular service is running until you see its traffic on the wire. Network traffic
provides a view of the network with minimal assumptions—it tells you about hosts
on the network you don’t know existed, backdoors you weren’t aware of, attackers
already inside your borders, and routes through your network you never considered.
At the same time, when you face a zero-day vulnerability or new malware, packet
data may be the only data source you have.
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The remainder of this chapter is structured into discussions of various data formats.
We will begin with an overview of Ethernet and IP packets, and the process of collect‐
ing this data using tcpdump and sensors derived from tcpdump. We will then discuss
NetFlow, which provides a compact summary of network traffic generated by a num‐
ber of different tools, including NetFlow reporting capabilities on routers and special‐
ized software sensors that derive NetFlow from tcpdump output. We will then
examine IDS and its use as a sensor, and end the chapter by discussing logs from
middleboxes.

Packet and Frame Formats
On almost any modern system, tcpdump will be capturing IP over Ethernet, meaning
that the data actually captured by libpcap consists of Ethernet frames containing IP
packets. While the IP suite contains over 80 unique protocols, on any operational
network the overwhelming majority of traffic will originate from just 3 of these: TCP
(protocol 6), UDP (protocol 17), and ICMP (protocol 1).

While TCP, UDP, and ICMP make up the overwhelming majority of IP traffic, a
number of other protocols may appear in networks, in particular if VPNs are used. 
The Internet Assigned Numbers Authority (IANA) has a complete list of IP suite pro‐
tocols. Some notable ones to expect include IPv6 (protocol number 41), GRE (proto‐
col number 47), and ESP (protocol number 50). GRE and ESP are used in VPN
traffic.

Full packet capture is often impractical. The sheer size and redundancy of the data
means that it’s difficult to keep any meaningful fraction of network traffic for a rea‐
sonable time. There are three major mechanisms for filtering or limiting packet cap‐
ture data: the use of rolling buffers to keep a timed subsample, manipulating the snap
length to capture only a fixed-size packet (such as headers), and filtering traffic using 
Berkeley Packet Filter (BPF) or other filtering rules. Each approach is an analytic
trade-off that provides different benefits and disadvantages.

While tcpdump is the oldest and most common packet capture tool, there are many
alternatives. In the purely software domain, Google’s Stenographer project is a high-
performance capture solution, and AOL’s Moloch combines packet capture and anal‐
ysis. There are also a number of hardware-based capture tools that use optimized
NICs to capture at higher line speeds.

Rolling Buffers
A rolling buffer is a location in memory where data is dumped cyclically: information
is dropped linearly, and when the buffer is filled up, data is dumped at the beginning
of the buffer, and the process repeats. Example 3-1 gives an example of using a rolling
buffer with tcpdump: in this example, the process writes approximately 128 MB to
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1 The snaplen is based on the Ethernet frame size, so 20 additional bytes have to be added to the size of the
corresponding IP headers.

disk (specified by the -C switch), and then rotates to a new file. After 32 files are filled
(specified by the -W switch), the process restarts.

Example 3-1. Implementing a rolling buffer in tcpdump

$ tcpdump -i en1 -s 0 -w result -C 128 -W 32

Rolling buffers implement a time horizon on traffic analysis: data is available only as
long as it’s in the buffer. For that reason, working with smaller file sizes is recom‐
mended, because when you find something aberrant, it needs to be pulled out of the
buffers quickly. If you want a more controlled relationship for the total time recorded
in a buffer, you can use the -G switch to specify that a file should be dumped at a fixed
interval (specified by -G) rather than a fixed size.

Limiting the Data Captured from Each Packet
An alternative to capturing the complete packet is to capture a limited subset of the
payload, controlled in tcpdump by the snaplen (-s) argument. Snaplen constrains
packets to the frame size specified in the argument. If you specify a frame size of at
least 68 bytes, you will record the TCP or UDP headers.1 That said, this solution is a
poor alternative to NetFlow, which is discussed later in this chapter.

Filtering Specific Types of Packets
An alternative to filtering at the switch is to filter after collecting the traffic at the
spanning port. With tcpdump and other tools, this can be easily done using BPF. BPF
allows an operator to specify arbitrarily complex filters, and consequently the possi‐
bilities are fairly extensive. Some useful options are described in this section, along
with examples. Figure 3-1 provides a breakdown of the headers for Ethernet frames,
IP, UDP, ICMP, and TCP.

As we walk through the major fields, I’ll identify BPF macros that describe and can be
used to filter on these fields. On most Unix-style systems, the pcap-filter manpage
provides a summary of BPF syntax. Available commands are also summarized in the
FreeBSD manpage for BPF.

Packet and Frame Formats | 37

http://bit.ly/bsd-manpages


Figure 3-1. Frame and packet formats for Ethernet, IP, TCP, UDP, and ICMP

In an Ethernet frame, the most critical fields are the two MAC addresses: destination
MAC and source MAC. These 48-bit fields are used to identify the hardware addresses
of the interfaces that sent and will receive the traffic. MAC addresses are restricted to
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2 Most implementations of tcpdump require a command-line switch before showing link-level (i.e., Ethernet)
information. In macOS, the -e switch will show the MAC addresses.

a single collision domain, and will be modified as a packet traverses multiple net‐
works (see Figure 2-5 for an example). MAC addresses are accessed using the ether
src and ether dst predicates in BPF.2

Within an IP header, the fields you are usually most interested in are the IP addresses,
the length, the TTL, and the protocol. The IP identifier, flags, and fragment offset are
used for attacks involving packet reassembly—however, they are also largely a histori‐
cal artifact from before Ethernet was a nearly universal transport protocol. You can
get access to the IP addresses using the src host and dst host predicates, which also
allow filtering on netmasks.

Address Filtering in BPF
Addresses in BPF can be filtered using the various host and net predicates. To under‐
stand how these work, consider a simple tcpdump output:

host$ tcpdump -n -r sample.pcap  | head -5
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:12.094915 IP 192.168.1.3.56305 > 208.78.7.2.389: Flags [S],
 seq 265488449, win 65535, options [mss 1460,nop, wscale 3,nop,
 nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
20:01:12.094981 IP 192.168.1.3.56302 > 192.168.144.18.389: Flags [S],
 seq 1490713463, win 65535, options [mss 1460,nop,wscale 3,nop,
 nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
20:01:12.471014 IP 192.168.1.102.7600 > 192.168.1.255.7600: UDP, length 36
20:01:12.861101 IP 192.168.1.6.17784 > 255.255.255.255.17784: UDP, length 27
20:01:12.862487 IP 192.168.1.6.51949 > 255.255.255.255.3483: UDP, length 37

src host or dst host will filter on exact IP addresses, filtering for traffic to or from
192.168.1.3 as shown here:

host$ tcpdump -n -r sample.pcap  src host 192.168.1.3 | head -1
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:12.094915 IP 192.168.1.3.56305 > 208.78.7.2.389: Flags [S],
 seq 265488449, win 65535, options [mss 1460,nop,wscale 3,nop,
 nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
host$ tcpdump -n -r sample.pcap  dst host 192.168.1.3 | head -1
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:13.898712 IP 192.168.1.6.48991 > 192.168.1.3.9000: Flags [S],
 seq 2975851986, win 5840, options [mss 1460,sackOK,TS val 911030 ecr 0,
 nop,wscale 1], length 0

src net and dst net allow filtering on netblocks. The following example shows how
we can progressively filter addresses in the 192.168.1 network using just the address
or CIDR notation:
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# Use src net to filter just by matching octets
host$ tcpdump -n -r sample.pcap  src net 192.168.1 | head -3
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:12.094915 IP 192.168.1.3.56305 > 208.78.7.2.389: Flags [S],
 seq 265488449, win 65535, options [mss 1460,nop,wscale 3,nop,nop,
 TS val 1111716334 ecr 0,sackOK,eol], length 0
20:01:12.094981 IP 192.168.1.3.56302 > 192.168.144.18.389: Flags [S],
 seq 1490713463, win 65535, options [mss 1460,nop,wscale 3,nop,
 nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
# Match an address
host$ tcpdump -n -r sample.pcap  src net 192.168.1.5 | head -1
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:13.244094 IP 192.168.1.5.50919 > 208.111.133.84.27017: UDP, length 84
# Match using a CIDR block
host$ tcpdump -n -r sample.pcap  src net 192.168.1.64/26 | head -1
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:12.471014 IP 192.168.1.102.7600 > 192.168.1.255.7600: UDP, length 36

To filter on protocols, use the ip proto predicate. BPF also provides a variety of
protocol-specific predicates, such as tcp, udp, and icmp. Packet length can be filtered
using the less and greater predicates, while filtering on the TTL requires more
advanced bit manipulation, which is discussed later.

The following snippet filters out all traffic except that coming within this block (hosts
with the netmask /24):

host$ tcpdump -i en1 -s 0 -w result src net 192.168.2.0/24

Example 3-2 demonstrates filtering with tcpdump.

Example 3-2. Examples of filtering using tcpdump

# Filtering out everything but internal traffic
host$ tcpdump -i en1 -s 0 -w result src net 192.168.2.0/24 && dst net \
      192.168.0.0/16
# Filtering out everything but web traffic, identified by port
host$ tcpdump -i en1 -s 0 -w result ((src port 80 || src port 443) && \
      (src net 192.168.2.0))

In TCP, the port number and flags are the most critical for investigation, analysis, and
control. TCP flags are used to maintain the TCP state machine, while the port num‐
bers are used to distinguish sessions and for service identification. Port numbers can
be filtered using the src port and dst port switches, as well as the src portrange
and dst portrange switches, which filter across a range of port values. BPF supports
a variety of predicates for TCP flags, including tcp-fin, tcp-syn, tcp-rst, tcp-push,
tcp-ack, and tcp-urg.
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As with TCP, the UDP port numbers are the most important information for analyz‐
ing and controlling the traffic. They are accessible using the same port and
portrange switches as TCP.

Because ICMP is the internet’s error message–passing protocol, ICMP messages tend
to contain extremely rich data. The ICMP type and code are the most useful for anal‐
ysis because they define the syntax for whatever payload (if any) follows. BPF pro‐
vides a variety of type- and code-specific filters, including icmp-echoreply, icmp-
unreach, icmp-tstamp, and icmp-redirect. 

What If It’s Not Ethernet?
For the sake of brevity, this book focuses exclusively on IP over Ethernet, but you may
well encounter a number of other transport and data protocols. The majority of these
protocols are highly specialized and may require additional capture software besides
the tools built on libpcap. A few of the more common ones are:

ATM
Asynchronous Transfer Mode, the great IP slayer of the ’90s. ATM is now largely
used for ISDN and PSTN transport, and some legacy installations.

Fibre Channel
Primarily used for high-speed storage, Fibre Channel is the backbone for a vari‐
ety of SAN implementations.

CAN
Controller area network. Primarily associated with embedded systems such as
vehicular networks, CAN is a bus protocol used to send messages in small iso‐
lated networks.

These protocols are scratching the surface. In particular, if you’re dealing with indus‐
trial control systems, you can expect to find a maze of proprietary protocols. When
dealing with industrial systems, find their manuals first—it’s likely to be the only way
you can do anything akin to packet capture.

Any form of filtering imposes performance costs. Implementing a spanning port on a
switch or a router sacrifices performance that the switch or router could be using for
traffic. The more complicated a filter is, the more overhead is added by the filtering
software. At nontrivial bandwidths, this will be a problem.

NetFlow
NetFlow is a traffic summarization standard developed by Cisco Systems and origi‐
nally used for network services billing. While not intended for security, NetFlow is
fantastically useful for that purpose because it provides a compact summary of net‐
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work traffic sessions that can be rapidly accessed and contains the highest-value
information that you can keep in a relatively compact format. NetFlow has been
increasingly used for security analysis since the publication of the original flow-tools
package in 1999, and a variety of tools have been developed that provide NetFlow
with additional fields, such as selected snippets of payload.

The heart of NetFlow is the concept of a flow, which is an approximation of a TCP
session. Recall that TCP sessions are assembled at the endpoint by comparing
sequence numbers. Juggling all the sequence numbers involved in multiple TCP ses‐
sions is not feasible at a router, but it is possible to make a reasonable approximation
using timeouts. A flow is a collection of identically addressed packets that are closely
grouped in time.

NetFlow v5 Formats and Fields
NetFlow v5 is the earliest common NetFlow standard, and it’s worth covering the val‐
ues in its fields before discussing alternatives. NetFlow v5’s fields (listed in Table 3-1)
fall into three broad categories: fields copied straight from IP packets, fields summa‐
rizing the results of IP packets, and fields related to routing.

Table 3-1. NetFlow v5 fields

Bytes Name Description
0–3 srcaddr Source IP address

4–7 dstaddr Destination IP address

8–11 nexthop Address of the next hop on the router

12–13 input SNMP index of the input interface

14–15 output SNMP index of the output interface

16–19 packets Packets in the flow

20–23 dOctets Number of layer 3 bytes in the flow

24–27 first sysuptime at flow starta

28–31 last sysuptime at the time of receipt of the last flow’s packet

32–33 srcport TCP/UDP source port

34–35 dstport TCP/UDP destination port, ICMP type, and code

36 pad1 Padding

37 tcp_flags Cumulative OR of all TCP flags in the flow

38 prot IP protocol

39 tos IP type of service

40–41 src_as Autonomous system number (ASN) of source

42–43 dst_as ASN of destination

44 src_mask Source address prefix mask
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3 See RFCs 5101, 5102, and 5103.

Bytes Name Description
45 dst_mask Destination address prefix mask

46–47 pad2 Padding bytes
a This value is relative to the router’s system uptime.

The srcaddr, dstaddr, srcport, dstport, prot, and tos fields of a NetFlow record
are copied directly from the corresponding fields in IP packets. Flows are generated
for every protocol in the IP suite, however, and that means that the srcport and
dstport fields, which strictly speaking are TCP/UDP phenomena, don’t necessarily
always mean something. In the case of ICMP, NetFlow records the type and code in
the dstport field. In the case of other protocols, the value is meaningless; depending
on the collection system you may end up with a previously allocated value, zeros, or
other data.

The packets, dOctets, first, last, and tcp_flags fields all summarize traffic from
one or more packets. packets and dOctets are simple totals, with the caveat that the
dOctets value is the layer 3 total of octets, meaning that IP and protocol headers are
added in (e.g., a one-packet TCP flow with no payload will be recorded as 40 bytes,
and a one-packet UDP flow with no payload as 28 bytes). The first and last values
are, respectively, the first and last times observed for a packet in the flow.

tcp_flags is a special case. In NetFlow v5, the tcp_flags field consists of an OR of
all the flags that appear in the flow. In well-formed flows, this means that the SYN,
FIN, and ACK flags will always be high for any valid TCP session.

The final set of fields—nexthop, input, output, src_as, dst_as, src_mask, and
dst_mask—are all routing-related. These values can be collected only at a router.

NetFlow v9 and IPFIX
Cisco developed several versions of NetFlow over its lifetime, with NetFlow v5 ending
up as the workhorse implementation of the standard. But v5 is a limited and obsolete
standard, focused on IPv4 and designed before flows were commonly used. Cisco’s
solution to this was NetFlow v9, a template-based flow reporting standard that
enabled router administrators to specify what fields were included in the flow.

Template-based NetFlow has since been standardized by the IETF as IPFIX.3 IPFIX
provides several hundred potential fields for flows, which are described in RFC 5102.

The main focus of the standard is on network monitoring and traffic analysis rather
than information security. To address optional fields, IPFIX has the concept of a
“vendor space.” In the course of developing the SiLK toolkit, the CERT Network Sit‐
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uational Awareness Group at Carnegie Mellon University developed a set of security-
sensitive fields that are in their IPFIX vendor space and provide a set of useful fields
for security analysis.

NetFlow Generation and Collection
NetFlow records are generated directly by networking hardware appliances (e.g., a
router or a switch), or by using software to convert packets into flows. Each approach
has different trade-offs.

Appliance-based generation means using whatever NetFlow facility is offered by the
hardware manufacturer. Different manufacturers use similar-sounding but different
names than Cisco, such as JFlow by Juniper Networks and NetStream by Huawei.
Because NetFlow is offered by so many different manufacturers with a variety of dif‐
ferent rules, it’s impossible to provide a technical discussion about the necessary con‐
figurations in the space provided by this book. However, the following rules of thumb
are worth noting:

• NetFlow generation can cause performance problems on routers, especially older
models. Different companies address this problem in different ways, ranging
from reducing the priority of the process (and dropping records) to offloading
the NetFlow generation task to optional (and expensive) hardware.

• Most NetFlow configurations default to some form of sampling in order to
reduce the performance load. For security analysis, NetFlow should be config‐
ured to provide unsampled records.

• Many NetFlow configurations offer a number of aggregation and reporting for‐
mats. You should collect raw NetFlow, not aggregations.

The alternative to router-based collection is to use an application that generates Net‐
Flow from pcap data, such as CERT’s Yet Another Flowmeter (YAF) tool, softflowd,
or the extensive flow monitoring tools provided by QoSient’s Argus tool. These appli‐
cations take pcap as files or directly off a network interface and aggregate the packets
as flows. These sensors lack a router’s vantage, but are able to devote more processing
resources to analyzing the packets and can produce richer NetFlow output, incorpo‐
rating features such as deep packet inspection.

Data Collection via IDS
Intrusion detection systems (IDSs) are network-vantage event-action sensors that
operate by collecting data off of the interface and running one or more tests on the
data to generate alerts. IDSs are not really built as sensors, instead being part of fam‐
ily of expert systems generally called binary classifiers.
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4 Theoretically, nobody in their right minds trusts an IPS with more than DDoS prevention.

A binary classifier, as the name implies, classifies information. A classifier reads in
data and marks it as belonging to one of two categories: either the data is normal and
requires no further action, or the data is characteristic of an attack. If it is deemed an
attack, then the system reacts as specified; an IDS operates as an event sensor, gener‐
ating an event. Intrusion prevention systems (IPSs), the IDS’s more aggressive cousins,
block traffic.4

There are several problems with classification, which we can term the moral, the stat‐
istical, and the behavioral. The moral problem is that attacks can be indistinguishable
from innocuous, or even permitted, user activity. For example, a DDoS attack and a
flash crowd can look very similar until some time has passed. The statistical problem
is that IDSs are often configured to make hundreds or millions of tests a day—under
those conditions, even low false positive rates can result in far more false positives in
a day than true positives in a month. The behavioral problem is that attackers are
intelligent parties interested in evading detection, and often can do so with minimal
damage to their goals.

In later sections of the book, we will discuss the challenges of IDS usage in more
depth. In this section, we will focus on the general idea of using IDSs as a sensing
tool.

Classifying IDSs
We can divide IDSs along two primary axes: the IDS domain, and the decision-
making process. On the first axis, IDSs are broken into network-based IDSs (NIDSs)
and host-based IDS (HIDSs). On the second axis, IDSs are split between signature-
based systems and anomaly-based systems. Relating these terms back to our earlier
taxonomy, NIDSs operate in the network domain, HIDSs in the host domain. The
classic IDS is an event sensor; there are controller systems, IPSs, which will control
traffic in response to aberrant phenomena. This section focuses on NIDSs—network-
domain event-action sensors.

A NIDS is effectively any IDS that begins with pcap data. For open source IDSs, this
includes systems such as Snort, Bro, and Suricata. NIDSs operate under the con‐
straints discussed for network sensors in Chapter 2, such as the need to receive traffic
through port mirroring or direct connection to the network and an inability to read
encrypted traffic.
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Common NIDSs
These are the most common NIDSs you will encounter in the field are:

Snort
The 800-pound gorilla of the IDS world, Snort was developed by Marty Roesch
in 1996, and is the default IDS used by nearly everyone. Snort is a network-based
signature matching system that uses handcrafted Snort signatures to identify
malicious traffic. Snort provides an extensive language for describing signatures
and can be manually configured to add new ones. Snort’s configuration is often
used as a lingua franca for IDS expressions, and we will use it to define detection
here. Sourcefire is the closed-source version of Snort, now provided by Cisco
Systems.

Bro
Bro is a network security monitoring platform built by Vern Paxson and now
maintained by a consortium of researchers at Berkeley’s ICSI and the NCSA at
UIUC-IL. While Bro is usually described as an IDS (down to the URL), it’s more
of a general packet stripping and analysis system, as well as the test platform for
the last 20 years’ worth of network traffic analysis ideas that have popped out of
Vern’s fantastically productive lab at ICSI. In the last five years, interest in Bro has
skyrocketed.

Suricata
An open source IDS developed by the Open Information Security Foundation
with funding from the Department of Homeland Security, Suricata is the young‐
est IDS listed here and is used for experimentation in new techniques in intru‐
sion detection.

Not an IDS, but a common support tool for scaling IDS support, PF_RING is a kernel
module that forwards packets to multiple detection engines, splitting the workload.

For the purposes of simplicity, in this section we will treat all IDSs as signature-based.
A signature-based system uses a set of rules that are derived independently from the
target in order to identify malicious behavior.

IDS as Classifier
All IDS are applied exercises in classification, a standard problem in AI and statistics.
A classifier is a process that takes in input data and classifies the data into one of at
least two categories. In the case of IDS, the categories are usually “attack” and
“normal.”

Signature and anomaly-based IDSs view attacks in fundamentally different ways, and
this impacts the types of errors they make. A signature-based IDS is calibrated to look

46 | Chapter 3: Sensors in the Network Domain

http://www.snort.org
http://www.bro-ids.org
http://www.openinfosecfoundation.org
http://www.ntop.org/products/packet-capture/pf_ring/


for specific weird behaviors such as malware signatures or unusual login attempts.
Anomaly-based IDSs are trained on normal behavior and then look for anything that
steps outside the norm. Signature-based IDSs have high false negative rates, meaning
that they miss a lot of attacks. Anomaly-based IDSs have high false positive rates,
which means that they consider a lot of perfectly normal activity to be an attack.

IDSs are generally binary classifiers, meaning that they break data into two categories. 
Binary classifiers have two failure modes:

False positives
Also called a Type I error, this occurs when something that doesn’t have the prop‐
erty you’re searching for is classified as having the property—for instance, when
email from the president of your company informing you about a promotion is
classified as spam.

False negatives
Also called a Type II error, this occurs when something that has the property
you’re searching for is classified as not having the property. This happens, for
instance, when spam mail appears in your inbox.

Sensitivity refers to the percentage of positive classifications that are correct, and spe‐
cificity refers to the percentage of negative classifications that are correct. A perfect
detection has perfect sensitivity and specificity. In the worst case, neither rate is above
50%: the same as flipping a coin.

Most systems require some degree of trade-off; generally, increasing the sensitivity
means also accepting a lower specificity. A reduction in false negatives will be accom‐
panied by an increase in false positives, and vice versa.

To describe this trade-off, we can use a visualization called a receiver operating charac‐
teristic (ROC) curve (discussed in more depth in Chapter 11). A ROC curve plots the
specificity against the false positive rates, using a third characteristic (the operating
characteristic) as a control. Figure 3-2 shows an example of a ROC curve.

In this case, the operating characteristic is the number of packets in a session and is
shown on the horizontal lines in the plot. At this site, HTTP traffic (falling at the very
left edge) has a good ratio of true to false positives, whereas SMTP is harder to clas‐
sify correctly, and FTP even harder.
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Figure 3-2. ROC curve showing packet size of messages sent for BitTorrent detection

Now, let’s ask a question. Suppose we have an ROC curve and we calibrate a detector
so it has a 99% true positive rate and a 1% false positive rate. We receive an alert.
What is the probability that the alert is a true positive? It isn’t 99%; the true positive
rate is the probability that if an attack took place, the IDS would raise an alarm.

Let’s define a test as the process that an IDS uses to make a judgment call about data.
For example, a test might consist of collecting 30 seconds’ worth of network traffic
and comparing it against a predicted volume, or examining the first two packets of a
session for a suspicious string.

Now assume that the probability of an actual attack taking place during a test is
0.01%. This means that out of every 10,000 tests the IDS conducts, one of them will
be an attack. So out of every 10,000 tests, we raise one alarm due to an attack—after
all, we have a 99% true positive rate. However, the false positive rate is 1%, which
means that 1% of the tests raise an alarm even though nothing happened. This means
that for 10,000 tests, we can expect roughly 101 alarms: 100 false positives and 1 true
positive, meaning that the probability that an alarm is raised because of an attack is
1/101 or slightly less than 1%.

This base-rate fallacy explains why doctors don’t run every test on every patient.
When the probability of an actual attack is remote, the false positives will easily over‐
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whelm the true positives. This problem is exacerbated because nobody in their right
mind trusts an IDS to do the job alone.

Consider the data flow in Figure 3-3, which is a simple representation of how an IDS
is normally used in defense.

Figure 3-3. Simple detection workflow

Figure 3-3 breaks alert processing into three steps: IDS receives data, raises an alert,
and that alert is then passed to analysts either directly or through a security informa‐
tion and event manager (SIEM) console.

Once an IDS generates an alert, that alert must be forwarded to an analyst for further
action. Analysts begin by examining it and figuring out what it means. This may be a
relatively simple process, but often it becomes wider-ranging and may involve a num‐
ber of queries. Simple queries will include looking at the geolocation, ownership, and
past history of the address the attack originates from (see Chapter 10), by examining
the payload of the event using tcpdump or Wireshark. With more complex attacks,
analysts will have to reach out to Google, news, blogs, and message boards to identify
similar attacks or real-world events precipitating the attack.

With the exception of IPSs, which work on very crude and obvious attacks (such as
DDoS attacks), there is always an interim analytical step between alert and action. At
this point, analysts have to determine if the alert is a threat, if the threat is relevant to
them, and whether or not there’s anything they can do about it. This is a nontrivial
problem. Consider the following scenarios:
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• The IDS reports that an attacker is exploiting a particular Internet Information
Services (IIS) vulnerability. Are there any IIS servers on the network? Have they
been patched so they’re not subject to the exploit? Is there evidence from other
sources that the attacker succeeded?

• The IDS reports that an attacker is scanning the network. Can we stop the scan?
Should we bother given that there are another hundred scans going on right
now?

• The IDS reports that a host is systematically picking through a web server and
copying every file. Is the host a Google spider, and would stopping it mean that
our company’s primary website would no longer be visible on Google?

Note that these are not actually failures on the part of detection. The first two scenar‐
ios represent actual potential threats, but those threats may not matter, and that deci‐
sion can only be made through a combination of context and policy decisions.

Verifying alerts takes time. An analyst might be able to seriously process approxi‐
mately one alert an hour, and complex events will take days to investigate. Consider
how that time is spent given the false positive rates discussed earlier.

Improving IDS Performance
There are two approaches to improving how IDSs work. The first is to improve the
IDS as a classifier; that is, increase the sensitivity and specificity. The second way is to
reduce the time an analyst needs to process an alert by fetching additional informa‐
tion, providing context, and identifying courses of action.

There are no perfect rules to this process. For example, although it’s always a good
(and necessary) goal to minimize false positives, analysts will take a more nuanced
approach to this problem. For example, if there’s a temporary risk of a nasty attack, an
analyst will often tolerate a higher false positive rate in order to more effectively
defend against that attack.

There’s a sort of Parkinson’s law problem here. All of our detection and monitoring
systems provide only partial coverage because the internet is weird, and we don’t
really have a good grasp of what we’re missing. As any floor improves its detection
process, it will find that there are newer and nastier alerts to consider. To paraphrase
Donald Rumsfeld: we do have a problem with unknown unknowns.

This problem of unknown unknowns makes false negatives a particular headache. By
definition, a signature-based IDS can’t alert on anything it isn’t configured to alert on.
That said, most signature matching systems will be configured to identify only a limi‐
ted subset of all the malicious behaviors that a particular host uses. By combining
signature- and anomaly-detecting IDSs together, you can at least begin to identify the
blind spots.
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5 This has the nice bonus of identifying systems that may be compromised. Malware will disable AV as a matter
of course.

Enhancing IDS Detection
Improving an IDS as a classifier involves reducing the false positive and false negative
rates. This is generally best done by reducing the scope of the traffic the IDS exam‐
ines. In the same way that a doctor doesn’t run a test until he has a symptom to work
with, we try to run the IDS only when we have an initial suspicion that something
odd is going on. A number of different mechanisms are available based on whether
you’re using a signature- or an anomaly-based IDS.

Inconsistent Notification: A Headache with Multiple IDSs
A special category of false negative involves inconsistent IDS rulesets. Imagine that
you run a network with the access points A and B, with IDSs running on both. If you
don’t keep the ruleset on IDS A consistent with the ruleset on IDS B, you will find that
A sends you alerts that B doesn’t recognize, and vice versa.

The easiest way to manage this problem is to treat the rulesets as any other source
code. That is, put the rules in a version control system, make sure that you commit
and comment them, and then install the rules from your version control system.
Keeping the rules under version control’s a good idea anyway because if you’re doing
a multimonth traffic investigation, you really will want to look at those old rulesets to
figure out exactly what you were blocking last April.

There is a class of IDS that makes this type of management particularly problematic,
however. AV and some other detection systems are usually black-box systems. A
black-box system provides ruleset updates as a subscription service, and the rulesets
are usually completely inaccessible to an administrator. Inconsistent identification
can be particularly problematic with black-box systems where, at the best, you must
keep track of what the current rulebase is and identify systems that are behind.5

One mechanism common to both signature- and anomaly-based IDSs is using inven‐
tory to create whitelists. Pure whitelists, meaning that you implicitly trust all traffic
from a host, are always a risk. I don’t recommend simply whitelisting a host and never
checking it. A better approach, and one that is going to appear in various forms
throughout this discussion, is to use whitelisting as a guide for less or more extensive
instrumentation.

For example, I create an inventory of all the web servers on my network. A host that
is not a web server is suspicious if I see it serving HTTP traffic. In that case, I want to
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6 Malware authors test against AV systems, and usually keep current on the signature set.

capture a representative cut of traffic and figure out why it’s now a web server. At the
same time, for actual web servers, I will use my standard signatures.

In signature-based IDSs, the signature base can usually be refined so that the rule
triggers only for specific protocols or in tandem with other indicators. For example, a
rule to detect the payload string “herbal supplement” on port 25 will track spam
emails with that title, but also internal mail containing comments such as “we’re get‐
ting a lot of herbal supplement spam lately.” Reducing the false positive rate in this
case involves adding more constraints to the match, such as tracking only mail from
outside the network (filtering on addresses). By refining the rule to use more selective
expressions, an operator can reduce the false positive rate.

Configuring Snort
For a Snort system, these signatures are literally handcrafted and user-maintained
rules. For example:

    alert tcp 192.4.1.0/24 any -> $HOME_NET 80 (flow:to_server,established; \
        content:"admin";)

This alert is raised when traffic from a suspicious network (192.4.1.0/24) attempts to
contact any host on the internal network and tries to connect using an admin
account. Ruleset creation and management is a significant issue for signature-based
IDSs, and well-crafted rules are often the secret sauce that differentiates various com‐
mercial packages.

A signature-based IDS will only raise alerts when it has a rule specifying to do so.
This limitation means that signature-based IDSs usually have a high false negative
rate, meaning that a large number of attacks go unreported by them. The most
extreme version of this problem is associated with vulnerabilities. AV systems pri‐
marily, but also NIDSs and HIDSs, rely on specific binary signatures in order to iden‐
tify malware (see “On Code Red and Malware Evasiveness” on page 53 for a more
extensive discussion on this). These signatures require that some expert have access
to an exploit; these days, exploits are commonly “zero-day,” meaning that they’re
released and in the wild before anyone has the opportunity to write a signature. Good
IDS signature development will focus on the vulnerability rather than the exploit—a
signature that depends on a transient feature of the exploit will quickly become
obsolete.6
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On Code Red and Malware Evasiveness
Read the original papers on NIDSs by Paxson and Roesch (see “Further Reading” on
page 61) and you’ll see that they were thinking about handcrafted attacks on systems
that they’d be able to defend by looking for people trying to log in as root or admin.
There was a functionality change around 2001, which was the beginning of a very
nasty worm-heavy era in defense. Worms like Code Red and Slammer caused wide‐
spread havoc by spreading actively and destructively choking bandwidth.

The Code Red v1 and v2 worms both exploited a buffer overflow in Microsoft IIS in
order to subvert IIS processes and launch an attack against the White House. The
original Code Red worm contained a payload looking like the following:

..........  GET
/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801
%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff
%u0078%u0000%u00=a HTTP/1.0 ..........

IDSs at the time detected Code Red by looking for that specific payload, and a couple
of weeks later, an updated version of the worm using the same exploit was launched.
The payload for Code Red II looked like this:

..........  GET
/default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801
%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff
%u0078%u0000%u00=a HTTP/1.0 ..........

As a buffer overflow, the Code Red worms needed to pad their contents in order to
reach a specific memory location; the worms were often differentiated by the pres‐
ence of an X or an N in the buffer. The thing is, the buffer contents are irrelevant to the
execution of the worm; an attacker could change them at will without changing the
functionality.

This has been a problem for IDSs ever since. As originally conceived, intrusion detec‐
tion systems were looking for anomalous and suspicious user behavior. These types of
long-term hacks could be detected and stopped because they’d be happening over the
course of hours or days, which is enough time for analysts to examine the alert, vet it,
and take a course of action. Modern attacks are largely automated, and the actual sub‐
version and control of a host can take place instantaneously if the right conditions are
met.

The problem of binary signature management has gotten significantly worse in the
past decade because it’s easy for attackers to modify payload without changing the
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functionality of the worm. If you examine threat databases such as Symantec’s, you
will find that there are hundreds or more variants of common worms, each of them
with a different binary signature.

As for the explosive, destructive worms like Slammer, they basically calmed down for
what I will best describe as evolutionary reasons. Much like it doesn’t pay a physical
virus to kill its host until it’s had a chance to spread, modern worms are generally
more restrained in their reproduction. It’s better to own the internet than to destroy
it.

As an example, consider the following (oversimplified for clarity) rule to determine
whether or not someone is logging on as root to an SSH server:

alert tcp any any -> any 22 (flow:to_server, established;)

A Snort rule consists of two logical sections: the header and the options. The header
consists of the rule’s action and addressing information (protocol, source address,
source port, destination address, destination port). Options consist of a number of
specific keywords separated by semicolons.

In the example rule, the action is alert, indicating that Snort generates an alert and
logs the packet. Alternative actions include log (log the packet without alerting),
pass (ignore the packet), and drop (block the packet). Following the action is a string
naming the protocol: tcp in this case, with udp, icmp, and ip being other options. The
action is followed by source-to-destination information separated by the arrow (->)
digraph. Source information can be expressed as an address (e.g., 128.1.11.3), a net‐
block (118.2.0.0/16) as in the example, or any to indicate all addresses. Snort can also
define various collections of addresses with macros (e.g., $HOME_NET to indicate the
home network for an IDS). You can use these macros to define inventories of hosts
within the network, and use that information for more finely tuned whitelisting or
blacklisting.

This rule raises an alert when anyone successfully connects to an SSH server, which is
far too vague. In order to refine the rule, we have to add additional constraints. For
example, we can constrain it to only raise an alert if the traffic comes from a specific
network, and if someone tries to log on specifically as root:

alert tcp 118.2.0.0/16 any -> any 21
    (flow:to_server,established; \ content:"root";
    pcre:"/user\s_root/i";)

Following the addressing information are one or more rule options. Options can be
used to refine a rule, fine-tuning the information the rule looks for in order to reduce
the false positive rate. Options can also be used to add additional information to an
alert, to trigger another rule, or to complete a variety of other actions.
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Snort defines well over 70 options for various forms of analysis. A brief survey of the
more useful rules:

content

content is Snort’s bread-and-butter pattern matching rule; it does an exact match
of the data passed in the content option against the packet payload. content can
use binary and text data, enclosing the binary data in pipes. For example,
content:|05 11|H|02 23| matches the byte with contents 5, then 11, then the
letter H, then the byte 2, then the byte 23. A number of other options directly
impact content, such as depth (specifying where in the payload to stop search‐
ing) and offset (specifying where in the payload to start searching).

HTTP options
A number of HTTP options (http_client_body, http_cookie, http_header)
will extract the relevant information from an HTTP packet for analysis by
content.

pcre

The pcre option uses a PCRE (Perl-Compatible Regular Expressions) regular
expression to match against a packet. Regular expressions are expensive; make
sure to use content to prefilter traffic and skip applying the regular expression
against every packet.

flags

This checks to see whether or not specific TCP flags are present.

flow

The flow keyword specifies the direction traffic is flowing in, such as from a cli‐
ent, to a client, from a server, or to a server. The flow keyword also describes cer‐
tain characteristics of the session, such as whether or not it was actually
established.

Snort’s rule language is used by several other IDSs, notably Suricata. Other systems
may differentiate themselves with additional options (for example, Suricata has an
iprep option for looking at IP address reputation).

Unlike signature-based systems, where you can’t really go wrong by discussing Snort
rules, anomaly-detection systems are more likely to be built by hand. Consequently,
when discussing how to make an anomaly detector more effective, we have to operate
at a more basic level. Throughout Part III, we discuss a number of different numerical
and behavioral techniques for implementing anomaly-detection systems, as well as
cases for false positives. However, this is an appropriate place to discuss general crite‐
ria for building good anomaly-detection systems.
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In their simplest forms, anomaly-detection systems raise alarms via thresholds. For
example, I might decide to build anomaly detection for a file server by counting the
number of bytes downloaded from the server every minute. I can do so using
rwfilter to filter the data and rwcount to count it over time. I can then use R to gen‐
erate a histogram showing the probability that the value is above x. The nice thing
about histograms and statistical anomaly detection is that I control this nominal false
positive rate. A test every minute and a 95% threshold before raising alarms means
that I create three alarms an hour; a 99% threshold means one alarm every two hours.

The problem lies in picking a threshold that is actually useful. For example, if an
attacker is aware that I’ll raise an alarm if he’s too busy, he can reduce his activity
below the threshold. This type of evasiveness is really the same kind we saw with
Code Red in “On Code Red and Malware Evasiveness” on page 53. The attacker in
that case could change the contents of the buffer without impacting the worm’s per‐
formance. When you identify phenomena for anomaly detection, you should keep in
mind how it impacts the attacker’s goals; detection is simply the first step.

I have four of rules of thumb I apply when evaluating phenomena for an anomaly-
detection system: predictability, manageable false positives, disruptibility, and impact
on attacker behavior.

Predictability is the most basic quality to look for in a phenomenon. A predictable
phenomenon is one whose value effectively converges over time. “Convergence” is
something that I have to be a bit hand-wavy about. You may find that 9 days out of
10, a threshold is x, and then on the tenth day it rises to 10x because of some unex‐
plained weirdness. Expect unexplained weirdness; if you can identify and describe
outliers behaviorally and whatever remains has an upper limit you can express, then
you’ve got something predictable. False positives will happen during investigation,
and true positives will happen during training!

The second rule is manageable false positives. Look at a week of traffic for any pub‐
licly available host and you will see something weird happen. Can you explain this
weirdness? Is it the same address over and over again? Is it a common service, such as
a crawler visiting a web server? During the initial training process for any anomaly
detector, you should log how much time you spend identifying and explaining outli‐
ers, and whether you can manage those outliers through whitelisting or other behav‐
ioral filters. The less you have to explain, the lower a burden you impose on busy
operational analysts.

A disruptible phenomenon is one that the attacker must affect in order to achieve his
goals. The simpler, the better. For example, to download traffic from a web server, the
attacker must contact the web server. He may not need to do so from the same
address, and he may not need authentication, but he needs to pull down data.

56 | Chapter 3: Sensors in the Network Domain



Finally, there’s the impact of a phenomenon on attacker behavior. The best alarms are
the ones that the attacker has to trigger. Over time, if a detector impacts an attacker,
the attacker will learn to evade or confuse it. We see this in antispam efforts and the
various tools used to trick Bayesian filtering, and we see it consistently in insider
threats. When considering an alarm, consider how the attacker can evade it, such as:

By moving slower
Can an attacker impact the alarm if she reduces her activity? If so, what’s the
impact on the attacker’s goal? If a scanner slows her probes, how long does it take
to scan your network? If a file leech copies your site, how long does it take to
copy the whole site?

By moving faster
Can an attacker confuse the system if he moves faster? If he risks detection, can
he move faster than your capability to block him by moving as fast as possible?

By distributing the attack
If an attacker works from multiple IP addresses, can the individual addresses slip
under the threshold?

By alternating behaviors
Can an attacker swap between suspicious and innocent behavior, and confuse the
IDS that way?

Many of the techniques discussed previously imply a degree of heterogeneity in your
detection system. For example, anomaly-detection systems might have to be config‐
ured individually for different hosts. I have found it useful to push that idea toward a
subscription model, where analysts choose which hosts to monitor, decide on the
thresholds, and provide whitelisting and blacklisting facilities for every host they
decide to monitor. Subscriptions ensure that the analyst can treat each host individu‐
ally, and eventually build up an intuition for normal behavior on that host (for exam‐
ple, knowing that traffic to the payroll server goes bonkers every two weeks).

The subscription model acknowledges that you can’t monitor everything, and conse‐
quently the next question about any subscription-based approach is precisely what to
monitor. Chapter 15 and Chapter 19 discuss this issue in more depth.

Enhancing IDS Response
IDSs, particularly NIDSs, were conceived of as real-time detection systems—the
assumption was that there would be enough of a gap between the time the attack
began and the final exploit that, armed with the IDS alerts, the defenders could stop
the attack before it caused significant damage. This concept was developed in a time
when attackers might use two computers, when attacks were handcrafted by experts,
and when malware was far more primitive. Now, IDSs are too often a recipe for
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annoyance. It’s not simply a case of misclassified attacks; it’s a case of attackers attack‐
ing hosts that aren’t there in the hopes that they’ll find something to take over.

At some point, you will make an IDS as effective a detector as you can, and you’ll still
get false positives because there are normal behaviors that look like attacks—and the
only way you’ll figure this out is by investigating them. Once you reach that point,
you’re left with the alerting problem: IDSs generate simple alerts in real time, and
analysts have to puzzle them out. Reducing the workload on analysts means aggregat‐
ing, grouping, and manipulating alerts so that the process of verification and
response is faster and conducted more effectively.

When considering how to manipulate an alert, first ask what the response to that alert
will be. Most Computer Security Incident Response Teams (CSIRTs) have a limited
set of actions they can take in response to an alert, such as modifying a firewall or IPS
rules, removing a host from the network for further analysis, or issuing policy
changes. These responses rarely take place in real time, and it’s not uncommon for
certain attacks to not merit any response at all. The classic example of the latter case is
scanning: it’s omnipresent, it’s almost impossible to block, and there’s very little
chance of catching the culprit.

If a real-time response isn’t necessary, it’s often useful to roll up alerts, particularly by
attacker IP address or exploit type. It’s not uncommon for IDSs to generate multiple
alerts for the same attacker. These behaviors, which are not apparent with single real-
time alerts, become more obvious when the behavior is aggregated.

Prefetching Data
After receiving an alert, analysts have to validate and examine the information
around the alert. This usually involves tasks such as determining the country of ori‐
gin, the targets, and any past activity by this address. Prefetching this information
helps enormously to reduce the burden on analysts.

In particular with anomaly-detection systems, it helps to present options. As we’ve
discussed, anomaly detections are often threshold-based, raising an alert after a phe‐
nomenon exceeds a threshold. Instead of simply presenting an aberrant event, config‐
ure the reporting system to return an ordered list of the most aberrant events at a
fixed interval, and explanations for why these events are the most concerning.

Providing summary data in visualizations such as time series plots helps reduce the
cognitive burden on the analyst. Instead of just producing a straight text dump of
query information, generate relevant plots. Chapter 11 discusses this issue in more
depth.

Most importantly, consider monitoring assets rather than simply monitoring attacks.
Most detection systems are focused on attacker behavior, such as raising an alert
when a specific attack signature is detected. Instead of focusing on attacker behavior,
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7 It’s not a bad idea to consider proxies in front of embedded devices with critical web interfaces just to take
advantage of the logging.

assign your analysts specific hosts on the network to watch and analyze the traffic to
and from those assets for anomalies. Lower-priority targets should be protected using
more restrictive techniques, such as aggressive firewalls. With hypervisors and virtu‐
alization, it’s worth creating low-priority assets entirely virtually from fixed images,
then destroying and reinstantiating them on a regular basis to limit the time any
attacker can control those assets.

Assigning analysts to assets rather than simply having them react to alerts has
another advantage: analysts can develop expertise about the systems they’re watching.
False positives often a rise out of common processes that aren’t easily described to the
IDS, such as a rise in activity to file servers because a project is reaching crunch time,
regular requests to payroll, or a service that’s popular with a specific demographic.
Expertise reduces the time analysts need to sift through data, and helps them throw
out the trivia to focus on more significant threats.

Middlebox Logs and Their Impact
As discussed in Chapter 2, middleboxes introduce significant challenges to the valid‐
ity of network data analysis. Mapping middleboxes and identifying what logs you can
acquire from them is a necessary step in building up actionable network data. In this
section, I will discuss some general qualities of network middlebox logs, some recom‐
mendations for configuration, and strategies for managing the data.

When using middlebox data, I recommend storing the data and then applying it on a
case-by-case basis. The alternative approach to this is to annotate other data (such as
your flow or pcap) with the middlebox information on the fly. Apart from the com‐
putational complexity of doing so, my experience working with forensic middlebox
data is that there are always fiddly edge cases, such as load balancing and caching,
that make automated correlation inordinately complex.

As for what data to collect and when, I recommend finding VPN logs first, then mov‐
ing onto proxies, NATs, and DHCP. VPN logs are critical not only because they pro‐
vide an encrypted and trusted entry point into your network, but because your
higher-quality attacker is intimately aware of this. The other classes of data are organ‐
ized roughly in terms of how much additional information they will uncover—proxy
logs, in addition to the problems of correlating across proxies, often serve as a conve‐
nient substitute for service logs.7
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8 As with other material, I’m very fond of assigning fixed addresses to users, just so I have less information I
need to cross-correlate.

VPN Logs
Always get the VPN logs. VPN traffic is incomprehensible without the VPN logs—it
is encrypted, and the traffic is processed at concentrators, before reaching its actual
destination. The VPN logs should, at the minimum, provide you with the identity,
credentials, and a local mapping of IP addresses after the concentrator.

VPN logs are session-oriented, and usually multiline behemoths containing multiple
interstitial events. Developing a log shim to summarize the events (see Chapter 4) will
cut down on the pain. When looking at VPN logs, check for the following data:

Credentials
VPNs are authenticated, so check to see the identities that are being used. Linking
this information with user identity and geolocation are handy anomaly-detection
tricks.

Logon and logoff times
Check when the sessions initiate and end. Enterprise users, in particular, are
likely to have predictable session times (such as the workday).

External IP address
The external IP address, in particular its geolocation, is a useful anomaly hook.

Assigned internal IP address
Keeping track of the address the VPN assigns is critical for cross-correlation.8

Proxy Logs
Proxies are application-specific, replace the server address with their own, and often
contain caching or other load balancing hacks that will result in causality problems.
After VPNs, keeping track of proxies and collecting their logs is the next best bang for
the buck.

In addition to the need to acquire proxy logs because proxies mess with traffic so cre‐
atively, proxy logs are generally very informative. Because proxies are application-
specific, the log data may contain service information—HTTP proxy logs will usually
include the URL and domain name of the request.

While proxy log data will vary by the type of proxy, it’s generally safe to assume you
are working with event-driven service log data. Squid, for example, can be configured
to produce Common Log Format (CLF) log messages (see “HTTP: CLF and ELF” on
page 78 for more information on this).
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9 This is, as of this writing, very much a work in progress; see the references in the next section.

NAT Logs
You can partially manage NATing validity by placing a sensor between the clients and
the NAT. This will provide the internal addresses, and the external addresses should
remain the same. That said, you will not be able to coordinate the communications
between internal and external addresses—theoretically you should be able to map by
looking at port numbers, but NATs are usually sitting in front of clients talking to
servers. The end result is that the server address/port combinations are static and you
will end up with multiple flows moving to the same servers. So, expect that in either
case you will want the NAT logs.

Whether NAT logging is available is largely a question of the type of device perform‐
ing the NATing. Enterprise routers such as Cisco and Juniper boxes provide flow log
formats for reporting NAT events. These will be IPFIX messages with the NAT
address contained as an additional field.9 Cheaper embedded routers, such as ones for
home networks, are less likely to include this capability.

As for the data to consider, make sure to record both the IP addresses and the ports:
source IP, source port, destination IP, destination port, NAT IP, NAT port.
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CHAPTER 4

Data in the Service Domain

This chapter is concerned with the practical problem of collecting data moderated by
a service, which is to say service domain data. At the conclusion of this chapter, you
will be able to identify the sources for service domain data and understand how vant‐
age impacts this data and the challenges to its validity.

What and Why
Practically speaking, service domain data consists of log data generated by various
services operating on a host. Service domain data is characterized by the service’s
moderation of things—where network data deals in packets which may or may not do
anything, service data deals in events that are defined by the service. While data in the
host domain consists of the host’s current state, the service domain contains the
events that caused a state change.

Service data is therefore distinguished from the other categories by the impact of a
service moderating the information you receive. To understand how this moderation
impacts use, consider the scenario shown in Figure 4-1. This figure shows how data
in two domains is generated for two different phenomena.
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Figure 4-1. Comparing service and network domain data

On the left is a simple GET request via HTTPS. In this example, data is collected from
two points: a span port on a switch collecting raw pcap, and the logs from the web
server. Since the HTTPS packets are encrypted, the only information the span port
can provide is header-based—ports, protocol, and nothing else. Meanwhile, the web
server can decrypt and process the data, recording that information.

While encryption is the most obvious challenge to the validity of inferences using
packet capture, all network-based instrumentation faces challenges to its internal val‐
idity because TCP/IP design is built on the end-to-end principle. Systems designed
around this principle push more functionality to the endpoints, while keeping the
network itself relatively simple.

The practical impact of the end-to-end principle on network monitoring is that noth‐
ing seen on the network can be taken at face value, especially once you allow for per‐
verse and creative packet crafting. For example, an attacker can send perfectly valid
DNS request packets or a realistic-looking half of a TCP session, and from the net‐
work traffic alone, the observer cannot guarantee that this wasn’t real traffic. In the
network domain, the best the defender can do is guess something happened, while in
the service domain, the defender can find out what happened.

Instrumenting at the service domain is not a panacea, however, as shown in the right‐
hand side of the figure. In this case, a scanner is hitting the network with half-open
scans, and the pcap sensor can see this information. But the web server has never
received an HTTPS session from this, and doesn’t record the information.

The net result of this is that no single collection point will address all of the potential
phenomena you can face. Understanding the strength of each domain, and the data
you can effectively collect in each case, is critical to determining what data to collect.
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Logfiles as the Basis for Service Data
The foundational data you deal with when working with service information is
service-specific logfiles. A service-specific logfile is a record of the transactions that the
service engages in.

The concept of a transaction is critical here. A transaction is an interaction with the
service as defined by the service. Example transactions may include fetching a web
page (for a web server), sending out a DNS query (for a DNS server), or listing all the
mail in a folder (for an IMAP server). Transactions are service-specific, and deter‐
mining what transactions the service provides will require diving into its documenta‐
tion and relevant standards.

Accessing and Manipulating Logfiles
Operating systems have dozens of processes generating log data at any time. In Unix
systems, these logfiles are usually stored as text files in the /var/log directory.
Example 4-1 shows this directory for macOS (the ellipses indicate where lines were
removed for clarity).

Example 4-1. A /var/log directory from a macOS system

drwxr-xr-x   2 _uucp            wheel      68 Jun 20  2012 uucp
...
drwxr-xr-x   2 root             wheel      68 Dec  9  2012 apache2
drwxr-xr-x   2 root             wheel      68 Jan  7 01:47 ppp
drwxr-xr-x   3 root             wheel     102 Mar 12 12:43 performance
...
-rw-r--r--   1 root             wheel     332 Jun  1 05:30 monthly.out
-rw-r-----   1 root             admin    6957 Jun  5 00:30 system.log.7.bz2
-rw-r-----   1 root             admin    5959 Jun  6 00:30 system.log.6.bz2
-rw-r-----   1 root             admin    5757 Jun  7 00:30 system.log.5.bz2
-rw-r-----   1 root             admin    5059 Jun  8 00:30 system.log.4.bz2
-rw-r--r--   1 root             wheel     870 Jun  8 03:15 weekly.out
-rw-r-----   1 root             admin   10539 Jun  9 00:30 system.log.3.bz2
-rw-r-----   1 root             admin    8476 Jun 10 00:30 system.log.2.bz2
-rw-r-----   1 root             admin    5345 Jun 11 00:31 system.log.1.bz2
-rw-r--r--   1 root             wheel  131984 Jun 11 18:57 vnetlib
drwxrwx---  33 root             admin    1122 Jun 12 00:23 DiagnosticMessages
-rw-r-----   1 root             admin    8546 Jun 12 00:30 system.log.0.bz2
-rw-r--r--   1 root             wheel  108840 Jun 12 03:15 daily.out
-rw-r--r--   1 root             wheel   22289 Jun 12 04:51 fsck_hfs.log
-rw-r-----   1 root             admin  899464 Jun 12 20:11 install.log

Note several features of this directory. The system.log files are started daily at 00:30
and are differentiated numerically. There are a number of subdirectories for handling
various services. Check the configuration of each individual service you want to
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acquire logfiles for, but it’s not uncommon for Unix systems to dump them to a sub‐
directory of /var/log by default.

Unix logfiles are almost always plain text. For example, a brief snippet of a system log
reads as follows:

$ cat system.log
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred(): Done
    getpwnam()
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred(): Done
    setegid() & seteuid()
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred():
    pam_sm_setcred: krb5 user admin doesn't have a principal
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred(): Done
    cleanup3

The majority of Unix system logs are text messages created by filling in templates
with specific event information. This kind of templated text is easy to read, but doesn’t
scale very well.

As of Vista, Windows has extensively revamped its logging structure. Windows logs
are further subdivided into several classes, notably:

Application log
Contains messages from individual applications. Note that services such as IIS
may use auxiliary logs to contain additional information.

Security log
Contains security events, such as logon attempts and audit policy changes.

System log
Contains messages about system status, such as driver failures.

Forwarded events log
Stores events from remote hosts.

These logs are recorded in %SystemRoot%\System32\Config by default on most Win‐
dows installs; however, the more effective mechanism for accessing and reading the
files is to use the Windows Event Viewer, as seen in Figure 4-2.

Note the use of the event ID in Figure 4-2; as with Unix systems, the Windows event
messages are templated text, though Windows explicitly identifies the type of event
using a unique numeric code. These messages are accessible from Microsoft’s website.
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Figure 4-2. The Windows event log

On Linux, application logfiles are much less consistently located. As seen in
the /var/log directory, administrative structure may be set up to record a logfile in a
fixed location, but almost every application has the ability to move around logfiles as
necessary. When working with a particular application, consult its documentation to
find out where it drops logs.

The Contents of Logfiles
Logs are usually designed to provide debugging and troubleshooting information for
an administrator on the host. Because of this, you will often find that host-based logs
require both some degree of parsing and some degree of reorganization to make
them satisfactory security logs. In this section, we discuss mechanisms for interpret‐
ing, troubleshooting, and converting host log data.

The Characteristics of a Good Log Message
Before discussing how to convert a log message, and before complaining about how
bad most log messages are, it behooves us to describe what a good security message
should look like. A good security log should be descriptive, it should be relatable to
other data, and it should be complete.
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A descriptive message is one that contains enough information for an analyst to iden‐
tify all necessary accessible resources for the event described by the message. For
example, if a host log records that a user attempted to illegally access a file, it should
contain the user’s ID and the file accessed. A host log recording a change in group
permissions for a user needs to record the user and the group. A log recording a
failed remote login attempt should include the ID that attempted the login and the
address that attempted the login.

For example, consider a log message about a failed login attempt on host 192.168.2.2,
local name myhost. A nondescriptive message would look like this:

Mar 29 11:22:45.221 myhost sshd[213]: Failed login attempt

This message doesn’t tell me anything about why the failure occurred and doesn’t
provide any information to differentiate between this and any other failed login
attempts. I have no information on the target of the attack; is it against the admin
account or some user? Analysts with only this information will have to reconstruct
the attempt solely from timing data, and they can’t even be sure what host was con‐
tacted because the name of the host is nondescriptive and there is no addressing
information.

A more descriptive message would look like this:

Mar 29 11:22:45.221 myhost (192.168.2.2) sshd[213]: Failed
    login attempt from host 192.168.3.1 as 'admin',
    incorrect password

A good mental exercise for building a descriptive message is to fall back to the “five
Ws and one H” approach from investigation and journalism: who, what, when,
where, why, and how. The nondescriptive log message provides the what (failed
login) and when, and a partial answer to where (myhost). The descriptive log message
provides the who (192.168.3.1 as admin), why, and how (incorrect password), and a
better where.

A relatable message is one where the event is easily related to information from other
sources. For host-based events this requires IP address and timing information,
including whether an event was remote or physically local, the IP address and port of
the event if it was remote, and the IP address and port of the host. Relatability is a
particular headache when dealing with service logs, as these types of logs often intro‐
duce additional addressing schemes on top of IP. For example, here’s an unrelatable
mail log message:

Mar 29 11:22:45.221 myhost (192.168.2.2) myspamapp[213]:
    Message <21394.283845@spam.com> title 'Herbal Remedies and Tiny Cars'
    from 'spammer@spam.com' rejected due to unsolicited commercial content

The message has a lot of information, but there’s no way to relate the message sent
back to the particular IP address that sent the message. When looking at log mes‐
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sages, consider how you will relate this information to other sources, particularly net‐
work traffic. A more relatable message would be as follows:

Mar 29 11:22:45.221 myhost (192.168.2.2) myspamapp[213]:
    Message <21394.283845@spam.com> title 'Herbal Remedies and Tiny Cars'
    from 'spammer@spam.com' at SMTP host 192.168.3.1:2034 rejected due
    to unsolicited commercial content

This example includes client port and addressing information, so we can now relate it
to network traffic.

A complete log message is one that contains all the information about a particular
event within that single log message. Completeness reduces the number of records an
analyst has to search through and provides the analyst with a clear indicator that
there is no further information to acquire from this process. Incomplete messages are
usually a function of complicated process. For example, an antispam tool might run
several different filters on a message, with each filter and the final decision being a
separate log line:

Mar 29 11:22:45.221 myhost (192.168.2.2) myspamapp[213]:
    Received Message <21394.283845@spam.com> title
    'Herbal Remedies and Tiny Cars' from 'spammer@spam.com' at
    SMTP host 192.168.3.1:2034
Mar 29 11:22:45.321 myhost (192.168.2.2) myspamapp[213]:
    Message <21394.283845@spam.com> passed reputation filter
Mar 29 11:22:45.421 myhost (192.168.2.2) myspamapp[213]:
    Message <21394.283845@spam.com> FAILED Bayesian filter
Mar 29 11:22:45.521 myhost (192.168.2.2) myspamapp[213]:
    Message <21394.283845@spam.com> Dropped

With incomplete messages, you have to track state across multiple messages, each of
which gives a snippet of information and which you’re going to have to group
together to do any useful analysis. Consequently, I prefer the message to be aggrega‐
ted at the start, like this:

Mar 29 11:22:45.521 myhost (192.168.2.2) myspamapp[213]:
    Received Message <21394.283845@spam.com> title
    'Herbal Remedies and Tiny Cars' from 'spammer@spam.com' at
    SMTP host 192.168.3.1:2034 reputation=pass Bayesian=FAIL decision=DROP

Log messages are often only minimally modifiable directly. Instead, to build an effec‐
tive message you might have to write some kind of logging shim. For example, if the
log system outputs syslog messages, you can receive and parse those messages, con‐
vert them to a friendlier format, and then forward them on. When considering con‐
verting logfiles, in addition to the rules just mentioned, consider the following:

Convert time to epoch time
Almost all record correlation involves identifying the same phenomenon from
different sensors, meaning that you need to look for records that are close in
time. Converting all time values to epoch time reduces parsing complexity,
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throws out the nightmare of time zones and daylight saving time, and ensures a
consistent treatment for a consistent value.

Make sure sensors are synchronized
A corollary to the first note, make sure that when sensors report the same event,
they are reporting the same time. Trying to correct for this after the fact is terri‐
bly difficult, so make sure that all the sensors are coordinated, that they all report
the same time, and that the clocks are corrected and resynchronized regularly.

Include addressing information
Wherever possible, include the flow five-tuple (source IP, destination IP, source
port, destination port, protocol). If some of the values can be inferred from the
record (e.g., HTTP servers are running TCP), they can be dropped.

Ensure that delimiters are understood by the logger
On several occasions, I have encountered helpful administrators reconfiguring
HTTP logs to use pipes rather than spaces as delimiters. A worthy sentiment,
except when the logging module doesn’t know to escape the pipe when it occurs
in text. If the logger can change its delimiter and understands that the change
requires escaping the character, let the logger do it.

Use error codes rather than text if possible
Text doesn’t scale well—it’s bulky, difficult to parse, and often repetitive. Logging
systems that generate template messages can also include an error code of some
kind as a compact representation of the message. Use this rather than text to save
space.

Existing Logfiles and How to Manipulate Them
We can break logfiles into three major categories: columnar, templated, or stateful. 
Columnar logs record records in discrete columns that are distinguishable by delim‐
iters or fixed text width. Templated logfiles look like English text, but the text comes
from a set of document templates and is enumerable. Stateful logfiles use multiple
text records to describe a single event.

Columnar data, such as NCSA HTTPd’s CLF format, records one message per event.
This message is a summary of the entire event, and consists of a fixed set of fields in
columnar format. Columnar logs are relatively easy to deal with as the fields are
cleanly delineated and the format is rigid; every message has the same columns and
the same information.

When dealing with columnar data, keep in mind the following:

• Is the data delimited or fixed-width? If it’s fixed-width, are there fields that could
conceivably exceed that width, and if so, are the results truncated or is the col‐
umn expanded?
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• If the data is delimited, is the delimiter escaped when used in the fields? Custom‐
izable formats (such as HTTP logs) may use a default delimiter and automatically
escape it; if you decide to use your own delimiter, it probably won’t be automati‐
cally escaped.

• Is there a maximum record length? If there is a maximum record length, you may
encounter truncated messages with missing fields.

ELF and CLF logfiles, discussed in the next chapter, are good examples of columnar
formats.

Templated text messages record one message per event, but the events are recorded as
unformatted English text. The messages are templated in the sense that they come
from a fixed and enumerable set of templates. Where possible, it’s best to convert
templated text messages into some kind of indexed numeric format. In the best case,
this is at least partly done. For example, the Windows event log shown in Figure 4-2
has an event ID that describes the type of event and can be used to determine the
other arguments that will be provided.

When dealing with templated text, keep in mind the following:

• Can you get a complete list of the log messages? As an example, consider the
Windows logfile in Figure 4-2. Each of these messages is text, but it has a unique
integer ID for the message. Check the documentation for a list of all potential log
messages.

Converting Text to Columns
Templated text can be parsed; the messages belong to an enumerable set and can con‐
ceivably be converted into a columnar format. Creating such a system, however,
requires developing an intermediary application that can read the text, parse each
individual message, and deposit the result in a schema. Doing so is a nontrivial devel‐
opment task (and will have to be updated when new messages are developed), but it
also can reduce the amount of space required and increase the readability of the data.
Here are specific steps to take when creating a system to convert templated text into
columns:

1. From whatever documentation you can find on the text format, identify and
select the messages most relevant to security. Any conversion script is going to
consist of a bunch of regular expressions, and the fewer expressions you have to
maintain, the happier you’ll be.

2. For each message, identify the parameters it contains. As an example, consider
the following made-up templated messages: “Antispam tool SPAMKILLER iden‐
tifies email <12938@yahoo.com> as Spam,” “Antispam tool SPAMKILLER identi‐
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1 In the previous edition of the book, I referred to stateful logfiles as annotative. I’ve switched in order to focus
on the major source of trouble in dealing with these files: state.

fies email <12938@yahoo.com> as Commercial,” “Antispam tool SPAMKILLER
identifies email <12938@yahoo.com> as Legitimate.” There are three potential
parameters here: the name of the antispam tool (enumerable), the message ID (a
string), and the output (enumerable).

3. Once you’ve identified parameters for each potential message, merge the parame‐
ters to create a superset. The goal is to create a schema representation of all the
parameters that a message may potentially have; a particular message may not
have all of them.

4. Try to generate at least one event record for every templated message the applica‐
tion can generate, and then compare that to the output from the documentation.
Documentation is often inaccurate, and you may be assuming a templated output
that doesn’t actually appear. This type of work is best done by setting up a small
lab to actually generate each event.

5. Check absurdly long string lengths, delimiters, and control characters. Templates
will often truncate output strings without clearly specifying them, and may also
escape special characters. Since you will be laying multiple layers of parsers on
top of each other, you need to be sure of what happens with those corner cases.

6. Fail conservatively when generating columnar data. You may not be able to real‐
istically convert more than 9 out of every 10 messages; if that’s the case, drop the
unparsed messages into a separate error feed for the analysts to check as needed.

Stateful Logfiles
In a stateful logfile, a single transaction is split across multiple messages.1 Stateful log‐
files are extremely frustrating for operational analysis—you spend time and cycles
reconstructing the event that happened.

Again, some kind of shim is the usual solution here. In general, a shim for a stateful
logfile will be some kind of cache holding partially formed records. As it receives sig‐
nals that a new transaction is happening, it pushes a new record into the cache. When
it receives a signal that the transaction completed, or it times out (a critical step), it
removes the relevant records from the cache. In between, it will fill each record with
the appropriate messages, and by doing so converts the logfiles into a stateless format.
In practice, building these shims requires managing a number of different failure
modes based around when the message terminates.

This is the kind of work where, to generate a quality logfile, you’re going to have to
run the system through its paces and see whether there are hidden errors. To help
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prep for these errors, consider stateful logs in three categories: stateful with delim‐
iters, stateful with identifiers, and interleaved.

If a logfile is stateful with identifiers, then the messages have individual ID numbers
that link together the transaction. The following truncated IronPort example is a
good example of a stateful message with IDs:

Thu Mar 24 16:58:31 2016 Info: Start MID 452 ICID 98
Thu Mar 24 16:58:31 2016 Info: MID 452 ICID 98 From: <alerts@fakecompany.org>
Thu Mar 24 16:58:31 2016 Info: MID 452 ICID 98 RID 0 To: \
    <elvis.presley@graceland.int>
Thu Mar 24 16:58:31 2016 Info: MID 452 Subject 'Sent to elvis presley to test \
    regexps in filtering'
Thu Mar 24 16:58:31 2016 Info: MID 452 ready 665 bytes from \
    <alerts@fakecompany.org>
Thu Mar 24 16:58:31 2016 Info: MID 452 matched all recipients for per-recipient \
    policy DEFAULT in the inbound table
Thu Mar 24 16:58:31 2016 Info: Delivery start DCID 151 MID 452 to RID [0]
Thu Mar 24 16:58:31 2016 Info: Message done DCID 151 MID 452 to RID [0] \
    [('x-customheader', '192.168.1.1')]
Thu Mar 24 16:58:31 2016 Info: MID 452 RID [0] Response 'Ok'
Thu Mar 24 16:58:31 2016 Info: Message finished MID 452 done
Thu Mar 24 16:58:33 2016 Info: Start MID 453 ICID 98

When working with these types of logs, check for the following pitfalls:

• Determine the format of the identifiers, and how they are assigned. If identifiers
are assigned linearly, (e.g., ID 1, ID 2, ID 3), be prepared for gaps in ID numbers
and have contingencies ready, such as a secondary alert.

• Determine messages for creating and destroying the identifiers. Expect to have a
timeout or other mechanism for dealing with messages that don’t close.

• When creating a shim, fill in all the fields you will report on with a default unre‐
ported value, then update those fields as you encounter their values in the logfile.
This way you can ship the record even if you don’t have all the fields, and it will
be clear which fields were omitted.

A logfile is stateful with delimiters if it uses some kind of discrete begin/end messages
to indicate the beginning and ending of a transaction, and the entire transaction is
contained within those begin and end messages. Example 4-2 shows a representative
format; as this example shows, each individual event is prefaced with a timestamp,
and then there are a variable number of fields. Also of note is that there is no explicit
delimiter for ending the message—the Request-Authenticator field may be a delim‐
iter, but given the differences in the fields shown in both entries, it can’t be verified.

The Contents of Logfiles | 73



2 From https://www.gnu.org/software/radius/manual/html_mono/radius.html#SEC182

Example 4-2. An example of a delimited log: GNU RADIUS packets2

Fri Dec 15 18:00:24 2000
        Acct-Session-Id = "2193976896017"
        User-Name = "e2"
        Acct-Status-Type = Start
        Acct-Authentic = RADIUS
        Service-Type = Framed-User
        Framed-Protocol = PPP
        Framed-IP-Address = 11.10.10.125
        Calling-Station-Id = "+15678023561"
        NAS-IP-Address = 11.10.10.11
        NAS-Port-Id = 8
        Acct-Delay-Time = 0
        Timestamp = 976896024
        Request-Authenticator = Unverified

Fri Dec 15 18:32:09 2000
        Acct-Session-Id = "2193976896017"
        User-Name = "e2"
        Acct-Status-Type = Stop
        Acct-Authentic = RADIUS
        Acct-Output-Octets = 5382
        Acct-Input-Octets = 7761
        Service-Type = Framed-User
        Framed-Protocol = PPP
        Framed-IP-Address = 11.10.10.125
        Acct-Session-Time = 1905
        NAS-IP-Address = 11.10.10.11
        NAS-Port-Id = 8
        Acct-Delay-Time = 0
        Timestamp = 976897929
        Request-Authenticator = Unverified

When working with log data, expect to run into common problems, in particular
with how log messages are delimited. From experience, I recommend checking the
following:

• Verify that logs have both start and end delimiters. It’s not uncommon for these
log formats to explicitly start a log message, and then never end it.

• Verify that a single transaction happens between delimiters. If at all possible, test
this empirically by running a long transaction and, while that is running, running
a simultaneous short transaction. If messages overlap, you have an interleaved
log.
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• Determine the format of starting and ending messages, and be prepared to deal
with incomplete messages.

The most problematic cases are stateful interleaved logfiles; these are logfiles where
events take multiple lines, and multiple events happen simultaneously. In an inter‐
leaved logfile, you will see messages from event A, messages from event B, and then
more messages from event A.

Stateful interleaved logfiles have serious internal validity problems and should, when
encountered, be considered a secondary source of data—acceptable for debugging,
terrible for forensics. Your best solution when encountering this type of message is to
keep it in the original format, since you can’t trust that you’re seeing events in
sequence

Further Reading
1. The OSSEC Log Samples page.
2. A. Chuvakin and K. Schmidt, Logging and Log Management: The Authoritative

Guide to Dealing with Syslog, Audit Logs, Alerts, and other IT “Noise” (Rockland,
MA: Syngress Publishing, 2012).

3. J. Turnbull, The Art of Monitoring, available at http://www.artofmonitoring.com.
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CHAPTER 5

Sensors in the Service Domain

This chapter discusses specific sensors in the service domain. Service sensors, includ‐
ing HTTP server logs and mail transfer logs, describe the activity of a particular ser‐
vice: who sent mail to whom, what URLs were accessed in the last five minutes,
activity that’s moderated through a particular service.

As we saw in the previous chapter, service domain data is log data. Where available,
logs are often preferable to other sources because they are generated by the affected
process, removing the interpretation and guesswork often needed with network data.
Service logs provide concrete information about events that, viewed from the net‐
work perspective, are hard to reconstruct.

Logs have a number of problems, the most important one being a management head‐
ache—in order to use a log, you have to know it exists and get access to it. In addi‐
tion, host-based logs come in a large number of formats, many of them poorly
documented. At the risk of a sweeping generalization, the overwhelming majority of
logs are designed for debugging and troubleshooting individual hosts, not for evalu‐
ating security across networks. Where possible, you’ll often need to reconfigure them
to include more security-relevant information, possibly needing to write your own
aggregation programs. Finally, logs are a target; attackers will modify or disable log‐
ging if possible.

Logs complement network data. Network data is good at finding blind spots, con‐
firming phenomena reported in logs and identifying things that the logs won’t pick
up. An effective security system combines both: network data for a broad scope, ser‐
vice logs for fine detail.

The remainder of this chapter is focused on data from a number of host logs, includ‐
ing system logfiles. We begin by discussing several varieties of log data and preferable
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message formats. We then discuss specific host and service logs HTTP server log for‐
mats, email log formats, and Unix system logs.

Representative Logfile Formats
This section discusses common logfile formats, including ELF and CLF, the standard
log formats for HTML messages. The formats discussed here are customizable, and I
will provide guidelines for improving the log messages in order to provide more
security-relevant information.

HTTP: CLF and ELF
HTTP is the modern internet’s reason for existence, and since its development in
1991, it has metamorphosed from a simple library protocol into the internet’s glue.
Applications where formerly a developer would have implemented a new service are
now routinely offloaded to HTTP and REST APIs.

HTTP is a challenging service to nail down. The core is incredibly simple, but any
modern web browsing session involves combining HTTP, HTML, and JavaScript to
create ad hoc clients of immense complexity. In this section, we briefly discuss the
core components of HTTP with a focus on the analytical aspects.

HTTP is fundamentally a very simple file access service. To understand how simple it
is today, try the exercise in Example 5-1 using netcat. netcat (which can also be
invoked as nc, perhaps because administrators found it so useful that they wanted to
make it easy to invoke) is a flexible network port access tool that can be used to
directly send information to ports. It is an ideal tool for quickly bashing together cli‐
ents with minimal scripting.

Example 5-1. Accessing an HTTP server using the command line

host$ echo 'GET /' | nc www.google.com 80 > google.html

Executing the command in this example should produce a valid HTML file. In its
simplest, most unadorned form, an HTTP session consists of opening up a connec‐
tion, passing a method and a URI, and receiving a file in return.

HTTP is simple enough to be run at the command line by hand if need be—however,
that also means that an enormous amount of functionality is handed over to optional
headers. When dealing with HTTP logs, the primary challenge is deciding which
headers to include and which to ignore. If you try the very simple command in
Example 5-1 on other servers, you’ll find it tends to hang—without additional infor‐
mation such as the Host or User-Agent, the server will wait.
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HTTP Headers Worth Noting
There are well over a hundred unique HTTP headers, tracked in RFC 4229. Of these,
a limited number are particularly critical to track:

Cookie

The Cookie header describes the contents of HTTP cookies sent by the client to
the server.

Host

The Host header defines the name of the host that the client is contacting. This is
critical when dealing with virtually hosted HTTP servers—that is, multiple
servers at the same IP address differentiated by their domain name.

Referer

The Referer (sic) header includes the URL of the web page containing the link
that initiated this request.

User-Agent

The User-Agent header provides information on the HTTP client, generally the
type of client and the build.

There are two standards for HTTP log data: Common Log Format (CLF) and Exten‐
ded Log Format (ELF). Most HTTP log generators (such as Apache’s mod_log) pro‐
vide extensive configuration options.

CLF is a single-line logging format developed by the National Center for Supercom‐
puting Applications (NCSA) for the original HTTP server; the W3C provides a mini‐
mal definition of the standard. A CLF event is defined as a seven-value single-line
record in the following format:

remotehost rfc931 authuser [date] "request" status bytes

Where remotehost is the IP name or address of the remote host, rfc931 is the
remote login account name of the user, authuser is the user’s authenticated name,
date is the date and time of the request, request is the request, status is the HTTP
status code, and bytes is the number of bytes.

Pure CLF has several eccentricities that can make parsing problematic. The rfc931
and authuser fields are effectively artifacts; in the vast majority of CLF records, these
fields will be set to –. The actual format of the date value is unspecified and can vary
between different HTTP server implementations.

A common modification of CLF is Combined Log Format. The Combined Log Format
adds two additional fields to CLF: the HTTP Referer field and the User-Agent
string.
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ELF is an expandable columnar format that has largely been confined to Microsoft’s
Internet Information Server (IIS), although tools such as Bluecoat also use it for log‐
ging. As with CLF, the W3C maintains the standard on its website.

An ELF file consists of a sequence of directives followed by a sequence of entries.
Directives are used to define attributes common to the entries, such as the date of all
entries (the Date directive), and the fields in the entry (the Fields directive). Each
entry in ELF is a single HTTP request, and the fields that are defined by the directive
are included in that entry.

ELF fields come in one of three forms: identifier, prefix-identifier, or prefix(header).
The prefix is a one- or two-character string that defines the direction the information
took (c for client, s for server, r for remote). The identifier describes the contents of
the field, and the prefix(header) value includes the corresponding HTTP header. For
example, cs-method is in the prefix-identifier format and describes the method sent
from client to server, while time is a plain identifier denoting the time at which the
session ended.

Example 5-2 shows simple outputs from CLF, Combined Log Format, and ELF. Each
event is a single line.

Example 5-2. Examples of CLF and ELF

#CLF
192.168.1.1 - - [2012/Oct/11 12:03:45 -0700] "GET /index.html" 200
1294

# Combined Log Format
192.168.1.1 - - [2012/Oct/11 12:03:45 -0700] "GET /index.html" 200 1294
"http://www.example.com/link.html" "Mozilla/4.08 [en] (Win98; I ;Nav)"

#ELF
#Version: 1.0
#Date: 2012/Oct/11 00:00:00
#Fields: time c-ip cs-method cs-uri
12:03:45 192.168.1.1 GET /index.html

Most HTTP logs are some form of CLF output. Although ELF is an expandable for‐
mat, I find the need to carry the header around problematic in that I don’t expect to
change formats that much, and would rather that individual log records be interpret‐
able without this information. Based on principles I discussed earlier, here is how I
modify CLF records:

1. Remove the rfc931 and authuser fields. These fields are artifacts and waste
space.
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2. Convert the date to epoch time and represent it as a numeric string. In addition
to my general disdain for text over numeric representations, time representations
have never been standardized in HTTP logfiles. You’re better off moving to a
numeric format to ignore the whims of the server.

3. Incorporate the server IP address, the source port, and the destination port. I
expect to move the logfiles to a central location for analysis, so I need the server
address to differentiate them. This gets me closer to a five-tuple that I can corre‐
late with other data.

4. Add the duration of the event, again to help with timing correlation.
5. Add the host header. In case I’m dealing with virtual hosts, this also helps me

identify systems that contact the server without using DNS as a moderator.

Creating Logfiles
Log configuration in Apache is handled via the mod_log_config module, which pro‐
vides the ability to express logs using a sequence of string macros. For example, to
express the default CLF format, you specify it as:

LogFormat "%h %l %u %t \"%r\" %>s %b"

Combined Log Format is expressed as:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""

This extended format contains the hostname, local IP address, server port, epoch
time, request string, request status, response size, response time, Referer, User-
Agent string, and host from the request:

LogFormat "%h %A %p %{msec}t \"%r\" %>s %b %T \"%{Referer}i\"
  \"${User-Agent}i\" \"${Host}i\""

Logging in nginx is controlled with HttpLogModule, which uses a similar log_format
directive. To configure CLF, specify it with:

log_format clf $remote_addr - $remote_user [$time_local] "$request"
 $status $body_bytes_sent;

Combined Log Format is defined as follows:

log_format combined $remote_addr - $remote_user [$time_local] "$request"
 $status $body_bytes_sent "$http_referer" "$http_user_agent";

My extended format is defined as:

log_format extended $server_addr $remote_addr $remote_port $msec
 "$request$" $status $body_bytes_sent $request_time $http_referer
 $http_user_agent $http_host
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Simple Mail Transfer Protocol (SMTP)
SMTP log messages vary by the mail transfer agent (MTA) used and are highly con‐
figurable. In this section, we discuss two log formats that are representative of the
major Unix and Windows families: sendmail and Microsoft Exchange.

We focus on logging the transfer of email messages. The logging tools for these appli‐
cations provide an enormous amount of information about the server’s internal sta‐
tus, connection attempts, and other data that, while enormously valuable, requires a
book of its own.

Sendmail
Sendmail moderates mail exchange through syslog, and consequently is capable of
sending an enormous number of informational messages besides the actual email
transaction. For our purposes, we are concerned with two classes of log messages:
messages describing connections to and from the mail server, and messages describ‐
ing actual mail delivery.

By default, sendmail will send messages to /var/maillog, although the logging infor‐
mation it sends is controlled by sendmail’s internal logging level. The logging level
ranges from 1 to 96; a log level of n logs all messages of severity 1 to n. Notable log
levels include 9 (all message deliveries logged), 10 (inbound connections logged), 12
(outbound connections logged), and 14 (connection refusals logged). Of note is that
anything above log level 8 is considered an informational log in syslog, and anything
above 11 a debug log message.

A sendmail log line consists of five fixed values, followed by a list of one or more
equates:

<date> <host> sendmail[<pid>]: <qid>: <equates>

where <date> is the date, <host> is the name of the host, sendmail is a literal string,
<pid> is the sendmail process ID, and <qid> is an internal queue ID used to uniquely
identify messages. Sendmail sends at least two log messages when sending an email
message, and the only way to group those messages together is through the qid.
Equates are descriptive parameters given in the form <key>=<value>. Sendmail can
send a number of potential equates, listed in Table 5-1 for messages.

Table 5-1. Relevant sendmail equates

Equate Description

arg1 Current sendmail implementations enable internal filtering using rulesets; arg1 is the argument passed to
the ruleset.

from The from address of the envelope.

msgid The message ID of the email.
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Equate Description

quarantine If sendmail quarantines a mail, this is the reason it was held.

reject If sendmail rejects a mail, this is the reason for rejection.

relay This is the name and address of the host that sent the message; in recipient lines, it’s the host that sent it,
and in sender lines, the host that received it.

ruleset This is the ruleset that processed the message, and provides the justification for rejecting, quarantining, or
sending the message.

stat The status of a message’s delivery.

to The email address of a target; multiple to equates can appear in the same line.

For every email message received, sendmail generates at least two log lines. The first
line is the receipt line, and describes the message’s point of origin. The final line, the
sender line, describes the disposition of the mail, such as whether it was sent, quaran‐
tined, rejected, or bounced.

Sendmail will take one of four basic actions with a message: reject it, quarantine it,
bounce it, or send it. Rejection is implemented by message filtering and is used for
spam filtering; a rejected message is dropped. Quarantined messages are moved off
the queue to a separate area for further review. A bounce means the mail was not sent
to the target, and results in a nondelivery report being sent back to the origin.

Managing Email Rules and Filtering
Email traffic analysis is complicated, largely because email is attacked constantly (via
spam), and there’s a constantly escalating war between spammers and defenders. Even
in a relatively small enterprise, it’s easy to build a complex defensive infrastructure
with relatively little work. In addition to the spam and defensive issues, email oper‐
ates in its own little world—the IP addresses logged by email infrastructure are pretty
much exclusively used by the email infrastructure.

As usual, the first step in email instrumentation is figuring out how email is routed. Is
there some kind of dedicated antispam hardware at the gateway, such as a Barracuda
or an IronPort box? How many SMTP servers are there, and how do they connect to
the actual email servers (POP, IMAP, Exchange)? Figure out where a mail message
will be sent if it’s correctly routed, quarantined, rejected, or bounced. If webmail is
available, figure out where it actually is; where is the webmail server, what’s the route
to SMTP, etc.

Once you’ve identified the hardware, figure out what blocking is going on. Blocking
techniques include black-box sources (such as AV or IronPort’s reputation service),
public blacklists such as SpamHaus’s SBL, and internal rules. Each requires a little dif‐
ferent treatment.

Since black-box detection systems are basically opaque, it’s important to track what
version of the system’s knowledge base is being used and when the system is updated;
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verifying updates with network monitoring is a good idea. If you have multiple
instances of the same detector, make sure that their updates are coordinated.

Most blacklist services are publicly accessible. Knowing which organization runs the
blacklist, the frequency of its updates, and the delivery mechanisms are all good
things. As with AV, verifying communications (particularly if its a DNS block list) is
also a good thing.

Internal monitoring should be identified, audited, and kept under version control.
Because these are the rules that you have the most control over, it’s also a good idea to
compare them to the rest of your blocking infrastructure and see what can be pushed
out of the email system. If you’re blocking a particular address, for example, you
might be better off blocking at the router or the firewall.

Email works within its own universe, and the overwhelming majority of IP addresses
recorded in email logs are the addresses of other email servers. To that end, while
SMTP tracking is important, it’s often the case that to fully figure out what happened
with a message, you also need to track the IMAP or POP3 servers.

Microsoft Exchange: Message Tracking Logs
Exchange has one master log format for handling messages, the Message Tracking
Log (MTL). Table 5-2 describes the fields.

Table 5-2. MTL fields

Field name Description

date-time The ISO 8601 representation of the date and time.

client-ip The IP address of the host that submitted the message to the server.

client-hostname The client_ip’s fully qualified domain name (FQDN).

server-ip The IP address of the server.

server-hostname The server_ip’s FQDN.

source-context Optional information about the source, such as an identifier for the transport agent.

connector-id The name of the connector.

source Exchange enumerates a number of source identities for defining the origin of a message,
such as an inbox rule, a transport agent, or DNS. The source field will contain this
identity.

event-id The event type. This is also an enumerable quantity, and includes a number of status
messages about how the message was handled.

internal-message-id An internal integer identifier used by Exchange to differentiate messages. The ID is not
shared between Exchange servers, so if a message is passed around, this value will
change.

message-id The standard SMTP message ID. Exchange will create one if the message does not already
have one.
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Field name Description

network-message-id This is a message ID like internal-message-id except that it is shared across
copies of the message and created when a message is cloned or duplicated, such as when
it’s sent to a distribution list.

recipient-address The addresses of the recipients; this is a semicolon-delimited list of names.

recipient-status A per-recipient status code indicating how each recipient was handled.

total-bytes The total size of the message in bytes.

recipient-count The size of recipient-address in terms of number of recipients.

related-recipient-
address

Certain Exchange events (such as redirection) will result in additional recipients being
added to the list; those addresses are added here.

reference This is message-specific information; the contents are a function of the type of message
(defined in event-id).

message-subject The subject found in the Subject: header.

sender-address The sender, as specified in the Sender: header; if Sender: is absent, From: is used
instead.

return-path The return email address, as specified in Mail From:.

message-info Event type–dependent message information.

directionality The direction of the message; an enumerable quantity.

tenant-id No longer used.

original-client-ip The IP address of the client.

original-server-ip The IP address of the server.

custom-data Additional data dependent on the type of event.

Additional Useful Logfiles
A number of additional useful services may or may not be present on your network,
and as part of mapping and situational awareness, you should identify them and
determine what logging is possible. In this section, I provide a small list of the serv‐
ices I consider most critical to keep track of.

These are largely enterprise services, and any discussion on the proper generation
and configuration of logs will be a function of the application’s configuration. In addi‐
tion, for several of these services, you may need to reconfigure them to log the data
you need. Many of these services will provide logging through syslog or the Windows
Event Manager.

Staged Logging
Turning on all the logging mentioned here is going to drown analysts in a lot of data,
which is primarily going to be used for rare, high-risk events. Consequently, when
developing a logging plan, you should consider policies and processes for increasing
or decreasing targeted logging as needed.
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1 Keep track of systems that do file transfers, and internal search engines. Both will be false positives.

The process of staging up or staging down logging will be a function of events or a
criticality. In the former case, you may increase logging because a particular event or
trigger has raised concerns—for example, if a new exploit is in the wild, you may
stage up logging for services vulnerable to that exploit. In the latter case, you may
always keep high-information logging for critical services—monitoring fileshares for
your IP, for example.

LDAP and Directory Services
If you have any form of active directory or other user management (Microsoft Active
Directory, OpenLDAP), this information should be available. Directory services will
generally consist of a database of users, events that update the database itself (addi‐
tion, removal, or updates of users), as well as login and logoff events.

Consider collecting a complete, periodic dump of the directory and keeping it some‐
where where the ops and analysis teams can get their hands on it quickly, such as
storing it in Redis. You can expect that analysts will regularly access this data for con‐
text.

Logon and logoff data should be sent as a low-priority stream directly to your main
console. It is useful for annotating where users are in the system at any time, and will
often be cross-referenced with other actions.

File Transfer, Storage, and Databases
Besides HTTP, file transfer and file storage includes services such as SharePoint, NFS
Mounts, FTP, anything using SMB, any code repositories (Git, GitHub, GitLab,
SourceSafe, CVS, SVN), as well as web-based services such as Confluence. In the case
of these services, you are most interested in monitoring users and times—who
accessed the system, when they accessed the system, and how much they accessed.

Volumes are a good, if coarse, indicator of file transfer. A good companion metric is
to check for locality anomalies (see Chapter 14). Fileshares inside of an enterprise are
accessed by people who have a job—the majority of them are going to visit the same
files over and repeatedly, working with a limited subset.1

Databases, including SQL servers such as Oracle, Postgres, and MySQL and NoSQL
systems such as HDFS, should be tracked for data loss prevention and bulk transfer,
just as with the file transfer systems. In addition, if possible, log the queries and check
for anomalous query strings. In an enterprise environment, you should expect to see
users rarely interacting with the console; rather, they should be using predictable
sequences of SQL statements run through a form. Distance metrics (see Chapter 12
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for more information) can be used to match these strings to look for anomalous
queries such as a SELECT *.

Logfile Transport: Transfers, Syslog, and Message Queues
Host logs can be transferred off their hosts in a number of ways, depending on how
the logs are generated and on the capabilities of the operating system. The most com‐
mon approaches involve using regular file transfers or the syslog protocol. A newer
approach uses message queues to transport log information.

Transfer and Logfile Rotation
Most logging applications write to a rotating logfile (see, for example, the rotated sys‐
tem logs in “Accessing and Manipulating Logfiles” on page 65). In these cases, the log‐
file will be closed and archived after a fixed period and a new file will be started. Once
the file is closed, it can be copied over to a different location to support analytics.

File transfer is simple. It can be implemented using SSH or any other copying proto‐
col. The major headache is ensuring that the files are actually complete when copied;
the rotation period for the file effectively dictates your response time. For example, if
a file is rotated every 24 hours, then you will, on average, have to wait a day to get
hold of the latest events.

Syslog
The grandfather of systematic system logging utilities is syslog, a standard approach
to logging originally developed for Unix systems that now comprises a standard, a
protocol, and a general framework for discussing logging messages. Syslog defines a
fixed message format and enables messages to be sent to logger daemons that might
reside on the host or be remotely located.

All syslog messages contain a time, a facility, a severity, and a text message. Tables 5-3
and 5-4 describe the facilities and priorities encoded in the syslog protocol. As
Table 5-3 shows, the facilities referred to by syslog comprise a variety of fundamental
systems (some of them largely obsolete). Of more concern is what facilities are not
covered—DNS and HTTP, for example. The priorities (in Table 5-4) are generally
more germane, as the vocabulary for their severity has entered into common
parlance.
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Table 5-3. Syslog facilities

Value Meaning
0 Kernel

1 User level

2 Mail

3 System daemons

4 Security/authorization

5 syslogd

6 Line printer

7 Network news

8 UUCP

9 Clock daemon

10 Security/authorization

11 ftpd

12 ntpd

13 Log audit

14 Log alert

15 Clock daemon

16–23 Reserved for local use

Table 5-4. Syslog priorities

Value Meaning
0 Emergency: system is unusable

1 Alert: action must be taken immediately

2 Critical: critical conditions

3 Error: error conditions

4 Warning: warning conditions

5 Notice: normal but significant condition

6 Informational: informational messages

7 Debug: debugging information

Syslog’s reference implementations are UDP-based, and the UDP standard results in
several constraints. Most importantly, UDP datagram length is constrained by the
MTU of the layer 2 protocol carrying the datagram, effectively imposing a hard limit
of about 1,450 characters on any syslog message. The syslog protocol itself specifies
that messages should be less than 1,024 characters, but this is erratically enforced,
while the UDP cutoff will affect long messages. In addition, syslog runs on top of
UDP, which means that when messages are dropped, they are lost forever.
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The easiest way to solve this problem is to use TCP-based syslog, which is imple‐
mented in the open source domain with tools such as syslog-ng and rsyslog. Both
of these tools provide TCP transport, as well as a number of other capabilities such as
database interfaces, the ability to rewrite messages en route, and selective transport of
syslog messages to different receivers. Windows does not support syslog natively, but
there exist a number of commercial applications that provide similar functionality.

CEF: Common Event Format
Syslog is a transport protocol—it doesn’t specify anything about the actual contents of
a message. A number of different organizations have attempted to develop interoper‐
ability standards for security applications, such as the Common Intrusion Detection
Framework (CIDF) and Intrusion Detection Message Exchange Format (IDMEF).
None of them have achieved serious industry acceptance.

What has been accepted widely is CEF. Originally developed by ArcSight (now part of
Hewlett-Packard) to provide sensor developers with a standard format in which to
send messages to their console, CEF is a record format that specifies events using a
numeric header and a set of key/value pairs. For example, a CEF message for an
attack from host 192.168.1.1 might look like this:

CEF:0|My Attack Detector|Test|1.0|1000|Attack|5|src=192.168.1.1

CEF is transport-agnostic, but the majority of CEF implementations use syslog as
their transport of choice. The actual specification and key/value assignments are
available from HP.

As of the new edition of this book, threat intelligence formats such as Structured
Threat Information eXchange (STIX) have gained traction. See Chapter 17 for more 
information.

Further Reading
1. M. O’Leary, Cyber Operations: Building, Defending, and Attacking Modern Com‐

puter Networks (New York: Apress, 2015).
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CHAPTER 6

Data and Sensors in the Host Domain

This chapter is concerned with the practical problem of collecting data from a host.
The host domain refers to any information that can be collected on the host without
the moderation of a service; this includes information about the processes running on
the host, the host’s filesystem, its configuration, and to some extent information that
overlaps the network and service domains.

Given the complexity of hosts, and the varieties of operating systems and configura‐
tions available, it is not possible to address all the information that can be collected
from hosts in a single book, let alone a chapter. Rather, the network analyst needs a
focused approach to determine what information is required to supplement the net‐
work data. For our purposes, this focused approach is comprised of four questions:

1. What hardware is behind this IP address?
2. How is it messing up my network?
3. Who owns this hardware?
4. Who do I yell at about it?

This chapter is predicated around figuring out how to answer those questions.
Unfortunately, this requires navigating a maze of complicated and proprietary config‐
uration data. Compared to service and network domain data, host domain data is all
over the place. Windows and Unix systems have radically different ideas of where to
keep this information, and even individual Unix variants can keep the same informa‐
tion in very different locations.

Note that host collection is intimately tied up with host configuration and inventory.
The wider the variety of hosts you manage, the larger the number of different config‐
urations that exist, the more legacy systems you have, the harder the problem of data
collection will be. Automated provisioning and management, especially if you’re navi‐
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gating over to a cloud-based infrastructure, will save you an enormous amount of
pain and effort. Host data collection is a last-mile problem in network security.

In order to address this problem, I have broken hosts into a collection of relevant data
buckets. Figure 6-1 shows how these buckets are interrelated, and how we will link
them together to answer questions. The remainder of this structure is broken into the
major data domains discussed previously.

A Host: From the Network’s View
Figure 6-1 shows a representation of the data I consider useful when talking about a
host. Throughout this chapter, I will refer to elements of this abstraction as buckets of
useful data—the information that I feel is most useful for security analysis that can be
extracted from this abstraction. In the following chapter, I will discuss a portfolio of
utilities that can extract this information from a host.

Figure 6-1. Host domain data

As Figure 6-1 shows, the host, in abstract, is composed of several discrete elements:

Network interfaces
The host communicates with the network through one or more network inter‐
faces. Modern hosts will have multiple interfaces, making them effectively mini-
routers: laptops have WiFi and wired interfaces, mobile devices will have cellular
radios and WiFi available.
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Host
For our purposes, the host information refers to any unique identifiers you have
for the host. This includes tags such as UUIDs, inventory management, users
who actively touch the host, etc.—any information that will help you identify
who is responsible for the host and what the host has done over time.

Filesystem
The files that make up the host. This is a list of all the files and their locations in
the filesystem, as well as potential indicators of tampering such as access times,
ownership, and hashes of file contents.

Process
The processes that are running on the host. This includes the host processes’ IDs,
their parent process IDs running back to the startup process, the ownership of
the processes, and the processes’ current state.

History
The history of a host is a log of all the commands that have been executed by a
host: the start time of every process, the end time, the command-line parameters,
and every command at the shell prompt.

The breakdown in Figure 6-1 is intended to model how a network analyst will gener‐
ally progress through a host. As network security people, we generally begin with a
network-based trigger—traffic. From the traffic, we attempt to get an identifier such
as the IP address. From the IP address, we can associate the IP/port combination
(hopefully) with a distinct process. From the process, we can figure out what is run‐
ning on the port, which tells us where to look on disk and who is responsible. This
information should all be available, on Unix systems, through common command-
line tools.

The Network Interfaces
Hosts communicate with a network through one or more network interfaces (NIs).
From the network’s vantage, an NI is a distinct set of addresses it forwards packets to
—the physical device is invisible to the network. From a host’s vantage, the NI is a
stream to which the host reads and writes information—the network addresses are an
attribute of that stream.

Note that an NI does not have to be a device, and it may only exist as a process. Loop‐
back addresses should not connect to the network, and most virtual machines will
create a virtual interface to communicate with their host.

There are two core tools for checking network processes on a host: ifconfig and
netstat. ifconfig provides information on the interfaces, netstat on the currently
used ports; there is a fair amount of functional overlap between the two.
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ifconfig, as the name implies, is actually a tool for configuring network interfaces.
ifconfig is old but omnipresent; most modern Unixes provide their own configura‐
tion and setup tools, including ip for Linux variants and networksetup on macOS.
The advantage of ifconfig is that it’s available on almost all Unix variants and will
provide you with an inventory of network interfaces and their status. Note that on
modern systems you can expect to have many more interfaces than you have devices.
Some of these are there for basic networking support (e.g., the loopback interface),
while others are set up for specialized services (virtual machines have virtual inter‐
faces, VPNs will have their own). The standard output from ifconfig is a block of
network interface controller information, an example of which is shown here:

en1: flags=8863 UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST mtu 1500
  ether fe:1c:29:33:f0:00
  inet6 fe80::407:d8a1:7085:f803 en1 prefixlen 64 secured scopeid 0x5
  inet 192.168.1.13 netmask 0xffffff00 broadcast 192.168.1.255
  nd6 options=201 PERFORMNUD,DAD
  media: autoselect
  status: active

In this example, the first field is the interface’s name. Each unique active network
interface on the system will have a unique name. Device names in Unix systems are
heavily encoded with different information about the interface type. Table 6-1 pro‐
vides a list of common interface names across different Unix flavors. Unfortunately,
there is no real registry or central source for device names—it’s a matter of conven‐
tion, and the same type of device can have radically different names even in different
versions of the same operating system.

Table 6-1. Useful device names

Name Description

en, eth Generic Ethernet interface names

p2p New Ethernet names on Linux systems

wlan, iw Wireless interfaces

lo Loopback interface

tun, utun VPN interfaces

ifconfig output will differ somewhat based on the version of the OS you’re using.
The preceding example is fairly standard for BSD variants (such as the macOS termi‐
nal I cribbed it from). You can expect to see variations that show packets transmitted
and received, and different address fields.

So, this brings up the other fields. Most of the information that ifconfig dumps is
addressing data—how the particular interface connects to a network. This is where
you can find the NIC addresses (which you should be able to see from network vant‐
age). In our example, you can see that the interface has three addresses: a 48-bit MAC
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address (ether), an IPv6 address (inet6), and an IPv4 addresses (inet). The addi‐
tional fields are for neighbor discovery (part of IPv6), and a description of the inter
face’s media (the type of device) and the current status (whether or not it’s active).

Over time, ifconfig output tends to get messier—in a Unix system, interfaces are
often added, rarely deleted. Consequently, when you look at a long-standing system,
you’re likely to see multiple legacy interfaces. Also, keep in mind that ifconfig is an
interface on top of the actual configuration system used by your Unix variant.

Whereas ifconfig is about what the interfaces are, netstat is what about what the
interfaces are doing. The best way to start with netstat is with a per-interface dump,
such as netstat -i:

$ netstat -i
Name  Mtu   Network       Address            Ipkts Ierrs    Opkts Oerrs  Coll
lo0   16384 <Link#1>                        166486     0   166486     0     0
lo0   16384 127           localhost         166486     -   166486     -     -
lo0   16384 localhost   ::1                 166486     -   166486     -     -
lo0   16384 localhost   fe80:1::1           166486     -   166486     -     -
en0   1500  <Link#4>    10:dd:b1:ab:cc:fb        0     0        0     0     0

As with ifconfig, outputs will be operating system–specific, but the basic breakdown
here illustrates what kind of information nestat will generally dump.

As this example shows, there’s some overlap with the information from ifconfig—
each interface is listed by its separate addresses, and the device name is present. In
addition, this netstat implementation shows traffic to the various interfaces—in this
case incoming and outgoing packets, as well as errors.

To find the status of individual sockets, use netstat -a. This yields output like the
following:

$ netstat -a
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)
tcp4       0      0  192.168.1.13.62856     iad30s08-in-f14..https ESTABLISHED
tcp4       0      0  192.168.1.13.62676     50.57.31.206.http      FIN_WAIT_2
tcp4       0      0  192.168.1.13.62461     cdn-208-111-161-.https FIN_WAIT_2
tcp4       0      0  192.168.1.13.62381     75.98.58.181.https     FIN_WAIT_2

The output from this -a dump is a list of active sockets; -a should dump all active
sockets, as opposed to just the ones associated with the current user. The fields are the
protocol (Proto) queue sizes (bytes in the send and receive queues), the addresses,
and the state. Note that the foreign addresses are actually FQDNs—netstat versions
will automatically look up domain names and port numbers. This behavior is, in my
experience, largely useless—the process takes time, and the port/service assignments
are usually less useful than the straight port numbers. Look for an option to avoid
looking up names (usually -n) and use that instead.
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Note the (state) column. For TCP sockets, this column will correspond to the state of
the TCP state machine (see Figure 13-3 for further information). Of note for us are
sockets in the LISTEN state, which are waiting for connections from the outside
world. netstat output will wildcard IP addresses in the output for servers, indicating
that the socket will accept incoming connections from anywhere:

$netstat -an | grep LISTEN
tcp4       0      0  *.8000                 *.*                    LISTEN
tcp6       0      0  *.53                   *.*                    LISTEN
tcp4       0      0  *.53                   *.*                    LISTEN
tcp4       0      0  *.445                  *.*                    LISTEN
tcp6       0      0  *.445                  *.*                    LISTEN
tcp4       0      0  127.0.0.1.8021         *.*                    LISTEN

The *.8000 here means that the TCP socket on port 8000 will accept connections
from any working interface pointing to the host—in this case that includes 127.0.0.1
(localhost) and 192.168.1.13 (the address for the host). Conversely, the 127.0.0.1.8021
listener will only accept connections through the localhost interface.

Note that UDP is stateless—if there is an open UDP port on your system, it will be
listed in the netstat output, but it won’t have a value in the LISTEN column. A UDP
listener, however, should list . in the Foreign Address column.

Once you have a port, the next question is what process is running it and who owns
the process. Depending on your version of netstat, there may be a -o or -p com‐
mand that will provide this information. Alternatively (as in macOS), you can find
this information using lsof -i; lsof is a command that lists open files, and inter‐
faces in Unix’s “everything is a file” philosophy, are files. lsof -i lists open interfaces,
providing information like in this dump:

$ lsof -i | grep 8000
python2.7 51121 mcollins 3u IPv4 0x7c0d6f5bfcc7ff3b 0t0 TCP *:8000 (LISTEN)

The Host: Tracking Identity
The host itself refers to the process that ties network interfaces to disks, files, mem‐
ory, and users. For the network analyst, the host is a handle all the other data hangs
on. Practically speaking, what we really need when we refer to a “host” is a mecha‐
nism to distinguish hosts from each other. Since any serious enterprise network runs
on top of an ocean of virtual images, old handles for identity such as MAC IDs have
basically become useless. Instead, I think it’s preferable to grasp the nettle and deal
straight with universally unique identifiers (UUIDs).
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1 GUID in Microsoftian.

A UUID1 is a 128-bit integer intended to serve as a distinct and unique identifier for
the host. UUIDs are an old idea, and there are consequently a number of different
techniques for generating them. The intent of the UUID is to remain unique
throughout the lifetime of a host, regardless of changes in the name, the IP address,
or any other shift. Implementation of this uniqueness is a mechanical task, and differ‐
ent manufacturers address the problem differently.

RFC 4122 specifies five different UUID versions:

• Version 1 combines the 48-bit MAC address, the time of creation (60 bits), and a
14-bit click sequence value. This version will generate similar UUIDs on the
same host, and encodes the MAC address. Encoding the MAC address is, in my
opinion, of limited value with multi-interface hosts.

• Version 2 is intended to provide a more secure version of the Version 1 UUID,
but in practice isn’t implemented. Most UUID generators will skip this version.

• Versions 3 and 5 generate a UUID by hashing a namespace (examples include
DNS, URLs, OID, and X.500) and a name. The intent is that the UUID should be
consistent for hosts with the same name. Version 3 uses a truncated MD5, Ver‐
sion 5 uses a truncated SHA1.

• Version 4 generates the UUID randomly.

The 128-bit UUID has structure, and you will often see UUIDs (particularly Micro‐
soft and Apple ones) provided in an XXXXXXXX-XXXX-AXXX-BXXX-XXXXXXXXXXXX for‐
mat, where each X is a hexadecimal digit. This format follows the structure of the
original Version 1 UUID, although the separators are meaningless outside of Version
1—with one notable exception. UUIDs encode their version in the digits specified as
A and B in this format. A is the UUID version, and the high three bits of B are the
variant of that version. B should always be 8 or higher.

For Linux installations, the UUID is usually found in /etc/machine_id/; BSD may
use /etc/hostid, but you should check the installation. UUIDs are generated on instal‐
lation; an important caveat when working with virtual images is that duplicates of the
same image will have the same UUID. macOS provides a hardware-generated UUID.
You can find it in the Hardware Overview panel of the System Information app, or at
the command line by invoking the system_profiler command; it’s in the SPHard
wareDataType field.

All of this is convention, and prone to operating system, platform, and designer fiat.
For analysis, the point of the UUID is to provide you with a universal handle—a way
of connecting other inventory information while things that might change (software
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2 Unless you control an attacker’s account, in which case, good for you!

configuration, domain name, versions) shift around you. However, unless the UUID
is tied to other data sources, the UUID serves no purpose.

Which brings us to the other problem. What you really need is a way to tie all of this
information into an inventory. What you really want is a way to go from network
observable (e.g., IP address) to UUID to software profile. This type of information is
generally best handled by a configuration management database (CMDB); even if all
you have is a spreadsheet containing UUIDs, operating systems, and IP addresses, it
will save you a lot of pain later on.

Processes
A host’s process information refers to the processes that are running on the host at
sample time. As with most information in the host domain, process information is
most useful for ascertaining damage done by changes to system state. If new pro‐
cesses appear, or standard processes (such as AV) stop running, that’s an indication of
anomalous behavior. If a system is under DDoS attack, then processes will react to
that.

Structure
On Unix and Windows systems (considering macOS to be a Unix variant), processes
are organized in a tree descending from a root processes. Every process posseses a
unique process ID (PID), a numeric ID identifying the process during the time of
execution. PIDs are assigned sequentially, beginning with an ID of 0 (for the system
idle process in Windows) or 1 (for most Unixes). Every process except the root pro‐
cess has a parent process ID (PPID), which is the PID of the process that spawned it.
By using the PID/PPID relationships, you can plot out processes as a tree and trace
each back to its origin at the root process.

On Unix systems, the basic application for checking process status is ps. ps is a
command-line utility that prints a list of current processes controlled by the invoking
user’s UID at the time of invocation. This is, on any system, the smallest and least
interesting set of processes to look at.2

An example ps dump for a macOS system is shown here (formatted to fit the page):

$ ps -faxcel | head -10
  UID   PID  PPID   C STIME   TTY           TIME CMD
    0     1     0   0 16Feb17 ??        46:46.47 launchd
    0    51     1   0 16Feb17 ??         1:01.35 syslogd
    0    52     1   0 16Feb17 ??         2:18.75 UserEventAgent
    0    54     1   0 16Feb17 ??         0:56.90 uninstalld
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    0    55     1   0 16Feb17 ??         0:08.61 kextd
    0    56     1   0 16Feb17 ??         2:04.08 fseventsd
   55    61     1   0 16Feb17 ??         0:03.61 appleeventsd
    0    62     1   0 16Feb17 ??         0:07.72 configd
    0    63     1   0 16Feb17 ??         0:17.60 powerd

        F PRI NI       SZ    RSS WCHAN     S             ADDR                  0
     4004  37  0  2537628  13372 -      Ss
     4004   4  0  2517212   1232 -      Ss                  0                  0
     4004  37  0  2547704  40188 -      Ss                  0
     4004  20  0  2506256   5256 -      Ss                  0
     4004  37  0  2546132  13244 -      Ss                  0
  1004004  50  0  2520544   6244 -      Ss                  0
     4004   4  0  2542188  11320 -      Ss                  0
     400c  37  0  2545392  13288 -      Ss                  0
     4004  37  0  2540644   8016 -      Ss

Table 6-2 summarizes the type of information that I generally find useful when moni‐
toring processes.

Table 6-2. Useful process fields

Name Type ps options Notes
PID Integer The process ID for a process

PPID Integer -f The parent process ID of a process; i.e., the PID of the process
that spawned it

UID Integer -f The ID of the user who spawned the process

Command String The name of the process

Path String -E The path of the process’s executable

Memory Integer(s) -l The memory used by the application

CPU Numeric -O cpu The amount of CPU consumed

Terminal String -f The ID of the terminal the process is attached to

Start Time Date -f The time the process was invoked

Because the default ps invocation is so limited, you will invariably invoke it with a
number of switches. The major switches are listed in Table 6-2, but be wary that ps
options are platform-specific. For that reason, I’ll talk about the provided options in
more depth, and the corresponding fields.

PID and PPID
The PID is the most basic identifier available for a process. Operating systems orga‐
nize processes into a tree, with a root process spawning children, those children
spawning children, and so on. Process IDs are assigned linearly, in increasing order,
but will loop if you reach whatever the maximum PID is for the operating system.
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Consequently, it’s possible but rare that you’ll see a process with a PID lower than its 
parent process ID (PPID).

During bootup, systems spawn an enormous number of processes for I/O, disk man‐
agement, and other housekeeping tasks. As a result of this, you can expect any system
to run a number of long-lived processes in the lower ranks.

For the network security analyst, particular attention should be paid to network-
facing processes (such as servers) and their spawn patterns. If a long-lived server pro‐
cess recently respawned, why did this happen? What are the children of network-
facing processes? What processes are spawning command-line interfaces, shells, or
other administrative tools?

UID
A process’s UID is the numeric ID assigned to the user owning the process. Classi‐
cally, Unix systems maintain this information in /etc/passwd, and depending on con‐
figuration issues, it may still be possible to find that information there. However, odds
are that’s not going to be less valuable on any modern system. If you’re running a sys‐
tem using LDAP for management, you can find the UID using ldapsearch; for
macOS, it’s currently managed by id.

For the network security analyst, UID questions often involve going back to identify‐
ing the history of a particular user. Is this user expected to administer the process? (I
prefer to see daemons run by dedicated, chrooted daemon accounts, not individual
users.) Is the user new?

Command and path
The command and the path refer to the command-line options used to invoke the
process, and the path to the process’s executable. This information is particularly crit‐
ical for checking the links between a process, the filesystem, and the users.

For the network security analyst, command and path questions often involve check‐
ing to see if any unusual or unexpected commands have been called. Unusual com‐
mands may include evidence of an anomalous location for the command—if a
command that is normally located in /usr/bin has been executed from a local direc‐
tory, for example. It may also include evidence of a command that the user does not
normally execute based on past command history. Particular attention should be paid
to administrative and network commands—anything that can access a socket or
reconfigure a host.

Memory, CPU, terminal, and start time
Memory and CPU refer to the amount of memory and CPU resources consumed by
a process, respectively. Keeping track of this information can help an analyst identify
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whether the process is going berserk (e.g., due to trying to process a DDoS attack).
The terminal information refers to what terminal a process is connected to, and the
start time is when the process started.

Alternatives to ps and Alternative Systems
ps is the go-to utility because it’s command-line, bounded, and omnipresent—even if
the individual system variants can be frustrating. Windows PowerShell even includes
a ps command. However, there are a couple of other utilities of note.

top is the other major process sampling tool for Unix systems. top is a display rather
than a sample—it provides a continuously updated sample that the operator can
interact with. That said, top isn’t really a sampling tool—it’s supposed to be attached
to a terminal and monitored continuously.

pstree is a handy Unix utility that displays the output of ps as a tree structure, explic‐
itly visualizing the implicit relationship between PID and PPID.

On Windows systems, the go-to command for listing processes is tasklist.

For actually managing systems, however, you should be familiar with process moni‐
toring tools such as nagios. 

Filesystem
File information refers to the files on disk, and includes the following information:

• Path—the path to the file (i.e., the directory containing the file)
• Filename—the name of the file
• Creation time
• Modification time
• Size
• Hash—an MD5 hash of the file’s contents
• UID—the ID of the owner of the file
• Permissions—the permissions on the file

Filesystem monitoring is usually about change notification, in particular whether
protected system files have changed for no discernible reason (e.g., outside of system
updates or, in some cases, ever).

Fallback for file comparisons: check the creation time, check the modification time,
check the file size, check the permissions, check a hash. Hashing, in particular, is criti‐
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cal for working with threat intelligence, and given the diversity of indicators of com‐
promise (IOC) information out there, you should expect to have a bunch of hashes
on hand.

A hash is a mathematical function that converts data of arbitrary size into a fixed-
length representation. This fixed-length representation is ideally much smaller—the
ones we’ll talk about here are intended to reduce files from megabytes down to doz‐
ens of bytes.

There’s an extensive taxonomy of hashes with different attributes, so the cryptographic
hashes we’re interested in here are just a subcategory with specific properties. In par‐
ticular, these hashes show an “avalanche effect”: a small change in the data hashed
results in a large change in the hash value. The point of using a secure hash, for file‐
systems, is to make tampering difficult—an attacker trying to alter a file without
changing the hash will have to spend a lot of effort to do so undetectably.

The basic hash algorithms to know of are MD5, SHA-1, and SHA-256. On most sys‐
tems you’ll have command-line tools available to invoke them. Almost all IOCs are
going to use one of these three, and you can always call them straight from Python
(with hashlib, specifically). Of the three, MD5 is the shortest and SHA-256 the
longest, and MD5 is the least and SHA-256 the most secure.

When Is a Hash More Secure?
Conventional wisdom is that MD5 is an insecure hash compared to, say, SHA-256;
conventional wisdom is correct, but it’s helpful to understand why this is an issue.
Hashes are mathematical functions applied to a large input to produce a shorter,
fixed-length output. Secure hashes are a class of hashes (there are many classes) with
a specific goal: to make the likelihood of a collision (two inputs yielding the same out‐
put) low. The lower limit for “low” is a function of the hash’s length. For example, in
MD5, the attacker should have to explore on the order of 2128 values to find a
collision.

Given two hash functions, the more secure one is the one that requires the attacker to
search through a larger space. So, if the hash function provides a smaller space, it’s
less secure than one with a larger space, all other factors being equal. In the case of
MD5, it’s not the case that all factors are equal—collision attacks that effectively
reduce the size of the MD5 space have been known since 2005.3 If you want some
practical examples of this, look at the HashClash project.

The practical impact of this is as follows: if you use an MD5 hash, it’s feasible for
someone with modern resources to generate a collision for the hashed file in a couple
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4 See http://tcrn.ch/2mbEOdR

of seconds. If collision security is a priority, then you don’t use MD5 and you don’t
trust MD5s. If what you’re looking for is a quick-and-dirty way to compare two files,
MD5 is tolerable, but the performance benefit you get from using an MD5 is less
justifiable.

This is a race against time. New attacks are found against hashing algorithms all the
time—as I am writing this entry, feasible collisions for SHA-1 have now entered the
mainstream as well.4

Historical Data: Commands and Logins
When tracking lateral movement, you will often cross-reference network activity with
user activity—specifically, actions like when a particular user connected to a particu‐
lar service, when users logged on to the same system multiple times, or when users
logged on to multiple services. This requires keeping track of the history of a server.

We’re really talking about two separate pieces of information here: user logins and
command history.

On Unix systems, the basic information on user logins and logouts is maintained in
three files: utmp, wtmp, and btmp. utmp maintains current system status—uptime,
logged-in users, and the like. wtmp is a historical record, and btmp is a list of failed
logins. The standard interface to this file is the lastlog command, which when
invoked will read the contents of the file and dump a chronological list of logons.

As for command history, that’s basically maintained only in the individual user direc‐
tories. This is maintained in a _history file specific to the user’s shell (e.g., bash_his‐
tory, tcsh_history).

Directory Services and You
The way I’m talking about hosts in this chapter is very much focused on the idea of
data on the host; however, a reasonably well-managed modern network should be
using directory services for user management. If you are concerned about issues
involving user logins or multiple logins, check what your directory services say. Also,
and this is important to check out, see if an account is registered on the host that isn’t
present in the directory services.
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Other Data and Sensors: HIPS and AV
Host-based data collection can be simplified through the use of various endpoint col‐
lection tools and host-based agents. The granddaddy of these systems is the antivirus
(AV) systems, and the odds are good you’re running one of those right now.

A caveat as we discuss what these systems are: the end state of almost all security
companies is as a threat intelligence provider (more on this in Chapter 17). While
there are some open source tools in this domain (notably ClamAV), most tools for
data loss prevention, host intrusion prevention, and the like are proprietary. What
you are really buying is a subscription to a threat intelligence feed, moderated
through the tool.

Host intrusion prevention system (HIPS) is the general term for any system that moni‐
tors local host behavior and takes remedial action in the case of compromise or policy
violation. A HIPS is effectively a boosted form of AV system, the workhorse of host-
based defense. For the analyst, a HIPS is a new event feed focused on the endpoint—
the HIPS will provide events based on a combination of signatures and heuristics,
which it then feeds back into the console.

When considering HIPSs, keep track of the following issues:

• How deep into an endpoint can the HIPS go? With a HIPS, you’re looking for
something that will provide you with deeper information than you can quickly
cobble together with a script. Does the HIPS hook into OS calls? Does it monitor
memory, or is it just monitoring the filesystem?

• When considering that, note that these systems will have their own vulnerabili‐
ties and modify fundamental capabilities of your system. Disabling and manipu‐
lating AV has been a fundamental malware task for a very long time.

• How are updates delivered? In particular, will you have to deal with uneven
updates (e.g., where half your system gets signature updates on Monday and half
on Tuesday, so all of a sudden you get a spike in alerts on Monday afternoon)?

• How configurable is the HIPS? In particular, can you write custom signatures,
and can you turn off irrelevant signatures?

• What constraints can you impose on the system? Is the HIPS going to come
down on every violation like a meat-axe, or can you stage up or down detection?

• How does the HIPS differentiate assets? Is it going to provide its own ID? Can
you map it to UUIDs? Does the HIPS require you to individually identify each
asset?

• How much coverage will the HIPS provide? If you run a network consisting of
heterogeneous assets (some Macs, some PCs, the occasional BeBox…), you need
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to keep track of which systems are running the HIPS and which systems aren’t
supported.

Further Reading
1. For host-based analysis, the most fundamental resources are good books on sys‐

tem administration for the individual operating systems. These include the Apple
Pro training series (published by PeachPit), Microsoft’s training manuals (from
Microsoft Press), and the Windows Internals series (by Pearson).

2. S. Garfinkel, G. Spafford, and A. Schwartz, Practical UNIX and Internet Security,
3rd ed. (Sebastopol, CA: O’Reilly Media, 2011).
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CHAPTER 7

Data and Sensors in the Active Domain

In this chapter, we will discuss the active domain. Active domain data refers to data
that the analyst specifically initiates the generation and collection of. Active data will
involve the use of probing tools (e.g., ping, traceroute) and scanners (e.g., nmap). It
is polled and triggered; as opposed to the continuous collection of the network and
service domains, active analysis is done as a specific event or in response to specific
anomalies.

Active work is client-focused, informative, and expensive. The analyst takes on the
perspective of a client of an application (or, alternatively, an attacker) and is able to
gather a lot of information about what a host does, although not necessarily much
about what the host is for. But this fine-grained information doesn’t come cheaply;
intensive scanning is expensive, it interferes with the target, and it can take an enor‐
mous amount of resources to process all the data received.

Chapters related to this one include Chapter 2, on the basics of network traffic, Chap‐
ter 13, which discusses the observation of fumbling, and Chapter 17, which is about
the use of threat intelligence data.

Discovery, Assessment, and Maintenance
The foundation of operational information security is inventory management. The
less you know about the assets you’re protecting—both what they are and what
they’re for—the more any security plan is filled with guesswork. Some amount of
guesswork is inevitable; networks change minute by minute as wireless devices
appear and disappear, users reconfigure hosts, and the workday progresses. However,
a well-executed network monitoring strategy will manage this guesswork and point
out how to reduce it.
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It’s in that context that we consider the interaction of active domain information and
the information we’ve discussed elsewhere in this book. Active domain data is too
expensive to collect universally and constantly, and the issues of vantage affect active
data collection profoundly. Effective network monitoring will use network data to
guide active collection. I’ll be referring throughout this chapter to three key actions:
discovery, assessment, and maintenance.

In the context of this book, discovery refers to identifying the existence of assets
within a network. Discovery can range from knowing that a particular IP address is
active, to a complete inventory of the asset. Assessment, after discovery, applies secu‐
rity knowledge to that information to determine risks and courses of action. Assess‐
ment depends heavily on expertise, and with many commercial assessment products
you’re paying primarily for that expertise. Maintenance is the ongoing process of
checking an asset to ensure that it hasn’t changed. In the conclusion of this chapter, I
will discuss how to combine active and passive monitoring to conduct an inventory.

Discovery: ping, traceroute, netcat, and Half of nmap
Discovery is the process of discovering and inventorying assets on your network. Dis‐
covery is progressive, and I can break it into two broad steps: determining something
is there, and then determining what that something is.

The first step begins with a list of IP addresses, and involves determining which
addresses within your network are dark (routable, but no host) and which addresses
are lit. The basic tools for doing so are ping, traceroute, and nc. Once you’ve deter‐
mined something is there, you have to figure out what that something is—this gener‐
ally involves working with nmap and a collection of service clients built with nc and
other tools to figure out what services are visible on the host.

Checking Connectivity: Using ping to Connect to an Address
Given an IP address, the most basic command-line tool for determining something is
present is ping. ping works by using ICMP (see “Packet and Frame Formats” on page
36) messages. ping sends an ICMP echo request (type 8, code 0) to the target. On
receiving an echo request message, the target should respond with an echo reply
(type 0, code 0). Example 7-1 shows sample output of ping and a pcap of the con‐
tents.

Example 7-1. ping output

$ ping -c 1 nytimes.com
PING nytimes.com (170.149.168.130): 56 data bytes
64 bytes from 170.149.168.130: icmp_seq=0 ttl=252 time=29.388 ms
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$ tcpdump -Xnr ping.pcap
reading from file ping.pcap, link-type EN10MB (Ethernet)
20:38:09.074960 IP 192.168.1.12 > 170.149.168.130:
        ICMP echo request, id 44854, seq 0, length 64
    0x0000:  4500 0054 0942 0000 4001 5c9b c0a8 010c  E..T.B..@.\.....
    0x0010:  aa95 a882 0800 0fb8 af36 0000 5175 d7f1  .........6..Qu..
    0x0020:  0001 24a6 0809 0a0b 0c0d 0e0f 1011 1213  ..$.............
    0x0030:  1415 1617 1819 1a1b 1c1d 1e1f 2021 2223  .............!"#
    0x0040:  2425 2627 2829 2a2b 2c2d 2e2f 3031 3233  $%&'()*+,-./0123
    0x0050:  3435 3637                                4567
20:38:09.104250 IP 170.149.168.130 > 192.168.1.12:
        ICMP echo reply, id 44854, seq 0, length 64
    0x0000:  4500 0054 0942 0000 fc01 a09a aa95 a882  E..T.B..........
    0x0010:  c0a8 010c 0000 17b8 af36 0000 5175 d7f1  .........6..Qu..
    0x0020:  0001 24a6 0809 0a0b 0c0d 0e0f 1011 1213  ..$.............
    0x0030:  1415 1617 1819 1a1b 1c1d 1e1f 2021 2223  .............!"#
    0x0040:  2425 2627 2829 2a2b 2c2d 2e2f 3031 3233  $%&'()*+,-./0123
    0x0050:  3435 3637                                4567

Note first the size of the packet and the ttl value. These values are usually set by
default by the TCP stack. In the case of macOS, the ICMP packet has a 56-byte pay‐
load, which results in an 84-byte packet (20 bytes of IP header, 8 bytes of ICMP
header, and 56 bytes of payload). The type and code are at 0x0014–0x0015 (08 for the
request, 00 for the response). After the ICMP header, note that the contents of the
packet are echoed. ICMP has a concept of a session, and in many cases, messages are
sent in response to packets from entirely different protocols. Different ICMP mes‐
sages use different techniques to indicate their point of origin; in the case of ping, this
is done by echoing the packet’s original contents.

ping is a simple application: it sends an echo request with an embedded sequence
identifier. The application then waits until a specified timeout (usually on the order of
4,000 ms); if the response is received in that time, the response is printed and the next
packet is sent. ping is a diagnostic tool, and any serious implementation will provide
a number of command-line switches for manipulating packet composition.

Sweeping Pings and Ping Sweeping
These are actually different terms, although Google gets confused when you enter a
search for them. A ping sweep (or ping sweeping) is a scanning technique that system‐
atically pings all the IP addresses assigned to a network to determine which ones are
present and which ones are not. Ping sweeping is supported by nmap and a number of
other scanning tools, although you can write a script to do it in about 20 seconds.

A sweeping ping, in contrast, is a sequence of ping messages that undergo size increa‐
ses with each packet. Sweeping pings are intended to diagnose channels by identify‐
ing traffic manipulation or MTU issues. Sweeping pings are enabled by a command-
line option on most modern ping implementations.
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It’s not uncommon to find networks blocking ICMP messages. Ping sweeping is con‐
sequently a middling tool for finding hosts on a network; direct TCP or UDP scan‐
ning will generally be more effective.

Tracerouting
traceroute is a tool and technique to identify the routers that forward packets from
point A to point B. traceroute produces a sequential list of routers by manipulating
packet TTLs.

The TTL (time-to-live) field of an IP packet is a mechanism developed to prevent
packets from bouncing through the internet forever. Every time a packet is forwarded
by a router, its TTL value decreases by one. When the TTL reaches zero, the forward‐
ing router drops the packet and sends an ICMP time exceeded (type 11) message to
the source IP address of the dropped packet.

Here is an example of a traceroute command in action:

$ traceroute www.nytimes.com
traceroute to www.nytimes.com (170.149.168.130), 64 hops max, 52 byte packets
 1  wireless_broadband_router (192.168.1.1)  1.189 ms  0.544 ms  0.802 ms
 2  l100.washdc-vfttp-47.verizon-gni.net (96.255.98.1)  2.157 ms  1.401 ms
    1.451 ms
 3  g0-13-2-7.washdc-lcr-22.verizon-gni.net (130.81.59.154)  3.768 ms  3.751 ms
    3.985 ms
 4  ae5-0.res-bb-rtr1.verizon-gni.net (130.81.209.222)  2.029 ms  2.314 ms
    2.314 ms
 5  0.xe-3-1-1.br1.iad8.alter.net (152.63.37.141)  2.731 ms  2.759 ms  2.781 ms
 6  xe-2-1-0.er2.iad10.us.above.net (64.125.13.173)  3.313 ms  3.706 ms  3.970 ms
 7  xe-4-1-0.cr2.dca2.us.above.net (64.125.29.214)  3.741 ms  3.668 ms
    xe-3-0-0.cr2.dca2.us.above.net (64.125.26.241)  4.638 ms
 8  xe-1-0-0.cr1.dca2.us.above.net (64.125.28.249)  3.677 ms
    xe-7-2-0.cr1.dca2.us.above.net (64.125.26.41)  3.744 ms
    xe-1-0-0.cr1.dca2.us.above.net (64.125.28.249)  4.496 ms
 9  xe-3-2-0.cr1.lga5.us.above.net (64.125.26.102)  24.637 ms
    xe-2-2-0.cr1.lga5.us.above.net (64.125.26.98)  10.293 ms  9.679 ms
10  xe-2-2-0.mpr1.ewr1.us.above.net (64.125.27.133)  20.660 ms  10.043 ms
    10.004 ms
11  xe-0-0-0.mpr1.ewr4.us.above.net (64.125.25.246)  15.881 ms  16.848 ms
    16.070 ms
12  64.125.173.70.t01646-03.above.net (64.125.173.70)  30.177 ms  29.339 ms
    31.793 ms

As the next code block shows, traceroute sends an initial 52-byte message, and then
proceeds to receive sequential information about each address it contacts en route to
170.149.168.130. Let’s look at the payload in more depth:

$ tcpdump -nXr traceroute.pcap  | more
21:06:51.202439 IP 192.168.1.12.46950 > 170.149.168.130.33435: UDP, length 24
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        0x0000:  4500 0034 b767 0000 0111 ed85 c0a8 010c  E..4.g..........
        0x0010:  aa95 a882 b766 829b 0020 b0df 0000 0000  .....f..........
        0x0020:  0000 0000 0000 0000 0000 0000 0000 0000  ................
        0x0030:  0000 0000                                ....
21:06:51.203481 IP 192.168.1.1 > 192.168.1.12: ICMP time exceeded in-transit,
        length 60
        0x0000:  45c0 0050 a201 0000 4001 548e c0a8 0101  E..P....@.T.....
        0x0010:  c0a8 010c 0b00 09fe 0000 0000 4500 0034  ............E..4
        0x0020:  b767 0000 0111 ed85 c0a8 010c aa95 a882  .g..............
        0x0030:  b766 829b 0020 b0df 0000 0000 0000 0000  .f..............
        0x0040:  0000 0000 0000 0000 0000 0000 0000 0000  ................
21:06:51.203691 IP 192.168.1.12.46950 > 170.149.168.130.33436: UDP, length 24
        0x0000:  4500 0034 b768 0000 0111 ed84 c0a8 010c  E..4.h..........
        0x0010:  aa95 a882 b766 829c 0020 b0de 0000 0000  .....f..........
        0x0020:  0000 0000 0000 0000 0000 0000 0000 0000  ................
        0x0030:  0000 0000                                ....
21:06:51.204191 IP 192.168.1.1 > 192.168.1.12: ICMP time exceeded in-transit,
        length 60
        0x0000:  45c0 0050 a202 0000 4001 548d c0a8 0101  E..P....@.T.....
        0x0010:  c0a8 010c 0b00 09fe 0000 0000 4500 0034  ............E..4
        0x0020:  b768 0000 0111 ed84 c0a8 010c aa95 a882  .h..............
        0x0030:  b766 829c 0020 b0de 0000 0000 0000 0000  .f..............
        0x0040:  0000 0000 0000 0000 0000 0000 0000 0000  ................

Note that traceroute sends out UDP messages, starting at port 33435 and incre‐
menting the port number by one with each additional message. The port number is
incremented so that it’s possible later to reconstruct the order in which the packets
are sent. Note that the ICMP packet from offset 0x001C onward contains the original
UDP packet. As noted earlier, ICMP messages need to use a number of different tech‐
niques to provide context—error messages such as “TTL exceeded” include the IP
header and the first 8 bytes of the original packet. This includes the UDP source port
number. traceroute uses the included UDP source port to reconstruct the order in
which these ICMP messages were sent.

While traceroute uses UDP by default, the same technique can be used by TCP or
any other protocol where there is a controllable value (such as an ephemeral port
number) in the first 8 bytes of the IP payload.

ping and traceroute are more useful if you can use them from different locations. To
that end, a number of internet service providers and other organizations provide 
looking-glass servers. A looking-glass server is a publicly accessible (generally via the
web) interface to any of a number of common internet applications. Most looking
glasses are managed by NOCs or ISPs, and provide access to multiple routers. There
is no standard for implementation, and different looking glasses will provide different
services. A comprehensive list is available at www.traceroute.org.
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Using nc as a Swiss Army Multitool
ping and traceroute represent traffic on the network proper; if you want to commu‐
nicate with a specific service, you have to have a service client available to you. Alter‐
natively, you can use netcat. In Chapter 5, I touched briefly on this tool: let’s talk
about what it can do in more depth.

Basic netcat invocation is simply netcat (or nc) with the destination address and
port. If this connects to an open port, then netcat will operate like the cat com‐
mand. If you know what the targeted service operates like, you can then send a
request and get a response. For example, you can run an HTTP request by hand:

$ echo "GET /" | nc www.google.com 80 | head -4
HTTP/1.0 200 OK
Date: Mon, 20 Feb 2017 16:51:48 GMT
Expires: -1
Cache-Control: private, max-age=0

You can quickly implement a fast horizontal scan by using netcat’s zero I/O mode
(-z). Zero I/O simply tries to open a port and, if it succeeds, immediately closes the
session. On its own, this results in netcat providing zero information, so you need to
up the output using netcat’s verbose option (-v):

$ netcat -vz localhost 8000
localhost [127.0.0.1] 8000 (irdmi) open
$ netcat -vz localhost 122
localhost [127.0.0.1] 122 (smakynet): Connection refused

A Brief Scanning Digression
Scanning is covered in more detail in Chapter 13, but the basic vocabulary should be
mentioned here. Imagine that the space of IP addresses and ports in your network is
arranged on a grid, with IP addresses on the horizontal axis, and ports on the vertical
axis. A horizontal scan touches each address once and moves on (on the horizontal
axis); a vertical scan touches all the ports on an address (on the vertical axis).

As a rule of thumb, scanners scan horizontally, defenders vertically. Scanners scan
horizontally because they have a limited number of exploits to use and are focused on
those. Defenders scan vertically because they don’t know which exploits the attacker
will use.

In the absence of other tools, netcat can be used to scan horizontally or vertically.
The short and sour way to do this is just to iterate at the command line, possibly
using the -w option to slow down consecutive invocations. For example, if I want to
scan a local /24, I can do:
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1 nmap also recognizes that port 8000 may not be IRDMI; I weep with joy.

i=0; while [ ${i} -le 256 ];
do
   netcat -vz -w 2 192.168.1.${i} 8000
   i=$[ ${i} + 1 ]
done

Which results in:

192.168.1.1 8000 (irdmi): Connection refused
192.168.1.2 8000 (irdmi) open
192.168.1.3 8000 (irdmi): Operation timed out

and so on. Note the refusals and timeouts—a refusal means a host was present and
the port was closed, while a timeout means that no successful communication took
place (which is usually a good indicator that there is nothing on the other side). You
can swap in a vertical scan by changing the IP address to the port number. netcat
will take ranges:

$ netcat -vz 192.168.1.13 7990-8080
192.168.1.13 7990-8080 192.168.1.13 8000 (irdmi) open

Note that netcat will only provide output for open ports.

nmap Scanning for Discovery
nc is versatile, but not specialized. nmap integrates both discovery and assessment
roles into an open source package.

Let’s start our nmap exercises by doing some simple horizontal scanning for discovery
(we’ll get to assessment in the next section). These nmap commands are equivalent to
the scans we did by hand with nc. Let’s start with a horizontal scan on a /24; this is
done using -p to specify a port, and then an address range. nmap can take CIDR nota‐
tion (as seen here) as well as using a dash, so I could express this as 192.168.1.0-255:1

# Scanning a /24 with nmap; some addresses removed for brevity
$ nmap -p 8000 192.168.1.0/24

Starting Nmap 7.40 ( https://nmap.org ) at 2017-02-13 12:08 EST
Nmap scan report for 192.168.1.1
Host is up (0.0024s latency).
PORT     STATE  SERVICE
8000/tcp closed http-alt

Nmap scan report for 192.168.1.2
Host is up (0.015s latency).
PORT     STATE  SERVICE
8000/tcp closed http-alt
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Nmap scan report for 192.168.1.13
Host is up (0.00021s latency).
PORT     STATE SERVICE
8000/tcp open  http-alt

Nmap done: 256 IP addresses (8 hosts up) scanned in 2.89 seconds

By default, nmap scans privileged TCP ports (1–1024), and reports anything open. For
example:

$ nmap 192.168.1.13

Starting Nmap 7.40 ( https://nmap.org ) at 2017-02-13 12:17 EST
Nmap scan report for 192.168.1.13
Host is up (0.00046s latency).
Not shown: 813 closed ports, 182 filtered ports
PORT     STATE SERVICE
53/tcp   open  domain
445/tcp  open  microsoft-ds
548/tcp  open  afp
631/tcp  open  ipp
8000/tcp open  http-alt

You can specify ports using the -p option, as shown here:

$ nmap -p 53,445,546-550  192.168.1.13

Starting Nmap 7.40 ( https://nmap.org ) at 2017-02-13 12:25 EST
Nmap scan report for 192.168.1.13
Host is up (0.00050s latency).
PORT    STATE  SERVICE
53/tcp  open   domain
445/tcp open   microsoft-ds
546/tcp closed dhcpv6-client
547/tcp closed dhcpv6-server
548/tcp open   afp
549/tcp closed idfp
550/tcp closed new-rwho

Note that when you specify the ports, the output will include only open ports. The
default scan and nmap’s fast scan (-F, it only scans the 100 most commonly used
ports) both only show open ports.

That’s the basics of horizontal and vertical TCP scanning with nmap. At this point,
simple discovery scanning mostly involves knowing a couple of other options: in par‐
ticular, -sU (scan UDP), -n (drop DNS resolution), and -sn (simple ping, akin to the
netcat zero I/O mode).
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Assessment: nmap, a Bunch of Clients, and a Lot of
Repositories
Following discovery is assessment: figuring out what a host is vulnerable to. Effec‐
tively assessing a host’s vulnerabilities requires inventory data and expertise—inven‐
tory to know what services and versions are running on a host, and expertise to know
how someone can exploit this.

In this section, I will discuss a number of inventory techniques to support assessment.
We will begin with using nmap to identify version numbers and operating systems,
then discuss the general process of figuring out what a host is running. Finally, we
will discuss the problem of determining what services are running on an open port
when you have no idea what’s there.

Basic Assessment with nmap
The basic command-line arguments for assessment are -O (check the operating sys‐
tem) and -sV (check the service and version on open ports). These options are fron‐
tends to what is, effectively, an expert system: a decision tree that passes different
combinations of packets and flags in order to determine how your system responds
and what that implies.

Running -O will provide you with an OS profile. If nmap knows the OS (and it knows
a lot), you’ll get a simple output like this one:

$ nmap -O
Nmap scan report for 192.168.1.13
Host is up (0.000070s latency).
Not shown: 995 closed ports
PORT     STATE SERVICE
53/tcp   open  domain
445/tcp  open  microsoft-ds
548/tcp  open  afp
631/tcp  open  ipp
8000/tcp open  http-alt
Device type: general purpose
Running: Apple OS X 10.10.X|10.11.X
OS CPE: cpe:/o:apple:mac_os_x:10.10 cpe:/o:apple:mac_os_x:10.11
OS details: Apple OS X 10.10 (Yosemite) - 10.11 (El Capitan) (Darwin 14.0.0 -
    15.4.0)

Most of the report was discussed earlier—the new fields are “Device type,” “Running,”
and the OS information. The device type refers to what type of device nmap thinks it
is; “general purpose” indicates that it’s a general-purpose computing machine (i.e., a
laptop or desktop), while other types include terminals, networking hardware (rout‐
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2 Check https://nmap.org/book/osdetect-device-types.html for a list of device types in the current version.
3 A description of what’s in the format is at https://nmap.org/book/osdetect-fingerprint-format.html.

ers and switches), and various types of enterprise hardware.2 “Running” simply refers
to nmap’s guess as to what type of operating system is running; nmap makes this guess
with an ordered table of probabilities.

The next line of note is the CPE (Common Platform Enumeration). The OS informa‐
tion includes the Common Platform Enumeration (CPE), discussed in “The NVD
and MITRE Standards” on page 117, and details on the operating system in use.

An Example: Finding an Embedded System
When nmap doesn’t recognize what a particular system is, it sends back a lot of infor‐
mation. For example, suppose I run an nmap scan and get this back:

Nmap scan report for 192.168.1.6
Host is up (0.0011s latency).
Not shown: 999 closed ports
PORT   STATE SERVICE
80/tcp open  http
MAC Address: 00:17:88:11:22:47 (Philips Lighting BV)
No exact OS matches for host (If you know what OS is running on it, see
https://nmap.org/submit/ ).
TCP/IP fingerprint:
OS:SCAN(V=7.40%E=4%D=2/21%OT=80%CT=1%CU=35895%PV=Y%DS=1%DC=D%G=Y%M=001788%T
OS:M=58ACE89C%P=x86_64-apple-darwin16.3.0)SEQ(SP=A2%GCD=1%ISR=DC%TI=I%CI=I%
OS:II=RI%SS=S%TS=U)SEQ(SP=AB%GCD=1%ISR=DC%TI=I%II=RI%SS=O%TS=U)OPS(O1=M218%
OS:O2=M218%O3=M218%O4=M218%O5=M218%O6=M218)WIN(W1=860%W2=860%W3=860%W4=860%
OS:W5=860%W6=860)ECN(R=Y%DF=N%T=FF%W=860%O=M218%CC=N%Q=)T1(R=Y%DF=N%T=FF%S=
OS:O%A=S+%F=AS%RD=0%Q=)T2(R=N)T3(R=N)T4(R=Y%DF=N%T=FF%W=860%S=A%A=S%F=AR%O=
OS:%RD=0%Q=)T4(R=N)T5(R=Y%DF=N%T=FF%W=860%S=A%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%D
OS:F=N%T=FF%W=860%S=A%A=S%F=AR%O=%RD=0%Q=)T6(R=N)T7(R=N)U1(R=Y%DF=N%T=FF%IP
OS:L=38%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUD=G)IE(R=Y%DFI=N%T=FF%CD=S)

Network Distance: 1 hop

OS detection performed. Please report any incorrect results at
https://nmap.org/submit/ .

This is actually a fingerprint that nmap creates to feed back into its knowledge base.
This is actually a packed, fixed-length format.3 While it’s great for nmap (and you
should submit it if you’re comfortable sharing—this profiling will improve only if you
share!), there’s still the question of what it means for us.

First, note the MAC address. The MAC address is registered to a Philips lighting
device; a network interface that isn’t from a company specializing in network inter‐
faces is likely to be some kind of IoT thing.
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Next, note that the scan also includes a list of open ports, and tcp/80 is open for busi‐
ness. Given that, I go and run nc on port 80:

$ echo "GET /" | nc 192.168.1.6 80 HTTP/1.1 200 OK
Content-type: text/html

<html><head><title>hue personal wireless lighting</title></head><body>
<b>Use a modern browser to view this resource.</b></body></html>

And yeah, it’s a hub for a Philips Hue wireless lighting system. As a rule of thumb,
running a quick GET / on an open port can’t hurt—it’s obvious on port 80, but odds
are good you’ll get a meaningful response on other ports as well. Most servers these
days are modified web servers of some variety, so you’re likely to find something
speaking HTTP on the other end.

The NVD and MITRE Standards
For years, the US government contracted the MITRE Corporation to maintain a
number of different repositories on attacks, platforms, vulnerabilities, and other
information on security. The most well-known of these is the Common Vulnerability
Enumeration (CVE), a living repository of software vulnerabilities. MITRE has pro‐
duced a number of other standards as well, with the CPE mentioned earlier following
just behind the CVE in exposure. The value of all of these standards is that they pro‐
vide a common point of reference. In a field where people can get possessive about
nomenclature, this is not to be underestimated.

As a rule, the most common and important standards are now managed by NIST
under the header of the National Vulnerability Database (NVD). Here’s a closer look
at these standards:

• The Common Vulnerability Enumeration (CVE) is an index of software vulnera‐
bilities. CVE indices are of the form CVE-YYYY-NNNN, where YYYY is the year
of assignment and NNNN is a numeric index. CVEs are maintained as part of the
NVD, and are accessible at https://web.nvd.nist.gov/view/vuln/search.

• The Common Platform Enumeration (CPE) is a hierarchical name structure that
begins with the identifier “cpe”, followed by one or more values separated by
colons; these values are, in order, the part, the vendor, the product, the version,
the update, the edition, the language, the software edition, the target software,
the target hardware, and anything else. Some fields are optional, as seen in the
cpe:/o:apple:mac_os_x:10.10 string in the nmap -O output shown earlier (part:
operating system, vendor: Apple, product: Mac OS X, version: 10.10; everything
else dropped). CPEs are also part of the NVD; the standard and dictionaries are
at https://nvd.nist.gov/cpe.cfm.

• The Security Content Automation Protocol (SCAP) is an umbrella term encom‐
passing the CVE and CPE as well as the Common Weakness Enumeration
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(CWE), the Common Vulnerability Scoring System (CVSS), and a number of
other standards.

Vulnerability assessment involves taking a very specific inventory (down to platform
and version numbers), consulting intelligence sources such as the NVD to determine
which vulnerabilities exist, and then determining the response—patching, blocking,
taking systems down, or whatever other action is deemed appropriate.

Unpatchable Vulnerabilities
An important note here: while we usually talk about vulnerabilities as flaws in soft‐
ware design, a flaw can also appear in policy or be embedded in the design of the pro‐
tocol, and it may not be fixable. Some examples:

• Mediocre password management, in particular the use of default passwords for
administration accounts, is a universal headache. The recent Mirai botnet exploi‐
ted this across multiple embedded systems.

• Reflection attacks are a common problem with UDP-based protocols such as
NTP and DNS. Reflection attacks leverage UDP’s statelessness and the willing‐
ness of these protocols to send back “I dunno” packets when receiving uncertain
messages.

• Administrative tools are often embedded into default installations with minimal,
if any, permissions to execute them. The entire field of malware free intrusions
depends on this. Finally, when dealing with embedded and IoT systems, expect
that you often won’t be able to fix the vulnerability, because patching and mainte‐
nance isn’t part of the design.

The most advanced assessment tool that nmap provides is a full Lua-based flexible
scripting capability, the Nmap Scripting Engine (NSE). The NSE commands nmap’s
capabilities using Lua scripts that can write complex, sequential analyses of particular
hosts and enable authors to identify vulnerabilities and traffic features that are out‐
side the capabilities of vanilla nmap. The NMAP project maintains a constantly upda‐
ted list of NSE scripts; it’s worth checking on a regular basis for specific and current
vulnerabilities.

What’s important to recognize about all of these tools is that the mechanical compo‐
nents are less important than the expertise. It’s critical to pay attention to what fea‐
tures and scripts appear that are relevant to your particular organization. Similarly, if
you buy a vulnerability scanner, you’re paying for the company to keep up-to-date on
current vulnerabilities. In Chapter 17 we discuss these issues in more detail.
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Heartbeat Signals
The first thing to do in any measurement is check your ruler4; when you see an asset
disappear on a network, your first step, before all the probing and pinging, is to
ensure that the asset is the problem and not your data collection system. With critical
assets, it’s better to make this process proactive, by including some kind of beacon. A
heartbeat signal is a process that periodically sends out a packet simply to remind you
that the host is alive and kicking.

Heartbeat signals do not have to be particularly elaborate, but there are a couple of
notes on setting them up properly that can help. When setting up heartbeat signals,
pay attention to inventory and instrumentation, minimize secondary network effects,
and pick a useful time interval.

Regarding inventory: the goal of the heartbeat signal is to provide an analyst with a
quick heads up within a data feed. Since you can craft the packet to your needs within
the constraints of the feed, feel free to leverage that—embed UUIDs in the packet,
send packets to nonexistent hosts (the goal is for your detection systems to recognize
it, not necessarily any target in the network).

That said, limit the secondary effects if possible. For defenders who are unaware what
the signals are, heartbeat signals are going to be a deliciously obvious anomaly, a
problem exacerbated if they generate a lot of noise due to TCP or ICMP responses. I
prefer sending UDP packets because they limit the amount of noise that TCP or
ICMP echo requests will send out.

Using Active Vantage Data for Verification
Because analysts have limited resources, the most effective use for active domain data
is as a concentrated, limited-scope and high-information complement to broader pas‐
sive data collection. Probe actively when the passive system can’t figure out what’s
going on.

To make this more concrete, consider a scenario where you passively collect inven‐
tory to guide incident response. Using the techniques discussed in Chapter 19, you
can passively collect information on hosts within the network. However, when doing
so you will find that there are sites you cannot passively examine—examples include
HTTPS servers (encrypted content) and services on unidentified ports. In this case,
you can set up an automated watch for the presence of these services and, when iden‐
tified, automatically scan them to find out more about what they are doing.
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Passive and active discovery complement each other. Passive discovery is very handy
when you don’t know much about your network, and will identify hosts that you
don’t know about. Active discovery will help you find out what hosts are actually run‐
ning.

Another example of how to combine active and passive mapping uses dropouts to
identify diagnostic concerns. In this case, you use passive detection to monitor hosts
within the network. For example, you may monitor the outgoing traffic from your
servers and establish a lower limit for volume before you’re concerned that that server
is not communicating (e.g., if there’s less than 5 MB every 10 minutes, or the heart‐
beat signal is not present). When you encounter a disruption in those timeouts, you
initiate an active check.

In both cases, you rely on a large flow-based collection system to trigger a specific,
fine-grained probe. This is, in my experience, the best way to combine active and pas‐
sive probing—use the passive techniques to determine the network’s population, and
where you encounter ambiguity or uncertainty, probe actively.

Further Reading
1. G. Lyon, Nmap Network Scanning: The Official Nmap Project Guide to Network

Discovery and Security Scanning (NMAP Project, 2009). Also check out the nmap
project website.

2. Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-Wide
Scanning and Its Security Applications,” Proceedings of the 2013 USENIX Security
Symposium, Washington, DC, 2013.

3. The SANS Netcat Cheat Sheet.
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PART II

Tools

This section is about a number of tools for use in data analysis. The primary focus of
this section is on two particular tools: SiLK and R. The System for Internet-Level
Knowledge (SiLK) is a NetFlow analysis toolkit developed by the CERT Division at
Carnegie Mellon University that enables analysts to develop sophisticated flow analy‐
sis systems quickly and efficiently. R, a statistical analysis package developed at the
University of Auckland, enables exploratory data analysis and visualization.

At this time, there is no killer app for network analysis. Analysis requires using many
tools, often in ways they weren’t really designed for. The tools covered in this section
form what I believe to be a basic functional toolkit for an analyst. Combining them
with a light scripting language such as Python empowers analysts to explore data and
develop operationally useful products.

The remainder of this section is divided into three chapters. Chapter 8 discusses tools
and techniques for analyzing the data. Chapter 9 describes the SiLK suite. Chapter 10
discusses tools to identify the ways in which hosts are connected to the internet,
including reverse DNS lookups and looking glasses you collect.





1 Pedantry compels me to point out that “analytic” is an adjective, but I’ve lost that particular battle and will
treat it as a noun. Also, it’s “hieroglyph.”

CHAPTER 8

Getting Data in One Place

Once you collect all your data, you have to have an environment where you can pro‐
cess it and produce results. In this chapter, I provide some notes on an architecture to
facilitate the rapid development and operational deployment of security analysis soft‐
ware (analytics1).

There are a number of ways to implement this; the version you’ll see in Figure 8-1 is a
high-level diagram for a basic environment. In general, these environments should
have the following attributes:

• Robust, universal access to all sensor data. The term “universal” here is used in
lieu of “centralized”—it’s not critical that the data be in one place, but it is critical
that anyone implementing analytical code have uniform access to all the data.

• Access to a Turing-complete language. This differentiates an analysis environ‐
ment from the classic security console. Complex analytics require access to a
general-purpose programming language and the ability to build constructs that
rely on in-place memory manipulation—so, Python good, R good, SQL bad.

• Performance. Any analytic system will have to deal with resource contention; it is
better to overprovision for multiple simultaneous queries early on rather than
have your analysts fighting to get results in a crisis.
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A Brief History of Security Analysis Tools, and Why They Don’t Play
Well with Each Other

Work on an operational floor, and you’ll inevitably see analysts working on dual-
monitor setups where they have one console in one window, another console in
another window, and are manually passing information between the two consoles.
These “chair-swivel” situations add stress and errors into an already stressful environ‐
ment.

Before launching into the architectural walkthrough, I need to provide some context
to explain the history of security analysis tools, and in particular, why security analy‐
sis tools generally don’t do interoperations well (if at all).

For the purposes of this discussion, we can break security tools into three “genera‐
tions,” shown in the attached figure. The earliest generation, until the early 2000s, is
characterized by isolated inline tools. Examples of these tools include IDSs, firewalls,
AV systems, and the like. These tools were characterized by their simplicity and their
isolation. IDS tools, running inline, could only manage a limited number of rules.

The second generation, which really took off in the early 2000s, is characterized by
security information management (SIM) or security information and event manage‐
ment (SIEM) tools and dashboards, particularly ArcSight and Splunk. These tools
don’t generate data; they are databases that other systems dump their security infor‐
mation into.

This second generation is defined largely by the first successful adoption of intercom‐
munications standards, in particular rough-and-ready interfaces such as CEF. Still,
systems in this generation are often run alone with nonstandardized output. Often,
these systems repackage threat intelligence as part of their services.

We’re in the midst of a third generation right now, which is characterized by two
major factors: the adoption of big data architectures (which for the purposes of this
discussion I describe as non-CRUD databases and the use of MapReduce operations)
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for analysis, and the increased reliance on annotative and third-party data such as
threat intelligence.

For developers working with analysis teams, I recommend the following actions as
rules of thumb:

• Develop command line–accessible APIs for every tool you build. System integra‐
tion will be much easier if everything has a REST API, and analysts often work
off the command line.2 Keep the API current to the UI at all times.

• Include the ability to dump any and all output to CSV format. If it exists, some‐
one is going to shove it into Excel.

• If you need authentication, work on single sign-on and keep discrete domains to
a minimum.

• Work to the SIM; if the ops floor lives off ArcSight, Splunk, or an ELK stack,
build your requirements backward from that, and maintain consistent terminol‐
ogy and interfaces with whatever tool they are using.

• Do not ignore reliability. Security analysis is usually done in a high-stress envi‐
ronment. Big data tools are, as of this writing, far more wonky than monotonous
enterprise databases.

As a developer, design your tools to interoperate from the start. As a purchaser, check
to see what the service level and data agreements are for the tool, particularly at end of
life. There’s nothing as painful as depending on a tool for five years and then finding
out that you can’t extract data from it.

High-Level Architecture
Figure 8-1 shows a high-level view of a security analysis environment. This environ‐
ment is envisioned as assisting in the rapid prototyping and deployment of new ana‐
lytics; security is a constantly moving target, and analysts will need to experiment
with new analytics on a regular basis. I will briefly walk through the architectural
goals and then discuss each component in more depth.
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Figure 8-1. Reference architecture for a security analysis environment

The Sensor Network
The sensor network consists of all the data-gathering devices inside your observed
network. This includes network sensing (e.g., IDS, firewall, flow sensing), host-based
sensing (e.g., AV, HIDS, DLP), and service sensing (syslog, HTTP logs, and the like).
Active sensing, being done on an ad hoc basis, is not embedded within the sensor
network.

When designing a sensor network, consider the following questions and issues:

• Will the data be transported in band or out of band? If you are generating a large
amount of sensor data, consider setting up dedicated VLANs for transporting
this information so it is not reported within the sensor network.

• Will you store data on the sensors and fetch on demand, or will you forward all
data? Summary data (such as NetFlow or constructed events) may be best stored
centrally, while raw data is recorded at the sensors proper and pulled as needed.

• How will you measure the sensors themselves? The integrity of the sensor net‐
work will be an ongoing concern. Make sure that you have analytics available to
verify that a sensor is correctly installed, to onboard new sensors, and to identify
when a sensor has dropped off the network.
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The Repository
The repository is a location for any nonstreaming data. As Figure 8-1 shows, this is
subdivided into three components: an archive, annotation data, and the knowledge
base.

The repository is the component of the system that is accessed most often and most
randomly. As such, performance issues hit the repository more than any other part of
the system. When building the repository, consider the following issues:

• How much information do you expect to maintain? This question may be deter‐
mined by regulation within your sector. In the absence of that, I like being able to
go back at least 90 days (a quarter), and longer if at all possible.

• How will you access immediate (say, the last two weeks) versus longer-term
information? Longer queries will be rarer than ones over the last week or so, so if
you intend to use high-performance, expensive storage, focus on the last week to
two weeks.

• How often will you update your storage estimates? Network traffic volume will
increase steadily over time, so updating the estimates of how much information
you can store is a process you should consider at least quarterly.

Archive
The archive is a location for event data. Examples of this data include:

• Network traffic data (e.g., NetFlow logs, packet captures; see Chapter 3 for more
information)

• System information (e.g., process statistics, filesystem stats, AV reports)
• System log data (e.g., server logs, syslog information)

Archive data is event data, meaning that it happens at a specific time and it doesn’t
update. This is the place in your analysis environment to build a humongous HDFS
system and then pump queries through it constantly.

In addition to the general repository issues discussed earlier, issues to consider with
the archive include:

• How will you manage queries involving aged-out data? If storage space is finite,
you can bet that there will eventually be an investigation requiring going back to
tape archives.

• Consider postprocessing summarization. Events such as scans take up a large
amount of records for little value. You may want to consider storing raw data for
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a day, then start splitting out and summarizing high-level phenomena (scanning,
legitimate interactions, dark space interaction) to improve access speed.

• How much data in the archive is redundant? Can you place the redundant or
similar data in one location? For example, you might put all HTTP flows and
weblogs in one repository.

Annotation
Annotation data refers to information that you use to supplement your archive data.
This includes threat intelligence, geolocation data, network reputation, and other
forms of mapping such as DNS repositories. Annotation data differs from event data
in that it has a valid time—for example, the owner of an IP address may be one orga‐
nization from March 5th to 10th, and another on the 11th onward. Coordinating this
timing information is critical when considering annotation.

In addition to the general repository issues, specific questions to consider with anno‐
tation include:

• How do you combine annotation with archive data? Will you pay a performance
cost and integrate them as needed, or pay a storage cost and update the archive
records with annotations?

• If you have multiple redundant annotation sources (e.g., two different geoloca‐
tion databases), how do you represent this?

Geolocation: You Get What You Pay For
Third-party geolocation software is primarily intended for web services companies to
provide real-time geofencing information—for example, targeted advertising or
rights management. Consequently, geolocation licensing agreements are usually a
“per-lookup” style of license.

When buying geolocation software, keep the following rules in mind:

• Country-level location is generally pretty good, but once you try to get down to
cities or metropolitan statistical areas (MSAs, geographic regions defined by the
US government), you’re going to find the accuracy goes downhill.

• Be aware of the location process’s failure mode; a common problem has been
geolocation software defaulting to the center of a region, leading to things like all
the world’s malware appearing to originate from Potwin, Kansas.

• Accuracy is generally best within the RIPE and ARIN regions (see “The RIRs and
IP Address Allocation” on page 178), and tends to fall off outside of those areas.
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• Check the licensing and see if the vendor will directly ship you a database, rather
than buying a per-query license. A good day’s worth of scan traffic may cost you
your monthly query limit.

Knowledge base
The knowledge base (KB) consists of information and judgments that the organiza‐
tion has built up itself over time, and consists of information that is specifically rele‐
vant to the target enterprise. Examples of critical information in the KB include asset
inventories (a CMDB if you have one), personnel data, and internal calendars. Unlike
the other information here, KB data is unstructured and usually relatively small, as it’s
largely person-moderated.

Query Processing
The query processing system is a development environment that supports rapid proto‐
typing, data synthesis, and providing contextual data. The system can process data
from multiple locations to synthesize it.

Questions to ask when determining query processing requirements include:

• How do developers or analysts touch the query processing system? Limit the
number of languages as much as possible, down to two if you can get away with
it.

• How do they touch data? The great achievement of SIEM is to provide a devel‐
oper access to all the data in one database cursor. However you store or hide the
data, ensure that the analysts have one access point and consistently named tables
(a source IP is a source IP everywhere).

• How will you manage queue contention? Figure out a query that takes about 5
minutes to run, then run it once, 4 times simultaneously, 10 times simultane‐
ously, and 20 times simultaneously.3 Many query systems will gracefully degrade,
allowing x number of queries to process simultaneously, then holding off on x+1
until a query finishes. During times of stress, you can expect that analysts will be
beating the system constantly, and queue contention is going to kill you.
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Real-Time Processing
Real-time processing consists of any analyses that are done à la minute, which may
include straight signature matching, specifically crafted high-performance analytics,
and logfile generation. As a rule, real-time processing should be distinct from query
processing—real-time data should ideally summarize or process data to reduce the
amount of query processing needed.

A Question of Timing
The term “real-time” in intrusion detection and network security is vaguely defined.
The general sense of the term is that the system detects attacks “while the attack takes
place”; this doesn’t help because “while an attack takes place” is itself vaguely defined
and may involve a number of short bursts over several months.

When discussing real-time detection, there are a couple of issues to keep in mind.
First, there’s a limiting case: without a real-time response, real-time detection is point‐
less. As a corollary to that, most self-respecting defenders aren’t going to trust a real-
time defense system since an attacker is going to see it as a “please DoS me kit.”

Second, there’s the problem of false positive rate. The base-rate problem impacts all
detection systems. Effectively limiting the impact of false positives is going to involve
correlating data and providing context, which isn’t a real-time action.

Put another way, whatever you can do in real-time should be done because it has to be
real-time, not because it can be. These include dealing with obvious threats such as
DDoS attacks; things where the attack is obvious and the consequences of an immedi‐
ate response are manageable.

There is one particular area where real-time data collection, if not detection, is criti‐
cal: correlating transient lookup data. If something has a short lifetime, then collect it
while it’s alive. The most prominent example is the relationship between DNS names
and IP addresses, but this also includes things such as address/port combinations
across proxies and MAC/IP address relations in DHCP networks.

Source Control
I can’t emphasize the importance of a source code repository enough—just make sure
everyone knows how to use Git, even if they’re not developers. In particular, the fol‐
lowing information should be maintained in the repository:

• Analytics
• Signature sets
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• Firewall and IDS configurations4

Analytics are obvious, since they are code executed on data. The others are less obvi‐
ous, but as a rule, anything that is mechanically processed by a detection system or
other middlebox in your network should be recorded and changes maintained in the
archive. This is a necessity when reconstructing past events—if a change in traffic
occurs on a network, the first question the analyst should ask is whether the change is
due to the internet or due to the collection system.

Log Data and the CRUD Paradigm
The CRUD (create, read, update, and delete) paradigm describes the basic operations
expected of a persistent storage system. Relational database management systems
(RDBMSs), the most prevalent form of persistent storage, expect that users will regu‐
larly and asynchronously update existing contents. Relational databases are primarily
designed for data integrity, not performance.

Ensuring data integrity requires a significant amount of the system’s resources. Data‐
bases use a number of different mechanisms to enforce integrity, including additional
processing and metadata on each row. These features are necessary for the type of
data that RDBMSs were designed for. That data is not log data.

This difference is shown in Figure 8-2. In RDBMSs, users add and query data from a
system constantly, and the system spends resources on tracking these interactions.
Log data does not change, however; once an event has occurred, it is never updated.
This changes the data flow as shown in the figure on the right. In log collection sys‐
tems, the only things that write to disk are the sensors; users only read from disk.

This separation of duties between users and sensors means that, when working with
log data, the integrity mechanisms used by databases are wasted. For log data, a prop‐
erly designed flat file collection system will often be just as fast as a relational data‐
base.
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Figure 8-2. Comparing RDBMSs and log collection systems

Creating a Well-Organized Flat File System: Lessons from SiLK
In Chapter 9, we discuss SiLK, the analysis system CERT developed to handle large
NetFlows. SiLK was a very early big data system. While it doesn’t use current big data
technologies, it was designed around similar principles, and understanding how those
principles work can inform the development of more current systems.

Log analysis is primarily I/O bound, meaning that the primary constraint on perfor‐
mance is the number of records read, as opposed to the complexity of the algorithms
run on the records. For example, in the original design of SiLK, we found that it was
considerably faster to keep compressed files on disk—the performance hit from read‐
ing the records off of disk was much higher than the performance hit of decompress‐
ing a file in memory.

Because performance is I/O bound, a good query system will read the minimum
number of relevant records possible. In log collection systems, the most effective way
to reduce the records read is to index them by time and always require a user to spec‐
ify the time queried. In SiLK, log records are stored in hourly files in a daily hierar‐
chy; for example, /data/2013/03/14/sensor1_20130314.00 to /data/2013/03/14/
sensor1_20130314.23. SiLK commands include a globbing function that hides the
actual filenames from the user; queries specify a start date and an end date, which in
turn is used to derive the files.
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This partitioning process does not have to stop with time. Because network traffic
(and log data) is usually dominated by a couple of major protocols, those individual
protocols can be split off into their own files. In SiLK installations, it’s not unusual to
split web traffic from all other traffic because web traffic makes up 40–80% of the
traffic on most networks.

As with most data partitioning schemes, there’s more art than science in deciding
when to stop subdividing the data. As a rule of thumb, having no more than three to
five further partitions after the time partition is acceptable because as you add addi‐
tional partitions, you increase complexity for users and developers. In addition, deter‐
mining the exact partitioning scheme usually requires some knowledge of the traffic
on the network, so you can’t do it until after you’ve acquired a better understanding of
the network’s structure, composition, and the type of data it encounters.

A Brief Introduction to NoSQL Systems
The major advance in big data in the past decade has been the popularization of
NoSQL big data systems, particularly the MapReduce paradigm introduced by Goo‐
gle. MapReduce is based around two concepts from functional programming: map‐
ping, which is the independent application of a function to all elements in a list, and
reducing, which is the combination of consecutive elements in a list into a single ele‐
ment. Example 8-1 clearly shows how these elements work.

Example 8-1. Map and reduce functions in Python

>>> # map works by applying a function to every element in an array.
... # For example, we create a sample array of 1 to 10.
>>> sample = range(1,11)
>>> # We now define a doubling function.
...
>>> def double(x):
...     return x * 2
...
>>> # We now apply the doubling function to the sample data.
... # This results in a list whose elements are double the
... # original's.
...
>>> map(double, sample)
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> # Now we create a 2-parameter function that adds two elements.
...
>>> def add(a, b):
...     return a + b
...
>>> # We now run reduce with add and the sample; add is applied
... # to every element in turn, so we get add(1,2), which produces
... # 3. The list now looks like [3,3,...] as opposed to
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... # [1,2,3....], and the process is repeated: 3 is added to 3,

... # and the list now looks like [6,4,...], until everything is

... # added.

...
>>> reduce(add, sample)
55

MapReduce is a convenient paradigm for parallelization. Map operations are implic‐
itly parallel because the mapped function is applied to each list element individually,
and reduction provides a clear description of how the results are combined. This easy
parallelization enables the implementation of any of a number of big data approaches.

For our purposes, a big data system is a distributed data storage architecture that
relies on massive parallelization. Recall the previous discussion about how flat file
systems can enhance performance by intelligently indexing data. But now, instead of
simply storing the hourly file on disk, we split it across multiple hosts and run the
same query on those hosts in parallel. The finer details depend on the type of storage,
for which we can define three major categories:

Key stores
Including MongoDB, Accumulo, Cassandra, Hypertable, and LevelDB. These
systems effectively operate as a giant hashtable in that a complete document or
data structure is associated with a key for future retrieval. Unlike the other two
options, key store systems don’t use schemas; structure and interpretation are
dependent on the implementer.

Columnar databases
Including MonetDB, Sensage, and Paraccel. Columnar databases split each
record across multiple column files with the same index.

Relational databases
Including MySQL, Postgres, Oracle, and Microsoft’s SQL Server. RDBMSs store
complete records as individually distinguishable rows.

Figure 8-3 explains these relations graphically. In a key store, the record is stored by
its key while the relationship between the recorded data and any schema is left to the
user. In a columnar database, rows are decomposed into their individual fields and
then stored, one field per file, in individual column files. In an RDBMS, each row is a
unique and distinguishable entity. The schema defines the contents of each row, and
rows are stored sequentially in a file.
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Figure 8-3. Comparing data storage systems

Key stores are a good choice when you have no idea what the structure of the data is,
when you have to implement your own low-level queries (e.g., image processing and
anything not easily expressed in SQL), or even if the data has structure. This reflects
their original purpose of supporting unstructured text searches across web pages. Key
stores will work well with web pages, tcpdump records containing a payload, images,
and other datasets where the individual records are relatively large (on the order of 60
KB or more, around the size of the HTML on a modern web page). However, if the
data possesses some structure, such as the ability to be divided into columns, or
extensive and repeated references to the same data, then a columnar or relational
model may be preferable.

Columnar databases are preferable when the data is easily divided into individual log
records that don’t need to cross-reference each other, and when the contents are rela‐
tively small, such as the CLF and ELF record formats discussed in “HTTP: CLF and
ELF” on page 78. Columnar databases can optimize queries by picking out and pro‐
cessing data from a subset of the columns in each record; their performance improves
when they query on fewer columns or return fewer columns. If your schema has a
limited number of columns (for example, an image database containing a small date
field, a small ID field, and a large image field), then the columnar approach will not
provide a performance boost.

RDBMSs were originally designed for information that’s frequently replicated across
multiple records, such as a billing database where a single person may have multiple
bills. RDBMSs work best with data that can be subdivided across multiple tables. In
security environments, they’re usually best suited to maintaining personnel records,
event reports, and other knowledge—things that are produced after processing data
or that reflect an organization’s structure. RDBMSs are good at maintaining integrity
and concurrency; if you need to update a row, they’re the default choice. The RDBMS
approach is possibly unwarranted if your data doesn’t change after creation, individ‐
ual records don’t have cross-references, or your schemas store large blobs.
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Further Reading
1. M. Kleppmann, Designing Data-Intensive Applications (Sebastopol, CA: O’Reilly

Media, 2017).
2. M. Hausenblas and N. Bijnens, The Lambda Architecture, available at http://

www.lambda-architecture.net.
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CHAPTER 9

The SiLK Suite

SiLK, the System for Internet-Level Knowledge, is a toolkit originally developed by
Carnegie Mellon’s CERT to conduct large-scale NetFlow analysis. SiLK is now used
extensively by the US Department of Defense, academic institutions, and technical
companies as a basic analytical toolkit.

This chapter focuses primarily on using SiLK as an analytical tool. The CERT Net‐
work Situational Awareness (NetSA) Group has published extensive references on
using SiLK, installing collectors, and setting up the suite.

What Is SiLK and How Does It Work?
SiLK is a suite of tools for querying and analyzing NetFlow data. The SiLK suite ena‐
bles an analyst to rapidly and efficiently query very large volumes of network traffic
in order to identify complex aggregate phenomena or extract individual events.

SiLK is effectively a database at the command line. Each tool performs a specific
query, manipulation, or aggregation of data, and commands are chained together to
produce results. By chaining together multiple records along pipes, SiLK enables the
analyst to create complex commands that field data along multiple channels simulta‐
neously. For example, the sequence of SiLK queries in Example 9-1 pulls HTTP (port
80) traffic from flow data, producing a time series and a list of activity by busiest
address. This example illustrates the basics of SiLK operation: commands are passed
through a series of pipes, which can be stdin, stdout, or FIFOs (named pipes).
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1 You’ll notice that there are two datasets, one with scans and one without. To understand why, read R. Pang et
al., “The Devil and Packet Trace Anonymization,” ACM SIGCOMM Computer Communication Review 36:1
(2006): 29–38.

Example 9-1. Some overly complicated rwfilter voodoo

$ mkfifo out2
$ rwfilter --proto=6 --aport=80 data.rwf --pass=stdout |
       rwfilter --input=stdin  --proto=6 --pass=stdout
     --all=out2 | rwstats --top --count=10 --fields=1 &
     rwcount out2 --bin-size=300

Data is maintained in an efficient binary representation up until the last moment,
until commands that produce text (or some optional outputs) are called to produce
output.

SiLK is very much an old-school Unix application suite: a family of tools tied together
with pipes and using a lot of optional arguments. By using this approach, it’s possible
to create powerful analytic scripts with SiLK, because the tools have well-defined
interfaces that will efficiently handle binary data. Effectively using SiLK involves con‐
necting the appropriate tools together in order to process binary data and produce
text only at the very end of the process.

This chapter also uses some basic Unix shell commands, such as ls, cat, and head,
but doesn’t require you to know the shell on an expert level.

Acquiring and Installing SiLK
The SiLK package is available as a free download on the CERT NetSA Security Suite
web page, and can be installed on most Unix systems without much difficulty. CERT
also provides a live CD image that can be used on its own.

The SiLK live CD comes with a training dataset called LBNL-05, containing anony‐
mized header traces from Lawrence Berkeley National Labs in 2005. If you install the
live CD, the data will be immediately accessible. If not, you can fetch the data from
the LBNL-05 reference data page.1

In addition to the live CD, SiLK is available in several package managers, including
homebrew.

The Datafiles
The LBNL datafiles are stored in a file hierarchy; Example 9-2 shows the results of
downloading and unarchiving them.
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Example 9-2. Downloading the SiLK archives

$ gunzip -c SiLK-LBNL-05-noscan.tar
$ gunzip -c SiLK-LBNL-05-scanners.tar
$ cd SiLK-LBNL-05
$ ls
README-S0.txt in    out   silk.conf
README-S1.txt inweb       outweb
$ ls in/2005/01/07/*.01
in/2005/01/07/in-S0_20050107.01 in/2005/01/07/in-S1_20050107.01

When collecting data, SiLK partitions the data into subdirectories that divide traffic
by the type of traffic and the time the event occurred. This provides scalability and
speeds up analysis. However, it’s also generally a black box, and one we’re breaking
right now simply to have some files to work with. For the purposes of demonstration
and education, we’re going to work with four specific files:

• inweb/2005/01/06/iw-S0_20050106.20
• inweb/2005/01/06/iw-S0_20050106.21
• in/2005/01/07/in-S0_20050107.01
• in/2005/01/07/in-S1_20050107.01

These files are not special in any way. I chose them just to provide examples of scan
and nonscan traffic. The following section discusses how to partition data and what
the filenames mean.

Choosing and Formatting Output Field
Manipulation: rwcut
SiLK records are stored in a compact binary format. They can’t be read directly, and
are instead accessed using the rwcut tool (see Example 9-3). In the following exam‐
ple, and any other examples with an output longer than 80 characters, the lines are
manually broken for clarity.

Example 9-3. Simple file access with rwcut

$ rwcut inweb/2005/01/06/iw-S0_20050106.20 | more
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|\
   flags|                  sTime|   dur|                  eTime|sen|
 148.19.251.179|   128.3.148.48| 2497|   80|  6|        16|      2631|\
FS PA   |2005/01/06T20:01:54.119| 0.246|2005/01/06T20:01:54.365|  ?|
 148.19.251.179|   128.3.148.48| 2498|   80|  6|        14|      2159|\
 S PA   |2005/01/06T20:01:54.160| 0.260|2005/01/06T20:01:54.420|  ?|
...
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In its default invocation, rwcut outputs 12 fields: source and destination IP addresses
and ports, protocol, number of packets, number of bytes, TCP flags, start time, dura‐
tion, end time, and sensor of a flow. These values were discussed previously in Chap‐
ter 2, except for the sensor field. SiLK can be configured to identify individual
sensors, which is useful when you’re trying to figure out where traffic came from or
where it’s going. The sensor field is whatever ID is assigned during configuration. In
the default data there are no sensors, so the value is set to a question mark (?).

All SiLK commands have built-in documentation. Typing rwcut --help brings up an
enormous help page. We will cover the basic options. A fuller description of options
can be found in the SiLK documentation for rwcut.

The most commonly used rwcut commands select the fields displayed during invoca‐
tion. rwcut can actually print 29 different fields, in arbitrary order. A list of these
fields is in Table 9-1.

rwcut fields are specified using the --fields= option, which takes the numeric values
in Table 9-1 or the string values and prints the requested fields in the order specified,
as in Example 9-4.

Table 9-1. rwcut fields

Field Numeric ID Description

sIP 1 Source IP address

dIP 2 Destination IP address

sPort 3 Source port

dPort 4 Destination port: if ICMP, the ICMP type and code is encoded here also

protocol 5 Layer 3 protocol

packets 6 Packets in the flow

bytes 7 Bytes in the flow

flags 8 OR of TCP flags

sTime 9 Start time in seconds

eTime 10 End time in seconds

dur 11 Duration (eTime–sTime)

sensor 12 Sensor ID

in 13 SNMP ID of the incoming interface on the router

out 14 SNMP ID of the outgoing interface on the router

nhIP 15 Next hop address

sType 16 Classification of the source address (internal, external)

dType 17 Classification of the destination address (internal, external)

scc 18 Country code of the source IP
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Field Numeric ID Description

dcc 19 Country code of the destination IP

class 20 Class of the flow

type 21 Type of the flow

sTime +msec 22 sTime in milliseconds

eTime +msec 23 eTime in milliseconds

dur +msec 24 Duration in milliseconds

icmpTypeCode 25 ICMP type and code

initialFlags 26 Flags in the first TCP packet

sessionFlags 27 Flags in all packets except the first

attributes 28 Attributes of the flow observed by the generator

application 29 Guess as to the application in the flow

Example 9-4. Some examples of field ordering

# Show a limited set of fields
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 | head -2
            sIP|            dIP|sPort|dPort|pro|
 148.19.251.179|   128.3.148.48| 2497|   80|  6|
$#Note the -, now explicitly enumerate
$ rwcut --field=1,2,3,4,5 inweb/2005/01/06/iw-S0_20050106.20 | head -2
            sIP|            dIP|sPort|dPort|pro|
 148.19.251.179|   128.3.148.48| 2497|   80|  6|
# Field order is based on what you enter in --field
$ rwcut --field=5,1,2,3,4 inweb/2005/01/06/iw-S0_20050106.20 | head -2
pro|            sIP|            dIP|sPort|dPort|
  6| 148.19.251.179|   128.3.148.48| 2497|   80|
# We can use text instead of numbers
$ rwcut --field=sIP,dIP,proto inweb/2005/01/06/iw-S0_20050106.20 |head -2
            sIP|            dIP|pro|
 148.19.251.179|   128.3.148.48|  6|

rwcut supports a number of other output formatting and manipulation tools. Some
particularly useful ones, which let you control the lines that appear in the output,
include:

--no-title

Commonly used with SiLK commands that produce tabular output. Drops the
title from the output table.

--num-recs

Outputs a specific number of records, eliminating the need for the head pipe in
Example 9-4. The default value is 0, which makes rwcut dump the entire contents
of whatever file it’s reading.
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--start-rec-num and --end-rec-num
Can be used to fetch a range of records in the file.

Example 9-5 shows a few ways to manipulate record numbers and headers.

Example 9-5. Manipulating record numbers and headers

# Drop the title
$ rwcut --field=1-9 --no-title inweb/2005/01/06/iw-S0_20050106.20 | head -5
 148.19.251.179|   128.3.148.48| 2497|   80|  6|        16|      2631|FS PA
  |2005/01/06T20:01:54.119|
 148.19.251.179|   128.3.148.48| 2498|   80|  6|        14|      2159| S PA
  |2005/01/06T20:01:54.160|
 148.19.251.179|   128.3.148.48| 2498|   80|  6|         2|        80|F   A
  |2005/01/06T20:07:07.845|
  56.71.233.157|   128.3.148.48|48906|   80|  6|         5|       300| S
  |2005/01/06T20:01:50.011|
   56.96.13.225|   128.3.148.48|50722|   80|  6|         6|       360| S
  |2005/01/06T20:02:57.132|
# Drop the head statement
$ rwcut --field=1-9 inweb/2005/01/06/iw-S0_20050106.20 --num-recs=5
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   flags
|                  sTime|
 148.19.251.179|   128.3.148.48| 2497|   80|  6|        16|      2631|FS PA
|2005/01/06T20:01:54.119|
 148.19.251.179|   128.3.148.48| 2498|   80|  6|        14|      2159| S PA
|2005/01/06T20:01:54.160|
 148.19.251.179|   128.3.148.48| 2498|   80|  6|         2|        80|F   A
|2005/01/06T20:07:07.845|
  56.71.233.157|   128.3.148.48|48906|   80|  6|         5|       300| S
|2005/01/06T20:01:50.011|
   56.96.13.225|   128.3.148.48|50722|   80|  6|         6|       360| S
|2005/01/06T20:02:57.132|
# Print only the third through fifth records
$ rwcut --field=1-9 inweb/2005/01/06/iw-S0_20050106.20 --start-rec-num=3
  --end-rec-num=5
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   flags
|                  sTime|
 148.19.251.179|   128.3.148.48| 2498|   80|  6|         2|        80|F   A
|2005/01/06T20:07:07.845|
  56.71.233.157|   128.3.148.48|48906|   80|  6|         5|       300| S
|2005/01/06T20:01:50.011|
   56.96.13.225|   128.3.148.48|50722|   80|  6|         6|       360| S
|2005/01/06T20:02:57.132|

A number of options manipulate output format. Tabulation is controllable with the
--column-separator, --no-final-column, and --no-columns switches. --column-
separator will change the character used to distinguish columns, while --no-final-
column drops the delimiter at the end of the line. --no-columns removes any space
padding between columns. The --delimited switch combines all three: it takes a

142 | Chapter 9: The SiLK Suite



character as an argument, uses that character as a column separator, removes all pad‐
ding in the columns, and drops the final column separator.

In addition, there are a variety of switches for changing column content:

--integer-ips

Converts IP addresses to integers rather than dotted quads. This switch is depre‐
cated as of SiLK v3, and users should now use --ip-format=decimal.

--ip-format

The updated version of --integer-ips, --ip-format specifies how addresses are
rendered. Options include canonical (dotted quad for IPv4, canonical IPv6 for
IPv6), zero-padded (canonical, except zeros are expanded to the maximal value
for each format, so 127.0.0.1 is 127.000.000.001), decimal (prints as the corre‐
sponding 32-bit or 128-bit integer), hexadecimal (prints the integer in hexadeci‐
mal format), and force-ipv6 (prints all addresses in canonical IPv6 format,
including IPv4 addresses mapped to the ::ffff:0:0/96 netblock).

--epoch-time

Prints timestamps as epoch values with floating-point millisecond precision.

--integer-tcp-flags

Converts TCP flags to their integer equivalents.

--zero-pad-ips

Pads the dotted quad IP address format with zeros, so that 128.2.11.12 is printed
as 128.002.011.012. Deprecated in favor of --ip-format in SiLK v3.

--icmp-type-and-code

Places the ICMP type in the source port and the ICMP code in the destination
port.

--pager

Specifies the program to use for paging output.

Example 9-6 shows some of the preceding options.

Example 9-6. Other formatting examples

# Change from fixed-width columns to delims
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --no-columns --num-recs=2
sIP|dIP|sPort|dPort|protocol|
148.19.251.179|128.3.148.48|2497|80|6|
148.19.251.179|128.3.148.48|2498|80|6|
# Change the column separator
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --column-sep=:
  --num-recs=2
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            sIP:            dIP:sPort:dPort:pro:
 148.19.251.179:   128.3.148.48: 2497:   80:  6:
 148.19.251.179:   128.3.148.48: 2498:   80:  6:
$# Use --delim to change everything at once
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --delim=: --num-recs=2
sIP:dIP:sPort:dPort:protocol
148.19.251.179:128.3.148.48:2497:80:6
148.19.251.179:128.3.148.48:2498:80:6
# Convert IP addresses to integers
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --integer-ip --num-recs=2
       sIP|       dIP|sPort|dPort|pro|
2484337587|2147718192| 2497|   80|  6|
2484337587|2147718192| 2498|   80|  6|
# Use epoch time
$ rwcut --field=1-5,9 inweb/2005/01/06/iw-S0_20050106.20 --epoch --num-recs=2
            sIP|            dIP|sPort|dPort|pro|         sTime|
 148.19.251.179|   128.3.148.48| 2497|   80|  6|1105041714.119|
 148.19.251.179|   128.3.148.48| 2498|   80|  6|1105041714.160|
# Zero-pad IP addresses
$ rwcut --field=1-5,9 inweb/2005/01/06/iw-S0_20050106.20 --zero-pad --num-recs=2
            sIP|            dIP|sPort|dPort|pro|                  sTime|
148.019.251.179|128.003.148.048| 2497|   80|  6|2005/01/06T20:01:54.119|
148.019.251.179|128.003.148.048| 2498|   80|  6|2005/01/06T20:01:54.160|

You will note that, as the command lines get more complex, I have truncated the
longer options. SiLK uses GNU-style long options universally, so the only require‐
ment for specifying an option is to type enough characters to make the name unam‐
biguous. Expect more and more truncation as we build more and more complex
commands.

Basic Field Manipulation: rwfilter
The most basic SiLK command with analytical value is rwcut paired with rwfilter
through a pipe. Example 9-7 shows a simple rwfilter command.

Example 9-7. A simple rwfilter command

$ rwfilter --dport=80 inweb/2005/01/06/iw-S0_20050106.20 --pass=stdout
  | rwcut --field=1-9 --num-recs=5
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   flags
  |                  sTime|
 148.19.251.179|   128.3.148.48| 2497|   80|  6|        16|      2631|FS PA
  |2005/01/06T20:01:54.119|
 148.19.251.179|   128.3.148.48| 2498|   80|  6|        14|      2159| S PA
  |2005/01/06T20:01:54.160|
 148.19.251.179|   128.3.148.48| 2498|   80|  6|         2|        80|F   A
  |2005/01/06T20:07:07.845|
  56.71.233.157|   128.3.148.48|48906|   80|  6|         5|       300| S
  |2005/01/06T20:01:50.011|
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   56.96.13.225|   128.3.148.48|50722|   80|  6|         6|       360| S
  |2005/01/06T20:02:57.132|

rwfilter with a single filter (the --dport option in this case) and a single redirect
(the --pass=stdout) is about as simple as you can get. rwfilter is the workhorse of
the SiLK suite: it reads input (directly from a file, using a set of globbing specifica‐
tions, or through a pipe), applies one or more filters to each record in the data, and
then redirects the records based on whether a record matches the filters (passes) or
doesn’t match (fails).

SiLK’s rwfilter documentation is humongous, but primarily consists of repetitively
describing the filter specifications for every field, so don’t be intimidated. rwfilter
options basically do one of three things: they specify how to filter data, how to read
data, or how to direct the results of those filters.

Ports and Protocols
The easiest filters to start with are --sport, --dport, and --protocol. As the names
imply, they filter on the source port, destination port, and protocol, respectively (see
Example 9-8). These values can filter on a specific value (e.g., --sport=80 will pass
any traffic where the source port is 80), or a range specified with a dash or commas
(so --sport=79-83 will pass anything where the source port is between 79 and 83
inclusive, and could be expressed as --sport=79,80,81,82,83).

Example 9-8. Examples of filtering by ports and by protocol

$ rwfilter --dport=4350-4360  inweb/2005/01/06/iw-S0_20050106.20
  --pass=stdout | rwcut --field=1-9 --num-recs=5
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   flags
  |                  sTime|
 218.131.115.42| 131.243.105.35|   80| 4360|  6|         2|        80|F   A
  |2005/01/06T20:24:21.879|
  148.19.96.160|131.243.107.239|   80| 4350|  6|        27|     35445|FS PA
  |2005/01/06T20:59:42.451|
  148.19.96.160|131.243.107.239|   80| 4352|  6|         4|       709|FS PA
  |2005/01/06T20:59:42.507|
  148.19.96.160|131.243.107.239|   80| 4351|  6|        15|     16938|FS PA
  |2005/01/06T20:59:42.501|
  148.19.96.160|131.243.107.239|   80| 4353|  6|         4|       704|FS PA
  |2005/01/06T20:59:42.544|
$ rwfilter --sport=4000-  inweb/2005/01/06/iw-S0_20050106.20
  --pass=stdout | rwcut --field=1-9 --num-recs=5
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   flags
  |                  sTime|
  56.71.233.157|   128.3.148.48|48906|   80|  6|         5|       300| S
  |2005/01/06T20:01:50.011|
   56.96.13.225|   128.3.148.48|50722|   80|  6|         6|       360| S
  |2005/01/06T20:02:57.132|
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   56.96.13.225|   128.3.148.48|50726|   80|  6|         6|       360| S
  |2005/01/06T20:02:57.432|
  58.236.56.129|   128.3.148.48|32621|   80|  6|         3|       144| S
  |2005/01/06T20:12:10.747|
   56.96.13.225|   128.3.148.48|54497|  443|  6|         6|       360| S
  |2005/01/06T20:09:30.124|
$ rwfilter --dport=4350,4352  inweb/2005/01/06/iw-S0_20050106.20
  --pass=stdout | rwcut --field=1-9 --num-recs=5
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   flags
  |                  sTime|
  148.19.96.160|131.243.107.239|   80| 4350|  6|        27|     35445|FS PA
  |2005/01/06T20:59:42.451|
  148.19.96.160|131.243.107.239|   80| 4352|  6|         4|       709|FS PA
  |2005/01/06T20:59:42.507|
  148.19.96.160|131.243.107.239|   80| 4352|  6|         1|        40|    A
  |2005/01/06T20:59:42.516|
$ rwfilter --proto=1 in/2005/01/07/in-S0_20050107.01 --pass=stdout
 | rwcut --field=1-6 --num-recs=2
            sIP|            dIP|sPort|dPort|pro|   packets|
 35.223.112.236|    128.3.23.93|    0| 2048|  1|         1|
 62.198.182.170|    128.3.23.81|    0| 2048|  1|         1|
$ rwfilter --proto=1,6,17 in/2005/01/07/in-S0_20050107.01 --pass=stdout
 | rwcut --num-recs=2 --fields=1-6
            sIP|            dIP|sPort|dPort|pro|   packets|
  116.66.41.147|131.243.163.201| 4283| 1026| 17|         1|
  116.66.41.147|131.243.163.201| 3131| 1027| 17|         1|
$ rwfilter --proto=1,6,17 in/2005/01/07/in-S0_20050107.01 --fail=stdout
 | rwcut --num-recs=2  --fields=1-6
            sIP|            dIP|sPort|dPort|pro|   packets|
 57.120.186.177|   128.3.26.171|    0|    0| 50|        70|
 57.120.186.177|   128.3.26.171|    0|    0| 50|        81|

Note the use of --fail in the last example. Because there are 255 potential protocols,
specifying “everything but TCP, ICMP, and UDP” could be expressed in two ways:
either by specifying everything you want (--proto=0,2-5,7-16,18-), or by using the
--fail option. I’ll discuss more advanced manipulation of --pass and --fail in the
next chapter.

Size
Size options (e.g., bytes and packets) are similar to the protocol and port options in
that you express them numerically. Unlike the enumerations (ports and protocols),
these numeric values can be expressed only as single digits or ranges, not as comma-
separated values. So, --packets=70-81 is acceptable, but --bytes=1,2,3,4 is not.

IP Addresses
The simplest form of IP address filtering simply expresses the IP address directly (see
Example 9-9). The following examples show strict filtering on the source
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(--saddress) and destination (--daddress) address, and the --any-address option.
--any-address will match either source or destination addresses.

Example 9-9. Filtering on IP addresses

$ rwfilter --saddress=197.142.156.83 --pass=stdout
   in/2005/01/07/in-S0_20050107.01 | rwcut --num-recs=2
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   flags|
                  sTime|      dur|                  eTime|sen|
 197.142.156.83|  224.2.127.254|44510| 9875| 17|        12|      7163|        |
2005/01/07T01:24:44.359|   16.756|2005/01/07T01:25:01.115|  ?|
 197.142.156.83|  224.2.127.254|44512| 9875| 17|         4|      2590|        |
2005/01/07T01:25:02.375|    5.742|2005/01/07T01:25:08.117|  ?|
$ rwfilter --daddress=128.3.26.249 --pass=stdout
  in/2005/01/07/in-S0_20050107.01 | rwcut --num-recs=2
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   flags|
                    sTime|      dur|                  eTime|sen|
211.210.215.142|   128.3.26.249| 4068|   25|  6|         7|       388|FS PA   |
  2005/01/07T01:27:06.789|    5.052|2005/01/07T01:27:11.841|  ?|
 203.126.20.182|   128.3.26.249|51981| 4587|  6|        56|      2240|F   A   |
  2005/01/07T01:27:04.812|   18.530|2005/01/07T01:27:23.342|  ?|
$ rwfilter --any-address=128.3.26.249
  --pass=stdout in/2005/01/07/in-S0_20050107.01 | rwcut --num-recs=2
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   flags|
                    sTime|      dur|                  eTime|sen|
211.210.215.142|   128.3.26.249| 4068|   25|  6|         7|       388|FS PA   |
  2005/01/07T01:27:06.789|    5.052|2005/01/07T01:27:11.841|  ?|
 203.126.20.182|   128.3.26.249|51981| 4587|  6|        56|      2240|F   A   |
  2005/01/07T01:27:04.812|   18.530|2005/01/07T01:27:23.342|  ?|

Address options accept a variety of range descriptors. Each quad in an IP address can
be expressed using the same comma-dash format that protocols and ports use. IP
addresses will also accept the character x to mean 0–255. This expression can be used
within each quad; SiLK will match each quad separately. In addition to this comma-
dash format, SiLK can match on CIDR blocks.

SiLK supports IPv6 by using IPv6’s colon-based notation. The following are all exam‐
ples of valid IPv6 filters in SiLK, and Example 9-10 shows how to filter them:

::ffff:x
::ffff:0:aaaa,0-5
::ffff:0.0.5-130,1,255.x

Example 9-10. Filtering on IP ranges

# Filtering on the last quad
$ rwfilter --daddress=131.243.104.x inweb/2005/01/06/iw-S0_20050106.20
  --pass=stdout | rwcut --field=1-5 --num-recs=5
            sIP|            dIP|sPort|dPort|pro|
 150.52.105.212|131.243.104.181|   80| 1262|  6|
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 150.52.105.212|131.243.104.181|   80| 1263|  6|
  59.100.39.174| 131.243.104.27|   80| 3188|  6|
  59.100.39.174| 131.243.104.27|   80| 3191|  6|
  59.100.39.174| 131.243.104.27|   80| 3193|  6|
# Filtering a range of specific values in the third quad
$ rwfilter --daddress=131.243.104,107,219.x inweb/2005/01/06/iw-S0_20050106.20
   --pass=stdout | rwcut --field=1-5 --num-recs=5
            sIP|            dIP|sPort|dPort|pro|
  208.122.23.36|131.243.219.201|   80| 2473|  6|
205.233.167.250|131.243.219.201|   80| 2471|  6|
   58.68.205.40| 131.243.219.37|   80| 3433|  6|
208.233.181.122| 131.243.219.37|   80| 3434|  6|
   58.68.205.40| 131.243.219.37|   80| 3435|  6|
# Using CIDR blocks
$ rwfilter --saddress=56.81.0.0/16 inweb/2005/01/06/iw-S0_20050106.20
  --pass=stdout | rwcut --field=1-5 --num-recs=5
            sIP|            dIP|sPort|dPort|pro|
   56.81.19.218|131.243.219.201|   80| 2480|  6|
    56.81.16.73|131.243.219.201|   80| 2484|  6|
    56.81.16.73|131.243.219.201|   80| 2486|  6|
    56.81.30.48|131.243.219.201|  443| 2490|  6|
   56.81.31.159|131.243.219.201|  443| 2489|  6|

Time
There are three time options: --stime, --etime, and --active-time. These fields
require a time range, which in SiLK is written in the format:

YYYY/MM/DDTHH:MM:SS-YYYY/MM/DDTHH:MM:SS

Note the T separating the day and hour. The --stime and --etime fields filter exactly
what it says on the can, which can be a bit counterintuitive; specifying
--stime=2016/11/08T00:00:00-2012/11/08T00:02:00 filters any record whose start
time is between midnight and two minutes after midnight on November 8, 2016.
Records that started before midnight and are still being transmitted during that range
will not pass. To find records that occurred within a particular period, use the
--active-time filter.

TCP Options
Flows are aggregates of packets, and in the majority of cases, this aggregation is rela‐
tively easy to understand. For example, the number of bytes in a flow is the sum of
the number of bytes in all the packets that comprise the flow. TCP flags, however, are
a bit more problematic. In NetFlow v5, a flow’s flags are the bitwise OR of the flags in
its constituent packets—meaning that a flow indicates that a flag was present or
absent in the entire flow, but not where. A flow could conceivably consist of a gibber‐
ish sequence of flags such as a FIN, then an ACK and SYN. Monitoring software such
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as Yet Another Flowmeter (YAF) expands NetFlow to include additional flag fields,
which SiLK can take advantage of.

The core flag filtering switches are --flags-initial,--flags-all, and --flags-
session. These options accept flags in the form <high flags>/<mask flags>. If a
flag is listed in the mask, SiLK always parses it. If a flag is listed in the high flags, SiLK
passes it only if the value is high. The flags themselves are expressed using the charac‐
ters in Table 9-2.

Table 9-2. Expressing TCP flags in rwfilter

Character Flag

F FIN

S SYN

R RST

P PSH

A ACK

U URG

E ECE

C CWR

The combination of high flags and mask flags tends to confuse people, so let’s review
some examples. Remember that the basic rule is that for a flag to be evaluated, it must
be in the mask. A flag specified as high but not specified in the mask will be ignored.
So:

• Setting the value to S/S will pass any record where the SYN flag is high, regard‐
less of what the other flags are set to.

• Setting the value to S/SA will pass any record where the SYN flag is high and the
ACK flag is low.

• Setting the value to SA/SA will pass any record where both the SYN and ACK
flags are high.

• A combination like SAF/SAFR will return any record where the SYN, ACK, and
FIN flags are high and the RST flag is low, which would be expected of a normal
TCP connection.

In addition to these options, SiLK provides a set of flag-specific options in the form of
--syn-flag, --fin-flag, and so on for each potential flag. These options take a 1 or
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0 as an argument: setting the value to 1 will pass records where the flag is high, 0 will
pass records where the flag is low, and not including the option will pass all records.

What Should TCP Flags Look Like?
The combination of TCP flags in any particular flow can be a useful indicator of the
flow’s behavior, and there are certain flag combinations that raise suspicion.

Almost all TCP flows should pass either SAF/SAFR or SAR/SAFR, without passing SAFR/
SAFR. This is because most sessions will end in a FIN, with aberrations ending in an
RST. If both FIN and RST are seen, that should be suspicious; I’ve seen servers that
intentionally terminated sessions with RST, but that’s bad practice.

A TCP session without an ACK flag is curious, especially if that session has four or
more packets. Stacks are usually hardcoded to give up after n packets, where n tends
to be in the neighborhood of three.

For a client, the initial flag should be a SYN, while a server should have a SYN+ACK.
You should never see a SYN after the initial flag. Resynchronization would mean a
new session started using the same ephemeral port, which is weird for TCP.

The PSH and URG flags are, in my mind, the universal indicators of boring sessions.
If I see a session without PSH, especially if the session is long, it strikes me as curious.
In my mind, a “normal” TCP session will have FSPA high. A flow with just PA high is
usually a keepalive and an indication of a broken flow—look in the repository for the
same address combination and you’ll probably find a SAP flow occurring before it.

Backscatter/response messages include A, SA, and RA flows. A good number of RA
packets will arrive on any large network due to backscatter from spoofed DDoS
attacks. There isn’t really anything you can do about these packets; they’re not even
directly aimed at your network.

The “new flags” (ECE and CWR) are used to manage congestion notification, and fit
into the same category as PSH and URG in my mind—indicators of tedious normal‐
ity. However, they are new flags, and are only partially adopted at this time—Apple
has been aggressively using these flags, but they still show up only in a minority of
traffic.

Helper Options
If you compare rwfilter’s option-based filtering against tcpdump’s BPF filtering, it’s
immediately obvious that rwfilter’s approach is much more primitive. This was an
intentional decision: rwfilter is focused on processing large volumes as quickly as
possible, and the overhead involved in processing some kind of parseable language
was deemed too expensive.
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What usually trips people up is the lack of obvious not and or operators. For exam‐
ple, if you want to filter out all web sessions, you may try to filter traffic where one
port is 80, and the other is ephemeral. The initial attempt might be:

$ rwfilter --sport=80,1024-65535 --dport=80,1024-65535 --pass=stdout

The problem is that this will also pass any flows where the source and destination
port are both 80, and flows where the source and destination port are both ephem‐
eral. To deal with such issues, rwfilter has a collection of helper functions that,
combined with the --fail option and multiple filters, should be able to address any
of these problems.

In the case of ports, the --aport option refers to either the source or the destination
port. Using --aport and two filters, you can identify the appropriate sessions as
follows:

$ rwfilter --aport=80 --pass=stdout | rwfilter --input-pipe=stdin
   --aport=1024-65535 --pass=stdout

The first filter identifies anything engaged in port 80 traffic, and the second takes that
set and identifies anything that also used an ephemeral port.

A number of IP address helper options are available. --anyaddress filters across
source and destination addresses simultaneously. --not-saddress and --not-

daddress pass records with addresses that don’t match the option specification.

Miscellaneous Filtering Options and Some Hacks
rwfilter has a couple of direct text output options: --print-stat (see
Example 9-11) and --print-volume-stat. These can be used to print a summary of
the traffic without having to resort to cut, count, or other display tools. They also will
print volumes of records that did not pass a filter.

Example 9-11. Using --print-stat

$ rwfilter --print-volume-stat in/2005/01/07/in-S0_20050107.01 --proto=0-255
     |              Recs|           Packets|               Bytes|     Files|
Total|              2019|           2730488|           402105501|         1|
 Pass|              2019|           2730488|           402105501|          |
 Fail|                 0|                 0|                   0|          |
$ rwfilter --print-stat in/2005/01/07/in-S0_20050107.01 --proto=0-255
Files     1.  Read       2019.  Pass       2019. Fail           0.

Note in Example 9-11 the use of the --proto=0-255 option. In almost all invocations,
rwfilter expects some form of filtering applied to it, so when you need a filter that
passes everything, the easiest approach is just to specify all the protocols. --print-
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stat and --print-volume-stat output to stderr, so you can still use stdout for
pass, fail, and all channels.

Like rwcut, rwfilter has record-limiting commands. --max-pass-records and
--max-fail-records can be used to limit the number of records passed through a
pass or fail channel.

rwfileinfo and Provenance
SiLK filter files contain a fair amount of metadata, which can be accessed using the
rwfileinfo command (see Example 9-12). rwfileinfo can work with files, as seen in
the examples here, or directly on stdin by using stdin or - as an argument.

Example 9-12. Using rwfileinfo

$ rwfileinfo in/2005/01/07/in-S0_20050107.01
in/2005/01/07/in-S0_20050107.01:
  format(id)          FT_RWAUGMENTED(0x14)
  version             2
  byte-order          littleEndian
  compression(id)     none(0)
  header-length       28
  record-length       28
  record-version      2
  silk-version        0
  count-records       2019
  file-size           56560
  packed-file-info    2005/01/07T01:00:00 ? ?
$ rwfilter --print-stat in/2005/01/07/in-S0_20050107.01 --proto=6
  --pass=example.rwf
Files     1.  Read       2019.  Pass       1353. Fail         666.
$ rwfileinfo example.rwf
example.rwf:
  format(id)          FT_RWGENERIC(0x16)
  version             16
  byte-order          littleEndian
  compression(id)     none(0)
  header-length       156
  record-length       52
  record-version      5
  silk-version        2.1.0
  count-records       1353
  file-size           70512
  command-lines
                   1  rwfilter --print-stat --proto=6 --pass=example.rwf
  in/2005/01/07/in-S0_20050107.01
$ rwfilter --aport=25 example.rwf --pass=example2.rwf --fail=example2_fail.rwf
$ rwfileinfo example2.rwf
example2.rwf:
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  format(id)          FT_RWGENERIC(0x16)
  version             16
  byte-order          littleEndian
  compression(id)     none(0)
  header-length       208
  record-length       52
  record-version      5
  silk-version        2.1.0
  count-records       95
  file-size           5148
  command-lines
                   1  rwfilter --print-stat --proto=6 --pass=example.rwf
  in/2005/01/07/in-S0_20050107.01
                   2  rwfilter --aport=25 --pass=example2.rwf
  --fail=example2_fail.rwf example.rwf

The fields reported by rwfileinfo are as follows:

example2.rwf

The first line of every rwfileinfo dump is the name of the file.

format(id)

SiLK files are maintained in a number of different optimized formats; the format
value is a C macro describing the type of the file, followed by the hexadecimal ID
of that type.

version

The version of the file format.

byte-order

The order in which bytes are stored on disk; SiLK maintains distinct little- and
big-endian formats for faster reading.

compression(id)

Whether the file is natively compressed, again for faster reading.

header-length

The size of the file header; a SiLK file with no records will be just the size of the
header.

record-length

The size of individual file records. This value will be 1 if records are variable
length.

record-version

The version of the records (note that record versions are distinct from file ver‐
sions and SiLK versions).
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silk-version

The version of the SiLK suite used to create the file.

count-records

The number of records in the file.

file-size

The total size of the file; if the file is uncompressed, this value should be equiva‐
lent to the header length added to the product of the record length and record
count.

command-lines

A record of the SiLK commands used to create the file.

Example 9-13 shows how to use the --note-add command.

Example 9-13. Using --note-add

$ rwfilter --aport=22 example.rwf --note-add='Filtering ssh' --pass=ex2.rwf
$ rwfileinfo ex2.rwf
ex2.rwf:
  format(id)          FT_RWGENERIC(0x16)
  version             16
  byte-order          littleEndian
  compression(id)     none(0)
  header-length       260
  record-length       52
  record-version      5
  silk-version        2.1.0
  count-records       10
  file-size           780
  command-lines
                   1  rwfilter --print-stat --proto=6 --pass=example.rwf
  in/2005/01/07/in-S0_20050107.01
                   2  rwfilter --aport=22 --note-add=Filtering ssh
  --pass=ex2.rwf example.rwf
  annotations
                   1  Filtering ssh

Combining Information Flows: rwcount
rwcount can produce time series data from the output of an rwfilter command. It
works by placing counts of bytes, packets, and flow records into fixed-duration bins,
which are equally sized time periods specified by the user. rwcount is a relatively
straightforward application. Most of its complexity comes from relating the flows,
which themselves have a duration, to the bins.

154 | Chapter 9: The SiLK Suite



The simplest invocation of rwcount is shown in Example 9-14. The first thing to
notice is the use of the --bin-size option. In this example, the bins are half an hour,
or 1,800 seconds. If --bin-size isn’t specified, rwcount will default to 30-second bins.
Bin sizes don’t have to be integers; floating-point specifications with a resolution
down to the millisecond are acceptable for people who like lots of bins in their
output.

Example 9-14. Simple rwcount invocation

$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
   rwcount --bin-size=1800
               Date|        Records|               Bytes|          Packets|
2005/01/07T01:00:00|         257.58|         42827381.72|        248724.14|
2005/01/07T01:30:00|        1589.61|        211453506.60|       1438751.93|
2005/01/07T02:00:00|         171.81|        147824612.67|       1043011.93|

As Example 9-14 shows, rwcount outputs four columns: a date column in SiLK’s stan‐
dard date format (YYYY/MM/DDTHH:MM:SS), followed by record, byte, and packet col‐
umns. The floating-point values are a function of rwcount interpolating how much
traffic should be in each bin; rwcount calls this a load scheme.

The load scheme is an attempt by rwcount to approximate how much of a flow took
place over the period specified by the bins. In the default load scheme, rwcount splits
each flow proportionally across all the bins during which the flow was taking place.
For example, if a flow takes place from 00:04:00 to 00:11:00, and bins are 5 minutes
long, 1/7 of the flow will be added to the first (00:00:00–00:04:59) bin, 5/7 to the sec‐
ond bin (00:05:00–00:09:59), and 1/7 to the third (00:10:00–00:14:59) bin. rwcount
takes an integer parameter in the --load-scheme option, with the following results:

0

Split the traffic evenly across all bins covered. In the example flow given in the
previous paragraph, the flow would be split into thirds, and a third added to each
bin.

1

Add the entire flow to the first bin covered by the flow: 00:00:00–00:04:59 in the
above example.

2

Add the entire flow to the last bin covered by the flow: in the example above,
00:10:00–00:14:59.

3

Add the entire flow to the middle bin covered by the flow: in the example above,
00:05:00–00:09:59.
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4

The default load scheme.

rwcount uses the flow data provided to guess which time bins are required, but some‐
times you have to explicitly specify the time, especially when coordinating multiple
files. This can be done using the --start-epoch and --end-epoch options to specify
starting and ending bin times. Note that these parameters can use the epoch time or
yyyy/mm/dd:HH:MM:SS format. rwcount also has an option to print dates using epoch
time: the --epoch-slots option.

The --skip-zero option (see Example 9-15) is one of a number of output format
options. Normally, rwcount prints every empty bin it has allocated, but --skip-zero
causes empty bins to be omitted from the output. In addition, rwcount supports
many of the output options mentioned for rwcut: --no-titles, --no-columns,
--column-separator, --no-final-delimiter, and --delimited.

Example 9-15. Using epoch slots and the --skip-zero option

$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
   rwcount --bin-size=1800.00 --epoch
               Date|        Records|               Bytes|          Packets|
         1105059600|         257.58|         42827381.72|        248724.14|
         1105061400|        1589.61|        211453506.60|       1438751.93|
         1105063200|         171.81|        147824612.67|       1043011.93|
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
   rwcount --bin-size=1800.00 --epoch --start-epoch=1105057800
               Date|        Records|               Bytes|          Packets|
         1105057800|           0.00|                0.00|             0.00|
         1105059600|         257.58|         42827381.72|        248724.14|
         1105061400|        1589.61|        211453506.60|       1438751.93|
         1105063200|         171.81|        147824612.67|       1043011.93|
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
   rwcount --bin-size=1800.00 --epoch --start-epoch=1105056000
               Date|        Records|               Bytes|          Packets|
         1105056000|           0.00|                0.00|             0.00|
         1105057800|           0.00|                0.00|             0.00|
         1105059600|         257.58|         42827381.72|        248724.14|
         1105061400|        1589.61|        211453506.60|       1438751.93|
         1105063200|         171.81|        147824612.67|       1043011.93|
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
   rwcount --bin-size=1800.00 --epoch --start-epoch=1105056000 --skip-zero
               Date|        Records|               Bytes|          Packets|
         1105059600|         257.58|         42827381.72|        248724.14|
         1105061400|        1589.61|        211453506.60|       1438751.93|
         1105063200|         171.81|        147824612.67|       1043011.93|
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rwset and IP Sets
IP sets are SiLK’s most powerful capability, and something that distinguishes the tool‐
kit from most other analytical tools. An IP set is a binary representation of an arbi‐
trary collection of IP addresses. IP sets can be created from text files, from SiLK data,
or by using other binary SiLK structures.

The easiest way to start with IP sets is to create one, as in Example 9-16.

Example 9-16. Creating IP sets with rwset

$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
  rwset --sip-file=sip.set --dip-file=dip.set
$ ls -l *.set
-rw-r--r--  1 mcollins  staff    580 Jan 10 01:06 dip.set
-rw-r--r--  1 mcollins  staff  15088 Jan 10 01:06 sip.set
$ rwsetcat sip.set | head -5
0.0.0.0
32.16.40.178
32.24.41.181
32.24.215.49
32.30.13.177
$ rwfileinfo sip.set
sip.set:
  format(id)          FT_IPSET(0x1d)
  version             16
  byte-order          littleEndian
  compression(id)     none(0)
  header-length       76
  record-length       1
  record-version      2
  silk-version        2.1.0
  count-records       15012
  file-size           15088
  command-lines
                   1  rwset --sip-file=sip.set --dip-file=dip.set

rwset takes flow records and produces up to four output files. The file specified with
--sip-file will contain source IP addresses from the flow, --dip-file will contain
destination addresses, --any-file will contain source and destination IP addresses,
and nhip-file will contain next hop addresses. The output is binary and read with
rwsetcat, and as with all SiLK files, the file can be examined using rwfileinfo.

The power of IP sets comes when they’re combined with rwfilter. rwfilter has
eight commands that accept IP sets (--sipset, --dipset, --nhipset, --anyset, and
their negations). Sets are explicitly designed so rwfilter can rapidly query using
them, enabling a variety of useful queries, as seen in Example 9-17.
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Example 9-17. Set manipulation and response

# First, we create IP sets; I use --aport=123 (NTP on UDP) to filter down
# to a reasonable set of addresses.  NTP clients and servers use the same
# port.
$ rwfilter in/2005/01/07/in-S0_20050107.01 --pass=stdout --aport=123 |
   rwset --sip-file=sip.set --dip-file=dip.set
# Now, let's see how many IP addresses are created.
$ rwsetcat --count-ip sip.set
15
# Generating output using rwfilter; note the use of the --dipset file as the
# sip set; this means that I'm now looking for messages that responded to
# these addresses.  This means that I've seen NTP going to and from the
# address, meaning it's likely to be a legitimate speaker, as opposed to a
# scan on port 123.
$ rwfilter out/2005/01/07/out-S0_20050107.01 --dipset=sip.set --pass=stdout
   --aport=123 | rwcut | head -5
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|   \
flags|                    sTime|      dur|                  eTime|sen|
   128.3.23.152|    56.7.90.229|  123|  123| 17|         1|        76|   \
     |  2005/01/07T01:10:00.520|    0.083|2005/01/07T01:10:00.603|  ?|
   128.3.23.152|  192.41.221.11|  123|  123| 17|         1|        76|   \
     |  2005/01/07T01:10:15.519|    0.000|2005/01/07T01:10:15.519|  ?|
   128.3.23.231| 87.221.134.185|  123|  123| 17|         1|        76|   \
     |  2005/01/07T01:24:46.251|    0.005|2005/01/07T01:24:46.256|  ?|
   128.3.26.152| 58.243.214.183|  123|10123| 17|         1|        76|   \
     |  2005/01/07T01:27:08.854|    0.000|2005/01/07T01:27:08.854|  ?|
# Let's look at statistics; using the same file, I look at the hosts
# that responded.
$ rwfilter out/2005/01/07/out-S0_20050107.01 --dipset=sip.set  --aport=123
   --print-stat
Files     1.  Read      12393.  Pass         21. Fail       12372.
# Now I look at everyone else; --not-dipset means that I'm looking at everything
# on port 123 that doesn't go to these addresses.
$ rwfilter out/2005/01/07/out-S0_20050107.01 --not-dipset=sip.set  --aport=123
   --print-stat
Files     1.  Read      12393.  Pass        337. Fail       12056.

Sets can also be generated by hand using rwsetbuild, which takes text input and pro‐
duces a set file as the output. The rwsetbuild specification takes any of the IP address
specifications used by the --saddress option in rwfilter: literal addresses, integers,
ranges within dotted quads, and netmasks. Example 9-18 demonstrates this.

Example 9-18. Building a set using rwsetbuild

$ cat > setsample.txt
# Comments in set files are prefaced with a hashmark
# Literal address
255.230.1.1
# Note that I'm putting addresses in some semi-random order; the output
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# will be ordered
111.2.3-4.1-2
# Netmask
22.11.1.128/30
^D
$ rwsetbuild setsample.txt setsample.set
$ rwsetcat --print-ip setsample.set
22.11.1.128
22.11.1.129
22.11.1.130
22.11.1.131
111.2.3.1
111.2.3.2
111.2.4.1
111.2.4.2
255.230.1.1

Sets can also be manipulated using the rwsettool command, which provides a vari‐
ety of mechanisms for adding and removing sets. rwsettool supports four manipula‐
tions:

--union

Creates a set that includes any address that appears in any of the sets.

--intersect

Creates a set that includes only addresses that appear in all the sets specified.

--difference

Removes addresses in the latter sets from the first set.

--sample

Randomly samples a set to produce a subset.

rwsettool is generally invoked using an output path (--output=file), but if nothing
is specified, it will dump to stdout. As with rwfilter, rwsettool output is binary, so
a pure terminal dump triggers an error. Example 9-19 shows a manipulation with
rwsettool.

Example 9-19. Set manipulation with rwsettool

$ rm setsample2.set
$ cat > setsample2.txt
# Build a set that covers our original setsample file to
# see what happens with various functions
22.11.1.128/29
$ rwsetbuild setsample2.txt setsample2.set
$ rwsettool --union setsample.set setsample2.set | rwsetcat
22.11.1.128
22.11.1.129
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22.11.1.130
22.11.1.131
22.11.1.132
22.11.1.133
22.11.1.134
22.11.1.135
111.2.3.1
111.2.3.2
111.2.4.1
111.2.4.2
255.230.1.1
$ rwsettool --intersect setsample.set setsample2.set | rwsetcat
22.11.1.128
22.11.1.129
22.11.1.130
22.11.1.131
$ rwsettool --difference setsample.set setsample2.set | rwsetcat
111.2.3.1
111.2.3.2
111.2.4.1
111.2.4.2
255.230.1.1

Finally, there’s the rwsetmember command, which is effectively a set-based grep.
Using rwsetmember, you can query multiple sets simultaneously about whether an IP
address is present, as seen in the following examples:

$ rwsetcat x.set
4.8.2.1
92.11.3.15
128.2.1.1
$ rwsetcat y.set
44.3.17.2
99.3.5.5
128.2.1.1
$ rwsetmember 128.2.1.1 *.set
x.set
y.set
$ rwsetmember 99.3.5.5 *.set
y.set

Caching IP Sets
rwsetmember facilitates a very common and handy SiLK hack, generating periodic
(usually hourly or daily) sets of IP addresses engaged in particular activity. For exam‐
ple, you may run a daily query creating a set of all the incoming IP addresses per day,
storing the results as a distinct set. Then, in your directory of day1.set to dayn.set, you
can run rwsetmember and get a list of every date where the IP address appeared.
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Raw flow data has a very low signal-to-noise ratio, so caching information on a per-
address basis via sets and bags saves you space and time. Useful information to save
includes:

• IP address (incoming and outgoing)
• Scanners
• Visits from blacklists or other threat intelligence sources
• Traffic per host
• Legitimate (4+ packet TCP with SAF) traffic per host

rwuniq
rwuniq is the utility knife of counting tools. It allows an analyst to specify a key con‐
taining one or more fields, and will then count a number of different values, includ‐
ing total number of bytes, packets, flow records, or unique IP addresses matching the
key.

rwuniq’s default configuration counts the number of flows that occurred for a partic‐
ular key. The key itself must be specified using the --field option, which accepts the
field specifiers in Table 9-1. rwuniq can accept multiple fields, and the key will be
generated in the order specified in the command line. Example 9-20 demonstrates the
key features of the --field option. As it shows, field order in the option affects field
ordering in the output.

Example 9-20. Various field specifiers using rwuniq

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
  rwuniq --field=sip,proto | head -4
            sIP|pro|   Records|
 131.243.142.85| 17|         1|
131.243.141.187| 17|         6|
    128.3.23.41| 17|         4|
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
  rwuniq --field=1,2 | head -4
            sIP|            dIP|   Records|
  128.3.174.158|    128.3.23.44|         2|
    128.3.191.1|239.255.255.253|         8|
   128.3.161.98|131.243.163.206|         1|
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
  rwuniq --field=sip,sport | head -4
            sIP|sPort|   Records|
 131.243.63.143|53504|         1|
 131.243.219.52|61506|         1|
131.243.163.206| 1032|         1|
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$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
  rwuniq --field=sport,sip | head -4
sPort|            sIP|   Records|
55876|  131.243.61.70|         1|
51864|131.243.103.106|         1|
50955| 131.243.103.13|         1|

Note that when fields’ orders are changed, the order in which records are output also
changes. rwuniq does not guarantee record ordering by default; sorting can be
ordered by using the --sort-output option.

rwuniq provides a number of count switches that instruct it to count additional values
(see Example 9-21). The counting switches are --bytes, --packets, --flows, --sip-
distinct, and --dip-distinct. Each of these fields can be used on their own, or by
specifying a threshold (e.g., --bytes, --bytes=10, or --bytes=10-100). A single-
value threshold (--bytes=10) provides a minimum, while a two-value threshold
(--bytes=10-100) provides a range with a minimum and maximum. If you don’t
specify an argument, then the switch returns all values.

Example 9-21. Field spec with rwuniq

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
  rwuniq --field=sport,sip --bytes --packets | head -5
sPort|            sIP|               Bytes|   Packets|
55876|  131.243.61.70|                 308|         4|
51864|131.243.103.106|                 308|         4|
50955| 131.243.103.13|                 308|         4|
56568|  128.3.212.145|                 360|         5|
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
  rwuniq --field=sport,sip --bytes --packets=8 | head -5
sPort|            sIP|               Bytes|   Packets|
    0| 131.243.30.224|                2520|        30|
  959|   128.3.215.60|                 876|        19|
 2315|131.243.124.237|                 608|         8|
56838| 131.243.61.187|                 616|         8|
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
  rwuniq --field=sport,sip --bytes --packets=8-20 | head -5
sPort|            sIP|               Bytes|   Packets|
  959|   128.3.215.60|                 876|        19|
 2315|131.243.124.237|                 608|         8|
56838| 131.243.61.187|                 616|         8|
  514|   128.3.97.166|                2233|        20|

rwbag
The last set of tools to discuss in this chapter are bag tools. A bag is a form of storage
structure. It contains a key (which can be an IP address, a port, the protocol, or an
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interface index), and a count of values for that key. Bags can be created from scratch
or from flow data using the rwbag command (see Example 9-22).

Example 9-22. An rwbag call, creating an IP address bag

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
  rwbag --sip-bytes=sip_bytes.bag
$ rwbagcat sip_bytes.bag | head -5
     128.3.2.16|            10026403|
     128.3.2.46|               27946|
     128.3.2.96|              218605|
     128.3.2.98|                 636|
    128.3.2.102|                1568|

Like sets, bags are a second-order binary structure for SiLK, meaning that they have
their own toolkit (rwbagcat, rwbagtool, and rwbagbuild), the data is binary (so it
can’t be read with cat or a text editor), and they can be derived from flow data or
built from a datafile.

The basic bag generation tool is rwbag, which as seen in Example 9-22 takes flow data
and produces a bag file from it. rwbag can generate 27 types of bags, simultaneously if
you’re so inclined. These 27 types comprise 3 types of counting (bytes, packets, and
flows) and 9 types of key (sip, dip, sport, dport, proto, sensor, input, output,
nhip). Combine the key and the counting type, and you have a switch that will create
a bag. For example, to count all packets from source and destination IP addresses, call
rwbag --sip-packets=b1.bag --dip-packets=b2.bag.

Advanced SiLK Facilities
In this section, we discuss more advanced SiLK facilities: in particular, the use of
PMAPs and the collection and conversion of SiLK data.

PMAPs
A SiLK prefix map (PMAP) is a binary file that associates specific subnetworks (pre‐
fixes) with tags. PMAPs are used to record various mappings of a network, such as
whether a network belongs to a particular organization or ASN, and for country code
lookup. Using a source such as GeoIP, you can build a PMAP that associates IP
addresses with their country of origin.

The SiLK tool suite expects some basic PMAPs:

address_types.pmap
Describes an address’s type, conventionally indicating whether the address is
inside or outside of the network you are monitoring. Specify the default filesys‐
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tem location for this PMAP using the SILK_ADDRESS_TYPES environmental
variable.

country_codes.pmap
This PMAP describes the country code for an address. Specify the default loca‐
tion for this PMAP using the SILK_COUNTRY_CODES environmental variable.

PMAPs, like set files, can be created from text. Example 9-23 shows a simple PMAP
file. Note the following attributes:

• The set of labels at the beginning. PMAPs do not store strings, but enumerable
types identified by an integer. This enumeration is defined using the labels. You
can see that the PMAP in Example 9-23, for instance, stores a 3 to mark normal
traffic.

• The default key. Any value that doesn’t match one of the network blocks listed in
the map is given the default value.

• The actual declarations. Each declaration consists of a network specification,
such as 192.168.0.0/16, followed by a label.

Example 9-23. PMAP input

# This is a simple PMAP file that tracks some of the standard RFC 1918
# reserved addresses
#
# First we create some labels
label 0 1918-reserved
label 1 multicast
label 2 future
label 3 normal
#
# Specify the mode; this must be either ip or proto-port. ip in this case
# refers to v4 addresses.
#
mode ip
#
# Everything otherwise not specified is normal
default normal
# Now the maps
192.168.0.0/16    1918-reserved
10.0.0.0/8        1918-reserved
172.16.0.0/12     1918-reserved
224.0.0.0/4       multicast
240.0.0.0/4   future

Once you’ve created a text representation of the PMAP, you can compile the binary
PMAP file using the rwpmapbuild command. rwpmapbuild has two mandatory argu‐
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ments: an input filename, with the file in the text format described previously, and a
name for the output file. As with most SiLK commands, rwpmapbuild will not over‐
write an existing output file. For example:

$ rwpmapbuild -i reserve.txt -o reserve.pmap
$ ls -l reserve.*
  -rw-r--r-- 1 mcollins staff 406 May 27 17:16 reserve.pmap
  -rw-r--r-- 1 mcollins staff 526 May 27 17:00 reserve.txt

Once a PMAP file is created, it can be added to rwfilter and rwcut using the pmap-
file argument. Specifying the use of a PMAP file effectively creates a new set of fields
in the filter and cut commands; since PMAP files are explicitly related to IP
addresses, these new fields are bound to IP addresses.

Consider Example 9-24, which uses rwcut. In this example, the --pmap-file argu‐
ment is colon-delimited; the value before the colon (reserve in the example) is a
label, and the value after is a filename. rwcut binds the term reserve to the PMAPs
for the source and destination IP address, creating two new fields: src-reserve (for
the mapping of the source address to the PMAP) and dst-reserve (for the mapping
of the destination address).

Example 9-24. Creating the src-reserve and dst-reserve fields

$ rwcut --pmap-file=reserve:reserve.pmap --fields=1-4,src-reserve,dst-reserve
  traceroute.rwf | head -5
          sIP|          dIP|sPort|dPort|   src-reserve|   dst-reserve|
 192.168.1.12|  192.168.1.1|65428|   53| 1918-reserved| 1918-reserved|
 192.168.1.12|  192.168.1.1|56126|   53| 1918-reserved| 1918-reserved|
 192.168.1.12|  192.168.1.1|52055|   53| 1918-reserved| 1918-reserved|
  192.168.1.1|  92.168.1.12|   53|56126| 1918-reserved| 1918-reserved|

# Using the pmap in filter; note that rwcut is not using the pmap
$ rwfilter --pmap-file=reserve:reserve.pmap --pass=stdout traceroute.rwf
   --pmap-src-reserve=1918-reserved  | rwcut --field=1-5
   | head -5
sIP| dIP|sPort|dPort|pro|
192.168.1.12| 192.168.1.1|65428| 53| 17|
192.168.1.12| 192.168.1.1|56126| 53| 17|
192.168.1.12| 192.168.1.1|52055| 53| 17|
192.168.1.1| 192.168.1.12| 53|56126| 17|

Collecting SiLK Data
There are a number of different tools for collecting data and pushing it into SiLK. The
major ones are YAF, which is a flow collector, and rwptoflow and rwtuc, which con‐
vert other data into SiLK format.
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YAF
Yet Another Flowmeter (YAF) is the reference implementation for the IETF IPFIX
standard, and is the standard flow collection software for the SiLK toolkit. YAF can
read pcap data from files or capture packets directly, which it then assembles into
flow records and exports to disk. The tool itself can be entirely configured using
command-line options, but the number of options is fairly daunting. At its simplest, a
YAF command looks like this:

$ sudo yaf -i en1 --live=pcap -out /tmp/yaf/yaf

This reads data from interface en1 and drops it to the file in the temporary directory.
Additional options control how data is read and how it is converted into flow records
and other output formats.

yaf output is specified via the --out switch in tandem with the --ipfix and
--rotate switches. By default, --out outputs to a file; in the preceding example, the
file is /tmp/yaf/yaf, but any valid filename will do (if --out is set to -, then yaf will
output to stdout).

When --out is specified with --rotate, yaf writes the output to files that are rotated
at an interval specified by the --rotate switch (e.g., --rotate 3600 will update files
every hour). In this mode, yaf uses the name specified by --out as a base filename,
and attaches a suffix specified in YYYYMMDDhhmmss format, along with a decimal serial
number and a .yaf file extension.

When yaf is specified with the --ipfix switch, it communicates IPFIX data to a dae‐
mon located elsewhere on the network. In this case (the most complicated option),
--ipfix takes a transport protocol as an argument, while --out takes the IP address
of the host. The additional --ipfix-port switch takes a port number when needed.
Consult the documentation for more information.

The most important options are:

--live

Specifies the type of data being read; possible values are pcap, dag, or napatech.
dag and napatech refer to proprietary packet capture systems, so unless you have
that hardware, just set --live to pcap.

--filter

Applies a BPF filter to the pcap data.

--out

The output specifier, discussed previously. This will be a file, a file prefix, or an IP
address depending on whatever other switches are used.
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--ipfix

Takes a transport protocol (tcp, udp, sctp, or spread) as an argument, and speci‐
fies that output is IPFIX-transported over the network. Consult the yaf docu‐
mentation for more information.

--ipfix-port

Used only if --ipfix is specified. Specifies the port that the IPFIX data is sent to.

--rotate

Used only with files. If present, the filename in --out is used as a prefix, and files
are written with a timestamp appended to them. The --rotate option takes an
argument and the number of seconds to wait before moving to a new file.

--silk

Specifies output that can be parsed by SiLK’s rwflowpack tools.

--idle-timeout

Specifies the idle timeout for flows in seconds. If a flow is present in the flow
cache and isn’t active, it’s flushed as soon as it’s been inactive for the duration of
the idle timeout. Defaults to 300 seconds (5 minutes).

--active-timeout

Specifies the active timeout for flows, or the maximum amount of time an active
flow will be stored in the cache before being flushed. Defaults to 30 minutes
(1,800 seconds). Note that the active timeout determines the maximum observed
duration of collected flows.

YAF has many more options, but these are the basic ones to consider when configur‐
ing flows. Consult the yaf manpage for more details.

A Few Handy YAF Examples
YAF has a ton of options, and how they operate together can be a bit confusing. Here
are some examples of YAF invocations.

Read yaf from an interface (en1) and write to a file on disk:

$ sudo yaf -i en1 --live=pcap -o /tmp/yaf/yaf

Rotate the files every five minutes:

$ sudo yaf -i en1 --rotate 300 --live=pcap -o /tmp/yaf/yaf

Read a file from disk and convert it:

$ yaf <example.pcap >yafout

Run a BPF filter on the data, in this case for TCP data only:
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$ sudo yaf -i en1 --rotate 300 --live=pcap -o /tmp/yaf/yaf --filter="tcp"

Export the YAF data over IPFIX to address 128.2.14.11:3059:

$ sudo yaf --live pcap --in eth1 --out 128.2.14.11 --ipfix-port=3059
  --ipfix tcp

rwptoflow
SiLK uses its own compact binary formats to represent NetFlow data that tools such
as rwcut and rwcount present in a human-readable form. There are times when an
analyst needs to convert other data into SiLK format, such as when taking packet cap‐
tures from IDS alerts and converting them into a format where IP set filtering can be
done on the data.

The go-to tool for this task is rwptoflow. rwptoflow is a packet data to flow conver‐
sion tool. It does not aggregate flows; instead, each flow generated by rwptoflow is
converted into a one-packet flow record. The resulting file can then be manipulated
by the SiLK suite like any other flow file.

rwptoflow is invoked relatively simply with an input filename as its argument. In
Example 9-25, the pcap data from a traceroute is converted into flow data using
rwptoflow. The resulting raw file is then read using rwcut, and you can see the corre‐
spondence between the traceroute records and the resulting flow records.

Example 9-25. Converting pcap data with rwptoflow

$ tcpdump -v -n -r traceroute.pcap  | head -6
reading from file traceroute.pcap, link-type EN10MB (Ethernet)
21:06:50.559146 IP (tos 0x0, ttl 255, id 8010, offset 0, flags [none],
    proto UDP (17), length 64)
    192.168.1.12.65428 > 192.168.1.1.53: 63077+ A? jaws.oscar.aol.com. (36)
21:06:50.559157 IP (tos 0x0, ttl 255, id 37467, offset 0, flags [none],
    proto UDP (17), length 86)
    192.168.1.12.56126 > 192.168.1.1.53: 30980+ PTR?
    dr._dns-sd._udp.0.1.168.192.in-addr.arpa. (58)
21:06:50.559158 IP (tos 0x0, ttl 255, id 2942, offset 0, flags [none],
    proto UDP (17), length 66)
    192.168.1.12.52055 > 192.168.1.1.53: 990+ PTR? db._dns-sd._udp.home. (38)
$ rwptoflow traceroute.pcap > traceroute.rwf
$ rwcut --num-recs=3 --fields=1-5 traceroute.rwf
   sIP|  dIP|sPort|dPort|pro|
 192.168.1.12|  192.168.1.1|65428|   53| 17|
 192.168.1.12|  192.168.1.1|56126|   53| 17|
 192.168.1.12|  192.168.1.1|52055|   53| 17|

168 | Chapter 9: The SiLK Suite



rwtuc
When correlating data between different sources, you will occasionally want to con‐
vert it into SiLK’s format. rwtuc is the default tool for converting data into SiLK rep‐
resentation, as it works with columnar text files. Using rwtuc, you can convert IDS
alerts and other data into SiLK data for further manipulations.

The easiest way to invoke rwtuc is to use it as an inverse of rwcut. Create a file with
columnar entries and make sure that the titles match those used by rwcut:

$ cat rwtuc_sample.txt
sIP         |dIP        |proto
128.2.11.4  | 29.3.11.4 | 6
11.8.3.15   | 9.12.1.4  | 17
$ rwtuc < rwtuc_sample.txt > rwtuc_sample.rwf
$ rwcut rwtuc_sample.rwf --field=1-6
 sIP| dIP|sPort|dPort|pro|   packets|
  128.2.11.4|  29.3.11.4|    0|    0|  6|         1|
   11.8.3.15|   9.12.1.4|    0|    0| 17|         1|

As the following fragment shows, rwtuc will read the columns, use the headers to
determine column content, and stuff any unspecified fields with a default value if no
column is provided. rwtuc can also take column specifications at the command line
using the --fields and --column-separator switches, as so:

$ cat rwtuc_sample2.txt
128.2.11.4  x 29.3.11.4 x 6 x 5
7.3.1.1    x  128.2.11.4 x 17 x 3
$ rwtuc --fields=sip,dip,proto,packets --column-sep=x < rwtuc_sample2.txt
  > rwtuc_sample2.rwf
$ rwcut --fields=1-7 rwtuc_sample2.rwf
  sIP|  dIP|sPort|dPort|pro|   packets|     bytes|
 128.2.11.4|  29.3.11.4|    0|    0|  6|         5|         5|
    7.3.1.1| 128.2.11.4|    0|    0| 17|         3|         3|

SiLK’s binary format requires values for every field, which means that rwtuc makes a
best guess for field values that it doesn’t have. For instance, the previous example
specifies packets as a field but not bytes, so rwtuc just defines the packet value to be
identical to the byte value.

If there exists a common default value (e.g., all traffic has the same protocol), this
value can be defined using one of a number of field-stuffing options in rwtuc. These
options are identical to the field filtering options in rwfilter, except they only take
single values. For example, --proto=17 sets the protocol of every entry to 17.

In the following fragment, we use the field stuffing command --bytes=300 to set a
value of 300 bytes for every entry in rwtuc_sample2.txt:

$ rwtuc --fields=sip,dip,proto,packets --column-sep=x --bytes=300 <
  rwtuc_sample2.txt > rwtuc_sample2.rwf
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$ rwcut --fields=1-7 rwtuc_sample2.rwf
  sIP|  dIP|sPort|dPort|pro|   packets|     bytes|
   128.2.11.4|   29.3.11.4|    0|    0|  6|         5|       300|
      7.3.1.1|  128.2.11.4|    0|    0| 17|         3|       300|

The resulting RWF file will contain a value of 300 bytes, even though the byte value is
not in the original text file. The packet values, which are specified in the file, are set to
whatever was specified there.

rwrandomizeip
rwrandomizeip is a tool to shuffle IP addresses in order to anonymize data for public
release. Anonymization is itself a complex process, and should be considered on a
case-by-case basis. To that end, rwrandomizeip provides a number of different ano‐
nymization techniques, including pure randomization and consistent mapping.

The basic invocation of rwrandomizeip takes an input file and an output file, and
generates random addresses for both sets:

$ cat rwtuc_sample3.txt
sIP         |dIP        |proto
128.2.11.4  | 29.3.11.4 | 6
11.8.3.15   | 9.12.1.4  | 17
128.2.11.4  | 29.3.99.8 | 6
9.88.4.17   | 29.3.11.4 | 6
$ rwtuc < rwtuc_sample3.txt | rwrandomizeip stdin stdout | rwcut --fields=1-7
  --ipv6=ignore
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|
    10.93.81.37|   10.85.44.118|    0|    0|  6|         1|         1|
   10.99.53.145| 10.130.150.112|    0|    0| 17|         1|         1|
  10.146.120.29|   10.31.222.59|    0|    0|  6|         1|         1|
    10.3.86.205| 10.206.186.249|    0|    0|  6|         1|         1|
$ rwtuc < rwtuc_sample3.txt | rwrandomizeip stdin stdout | rwcut --fields=1-7
  --ipv6=ignore
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|
 10.147.117.187| 10.161.218.135|    0|    0|  6|         1|         1|
   10.15.216.69|  10.85.128.237|    0|    0| 17|         1|         1|
  10.148.145.16|  10.231.231.13|    0|    0|  6|         1|         1|
   10.255.35.36| 10.240.107.198|    0|    0|  6|         1|         1|

Specifying a seed with the --seed switch (which takes an integer) will randomize
addresses consistently between invocations:

$ rwtuc < rwtuc_sample3.txt | rwrandomizeip --seed=590 stdin stdout | rwcut
  --fields=1-7 --ipv6=ignore
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|
  10.147.108.49|  10.207.87.141|    0|    0|  6|         1|         1|
   10.193.249.8| 172.29.236.141|    0|    0| 17|         1|         1|
     10.3.188.2|   10.103.37.28|    0|    0|  6|         1|         1|
  10.40.122.115| 10.247.125.160|    0|    0|  6|         1|         1|
$ rwtuc < rwtuc_sample3.txt | rwrandomizeip --seed=590 stdin stdout | rwcut
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  --fields=1-7 --ipv6=ignore
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|
  10.147.108.49|  10.207.87.141|    0|    0|  6|         1|         1|
   10.193.249.8| 172.29.236.141|    0|    0| 17|         1|         1|
     10.3.188.2|   10.103.37.28|    0|    0|  6|         1|         1|
  10.40.122.115| 10.247.125.160|    0|    0|  6|         1|         1|

An alternative approach is to use the --consistent switch; this switch will generate a
per-octet randomization that can be recorded in a distinct shuffle file. Once created,
the shuffle file be reloaded and reused:

$ rwtuc < rwtuc_sample3.txt | rwrandomizeip --consistent --save-table=ipmap
  stdin stdout | rwcut --fields=1-7 --ipv6=ignore
            sIP|            dIP|sPort|dPort|pro|   packets|     bytes|
  47.116.224.20|  60.107.224.20|    0|    0|  6|         1|         1|
   211.8.97.234|  41.140.114.20|    0|    0| 17|         1|         1|
  47.116.224.20|  60.107.220.71|    0|    0|  6|         1|         1|
   41.24.235.32|  60.107.224.20|    0|    0|  6|         1|         1|

Note that in this example, the IP addresses in 29.3 are consistently mapped to 60.107.

Further Reading
1. The best source for information on applied SiLK use is CERT’s FloCon web page.

FloCon is CERT’s annual conference for large-scale security analysis, and has
regular presentations on applications of SiLK, Argus, and other flow analysis
tools.

2. T. Shimeall et al., “Using SiLK for Network Traffic Analysis,” Carnegie Mellon
University Software Engineering Institute, Pittsburgh, PA, 2014, available at
http://tools.netsa.cert.org/silk/analysis-handbook.pdf.

3. C. Gates et al., “More NetFlow Tools for Performance and Security,” Proceedings
of the 2004 USENIX Conference on System Administration, Atlanta, GA, 2004.

4. J. McHugh, “Sets, Bags, and Rock and Roll? Analyzing Large Data Sets of Net‐
work Data,” Proceedings of the 2004 European Symposium on Research In Com‐
puter Security, Sophia Antipolis, France, 2004.

5. M. Thomas et al., “SiLK: A Tool Suite for Unsampled Network Flow Analysis at
Scale,” CERT Publication CERTCC-2014-24.
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CHAPTER 10

Reference and Lookup: Tools for Figuring
Out Who Someone Is

Each alert or logfile line that reports an event provides some basic information about
the source of the event. Just from the IP address, you can derive information about
geographic location and do a reverse DNS lookup. This chapter covers tools that help
you track the identity of a host.

This chapter is focused on the idea of “walking up” the OSI stack, mentioned in “The
Basics of Network Layering” on page 19. I like to view the OSI layer as a sequence of
lookup processes. Each layer offers a different piece of addressing information, such
as the MAC address at layer 2, the IP address at 3, and the ports at 4. This informa‐
tion is moved between layers through the agency of various referencing systems: ARP
maps IP addresses to MAC addresses, DNS maps domain names to IP addresses, and
so on. Again, the abstraction isn’t perfect—DNS translation doesn’t move us up or
down the OSI stack—but by walking up each layer, we can describe what the
addresses mean and when they are relevant to investigation.

The remainder of this chapter is structured as follows: a section on MAC addresses,
then IPv4 and IPv6, followed by internet-layer information, then DNS, then higher-
level protocols. Finally comes a discussion of other important tools that don’t fit into
the layering model—in particular, reputation databases and malware repositories.

A general comment on the data discussed in this chapter: much of what is referenced
here is maintained by a crazy quilt of entities with differing concepts of the informa‐
tion they should provide. Some do good jobs, some do bad jobs, some intentionally
obfuscate everything they provide. In many cases, you will want to pull the same data
from multiple sources to validate it, and take everything you read with a grain of salt.
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MAC and Hardware Addresses
Chapter 2 discusses the basics of a media access control (MAC) address. MAC
addresses are defined in the network hardware to provide a locally unique address for
each host within a single layer 2 network. The majority of MAC addresses follow the
48-bit Extended Unique Identifier (EUI) standard: 6 bytes expressed hexadecimally
(e.g., 08-21-23-41-FA-BB). More modern network hardware may use EUI-64, which
adds an additional 16 bits. When a frame goes from a 48-bit system to a 64-bit sys‐
tem, the 48-bit address is padded to 64 bits.

Figure 10-1 shows how the EUI-48 and EUI-64 break down.

Figure 10-1. The EUI-48 and EUI-64 standards

Note two things in particular. First, if an EUI-48 is converted to an EUI-64, you can
tell this by looking at bytes 3 and 4, which will be FFFE. More important is that the
first 3 bytes are the organizationally unique identifier (OUI), which is a 24-bit value
assigned by the IEEE to the hardware manufacturer. OUIs are fixed serial numbers,
and if you know the OUI, you can find out who manufactured the card. The IEEE
maintains a list of OUI assignments, where you can use a search engine to find OUIs
by company, or companies by OUI.

For example, consider the following packet from a pcap:

$ tcpdump -c 1 -e -n -r web.pcap
reading from file web.pcap, link-type EN10MB (Ethernet)
00:37:56.480768 8c:2d:aa:46:f9:71 > 00:1f:90:92:70:5a, ethertype IPv4 (0x0800),
  length 78: 192.168.1.12.50300 > 157.166.241.11.80: Flags [S],
  seq 4157917085, win 65535, options [mss 1460,nop,wscale 4,nop,
  nop,TS val 560054289 ecr 0,sackOK,eol], length 0
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1 And I prefer to keep my Windows and Linux boxes physically wired.

The communication goes from 8c:2d:aa:46:f9:71 to 00:1f:90:92:70:5a. Looking these
up tells us that 8c:2d:aa belongs to Apple, and 00-1f-90 belongs to Actiontec Electron‐
ics, which makes Verizon’s FIOS routers.

There’s Less Work Than You Think
A common analytical stumbling block comes when an analyst tries to build a compli‐
cated general solution to a problem when only a limited number of options are
present. To use a military example, you don’t have to develop a general solution for
identifying aircraft carriers because there are only 20 of them in active service.
Instead of working on one big problem, you can solve 20 problems that are consider‐
ably smaller and mostly similar.

When dealing with hardware systems and applications, it often helps to stop, step
back, and do some market research. The problem often becomes smaller when you
find out, for example, that while there are a bunch of systems with embedded web
servers, most of them are using Allegro RomPager.

MAC addresses operate entirely within the scope of the local network. To communi‐
cate beyond the borders of a router, the host must have an IP address. The relation‐
ship between a local MAC and an IP address is managed through the Address
Resolution Protocol (ARP). Individual hosts maintain ARP tables that contain map‐
pings between IP addresses and MAC addresses on a network. For example, on my
local host, I can query the ARP table using arp -a:

$ arp -a
wireless_broadband_router.home (192.168.1.1) at 0:1f:90:92:70:5a on en1 ifscope
/[ethernet]
new-host-2.home (192.168.1.3) at 0:1e:c2:a6:17:fb on en1 ifscope [ethernet]
new-host.home (192.168.1.4) at cc:8:e0:68:b8:a4 on en1 ifscope [ethernet]
apple-tv-3.home (192.168.1.9) at 7c:d1:c3:26:35:bf on en1 ifscope [ethernet]
? (192.168.1.255) at ff:ff:ff:ff:ff:ff on en1 ifscope [ethernet]

Do the lookups and you’ll find that I really like Apple hardware.1

Analytically, MAC addresses (when you can get them, and you’ll normally have them
only for your local network, as already explained) are particularly useful for identify‐
ing and differentiating hardware, particularly networking hardware such as routers.
IP addresses are considerably more fungible than MAC addresses, and if you need to
track a mobile asset like a laptop or anything moderated through DHCP, the MAC
address will be your best asset for doing so.
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2 Note that the prefix is the equivalent to a subnet’s netmask.

IP Addressing
IP addresses are the most commonly accessed piece of information about a host, and
often the only piece of data you will have about a host.

IP is slowly transitioning from IPv4 to IPv6. IPv6 corrects a number of design errors
in IPv4, the most notable being IP address exhaustion. An IPv4 address is a 32-bit
value, conventionally written in “dotted quad” format: four bytes, written decimally,
separated by periods (like 192.168.1.1). At the time of IPv4’s original design, nobody
seriously expected that the 4 billion addresses provided would ever be exhausted, and
many of the early allocations of IPv4 addresses are comically generous, as you can see
from the master list of /8 allocations. A /8 is a collection of 16 million+ addresses
(224), all of which have the same first octet, so 9.0.0.0 to 9.255.255.255 are all owned
by IBM, for example. Looking at the list, you’ll see that several of the blocks were
assigned large and early to companies such as Xerox and Ford, which don’t really use
the space they have. The situation has actually improved over the past few years, as
several drug companies that owned nearly empty /8s have returned them to IANA.

The majority of the English-speaking internet still runs on IPv4, while in Asia and
elsewhere, IPv6 is increasingly prevalent. The uneven allocation of IPv4 addresses
forces countries that have come to the internet historically later to build IPv6 infra‐
structure.

IPv4 Addresses, Their Structure, and Significant Addresses
IPv4 addresses can be expressed using a number of different notations. The most
common is the dotted quad format discussed earlier: four integer values between 0
and 255, separated by periods. An address can also be referred to directly as a value,
usually in hexadecimal. Consequently, the IP address 0xA1010203 is 161.1.2.3 as a
dotted quad, and 2701197827 as a decimal integer.

Groups of IP addresses are usually described linearly (e.g., 128.2.11.3–128.2.3.14), or
using a Classless Internet Domain Routing (CIDR) block. CIDR blocks are a mecha‐
nism for describing the addresses reachable by picking a particular route. Addresses
in CIDR notation are represented by a prefix,2 which is a dotted quad representation
of the significant bits of an address, and then a mask, which indicates how many bits
make up the prefix.

For example, the CIDR block 128.2.11.0/24 consists of all addresses whose first 24
bits are 128.2.11, so any address from 128.2.11.0 to 128.2.11.255 is in that block.
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3 That doesn’t mean you won’t see it, just that you shouldn’t, and if you do, you should figure out a way to stop it.
The internet is weird.

A number of IP addresses are either reserved or fixed by convention in network con‐
figuration. For an individual host on a network, the most important are the broadcast
address, gateway, and netmask:

• IP networks are logically divided into subnets, collections of contiguous addresses
that can all communicate with each other without the need for internal routing.
When configuring an IP address, this range is specified using a netmask, which is
an IP address with a certain number of its least significant bits zeroed out.

• To communicate outside its subnet, a host will have to talk to a router, and does
so using a preconfigured gateway address. The gateway address is simply the IP
address of the router’s interface to the subnet. Gateway addresses are customarily
assigned the lowest value in the subnet, but this is not a requirement.

• A network’s broadcast address is set to the subnet mask, but with all the host bits
high (e.g., for a network with subnet mask 192.168.1.0, the broadcast address is
192.168.1.255). Messages sent to the broadcast address are sent to every target
within the network. The broadcast address is one of a number of addresses you
should never see outside of local network traffic. Addresses ending in .255, for
lack of a better term, smell funny.

A number of IPv4 addresses are reserved for specific networking functions. These
addresses are specifically intended for local use and consequently should not be seen
crossing networks. The most significant are:

Local identification addresses
These belong to the 0.0.0.0/8 CIDR block (0.0.0.0–0.255.255.255). Local identifi‐
cation addresses are used during the startup sequence for a host that doesn’t have
an IP address yet.

Loopback address
The loopback address of a host is 127.0.0.1. Traffic sent to the loopback address is
sent back to the host without entering the network. IANA has reserved the entire
127.0.0.0/8 CIDR block (127.0.0.0–127.255.255.255) for loopback, so as with
local identification, nothing from the 127.0.0.0/8 CIDR block should be seen
crossing network boundaries.3

RFC 1918 netblocks
RFC 1918 defines a number of netblocks for private use. These addresses can be
used within local networks with the intent that they never communicate directly
with the global internet. The RFC netblocks are 10.0.0.0/8, 192.168.0.0/16, and
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172.16.0.0/12. Addresses within these blocks are often assigned automatically by
local routing tools or DHCP.

Multicast addresses
Multicast addresses are used to classify specific groups of hosts within a subnet.
For example, multicast address 224.0.0.2 is the “all routers” multicast address,
and all routers within the subnet will receive traffic sent there. Multicast traffic is
primarily the focus of routing and other internet control protocols.

IPv6 Addresses, Their Structure, and Significant Addresses
One of the most significant changes between IPv4 and IPv6 is the number of
addresses they make available. IPv6 assigns 128 bits to each address; this ensures
plenty of addresses, but introduces some problems in notation.

The default format for an address is eight 16-bit hexadecimal values separated by
colons, such as 2001:0010:AF3A:FB31:09A8:08A1:1098:1101. Given that this is a long
and clumsy representation, addresses are usually represented using a number of
shorthand conventions. When writing IPv6 addresses, apply these rules:

• Leading zeros in any group are omitted, so 01AA:0002 can be written as 1AA:2.
• Consecutive groups of zeros may be replaced with a single pair of colons, so

2001:0:0:0:0:0:0:1 is written as 2001::1. The double-colon reduction can be used
only once, so 2001:0:0:0:11:0:0:1 is written as 2001::11:0:0:1.

The RIRs and IP Address Allocation
Researching an IP address often means tracing the chain of ownership to a specific
organization. The process of reservation is hierarchical; at the top level, IP address
allocation is controlled by the Internet Assigned Numbers Authority. IANA is a
department of the Internet Corporation for Assigned Names and Numbers (ICANN),
the US-based nonprofit in charge of managing IP address and DNS name assignment.

IANA delegates the control of blocks of numbers to the Regional Internet Registries
(RIRs), continental organizations that manage the allocation of IP addresses and
autonomous system numbers within their continents. RIRs are the intermediaries
between IANA and the various national and top-level domain (TLD) registrars that
actually deal with the allocation of addresses (see Table 10-1).

178 | Chapter 10: Reference and Lookup: Tools for Figuring Out Who Someone Is

http://www.iana.org


Table 10-1. The RIRs

RIR Domain URL
ARIN US and Canada www.arin.net

LACNIC Central and South America, the Caribbean lacnic.net

RIPE Europe, Russia, and the Middle East www.ripe.net

APNIC Asia and Oceana www.apnic.net

AfriNIC Africa www.afrinic.net

As with IPv4, multiple IPv6 blocks are reserved for specific functions. The most
important reservation at this point is 2000::/3 (as with IPv4, CIDR block notation can
be used with IPv6 addresses, and the mask can extend up to 128 bits). IPv6 space is
huge, and to help keep routes reasonably close together, all routable traffic in IPv6
should be in the 2000::/3 block. IANA maintains further divisions within the 2000::/3
block, as it does with the /8 registry for IPv4. The master reference is available on the
IPv6 Global Unicast Address Assignments page.

Additional address blocks of note include the ::/128 and ::1/128 blocks, which are the
unspecified and loopback addresses (the equivalent of 0.0.0.0 and 127.0.0.0 for IPv4).

Of particular interest are the utility address blocks 2001:758::/29 and 2001:678::/29. 
2001:758:/29 is specifically assigned to internet exchange points (IXPs); an IXP is a
physical location where multiple ISPs interconnect with each other. 2001:678::/29 rep‐
resents a block of provider-independent addresses; users can contact their RIRs
directly for these addresses.

For clarity, a summary of local and unroutable addresses is provided in Table 10-2.

Table 10-2. Notable addresses

IPv4 block IPv6 block Description
0.0.0.0/0 ::/0 Default route; addresses from this block shouldn’t be seen

0.0.0.0/32 ::/128 Unspecified address

127.0.0.1/8 ::1/128 Loopback

192.168.0.0/16 fc00::/7 Reserved for local traffic

10.0.0.0/8 fc00::/7 Reserved for local traffic

172.16.0.0/12 fc00::/7 Reserved for local traffic

224.0.0.0/4 ff00::/8 Multicast addresses

IP Addressing | 179

http://www.arin.net
http://lacnic.net
http://www.ripe.net
http://www.apnic.net
http://www.afrinic.net
http://bit.ly/ipv6-add


IP Intelligence: Geolocation and Demographics
A number of database and intelligence services provide further information about an
IP address. This type of augmentation data includes ownership, geolocation, and
demographic information.

It’s important to distinguish this augmentation data from information such as auton‐
omous system, domain name, and WHOIS data. The latter is necessary for the
upkeep of the network, and is maintained by internet organizations related to
ICANN. Geolocation, demographic data, and ownership are intelligence products.
The companies that produce them use a variety of mechanisms including network
scanning as well as shoe-leather investigation. This leads to several important quali‐
ties:

• The intelligence updates slowly, whereas DNS names can change very rapidly.
Intelligence updates require calling up entities, checking public records, and
other physical efforts to find out that, say, 128.2.11.214 is no longer involved in
selling car parts and is now hosting malware.

• There is always some degree of approximation. As a rule of thumb, intelligence
data gets less accurate as you delve down into finer detail. Country information is
usually good, but I’m moderately skeptical about city information outside of the
US and Western Europe, and I never trust physical location.

• You get what you pay for. The companies that produce this data have customers
who need it. Most of the companies started out providing demographic data for
large websites, and it’s still common to find limits on the number of queries you
can conduct per license. You pay for accuracy and you pay for precision. There
are free intelligence databases, but if you want to get finer detail than country
codes, prepare to crack open your wallet.

The most commonly used open source reference is MaxMind’s GeoIP, which pro‐
vides a number of databases for city, country, region, organization, ISP, and network
speed. MaxMind also provides free services in the form of “lite” databases for identi‐
fying the city and country associated with an IP address. All of its products are down‐
loadable databases and are updated regularly. MaxMind has been providing this
service for years, along with a number of APIs in Python and other scripting lan‐
guages that are available to access the database.

Applied Security has produced a good GeoIP library in Python (pygeoip, also avail‐
able in pip). pygeoip works with MaxMind’s commercial and free database instances.
The following sample script, pygeoip_lookup.py, shows how the API works:

#!/usr/bin/env python
#
# pygeoip_lookup.py
#
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# Takes any IP addresses passed to it as input,
# runs them through the MaxMind GeoIP database, and
# returns the country code.
#
# Command-line arguments:
# argv[1]: Filename for a GeoIP database from MaxMind.

include sys,string,pygeoip

gi_handle = None
try:
    geoip_dbfn = sys.argv[1]
    gi_handle = pygeoip.GeoIP(geoip_dbfn,pygeoip.MEMORY_CACHE)
except:
    sys.stderr.write("Specify a database\n")
    sys.exit(-1)

for i in sys.stdin.readlines():
    ip = i[:-1]
    cc = gi_handle.country_code_by_addr(ip)
    print "%s %s" % (ip, cc)

For more extensive information, options include Neustar and Digital Envoy’s Digital
Element. Both provide more precise measurement, as well as additional demographic
data such as MSA (metropolitan statistical areas, contiguous areas of high population
density used by the US government for statistical analysis) and NAICS (North Ameri‐
can Industry Classification System, a numerical identifier akin to a Dewey Decimal
number for business type) codes. These services are not cheap, however.

DNS
In a just world, each IP address would have a single DNS name, and finding the DNS
name associated with an IP address would be a simple matter of consulting a data‐
base. This world is not just.

DNS is the glue that makes the internet usable by human beings. As one of the older
services making the internet work, DNS overlaps with a couple of other services (par‐
ticularly mail). The Domain Name System is, at this point, a distributed database that
provides lookup information for a number of different relationships: DNS name to IP
address, DNS name to DNS name, email address to mail server, and so on.

DNS Name Structure
A domain name consists of a hierarchical sequence of labels separated by periods,
such as www.oreilly.com. Domain names become more general as you read from left
to right, ending at the root domain (the root domain is ., but it’s almost always
implicit). Domain names do have limits. The total length of a name cannot exceed
253 characters, and individual labels are limited to 63. Finally, domain names are
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4 Internationalized domain names raise the risk of homoglyphic attacks, such as creating a domain name that
looks like oreilly.com but uses a Cyrillic O; see Chapter 12 for more information on this.

limited to 127 distinct labels, although the character limit should affect that far ear‐
lier.

Historically, labels were limited to a restricted subset of ASCII characters. Since 2009,
it has been possible to acquire internationalized domain names, which are encoded
using character systems such as Chinese, Greek, and so on.4 The mechanical limits of
253 characters per name still hold, though the encoding is more complex, as dis‐
cussed in Chapter 12.

NICs and Domain Name Allocation
The authority to allocate domain names, as with IP addresses, begins with ICANN.
ICANN controls the root zone and defines the top-level domains that lie just below
the root of the tree. As with addresses, each TLD has a managing authority referred to
as a network information center (NIC). Each NIC establishes different policies for
name allocation—for example, anyone can get a .com address, but only accredited
educational institutions qualify for a .edu address. Depending on NIC policy, registra‐
tion authority may be further delegated to one or more registrars.

IANA defines two principal categories of TLD: the country-agnostic generic TLDs
(gTLDs), and the country code TLDs (ccTLDs), which are two-letter top-level
domains for individual countries (e.g., .ie for Ireland).

ccTLDs and gTLDs have their own subdivisions. In ccTLDs are a new set of interna‐
tionalized TLDs; these allow non-Latin characters in the name. Under gTLDs are four
groupings, currently with 21 TLDs:

• Sponsored TLDs (sTLDs) are managed and allocated by specific top-level organi‐
zations; they include many of the classic gTLDs (.edu, .gov, .mil), as well as new
ones such as .mobi (mobile providers), .museum (museums), and .xxx (pornogra‐
phy).

• Generic TLDs are now limited to .com, .info, .net, and .org.
• Generic restricted TLDs are unsponsored but intended for specific purposes: .biz

is for business, .name is for personal names, and .pro for professionals.
• The infrastructure TLD contains the .arpa domain used for reverse DNS lookups.

As of this writing, there are new gTLDs in the pipeline: most notably geographic TLDs
to group together cultures, languages, cities, or other regions that aren’t well served by
country codes.
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Each TLD has its own NIC. Table 10-3 shows the NICs for a number of commonly
consulted TLDs.

Table 10-3. Notable NICs

TLD NIC URL
.org Public Interest Registry www.pir.org

.biz Neustar www.neustar.biz/enterprise/domain-name-registry

.com VeriSign www.verisigninc.com

.net VeriSign www.verisigninc.com

.edu Educause www.educause.ed

.int IANA www.iana.org/domains/int

.fr AFNIC www.afnic.fr

.uk Nominet www.nominet.org.uk

.ru Coordination Center for TLD RU www.cctld.ru/en

.cn CNNIC www1.cnnic.cn

.kr KISA www.kisa.or.kr

This hierarchy of nameservers also serves to determine which servers are authorita‐
tive. Top-level registries assign authority to subregistries by granting them zones. Each
zone has one master server that maintains its domain names and is authoritative
when queried, but zones can be nested in order to give different servers authority.

Forward DNS Querying Using dig
The basic DNS query tool is the domain information groper (dig), a command-line
DNS client that enables you to query DNS servers for all of the major records. We’ll
begin by conducting a simple dig query:

$ dig oreilly.com
dig oreilly.com

; <<>> DiG 9.8.3-P1 <<>> oreilly.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29081
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com.   IN A

;; ANSWER SECTION:
oreilly.com.  383 IN A 208.201.239.101
oreilly.com.  383 IN A 208.201.239.100
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;; Query time: 10 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sat Jul 20 19:11:17 2013
;; MSG SIZE  rcvd: 61
$ dig +short oreilly.com
208.201.239.101
208.201.239.100

Let’s examine dig’s display options, and then the structure of the DNS response. As
seen in the previous example, the basic dig command provides extensive information
about the query, beginning with a list of options invoked, then a DNS header, and
then several sections corresponding to the query. Note the QUERY, ANSWER, AUTHORITY,
and ADDITIONAL fields in the header line, and how those correspond to the lines in
the corresponding sections. Because this domain returned no AUTHORITY or ADDI
TIONAL records, none are shown in the output. The query is followed by a set of sta‐
tistics about the query: the server, the time it took, and the size of the message.

dig provides an enormous number of output options; the previous example showed
the default display. Individual sections of that display can be turned off using +nocom
ments (which kills all the comments beginning with a double semicolon), +nostats
(killing the statistics at the end), and +noquestion and +noanswer (to eliminate the
DNS responses). +short, as illustrated at the end of the previous example, will simply
remove all the cruft and show the responses.

dig is a DNS client, so the majority of information seen is from the DNS server itself.
dig enables you to query different servers by using @ in the command line. For
example:

# 8.8.8.8 is Google's public DNS server; let's query a content
# distribution network using it
$ dig @8.8.8.8 www.foxnews.com
; <<>> DiG 9.8.3-P1 <<>> @8.8.8.8 www.foxnews.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18702
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.foxnews.com.  IN A

;; ANSWER SECTION:
www.foxnews.com. 282 IN CNAME www.foxnews.com.edgesuite.net.
www.foxnews.com.edgesuite.net. 21582 IN CNAME a20.g.akamai.net.
a20.g.akamai.net. 2 IN A 204.245.190.42
a20.g.akamai.net. 2 IN A 204.245.190.8

;; Query time: 141 msec
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;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Sat Jul 20 19:48:01 2013
;; MSG SIZE  rcvd: 135

# Query using my default server
$ dig www.foxnews.com

; <<>> DiG 9.8.3-P1 <<>> www.foxnews.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47098
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.foxnews.com.  IN A

;; ANSWER SECTION:
www.foxnews.com. 189 IN CNAME www.foxnews.com.edgesuite.net.
www.foxnews.com.edgesuite.net. 9699 IN CNAME a20.g.akamai.net.
a20.g.akamai.net. 9 IN A 23.66.230.160
a20.g.akamai.net. 9 IN A 23.66.230.106

;; Query time: 97 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sat Jul 20 19:48:09 2013
;; MSG SIZE  rcvd: 135

As you can see, querying a CDN-moderated site (Fox News uses Akamai) results in
radically different IP addresses for the same name. CDNs manipulate the DNS to
ensure that caches of published data are geographically close to their target. If you
don’t specify the server using @, dig will default to whatever server the system is con‐
figured to use (for example, in Unix systems this is maintained in /etc/resolv.conf).

A CDN is a caching network that makes the internet viable. Before the web, a user
might visit four to five hosts in an hour; after the web, a request to a web page might
launch a hundred different HTTP requests. The majority of these requests are redi‐
rected via DNS to caching servers that are located geographically nearby. CDNs add
an annoying wrinkle to web analysis, because a single CDN server may host multiple
websites—if a host is identified as part of a CDN, the only organization that can tell
you what’s on that host is the CDN provider.

Now, let’s look at the DNS data. DNS is a federated database system, so queries go
first to a local DNS server, which sends a response if it possesses the answer to the
query. If the server doesn’t have the information, it uses the hierarchical structure of
the name to figure out where to send the request, waits for a response, and sends the
response back. DNS supports a number of different queries, termed resource records
(RRs), and the options sent as part of the query specify the resource record requested
as well as options for querying additional servers. The values with As or CNAMEs in
the preceding response are resource records.
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Note that the DNS header lists eight fields:

opcode

This field was intended to specify a number of different actions, such as queries,
inverse queries, and server status. In practice, it should always be set to QUERY. A
number of other opcodes exist, but they are used to communicate information
between servers.

status

The status of the response. Three messages appear most often: NOERROR indicates
that the query was successful, NXDOMAIN indicates that no domain was available,
and SERVFAIL indicates that authoritative servers for the domain were unreacha‐
ble.

id

The message ID. DNS is a UDP-moderated protocol and uses message IDs to
track queries and responses.

flags

These provide information on the response; they include qr (set high for a
response), aa (set high when the answer is from an authoritative server), ra
(recursion desired), and rd (recursion available).

QUERY

This field indicates that the record is simply a copy of the original request; you
can see in this case that the query is echoed in what dig refers to as the QUESTION
section.

ANSWER

Contains the response.

AUTHORITY

Reserved for records that identify other servers.

ADDITIONAL

Provides additional information, such as the expected responses to future quer‐
ies.

Additional information is very much a function of the nameserver’s administrators. A
common example of its use follows, where the information provides a name lookup
for the mail server identified by an MX query:

$ dig +nostats +nocmd mx cmu.edu
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30852
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 3
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;; QUESTION SECTION:
;cmu.edu.   IN MX

;; ANSWER SECTION:
cmu.edu.  20051 IN MX 10 CMU-MX-02.ANDREW.cmu.edu.
cmu.edu.  20051 IN MX 10 CMU-MX-03.ANDREW.cmu.edu.
cmu.edu.  20051 IN MX 10 CMU-MX-04.ANDREW.cmu.edu.
cmu.edu.  20051 IN MX 10 CMU-MX-01.ANDREW.cmu.edu.

;; ADDITIONAL SECTION:
CMU-MX-03.ANDREW.cmu.edu. 20412 IN A 128.2.155.68
CMU-MX-01.ANDREW.cmu.edu. 20232 IN A 128.2.11.59
CMU-MX-02.ANDREW.cmu.edu. 20051 IN A 128.2.11.60

Now, let’s discuss what those resource records actually mean. DNS has upward of 20
resource records for different functions. The major ones are:

A
An answer record, providing the IP address associated with a particular name.

AAAA
Like A, but provides an IPv6 address for a name.

CNAME
Relates two names, a canonical name and an alias.

MX
Returns the mail server for a domain.

PTR
Points to a canonical name; mostly used for DNS reverse lookups.

TXT
Contains arbitrary text data.

NS
Describes the nameserver for an address.

SOA
Provides information about the authoritative nameserver for an address.

dig starts all resource records with the same four values: a name, a time to live (TTL),
a class, and an identifier for the RR (for example: cmu.edu, 20051, IN, MX). The
name is passed with the query. The TTL indicates for how long (in seconds) the value
of the name can be trusted; DNS relies heavily on caching and the TTL provides
instructions on when to refresh the cache. The class will almost invariably be IN
(internet); other class names are possible, but outside the scope of this book.

A and AAAA (address) provide basic DNS functionality: they associate the queried
name with an IP address. A records provide IPv4 addresses, and AAAA records pro‐
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vide IPv6 addresses. By default, dig queries for A records, while other record types
are specified by adding them to the command line, as seen here:

$ dig +nocomment +noquestion +nostats +nocmd www.google.com
www.google.com.  55 IN A 74.125.228.81
www.google.com.  55 IN A 74.125.228.83
www.google.com.  55 IN A 74.125.228.84
www.google.com.  55 IN A 74.125.228.80
www.google.com.  55 IN A 74.125.228.82
$ dig +nocomment +noquestion +nostats +nocmd aaaa www.google.com
www.google.com.  18 IN AAAA 2607:f8b0:4004:802::1014

Note that the query to Google responds with five A records. This is an example of
round robin DNS allocation, a common load balancing technique. In round robin
allocation, the same domain name is assigned to multiple IP addresses. Consequently,
when a query chooses an IP address to contact for the name, it effectively picks the
name randomly from the set of targets. Round robin DNS allocation is one of many
DNS hacks that make reverse lookups (IP addresses from names) incredibly annoy‐
ing.

Note also the short TTL values in the response. If a particular Google server goes
down, the TTL guarantees that in 55 seconds, the user has good odds of contacting
another server.

Canonical name (CNAME) records are used to associate an alias to a canonical name.
For example, consider lookups for www.oreilly.com:

$ dig +nocomment +noquestion +nostats +nocmd www.oreilly.com
www.oreilly.com. 3563 IN CNAME oreilly.com.
oreilly.com.  506 IN A 208.201.239.101
oreilly.com.  506 IN A 208.201.239.100

As this shows, the name www.oreilly.com actually points to oreilly.com.
www.oreilly.com does not have an IP address; it points to oreilly.com, and that name
has an IP address. Canonical names are used for shortcuts (as in the previous exam‐
ple), and also to manage content distribution. The example using Fox News showed
how Akamai first aliases all of Fox News’s sites into its own network names using
CNAME.

DNS provides lookup functions for email through the agency of the mail exchange
(MX) record. MX records record the addresses of mail servers for a particular
domain. For example, if I want to send mail to jbro@andrew.cmu.edu, I can find the
mail server for doing so by looking up the MX records for cmu.edu:

$ dig  +noquestion +nostats +nocmd mx cmu.edu
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49880
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 2

;; ANSWER SECTION:
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cmu.edu.  21560 IN MX 10 CMU-MX-03.ANDREW.cmu.edu.
cmu.edu.  21560 IN MX 10 CMU-MX-04.ANDREW.cmu.edu.
cmu.edu.  21560 IN MX 10 CMU-MX-01.ANDREW.cmu.edu.
cmu.edu.  21560 IN MX 10 CMU-MX-02.ANDREW.cmu.edu.

;; ADDITIONAL SECTION:
CMU-MX-01.ANDREW.cmu.edu. 21519 IN A 128.2.11.59
CMU-MX-02.ANDREW.cmu.edu. 21159 IN A 128.2.11.60

MX records include a server name (such as CMU-MX-03.ANDREW.cmu.edu), as well as a
priority value for the email server. The weighting value is used to choose a mail
server: mail clients should pick mail servers in order of ascending priority (i.e., 1
should be chosen before 10).

Of note in this example are the A records shoved into the additional section. These
records resolve the CMU-MX-01 and CMU-MX-02 addresses. This reflects a con‐
scious decision by CMU’s DNS administrators to include this information and reduce
the number of lookups done.

Nameserver (NS) records are used to find the authoritative nameserver for a zone.
For example, for O’Reilly Media:

$ dig +nostat ns oreilly.com

; <<>> DiG 9.8.3-P1 <<>> +nostat ns oreilly.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 32310
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com.   IN NS

;; ANSWER SECTION:
oreilly.com.  3600 IN NS nsautha.oreilly.com.
oreilly.com.  3600 IN NS nsauthb.oreilly.com.

Now look at the NS record for a site managed by a CDN, such as Fox News again:

$ dig +nostat ns foxnews.com

; <<>> DiG 9.8.3-P1 <<>> +nostat ns foxnews.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38538
;; flags: qr rd ra; QUERY: 1, ANSWER: 8, AUTHORITY: 0, ADDITIONAL: 5

;; QUESTION SECTION:
;foxnews.com.   IN NS

;; ANSWER SECTION:
foxnews.com.  300 IN NS usc2.akam.net.
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foxnews.com.  300 IN NS ns1.chi.foxnews.com.
foxnews.com.  300 IN NS ns1-253.akam.net.
foxnews.com.  300 IN NS dns.tpa.foxnews.com.
foxnews.com.  300 IN NS usw1.akam.net.
foxnews.com.  300 IN NS usw3.akam.net.
foxnews.com.  300 IN NS asia3.akam.net.
foxnews.com.  300 IN NS usc4.akam.net.

;; ADDITIONAL SECTION:
usw1.akam.net.  28264 IN A 96.17.144.195
usw3.akam.net.  50954 IN A 69.31.59.199
asia3.akam.net.  28264 IN A 222.122.64.134
usc4.akam.net.  28264 IN A 96.6.112.196
usc2.akam.net.  88188 IN A 69.31.59.199

Note that in this case, the authoritative nameservers are largely owned by akam.net
(Akamai). Fox News is hosted by Akamai’s CDN, and Akamai modifies the names of
the hosts as necessary in order to boost performance.

Start of Authority (SOA) records contain summary information about the authorita‐
tive server for a domain. These records are most commonly encountered during
failed lookups. When an address isn’t found, the SOA information for that zone’s
server is returned instead:

$ dig @8.8.4.4 +multiline +nostat zlkoriongomk.com

; <<>> DiG 9.8.3-P1 <<>> @8.8.4.4 +multiline +nostat zlkoriongomk.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 11857
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;zlkoriongomk.com. IN A

;; AUTHORITY SECTION:
com.   899 IN SOA a.gtld-servers.net. nstld.verisign-grs.com. (
    1374373035 ; serial
    1800       ; refresh (30 minutes)
    900        ; retry (15 minutes)
    604800     ; expire (1 week)
    86400      ; minimum (1 day)
    )

The SOA field begins with the source host, followed by a contact email address (note
that the email address uses a dot rather than an at-sign as a separator). After this
address comes a serial number, which indicates how many times the source file has
been modified, and then timeout statistics. Note the +multiline option for dig; this
will provide a multiple-line, more human-readable output for the SOA record.
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5 .arpa officially stands for Address and Routing Parameter Area. This name is a backronym, because the
abbreviation initially meant Advanced Research Projects Agency, the DoD agency that originally funded
internet development.

The TXT field is a wildcard field used for any text output that the server administrator
feels like passing. For example, Google passes strings for managing Google Apps:

$ dig +short txt google.com
"v=spf1 include:_spf.google.com ip4:216.73.93.70/31 ip4:216.73.93.72/31 ~all"

The DNS Reverse Lookup
A reverse lookup is the process of reconstructing a DNS name from an IP address. For
example, if I want to find out who owns 208.201.139.101, I do so using dig -x:

$ dig +nostat -x 208.201.139.101

; <<>> DiG 9.8.3-P1 <<>> +nostat -x 208.201.139.101
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7519
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;101.139.201.208.in-addr.arpa. IN PTR

;; ANSWER SECTION:
101.139.201.208.in-addr.arpa. 21600 IN PTR host-d101.studley.com.

Reverse lookups are requests to get DNS names from IP addresses. Note that the
question section does not request the IP address, 208.201.139.101, but
101.139.201.208.in-addr.arpa, which lists the fields of the IP address in reverse order.
When DNS does a reverse lookup, it creates a special domain name to query in the
in-addr.arpa TLD.5 The string of digits and periods used for a reverse lookup is the
original IP address reversed. This is because DNS names and IP addresses are defined
in a contradictory fashion. A DNS name becomes more finely defined (from TLD to
domain to individual host) by reading from right to left, while IP addresses are more
finely defined reading from left to right.

Reverse lookups are a kludge. Note that the record returned in the answer is a pointer
(PTR) record. PTR records are not automatically created with the canonical A
records, but are instead registered separately by the NIC. More important, there’s no
requirement that a PTR record be registered, and the relationships between names
and IP addresses are tenuous at best.

For example, consider a CDN. If I look up one of Fox News’s IP addresses, such as
23.66.230.66, I get this:
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$ dig +nostat +nocmd -x 23.66.230.66
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56379
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;66.230.66.23.in-addr.arpa. IN PTR

;; ANSWER SECTION:
66.230.66.23.in-addr.arpa. 290 IN
PTR a23-66-230-66.deploy.static.akamaitechnologies.com.

The CDN becomes an informational dead end; the answer from the reverse lookup
has no meaningful relation to the names in the original query.

In general, DNS information is best collected at the time of the original query. The
uncertainty of reverse lookups is part of the reason for this. However, even if reverse
lookups worked perfectly, attackers often use very short-lived names. Where possible,
record domain names as they’re used (such as the URL in HTTP logs) rather than
trying to reconstruct them after the fact.

Using whois to Find Ownership
While DNS can provide information on a domain’s name, the meat of ownership
information is provided by WHOIS. This is a federated protocol (defined in RFC
3912) that lists the putative owners of DNS names. The standard whois query on a
domain will return ownership and contact information for a domain, as seen in
Example 10-1.

Example 10-1. A whois query for oreilly.com

$ whois oreilly.com

<boilerplate>

   Domain Name: OREILLY.COM
   Registrar: GODADDY.COM, LLC
   Whois Server: whois.godaddy.com
   Referral URL: http://registrar.godaddy.com
   Name Server: NSAUTHA.OREILLY.COM
   Name Server: NSAUTHB.OREILLY.COM
   Status: clientDeleteProhibited
   Status: clientRenewProhibited
   Status: clientTransferProhibited
   Status: clientUpdateProhibited
   Updated Date: 26-may-2012
   Creation Date: 27-may-1997
   Expiration Date: 26-may-2013
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<more boilerplate>

   Registered through: GoDaddy.com, LLC (http://www.godaddy.com)
   Domain Name: OREILLY.COM
      Created on: 26-May-97
      Expires on: 25-May-13
      Last Updated on: 26-May-12

   Registrant:
   O'Reilly Media, Inc.
   1005 Gravenstein Highway North
   Sebastopol, California 95472
   United States

   Administrative Contact:
      Contact, Admin  nic-ac@oreilly.com
      O'Reilly Media, Inc.
      1005 Gravenstein Highway North
      Sebastopol, California 95472
      United States
      +1.7078277000      Fax -- +1.7078290104

   Technical Contact:
      Contact, Tech  nic-tc@oreilly.com
      O'Reilly Media, Inc.
      1005 Gravenstein Highway North
      Sebastopol, California 95472
      United States
      +1.7078277000      Fax -- +1.7078290104

   Domain servers in listed order:
      NSAUTHA.OREILLY.COM
      NSAUTHB.OREILLY.COM

You’ll note that a WHOIS entry for a domain returns an enormous amount of boiler‐
plate information. You will also find that the information returned has no particular
fixed format—WHOIS information is the electronic equivalent of 3×5 index cards.
Depending on who owns the card and how they decide to administer it, you may get
phone numbers and biographies, or nothing at all.

A good way to get a feel for the differences in registration is to take a look at the regis‐
tration files for different countries. There is no central WHOIS database—instead,
depending on the top-level domain, WHOIS information may be maintained by any
of a number of WHOIS servers. For example, Russian WHOIS data (the .ru domain)
is maintained by whois.ripn.net, French by lvs-vip.nic.fr, and Brazilian by registro.br.
Fortunately, the good folks at whois-servers.net provide aliases for every country and
TLD, and depending on your whois implementation, the information may be baked
into the executable for you already.
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At the minimum, any whois implementation will provide the ability to specify a
lookup server using the -h switch. So, whois -h ru.ripn.net will query that server
directly. Several whois implementations offer a country-specific -c option, making
whois -c RU identical to querying whois.ripn.net.

In addition to providing information on domain names, whois is also useful for pro‐
viding information on address allocation and ownership. If whois is called with an IP
address rather than a name, like in Example 10-2, it will provide information on the
organization that owns that address, often in the form of a netblock. For example, if I
look up the whois information for Voila, a French search engine, I get different infor‐
mation based on whether I look at RIPE (the European top-level registry) or the
French NIC. RIPE is informative; the French NIC is considerably less so.

Example 10-2. Using whois with an IP address

$ dig +short voila.fr
193.252.148.80

$ whois -h whois.ripe.net 193.252.148.80
% This is the RIPE Database query service.
% The objects are in RPSL format.
%
% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db-terms-conditions.pdf

% Note: this output has been filtered.
%       To receive output for a database update, use the "-B" flag.

% Information related to '193.252.148.0 - 193.252.148.255'

% Abuse contact for '193.252.148.0 - 193.252.148.255' is 'gestionip.ft@orange.com'

inetnum:        193.252.148.0 - 193.252.148.255
netname:        ORANGE-PORTAILS
descr:          France Telecom
descr:          internet portals for multiple services
country:        FR
admin-c:        WPTR1-RIPE
tech-c:         WPTR1-RIPE
status:         ASSIGNED PA
remarks:        for hacking, spamming or security problems send mail to
remarks:        abuse@orange.fr
mnt-by:         FT-BRX
source:         RIPE # Filtered

role:           Wanadoo Portails Technical Role
address:        France Telecom - OPF/Portail/DOP/Hebex
address:        48, rue Camille Desmoulins
address:        92791 Issy Les Moulineaux Cedex 9
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address:        FR
phone:          +33 1 5888 6500
fax-no:         +33 1 5888 6680
admin-c:        WPTR1-RIPE
tech-c:         WPTR1-RIPE
nic-hdl:        WPTR1-RIPE
mnt-by:         FT-BRX
source:         RIPE # Filtered

% This query was served by the RIPE Database Query Service version 1.60.2 (WHOIS4)

$ whois -h fr.whois-servers.net 195.152.120.129
%%
%% This is the AFNIC Whois server.
%%
%% complete date format : DD/MM/YYYY
%% short date format    : DD/MM
%% version              : FRNIC-2.5
%%
%% Rights restricted by copyright.
%% See http://www.afnic.fr/afnic/web/mentions-legales-whois_en
%%
%% Use '-h' option to obtain more information about this service.
%%
%% [96.255.98.126 REQUEST] >> 195.152.120.129
%%
%% RL Net [##########] - RL IP [#########.]

You will find that the situation is reversed with Asian information. The APNIC
WHOIS is often fairly sparse, but the WHOIS entries at the country level are usually
informative.

WHOIS information is particularly useful when you can’t get much useful data out of
a DNS reverse lookup. If you can’t find the specific domain name, you can use whois
to at least find the block of addresses that host the domain.

DNS Blackhole Lists
Reputation information such as DNS blackhole lists (DNSBLs) are generated by a
number of organizations as a form of threat intelligence. A DNSBL is a DNS-based IP
address database used primarily as an antispam technique. The first DNSBLs were
actually implemented using the Border Gateway Protocol (BGP, see Chapter 19 for
more information) and were intended to actively drop routes associated with spam‐
mer IP addresses. Modern DNSBLs are instead DNS-moderated, and serve as reputa‐
tion databases for email software. For example, a mail transfer agent can consult a
DNSBL to determine if the sending IP is a spammer and react accordingly.

DNSBLs work by providing a reverse lookup–style functionality on their DNS
servers. For example, I can look up an echo address on a DNSBL using dig:
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$ dig 2.0.0.127.sbl.spamhaus.org

; <<>> DiG 9.8.3-P1 <<>> 2.0.0.127.sbl.spamhaus.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45434
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;2.0.0.127.sbl.spamhaus.org. IN A

;; ANSWER SECTION:
2.0.0.127.sbl.spamhaus.org. 300 IN A 127.0.0.2

;; Query time: 39 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sun Jul 28 15:10:23 2013
;; MSG SIZE  rcvd: 60

The address I intended to query was 127.0.0.2. Note that, as with a reverse lookup, I
reversed the IP address. After reversing the address, I attached it to the name of the
list and query. This process is effectively a reverse lookup without relying on the
hardcoded .arpa TLD. Instead, the response is provided by an A record provided by
Spamhaus’s SBL server.

DNSBLs differ depending on the list and provider. Providers may provide several dif‐
ferent forms of lists for different categories of traffic. Different providers will also
provide different policies for adding or removing addresses to or from the DNSBL.
How different organizations handle delisting (address removal) radically impacts the
character of the list. Most automatically drop an address a fixed number of days after
the last abuse; others require manual intervention.

Some notable DNSBLs include:

Spam and Open Relay Blocking System (SORBS)
SORBS provides over 15 different DNSBLs that categorize hosts into a number of
different behaviors. It’s particularly useful for categorizing dynamic addresses
such as dialup and DSL addresses through a specialized list, the Dynamic User
and Host List (DUHL).

Spamhaus
A nonprofit private company that produces a number of distinct blacklists and
whitelists, Spamhaus’s most commonly used lists are the Policy Block List (PBL,
for end-user addresses), Spamhaus Block List (SBL, for known spam addresses),
and Exploits Block List (XBL, for hijacked IP addresses and bots). These lists are
accessible as a single combined service, ZEN.
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SpamCop
Currently owned by Cisco Systems, SpamCop began as a private effort and even‐
tually became part of IronPort’s email reputation system. Currently, SpamCop
provides one public list, the SpamCop Block List (SCBL).

DNSBLs are useful for identifying hostile activity. Using a DNSBL, an analyst can
determine whether a particular address has been doing something hostile elsewhere
on the internet and possibly what kind of activity it was. They supplement the more
basic lookup information discussed earlier by providing some idea of a site’s past his‐
tory.

DNSBLs are designed to be real-time tools that work primarily with mail agents, not
to support forensic analysis. Records will change quickly and unpredictably, so an
address may be recognized by the DNSBL as hostile at the time of an event, but be
delisted when an analyst examines it later. Most of the blacklists sell some kind of
feed or data dump that, for forensic purposes, is preferable.

Search Engines
Never underestimate the value of just Googling something. A good hunk of internet
traffic consists of people mapping out said traffic, and it’s obviously of value for the
rest of us to take advantage of it. Search engines, whether universal ones such as Goo‐
gle or specialized ones such as Shodan, can provide you with additional contextual
information about an IP address.

General Search Engines
The two most useful general-purpose search engines are Google and the Internet
Archive. In the case of Google, it’s omnipresent, there are a number of powerful
search predicates, and you have access to cached sites. If you’re actively engaged in
work outside of the English language/Roman alphabet, then it helps to be familiar
with international search engines such as Naver (Korea), Yandex (Russia), or Baidu
(China), as well as the various language-specific Googles.

Regardless of the search engine, you want to identify predicates that will help you
refine the search to find specific sites or technical terms. For example, in Google, you
can literalize a search by using quotes (e.g., Googling “the google” returns the exact
phrase “the google” from the Google). Other predicates of note include site: (which
will search only for a specific domain name—handy for identifying subdomains of
the same domain), inurl: (which looks for a string in a URL), and cache: (which
returns the latest version of a URL from Google’s cache, avoiding directly contacting
the site).

After Google, the Internet Archive is useful when you’re looking for context or the
history of a website. If a particular domain name appears that you’ve never seen
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before, it’s useful to check the archive for a history of that domain. If a site changes
radically, the Internet Archive has a reasonable chance of maintaining a pre-change
version. The Alrwais paper mentioned at the end of this chapter is a good example of
using the Internet Archive to track changes.

Scanning Repositories, Shodan et al
Not all scanners are malicious. A number of threat intelligence groups scan the Inter‐
net on a regular basis, providing information on vulnerabilities. Notable repositories
include:

Censys
Censys is a scanning team that provides a search engine hosted at the University
of Michigan. Censys regularly scans the entire IPv4 address space, Alexa’s million
busiest hosts, and other hosts for a constantly updated list of vulnerabilities.

Shodan
Shodan is the oldest internet-wide vulnerability scanning system. Currently, it
markets itself as the search engine for IoT, but historically it has scanned for
everything.

Both of these engines scan for a specific set of vulnerabilities, and are pretty good
about listing what they look for—be aware that, particularly as a defender, their pri‐
mary value is in scanning you rather than looking at what other sites host. 

Further Reading
1. S. Alrwais et al., “Catching Predators at Watering Holes: Finding and Under‐

standing Strategically Compromised Websites,” Proceedings of the 2016 Annual
Computer Security Applications Conference (ACSAC), Los Angeles, CA, 2016.

2. J. Long, B. Gardner, and J. Brown, Google Hacking for Penetration Testers, 3rd ed.
(Rockland, MA: Syngress Publishing, 2015).

3. Bishop Fox Google Hacking Diggity Project.
4. ICANNWiki.
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PART III

Analytics

In the previous two sections of the book, we’ve discussed the types of data you can
collect, and tools for manipulating that data. In this section, we focus on taking that
data and conducting analyses on this.

Each chapter in this section focuses on a different family of mathematical and analyti‐
cal techniques that can be used on data, with an emphasis on providing information
that is relevant to security and operations. Chapter 11 focuses on the process of
exploratory data analysis (EDA), and should be read before anything else. Chapters
12, 13, 14, and 15 are focused on constructs that can support analysis: text analysis,
fumbling, volume and time analysis, and graphs. Chapters 16 and 17 discuss specific
applications of data for insider threat and threat intelligence, respectively, while
Chapters 18 and 19 focus on the basic problems of inventory. Finally, Chapter 20 dis‐
cusses how analysis teams can work with operations floors to improve performance.

An Overview of Attacker Behavior
We need some vocabulary for talking about how attackers behave. There are a num‐
ber of papers and studies on attack models that try to break the hacking process into
discrete steps. These models range from relatively simple linear affairs to extremely
detailed attack trees that attempt to catalog each vulnerability and exploit. I’ll start by
laying out a simple but flexible model that contains steps common to a majority of
attacks. These are:



Reconnaissance
The attacker scouts out the target. Depending on the type of attack, reconnais‐
sance may consist of Googling, social engineering (posting on message boards to
find and befriend users of a network), or active scanning using nmap or related
tools.

Subversion
The attacker launches an exploit against a target and takes control. This may be
done via a remote exploit, sending a Trojan file, or even password cracking.

Configuration
The attacker converts the target into a system more suitable for his own use. This
may involve disabling antivirus packages, installing additional malware, taking
inventory of the system and its capabilities, and/or installing additional defenses
to prevent other attackers from taking over the target.

Exploitation
The attacker now uses the host for his own purposes. The nature of exploitation
varies based on the attacker’s original reason for being interested in the target
(discussed shortly).

Propagation
The attacker will, if possible, use the host to attack other hosts. The host may
serve as an expendable proxy, attacking neighbors (for example, other hosts
behind a firewall on a 192.168.0.0/16 network).

This model isn’t perfect, but it’s a good general description of how attackers behave
without getting bogged down in technical minutiae. There are always common
tweaks; for example:

• Peer-to-peer worm propagation and phishing attacks rely on passive exploits and
a bit of social engineering. These attacks rely on a target clicking a link or access‐
ing a file, which requires that the bait (the filename or story surrounding it) be
attractive enough to merit a click. As I was writing this, for example, I witnessed
a spate of phishing attacks using credit ratings as the bait—the earliest informed
me that my credit rating had risen, while the latest batch were more ominously
warning me of the consequences of a recently dropped credit rating. On peer-to-
peer networks, attackers will drop Trojans with the names of current games or
albums in order to attract victims. Even in this case, “surveillance” is still possi‐
ble. The phishing attacks done in many APT attacks often depend on scouting
out the population and posting habits of a site before identifying victims likely to
respond to a crafted mail.

• Worms often merge the reconnaissance and subversion stages into one step.
Some examples of this are shown later in the book (notably, in Example 13-2,



where an attacker just launches exploits against well-known PHP URLs without
checking to see if they actually exist).

• Insider threat attacks will often conduct reconnaissance and subversion out of
band, such as by stealing another employee’s password or talking with a sysadmin
to find out where assets are. Don’t be surprised if an insider already has all the
resources they need to jump straight to exploitation, and completely ignores
propagation.

When we think about attackers, we tend to think of technically literate individuals
figuring out specific weaknesses on a site in order to grab files or information off of it.
This is the classic example of an interested attacker who wants to subvert and control
a particular site in order to acquire cash, data, street cred, or who knows what. They
make for great stories, and they are significant threats, but they are a small fragment
of the attacker population.

The vast majority of attacks today are conducted by uninterested attackers who want
to take over as many hosts as possible and don’t care about the fine details of any par‐
ticular one. Uninterested attacks are largely automated; they have to be in order to
tolerate their inordinately high failure rate. Because of this, the reconnaissance and
subversion steps are often merged together. An automated worm may simply launch
its attack against every host it encounters, regardless of whether the host is
vulnerable.

Uninterested attackers rely on tools and the expectation that someone, somewhere,
will be vulnerable. In most cases, they won’t even be aware that a host exists until they
take it over. Early examples of uninterested attackers harvested robots for DDoS net‐
works. Botmasters would take over a dozen or so machines, install DDoS software on
them, and then launch SYN floods against targets. As connectivity increased, the
scope and flexibility of botnets increased as well—attackers started to install software
to work as proxies, rob images from attached webcams and sell them to porn sites,
install spambots, and carry out a virtually limitless catalog of other abuses.

Uninterested attackers consequently operate more like harvesters than traditional tar‐
geted attackers. A uninterested attacker runs a script, then filters through the results
of that script to see what she’s pulled in. A host has a webcam, and it’s located in a
college dorm? Porn feed. A host has a lot of disk space and a fat pipe? File server. A
host is a home machine? Keylogger.

This harvest-based approach means that attackers often have little to no idea what
they’re taking over. In the early days of SCADA exploits, it was apparent that the
attackers had no idea what they were looking at: just a Windows host with some
weird applications and extra directories. Even now, it’s not uncommon to see medical
hardware taken over and used as a botnet.



In recent years, a host’s “configuration” also includes its role: who owns it, what it’s
used for, and what kind of bragging rights can be acquired by bagging it. For example,
if two countries share a hostile border, resident hacker rings will deface sites in the
opposing country. The US Department of Defense runs literally thousands of web‐
sites, ranging from intelligence servers to grade schools. It’s not hard to find a vulner‐
able site and then announce to the world that you’ve “hacked the DoD!” after the fact.

Analysts need to be aware of this balance between common, stupid, automated
attacks and rarer, intelligent, targeted attacks. Smart attackers will rely on the noise
generated by stupid attackers. For analysts, this impacts an economy of attention—an
analyst can only process so many alerts per shift, and there are only so many effective
actions that can be taken. The analytics discussed in this section will help inform
these decisions.

Further Reading
1. E. Hutchins, M. Cloppert, and R. Amin, “Intelligence-Driven Computer Network

Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill
Chains,” Proceedings of the 2011 International Conference on I-Warfare and Secu‐
rity, Washington, DC, 2006.

2. S. Caltagirone, A. Pendergast, and C. Betz, “The Diamond Model of Intrusion
Analysis,” United States Department of Defense Defense Technical Information
Center, Fort Belvoir, VA, Tech. Report No. ADA586960, July 2013.



CHAPTER 11

Exploratory Data Analysis and Visualization

Exploratory data analysis (EDA) is the process of examining a dataset without pre‐
conceived assumptions about the data and its behavior. Real-world datasets are messy
and complex, and require progressive filtering and stratification in order to identify
phenomena that are worth using for alarms, anomaly detection, and forensics.
Attackers and the internet itself are moving targets, and analysts face a constant
influx of weirdness. For this reason, EDA is a constant process.

The point of EDA is to get a better grip on a dataset before pulling out the math. To
understand why this is necessary, I want to walk through a simple statistical exercise.
In Table 11-1, there are four datasets, each consisting of a vector X and a vector Y. For
each dataset, calculate these values:

• The mean of X and Y
• The variance of X and Y
• The correlation between X and Y

Table 11-1. Four datasets

I  II  III  IV  
X Y X Y X Y X Y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
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I  II  III  IV  
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

You will find that the mean, variance, and correlation are identical for each dataset,
but simply looking at the numbers should make you suspect something fishy. A visu‐
alization will show just how diverse they are. Figure 11-1 plots these sets and shows
how each dataset results in a radically different distribution. The Anscombe Quartet
was designed to show the impact of outliers (such as in dataset IV) and visualization
on data analysis.

Figure 11-1. The Anscombe Quartet, visualized

As this example shows, simple visualization will identify significant features of the
dataset that aren’t identified by reaching for the stats. The classic mistake in statistical
analysis involves pulling out the math before looking at the data. For example, ana‐
lysts will often calculate the mean and standard deviation of a dataset in order to pro‐
duce a threshold value (normally around 3.5 standard deviations from the mean).
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1 There’s nothing quite like the day you start an investigation based on the attacker being written up in the New
York Times.

This threshold is based on the assumption that the dataset is normally distributed; if
it isn’t (and it rarely is), then simple counting will produce more effective results.

The Goal of EDA: Applying Analysis
The point of any EDA process is to move toward a model; that model might be a for‐
mal representation of the data, or it might be as simple as “raise an alarm when we see
too much stuff ” (where “too much” and “stuff ” are, of course, exquisitely quantified).
For the purposes of information security, we have four goals: alarm construction, for‐
ensics, defense construction, and situational awareness.

When used as an alarm, an analytic process involves generating some kind of num‐
ber, comparing it against a model of normal activity, and determining if the observed
activity requires an analyst’s attention. An anomaly isn’t necessarily an attack, and an
attack doesn’t necessarily merit a response. A good alarm will be based on phenom‐
ena that are predictable under normal circumstances, that the defender can do some‐
thing about, and which the attacker must disrupt to reach his goals.

The problem in operational informational security isn’t creating alarms; it’s making
them manageable. The first thing an analyst has to do when she receives an alarm is
provide context—validating that the threat is real, ensuring that it’s relevant, deter‐
mining the extent of the damage, and recommending actions to take. False positives
are a significant problem, but they do not represent the whole scope of failure modes
for alarms. Good analysis can increase the efficacy of alarms.

The majority of security analysis is forensic analysis, taking place after an event has
occurred. Forensic analysis may begin in response to information from anywhere:
alarms, IDS signals, user reports, or newspaper articles.1

A forensic analysis begins with some datum, such as an infected IP address or a hos‐
tile website. From there, the investigator has to find out as much as possible about the
attack—the extent of the damage, other activities by the attacker, a timeline of the
attack’s major events. Forensic analysis is often the most data-intensive work an ana‐
lyst can do, as it involves correlating data from multiple sources ranging from traffic
logs to personnel interviews and looking through archives for data stored potentially
years ago.

Alarms and forensic analysis are both reactive measures, but an analyst can also use
data proactively and construct defenses. As analysts, we have a set of tools, such as
policy recommendations, firewall rules, and authentication, that can be used to
implement defenses. The challenge when doing so is that these measures are funda‐

The Goal of EDA: Applying Analysis | 205



2 It still exists.

mentally restrictive; from the users’ perspective, security is a set of rules that limit
their behavior now in order to prevent some abstract bad thing from happening later.

People are always the last line of defense in information security. If security is imple‐
mented poorly or arbitrarily, it encourages an adversarial relationship between sys‐
tem administrators and users, and before long, everything is moving on port 80.
Analysis can be used to determine reasonable constraints that will limit attackers
without imposing an undue burden on users.

Alarms, forensics, and remediation are all focused on the attack cycle—detecting
attacks, understanding attacks, and recovering from attacks. Throughout this cycle,
however, there is a constant dependence on knowledge management. Knowledge
management in the form of inventories, past history, lookup data, and even phone
books changes processes from rolling disasters into manageable disasters.

Knowledge management affects everything. For example, almost all intrusion detec‐
tion systems (especially signature management systems) focus on packet contents
without knowing, for example, that the IIS exploit they’ve helpfully identified was
aimed at an Amiga 3000 running Apache.2 In IDSs, a false positive is usually a sign
that the IDS copped out early. Maintaining inventory and mapping information is a
necessary first step toward developing effective alarms; many attacks are failures, and
those failures can be identified through context and the alerts trashed before they
annoy analysts.

Good inventory and past history data can also be used to speed up a forensic investi‐
gation. Many forensic analyses are cross-referencing different data sources in order to
provide context, and this information is predictable. For example, if I have an internal
IP address, I’ll want to know who owns it and what software it’s running.

Knowledge management requires pulling data from a number of discrete sources and
putting it in one place. Information like ASNs, WHOIS data, and even simple phone
numbers is often stored in dozens if not hundreds of variably maintained databases
and subject to local restrictions and politics. Internal network status is often just as
chaotic, if not more so, because almost invariably people are running services on the
network that nobody knows about. Often, the very process of identifying assets will
help network management and IT concerns in general.

As you look at data, keep in mind the goals of the data analysis. In the end, you have
to figure out what the process is for—whether it’s an alarm, timeline reconstruction,
or figuring out whether you can introduce a firewall rule without dealing with pitch‐
forks and torches.
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EDA Workflow
Figure 11-2 is a workflow diagram for EDA in infosec. As this workflow shows, the
core EDA process is a loop involving applying EDA techniques, extracting phenom‐
ena, and analyzing them in more depth. EDA begins with a question, which can be as
open-ended as “What does typical activity look like?” The question drives the process
of data selection. For example, addressing a question such as “Can BitTorrent traffic
be identified by packet size?” could involve selecting traffic communicating with
known BitTorrent trackers or traffic that communicated on ports 6881–6889 (the
common BitTorrent ports).

Figure 11-2. A workflow for exploratory data analysis

In the EDA loop, an analyst repeats three steps: summarizing and examining the data
using a technique, identifying phenomena in the data, and then examining those phe‐
nomena in more depth. An EDA technique is a process for taking a dataset and sum‐
marizing it in some way that allows a person to identify phenomena worth
investigating. Many EDA techniques are visualizations, and the majority of this chap‐
ter is focused on visual tools. Other EDA techniques include data-mining approaches
such as clustering, and classic statistical techniques such as regression analysis.

EDA techniques provide behavioral cues that can then be used to go back to the origi‐
nal data, extract particular phenomena from that dataset and examine them in more
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depth. For example, looking at port 6881–6889 traffic, an analyst finds that hosts
often have flows containing between 50 and 200 bytes of payload. Using that informa‐
tion, he goes back to the original data and uses Wireshark to find out that those pack‐
ets are BitTorrent control packets.

This technique–extract–analyze process can be repeated indefinitely; finding phe‐
nomena and knowing when to stop are arts learned through experience. Analysis
involves an enormous number of false positives because the most effective initial for‐
mulations are broad and prone to false positives. The EDA process will often require
looking at multiple data sources. For example, an analyst looking at BitTorrent data
could consult the protocol definition or run a BitTorrent client himself to determine
whether the properties observed in the data hold true.

At some point, the EDA process has to stop. On the completion of EDA, an analyst
will usually have multiple potential mechanisms for answering the initial question.
For example, when looking for periodic phenomena such as dial-homes to botnet
command and control (C&C) servers, it’s possible to use autocorrelation, Fourier
analysis, or simply count time in bins. Once an analyst has options, the real question
is which one to use, which is determined by a process usually driven by testing and
operational demand.

The testing process should take the techniques developed during EDA and determine
which ones are most suitable for operational use. This phase of the process involves
constructing alarms and reports.

Variables and Visualization
The most accessible and commonly approached EDA techniques are visualizations.
Visualizations are tools, and based on the type of data examined and the goal of the
analysis, there are a number of specific visualizations that can be applied to the task.

In order to understand data, we have to start by understanding variables. A variable is
a characteristic of an entity that can be measured or counted, such as weight or tem‐
perature. Variables can change between entities or over time; the height of a person
changes as he ages, and different people have different heights.

There are four categories of variables, which readers who have had an elementary sta‐
tistics course will be familiar with. I’ll review them briefly here, in descending order
of rigor:

Interval
An interval variable is one where the difference between two values is meaning‐
ful, but the ratio between two values has no meaning. In network traffic data, the
start time of an event is the most common form of interval data. For example, an
event may be recorded at 100 seconds after midnight, and another one at 200 sec‐
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onds after midnight. The second event takes place after the first one, but it isn’t
meaningful to talk about it taking place “twice as long” after the first one since
there’s no real concept of “zero start time.”

Ratio
A ratio variable is like an interval variable, but also has a meaningful form of
“zero,” which enables us to discuss ratio variables in terms of multiplication and
division. One form of a ratio variable is the number of bytes in a packet. For
example, we can have a packet with 200 bytes, and another one with 400 bytes.
As with interval variables, we can describe one as larger than the other, and we
can also describe the second packet as “twice as large” as the second one.

Ordinal
Data is in numerical order, but does not have fixed intervals. Customer ratings
fall in this category. A rating of 5 is higher than 4, and 4 is higher than 3, so you
can be assured that 5 is also higher than 3. But you can’t say that the degree of
customer satisfaction goes up the same from 3 to 4 and from 4 to 5. (A common
error is to base calculations on this, treating ratings as interval or ratio data.)

Nominal
This data is just named rather than numeric, as the term “nominal” indicates.
There is no order to it. Data of this type that you commonly track includes your
hosts and your services (web, email, etc.).

Data isn’t necessarily ordinal just because it’s designated by numbers. Your ports are
nominal data. Port 80 is not “higher” in some way than port 25; it’s best just to think
of the numbers as alternative names for your HTTP port, your SMTP port, etc.

Interval, ratio, and ordinal variables are also referred to as quantitative, while nominal
variables are also called qualitative or categorical. Interval and ratio variables can be
further divided into discrete and continuous variables. A discrete variable has an indi‐
visible difference between every value, while continuous variables have infinitely
divisible differences. In network traffic data, almost all data collected is discrete. For
example, a packet can contain 9 or 10 bytes of payload, but nothing in between. Even
values such as start time are discrete, even if the subdivisions are extremely fine. Con‐
tinuous variables are generally derived in some way, such as the average number of
bytes per packet.

Univariate Visualization
Based on the type of variable measured, we can choose different visualizations. The
most basic visualizations are applied to univariate data, which consists of one
observed variable per unit measured. Examples of univariate measurements include
the number of bytes per packet or the number of IP addresses observed over a period.
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3 When looking at visualization tools, you should always pay attention to scanning, bins, outliers, and other
algorithmic features that the tool may handle for you automatically. With EDA, hand-holding is a good thing;
but when you start stacking and comparing plots, you will need to exert more fingernail-grip control in order
to make sure, if nothing else, that your numbers line up.

Histograms
A histogram is the fundamental plot for ratio and interval data; it is a count of how
often a variable takes each possible value. A histogram consists of a set of bins, which
are discrete ranges of values, and frequencies. Thus, if you can receive packets at any
rate from 0 to 10,000 a second, you can create 10 bins for the ranges 0 to 999, 1,000 to
1,999, and so on. A frequency is the number of times that the observed value occur‐
red within the range of the bin.

Generating a Histogram
The base material for a histogram is a set of quantitative observations. Using the
Python analytic suite, we can generate and plot a quick histogram using the plt.hist
function:

>>> sample = np.random.normal(25,5,size=10)
>>> samplearray([ 25.02265902,  25.7679
        597 ,  21.5888752 ,  29.71095039,
        22.02452105,  29.11490268,  24.28407423,  33.92459679,
        16.30043738,  24.05680052])
>>> h = plt.hist(sample)
>>> plt.show()

Random number generation is supported in numpy’s random library, which provides a
standard suite of random number generators for different distributions. Plotting a
histogram is done through matplotlib using the hist function. hist does a fair
amount of hand-holding, automatically generating bins and scaling.3

Optional arguments for matplotlib functions are usually passed as keyworded argu‐
ments. For histograms, be familiar with the normed (Boolean) argument, which will
convert the counts to probabilities, and bins, which takes an integer and specifies the
number of bins in the histogram.

A histogram is valuable for data analysis because it helps you find structure in a varia‐
ble’s distribution, and structure provides material for further investigation. In the case
of the histogram, that structure is generally a mode, the most commonly occurring
value in a distribution. In a histogram, modes appear as peaks. Histogram analysis
almost invariably consists of two questions:
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1. Is the distribution normal or another one I know how to use?
2. What are the modes?

As an example of this type of analysis, take a look at the histogram in Figure 11-3.
This is a histogram of flow size distributions for BitTorrent sessions, showing a dis‐
tinctive peak between about 78–82 bytes. This peak is defined by the BitTorrent pro‐
tocol: it’s the result of a BitTorrent peer asking another peer if it has a particular piece
of a file, and getting back “no” as an answer.

Figure 11-3. A distribution of BitTorrent flow sizes

Modes enable you to ask new questions. Once you’ve identified modes in a distribu‐
tion, you can go back to the source data and examine the records that produced a
mode. In the example in Figure 11-3, you could go back to the times in the 250–255
mode and see whether the traffic showed any distinctive characteristics—short flows,
long flows, communications with empty addresses, and so on. Modes direct your
questions.

This process of visualizing, then returning to the repository and pulling more
detailed data is a good example of the iterative analysis shown in Figure 11-2. EDA is
a cyclic process where analysts will return to the source (or multiple sources) repeat‐
edly to understand why something is distinctive.

Univariate Visualization | 211



Bar Plots (Not Pie Charts)
A bar plot is the analog to a histogram when working with univariate qualitative data.
Like a histogram, it plots the frequency of values observed in the dataset by using the
heights of various bars. Figure 11-4 is an example of such a plot, in this case showing
the counts of various services from network traffic data.

Figure 11-4. A bar plot showing the distribution of major services

The difference between bar plots and histograms lies in the binning. Qualitative data
can be grouped into ranges, and in histograms, the bins represent those ranges. These
bins are approximations, and the range of values they contain can be changed in
order to provide a more descriptive image. In the case of bar plots, the different
potential values of the data are discrete, enumerable, and often have no ordering. This
lack of ordering is a particular issue when working with multiple bar plots—when
doing so, make sure to keep the same order in each plot and to include zero values.

In scientific visualization, bar plots are preferred over pie charts. Viewers have a hard
time differentiating fine variations in pie slice sizes—variations that are much more
apparent in bar plots.

The Five-Number Summary and the Boxplot
The five-number summary is a standard statistical shorthand for describing a dataset.
It consists of the following five values:
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• The minimum value in a dataset
• The first quartile of the dataset
• The second quartile or median of the dataset
• The third quartile of the dataset
• The maximum value in the dataset

Quartiles are points that split the dataset into quarters, so the five numbers translate
into the smallest value, the 25% threshold, the median, the 75% threshold, and the
maximum. The five-number summary is a shorthand, and if you’re looking at a lot of
datasets very quickly, it can provide you with a quick feel for what the sets look like.

The five-number summary can be visualized using a boxplot (Figure 11-5), which is
also called a box-and-whiskers plot. A boxplot consists of five lines, one for each value
in the five-number summary. The center three lines are then connected as a box (the
box of the plot), and the outer two lines are connected by perpendicular lines (the
whiskers) of the plot.

Figure 11-5. A boxplot and the corresponding histogram
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Generating a Boxplot
Pandas directly provides a five-number summary via the describe method on a
Series. For example:

>>> import numpy as np
>>> import pandas as pd
>>> data = pd.Series(np.random.normal(25,5,size=100))
>>> data.describe()
count    100.000000
mean      24.747831
std        4.905132
min       13.985350
25%       21.432594
50%       24.666327
75%       27.704180
max       36.785944
dtype: float64

matplotlib provides basic plotting functionality with boxplot (Figure 11-6):

> boxplot(data)

Figure 11-6. An example boxplot
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Note that this plot produced a series of crosses outside the whiskers. These are outli‐
ers, meaning they are far outside the first and third quartiles. By default, a low value is
considered an outlier if its distance to the first quartile is more than 1.5 times the
interquartile range (the difference between the first and third quartiles). Similarly, a
high value is considered an outlier if its distance to the third quartile is more than 1.5
times the interquartile range.

I rarely find boxplots to be useful on their own. If I’m dealing with a single variable,
I’m going to get more information out of a histogram. Boxplots become more valua‐
ble when you start stacking bunches of them together—a situation where histograms
are going to be just too busy to be meaningfully examined.

Bivariate Description
Bivariate data consists of two observed variables per unit measured. Examples of
bivariate data include the number of bytes and packets observed in a traffic flow
(which is an example of two quantitative variables), and the number of packets per
protocol (an example of a quantitative and qualitative variable). The most common
plots used for bivariate data are scatterplots (for comparing two quantitative vari‐
ables), multiple boxplots (for comparing quantitative and qualitative variables), and
contingency tables (for comparing two qualitative variables).

Scatterplots
Scatterplots are the workhorse of quantitative plots, and show the relationship
between two ordinal, interval, or ratio variables. The primary challenge when analyz‐
ing scatterplots is to identify structure among the noise. Common features in a scat‐
terplot are clusters, gaps, linear relationships, and outliers.

Let’s start exploring scatterplots by looking at completely unrelated data. Figure 11-7
is an example of a noisy scatterplot, generated in this case by plotting two uniform
distributions against each other. This is a boring plot.
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Figure 11-7. A boring scatterplot

Clusters and gaps are changes in the density of a scatterplot. The boring scatterplot in
Figure 11-7 is a plot of uniform variables of unrelated density. If the two variables are
related, then there should be a change in the density of the data somewhere on the
plot. Figure 11-8 shows an example of clusters and gaps. In this example, there is a
marked increase in activity in the lower-left quadrant, and a marked decrease in the
upper-right quadrant.

Figure 11-8. Clusters and gaps in data
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Linear relationships, as the name indicates, appear in scatterplots as a line. The
strength of the relationship can be estimated from the density of the points around
the line. Figure 11-9 shows an example of three simple linear relationships of the
form y=kx, but each relationship is progressively weaker and noisier.

Figure 11-9. Linear relationships in data

Multivariate Visualization
A multivariate dataset is one that contains at least three variables per unit measured.
Multivariate visualization is more of a technique rather than a specific set of plots.
Most multivariate visualizations are built by taking a bivariate visualization and find‐
ing a way to add additional information. The most common approaches include col‐
ors or changing icons, plotting multiple images, and using animation.

Building good multivariate visualizations requires providing information from each
of the datsets without drowning the reader in details. It’s easy to plot a dozen different
datasets on the same chart, but the results are often confusing.

The most basic approach for multivariate visualization is to overlay multiple datasets
on the same chart, using different tick marks or colors to indicate the originating
dataset. As a rule of thumb, you can plot about four series on a chart without confus‐
ing a reader. When picking the colors or symbols to use, keep the following in mind:
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• Don’t use yellow; it looks too much like white and is often invisible on printouts
and monitors.

• Choose symbols that are very different from each other. I personally like the open
circle, closed circle, triangle, and cross.

• Choose colors that are far away from each other on the color wheel: red, green,
blue, and black are my preferred choices.

• Avoid complex symbols. Many plotting packages offer a variety of asterisk-like
figures that are hard to differentiate.

• Be consistent with your color and symbol choices, and don’t overlap their
domains. In other words, don’t decide that red is HTTP and triangles are FTP.

Animation is pretty much what it says on the tin: you create multiple images and then
step through them. In my experience, animation doesn’t work very well. It reduces
the amount of information directly observable by an analyst, who has to correlate
what’s going on in her memory as opposed to visually.

Other Visualizations and Their Role
The visualizations discussed in this chapter are, so far, derived from the data repre‐
sented. A number of specialized visualizations are also useful for the analyst; we will
discuss them here.

Pairs plots and trellising
A pairs plot is a form of specialized multivariate visualization for data analysis and
exploration. Given a data frame with a set of columns, a pairs plot is a stacked set of
scatterplots representing every combination of columns. Pandas provides a scatter‐
plot via its plotting tools, in the form of a scatter_matrix function:

>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> data = pd.read_csv('voldata.csv')
>>> data.columns.values
array(['Time', 'Volume', 'Articles', 'Users'], dtype=object)
>>> axes = pd.tools.plotting.scatter_matrix(data)
>>> plt.show()

The result is shown in Figure 11-10. As this figure shows, the 4 columns in the array
result in 16 plots, 1 for each variable pairing. Pairs plots vary in practice, and different
tools will tweak the results in different ways—the default Pandas version in
Figure 11-10 plots the diagonal (which consists of the variable plotted against itself)
with a histogram, where other platforms may use the title, or remove the redundant
plots and leave a stairstep-like visualization.
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Figure 11-10. The resulting pairs plot from volume data

A pairs plot, like this one, is also a good example of trellising, a good technique for
clearly visualizing multivariate data. A trellised plot consists of one or more small
plots that are stacked adjacent to each other (horizontally, vertically, or both). Trellis
plots are, in my experience, preferable to multicolor plots.

When developing trellis plots, you will have to consider how to coordinate informa‐
tion across multiple axes. Since trellis plots generally consist of multiple small plots,
wasting space reprinting the same labels is confusing and expensive. Note that the
plot in Figure 11-10 relies on the fact that the various pairs share axes in common
and consequently only prints the axis labels on the outside of the plot. If you are plot‐
ting a trellis, align all the values on a common axis and provide a single label.

Spider plots
Spider plots (so called because they look like a spiderweb) are a specialized type of
two-dimensional plot that plots information radially. Figure 11-11 shows an example
of this type of plot: in this case, the number of active hours a host showed per day for
a week.
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Figure 11-11. An example of a spider plot

I find spider plots most useful for visualizing cyclical data, such as activity over the
course of the business cycle for several weeks, or activity per hour. Since the plot links
the end of one cycle to the beginning of the next, common activity is more clearly
represented than if you’re looking at a set of linear plots. An alternative use of spider
plots is to visualize attributes along multiple differing datasets. This approach lends
itself well to trellising.

Building a spider plot in matplotlib requires a bit of work. An example of spider plot
generation is available on the matplotlib website, but it requires more work than the
other plots shown so far.

ROC curves
Receiver operating characteristic (ROC) curves are a form of specialized visualization
associated with binary classification systems (such as most IDSs). Binary classifiers
end up with one of four results when run: they either detect something that is there (a
true positive), detect something that isn’t there (false positive), don’t detect something
that is there (false negative), or don’t detect something that isn’t there (true negative). 
ROC curves evaluate the true positive and false positive rates of a detection system:
the sensitivity of the system as a function of its (inverted) specificity.
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4 This entire discussion is an exercise in conditional probabilities and Bayes’ theorem.

Figure 11-12 shows an example of a ROC curve in action. Despite being on a two-
dimensional field, ROC curves are actually three-value plots. These three values are
the false positive rate, the true positive rate, and an operating characteristic, which is
the variable you use to tune the ROC curve. In the example in Figure 11-12, the oper‐
ating characteristic is the number of packets used for the threshold, and is expressed
using lines pointing to the label. Depending on the plotter, ROC curves may individ‐
ually label points with the operating characteristic or use pointers, as in this example.

Figure 11-12. An example ROC curve

ROC curves are a common visualization technique for binary classification, but be
aware that the rates used in ROC curves are conditional—the true positive rate is the
probability of detecting an event if the event happened, and the false positive rate is
the probability of detecting an event if the event didn’t happen. Both of these rates are
ultimately driven by the probability of the event happening in the first place,4 which
brings us back to the base rate problem, as discussed in Chapter 3.
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Operationalizing Security Visualization
EDA and visualization are part of the exploratory process and, as such, are somewhat
rough around the edges. The EDA process involves a large number of dead ends and
false starts. During the operationalization phase of an analytic process, the visualiza‐
tions will need to be modified in order to supplement action and response. Addi‐
tional processing and modification are needed to polish a visualization sufficiently for
it to work on the floor. The following subsections provide examples of good and bad
visualizations and rules for addressing the problems of visualizing data for informa‐
tion security.

Rule one: Bound and partition your visualization to manage disruptions
When plotting security information, you need to expect and manage disruptions—
after all, the whole point of looking for security events is to find disruptive activity.
Plotting features like autoscaling can work against you by hiding data when some‐
thing weird happens. For example, consider a count of anomalous events such as in
Figure 11-13. This plot has two anomalies, but one is obscured by the need to plot the
second.

Figure 11-13. Autoscale’s impact on disruptive event visualization

There are two strategies for dealing with these spikes. The first is to use logarithmic
scaling on the dependent (y) axis. Log scaling replaces the linear scale with a logarith‐
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mic scale. For example, the ticks on the axis go from being 10, 20, 30, 40 to 10, 100,
1000, 10000. Figure 11-14 shows a logarithmic plot of the same phenomenon. Using a
logarithmic scale will reduce the difference between the major anomaly and the rest
of the data.

Figure 11-14. Using a log scale plot to limit the impact of large outliers

A logarithmic scale is suitable for EDA, and most tools provide an option to automat‐
ically plot data this way. With R, you pass in a log parameter to the plotting com‐
mand to indicate which axis should be logarithmic (e.g., log="y").

I don’t like using logarithmic scales when developing an operational visualization,
however. With logarithmic scales you tend to lose information about typical phenom‐
ena—the curve for typical traffic in Figure 11-14 is deformed by the logarithmic scale.
Also, the explanation of what a logarithmic scale is a bit recondite; I don’t want to
have to explain logarithmic scaling over and over again. When somebody is looking
at the same data repeatedly, I’d rather keep it linear.

For these reasons, I prefer to keep the scaling on a plot consistent and identify and
remove outliers. When developing an operational plot, I estimate the range of the
plot, and usually set the upper limit displayed to the 98th percentile of the observed
data. Then, when an anomaly occurs, I plot it separately and differently from the
other data to indicate that it is an anomaly. Figure 11-15 shows a simple example of
this.
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Figure 11-15. Partitioning anomalies out from normal data

The anomaly in Figure 11-15 is identified by the single line indicating that it’s off the
scale. The second anomaly (at 07:11) is not detected by that process, but the event is
now obvious through visualization. That said, the anomaly marker is completely
meaningless without further information and training, which leads into rule two.

Rule two: Label anomalies
If rule one is in place, then you’ve already established some basic rules for discerning
anomalies from normal traffic. Now, apply those rules to identify the anomalies and
modify the visualization to make them stand out for the reader.

An operational visualization is an aid to anomaly detection, so the same rules apply as
for constructing IDSs (see “Prefetching Data” on page 58)—you should prefetch data
to reduce the operator’s response time. As an example, the anomaly in Figure 11-16 is
annotated with information about what caused the anomaly as well as some statistics.
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Figure 11-16. Labeling anomalies to aid investigation

Labeling anomalies on the plot can be useful for rapid reference, but if there are too
many anomalies (and working off of rule one, you should expect that there will be too
many anomalies), you will end up sacrificing clarity in the image. You can see this
happening in Figure 11-16, where the label, while informative, is already consuming
about a fifth of the horizontal space available. A better approach is to explain the
anomalies in a separate table next to the visualization, which allows you to include as
much data as necessary.

Rule three: Use trendlines, distinguish artifacts from observations
Operational visualizations need to balance summarization and smoothing techniques
that can help the analyst process data without getting mired in details, while at the
same time providing the analyst with the actual data and not thinking for him. As a
result, when I operationally visualize data I prefer to include the raw data and some
kind of smoothing trendline at the same time. Figure 11-17 is a simple example of
this kind of visualization, where a moving average is used to smooth out the observed
disruptions.
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Figure 11-17. Moving average over direct observations

When creating visualizations like this, you need to ensure that the analyst can clearly
differentiate between the data (the original information) and the artifacts you’ve cre‐
ated to aid analysis. You also need, as per rule one, to keep track of the impact of dis‐
ruptive events—you don’t want them interfering with your smoothing.

Rule four: Be consistent across plots
Visualization exploits our pattern matching capabilities. However, those capabilities
just love to run rampant on the vaguest hint. For example, say you decide to pick a
red line to represent HTTP traffic in a per-host activity. If you then decide to use a
red line to represent incoming traffic in the same suite of visualizations, somebody is
going to assume it’s HTTP traffic again.

Rule five: Annotate with contextual information
In addition to labeling anomalies, it’s good to include unobtrusive contextual data
that can help facilitate analysis. The example shown in Figure 11-18 adds some gray
bars to indicate whether activity is taking place during or outside business hours.
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Figure 11-18. Adding some color to identify time of day

Rule six: Avoid flash in favor of expressiveness
Recognize that operational visualizations are intended to be processed quickly and
repeatedly. They’re not a showcase for innovative graphic representation. The goal of
an operational visualization should be to express information quickly and clearly.
Graphically excessive features like animation, unusual color choices, and the like will
increase the time it takes to process the image without contributing information.

Be particularly careful about visualizations based on real-world or cyberspace
metaphors. Whimsy wears thin very quickly, and we’re not dealing with the physical
world here. Metaphors such as “opening a desk” or “rattling all the doors in a build‐
ing” (visualizations I’ve seen tried, and the less said about them the better) often look
neat in concept, but they usually require complex interstitial animations (which take
up time) and lose information because of the metaphor. Focus on simple, expressive,
serious displays.

Rule seven: When performing long jobs, give the user some status feedback

When I run SiLK queries, I have a habit of running them with the --print-file
switch active, not because I care about which files are being accessed, but in order to
have an indicator of whether the process is running or the system is hung. When
building visualizations, it’s important to know how long it will take to complete one
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and to provide the user with some feedback that the visualization is actually being
generated.

Fitting and Estimation
Once you’ve got some data, and you know how it’s weird and have identified its outli‐
ers, the next step is generating some kind of estimate for it—a threshold. In this sec‐
tion, I’m going to discuss the general problem of estimating statistical data for
information security.

The general problem is that the data doesn’t fit common distributions particularly
well. Data is heavy-tailed, and the results just aren’t that precise.

Is It Normal?
There are a diverse family of techniques for determining whether or not a dataset is
normally distributed, or, to be more precise, can be satisfactorily modeled using a
normal distribution. Parametric distributions, if applicable, open up a number of
tools to us. The problem is that in raw network data they’re rare. Among the techni‐
ques discussed in this chapter are:

• Histograms, for visualizing the distribution
• Quantile-quantile (QQ) plots, for comparing the data against a normal distribu‐

tion
• Goodness of fit tests, such as the K-S or S-W tests

Visualizations (histograms and QQ plots) are, in my opinion, the preferable option.
My interest in acquiring a distribution is utilitarian. I’m looking for reasonable
thresholds and something that matches a theoretical distribution well enough that I
can use other tools, because I don’t have the control to make very sensitive measure‐
ments. Attackers will usually be fairly easy to identify once you’ve picked the right
metric.

The classic mistake with using means and standard distributions without looking at
the data is that most network security datasets have a number of outliers. These outli‐
ers end up producing ridiculously large standard deviations, and the resulting thres‐
hold is triggered only for egregious events.

Simply Visualizing: Projected Values and QQ Plots
There are two ways to generate a visualization to test against a distribution. The first
approach is to compare a histogram against a theoretical model (generally some dis‐
tribution). There are a variety of ways to do this using Pandas, so I’m going to show
one simple example. This example, using matplotlib’s mlab (MATLAB compatibil‐
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ity) module, is representative of the basic process: generate a histogram with a fixed
set of bins that will serve as the x points, then generate the y values using the normpdf
function, and plot the results:

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import norm
>>> import matplotlib.mlab as mlab
>>> import numpy.random
# Generate a hundred points of normally distributed random data
# with a mean of 20 and a standard deviation of 5
>>> data = numpy.random.normal(20,5,100)
>>> n,bins,other = plt.hist(data,normed=1)
# Generate the mean and standard distribution for a model
>>> mean,sd = norm.fit(data)
>>> mean, sd
(20.596980651919221, 5.1886885182512357)
# You can just as easily do this 'by hand'
>>> yv = mlab.normpdf(bins,mean,sd)
>>> plt.plot(bins,yv,'r',linewidth=2)
[<matplotlib.lines.Line2D object at 0x113bc1990>]
>>> plt.xlabel('Value')
<matplotlib.text.Text object at 0x113f1e810>
>>> plt.ylabel('Probability')
<matplotlib.text.Text object at 0x114d8a710>
>>> plt.title('Comparison of Histogram and Model')
<matplotlib.text.Text object at 0x113f0e850>
>>> plt.show()

The resulting image is shown in Figure 11-19.

Figure 11-19. Example of comparing distributions
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Straight comparison against an assumed distribution (that is, assuming a distribution
is normal and plotting it just to eyeball it) is trivial. I do it by default, whatever toolkit
I’m using, just so that I have some idea of what the data looks like; it’s quick, but it’s
really just testing against one assumption. For more exploratory work, you need to
use something like a QQ plot or the other visualizations discussed in this chapter.

A QQ plot compares the distributions of two variables against each other. It’s a two-
dimensional plot, with the x-axis being the values of one distribution normalized as
quantiles, and the y-axis being values of the second distribution normalized as quan‐
tiles. For example, if I break each distribution into 100 centiles, the first point is the
first percentile for each, the 50th point is the 50th percentile for each, and so on.

Figures 11-20 and 11-21 show two QQ plots, with the companion code following.
These plots were generated using the probplot function found in the scipy stats
library. The first plot, a normal distribution, shows the expected behavior when two
similar distributions are plotted on a QQ plot—the values track the diagonal. There is
some deviation but it isn’t very severe. Compare the results with the uniform distribu‐
tion in the second figure; in this one, significant deviations happen on the ends of the
plot.

Figure 11-20. Example QQ plot against a normal distribution
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Figure 11-21. Example QQ plot against a uniform distribution

Here’s the code that generates these plots:

# Generate normal and uniform distribution data
>>> normal = numpy.random.normal(20,5,1000)
>>> uniform = numpy.random.uniform(10,30,1000)
>>> results = stats.probplot(normal,dist='norm',plot=plt)
>>> plt.show()
>>> results = stats.probplot(uniform,dist='norm',plot=plt)
>>> plt.show()

The full pandas stack has QQ plotting stuffed away in a number of locations. In addi‐
tion to the calls in stats, the statsmodels.qqplot function will provide a similar
plot.

Fit Tests: K-S and S-W
Goodness of fit tests compare observed data against a hypothetical distribution in
order to determine whether or not the data fits the distribution. Determining that a
phenomenon can be satisfactorily modeled with a distribution enables you to use the
distribution’s characteristic functions to predict the values.

Everyone’s standard approach for this is the normal, or Gaussian, distribution, also
known as the bell curve. If data can be modeled by a normal distribution (and snark‐
ing aside, it’s called normal because it’s pretty normal), you can generate an estimate
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from a small sample of data and reasonably predict the probability of other values.
Given a mean of μ and a standard deviation of σ, a normal distribution has a proba‐
bility density function of the form:

If traffic can be satisfactorily modeled with a distribution, it provides us with a math‐
ematical toolkit for estimating the probability of an occurrence happening. To get
something that does behave that way, expect that you will have to run heavy heuristic
filtering to remove the outliers, oddities, and other strange conditions.

This matters because if you use the mathematics for a model without knowing if the
model works, then you run the risk of building a faulty sensor. There exist, and any
toolkit provides, an enormous number of different statistical tests to determine
whether you can use a model. For the sake of brevity, this text focuses on two tests,
among a number provided by scipy’s stats library. These are:

Shapiro-Wilk (shapiro.test)
The Shapiro-Wilk test is a goodness of fit test against the normal distribution.
Use this to test whether or not a sample set is normally distributed.

Kolmogorov-Smirnov (ks.test)
A goodness of fit test to use against continuous distributions such as the normal
or uniform distribution.

All of these tests operate in a similar fashion: the test function is run by comparing
two sample sets (either provided explicitly or through a function call). A test statistic
describing the quality of the fit is generated, and a p-value produced.

The Shapiro-Wilk test is a normality test; the null hypothesis is that the data provided
is normally distributed. See Example 11-1 for an example of running the test.

Example 11-1. Running the Shapiro-Wilk test

# Test to see whether a random normally distributed
# function passes the Shapiro test
>>> scipy.stats.shapiro(numpy.random.normal(100,100,120))
(0.9825371503829956, 0.12244515120983124)
# W = 0.98; p-value = 0.12
# We will explain these numbers in a moment
# Test to see whether a uniformly distributed function passes the Shapiro test
>>> scipy.stats.shapiro(numpy.random.uniform(1,100,120))
(0.9682766199111938, 0.006203929893672466)
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All statistical tests produce a test statistic (W in the Shapiro-Wilk test), which is com‐
pared against its distribution under the null hypothesis. The exact value and interpre‐
tation of the statistic are test-specific, and the p-value should be used instead as a
normalized interpretation of the value.

The Kolmogorov-Smirnov (KS) test is a simple goodness of fit test that is used to
determine whether or not a dataset matches a particular continuous distribution,
such as the normal or uniform distribution. It can be used either with a function (in
which case it compares the dataset provided against the function) or with two data‐
sets (in which case it compares them to each other). See the test in action in
Example 11-2.

Example 11-2. Using the KS test

># The KS test in action; let's create two random uniform distributions
>>> scipy.stats.ks_2samp(
          numpy.random.normal(100,10,1000),
   numpy.random.normal(100,10,1000))
Ks_2sampResult(statistic=0.026000000000000023, pvalue=0.88396190167972111)
#------------------------------------------

The KS test has weak power. The power of an experiment refers to its ability to cor‐
rectly reject the null hypothesis. Tests with weak power require a larger number of
samples than more powerful tests. Sample size, especially when working with security
data, is a complicated issue. The majority of statistical tests come from measurements
in the natural sciences, where acquiring 60 samples can be a bit of an achievement.
While it is possible for network traffic analysis to collect huge numbers of samples,
the tests will start to behave wonkily with too much data; small deviations from nor‐
mality will result in certain tests rejecting the data, and it can be tempting to keep
throwing in more data, effectively crafting the test to meet your goals.

Further Reading
1. J. Tukey, Exploratory Data Analysis (London: Pearson Education, 1977).
2. E. Tufte, The Visual Display of Quantitative Information (Cheshire, CT: Graphics

Press, 2001).
3. P. Bruce and A. Bruce, Practical Statistics for Data Scientists (Sebastopol, CA:

O’Reilly Media, 2017).
4. R. Langley, Practical Statistics Simply Explained (Mineola, NY: Dover Publica‐

tions, 1971).
5. W. McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy,

and IPython, 2nd ed. (Sebastopol, CA: O’Reilly Media, 2017).
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CHAPTER 12

On Analyzing Text

This chapter is about the general problem of analyzing security data consisting of
text. Text analysis, particularly log and packet payload analysis, is a consistent
unstructured task for security analysts. This chapter provides tools, techniques, and a
basic workflow for dealing with the problem of semistructured text analysis.

I use the term semistructured to refer to data such as DNS records and logs. This con‐
trasts with unstructured text (text for human consumption, like this book) in that
there are well-defined rules for creating the text. With semistructured text, some
enterprising developer wrote a series of logical statements and templates for generat‐
ing every conceivable result. However, in comparison to fully structured data, those
logical statements and templates are often opaque to the security analyst.

This chapter is divided into three main sections. The first section discusses text
encoding and its impact on security data. The second section discusses basic skills
that an analyst should expect to have for processing this data—this is primarily repre‐
sented as a set of Unix utilities and the corresponding mechanisms in Python. The
third section discusses techniques for analyzing and comparing text; these are stan‐
dard text processing techniques, largely focused on the problem of finding similarity.
This section also discusses security-specific text encoding problems: in particular,
obfuscation and homoglyphs.

Text Encoding
Encoding refers to the rules that tell a computer that it should display the value 65
with the image A, and that the value 0x43E is displayed as о. Current systems rely
heavily on the Unicode encoding standard, usually encoded as UTF-8, but in order to
maintain backward compatibility, an enormous legacy infrastructure exists on top of
this.
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1 The attacker will always win this race.
2 That said, UTF-8 = ASCII = ISO-Latin-1 if the value is below 128.
3 IBM, eternally content to make everyone march to its drummer, used a number of slightly different encoding

schemes called EBCDIC while everyone else went toward ASCII.

Text encoding requires managing a vast number of corner cases and legacy process‐
ing. The plethora of standards leads to ambiguity, and attackers thrive on ambiguity.
Information passing between two hosts will be encoded multiple times, often implic‐
itly. For example, HTTP supports implicit compression (usually with gzip or
deflate); if your inline packet inspector isn’t aware of that, then the attacker just has
to kick in the right compression algorithm and continue onward. This is effectively
an arms race, with the attacker looking for more obscure obfuscators and the
defender looking for more defenses.1

Unicode is a character set—it is an index that associates each character with a single
numerical value (a code point). An encoding is a mechanism for representing these
numbers in a standardized binary form. A character is not an image; instead, it’s the
idea behind a family of images, the way a mathematical point is the idea behind the
dot you draw on a blackboard. The equivalent of that blackboard dot is a glyph;
glyphs are what you see on screen. A glyph is the representation of a character that is
indexed by a code point.

The reason for the distinction between character and glyph is because different
encoding schemes may handle the same representations very differently. Encoding
schemes don’t simply have to handle images—they contain control characters, possi‐
bly even sounds (the BEL character in ASCII is an example). In addition, the same
glyph may be represented by radically different encodings; for example, a character
such as ä may, depending on the encoding scheme, be represented by a code point for
“a with umlaut,” by an “a” followed by an umlaut, or by an “a”, followed by a non-
deleting backspace and an umlaut.

Finally, and this is a critical legacy issue, the distinction between a code point and its
encoding is not necessarily as clear outside of the Unicode world. Unicode does not
make an assumption about how code points are represented—that’s a task for encod‐
ing schemes such as UTF-8 or UTF-16. Conversely, Windows code pages, macOS
code pages, and the ISO standards make assumptions about numeric representation.2

History and legacy are important issues here. The encoding world’s history is breaka‐
ble into two epochs: before Unicode and after Unicode. In the pre-Unicode world,
encoding standards developed within individual countries and proprietary platforms.
This meant that communicating between hosts using different coding standards
involved navigating multiple incompatible drivers and arcane character sets, some‐
times chosen for intentional incompatibility.3 Major computer companies also main‐
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4 Okay, so it’s private space; it’s the thought that counts.
5 You can trace the process of supplanting at https://w3techs.com/technologies/history_overview/character_encod

ing/ms/y.

tained their own standards—Apple and Microsoft have their own code page tables
with distinct indices for different character sets. Incompatibilities were often so bad
that software was forked just to handle a specific encoding scheme, because the
assumptions of an ASCII-dominated world would cause buffer overflows when deal‐
ing with 16-bit code points. The Unicode standard was designed to deal with all of
these problems. Unicode does for characters what IPv6 does for addresses—provide
so many slots that everything from Amharic (U+1200) to Engsvanyali (U+E1004) is
consistently represented.

Unicode supplanted, but did not replace, these legacy standards.5 Today, for compati‐
bility reasons Japanese systems and web pages will recognize JIS, Russian ones will
recognize KOI8, and so on. To some extent, the world is divided into encoding stand‐
ards—there are tools that Chinese-language users rely on that users who work with
the Roman script will never know about, and there is malware specifically for those
tools. Table 12-1 tries to unify this Babel into a coherent whole by providing a list of
major character sets, their code pages, and legacy encoding schemes.

Table 12-1. Coding standards

Character set Unicode code page Legacy encodings Notes
Roman U+0000 ASCII, ISO-8859-XX, ISO-Latin-1, Mac OS

Roman
ASCII isn’t able to handle accent
characters, so languages like French and
Spanish had to move to other standards.

Chinese U+4E00 GuoBiao, EUC-CN, Big5 The Unicode page is the CJK (Chinese-
Japanese-Korean) set. GuoBiao is PRC,
Big5 is Taiwan and HK.

Japanese U+3040 JIS, EUC-JP The code page is specifically for kana,
while JIS standards include kana and
kanji.

Cyrillic U+0400 KOI8-X, Windows-1251, ISO-8859-5 This includes Russian, Ukrainian, and
Tajik.

Korean U+AC00, U+1100 EUC-KR, KS X 1001 U+AC00 is the syllabary, U+1100 is the
individual jamo. North Korea has its own
standard. a

Arabic U+0600 U+0600 is the base set, but Arabic is
scattered about the standard.

a KPS 9566-97.
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Unicode, UTF, and ASCII
As noted previously, Unicode isn’t an encoding scheme, it is a standard for relating
code points to characters. The Unicode standard specifies up to 1,114,112 code
points, each of which is stored in one of 16 65,536-point code planes. We care primar‐
ily about plane zero, which contains all the characters in the sets listed in Table 12-1.

Encoding, which is to say the process of actually representing the characters, is man‐
aged primarily via UTF-8 (Unicode Text Format, RFC 3629). UTF-8 is a variable-
length encoding scheme specifically designed to handle a number of problems
involved in transmission and in its predecessor standard, UTF-16. This means that
Unicode encoding has a number of header and delimiter conventions that limit the
efficiency of the system. The value 129, for instance, is going to stretch across 2 bytes.
The following example shows this in action, as well as the germane Python com‐
mands:

# This is done in Python 2.7; the Python 3 version merges the uni*
# functions for ease of use.
>>> s=unichr(4E09)
# unichr is the Unicode equivalent of chr; note that I enter the
# hexadecimal index.  All it cares about is the index value.
>>> print(s)
三
>>> print(unichr(19977))
三
# print is important, direct text dump is going to give me the
# abstract Unicode encoding that Python uses.  Note the u and \u
# characters.  The u before the string indicates it's Unicode,
# the \u indicates it's an unsigned sixteen bit--Python effectively
# uses UTF-16 internally for representation.
>>> s
u'\u4e09'
# Now, let's convert from utf-16 to utf-8.
>>> s.encode('utf-8')
'\xe4\xb8\x89'
# Note that this is 3 bytes; a utf-8 representation includes
# overhead to describe the data provided.  Let's compare it
# with vanilla ASCII.
>>> s=u'a'
>>> print s
a
>>> s
a
# Note that we're in ASCIIland and it's treated as a default.
>>> s.encode('utf-8')
'a'
>>> ord(s)
97
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6 Note that ASCII is a 7-bit representation. The high bit is always 0. 7 bits it shall be, and the number of bits
shall be 7; if you don’t believe me transfer a binary in text mode and wonder why.

7 RFC 3548 summarizes, but don’t treat it like gospel; everybody tweaks.

Note that in the example, as soon as I went to the a character, the encoding function
and everything else dropped all of the hexadecimal and integer encoding. UTF-8 is
backward compatible with ASCII (American Standard Code for Information Inter‐
change), the 7-bit6 character encoding standard.

Encoding for Attackers
Having discussed the general role of encoding, now let’s talk about the role of encod‐
ing for an attacker. For attackers, encoding is a tool for evasion, slipping information
past filters intended to stop them, delaying defenders from figuring out that some‐
thing is amiss. To that end, the attackers can rely on a number of different techniques
to manipulate encoding, abetted by the implicit dependencies encoding strategies
have.

Base64 encoding
Base encoding7 is an encoding technique originally developed for email that currently
serves as a workhorse for data transfer, including malware.

The goal of base64 encoding is to provide a mechanism for encoding arbitrary binary
values using commonly recognized characters. To do so, it maps binary values to val‐
ues between 0 and 63, assigns each code point a common, easily recognizable charac‐
ter, and then encodes the values using that character. The base64 encoding standard
involves 64 code points representing the characters A–Z, a–z, and 0–9, and two char‐
acters that differ by standard—we’ll say + and / for now.

Figure 12-1 shows the basic process of base64 encoding. Note that the process
includes a padding convention; when working with bytes, base64 encoding neatly
transfers 3 bytes into 4 characters. If your string isn’t a multiple of three, you’ll need
to zero-pad up to three and then add equals signs at the end of the encoded string to
indicate this.
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Figure 12-1. Base64 encoding in action

Base64 encoding is cheap and omnipresent; Python includes a standard library in the
form of base64, and JavaScript has btoa and atob functions to handle it. This makes
it a pretty easy and quick way to hide text directly.

In addition to base64, HTML natively supports a completely different encoding,
called numeric character references (NCRs). Numeric character references encode val‐
ues using the format &#DDDD;, where DDDD is the index of the corresponding
code point in Unicode. NCRs can use decimal (e.g., &#19977;) or hex (e.g.,
&#0x4E09;).

The fastest way to identify base64 is to look for characters that base64 doesn’t cover,
but which you expect to see: commas, spaces, periods, and apostrophes. Long sequen‐
ces of text without those will be unusual. NCRs are recognizable by the use of amper‐
sands.

Informal encoding/obfuscation
Introduce rules, and people are going to find ways around them. Informal encoding
schemes pop up because people are looking for quick-and-dirty ways to evade a
detection or filtering technique, then they become ossified and just part of a culture.
There are no real rules here, just some rubrics I’ve seen over time that are worth at
least noting.
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The most common immediate tricks are simple reversals and appending. For exam‐
ple, it’s been an old trick for years to rename .zip files with a .piz extension to trick
filters into passing them. Similarly, I regularly see users just append numbers to
strings.

Given enough time, substitutions can become more formal. The most common
example of this is leetspeak and its cousins; whenever I see 1337 show up somewhere,
I raise an eyebrow. It’s not that leetspeak (properly 1337sp3ak, more properly
l33tsp34k, even more properly 1337sp34|<) is an attack technique, but it’s one of
those forehead-slapping flags that I’ve run into too many times not to pay attention
to. There aren’t hard and fast rules for leetspeak, but there are common behaviors. 3,
4, 7, and 1 are used for e, a, t, and l; z is usually substituted for s. 0 is used to indicate
0, ah, and u noises (as in hax0rz, pr0n, and n00bs).

Compression
An easy and robust mechanism for evading detection is to simply compress the files,
maybe throwing in a garbage datafile with each instance to change the resulting com‐
pressed payload. This is not a new problem, and many deep packet inspection tools
these days will include a half dozen common unpackers specifically to deal with it.

That said, the beauty of compression (for attackers) is that people are constantly
building new compressors. It’s easy for an attacker to go find a new archive format,
harder for defenders to recognize that archived data is in a new format and figure out
what the decompressor is. Table 12-2 is a list of common archiving formats.

Table 12-2. Common archiving formats

Name Extension Notes
ZIP .zip By far the most prevalent compression scheme, from PKZIP

GZIP .gz The GNU version of ZIP

TAR .tar TApe aRchive, not a compression scheme but a multifile archiving utility

TAR-GZIP .tgz TAR with GZIP, ubiquitous on Unix systems

CAB .cab A Microsoft archiving format including compression and certificates

ARC .arc ARChive format, antique but occasionally seen

UPX .upx Ultimate Packer for eXecutables; a PE compressor

7ZIP .7z An efficient but slow compression algorithm

RAR .rar Common on Windows systems (winRAR)

LZO .lzo Compact and fast

Of particular note when looking at compression algorithms are executable compres‐
sors such as UPX, Themida, and ASPack. These systems pack the datafile and the
decompressor into a single executable package. Executable compressors are attractive
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because they’re easily portable—the attacker can bring the whole shebang across the
network rather than having to transfer a decompressor separately.

Encryption
Checking the entropy of a sample is a relatively quick-and-dirty way to identify that
traffic is encrypted. Properly encrypted data should have a high entropy; there is a
potential false positive in that the data may be compressed, but this should be identi‐
fiable by looking for the corresponding headers indicating the type of compression.

Basic Skills
In this section, I will review a basic set of skills for processing and manipulating text.
In the field, analysts will usually work with a combination of command-line Unix
tools and functions within a scripting language. Consequently, this section largely
consists of examples within both environments. Both Unix and Python have an enor‐
mous number of text processing tools, and the references at the end of the chapter
will provide additional reading material.

This section is skill-based rather than tool-based. That is, each subsection covers a
specific problem and ways to handle it in Unix or Python.

Finding a String
The go-to tool for finding a particular string is grep (the generalized regular expres‐
sion processor). When using grep, remember that its default input is regular expres‐
sions—consequently, when entering IP addresses, you can run into overmatches. For
example:

$ grep 10.16 http_example.txt  | grep '10:16'
10.147.201.99 - - [17/Sep/2016:10:16:14 -0400] "HEAD / HTTP/1.1" 200 221 "-" "-"
10.147.201.99 - - [17/Sep/2016:10:16:16 -0400] "GET / HTTP/1.1" 200 2357 "-" "-"
$ grep 10.16 http_example.txt  | grep -v '10:16' | head -1
10.16.94.206 - - [18/Sep/2016:05:57:16 -0400] "GET
   /helpnew/faq/faq_simple_zh_CN.jsp HTTP/1.1" 404 437 "-"
   "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit/537.36
   (KHTML, like Gecko) Chrome/36.0.1985.125 Safari/537.36"

Since the . character is a wildcard in regular expressions, grep looks for both the
address and the time signature. Ensure that you match a literal dot using the \. con‐
struct:

$ grep '10\.16' http_example.txt | head -1
10.16.94.206 - - [18/Sep/2016:05:57:16 -0400] \
  "GET /helpnew/faq/faq_simple_zh_CN.jsp HTTP/1.1" 404 437 "-" \
  "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit/537.36 \
    (KHTML, like Gecko) Chrome/36.0.1985.125 Safari/537.36"
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Python strings support two searching methods: find and index. Of the two, I prefer
find over index purely because index raises an exception when it fails to find a
string. I’m intentionally avoiding discussing the re library for now; I’ll discuss regular
expressions a bit more later.

Manipulating Delimiters
The tr tool provides a number of handy utilities for splitting delimiters. Without
other switches, tr will do an ordered substitution of the contents of one list with
another list. Here’s an example of how this works:

$ echo 'dog cat god' | tr 'dog' 'bat'
bat cat tab

As the example shows, tr transposes the individual characters, not the entire string.
To do this in Python, you need to use a string’s .translate method. This method
takes a translation table, which is best generated using the maketrans function from
the string library. Here’s an example:

>>> from string import maketrans
>>> 'dog cat god'.translate(maketrans('dog','bat'))
'bat cat tab'

tr includes a number of other handy routines, the most important one being -s. The
squeeze operation will reduce multiple copies of a specified character down to one,
particularly important when working with spaces. For example:

$ echo 'a||b|c' | tr -s '|'
a|b|c

The most Pythonic way to do this is to split the series into a list, filter out empty ele‐
ments, and then join the list using the original delimiter. For example:

>>> '|'.join(filter(bool, 'a||b|c'.split('|')))
'a|b|c'

Splitting Along Delimiters
cut is capable of splitting files along delimiters, characters, bytes, or other values as
needed. To use delimiters, specify a -d argument and then a -f for the fields:

$ echo 'a|b|c' | cut -d '|' -f 3,1
a|c

Note that -f doesn’t pay attention to the ordering—you get the fields in the order they
appear in the file. Also note that the -d argument takes a single character.

In Python, the .split method converts strings to lists, after which you can manipu‐
late them as normal. Given how Python slicing works, it’s generally preferable to use
the itemgetter function after that to get ordered elements:
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>>> from operator import itemgetter
>>> itemgetter(2,1,5)('a|b|c|d|e|f'.split('|'))
('c', 'b', 'f')

In passing, NumPy arrays provide an arbitrary selection operator via double brackets
([[).

Regular Expressions
Regular expressions are the most powerful tool directly available for text analysis. In
this section, I will provide a very brief overview of their use, as well as some rules for
ensuring that they don’t get out of hand. In general, my largest caution about using
regular expressions is that they are very expensive—regular expressions are effec‐
tively an interpreted programming language for matching text, and there are often
much more effective and faster mechanisms for achieving the same results, such as
tr.

A regular expression is a sequence of characters specifying how to match another
sequence of characters. In its simplest form, a regular expression is just a string. Here
is an example of regular expression matching in Python:

>>> import re
>>> re.search('foo','foobar')
<_sre.SRE_Match object at 0x100431cc8>
>>> re.search('foo','waffles')

Python regular expressions are implemented by the re library. As this example shows,
a successful regular expression search will return a match object; a failure of the
search function will return None.

The re library contains three key functions: search, match, and findall. search
searches through the target string and terminates on the first match; match succeeds
only on an exact match. Both search and match return match objects on success, or
None on failure. findall will search for every instance of a regular expression and
return a list of successful matches:

>>> re.match('foo','foobar')
<_sre.SRE_Match object at 0x100431cc8>
>>> re.match('foo','barfoo')
# Note the failure; this is because of the positioning of foo - the characters
# bar precede it.
>>> re.search('foo','foobar')
<_sre.SRE_Match object at 0x1004318b8>
>>> re.search('foo','barfoo')
<_sre.SRE_Match object at 0x100431cc8>
# Search works because it isn't an exact match
>>> re.findall('foo','foofoo')
['foo', 'foo']
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Regular expressions provide a rich language for wildcarding. The most basic wild‐
cards involve the use of the ., ?, +, and * characters. . specifies a match for a single
character, while the other three specify the order of the match. ? indicates zero or one
instances, + one or more, and * zero or more:

>>> re.findall('foo.+','foo foon foobar')
['foo foon foobar']
>>> re.findall('foo.?','foo foon foobar')
['foo ', 'foon', 'foob']
>>> re.findall('foo.','foo foon foobar')
['foo foon foobar']
>>> re.findall('foo*','foo foon foobar')
['foo', 'foo', 'foo']
>>> re.findall('foo.*','foo foon foobar')
['foo ', 'foon', 'foob']

Instead of simply matching on one or more characters, regular expressions can be
grouped into parentheses. The order characters can then be applied to the whole
expression:

>>> re.findall('f(o)+','foo foooooo')
['o', 'o']
>>> re.findall('f(o)+','foo')
['o']

When you use a group, the matches will only return the characters in the group. This
is handy for extracting specific terms. For example:

>>> re.findall('To: (.+)','To: Bob Smith <bob@smith.com>')
['Bob Smith <bob@smith.com>']
>>> re.findall('To: (.+) <','To: Bob Smith <bob@smith.com>')
['Bob Smith']
>>> re.findall('To: (.+) <(.*)>','To: Bob Smith <bob@smith.com>')
[('Bob Smith', 'bob@smith.com')]

Groups can also express a number of options, via a bar, and a specific number of
instances by putting the range in curly braces:

>>> re.findall('T(a|b)','To Ta Tb To Tb Ta')
['a', 'b', 'b', 'a']
>>> re.findall('T(a){2,4}','To Ta Taa Taaa')
['a', 'a']

Square brackets are used to match a range of characters:

>>> re.findall('f[abc]','fo fa fb fo fc')
['fa', 'fb', 'fc']

Finally, a couple of special notes. The ^ and $ symbols are used to match the begin‐
ning and end of a string:

>>> re.findall('^f[o]+','foo fooo')
['foo']
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>>> re.findall('f[o]+','foo fooo')
['foo', 'fooo']
>>> re.findall('f[o]+$','foo fooo fo')
['fo']

You can match any of the control characters (e.g., {, +, etc.) by slapping a \ in front of
them:

>>> re.findall('a\+.','ab a+b')
['a+b']

That was a very basic introduction to regular expressions, but I’ll also make some
practical observations.

First, if you’re using regular expression matching with a new tool, check to see how
much regular expression parsing the tool does. At the minimum, regular expressions
tend to be broken into a basic syntax, an extended syntax (ERE), and PCRE (Perl
Compatible Regular Expression) syntax. The default grep tool, for example, doesn’t
recognize extended syntax, so the first command here produces no output:

$ echo 'foo' | grep 'fo.?'
$ echo 'foo' | egrep 'fo.?'
foo

Most modern environments will use ERE, and everything I’ve discussed in this chap‐
ter should work if the parser recognizes ERE. PCRE, yet more powerful, usually
requires additional libraries, and there is a standard PCRE tool (pcregrep) for pars‐
ing those expressions. If you expect to be doing a lot of Unicode work, I suggest going
straight to PCRE.

Second, keep notes. Outside of one-off parsing, you’re most likely going to use regu‐
lar expressions to repeatedly parse and normalize logfiles as part of the analysis infra‐
structure. The logfile format changes, regular expressions fail, and you’re left trying to
figure out what that string of line noise actually means. A useful aid to this documen‐
tation process is to use capture groups, to ensure that you can track what you’re
watching for.

Third, use regular expressions for what they’re good for, and keep them simple.
Matching string. is an expensive way to match string. As a rule of thumb, if I’m
not doing something at least as complex as a conditional (e.g., (a|b)) or a sequence
count (e.g., a{2,3}), I’m looking for a simpler approach. Regular expressions are
expensive—many common tasks, such as squeezing spaces, are three to four times
slower using REs.

Finally, if you’re working in Python, make sure you’re compiling, and know the dif‐
ference between match and search and findall. Since match requires that you
express the full string, it tends to necessitate a considerable amount more complexity
and performance than search does.
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Techniques for Text Analysis
In this section, I will discuss numerical techniques applying the tools and approaches
discussed earlier in this chapter. The following techniques are a grab back of mecha‐
nisms for processing data, and are often used in combination with each other.

N-Gram Analysis
An n-gram is a sequence of n or more tokens. For example, when parsing characters
in a text string, an n-gram will be n or more individual characters in sequence, such
as turning “waffles” into the trigrams “waf ”, “aff ”, “ffl”, “fle”, and “les”. The same prin‐
ciple can be used for words in a sentence (“I have”, “have pwnd”, “pwnd your”, “your
system”) or any other token.

The key feature of n-gram decomposition is the use of this sliding window. n-gram
decompositions produce a lot of strings from a single source, and the process of ana‐
lyzing the n-grams is computationally expensive. However, n-gram analysis is, in my
experience, a very good “I don’t know what’s in this data yet” technique when you’re
looking at previously unknown piles of text. With many of the following distance
techniques, you may use them interchangeably with the original strings or with n-
grams.

Jaccard Distance
Of the three comparison metrics I will discuss in this section, the Jaccard distance is
the cheapest to implement, but also the least powerful. Given two strings, A and B,
the Jaccard distance is calculated as the ratio of the intersection of A and B over the
union of A and B. Jaccard distance is trivial to calculate using Python’s set operators,
as shown here:

def jaccard(a,b):
    """
    Given two strings a and b, calculate the Jaccard distance
    between them as characters
    """
    set_a = set(a)
    set_b = set(b)
    return float(len((set_a.intersection(set_b))))/float(len(set_a.union(set_b)))

Jaccard distance is quick to implement, and it’s easy to implement a very fast version
of the set when you know all the potential tokens. It’s also normalized: a value of 0
indicates no characters in common, and 1 indicates that all characters are in com‐
mon. That said, it’s not a very powerful distance metric—it doesn’t account for dupli‐
cated characters, string ordering, or the presence of substrings, so the strings “foo”
and “ofoffffoooo” are considered as identical as “foo” and “foo”.
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Hamming Distance
The Hamming distance between two strings of identical length is the total number of
individual characters within those strings that differ. This is shown in Python in the
following example:

def hamming(a,b):
    """
    Given two strings of identical length, calculate the Hamming
    distance between them.
    """
    if len(a) == len(b):
 return sum(map(lambda x:1 if x[0] == x[1] else 0, zip(a,b)))
    else:
 raise Exception, "Strings of different length"

Hamming distance is a powerful similarity metric. It’s fast to calculate, but it’s also
restricted by string size, and the lack of normalization means that the values are a lit‐
tle vague. In addition, when you calculate a Hamming distance, you have to be very
clear about what your definition of a different token is. For example, if you decide to
use individual bits as a distance metric, you will find that UTF-16 encodings and
UTF-8 encodings of the same strings will have different values due to the encoding
overheads!

Levenshtein Distance
The Levenshtein distance between two strings is described as the minimum number
of single character operations (insertions, deletions, or character substitutions)
required to change one string to another string. For example, the strings “hax0r” and
“hacker” have a Levenshtein distance of 3 (add a c before the x, change x to k, change
0 to e).

Levenshtein distance is one of those classic “let’s learn dynamic programming” exam‐
ples, and is a bit more complex than I want to dive into in this chapter. The leven
shtein function in text_examples.py provides an example of how to implement this
distance metric.

Levenshtein distance is sensitive to substrings and placement in ways that Hamming
distance isn’t. For example, the strings “hacks” and “shack” have a Hamming distance
of 5 but a Levenshtein distance of 2 (add an s at the beginning, drop an s from the
end). However, it’s a considerably more computationally expensive algorithm to
implement than Hamming distance, and you may end up paying a performance cost
for identifying phenomena that are discernible using a cheaper algorithm.
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An Example of Distance Metrics in Action: Fat-Fingering
A common deceptive technique involves exploiting fat-fingering in order to produce
domains that look like well-used, legitimate domains: for example, substituting steam
community with sleamcommunity or steamcornmunity. We should expect that differ‐
ent organizations will choose significantly different domain names, so if we see an
excessively similar domain, we could expect it to be a result of intentional engineer‐
ing.

To test this hypothesis, I sampled 30 domains I picked randomly from my web surf‐
ing. This isn’t necessarily representative, but it’s sufficient for initial exploration. I cal‐
culated the mutual Levenshtein, Hamming, and Jaccard distances for all 30 samples,
plotting the distributions on the histograms in Figure 12-2.

Figure 12-2. Comparative distance metrics for sample domain data

Figure 12-2 shows the Levenshtein distance, reversed Jaccard metric (i.e., 1 indicates
no similarity, 0 indicates identical strings), and Hamming distance. As you can see,
the figures are right-biased; if the strings aren’t identical, then there are usually several
characters’ distance between them. By comparison, a single-character substitution
such as we’d expect from fat-fingering will result in a distance below the observed
thresholds.
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Entropy and Compressibility
The entropy (properly, Shannon entropy) of a signal is the probability that a particu‐
lar character will appear in a sample of that signal. This is mathematically formulated
as:

That is, the sum over all the observed symbols of their probabilities by their informa‐
tion content (the log of their entropy).

The entropy as formulated here describes the number of bits required to describe all
of the characters observed in a string. So, the entropy of the string “abcd” would be 2
(there are four unique symbols), and the entropy of the string “abcedfgh” would be 3
(8 unique symbols). Signals that are high-entropy are noisy—they look like the data is
randomly generated, as the probability of seeing any particular token is largely even.
Low-entropy signals are biased toward repeated patterns; as a rule of thumb, low-
entropy data is structured, has repeated symbols, and is compressible.

Natural language is low-entropy, and most logfiles are low-entropy; compressed data
is high-entropy (compression is about finding entropy and exploiting it), and encryp‐
ted data is high-entropy (because the goal is to look like noise). Figure 12-3 shows
this phenomenon in more depth; this figure shows the results, respectively, of com‐
pressing and encrypting data (in this case, 10,000-character samples of the complete
works of Shakespeare). As the example illustrates, the entropy of natural-language
text hovers at around 5 bits/character, while that of compressed and encrypted data is
approximately 8 bits/character.
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Figure 12-3. A comparison of entropy for different systems

Selectively sampling and approximating entropy is a good quick-and-dirty technique
to check for compression or encryption on a dataset.

Homoglyphs
In http_example.txt, there’s a line that reads:

10.193.9.88 - - [19/Sep/2016:19:36:11 -0400] "POST
/wp-loаder.php HTTP/1.1" 404 380 "-" "Mozilla/5.0
(Windows NT 6.0; rv:16.0) Gecko/20130722 Firefox/16.0"

Let’s look for it:

$ cat http_example.txt | grep loader
$ cat http_example.txt | grep 10.193.9.88
10.193.9.88 - - [19/Sep/2016:19:36:11 -0400] "POST
/wp-loаder.php HTTP/1.1" 404 380 "-" "Mozilla/5.0
(Windows NT 6.0; rv:16.0) Gecko/20130722 Firefox/16.0"

What sorcery is this? The a in the logfile is actually the Unicode character 0x430, or
the Cyrillic lowercase a. Thus, the first request returns no results. This is an example
of a homoglyph—two code points with identical-appearing glyphs. Homoglyph
attacks rely on this similarity; to the human eye the characters look identical, but they
are encoded differently and an analyst grepping for the former will not find the latter.
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Homoglyphs are a particular problem when dealing with the DNS. Internationalized
domain names (IDNs) include mechanisms to ease the process of creating multi-
code-page domain names, resulting in demonstrated attacks. Unfortunately, there’s
no fast and easy way to determine whether something is a homoglyph—they are liter‐
ally fooling sight. Generally, the best rule of thumb is to try to work within a specific
code page (such as in the US, catching anything with a character code above 127).
Alternatively, there are tables of known homoglyphs (see the next section for more
information) that can provide you with lists of characters to watch out for.

Further Reading
1. C. Weir, “Using Probabilistic Techniques to Aid in Password Cracking Attacks,”

PhD Dissertation, Dept. of Computer Science, Florida State University, Tallahas‐
see, FL, 2010.

2. A. Das et al., “The Tangled Web of Password Reuse,” Proceedings of the 2014 Net‐
work and Distributed Security (NDSS) Symposium, San Diego, CA, 2014.

3. W. Alcorn, C. Frichot, and M. Orru, The Browser Hacker’s Handbook (Indianapo‐
lis, IN: John Wiley & Sons, 2014).

4. http://www.homoglyphs.net.
5. The Homoglyph Attack Generator.
6. D. Sarkar, Text Analytics with Python (Berkeley, CA: Apress, 2016).
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CHAPTER 13

On Fumbling

Up to this point, we have discussed a number of techniques for collecting and analyz‐
ing data. We must now marry this with attacker behavior.

Recall from Chapter 3 the distinction between anomaly and signature detection. A
focus of this book is on identifying viable mechanisms for detecting and dealing with
anomalies, and to find these mechanisms, we must identify general attacker behav‐
iors. Fumbling, which is the topic of this chapter, is the first of several such behaviors.

Fumbling refers to the process of systematically failing to connect to a target using a
reference. That reference might be an IP address, a URL, or an email address. What
makes fumbling suspicious is that a legitimate user should be given the references he
needs. When you start at a new company, they tell you the name of the email server;
you don’t have to guess it.

Attackers don’t have access to that information. They must guess, steal, or scout that
data from the system, and they will make mistakes. Often, those mistakes are huge
and systematic. Identifying these mistakes and differentiating them from innocent
errors is a valuable first step for analysis.

In this chapter, we will look at models of normal user behavior that are violated by
attackers. This chapter integrates a variety of results from previous chapters, includ‐
ing material on email, network traffic, and social network analysis.

Fumbling: Misconfiguration, Automation, and Scanning
We’ll use the term fumble to refer generically to any failed attempt by a host to access
a resource. A fumble in TCP means that a host wasn’t able to reach a particular host
address/port combination, whereas a fumble in HTTP refers to the inability to access
a URL. Individual fumbles are expected and are not automatically suspicious. What’s
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more of a concern is a tendency toward repeated fumbling. Fumbling as an aggregate
behavior can happen for several reasons: an error in lookup or configuration, auto‐
mated software, and scanning.

Lookup Failures
Fumbles usually happen because the destination doesn’t exist in the first place. This
can be a transient phenomenon due to misaddressing or movement, or it can be due
to someone addressing a resource that never existed.

Keep in mind that people rarely enter addresses by hand. Most users will never
directly enter an IP address, instead relying on DNS to moderate their communica‐
tions. Similarly, apart from a TLD, users rarely enter URLs by hand, instead copying
or clicking them from other applications. When someone does enter a faulty address
or URL, it usually means that something further up the chain of lookup protocols
that got him there failed.

When a target moves, misaddressing is a common phenomenon. In the case of a mis‐
address, the target does exist, but the source is misinformed about the address. For
example, an attacker may enter the wrong name or IP address, or use an earlier IP
address after a host moves.

Every site has unused IP addresses and port numbers. For instance, a /24 (class C)
address space allows 254 addresses (2 more are reserved for special purposes), but the
network usually uses only a fraction of them. An unused address or port number is
called dark space. Legitimate users rarely try to access dark space, but attackers almost
always do. However, knocking on the door of an unused IP address or port is not
dangerous in itself, and is so common that tracking it isn’t worthwhile.

Misaddressing is often a common mode failure, meaning that it will not be limited to
one or two users, but to a large community. The classic example of a misaddress is
somebody sending a message to a mailing list and mistyping a URL. When this hap‐
pens, you don’t see one or two errors, and you don’t see individual errors. You see the
exact same meaningless string occurring over and over again, coming from dozens if
not hundreds of sites. If you see a large number of fumbles coming from different
sites, all identical and all indicating a misspelling, then it’s a good sign that the error
has a common cause such as a misconfigured DNS server, a faulty redirect on the web
server, or an email with the wrong URL.

Automation
People are impatient. Very often, when they can’t actually reach a site, they may retry
once, but then they’ll go off and find something better to do with their time. Con‐
versely, automated systems retry connections as a reliability measure, and will often
return after a relatively short interval to see if the target is up and running.
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1 See E. Alata et al., “Lessons Learned from the Deployment of a High-Interaction Honeypot,” Proceedings of the
Sixth European Dependable Computing Conference, Coimbra, Portugal, 2006.

On a network traffic feed, this means that a protocol that is human-driven (SSH,
HTTP, Telnet) is likely to have a lower failure rate per connection than protocols that
are largely automated (SMTP, peer-to-peer communications).

Scanning
Scanning is the most common form of attack traffic observed on the network. If you
own a nontrivial chunk of IP space (say, a /24 or more), you will literally be scanned
thousands of times a day.

Scanning is one of the great sources for bogus security figures. If you classify a scan as
an attack, then you can claim to be dealing with thousands of attacks per day. Attacks
you’re going to do precisely nothing about, but still thousands. Scanning is easy, fun,
and stupid amusement for script kiddies.

Imagine that your network is a two-dimensional grid, where the x-axis shows your IP
addresses and the y-axis shows the ports. The grid will then have 65,536 by k cells,
where k is the total number of IP addresses. Now, every time a scanner hits a target
(an IP/port combination), mark a cell. If you’re interested in all the capabilities of a
single host, you may open up a connection to every port it has, resulting in a single
vertical line on the grid: a vertical scan. The complement to a vertical scan is a hori‐
zontal scan, where the attacker communicates with every host on the network, but
only on a specific port.

As a rule of thumb, defenders scan vertically and attackers horizontally. The differ‐
ence is primarily opportunistic—attackers scan a network horizontally because they
are uninterested in the targets outside of the vulnerabilities they can exploit. An
attacker who is interested in a specific target may well scan it vertically. Defenders
scan vertically because they can’t predict what an attacker will hit.

If an attacker knows something about the structure of a network ahead of time, she
may use a hit list, a list of IP addresses that she knows or suspects may be vulnerable.
An example of a common hit-list attack is where the attacker begins by using a blind
scan of a network to identify SSH hosts and then, sometime later, uses that list to
begin password attacks.1

Identifying Fumbling
There are two stages to identifying the process of fumbling. The first is determining
what, in a protocol, means that a user failed to correctly access a resource. In other
words, what does a failed access “look” like?
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The second stage is determining whether the failure is consistent or transient, global
or local. Fumbling false positives can include misconfigurations, transient changes to
the network (such as a DNS record updating), and user mistakes. Fumbling identifi‐
cation requires differentiating a pattern of intent from random phenomena.

There are a number of different techniques for identifying fumbling. These include:

• Communication with dark addresses. If a host is trying to contact dark (nonexis‐
tent but routable) addresses, it’s a good indication that the host doesn’t know
your network configuration.

• Address spread. Most hosts communicate with a small and disparate set of
addresses internally. If you see hosts that are talking to a disproportionately large
set of targets over a short time, that’s a warning sign.

• Failed sessions. With TCP, you can examine flag combinations to see if the flow
looks like a real session. If you have a payload, you can look to see if an actual
service ran during the session. If a host doesn’t engage in anything but the most
cursory interaction, that’s a good sign that it’s fumbling through targets on the
network.

• Spikes in ICMP alerts. If a host is contacting dark ports or hosts, odds are that
you’ll see a jump in ICMP traffic to the outside world providing error messages.

• Service-specific spikes. Depending on the service you’re looking at, it may have
“not found” messages—DNS NXDOMAIN messages, SMTP bounces, etc. A
jump in these with a single source is a warning sign.

Example Data for This Chapter
This chapter will rely on the datasets fumbling_flow.rwf and http_session.txt, available
in this book’s GitHub repository.

fumbling_flow.rwf is a raw file containing synthetic SSH data for a 10.128.5.0/24 net‐
work within an internal 10.0.0.0/8 network. The network contains one SSH server
(10.128.5.24) and a small number of legitimate clients. All other hosts within the net‐
work are scanners using different approaches and operating systems.

http_session.txt is a collection of HTTP log data from a personal web server with
some other attacks injected into it. This file will appear in multiple chapters. For the
purposes of this chapter, the relevant parts are the failed attempts to touch various
PHP and other services on the host.
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IP Fumbling: Dark Addresses and Spread
Let us begin by considering fumbling at the IP level, without access to any other
information provided by protocols such as TCP or services such as HTTP. At this
level, there are two techniques for identifying fumbling: communication with dark
addresses, and communication with excessive addresses (spread).

A dark address is any IP address within a network that does not currently host an
asset. As discussed earlier, any nontrivial network will likely have dark addresses, and
legitimate users have no reason to contact them. At the IP level, the best way to deter‐
mine if communications were to a dark address is to maintain a network map; see
Chapter 19 for an in-depth discussion on processes for doing so.

That said, a network map is not relying on actual network information—it’s relying
on a model of the network that was constructed some time before the event. At the
most extreme end, a map of a DHCP network has a limited viable lifetime, but even a
statically addressed network will see new services and hosts arrive on a regular basis.
When using a network map, make sure to regularly test its integrity using one of the
other techniques listed in this section.

Once you’ve constructed a map, it’s a matter of combining the map with incoming
traffic data to determine whether or not a host is communicating with a dark address.
Example 13-1 shows this process using SiLK and the example datafile. In this exam‐
ple, we construct an IP set from the list of dark addresses, then use it to partition out
legitimate users from hosts.

Example 13-1. Dark space and spread construction using SiLK

$ cat hosts.txt
10.128.5.8
$ rwsetbuild hosts.txt > light.set
$ cat > network.txt
10.128.5.0/24
$ rwsetbuild network.txt | rwsettool --difference - light.set > dark.set
$ rwsetcat --count-ip network.set light.set dark.set
network.set:256
light.set:1
dark.set:255
$ rwfilter --dipset=dark.set --pass=stdout fumbling_example.rwf | rwuniq --field=sip
--packets --dip-distinct | head -3
                                    sIP|        Packets|dIP-Distin|
                              10.3.64.3|            277|       254|
                             10.45.9.23|            284|       254|

I use the term spread to refer to the number of distinct addresses a host communi‐
cates with. As a rule of thumb, individual users talk with a relatively limited number
of addresses within a particular network. Figure 13-1 shows this behavior in action.

Identifying Fumbling | 257



In this figure, there are seven dark and one lit addresses—the legitimate user only
talks to the one lit address, while the scanners contact all eight addresses within the
network. The end result is that the number of distinct IP addresses a legitimate host
talks to hangs at around one address (plus or minus some error), while the scanners
talk to a much higher ratio.

Figure 13-1. Communications with dark addresses and spread

In SiLK, you can calculate spread using rwuniq --dip-distinct, as shown in
Example 13-1. Spread is easily estimated via histograms. The example shown in
Figure 13-2 is a bit exaggerated for a legitimate network, but only in the sense that the
number of scanners is too small—on large internet-facing networks, I expect SSH
scanning to dwarf legitimate SSH traffic.

Figure 13-2. A histogram showing spread in action
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TCP Fumbling: Failed Sessions
Identifying failed TCP connections requires some understanding of the TCP state
machine and how it works. As we’ve discussed before, TCP imposes the illusion of a
stream-based protocol on top of the packet-based IP. This simulation of a stream is
produced using the TCP state machine, shown in Figure 13-3.

Figure 13-3. The TCP state machine, from texample.net

Under normal circumstances, a TCP session consists of a sequence of handshake
packets that set up initial state:
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• On the client side, the transition is from SYN_SENT (client sends an initial SYN
packet) to ESTABLISHED (client receives a SYN|ACK packet from server, sends
an ACK in response), and then to normal session operations.

• On the server side, the transition is from LISTEN to SYN_RCVD (receives a
SYN, sends a SYN|ACK), and then to ESTABLISHED (receives an ACK).

• For either side, closure consists of at least two packets (CLOSE_WAIT to
LAST_ACK or FIN_WAIT_1 to CLOSING/FIN_WAIT_2 to TIME_WAIT).

The net result of these transitions is that a well-behaved TCP/IP session requires at
least three packets simply to set up the connection. This is overhead required by TCP,
and does not include any communications done by the protocol itself. Throw in a
standard MTU of 1,500 bytes, and most legitimate sessions are going to consist of at
least several dozen packets.

Automated retry attempts add another layer of complexity to the problem. RFC 1122
establishes basic guidelines for TCP retransmission attempts and recommends a min‐
imum of three retransmissions before giving up on a connection. The actual retry
value is usually softcoded and stack-dependent; for example, in Linux systems, the
number of retries generally defaults to three and is controlled by the tcp_retries1
TCP variable. In Windows systems, the TcpMaxConnectRetransmissions registry
value in HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters governs this
behavior.

An analyst can identify fumbling by looking at a variety of indicators, depending on
the type of data the operator has available and the degree of accuracy necessary. I will
discuss several here, such as unidirectional flow filtering, looking for dark ports, and
seeing spikes in alert messages.

You Were Scanned, Here’s Your Medal
At this point, scanning is so omnipresent, unstoppable, and obnoxious that it has
ceased to be an attack and instead has become a form of internet weather. I can place
a reasonable bet that you’re mostly being scanned on TCP ports 80, 443, 22, 25, and
139 without looking at your network.

So, scanning in and of itself is uninteresting, but there is still value in scan detection.
Primarily, this is an optimization issue. As discussed in Chapter 7, scanning data can
be shunted off during postprocessing in order to reduce the number of records that
an analyst encounters in the main data flow. As you monitor larger networks, the
problem of scan data becomes increasingly important—a dumb scanner on a /16 will
generate 65,535 flows for every port it hits. You may see eight flows for a long-lived
SSH session, if you see them among all the scanning noise.
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Scan removal is best done on an IP-by-IP basis, because if a host is scanning the net‐
work, it’s likely not doing anything legitimate. Identify each scanning address and
remove all traffic originating from that address. This traffic set can then be examined
for trends by identifying the destination ports of the scans, determining the exploits
used (if identified by your IDS), and comparing the types of scans conducted over
time. Top-n lists are generally not particularly useful for scan trending because the
top five positions have been fairly static for the past five years.

In operational environments, I generally haven’t been too fussy about exactly identify‐
ing flow traffic, instead opting to use the high-pass filter approach to split TCP traffic
into short and long files, and then using the long files as the default dataset for queries.
On occasions when I really need to access the short files, the data is there, and the
probability of a short communication actually being meaningful and all traffic from
that host being in the short file is pretty much nonexistent.

Analytically, scan data is often more useful for identifying who responded to a scan
than who sent it. Attackers are likely to scan your network far more actively and far
more often than your own network management staff, meaning that by keeping track
of the hosts that responded to scans, you will likely discover new systems and services
long before your next audit.

Speculatively, there may be some value in scan trending. SANS, among other organi‐
zations, does keep track of current scanning statistics on the Internet Storm Center.
However, if there is value in trending, it has to get past the overwhelming dominance
of the top five ports: ports 22, 25, 80, 443, and 139.

Unidirectional flow filtering
If you have access to both sides of a session (i.e., client to server, server to client),
identifying complete sessions is simply a matter of joining the two sides together. In
the absence of that information, it’s still possible to guess whether packets are part of
a whole session.

In my personal experience, I find flows to be more effective than individual packets
for detecting fumbling. A fumbling attacker doesn’t interact with a service proper
because there is no payload to examine. At the same time, identifying fumbling
involves looking for multiple identically addressed packets that occur around the
same time, which is the textbook definition of a flow.

Depending on the amount of information needed and the precision required, a num‐
ber of different heuristics can identify fumbles in TCP flows. The basic techniques
involve looking at flags, packet counts, or payload size and packet count.

Flags are a good indicator of fumbling, but using them is complicated by a messy col‐
lection of corner cases happily exploited by scanners to differentiate different IP stack
implementations. Recall from Figure 13-3 that a client sends an ACK flag only after
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receiving an initial SYN + ACK from the server. In the absence of a response, the cli‐
ent should not send an ACK flag; consequently, flows with a SYN and no ACK flag
are a good indicator of a fumble. There exists the potential that a response came out‐
side of the timeout of the flow collector, but that’s rare in applied cases.

Attackers craft packets with odd flag combinations in order to determine stack and
firewall configurations. The best known of these combinations is the “Christmas tree”
packet (so called because all flags are lit up like a Christmas tree), setting SYN ACK
FIN PUSH URG RST. Combinations of flags with both SYN and FIN high are com‐
mon as well. When dealing with long-lived protocols (such as SSH), it’s not uncom‐
mon to encounter a packet consisting solely of an ACK. These packets are TCP keep-
alive packets and are not fumbling.

Another odd nonfumbling behavior is backscatter. Backscatter occurs when a host
opens a connection to an existing server using a spoofed address, and the server
sends the corresponding response to the original spoofed address. Figure 13-4 shows
this in more detail, but here’s a brief walkthrough of the process:

1. The host at 100.2.3.99 targets 11.65.80.99 and sends a spoofed packet claiming to
be from 39.8.44.3.

2. 11.65.80.99 receives the spoofed packet and responds as normal to the IP address
it sees the message originating from: 39.8.44.3.

3. 39.8.44.3 receives a packet acknowledging an open session from 11.65.80.99 and
is now confused.

Figure 13-4. Backscatter in action
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2 They’d better show up if you’re doing scan detection!

The larger a network is, the more backscatter it will receive—so much so that there
are several organizations running internet telescopes around large dark spaces in order
to estimate and characterize this network background radiation. On a large enough
network, you will see enough backscatter that, at first glance, it will be confused with
fumbling.

An easy, if rough, indicator of whether a flow shows a complete session is to simply
look at the number of packets. A legitimate TCP session requires at least three pack‐
ets of overhead before it considers transmitting service data. Furthermore, most
stacks set their retry value to between three and five packets. These rules provide a
simple filter: TCP flows that have five packets or less are likely to be fumbles.

Flow size can be complemented by looking at the ratio of packet size to number of
packets. TCP SYN packets contain a number of TCP options of variable length. Dur‐
ing a failed connection, the host will send the same SYN packet options repeatedly.
Consequently, if a flow is an n-packet SYN fumble, we can expect that the total num‐
ber of bytes sent is n×(40 + k), where k is the total size of the options.

Dark ports and UDP fumbling
When working with TCP and UDP, you can expand the concept of dark space to
include not only addresses, but ports. Scanners usually scan across a limited set of
services—SSH, SMTP, anything that has a vulnerability to exploit. The number of
hosts running these services is generally vanishingly small relative to the total num‐
ber of addresses on the network. Using a network map, you can identify scanners
using the same dark address techniques discussed for IP in general, just adding in
port numbers.

Dark ports are more critical for UDP than TCP—the rubrics discussed earlier for
identifying failed sessions make it possible to identify a failed TCP connection
straight from the flow. It’s rarely possible to identify a failed UDP connection from
the UDP traffic itself. TCP has symmetry baked into the protocol, whereas UDP
doesn’t provide any guarantees of delivery. If a UDP service provides some form of
symmetry or other reciprocity, that’s a service-specific attribute. In order of prefer‐
ence, dark ports and ICMP traffic are the best ways to identify UDP fumbling.

Research Scanners
Not every small collection of packets is a scan, and not every scan is a threat. A small
number of organizations regularly scan the entire internet for vulnerabilities, and
they are going to show up whenever you run scan detection.2
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The following is a relatively current list of such organizations. Some of these groups
publish a list of their scanning addresses, and for the others those addresses will be
discernible via reverse DNS lookup:

Censys
Censys is a huge repository of scan data created and aggregated by the University
of Michigan’s Censys Group. In addition to conducting their own scans (and
developing the primary internet-wide scanning tool, ZMap), the Censys site
serves as a frontend for a number of other scanning repositories.

Shodan
Shodan is the oldest search engine on this list, having been in operation since
2009. It runs a scanning service that grabs host banners to determine what serv‐
ices are running on a host.

Project Sonar
Run by Rapid7, Project Sonar is a bulk scanning effort that checks DNS records,
SSL certificates, and a number of UDP vulnerabilities. Rapid7 contributes its
results to Censys and maintains a wiki with its scanning addresses.

Shadowserver
Shadowserver is a network of volunteer computer security professionals who
track botnets and other hostile internet-wide activity. They maintain a constantly
updated list of what they are scanning for on their blog.

ICMP Messages and Fumbling
ICMP is actually designed to inform a user that she has failed to make a connection.
ICMP type 3 messages (destination unreachable) are supposed to be sent to a host to
indicate that the target network (code 0), host (code 1), or port (code 3) cannot be
reached by the client packet. ICMP also provides messages indicating that a route is
unknown (code 7) or administratively prohibited (code 13).

With the exception of pings, ICMP messages appear in response to failures in other
protocols. Several messages, such as host or net unreachable, originate from some
point other than the destination address—generally the nearest router. ICMP mes‐
sages may also be filtered, depending on the policies of the network in question, and
consequently not received by your sensors.

This asymmetry means that when tracking fumbling from ICMP traffic, it is more
productive to look for the responses. If you see a sudden spike in messages originat‐
ing from a router, it’s a good bet that the target it’s sending the messages to has been
probing that router’s network. You can then look at the host’s traffic to identify what it
communicated with that might be suspicious.

264 | Chapter 13: On Fumbling

http://scans.io
http://shodan.io
http://www.rapid7.com
https://github.com/rapid7/sonar/wiki
http://www.shadowserver.org
http://bit.ly/shadowserver-blog


Fumbling at the Service Level
Service-level fumbling commonly results from scanning, automated exploits, and a
number of scouting tools. Unlike network-level fumbling, service-level fumbling is
usually clearly identifiable as such because there are error codes in most major serv‐
ices that are logged and can be used to differentiate illegitimate connections from
legitimate requests.

HTTP Fumbling
Recall that each HTTP transaction returns a three-digit status code, with the 4xx fam‐
ily of status codes reserved for client errors. In the 4xx family, the two most important
and common access errors are 404 (not found) and 401 (unauthorized).

404 indicates that a resource was not available at the URL specified by the requestor,
and is the most common HTTP error in existence. Users will often trigger 404 errors
by hand, such as when they mistype a complex URL. Misconfiguration will often
cause problems as well, such as when someone publicizes a URL that doesn’t exist.

These types of errors, from a misconfigured URL announcement or fat-fingering, are
relatively easy to identify. Fat-fingering should be relatively rare. Fat-fingered URLs
will rarely repeat—if one user is mistyping, he’ll mistype slightly differently each time.
At the same time, since fat-fingering is an individual mistake, the same fat-fingering
will not appear from multiple locations. If you see the same mistake coming from
multiple discrete locations, that is more likely to be a result of a misconfigured URL
announcement. Such an announcement may be identifiable by examining the HTTP
Referer header. If the Referer points to a site you have control over, then you can
identify and fix the error on that site.

The third common source for 404 errors is bots scanning HTTP sites for well-known
vulnerabilities. Because most modern HTTP sites are built on top of a collection of
other applications, they often carry vulnerabilities from one or more of their compo‐
nent applications. These vulnerabilities are well known, placed in common locations,
and consequently hunted for by bots everywhere. The URLs referenced in
Example 13-2 are all associated with phpMyAdmin, a common MySQL database
management tool.

Example 13-2. Botnets attempting to fetch common URLs

223.85.245.54 - - [16/Feb/2013:20:10:12 -0500]
        "GET /pma/scripts/setup.php HTTP/1.1" 404 390 "-" "ZmEu"
223.85.245.54 - - [16/Feb/2013:20:10:15 -0500]
        "GET /MyAdmin/scripts/setup.php HTTP/1.1" 404 394 "-" "ZmEu"
188.230.44.113 - - [17/Feb/2013:16:54:05 -0500]
         "GET http://www.scanproxy.net:80/p-80.html HTTP/1.0" 404 378 "-"
194.44.28.21 - - [18/Feb/2013:06:20:07 -0500]
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3 See RFC 1945 and RFC 2617.
4 Googlebot is a notable exception to this, and Google provides instructions on how to verify it.

       "GET /w00tw00t.at.blackhats.romanian.anti-sec:) HTTP/1.1" 404 410
     "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:07 -0500]
       "GET /phpMyAdmin/scripts/setup.php HTTP/1.1" 404 397 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:08 -0500]
       "GET /phpmyadmin/scripts/setup.php HTTP/1.1" 404 397 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:08 -0500]
       "GET /pma/scripts/setup.php HTTP/1.1" 404 390 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:09 -0500]
       "GET /myadmin/scripts/setup.php HTTP/1.1" 404 394 "-"

Unlike the 404 errors discussed earlier, 404 scanning is generally identifiable by being
completely unrelated to the actual structure of a site. Attackers are guessing that some‐
thing is there and are going by the documentation and common practice to try to
reach a vulnerable target.

401 errors are authentication errors, and come from HTTP’s basic access authentica‐
tion mechanism—which you should never use. 401 authentication was baked into the
HTTP standard early on,3 and uses unencrypted base64-encoded passwords to
authenticate a user’s access to protected directories.

Basic access authentication is a disaster and should not be used by any modern web
server. If you do see 401 errors in your system logs, you should identify and eliminate
the source of them on your server. Unfortunately, basic authentication still occasion‐
ally pops up in embedded systems as the only form of authentication available.

Web Crawlers and Robots.txt
Search engines employ automated processes called, variously, crawlers, spiders, or
robots to scout out websites and identify searchable content. These crawlers can be
phenomenally aggressive in copying site contents. Website owners can define what
the crawlers access using the robot exclusion standard, or robots.txt. The standard
defines a common file (the aforementioned robots.txt), which is accessed by the
crawler and provides instructions about which files it can and can’t access.

A host that doesn’t access robots.txt and immediately begins poking around the site is
suspicious. However, robots.txt is a voluntary standard; there’s nothing preventing a
crawler from ignoring it, and it’s not uncommon for unethical or new crawlers to
ignore the instructions.

It’s also not uncommon for scanners who want to probe a site to pretend to be a
crawler. Crawlers are usually identifiable by two behaviors: they use a User-Agent
string unique to the crawler, and they come from a fixed range of IP addresses.4 Most
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5 I once logged on to an account I had never used and was greeted by 3,000 spam messages.

search engines publish their address ranges to help stop masquerading; these address
ranges can change, so regularly checking a site such as the Robots Database or List of
User-Agents is a good idea.

SMTP Fumbling
For our purposes, SMTP fumbling occurs when a host sends mail to a nonexistent
address. Depending on SMTP server configurations, this will result in one of three
actions: a rejection, a bounce, or (in the case of a catch-all configuration) redirection
to a catch-all account. All of these events should be logged by the SMTP server that
makes the final routing decision.

Analyzing SMTP fumbles runs into the same problem that analyzing all SMTP traffic
does: spam. There are a lot of failed addresses sent in SMTP messages because spam‐
mers will send mail to every conceivable address.5 Fumbling (misaddressing) may
exist, but these efforts are relatively innocuous and likely to be drowned in spam. At
the same time, the reasons for attackers to fumble (reconnaissance) are effectively
pointless because spammers don’t probe to see whether an address exists; they spam
it.

There may be one good reason to analyze failed SMTP addresses: uncovering decep‐
tion. In several APT-type spear-phishing emails, I’ve seen the attackers seed the To:
line with realistic-looking but fake addresses. I assume that the addresses are either
out of date due to enterprise turnover or intentionally added to provide the mail with
a veneer of legitimacy.

DNS Fumbling
Generally, failed DNS lookups result in an NXDOMAIN message, so if someone is
fumbling with DNS (e.g., probing a domain for common names such as mail.domain,
smtp.domain, www.domain, etc.) you can expect to see a spike in NXDOMAIN mes‐
sages.

One potential false positive here is ISP-based DNS hijacking. When an ISP engages in
DNS hijacking, it will not send an NXDOMAIN response, instead sending an IP
address pointing to some internal service it controls. Check your upstream DNS serv‐
ices by sending bogus domains and verify that you actually get NXDOMAIN mes‐
sages back.

Fumbling at the Service Level | 267

http://bit.ly/web-robots
http://www.user-agents.org
http://www.user-agents.org


Detecting and Analyzing Fumbling
Until some brilliant researcher comes up with a better technique, scan detection will
boil down to testing for X events of interest across a Y-sized time window.

—Stephen Northcutt

Fumbling alarms can be used to detect scans, spam, and other phenomena where the
attacker has next to no knowledge about the target network. In this section, we will
discuss the creation of fumbling alerts, forensic analysis of fumbling, and re-
engineering the network to more easily identify fumbling.

Building Fumbling Alarms
When tracking fumbles, the goal is to raise an alarm when there’s suspicion that fum‐
bling is not simply accidental. To do so, the alarm must first collect fumbling events
using the rules discussed previously in this chapter. Mechanisms include:

1. Creating or consulting a map of targets to determine whether the attacker is
reaching a real target.

2. Examining traffic for evidence of a failure to connect. Examples of failures to
connect include:
a. Asymmetric TCP sessions, or TCP sessions without ACK flags
b. HTTP 404 records
c. Email bounce logs

Innocuous fumbling (a false positive) is generally the result of some form of miscon‐
figuration or miscommunication to the target. For example, if the DNS name for des‐
tination.com is moved from IP address A to IP address B, until the change thoroughly
propagates through the DNS system, users will accidentally visit address A instead of
B. These types of errors, when they occur, will come from multiple sources and will
be consistent. Supposing that address C on the same network is dark (that is, it has no
domain name), normal users may accidentally visit A for a while, but they will not
visit C. Suspicious fumbling involves users who visit multiple nonexistent destina‐
tions; a user may visit A due to a configuration error, and she might possibly visit C
due to chance, but if she visits A and C, then she’s more likely scouting out a target.

Distinguishing malicious fumbling from innocuous failures is therefore, as Northcutt
says, about deciding on a threshold—the number of events tolerated before you raise
an alert. There are several techniques available for doing so, and simple thresholds on
any of the constructs discussed in this chapter will support this approach; this process
is covered in depth in Chapter 11.
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An alternative approach is sequential hypothesis testing (SHT), a technique devel‐
oped by Abraham Wald during World War II. The SHT approach is not in itself a
statistical test, but a process for determining how many tests to conduct. For scan
detection, the gold standard approach was developed by by Jaeyeon Jung et al. in their
2004 paper “Fast Portscan Detection Using Sequential Hypothesis Testing,” presented
at the IEEE Symposium on Security and Privacy.

Another approach, taken from network traffic development, is a leaky bucket algo‐
rithm. These algorithms imitate the titular “leaky bucket” by maintaining a counter
that, left to its own devices, decrements to zero over time. The bucket is “filled” when
events occur, and drains at a constant rate over time. When the bucket exceeds a pre‐
defined threshold, it raises an alert. Figure 13-5 shows an example of a leaky bucket
in action.

Figure 13-5. A leaky bucket algorithm in action

Both sequential hypothesis testing and leaky buckets facilitate the fast analysis of
scanning phenomena. However, the thing about malicious fumbling is that the
attackers, generally, have no particular reason to be subtle. If someone is scanning a
site, he’s going to hit everything quickly. Statistical methods are primarily useful to
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find the attacker quickly, and consequently have more use in active defense rather
than in alarm generation.

Put another way, the challenge in fumbling detection is not in detecting the phenom‐
ena quickly; it’s figuring out what’s going on outside of the fantastically obvious scans
that can easily consume all of your time and effort. Internet background radiation
comprises an enormous number of transient phenomena, and those are lost in the
noise of obvious attacks.

Forensic Analysis of Fumbling
Scanning qua scanning is basically of no interest. Every idiot on the planet scans the
internet, and a number of them scan it multiple times daily. There is some worm-
based scanning (such as with Code Red and SQL Slammer, if you want to get truly
Jurassic) that has gone on for years without any noticeable effect. Scanning is like
rain: it’s going to happen, and the real problem is identifying the damage that it
causes.

When receiving a scan alarm, there are several basic questions to ask:

1. Who responded to the scanner? As far as I’m concerned, scanners can visit as
much of my dark space as they like. What I’m really concerned about is whether
anyone in my network talked back to the scanner, and what they did afterward.
More specific questions include:
a. Did the scanner have a serious conversation with any host? Attack software

usually rolls scanning and exploit into a two-step process. Consequently, my
first question about any scan is whether it ended before the true exploit.

b. Did any responding host have suspicious conversations afterward? Suspicious
conversations include communications with external hosts (especially if it’s an
internal server), receipt of a file, and communications on odd ports.

2. Did the scanner find out something about my network I didn’t know? Inventories
are always at least slightly out of date, and attacks are taking place all the time.
Given that, it makes sense to take advantage of the scanner’s hard work for our
own benefit. Questions to address this include:
a. Did the scanner identify previously unknown hosts? If something that isn’t

already in your inventory responds to the fumbler, you need to identify,
assess, and harden it.

b. Did the scanner identify previously unknown services?
3. What else did the scanner do? Bots usually do multiple things at one time, and it’s

good to check whether the scanner scanned other ports, engaged in other types
of probes, or tried multiple types of attacks.
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There are several good questions to ask about fumblers in general. For example:

1. What else did the fumbler do? If the same address or source is sending mail to
multiple targets, it’s likely to be a spammer and, much like a scanner, is using a
bot as a utility knife kind of tool.

2. Are there preferred targets? This particularly applies to fumbling with email
addresses, because IP addresses are drawn from a much smaller pool. Are there
common target addresses on your network? If so, they’re good candidates for fur‐
ther instrumentation.

Engineering a Network to Take Advantage of Fumbling
Fumbling often takes advantage of common network configurations and assump‐
tions. Most obviously, attackers scan common ports like 22 because they expect to
encounter services there. You can take advantage of these assumptions to place more
sensitive instrumentation, such as full packet capture, in certain places on the net‐
work.

Because malicious scans exploit the regularity of most target sites, you can make the
lives of attackers a bit harder by configuring your site in a somewhat irregular way:

Rearrange addresses
Most scanning is linear: the attacker will hit address X, then X+1, and so on.
Most administrators and DHCP implementations also assign addresses linearly.
It’s not uncommon to have a /24 or /27 where the upper half is entirely dark.
Rearranging addresses so that they’re scattered evenly across the network, or
leaving large empty gaps elsewhere in the network, is a simple method that cre‐
ates dark space.

Move targets
Port assignments are largely a social convention, and most modern applications
should be able to handle a service located on an unorthodox port. Especially
when dealing with internal services, which shouldn’t be accessed by the outside
world, port reassignment is a cheap mechanism to frustrate more basic scanners.
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CHAPTER 14

On Volume and Time

In this chapter, we look at phenomena that can be identified by comparing traffic vol‐
ume against the passage of time. “Volume” may be a simple count of the number of
bytes or packets, or it may be a construct such as the number of IP addresses transfer‐
ring files. Based on the traffic observed, there are a number of different phenomena
that can be pulled out, such as:

Beaconing
When a host on your network communicates with an unknown host at regular
intervals, it is a possible sign of communications with command and control.

File extraction
Massive downloads are suggestive of someone stealing your internal data.

Denial of service (DoS)
DoS attacks can prevent your servers from providing service.

Traffic volume data is noisy. Most of the observables that you can directly count, such
as the number of bytes over time, vary highly and with no real relationship between
the volume of the event and its significance. In other words, there’s rarely a significant
relationship between the number of bytes and the importance of the events. This
chapter will help you find unusual behaviors through scripts and visualizations, but a
certain amount of human eyeballing and judgment are necessary to determine which
behaviors to consider dangerous.

The Workday and Its Impact on Network Traffic Volume
The bulk of traffic on an enterprise network comes from people who are paid to work
there, so their traffic is going to roughly follow the hours of the business day. Traffic
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will trough during the evening, rise around 0800, peak around 1300, and drop off
around 1800.

To show how dominant the workday is, consider Figure 14-1, a plot showing the pro‐
gression of the Sobig.F email worm across the SWITCH network in 2003. SWITCH is
Switzerland and Lichtenstein’s educational network, and makes up a significant frac‐
tion of the national traffic for Switzerland. The plot shows the total volume of SMTP
traffic over time for a two-week period. Sobig.F propagates at the end of the plot, but
what I want to highlight is the normal activity during the earlier part of the week, on
the left. Note that each weekday is a notched peak, with the notch coming at lunch‐
time. Note also that there is considerably less activity over the weekend.

Figure 14-1. Mail traffic and propagation of a worm across Switzerland’s SWITCH net‐
work (image courtesy of Dr. Arno Wagner)

This is a social phenomenon; knowing roughly where the address you’re monitoring
is (home, work, school) and the local time zone can help predict both events and vol‐
umes. For example, in the evening, streaming video companies account for a more
significant fraction of traffic as people kick back and watch TV.
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There are a number of useful rules of thumb for working with workday schedules to
identify, map, and manage anomalies. These include tracking active and inactive peri‐
ods, tracking the internal schedule of an organization, and keeping track of the time
zone. The techniques covered in this section are a basic, empirical approach to time
series analysis.

When working with site data, I usually find that it’s best to break traffic into “on”
(people are working) and “off ” (people are at home) periods. The histogram in
Figure 14-2 shows how this phenomenon can affect the distribution of traffic volume
—in this case, the two distinct peaks correspond to the on-periods and off-periods.
Modeling the two periods separately will provide a more accurate volume estimate
without pulling out the heavier math used for time series analysis.

Figure 14-2. Distribution of traffic in a sample network, where the peak on the left is
evening traffic, and the peak on the right is workday traffic

When determining on-periods and off-periods, consider the schedule of the organi‐
zation itself. If your company has any special or unusual holidays, such as taking a
founder’s birthday off, keep track of those as potential off-days. Similarly, are there
parts of the organization that are staffed constantly and other parts that are only 9 to
5? If something is constantly staffed, keep track of the shift changes, and you’ll often
see traffic repeat at the start of a shift as everyone logs on, checks email, and then
starts working.
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The Value of Off-Days
Off-time is valuable. If I want to identify dial-homes, file exfiltration, and other suspi‐
cious activity, I like to do so by watching off-hours. There’s less traffic, there are fewer
people, and if someone is ignorant of a company’s internal circadian rhythm, he’ll be a
lot easier to identify during those periods than if he’s hiding in the crowd.

This is the reason I like to keep track of a company’s own special off-times. It’s easy
enough for someone to hide his traffic by keeping all activity in 9–5/M–F, but if the
attacker doesn’t know the company gives St. Swithin’s Day off, then he’s more likely to
stick out.

I’ve seen this particular phenomenon show up when dealing with insiders, particu‐
larly people worried about shoulder surfing or physical surveillance. They’ll move
their activity to evenings and weekends in order to make sure their neighbors don’t
ask what they’re doing, and then show up fairly visibly in the traffic logs.

Business processes are a common source of false positives with volume analysis. For
example, I’ve seen a corporate site where there was a sudden biweekly spike in traffic
to a particular server. The server, which covered company payroll, was checked by
every employee every other Friday and never visited otherwise. Phenomena that
occur weekly, biweekly, or on multiples of 30 days are likely to be associated with the
business’s own processes and should be identified as such for future reference. 

Beaconing
Beaconing is the process of systematically and regularly contacting a host. For
instance, botnets will poll their command servers for new instructions periodically.
This is particularly true of many modern botnets that use HTTP as a moderator. Such
behavior will appear to you as information flows at regular intervals between infected
systems on your site and an unknown address off-site.

However, there are many legitimate behaviors that also generate routine traffic flows.
Examples include:

Keepalives
Long-lived sessions, such as an interactive SSH session, will send empty packets
at regular intervals in order to maintain a connection with the target.

Software updates
Most modern applications include some form of automated update checkup. AV,
in particular, regularly downloads signature updates to keep track of the latest
malware.
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News and weather
Many news, weather, and other interactive sites regularly refresh the page as long
as a client is open to read it.

Beacon detection is a two-stage process. The first stage involves identifying consistent
signals. An example process for doing so is the find_beacons.py script shown in
Example 14-1. find_beacons.py takes a sequence of flow records and dumps them into
equally sized bins. Each input consists of two fields: the IP address where an event
was found and the starting time of the flow, as returned by rwcut. rwsort is used to
order the traffic by source IP and time.

The script then checks the median distance between the bins and scores each IP
address on the fraction of bins that fall within some tolerance of that median. If a
large number of flows are near the median, you have found a regularly recurring
event.

Example 14-1. A simple beacon detector

#!/usr/bin/env python
#
#
# find_beacons.py
#
# input:
#       rwsort --field=1,9 | rwcut --no-title --epoch --field=1,9 | <stdin>
# command line:
# find_beacons.py precision tolerance [epoch]
#
# precision: integer expression for bin size (in seconds)
# tolerance: floating point representation for tolerance expressed as
# fraction from median, e.g. 0.05 means anything within (median -
# 0.5*median, median + 0.5*median) is acceptable
# epoch: starting time for bins; if not specified, set to midnight of the first
# time read.

# This is a very simple beacon detection script which works by breaking a traffic
# feed into [precision] length bins.  The distance between bins is calculated and
# the median value is used as representative of the distance.  If all the distances
# are within tolerance% of the median value, the traffic is treated as a beacon.

import sys

if len(sys.argv) >= 3:
    precision = int(sys.argv[1])
    tolerance = float(sys.argv[2])
else:
    sys.stderr.write("Specify the precision and tolerance\n")

starting_epoch = -1
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if len(sys.argv) >= 4:
    starting_epoch = int(sys.argv[3])

current_ip = ''

def process_epoch_info(bins):
    a = bins.keys()
    a.sort()
    distances = []
    # We create a table of distances between the bins
    for i in range(0, len(a) -1):
        distances.append(a[i + 1] - a[i])

    distances.sort()
    median = distances(len(distances)/2)
    tolerance_range = (median - tolerance * median, median + tolerance *median)
    # Now we check bins
    count = 0
    for i in distances:
        if (i >= tolerance_range[0]) and (i <= tolerance_range[1]):
            count+=1
    return count, len(distances)

bins = {}    # Checklist of bins hit during construction; sorted and
             # compared later. Associative array because it's really
             # a set and I should start using those.
results = {} # Associative array containing the results of the binning
             # analysis, dumped during the final report.

# We start reading in data; for each line I'm building a table of
# beaconing events.  The beaconing events are simply indications that
# traffic 'occurred' at time X.  The size of the traffic, how often it occurred,
# how many flows is irrelevant.  Something happened, or it didn't.
for i in sys.stdin.readlines():
    ip, time = i.split('|')[0:2]
    if ip != current_ip:
        results[ip] = process_epoch_info(bins)
        bins = {}

    if starting_epoch == -1:
        starting_epoch = time - (time % 86400) # Sets it to midnight of that day
    bin = (time - starting_epoch) / precision
    bins[bin] = 1

a = bins.sort()
for i in a:
    print "%15s|%5d|%5d|%8.4f" % (ip, bins[a][0], bins[a][1],
                                  100.0 * (float(bins[a[0]])/float(bins[a[1]])))

The second stage of beacon detection is inventory management. An enormous num‐
ber of legitimate applications, as we saw earlier, transmit data periodically. NTP, rout‐
ing protocols, and AV tools all dial home on a regular basis for information updates.
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SSH also tends to show periodic behavior, because administrators run periodic main‐
tenance tasks via the protocol.

File Transfers/Raiding
Data theft is still the most basic form of attack on a database or website, especially if
the website is internal or an otherwise protected resource. For lack of a better term,
I’ll use raiding to denote copying a website or database in order to later disseminate,
dump, or sell the information. The difference between raiding and legitimate access is
a matter of degree, as the point of any server is to serve data.

Obviously, raiding should result in a change in traffic volume. Raiding is usually con‐
ducted quickly (possibly while someone is packing up her cubicle) and often relies on
automated tools such as wget. It’s possible to subtly raid, but that would require the
attacker to have both the time to slowly extract data and the patience to do so.

Volume is one of the easiest ways to identify a raid. The first step is building up a
model of the normal volume originating from a host over time. The calibrate_raid.py
script in Example 14-2 provides thresholds for volume over time, as well as a table of
results to plot.

Example 14-2. A raid detection script

#!/usr/bin/env python
#
# calibrate_raid.py
#
# input:
#       Nothing
# output:
#       Writes a report containing a time series and volume estimates to stdout
# commandline:
# calibrate_raid.py start_date end_date ip_address server_port period_size
#
# start_date: The date to begin the query on
# end_date: The date to end the query on
# ip_address: The server address to query
# server_port: The port of the server to query
# period_size: The size of the periods to use for modeling the time
#
# Given a particular IP address, this generates a time series (via rwcount)
# and a breakdown on what the expected values at the 90-100% thresholds would
# be.  The count output can then be run through a visualizer in order to
# check for outliers or anomalies.
#
import sys,os,tempfile

start_date = sys.argv[1]
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end_date = sys.argv[2]
ip_address = sys.argv[3]
server_port = int(sys.argv[4])
period_size = int(size.arg[5])

if __name__ == '__main__':
    fh, temp_countfn = tempfile.mkstemp()
    os.close(fh)
    # Note that the filter call uses the IP address as the source, and the
    # server port as the source.  We're pulling out flows that originated
    # FROM the server, which means that they should be the data from the
    # file transfer.  If we used daddress/dport, we'd be logging the
    # (much smaller) requests to the server from the clients.
    #
    os.system(('rwfilter --saddress=%s --sport=%d --start-date=%s ',
               '--end-date=%s --pass=stdout | rwcount --epoch-slots',
           ' --bin-size=%d --no-title > %s') % (
                   ip_address, server_port, start_date, end_date, period_size,
                   temp_countfn))

    # A note on the filtering I'm doing here.  You *could* rwfilter to
    # only include 4-packet or above sessions, therefore avoiding the
    # scan responses.  However, those *should* be minuscule, and
    # therefore I elect not to in this case.

    # Load the count file into memory and add some structure
    #
    a = open(temp_countfn, 'r')
    # We're basically just throwing everything into a histogram, so I need
    # to establish a min and max
    min = 99999999999L
    max = -1
    data = {}
    for i in a.readlines():
        time, records, bytes, packets = map(lambda x:float(x),
                                           i[:-1].split('|')[0:4])
        if bytes < min:
            min = bytes
        if bytes > max:
            max = bytes
        data[time] = (records, bytes, packets)
    a.close()
    os.unlink(temp_countfn)
    # Build a histogram with hist_size slots
    histogram = []
    hist_size = 100
    for i in range(0,hist_size):
        histogram.append(0)
    bin_size = (max - min) / hist_size
    total_entries = len(data.values)
    for records, bytes, packets in data.values():
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        bin_index = (bytes - min)/bin_size
        histogram[bin_index] += 1

    # Now we calculate the thresholds from 90 to 100%
    thresholds = []
    for i in range(90, 100):
        thresholds.append(0.01 * i * total_entries)
    total = 0
    last_match = 0 # index in thresholds where we stopped
    # First, we dump the thresholds
    for i in range(0, hist_size):
        total += histogram[i]
        if total >= thresholds[last_match]:
            while thresholds[last_match] < total:
                print "%3d%% | %d" % (90 + last_match, (i * bin_size) + min)
    a = data.keys()
    a.sort()
    for i in a:
        print "%15d|%10d|%10d|%10d" % (i, data[i][0], data[i][1], data[i][2])

Visualization is critical when calibrating volume thresholds for detecting raiding or
other raiding anomalies. We discussed the problem with standard deviations in
Chapter 11, and a histogram is the easiest way to determine whether a distribution is
even remotely Gaussian. In my experience, a surprising number of services regularly
raid hosts—web spiders and the Internet Archive being among the more notable
examples. If a site is strictly internal, backups and internal mirroring are common
false positives.

Visualization can identify these outliers. The example in Figure 14-3 shows that the
overwhelming majority of traffic occurs below about 1,000 MB/10 min, but those few
outliers above 2,000 MB/10 min will cause problems for calibrate_raid.py and most
training algorithms. Once you have identified the outliers, you can record them in a
whitelist and remove them from the filter command using --not-dipset. You can
then use rwcount to set up a simple alert mechanism.
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Figure 14-3. Traffic volume with outliers; determining the origin and cause of outliers
will reduce alerts

Locality
Locality is the tendency of references (memory locations, URLs, IP addresses) to clus‐
ter together. For example, if you track the web pages visited by a user over time, you
will find that the majority of pages are located in a small and predictable number of
sites (spatial locality), and that users tend to visit the same sites over and over (tem‐
poral locality). Locality is a well-understood concept in computer science, and serves
as the foundation of caching, CDNs, and reverse proxies.

Locality is particularly useful as a complement to volumetric analysis because users
are generally predictable. Users typically visit a small number of sites and talk to a
small number of people, and while there are occasional changes, we can model this
behavior using a working set.

Figure 14-4 is a graphical example of a working set in operation. In this example, the
working set is implemented as an LRU (Least Recently Used) queue of fixed size (in
this case, four references in the queue). This working set is tracking web surfing, so it
gets fed URLs from an HTTP server logfile and adds them to the stack. Working sets
only keep one copy of every reference they see, so a four-reference set like the one
shown in Figure 14-4 will only show four references.
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Figure 14-4. A working set in operation

When a working set receives a reference, it does one of three things:

1. If there are empty references left, the new reference is enqueued at the back of the
queue (I to II).

2. If the queue is filled AND the reference is present, the reference is moved to the
back of the queue.

3. If the queue is filled AND the reference is NOT present, then the reference is
enqueued at the back of the queue, and the reference at the front of the queue is
removed.

The code in Example 14-3 shows an LRU working set model in Python.

Example 14-3. Calculating working set characteristics

#!/usr/bin/env python
#
#
# Describe the locality of a host using working_set depth analysis.
# Inputs:
#        stdin - a sequence of tags
#
# Command-line args:
#        first: working_set depth

import sys

try:
    working_set_depth = int(sys.argv[1])
except:
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    sys.stderr.write("Specify a working_set depth at the command line\n")
    sys.exit(-1)

working_set = []

i = sys.stdin.readline()
total_processed = 0
total_popped = 0
unique_symbols = {}
while i != '':
    value = i[:-1] #Ditch the obligatory \n
    unique_symbols[value] = 1 # Add in the symbol
    total_processed += 1
    try:
        vind = working_set.index(value)
    except:
        vind = -1

    if (vind == -1):
        # Value isn't present as an LRU cache; delete the
        # least recently used value and store this at the end
        working_set.append(value)
        if len(working_set) > working_set_depth:
            del working_set[0]
        working_set.append(value)
        total_popped +=1
    else:
        # Most recently used value; move it to the end of the working_set
        del working_set[vind]

# Calculate probability of replacement stat
p_replace = 100.0 * (float(total_popped)/float(total_processed))

print "%10d %10d %10d %8.4f" % (total_processed, unique_symbols,
                                working_set_depth, p_replace)

Figure 14-5 shows an example of what working sets will look like. This figure plots
the probability of replacing a value in the working set as a function of the working set
size. Two different sets are compared here: a completely random set where references
are picked from a set of 10 million symbols, and a model of user activity using a Par‐
eto distribution. The Pareto model is adequate for modeling normal user activity, if
actually a bit less stable than user behavior under normal circumstances.
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Figure 14-5. Working set analysis

Note the “knee” in the Pareto model, around the 60-element size, while the random
model remains consistent at a 100% replacement rate. Working sets generally have an
ideal size after which increasing the set’s size is counterproductive. This knee is repre‐
sentative of this phenomenon—you can see that the probability of replacement drops
slightly before the knee, but remains effectively stable afterward.

The value of working sets is that once they’re calibrated, they reduce user habit down
to two parameters: the size of the queue modeling the set and the probability that a
reference will result in a queue replacement.

DDoS, Flash Crowds, and Resource Exhaustion
Denial of service is a goal, not a specific strategy. A DoS attack results in a host that
cannot be reached from remote locations. Most DoS attacks are implemented as dis‐
tributed denial of service (DDoS) attacks in which the attacker uses a network of cap‐
tured hosts in order to implement the attack. There are several ways an attacker can
implement a DoS, including but not limited to:

Service level exhaustion
The targeted host runs a publicly accessible service. Using a botnet, the attacker
starts a set of clients on the target, each conducting some trivial but service-
specific interaction (such as fetching the home page of a website).
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SYN flood
The SYN flood is the classic DDoS attack. Given a target with an open TCP port,
the attacker sends clients against the attacker. The clients don’t use the service on
the port, but simply open connections using a SYN packet and leave the connec‐
tions open.

Bandwidth exhaustion
Instead of targeting a host, the attacker sends a massive flood of garbage traffic
toward the host, intending to overwhelm the connection between the router and
the target.

Simple attacks
Be wary of physical insider attacks. An insider can DoS a system simply by
unplugging it.

All these tactics produce the same result, but each tactic will appear differently in net‐
work traffic and may require different mitigation techniques. Exactly how many
resources the attacker needs is a function of how the attacker implements DDoS. As a
rule of thumb, the higher up an attack is on the OSI model, the more stress it places
on the target and the fewer bots are required by the attacker. For example, bandwidth
exhaustion hits the router and basically has to exhaust the router interface. SYN
flooding, the classic DDoS attack, has to simply exhaust the target’s TCP stack. At
higher levels, tools like Slowloris effectively create a partial HTTP connection,
exhausting the resources of the web server.

This has several advantages from an attacker’s perspective. Fewer resources con‐
sumed means fewer bots involved, and a legitimate session is more likely to be
allowed through by a firewall that might block a packet crafted to attack the IP or
TCP layer.

DDoS and Routing Infrastructure
DDoS attacks aimed specifically at routing infrastructure will produce collateral dam‐
age. Consider a simple network like the one in Figure 14-6. The attacker hitting sub‐
network C is exhausting not just the connection at C, but also the router’s connection
to the internet. Consequently, hosts on networks A and B will not be able to reach the
internet and will see their incoming internet traffic effectively drop to zero.
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Figure 14-6. DDoS collateral damage

This type of problem is not uncommon on colocated services, and emphasizes that
DDoS defense is rooted in network infrastructure. I am, in the long run, deeply curi‐
ous to see how cloud computing and DDoS are going to marry. Cloud computing
enables defenders to run highly distributed services across the internet’s routing
infrastructure. This, in turn, increases the resources the attacker needs to take out a
single defender.

With DoS attacks, the most common false positives are flash crowds and cable cuts. A
flash crowd is a sudden influx of legitimate traffic to a site in response to some kind
of announcement or notification. Alternate names for flash crowds such as SlashDot
effect, farking, or Reddit effect provide a good explanation of what’s going on.

These different classes of attacks are usually easily distinguished by looking at a graph
of incoming traffic. Some idealized images are shown in Figure 14-7, which explains
the basic phenomena.
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Figure 14-7. Different classes of bandwidth exhaustion

The images in Figure 14-7 describe three different classes of bandwidth exhaustion: a
DDoS attack, a flash crowd, and a cable cut or other infrastructure failure. Each plot
is of incoming traffic and equivalent to sitting right at the sensor. The differences
between the plots reflect the phenomena causing the problems.

DDoS attacks are mechanical. The attack usually switches on and off instantly, as the
attacker is issuing commands remotely to a network of bots. When a DDoS attack
starts, it almost instantly consumes as much bandwidth as is available. In many DDoS
plots, the upper limit on the plot is dictated by the networking infrastructure: if you
have a 10 GB pipe, the plot maxes at 10 GB. DDoS attacks are also consistent. Once
they start, they generally keep humming along at about the same volume. Most of the
time, the attacker has grossly overprovisioned the attack. Bots are being removed
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while the attack goes on, but there are more than enough to consume all the available
bandwidth even if a significant fraction are knocked offline.

DDoS mitigation is an endurance contest. The best defense is to provision out band‐
width before the attack starts. Once an attack actually occurs, the best you can do at
any particular location is to try to identify patterns in the traffic and block the ones
causing the most damage. Examples include:

• Identifying a core audience for the target and limiting traffic to the core audi‐
ence. The audience may be identified by IP address, netblock, country code, or
language, among other attributes. What is critical is that the audience has a limi‐
ted overlap with the attacker set. The script in Example 14-4 provides a mecha‐
nism for ordering /24s by the difference between two sets: historical users you
trust and new users whom you suspect of being part of a DDoS attack.

• Spoofed attacks are occasionally identifiable by some flaw in the spoofing. The
random number generator for the spoof might set all addresses to x.x.x.1, as an
example.

Example 14-4. An example script for ordering blocks

#!/usr/bin/env python
#
# ddos_intersection.py
#
# input:
#       Nothing
# output:
#       A report comparing the number of addresses in two sets, ordered by the
#       largest number of hosts in set A which are not present in set B.
#
#  command_line:
#  ddos_intersection.py historical_set ddos_set
#
#  historical_set: A set of historical data giving external addresses
#  which have historically spoken to a particular host or network
#  ddos_set: A set of data from a ddos attack on the host
#  This is going to work off of /24's for simplicity.
#
import sys,os,tempfile

historical_setfn = sys.argv[1]
ddos_setfn = sys.argv[2]
blocksize = int(sys.argv[3])

mask_fh, mask_fn = tempfile.mkstemp()
os.close(mask_fh)
os.unlink(mask_fn)
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os.system(('rwsettool --mask=24 --output-path=stdout %s | ' +
                     ' rwsetcat | sed 's/$/\/24/' | rwsetbuild stdin %s') %
                       (historical_setfn, mask_fn))

bins = {}
# Read and store all the /24s in the historical data
a = os.popen(('rwsettool --difference %s %s --output-path=stdout | ',
             'rwsetcat --network-structure=C') % (mask_fn, historical_setfn),'r')
# First column is historical, second column is ddos
for i in a.readlines():
    address, count = i[:-1].split('|')[0:2]
    bins[address] = [int(count), 0]

a.close()
# Repeat the process with all the data in the ddos set
a = os.popen(('rwsettool --difference %s %s --output-path=stdout | ',
              'rwsetcat --network-structure=C') % (mask_fn, ddos_setfn),'r')
for i in a.readlines():
    address, count = i[:-1].split('|')[0:2]
    # I'm intersecting the maskfile again; since I originally intersected it against
    # the file I generated the maskfile from, any address that I find in the file
    # will already be in the bins associative array
    bins[address][1] = int(count)

#
# Now we order the contents of the bins.  This script is implicitly written to
# support a whitelist-based approach--addresses which appear in the historical
# data are candidates for whitelisting, and all other addresses will be blocked.
# We order the candidate blocks in terms of the number of historical addresses
# allowed in, decreasing for every attacker address allowed in.
address_list = bins.items()
address_list.sort(lambda x,y:(y[1][0]-x[1][0])-(y[1][1]-x[1][1]))
print "%20s|%10s|%10s" % ("Block", "Not-DDoS", "DDoS")
for address, result in address_list:
    print "%20s|%10d|%10d" % (address, bins[address][0], bins[address][1])

This type of filtering works more effectively if the attack is focused on striking a spe‐
cific service, such as DDoSing a web server with HTTP requests. If the attacker is
instead focused on traffic flooding a router interface, the best defenses will normally
lie upstream from you.

As discussed in Chapter 13, people are impatient while machines are not, and this
behavior is the easiest way to differentiate flash crowds from DDoS attacks. As the
flash crowd plot in Figure 14-7 shows, when the event occurs, the initial burst of
bandwidth is followed by a rapid falloff. The falloff is because people have discovered
that they can’t reach the targeted site and have moved on to more interesting pastures
until some later time.
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1 This is true historically as well. Fax machines are subject to black fax attacks, where the attacker sends an
entirely black page and wastes toner.

Flash crowds are public affairs—for some reason, somebody publicized the target. As
a result, it’s often possible to figure out the origin of the flash crowd. For example,
HTTP referer logs will include a reference to the site. Flash crowd verification may be
solved simply by Googling—look for news articles, recent mentions of the site, any
public news that might mention the site and result in the traffic spike.

Cable cuts and mechanical failures will result in an actual drop in traffic. This is
shown in the cable cut figure, where all of a sudden traffic goes to zero. When this
happens, the first follow-up step is to try to generate some traffic to the target, and
ensure that the problem is actually a failure in traffic and not a failure in the detector.
After that, you need to bring an alternate system online and then research the cause
of the failure.

DDoS and Force Multipliers
Functionally, DDoS attacks are wars of attrition: how much traffic can the attacker
throw at the target, and how can the target compensate for that bandwidth? Attackers
can improve the impact of their attacks through a couple of different strategies: they
can acquire more resources, attack at different layers of the stack, and rely on internet
infrastructure to inflict additional damage. Each of these techniques effectively serves
as a force multiplier for attackers, increasing the havoc with the same number of bots
under their control.

The process of resource acquisition is really up to the attacker. The modern internet
underground provides a mature market for the rental and use of botnets. An alterna‐
tive approach, used notably by some of Anonymous, involves volunteers. Early exam‐
ples of this included a family of JavaScript and C# DDoS tools under the moniker
LOIC (Low Orbit Ion Cannon) that were used to conduct DDoS attacks. The LOIC
family of tools were, in comparison to hardcore malware, fairly primitive, but argua‐
bly, they weren’t intended to be anything more than that given their hacktivist audi‐
ence. LOIC was notoriously insecure, but variants persist.

These techniques rely on processing asymmetry: the attacker in some way juggles
operations so that the processing demand on the server per connection is higher than
the processing demand on the client. Development decisions will impact a system’s
vulnerability to a higher-level DDoS attack.1

Attackers can also rely on internet infrastructure to conduct attacks. This is generally
done by taking a response service and sending the response to a forged target address. 
The classic example of this, the Smurf attack, consists of a ping where the host A,
wanting to DDoS site B, sends a spoofed ping to a broadcast address. Every host
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receiving the ping (i.e., everything sharing the broadcast address) then drowns the
target in responses.

The most common modern form of this attack uses DNS reflection: the attacker sends
a spoofed request to a DNS resolver, which then sends an inordinately informative
and helpfully large packet in response.

Applying Volume and Locality Analysis
The phenomena discussed in this chapter are detectable using a number of different
approaches. In general, the problem is not so much detecting them as differentiating
malicious activity from legitimate but similar-appearing activity. In this section, we
discuss a number of different ways to build detectors and limit false positives.

Data Selection
Traffic data is noisy, and there’s little correlation between the volume of traffic and the
malice of a phenomenon. An attacker can control a network using ssh and generate
much less traffic than a legitimate user sending an attachment over email. The basic
noisiness of the data is further exacerbated by the presence of garbage traffic such as
scanning and other background radiation (see Chapter 13 for more information on
this).

The most obvious values to work with when examining volume are byte and packet
counts over a period. They are also generally so fantastically noisy that you’re best off
using them to identify DDoS and raiding attacks and little else.

Because the values are so noisy and so easily disrupted, I prefer working with con‐
structed values such as flows. NetFlow groups traffic into session approximations; I
can then filter the flows on different behaviors, such as:

• Filtering traffic that talks only to legitimate hosts and not to dark space. This
approach requires access to a current map of the network, as discussed in Chap‐
ter 19.

• Splitting short TCP sessions (four packets or less) from longer sessions, or look‐
ing for other indications that a session is legitimate, such as the presence of a
PSH flag. See Chapter 13 for more discussion on this behavior.

• Further partitioning traffic into commands, fumbles, and file transfers. This
approach, discussed in Chapter 18, extends the filtering process to different
classes of traffic, some of which should be rare.
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• Using simple volume thresholds. Instead of recording the byte count, for exam‐
ple, record the number of 100-, 1,000-, 10,000-, and 100,000+-byte flows
received. This will reduce the noise you’re dealing with.

Whenever you’re doing this kind of filtering, it’s important to not simply throw out
the data, but actually partition it. For example, if you count thresholded volume,
record the 1–100, 100+, 1,000+, 10,000+ and 100,000+ values as separate time series.
The reason for partitioning the data is purely paranoia. Any time you introduce a
hard rule for what data you’re going to ignore, you’ve created an opening for an
attacker to imitate the ignored data.

Less noisy alternatives to volume counts are values such as the number of IP
addresses reaching a network or the number of unique URLs fetched. These values
are more computationally expensive to calculate as they require distinguishing indi‐
vidual values; this can be done using a tool like rwset in the SiLK suite or with an
associative array. Address counts are generally more stable than volume counts, but at
least splitting off the hosts that are only scanning is (again) a good idea to reduce the
noise.

Example 14-5 illustrates how to apply filtering and partitioning to flow data in order
to produce time series data.

Example 14-5. A simple time series output application

# gen_timeseries.py
#
# Generates a time series output by reading flow records and partitioning
# the data, in this case into short (<=4 packet) TCP flows and long
# (>4 packet) TCP flows.
#
# Output:
# Time <bytes> <packets> <addresses> <long bytes> <long packets> <long addresses>
#
# Takes as input:
# rwcut --fields=sip,dip,bytes,packets,stime --epoch-time --no-title
#
# We assume that the records are chronologically ordered; that is, no record
# will produce an stime earlier than the records preceding it in the
# output.

import sys
current_time = sys.maxint
start_time = sys.maxint
bin_size = 300 # We'll use five-minute bins for convenience
ip_set_long = set()
ip_set_short = set()
byte_count_long = 0
byte_count_short = 0
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packet_count_long = 0
packet_count_short = 0
for i in sys.stdin.readlines():
    sip, dip, bytes, packets, stime = i[:-1].split('|')[0:5]
    # Convert the non-integer values
    bytes, packets, stime = map(lambda x: int(float(x)), (bytes, packets, stime))
    # Now we check the time binning; if we're onto a new bin, dump and
    # reset the contents
    if (stime < current_time) or (stime > current_time + bin_size):
        ip_set_long = set()
        ip_set_short = set()
        byte_count_long = byte_count_short = 0
    packet_count_long = packet_count_short = 0
        if (current_time == sys.maxint):
            # Set the time to a 5-minute period at the start of the
            # currently observed epoch.  This is done in order to
            # ensure that the time values are always some multiple
            # of five minutes apart, as opposed to dumping something
            # at t, t+307, t+619, and so on.
            current_time = stime - (stime % bin_size)
        else:
            # Now we output results
            print "%10d %10d %10d %10d %10d %10d %10d" % (
                current_time, len(ip_set_short), byte_count_short,
                packet_count_short,len(ip_set_long), byte_count_long,
                packet_count_long)
            current_time = stime - (stime % bin_size)
    else:
        # Instead of printing, we're just adding up data
        # First, determine if the flow is long or short
        if (packets <= 4):
            # flow is short
            byte_count_short += bytes
            packet_count_short += packets
            ip_set_short.update([sip,dip])
        else:
            byte_count_long += bytes
            packet_count_long += packets
            ip_set_long.update([sip,dip])

if byte_count_long + byte_count_short != 0:
    # Final print line check
    print "%10d %10d %10d %10d %10d %10d %10d" % (
        current_time, len(ip_set_short), byte_count_short,
        packet_count_short,len(ip_set_long), byte_count_long,
        packet_count_long)

Keep track of what you’re partitioning and analyzing. For example, if you decide to
calculate thresholds for a volume-based alarm only for sessions from Bulgaria that
have at least 100 bytes, then you need to make sure that the decision and the process
are documented and that the same approach is used to calculate future thresholds.
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Using Volume as an Alarm
The easiest way to construct a volume-based alarm is to calculate a histogram and
then pick thresholds based on the probability that a sample will exceed the observed
threshold. The calibrate_raid.py script in Example 14-2 is a good example of this kind
of threshold calculation. When generating alarms, consider the time of day issues dis‐
cussed in “The Workday and Its Impact on Network Traffic Volume” on page 273,
and whether you want multiple models; a single model will normally cost you preci‐
sion. Also, when considering thresholds, consider the impact of unusually low values
and whether they merit investigation.

Given the noisiness of traffic volume data, expect a significant number of false posi‐
tives. Most false positives for volume breaches come from hosts that have a legitimate
reason for copying or archiving a target, such as a web crawler or archiving software.
Several of the IDS mitigation techniques discussed in Chapter 3 are useful here; in
particular, whitelisting anomalies after identifying that the source is innocuous and
rolling up events.

Using Beaconing as an Alarm
Beaconing is used to detect a host that is regularly communicating with other hosts.
To identify malicious activity, beaconing is primarily used to identify communica‐
tions with a botnet command and control (C&C) server. To detect beacons, you iden‐
tify hosts that communicate consistently over a time window, as is done with
find_beacons.py (Example 14-1).

Beacon detection runs into an enormous number of false positives because software
updates, AV updates, and even SSH cron jobs have consistent and predictable inter‐
vals. Beacon detection consequently depends heavily on inventory management.
After receiving an alert, you will have to determine whether a beaconing host has a
legitimate justification, which you can do if the beaconing is from a known protocol,
is communicating with a legitimate host, or provides other evidence that the traffic is
not botnet C&C traffic. Once identified as legitimate, the indicia of the beacon (the
address and likely the port used for communication) should be recorded to prevent
further false positives.

Also of import are hosts that are supposed to be beaconing, but don’t. This is particu‐
larly critical when dealing with AV software, because attackers often disable AV when
converting a newly owned host. Checking to see that all the hosts that are supposed to
visit an update site do so is a useful alternative alarm.

Using Locality as an Alarm
Locality measures user habits. The advantage of the working set model is that it pro‐
vides room for those habits to break. Although people are predictable, they do mail
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new contacts or visit new websites at irregular intervals. Locality-based alarms are
consequently useful for measuring changes in user habits, such as differentiating a
normal user of a website from someone who is raiding it, or identifying when a site’s
audience changes during a DDoS attack.

Locality is a useful complement to volume-based detection for identifying raiding. A
host that is raiding the site or otherwise scanning it will demonstrate minimal local‐
ity, as it will want to visit all the pages on the site as quickly as possible. In order to
determine whether a host is raiding, look at what the host is fetching and the speed at
which the host is working.

The most common false positives in this case are search engines and bots such as
Googlebot. A well-behaved bot can be identified by its User-Agent string; if the host
is not identified as a bot by that string, you have a dangerous host.

A working set model can also be applied to a server rather than individual users. Such
a working set is going to be considerably larger than a user profile, but it is possible to
use that set to track the core audience of a website or an SSH server.

Engineering Solutions
Raid detection is a good example of a scenario in which you can apply analysis and
are probably better off not building a detector. The histograms generated by cali‐
brate_raid.py and analysis done by counting the volume a user pulls over a day are
ultimately about determining how much data a user will realistically access from a
server.

This same information can be used to impose rate limits on the servers. Instead of
firing off an alert when a user exceeds this threshold, use a rate limiting module (such
as Apache’s Quota) to cut the user off. If you’re worried about user revolt, set the
threshold to 200% of the maximum you observe and identify outliers who need spe‐
cial permissions to exceed even that high threshold.

This approach is going to be most effective when you’ve got a server whose data radi‐
cally exceeds the average usage of any one user. If people who access a server tend to
use less than a megabyte of traffic a day, whereas the server has gigabytes of data,
you’ve got an easily defensible target.

Further Reading
1. C. Dietzel, A. Feldmann, and T. King, “Blackholing at IXPs on the Effectiveness

of DDoS Mitigation in the Wild,” Proceedings of the 2016 Passive and Active Meas‐
urement (PAM) Conference, Heraklion, Greece, 2016.

2. S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial of Service: Attack and
Defense Mechanisms (London: Pearson Education, 2005).
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3. J. Mirkovic, J. Martin, and P. Reiher, “A Taxonomy of DDoS Attacks and DDoS
Defense Mechanisms,” ACM SIGCOMM Computer Communication Review 34:2
(2004): 39–53.

4. J. McHugh and C. Gates, “Locality: A New Paradigm in Anomaly Detection,” Pro‐
ceedings of the 2003 New Security Paradigms Workshop (NSPW), Ascona, Switzer‐
land, 2003.
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1 Modern-day Kaliningrad.

CHAPTER 15

On Graphs

A graph is a mathematical construct composed of one or more nodes (or vertices)
connected together by one or more links (or edges). Graphs are an effective way to
describe communication without getting lost in the weeds. They can be used to
model connectivity and provide a comprehensive view of that connectivity while
abstracting away details such as packet sizes and session length. Additionally, graph
attributes such as centrality can be used to identify critical nodes in a network.
Finally, many important protocols (in particular, SMTP and routing) rely on algo‐
rithms that model their particular network as a graph.

This chapter is focused on the analytic properties of graphs. We begin by describing
what a graph is and then developing examples for major attributes: shortest paths,
centrality, clusters, and clustering coefficient.

Graph Attributes: What Is a Graph?
A graph is a mathematical representation of a collection of objects and their interrela‐
tionships. Originally developed in 1736 by Leonhard Euler to address the problem of
crossing the bridges of Koenigsberg,1 graphs have since been used to model every‐
thing from the core members of conspiracies to the frequency of sounds uttered in
the English language. Graphs are an extremely powerful and flexible descriptive tool,
and that power comes because they are extremely fungible. Researchers in mathemat‐
ics, engineering, and sociology have developed an extensive set of constructed and
observed graph attributes that can be used to model various behaviors. The first chal‐
lenge in using graphs is deciding which attributes you need and how to derive them.
The following attributes represent a subset of what can be done with graphs, and are
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chosen for their direct relevance to the traffic models built later. Any good book on
graph theory will include more attributes because at some point, someone has tried
just about anything with a graph.

At the absolute minimum, a graph is composed of nodes and links, where a link is a
connection between exactly two nodes. A link can be directed or undirected; if a link is
directed, then it has an origin and a destination. Conventionally, a graph is either
composed entirely of directed links, or entirely of undirected links. If a graph is
undirected, then each node has a degree, which is the number of links connected to
that node. Nodes in a directed graph have an indegree, which is the number of links
with a destination that is that node, and an outdegree, which is the number of links
whose origin is the node (Figure 15-1).

Figure 15-1. Directed and undirected graphs: in (i), the graph is undirected and each
node has degree 2; in (ii), the graph is directed and node a has outdegree 2, indegree 0,
node b has outdegree 1, indegree 1, and node c has outdegree 0, indegree 2

In network traffic logs, there are a number of candidates for conversion to graphs. In
flow data, IP addresses can be used as nodes and flows between them can be used as
links. In HTTP server logs, nodes can be individual pages linked together by Referer
headers. In mail logs, email addresses can be nodes, and the links between them can
be mail. Anything expressed as a communication from point A to point B is a suitable
candidate.

A disclaimer about the code in this section of the book: it is intended primarily for
educational purposes, so in the interests of clearly pointing out how various algo‐
rithms or numbers work, I’ve avoided optimization and a lot of the exception trap‐
ping I’d use in production code. This is particularly important when dealing with
graph analysis, since graph algorithms are notoriously expensive. There are a number
of good libraries available for doing graph analysis, and they will process complex
graphs much more efficiently than anything I hack together here.

The script in Example 15-1 can create directed or undirected graphs from lists of
pairs (for example, the output of rwcut --field=1,2 --no-title --delim=' ').
There are a couple of methods under the hood for implementing graphs; in this case, 
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I’m using adjacency lists, which I feel are the most intuitively obvious. In an adjacency
list implementation, each node maintains a table of all the links adjacent to it.

Example 15-1. Basic graphs

#!/usr/bin/env python
#
# basic_graph.py
#
# Library
# Provides:
#         Graph object, which as a constructor takes a flow file
#
import os, sys

class UndirGraph:
    """ An undirected, unweighted graph class. This also serves as the base class
    for all other graph implementations in this chapter. """
    def add_node(self, node_id):
        self.nodes.add(node_id)

    def add_link(self, node_source, node_dest):
        self.add_node(node_source)
        self.add_node(node_dest)
        if not self.links.has_key(node_source):
            self.links[node_source] = {}
        self.links[node_source][node_dest] = 1
        if not self.links.has_key(node_dest):
            self.links[node_dest] = {}
        self.links[node_dest][node_source] = 1
        return

    def count_links(self):
        total = 0
        for i in self.links.keys():
            total += len(self.links[i].keys())
        return total/2 # Compensating for link doubling in undirected graph

    def neighbors(self, address):
        # Returns a list of all the nodes adjacent to the node address;
        # returns an empty list if there are no nodes (technically impossible with
        # these construction rules, but hey).
        if self.nodes.has_key(address):
            return self.links[address].keys()
        else:
            return None

    def __str__(self):
        return 'Undirected graph with %d nodes and %d links' % (len(self.nodes),
                                                                self.count_links())
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    def adjacent(self, sip, dip):
        # Note that we've defined the graph as undirected during construction;
        # consequently links only has to return the source.
        if self.links.has_key(sip):
            if self.links[sip].has_key(dip):
                return True

    def __init__(self):
        #
        # This graph is implemented using adjacency lists; every node has
        # a key in the links hashtable, and the resulting value is another hashtable.
        #
        # The nodes table is redundant for undirected graphs, since the existence of
        # a link between X and Y implies a link between Y and X, but in the case of
        # directed graphs it'll provide a speedup if we're just looking for a
        # particular node.
        self.links = {}
        self.nodes = set()

class DirGraph(UndirGraph):
    def add_link(self, node_source, node_dest):
        # Note that in comparison to the undirected graph, we only
        # add links in one direction.
        self.add_node(node_source)
        self.add_node(node_dest)
        if not self.links.has_key(node_source):
            self.links[node_source] = {}
        self.links[node_source][node_dest] = 1
        return

    def count_links(self):
        # This had to be changed from the original count_links since we're now
        # using an undirected graph.
        total = 0
        for i in self.links.keys():
            total += len(self.links[i].keys())
        return total

if __name__ == '__main__':
    #
    # This is a stub executable that will create and then render an
    # undirected graph assuming that it receives some kind of
    # space-delimited set of (source, dest) pairs on input.
    #
    a = sys.stdin.readlines()
    tgt_graph = DirGraph()
    for i in a:
        source, dest = i.split()[0:2]
        tgt_graph.add_link(source, dest)
    print tgt_graph
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    print "Links:"
    for i in tgt_graph.links.keys():
        dest_links = ' '.join(tgt_graph.links[i].keys())
        print '%s: %s' % (i, dest_links)

Graph Construction Versus Graph Attributes
It’s really tempting when working with graphs to start creating complicated relations
between network attributes and graph attributes, such as deciding direction points
from client to server, or weighting links with the traffic between nodes.

I have found that such constructions are more trouble than they’re worth, however.
It’s better to start with a simple graph and examine its attributes rather than trying to
build up a complicated graph representation. With that in mind, here are two rules
for converting raw data into graphs:

Define communication
A link should represent a communication between two nodes; with flow data that
may mean that a link only occurs when the flow has 10 or more packets and an
ACK flag high in order to throw out scanning and failed login attempts.

Define node identity
Should nodes be IP addresses, or IP addresses and ports in combination? I’ve
found it useful to split the ports into services (everything under 1024 is unique;
everything above that is client) and then use an IP:service combination.

Labeling, Weight, and Paths
On a graph, a path is a set of links connecting two nodes. In a directed graph, paths
follow the direction of the link, while in an undirected graph they can move in either
direction. Of particular importance in graph analysis are shortest paths, which as the
name implies are the shortest set of links required to get from point A to point B (see
Example 15-2).

Example 15-2. A shortest path algorithm

#!/usr/bin/env python
#
# apsp.py -- implements weighted paths and Dijkstra's algorithm

import sys,os,basic_graph

class WeightedGraph(basic_graph.UndirGraph):
    def add_link(self, node_source, node_dest, weight):
        # Weighted bidirectional link aid. Note that we keep the
        # associative array, but now instead of simply setting the value to
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        # 1, we add the weight value.  This reverts to an unweighted
        # graph if we always use the same weight.
        self.add_node(node_source)
        self.add_node(node_dest)
        if not self.links.has_key(node_source):
            self.links[node_source] = {}
        if not self.links[node_source].has_key(node_dest):
            self.links[node_source][node_dest] = 0
        self.links[node_source][node_dest] += weight
        if not self.links.has_key(node_dest):
            self.links[node_dest] = {}
        if not self.links[node_dest].has_key(node_source):
            self.links[node_dest][node_source] = 0
        self.links[node_dest][node_source] += weight

    def dijkstra(self, node_source):
        # Given a source node, create a map of paths for each vertex
        D = {}  # Tentative distance table
        P = {}  # predecessor table

        # The predecessor table exploits a unique feature of shortest paths:
        # every subpath of a shortest path is itself a shortest path, so if
        # you find that (B,C,D) is the shortest path from A to E, then
        # (B,C) is the shortest path from A to D.  All you have to do is keep
        # track of the predecessor and walk backward.

        infy = 999999999999  # Shorthand for infinite
        for i in self.nodes:
            D[i] = infy
            P[i] = None

        D[node_source] = 0
        node_list = list(self.nodes)
        while node_list != []:
            current_distance = infy
            current_node = None
            # First find the node with the smallest distance; that'll
            # be node_source in the first call as it's the only one
            # where D=0.
            for i in node_list:
                if D[i] < current_distance:
                    current_distance = D[i]
                    current_node = i
            node_index = node_list.index(i)
            del node_list[node_index] # Remove it from the list
            if current_distance == infy:
                break # We've exhausted all paths from the node,
                      # everything else is in a different component
            for i in self.neighbors(current_node):
                new_distance = D[current_node] + self.links[current_node][i]
                if new_distance < D[i]:
                    D[i] = new_distance
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                    P[i] = current_node
                    node_list.insert(0, i)
        for i in D.keys():
            if D[i] == infy:
                del D[i]
        for i in P.keys():
            if P[i] is None:
                del P[i]
        return D,P

    def apsp(self):
        # Calls dijkstra repeatedly to create an all-pairs shortest paths table
        apsp_table = {}
        for i in self.nodes:
            apsp_table[i] = self.dijkstra(i)
        return apsp_table

An alternative formulation of shortest paths uses weighting. In a weighted graph, links
are assigned a numeric weight. When weights are assigned, the shortest path is no
longer simply the smallest number of connected links from point A to point B, but
the set of links whose total weight is smallest. Figure 15-2 shows these attributes in
more detail.

Figure 15-2. Weighting and paths: (i) in an undirected, unweighted graph, the shortest
path from A to D involves the least nodes; (ii) in a weighted graph, the shortest path
generally has the lowest total weight; (iii) in a directed graph, the shortest path might not
be achievable
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Shortest paths are a fundamental building block in graph analysis. In most routing
services, such as Open Shortest Path First (OSPF), finding shortest paths is the goal.
As a result, a good number of graph analyses begin by building a table of the shortest
paths between all the nodes by using an All Pairs Shortest Paths (APSP) algorithm on
the graph. The code in Example 15-2 provides an example of using Dijkstra’s algo‐
rithm on a weighted, undirected graph to calculate shortest paths.

Dijkstra’s algorithm is a good shortest path algorithm that can handle any graph
whose link weights are positive. Shortest path algorithms are critical in a number of
fields, and there are consequently a huge number of algorithms available depending
on the structure of the graph, the construction of the nodes, and the amount of
knowledge of the graph that the individual nodes have.

Shortest paths effectively define the distance between nodes on a graph, and serve as
the building blocks for a number of other attributes. Of particular importance are
centrality attributes (see Example 15-3). Centrality is a concept originating in social
network analysis; social network analysis models the relationships between entities
using graphs and mines the graphs for attributes showing the relationships between
these entities in bulk. Centrality, for which there are several measures, is an indicator
of how important a node is to the graph’s structure.

Example 15-3. Centrality calculation

#/usr/bin/env python
#
#
# centrality.py
#
# Generates centrality statistics for a dataset.
#
# input:
# A table of pairs in the form source, destination with a space separating them.
# Weight is implicit; the weight of a link is the number of times a pair appears.
#
# command line:
# calc_centrality.py n
# n: integer value, the number of elements to return in the report
#
# output:
# 7-column report of the form rank | betweenness winner | betweenness
# score | degree winner | degree score | closeness winner | closeness
# score
import sys,string
import apsp

n = int(sys.argv[1])

closeness_results = []
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degree_results = []
betweenness_results = []

target_graph = apsp.WeightedGraph()

# Load up the graph
for i in sys.stdin.readlines():
    source, dest = i[:-1].split()
    target_graph.add_link(source, dest, 1)

# Calculate degree centrality; the easiest of the bunch since it's just the
# degree
for i in target_graph.nodes:
    degree_results.append((i, len(target_graph.neighbors(i))))

apsp_results = target_graph.apsp()

# Now, calculate the closeness centrality scores
for i in target_graph.nodes:
    dt = apsp_results[i][0] # This is the distance table
    total_distance = reduce(lambda a,b:a+b, dt.values())
    closeness_results.append((i, total_distance))

# Then calculate betweenness centrality scores

bt_table = {}
for i in target_graph.nodes:
    bt_table[i] = 0

for current_node in target_graph.nodes:
    # Reconstruct the shortest paths from the predecessor table;
    # for each entry in the distance table, walk backward from that
    # entry to the corresponding origin to get the shortest path, then
    # count the nodes in that path on the master bt table
    pred_table = apsp_results[i][1] # We have the predecessor table
    sp_list = apsp_results[i][0]
    if current_node in sp_list.keys():
        path = []
        for working_node in sp_list.keys():
            if working_node != current_node:
                # We should be done with working-node at this point, count
                # the nodes there for bt score
                for i in path:
                    bt_table[i] += 1
            else:
                path.append(working_node)
                working_node = pred_table[working_node]

for i in bt_table.keys():
    betweenness_results.append((i,bt_table[i]))

# Order the tables; remember that betweenness and degree use higher score, closeness
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# lower score

degree_results.sort(lambda a,b:b[1]-a[1])
betweenness_results.sort(lambda a,b:b[1]-a[1])
closeness_results.sort(lambda a,b:a[1]-b[1])

print "%5s|%15s|%10s|%15s|%10s|%15s|%10s" %
  ("Rank", "Between", "Score", "Degree", "Score","Close", "Score")
for i in range(0, n):
    print "%5d|%15s|%10d|%15s|%10d|%15s|%10d" % ( i + 1,
                                                  str(betweenness_results[i][0]),
                                                  betweenness_results[i][1],
                                                  str(degree_results[i][0]),
                                                  degree_results[i][1],
                                                  str(closeness_results[i][0]),
                                                  closeness_results[i][1])

We’re going to consider three metrics for centrality in this book: degree, closeness, and
betweenness. Degree is the simplest centrality measure; in an undirected graph, the
degree centrality of a node is the node’s degree.

Closeness and betweenness centrality are both associated with shortest paths. The
closeness centrality represents the ease of transmitting information from a particular
node to any other node in the graph. To calculate the closeness of a node, you calcu‐
late the sum total distance between that node and every other node in the graph. The
node with the lowest total value has the highest closeness centrality.

Like closeness centrality, betweenness centrality is a function of the shortest paths.
Betweenness centrality represents the likelihood that a node will be part of the short‐
est path between any two particular nodes. The betweenness centrality of a node is
calculated by generating a table of all the shortest paths and then counting the num‐
ber of paths using that node.

Centrality algorithms are all relative measures. Operationally, they’re generally best
used as ranking algorithms. For example, finding that a particular web page has a
high betweenness centrality means that most users when browsing are going to visit
that page, possibly because it’s a gatekeeper or an important index. Observing user
surfing patterns and finding that a particular node has a high closeness centrality can
be useful for identifying important news or information sites.

Components and Connectivity
If two nodes in an undirected graph have a path between them, then they are connec‐
ted. The set of all nodes that have paths to each other composes a connected compo‐
nent. In directed graphs, nodes can be weakly connected (if the paths exist when
direction is ignored) or strongly connected (if the paths exist when direction is
accounted for).
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A graph can be broken into its components by using a breadth-first search (BFS),
which is a search that progresses by picking a node, examining all the neighbors of
that node, and then examining each of those nodes’ neighbors in turn. This contrasts
with a depth-first search (DFS), which examines a single neighbor, then a neighbor of
that neighbor, and so on. The code in Example 15-4 shows how to use a breadth-first
search to break a graph into components.

Example 15-4. Calculating components and clustering coefficient

#!/usr/bin/env python
#
#
import os,sys, basic_graph

def calculate_components(g):
    # Creates a table of components via a breadth-first search
    component_table = {}
    unfinished_nodes = {}
    for i in g.nodes.keys():
        unfinished_nodes[i] = 1
    node_list = [g.nodes.keys()[0]]
    component_index = 1
    while node_list != []:
        current_node = node_list[0]
        del node_list[0]
        del unfinished_nodes[current_node]
        for i in g.neighbors(current_node):
            component_table[i] = component_index
            node_list.insert(0, i)
        if node_list == [] and len(unfinished_nodes) > 0:
            node_list = [unfinished_nodes.keys()[0]]
    return component_table

Clustering Coefficient
Another mechanism for measuring the relationships between nodes on a graph is the
clustering coefficient. The clustering coefficient is the probability that any two neigh‐
bors of a particular node on a graph are neighbors of each other. Example 15-5 shows
a code snippet for calculating the clustering coefficient.

Example 15-5. Calculating clustering coefficient

def calculate_clustering_coefficients(g):
    # Clustering coefficient for a node is the
    # fraction of its neighbors who are also neighbors with each other
    node_ccs = {}
    for i in g.nodes.keys():
        mutual_neighbor_count = 0
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        neighbor_list = g.neighbors(i)
        neighbor_set = {}
        for j in neighbor_list:
            neighbor_set[j] = 1
        for j in neighbor_list:
            # We grab the neighbors and find out how many of them are in the
            # set
            new_neighbor_list = g.neighbors[j]
            for k in new_neighbor_list:
                if k != i and neighbor_list.has_key(k):
                    mutual_neighbor_count += 1
        # We now calculate the coefficient by dividing by d*(d-1) to get the
        # fraction
        cc = float(mutual_neighbor_count)/((float(len(neighbor_list) *
                                                  (len(neighbor_list) -1 ))))
        node_ccs[i] = cc
    total_cc = reduce(lambda a,b:node_ccs[a] + node_ccs[b], node_ccs.keys())
    total_cc = total_cc/len(g.nodes.keys())
    return total_cc

The clustering coefficient is a useful measure of “peerishness.” A graph of a pure cli‐
ent/server network will have a clustering coefficient of zero—a client talks only to
servers, and servers talk only to clients. We’ve had some success using clustering as a
measure of the impact of spam on large networks. As an example of this, Figure 15-3
shows the impact of the shutdown of McColo, a bulletproof hosting provider, on the
SMTP network structure of a large network. Following McColo’s shutdown, the clus‐
tering coefficient for SMTP rose by about 50%.

Figure 15-3. Clustering coefficient and large email networks
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The relationship between peerishness and spam may be a bit obscure. SMTP, like
DNS and other early internet services, is very sharing-oriented. An SMTP client in
one interaction may operate as a server for another interaction, so we expect clients
and servers to swap roles over time. Spammers, however, operate effectively as super‐
clients—they talk to servers, but never operate as a server for anyone else. This behav‐
ior manifests as a low clustering coefficient. Remove the spammers, and the SMTP
network starts to look more like a peer-to-peer network and the clustering coefficient
rises.

Analyzing Graphs
Graph analysis can be used for a number of purposes. Centrality metrics are a useful
tool both for engineering and for forensic analysis, while components and graph
attributes can be used to generate a number of alarms.

Using Component Analysis as an Alarm
In Chapter 13 we discussed detection mechanisms that relied on the attacker’s igno‐
rance of a particular network, such as blind scanning and the like. Connected compo‐
nents are useful for modeling a different type of attacker ignorance. An attacker
might know where various servers and systems are located on a network, but not how
they relate to each other. Organizational structure can be identified by looking at con‐
nected components, and a number of attacks—such as APT and hit-list attacks,
which may know the target but not how its components relate to each other—can be
identified by examining these components.

To understand how this phenomenon can be used as an alarm, consider the graphical
example in Figure 15-4. In this example, the network is composed of two discrete
components (say, engineering and marketing), and there is little interaction between
them. When an attacker appears and tries to communicate with the hosts on the net‐
work, he combines these two components to produce one huge component that does
not appear under normal circumstances.

To implement this type of alarm, you must first identify a service that can be divided
into multiple components. Good candidates are services such as SSH that require
some form of user login; permissions mean that certain users won’t have access,
which breaks the network into discrete components. SMTP and HTTP are generally
bad candidates, though HTTP is feasible if you are looking exclusively at servers that
require user login, and you limit your analysis to just those servers (e.g., by using an
IPset).
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Figure 15-4. An attacker artificially links discrete components

After you’ve identified your set of servers, identify components to monitor. And after
you identify a component, calculate its size—the number of nodes within the compo‐
nent as a function of the time taken to collect it (for example, 60 seconds of NetFlow).
The distribution is likely to be sensitive not only to the time taken to collect the traf‐
fic, but also the time of day. Breaking traffic at least into on/off periods (as discussed
in Chapter 14) is likely to help.

There are two ways to identify components: either by size order or by tracking hosts
within the components. In the case of size order, you simply track the sizes of the
largest component, the second-largest component, and so on. This approach is sim‐
ple, robust, and relatively insensitive to subtle attacks. It’s not uncommon for the larg‐
est component to make up more than one-third of the total nodes in the graph, so
you need a fairly aggressive attack to disrupt the size of the component. The alterna‐
tive approach involves identifying nodes by their component (e.g., component A is
the component containing address 127.0.1.2).

Using Centrality Analysis for Forensics
Centrality is a useful tool for identifying important nodes in a network, and for iden‐
tifying nodes that communicate at much lower volumes than traffic analysis can iden‐
tify.

Consider an attack where the attacker infects one or more hosts on a network with
malware. These infected hosts now communicate with a command and control server
that was previously not present. Figure 15-5 shows this scenario in more depth.
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Before hosts A, B, and C are infected, one node shows some degree of centrality. Fol‐
lowing infection, a new node (Mal) is the most central node in the set.

Figure 15-5. Centrality in forensics

This kind of analysis can be done by isolating traffic data into two sets, a pre-event set
and a post-event set. For example, after finding out that the network received a mali‐
cious attachment at a particular time, I can pull traffic before that time to produce a
pre-event set and traffic after that time to find a post-event set. Looking for newly
central nodes gives me a reasonable chance of identifying the command and control
server.

Using Breadth-First Searches Forensically
Once you’ve identified that a malicious host is communicating on your network, the
next step is to find out who it’s talking to, such as the host’s C&C or other infected
hosts on the network. Once you’ve found that out, you can repeat the process to find
out who they talked to in order to identify other targets.

This iterative investigation is a breadth-first search. You start with a single node, look
at all of its neighbors for suspicious behavior, and then repeat the process on their
neighbors (see Example 15-6). This type of graph-based investigation can help iden‐
tify other infected hosts, suspicious targets, and other systems on the network that
need investigation or analysis.

Example 15-6. Examining a site’s neighbors

#!/usr/bin/env python
#
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# This is a somewhat ginned-up example of how to use breadth-first searches to
# crawl through a dataset and identify other hosts that are using BitTorrent.
# The crawling criteria are as follows:
#     A communicates to B on ports 6881-6889
#     A and B exchange a large file (> 1 MB)
#
# The point of the example is that you could use any criteria you want and put
# multiple criteria into constructing the graph.
#
#
# Command line:
# crawler.py seed_ip datafile
#
# seed_ip is the IP address of a known BitTorrent user
# datafile
import os, sys, basic_graph

def extract_neighbors(ip_address, datafile):
    # Given an ip_address, identify the nodes adjacent to that
    # address by finding flows that have that address as either a source or
    # destination.  The other address in the pair is considered a neighbor.
    a = os.popen("""rwfilter --any-address=%s --sport=1024-65535 --dport=1024-65535 \
    --bytes=1000000- --pass=stdout %s | rwfilter --input=stdin --aport=6881-6889 \
    --pass=stdout | rwuniq --fields=1,2 --no-title""" % (ip_address,datafile), 'r')
    # In the query, note the fairly rigorous port definitions I'm using -- everything
    # starts out as high.  This is because, depending on the stack implementation,
    # ports 6881-6889 (the BT ports) may be used as ephemeral ports.  By breaking
    # out client ports in the initial filtering call, I'm guaranteeing that I
    # don't accidently record, say, a web session to port 6881.
    # The 1 MB limit is also supposed to constrain us to actual BT file transfers.
    neighbor_set = set()
    for i in a.readlines():
        sip, dip = i.split('|')[0:2].strip()
    # I check to see if the IP address is the source or destination of the
    # flow; whichever one it is, I add the complementary address to the
    # neighbor set (e.g., if ip_address is sip, I add the dip).
        if sip == ip_address:
            neighbor_set.add(dip)
        else:
            neighbor_set.add(sip)
    a.close()
    return neighbor_set

if __name__ == '__main__':
    starting_ip = sys.argv[1]
    datafile = sys.argv[2]
    candidate_set = set([starting_ip])
    while len(candidate_set) > 0:
        target_ip = candidate_set.pop()
    target_set.add(target_ip)
        neighbor_set = extract_neighbors(target_ip, datafile)
        for i in neighbor_set:
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            if not i in target_set:
                candidate_set.add(i)
    for i in target_set:
        print i

Using Centrality Analysis for Engineering
Given limited monitoring resources and analyst attention, effectively monitoring a
network requires identifying mission-critical hosts and assigning resources to pro‐
tecting and watching them. That said, in any network, there’s a huge difference
between the hosts that people say they need and the hosts they actually use. Using
traffic analysis to identify critical hosts helps differentiate between what’s important
on paper and what users actually visit.

Centrality is one of a number of metrics that can be used to identify criticality. Alter‐
natives include counting the number of hosts that visit a site (which is effectively
degree centrality) and looking at traffic volume. Centrality is a good complement to
volume.

Further Reading
1. M. Collins and M. Reiter, “Hit-List Worm Detection and Bot Identification in

Large Networks Using Protocol Graphs,” Proceedings of the 2007 Symposium on
Recent Advances in Intrusion Detection, Queensland, Australia, 2007.

2. T. Cormen et al., Introduction to Algorithims, 3rd ed. (Boston, MA: MIT Press,
2009).

3. L. Li et al., “Towards a Theory of Scale-Free Graphs: Definition, Properties, and
Implications (Extended Version).”

4. igraph, an (R graph library).
5. Neo4j, a scalable graph database.
6. NetworkX, a Python graph library.
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CHAPTER 16

On Insider Threat

This chapter is about the problem of collecting and analyzing data when dealing with
insider threat. Insider threat involves attacks coming from a member of an organiza‐
tion. When planning and executing attacks, insiders can take advantage of physical
location, trust, and better knowledge of the organization. Where an outsider will
blindly search within a network to find valuable targets, the insider will know (and
possibly have created) the highest-value information. Where an outsider relies on
rainbow tables and exploits, the insider can charm other users out of passwords or
use common admin tools she needs as part of her job. Where the outsider’s behavior
is obviously aberrant, the insider can hide it, or, if caught, explain it away.

For a network security analyst, insider threat work should focus on collecting and
synthesizing data, rather than detection. Insider threat investigations begin and end
with people—cues from inside the organization that someone is at risk, and inter‐
views with the insiders at the end. The network security team should expect to sup‐
port other investigators by providing and analyzing data that forms a part of a larger
picture.

Insider threat detection is hard; it involves a low-frequency, high-threat event that has
a significant and damaging risk of blowback. Many of the biggest cues about insider
threat involve indicia that someone is isolated or on his way out of the job—problems
at work, antagonistic relationships with coworkers, and so on. However, at some
point, everybody is going to have a bad day; therefore, distinguishing between daily
grumbles and actual threats is critical to an effective program. Insider threat is best
handled preventatively, by the organization addressing and eliminating the condi‐
tions that risk insider threats showing up in the first place. If the insider threat pro‐
gram consists exclusively of generating and following up on alerts, then the ops floor
will be overburdened, and users will chafe under the constraints.
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1 See P. Early, “Brian J. Kelley, My Friend the Spy Expert” and M. McKay, “To Catch a Spy: Probe to Unmask
Hanssen Almost Ruined Kelley” (60 Minutes Transcript).

The analysis team should consequently be prepared to support investigations raised
in response to common insider threat risks: specifically, the integration and synthesis
of data from diverse (often legacy or embedded) sources such as physical access logs,
video monitors, and traces of network traffic and assets.

Brian Kelley: The Risk of False Positives
Robert Hanssen is widely known as the FBI counterintelligence agent who spent 22
years selling secrets to the Soviet Union and the Russian Federation. Fewer people
know about Brian Kelley, the CIA analyst who was a false positive in the Hanssen
case. Kelley was identified as the mole in 1998, aggressively investigated by the FBI,
and eventually had his clearance suspended (and not reinstated until after Hanssen
was arrested several years later, in 2001).1 Kelley himself believed that his suspension
triggered Hanssen, who had been lying low for a few years, to start leaking again.

Kelley is, unfortunately, a good example of the damage that a false positive can cause.
He was under constant investigation and his career was effectively scuttled for years.
Insider threat investigations impact people’s lives, so be cautious and thorough before
pulling the trigger.

When insider threat analysis does involve detection, it will rarely find definitive evi‐
dence; rather, insider threat detection will uncover hints that something is amiss that
combine with other evidence. Insider threat detection involves managing an enor‐
mous number of false positives, and making a judgment call about when to move
from simple monitoring to more focused analysis to action.

This chapter is organized around two core concepts: differentiating insider attacks
from external attacks, and a discussion of the types of attacks insiders conduct and
how to observe them. The remainder of this chapter covers each topic in depth, fol‐
lowed up by pointers to supporting material. Several notable examples of insider
threat cases are covered in sidebars; pointers are provided in each case to some mate‐
rial describing what happened and when.

Insider Threat Versus Other Classes of Attacks
Before diving into insider threat behavior in depth, let’s emphasize that “insider
threat” does not necessarily mean malice, and insider threat detection is not simply a
matter of finding the villain. There are a good number of insider cases that involve
sysadmins “adopting” systems within a network and managing them long after
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2 See D. Kravets, “San Francisco Admin Charged with Hijacking City’s Network”.
3 See G. Newsom, “Why Government Should Outsource Technology”, P. Venezia, “Why San Francisco’s Net‐

work Admin Went Rogue”, and R. McMillan, “Terry Childs Juror Explains Why He Voted to Convict”.

they’ve left, inadvertently adding security holes and backdoors in the process. Insider
threat is about risk, and while malice is part of that risk, so are fear, panic, and stupid‐
ity.

Terry Childs
Terry Childs is an example of a particular IT-centric form of insider threat. Childs
was a CCIE who developed a key part of San Francisco’s governmental IT infrastruc‐
ture. After being reassigned, he refused to hand over control to anyone else, until he
was eventually arrested and forced to turn over the passwords.2

Articles on Childs’s motivation emphasize several common factors: he was the sole
architect of the system, he took great pride in it, he didn’t trust anyone else to manage
it, and he was worried he was going to be fired.3 This combination, in particular the
sole ownership of the system, is an example of how bus factor (see “Applying Sector-
Based Workflow to Insider Threat” on page 324) is common in IT, and can be an
insider threat risk.

The simplest definition of an insider threat is that it’s a threat to an organization
posed by a member of that organization. Being a member of the organization gives
the insider significant advantages: better knowledge of the organization, trust to
exploit, physical presence, and the like.

Insiders differ from outsiders in that they have knowledge of their environment that
the outsiders lack. Leveraging this knowledge means that defensive detection techni‐
ques that rely on the attacker making mistakes are less likely to apply to an insider.
Consider, for example, how an insider and an outsider will approach the problem of
finding and copying valuable information from a network.

We’ll assume the outsider is smart: she uses a spear-phishing attack to drop an exploit
kit into the network. With the exploit kit, the attacker probes inside the network and
identifies a fileshare—she copies the contents of the entire fileshare, compresses the
results, encrypts them, and then slowly transfers the results to an external server.

Now let’s consider an insider. He opens up the fileshare on his desktop, copies the
three most valuable files to a USB stick, and walks out the door.

Table 16-1 shows the differences in various areas. The outsider’s behavior is moder‐
ated through the network, while the insider can rely on hard-to-detect behaviors like
direct physical access. The outsider is ignorant of the network’s structure, while the
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4 See United States Department of Justice, US Attorney, District of New Jersey, “Former UBS Computer Systems
Manager Gets 97 Months for Unleashing ‘Logic Bomb’ on Company Network” and M. Worman, “Information
Ordnance: Logic Bombs, Forensics, and the Tragical History of Roger Duronio”.

insider knows where things are. Finally, the outsider must forge or steal credentials,
while the insider already has them. Each of these impacts the defender’s ability to find
hostile behaviors.

Table 16-1. Observables for technical events

Behavior Insider Outsider
Access Can exploit physical access and resources Network moderated

Resources/
targets

Aware of targets and value Must probe to identify targets of value

Credentials May already have credentials, can acquire out of band Must acquire credentials, using password cracking,
exploits, etc.

Tools More likely to rely on existing sysadmin tools and
privileges

More likely to rely on malware

Monitoring More likely to be aware of monitoring, will
intentionally evade

Evasion will not be tailored to specific network,
relies on delay and encryption

Attacks Data theft, specific sabotage May be completely unaware of network’s value

Tailored Damage: Roger Duronio
Roger Duronio was a system administrator for UBS Paine Webber. After a series of
incidents, he quit his job over an unexpectedly small bonus. Before leaving the com‐
pany, he installed a custom-written application to systematically destroy UBS’s trad‐
ing infrastructure before trading began on March 4, 2002.4 Duronio’s logic bomb
went off, hitting UBS’s infrastructure and causing millions of dollars in damage. As
part of his vengeance plan, Duronio shorted UBS’s stock, planning to make a profit
after his bomb damaged the company’s trading abilities.

This attack is an example of an insider tailoring their damage very specifically to the
environment and their knowledge of it. Not only was the bomb tailored to cripple a
specific system, but as an insider, Duronio was aware of how this particular attack
would damage UBS.

For our purposes, the largest difference between insider and outsider attacks is that
the outsider is moderated via the network. Control, exploit, transfer, communication,
credential theft—everything must be done through the network. That communication
may be delayed, it may be encrypted, or it may be hidden, but it must be done via
some network channel. Insiders can exploit physical access and out-of-band commu‐
nications. This means a much heavier reliance on host- and service-based monitor‐
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5 As always, there are many exceptions. Insiders may probe inside the network if they’re not sure where an asset
is, but we’ll focus on their distinctive behavior here.

6 Note that this is also a function of motivation; an insider looking to steal data for profit has less motivation to
take everything than an insider looking to publish everything she can get her hands on on a leak site.

ing, as well as potentially accessing physical logs and integrating them with network
data.

The second most significant difference is that insiders will often exploit their knowl‐
edge of the system to ensure that they aren’t detected, and to tailor damage specifi‐
cally to their environment. Attacker behaviors that we generally expect to see from
outsiders, particularly reconnaissance and fumbling (see Chapter 13), will be much
rarer in the case of insider attacks.5 Insiders stealing intellectual property or other
assets are also likely to be less obvious than an outsider in the data they take.6

Third, insiders can exploit an organization’s trust in ways that outsiders just can’t.
Insiders can rely on their own credentials, using administrative tools or social con‐
nections to gain the access they need. Insiders are also more likely to use their knowl‐
edge to tailor what they steal, whereas outsiders will try to steal whatever’s available

Avoiding Toxicity
Insider threat investigations can backfire when they push too hard. Properly manag‐
ing an insider threat program means recognizing not only that yes, a trusted
employee can go bad, but also that trust is bidirectional. Insider threat recognition
requires that users trust their security personnel; if the relationship between security
and employees goes toxic—if the security team assumes all users are guilty—then
insider threat programs risk becoming self-fulfilling prophecies.

Insider threat investigations are crises; investigators should expect to be in constant
communication with the C-suite with regular briefs, updates, and status information
moving up the chain of command. During the crisis, the team should update infor‐
mation daily. Once the crisis is done, it should be put away. I feel it’s a good idea to
rotate analysts out of insider threat investigations, keeping them from doing them
consecutively because each investigation degrades the participants’ trust in every‐
thing.

On that note, I’ll reiterate: the best way to handle insider threats is to keep them from
happening in the first place. If you are handling a disproportionate number of insider
threat cases, that is a sign of deeper organizational problems. Big brother is not the
solution here.

When an insider is apprehended, it’s always a gut-punch for the organization. Insid‐
ers exploit institutional trust, and once you find an insider, you’re shaking that trust.
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The situation is exacerbated with false positives, where you risk damaging institu‐
tional trust, losing a valuable employee, and making the insider aware you’re looking
for them.

Insider Motivations Versus Risk
In every insider threat case I’ve been involved in, there has been a head-slapping
moment where we ask why the warning signs weren’t heeded. This may be survivor‐
ship bias—the insider threat cases I’ve been involved in all started after the insider
was caught—but I think it’s also a case of how we want organizations to work. We
want people to trust each other, and insiders break that. Afterwards, you ask, “Why?”

There are a number of classic motivations. A Cold War model for recruiting spies
used the acronym MICE: Money, Ideology, Compromise, and Ego. While it’s not per‐
fect, as it’s about creating insider threats rather than detecting them, it has some use—
Duronio was motivated by money and ego, Hanssen by pure ego (he really didn’t do
anything with the money). That said, ideology and compromise have a very Cold War
feel to them, and aren’t necessarily as relevant now, with the potential exception of
hacktivism.

In the case of IT personnel, misplaced ownership is a common problem—Childs is a
reasonable example and isn’t unique. It’s not uncommon for IT personnel to acquire
so much knowledge of core systems that they become indispensible, which is a prob‐
lem if they’re an insider threat or if they get run over by a bus.

Modes of Attack
I will now discuss the types of attacks an insider may uniquely conduct. These attacks
rely on the insider’s particular capabilities within the organization: knowledge of the
internal structure and trust. In the following subsections, I will discuss several modes
of attack, as well as observable data for identifying them.

Data Theft and Exfiltration
By far, the most common form of insider attack involves the exfiltration and theft of
data for future use.

Monitoring file access requires that current versions of the files be in a monitorable
location, such as a common Sharepoint, Google Drive, or the like. A well-defined
checkin/checkout process for shared documents can ensure that the documents are in
a location where they can be monitored for usual access.

Observables for data theft include excessive file access or copying, indicated either by
an increase in data volume or users accessing files they have never accessed before
(see Chapter 14 for information on volume thresholds and locality violations). If a
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user starts to fumble on the filesystem, that is also a potential indicator (see Chap‐
ter 13 for more information). Also pay attention to physical indicators, such as file
access in off-hours, or use of physical tools such as USB drives.

Credential Theft
Credential theft occurs when the insider needs privileges that she doesn’t have for the
current attack. This kind of behavior is a precursor to other types of attacks, most
notably sabotage and data exfiltration. Insider credential theft differs from external
credential theft because it’s more likely to be a form of social engineering (such as the
ever popular “Hey Bob, I need your password to fix your computer!”).

Since the act of credential theft will likely be conducted out of band, a defender is
more likely to see indications that the credentials are being used anomalously after
the fact.

Observables of credential theft include logins from unusual hosts (the user has never
touched the host before, or the host is outside of the network or new) and logins from
unusual physical locations. Multiple logins from diverse locations is suspicious, and
may indicate two users working with the same account. Fumbling (see Chapter 13) is
a good indicator that the user is unfamiliar with the host, and may be an indicator
that she is looking for specific files or exploring the host.

Sabotage
Sabotage scenarios involve the insider damaging company assets, such as by installing
malware on the network. The Duronio case is an example of a sabotage attack. Duro‐
nio not only took advantage of his administrative knowledge to plant his attack
within the network and damage UBS activity, but engineered it specifically to hit at
UBS’s core functions.

Observables for sabotage include identifying changes to software or the subversion of
systems—change control of critical applications or administrative software is helpful
here (see Chapter 19 for more discussion). Understanding what core functions exist
within your system is critical to managing sabotage; inventory and mapping (see
Chapter 18) will help you to understand what systems require more monitoring and
represent the highest risk.

Insider Threat Data: Logistics and Collection
Insiders are usually aware that they’re being monitored. What they usually aren’t
aware of is the extent of monitoring. Anecdotally, insiders will be very cautious where
they know they’re being watched, and careless when they assume they aren’t.
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This means, for the defender, that the more diverse the data collected is, the better.
Strategies include both collecting data from diverse sources, and collecting data
redundantly—the same phenomenon observed at different locations. The problem, of
course, with collecting all this data is that you then have an enormous pile of data to
sift through. Triggered data collection—that is, accessing specific sources as needed
rather than continuously feeding them to the SIEM—is important here.

Because analysts will often be using older, lower-priority, more obscure, and in many
cases proprietary embedded data, there’s a strong need for prior preparation and
inventory. Insider threat investigations can stretch back to years’ worth of data, and
the team is well served to know ahead of time how hard it will be to acquire this data.
In particular, data acquisition at these scales is often an ongoing process involving
staging up data from multiple archives.

Applying Sector-Based Workflow to Insider Threat
Given the high false positive rate and enormous amount of data to process when
dealing with insider threat, insider threat monitoring lends itself well to sector-based
workflow (see Chapter 20 for more information on this). In this case, the sectors are
groups of users based on the risk they represent.

In this approach, the ops team breaks users into different sectors based on risk. A
simple staging model can break activity down by risk combined with trust, as follows:

Low-risk, high-trust (LR/HT)
This should be the organization’s default category, and represent the majority of
users. These users are subject to default monitoring, which is to say nothing tail‐
ored to a specific user, not associated with a specific identity, and focusing pri‐
marily on external threats.

High-risk, high-trust (HR/HT)
This category includes administrators, security analysts, and other personnel
who are trusted, but who can cause exceptional damage. It may also include users
who are outside world–facing, depending on your organization. These users will
have more activities audited—for example, sysadmins may have all of their
administrative tasks logged and achievable only from specified accounts. High-
risk trusted users should be aware of the extent that they are being monitored; it
is part of the responsibility.

Low-risk, low-trust (LR/LT)
This category includes new hires and employees who have recently resigned but
did not have significant responsibilities. These users may have some additional
monitoring in place, or they may be subject to additional controls.
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High-risk, low-trust (HR/LT)
These are users who are subject to extensive and potentially tailored monitoring
depending on the threat and the circumstances.

In this breakdown, analysts would spend the majority of their time checking the
HR/HT and HR/LT groups. HR/HT users may be regularly audited, while HR/LT
users have additional monitoring that they are not aware of. The expectation is that
HR/HT should be a fairly static group, without much turnover, and the HR/LT group
should be small, ideally zero.

Different events (organizational or technical) may cause different transitions. Exam‐
ples of events that might move a user into a lower trust sector include:

Disciplinary action
If a user has been written up for disciplinary violations, threatened other employ‐
ees, etc.

Financial pressure
Declarations of bankruptcy, gambling addiction, and other situations where the
insider needs cash.

Quitting
If the employee quits, then elevated monitoring is likely to be part of the exit
plan.

The risk factors listed here refer to a user’s position within an organization, and are
likely to remain relatively static over time. These cues are also of use for identifying
targets for APT and spear phishing attacks:

Senior personnel
Senior members of an organization (managers, CEOs) have elevated access and
authority.

Assistants to senior personnel
Senior executives live by their assistants, and the easiest way to subvert, access, or
damage them is often to work through their assistants.

Public personnel
Users who are publicly noticeable represent an elevated risk.

Bus factor
An indication of how critical a user is to your organization outside of the org
chart. The term “bus factor” comes from software engineering circles and refers
to the damage that would happen to projects if that particular user were run over
by a bus.
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Physical Data Sources
When dealing with insider threat locations, it is useful to be able to reconstruct where
within a facility a particular event occurred. To this end, the analyst can look at physi‐
cal data sources such as mobile device records and physical access control logs, and if
necessary use network-based techniques.

Mobile devices (tablets, cellphones) usually have at least GPS tracking built into them,
and mobile device management software (examples of which include MobileIron,
Cisco, Meraki, and the like) will usually report this information.

Physical access records include video recordings and logs from physical access tools
such as Datawatch Systems or Kastle Systems card logs (among other vendors). These
are the logs showing badge access into a facility and can be helpful for associating
physical access with network access. Note that access control log formats will be
vendor-specific, and interpreting them may require using a specific vendor-provided
tool. Be prepared to develop some interstitial software to export and process the data
in your preferred console.

Basic network-based techniques will focus on tracking where within an organiza‐
tional network (if the traffic is within the network) a host is located. This can be as
simple as checking the IP address of a host, or it can require running a traceroute to
the host to determine where it is within the organization’s routing infrastructure.

Keeping Track of User Identity
In addition to access records, expect to need to use multiple redundant data sources
to track insiders. If insiders are, for example, aware that they have to move through a
web proxy to access the outside world, expect them to move their traffic outside of
that proxy server and that you will likely have to fall back to NetFlow.

Be aware that insider threat investigations may involve setting up new log collection
capabilities, as the analysis team may be called in several months before any final
decision.

Since the analyst is usually in a supporting role for an insider investigation, he often
will have a clear idea of what particular user he needs to monitor. The hard part is
associating that user’s identity with observable phenomena, in particular when using
redundant sources.

Further Reading
1. D. Cappelli, A. Moore, and R. Trzeciak, The CERT Guide to Insider Threats: How

to Prevent, Detect, and Respond to Information Technology Crimes (Boston, MA:
Addison Wesley Professional, 2012).
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2. CERT Insider Threat Group home page.
3. DARPA ADAMS project.
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CHAPTER 17

On Threat Intelligence

In this chapter, I will discuss the consumption and processing of threat intelligence.
Threat intelligence is a process of sharing data about attacks—victims of attacks or
investigators share contextual information. Threat intelligence can comprise a variety
of data sources, including geolocation data, reputation information (often gussied-up
geolocation data), and information on attacker techniques, malware signatures, and
vulnerabilities.

I have divided this chapter into two major sections. In the first section, I discuss
threat intelligence source data: the type of information that comprises threat intelli‐
gence, and formats you can expect to receive this information in. In the second sec‐
tion, I discuss the process of setting up a threat intelligence program for an
organization.

Defining Threat Intelligence
For our purposes, I am going to define threat intelligence data as contextual data col‐
lected from multiple sources to improve response. By contextual data, I mean that
threat intelligence is data collected to enhance event-based data such as IDS alerts or
flow data. Threat intelligence data is collected and synthesized from multiple sources;
this includes actions more related to conventional intelligence gathering. Finally,
threat intelligence data is used to improve incident response—it provides information
for hardening networks, identifies indicators of higher-risk attacks, and provides a
means for operations teams to identify common threads.

I must emphasize an important point here: threat intelligence data is supplementary
and contextual. You cannot run a detection program on threat intelligence alone;
there must be some set of event data to apply threat intelligence to. A threat intelli‐
gence feed without a primary data source (incidents, network traffic) is useless. A
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threat intelligence feed that isn’t relevant to the types of data you’re collecting is
equally useless.

Raw threat intelligence data appears in network feeds, in the same way that conversa‐
tions appear in the air—it doesn’t become a product until someone analyzes it and
packages it. In this sense, “threat intelligence” is a term now applied to formerly infor‐
mal or largely corporate processes of information sharing. That’s a cynical way of stat‐
ing a good thing; in the last few years, there’s been an increasing recognition that
threat intelligence needs to be treated more systematically, and that information secu‐
rity isn’t a purely technical effort. This includes the establishment of standards with
some traction (e.g., STIX and TAXII), the increasing acceptance of threat intel plat‐
forms (e.g., MISP), and the development of open organizations for sharing threat
intel (the Information Sharing and Analysis Centers, or ISACs in particular have
taken charge on this).

Data Types
Threat intelligence is a wide, undefined topic, and it’s an area where people are very
eager to sell data. In this section, I am going to (loosely) classify threat intelligence
data along several different qualities. Specifically, these qualities are the type of intelli‐
gence delivered, the maturity of the data, its origin, and its format.

Types of threat intelligence data
We will consider three major types of threat intelligence data: network reputation
information (e.g., IP addresses, URLs), IOCs (e.g., malware hashes), and TTPs (tools,
techniques, and procedures).

Network reputation information refers to data that scores URLs, IP addresses, or
other indicators for hostility. A reputation threat feed will generally consist of timed
and dated lists of keys, and an explanation for why a key is marked as a threat. As a
rule, reputation data is something that you can directly plug into your access control
lists (ACLs) or network filters, or automatically annotate your SIEM data with.

A free example of this type of information is the rules provided by the Emerging
Threats database, a free repository of threat intelligence encoded as lists of IP
addresses and IDS rulesets. This information is subdivided into different categories,
such as botnet command and control, and various named groups.

Indicators of compromise (IOCs) really describe anything that can be used to indicate
that a host has been compromised by malware. IOC data is forensic and largely host-
based, including information such as malware hashes or credentials.

TTPs are usually reports describing the methods and techniques used by attackers,
meant to be read and processed by people for situational awareness. These can be
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general, perhaps signaling awareness of a new form of attack, or quite specific, detail‐
ing behavioral signatures for particular malware groups.

Finally, there is an implicit category of threat intelligence data that I think of as secon‐
dary. Secondary data is threat intelligence that is delivered to platforms within your
organization for their use. The classic example is antivirus signatures—when you sub‐
scribe to an AV service, you receive regularly updated intelligence delivered to your
AV clients.

Maturity and format of threat intelligence data
A key workflow problem for any threat intelligence organization is the process of col‐
lecting, vetting, and reformatting the data. Threat intelligence data comes in a num‐
ber of distinct formats, most of which are not directly accessible to the end users.

In addition, we must discuss the current efforts toward developing standards. In the
last decade or so, there have been a number of efforts to develop threat intelligence
formats. The first of these were the IODEF (Incident Object Description Exchange
Format) and IDMEF (Intrusion Detection Message Exchange Format) standards
developed by the IETF in the mid-2000s.

Several providers have also created their own formats. The most notable of these is
MISP, the malware intelligence sharing platform, originally built by CIRCL (Luxem‐
bourg’s CERT). MISP is an open source project with a thriving community. Similar
projects include OpenIOC, an outgrowth of Mandiant’s (now part of FireEye) foren‐
sics tools, and AlienVault’s Open Threat Exchange (OTX) standard.

The other major project is a collection of OASIS-backed standards grouped under the
moniker STIX (Structured Threat Information Expression). The actual project
includes several standards; STIX itself is the standard for representing IOCs, while 
TAXII (Trusted Automated Exchange of Intelligence Information) is the transport
protocol.

So, with all these standards, what ones to use? Probably both MISP and STIX—with
IOC data, the syntax of how the data is recorded is usually less important than the
semantics. All IOC reporting standards are some form of key/value pairing, and the
more important questions are what the keys are, not how they’re stored, and whether
there are interoperability tools.

With that in mind, here are some common types of IOC fields you can expect:

File hashes
Hashes of specific files associated with a compromise. Given the rapid pace at
which hashes are replaced and move (see Chapter 6), IOC formats usually specify
multiple common hashes. These include MD5, SHA1, SHA256, and the longer

Defining Threat Intelligence | 331

http://www.misp-project.org
http://www.openioc.org/
https://otx.alienvault.com
https://oasis-open.github.io/cti-documentation/


formats (like SHA384 and SHA512). IOCs will usually hash the malware files, but
also may hash filenames.

Network addresses
Domain names, IP addresses. These are often categorized as botnet sites, com‐
mand and control servers, drop sites, and the like.

Target information
Email addresses, financial information (ABA routing numbers, credit card num‐
bers, etc.).

Windows data
Portable Executable (PE) hashes, Registry information, and other Windows-
specific data.

A final note: the tools are, to be honest, less important than the communities. The
intent of all of these standards is to provide a way to share information that is more
structured than an email, but the standards are useless without intelligence to populate
them. In the case of the MISP and STIX standards, you should really pay the most
attention to their resources pages to find the organizations that are sharing data, and
which ones are most relevant to your organization.

Provenance of threat intelligence data
The first and oldest sources of threat intelligence data are mailing lists and publicly
shared resources curated by private organizations such as the Spamhaus Project and
the various national CERTs. These organizations have a distinct producer/consumer
separation, and may be government or privately funded.

Know Your CERTS
The acronym CERT refers to a Computer Emergency Response Team, and is often
interchangeable with CSIRT (Computer Security Incident Response Team). In this
book, CERT (not the acronym) specifically refers to the subdivision of the Software
Engineering Institute at Carnegie Mellon University. This is a distinct organization
from the national CERTs. Almost every country on the planet has its own national
CERT, which serves as an information clearinghouse for computer security issues
within that country. The biggest and best-funded is the United States US-CERT,
which is itself a division of the US Department of Homeland Security. Most CERTs
are identifiable by the country code embedded somewhere in their name (KrCERT,
JPCERT, CERT.at, BR CERT, etc.).

Information sharing organizations are another common source of this data—but I
have to emphasize the word sharing. These organizations have a clear concept of
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1 A comprehensive list of ISACs is available at https://www.nationalisacs.org/member-isacs.

ingroup and outgroup, and if you want information from them, you have to find
some way to join the group. The most easily accessible and directly useful for many
organizations are the various information sharing and analysis centers;1 these groups
share information about sector-specific threats.

There are also proprietary threat intelligence feeds: subscription services that deliver
threat intelligence data. These services, when you join them, provide a curated collec‐
tion of threat intelligence information that is updated and maintained on a regular
basis. This information is usually the best formatted, but it is also a total black box.
You do not know where the information comes from.

Finally, there’s “hidden” threat intelligence data. When I say this data is “hidden,”
what I mean is that you’re buying it through another source—for example, you are
getting threat intelligence via your AV and antispam systems, and may be getting it
via other appliances as well.

Creating a Threat Intelligence Program
An effective threat intelligence program will focus on techniques for effectively incor‐
porating threat intelligence into the operational workflow with minimal pain and
frustration for the ops team. The responsibilities of the analysis team include identi‐
fying the goals and domain for threat intelligence data, and determining what type of
data to purchase and apply.

Identifying Goals
The easiest way to waste money on threat intelligence data is to let the vendors decide
what threat intelligence you buy. The first step the threat intelligence team needs to
focus on is determining what the data will be used for, what data is relevant, and what
is redundant.

When discussing what the data will be used for, there are a couple of basic goals for
the team to consider. These are:

Improving hardening
In this context, this means developing stronger and more rigorous defenses.
Hardening requires that the ops team have a history of effectively aggressively
blocking material—they have the experience, they have the policy support, and
they have user buy-in. Network reputation information and up-to-date rule feeds
are useful examples of this category of defenses.
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Annotating attack data
Reputation feeds and network IOCs are useful sources for annotating attack data,
which helps analysts determine in turn whether an attack represents a significant
threat to the organization. Reputation feeds are usually reasonably easy to con‐
vert into actionable data such as IDS signatures or firewall rules, since they are
generally just lists of IP addresses or names anyway. IOCs require more contex‐
tual information, understanding what the indicated address means and how it
appears.

Supporting forensic investigations
Malware IOCs support investigations by providing clues that the team can use to
identify how a system is compromised and additional cues for finding compro‐
mised system. For example, if a specific malware hash is an IOC for an attack,
and that same attack has a specific command and control, they can query traffic
for the command and control address to identify other compromised hosts.

Keeping current
For mature organizations, threat intelligence services that keep you up-to-date on
current attacker TTPs are a vital tool for identifying potential new threats.

As a rule of thumb, annotation is usually the easiest task to start with—annotating an
IDS feed with high-quality threat information can help an analyst get through false
alerts more quickly and focus on the higher-priority alerts. Forensic investigation
support assumes you have a team that is conducting forensic investigations and mal‐
ware analysis.

In addition to operational impact, determine what sector you’re involved in and how
that impacts your threat intelligence needs. In particular, consider:

• Your national affiliations.
• Your industrial sector.
• What category of attacks you expect to deal with. Are you expecting to be the tar‐

get of spear-phishing campaigns? Do you have a large number of industrial sys‐
tems? Do you build/prototype software?

• Your software/hardware inventory.
• Whether you’re already purchasing hidden threat intelligence (e.g., through regu‐

larly updated antispam or antivirus tools).

Underpinning all of these issues is the question: what are you going to do with the
data? If you don’t run an active remediation program, then bleeding-edge IOCs aren’t
going to help much.
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Starting with Free Sources
Start with the newspaper—the easiest way to start collecting threat intelligence data is
to read publicly available feeds of threat data. This includes reports from organiza‐
tions like Cisco’s Talos, Mandiant, FireEye, and the like. In addition, use news sites
such as Dark Reading as a jumping-off point.

The next step is to look into the organizations that provide threat intelligence data for
your goals and sectors. If you have an industrial or national CERT, start checking to
see what intelligence it provides. If there’s a relevant ISAC for your organization, see
about joining it. Also check organizations such as FIRST. Mailing lists such as full-
disclosure (for malware) and NANOG (for networking issues) are critical.

Determining Data Output
The next phase of your threat intelligence project’s maturity involves staging up the
data you’re acquiring for use. Based on the four classes of data that I discussed previ‐
ously, you can expect the output to be as follows:

• Hardening data will translate into access controls. This includes firewall and ACL
rules, as well as specialized alerts such as SiLK scripts based on the type of data.

• Annotation data is going to be fed to the analyst, so you should expect this data to
be as close to the analyst as possible: well-maintained databases plugged into
your SIEM, or merging the information with event data as it comes online.

• IOC data will need to be searched; for that purpose, you need some kind of plat‐
form for managing and interchanging IOCs. Examples include MISP.

• TPP data needs to be distributed. Regular roundtable meetings discussing the
current state of the practice and reviewing the latest intelligence are a reasonable
approach. Note that TPPs may be most effective as user briefings—for example,
presentations to your ops team to provide them with up-to-date threats, or pre‐
sentations to your C-suite to explain what problems the ops team is facing. An
effective threat intelligence program will require multiple outputs for multiple
audiences, delivered at varying levels of detail.

Purchasing Sources
As security companies mature, they tend to offer threat intelligence services. There’s a
simple reason for this: threat intelligence is gathered by observing attacks in action,
and if your company is spending all of its time dissecting attacks, examining malware,
and collecting information on how the internet operates, threat intelligence is a per‐
fectly logical product. A good number of network security devices are hardware plat‐
forms for delivering threat intelligence—what you pay for, basically, is expertise.

Creating a Threat Intelligence Program | 335

http://www.darkreading.com/


2 One thing to note in passing: even if all the threat intelligence feed does is repackage public sources, you may
want to ask whether you want to spend your time repackaging the public sources.

With that in mind, the savvy consumer is going to quickly recognize that a lot of
companies are selling threat intelligence data and aren’t going to ask you questions
about whether the data is relevant. Your responsibility as the consumer is to figure
out what sources are germane to you and seek them out.

Questions to ask when evaluating the data:

• Does the data overlap other types I’ve already acquired? It’s a fair step to begin by
collecting threat intel feeds within orthogonal domains (for example, TTPs for
situational awareness, then IP reputation data, then a malware feed, then IOCs).

• Does the data overlap data I’m getting elsewhere? For example, if I purchase an
IOC feed, am I getting better results than I do from a mailing list or other public
source? Using the free data as a reference point is useful here.2

• Are the feeds relevant and timely? Keep track of how much the ops team uses
threat intelligence results—if an IOC feed isn’t helping your ops team, consider
whether it’s worth paying for.

Managing Names: A Problem in Construct Validity
If you do purchase threat intelligence data, expect to spend a fair amount of time just
coordinating names. For example, MITRE’s ATTACK repository lists a GROUP0007,
which Mandiant calls APT 28 and CrowdStrike calls Fancy Bear. While there’s a cer‐
tain amount of marketing behind this, it’s not entirely marketing. Determining exactly
what is a threat group is a function of construct validity.

Each threat intelligence company creates different constructs for defining attack
groups. These techniques will grow out of the organization’s history and practice. For
example, a simple question like “Are these two computers on the same botnet?” is a
construct argument—a network guy will likely look at command and control, a mal‐
ware guy at the malware samples. The only person who knows is the person who
owns the botnet, and he’s not talking.

As discussed in Chapter 1, construct validity requires a certain amount of transpar‐
ency that you may not find in this case. As such, you will want to examine the IOCs
provided by each provider and cross-reference them to see when they overlap.
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Brief Remarks on Creating Threat Intelligence
This chapter is primarily focused on threat intelligence from a consumer perspective.
I view creating data as a complementary task after you have a working program run‐
ning. To create threat intelligence data, you have to have threats to learn from, which
means both that you’re observing threats and that they’re ones you don’t have prior
knowledge of. So, the prerequisites for creating threat intelligence include:

• A threat intelligence program mature enough to determine whether what you’re
dealing with is novel.

• Manpower to investigate threats. This likely involves at least a working forensics
and remediation program (more than just patch and restore).

• Channels for sharing the data. If your threat intelligence is mature enough to
determine novelty, you should be in contact with ISACs and other organizations
to share your data with.

• Enough incidents to generate intelligence.

On the last point, while you can generate intelligence from being hit repeatedly, if you
run a large enough network, you can also instrument your network to proactively col‐
lect and share threat intelligence. In particular, you can collect dark space data, run
honeypots to collect intelligence, scan your web logs for IOCs, and share that infor‐
mation. The end state of many information security companies is threat intelligence,
because they’re capitalizing on the most basic resource needed to start creating threat
intelligence: a plethora of different attacks to examine.

Further Reading
1. The ACM Workshops on Information Sharing and Collaborative Security

(WISCS) are an excellent source of research and technology on threat intelli‐
gence.

2. H. A. Slatman, “A Curated List of Awesome Threat Intelligence Resources,” avail‐
able at https://github.com/hslatman/awesome-threat-intelligence. This is a giant
curated list of threat intelligence feeds and tools, well worth perusing.

3. J. Dietle, Effective Threat Intelligence: Building and Running an Intel Team for Your
Organization (CreateSpace Independent Publishing, 2016).
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CHAPTER 18

Application Identification

It used to be so easy to identify applications in network traffic: you looked at the port
number, or if that failed, you looked at a couple of header packets for identification
information. But these identifiers have become muddier over the past decade, in par‐
ticular as users seek to hide certain classes of traffic (BitTorrent!) and as privacy advo‐
cates push for increased encryption.

There are still methods for identifying traffic that do not rely on payload. Most proto‐
cols have a well-defined sequence and certain predictable behaviors that mark them
so you don’t have to look at the payload. By looking at the hosts to which a session
talks and at packet sizes, a surprising amount of information is available.

This chapter is broken into two major sections. The first section focuses on techni‐
ques for identifying a protocol, starting with the most obvious methods and moving
toward more complex techniques such as behavioral analysis. The second section dis‐
cusses the contents of application banners and some methods for finding behavioral
and payload information for analysis.

This chapter is very much a companion to Chapters 6 and 7; however, those chapters
are more focused on the data that you can collect. This chapter is focused on applica‐
tion identification specifically, and is intended as a prelude to Chapter 19.

Mechanisms for Application Identification
In a perfectly safe and secure computing environment, you could just examine the
configuration file on each server and it would tell you all the traffic that the server
allows. Unfortunately, there are many hidden ways of starting traffic that undermine
this simple strategy. You may have hosts on your system you don’t know about that
were started by users with innocent or not-so-innocent goals of their own. Services
can be started by administrators or ordinary users outside of your startup configura‐
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tion. And legitimate servers can be taken over by intruders and used for things you
never intended. Although many of the techniques in this section are commonly
applied by snoopers who don’t have access to your servers’ configuration files, you
should be using the techniques as well so you know what is really happening.

Port Number
Port numbers are the first way to check what a service is, and while there’s no techni‐
cal requirement that a particular service runs on a particular port, there are social
conventions that tend to make it so. IANA maintains a public registry of port num‐
bers and their associated services. Although port number assignment is effectively
arbitrary, and users have an active interest in evading detection by using previously
untouched port numbers (or, slightly more deviously, by using common port num‐
bers), the well-known ports still carry enough official and innocent traffic to make
them the first-pass mechanism for identifying protocols. Techniques we’ll discuss
later in this section often use port numbers as an assertion on the user’s part. For
example, a user talking on port 80 is effectively asserting that she’s talking to a web
server.

Port number assignment is chaotic because all anyone really has to do is pick a num‐
ber and hope nobody else is using it. The official registry maintained by IANA focu‐
ses on protocols designed as part of the RFC process. Other registries and lists
include a Wikipedia page, SpeedGuide.net, and the SANS Internet Storm Center,
which provides a mini-messageboard per port with useful insights.

So, a huge number of ports are reserved for certain applications, and another huge
number are used conventionally for other applications—but there are a small set of
applications that actually matter. Table 18-1 lists the ports that I worry about the
most, with a short description explaining why in each case.

Table 18-1. Ports to care about

Port Name Meaning
The Holy Trinity

80/tcp HTTP Not only is HTTP the basic protocol for nearly everything on the internet
now, it’s also the most commonly imitated protocol. Users will drop
traffic on port 80 to evade firewall rules.

25/tcp SMTP Email is the most critical service after HTTP, and also one of the most
attacked.

53/udp DNS Another critical foundational protocol; DNS attacks will seriously
damage networks.

Infrastructure and Management

179/tcp BGP Border Gateway Protocol; a core protocol for internetwork routing.

161-162/udp SNMP System Network Management Protocol; used to manage routers and
other devices.

340 | Chapter 18: Application Identification

http://bit.ly/port-list
http://bit.ly/iana-port
http://bit.ly/tcp-udp-ports
http://bit.ly/sg-ports
http://bit.ly/sans-isc


Port Name Meaning
22/tcp SSH The administrative workhorse.

23/tcp Telnet If I see Telnet, I kill the connection. It is obsolete and should be replaced
by other protocols, notably SSH.

123/udp NTP Network Time Protocol; used to coordinate clocks on networks.

389/tcp LDAP Lightweight Directory Access Protocol; manages directory services.

File Transfer

20/tcp FTP-data Along with 21, makes up FTP.

21/tcp FTP The FTP control port. Another service I kill if I see it. Use SFTP.

69/tcp TFTP Trivial file transfer; largely used by system administrators and hopefully
never seen crossing a border router.

137–139/tcp
& udp

NETBIOS NetBios is the infrastructure used for Service Message Block (SMB) and
in particular provides sharing features for Windows and (via Samba)
Unix systems. Pounded by attacks over its history.

Email

143/tcp IMAP Internet Message Access Protocol; one of the two standard email client
protocols.

110/tcp POP3 Post Office Protocol; the other standard email client protocol.

Databases

1521/tcp Oracle The primary Oracle server port.

1433/tcp &
udp

SQL Server Microsoft SQL Server’s port.

3306/tcp MySQL Server MySQL’s default port.

5432/tcp Postgresql
Server

Postgres’s default port.

File Sharing

6881–
6889/tcp

BitTorrent The default BitTorrent client ports.

6346–
6348/tcp &
udp

Gnutella BearShare and LimeWire’s default Gnutella ports.

4662/tcp &
udp

eDonkey Default port for eDonkey clients.

On Unix and Windows systems, port assignment is supposed to be controlled by
the /etc/services file (\WINDOWS\SYSTEM32\DRIVERS\ETC\SERVICES on Win‐
dows hosts). A dump of the file, shown in Example 18-1, shows that it’s a simple data‐
base listing a service name and the corresponding host.

Example 18-1. The contents of /etc/services

# Catting /etc/services without header info
$ cat /etc/services | egrep -v '^#' | head -10
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rtmp              1/ddp     # Routing Table Maintenance Protocol
tcpmux            1/udp     # TCP Port Service Multiplexer
tcpmux            1/tcp     # TCP Port Service Multiplexer
nbp               2/ddp     # Name Binding Protocol
compressnet       2/udp     # Management Utility
compressnet       2/tcp     # Management Utility
compressnet       3/udp     # Compression Process
compressnet       3/tcp     # Compression Process
echo              4/ddp     # AppleTalk Echo Protocol
rje               5/udp     # Remote Job Entry

The names in the services file are used by getportbyname and any other port lookup
functions to identify protocols. This does not, of course, mean that the users are really
invoking those services, just that services say the ports are supposed to be used by the
services. To get a list of all the services I have listening on a host, I use netstat -a, as
discussed in Chapter 6. An example output is shown in Example 18-2.

Example 18-2. netstat and /etc/services/

# I'm running a Django web server on port 8000, and I run netstat
$ netstat -a | grep LISTEN
tcp4       0      0  localhost.irdmi        *.*                    LISTEN
tcp46      0      0  *.8508                 *.*                    LISTEN
tcp46      0      0  *.8507                 *.*                    LISTEN
$ cat /etc/services | grep irdmi
irdmi2          7999/udp     # iRDMI2
irdmi2          7999/tcp     # iRDMI2
irdmi           8000/udp     # iRDMI
irdmi           8000/tcp     # iRDMI

netstat consults /etc/services to determine what the port number is named, and you
can always find the real port number in /etc/services. However, there is no guarantee
that the service is actually what the named service is.

It’s appropriate at this point to make a digression into the raving paranoia characteris‐
tic of a network traffic analyst. netstat is obviously a great tool for identifying which
ports are open on your host, but if you want more certainty, scan the machine verti‐
cally and compare the results.
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Port Assignment
Any symmetric TCP or UDP transaction uses two port numbers: the server port is
used by the client to send traffic to the server, and the client port is used by the server
to respond. Client ports are short-lived and recycled from a pool of ephemeral ports;
the size and allocation of the pool is a function of the TCP stack in question and user
configuration.

There are several conventions regarding port assignment. The most important is the
distinction between port numbers 1024 and below: nearly every operating system that
has a socket on one of these requires root or administrative access. When used legiti‐
mately, this means only the administrator can start a service such as a web or email
server. But this property also makes services on those ports attractive to attackers,
because subverting those processes grants root privileges.

Generally, ports below 1024 are used only to run server sockets. This isn’t to say that
you couldn’t use them for clients, only that it would be contrary to standard practice
and mildly insane because you’re using a client port with root access. Technically, an
ephemeral port can be any port above 1024, but there are a number of conventions in
their assignment.

IANA has assigned a standard range (49152 to 65535) for ephemeral ports. However,
this range is still in the process of being adopted, and different operating systems will
have different default ranges. Table 18-2 lists common port assignments.

Table 18-2. Port assignment rules for various operating systems

Operating system Default range Controllable
Windows, through XP 1025–5000 Partly, through MaxUserPort in Tcpip

\Parameters

Windows, Vista onward 49152–65535 Yes, via netsh

macOS 49152–65535 Yes, through
net.inet.ip.portrange family in
sysctl

Linux 32768–65535 Yes, through /proc/sys/net/ipv4/
ip_local_port_range

FreeBSD 49152–65535 Yes, through
net.inet.ip.portrange family in
sysctl
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Application Identification by Banner Grabbing
Banner grabbing and its companion function, OS fingerprinting, are scanning techni‐
ques used to determine server and operating system information. They rely on the
convention that the first thing most applications do when woken up is identify them‐
selves. Most server applications respond to an open socket by passing their protocol,
their current version, or other configuration information. If they don’t do it automati‐
cally, they will often do so with a little prodding.

Banner grabbing can easily be done manually using any “keyboard to the socket” tool,
such as netcat (see Chapter 7 for more information). Example 18-3 shows active
banner grabbing using netcat to collect some data. Note that I am able to pull infor‐
mation from several servers without actually using the protocol in question.

Example 18-3. Examples of active banner grabbing with netcat

# Open a connection to an SSH server.
# Note that I receive information without the need for actual
# interaction with the server.
$ netcat 192.168.2.1 22
SSH-2.0-OpenSSH_6.1
^C
# Open an IMAP connection.
# Again, note that I have to do nothing with mail itself.
$ netcat 192.168.2.1 143
* OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS
  ID ENABLE STARTTLS AUTH=PLAIN AUTH=LOGIN] Dovecot ready.

An alternative to active banner grabbing is passive banner grabbing, which can be
done using tcpdump. Since a banner is really just text that appears at the beginning of
a session, grabbing the payload of the first five or six packets will provide banner data
as well.

bannergrab.py is a very simple banner grabbing script using Scapy. It’s not trying to
parse banner contents—it’s just grabbing the first load of information it sees. This can
be quite informative. Example 18-4 shows the contents from the SSH dump.

Example 18-4. Grabbing client and server banners using Scapy

#!/usr/bin/env python
#
#
# bannergrab.py
# This is a Scapy application that loads up a banner file and drops
# out the client and server banners.  To do so, it
# reads the contents of the client and server files from the session,
# extracts ASCII text, and dumps it to screen.
#
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from scapy.all import *
import sys
sessions = {}

packet_data = rdpcap(sys.argv[1])
for i in packet_data:
    if not sessions.has_key(i[IP].src):
        sessions[i[IP].src] = ''
    try:
        sessions[i[IP].src] += i[TCP].payload.load
    except:
        pass

for j in sessions.keys():
    print j, sessions[j][0:200]

$ bannergrab.py ssh.dmp
WARNING: No route found for IPv6 destination :: (no default route?)
192.168.1.12
216.92.179.155 SSH-2.0-OpenSSH_6.1

Example 18-5 shows a pull from www.cnn.com.

Example 18-5. A pull from cnn.com

57.166.224.246 HTTP/1.1 200 OK
Server: nginx
Date: Sun, 14 Apr 2013 04:34:36 GMT
Content-Type: application/javascript
Transfer-Encoding: chunked
Connection: keep-alive
Vary: Accept-Encoding
Last-Modified: Sun
157.166.255.216
157.166.241.11 HTTP/1.1 200 OK
Server: nginx
Date: Sun, 14 Apr 2013 04:34:27 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
Set-Cookie: CG=US:DC:Washington; path=/
Last-Modified

66.235.155.19 HTTP/1.1 302 Found
Date: Sun, 14 Apr 2013 04:34:35 GMT
Server: Omniture DC/2.0.0
Access-Control-Allow-Origin: *
Set-Cookie: s_vi=[CS]v1|28B31B23851D063C-60000139000324E4[CE];
     Expires=Tue, 14 Apr 2
23.6.20.211 HTTP/1.1 200 OK
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x-amz-id-2: 287KOoW3vWNpotJGpn0RaXExCzKkFJQ/hkpAXjWUQTb6hSBzDQioFUoWYZMRCq7V
x-amz-request-id: 8B6B2E3CDBC2E300
Content-Encoding: gzip
ETag: "e5f0fa3fbe0175c47fea0164922230d4"
Acc

192.168.1.12 GET / HTTP/1.1
Host: www.cnn.com
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebK
23.15.9.160 HTTP/1.1 200 OK
Server: Apache
Last-Modified: Wed, 10 Apr 2013 13:44:28 GMT
ETag: "233bf1-3e803-4da01de67a700"
Accept-Ranges: bytes
Content-Type: text/css
Vary: Accept-Encoding
Content-Encoding

63.85.36.42 HTTP/1.1 200 OK
Content-Length: 43
Content-Type: image/gif
Date: Sun, 14 Apr 2013 04:34:36 GMT
Connection: keep-alive
Pragma: no-cache
Expires: Mon, 01 Jan 1990 00:00:00 GMT
Cache-Control: priv

138.108.6.20 HTTP/1.1 200 OK
Server: nginx
Date: Sun, 14 Apr 2013 04:34:35 GMT
Content-Type: image/gif
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20

In Example 18-5, the client is midway through the dump (at 192.168.1.12). Note the
sheer number of web servers; this is a common feature with modern websites, and
you can expect to see dozens of servers involved in constructing a single page. Also
note the information provided: the server sends content information, the server
name, and a bunch of configuration data. The client string includes a variety of
acceptable formats and the User-Agent string, which we’ll discuss in more depth
later.

Banner grabbing is fairly simple. The challenge lies in identifying what the banners
mean. Different applications have radically different banners, which are often com‐
plete languages in themselves.
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Application Identification by Behavior
In the absence of payload, it’s often difficult to tell what an application is, but an enor‐
mous amount of information is still available about what an application does. Behav‐
ioral analysis focuses on finding cues for the application’s behavior by examining
features such as the packet sizes and connection failures.

Packet sizes in any IP protocol are bound by the maximum transmission unit (MTU),
the maximum frame size defined by the layer 2 protocol. When IP attempts to send a
packet larger than the MTU, the original packet is split into the number of MTU-
sized packets that are required to transmit it. In tcpdump and NetFlow data, this
means that the maximum packet size you will ever see is controlled by the shortest
MTU of the route taken by that packet so far. Because the internet is dominated by
Ethernet, this imposes an effective limit of 1,500 bytes on packet sizes.

We can use this limit to split network traffic into four major categories:

Fumbling
Covered in Chapter 13, this consists of failed attempts to open connections to
targets.

Control traffic
Small, fixed-size packets sent by clients and servers at the beginning of a session.

Chatter
Packets less than the MTU in size, of varying size and sent back and forth
between clients and servers. Chatter messages are characteristic of chat protocols
like ICQ and AIM, as well as the command messages for many protocols such as
SMTP and BitTorrent.

File transfer
Asymmetric traffic where one side sends packets almost entirely of MTU size and
the other side sends ACKs in response. Characteristic of SMTP, HTTP, and FTP.

Control packets are, when available, the most interesting information you can find on
a service because their sizes are often specified by the service itself. Control messages
are often implemented as templates of some form, with specific areas to fill in the
blanks. As a result, even with the payload obscured, the sizes can often be used to
identify them.

Histograms, presented in “Histograms” on page 210, are useful for comparing proto‐
cols via the lengths of their control messages. As an example, consider Figure 18-1.
This is a plot of histograms for short flows (less than 1,000 bytes in total) from clients
to BitTorrent and web servers.
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Figure 18-1. Histogram comparing BitTorrent and HTTP short flow sizes

For a web client, this consists primarily of issuing the HTTP GET request and then
receiving a file. The GET requests, as you can see in Figure 18-1, are spread over a
somewhat normalized distribution between about 200 and 400 bytes. Conversely, the
BitTorrent packets have a huge peak between 48 and 96 bytes, a function of the 68-
byte BitTorrent handshake message.

Histograms can be checked visually, as in Figure 18-1, or numerically by calculating
the L1 (or Manhattan) distance. In a histogram, you calculate the L1 distance as the
sum of the differences between each bin. Normalized to percentages, this provides a
value between 0 and 2, with 0 indicating that the two histograms are identical and 2
indicating that the two histograms are complete opposites. Example 18-6 shows how
to calculate the L1 distance in Python.

Example 18-6. Calculating L1 distance in Python

#!/usr/bin/env python
#
#
# calc_l1.py
#
# Given two datafiles consisting purely of sizes and a histogram
# specification (bin size, max bin size), calculate the L1 distance
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# between two histograms.
#
# command line:
#         calc_l1 size min max file_a file_b
#
# size: the size of a histogram bin
# min: the minimum size to bin
# max: the maximum size to bin
#
#
import sys

bin_size = int(sys.argv[1])
bin_min = int(sys.argv[2])
bin_max = int(sys.argv[3])
file_1 = sys.argv[4]
file_2 = sys.argv[5]

bin_count = 1 + ((bin_max - bin_min)/bin_size)
histograms = [[],[]]
totals = [0,0]

for i in range(0, bin_count):
    for j in range(0,2):
        histograms[j].append(0)

# Generate histograms
for h_index, file_name in ((0, file_1), (1,file_2)):
    fh = open(file_name, 'r')
    results = map(lambda x:int(x), fh.readlines())
    fh.close()
    for i in results:
        if i <= bin_max:
            index = (i - bin_min)/bin_size
            histograms[h_index][index] += 1
            totals[h_index] += 1

# Compare and calculate L1 distance
l1_d = 0.0
for i in range(0, bin_count):
    h0_pct = float(histograms[0][i])/float(totals[0])
    h1_pct = float(histograms[1][i])/float(totals[1])
    l1_d += abs(h0_pct - h1_pct)

print l1_d

Chatting and file transfers can be examined by identifying the individual packet sizes
or, in the case of flow files, comparing the mean packet sizes for the flow (flow bytes
divided by flow packets). If one side is close to the MTU, odds are that it’s a file trans‐
fer, and if both sides are roughly asymmetric and greater than 40 bytes per packet,
some form of chatter may be going on. To illustrate this graphically, consider the
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plots in Figures 18-2 and Figure 18-3. These show the packet sizes for a file transfer
(HTTP) and chat (AIM) session, respectively.

Figure 18-2. Packet sizes for an HTTP session

Figure 18-3. Packet sizes for an AIM session
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Application Identification by Subsidiary Site
Network-aware applications rarely exist in a vacuum. Software updates, registration
servers, database updates, advertising, and user tracking are all examples of network-
based functionality that an application can conduct without a user being aware of
them. At the same time, users may visit support forums, talk on message boards, or
require access to information just to run the application.

As example of this behavior, consider two applications: antivirus and BitTorrent. Any
antivirus application needs to contact its home servers on a regular basis in order to
update the knowledge base. This activity is so predictable that it’s not uncommon for
malware to explicitly disable the update addresses on the local host. Any host running
AV should be contacting these addresses on a regular basis, and anyone who does is
likely to be running AV.

Now consider BitTorrent. A considerable amount of work has been done in recent
years to decentralize the protocol. In the late 2000s, it was possible to identify trackers
and then identify users by finding out who was communicating with the trackers.
Although tracker identification is less effective now, BitTorrent users still need to find
their files, and the relevant magnet links are concentrated on sites such as the Pirate
Bay, KickassTorrents, and other specialized torrent sites. Find a user who visits the
Pirate Bay, then find someone engaging in huge file downloads on weird ports, and
you have probably found a BitTorrent user. Once you’ve identified a server or host
running a particular service, look at who else is talking to it.

Application Banners: Identifying and Classifying
Application banners can provide a lot of information about applications, servers,
operating systems, and versions of all these things. Unfortunately, the format of these
banners changes radically with each service, almost like a different language. The
good news is that, with the exception of web browsers, most application banners are
relatively simple. The bad news is that web browsers will make most of the banners
you see.

Non-Web Banners
This section discusses server banners for servers not using the web. Banners can pro‐
vide information on the operating system and the protocol, or can be obfuscated to
prevent scanners from acquiring intelligence.

SMTP banners are defined in RFC 5321. On client login, an SMTP server should
respond with a 220 status code (the greeting), along with some domain information.
Given that SMTP servers are one of the services most commonly targeted by scan‐
ners, it’s not unusual to find SMTP banners reduced to a bare minimum by system
administrators.
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Microsoft defines the default banner for MS Exchange as:

220 <Servername> Microsoft ESMTP MAIL service ready at
    <RegionalDay-Date-24HourTimeFormat> <RegionalTimeZoneOffset>

with optional customization. An example banner for Exchange is:

220 mailserver.bogodomain.com Microsoft ESMTP MAIL service ready at
    Sat, 16 Feb 2013 08:34:14 +0100

SSH is defined in RFC 4253. On client login, an SSH server sends a brief message
providing an identification string. According to the protocol definition, the identifi‐
cation string will be of the form:

SSH-protoversion-softwareversion SP comments CR LF

where SP is a space, CR is a carriage return, and LF is a line feed. All modern imple‐
mentations of SSH should use 2.0 for the protocol version, but a server that supports
previous versions of SSH should identify its version as 1.99. Comments are optional.

The following banner is an example of SSH before version 2.0, which should be rare:

SSH-1.99-OpenSSH_3.5p1

Everything else should be 2.0 or above:

SSH-2.0-OpenSSH_4.3

As these examples show, the first step to identifying a banner is usually to find the
relevant technical documentation. This may be an RFC for an IETF-engineered pro‐
tocol such as IMAP, POP3, SSH, or SMTP. For protocols that do not involve the IETF,
some searching may be required to identify the developer of the protocol and any
support sites. For example, BitTorrent’s protocol is currently specified at the
theory.org wiki.

Web Client Banners: The User-Agent String
Web clients send browsers a complicated configuration string defining their capabili‐
ties and preferences: the platform the browser runs on, the operating system, and a
variety of configuration details. This string, the User-Agent, is defined in RFC 2616,
but can become phenomenally complicated (as well as informative) fairly quickly.

Some User-Agent strings are shown sorted by browser in Example 18-7.

Example 18-7. Example User-Agent strings by browser

Firefox:
Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.12) Gecko/20080214
     Firefox/2.0.0.12
Mozilla/5.0 (Windows; U; Windows NT 5.1; cs; rv:1.9.0.8) Gecko/2009032609
     Firefox/3.0.8
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Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8) Gecko/20051111 Firefox/1.5

Internet Explorer:
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2;
     Media Center PC 6.0; InfoPath.3; MS-RTC LM 8; Zune 4.7)
Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; Xbox)

Safari:
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/534.57.1
     (KHTML, like Gecko) Version/5.1.7 Safari/534.57.1
Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS X) AppleWebKit/536.26
     (KHTML, like Gecko) Version/6.0 Mobile/10A403 Safari/8536.25

Opera:
Opera/9.80 (Windows NT 6.0) Presto/2.12.388 Version/12.11
Opera/9.80 (Macintosh; Intel Mac OS X 10.8.2) Presto/2.12.388 Version/12.11
Opera/9.80 (X11; Linux i686; U; ru) Presto/2.8.131 Version/11.11
Mozilla/5.0 (Windows NT 6.1; rv:2.0) Gecko/20100101 Firefox/4.0 Opera 12.11

Chrome:
Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24
     (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.19
     (KHTML, like Gecko) Chrome/18.0.1025.151 Safari/535.19
Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus Build/IMM76B)
     AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.133
     Mobile Safari/535.19
Mozilla/5.0 (iPhone; U; CPU iPhone OS 5_1_1 like Mac OS X; en)
     AppleWebKit/534.46.0 (KHTML, like Gecko) CriOS/19.0.1084.60
     Mobile/9B206 Safari/7534.48.3

Googlebot:
Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Bingbot:
Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)

Baiduspider:
Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/
spider.html)

The User-Agent strings in Example 18-7 follow a basic structure that is derived from
the original RFC 2616 specification along with various detritus from the browser
wars. These attributes are broken down as follows:

1. An initial tag, usually Mozilla/4.0 or higher. The use of Mozilla as the default
string is a relic of the browser wars. Suffice it to say that almost every browser
automatically masquerades as Mozilla.
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2. A set of values in parentheses that will tell you what the browser really is. These
values vary based on the browser make and configuration, but usually contain
the actual browser name, the OS, and a number of optional parameters.

3. Following the parentheses (usually) is a tag naming the layout engine for the soft‐
ware; the layout engine is the browser’s toolkit for rendering HTML, and the
same engine can be used by multiple browsers. Common engines include Gecko
(used by Firefox, Mozilla, and SeaMonkey), WebKit (used by Safari and
Chrome), Presto (Opera), and Trident (IE).

As Example 18-7 shows, the actual composition of the string is very much a function
of the browser, the OS, and the idiosyncratic whims of the implementer.

Further Reading
1. M. Collins and M. Reiter, “Finding Peer-to-Peer File Sharing Using Coarse Net‐

work Behaviors,” Proceedings of the 2007 ESORICS Conference, Hamburg, Ger‐
many, 2007.

2. H. Inoue et al., “NetADHICT: A Tool for Understanding Network Traffic,” Pro‐
ceedings of the 2007 Large Installation System Administration Conference (LISA),
Dallas, TX, 2007.

3. The NetADHICT home page.
4. Michael Zalewski’s p0f.
5. http://www.useragentstring.com.
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CHAPTER 19

On Network Mapping

In this chapter, we discuss mechanisms for managing the rate of false positives pro‐
duced by detection systems by reducing make-work. Consider this scenario: I create a
signature today to identify the IIS exploit of the week, and sometime tomorrow after‐
noon it starts firing off like crazy. Yay, somebody’s using an exploit! I check the logs,
and I find out that I am not in fact being attacked by this exploit because my network
actually doesn’t run IIS. Not only have I wasted analysts’ time dealing with the alert,
but I’ve wasted my time writing the original alert for something to which the network
isn’t vulnerable.

The process of inventory is the foundation of situational awareness. It enables you to
move from simply reacting to signatures to continuous audit and protection. It pro‐
vides you with baselines and an efficient anomaly detection strategy, it identifies criti‐
cal assets, and it provides you with contextual information to speed up the process of
filtering alerts.

Creating an Initial Network Inventory and Map
Network mapping is an iterative process that combines technical analysis and inter‐
views with site administrators. The theory behind this process is that any inventory
generated by design is inaccurate to some degree, but accurate enough to begin the
process of instrumentation and analysis. Acquiring this inventory begins with identi‐
fying the personnel responsible for managing the network.

The mapping process described in this book consists of four distinct phases, which
combine iterative traffic analysis and asking a series of questions of network adminis‐
trators and personnel. These questions inform the traffic analyses, and the analyses
lead to more queries. Figure 19-1 shows how the process progresses: in phase I you
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identify the space of IP addresses you are monitoring, and in each progressive phase
you partition the space into different categories.

Figure 19-1. The mapping process

Creating an Inventory: Data, Coverage, and Files
In a perfect world, a network map should enable you to determine, based on
addresses and ports, the traffic you are seeing on any host on the network. But the
likelihood of producing such a perfect map of an enterprise network is pretty low
because by the time you finish the initial inventory, something on the network will
have changed. Maps are dynamic and consequently have to be updated on a regular
basis. This updating process provides you with a facility for continuously auditing the
network.

A security inventory should keep track of every addressable resource on the network
(that is, anything attackers could conceivably reach if they had network access, even if
that means access inside the network). It should keep track of which services are run‐
ning on the resource, and it should keep track of how that system is monitored. An
example inventory is shown in Table 19-1.

Table 19-1. An example worksheet

Address Name Protocol Port Role Last seen Sensors Comments
128.2.1.4 www.server.com TCP 80 HTTP server 2013/05/17 Flow 1, Log Primary web server

128.2.1.4 www.server.com TCP 22 SSH server 2013/05/17 Flow 1, Log Administrators only

128.2.1.5–128.2.1.15 N/A N/A N/A Client 2013/05/17 Flow 2 Workstations

128.2.1.16–128.2.1.31 N/A N/A N/A Empty 2013/05/17 Flow 2 Dark space

Table 19-1 has an entry for each unique observed port and protocol combination on
the network, along with a role, an indicator of when the host was last seen in the sen‐
sor data, and the available sensor information. These fields are the minimum set that
you should consider when generating an inventory. Additional potential items to
consider include the following:
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• The Role field should be enumerable, rather than an actual text field. Enumerat‐
ing the roles will make searching much less painful. A suggested set of categories
is:
— Service Server, where Service is HTTP, SSH, etc.
— Workstation, to indicate a dedicated client
— NAT, to indicate a network address translator
— Service Proxy for any proxies
— Firewall for firewalls
— Sensor for any sensors
— Routing for any routing equipment
— VPN for VPN concentrators and other equipment
— DHCP for any dynamically addressed space
— Dark for any address that is allocated in the network but has no host on it

• Identifying VPNs, NATs, DHCP, and proxies, as we’ll discuss in a moment, is par‐
ticularly important—they mess up the address allocation and increase the com‐
plexity of analysis.

• Keeping centrality or volume metrics is also useful. A five-number summary of
volume over a month is a good starting point for anomaly detection.

• Per-host whitelists are a useful tool for anomaly management (see Chapter 3 for a
more extensive discussion). The inventory is a good place to track per-host
whitelist and rule files.

• Ownership and point of contact information is critical. One of the most time-
consuming steps after identifying an attack is usually finding out who owns the
victim.

• Keeping track of the specific services on hosts, and the versions of those services,
helps track the risk that a particular system has to current exploits. This can be
identified by banner grabbing, but it’s more effective to just scan the network
using the inventory as a guideline.

Table 19-1 could be kept on paper or in a spreadsheet, but it really should be kept in
an RDBMS or other storage system. Once you’ve created the inventory, it will serve as
a simple anomaly detection system, and should be updated regularly by automated
processes.
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Phase I: The First Three Questions
The first step of any inventory process involves figuring out what is already known
and what is already available for monitoring. For this reason, instrumentation begins
at a meeting with the network administrators.1 The purpose of this initial meeting is
to determine what is monitored:

• What addresses make up the network?
• What sensors do I have?
• How are the sensors related to traffic?

Start with addresses, because they serve as the foundation of the inventory. More spe‐
cific questions to ask include:

Is the network IPv4 or IPv6?
If the network is IPv6, there’s going to be a lot more address space to play with,
which reduces the need for DHCP and NATing. The network is more likely to be
IPv4, however, and that means that if it is of any significant size, there’s likely to
be a fair degree of aliasing, NATing, and other address conservation tricks.

How many addresses are accessible or hidden behind NATs?
Ideally, you should be able to get a map showing the routing on the network,
whether there are DMZs, and what information is hidden behind NATs. These
individual subnets are future candidates for instrumentation.

How many hosts are on the network?
Determine how many PCs, clients, servers, computers, and embedded systems
are on the network. These systems are the things you’re defending. Pay particular
attention to embedded systems such as printers and teleconferencing tools
because they often have network servers, are hard to patch and update, and are
frequently overlooked in inventories.

This discussion should end with a list of all your potential IP addresses. This list will
probably include multiple instances of the same ephemeral spaces. For example, if
there are six subnets behind NAT firewalls, expect to see 192.168.0.0/16 repeated six
times. You should also get an estimate of how many hosts are in each subnet and in
the network as a whole.

The next set of questions to ask involves current instrumentation. Host-based instru‐
mentation (e.g., server logs and the like, as discussed in Chapter 5) are not the pri‐
mary target at this point. Instead, the goal is to identify whether network-level
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collection is available. If it is available, determine what is collected, and if not, deter‐
mine whether it can be turned on. More specific questions to ask include:

What is currently being collected?
A source doesn’t have to be collected “for security purposes” to be useful. Net‐
Flow, for example, is primarily used as a billing system, but can be useful in mon‐
itoring as well.

Are there NetFlow-capable sensors?
For example, if Cisco routers with built-in NetFlow instrumentation are avail‐
able, use them as your initial sensors.

Is any IDS present?
An IDS such as Snort can be configured to just dump packet headers. Depending
on the location of the IDS (such as if it’s on the border of a network), it may be
possible to put up a flow collector there as well.

At the conclusion of this discussion, you should come up with a plan for initially
instrumenting the network. The goal of this initial instrumentation should be to capi‐
talize on any existing monitoring systems and to acquire a systematic monitoring
capability for cross-border traffic. As a rule of thumb, on most enterprise networks
it’s easiest to turn on deactivated capabilities such as NetFlow, and it’s progressively
more difficult, respectively, to add new software and hardware.

The default network
Throughout this chapter, I use asides to discuss more concrete methods to answer the
high-level questions in the text. These asides and examples involve a hefty number of
SiLK queries and at least a little understanding of how SiLK breaks down data.

The default network is shown in Figure 19-2. As described by SiLK, this network has
two sensors: router 1 and router 2. There are three types of data: in (coming from the
cloud into the network), out (going from the network to the cloud), and internal
(traffic that doesn’t cross the border into the cloud).

In addition, there exist a number of IP sets. initial.set is a list of hosts on the net‐
work provided by administrators during the initial interview. This set is composed of
servers.set and clients.set, comprising the clients and servers. servers.set con‐
tains webservers.set, dnsservers.set, and sshservers.set as subsets. These sets
are accurate at the time of the interview, but will be updated as time passes.
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Figure 19-2. Unmonitored routes in action

Phase II: Examining the IP Space
You’ll need to consider the following questions:

• Are there unmonitored routes?
• What IP space is dark?
• Which IP addresses are network appliances?

Following phase I, you should have an approximate inventory of the network and a
live feed of, at the minimum, cross-border traffic data. With this information, you can
begin to validate the inventory by comparing the traffic you are receiving against the
list of IP addresses that the administrators provided you. Note the use of the word
validate—you are comparing the addresses that you observe in traffic against the
addresses you were told would be there.
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Your first goal is to determine whether instrumentation is complete or incomplete,
and in particular whether you have any unmonitored routes to deal with—that is,
legitimate routes where traffic is not being recorded. Figure 19-2 shows some com‐
mon examples of dark routes. In this figure, a line indicates a route between two
entities:

• The first unmonitored route occurs when traffic moves through router 2, which
is not monitored. For example, if host A communicates with external address B
using router 2, you will not see A’s traffic to B or B’s traffic to A.

• A more common problem in modern networks is the presence of wireless
bridges. Most modern hosts have access to multiple wireless networks, especially
in shared facilities. Host B in the example can communicate with the internet
while bypassing router 1 entirely.

The key to identifying unmonitored routes is to look at asymmetric traffic flow. Rout‐
ing protocols forward traffic with minimal interest in the point of origin, so if you
have n access points coming into your network, the chance of any particular session
going in and out of the same point is about 1/n. You can expect some instrumentation
failures to result on any network, so there are always going to be broken sessions, but
if you find consistent evidence of asymmetric sessions between pairs of addresses,
that’s good evidence that the current monitoring configuration is missing something.

The best tool for finding asymmetric sessions is TCP traffic, because TCP is the most
common protocol in the IP suite that guarantees a response. To identify legitimate
TCP sessions, take the opposite approach from Chapter 13: look for sessions where
the SYN, ACK, and FIN flags are high, with multiple packets or with payload.

Identifying asymmetric traffic
To identify asymmetric traffic, look for TCP sessions that carry a payload and don’t
have a corresponding outgoing session. This can be done using rwuniq and rwfilter:

$ rwfilter --start-date=2013/05/10:00 --end-date=2013/05/10:00 --proto=6 \
  --type=out --packets=4- --flags-all=SAF/SAF --pass=stdout | \
  rwuniq --field=1,2  --no-title --sort | cut -d '|' -f 1,2 > outgoing.txt
# Note that I use 1,2 for the rwuniq above, and 2,1 for the rwuniq below.
# This ensures that the fields are present in the same order when
# I compare output.
$ rwfilter --start-date=2013/05/10:00 --end-date=2013/05/10:00 --proto=6 \
  --type=in --packets=4- --flags-all=SAF/SAF --pass=stdout | rwuniq \
  --field=2,1 --no-title --sort | cut -d '|' -f 2,1 > incoming.txt

Once these commands finish, I will have two files of internal IP and external IP pairs.
I can compare these pairs directly using -cmp or a handwritten routine. Example 19-1
shows a Python example that generates a report of unidirectional flows.
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Example 19-1. Generating a report of unidirectional flows

#!/usr/bin/env python
#
#
# compare_reports.py
#
# Command line: compare_reports.py file1 file2
#
# Reads the contents of two files and checks to see if the same
# IP pairs appear.
#
import sys, os
def read_file(fn):
    ip_table = set()
    a = open(fn,'r')
    for i in a.readlines():
        sip, dip = map(lambda x:x.strip(), i.split('|')[0:2])
        key = "%15s:%15s" % (sip, dip)
        ip_table.add(key)
    a.close()
    return ip_table

if __name__ == '__main__':
    incoming = read_file(sys.argv[1])
    outgoing = read_file(sys.argv[2])
    missing_pairs = set()
    total_pairs = set()
    # Being a bit sloppy here, run on both incoming and outgoing to ensure
    # that if there's an element in one not in the other, it gets caught
    for i in incoming:
        total_pairs.add(i)
        if not i in outgoing:
            missing_pairs.add(i)
    for i in outgoing:
        total_pairs.add(i)
        if not i in incoming:
            missing_pairs.add(i)
    print missing_pairs, total_pairs
    # Now do some address breakdowns
    addrcount = {}
    for i in missing_pairs:
        in_value, out_value = i.split(':')[0:2]
        if not addrcount.has_key(in_value):
            addrcount[in_value] = 0
        if not addrcount.has_key(out_value):
            addrcount[out_value] = 0
        addrcount[in_value] += 1
        addrcount[out_value] += 1
    # Simple report, number of missing pairs, list of most commonly occurring
    # addresses
    print "%d missing pairs out of %d total" % (len(missing_pairs),
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                                                len(total_pairs))
    s = addrcount.items()
    s.sort(lambda a,b:b[1] - a[1]) # lambda just guarantees order
    print "Most common addresses:"
    for i in s[0:10]:
        print "%15s %5d" % (i[0],addrcount[i[0]])

This approach is best done using passive collection because it ensures that you are
observing traffic from a number of locations outside the network. Scanning is also for
identifying dark spaces and backdoors. When you scan and control the instrumenta‐
tion, not only can you see the results of your scan on your desktop, but you can com‐
pare the traffic from the scan against the data provided by your collection system.

Although you can scan the network and check whether all your scanning sessions
match your expectations (i.e., you see responses from hosts and nothing from empty
space), you are scanning from only a single location, when you really need to look at
traffic from multiple points of origin.

If you find evidence of unmonitored routes, you need to determine whether they can
be instrumented and why they aren’t being instrumented right now. Unmonitored
routes are a security risk: they can be used to probe, exfiltrate, and communicate
without being monitored.

Unmonitored routes and dark spaces have similar traffic profiles to each other; in
both cases, a TCP packet sent to them will not elicit a reply. The difference is that in
an unmonitored route, this happens due to incomplete instrumentation, while a dark
space has nothing to generate a response. Once you have identified your unmoni‐
tored routes, any monitored addresses that behave in the same way should be dark.

Identifying dark space
Dark spaces can be found either passively or actively. Passive identification requires
collecting traffic to the network and progressively eliminating all address that
respond or are unmonitored—at that point, the remainder should be dark. The alter‐
native approach is to actively probe the addresses in a network and record the ones
that don’t respond; those addresses should be dark.

Passive collection requires gathering data over a long period. At the minimum, collect
traffic for at least a week to ensure that dynamic addressing and business processes
are handled. For example:

$ rwfilter --type=out --start-date=2013/05/01:00 --end-date=2013/05/08:23 \
  --proto=0-255 --pass=stdout | rwset --sip-file=light.set
# Now remove the lit addresses from our total inventory
$ rwsettool --difference --output=dark.set initial.set light.set

An alternative approach is to ping every host on the network to determine whether it
is present:
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$ for i in `rwsetcat initial.set`
  do
  # Do a ping with a 5-second timeout and 1 attempt to each target
      ping -q -c 1 -t 5 ${i} | tail -2 >> pinglog.txt
  done

pinglog.txt will contain the summary information from the ping command, which
will look like this:

--- 128.2.11.0 ping statistics ---
1 packets transmitted, 0 packets received, 100.0% packet loss

The contents can be parsed to produce a dark map.

Of these two options, scanning will be faster than passive mapping, but you have to
make sure the network will return echo reply messages (ICMP type 0) to your pings.

Another way to identify dynamic spaces through passive monitoring is to take hourly
pulls and compare the configuration of dark and lit addresses in each hour.

Finding network appliances

Identifying network appliances involves either using traceroute, or looking for spe‐
cific protocols used by them. “Network appliances” in this context really means
router interfaces. Router interfaces are identifiable by looking for routing protocols
or checking for “ICMP host not found” messages (also known as “network unreacha‐
ble” messages), which are generated only by routers.

Every host mentioned by traceroute except the endpoint is a router. If you check for
protocols, candidates include:

BGP
BGP is commonly spoken by routers that route traffic across the internet, and
won’t be common inside corporate networks unless you have a very big network.
BGP runs on TCP port 179:

# This will identify communications from the outside world with BGP speakers
# inside
$ rwfilter --type=in --proto=6 --dport=179 --flags-all=SAF/SAF \
  --start-date=2013/05/01:00 --end-date=2013/05/01:00 --pass=bgp_speakers.rwf

OSPF and EIGRP
These are common protocols for managing routing on small networks. EIGRP is
protocol number 88, OSPF protocol number 89:

# This will identify communications with OSPF and EIGRP speakers.
# Note the use of internal; we don't expect this traffic to be cross-border.
$ rwfilter --type=internal --proto=88,89 --start-date=2013/05/01:00 \
  --end-date=2013/05/01:00 --pass=stdout | rwfilter --proto=88 \
   --input-pipe=stdin --pass=eigrp.rwf --fail=ospf.rwf
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RIP
Another internal routing protocol, RIP is implemented on top of UDP using port
520:

# This will identify communications with RIP speakers
$ rwfilter --type=internal --proto=17 --aport=520 \
  --start-date=2013/05/01:00 --end-date=2013/05/01:00 --pass=rip_speakers.rwf

ICMP
Host unreachable messages (ICMP type 3, code 7) and time exceeded messages
(ICMP type 11) both originate from routers:

# Filter out ICMP messages. The longer period is because ICMP is much rarer
# than TCP and UDP.
$ rwfilter --type=out --proto=1 --icmp-type=3,11 --pass=stdout \
  --start-date=2013/05/01:00 \
  --end-date=2013/05/01:23 | rwfilter --icmp-type=11 --input-pipe=stdin \
  --pass=ttl_exceeded.rwf --fail=stdout | rwfilter --input-pipe=stdin \
  --icmp-code=7 --pass=not_found.rwf
$ rwset --sip=routers_ttl.set ttl_exceeded.rwf
$ rwset --sip=routers_nf.set not_found.rwf
$ rwsettool --union --output-path=routers.set routers_nf.set routers_ttl.set

The results of this step will provide you with a list of router interface addresses. Each
router on the network will control one or more of these interfaces. At this point, it’s a
good idea to go back to the network administrators in order to associate these inter‐
faces with actual hardware.

Phase III: Identifying Blind and Confusing Traffic
You’ll need to consider the following questions:

• Are there NATs?
• Are there proxies, reverse proxies, or caches?
• Is there VPN traffic?
• Are there dynamic addresses?

After completing phase II, you will have identified which addresses within your net‐
work are active. The next step is to identify which addresses are going to be problem‐
atic. Life would be easier for you if every host were assigned a static IP address, that
address were used by exactly one host, and the traffic were easily identifiable by port
and protocol.

Obviously, these constraints don’t hold. Specific problems include:

NATs
These are a headache because they alias multiple IP addresses behind a much
smaller set of addresses.
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Proxies, reverse proxies, and caches
Like a NAT, a proxy hides multiple IP addresses behind a single proxy host
address. Proxies generally operate at higher levels in the OSI stack and often han‐
dle specific protocols. Reverse proxies, as the name implies, provide aliases for
multiple server addresses and are used for load balancing and caching. Caches
store repeatedly referenced results (such as web pages) to improve performance.

VPNs
Virtual private network (VPN) traffic obscures the contents of protocols, hiding
what’s being done and how many hosts are involved. VPN traffic includes IPv6-
over-IPv4 protocols such as 6to4 and Teredo, and encrypted protocols such as
SSH and TOR. All of these protocols encapsulate traffic, meaning that the
addresses seen at the IP layer are relays, routers, or concentrators rather than the
actual hosts doing something.

Dynamic addresses
Dynamic addressing, such as that assigned through DHCP, causes a single host to
migrate through a set of addresses over time. Dynamic addressing complicates
analysis by introducing a lifetime for each address. You can never be sure
whether the host you’re tracking through its IP address did something after its
DHCP lease expired.

These particular elements should be well documented by network administrators, but
there are a number of different approaches for identifying them. Proxies and NATs
can both be identified by looking for evidence that a single IP address is serving as a
frontend for multiple addresses. This can be done via packet payload or flow analysis,
although packet payload is more certain.

Identifying NATs
NATs are an enormous pain to identify unless you have access to payload data, in
which case they simply become a significant pain. The best approach for identifying
NATs is to quiz the network administrators. Failing that, you have to identify NATs
through evidence that there are multiple addresses hidden behind the same address.
A couple of different indicia can be used for this:

Variant User-Agent strings
The best approach I’ve seen to identify NATs is to pull the User-Agent strings
from web sessions. Using a script such as bannergrab.py from Chapter 18, you
can pull and dump all instances of the User-Agent string issuing from the NAT.
If you see different instances of the same browser, or multiple browsers, you are
likely looking at a NAT.

There is a potential false positive here. A number of applications (including email
clients) include some form of HTTP interaction these days. Consequently, it’s
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best to restrict yourself to explicit browser banners, such as those output by Fire‐
fox, IE, Chrome, and Opera.

Multiple logons to common servers
Identify major internal and external services used by your network. Examples
include the company email server, Google, and major newspapers. If a site is a
NAT, you should expect to see redundant logins from the same address. Email
server logs and internal HTTP server logs are the best tools for this kind of
research.

TTL behavior
Recall that time-to-live (TTL) values are assigned by the IP stack and that initial
values are OS-specific. Check the TTLs coming from a suspicious address and
see if they vary. Variety suggests multiple hosts behind the address. If the values
are the same but below the initial TTL for an OS, you’re seeing evidence of multi‐
ple hops to reach that address.

Identifying proxies
Proxy identification requires you to have both sides of the proxy instrumented.
Figure 19-3 shows the network traffic between clients, proxies, and servers. As this
figure shows, proxies take in requests from multiple clients and send those requests
off to multiple servers. In this way, a proxy behaves as both a server (to the clients it’s
proxying for) and a client (to the servers it’s proxying to). If your instrumentation lets
you see both the client-to-proxy and proxy-to-server communication, you can iden‐
tify the proxy by viewing this traffic pattern. If it doesn’t, you can use the techniques
discussed for NAT identification. The same principles apply because, after all, a proxy
is a frontend to multiple clients, like a NAT firewall.

Figure 19-3. Network connections for a proxy

To identify a proxy using its connectivity, first look for hosts that are acting like cli‐
ents. You can tell a client because it uses multiple ephemeral ports. For example, using
rwuniq, you can identify clients on your network as follows:
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$ rwfilter --type=out --start-date=2013/05/10:00 --end-date=2013/05/10:01 \
  --proto=6,17 --sport=1024-65535 --pass=stdout | rwuniq --field=1,3 \
  --no-title | cut -d '|' -f 1 | sort | uniq -c | egrep -v '^[ ]+1' |\
   cut -d ' ' -f 3 | rwsetbuild stdin clients.set

That command identifies all combinations of source IP address (sip) and source port
number (sport) in the sample data and eliminates any situation where a host only
used one port. The remaining hosts are using multiple ports. It’s possible that hosts
that are using only seven or eight ports at a time are running multiple servers, but as
the distinct port count rises, the likelihood of them running multiple servers drops.

Once you’ve identified clients, the next step is to identify which of the clients are also
behaving as servers (see “Identifying servers” on page 369).

VPN traffic can be identified by looking for the characteristic ports and protocols
used by VPNs. VPNs obscure traffic analysis by wrapping all of the traffic they trans‐
port in another protocol, such as GRE. Once you’ve identified a VPN’s endpoints,
instrument there. Once the wrapper has been removed from VPN traffic, you should
be able to distinguish flows and session data.

Identifying VPN traffic
The major protocols and ports used by VPN traffic are:

IPsec
IPsec refers to a suite of protocols for encrypted communications over VPNs.
The two key protocols are AH (Authentication Header, protocol 51) and ESP
(Encapsulating Security Payload, protocol 50):

$ rwfilter --start-date=2013/05/13:00 --end-date=2013/05/13:01 --proto=50,51 \
  --pass=vpn.rwf

GRE
GRE (Generic Routing Encapsulation) is the workhorse protocol for a number of
VPN implementations. It can be identified as protocol 47:

$ rwfilter --start-date=2013/05/13:00 --end-date=2013/05/13:01 --proto=47 \
  --pass=gre.rwf

A number of common tunneling protocols are also identifiable using port and proto‐
col numbers, although unlike standard VPNs, they are generally software-defined
and don’t require special assets specifically for routing. Examples include SSH, Ter‐
edo, 6to4, and TOR.

Phase IV: Identifying Clients and Servers
After identifying the basic structure of the network, the next step is to identify what
the network does, which requires profiling and identifying clients and servers on the
network. Questions include:
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• What are the major internal servers?
• Are there servers running on unusual ports?
• Are there FTP, HTTP, SMTP, or SSH servers that are not known to system

administrators?
• Are servers running as clients?
• Where are the major clients?

Identifying servers
Servers can be identified by looking for ports that receive sessions and by looking at
the spread of communications to ports.

To identify ports that are receiving sessions, you either need access to pcap data or
flow instrumentation that distinguishes the initial flags of a packet from the rest of
the body (which you can get through YAF, as described in “YAF” on page 166). In a
flow, the research then becomes a matter of identifying hosts that respond with a SYN
and ACK:

$ rwfilter --proto=6 --flags-init=SA|SA --pass=server_traffic.rwf \
  --start-date=2013/05/13:00 --end-date=2013/05/13:00 --type=in

This approach won’t work with UDP, because a host can send UDP traffic to any port
it pleases without any response. An alternate approach, which works with both UDP
and TCP, is to look at the spread of a port/protocol combination. I briefly touched on
this in “Identifying proxies” on page 367, and we’ll discuss it in more depth now.

A server is a public resource. This means that the address has to be sent to the clients,
and that, over time, you can expect multiple clients to connect to the server’s address.
Therefore, over time, you will see multiple flows with distinct source IP/source port
combinations all communicating with the same destination IP/destination port com‐
bination. This differs from the behavior of a client, which will issue multiple sessions
from different source ports to a number of distinct hosts. Figure 19-4 shows this phe‐
nomenon graphically.

Figure 19-4. A graphical illustration of spread
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2 Preferably at a place that serves vodka.

Spread can easily be calculated with flow data by using the rwuniq command. Given a
candidate file of traffic originating from one IP address, use the following:

$ rwuniq --field=1,2 --dip-distinct candidate_file | sort -t '|' -k3 -nr |\
  head -15

The more distinct IP addresses talk to the same host/port combination, the more
likely is it that the port represents a server. In this script, servers will appear near the
top of the list.

By using spread and direct packet analysis, you should have a list of most of the
IP:port combinations that are running servers. This is always a good time to scan
those IP:port combinations to verify what’s actually running: in particular, search for
servers that are not running on common ports. Servers are a public resource (for
some limited definition of “public”), and when they appear on an unusual port, it
may be an indication that a user didn’t have permissions to run the server normally
(suspicious behavior) or was trying to hide it (also suspicious behavior, especially if
you’ve read Chapter 13).

Once you’ve identified the servers on a network, determine which ones are most
important. There are a number of different metrics for doing so, including:

Total volume over time
This is the easiest and most common approach.

Internal and external volume
This differentiates servers accessed only by your own users from those accessed
by the outside world.

Graph centrality
Path and degree centrality often identify hosts that are important and that would
be missed using pure degree statistics (number of contacts). See Chapter 15 for
more information.

The goal of this exercise is to produce a list of servers ordered by priority, from the
ones you should watch the most to the ones that are relatively low profile or, poten‐
tially, even removable.

Once you have identified all the servers on a network, it’s a good time to go back to
talk to the network administrators.2 This is because you will almost invariably find
servers that nobody knew were running on the network, examples of which include:

• Systems being run by power users
• Embedded web servers
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• Occupied hosts

Identifying Sensing and Blocking Infrastructure
Questions to consider:

• Are there any IDSs or IPSs in place? Can I modify their configuration?
• What systems do I have log access to?
• Are there any firewalls?
• Are there any router ACLs?
• Is there an antispam system at the border, or is antispam handled at the mail

server, or both?
• Is AV present?

The final step of any new instrumentation project is to figure out what security soft‐
ware and capabilities are currently present. In many cases, these systems will be iden‐
tifiable more from an absence than a presence. For example, if no hosts on a
particular network show evidence of BitTorrent traffic (ports 6881–6889), it’s likely
that a router ACL is blocking BitTorrent.

Updating the Inventory: Toward Continuous Audit
Once you’ve built an initial inventory, queue up all the analysis scripts you’ve written
to run on a regular basis. The goal is to keep track of what’s changed on your network
over time.

This inventory provides a handy anomaly-detection tool. The first and most obvious
approach is to keep track of changes in the inventory. Sample questions to ask
include:

• Are there new clients or servers on the network?
• Have previously existing addresses gone dark?
• Has a new service appeared on a client?

Changes in the inventory can be used as triggers for other analyses. For example,
when a new client or server appears on the network, you can start analyzing its flow
data to see who it communicates with, scan it, or otherwise experiment on it in order
to fill the inventory with information on the new arrival.

In the long term, keeping track of what addresses are known and monitored is a first
approximation for how well you’re protecting the network. It’s impossible to say “X is
more secure than Y”; we just don’t have the ability to quantitatively measure the X
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factor that is attacker interest. But by working with the map, you can track coverage
either as a strict number (out of X addresses on the network, Y are monitored) or as a
percentage.

Further Reading
1. U. Shankar and V. Paxson, “Active Mapping: Resisting NIDS Evasion Without

Altering Traffic,” Proceedings of the 2003 IEEE Symposium on Security and Pri‐
vacy, Oakland, CA, 2003.

2. A. Whisnant and S. Faber, “Network Profiling Using Flow,” Report CMU/
SEI-2012-TR-006, Carnegie Mellon University Software Engineering Institute,
Pittsburgh, PA, 2012, available at http://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=28115.

3. C. Hosmer, Passive Python Network Mapping (Rockland, MA: Syngress Publish‐
ing, 2015).

4. C. McNab, Network Security Assessment, 3rd ed. (Sebastopol, CA: O’Reilly Media,
2016).
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1 SOCs have a number of different names. I personally prefer the chewier but more descriptive Computer Secu‐
rity Incident Response Team (CSIRT).

CHAPTER 20

On Working with Ops

In this chapter, I will discuss how an analysis team can effectively interact with and
support an ops team. The concept of an independent “analysis team” is still new in
information security, and there are no experts at this yet. There are, however, a good
number of traps we can avoid.

This chapter is divided into two major sections. The first section is a brief discussion
of the roles and stresses of operations environments. The second section attempts to
classify major operational workflows—how operations environments are likely to
execute decisions—and provides some guidelines for ensuring that ops and analytics
can effectively support each other.

Ops Environments: An Overview
A Security Operations Center (SOC) is an organization focused on active security inci‐
dent response.1 The SOC’s role is to process information about the state of an organi‐
zation’s security and respond to that information; they are effectively first responders
to security alerts. Everything that goes wrong in information security ends up on the
SOC floor.

SOC work is stressful; the stress comes from the constant flow of alerts the SOC must
process. The penalty for conducting an attack is very low, and because of this, any
open network is subject to a constant stream of attacks. New attacks do not replace
old attacks; they supplement them. Any analyst with more than a month’s experience
may be conversant with attacks that have been going on for more than five years.
Attacks are constant, increasing, and fire off alerts all the time.
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SOC work is tedious. Because the penalty for attacking is so low, attackers run non-
threatening attacks all the time. Analysts must differentiate between the constant
stream of nonthreatening attacks and the constant stream of potentially threatening
attacks. Operational SOC work is a constant process of picking up alerts, validating
that they aren’t threats, and moving on to the next alerts.

SOC work is frustrating. Due to internal siloing, user pushback, and omnipresent
vulnerabilities, the things that an analyst can actually do to defend a network are limi‐
ted. They can tweak defenses, pull machines off the network for remediation, and
write reports. Aggressive defenses require fights, and the security organization has to
be careful about which fights it picks.

Because of these factors, analysts are always choked for time. I want to emphasize this
point: the most valuable resource in any SOC is analyst time. Well-run SOCs have ser‐
vice level agreements (SLAs) and IDS configurations that produce just enough alerts
for the SOC to handle, but this is a fraction of the potential problems they could be
addressing but don’t have the resources to address.

The most important thing for any analytics group to understand is that analysts are
stressed, working at capacity, and don’t have a lot of spare cycles. Good SOC manag‐
ers often limit access to analysts for precisely this reason—they don’t have a lot of
time to spend on the ivory tower.

For analysis teams, this means that building and maintaining trust is critical. The
material in this chapter is unsexy but critically important; I really consider it more
important than anything involving machine learning, pattern recognition, or classifi‐
cation. The reason it’s important is because there are so many areas where a well-
equipped and aware analysis team can improve ops without looking to build a better
IDS. There’s a lot of important work to be done on inventory, task allocation, data
parsing, workflow management, visualization, and deduplication. Spend your time
here, and you’re more likely to make a concrete difference.

Operational Workflows
In this section, we will discuss five operational workflows. These workflows are:

Escalation
The basic workflow on most operational floors. Escalation workflow progres‐
sively filters alerts from frontline analysts to backend experts.

Sector
Sector workflow is an alternate to escalation workflow where alerts are allocated
to specialized teams of analysts based on the alert, its targets, and its impact.
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Hunting
Hunting is a specialized form of data analysis done by experienced analysts. It
tends to be self-directed and driven by analyst intuition; the output may be alerts
or security action, but it also produces TTPs for junior analysts to operate.

Hardening
Hardening is a situational reaction to audits or alerts about new threats, and con‐
sists of taking an inventory and then triaging vulnerable assets in that inventory.

Forensic
Forensic workflow is a situational reaction to an alert about a host within the net‐
work being compromised.

Escalation Workflow
The most common form of operational workflow is the escalation workflow, a
helpdesk-like process of promotion. This workflow is characterized by multiple tiers
of analysts who progressively filter information to experts. If you peruse standards
such NIST 800-61 or best practices guides, you will see some variant of this workflow
discussed. It’s not uncommon to find tools for managing these workflows that come
directly from helpdesk management. For example, Remedy is a bread-and-butter tool
for managing escalation workflows in helpdesks or ops floors.

In an escalation workflow, the inputs are alerts, and the outputs are security deci‐
sions. These decisions are primarily reports, but can also include incident responses
such as forensic analysis, or changes to the instrumentation. Figure 20-1 shows an
example of this workflow with the key characteristics of the process. An escalation
workflow is initiated by alerts, generally dropped into a SIEM console by one or more
sensors. Tier 1 analysts grab the alerts and process them. When a tier 1 analyst can’t
process an alert, he escalates it to a tier 2 analyst, and so on until the last tier is
reached (which is generally tier 3).

How Many Alerts?
As a rule of thumb, tier 1 analysts can process approximately 100 alerts in a shift, or
about 12 alerts an hour. Of these dozen, 10 of them will be immediately dismissed as
obvious false positives or non-threats. The remaining two will require the analyst to
conduct some investigation or file a report.
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Figure 20-1. Escalation workflow

Tiers are based on seniority, skill, and responsibilities. Tier 1 analysts are primarily
alert processors—this is a junior and generalist position where the analyst learns the
ropes of an organization. Ideally, tier 1 work is heavily workflow-based; analysts
should have very well-defined processes to help them move through the enormous
volume of false positives they process.

Higher-tier analysts are increasingly autonomous and specialized. Precisely how
many tiers an organization offers is up in the air. I generally prefer to refer to “junior,”
“senior,” and “expert” analysts to clearly delineate responsibilities. Senior (tier 2) ana‐
lysts begin to specialize and are more autonomous than junior analysts, but are still
focused primarily on SIEM. Expert (tier 3) analysts have a deep understanding of the
organization’s network traffic and are usually experts on critical fields within the sys‐
tem.
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As a reactive process, the escalation workflow is a necessary component for incident
response. However, the approach is well known for burnout—a rule of thumb is that
tier 1 analysts will last between six months and a year before leaving or being promo‐
ted to tier 2. This hefty turnover, especially in the lower tiers, results in concomitant
training costs and a constant problem of knowledge management.

Analysis teams working with an escalation workflow should look into processes to
help analysts handle more alerts and processes that provide awareness of false nega‐
tives. Given the turnover in analysis teams, the most effective place to start working is
on improving the reproducibility and throughput of junior analyst work. Inventory
and organizational information are particularly useful here—much of what a junior
analyst does is based on determining what the target of the alert is, and whether that
target is vulnerable to the problem raised by the alert.

Also of use are tools that speed up looking up and representing anomalous behavior
and building up the inventory and other situational information. Much of a tier 1
analyst’s work is threat assessment: based on an indicator such as an IP address, has
this host talked to us recently? If a scan is seen, who responded to the scan? Automat‐
ing these types of queries so the analyst simply has to process rather than fetch the
data can result in a faster turnaround time and reduce errors.

At a more strategic level, the analysis team can evaluate the coverage provided by the
detection systems. Coverage metrics (see Chapter 19) can help to estimate how many
problems are slipping past the detectors.

Sector Workflow
The sector workflow is an alternative to the escalation workflow that divides alerts
into discrete areas of expertise. In information security, sector workflows are rare—in
my experience, the overwhelming majority of ops floors use an escalation workflow,
and the majority of tools are written to support it. That said, sector workflows are
common outside of information security, in air traffic control, combat information
centers, and the like.

Figure 20-2 shows the basic process. A sector workflow is a “foundational” workflow
in the same way that an escalation workflow is: it begins with alerts delivered to the
SIEM console and ends with analysts deciding on defensive actions. However,
whereas an escalation workflow assumes analysts are generalists and assigns alerts to
tier 1 analysts without preference, a sector workflow assigns alerts to analysts based
on different sectors of expertise.
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Figure 20-2. Sector workflow

Exactly how tasks are divided into sectors is the major challenge in building a sector
workflow. Done well, it enables analysts to develop deep expertise on a particular net‐
work or class of problems. Done poorly, analysts end up in feast or famine situations
—a disproportionate number of alerts end up in the hands of a small group of ana‐
lysts, while the remainder are stuck occupying space.

An analysis team can support sector workflows by reviewing and evaluating sector
allocation. A number of different partitioning techniques exist, including:

Network-based
Divide the network into subnets and allocate subnetworks to analysts as their
domains. Analysts working in subnet sectors should be divided by workload,
rather than total number of IP addresses.

Service-based
Service-based sectors assign analysts to particular services, such as web servers,
email, and the like. Service-based allocation requires a good understanding of
what services are available, which ones are critical, and which ones are as yet
undiscovered.

Publish/Subscribe
In a publish/subscribe system, analysts choose which assets on the network to
monitor. This requires that the analysts have a good understanding of what assets
are important.
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Attack-based
In an attack-based system, analysts are divided by classes of attacks. For example,
an attack-based division might have teams handling spam, DDoS attacks, scan‐
ning, etc.

Hunting Workflow
Hunting is a specialized form of exploratory data analysis focused on filling in gaps
on network attributes. In contrast to the other workflows discussed in this chapter, a
hunting workflow is open-ended and analyst-driven; it is a senior analyst activity.

Hunting requires both skilled analysis and an environment that facilitates open quer‐
ies. Figure 20-3 shows a hunting workflow; this workflow is similar to the workflows
for exploratory data analysis in Chapter 11 and is really a refinement of those work‐
flows to deal with the realities of how hunting starts and proceeds. Hunting is charac‐
terized, in comparison to the generic EDA process, by the following:

• It is predicated on deep expertise on the observed environment. An analyst
begins the hunting process by finding unexpected or unknown behavior on a
network, which requires the analyst to have a pretty good intuition for how the
network normally behaves.

• It works with the data in place. When an analyst is hunting, she is generally
focused on an aberration in the network as currently observed. The tools or capa‐
bilities that are in place are what the analyst can use.

• It generally produces a very concrete product: either an answer to a security
question, or TTPs (tools, techniques, and procedures) for junior analysts.

• It depends heavily on raw data sources such as logfiles, packet dumps, and flow
records.

Hunting Maturity
Hunting is a technique used by senior analysts with a comprehensive understanding
of the target network and access to extensive data sources. This workflow requires an
advanced analysis team with a good understanding of what they already know and a
desire to understand what on their network they don’t know.

This is a roundabout way of saying that you can’t stand up a hunting program with a
single analyst, and you can’t stand up a hunting program if your data collection con‐
sists of a Snort feed. You have bigger fish to fry.
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Figure 20-3. Hunting workflow

Hardening Workflow
Hardening is the process of assessing a network for potential vulnerabilities and then
reconfiguring the network to reduce the potential for damaging attacks. In compari‐
son to the escalation and sector workflows, hardening is situational—it is generally
triggered as part of an audit or in response to an announced vulnerability, as opposed
to being a continuous process.

Figure 20-4 shows the key components of a hardening workflow. As this figure
shows, the workflow begins with the ops team receiving information on a potential
vulnerability. This information is generally acquired in one of two ways: either the
team is continuously auditing the network for vulnerable systems and receives an
alert about such a system, or the team has received information on a new common
mode vulnerability. In either case, the hardening workflow is inventory-driven—after
receiving a notification, the ops team must create an inventory of vulnerable assets.
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Figure 20-4. Hardening workflow

After identifying vulnerable assets, the ops team must decide on courses of action.
This phase is triage-oriented—in general, there are more assets than the team can
effectively address, and in some cases the assets cannot be patched or rectified (a par‐
ticular problem with embedded systems). As a result, the ops team will usually end
up with a prioritized list of courses of action: some hosts will be patched before oth‐
ers, and some hosts will not be patched but taken offline or heavily blocked.

When executed on a regular basis (as part of a process of continuous audit and iden‐
tification), hardening is a proactive defensive strategy and can reduce the workload
on other parts of the ops team. That said, hardening depends heavily on quality
inventory—identifying vulnerable assets is the core of a hardening workflow, and it is
easy to skip assets.

There are several ways that an analysis team can improve hardening work. The first is
by working to improve the quality of inventory by mapping and assessing the assets
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in a network continuously, rather than simply as part of the hardening process (see
Chapter 7 for more information on assessment). In addition, analytics work on popu‐
lation and locality (see Chapter 14 for more information) can help inform operations
by giving them an understanding of how heavily used an asset is and the potential
impact of its loss.

A hardening scenario
Consider a situation where vulnerability researchers publicize a widespread vulnera‐
bility in a common HTTP library (let’s call it Heartbleed). This kind of vulnerability
is likely announced through some vulnerability clearinghouse such as US-CERT,
although it may also appear on mailing lists or occasionally as a front-page newspaper
item. On receipt of the announcement, the SOC team must create a mechanism to
determine which hosts within the network are vulnerable to an exploit.

The SOC team collates information from multiple sources and determines that the
vulnerability is limited to a specific set of versions of Nginx, Apache, and a family of
embedded web servers. At this time, the hardening workflow forks into two different
courses of action: one for software, one for embedded. The Nginx and Apache servers
can (theoretically) be identified and patched. The embedded web servers are barely
identifiable, as the vulnerable installation has passed through three different manu‐
facturers and now runs a dozen different host strings.

Based on this information, the SOC team scans the network on ports 80 and 443 for
web servers and creates an inventory of those servers. Of the 100 web servers they
find, 60 are not vulnerable, and 40 are. Of the 40 vulnerable web servers, 4 of them
are mission critical—they cannot be shut down and patched without affecting the
company’s core business processes. After interviewing the team running those
servers, the SOC team determines that the servers do not have to communicate across
the network’s border. They prepare to aggressively lock down those servers, allowing
access from a limited set of networks within the company. The remaining 36 servers
are patched.

Forensic Workflow
A forensic workflow refers to an investigation into breaches or damage. This is, like
hardening, a situational workflow, but one driven by a confirmed alert. A forensic
workflow is about assessing damage: determining what assets within a network have
been infected, what damage the attacker did, and how to prevent the attack from
recurring.

Figure 20-5 is a high-level description of a forensic workflow. As the figure shows, the
workflow begins with a confirmed incident—evidence of an attack, or an alert from a
user. From this information, the ops team identifies hosts that have been compro‐
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mised. This is done by isolating indicators of compromise (IOCs) from infected hosts
and using this information to identify the extent of damage throughout the network.

Like the hardening workflow, a forensic workflow is largely asset-based; the metric
for success is based on examining a list of assets. However, in a forensic workflow that
list of assets grows dynamically during the investigation process—identifying a new
IOC necessitates examining hosts on the network for evidence of that IOC. A foren‐
sic workflow consequently resembles a graph walk where each node is an asset, and
the links are paths of communication.

Figure 20-5. Forensic workflow

Switching Workflows
The workflows described here aren’t set in stone, and it’s not uncommon to see an ops
floor use some combination of them. In particular, an analysis shop might use an
escalation workflow for its tier 1 analysts, while tier 2 analysts use a sector workflow
and tier 3 analysts are working in a hunting flow. Workflows may also be situational
and temporary; this is particularly true for forensic, hardening, and hunting work‐
flows, which happen due to specific events and should have clearly defined end states.
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Further Readings
1. J. Bollinger, B. Enrigh, and M. Valites, Crafting the InfoSec Playbook: Security

Monitoring and Incident Response Master Plan (Sebastopol, CA: O’Reilly Media,
2015).

2. P. Cichonski et al., “Computer Security Incident Handling Guide,” NIST Special
Publication 800-61r2, available at http://nvlpubs.nist.gov/nistpubs/SpecialPublica
tions/NIST.SP.800-61r2.pdf.

3. C. Zimmerman, “Ten Strategies of a World-Class Cybersecurity Operations Cen‐
ter,” MITRE, available at https://www.mitre.org/publications/all/ten-strategies-of-a-
world-class-cybersecurity-operations-center.

4. The Argus group website, particularly http://www.arguslab.org/anthrosec.html.
Among its many projects, the lab run by Simon Ou at the University of South
Florida runs the only anthropological study of CSIRTs that I know of. I can’t
stress how important their work on analyst stress (in particular their model for
burnout) is.

5. The ThreatHunting Project: Hunting for Adversaries in Your IT Environment.
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CHAPTER 21

Conclusions

In this book, I have discussed techniques for collecting, processing, and applying data
to deal with information security problems, and specifically ways to use that data to
inform security decisions. This discussion is only half the story, though; every net‐
work is different, and every insecure network is insecure in its own way.

I encourage you, more than anything else, to look at the data. Constructs are good,
statistics are good, but the fundamental tool for data analysis is data. Whatever you
start with will be terrible: the first result of any data collection effort is finding out
how bad the data collection was. However, until you collect that data, until you poke
at your network, and until you understand what weirdness is going on—the ancient
developer who insists that USENET is part of his essential workflow, the guy who
thought putting the timeserver on .123, the web server on .80, and the HTTPS server
on .187—life is going to be confusing. Well, more confusing—the internet is really
weird.
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